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ABSTRACT

CHIHOON LEE: Long Time Stability and Control Problems for Stochastic

Networks in Heavy Traffic

(Under the direction of Dr. Amarjit Budhiraja)

Stochastic processing networks arise commonly from applications in computers, telecom-

munications, and large manufacturing systems. Study of stability and control for such

networks is an active and important area of research. In general the networks are

too complex for direct analysis and therefore one seeks tractable approximate models.

Heavy traffic limit theory yields one of the most useful collection of such approximate

models. Typical results in the theory say that, when the network processing resources

are roughly balanced with the system load, one can approximate such systems by suit-

able diffusion processes that are constrained to live within certain polyhedral domains

(e.g., positive orthants). Stability and control problems for such diffusion models are

easier to analyze and, once these are resolved, one can then infer stability properties

and construct good control policies for the original physical networks. In my disser-

tation we consider three related problems concerning stability and long time control

for such networks and their diffusion approximations.

In the first part of the dissertation we establish results on long time asymptotic

properties, in particular geometric ergodicity, for limit diffusion models obtained from

heavy traffic analysis of stochastic networks. The results provide the rate of conver-

gence to steady state, moment estimates for steady state, uniform in time moment

estimates for the process and central limit type results for time averages of such pro-

cesses. In the second part of the dissertation we consider invariant distributions of an
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important subclass of stochastic networks, namely the generalized Jackson networks

(GJN). It is shown that, under natural stability and heavy traffic conditions, the in-

variant distributions of GJN converge to unique invariant probability distribution of

the corresponding constrained diffusion model. The result leads to natural method-

ologies for approximation and simulation of steady state behavior of such networks.

In the final part of the dissertation we consider a rate control problem for stochastic

processing networks with an ergodic cost criterion. It is shown that value functions

and near optimal controls for limit diffusion models serve as good approximations for

the same quantities for the underlying physical queueing networks that are heavily

loaded.
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CHAPTER 1

Introduction

The study of stochastic networks is an active area of research in applied probability

with diverse applications arising from computer, telecommunications, and complex

manufacturing systems. From engineering and performance perspective, stability

and control issues for such network models are of central concern. Excepting simple

cases, the networks of interest are too complex to be analyzed directly and thus one

seeks tractable approximate models. When the network is in “heavy traffic,” that

is, processing resources are roughly balanced with the system load, one can, using

tools from theory of diffusion processes and weak convergence, approximate such

systems by suitable constrained diffusion processes. A typical approximating model

is a reflecting diffusion in some polyhedral cone with (possibly) oblique directions of

constraint (at the boundary), which change discontinuously from one face of the cone

to another. The main goals of this work are

(a) to study long time asymptotics for such constrained diffusions;

(b) to develop rigorous mathematical results that relate time asymptotic proper-

ties of constrained diffusion processes with the steady state behavior of the

underlying stochastic networks;

(c) to study a rate control problem for stochastic networks with an ergodic cost

criterion and to show that value functions and near optimal controls for limit

diffusion models serve as good approximations for the same quantities for the

underlying physical queueing networks which are heavily loaded.



A common theme in all three works is that the analysis is based on a detailed un-

derstanding of time asymptotics of both stochastic networks and their approximating

diffusion models. Additionally, topics in (b) and (c) require a careful treatment of the

interchange of the two limits, namely the heavy traffic limit and the long time limit.

In Chapter 2 we study geometric ergodicity and related issues for certain families

of constrained diffusions that arise in the heavy traffic analysis of multiclass queueing

networks. We first consider the classical diffusion model with constant coefficients,

namely a semimartingale reflecting Brownian motion (SRBM) in a positive orthant.

Under a natural stability condition on a related deterministic dynamical system, the

existence and uniqueness of a stationary distribution for this model have been studied

in [25]. We strengthen this result considerably by establishing geometric ergodicity

for the process, under exactly the conditions of [25]. Namely, we show that the

statistical distribution of the process at time t converges to the unique stationary

distribution, as t → ∞, at an exponential rate. The result that we establish is in

fact much stronger in that we identify an exponentially growing Lyapunov function

V and show that the process is V -uniformly ergodic. Such a result says, for example,

that expected values of unbounded (possibly exponentially growing) functions of the

state converge to those under the unique invariant distribution, at an exponential

rate. This result is then used to prove that the unique invariant measure of the

SRBM admits a finite moment generating function in a neighborhood of zero. As

other consequences we establish uniform (in time and initial condition in a compact

set) estimates on exponential moments of an SRBM. Growth estimates on polynomial

moments of the process as a function of the initial condition are obtained. Finally

we establish a functional central limit theorem for time averages of functionals of an

SRBM and characterize the asymptotic variance in this limit result via the solution of

the related Poisson equation. In Section 2.3 of the chapter, we also consider a family

of diffusion models with state dependent coefficients, constrained to take values in
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some convex polyhedral cone in Rd. Such diffusions arise as approximating models

for stochastic networks with state dependent arrival and processing rates. Positive

recurrence for such constrained diffusions under suitable conditions on the drift vector

field was established in [2]. As in the case of an SRBM, we strengthen this result

by establishing V -uniform ergodicity with a function V that grows exponentially.

As consequences of this result we establish, similar to the constant coefficients case,

exponential moment bounds, moment stability results and functional central limit

theorems.

Chapter 3 is concerned with the study of convergence of invariant measures for a

certain class of queueing networks. Since the original queueing networks can be quite

complex, practitioners often use the steady state behavior of limit diffusion models

to approximate the steady state of the queueing system. However, a rigorous mathe-

matical justification for such approximation procedures has received little attention.

In recent work [28], a family of queueing networks (the so-called generalized Jackson

networks) was considered and it was shown that the stationary distributions of the

queue length processes for the network, under suitable scaling, converge to the unique

stationary distribution of the approximating constrained diffusion process as the traf-

fic intensity approaches its limit. One of the key assumptions made in [28] is that

the inter-arrival and service times have finite moment generating functions (m.g.f.)

in the neighborhood of origin. Finiteness of the m.g.f. of the primitive processes is a

critical ingredient in the strong approximation techniques underlying their analysis.

In Chapter 3 of this work we present a proof of the above result, based on some

elementary stability properties of a related deterministic dynamical system, without

imposing any exponential integrability conditions on the primitives of the network.

We make the usual i.i.d. and second moment assumptions on inter-arrival and service

times that are typically used in heavy traffic analysis for invoking a functional cen-

tral limit theorem. Our result significantly goes beyond [28] and gives mathematical
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validity to the interchange of limits heuristic for many queueing models with Pareto

type primitives (which commonly arise from communication and internet networks)

as well.

In Chapter 4 we consider a rate control problem for stochastic processing networks

with an ergodic cost criterion. One of the primary means of control of flow in a

network is by adjusting arrival or processing rates. One is particularly interested

in network performance under such control actions over long periods of time. Goal

is to construct control policies that give “near optimal” performance that does not

degrade over time. A natural mathematical formulation for addressing these issues

is through an optimal stochastic control problem with an ergodic cost criterion. In

general a direct analysis of the control problem for networks is quite intractable and

therefore one considers related diffusion control problems that arise in a formal heavy

traffic limit. In the current setting such a formal limit analysis leads to a drift control

problem for constrained diffusion processes with an ergodic cost criterion. We show

that the value function (i.e., optimum value of the cost) of the rate control problem

for the network converges under a suitable heavy traffic scaling to that of the limit

diffusion model. Since there are well studied numerical schemes for computing near

optimal controls for controlled diffusions, our results suggest natural approaches for

obtaining near (asymptotically) optimal rate control algorithms for such a family of

processing networks.
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CHAPTER 2

Long time asymptotics for constrained diffusions

Study of stability of stochastic networks is of central importance. (cf. [42, 36, 21,

17, 16, 43, 15, 14, 41, 18]) Excepting special cases, the networks of interest are too

complex to be analyzed directly and thus one seeks tractable approximate models. In

this respect, constrained diffusion processes which arise as appropriate scaling limits

of critically loaded queueing networks are key.

In this chapter we will consider a variety of stability properties of such diffusion

processes. We will begin our study with semimartingale reflecting Brownian motions

(SRBMs) in a positive orthant Rd
+, d ∈ N. Roughly speaking, an SRBM is a stochastic

process with continuous sample paths which in the interior of the orthant S
.
= Rd

+,

behaves like a Brownian motion with a constant drift and when it hits the boundary

of S, an instantaneous reflection occurs so as to constrain the process in the orthant

S. Such Markov processes commonly arise in the heavy traffic analysis of multiclass

open queueing networks and have been extensively studied [31, 51, 52, 57, 25, 19, 58].

In particular, the study of stability properties of an SRBM plays a critical role in the

stability analysis of stochastic networks.

The main paper on the long term properties of an SRBM is [25], where it is

established that under suitable stability conditions on a closely related deterministic

dynamical system, an SRBM is positive recurrent and admits a unique invariant

probability measure. The goal of this chapter is to study the rate of convergence of



the transition probability kernel to the invariant distribution and other refined long

term asymptotics for an SRBM. This study is undertaken in Section 2.2.

We begin, in Section 2.1, by reviewing some standard concepts regarding Markov

processes with a general state space. In particular we recall some basic notions, such

as irreducibility, recurrence, geometric and uniform ergodicity, for general state space

Markov processes. Also discussed are, sampled and resolvent chains, generators and

drift criterion for stability.

Section 2.2 is devoted to the study of an SRBM. We give basic definitions and

review classical results [57] on existence and uniqueness of an SRBM. We also present

the key result of [25] which gives sufficient conditions for ergodicity of an SRBM.

We then proceed to new results obtained in this chapter. Our first main result

(Theorem 2.2.18) shows that an SRBM is strong Feller. Although such a result is

‘folk lore’ in the literature, our work provides the first rigorous proof of the statement.

The strong Feller property is central in establishing the key irreducibility property

of an SRBM (Theorem 2.2.19). Next we study several stability properties of an

SRBM under the main stability condition of [25] (see Condition 2.2.8 in Section

2.2.1). In Theorem 2.2.31, by identifying a suitable Lyapunov function, we show that

the invariant measure, existence and uniqueness of which follows from [25], has a

finite moment generating function in a neighborhood of zero. This result is then used

to establish uniform (in time and initial condition in a compact set) estimates on

exponential moments of an SRBM. Growth of polynomial moments of the process,

as a function of the initial condition, is investigated in Corollary 2.2.34 and Theorem

2.2.35. Finally in Theorem 2.2.38 we establish a functional central limit theorem for

functionals of an SRBM and characterize the asymptotic variance in this limit result

via the solution of the related Poisson equation.

We next consider a family of diffusion models with state dependent coefficients,

constrained to take values in some convex polyhedral cone in Rd with the vertex at the
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origin. Positive recurrence for such constrained diffusions under suitable conditions

on the drift coefficient was established in [2]. In this chapter we strengthen this result

by establishing V -uniform ergodicity with a function V that grows exponentially. As

consequences of this result we establish, as in the constant coefficients case, exponen-

tial moment bounds, moment stability results and functional central limit theorems.

These results are given in Corollary 2.3.11.

Our proofs make critical use of Lyapunov function methods developed in [45, 22].

At the heart of the proofs for the SRBM is Theorem 2.2.27 which obtains suitable

bounds on exponential moments of hitting times of compact sets. Once these esti-

mates are available, the results of [22] (cf. Theorem 4.4) yield a Lyapunov function V

for which the inequality (2.39) holds and as a consequence the process is V -uniformly

ergodic. Lemma 2.2.28 establishes that V has exponential upper and lower bounds.

From these estimates one immediately obtains finiteness of exponential moments of

invariant measure (Theorem 2.2.31) and convergence of expected value of unbounded

(exponentially growing) functionals of the state process to the expectation under the

invariant measure, at an exponential rate. Furthermore, these estimates are key in

proving stability results (Corollary 2.2.34 and Theorem 2.2.35) for polynomial mo-

ments of the process. Finally we obtain, as a consequence of results in [30], functional

central limit theorems for processes ξn(t)
.
= 1√

n

(∫ nt
0

[F (Zs)− π(F )]ds
)
, where Z is

the underlying Markov process, π the unique invariant measure and F is allowed to

have exponential growth. In the state dependent case (see Section 2.3) although one

can prove similar bounds on exponential moments of hitting times as in the constant

coefficients case, we are unable to establish an exponential lower bound (2.34) as in

Lemma 2.2.28. The main obstacle to such a result is that, in Section 2.3, the drift

vector field of the underlying constrained diffusion is allowed to have linear growth,

and as a result estimate (2.37) which critically uses the boundedness of the drift co-

efficients fails. In view of this difficulty we proceed by making a different choice of a
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Lyapunov function V (cf. Lemma 2.3.9) that, from results in [2], is known to have

exponential upper and lower bounds. We show that this Lyapunov function satisfies

the multiplicative drift condition (2.54) for a sampled Markov chain. The results of

[45] can then be brought to bear to establish V -uniform ergodicity and as a conse-

quence one obtains similar exponential moment estimates, moment stability results

and functional central limit theorems as in the constant coefficients case.

Some of the notation used in this chapter is as follows. For a metric space X, let

B(X) be the Borel σ-field on X. The Dirac measure at the point x is denoted by

δx. The set of positive integers is denoted by N and N0
.
= N

⋃
{0}. The set of real

numbers by R and nonnegative real numbers by R+. Let Rd be the d-dimensional

Euclidean space. For sets A,B ⊆ Rd, dist(A,B) will denote the distance between two

sets, i.e., inf{|x− y| : x ∈ A, y ∈ B} and 1A, A◦, Ā denote an indicator function of A,

set of interior points of A, closure of A, respectively. For a given matrix M denote

by M ′ its transpose and by M i the ith row of M . For a, b ∈ R, let a ∨ b .= max{a, b},

a∧b .= min{a, b} and a+ .
= max{0, a}. The class of continuous functions f : X → Y is

denoted by C(X, Y ), real continuous bounded functions onX by Cb(X). LetD(X, Y ),

when X is a subset of R, denote the class of right continuous functions having left

limits, defined from X to Y , equipped with the usual Skorohod topology. Finally,

let C(X), C[0, 1], C[0,∞) denote C(X,R), C([0, 1],R), C([0,∞),R), respectively and

D[0, 1], D[0,∞) denoteD([0, 1],R), D([0,∞),R), respectively. Inequalities for vectors

are interpreted componentwise.

2.1 Preliminaries

2.1.1 Modes of stability

The term ‘stability’ in stochastic processes literature does not have a single definition,

but rather could have different meanings depending on the context of use. In this

section, we will introduce a series of increasingly stronger concepts of ‘stability’ for a
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continuous time Markov process Φ.

Let (Ω,F , {Ft}) be a filtered measurable space on which is given an X-valued

stochastic process Φ = {Φt : t ∈ R+} and a collection of probability measures {Px, x ∈

X} such that (Φ, {Px}) form a time homogeneous Markov family. More precisely,

under each of the measures Px, (Φt) is a Markov process with initial distribution δx

and transition probability kernel

P t(y, A)
.
= Py(Φt ∈ A), y ∈ X, A ∈ B(X).

Frequently, when the family {Px} is clear, we will suppress it from the notation

and refer to Φ as the Markov process. Here X is a locally compact, complete and

separable metric space.We assume that Φ is a strong Markov process with RCLL

paths and {P t} maps Borel functions to Borel functions. I.e. for all bounded Borel

maps f : X → R, the map x 7→
∫
X
f(y)P t(x, dy) is a Borel measurable map. Let

IEx[ · ] denote the expectation with respect to the measure Px.

We will occasionally need to refer to discrete time Markov processes. An X-valued

discrete time stochastic process Φ̆ = {Φ̆n : n ∈ N0} along with a family of probability

measure {P̆x}x∈X defined on some filtered measurable space (Ω,F , {Fn}n∈N0) is called

a homogeneous Markov family if under each measure P̆x, (Φ̆n) is a Markov chain with

initial distribution δx and one step transition kernel

P̆ (y, A)
.
= P̆y[Φ̆1 ∈ A], y ∈ X, A ∈ B(X).

Once more reference to {P̆x} will be omitted when clear from the context.

For a real bounded measurable function f and a σ-finite measure µ on X, define

P tf(x)
.
=

∫
P t(x, dy)f(y), µP t(A)

.
=

∫
µ(dx)P t(x,A).
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Note that P tf(x) equals the conditional expectation of f(Φt) conditioned on Φ0 = x.

For a measurable set A ∈ B(X) let τA
.
= inf{t > 0 : Φt ∈ A} and ηA

.
=
∫∞

0
1{Φt∈A}dt,

the first hitting time of A and a sojourn time in A, respectively.

A set A ⊆ X is said to be precompact if the closure of A is a compact subset of

X. Consider a family of open precompact sets {On : n ∈ N0} such that On ↑ X as

n → ∞. Define the exit time of Φ from Om as Tm
.
= τOc

m
and let ξ

.
= limm→∞ Tm.

The random variable ξ is referred to as the explosion time of the process. Our first

notion of ‘stability’ is that of nonexplosivity, defined as below.

Definition 2.1.1. (Nonexplosivity. [cf. p. 520 [47]]) We say the Markov process

Φ is nonexplosive if Px{ξ = ∞} = 1 for all x ∈ X.

Note that nonexplosive processes remain bounded for bounded time intervals

(almost surely). A somewhat stronger notion of ‘stability’ is that of nonevanes-

cence. Define the set {Φ → ∞} as {ω ∈ Ω : ∀ compact sets C ⊆ X, Φt(ω) ∈

Cc for all sufficiently large t}.

Definition 2.1.2. (Nonevanescence. [cf. Section 3.1 [47]]) We say the process

Φ is nonevanescent if Px{Φ →∞} = 0 for each x ∈ X.

It is easy to check that if Φ is nonevanescent then it is nonexplosive [cf. Theorem

3.1 [47]]. In countable state Markov process theory an important concept is that

of irreducibility. In continuous state theory, although there is not a single agreed

upon definition of irreducibility, the following notion of ϕ-irreducibility plays a very

important role.

By convention, all measures µ on (X,B(X)) in this chapter will be nontrivial (i.e.

µ(X) 6= 0).

Definition 2.1.3. (ϕ-irreducibility. [cf. p. 490 [46]]) Let ϕ be a σ-finite measure

on (X,B(X)). The Markov process Φ is called ϕ-irreducible if whenever A ∈ B(X)

is such that ϕ(A) > 0, we have IEx[ηA] > 0, ∀x ∈ X. The measure ϕ is called
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an irreducibility measure for the process Φ. For a discrete time Markov process Φ̆,

ϕ-irreducibility is defined in a similar way on setting ηA
.
=
∑∞

n=0 1[Φ̆n∈A].

Taking ϕ as the counting measure one sees that the notion of ϕ-irreducibility coincides

with the usual concept of irreducibility for countable state space Markov processes.

An irreducibility measure ψ for the Markov process Φ is called maximal if every other

irreducibility measure for Φ is absolutely continuous with respect to ψ. For proof of

existence of a maximal irreducibility measure of a ϕ-irreducible process Φ, we refer

the reader to Section 3 of [22]. All through this chapter the symbol ψ will exclusively

be used for a maximal irreducibility measure. Let B+(X)
.
= {A ∈ B(X) : ψ(A) > 0}.

A σ-finite measure π on (X,B(X)) is called an invariant measure for Φ if and only

if for all A ∈ B(X), x ∈ X and t > 0, π(A) = πP t(x,A). If there exists an invariant

probability measure π then it can be shown that π and ψ are mutually absolutely

continuous [cf. Section 3 [22]], and so we can write B+(X) = {A ∈ B(X) : π(A) > 0}.

We now introduce the next stronger notion of stability, namely, Harris recurrence.

Once more, this reduces to the usual notion of recurrence for countable state Markov

processes on taking ϕ in the definition below as the counting measure.

Definition 2.1.4. (Harris recurrence. [cf. Section 2.2 in [46]]) The process Φ

is called Harris recurrent if for some σ-finite measure ϕ on (X,B(X)),

Px({ηA = ∞}) = 1 whenever ϕ(A) > 0.

Sometimes in order to emphasize the special choice of ϕ, we will say Φ is ϕ-Harris

recurrence. It can be shown (see Theorem 2.4 in [44]), that Φ is ϕ-Harris recurrent if

and only if there exists a σ-finite measure µ on (X,B(X)) such that Px({τA <∞}) = 1

whenever µ(A) > 0. We remark that ϕ and µ do not coincide in general [cf. p. 493

in [46]]. Clearly ϕ-Harris recurrence implies ϕ-irreducibility. Furthermore, it can be

shown that if Φ is Harris recurrent then it has a unique (up to a scalar multiplier)

invariant measure π [cf. p. 491 [46]].

11



The next stronger notion of stability is the finiteness of the invariant measure π.

If π is finite then it can be normalized to a probability measure and with an abuse of

notation we denote the normalized probability measure once more by π. In this case

we say that Φ is positive Harris recurrent. This unique invariant probability measure

π plays a central role in the study of asymptotic properties of Φ.

Definition 2.1.5. (Positive Harris recurrence. [cf. Section 2.2 in [46]])

Suppose that Φ is Harris recurrent with a finite invariant measure π. Then Φ is

called positive Harris recurrent.

Positive Harris recurrence is the natural generalization to general state space models,

of the usual concept of positive recurrence in Markov chain theory for countable

state space. Once positive Harris recurrence is assured, then the next important and

practical question of interest is the convergence and speed of convergence to steady

state. For example, does the transition function P t converge to invariant measure π

as t→∞, if so, how fast is the convergence? For a signed measure µ on B(X) define

its total variation norm ||µ|| as ||µ|| .= supf :|f |61 |µ(f)|.

Definition 2.1.6. (Ergodicity. [cf. p. 533 on [47]]) A Markov process Φ will be

called ergodic if it has a unique invariant probability measure π and

lim
t→∞

||P t(x, ·)− π|| = 0, ∀x ∈ X, (2.1)

where || · || is the total variation norm.

Remark 2.1.7. If Φ is positive Harris recurrent and the skeleton chain

Φ̆n
.
= {Φn∆ : n ∈ N0} for some ∆ > 0 is ϕ-irreducible, then Φ is ergodic [cf. Theorem

6.1 [46]].

Ergodicity ensures the convergence of the expectation IEx[f(Φt)] to the steady

state value π(f), for all bounded measurable functions f , as t → ∞. To investigate

12



such convergence for an unbounded function f , we need the concept of the so-called

f -norm. For any signed measure µ on B(X) and f > 1, define its f -norm as

||µ||f
.
= sup

|g|6f
|µ(g)| = sup

|g|6f
|
∫
µ(dy)g(y)|.

Note that f -norm is same as the total variation norm if f ≡ 1.

Definition 2.1.8. (f-Ergodicity. [cf. p. 511 on [46]]) For a measurable function

f > 1, a Markov process Φ will be called f -ergodic if it is positive Harris recurrent

with invariant probability measure π, such that π(f) <∞ and

lim
t→∞

||P t(x, ·)− π||f = 0, ∀x ∈ X.

For an f -ergodic Markov process, although the convergence of IEx[f(Φ(t))] to the

steady state π(f) is guaranteed, the ‘practical convergence’ needed for numerical

purposes may take a very long time. Thus the rate of convergence to steady state is

particularly important. Exponential rate of convergence is perhaps one of the most

sought after ergodic properties of a Markov process. Now we introduce the notion of

f -exponential ergodicity from [22].

Definition 2.1.9. (f-Exponential ergodicity. [cf. Section 3 [22]]) Let a Markov

process Φ be positive Harris recurrent with invariant probability measure π. For a

measurable function f > 1, Φ is called f -exponentially ergodic if there exist a constant

β ∈ (0, 1) and a function B : X → R+ such that for all t ∈ R+ and x ∈ X,

||P t(x, ·)− π||f 6 B(x)βt. (2.2)

When f ≡ 1 we simply say that Φ is exponentially ergodic.

A somewhat stronger property than the above exponential bound is the following.
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Definition 2.1.10. (f-Uniform ergodicity. [cf. Section 3 [22]]) Let a Markov

process Φ be positive Harris recurrent with invariant probability measure π. For a

measurable function f : X → [1,∞), Φ is called f -uniformly ergodic if there exist

constants D ∈ (0,∞), ρ ∈ (0, 1) such that for all t ∈ R+ and x ∈ X,

||P t(x, ·)− π||f 6 f(x)Dρt. (2.3)

Sometimes when looking for estimates uniform in initial condition, we will find it more

useful to work with a norm which is defined for operators (i.e. transition kernels)

rather than for measures. For measurable functions h : X → R and f as above define

||h||f
.
= supx∈X

|h(x)|
f(x)

< ∞, and Lf∞ be the vector space of such functions. Also for

kernel P
.
= P (x, dy), define the f -norm |||P |||f by

|||P |||f
.
= sup

h∈Lf
∞,||h||f 6=0

||Ph||f
||h||f

.

With an abuse of notation define the transition kernel π(x,A)
.
= π(A),

A ∈ B(X), x ∈ X. It is easy to check that f -uniform ergodicity is equivalent to the

f -norm exponential convergence of the transition kernel P t to π. In the special case

when f ≡ 1, we will refer to f -uniform ergodicity merely as uniform ergodicity.

2.1.2 Sampled chains

In our analysis of continuous time Markov process Φ = {Φt : t ∈ R+} with transition

kernel (P t), we will consider some Markov chains derived from Φ. In this section,

we will describe sampled Markov chains such as ∆-skeleton chain, R-chain, and Ka-

chain corresponding to different sampling schemes. These sampled chains play a

central role in proving results such as ϕ-irreducibility and other ergodicity properties

[cf. Section 2.3 [46]].

Roughly speaking a Ka-chain is the Markov chain obtained by sampling the con-
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tinuous time Markov process Φ using a sampling distribution a, a probability measure

on [0,∞). Resolvent chain Rβ corresponds to the special case when a is an expo-

nential distribution with parameter β, and ∆-skeleton chain corresponds to the case

when a is a point mass at ∆ ∈ (0,∞). Precise definitions are as follows.

Definition 2.1.11. [cf. pp. 491-2 [46]] For a probability measure a on R+, define

the Markov transition function Ka : X × B(X) → [0, 1] as

Ka(x,A)
.
=

∫ ∞

0

P t(x,A)a(dt).

We will call the discrete time Markov chain with one step transition kernel Ka(x,A)

as the Ka-chain for the Markov process Φ. If a is an exponential distribution with

parameter β we will denote Ka by Rβ, i.e.

Rβ(x,A)
.
=

∫ ∞

0

P t(x,A)β exp(−βt)dt

and call the corresponding sampled chain as the Rβ-chain; if β = 1, we write Rβ

as merely R. Finally, if a is degenerate at ∆ ∈ (0,∞), we will call the associated

Markov chain {Φ(j∆) : j ∈ N0} as the ∆-skeleton chain.

In other words, Ka is the transition kernel for the discrete time Markov chain

{Φtk : k ∈ N0} where {tk+1 − tk : k ∈ N0} are independent of Φ and i.i.d. with

common law a. The following theorems illustrate how the analysis of sampled chains

play important roles in the study of stability properties of Φ.

In all through this chapter, (Φ̆, {P̆x}x∈X) will denote a discrete time Markov chain

with one step transition kernel P̆ (x,A)
.
= P̆x[Φ̆1 ∈ A].

Theorem 2.1.12. [cf. Proposition 2.2 (ii) [46]] The Markov process Φ is ϕ-

irreducible if and only if the R-chain is ϕ-irreducible.

Theorem 2.1.13. [cf. Theorem 3.1 [44]] Suppose that a is a general probability
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measure on R+. If the Ka-chain is Harris recurrent, then so is the process Φ; and

then the Ka-chain is positive Harris recurrent if and only if the process Φ is positive

Harris recurrent.

In many cases, showing ϕ-irreducibility for a continuous time Markov chain Φ

in a direct way is not straightforward. By Theorem 2.1.12, it suffices to show ϕ-

irreducibility of its R-chain, denoted by Φ̆R. We first consider the notion of open set

irreducibility of a discrete time chain such as Φ̆R.

Definition 2.1.14. (Reachable points, open set irreducibility. [cf. Section

6.1.2 [45]]) A point x ∈ X is called reachable for a chain Φ̆ if for every open set

O ∈ B(X) containing x we have

∑
n

P̆ n(y,O) > 0, ∀y ∈ X,

where P̆ n is the n-step transition kernel of the chain. If every point x ∈ X is reachable,

then the Markov chain Φ̆ is called open set irreducible.

Note that if the state space X is countable and is equipped with the discrete

topology then the open set irreducibility is equivalent to the usual irreducibility.

Next, we will define and use the following concepts in proving ϕ-irreducibility of Φ.

