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ABSTRACT 

 

 Mother-to-child transmission (MTCT) of human immunodeficiency virus-1 (HIV-

1) infects over 300,000 infants each year.  This transmission can occur in utero (IU), 

intrapartum (IP), or post-partum through breastfeeding (PP).  One feature of transmission 

from mother to child is a reduction (or ‘bottleneck’) in viral genetic diversity, particularly 

within the envelope (env) gene.  A heteroduplex tracking assay was used to examine env 

diversity in women whose infants remained uninfected at least through 6 weeks, and in 

mother-infant IU and IP transmission pairs.  Maternal diversity was similar regardless of 

transmission status.  We confirmed a bottleneck in subtype C IU and IP transmission.  

We further found that infants infected IU had fewer variants than those infected IP, and 

that these variants transmitted IU were major variants in the maternal populations more 

often than variants transmitted IP. Also, minor maternal variants were transmitted with a 

frequency that demonstrates neither IU nor IP transmission is stochastic. Shorter env 

sequences and fewer glycosylation sites, ie more ‘compact’ viruses, have been associated 

with greater neutralization sensitivity, and compact subtype C viruses are often 

transmitted through horizontal infection.  env genes from a subset of IU and IP 

transmission pairs were sequenced and showed that compact maternal variants were 

transmitted IP, but not IU.  env sequences from 3 mother-infant pairs where transmission 

occurred through breastfeeding were also analyzed and we found reductions in genetic 

diversity, sequence length, and glycosylation.  These results demonstrate selection occurs
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in MTCT and mechanisms may vary with the timing of transmission.   

 High titers of neutralizing antibodies (NAB) have been correlated with lower rates 

of horizontal and vertical transmission in animal models, and in some small studies of 

human transmission.  Because we identified selection had occurred in these transmission 

pairs, we next tested sera from non-transmitting, IU-, and IP-transmitting women for 

neutralizing activity against virus pseudotyped with heterologous subtype B and C Env 

proteins. Though non-transmitting women more often had NAB titers against multiple 

Envs, NAB titer to any one Env did not correlate to transmission status. Thus, we cannot 

attribute vertical transmission or a lack of transmission to different levels of neutralizing 

antibodies in the context of subtype C HIV-1 transmission events. 



 iv

Acknowledgements 
 
 
 I would like to thank my advisor, Ron Swanstrom, for his guidance through the 
years to help me become a scientist, and also his generous willingness to let me explore 
public health aspects of my project and research interests.  
 
 I also owe a huge thanks to Jesse Kwiek for 3 years of a fruitful and entertaining 
collaboration. His energy, research experience, and curiosity carried me through the 
inevitable rough patches! 
 
 I am very grateful to all of the people I have worked with in lab over the years.  It 
was an amazing, friendly work environment. 
 
 Finally, I would like to thank my family.  Their emphasis on education brought 
me to graduate school in the first place, and their support and encouragement has made 
all the difference through the years.  
 



 v

 
 
 
 
 

Table of Contents 
 
List of Figures .................................................................................................................. vii 
 
List of Tables .................................................................................................................. viii 
 
List of Abbreviations ....................................................................................................... ix 
 
Chapter 1 ........................................................................................................................... 1 

 
1.0 HIV Overview ........................................................................................................ 1 
 
1.1 Clinical Course of HIV Infection ........................................................................... 2 
 
1.2 HIV Virology ......................................................................................................... 3 
 
1.3 Viral Mechanisms for Diversity............................................................................. 7 
 
1.4 Host Mechanisms that Drive Evolution ............................................................... 11 
 
1.5 Virologic Characteristics of Transmission........................................................... 15 
 
1.6  Conclusions ......................................................................................................... 27 

 
Chapter 2 ......................................................................................................................... 28 

 
2.1  Abstract .................................................................................................................. 28 
 
2.2 Introduction .......................................................................................................... 30 
 
2.3 Materials and Methods ......................................................................................... 31 
 
2.4 Results .................................................................................................................. 35 
 
2.5 Discussion ............................................................................................................ 39 
 
2.6 Acknowledgements .............................................................................................. 43 

 
Chapter 3 ......................................................................................................................... 50 

 



 vi

3.1 Introduction ............................................................................................................. 50 
 
3.2 Materials and Methods ......................................................................................... 53 
 
3.3 Results .................................................................................................................. 55 
 
3.4 Discussion ............................................................................................................ 63 

 
Chapter 4 ......................................................................................................................... 71 

 
4.1  Introduction ......................................................................................................... 71 
 