For the transition probability kernel P̆ , x ∈ X and bounded function f on X consider

the mapping P̆ : f(x) 7→ P̆ f(x)
.
=
∫
P̆ (x, dy)f(y). Let Cb denote the class of bounded

continuous functions from X to R. If P̆ maps Cb to Cb then we say P̆ is (weak) Feller.

Definition 2.1.15. (Strong Feller) We say P̆ is strong Feller if P̆ maps all bounded

measurable functions to Cb. For an X-valued continuous time Markov process Φ with

transition kernel P t, we call P t (or, Φ) is strong Feller if for all bounded measurable

functions f on X, t > 0 we have P tf ∈ Cb.
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Theorem 2.1.16. [Proposition 6.2.1 [45]] If Φ̆ is strong Feller, and X contains

one reachable point x∗, then Φ̆ is ϕ-irreducible.

Remark 2.1.17. More can be said about the irreducibility measure. In fact, one

maximal irreducibility measure of Φ̆ is ψ = P (x∗, ·).

2.1.3 Generators of Markov processes

Many properties of a Markov process are often more conveniently characterized in

terms of generator rather than through the probability transition semigroup. Some

basic definitions and properties of a generator are summarized in this section. We

begin by introducing the drift operator ∆ which is the analogue of a generator for

discrete time Markov chains.

Definition 2.1.18. (Drift operator. [cf. p. 174 [45]) For a discrete time Markov

chain Φ̆ with a transition function P̆ and a measurable function V : X → R+, let

∆V (x)
.
=

∫
P̆ (x, dy)V (y)− V (x), x ∈ X. (2.4)

We refer to ∆ as the drift operator for the Markov chain Φ̆.

We refer the reader to [45] (Parts II and III) for a whole spectrum of stability

results for discrete time Markov chains that can be obtained by studying ‘Lyapunov

functions’ V that satisfy suitable drift inequalities. For example, the existence of a

suitable set C ⊆ X, constants b ∈ R, β ∈ (0,∞), and a function V : X → [1,∞)

satisfying ∆V (x) 6 −βV (x) + b1C(x), x ∈ X ensures the geometric ergodicity of the

chain Φ̆: ||P̆ n(x, ·)− π||V = O(ρn) for some ρ ∈ (0, 1) [cf. Theorem 15.0.1 [45]].

For continuous time processes the notion analogous to the drift operator ∆ is that

of the generator of a Markov process. We now present the two most commonly used

definitions of a generator of a Markov process. We first define the bounded-pointwise

generator. Let L be the space of bounded measurable, real-valued functions from X

17



to R. For {fk} ⊆ L, if supk supx∈X |fk(x)| < ∞ and limk→∞ fk(x) = f(x) then we

say {fk} converges boundedly and pointwisely to f , and write, bp limk→∞ fk = f .

Definition 2.1.19. (Bounded-pointwise generator. [cf. [27]]) Let Ā be a linear

operator defined on D(Ā) ⊆ L,

D(Ā)
.
=

{
f ∈ L : bp lim

t↓0

P tf − f

t
exists

}
,

given as Āf = bp limt↓0
P tf−f

t
for f ∈ D(Ā). We refer to Ā as the bounded-pointwise

generator for the Markov process Φ and D(Ā) the domain of the generator.

We observe that Āf(x) is the derivative of the expectation IExf(Φ(t)) with respect

to t at t = 0. This is the natural analogue in the continuous time theory of the one

step increment (as in (2.4)), for a discrete time Markov chain.

In practice bounded-pointwise generator is too restrictive since many functions of

interest in stability theory fail to be in the domain of bounded-pointwise operator. To

include a bigger class of functions we introduce the extended generator of a Markov

process.

Definition 2.1.20. (Extended generator. [cf. Section 1.3 [47] or Section 3

[22]]) Denote by D(Ã) the set of all functions V : X → R for which IEx|V (Φt)| <∞

and there exists a measurable function W : X → R satisfying

∫ t

0

IEx|W (Φs)|ds <∞,

IEx[V (Φt)] = V (x) + IEx

[∫ t

0

W (Φs)ds

]
,

for each x ∈ X, t > 0. For V ∈ D(Ã), and a corresponding W we write (V,W ) ∈ Ã

(or sometimes with an abuse of notation W = ÃV ). We refer to the (multivalued)

function Ã as the extended generator of Φ and D(Ã) the domain of the extended

generator.
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Remark 2.1.21. Under suitable conditions on V ∈ D(Ã) (and Φ) one has that if

ÂV (x) = lim
h↓0

∫
P h(x, dy)V (y)− V (x)

h
,

where the limit on the right side above is taken pointwise, then (V, ÂV ) ∈ Ã. Also if

V ∈ D(Ā) then one can easily check that V ∈ D(Ã).

2.1.4 Lyapunov criteria for stochastic stability

Lyapunov’s method is one of the basic techniques for studying stability properties

of deterministic and stochastic dynamical systems. For discrete time Markov chains

on a general state space, [45] gives explicit Lyapunov criteria for various notions of

stochastic stability, described in Section 2.1.1. For analogous criteria for continuous

time Markov processes we refer the reader to [46], [47] and [48]. We summarize the

results below.

For this summary we will assume that Φ is strong Feller and ϕ-irreducible. The

general theory does not require this assumption, however, restricting to strongly Feller

Markov process greatly simplifies the presentation.

(C1) Condition for Harris recurrence: There exist some compact set C ∈ B(X), some

constant b <∞ and some measurable function V : X → [0,∞), V ∈ D(Ã) such

that ÃV (x) 6 b1C(x).

(C2) Condition for Positive Harris recurrence: There exist some compact set

C ∈ B(X), some constant b < ∞ and some measurable function V : X →

[0,∞), V ∈ D(Ã) such that ÃV (x) 6 −1 + b1C(x).

(C3) Condition for V-exponential ergodicity : There exist some compact set

C ∈ B(X), some constants b, c > 0, and a function V : X → [1,∞), V ∈ D(Ã)

such that ÃV (x) 6 −cV (x) + b1C(x).
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2.2 Semimartingale reflecting Brownian motion

2.2.1 Definitions and formulation

A semimartingale reflecting Brownian motion (SRBM) is a stochastic process with

values in a d-dimensional positive orthant (Rd
+). It commonly arises as a diffusion

approximation to open queueing networks that are in ‘heavy traffic’ (cf. [51]). In

this section we will give some basic definitions and summarize the (weak) existence

& uniqueness result of [57], for an SRBM. We will also present a key oscillation

inequality (Theorem 2.2.10) that will be used in several estimates in this chapter.

Let d ∈ N, S
.
= {x = (x1, . . . , xd)

′ ∈ Rd : xi > 0, i = 1, . . . , d} and consider

column vectors r0, r1, . . . , rd ∈ Rd. Let R
.
=
[
r1, . . . , rd

]
d×d and Σ be a d× d strictly

positive definite matrix. For x ∈ ∂S, define the set of directions of reflection as

r(x)
.
=

{
d∑
i=1

qir
i :

d∑
i=1

qi = 1, qi > 0, and qi > 0 only if xi = 0

}
. (2.5)

We call the quadruple (S, r0,Σ, R) as the data for an SRBM.

Definition 2.2.1. (SRBM) For x ∈ S, an SRBM associated with the data

(S, r0,Σ, R) that starts from x is a continuous, {Ft}-adapted d-dimensional process

Z, defined on some filtered probability space (Ω,F , {Ft}, P ) such that:

(i) Z(t)
.
= B(t) + r0t+RY (t) ∈ S for all t > 0, P -a.s.

(ii) B(·) is a d-dimensional {Ft} Brownian motion with covariance matrix Σ such

that B(0) = x, P -a.s.

(iii) Y is an {Ft}-adapted d-dimensional process such that Yi(0) = 0 for i = 1, . . . , d,

P -a.s. For each i = 1, . . . , d, Yi is continuous, nondecreasing, and Yi can in-
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crease only when Z(·) is on the face F i .= {x ∈ S : xi = 0}, i.e.,

∫ t

0

1{Zi(s) 6=0}dYi(s) = 0, ∀t > 0.

Roughly speaking, an SRBM behaves like a Brownian motion with a drift com-

ponent r0t in the interior of S; when Z(·) hits the boundary of S, an instantaneous

reflection occurs, that is, for some 1 6 i 6 d the process Yi(·) increases by the min-

imal amount needed to keep Z in the orthant S. Allowed directions of reflection

(constraint) at x ∈ ∂S are given by the set r(x). In particular, on the relative interior

of the ith face F i the direction of reflection is given by the ith column of the reflection

matrix R.

Next we introduce one of the key conditions required for the existence of an SRBM.

Throughout this work all vector inequalities will be interpreted componentwise.

Definition 2.2.2. (completely-S) A d × d matrix R is said to be an S-matrix if

there exists a d-dimensional column vector u > 0 such that Ru > 0. A principal sub-

matrix of R is any square matrix obtained from R after deleting columns and rows of

R which have indices in any subset (possibly empty) of {1, . . . , d}. The matrix R is

called completely-S if every principal sub-matrix R̃ of R is an S-matrix.

In Theorem 2 of [52], it was shown that a necessary condition for the existence of an

SRBM is that the reflection matrix R is completely-S. The following result from [57]

shows that the condition is sufficient as well.

Define C
.
= {(z, y) : [0,∞) → S × S, z and y are continuous functions}, M .

=

σ{(z, y)(s) : 0 6 s <∞, (z, y) ∈ C}, Mt
.
= σ{(z, y)(s) : 0 6 s 6 t, (z, y) ∈ C}, where

t > 0.

Theorem 2.2.3. [57] Assume that R is completely-S. Fix x ∈ S. There exists an

SRBM associated with the data (S, r0,Σ, R) that starts from x. Let Z, defined on
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some filtered space (Ω,F , {Ft}, IP ), be such an SRBM and let Y denote its ‘pushing’

process as described in Definition 2.2.1 (iii). Let Qx denote the probability measure

induced on (C,M) by (Z, Y ): Qx(A) = P ((Z, Y ) ∈ A) for all A ∈ M. Then Qx is

unique and hence the law of any SRBM, together with its associated pushing process,

for the data (S, r0,Σ, R) and starting point x is unique.

The canonical process z(·) under the measure Qx defines an SRBM starting from

x on (C,M, {Mt}), where for the semimartingale decomposition (i) in Definition

2.2.1 one can take Y = y and B = z − Ry − r0. The family (z, {Qx}x∈S) is a Feller

continuous strong Markov process.

Remark 2.2.4. The completely-S condition on R will be a standing hypothesis

for this chapter. Henceforth by an SRBM, associated with the data (S, r0,Σ, R),

({Zt}t>0, (Px)x∈S) we will mean a Markov family given on some filtered space

(Ω,F , {Ft}) with transition kernel P t(x,A) = PxZ
−1
t (A) = Qx(z(t) ∈ A), where Qx

and z are as in Theorem 2.2.3. Also it will be implied that there are processes Y and

B given on (Ω,F) such that (i), (ii), (iii) in Definition 2.2.1 hold for P there replaced

by Px, for all x ∈ S.

Remark 2.2.5. The completely-S condition can be geometrically interpreted as fol-

lows. Recall the set of reflection direction given in (2.5). The completely-S condition

ensures that for every x ∈ ∂S, there exists a convex combination of vectors in r(x)

which points into S◦ from x. In the operations research literature, a completely-S

matrix is also referred to as completely-Q or strictly semi-monotone matrix [cf. [12]].

An SRBM is said to be positive recurrent if for each closed set A ⊆ S having

positive Lebesgue measure, we have IEx[τA] <∞ for all x ∈ S, where τA
.
= inf{t > 0 :

Z(t) ∈ A}. We now formulate the key condition for positive recurrence of an SRBM

in terms of the associated “fluid limit” trajectories. Let C([0,∞),Rd) be the class of

continuous functions f : [0,∞) → Rd.
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Definition 2.2.6. (Skorohod Problem) Let ψ ∈ C([0,∞),Rd) with ψ(0) ∈ S.

Then (φ, η) ∈ C([0,∞),Rd) × C([0,∞),Rd) solves the Skorohod problem (SP) for ψ

(with respect to S and R) if the following hold:

(i) φ(t) = ψ(t) +Rη(t) ∈ S, for all t > 0;

(ii) η is such that, for i = 1, . . . , d, (a) ηi(0) = 0, (b) ηi is nondecreasing, and (c) ηi

can increase only when φ is on F i, that is,
∫ t

0
1{φi(s) 6=0}dηi(s) = 0, for all t > 0.

Definition 2.2.7. We say that a path φ ∈ C([0,∞),Rd) is attracted to the origin if

for any ε > 0 there exists T <∞ such that t > T implies |φ(t)| 6 ε.

Condition 2.2.8. The φ component of all solutions of the SP for ψ(·) of the form

ψ(t) = x+ r0t, t > 0, x ∈ S, is attracted to the origin.

Theorem 2.2.9. [25] Suppose that Condition 2.2.8 holds. Then the SRBM is positive

recurrent and it has a unique stationary distribution.

The above result will be our starting point for obtaining sharper asymptotic prop-

erties, such as geometric ergodicity, later in this chapter. The following oscillation in-

equality plays an important role in the course of proving several results in this chapter.

For any 0 6 t1 < t2 <∞, letD([t1, t2],Rd) denote the set of functions w : [t1, t2] → Rd

that are right continuous on [t1, t2) and have finite left limits on (t1, t2]. Define

Osc(f, [t1, t2])
.
= sup{|f(t) − f(s)| : t1 6 s < t 6 t2} for f ∈ D([t1, t2],Rd) and

|a| .= max16i6d |ai| for a ∈ Rd.

Theorem 2.2.10. (Oscillation Inequality. [cf. Theorem 5.1 [58]]) Suppose

that δ > 0, 0 6 t1 < t2 <∞ and w, x, y ∈ D([t1, t2],Rd) are such that

(i) w(t) = x(t) +Ry(t) ∈ S, for all t ∈ [t1, t2],

(ii) For each i = 1, . . . , d, yi(t1) > 0, yi is nondecreasing and yi cannot increase

when wi > δ, i.e.,
∫

[t1,t2]
1{wi(t)>δ}dyi(t) = 0.
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Then there is a constant C > 0 depending only on R, such that

Osc(y, [t1, t2]) +Osc(w, [t1, t2]) 6 C(Osc(x, [t1, t2]) + δ).

2.2.2 ϕ-irreducibility for SRBM

As seen in Chapter 2 (Section 2.1.4), irreducibility plays a central role in the study

of stability properties of Markov processes. The main result of this section will show

that an SRBM associated with the data (S, r0,Σ, R) is ϕ-irreducible. Since this data

will be fixed henceforth, we will omit any reference to it. The central idea in proving

ϕ-irreducibility for an SRBM is to consider its discrete time R-chain. By Theorem

2.1.12, SRBM is ϕ-irreducible if and only if its R-chain is ϕ-irreducible. Also, from

Theorem 2.1.16, in order to prove the ϕ-irreducibility of the R-chain it suffices to

show that it is strong Feller and S contains one reachable point x∗ for the chain.

Many of the ideas for proving the strong Feller property and existence of a reach-

able point are adapted from [3]. We present arguments in full detail below because

their setup does not cover the full generality of an SRBM and also because their

proofs require minor corrections at a few places. We begin with the following lemma.

Lemma 2.2.11. Let ({Zt}t>0, {Px}x∈S) be an SRBM. Let U ⊆ S be a bounded open

(relative to S) set and let τU
.
= inf{t > 0 : Z(t) /∈ U}. Then we have

sup
x∈U

IEx(τU) <∞.

Proof. For f ∈ C2(S) define

Lf(x)
.
=

1

2

d∑
i,j=1

Σij
∂2f(x)

∂xi∂xj
+

d∑
i=1

r0
i

∂f(x)

∂xi
for x ∈ S,
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Jif(x)
.
=
〈
ri(x),∇f(x)

〉
=

d∑
j=1

rij
∂f(x)

∂xj
for x ∈ F i, i = 1, . . . , d.

From the completely-S property of R, there exists θ = (θ1, . . . , θd)
′ satisfying θ > 0

and Rθ > 0. Define h(x)
.
= exp(k0

∑d
i=1 θixi), where x ∈ S and k0 ∈ (0,∞) is a

constant which will be suitably chosen later in this proof. Clearly, h ∈ C2
b (Ū). Note

that for x ∈ U

Lh(x) =

(
k2

0

1

2

d∑
i,j=1

Σijθiθj + k0

d∑
i=1

θir
0
i

)
h(x).

Choose k0 > 0 such that
(
k2

0
1
2

∑d
i,j=1 Σijθiθj + k0

∑d
i=1 θir

0
i

)
> 1. For such a k0 we

have Lh(x) > 1, since h(x) > 1. Applying Itô’s formula, we have

h(Z(t ∧ τU))− h(Z(0))

=

∫ t∧τU

0

Lh(Z(s))ds+
d∑
i=1

∫ t∧τU

0

Jih(Z(s))dYi(s) +

∫ t∧τU

0

∇h(Z(s))dB(s).

Note that the last term
∫ t∧τU

0
∇h(Z(s))dB(s) is a Px-martingale. Since Lh(x) > 1

for x ∈ S and for x ∈ F i

Jih(x) =
d∑
j=1

rij
∂

∂xj
h(x) = k0h(x)r

i · θ > 0

we have that

IEx [h(Z(t ∧ τU))− h(Z(0))] > IEx(t ∧ τU).

Note that h(x) is a bounded function on Ū and thus taking t → ∞, we have that

supx∈U IEx(τU) <∞.

Lemma 2.2.12. Let ({Zt}t>0, {Px}x∈S) be an SRBM. Then for a bounded open set

O ⊆ S, P t(x,O) > 0 for all t ∈ (0,∞) and x ∈ S. In particular, the R-chain

{Φ̆n}n>1, associated with the Markov process Φ ≡ Z, is open set irreducible.
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Proof. Note that the second part of the lemma is immediate from the first, since

the transition kernel of the R-chain is R(y, A) =
∫∞

0
e−tP t(y, A)dt, y ∈ S, A ∈ B(S).

We will now show that P t(x,O) > 0 for each fixed t > 0 and x ∈ S. The proof is

adapted from Lemma 3.1 (a) in [3]. We first consider x ∈ S◦. Let Ω′ .= C([0,∞),Rd)

and let Xt(w)
.
= w(t) be the coordinate projection. Also let Bt

.
= σ{X(s) : s 6 t}

and P̂x
.
= Px ◦ Z−1 be the measure induced by Z on Ω′.

Let Q̂x = Px ◦ U−1 be the measure on Ω′ induced by U(t)
.
= B(t) + r0t, t > 0.

Note that X(·) under P̂x ‘behaves like’ the process X(·) under Q̂x up to the first

hitting time of ∂S. Let δ0
.
= d(x, ∂S). Let A0 be a nonempty bounded open set and

δ ∈ (0, δ0 ∧ 1) be such that Ā0 ⊆ (O ∩ S◦) and d(A0, ∂O) > δ.

Fix t > 0 and let w0 ∈ Ω′ be such that w0(0) = x,w0(t) ∈ A0 and w0 is linear on

[0, t]. Now define the neighborhood of the sample path of w0 by

N(w0)
.
= {w ∈ Ω′ : |w(s)− w0(s)| < δ/2, ∀ 0 6 s 6 t}

and note that any w ∈ N(w0) stays in S◦ until t and w(t) ∈ O. For a Borel set A ⊆ S

let σA
.
= inf{t > 0 : X(t) ∈ A}. Then

P t(x,O) = Px (Z(t) ∈ O) > P̂x (X(t) ∈ O, σ∂S > t) > Q̂x (N(w0)) > 0,

where the next to last inequality follows from the observation that the distribution of

X(·∧σ∂S) under P̂x and Q̂x is the same and the last inequality follows from Schilder’s

Theorem (cf. Lemma 5.2.1 of [20]). This proves the result for x ∈ S◦.

Finally, consider x ∈ ∂S. From Lemma 2.1 in [57], Px(Z(t0) ∈ ∂S) = 0 for almost

all t0 > 0 (see the equation (2.1) therein) and x ∈ S. From Markov property of Z,

we have that for t0 as above, and all t > t0
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Px(Z(t) ∈ O) =

∫
S

Py(Z(t− t0) ∈ O)Px ◦ Z−1
t0

(dy)

=

∫
S◦
Py(Z(t− t0) ∈ O)Px ◦ Z−1

t0
(dy) > 0,

where the second equality follows from the fact Px(Z(t0) ∈ ∂S) = 0 and the last

inequality comes from the result in the previous paragraph. Thus P t(x,O) > 0 for

all t > 0 and x ∈ S. This proves the lemma.

We will now argue that the R-chain for an SRBM is strong Feller. In order to

prove this result, we begin by showing that the SRBM itself is strong Feller. The

key step in establishing the strong Feller property of an SRBM is proving that its

transition probability function admits a measurable density. In order to prove this

result, we begin with the following lemma.

Lemma 2.2.13. Let G ⊆ S be a bounded open set. Let ({Zt}t>0, {Px}x∈S) be an

SRBM. Define τG
.
= inf{r > 0 : Z(r) /∈ G}. Then there exists a constant K > 0 such

that

sup
x∈Ḡ

IEx

[
d∑
i=1

Yi(τG)

]
6 K.

Proof. Let g ∈ C2
b (S) be such that

Dig > 1 on F i for all i ∈ {1, . . . , d}, (2.6)

where Dig
.
= 〈∇g, ri〉 =

∑d
j=1 r

i
j
∂g
∂xj

. The existence of such a g has been established

in Theorem 3.2 of [19].

An application of Itô’s formula gives
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g(Zt∧τG) = g(Z0) +

∫ t∧τG

0

〈∇g(Zs), dBs〉

+

∫ t∧τG

0

〈
∇g(Zs), r0

〉
ds+

∫ t∧τG

0

(
1

2
tr[D2g(Z(s))Σ]

)
ds

+
d∑
i=1

∫ t∧τG

0

〈
∇g(Zs), ri

〉
dYi(s),

where D2 is the Hessian matrix. Taking expectations and recalling that g ∈ C2
b (S)

we see that there exists C ∈ R+ such that

C [1 + IEx(t ∧ τG)] >
d∑
i=1

IEx

∫ t∧τG

0

〈
∇g(Zs), ri

〉
dYi(s) > IEx

[
d∑
i=1

Yi(t ∧ τG)

]
,

where the last inequality is a consequence of (2.6). The result now follows on com-

bining the above estimate with Lemma 2.2.11.

We now proceed to the proof of existence of a measurable transition probability

density function for an SRBM. Let Γ(t, x, z) be the transition density function of a

Brownian motion starting at x with drift r0 and covariance Σ, i.e.,

Γ(t, x, z) = |2πΣt|−1/2 exp

[
(x− r0t− z)′Σ−1(x− r0t− z)

2t

]
.

Let Y be as in Definition 2.2.1 and set K(t)
.
= RY (t). For a bounded open set

G ⊆ S, t > 0, define

pG(t, x, z)
.
= Γ(t, x, z)− IEx

[
1[0,t)(τG)Γ(t− τG, Z(τG), z)

]
+IEx

[∫ t∧τG

0

〈∇Γ(t− r, Z(r), z), dK(r)〉
]

(2.7)

where x ∈ Ḡ, z ∈ G ∩ S◦ and ∇Γ(t, ζ, z) denotes the gradient of Γ in the variable ζ.

Henceforth we will abbreviate τG as τ .
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Remark 2.2.14. Note that there exist K1, K2 ∈ (0,∞) such that for all T0 > 0

and for all x, z ∈ Rd, 0 < t < T0, |Dα
xΓ(t, x, z)| 6 K1t

−( d+|α|
2 ) exp[−K2|z−x|2

t
] where

α = (α1, . . . , αd) is a multi-index with 0 6 |α| 6 2 where |α| = α1 + . . .+ αd and Dα
x

denotes differentiation with respect to x. Observing that sup0<s6t
e−c/s

sm < ∞ for all

m ∈ R, c ∈ (0,∞), and since z ∈ G ∩ S◦, d(z, ∂G) > 0 and d(z, ∂S) > 0, we have

together with Lemma 2.2.13, that pG(t, x, z) is well-defined. Similarly one can check

that the map z 7→ pG(·, ·, z) is continuous for all z ∈ G ∩ S◦.

Lemma 2.2.15. For any continuous function f with compact support K ⊆ G ∩ S◦,

x ∈ Ḡ and t > 0

∫
G

f(z)pG(t, x, z)dz = IEx
[
1[t,∞)(τ)f(Z(t))

]
. (2.8)

Proof. Let us denote the LHS of (2.8) by u(t, x). We begin by showing that

{
u
(
t− (τ ∧ r), Z(τ ∧ r)

)
: 0 6 r < t

}
is a Px-martingale w.r.t. {Fτ∧r : 0 6 r < t}.

(2.9)

For 0 6 r1 6 r2 < t, let F1
.
= Fτ∧r1 , F2

.
= Fτ∧r2 and ξ1

.
= Z(τ ∧ r1), ξ2

.
= Z(τ ∧ r2).

We abbreviate τ ∧ ri by τi, i = 1, 2. We first show that

IEx

[∫
S◦
f(z)Γ(t− τ2, ξ2, z)dz

∣∣∣F1

]
(2.10)

=

∫
S◦
f(z)Γ(t− τ1, ξ1, z)dz +

∫
S◦
f(z)IE

[∫ τ2

τ1

〈∇Γ(t− r, Z(r), z), dK(r)〉
∣∣∣F1

]
dz.

By applying Itô’s formula to Γ(t− (τ ∧ r), Z(τ ∧ r), z) over [r1, r2], we have

Γ(t− τ2, ξ2, z)− Γ(t− τ1, ξ1, z)

=

∫ τ2

τ1

(
− ∂

∂t
Γ(t− r, Z(r), z) + LΓ(t− r, Z(r), z)

)
dr

+

∫ τ2

τ1

〈∇Γ(t− r, Z(r), z), dK(r)〉+

∫ τ2

τ1

〈∇Γ(t− r, Z(r), z), dB(r)〉 ,
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where LΓ(t, x, z) =
(

1
2

∑d
i,j=1 Σij

∂2

∂xi∂xj
+
∑d

i=1 r
0
i
∂
∂xi

)
Γ(t, x, z). Conditioning on F1

and taking expectation on both sides, we have on using Kolmogorov’s backward

equation, ∂
∂t

Γ(t, x, z) = LΓ(t, x, z), that

IE [Γ(t− τ2, ξ2, z)|F1] = Γ(t− τ1, ξ1, z) + IE

[∫ τ2

τ1

〈∇Γ(t− r, Z(r), z), dK(r)〉
∣∣∣F1

]
.

Equality (2.10) now follows from the above equality via an application of Fubini’s

Theorem.

Next we show that

{Uτ∧r,Fτ∧r : 0 6 r < t} is a martingale, (2.11)

where Ur
.
=

∫
p1(t− r, Z(r), z)f(z)dz, 0 6 r < t and

p1(t− r, x, z)
.
= IEx

[
1[0,t−r)(τ)Γ(t− r − τ, Z(τ), z)

]
.

From strong Markov property of Z we have that

IEx

[
1[0,t)(τ)Γ(t− τ, Z(τ), z)

∣∣∣Fτ∧r] = p1

(
t− τ ∧ r, Z(τ ∧ r), z

)
. (2.12)

This is a consequence of the fact that from strong Markov property, for a measurable

function f : [0,∞) × Ḡ → [0,∞), IE[f(τ, Z(τ))|Fτ∧r] = g(τ ∧ r, Z(τ ∧ r)) where

g(r, z)
.
= IEz[f(τ + r, Z(τ))]. Thus from (2.12)

Uτ∧r = IE

[∫
S◦
f(z)1[0,t)(τ)Γ(t− τ, Z(τ), z)dz

∣∣∣Fτ∧r]

which proves (2.11).
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Next let p3(t, x, z)
.
= IEx

[∫ t∧τ

0

〈∇Γ(t− r, Z(r), z), dK(r)〉
]
.

For r 6 t,

p3(t− τ ∧ r, Z(τ ∧ r), z) = IE

[∫ τ∧t

τ∧r
〈∇Γ(t− u, Z(u), z), dK(u)〉

∣∣∣Fτ∧r] .
This is a consequence of the fact that from strong Markov property, for nonnegative

measurable function ψ : [0,∞)×G→ Rd

IEx

[∫ τ∧t

τ∧r
〈ψ(u, Z(u)), dK(u)〉

∣∣∣Fτ∧r] = g̃(τ ∧ r, Z(τ ∧ r)),

where for r 6 t, g̃(r, z)
.
= IEz

[∫ (t−r)∧τ

0

〈ψ(u+ r, Z(u)), dK(u)〉

]
. Thus

IE [p3(t− τ2, ξ2, z)|F1]− p3(t− τ1, ξ1, z)

= −IE
[∫ τ2

τ1

〈∇Γ(t− u, Z(u), z), dK(u)〉
∣∣∣F1

]
.

Integrating on S◦, we have

IEx

[∫
S◦
f(z)p3(t− τ2, ξ2, z)dz|F1

]
− IEx

[∫
S◦
f(z)p3(t− τ1, ξ1, z)dz

]
= −

∫
S◦
IEx

[∫ τ2

τ1

〈∇Γ(t− u, Z(u), z), dK(u)〉
∣∣∣F1

]
f(z)dz. (2.13)

Proof of (2.9) now follows on combining (2.7), (2.10), (2.11), and (2.13).

Next observe that (2.8) holds trivially for x ∈ ∂G. Finally, for any x ∈ G and

continuous f with compact support K ⊆ G ∩ S◦
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∫
S◦
f(z)pG(t, x, z)dz = lim

r↑t
IEx [u(t− τ ∧ r, Z(τ ∧ r))]

= lim
r↑t

IEx

[∫
K

f(z)pG(t− τ ∧ r, Z(τ ∧ r), z)dz
]

= lim
r↑t

IEx

[∫
K

f(z)1[t,∞)(τ)pG(t− τ ∧ r, Z(τ ∧ r), z)dz
]

+ lim
r↑t

IEx

[∫
K

f(z)1[0,t)(τ)pG(t− τ ∧ r, Z(τ ∧ r), z)dz
]

≡ I1 + I2, (2.14)

where the first equality follows on using the martingale property (2.9). Next note

that for all compact set K ⊆ G ∩ S◦,

sup
z∈K

sup
z̃∈∂G

sup
06s6t

Γ(s, z̃, z) <∞, (2.15)

and

sup
z∈K

sup
z̃∈∂S

sup
06s6t

|∇Γ(s, z̃, z)| <∞. (2.16)

Combining the uniform estimates (2.15), (2.16) with the Feller property of Z, we have

by the dominated convergence theorem: If x ∈ G, y(s) ∈ G are such that y(s) → x

as s→ t, then

lim
s↑t

∫
S◦∩G

f(z)pG(t− s, y(s), z)dz = f(x). (2.17)

Next noting that sup
06s6t

sup
x∈Ḡ,z∈K

|pG(s, x, z) − Γ(s, x, z)| < ∞, we have via another

application of dominated convergence theorem that

I1 = IEx

[
1[t,∞)(τ) lim

r↑t

∫
S◦
f(z)pG(t− τ ∧ r, Z(τ ∧ r), z)dz

]
= IEx

[
1[t,∞)(τ)f(Z(t))

]
, (2.18)
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I2 = IEx

[
1[0,t)(τ) lim

r↑t

∫
S◦
f(z)pG(t− τ ∧ r, Z(τ ∧ r), z)dz

]
= IEx

[
1[0,t)(τ)

∫
S◦
f(z)pG(t− τ, Z(τ), z)dz

]
= 0, (2.19)

where the second equality in (2.18) follows from (2.17) and the last inequality is a

consequence of the observation that pG(t, x, z) = 0 for all t > 0, x ∈ ∂G, z ∈ K. The

result now follows on combining (2.14), (2.18), and (2.19).

As an immediate corollary of Lemma 2.2.15 we have the following.

Corollary 2.2.16. For all t > 0, x ∈ Ḡ and z ∈ G ∩ S◦, pG(t, x, z) > 0. For any

Borel set E ⊆ G ∩ S◦, t > 0, and x ∈ Ḡ,

Px(Z(t) ∈ E, τ > t) =

∫
G

1E(z)pG(t, x, z)dz. (2.20)

From Feller property of Z it follows that for all t > 0, x 7→ pG(t, x, z) is continuous

on Ḡ. Combining this with Remark 2.2.14 we see that for each t > 0, (x, z) 7→

pG(t, x, z) is continuous on Ḡ× (G ∩ S◦). Defining pG(t, ·, ·) to be zero outside

Ḡ× (G ∩ S◦), we have that pG(t, ·, ·) is jointly measurable on S × S for all t > 0.

For n ∈ N, let B(0;n) be the open ball centered at 0 with radius n. Let

Gn
.
= B(0;n)∩S and define p(t, x, z)

.
= limn→∞ pGn(t, x, z). Note that for fixed t, x, z

pGn(t, x, z), is nondecreasing in n, so the above limit is well defined. By definition

(x, z) 7→ p(t, x, z) is a jointly measurable nonnegative function on S×S. Furthermore,

observe that for A ∈ B(S)

Px[Z(t) ∈ A] = Px[Z(t) ∈ A ∩ S◦]

= lim
n→∞

Px[Z(t) ∈ A ∩ S◦ ∩Gn, τGn > t]

= lim
n→∞

∫
S

1A(z)pn(t, x, z)dz =

∫
S

1A(z)p(t, x, z)dz. (2.21)

Thus we have shown that an SRBM admits a transition probability density p(t, x, z)
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which is jointly measurable in (x, z). The strong Feller property of an SRBM now

follows from the following well known result.

Lemma 2.2.17. [cf. Lemma 11 [55] pp. 60-61] Let X be a locally compact metric

space and CX the space of real continuous functions defined on X. Let p(x, y) be a

measurable function on X ×X, and λ(dy) a finite measure on X, with

C1.
∫
p(x, y)λ(dy) = 1;

C2.
∫
p(x, y)φ(y)λ(dy) ∈ CX if φ ∈ CX .

Then
∫
ψ(y)p(x, y)λ(dy) ∈ CX for all real bounded measurable functions ψ.

Theorem 2.2.18. The SRBM ({Zt}t>0, {Px}x∈S) is strong Feller.

Proof. Fix t > 0. Let ψ be a positive smooth function on S such that
∫
S
ψ(z)dz = 1.

Now let λ(dz)
.
= ψ(z)dz, q(t, x, z)

.
= 1

ψ(z)
p(t, x, z). Then q(t, ·, ·) is jointly measurable

on S × S and for x ∈ S we have
∫
S
q(t, x, z)λ(dz) = 1. For any f ∈ CS, we have

x 7→
∫
S
f(z)q(t, x, z)λ(dz) is bounded continuous by Feller continuity of SRBM. Since

conditions C1 ,C2 of the previous lemma are satisfied, for any bounded measurable

function h on S,
∫
S
h(z)p(t, x, z)dz =

∫
S
h(z)q(t, x, z)λ(dz) is bounded continuous in

x.

We are now ready to establish the ϕ-irreducibility of SRBM.

Theorem 2.2.19. The SRBM ({Zt}t>0, {Px}x∈S) is ϕ-irreducible.

Proof. In view of Theorem 2.1.12, it suffices to show that the R-chain of an SRBM,

i.e., the Markov chain with transition kernel R(y, A)
.
=

∫ ∞

0

P t(y, A)e−tdt, is ϕ-

irreducible. To prove the last statement, in turn, it suffices to show in view of Lemma

2.2.12 that the Markov chain Φ̆ with transition kernel R(y, A) is strong Feller (cf.

Proposition 6.1.5 of [45]). Finally, the strong Feller property of Φ̆ is an immediate

consequence of Theorem 2.2.18 via an application of dominated convergence theorem.

This completes the proof.
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2.2.3 Geometric ergodicity, V -uniform ergodicity

The main result of this section is the V -uniform ergodicity (see Definition 2.1.10) of

an SRBM under Condition 2.2.8 for a function V , which is exponentially growing. We

begin by introducing the following Lyapunov function W (·), which was constructed

in [25].

Theorem 2.2.20. [cf. [25]] Suppose that Condition 2.2.8 holds. Then there exists

a continuous map W : Rd → R such that the following hold.

(P1) W (·) ∈ C2(Rd\{0}).

(P2) Given N < ∞, there is an M < ∞ such that x ∈ S and |x| > M imply

W (x) > N .

(P3) Given ε > 0, there is an M < ∞ such that x ∈ S and |x| > M imply

|D2W (x)| 6 ε.

(P4) There exists a c > 0 such that

〈DW (x), r0〉 6 −c, for all x ∈ S\{0},

〈DW (x), r〉 6 −c, for all r ∈ r(x), x ∈ ∂S\{0}.

(P5) W (·) is radial homogeneous: W (αx) = αW (x) for α > 0, x ∈ S.

Some consequences of properties (P1)− (P5) are the following.

(P6) For every M ∈ (0,∞) there exists a γ ≡ γ(M) ∈ (0,∞) such that

sup
|x|6M

|W (x)| 6 γ.

(P7) Γ
.
= supx∈S\{0} |DW (x)| <∞.
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(P8) There exist c1, c2 ∈ (0,∞) such that c1|x| 6 W (x) 6 c2|x|, for all x ∈ S.

For a proof of the following elementary lemma we refer the reader to Lemma 4.2

in [2].

Lemma 2.2.21. Let x ∈ S. Suppose that {α(t) : t > 0} is an Rd-valued Ft-

progressively measurable process such that there exists ᾱ ∈ (0,∞) for which |α(t)| 6 ᾱ,

for all t ∈ (0,∞), Px-a.s. Then for λ ∈ (0,∞),

IEx

(
exp

{
λ

∣∣∣∣∫ t

0

〈α(s), dB(s)〉
∣∣∣∣}) 6 2 exp

{
λ2ᾱ2γt

2

}
,

where γ ∈ (0,∞) depends only on the norm of the covariance matrix Σ−1.

Although W may not be differentiable at 0, with an abuse of notation, we set

DW (0) = 0 and D2W (0) = 0.

Lemma 2.2.22. Let x ∈ S and ∆ > 0 be fixed. For m ∈ N let νm be defined as

follows:

νm
.
= sup

(m−1)∆6t6m∆

∣∣∣∣∫ t

(m−1)∆

〈DW (Z(s)), dB(s)〉
∣∣∣∣ .

Then for any κ ∈ (0,∞) and m,n ∈ N;m 6 n,

IE(eκ
∑n

i=m νi) 6 [2
√

2eκ
2Γ2γ∆](n−m+1), (2.22)

where γ ∈ (0,∞) is as in Lemma 2.2.21 and Γ as in (P7).

Proof. Let {Ft} be as in Definition 2.2.1. Then using Lemma 2.2.21,

IEx(exp{κνn}|F(n−1)∆)

= IEZ((n−1)∆)

(
sup

06t6∆
exp

(
κ

∣∣∣∣∫ t

0

〈DW (Z(s)), dB(s)〉
∣∣∣∣))

6 2

(
IEZ((n−1)∆)

(
exp

{
2κ

∣∣∣∣∫ ∆

0

〈DW (Z(s)), dB(s)〉
∣∣∣∣}))

1
2

6 2
√

2 exp(κ2Γ2γ∆), (2.23)
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where the first equality follows by the Markov property of Z(·) and the next to last

inequality from an application of Doob’s maximal inequality for submartingales. The

last inequality is a consequence of (P7) and Lemma 2.2.21. Iterating the above

(n−m+ 1) times yields the estimates in (2.22).

By (P3), there exists M0 > 1 such that x ∈ S and |x| > M0 imply

tr
[
D2W (x)Σ

]
< c,

where c is as in (P4). Fix M ∈ (M0,∞) and define B1
.
= {x : |x| 6 M}. Choose

L ∈ (0,∞) large enough so that B2
.
= {x : |W (x)| 6 L} ⊇ B1. Let σ1

.
= inf{t > 0 :

Z(t) ∈ B2}. The proof of the following theorem is similar to that of Theorem 4.1 of

[2] except that we consider an exponential moment bound rather than a polynomial

moment bound for the hitting time σ1.

Theorem 2.2.23. There exist β ∈ (0,∞) and α1, α2 ∈ (0,∞) such that for all x ∈ S

IEx[e
βσ1 ] < α1e

α2|x|. In particular, for any compact set K ⊆ S supx∈K IEx[e
βσ1 ] <∞.

Proof. Fix ∆ ∈ (0,∞) and m ∈ N. By applying Itô’s formula to W (·), we have

W (Z(m∆) ∧ σ1) = W (Z(m− 1)∆) ∧ σ1) +

∫ m∆∧σ1

(m−1)∆∧σ1

(
1

2
tr
[
D2W (Z(s))Σ

])
ds

+

∫ m∆∧σ1

(m−1)∆∧σ1

〈DW (Z(s)), r0〉ds

+

∫ m∆∧σ1

(m−1)∆∧σ1

〈DW (Z(s)), dB(s)〉

+
d∑
i=1

∫ m∆∧σ1

(m−1)∆∧σ1

〈DW (Z(s)), ri〉dYi(s). (2.24)

For n ∈ N, define An
.
= {ω ∈ Ω : infs∈[0,n∆] |W (Z(s))| > L}. Note that when ω ∈ An
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and m 6 n we have from (2.24) that

W (Z(m∆)) = W (Z(m− 1)∆)) +

∫ m∆

(m−1)∆

(
1

2
tr
[
D2W (Z(s))Σ

])
ds

+

∫ m∆

(m−1)∆

〈DW (Z(s)), r0〉ds+

∫ m∆

(m−1)∆

〈DW (Z(s)), dB(s)〉

+
d∑
i=1

∫ m∆

(m−1)∆

〈DW (Z(s)), ri〉dYi(s)

≡ T1 + T2 + T3 + T4 + T5.

On An, T2 6 c
2
∆ and by (P4) we have T3 6 −c∆ and T5 < 0. As a result, on the set

An and for m 6 n

W (Z(m∆)) 6 W (Z(m− 1)∆))− c

2
∆ +

∫ m∆

(m−1)∆

〈DW (Z(s)), dB(s)〉

6 W (Z(m− 1)∆))− c

2
∆ + sup

(m−1)∆6t6m∆

∣∣∣∣∫ t

(m−1)∆

〈DW, dB〉
∣∣∣∣ ,

where in the above display, DW (Z(s)), dB(s) are abbreviated as DW and dB, re-

spectively.

Thus for 1 6 m 6 n and on the set An,

L < W (Z(m∆)) 6 W (Z(m−1)∆))− c

2
∆+ sup

(m−1)∆6t6m∆

∣∣∣∣∫ t

(m−1)∆

〈DW, dB〉
∣∣∣∣ . (2.25)

Define νm as in Lemma 2.2.22. For m = 1, . . . , n iterating inequality (2.25) we have

that, on An, L < W (Z(n∆)) 6 W (x) +
∑n

j=1 νj −
c
2
n∆.

Define Dn
.
= {ω ∈ Ω : L < W (Z(n∆)) 6 W (x) +

∑n
j=1 νj −

c
2
n∆}, then
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P (An) 6 P (Dn) 6 P

(
L+

c

2
n∆−W (x) 6

n∑
j=1

νj

)

6 [IE(exp(α
n∑
j=1

νj))]/[exp(α(L+
c

2
n∆−W (x)))]

6 [2
√

2 exp(α2Γ2γ∆)]n/[exp(α(L+
c

2
n∆−W (x)))]

= exp(αW (x)− αL) exp

(
n∆(

log 8

2∆
+ α2Γ2γ − αc

2
)

)
,

where α > 0, the third inequality follows from Chebyshev’s inequality and the fourth

inequality follows from (2.22). Let −η .
= ( log 8

2∆
+ α2Γ2γ − αc

2
) and choose sufficiently

large ∆ > 0 and sufficiently small α > 0 so that η > 0. Let t ∈ (0,∞) be arbitrary

and pick n0 ∈ N such that t ∈ [n0∆, (n0 + 1)∆]. Then

P (σ1 > t) = P (Z(s) 6∈ B2 : 0 6 s 6 t)

6 P (Z(s) 6∈ B2 : 0 6 s 6 n0∆)

6 exp(αW (x)− αL) · exp (−η(n0 + 1)∆)

6 C · eαW (x)e−ηt,

where the last inequality follows on defining C
.
= exp(−αL) and noting that

t 6 (n0 + 1)∆.

Finally, for β ∈ (0, η)

IEx[e
βσ1 ] =

∫ ∞

0

βeβtP [σ1 > t]dt

6 CβeαW (x)

∫ ∞

0

e(β−η)tdt

= CβeαW (x)

[
e(β−η)t

β − η

]∞
0

=
Cβ

η − β
eαW (x).

The result now follows from the above estimates on recalling (P8).
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We will now proceed to the construction of a Lyapunov function V that will

enable us to prove geometric ergodicity of Z. The starting point of our analysis is the

following result of [22] (cf. see Theorems 6.2 and 5.1 therein). For δ ∈ (0,∞) and a

compact set C ⊆ S, let τC(δ)
.
= inf{t > δ : Z(t) ∈ C}.

Theorem 2.2.24. Suppose that for some compact set C ⊆ S and η, δ ∈ (0,∞) we

have IExe
ητC(δ) <∞ for all x ∈ S. Let

V0(x)
.
=

1

η
[IExe

ητC(δ) − 1] + 1 (2.26)

and suppose that supx∈C V0(x) < ∞. Then for all β > 0 (Vβ,Wβ) ∈ Ã, where

Vβ
.
= RβV0, Wβ

.
= βVβ − V0 and Ã is the extended generator of Z (see Definition

2.1.20). Furthermore, there exist b, c ∈ (0,∞) such that

ÃVβ(x) 6 −cVβ(x) + b1C(x) for all x ∈ S. (2.27)

Proof. The result follows on taking f ≡ 1 in Theorem 6.2 of [22] and using the (b)

part of the cited theorem along with (a) part of Theorem 5.1 in the same paper.

Let L̃ > L be large enough so that dist(B2, ∂B3) > 1, where B3
.
= {x ∈ S :

|W (x)| 6 L̃}. Note that B1 ⊆ B2 ⊆ B3. Let σ0
.
= inf{t > 0 : Z(t) ∈ ∂B3}.

Lemma 2.2.25. For each fixed δ ∈ (0,∞) there exists ε0 ≡ ε0(δ) ∈ (0, 1) such that

sup
x∈B3

Px(σ0 > δ) < ε0, (2.28)

sup
x∈B3

Px(σ0 < δ) < ε0. (2.29)

Proof. We will only prove (2.28), the proof of (2.29) is similar and is omitted. We

will prove this by the method of contradiction. Fix δ ∈ (0,∞) and suppose that

(2.28) does not hold for any ε0 ∈ (0, 1). Then there exist sequences {xn}, {εn} such
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that Pxn [σ0 > δ] > εn, where {xn} ⊆ B3, εn ∈ (0, 1) and εn ↑ 1 as n→∞. From the

Feller property of SRBM it follows that if {xnk
}k>1 is a subsequence of {xn} such that

xnk
→ x as k → ∞ then lim supPxnk

[σ0 > δ] 6 Px[σ0 > δ]. Hence Px[σ0 > δ] = 1.

However this contradicts Lemma 2.2.12 and hence the lemma follows.

Let τ1
.
= inf{t > σ0 : Z(t) ∈ ∂B2}. The following lemma is the key step in the

proof of Theorem 2.2.27.

Lemma 2.2.26. Under Condition 2.2.8, there exists β1 ∈ (0,∞) and A ∈ (0,∞)

such that

sup
x∈B2

IEx[e
β1τ1 ] < A. (2.30)

Proof. In view of Theorem 2.2.23 and strong Markov property of SRBM it suffices

to show that there exists r ∈ (0,∞) such that supx∈B2
IEx[e

rσ0 ] <∞. This will follow

if we show that there exists θ0 ∈ (0,∞) such that for all k ∈ N and x ∈ B2,

Px[σ0 > k] < e−θ0k. (2.31)

Next note that Px[σ0 > k] = IEx(IEx[1{σ0>k}|Fk−1]1{σ0>k−1}). Furthermore,

IEx[1{σ0>k}|Fk−1]1{σ0>k−1} 6 sup
x∈B3

Px[σ0 > 1]1{σ0>k−1} < ε̃01{σ0>k−1},

where ε̃0 = ε0(1) ∈ (0, 1) is as in Lemma 2.2.25. Inequality (2.31) now follows on

iterating the above conditioning argument k times. This completes the proof of the

lemma.

The following is the key estimate in the proof of geometric ergodicity.

Theorem 2.2.27. Suppose Condition 2.2.8 holds. Fix δ ∈ (0,∞) and let β1 ∈ (0,∞)

be as in Lemma 2.2.26. Then supx∈B2
IEx[e

β1τB2
(δ)] <∞.
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Proof. Define a sequence of stopping times {τ̂n}, {σ̂n}, n ∈ N as follows:

σ̂n
.
= inf{t > τ̂n−1 : Z(t) ∈ ∂B3}, τ̂n

.
= inf{t > σ̂n : Z(t) ∈ B2}, n = 1, 2, . . . ,

where τ̂0
.
= 0. Let θ

.
= ε0(δ), where ε0(·) is as in Lemma 2.2.25. Also for n ∈ N

set mn
.
= τ̂n − τ̂n−1 and let m0

.
= 0. From the second inequality in Lemma 2.2.25,

Pn[τ̂n − τ̂n−1 > δ|Fτ̂n−1 ] > 1 − θ for all n > 1. Thus by the second Borel Cantelli

lemma (see [26], p. 240) τ̂n →∞ a.s. as n→∞. Therefore, for x ∈ B2,

IEx[e
β1τB2

(δ)] = eβ1δIEx

∞∑
n=1

1δ∈(τ̂n−1,τ̂n]e
β1(τB2

(δ)−δ). (2.32)

Observing that 1δ∈(τ̂n−1,τ̂n]e
β1(τB2

(δ)−δ) 6 1δ∈(τ̂n−1,τ̂n]e
β1(τ̂n−τ̂n−1) we have for n > 1,

IEx1δ∈(τ̂n−1,τ̂n]e
β1(τB2

(δ)−δ) 6 IEx1m1<δ · · · 1mn−1<δe
β1(τ̂n−τ̂n−1)

= IEx1m1<δ · · · 1mn−1<δIEx[e
β1(τ̂n−τ̂n−1)|Fτ̂n−1 ]

6 AIEx1m1<δ · · · 1mn−1<δ, (2.33)

where the last inequality is a consequence of the strong Markov property of SRBM and

Lemma 2.2.26. Next note that from Lemma 2.2.25, for n > 2, IEx[1mn−1<δ|Fτ̂n−2 ] < θ.

By a successive conditioning argument we now have that the right side of (2.33) is

bounded by Aθn−1. The result now follows on substituting this bound in (2.32):

sup
x∈B2

IEx[e
β1τB2

(δ)] 6 Aeβ1δ

∞∑
n=1

θn−1 =
Aeβ1δ

1− θ
.

Lemma 2.2.28. Let ({Zt}t>0, {Px}x∈S) be an SRBM. Under Condition 2.2.8 there

exist a1, a2, A1, A2 ∈ (0,∞), such that

a1e
a2|x| 6 V0(x) 6 A1e

A2|x| for each x ∈ S. (2.34)
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Furthermore, there exist β ∈ (0,∞) and ã1, ã2, Ã1, Ã2 ∈ (0,∞), such that

ã1e
ã2|x| 6 Vβ(x) 6 Ã1e

Ã2|x| for each x ∈ S. (2.35)

Proof. We begin by showing the first inequality of (2.34). Note that V0(x) > 1, so

in order to prove the inequality it suffices to show that there exist M,a1, a2 ∈ (0,∞)

such that for all |x| > M , V0(x) > a1e
a2|x|. By Jensen’s inequality IEx[e

β1τB2
(δ)] >

eβ1IExτB2
(δ). For the lower bound on IExτB2(δ), let M be large enough so that for all

|x| > M , d(x,B2) > 1
2
|x|. Define for ϑ ∈ (0, 1), Eϑ

.
=
{
sup06s6ϑ|x| |Zs − x| 6 1

2
|x|
}
.

Then we have

IExτB2(δ) > IExτB2(δ)1Eϑ

> ϑ|x|Px

[
sup

06s6ϑ|x|
|Zs − x| 6 1

2
|x|

]
. (2.36)

By Markov inequality and Theorem 2.2.10, we have that

Px

[
sup

06s6ϑ|x|
|Zs − x| > 1

2
|x|

]
6

2IEx sup06s6ϑ|x| |Zs − x|
|x|

6
4CIEx sup06s6ϑ|x| |Bs + r0s| − x

|x|

6
C?ϑ|x|
|x|

= C?ϑ, (2.37)

where C as in Theorem 2.2.10 and C? is a global constant. Choosing ϑ < 1
2C? , we

now have from (2.36) that for all |x| > M , IExτB2(δ) > ϑ
2
|x|. The desired lower bound

in (2.34) now follows. Next recalling that Vβ(x)
.
= RβV0 =

∫∞
0
IExV0(Zt)βe

−βtdt, we

have

Vβ(x) > IEx

∫ ∞

0

a1e
a2|Zt|βe−βtdt > a1e

a2|x|IEx

∫ ∞

0

e−a2|Zt−x|βe−βtdt

> a1e
a2|x|IEx

∫ ∞

0

e−a2 sup06s6t |Zs−x|βe−βtdt.
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Again by Theorem 2.2.10 and a similar argument as used in (2.37),

Vβ(x) > a1e
a2|x|

∫ ∞

1

βe−bte−βtdt,

for some global constant b ∈ (0,∞). This proves the lower bound in (2.35).

For the second inequality of (2.34) recall the stopping time σ1 introduced above

Theorem 2.2.23. By a conditioning argument and the strong Markov property,

IExe
β1τB2

(δ) 6 IExe
β1σ1 + IEx[e

β1τB2
(δ)1σ16δ]

= IExe
β1σ1 + IEx[1σ16δIEx(e

β1τB2
(δ)|Fσ1)]

6 IExe
β1σ1 + sup

x∈B2

IEx[e
β1τB2

(δ)].

The desired upper bound in (2.34) now follows on using Theorem 2.2.23 and 2.2.27

in the above display.

Finally,

Vβ(x) 6 IEx

∫ ∞

0

A1e
A2|Zt|βe−βtdt 6 A1e

A2|x|IEx

∫ ∞

0

βeA2|Zt−x|e−βtdt

6 A1e
A2|x|IEx

∫ ∞

0

βeA2 sup06s6t |Zs−x|e−βtdt.

Once more from Theorem 2.2.10, we have

Vβ(x) 6 A1e
A2|x|

∫ ∞

0

βeA3te−βtdt,

for some global constant A3. The upper bound in (2.35) now follows on choosing

β ∈ (A3,∞).

Henceforth we will fix a β > A3 and denote the corresponding Vβ by V . (2.38)
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Corollary 2.2.29. Under Condition 2.2.8, an SRBM ({Zt}t>0, {Px}x∈S) satisfies the

following drift criteria: There exist b, c ∈ (0,∞), some compact set C ⊆ S such that

ÃV (x) 6 −cV (x) + b1C(x), for all x ∈ S. (2.39)

Proof. From Lemma 2.2.28,

sup
x∈B2

V0(x)
.
=

1

β1

[IExe
β1τB2

(δ) − 1] + 1 <∞, IExe
β1τB2

(δ) <∞, ∀x ∈ S.

Result follows on combining these two facts and applying Theorem 2.2.24.

Corollary 2.2.30. Suppose that Condition 2.2.8 holds. Let π be the unique invariant

probability distribution of the SRBM ({Zt}t>0, {Px}x∈S). Then π(V ) <∞.

Proof. Theorem 5.1 (c) of [22] along with equation (2.39) implies the existence of

λ ∈ (0, 1) and b̃ ∈ (0,∞) such that RV (x) 6 V (x) − (1 − λ)V (x) + b̃1C(x) for all

x ∈ S. Combining the above drift condition with Theorem 2.2.3 and Theorem 14.3.7

of [45], we get π(V ) 6 bπ(C)/(1− λ) <∞.

Theorem 2.2.31. Suppose that Condition 2.2.8 holds for the SRBM

({Zt}t>0, {Px}x∈S) and let π be the unique invariant distribution for {Zt}t>0. Let

ã2 ∈ (0,∞) be as in Lemma 2.2.28. Then for all c ∈ Rd with |c| 6 ã2 we have∫
S

ec·xπ(dx) <∞.

Proof. Let ã1 ∈ (0,∞) be as in Lemma 2.2.28. Then

ã1

∫
S

ec·xπ(dx) 6 ã1

∫
S

eã2|x|π(dx) 6
∫
S

V (x)π(dx) <∞,

where the last inequality follows from Corollary 2.2.30. In particular, from the proof

of Corollary 2.2.30 we see that
∫
S
ec·xπ(dx) < bπ(C)

ã1(1−λ)
.

Now we present the main result of this section.
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Theorem 2.2.32. Under Condition 2.2.8, an SRBM ({Zt}t>0, {Px}x∈S) is V -uniformly

ergodic; i.e., there exist constants D ∈ (0,∞), ρ ∈ (0, 1) such that for all t ∈ R+ and

x ∈ S,

||P t(x, ·)− π||V 6 V (x)Dρt.