4.2 Materials and Methods ......................................................................................... 73 
 
4.3 Results .................................................................................................................. 75 
 
4.4 Discussion ............................................................................................................ 76 
 
4.4 Future Directions ................................................................................................. 78 

 
Chapter 5 ......................................................................................................................... 80 

 
5.1 Introduction .......................................................................................................... 80 
 
5.2 Materials and Methods ......................................................................................... 82 
 
5.3 Results .................................................................................................................. 84 
 
5.4 Discussion ............................................................................................................ 87 

 
Chapter 6 ......................................................................................................................... 94 
 
References ........................................................................................................................ 98 
 
 



 vii

List of Figures 
 
 
Figure 2.1  Heteroduplex Tracking Assay  ……………………………………………..46 
 
Figure 2.2  Phylogenetic Tree  ………………………………………………………….47 
 
Figure 2.3  HIV-1 envelope V1/V2 Variant Transmission  …………………………….48 
 
Figure 2.4  Umbilical Cord Plasma  …………………………………………………….49 
 
Figure 3.1  Representative maximum likelihood phylogenetic trees  …………………..69 
 
Figure 3.2  Highlighter plot of 312 transmission pair  ………………………………….70 
 
Figure 4.1  Lowest titer of maternal serum with >50% inhibition of infection ………...79 
 
Figure 5.1  Pairwise comparison of maternal and infant sequence populations ………..90 
 
Figure 5.2  Maximum likelihood phylogenetic trees of gp120 sequences .……………..91 
 
Figure 5.3  Maternal and infant sequence populations by nucleotide  
       differences …………………………………………………..………………92 
 
Figure 5.4  Length and glycosylation site differences ………………………………….93 
 



 viii  

List of Tables 

 
Table 2.1  Patient Characteristics ………………………………………………………..45 
 
Table 3.1  Patient Characteristics  ……………………………………………….............67 
 
Table 3.2  Mean sequence length and putative N-linked glycosylation site  
      differences between mother-infant pairs  ……………………...……………..68 



 ix

List of Abbreviations 
 
 
Ab  Antibody 
 
AIDS  Acquired Immune Deficiency Syndrome 
 
CTL  Cytotoxic T-Lymphocyte 
 
HIV  Human Immunodeficiency Syndrome 
 
IP  Intrapartum 
 
IU  In utero 
 
MTCT  Mother-to-Child Transmission 
 
NAB  Neutralizing Antibody 
 
NT  Non-transmitter 
 
PP  Post-partum 
 
 



Chapter 1 

Introduction 

 

1.0 HIV Overview 

 In 2007 370,000 children under the age of 15 were infected with human 

immunodeficiency virus-1 (HIV-1) (149), nearly all of whom were infected in infancy 

through mother-to-child transmission (MTCT). Subtype C is the most prevalent subtype 

of HIV-1 in Sub-Saharan Africa, where 90% of infected children live.  Sixty percent of 

infections in Sub-Saharan Africa in 2007 were in women (149), and 15-40% of HIV+ 

pregnant women will transmit the virus to their offspring (92), suggesting infants will 

continue to be born to HIV+ women for the foreseeable future. 

 HIV positive infants are born in countries with limited resources to manage either 

the infant’s or their mother’s infections.   Interventions that prevent MTCT most 

effectively, to <2%, involve months of expensive drug regimens for both the mother and 

the child, an elective cesarean section, and formula feeding from birth for the infant. 

Short-course drug regimens alone for mother and infant significantly reduce MTCT to 

~10% (92), yet providing safe and acceptable alternatives to breastfeeding in many areas 

leaves infants at risk for water-borne infections.  New interventions to prevent MTCT are 

needed, yet little is known about the mechanisms of transmission.  The work described 

herein investigates characteristics of subtype C MTCT, and aims to provide a base for 
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future work to identify new targets for simpler and more cost-effective interventions to 

prevent transmission.  

 In the first chapter I will introduce HIV infection from a clinical, virologic, and 

host-pathogen point of view, highlighting differences between infant and adult infections.  

I will then review what has been studied about viral genetics and antibody responses 

during both horizontal and vertical HIV transmission. 

  

1.1 Clinical Course of HIV Infection 

 HIV is transmitted through bodily fluids such as blood, semen, and vaginal 

secretions.  The most common routes of transmission are vaginal sex, anal sex, needles 

(all types of horizontal transmission), and from mother-to-child (vertical transmission).  

Vertical transmission can occur during pregnancy (in utero, IU), during labor and 

delivery (intrapartum, IP), and through breast milk (post-partum, PP). 