Proof. Result is immediate consequence of Corollary 2.2.29 along with Theorem 5.2

(c) of [22].

2.2.4 Long time stability

From V -uniform ergodicity established in Theorem 2.2.32, we can now establish sev-

eral results on moment stability of an SRBM.

Theorem 2.2.33. Suppose that Condition 2.2.8 holds. Then there exists D̃ ∈ (0,∞)

such that for all g ∈ LV∞, x ∈ S, and t > 0,

IExg(Zt) 6 D̃[1 + V (x)ρt],

where ρ ∈ (0,∞) is as in Theorem 2.2.32. In particular

IExe
ã2|Zt| 6 D̃[1 + V (x)ρt],

where ã2 ∈ (0,∞) is as in Lemma 2.2.28, and for every compact set K ⊆ S we have

supt>0 supx∈K IExe
ã2|Zt| <∞.

Proof. For g ∈ LV∞ let g̃
.
= g

||g||V
. Then g̃ 6 V and by Theorem 2.2.32, we have that

for all t ∈ R+ and x ∈ S,

sup
g̃:|g̃|6V

∣∣∣∣IEx{g̃(Zt)− ∫
S

g̃(y)π(dy)

}∣∣∣∣ 6 DV (x)ρt,
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where D ∈ (0,∞) is as in Theorem 2.2.32. So

IExg̃(Zt) 6
∫
S

g̃(y)π(dy) +DV (x)ρt.

Since
∫
S
g̃(y)π(dy) <∞ and ||g||V <∞ there is a D̃ ∈ (0,∞) such that

IExg(Zt) 6 D̃[1 + V (x)ρt]. In particular choosing g(x) to be ã1e
ã2|x| as in Lemma

2.2.28 so that |g| 6 V yields that IExe
ã2|Zt| 6 D̃[1 + V (x)ρt], and for every compact

set K ⊆ S we have supt>0 supx∈K IExe
ã2|Zt| < ∞ from Lemma 2.2.28 and Corollary

2.2.30.

Corollary 2.2.34. Suppose that Condition 2.2.8 holds for the SRBM ({Zt}t>0, {Px}x∈S).

Then there exists a t0 > 0 such that for all p > 0,

lim
|x|→∞

sup
t>t0

1

|x|p+1
IEx
(
|Z(t|x|)|p+1

)
= 0.

Proof. Fix p > 0 and choose θp+1 ∈ (0,∞) small enough so that θp+1x
p+1 6 eã2x

for x ∈ R+, where ã2 is as in Theorem 2.2.33. Then from Theorem 2.2.33

1

|x|p+1
IEx
(
|Z(t0|x|)|p+1

)
6

1

|x|p+1θp+1

IExe
ã2|Z(t0|x|)|

6
D̃

|x|p+1θp+1

[1 + V (x)ρt0|x|]

6
D̃

|x|p+1θp+1

[1 + A1e
Ã2|x|ρt0|x|],

where the last inequality follows from Lemma 2.2.28. The result now follows on taking

t0 large enough so that ρt0 6 e−Ã2 .

Theorem 2.2.35. Suppose that Condition 2.2.8 holds for the SRBM ({Zt}t>0, {Px}x∈S).

Then for each p > 0 there exists a constant κp ∈ (0,∞) such that

1

t

∫ t

0

IEx [|Z(s)|p] ds 6 κp

{
1

t
|x|p+1 + 1

}
, t > 0, x ∈ S.
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Proof. By Corollary 2.2.34, there exists an L ∈ (0,∞) such that with D
.
= {x ∈

S : |x| < L}

IEx[Z(t0|x|)p+1] 6
1

2
|x|p+1, ∀x ∈ Dc, (2.40)

where t0 is as in Corollary 2.2.34. Let δ
.
= t0L and set τ(δ) = inf{t > δ : |Z(t)| 6 L}.

Define V̂ (x)
.
= IEx

[∫ τ(δ)
0

(|Z(t)|p + 1)dt
]
, x ∈ S. We will next show that there exists

a d ∈ (0,∞) such that

V̂ (x) 6 d(|x|p+1 + 1), ∀x ∈ S. (2.41)

The result will then follow as an immediate consequence of Proposition 5.4 of [18].

Define a sequence of stopping times σn as σ0
.
= 0, σn = σn−1 + t0[|Z(σn−1)| ∨ L],

n ∈ N. Also, let n0
.
= min{n > 1 : |Z(σn)| 6 L}. Then

V̂ (x) 6 IEx

[∫ σn0

0

(|Z(t)|p + 1)dt

]
=

∞∑
k=0

IEx

[∫ σk+1

σk

(|Z(t)|p + 1)dt1k<n0

]
. (2.42)

An application of strong Markov property and Theorem 2.2.10 shows that there exists

a d1 ∈ (0,∞) such that

IEx

[∫ σk+1

σk

(|Z(t)|p + 1)dt
∣∣∣Fσk

]
1k<n0 6 d1

(
|Z(σk)|p+1 + 1

)
1k<n0 . (2.43)

Using this estimate in (2.42) we get by suitable conditioning

V̂ (x) 6 d1IEx

[
n0−1∑
k=0

(
|Z(σk)|p+1 + 1

)]
. (2.44)
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Next note that {Z(σk)}k>1 is a Markov chain with transition kernel

P̆ (x,A)
.
=

∫
A

p(t0(|x| ∨ L), x, y)dy, x ∈ S, A ∈ B(S),

where p(t, x, y) is the density of SRBM introduced in (2.21). Using Theorem 2.2.10

once more and (2.40), one sees that there exists a b̃ ∈ (0,∞) such that

∫
S

P̆ (x, dy)|y|p+1 6 |x|p+1 − 1

2
|x|p+1 + b̃1[0,L](|x|). (2.45)

Using Theorem 14.2.2 of [45] we have now that

IEx

n0−1∑
k=0

[
|Z(σk)|p+1 + 1

]
6 2

{
|x|p+1 + b̃1[0,L](|x|)

}
.

The inequality (2.41) now follows on using the above estimate in (2.44).

Finally, in this section we use the results of [30] and geometric ergodicity results

obtained above to derive central limit theorems (CLT) for

St
.
=

∫
[0,t)

F (Z(s))ds, as t→∞,

for a broad family of measurable functions F : S → R. We begin by considering the

Poisson equation, the solution of which characterizes the asymptotic variance in the

CLT for St. Recall that for a function V > 1, LV∞ is the vector space of functions

h : S → R such that ||h||V
.
= supx∈S

|h(x)|
V (x)

<∞. Also we recall from Section 2.1.1 that

the V -norm for a kernel P (
.
= P (x, dy)) is defined as |||P |||V

.
= suph∈LV

∞,||h||V 6=0
||Ph||V
||h||V

.

Theorem 2.2.36. Suppose that Condition 2.2.8 holds for the SRBM

({Zt}t>0, {Px}x∈S). Let V be as in (2.38). Then the following hold.

(i) For all F ∈ LV∞ and x ∈ S, the limit, as t → ∞, of IEx[St − tπ(F )] exists.

Denoting the limit by F̂ (x), we have that F̂ (x) ∈ LV∞.
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(ii) F̂ solves the Poisson equation for F , i.e., F̂ (x) ∈ D(Ã), where Ã is the extended

generator of Z (see Definition 2.1.20) and

ÃF̂ (x) = π(F )− F (x), x ∈ S. (2.46)

(iii) The convergence in (i) is exponentially fast, i.e., denoting IEx[St − tπ(F )] by

F c
t (x), we have that for some b0, B0 ∈ (0,∞), ||F c

t − F̂ ||V 6 B0e
−b0t for all

t ∈ (0,∞).

Remark 2.2.37. Note that from Corollary 2.2.30 π(|F |) < ∞ for all F ∈ LV∞, thus

the statements in the above theorem are meaningful. Also for any F ∈ LV∞, Poisson

equation Ãg = π(F )−F admits at most one solution g, up to a constant factor, with

the property π(|g|) < ∞. I.e. if g, ǧ are two solutions and π(|g| + |ǧ|) < ∞, then

g − ǧ = c a.s. [π] for some c ∈ R. Proof of this statement follows along the lines of

Proposition 17.4.1 of [45].

Proof. (i) Fix F ∈ LV∞. From Theorem 2.2.32,

∫ ∞

0

|P t(x, F )− π(F )|dt 6 V (x)

∫ ∞

0

Dρtdt 6 D0V (x),

where ρ ∈ (0, 1) is as in Theorem 2.2.32 and D0 ∈ (0,∞). Thus

lim
t→∞

[IExSt − tπ(F )] = lim
t→∞

∫ t

0

[P s(x, F )− π(F )]ds

exists and denoting the limit by F̂ (x), we have F̂ (x) 6 D0V (x) for all x ∈ S. Thus

F̂ ∈ LV∞.

(ii) Using the exponential bounds on V obtained in Lemma 2.2.28 one can check

that IE
∫ t

0
|F̂ (Zs)|ds <∞. Next for t > 0,
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IExF̂ (Xt) =

∫ ∞

0

IEx[P
s(Xt, F )− π(F )]ds =

∫ ∞

0

[Px(Xs+t, F )− π(F )]ds

=

∫ ∞

t

[P s(x, F )− π(F )]ds = F̂ (x)−
∫ t

0

[P s(x, F )− π(F )]ds

= F̂ (x) +

∫ t

0

IEx[π(F )− F (Xs)]ds.

This establishes that F̂ ∈ D(Ã) and ÃF̂ = π(F )− F .

(iii) For 0 6 t < T <∞,

|IEx[St − tπ(F )]− IEx[ST − Tπ(F )]| 6
∫ T

t

|P s(x, F )− π(F )|ds

6 V (x)

∫ T

t

Dρsds 6 V (x)D1ρ
t,

where the next to last inequality is a consequence of Theorem 2.2.32 and D1 ∈ (0,∞).

The result now follows on sending T →∞.

We now present the main central limit result of this section, which is an immediate

consequence of Theorem 4.4 of [30] and Corollary 2.2.29. Define for a F ∈ LV∞

ξn(t)
.
=

1√
n

(∫ nt

0

F̄ (Zs)ds

)
, t ∈ [0, 1],

where F̄
.
= F − π(F ). Let C[0, 1] denote the set of continuous functions defined from

[0, 1] to R.

Theorem 2.2.38. Let the SRBM ({Zt}t>0, {Px}x∈S) satisfy Condition 2.2.8. Let V

be as in (2.38). Let F : S → R be a measurable function such that F 2(x) 6 V (x)

for all x ∈ S. Define γ2
F
.
= 2

∫
F̂ (x)F̄ (x)π(dx), where F̂ is the solution of Poisson

equation (2.46). Then, as n → ∞, ξn converges in distribution to γFB in C[0, 1],

where B is a one dimensional standard Brownian motion.
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Remark 2.2.39. Note that since any two solutions of the Poisson equation (2.46)

differ by a constant and
∫
F̄ (x)π(dx) = 0, the choice of the solution in the definition

of γ2
F is immaterial. The nonnegativity and finiteness of the expression defining γ2

F

under the drift condition (2.39) is established in [30].

2.3 Constrained diffusion processes in polyhedral

domains

In Sections 2.2.3 and 2.2.4 we studied geometric ergodicity properties for a constrained

diffusion in Rd
+ with constant drift and diffusion coefficients. In the current section we

will address stability properties for a class of diffusion processes, with general state

dependent coefficients, constrained to take values in a convex polyhedral cone S in

Rd with the vertex at the origin. Our assumption on the reflection vector field r(x)

here will be somewhat more restrictive than the completely-S assumption made in

Section 2.2.1. In particular we assume that the Skorohod map associated with the

reflection data is well defined for all RCLL trajectories and it satisfies a Lipschitz

property (details are given below). Study of such diffusions is motivated by queueing

networks with state dependent arrival and service rates. It is well known (see eg. [59])

that under suitable heavy traffic conditions, appropriately scaled state descriptors of

such networks converge weakly to reflected diffusions of the form considered in this

section. Under natural stability conditions on the drift vector field, existence of a

unique invariant probability distribution for this class of diffusions was established

in [2]. In this section, we investigate the rate of convergence to steady state; in

particular we establish geometric ergodicity. Since many arguments are quite similar

to the constant coefficients case studied in Sections 2.2.3 and 2.2.4, only sketches of

proofs will be provided.

We now describe the precise model that will be studied in this section. We assume

that S is given as the intersection of half spaces Si, i = 1, . . . , N , N > d. Let ni be the
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unit vector associated with Si via the relation Si
.
= {x ∈ Rd : 〈x, ni〉 > 0}. Define F i

to be the face of S corresponding to ni, i.e., F i .= {x ∈ ∂S : 〈x, ni〉 = 0}. With each

face F i we associate the direction of constraint unit vector ri satisfying 〈ri, ni〉 > 0.

Denote the d × N matrix [r1, . . . , rN ] by R. At points on the boundary ∂S where

more than one faces meet, there are more than one allowed directions of constraint.

In general, for x ∈ ∂S define

r(x)
.
=

r ∈ Rd : r =
∑

i∈In(x)

αiri; αi > 0; |r| = 1

 ,

where In(x)
.
= {i ∈ {1, 2, . . . , N} : 〈x, ni〉 = 0}. The set r(x) represents the directions

of constraint allowed at the point x. Let DS([0,∞),Rd)
.
= {ψ ∈ D([0,∞),Rd) :

ψ(0) ∈ S}. For η ∈ DS([0,∞),Rd), T ∈ (0,∞) let |η|(T ) denote the total variation

of η on [0, T ] with respect to the Euclidean norm on Rd.

Definition 2.3.1. (Skorohod Map) Let ψ ∈ DS([0,∞),Rd) be given. Then (φ, η) ∈

D([0,∞),Rd)×D([0,∞),Rd) solves the Skorohod problem (SP) for ψ with data (S,R),

if and only if φ(0) = ψ(0) and for all t ∈ [0,∞): (i) φ(t) = ψ(t) + η(t); (ii) φ(t) ∈ S;

(iii) |η|(t) <∞; (iv)|η|(t) =
∫

[0,t]
I{φ(s)∈∂S}d|η|(s); (v) There exists a Borel measurable

function γ : [0,∞) → Rd such that γ(t) ∈ r(φ(t)), d|η|- almost everywhere and η(t) =∫
[0,t]

γ(s)d|η|(s).

On the domain D ⊆ DS([0,∞),Rd) on which there is a unique solution to the Skoro-

hod problem we define the Skorohod map (SM) Γ as Γ(ψ)
.
= φ if (φ, ψ−φ) is the unique

solution of the Skorohod problem posed by ψ. We will make the following assumption

on the regularity of the Skorohod map defined by the data {(ri, ni) : i = 1, 2, . . . , N}.

Condition 2.3.2. The Skorohod map is well defined on all of DS([0,∞),Rd), that

is, D = DS([0,∞),Rd), and the SM is Lipschitz continuous in the following sense.
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There exists a constant K ∈ (0,∞) such that for all ψ1, ψ2 ∈ DS([0,∞),Rd):

sup
06t<∞

|Γ(ψ1)(t)− Γ(ψ2)(t)| < K sup
06t<∞

|ψ1(t)− ψ2(t)|. (2.47)

We will assume without loss of generality that K > 1. We refer the reader to

[23, 24] for sufficient conditions under which Condition 2.3.2 holds.

We now introduce the constrained diffusion process that will be studied in this

section. Let (Ω,F , P ) be a complete probability space on which is given a filtration

{Ft}t>0 satisfying the usual hypotheses. Let (B(t), {Ft}) be a d-dimensional stan-

dard Wiener process on the above probability space. We will study the constrained

diffusion process given as a solution to equation

Z(t) = Γ

(
x+

∫ ·

0

σ(Z(s))dB(s) +

∫ ·

0

b(Z(s))ds

)
(t), (2.48)

where σ : S → Rd×d and b : S → Rd are maps satisfying the following condition:

Condition 2.3.3. There exists a γ ∈ (0,∞) such that

|σ(x)− σ(y)|+ |b(x)− b(y)| 6 γ|x− y|, ∀x, y ∈ S, (2.49)

|σ(x)| 6 γ, ∀x ∈ S. (2.50)

Under Condition 2.3.3 equation (2.48) admits a unique strong solution and as a

consequence there exists a filtered measurable space (Ω,F , {Ft}t>0) on which are

given a family of probability measures {Px}x∈S and continuous stochastic processes

Z and B such that for all x ∈ S, under Px, {B(t), {Ft}t>0} is a d-dimensional standard

Wiener process and (Z,B) satisfy (2.48) Px-a.s. Furthermore, (Z, {Px}x∈S) is a strong

Markov family. Henceforth, we will refer to this family merely as Z.

We will make the following uniform nondegeneracy assumption on the diffusion

coefficient.
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Condition 2.3.4. There exists a c ∈ (0,∞) such that for all x ∈ S and α ∈ Rd,

α′(σ(x)σ′(x))α > cα′α.

We now introduce the main condition on the drift field b for the process Z to be

positive recurrent. Define

C .
=

{
−

N∑
i=1

αiri : αi > 0, i ∈ {1, . . . , N}

}
. (2.51)

The cone C was used to characterize stability of certain semimartingale reflecting

Brownian motions in [8]. For δ ∈ (0,∞), define

Cδ
.
= {v ∈ C : dist(v, ∂C) > δ}. (2.52)

Our key stability assumption on the diffusion model is the following.

Condition 2.3.5. There exists a δ ∈ (0,∞) and a bounded set A ⊆ S such that for

all x ∈ S\A, b(x) ∈ Cδ.

The following is the main result of [2] (Theorem 2.2 therein).

Theorem 2.3.6. Assume that Conditions 2.3.2-2.3.5 hold. Then Z has a unique

invariant probability measure π.

For the rest of this section Conditions 2.3.2-2.3.5 will be assumed to hold. We

will now study geometric ergodicity of Z. We begin with the following result on

ϕ-irreducibility of Z. Let λ denote the Lebesgue measure on (S,B(S)).

Lemma 2.3.7. For every A ∈ B(S) with λ(A) > 0, P t(x,A) > 0 for all t > 0, x ∈ S.

In particular, Z is λ-irreducible.

The proof is provided in the appendix. The following result from [2] (cf. Lemmas 3.1

and 4.1 therein) will be key in our analysis.
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Lemma 2.3.8. There is a function T : S → [0,∞) such that the following properties

hold.

(1) For some c1 ∈ (0,∞), |T (x)− T (y)| 6 c1|x− y| for all x, y ∈ S.

(2) For some c2, c3 ∈ (0,∞), c2|x| 6 T (x) 6 c3|x| for all x ∈ S.

(3) For some c4 ∈ (0,∞),

T (Z(t ∧ σA)) 6 [T (z)− (t ∧ σA)]+ + c4η
?
t , (2.53)

for all t > 0, Pz-a.s., for all z ∈ S, where A is as in Condition 2.3.5,

σA
.
= inf{t > 0 : Zt ∈ A},

and η?t
.
= sup06s6t |

∫ s
0
σ(Z(r))dBr|.

We now have the following result.

Lemma 2.3.9. The 1-skeleton chain {Z̆n
.
= Z(n)}n∈N0 satisfies the following drift

inequality: There are δ, β, b2 ∈ (0,∞) and a compact set C2 ⊆ S such that

IExV (Z̆1) 6 (1− β)V (x) + b21C2(x), x ∈ S, (2.54)

with V (x)
.
= eδT (x).

Proof. From Lemma 2.3.8 (3 ), for δ ∈ (0,∞)

V (x)−1IExV (Z̆1)1σA>1 6 IExe
δ[[T (x)−1]++c4η?

1−T (x)]1σA>1. (2.55)

Thus for x ∈ S1
.
= {x : T (x) > 1},

V (x)−1[IExe
δ[T (Z̆1)]1σA>1] 6 IExe

δc4η?
1−δ1σA>1 6 e−δeδ

2c5 , (2.56)
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where c5 ∈ (0,∞) is an appropriate constant independent of δ and x. Now fix δ small

enough so that e−δeδ
2c5 .

= (1− 2β) < 1. Then for x ∈ S1,

IExV (Z̆1)1σA>1 6 (1− 2β)V (x). (2.57)

From the strong Markov property of Z we see that for all x ∈ S,

IExV (Z̆1)1σA61 = IEx[IEZ(σA)V (Z1−σA
)1σA61].

Thus

IExV (Z̆1)1σA61 6 sup
y:y∈A

IEy sup
06t61

V (Zt) 6 sup
y:y∈A

IEy sup
06t61

eδc3|Zt|,

where the last inequality follows from Lemma 2.3.8 (2 ). Using the above inequality;

the Lipschitz property (2.47); and Condition 2.3.3 we now see that, for some K̃ ∈

(0,∞)

IExV (Z̆1)1σA61 6 K̃, ∀x ∈ S. (2.58)

Choose M ∈ (1,∞) such that βV (x) > K̃ for all x ∈ SM
.
= {x : T (x) > M}. Then

IExV (Z̆1)1σA61 6 βV (x), ∀x ∈ SM . (2.59)

Combining (2.57) and (2.59) we have

IExV (Z̆1) 6 (1− β)V (x), ∀x ∈ SM . (2.60)

Also for x ∈ C2
.
= ScM , we have from (2.55) and (2.58) that

IExV (Z̆1) = IExV (Z̆1)1σA61 + IExV (Z̆1)1σA>1

6 K̃ + eδT (x)IExe
δ4η?

1 6 K̃ + eδMeδ
2c5 .

= b2. (2.61)
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Combining (2.60) and (2.61) we have the result.

Corollary 2.3.10. The invariant measure π satisfies π(V ) < ∞. Furthermore, the

1-skeleton chain ({Z̆n}, Px) is V -uniformly ergodic, i.e., there exist ρ ∈ (0, 1) and

D ∈ (0,∞) such that for all x ∈ S,

||P n(x, ·)− π||V 6 DV (x)ρn.

Proof. The first part of the corollary is an immediate consequence of Theorem 14.0.1

of [45], while the second follows from Theorem 16.0.1 of the same reference.

We now summarize the stability results that follow as a corollary to the above

result.

Corollary 2.3.11. Let π be the unique invariant distribution for Z. Then the fol-

lowing hold.

1. Let δ ∈ (0,∞) be as in Lemma 2.3.9 and c2 as in Lemma 2.3.8. Then for all

c ∈ Rd with |c| 6 c2δ,

∫
S

ec·xπ(dx) <∞.

2. Let V be as in Lemma 2.3.9. Then, Z is V -uniformly ergodic; i.e., there exist

constants D ∈ (0,∞), ρ ∈ (0, 1) such that for all t ∈ R+ and x ∈ S,

||P t(x, ·)− π||V 6 V (x)Dρt.

3. Let g ∈ LV∞, where LV∞ is as defined below Theorem 2.2.32. Then there exists a

D̃ ∈ (0,∞) such that for all g ∈ LV∞, x ∈ S, and t > 0,

IExg(Zt) 6 D̃[1 + V (x)ρt],

58



where ρ ∈ (0,∞) is as in Corollary 2.3.10. In particular

IExe
c2|Zt| 6 D̃[1 + V (x)ρt],

where c2 is as in Lemma 2.3.8, and for every compact set K ⊆ S we have

supt>0 supx∈K IExe
c2|Zt| <∞.

4. There exists a t0 > 0 such that for all p > 0,

lim
|x|→∞

sup
t>t0

1

|x|p+1
IEx
(
|Z(t|x|)|p+1

)
= 0.

5. For each p > 0 there exists a constant κp ∈ (0,∞) such that

1

t

∫ t

0

IEx [|Z(s)|p] ds 6 κp

{
1

t
|x|p+1 + 1

}
, t > 0, x ∈ S.

6. Conclusions (i), (ii), (iii) of Theorem 2.2.36 hold.

7. Let F : S → R be a measurable function such that F 2(x) 6 V (x) for all x ∈ S.

Define γ2
F
.
= 2

∫
F̂ (x)F̄ (x)π(dx), where F̂ is the solution of Poisson equation

(2.46). Then, as n → ∞, ξn converges weakly to γFB in C[0, 1], where B is a

one dimensional standard Brownian motion.

Proof. 1 . This is immediate from Corollary 2.3.10 and Lemma 2.3.8 (2 ).

2 . Let |||P t − π|||V
.
= supx∈S

||P t(x,·)−π||V
V (x)

. From Corollary 2.3.10 we have that

||P n − π||V 6 Dρn,

for all n ∈ N. It is easy to check (for example, cf. Proposition 16.1.3 of [45])

59



that for t ∈ (0,∞)

|||P t − π|||V 6 |||P btc − π|||V sup
06r61

|||P r − π|||V

6 Dρbtc sup
06r61

sup
x∈S

IEx[V (Z(r))] + π(V )

V (x)
, (2.62)

where btc denotes the greatest integer less or equal to t. Using arguments similar

to those in Lemma 2.3.9 we see (cf. (2.61)) that for r ∈ [0, 1] and x ∈ S,

IEx[V (Z(r))] 6 K̃ + V (x)eδ
2c5 ,

where c5 is as in (2.56) and K̃ is as in (2.58). Substituting this estimate in

(2.62) we now have that

|||P t − π|||V 6 D̃ρt,

where D̃ = D
ρ
[π(V ) + K̃ + eδ

2c5 ]. This proves 2 .

3 − 7 . The proofs of 3 − 7 are now carried out exactly as in the case of deterministic

coefficients studied in Section 2.2.4 on noting that V introduced in Corollary

2.3.10 satisfies

ã1e
ã2|x| 6 V (x) 6 Ã1e

Ã2|x| for each x ∈ S,

for suitable ã1, ã2, Ã1, Ã2 ∈ (0,∞). The proof of 5 requires minor modifications

to the proof of Theorem 2.2.35. In particular, the analog of (2.43) is obtained

from (2.42) by applying (2.53) instead of Theorem 2.2.10) and in obtaining

(2.45) one uses (in addition to 4 ) the Lipschitz property (2.47), linear growth

condition (2.49), boundedness of σ (2.50), and Gronwall’s lemma. Details are

omitted.
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2.4 Appendix

Proof of Lemma 2.3.7. The proof is adapted from arguments in [3], [33] and [52].

We begin by observing that for all x ∈ S,

IEx

∫ ∞

0

1{Z(s)∈∂S}ds = 0. (2.63)

Although the result is proved in analogous way as Lemma 2.1 of [57], we provide a

quick proof for the sake of completeness. For i = 1, . . . , N , let ξi(t)
.
= Z(t) ·ni, where

ni is the inward unit normal to the face F i. In order to prove (2.63) it suffices to

show that for each i, ∫ t

0

1{ξi(s)=0}ds = 0, Px-a.s., (2.64)

for all t > 0 and x ∈ S. Note that ξi is a continuous {Ft}-semimartingale with

quadratic variation 〈ξi〉t =
∫ t

0
n′ia(Zs)nids, where a = σσ′. From Condition 2.3.4, we

have that ∫ t

0

1{ξi(s)=0}d〈ξi〉s > c

∫ t

0

1{ξi(s)=0}ds. (2.65)

From Corollary 1, p. 216 of [50], the left side of (2.65) equals
∫∞

0
Lat 1{0}(a)da = 0,

where {Lat }t>0 is the local time process (at level a) of the continuous semimartingale

ξi. (See page 211 [50] for definition of local times.) This proves (2.64) and hence

(2.63) follows.

We next show that

Px[Z(t) ∈ ∂S] = 0, ∀x ∈ S, t > 0. (2.66)

Suppose first that x ∈ S◦. Let η
.
= inf{t > 0 : Z(t) ∈ ∂S}. Without loss of

generality we can assume that on the filtered probability space (Ω,F , {Ft}t>0) we

have probability measures {Qx}x∈S such that under Qx, Z has the same law as the
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unconstrained diffusion:

X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s).

From uniform nondegeneracy of σ (Condition 2.3.4) we have that the measure mx
.
=

Qx ◦ (η, Z(η))−1 on [0,∞)×∂S is absolutely continuous with respect to the Lebesgue

measure. Using the strong Markov property of Z,

Px[Z(t) ∈ ∂S] = Px[η 6 t, Z(t) ∈ ∂S]

=

∫
[0,t]×∂S

Py[Z(t− u) ∈ ∂S]mx(du, dy) = 0,

where the last equality is an immediate consequence of (2.63).

Finally consider x ∈ ∂S. Then since (2.66) holds for x ∈ S◦ we have from Markov

property that for all s < t, Px[Z(t) ∈ ∂S] = Px[Z(t) ∈ ∂S, Z(s) ∈ ∂S]. Since s ∈ (0, t)

is arbitrary, we get Px[Z(t) ∈ ∂S] = Px[Z(t) ∈ ∂S, Z(q) ∈ ∂S, ∀q ∈ Q∩[0, t)], where

Q is the set of rational numbers. Sample path continuity of Z now gives

Px[Z(t) ∈ ∂S] = Px[Z(s) ∈ ∂S, ∀0 6 s 6 t].

However the last expression is 0 from (2.63). This proves (2.66).

To prove the result it suffices to show that for every x ∈ S and t > 0,

mt,x
.
= Px ◦ Z(t)−1 is mutually absolutely continuous with respect to the Lebesgue

measure λ on (S,B(S)). From nondegeneracy of σ (Condition 2.3.4) it follows that

for all y ∈ S, under Qy, (Zt, η) has a nowhere vanishing joint density on Rd× (0,∞),

for every t > 0. In particular for all y ∈ S and t > 0,

Qy(Zt ∈ A, η > t) = 0 ⇔ λ(A) = 0. (2.67)
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We now show that mt,x � λ. Let A ∈ B(S) be such that λ(A) = 0. In proving

mt,x(A) = 0 we can assume in view of (2.66) that A is contained in a compact subset

of S◦. Introduce sequences of stopping times as follows. Let σ0
.
= inf{t : Zt ∈ A},

and for n > 1, τn
.
= inf{t > σn−1 : Zt ∈ ∂S} and σn

.
= inf{t > τn : Zt ∈ A}. Then

mt,x(A) = Px[Zt ∈ A] =
∞∑
n=0

Px[Zt ∈ A, t ∈ [σn, τn+1)]

=
∞∑
n=0

∫
[0,t)×A

Qy[Zt−r ∈ A, η > t− r]dmn(r, y), (2.68)

where mn is the joint law of (σn, Zσn) and last equality is a consequence of the

strong Markov property of (Z, {Px}) and the observation that Px ◦ (Z·∧η, η)
−1 =

Qx ◦ (Z·∧η, η)
−1 for all x ∈ S◦. Now since λ(A) = 0, we have from (2.67) that the

right side of (2.68) is zero and thus we have shown that mt,x � λ. Finally, we show

that λ � mt,x. Let A ∈ B(S) and (t, x) ∈ (0,∞) × S be such that λ(A) > 0. Once

more, since λ(∂S) = 0, for purposes of establishing mt,x(A) > 0, we can assume

without loss of generality that A is contained in a compact subset of S◦. The desired

inequality is now an immediate consequence of (2.67) and (2.68).
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CHAPTER 3

Stationary distribution convergence for GJN in
heavy traffic

Jackson network is one of the most commonly studied stochastic networks in queue-

ing theory. For the setting where inter-arrival and service times are exponential, such

a network was first considered in [35]. Subsequently, there have been many works

that treat general arrival and service distributions. Such generalized Jackson net-

works (GJN) are the subject of this chapter. In a recent paper [28], the authors

have shown that under appropriate conditions the stationary distributions of suitably

scaled queue length processes for GJN converge to the stationary distribution of the

associated reflected Brownian motion (RBM) in the heavy traffic limit. One of the

key assumptions made in the analysis is that the inter-arrival and service times have

finite moment generating functions (m.g.f.) in the neighborhood of origin (the precise

assumption is a bit stronger and formulated in terms of residual service times and

arrival times at time zero). The proof is based on strong approximation techniques

and detailed uniform (in the scaling parameter) estimates on certain exponential mo-

ments of the state process. Finiteness of the m.g.f. of the primitive processes is

a critical ingredient in these estimates. Indeed the authors in [28] suggest that for

primitives with certain Pareto like distributions, steady state of RBM may be a poor

approximation for steady state of the underlying physical network.

In this chapter we provide an elementary proof of the main result of [28] without

imposing any exponential integrability conditions on the primitives of the network.



We make standard i.i.d. and second moment assumptions on inter-arrival and service

times; see Conditions 3.1.1-3.1.2 in Section 3.1.1. These assumptions are typically

used in heavy traffic analysis for invoking a functional central limit theorem [31].

In addition, similar to [28], we assume the heavy traffic condition (Condition 3.1.5)

and a natural stability condition (Condition 3.1.8). Our proof is based on uniform

stability estimates (see proof of Theorem 3.2.3, in particular (3.23)) on a family

of certain deterministic dynamical systems obtained from a fluid limit analysis of

the underlying queueing networks. We also make critical use of Lyapunov function

methods developed in [45] and [18].

This chapter is organized as follows. In Section 3.1.1 we recall the formulation

of a GJN and introduce basic assumptions on the inter-arrival and service time dis-

tributions. A description of the dynamics of the queue length process in terms of a

Skorohod map is presented in Section 3.1.1. Diffusion scaling and appropriate heavy

traffic conditions are introduced in Section 3.1.2. We also recall in this section the

basic heavy traffic limit result of [31]. Next, our main stability assumption (Condi-

tion 3.1.8) is introduced and the well known results of [18] and [33] on existence of

steady state distributions for GJN and RBM, respectively, are recalled. Section 3.2

presents our main result (Theorem 3.2.1) that establishes weak convergence of the

stationary queue length distributions for the diffusion scaled GJN networks to the

unique stationary distribution of the RBM.

Some of the notation used in this chapter is as follows. For x ∈ Rd the L1 norm

of x, i.e.,
∑d

i=1 |xi|, will be denoted by |x|. Let I = IK×K denote the identity matrix

for given K. For a metric space X, let IP(X) denote the collection of all probability

measures on X. The convergence in distribution of random variables (with values in

some Polish space) Φn to Φ will be denoted as Φn ⇒ Φ. With an abuse of notation

weak convergence of probability measures (on some Polish space) µn to µ will also be

denoted as µn ⇒ µ.
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3.1 Problem formulation

Let (Ω,F , IP ) be a probability space. Unless specified otherwise, all the random

variables considered in this chapter are assumed to be defined on this probability

space.

3.1.1 Generalized Jackson network

Network structure. We start by describing a network with K service stations,

where the ith station is denoted by Pi, i ∈ IK
.
= {1, . . . , K}. We assume that each

station has an infinite capacity buffer. We consider a single class network, that is, all

customers at a station are homogeneous in terms of service requirement and routing

decision. Arrivals of jobs can be from outside the system and/or from internal routing.

Upon completion of service at station Pi a customer is routed to other service stations

(or exits the system) according to a probabilistic routing matrix P. At every station

the jobs are assumed to be processed by First-In-First-Out discipline. We assume

that the network is open, that is, any customer entering the network eventually

leaves it. (See below (3.2) for a precise formulation.) This network was considered by

Jackson in [35] with exponential inter-arrival/service time distributions and is referred

to as Jackson network in this Markovian setting. We allow general inter-arrival and

service time distributions. Hereafter, this single class network will be referred to as a

generalized Jackson network (GJN).

Stochastic primitives and assumptions

For k ∈ N, let ηi(k), ∆i(k) denote the kth inter-arrival time and kth service time,

respectively, at station Pi, since time 0. (We only consider exogenous arrivals here.)

We assume:

Condition 3.1.1. For `, i ∈ IK, {η`(k) : k > 1}, {∆i(k) : k > 1} are i.i.d. sequences

with values in [0,∞].
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A station Pj is said to have nonnull exogenous arrivals if IP [ηj(1) <∞] > 0. Let

IKe denote the set of indices of stations with nonnull exogenous arrivals. Whenever

external arrivals are under discussion, we consider only the nonnull exogenous arrivals.

Our second assumption on the network is the following:

Condition 3.1.2. For ` ∈ IKe and i ∈ IK, IE[η`(1)
2] <∞ and IE[∆i(1)

2] <∞.

Denote for i ∈ IKe, αi
.
= 1/IE[ηi(1)] the external arrival rate into station Pi and

for i 6∈ IKe, we set αi = 0. Then α = (α1, . . . , αK)′ is the vector of external arrival

rates. Let mi
.
= IE[∆i(1)] denote the mean service time at station Pi and µi

.
= 1/mi

the service rate at Pi. We set µ = (µ1, . . . , µK)′ and M to be the diagonal matrix

with m1, . . . ,mK as diagonal entries. We assume µi and α` are finite for i ∈ IK and

` ∈ IKe.

For i ∈ IK, let Ui,0 and Vi,0 be random variables representing the residual inter-

arrival time and service time at time 0, at Pi. Here we adopt the convention Ui,0 = ∞

for i 6∈ IKe. Define for t > 0,

Ai(t)
.
= max{r > 1 : ηi(0) + ηi(1) + · · ·+ ηi(r − 1) 6 t}, i ∈ IK, (3.1)

where ηi(0)
.
= Ui,0 and we follow the convention that max over an empty set is 0. Thus

Ai(t) represents the total number of arrivals at Pi by time t. Denote by Dj(t) the

total number of service completions at Pj by time t and let Dji(t) be the number of

those jobs that are routed to Pi immediately upon completion at station Pj. Denote

by Qi(t) the queue length at time t, i.e., number of customers that are in queue or

currently in service at Pi. Then, for i ∈ IK,

Qi(t) = Qi(0) + Ai(t)−Di(t) +
K∑
j=1

Dji(t). (3.2)

The routing decisions at each station are to be of Bernoulli type. More precisely,
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we consider a K × K sub-stochastic matrix P = (pji)j,i∈IK , where the entry pji is

the probability of the event that upon completion at Pj the job is routed to station

Pi. The spectral radius of the transition matrix P is assumed to be strictly less than

unity, which ensures that all customers eventually leave the network. For i ∈ IK and

each k ∈ N, let φi(k) be the routing (column) vector for the kth customer at station

Pi upon finishing service. Then φi(k) is a K-dimensional “Bernoulli random vector”

with parameter (Pi)′, where Pi denotes the ith row of P. More precisely, φi(k) = ej

with probability pij and φi(k) = 0 with probability 1 −
∑K

j=1 pij. Here ej is the

K-dimensional jth coordinate vector. We assume

Condition 3.1.3. The random variables {ηi(k),∆i(k), φ
i(k) : i ∈ IK, k > 1} are inde-

pendent. Also, this collection of random variables is independent of {Ui,0, Vi,0, Qi(0) :

i ∈ IK}.

Define

Ri(k)
.
=

k∑
l=1

φi(l),

which measures aggregated routing decisions up to kth service completion at station

Pi. In particular, Ri
j(k) will denote the jth component of Ri(k), representing total

number of routings from Pi to Pj among the first k services completed.

Let Ei(t) be the total number of service completions at the station Pi in t units

of service time since time 0. Note that Ei in general will be different from Di due to

service idleness. I.e.,

Ei(t)
.
= max{r > 1 : ∆i(0) + ∆i(1) + · · ·+ ∆i(r − 1) 6 t}, (3.3)

where ∆i(0)
.
= Vi,0 and as before, max over an empty set is 0. Also let Ti(t) be the

cumulative amount of service time that the station Pi has spent on customers by time

t. Let Ii(t)
.
= t − Ti(t) denote the amount of time that the station Pi has been idle

by time t. We assume the network is nonidling, that is, a service station is idle only
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when there are no customers at that station requiring service. Then

Dj(t) = Ej(Tj(t)), Dji(t) = Rj
i (Ej(Tj(t))).

Henceforth, we will refer to α, µ and P as the parameters of the GJN. We define traffic

intensity vector ρ = (ρ1, . . . , ρK)′ of this GJN as ρi
.
= ([I−P′]−1α)i/µi, i ∈ IK. Initial

condition of the network is specified by random variables (Qi(0), Ui,0, Vi,0; i ∈ IK).

System dynamics and Skorohod mapping

The evolution of the state of the system satisfies the following equations: For i ∈ IK,

Qi(t) = Qi(0) + Ai(t)− Ei(Ti(t)) +
K∑
j=1

Rj
i (Ej(Tj(t))), (3.4)∫ ∞

0

Qi(t)dIi(t) = 0. (3.5)

We note that these processes satisfy,

Qi(t) > 0, Ti and Ii are nondecreasing and Ti(0) = Ii(0) = 0, i ∈ IK. (3.6)

Equations (3.4), (3.5) and (3.6) describe the system dynamics. Next consider the

“centered” process Q̃
.
= (Q̃i(t) : t > 0, i ∈ IK), where

Q̃i(t)
.
= Qi(0) + (Ai(t)− αit)− (Ei(Ti(t))− µiTi(t))

+
∑
j∈IK

(
Rj
i (Ej(Tj(t)))− pjiEj(Tj(t))

)
+
∑
j∈IK

pji
(
Ej(Tj(t))− µjTj(t)

)
+

(
αi +

∑
j∈IK

µjpji − µi

)
t. (3.7)

Denote Yi
.
= µiIi. Set Q

.
= (Q1, . . . , QK)′ and analogously define T , I , E , and Y .

The dynamics in (3.4) - (3.6) can now be represented in the following succinct vector
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forms:

Q(t) = Q̃(t) + [I− P′]Y (t), t ∈ R+, (3.8)∫ ∞

0

Qi(t)dYi(t) = 0, i ∈ IK, (3.9)

Q(t) > 0, Y is nondecreasing. (3.10)

The above dynamics can equivalently be stated in terms of a Skorohod map as we

describe below. Recall the definition of Skorohod map given in Chapter 2 (Definition

2.3.1). We consider here the case where N = d = K; S = RK
+ ; Si = {x ∈ RK

+ : xi >

0}, i ∈ IK and R = [I− P′].

Define the map Γ1 by Γ1(ψ)
.
= R−1[φ−ψ]. The following result (see [31, 23]) gives

the regularity of the Skorohod map defined by the data (S, [I− P′]).

Proposition 3.1.4. The Skorohod map is well defined on all of DS([0,∞),RK), that

is, D = DS([0,∞),RK), and the SM is Lipschitz continuous in the following sense.

There exists a constant L ∈ (1,∞) such that for all ψ1, ψ2 ∈ DS([0,∞),RK):

sup
06t<∞

{|Γ(ψ1)(t)− Γ(ψ2)(t)|+ |Γ1(ψ1)(t)− Γ1(ψ2)(t)|} < L sup
06t<∞

|ψ1(t)− ψ2(t)|.

(3.11)

Equivalent form of dynamics (3.8) - (3.10) in terms of the SM can now be written as

follows:

Q = Γ(Q̃), Q− Q̃ = [I− P′]Y. (3.12)

3.1.2 GJN in heavy traffic

Under appropriate heavy traffic conditions, the queue lengths of suitably scaled GJN

can be approximated by a diffusion with constant coefficients, constrained to take

values in S. More precisely, consider a sequence of GJN networks indexed by n ∈ N

with parameters (αn, µn,P). Conditions 3.1.1 through 3.1.3 are assumed to hold for
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each fixed n. Processes Qn, Q̃n, Y n,Mn, T n are defined in a manner analogous to

Section 3.1.1. In particular, (3.8) - (3.10) and (3.12) hold with (Q, Q̃, Y ) replaced by

(Qn, Q̃n, Y n). The heavy traffic assumption we make is as follows:

Condition 3.1.5.

αn = α− ṽn√
n
, ṽn → ṽ, µn = µ− β̃n√

n
, β̃n → β̃, [I− P′]

−1
α = µ.

Here α, µ, ṽn, β̃n, ṽ, β̃ ∈ RK . Also µn, µ are strictly positive and αn, α > 0 (αi, α
n
i

are strictly positive when i ∈ IKe and 0 when i 6∈ IKe). Note that the traffic intensity

vector ρn of the nth GJN can be written as

ρni = 1− ([I− P′]−1ṽn)i − β̃ni√
nµni

,

and as n→∞, ρn → 1.

To state the precise heavy traffic limit result, we begin with the following Marko-

vian state description for GJN. Recall the initial residual times, Ui,0, Vi,0 introduced

in Section 3.1.1. We denote the analogous quantities for the nth GJN by Un
i,0 and V n

i,0,

respectively. For t > 0, and i ∈ IK, let Un
i (t) and V n

i (t) denote the remaining time, at

instant t, before the next exogenous arrival and next service completion, respectively,

at station Pi, for the nth GJN. They can be explicitly written as follows:

Un
i (t) = Un

i (0) +

An
i (t)∑
k=1

ηni (k)− t, V n
i (t) = V n

i (0) +

Dn
i (t)∑
k=1

∆n
i (k)− T ni (t).

Define the state of the system at time t at Pi by

Xn(t)
.
= (Qn

i (t), U
n
` (t), V n

i (t) : i ∈ IK, ` ∈ IKe).

Let Xn = (Xn(t) : t > 0). Note that the process (Qn(t) : t > 0) alone is not

Markovian due to the residual inter-arrival/service times, but one can check that the

augmented process (Xn(t) : t > 0) is indeed a strong Markov process with state space
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X .
= RK

+ × R|IKe|
+ × RK

+ . See [13] for details. Define the diffusion scaled processes:

X̂n(t)
.
=
Xn(nt)√

n
, Ŵ n(t)

.
=
Q̃n(nt)√

n
, În(t)

.
=
In(nt)√

n
.

We next recall the definition of a semimartingale reflecting Brownian motion (SRBM)

from Section 2.2. We will consider an SRBM with more general initial distributions,

than Dirac probability measures, as introduced below.

Definition 3.1.6. Let {Ft} be a filtration on (Ω,F , IP ). For µ0 ∈ IP(RK
+ ), b ∈ RK

and a positive definite K ×K matrix Σ, an SRBM associated with the data

(S, b,Σ, [I−P′]) with initial distribution µ0, is a continuous {Ft}-adapted K-dimensional

process Z such that

(i) Z = Γ(Z(0) +B + bι), IP -a.s. Here ι : [0,∞) → [0,∞) is the identity map.

(ii) B is a K-dimensional {Ft}-Brownian motion with covariance Σ, mean 0 and

B(0) = 0.

(iii) Z(0) is distributed according to µ0.

We will write ξ(t)
.
= Z(t) − Z(0) − B(t) − bt, t > 0 and for brevity refer to Z as a

(b,Σ)-SRBM.

Recall from Chapter 2 that Z is a strong Markov process. The following heavy traffic

limit theorem follows upon slightly modifying the arguments in [51]. The proof is

omitted. Recall that Q̂n(t)
.
= Qn(nt)√

n
.

Theorem 3.1.7. Assume that the sequence of measures IP ◦ [X̂n(0)]−1 converges

weakly to some ν ∈ IP(X). Then the process (Q̂n, Ŵ n,M−1
n În) converges in distri-

bution in D([0,∞),RK)⊗3 to (Z,B + b, ξ) as in Definition 3.1.6 with µ0 given as

µ0(A)
.
= ν(A × R|IKe|

+ × RK
+ ), for A ∈ B(RK

+ ); b = [I − P′]β̃ − ṽ; and some positive

definite matrix Σ.
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We now introduce our main stability condition on the sequence of GJN that will

be used in this chapter.

Condition 3.1.8. There exists a θ ∈ RK, θ > 0, such that, for all n ∈ N,

Mn[β̃
n − [I− P′]

−1
ṽn] < −θ.

Note that Condition 3.1.8 is equivalent to the requirement that for some θ0 ∈ (0,∞),

sup
n

max
i∈K

√
n(ρni − 1) 6 −θ0 < 0. (3.13)

In particular we have that for each fixed n, maxi ρ
n
i < 1. This traffic intensity property

implies the stability of GJN for each fixed n as summarized in the following result

from [54]. (See also [43] and [18].)

Theorem 3.1.9. There exists a stationary probability distribution for the Markov

process X̂n.

We remark that, in general uniqueness of invariant measures for X̂n may not hold

unless additional conditions are imposed. In what follows, if the initial condition of

the Markov process X̂n is x for some x ∈ X, i.e., (Q̂n(0), Ûn(0), V̂ n(0)) ≡ (q, u, v)
.
= x,

we will write the process as X̂n
x .

Next we consider stability of the limiting diffusion model, i.e. an SRBM. The

following theorem from [33] gives a necessary and sufficient condition for positive

recurrence of a (b,Σ)-SRBM.

Theorem 3.1.10. The SRBM with data (b,Σ) has a unique stationary probability

distribution π if and only if [I− P′]−1b < 0.

Note that Condition 3.1.8 in particular implies that β̃ − [I− P′]−1ṽ < 0 and so from

Theorem 3.1.10, under Condition 3.1.8, a (b,Σ)-SRBM has a unique stationary prob-

ability distribution, where b and Σ are as in Theorem 3.1.7.
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3.2 Convergence of invariant measures

Conditions 3.1.1 through 3.1.8 will hold throughout this section and explicit reference

to them in statement of our results will be omitted.

Recall that we denote the unique invariant probability measure of the (b,Σ)-SRBM

on RK
+ by π. Also, recall that from Theorem 3.1.9, for each n ∈ N, the Markov

process X̂n admits a stationary probability measure πn. Denote by π0
n the marginal

distribution of πn on the first coordinate of X, i.e., π0
n(A) = πn(A × R|IKe|

+ × RK
+ ),

A ∈ B(RK
+ ). The following is the main result of this chapter.

Theorem 3.2.1. The sequence {π0
n} of probability measures on (RK

+ ,B(RK
+ )) con-

verges weakly to the unique invariant probability measure, π, of the (b,Σ)-SRBM,

where b and Σ are as in Theorem 3.1.7.

The main step in proving Theorem 3.2.1 is the following tightness result.

Theorem 3.2.2. The sequence {πn}n∈N is a tight family of probability measures on

X.

Theorem 3.2.1 follows from Theorem 3.2.2 using standard arguments. Indeed, from

Theorem 3.2.2 we have that every subsequence of {πn} admits a convergent subse-

quence. Denoting a typical limit point by π̃ we see from Theorem 3.1.7 that the

process (Q̂n, Ŵ n,M−1
n În), with X̂n(0) distributed as πn, converges in distribution to

(Z,B, ξ) as in Definition 3.1.6 with µ0 = π̃0, and b,Σ as in Theorem 3.1.7, where

π̃0(A) = π̃(A × R|IKe|
+ × RK

+ ), A ∈ B(RK
+ ). Stationarity of Q̂n implies that π̃0 is an

invariant measure for the (b,Σ)-SRBM. Theorem 3.1.10 then gives that π̃0 = π. Thus

Theorem 3.2.1 follows.

Rest of the section is devoted to the proof of Theorem 3.2.2. We begin with the

following moment stability estimate on X̂n
x that is uniform in n.
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Theorem 3.2.3. There exists a t0 ∈ (0,∞) such that for all t > t0,

lim
|x|→∞

sup
n

1

|x|2
IE
(
|X̂n

x (t|x|)|2
)

= 0.

Proof. We first show that for some t0 ∈ (0,∞) and all t > t0,

lim
|x|→∞

sup
n

1

|x|2
IE
(
|Q̂n

x(t|x|)|2
)

= 0. (3.14)

Fix x = (q, u, v) ∈ X. Recall that Qn is given by the representation (3.7) and (3.12)

with all processes there written with a superscript n. We will now write a slightly

modified dynamical description for Q̃n that makes explicit the dependence on initial

residual times (u, v). We set ui = ∞ for i 6∈ IKe. We suppress x from the notation

unless needed and rewrite Q̃n
i as

Q̃n
i (t) = q +

(
Ai(t)− αi(t−

√
nui)

+
)
−
(
Ei(Ti(t))− µi(Ti(t)−

√
nvi)

+
)

+
∑
j∈IK

pji

(
Ej(Tj(t))− µj(Tj(t)−

√
nvj)

+
)

+
∑
j∈IK

(
Rj
i (Ej(Tj(t)))− pjiEj(Tj(t))

)
+
[
αi(t−

√
nui)

+
+
∑
j∈IK

pjiµj(t−
√
nvj)

+ − µi(t−
√
nvi)

+
]

+
∑
j∈IK

pjiµj

(
(Tj(t)−

√
nvj)

+ − Tj(t)
)

+
∑
j∈IK

pjiµj

(
t− (t−

√
nvj)

+
)

−µi
[
(t− (t−

√
nvi)

+
)− (Ti(t)− (Ti(t)−

√
nvi)

+
)
]
.

Thus Q̂n
x(t) = Γ (q +Nn + bn) (t), where Nn(t) = Nn

1 (t) + Nn
2 (t) + Nn

3 (t) and for

i ∈ IK,

Nn
1,i(t)

.
=

1√
n

(
Ai(nt)− αni (nt−

√
nui)

+
)
, (3.15)
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Nn
2,i(t)

.
=

1√
n

[∑
j∈IK

pji

(
Ej(Tj(nt))− µnj (Tj(nt)−

√
nvj)

+
)

−
(
Ei(Ti(nt))− µni (Ti(nt)−

√
nvi)

+
) ]
,

Nn
3,i(t)

.
=

1√
n

∑
j∈IK

(
Rj
i (Ej(Tj(nt)))− pjiEj(Tj(nt))

)
,

bni (t)
.
=

√
n
[
αni (t− ui/

√
n)

+
+
∑
j∈IK

pjiµ
n
j (t− vj/

√
n)

+ − µni (t− vi/
√
n)

+
]

+
1√
n

[∑
j∈IK

pjiµ
n
j

(
(Tj(nt)−

√
nvj)

+ − Tj(nt)
)

+
∑
j∈IK

pjiµ
n
j

(
nt− (nt−

√
nvj)

+
)

−µni
[
(nt− (nt−

√
nvi)

+
)− (Ti(nt)− (Ti(nt)−

√
nvi)

+
)
]]
.

Define

Zn
x (t)

.
= Γ(q + bnι)(t), t > 0, (3.16)

where ι : [0,∞) → [0,∞) is the identity map. Using the Lipschitz property of the

Skorohod map (see Proposition 3.1.4), we have

|Q̂n
x(t)− Zn

x (t)| 6 L sup
06s6t

|Nn(s)|. (3.17)

Let t̄
.
= |x| and set z̄n

.
= Zn

x (t̄). Observing that t̄ > maxi∈IK{ ui√
n
, vi√

n
} and Ti(t) = t

for t ∈ [0,
√
nvi], i ∈ IK, n > 1, we get

Zn
x (t) = Γ(z̄n + b̄nι)(t− t̄), t > t̄, (3.18)

and

b̄n
.
=
√
n[αn − (I− P′)µn] =

√
n[(I− P′)β̃n − ṽn].
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Next note that

|z̄n| = |Γ(q + bnι)(|x|)| 6 L
[
|q|+ sup

06t6|x|
|bn(t)|

]
. (3.19)

Define c0
.
= supi,n{αni + 3(

∑
j∈IK pjiµ

n
j + µni )}. If t < |x|√

n
we see that |bni (t)| 6 c0|x|

for all n > 1 and i ∈ IK. On the other hand, if t > |x|√
n

|bn(t)| 6
∣∣∣√n[αn − (I− P′)µn]

∣∣∣t+Kc0|x|.

Combining the above observation with (3.19) and the heavy traffic condition (i.e.,

Condition 3.1.5), we see that one can find L0 ∈ (0,∞) such that

|z̄n| 6 L0|x|. (3.20)

Next recall the cone C introduced in Chapter 2 (see (2.51)). In notation of this

chapter, C = {v ∈ RK : [I−P′]−1v 6 0}, we see that from Conditions 3.1.5-3.1.8 that

there exists a δ > 0 such that

inf
n

dist(b̄n, ∂C) > δ. (3.21)

Recall the definition of Cδ in (2.52). For q0 ∈ RK
+ , let A(q0) be the collection of all

trajectories ψ : [0,∞) → RK
+ of the form

ψ(t)
.
= Γ (q0 + vι) (t), t > 0, (3.22)

where v ranges over all of Cδ. Define the “hitting time to the origin” function

T (q0)
.
= sup

ψ∈A(q0)

inf{t ∈ [0,∞) : ψ(t) = 0}.
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Lemma 3.1 of [2] shows that

T (q0) 6
4L2

δ
|q0|, and for all ψ ∈ A(q0), ψ(t) = 0 for all t > T (q0). (3.23)

Combining this with (3.18), (3.21) and (3.20) we now have that Zn
x (t) = 0, for all

t > L|x|, where L
.
= [1 + 4L2

δ
L0]. Using this in (3.17) we now see that

|Q̂n
x(t|x|)| 6 L sup

06s6t|x|
|Nn(s)|, (3.24)

for all t > L and for all initial conditions x. Next we obtain an estimate on second

moment of the right side of (3.24). Define Ani,0 and En
i,0 by (3.1), (3.3) with Un

i,0 and

V n
i,0 there replaced by 0. Note that

Ani (t) = Ani,0((t−
√
nui)

+
) + 1[

√
nui,∞)(t), En

i (t) = En
i,0((t−

√
nvi)

+
) + 1[

√
nvi,∞)(t).

(3.25)

From standard estimates for renewal processes (see e.g., [9] Lemma 3.5), we have that

for some κ0 ∈ (0,∞), and all n > 1

1

n
IE sup

06s6t

(
[Ani,0(ns)− nαni s]

2 + [En
i,0(ns)− nµni s]

2

+[Rj
i (E

n
j,0(ns))− pjiE

n
j,0(ns)]

2
)

6 κ0(1 + t),

for all i ∈ IKe, j ∈ IK. Using these estimates in (3.15), recalling (3.25), and noting

that for all t > 0, [Ti(nt)−
√
nvi]

+ 6 nt, we obtain for some κ1 ∈ (0,∞),

IE sup
06s6t

[
|Nn

1,i(s)|
2 + |Nn

2,i(s)|
2 + |Nn

3,i(s)|
2] 6 κ1(1 + t). (3.26)

Applying this estimate in (3.24) we now have that for all t > L, x ∈ X and for some
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κ2 ∈ (0,∞),

IE|Q̂n
x(t|x|)|2 6 κ2L

2(1 + t|x|). (3.27)

Choosing t0 = L the result (3.14) now follows.

It remains to show that for all t > t0

lim
|x|→∞

sup
n

1

|x|2
IE
(
|Ûn

x (t|x|)|2
)

= 0, lim
|x|→∞

sup
n

1

|x|2
IE
(
|V̂ n
x (t|x|)|2

)
= 0. (3.28)

Recall V̂ n
i (t|x|) = 1√

n
V n
i (nt|x|) and thus

|V̂ n
i (t|x|)|2 6

1

n

∣∣∆n
i (En

i (T ni (nt|x|)))
∣∣2 6

1

n

En
i (Tn

i (nt|x|))∑
k=1

|∆n
i (k)|2 6

1

n

En
i,0(nt|x|)∑
k=1

|∆n
i (k)|2,

where the second inequality above uses the fact that En
i (T ni (nt|x|)) > 1 since

V n
i,0 =

√
nvi 6 nt0|x| and the last inequality follows on T ni (t) 6 t for all t > 0. Using

Wald’s identity we have for some κ3 ∈ (0,∞), and all x ∈ X, t > t0

IE
(
|V̂ n
i (t|x|)|2

)
6

1

n
IE
(
En
i,0(nt|x|) + 1

)
IE[∆n

i (1)]
2

6
κ3(1 + nt|x|)

n
6 κ3(1 + t|x|). (3.29)

This proves the second statement in (3.28). The first statement is shown similarly.

For δ̄ ∈ (0,∞), define the return time to a compact set C ⊆ X by τnC(δ̄)
.
= inf{t >

δ̄ : X̂n(t) ∈ C}. The proof of the following result is adapted from that of Proposition

5.3 of [18].

Theorem 3.2.4. For some constants c, δ̄ ∈ (0,∞), and a compact set C ⊆ X,

sup
n
IE

[∫ τn
C(δ̄)

0

(1 + |X̂n
x (t)|)dt

]
6 c(1 + |x|2), x ∈ X. (3.30)
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Proof of this Theorem 3.2.4 follows as a special case of Proposition 4.3.3. Proof of

the latter result is given in the Appendix of Chapter 4.

Theorem 3.2.5. Let f : X → R+, and define for δ̄ ∈ (0,∞), and a compact set

C ⊆ X

Vn(x)
.
= IE

[∫ τn
C(δ̄)

0

f(X̂n
x (t))dt

]
, x ∈ X.

If supn Vn is everywhere finite and uniformly bounded on C, then there exists κ̄ ∈

(0,∞) such that for all n ∈ N, t > 0, x ∈ X

1

t
IE[Vn(X̂

n
x (t))] +

1

t

∫ t

0

IE[f(X̂n
x (s))]ds 6

1

t
Vn(x) + κ̄. (3.31)

Theorem 3.2.5 is a special case of a more general result in Chapter 4, namely Theorem

4.3.2: Proof of Theorem 4.3.2 is given in the Appendix of Chapter 4.

Proof of Theorem 3.2.2. We apply Theorem 3.2.5 with f(x)
.
= 1 + |x| for x ∈ X

and δ̄, C as in Theorem 3.2.4. To prove the result it suffices to show that for all n ∈ N,

〈πn, f〉
.
=
∫

X f(x)πn(dx) 6 κ̄. Since πn is an invariant measure, for any nonnegative,

real measurable function Φ on X,

∫
X
IE[Φ(X̂n

x (t))]πn(dx) = 〈πn,Φ〉. (3.32)

Fix k ∈ N and let V k
n (x)

.
= Vn(x) ∧ k. Let

Ψk
n(x)

.
=

1

t
V k
n (x)− 1

t
IE[V k

n (X̂n
x (t))].

From (3.32), we have that
∫

X Ψk
n(x)πn(dx) = 0. Let Ψn(x)

.
= 1

t
Vn(x)− 1

t
IE[Vn(X̂

n
x (t))].

Monotone convergence theorem yields that Ψk
n(x) → Ψn(x) as k →∞. Next we will
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show that Ψk
n(x) is bounded from below for all x ∈ X. If Vn(x) 6 k,

Ψk
n(x) =

1

t
V k
n (x)− 1

t
IE[V k

n (X̂n
x (t))] >

1

t
Vn(x)−

1

t
IE[Vn(X̂

n
x (t))] > −κ̄,

where the last inequality follows from (3.31). On the other hand, if Vn(x) > k

Ψk
n(x) =

1

t
k − 1

t
IE[V k

n (X̂n
x (t))] > 0, (3.33)

where the second inequality follows on noting that V k
n 6 k. Hence Ψk

n(x) > −κ̄ for

all x ∈ X. By an application of Fatou’s Lemma we conclude that

∫
X

Ψn(x)πn(dx) 6 lim inf
k→∞

∫
X

Ψk
n(x)πn(dx) = 0. (3.34)

From (3.31), Ψn(x) > 1
t

∫ t
0
IE[f(X̂n

x (s))]ds− κ̄. Combining this with (3.34) we have

0 >
∫

X
Ψn(x)πn(dx) >

1

t

∫ t

0

∫
X
IE[f(X̂n

x (s))]πn(dx)ds− κ̄.

Using (3.32) once more we now have that 〈πn, f〉 6 κ̄. This completes the proof.
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CHAPTER 4

Ergodic rate control problems for single class
queueing networks

The study of control of stochastic processing queueing systems is of great current in-

terest (cf. [37, 4, 1, 38, 29, 49, 32, 11, 40]). Barring special cases, control problems for

stochastic networks are too complex to be analyzed directly and thus one is interested

in approximations, that are more amenable to analysis. In this respect, controlled

constrained diffusion processes which arise as scaling limits of critically loaded queue-

ing networks are extremely useful. Since there are well studied numerical schemes

for computing near optimal controls for controlled diffusions, it is of great interest to

establish that under appropriate conditions, value functions and near optimal control

for limiting diffusion control problem are good approximations for analogous quanti-

ties for physical networks that are in heavy traffic. The goal of this chapter is to study

such questions for an important class of rate control problems for queueing networks.

Indeed, one of the primary means of control of flow in a network is by adjusting

arrival or processing rates. Network performance under such control actions, partic-

ularly over long periods of time, is of interest. A natural mathematical formulation

of such control issues is given in terms of an optimal stochastic control problem for

stochastic networks with an ergodic cost criterion. A formal heavy traffic approxima-

tion of such a control problem leads to a class of drift control problems for reflected

diffusions in positive orthants with an ergodic cost criterion.

The main result of the chapter is Theorem 4.1.5 which shows that the value



function (i.e., optimum value of the cost) of the rate control problem for the network

converges, under a suitable heavy traffic scaling, to that of the limit ergodic control

problem for reflected diffusions. Furthermore, we show in this theorem that near

optimal policies for the network control problem can be well approximated by those

in the limit diffusion control problem when the network is close to heavy traffic. Thus

our results provide rigorous mathematical justification for the formal (controlled)

diffusion approximation and suggest natural approaches for using the limit model

in obtaining near (asymptotically) optimal rate control algorithms for a family of

stochastic processing networks in heavy traffic.

Estimates that are developed for analyzing the controlled model can be used as

well for studying the setting where the arrival and service rates are uncontrolled but

depend on the current value of the state process. For this uncontrolled state dependent

rate setting we show in Theorem 4.1.6 a result analogous to one established in Chapter

3 for generalized Jackson network with constant rates. More precisely, from result of

[59] it is known that under appropriate heavy traffic conditions suitably scaled queue

length processes, obtained from such network with state dependent rates, converge

weakly to a reflecting diffusion with drift and diffusion coefficients that are state

dependent. Also, sufficient conditions for existence of unique invariant distributions

for such reflecting diffusions have been obtained in [2]. In Theorem 4.1.6, we show

that under natural stability and heavy traffic conditions, the steady states of the

sequence of suitably scaled queue length processes converge to the unique invariant

distribution of the limit reflecting diffusion.

This chapter is organized as follows. We begin, in Section 4.1, with problem for-

mulation and assumptions. We consider (generalized) Jackson type networks under

fixed routing in which arrival and service rates are state (i.e., queue length) depen-

dent. Additionally, we allow dynamic service rate control in the system (see (4.1)).

We introduce the set of admissible service controls, the ergodic cost criterion of in-
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terest and definition of value function for the queueing system. We then describe the

formal controlled diffusion approximation to this queueing system that arises in the

heavy traffic limit. We introduce an analogous cost criterion and value function for

this limit model. Main results of the chapter are as follows. In Theorem 4.1.2 we

show that the value function of the diffusion control problem is a lower bound for

the asymptotic value function for the physical network control problem, in the heavy

traffic limit. For the upper bound, we restrict to a setting where the diffusion coeffi-

cient in the limit model is constant. The main reason for this restrictive condition is

that a key ingredient to our proof of the upper bound is Theorem 4.1.4, which we are

currently only able to establish for the setting of constant diffusion coefficients. This

theorem says that for every ε > 0, there exists a continuous ε-optimal Markov control.

The proof of this result relies on certain transition probability density estimates for

reflected diffusions which are only known to us for the setting of a constant diffu-

sion coefficient. We use Theorem 4.1.4 to show in Theorem 4.1.5 that an ε-optimal

continuous Markov control for the limit model can be used to construct a sequence

of admissible rate controls for physical networks and the costs associated with this

sequence of controls converge to that for the ε-optimal Markov control in the limit

control problem. As an immediate consequence of this result we get the main result

of the chapter, namely Theorem 4.1.5, showing the convergence of value functions of

physical network to that of the limit diffusion control problem. Proofs of Theorems

4.1.2 and 4.1.3 are given in Section 4.4 while the proof of Theorem 4.1.4 is in Section

4.5. The related proofs of convergence of invariant distributions in the uncontrolled

setting is treated in Section 4.3. Section 4.2 presents some key stability and tightness

results that are needed in other proofs.

Some of the notation used in this chapter is as follows. For a metric space X, let

IP(X) denote the collection of all probability measures on X. When sup06s6t |fn(s)−

f(s)| → 0 as n → ∞, for all t > 0, we say that fn → f uniformly on compact sets.
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For real continuous bounded function f on X, define ||f ||∞
.
= supx∈X |f(x)|. We will

denote generic constants by c1, c2, . . ., and their values may change from one proof to

another.

4.1 Problem formulation and main results

Network structure. The network description is very similar to that in Chapter

3, however, for the sake of keeping the presentation self contained, we repeat this

description below. Consider a sequence of networks indexed by n. Each network has

a similar structure, in particular there are K service stations, with the ith station

denoted by Pi, i ∈ IK
.
= {1, . . . , K}. We assume that each station has an infinite

capacity buffer. Arrivals of jobs can be from outside the system and/or from internal

routing. Upon completion of service at station Pi a customer is routed to other

service stations (or exits the system) according to a probabilistic routing matrix

P = (pij)i,j∈IK . At every station the jobs are assumed to be processed by First-In-

First-Out discipline. We assume that the network is open, that is, any customer

entering the network eventually leaves it. More precisely, we require that spectral

radius of P is strictly less than 1 and pii = 0 for all i ∈ IK. We allow arrival and service

rates to be time varying random processes. They may be described as deterministic

functions of the state processes or, more generally, given as nonanticipative control

processes.

A more precise description of the model is as follows. Let λni , µ
n
i , n > 1, i ∈ IK

be measurable functions from RK
+ → R+. These functions will correspond to state

dependent arrival and service rates. External arrivals are assumed to occur any for

i ∈ IKe, where IKe is a subset of IK. Thus λni = 0 for all n > 1, x ∈ S
.
= RK

+ and

i ∈ IK\IKe. Let R
.
= [I− P′] and set an(x)

.
= λn(x)− Rµn(x). We define ân

.
= 1√

n
an.

The following are our standing assumptions.
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Assumption 4.1.1.

(i) For each n ∈ N, λn, µn ∈ C(S).

(ii) For some κ1 ∈ (0,∞), |λn(x)| 6 nκ1, |µn(x)| 6 nκ1 for all n > 1 and x ∈ S.

(iii) There exists a constant κ2 ∈ (0,∞) such that supx |ân(x)| 6 κ2.

(iv) There exists a ∈ Cb(S)such that an(
√
nx)√
n

→ a(x) uniformly on compact sets as

n→∞.

(v) There exist Lipschitz functions λ, µ ∈ Cb(RK), such that λn(
√
nx)

n
→ λ(x),

µn(
√
nx)

n
→ µ(x) uniformly on compact sets as n→∞. Furthermore, λ = Rµ.

(vi) For each i ∈ IKc
e , there exists j ∈ IKe such that pji > 0.

(vii) infi∈IKe infx∈S infn
λn

i (
√
nx)

n
> 0, infi∈IK infx∈S infn

µn
i (
√
nx)

n
> 0.

We now introduce the set of controls: Fix δ0,M ∈ (0,∞). Let

ᾱ
.
= sup

x∈S,i∈IK
[R−1a(x)]i.

Define Λ
.
= {u ∈ RK : u > [δ0 + ᾱ]1, |u| 6 M}. Let Λn

.
= {u ∈ RK : u√

n
∈ Λ}. A

control for the nth network will be a stochastic process with values in Λn as we now

describe. Let (Ω,F , IP, {Ft}t>0) be a filtered probability space on which are given

unit rate independent Poisson processes, Ni, Nij, i ∈ IK, j ∈ IK ∪{0}, which are {Ft}

adapted and are such that (Ni(t)−Ni(s), Nij(t)−Nij(s); i, j) is independent of {Fs}

for 0 6 s < t <∞. For i ∈ IK, Ni will be used to define the stream of jobs entering

the ith buffer and for i, j ∈ IK, Nij will be used to represent the flow of jobs to buffer

j from buffer i. For i ∈ IK and j = 0, Nij will be associated with jobs that leave the

system after service at station Pi. Precise state evolution is described below.

Let Un = (Un
1 , U

n
2 , . . . , U

n
K)′ be a Λn valued {Ft}-progressively measurable process.

Un will represent the service rate control in the system. We will refer to such a process
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as an admissible control and denote by An the collection of all admissible controls.

Under the control Un, the state of the system Qn = (Qn
1 , Q

n
2 , . . . , Q

n
K)′ is given by the

following equation.

Qn
i (t) = Qn

i (0) +Ni

(∫ t

0

λni (Q
n(s))ds

)
+

K∑
j=1

Nji

(
pji

∫ t

0

1{Qn
j (s)>0}[µ

n
j (Q

n(s)) + Un
j (s)]ds

)
(4.1)

−
K∑
j=0

Nij

(
pij

∫ t

0

1{Qn
i (s)>0}[µ

n
i (Q

n(s)) + Un
i (s)]ds

)
, i ∈ IK,

where Qn represents the queue length vector process obtained under the (rate) control

process Un. Next define martingales

Mn
i0(t)

.
= Ni

(∫ t

0

λni (Q
n(s))ds

)
−
∫ t

0

λni (Q
n(s))ds,

Mn
ij(t)

.
= Nij

(
pij

∫ t

0

[µni (Q
n(s)) + Un

i (s)]ds

)
− pij

∫ t

0

[µni (Q
n(s)) + Un

i (s)]ds.

Letting Mn
i
.
= Mn

i0 +
∑K

j=1M
n
ji −

∑K
j=0M

n
ij, we can rewrite the evolution (4.1) as

Qn
i (t) = Qn

i (0) +

∫ t

0

[
λni (Q

n(s)) +
K∑
j=1

pjiµ
n
j (Q

n(s))− µni (Q
n(s))

]
ds (4.2)

+

∫ t

0

[
K∑
j=1

pjiUj(s)− Ui(s)

]
ds+Mn

i (t) +RY n
i (t),

where

Y n
i (t) =

K∑
j=0

Nij

(
pij

∫ t

0

1{Qn
i (s)=0}[µ

n
i (Q

n(s)) + Un
i (s)]ds

)
, i ∈ IK.

Note that Y n
i is an RCLL nondecreasing {Ft} adapted process and Y n

i increases only

when Qn
i (t) = 0, i.e.,

∫∞
0

1{Qn
i (t) 6=0}dY

n
i (t) = 0 a.s.
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Thus the state evolution can be described succinctly by the following equation:

Qn(t) = Qn(0) +

∫ t

0

an(Qn(s))ds−
∫ t

0

RUn(s)ds+Mn(t) +RY n(t). (4.3)

The above dynamics can equivalently be described in terms of a Skorohod map as

described below. Recall the definition of Skorohod problem and Skorohod map given

in Chapter 2 (Definition 2.3.1). In the current chapter N = d = K, S = RK
+ ,

Si = {x ∈ RK
+ : xi > 0}. Also recall Proposition 3.1.4 from Chapter 3 that gives the

well-posedness of the Skorohod problem and regularity of the Skorohod map for the

setting where R = [I− P′] with P as in the current chapter.

The dynamics in (4.3) can be equivalently described in terms of the SM as follows:

Qn = Γ(Q̃n), Qn − Q̃n = RY n, (4.4)

where Q̃n(t) = Q̃n(0) +
∫ t

0
an(Qn(s))ds−

∫ t
0
RUn(s)ds+Mn(t).

For asymptotic analysis we will consider processes under the diffusion scaling.

Given a stochastic process Xn, we will denote by X̂n the process defined as

X̂n(t)
.
= Xn(t)/

√
n, t > 0 and refer to it as the diffusion scaled form of Xn. With

this notation, we have from (4.4) that

Q̂n(t) = Γ

(
Q̂n(0) +

∫ ·

0

ân(
√
nQ̂n(s))ds−

∫ ·

0

RÛn(s)ds+ M̂n(·)
)

(t). (4.5)

When Q̂n(0) ≡ x, we will sometimes write the corresponding scaled state process as

Q̂n
x.

In this chapter we are concerned with an ergodic cost problem associated with

the sequence of controlled queueing systems {Qn}n>1. Let k(·) be a continuous and

bounded function from S to R and c ∈ RK be fixed. Define for each n ∈ N, x ∈ S,
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T ∈ [0,∞), the ‘average cost’ on time interval [0, T ] for the control Un ∈ An by

JnT (Un, x)
.
=

1

T
IE

∫ T

0

[
k(Q̂n

x(s)) + c · Ûn(s)
]
ds.

Asymptotic average cost is defined as Jn(Un, x)
.
= lim supT→∞ JnT (Un, x). Define the

value function V n for the nth queueing system as

V n(x)
.
= inf

Un∈An

Jn(Un, x). (4.6)

The main goal of this chapter is to show that the value function and near optimal

control policies in the nth network, for large n, can be approximated by the same

quantities in an associated diffusion control problem. Towards this goal, we now

introduce the associated diffusion control problem.

Define for x ∈ S, a [K × [K +K(K + 1)]]-dimensional matrix Σ(x) as

Σ(x)
.
= (A(x), B1(x), . . . , BK(x)), (4.7)

where A and Bi, i ∈ IK are K ×K and K × (K + 1) matrices given as follows. For

x = (x1, . . . , xK)′,

A(x) = diag(
√
λ1(x), . . . ,

√
λK(x)), Bi(x) = (B0

i (x), B
1
i (x), . . . , B

K
i (x))′,

where B0
i (x)

.
= −

√
µi(x)1i and for j ∈ IK, j 6= i, Bj

i (x)
.
= 1ij

√
pijµi(x). Here 1i

is a K-dimensional vector with 1 at the ith coordinate and 0 elsewhere; 1ij is a K-

dimensional vector with -1 at the ith; 1 at the jth coordinates; and zeroes elsewhere.

Finally, Bi
i(x)

.
= 0. It is easy to see (cf. proof of Proposition 1 in [59]) that due to

Assumption 4.1.1 (vi) and (vii), Σ(x)Σ(x)′ is uniformly nondegenerate. I.e. there

exists a κ ∈ (0,∞) such that for all v ∈ RK , v′(Σ(x)Σ(x)′)v > κv′v for all x ∈

89



S. One can then find a Lipschitz K × K matrix valued function σ(x) such that

Σ(x)Σ(x)′ = σ(x)σ(x)′. (See Theorem 5.2.2 in [56].) Note that σσ′ is also uniformly

nondegenerate.

Let B be a K-dimensional standard Brownian motion given on some filtered prob-

ability space (Ω̂, F̂ , ÎP , {F̂t}). We will denote the set (Ω̂, F̂ , ÎP , {F̂t}, B) by Ξ and refer

to it as a system. Recall Λ
.
= {u ∈ RK : u > [δ0 + ᾱ]1, |u| 6 M} and denote by A(Ξ)

the collection of all {F̂t} adapted Λ-valued processes. We will refer to such processes

as admissible controls (for the diffusion control problem). For U ∈ A(Ξ) and x ∈ S,

let Z ≡ Zx,U be the unique solution of

Z(t) = Γ

(
x+

∫ ·

0

a(Zs)ds−
∫ ·

0

RU(s)ds+

∫ ·

0

σ(Zs)dBs

)
(t). (4.8)

Ergodic cost for this limit diffusion model is given as follows.

J(U, x)
.
= lim sup

T→∞

1

T
IE

∫ T

0

[k(Z(s)) + c · U(s)]ds.

The value is defined as

V
.
= inf

Ξ
inf

U∈A(Ξ)
J(U, x). (4.9)

From Theorem 3.4 of [7] it follows that the infimum on the right side of (4.9) does

not depend on x ∈ S.

Our main results can now be stated as follows.

Theorem 4.1.2. For every bounded sequence {xn} ⊆ S, lim infn Vn(xn) > V .

For b : S → Λ, let Ub be an admissible control for the limit diffusion model, given on

some system Ξ as:

Ub(t) = b(Zt), Zt = Γ

(
x−

∫ ·

0

[Rb(Zs)− a(Zs)]ds+

∫ ·

0

σ(Zs)dBs

)
(t), t > 0.
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Define Un
b ∈ An as Un

b (s)
.
=
√
nb(Q̂n

x(s)), where Q̂n
x is given by (4.5) with Un on the

right side of (4.5) replaced by Un
b . Note that we have suppressed the dependence of

Un
b and Ub on x in the notation.

Theorem 4.1.3. Let b̃ : S → Λ be continuous. Let {xn} ⊆ S be such that xn → x as

n→∞. Then Jn(Un
b̃
, xn) → J(Ub̃, x) as n→∞.

Theorem 4.1.4. Suppose that for all x ∈ S, σ(x) ≡ σ. For each ε > 0, there exists

a continuous b : S → Λ such that for all x ∈ S, J(Ub, x) 6 V + ε.

As an immediate consequence of Theorems 4.1.2, 4.1.3 and 4.1.4 we get the following

main result of the chapter.

Theorem 4.1.5. Suppose that for all x ∈ S, σ(x) ≡ σ. Let {xn} ⊆ S be a bounded

sequence. Then as n → ∞, Vn(xn) → V . Also, for every ε > 0, there exists a

continuous b : S → Λ such that

0 6 lim sup
n→∞

[Jn(Un
b , xn)− Vn(xn)] 6 ε.

Proofs of Theorems 4.1.2 and 4.1.3 are given in Section 4.4, while Theorem 4.1.4

is proved in Section 4.5. As another consequence of estimates used in the proofs of

Theorems 4.1.2-4.1.4, we obtain the following result on convergence of steady states

of the Markov process Q̂n in the uncontrolled setting (i.e., when Ûn on right side of

(4.5) equals zero).

Theorem 4.1.6. Suppose that 0 ∈ Λn. Let Q̂n be given by (4.5) with Ûn ≡ 0. Then

the Markov process Q̂n admits a stationary probability distribution πn. Furthermore,

Markov process Z given by (4.8) with U ≡ 0 admits a unique stationary probability

distribution π. Finally, if πn is an arbitrary stationary law for Q̂n, n > 1 then πn ⇒ π

as n→∞.

Proof of Theorem 4.1.6 is given in Section 4.3.
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4.2 Some stability results

The following stability results are key ingredients in the proofs.

Proposition 4.2.1. Let Q̂n
x be defined by (4.5) with Q̂n

x(0) ≡ x ∈ S and Un ∈ An.

Then there exists a t0 ∈ (0,∞) such that for all t > t0,

lim
|x|→∞

sup
n

sup
Un∈An

1

|x|2
IE
(
|Q̂n

x(t|x|)|2
)

= 0.

Proof. Fix x ∈ S and Un ∈ An. Write (4.5) as, Q̂n
x(t) ≡ Γ

(
x+ rn(·) + M̂n(·)

)
(t),

where

rn(t)
.
=

∫ t

0

ân(
√
nQ̂n(s))ds−

∫ t

0

RÛn(s)ds ≡
∫ t

0

b̄n(s)ds.

Define Zn
x (t)

.
= Γ(x + rn(·))(t), t > 0. Using the Lipschitz property of the Skorohod

map (Proposition 3.1.4), we have

|Q̂n
x(t)− Zn

x (t)| 6 L sup
06s6t

|M̂n(s)|. (4.10)

Recall the cone C .
= {v ∈ RK : R−1v 6 0}, introduced in Section 2.3. From below

Assumption 4.1.1, we see that there exists a δ ∈ (0,∞) satisfying

inf
n

inf
s

dist(b̄n(s), ∂C) > δ. (4.11)

Thus for all n > 1 and s > 0, b̄n(s) ∈ Cδ
.
= {v ∈ C : dist(v, ∂C) > δ}.

Combining this observation with (3.23) we now have that Zn
x (t) = 0, for all t > D̄|x|,

where D̄
.
= 4L2

δ
. Using this in (4.10) we now see that

|Q̂n
x(t|x|)| 6 L sup

06s6t|x|
|M̂n(s)|, (4.12)

for all t > D̄ and for all initial conditions x.

92



Next we obtain an estimate on the second moment of the right side of (4.12). Noting

that M̂n
i is an {Ft}t>0 square integrable martingale, one gets using Doob’s inequality

that

IE sup
06s6t

|M̂n
i (s)|2 6 4IE|M̂n

i (t)|2

6
c1
n
IE

[∫ t

0

[
λni (Q

n(s)) +
K∑
j=1

µnj (Q
n(s)) + Un

i (s)

]
ds

]
6 c2(1 + t), (4.13)

where the last inequality follows from Assumption 4.1.1 (ii). (Here c1, c2 ∈ (0,∞) are

independent of n.) Applying this estimate in (4.12) we now have that for all t > D̄

and x ∈ S,

IE|Q̂n
x(t|x|)|2 6 c3(1 + t|x|). (4.14)

The result now follows on choosing t0 = D̄.

The proof of the following result is analogous to that of Lemma 4.4 of [2]. For

completeness, we give a sketch in the Appendix. For M ∈ (0,∞), let SM
.
= {x ∈ S :

|x| 6 M}.

Proposition 4.2.2. Let Q̂n
x be defined by (4.5) with Q̂n(0) ≡ x ∈ S and Un ∈ An.

Then for every M ∈ (0,∞), the collection {Q̂n
x(t) : n > 1, t > 0, x ∈ SM} is a tight

family of random variables.

4.3 Uncontrolled case: Convergence of invariant

distributions

This section will be concerned with the uncontrolled setting, namely, the case where

Un ≡ 0. Throughout this section we will make the assumption that 0 ∈ Λ and that

Q̂n is given by (4.5) with Un = 0. It is well known that Q̂n is a strong Markov process
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with state space S. Furthermore, the estimate in Proposition 4.2.2 shows that for

each n > 1 and x ∈ S, {Q̂n
x(t) : t > 0} forms a tight family of random variables.

In particular, Markov process Q̂n admits an invariant probability distribution. We

denote such a distribution by πn. Note that in general additional conditions are

needed in order to assert uniqueness of πn. Next we present a heavy traffic limit

theorem from [59] for the sequence of stochastic processes {Q̂n}n>1 with paths in

D([0,∞), S).

Given µ ∈ IP(S), let Zµ be a continuous {F t} adapted process given on some fil-

tered probability space (Ω,F , {F t}, IP ), supporting a K-dimensional standard Brow-

nian motion B, such that Zµ solves

Zµ(t) = Γ

(
Zµ(0) +

∫ ·

0

a(Zµ(s))ds+

∫ ·

0

σ(Zµ(s))dBs

)
(t), IP ◦ Z−1

µ (0) = µ.

From the uniform nondegeneracy and Lipschitz continuity of σ, we have that such a

process is unique in law. The following Theorem follows from Theorem 1 of [59].

Theorem 4.3.1. Assume that Q̂n(0) converges in distribution to some µ ∈ IP(S).

Then Q̂n converges weakly in D([0,∞), S) to Zµ.

Remark on the Proof. The proof largely follows that of Theorem 1 of [59]. We note

that Assumption 4.1.1 (iv) made here is stronger than assumption (A2) of [59]. The

latter weaker condition requires an additional local time argument in the proof which

can be avoided in our setting. Also, the limit process in [59] is expressed in terms of

a [K +K(K + 1)] dimensional Brownian motion and the diffusion coefficient matrix

Σ. However, noting that ΣΣ′ = σσ′, standard martingale representation arguments

show that by suitably augmenting the probability space one can describe the limit

using a K dimensional Brownian motion and with the different coefficient matrix σ.

The collection {Zµ : µ ∈ IP(S)} describes a strong Markov process, stability

properties of which have been studied in [2]. In particular, note that since 0 ∈ Λn, we
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have from Assumption 4.1.1 (iv) that R−1a(x) 6 −δ for all x ∈ S and δ ∈ (0,∞) as

in (4.11). Therefore, using Theorem 2.2 of [2] one has that the above Markov process

has a unique invariant probability measure. Henceforth, this probability measure

will be denoted by π. We remark here that Theorem 2.2 of [2] was stated under an

additional Lipschitz assumption on the drift vector a. However, an examination of

the proof shows that this assumption is not needed for the proof. In fact, due to the

uniform nondegeneracy of σ, the result continues to hold if a is merely bounded and

measurable.

We now present the proof of Theorem 4.1.6 in Section 4.1. Recall that πn is a

stationary distribution for Q̂n (not necessarily unique). The proof is based on the

following propositions, the proofs of which, being very similar to the proof of Theorem

3.5 of [10], are given in the Appendix. For δ̄ ∈ (0,∞), define the return time to a

compact set C ⊆ S by τnC(δ̄)
.
= inf{t > δ̄ : Q̂n(t) ∈ C}.

Proposition 4.3.2. For f : S → R+, δ̄ ∈ (0,∞), and a compact set C ⊆ S, define

Gn(x)
.
= IE

[∫ τn
C(δ̄)

0

f(Q̂n
x(t))dt

]
, x ∈ S.

If supnGn is everywhere finite and uniformly bounded on C, then there exists a κ̄ ∈

(0,∞) such that for all n ∈ N, t > 0, x ∈ S

1

t
IE[Gn(Q̂

n
x(t))] +

1

t

∫ t

0

IE[f(Q̂n
x(s))]ds 6

1

t
Gn(x) + κ̄. (4.15)

Proposition 4.3.3. For some constants c, δ̄ ∈ (0,∞), and a compact set C ⊆ S,

sup
n
IE

[∫ τn
C(δ̄)

0

(1 + |Q̂n
x(t)|)dt

]
6 c(1 + |x|2), x ∈ S. (4.16)

Proof of Theorem 4.1.6. The proof is similar to that of Theorems 3.2.1 and 3.2.2.

To keep the presentation self contained we provide the details. Since π is the unique
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invariant probability measure for {Zµ : µ ∈ IP(S)}, we have from Theorem 4.3.1 that

it suffices to establish the tightness of the family {πn}. We apply Proposition 4.3.2

with f(x)
.
= 1 + |x| for x ∈ S and δ̄, C as in Proposition 4.3.3. To prove the desired

tightness it suffices to show that for all n ∈ N, 〈πn, f〉
.
=
∫
S
f(x)πn(dx) 6 κ̄. Note

that for any nonnegative, real measurable function ξ on S,

∫
S

IE[ξ(Q̂n
x(t))]πn(dx) = 〈πn, ξ〉. (4.17)

Fix k ∈ N and let Gk
n(x)

.
= Gn(x) ∧ k. Let

Ψk
n(x)

.
=

1

t
Gk
n(x)−

1

t
IE[Gk

n(Q̂
n
x(t))].

From (4.17), we have that
∫
S

Ψk
n(x)πn(dx) = 0. Let Ψn(x)

.
= 1

t
Gn(x)−1

t
IE[Gn(Q̂

n
x(t))].

Monotone convergence theorem yields that Ψk
n(x) → Ψn(x) as k →∞. Next we will

show that Ψk
n is bounded from below uniformly in n and k. If Gn(x) 6 k,

Ψk
n(x) =

1

t
Gk
n(x)−

1

t
IE[Gk

n(Q̂
n
x(t))] >

1

t
Gn(x)−

1

t
IE[Gn(Q̂

n
x(t))] > −κ̄,

where the last inequality follows from (4.15). On the other hand, if Vn(x) > k

Ψk
n(x) =

1

t
k − 1

t
IE[Gk

n(Q̂
n
x(t))] > 0, (4.18)

where the second inequality follows on noting that Gk
n 6 k. Hence Ψk

n(x) > −κ̄ for

all x ∈ S. By an application of Fatou’s Lemma we conclude that

∫
S

Ψn(x)πn(dx) 6 lim inf
k→∞

∫
S

Ψk
n(x)πn(dx) = 0. (4.19)

From (4.15), Ψn(x) > 1
t

∫ t
0
IE[f(Q̂n

x(s))]ds − κ̄. Combining this with (4.19) and inte-
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grability with respect to πn, we have

0 >
∫
S

Ψn(x)πn(dx) >
1

t

∫ t

0

∫
S

IE[f(Q̂n
x(s))]πn(dx)ds− κ̄.

Using (4.17) once more we now have that 〈πn, f〉 6 κ̄. This completes the proof.

4.4 Controlled case: Convergence of value func-

tions

In this section we return to the control problem introduced in Section 4.1 and present

the proofs of Theorems 4.1.2 and 4.1.3. The proofs rely on the functional occupation

measure approach developed in [39]. We begin with some notation and definitions.

For a Polish space E, let Epath be the space of D([0,∞), E) valued stochastic pro-

cesses. For an E-valued stochastic process {z(t) : t > 0} with paths in D([0,∞), E),

define, for t > 0, stochastic processes {zp(t)(s) : s > 0}, {∆zp(t)(s) : s > 0} with

paths in D([0,∞), Epath) as

zp(t, ω)(s)
.
= z(t+ s, ω), ∆zp(t, ω)(s)

.
= z(t+ s, ω)− z(t, w), s, t > 0.

We rewrite (4.5) as follows

Q̂n(t) = Q̂n(0) +

∫ t

0

ân(
√
nQ̂n(s))ds−

∫ t

0

RÛn(s)ds+ M̂n(t) +RŶ n(t)

≡ Q̂n(0) + Ân(t)−RĈn(t) + M̂n(t) +RŶ n(t). (4.20)

Suppose that Q̂n(0) = xn for n > 1 and supn |xn| 6 M . For t > 0, let {Ĥn
p (t)} be a

stochastic process with paths in D([0,∞),Spath) defined as

Ĥn
p (t)

.
= (Q̂n

p (t),∆Â
n
p (t),∆Ĉ

n
p (t),∆M̂n

p (t),∆Ŷ n
p (t)),
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where S .
= (S×RK ×RK ×RK ×RK). Note that we have suppressed the dependence

of the processes on xn in our notation. Then for any t, s > 0, (4.20) can be rewritten

as

Q̂n
p (t)(s) = Q̂n(t+ s) = Γ

(
Q̂n
p (t) + ∆Ânp (t)−R∆Ĉn

p (t) + ∆M̂n
p (t)

)
(s). (4.21)

Recall, we say a family of random variables is tight, if the corresponding collection of

laws (i.e., induced measures) is tight.

Proposition 4.4.1. Let (n`, T`)
∞
`=1 be a sequence such that n` → ∞, T` → ∞ as

` → ∞. Let {Q` : ` > 1} be a sequence of IP(Spath) valued random variables defined

as

Q`(F )
.
=

1

T`

∫ T`

0

1F (Ĥn`
p (s))ds,

where F ∈ B(Spath). Then {Q` : ` > 1} is a tight family of random variables.

Proof of the proposition is based on the following well known result (see, e.g., Theorem

5.4 in [39]).

Lemma 4.4.2. Suppose that the sequence {IEQn}n>1 is tight family of probability

measures on Spath. Then {Qn : n > 1} is a tight family of random variables.

Proof of Proposition 4.4.1. From Lemma 4.4.2, it suffices to show that the col-

lection

{Ĥn`
p (t) : ` > 1, t > 0} (4.22)

is a tight family of Spath valued random variables. Tightness of {(∆Ân`
p (t),∆Ĉn`

p (t)) :

` > 1, t > 0} is immediate on recalling the uniform boundedness of ân and the

compactness of Λ. Next we argue the tightness of

{∆M̂n`
p (t) : ` > 1, t > 0}. (4.23)
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Note that for ` > 1, t > 0, ∆M̂n`
p (t) is a martingale (with respect to its own filtration).

Furthermore, if τ is a bounded stopping time (with respect to this filtration), we have

that for β > 0,

IE|∆M̂n`
p (t)(τ + β)−∆M̂n`

p (t)(τ)|2 6 c1β, (4.24)

for some c1 ∈ (0,∞). The constant c1 can be chosen to be uniform in ` and t. (It

may depend on the upper bound on τ .) The estimate in (4.24) follows exactly as the

one in (4.13) and so the proof is omitted. Using Aldous’s criterion (see, e.g., Theorem

16.10 of [5]) we now have the tightness of the family in (4.23). Next from Proposition

4.2.2 we have that

{Q̂n`(t) : ` > 1, t > 0} is tight. (4.25)

The tightness of {Q̂n`
p (t) : ` > 1, t > 0} now follows on combining the above with

(4.21) and recalling Lipschitz property of Γ given in Proposition 3.1.4. Similarly,

using the Lipschitz property of Γ1, one has the tightness of {Ŷ n`
p (t) : ` > 1, t > 0}.

This proves the tightness of (4.22) and the result follows.

Suppose {Q` : ` > 1} along some subsequence {`m}m>1 converges in distribution

to Q̃ defined on some probability space (Ω0,F0, IP0). We will denote expectation

under IP0 by IE0, a generic element of Ω0 by ω0 and write Q̃(ω0) as Q̃ω0 . Denote the

canonical coordinate process on Spath as H? = (Q?, A?, C?,M?, Y ?). With an abuse

of notation, we will also denote a typical element of Spath by the same symbol. The

following theorem describes the law of H? under Q̃ω0 for IP0 a.e. ω0.

Theorem 4.4.3.

(i) For IP0-almost every ω0, we have the following properties:

(1) For all t > 0,

Q?(t) = Γ (Q?(0) + A?(·)−RC?(·) +M?(·)) (t), Q̃ω0 a.s. (4.26)
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(2) H? is stationary under Q̃ω0 in the following sense: The probability measure

(Q̃ω0)−1(Q?
p(t),∆A

?
p(t),∆C

?
p(t),∆M

?
p (t),∆Y

?
p (t))

is the same for every t > 0.

(3) Under Q̃ω0, M? is a square integrable Gt-martingale, where Gt
.
= σ{H?(s) :

s 6 t}.

(4) 〈M?
t ,M

?
t 〉 =

∫ t
0
[σ(Q?(s))σ(Q?(s))′]ds, t > 0, a.s. Q̃ω0.

(5) A?(t) =
∫ t

0
a(Q?(s))ds, for all t > 0, a.s. Q̃ω0.

(6) There is a Gt progressively measurable process U? with values in Λ such

that C?(t) =
∫ t

0
U?(s)ds, for all t > 0, a.s. Q̃ω0.

(ii) Suppose that 0 ∈ Λn for every n and Q̂n is defined by (4.20) with Un(s) = 0 for

all n > 1 and s > 0. Then conclusions of part (i) continue to hold with C? in

(4.26) replaced by 0.

The proof of the above result is similar to that of Theorem 6.3 of [39]. For complete-

ness we give a sketch in the Appendix.

Proof of Theorem 4.1.2. In order to prove the result, it suffices to show that for

every sequence (T`, n`) such that T` →∞, n` →∞ as `→∞ and arbitrary Un` ∈ An`
,

lim inf
`→∞

1

T`
IE

∫ T`

0

[k(Q̂n`(s)) + c · Ûn`(s)]ds > V. (4.27)

Define K : Spath → R as K(H?)
.
= k(Q?(0)) + c · C?(1). Then for ` > 1,

1

T`

∫ T`

0

[k(Q̂n`
x (s)) + c · Ûn`(s)]ds =

∫
Spath

K(H?)dQ`(H
?) + δ`,
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where

δ` =
1

T`

[∫ 1

0

c · Ûn`(s)(1− s)ds−
∫ T`+1

T`

c · Ûn`(s)(T` − s+ 1)ds

]
6

c1
T`
→ 0, as `→∞.

By a usual subsequential argument, we can assume without loss of generality that Q`

converges in distribution to Q̃ as given in Theorem 4.4.3. Thus

IE lim inf
`→∞

1

T`

∫ T`

0

[k(Q̂n`(s)) + c · Ûn`(s)]ds = IE0

∫
Spath

K(H?)dQ̃(H?). (4.28)

Using stationarity (Theorem 4.4.3 (i)(2)) and noting that C?(0) = 0, the right

side of (4.28) can be written as

IE0

[
lim
T→∞

∫ (
1

T

∫ T

0

{k(Q?(s)) + c · [C?(s+ 1)− C?(s)]}ds
)
dQ̃(H?)

]
.

Using Theorem 4.4.3 (i)(5) and recalling the boundedness of U?, the last expression

is the same as

IE0

[
lim
T→∞

∫ (
1

T

∫ T

0

{k(Q?(s)) + c · U?(s)}ds
)
dQ̃(H?)

]
. (4.29)

By appealing to Martingale Representation Theorem (see e.g. [34], Proposition 6.2)

one has, for a.e. ω0, by suitably augmenting the filtered probability space

(Spath,B(Spath), {Gt}, Q̃ω0), that M?
t =

∫ t
0
σ(Q?(s))dW (s), t > 0, a.e. Q̃ω0 , where W

is a standard K-dimensional Brownian motion on the augmented filtered probability

space. Thus the expression inside the expectation operator in (4.29) represents the

cost for some admissible control (and some initial condition) for the diffusion control

problem of Section 4.1. Hence the expression in (4.29) can be bounded below by V .

This proves (4.27) and Theorem 4.1.2 follows.
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We now proceed to the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. We begin by noting that when U is replaced with Ub̃ in

(4.8), the corresponding state process is a strong Markov process which admits a

unique stationary probability distribution ηb̃. Furthermore, for all x ∈ S

J(Ub̃, x) =

∫
S

[k(y) + c · b̃(y)]ηb̃(dy). (4.30)

For proofs of these statements see Theorem 3.2 and Lemma 4.1 of [7]. Henceforth, we

will denote k+ c · b̃ by kb̃ and write the right side of (4.30) as 〈ηb̃, kb̃〉. Let (T`, n`)`>1

be, as before, a sequence such that T` → ∞ and n` → ∞ as ` → ∞. In order to

prove the theorem, it suffices to show that

IE
1

T`

∫ T`

0

[k(Q̂n`(s)) + c · Ûn`

b̃
(s)]ds→ 〈ηb̃, kb̃〉, (4.31)

as ` → ∞, where Q̂n` is defined as in (4.20) with Ûn` there replaced by Ûn`

b̃
. Note

that the left side of (4.31) can be rewritten as

IE

∫
Spath

kb̃(Q
?(0))dQ`(H

?). (4.32)

From Proposition 4.4.1, we have that {Q`}`>1 is a tight family of random variables.

Once more one can assume by a subsequential argument that Q` converges to some

Q̃, defined on some probability space (Ω0,F0, IP0), that satisfies all the properties in

Theorem 4.4.3. So the expression in (4.32) converges to

IE0

∫
Spath

kb̃(Q
?(0))dQ̃(H?). (4.33)

We will now apply part (ii) of Theorem 4.4.3 with (an, a) replaced by (an1 , a1),

where an1 (x)
.
= an(x)−

√
nRb̃( x√

n
), a1(x)

.
= a(x)−Rb̃(x), x ∈ S and Λn replaced by Λn

1 ,
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where Λn
1 is defined analogously to Λn with ᾱ replaced by ᾱ1

.
= supx∈S,i∈IK [R−1a1(x)]i.

Since b̃(x) ∈ Λ for all x, we have that 0 ∈ Λn
1 . Thus from part (ii) of Theorem 4.4.3, for

IP0-almost every ω0, (1) to (6) in that theorem hold with a in (5) replaced by a1 and

U? in (6) replaced by 0. Once more by suitably augmenting the filtered probability

space (Spath,B(Spath), {Gt}, Q̃ω0) one has the representation

Q?(t) = Γ

(
Q?(0) +

∫ ·

0

a1(Q
?(s))ds+

∫ ·

0

σ(Q?(s))dW (s)

)
(t), a.s. Q̃ω0 ,

for some K-dimensional standard Brownian motion W . Recalling the stationarity

property from part (2) of the Theorem 4.4.3 and the uniqueness property of the

invariant measure ηb̃, we see that Q?(0) has law ηb̃ under Q̃ω0 , for IP0-a.e. ω. Thus∫
Spath

kb̃(Q
?(0))dQ̃(H?) = 〈ηb̃, kb̃〉 a.e. ω0. Using this observation in (4.33) we have

(4.31) and thus the result follows.

4.5 Proof of Theorem 4.1.4

This section is devoted to the proof of the Theorem 4.1.4. Thus throughout this

section we assume σ(x) ≡ σ. From Theorem 3.4 of [7] we have that there exists a

measurable map b? : S → Λ such that V =
∫
S
[k(x) + c · b?(x)]ηb?(dx). Recall that

from Theorem 4.1 of [7], if b : S → Λ is a measurable map and U is replaced with

Ub in (4.8), the corresponding state process is a strong Markov process that admits

a unique stationary probability distribution which we denote as ηb. Furthermore,

J(Ub, x) = 〈ηb, kb〉 for all x ∈ S. Thus in order to prove the theorem it suffices to

show that there is a sequence of continuous maps bn : S → Λ such that ηbn ⇒ ηb? . We

begin with the following lemma. Let γg ∈ IP(S) be defined as γg(A)
.
= c

∫
A
e−|x|

2/2dx,

where A ∈ B(S) and c is the normalization constant.

Lemma 4.5.1. For each n ∈ N, there exist bn ∈ Λ and compact sets An ⊆ S such
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that bn is continuous,

{x ∈ S : b?(x) 6= bn(x)} ⊆ Acn and γg(A
c
n) 6

1

2n+1
. (4.34)

Proof. From Lusin’s Theorem (see, e.g., Theorem 2.24 [53]) one can find a contin-

uous function b̂n : S → RK such that (4.34) is satisfied with bn replaced by b̂n. Note

that Λ is a convex closed subset of RK . Let ΠΛ : RK → Λ be the projection map.

Then ΠΛ is a Lipschitz function. The result follows on setting bn(x)
.
= ΠΛ(b̂n(x)),

x ∈ S.

Let {µn} ⊆ IP(S) be such that µn ⇒ µ, for some µ ∈ IP(S). Given on some fil-

tered probability space Υn
.
= (Ωn,Fn, {Fn

t }, IP n), let Xn be the unique weak solution

of

Xn(t) = Γ

(
Xn(0) +

∫ ·

0

(a−Rbn)(X
n(s))ds+ σW n(·)

)
(t), Xn(0) ∼ µn, (4.35)

where bn is as in Lemma 4.5.1 and W n is a K-dimensional {Fn
t } standard Brownian

motion. Let

Y n(t) = Γ1

(
Xn(0) +

∫ ·

0

(a−Rbn)(X
n(s))ds+ σW n(·)

)
(t), (4.36)

where Γ1(·) is defined below Definition 2.2.7.

Theorem 4.5.2. Let µn, µ, bn and (Xn, Y n) be as above. Then (Xn, Y n) ⇒ (X,Y ) as

C([0,∞),RK ×RK)-valued random variables, where X is a continuous {F t} adapted

process, on some filtered probability space (Ω,F , {F t}t>0, IP ), such that IP ◦X−1
0 = µ

and

X(t) = Γ
(
X(0) +

∫ ·
0
(a−Rb?)(X(s))ds+ σW (·)

)
(t), t > 0

Y (t) = Γ1

(
X(0) +

∫ ·
0
(a−Rb?)(X(s))ds+ σW (·)

)
(t), t > 0.

(4.37)
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Proof of the above Theorem is given immediately after the proof of Theorem 4.1.4.

Proof of Theorem 4.1.4. It suffices to show that, as n→∞,

〈ηbn , kbn〉 → 〈ηb? , kb?〉 . (4.38)

From Lemma 7.1 of [7], the family {ηbn : n > 1} is tight. Let η0 be a limit point of

the sequence {ηbn}. Denote the subsequence, along which ηbn converges to η0, again

by {ηbn}.

Let Xn, Y n be as in (4.35), (4.36) with µn there replaced by ηbn . From Theorem

4.5.2 we get that Xn ⇒ X, where X is given by (4.37) with µ replaced by η0. Since

Xn is stationary, the same is true for X. Thus from Theorem 3.4 of [7] we get that

η0 = ηb? . This proves ηbn ⇒ ηb? as n→∞. Next the uniform boundedness of a−Rbn

and (4.35) imply that

sup
n
IE

(
sup

06t61
|Y n(t)|2

)
<∞.

In particular, for all t ∈ [0, 1] we have |IEY n(t)− IEY (t)| → 0 as n→∞. Also,

∣∣∣∣IE ∫ t

0

a(Xn(s))ds− IE

∫ t

0

a(X(s))ds

∣∣∣∣→ 0, as n→∞.

Thus taking expectation in (4.35), (4.37), and using the stationarity of Xn and X, we

get
∫
S
bn(x)ηbn(dx) →

∫
S
b?(x)ηb?(dx). This proves (4.38) and the result follows.

For a Polish space T , denote by M(T ) the space of subprobability measures on

(T ,B(T )) with the usual topology of weak convergence. Let G
.
= [0, 1]×S×Λ, where

Λ is as introduced in Section 4.1.

Proof of Theorem 4.5.2. It suffices to prove the result with [0,∞) replaced by

[0, T ] where T > 0 is arbitrary. Without loss of generality we can assume T = 1. We

first consider the case µn = δxn and µ = δx, where xn, x ∈ S and xn → x as n→∞.
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For t ∈ [0, 1], define mn
t ∈M(G) as

mn
t (A×B × C)

.
=

∫ t

0

1A(s)1B(Xn(s))1C(bn(X
n(s)))ds,

where A ∈ B[0, 1], B ∈ B(S), C ∈ B(Λ). Note that {mn
t }06t61 is a continuous stochas-

tic process, with values in M([0, 1]×S×Λ), defined on the filtered probability space

Υn. Furthermore,
∫ t

0
bn(X

n(s))ds =
∫
G
umn

t (ds dx du) and thus

Xn(t) = Xn(0) +

∫
G

umn
t (ds dx du) +

∫ t

0

a(Xn(s))ds+ σW n(t) +RY n(t).

Since Λ is compact and a is bounded, we can find c1 ∈ (0,∞) such that for all

n > 1 and 0 6 s 6 t <∞,

|Xn(t)−Xn(s)|+ |Y n(t)− Y n(s)| 6 c1 (|t− s|+ wWn(|t− s|)) ,

where for g ∈ C([0,∞),RK) and δ > 0, wg(δ)
.
= sup06s6t<∞,|t−s|6δ |g(t)− g(s)|. This

along with the tightness of {Xn(0)}n>1 gives that (Xn, Y n) are tight in C([0, 1],RK×

RK). Let f ∈ Cb(G). Then for 0 6 s < t < 1 we have |mn
t (f)−mn

s (f)| 6 ||f ||∞|t−s|.

This along with the observation mn
0 = 0 shows that {mn}n>1 is a tight family of

C([0, 1],M(G)) valued random variables. Thus {(Xn, Y n,W n,mn)}n>1 is a tight

family of C([0, 1], E0) valued random variables, where E0
.
= R3K ×M(G).

Consider a weak limit point (X, Y,W,m) of the sequence {(Xn, Y n,W n,mn)}n>1.

Abusing notation, we will denote the subsequence once more with the superscript

n. Denote by (Ω?,F?, IP ?) the probability space on which all the limit processes are

given. Then

(i) X (t) = X (0) +

∫
G

umt(ds dx du) +

∫ t

0

a(X(s))ds

+σW (t) +RY (t), IP ? a.s., (4.39)
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(ii) Y (t) = Γ1

(
X (0) +

∫
G

um·(ds dx du) +

∫ ·

0

a(X(s))ds+ σW (·)
)

(t), IP ? a.s.,

(iii) W is a Wiener process.

Also IP ? ◦X−1
0 = µ.

Define F?
t = σ{(X(s), Y (s),W (s),m(s)) : 0 6 s 6 t}. We now show that W is an

{F?
t } martingale. It suffices to show for all p > 1, 0 6 t1 6 t2 6 · · · 6 tp 6 s 6 t 6 1,

IE? (ψ(Zti , i 6 p)[Wt −Ws]) = 0, (4.40)

where ψ ∈ Cb(Ep0 ,R) is arbitrary and Zt = (Xt, Yt,Wt,mt). Left side of (4.40) can be

expressed as

lim
n→∞

IEn
(
ψ(Zn

ti
, i 6 p)[W n

t −W n
s ]
)
,

where Zn .
= (Xn, Y n,W n,mn). However, the last expression is clearly 0 since W n is

an {Fn
t } martingale and Zn is {Fn

t } adapted.

We will now argue that for all t ∈ [0, 1],

∫
G

umt(ds dx du) =

∫ t

0

b?(X(s))ds, a.s. IP ?. (4.41)

This along with weak uniqueness of solutions to (4.37) will prove the result. Since

mn
t ([0, s]×S×Λ) = s∧t for all s, t ∈ [0, 1] a.s. IP n, we have thatmt([0, s]×S×Λ) = s∧t

for all s, t ∈ [0, 1] a.s. IP ?. Thus for f ∈ Cb[0, 1],
∫ 1

0
f(s)m̂t(ds) =

∫ t
0
f(s)ds where

m̂t ∈M([0, 1]) is defined as m̂t(A)
.
= mt(A× S × Λ) for A ∈ B[0, 1].

Next, for f ∈ Cb(S) we have
∫
G
f(x)mn

t (ds dx du) =
∫ t

0
f(Xn(s))ds. Thus

∫
G

f(x)mt(ds dx du) =

∫ t

0

f(X (s))ds, a.s. IP ?, (4.42)
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and ∫ t

0

(∫
S

f(x)kt(s, dx)

)
ds =

∫ t

0

f(X (s))ds,

where kt : Ω? × [0, t] → IP(S) is a measurable map satisfying

∫
A

kt(ω, s, B)ds = mt(ω,A×B × Λ), ∀A×B ⊆ B([0, 1]× S), a.s. IP ?.

Thus

kt(ω, s, dx) = δXs(ω)(dx) a.e. (s, ω) [m̂t ⊗ IP ?]. (4.43)

Recall the definition of An given in (4.34). Define Bn
.
=
⋃∞
m=nA

c
m and En = Bc

n.

Then

γg(En) > 1− 1

2n
for all n > 1 (4.44)

and b?(x) = bn(x) = bn+1(x) = · · · for all x ∈ En. Let F ⊆ S be a compact set such

that {xn} ⊆ F . Fix ε > 0. Let F1 ⊆ S be a compact set such that

sup
n

sup
06t61

IP n[Xn(t) ∈ F c
1 ] <

ε

2
. (4.45)

For δ > 0, define F δ .
= F1 ∩ {x ∈ S : dist(x, ∂S) > δ}. For t > 0, let p(t, x, y) be

the transition probability density function of Xx
0 (t)

.
= Γ (x+ σW (·)) (t). Then from

the representation of pG(t, x, y) in (2.7) and its relation with the transition density

p(t, x, y), described below Corollary 2.2.16, along with Remark 2.2.14, we have for

each δ > 0, there is a function Ψδ : [0, 1] → R+ and α > 0 such that

supx∈F,z∈F δ p(t, x, z) 6 Ψδ(t), t ∈ (0, 1),∫ 1

0
e−α/tΨδ(t)dt <∞.

(4.46)

Henceforth, fix δ > 0. Let Qxn
n , Q

xn
0 be probability measures induced by Xn, Xxn

0

on C([0, 1], S). Then by Girsanov’s theorem, and uniform boundedness of bn and σ,
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there is a θ ∈ (0,∞) such that

Qxn
n ◦ π−1

t (A) 6 θ

√
Qxn

0 ◦ π−1
t (A), ∀n > 1 and A ∈ B(S), (4.47)

where πt is the usual coordinate map from C([0, 1], S) to S. Since the Lebesgue

measure on S is absolutely continuous with respect to γg, we have from (4.46), (4.44)

that there is n0 ∈ N such that

λ(Ec
n0
∩ F1)

∫ 1

0

e−α/tΨδ(t)dt <
ε2

4θ2
, (4.48)

where λ is the Lebesgue measure on S.

Note that (4.48) implies that for all x ∈ F , t ∈ [0, 1]

IE

∫
[0,t]×(Ec

n0
∩F δ)

e−α/sδXx
0 (s)ds 6

ε2

4θ2
. (4.49)

Let Sδ
.
= {x ∈ S : dist(x, ∂S) < δ}. From (4.47) and (4.45) we now have that

∫ 1

0

e−α/2sQxn
n ◦ π−1

s (Ec
n0

)ds =

∫ 1

0

e−α/2sQxn
n ◦ π−1

s (Ec
n0
∩ F1)ds+

ε

2

6 θ

∫ 1

0

e−α/2s
√
Qxn

0 ◦ π−1
s (Ec

n0
∩ F1)ds+

ε

2

6 θ

(∫ 1

0

e−α/sQxn
0 ◦ π−1

s (Ec
n0
∩ F1)ds

)1/2

+
ε

2

6 θ

(∫ 1

0

e−α/sQxn
0 ◦ π−1

s (Ec
n0
∩ F δ)ds

)1/2

+θ

(∫ 1

0

e−α/sQxn
0 ◦ π−1

s (Sδ)ds

)1/2

+
ε

2

6 ε+ `(xn, δ), (4.50)

where `(xn, δ) = θ
(∫ 1

0
e−α/sQxn

0 ◦ π−1
s (Sδ)ds

)1/2

and the last step follows from (4.49).
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From Feller property of {Xx
0 } we have that

`(xn, δ) → `(x, δ) as n→∞. (4.51)

Let m̄n
t (A×B)

.
= mn

t (A×B×Λ), A ∈ B([0, t]), B ∈ B(S). For n, n0 ∈ N, n > n0

and f ∈ C(Λ), h ∈ C[0, 1],

∫
G

e−α/2sh(s)f(u)mn
t (ds dx du)

=

∫
[0,1]×S

e−α/2sh(s)f(bn(x))m̄
n
t (ds dx)

=

∫
[0,1]×En0

e−α/2sh(s)f(bn0(x))m̄
n
t (ds dx) +

∫
[0,1]×Ec

n0

e−α/2sh(s)f(bn(x))m̄
n
t (ds dx).

Thus we have

∣∣∣∣∫
G

e−α/2sh(s)f(u)mn
t (ds dx du)−

∫
[0,1]×S

e−α/2sh(s)f(bn0(x))m̄
n
t (ds dx)

∣∣∣∣
6 2||f ||∞||h||∞

∫
[0,1]×Ec

n0

e−α/2sm̄n
t (ds dx). (4.52)

From (4.50), the left side of (4.52) is bounded above by 2||f ||∞||h||∞[ε + `(xn, δ)].

Now, letting n→∞ in (4.52) we obtain

IE

∣∣∣∣∫
G

e−α/2sh(s)f(u)mt(ds dx du)−
∫

[0,1]×S
e−α/2sh(s)f(bn0(x))m̄t(ds dx)

∣∣∣∣
6 2||f ||∞||h||∞[ε+ `(x, δ)],

where m̄t is defined analogously to m̄n
t . Thus noting that bn0(x) = b?(x) on En0 we

get

IE

∣∣∣∣∫
G

e−α/2sh(s)f(u)mt(ds dx du)−
∫

[0,1]×S
e−α/2sh(s)f(b?(x))m̄t(ds dx)

∣∣∣∣
6 2||f ||∞||h||∞

[
ε+ `(x, δ) + IE

∫
[0,1]×Ec

n0

e−α/2sm̄t(ds dx)

]
. (4.53)
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Since Ec
n0

is an open set, we have from (4.50) and (4.51)

IE

∫
[0,1]×Ec

n0

e−α/2sm̄t(ds dx) 6 lim inf
n→∞

IE

∫
[0,1]×Ec

n0

e−α/2sm̄n
t (ds dx) < ε+ `(x, δ).

Noting that `(x, δ) → 0 as δ → 0, we have, letting ε → 0, δ → 0 in (4.53), for all

t ∈ (0, 1), h ∈ C[0, 1] and f ∈ C(Λ),

∫
G

e−α/2sh(s)f(u)mt(ds dx du) =

∫
[0,1]×S

e−α/2sh(s)f(b?(x))m̄t(ds dx) a.e. IP ?.

Combining this with (4.42) we now obtain for all t ∈ [0, 1],

IP ? ⊗mt{(ω, s,Xs(ω), b?(Xs(ω))) : s ∈ [0, t]} = 1.

As an immediate consequence, we obtain (4.41). This proves the result for the case

µn = δxn and µ = δx.

Next let µn, µ be arbitrary such that µn ⇒ µ. Let Q̂µn
n (resp. Q̂µ) be the measure

induced by (Xn, Y n) (resp. (X, Y )) on C([0, 1], S × RK), where (Xn, Y n) is as in

(4.35), (4.36) and (X, Y ) as in (4.37). We will write Q̂µn
n as Q̂xn

n when µn = δxn .

Similarly we will write Q̂x for Q̂µ when µ = δx. We then have from the first part of

the proof that for all f ∈ Cb(C([0, 1], S × RK))

sup
x∈F

|〈f, Q̂xn
n 〉 − 〈f, Q̂x〉| → 0, as n→∞,

for all compact subset F ⊆ S. Using this along with the continuity of the map

x 7→ 〈f, Q̂x〉, for f ∈ Cb(C([0, 1], S×RK)), and the weak convergence of measures µn

to µ, we have, as n→∞,
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|〈f, Q̂µn
n 〉 − 〈f, Q̂µ〉| 6

∫
S

|〈f, Q̂x
n〉 − 〈f, Q̂x〉|µn(dx)

+

∣∣∣∣∫
S

〈f, Q̂x〉µn(dx)−
∫
S

〈f, Q̂x〉µ(dx)

∣∣∣∣
→ 0.

The result follows.

4.6 Appendix

Proof of Proposition 4.3.3. By Proposition 4.2.1, there exists L̄ ∈ (0,∞) such

that with C
.
= {x ∈ S : |x| 6 L̄},

sup
n
IE[Q̂n

x(t0|x|)2] 6
1

2
|x|2, ∀x ∈ Cc, (4.1)

where t0 is as in Proposition 4.2.1. Let δ̄
.
= t0L̄ and set τnC(δ̄) ≡ τn

.
= inf{t > δ̄ :

|Q̂n
x(t)| 6 L̄}. Define a sequence of stopping times σm as

σ0
.
= 0, σm = σm−1 + t0[|Q̂n

x(σm−1)| ∨ L̄], m ∈ N.

Note that the dependence of these stopping times on n and x has been suppressed in

notation. Also, let mn
0
.
= min{m > 1 : |Q̂n

x(σm)| 6 L̄}. Define

Ĝn(x)
.
= IE

[∫ τn

0

(1 + |Q̂n
x(t)|)dt

]
, x ∈ S.

Then

Ĝn(x) 6 IE

[∫ σmn
0

0

(1 + |Q̂n
x(t)|)dt

]
=

∞∑
k=0

IE

[∫ σk+1

σk

(1 + |Q̂n
x(t)|)dt1k<mn

0

]
. (4.2)

112



Let Ft
.
= σ{Q̂n

x(s) : 0 6 s 6 t} (we suppress n and x in the notation). We claim that

for some constant c1 ∈ (0,∞), and for all n, k ∈ N, x ∈ S,

IE

[∫ σk+1

σk

(1 + |Q̂n
x(t)|)dt

∣∣∣Fσk

]
1k<mn

0
6 c1

(
1 + |Q̂n

x(σk)|2
)

1k<mn
0
. (4.3)

The claim is proved below (4.6). Assuming that the claim holds and using this

estimate in (4.2) we get by suitable conditioning

sup
n
Ĝn(x) 6 c1 sup

n
IE

mn
0−1∑
k=0

(
1 + |Q̂n

x(σk)|2
) . (4.4)

Next note that {Q̂n
x(σk)}k>1 is a Markov chain with the one step transition kernel

P̆n(x,A)
.
= P t0(|x|∨L̄)

n (x,A), x ∈ S, A ∈ B(S),

where P t
n is the transition probability kernel for the Markov process Q̂n. Using (4.14)

and (4.1) one has for some constant c2 ∈ (1,∞),

sup
n

∫
S

P̆n(x, dy)|y|2 6 |x|2 − 1

2
|x|2 + c21[0,L̄](|x|). (4.5)

Using Theorem 14.2.2 of [45] we have that

sup
n
IE

mn
0−1∑
k=0

[1 + |Q̂n
x(σk)|2] 6 3

[
|x|2 + 2 sup

n
IE

mn
0−1∑
k=0

c21C(Q̂n
x(σk))

]
= 3

[
|x|2 + 2c21[0,L̄](|x|)

]
, (4.6)

where the second equality follows from the fact that whenever 1 6 k 6 mn
0 − 1,

|Q̂n
x(σk)| > L̄ (we assume without loss of generality L̄ > 2). The inequality (4.16)

now follows on using the above estimate in (4.4).

Thus it only remains to prove the claim in (4.3). By an application of strong
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Markov property this is equivalent to showing for some c3 ∈ (0,∞) and all n, x

IE

[∫ σ1

0

(1 + |Q̂n
x(t)|)dt

]
6 c3

(
1 + |x|2

)
. (4.7)

From definition of σ1, we see that

σ1 6 c4(1 + |x|) (4.8)

for some constant c4 ∈ (0,∞). With notation introduced in proof of Proposition

4.2.1, we have

sup
n
IE sup

06t6σ1

|Q̂n
x(t)| = sup

n
IE sup

06t6σ1

∣∣∣Γ(x+ M̂n(·) + rn(·)
)

(t)− Zn
x (t) + Zn

x (t)
∣∣∣

6 sup
n
LIE sup

06t6σ1

|M̂n(t)|+ sup
n
IE sup

06t6σ1

|Zn
x (t)|. (4.9)

Using the boundedness assumption (iii) in Assumption 4.1.1 we see that for some

c5 ∈ (0,∞)

IE sup
06t6σ1

|Zn
x (t)| 6 c5(1 + |x|), ∀x ∈ S.

Using this estimate along with (4.13) and (4.8) in (4.9) we now have for some c6 ∈

(0,∞) and x ∈ S,

IE

[∫ σ1

0

(1 + |Q̂n
x(t)|)dt

]
6 c6(1 + |x|2). (4.10)

This proves (4.3) and the result follows.

Proof of Proposition 4.3.2. The proof is adapted from Proposition 5.4 of [18]. We

begin by showing that:

For all m ∈ N, IE

[∫ τn
C(mδ̄)

0

f(Q̂n
x(t))dt

]
6 Gn(x) + b1mδ̄, x ∈ S, (4.11)

where b1
.
= supn supx∈C Gn(x)/δ̄. The proof is by induction. Form = 1, the inequality
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in (4.11) holds trivially. Suppose now that (4.11) holds for m = k ∈ N. In what

follows, instead of indicating the dependence on the initial condition as a subscript to

Q̂n, we will indicate it in the expectation operation. For example, IE[f(Q̂n
x(t))] will

be written as IEx[f(Q̂n(t))], etc. Using the strong Markov property of Q̂n we have

that

IEx

[∫ τn
C((k+1)δ̄)

0

f(Q̂n(t))dt

]
6 IEx

[∫ τn
C(δ̄)

0

f(Q̂n(t))dt

]

+IEx

[
IEQ̂n(τn

C(δ̄))

[∫ τn
C(kδ̄)

0

f(Q̂n(t))dt

]]

6 Gn(x) + sup
x∈C

IEx

[∫ τn
C(kδ̄)

0

f(Q̂n(t))dt

]
6 Gn(x) + sup

n
sup
x∈C

Gn(x) + b1kδ̄, (4.12)

where the last inequality follows from the induction hypothesis. Proof of (4.11) now

follows on noting that the right side of (4.12) coincides with Gn(x)+b1(k+1)δ̄. Using

the monotonicity in m of the expression on the left side of (4.11) we now have that

for all t > δ̄,

IEx

[∫ τn
C(t)

0

f(Q̂n(s))ds

]
6 Gn(x) + 2b1t. (4.13)

Note that (4.13) is trivially satisfied for all t < δ̄. Thus (4.13) holds for all t > 0.

Using the strong Markov property once again, we have (see proof of Proposition 5.4

of [18] for analogous arguments)

IEx[Gn(Q̂
n(t))] 6 Gn(x)−

∫ t

0

IEx

[
f(Q̂n(s))

]
ds

+IEx

[
IEQ̂n(τn

C(δ̄))

[∫ τn
C(t)

0

f(Q̂n(s))ds

]]

6 Gn(x)−
∫ t

0

IEx

[
f(Q̂n(s))

]
ds+ sup

n
sup
x∈C

IEx

[∫ τn
C(t)

0

f(Q̂n(s))ds

]

6 Gn(x)−
∫ t

0

IEx

[
f(Q̂n(s))

]
ds+ sup

n
sup
x∈C

Gn(x) + 2b1t, (4.14)
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where the last inequality follows from (4.13). We obtain (4.15) by dividing both sides

in (4.14) by t and putting κ̄
.
=
(

2
δ̄

+ 1
)
supn supx∈C Gn(x).

Proof of Theorem 4.2.2. The proof follows along the lines of Lemma 4.4 of [2] and

thus only a sketch will be provided. Let for ∆ > 0, νnij
.
= sup06s6∆ |M̂n

ij(s)|. We will

show that for each (i, j), given c1, c2 ∈ (0,∞), there are γ0,∆, η ∈ (0,∞) such that

lim sup
n

sup
Un∈An

e−γ0∆IEeγ0c1ν
n
ij 6 c2e

−η∆. (4.15)

The proof of the Proposition will then follow as in [2]. (See displays above (4.9)

therein.) We will only consider the case j 6= 0. Proof for j = 0 follows along similar

lines. Without loss of generality, we assume that pij 6= 0. Let c3, c4 ∈ (0,∞), n0 > 1

be such that for all x ∈ S, u ∈ Λn, n > n0;

nc3 6 pij(µ
n
i (x) + ui) 6 nc4. (4.16)

Henceforth we will only consider n > n0. For δ > 0, let τ(δ) be an {Fn
t }t>0 stopping

time such that

pij

∫ τ(s)

0

[µni (Q
n(t)) + Un

i (t)]dt = s. (4.17)

Let

M̃n
ij(s)

.
= Mn

ij(τ(s)), s > 0. (4.18)

Then M̃n
ij

L
=N0, where N0 is a unit rate compensated Poisson process. (See Theorem

T16, Chapter II in [6].)

Note that (4.16)-(4.18) yield
√
nνnij 6 sup06s6nc3∆ |M̃n

ij(s)|. Therefore, for γ, c1 ∈

(0,∞) we have IEeγc1
√
nνn

ij 6 IEeγc1ν
n
0 , where νn0

.
= sup06s6nc3∆ |N0(s)|. Applying

Doob’s maximal inequality for submartingales, we get

IEeγc1ν
n
0 6 4IEeγc1|N0(nc3∆)|.
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Assume that γ is small enough so that γc1 < 1. Then a straightforward calculation

shows that with c5
.
= e

2
c21c3, IEe

γc1νn
0 6 8ec5n∆γ2

. Thus for all γ ∈ (0,∞) such that

γc1 < 1,

e−
√
nγ∆IEeγc1

√
nνn

ij 6 8ec5n∆γ2

e−
√
nγ∆.

Now choose γ = γ0√
n
, γ0 ∈ (0, 1

c1
). Then

e−γ0∆IEeγ0c1
√
nνn

ij 6 8ec5n∆γ2
0e−γ0∆.

Now choose γ0 sufficiently small and ∆ sufficiently large so that for some η ∈ (0, 1),

log 8− log c2
∆

+ c5γ
2
0 − γ0 6 −η.

Thus (4.15) holds with such a choice of γ0,∆, η. The result follows.

Proof of Theorem 4.4.3. We will only prove (i) since (ii) follows in an analogous

fashion. For x ∈ RK , let |x|? .
= |x| ∧ 1. In order to prove (1), it suffices to show that

for all t > 0 ∫
Spath

|ψ(t)|?dQ̃(H?) = 0, a.s., (4.19)

where ψ(t)
.
= Q?(t)− Γ(Q?(0) + A?(·)−RC?(·) +M?(·))(t). Note that

∫
Spath

[j(Q?) + j(M?)]dQ`(H?) 6
1
√
n`
,

where for z ∈ D([0,∞),RK), j(z)
.
= supt>0 |z(t)− z(t−)|. Thus

Q̃(S0
path) = 1, a.s., (4.20)
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where S0
path

.
= C([0,∞),R4K). In particular,

IE0

∫
Spath

|ψ(t)|?dQ̃(H?) = lim
`→∞

IE

∫
Spath

|ψ(t)|?dQ`(H?) = 0. (4.21)

Next from (4.21)
∫

Spath
|ψ(t)|?dQ`(H?) is equal to

1

T`

∫ T`

0

∣∣∣Q̂n`
p (s)(t)− Γ

(
Q̂n`
p (s)(0) + ∆Ân`

p (s)(·)−R∆Ĉn`
p (s)(·) + ∆M̂n`

p (s)(·)
)

(t)
∣∣∣? ds,

which is 0 a.s. The equality in (4.19) now follows on combining (4.21) with the above

display. This proves (1).

For t > 0, define H?
p ∈ Spath as H?

p (t)
.
= (Q?

p(t),∆A
?
p(t),∆C

?
p(t),∆M

?
p (t),∆Y

?
p (t)).

In order to prove (2), it suffices to show that for all f ∈ Cb(Spath),∣∣∣∣∣
∫

Spath

[f(H?
p (t))− f(H?

p (0))]dQ̃(H?)

∣∣∣∣∣ = 0. (4.22)

Note that left side above is the limit, as `→∞, of

∣∣∣∣∣
∫

Spath

[f(H?
p (t))− f(H?

p (0))]dQ`(H?)

∣∣∣∣∣ . (4.23)

The expression in (4.23) can be rewritten as

∣∣∣∣ 1

T`

∫ T`

0

[f(Ĥn`
p (t+ s))− f(Ĥn`

p (s))]ds

∣∣∣∣ 6 2||f ||∞t
T`

→ 0, as `→∞.

This proves (4.22) and thus (2) follows.

Next note that for any t > 0 and p > 1,

sup
`>1

sup
s>0

IE|M̂n`(t+ s)− M̂n`(s)|p .
= N (p, t) <∞. (4.24)

This in particular shows that for all t >0, IE0

∫
Spath

|M?(t)|2dQ̃(H?) <∞. In order to
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prove (3) it suffices now to show that for all k > 1, 0 6 t1 < t2 < · · · < tk 6 s 6 t,

ψ ∈ Cb(Sk),

IE0

∣∣∣∣∣
∫

Spath

ψ(H?(t1), . . . , H
?(tk))[M

?(t)−M?(s)]dQ̃(H?)

∣∣∣∣∣
2

= 0. (4.25)

In view of (4.24) and weak convergence of Q̃n` to Q̃, the expression on the left side

of (4.25) is

lim
`→∞

IE

∣∣∣∣ 1

T`

∫ T`

0

ψ(Ĥn`(u)(t1), . . . , Ĥ
n`(u)(tk))[M̂

n`(u+ t)− M̂n`(u+ s)]du

∣∣∣∣2 .
(4.26)

Denote the expression inside the time integral by Λ(u). Then the above can be

rewritten as

lim
`→∞

IE

[
2

T 2
`

∫ T`

0

∫ v

0

Λ(u) · Λ(v)dudv

]
. (4.27)

Define the sets

L0
.
= {(u, v) ∈ [0, T`]

2 : 0 6 u− v < t− s}, L1
.
= {(u, v) ∈ [0, T`]

2 : u− v > t− s}.

Using the fact that M̂n`(t) is Fn
t

.
= σ{Ĥn`(s) : s 6 t} martingale, we see that

IE[Λ(u) · Λ(v)] = 0 for all (u, v) ∈ L1. Thus the expression in (4.27) is the same as

2

T 2
`

∫
L0

IE[Λ(u) · Λ(v)]dudv. (4.28)

Using (4.24) the expression in (4.28) can be bounded by

2||ψ||2∞N (2, t− s)T`(t− s)

T 2
`

, (4.29)

which approaches 0 as ` → ∞. This proves the expression in (4.26) is zero. Thus

(4.25) holds and (3) follows.
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Proof of (4) is very similar to that of (3) and so we only give a sketch. One

needs to establish (4.25) with M? replaced by the RK×K valued stochastic process

N? defined as

N?(t)
.
= M?(t)[M?(t)]′ −

∫ t

0

σ(Q?(s))σ(Q?(s))′ds.

In order for this it suffices to show that the expression in (4.27) approaches 0 as

` → ∞, when Λ(u) is defined as before but with M̂n` replaced by N̂n` , which is

defined as

N̂n`(t)
.
= M̂n`(t)[M̂n`(t)]′ −

∫ t

0

σ(Q̂n`(s))σ(Q̂n`(s))′ds

= M̂n`(t)[M̂n`(t)]′ −
∫ t

0

Σ(Q̂n`(s))Σ(Q̂n`(s))′ds.

Let Σn be as in (4.7) with λ, µ there replaced by λn, µn. Let Σ̃n(x)
.
= 1√

n
Σn(

√
nx).

Then

Ñn(t)
.
= N̂n(t)−

∫ t

0

[(ΣΣ?)− (Σ̃n(Σ̃n)?)]Q̂n(s)ds

is an {F̂n(t)} martingale. We will now show that

IE
1

T`

∫ T`

0

(∫ u+t

u+s

∣∣∣(ΣΣ?)(Q̂n`(r))− (Σ̃n`(Σ̃n`)?)(Q̂n`(r))
∣∣∣ dr) du→ 0, as `→∞.

(4.30)

Once (4.30) is established, the term (analogous to) (4.27) is shown to converge to 0,

as `→∞, upon following steps similar to those leading to (4.29). Let f` : Spath → R

be defined as

f`(H
?)

.
= sup

s6r6t

∣∣∣(ΣΣ?)(Q?(r))− (Σ̃n`(Σ̃n`)?)(Q?(r))
∣∣∣ .

Then f`(H
?) → 0 as `→∞ uniformly on compact subsets of Spath. SinceQ` converges
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to Q̃, we have

IE

∣∣∣∣∣
∫

Spath

f`(H
?)dQ`(H?)

∣∣∣∣∣→ 0. (4.31)

Finally, the expression on left side of (4.30) is bounded above by

IE
(t− s)

T`

∫ T`

0

f`(Ĥ
n`(u))du = (t− s)IE

∣∣∣∣∣
∫

Spath

f`(H
?)dQ`(H?)

∣∣∣∣∣ .
Combining this with (4.31), we have (4.30). This proves (4).

We now consider (5). It suffices to show that for all t > 0,

IE0

∫ ∣∣∣∣A?(t)− ∫ t

0

a(Q?(s))ds

∣∣∣∣ dQ̃ω(H?) = 0. (4.32)

Let ãn(x)
.
= a(

√
nx)√
n

, x ∈ S. Then ãn → a uniformly on compact sets. Let gn : Spath →

R be defined as gn(H
?)

.
= sup06s6t |(ãn − a)(Q?(s))|. Then

IE

∫
Spath

gn`
(H?)dQ`(H?) → 0, as `→∞. (4.33)

Now the left side of (4.32) can be written as (4.33)

lim sup
`→∞

IE
1

T`

∫ T`

0

∣∣∣∣Ân`(t+ u)− Ân`(u)−
∫ t+u

u

a(Q̂n`(s))ds

∣∣∣∣ du
6 t lim sup

`→∞
IE

∣∣∣∣∣
∫

Spath

gn`
(H?)dQ`(H?)

∣∣∣∣∣ ,
where the inequality follows on recalling the representation (4.20). The last expression

is 0 in view of (4.33) and thus (4.32) follows. This proves (5).

To prove (6), it suffices to show that for all 0 < s < t <∞,

IE0

∫
dist

(
C?(t)− C?(s)

t− s
,Λ

)
dQ̃(H?) = 0, (4.34)

where for x ∈ RK , dist(x,Λ)
.
= infy∈Λ |x− y|. However, (4.34) is immediate on using
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weak convergence of Q` to Q̃ and recalling that

Ĉn`(t+ u)− Ĉn`(s+ u)

t− s
∈ Λ

a.s. for all ` > 1 and u > 0.
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LIST OF NOTATION AND SYMBOLS

General mathematical notation

N Set of natural numbers
N0 N

⋃
{0}

R Set of real numbers
R+ Non-negative real numbers
Rd d-dimensional Euclidean space
Rd×m The space of real d×m-matrices
S Rd

+, d-dimensional positive orthant
1A Indicator function of set A
A◦ Set of interior points of set A
Ā Closure of set A
M ′ Transpose of matrix M
C(X, Y ) Class of continuous functions f : X → Y
Cb(X) Continuous real bounded functions on X
C2
b (X) Class of continuous, real bounded, and twice differen-

tiable functions defined on X
C(X) C(X,R)
C[0, 1] C([0, 1],R)
C[0,∞) C([0,∞),R)
D(X,Y ) Class of right continuous functions having left limits de-

fined from X to Y
D[0, 1] D([0, 1],R)
D[0,∞) D([0,∞),R)
δx Dirac measure concentrated on x
∇ Gradient operator: ( ∂

∂x1
, · · · , ∂

∂xd
)

∇2 The Hessian Matrix
〈 · , · 〉 Inner product operator
IP(X) The collection of all probability measures on X
M(X) The collection of all subprobability measures on X
λ Lebesgue measure on R
dist(A,B) The distance between two sets A,B ⊆ Rd: inf{|x − y| :

x ∈ A, y ∈ B}
I = IK×K The identity matrix for some K ∈ N
|x| The L1 norm of x ∈ Rd, i.e.,

∑d
i=1 |xi|

a ∧ b min{a, b}
a ∨ b max{a, b}
a+ max{0, a}
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Markov process notation

Φ A continuous time Markov process

Φ̆ A discrete time sampled Markov chain from Φ
B(X) Borel σ-field on metric space X
IPx(·) Probability measure conditional on Φ0 = x
IEx[ · ] Expectation operator with respect to the law Px
ϕ Irreducibility measure
ψ Maximal irreducibility measure
B+(X) Sets in B(X) with positive ψ measure
τA The first hitting time on A: inf{t > 0 : Φt ∈ A}
ηA Sojourn time on A:

∫∞
0

1{Φt∈A}dt
P t(x,A) Transition kernel of a continuous time Markov process

Φ: P (Φt ∈ A|Φ0 = x)

P̆ n(x,A) Transition kernel of a discrete time Markov process Φ̆:
P (Φ̆n ∈ A|Φ̆0 = x)

Rβ Resolvent kernel:
∫
P t(x,A)β exp(−βt)dt

Ka(x,A) Ka-chain transition kernel:
∫
P t(x,A)a(dt)

µ(f)
∫
fdµ

π Invariant measure

X
L
=Y Random variables X and Y are the same in law.

Drift and generator notation

∆V (x) Drift operator:
∫
P (x, dy)V (y)− V (x)

Ā The bounded-pointwise generator
D(Ā) The domain of the generator Ā
Ã The extended generator

D(Ã) The domain of the generator Ã

Norms

||µ|| Total variation norm of a signed measure µ:
supf :|f |61| |µ(f)|

||µ||f f -norm of µ: f > 1, sup|g|6f |µ(g)|
||h||V V -norm of measurable function h: supx∈X

|h(x)|
V (x)

|||P |||V V -norm of kernel P = P (x, dy): suph:||h||V 6=0
||Ph||V
||h||V

||f ||∞ supx∈X |f(x)| for f ∈ Cb(X)

Abbreviations and symbols

SRBM Semimartingale Reflecting Brownian Motion
RCLL Right Continuous and having Left Limit
CLT Central Limit Theorem
LLN Law of Large Numbers
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FCLT Functional Central Limit Theorem
LHS, RHS Left Hand Side, Right Hand Side
IP -a.s. almost surely with respect to probability measure IP

M
L
=N Random variables M and N are equal in law

µn ⇒ µ µn converges weakly to µ
fn → f u.o.c. sup06s6t |fn(s) − f(s)| for all t > 0: fn → f uniformly

on compact sets
A
.
= B A is defined by B

A ≡ B A and B are identically equal
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