 The ‘typical’ clinical course of disease in adults begins with acute infection.  

There is rapid viral replication in the first 3 weeks after infection and a drop in CD4+ cell 

counts. During acute infection CD8+ T cells become activated and as the number of 

CD8+ T cells rises, the viral load falls to a set point, and CD4+ T cell counts increase 

slightly.  The viral load will remain relatively constant at this set point during the next 

phase of disease, clinical latency. Latency can last anywhere from weeks to decades 

during which there is  a slow decline in CD4+ T cells.  Longer latency periods are 

associated with lower viral set points and strong CD8+ T cell responses (109).  Latency is 

followed by the disease stage, acquired immune deficiency syndrome (AIDS).  AIDS is 

defined by several factors, including CD4+ T cell count and infection with certain 
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illnesses.  The average life span after infection with HIV-1, without treatment, is 10 years 

(52).   

 Infants follow a significantly more rapid disease progression. On average, viral 

set points are higher and immune responses are delayed and less robust in infants (4).  

HIV-1 replication in infants is localized to the thymus, which often results in severe 

atrophy of this organ.  Failure to control viral replication and aberrant immune responses 

likely contribute to the diminished life span of infected infants; some studies have shown 

death rates as high as 52% by 2 years of age (104).  

  

1.2 HIV Virology 

 HIV-1 is part of the Retroviridae family.  This family of enveloped viruses is 

characterized by a plus-strand RNA genome that is reverse transcribed into a linear DNA 

intermediate that is inserted into the host genome, where it is expressed by the host 

transcription machinery. HIV is a complex retrovirus (meaning it has accessory viral 

proteins) in the Lentivirus genus.  Lentiviruses are named for their long infection times 

(lenti-, Latin for slow), and, unlike other retroviruses, they do not induce tumors despite 

integration (69).     

 

1.2.1 Life Cycle 

 HIV-1 infection of a new cell (reviewed in (69)) begins with binding of the 

envelope protein (Env) gp120 to CD4.  This binding initiates a conformational change in 

gp120, which reveals a protein surface for coreceptor binding. The CCR5 coreceptor is 

used almost exclusively in early infection (R5 virus), with a switch to both CCR5 and 
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CXCR4 (R5/X4), or only CXCR4 use (X4) later in infection in some patients. A 

conformational change in the transmembrane Env gp41 then mediates fusion of the HIV-

1 virion with the plasma membrane of the target cell. 

 After fusion, the core of the HIV-1 particle enters the cell and uncoats to reveal 

the genome for transcription. The RNA genome is reverse transcribed into double-

stranded DNA, transported into the nucleus of the cell, and integrated into a host cell 

chromosome.  With cellular factors and HIV regulatory proteins Tat and Rev, the viral 

genome is transcribed, mRNA templates are exported to the cytoplasm, and viral proteins 

are translated from spliced and unspliced transcripts.  Viral proteins, along with 2 copies 

of genomic RNA, are then assembled at the plasma membrane, and new virus buds from 

the cell.  For this new virus to become infectious maturation must occur, which is visible 

as a structural change in the viral core that occurs with the cleavage of the Gag 

polyprotein. 

 

1.2.1 Viral Proteins 

 Each protein produced by HIV has a unique role in the life cycle (reviewed in 

(69)).  All are necessary for viral replication and optimal infectivity in vivo. 

 The Gag coding region contains four structural proteins matrix (MA), capsid 

(CA), nucleocapsid (NC), and p6 that form the core of the virus and provide attachment 

to the viral envelope.  These proteins are translated as a polyprotein (Gag), and remain as 

a polyprotein until budding when the precursor is cleaved by the viral protease.  NC binds 

the genomic RNA in the viral core and helps chaperone nucleic acids during the life 

cycle.  CA is important for assembly and forms the capsid shell of the viral core, while 
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MA facilitates the targeting and binding of the Gag polyprotein to the cell membrane.  

The small p6 protein has a late domain that aids in virus release, and p6 also brings the 

accessory protein vpr into the virion.  

 The other structural proteins are translated from the env ORF.  The translation of 

the polyprotein gp160 occurs on the rough ER.  This polyprotein is transferred to the 

golgi and cleaved by cellular enzymes to make two proteins, the transmembrane gp41, 

and the noncovalently associated surface protein gp120.  Env protein gp120 is highly 

glycosylated and facilitates attachment of the virus with the target cell.  

 HIV-1 has 2 regulatory proteins, Tat and Rev.  Tat helps to direct transcription by 

binding to the TAR RNA structure downstream of the transcription start site to encourage 

RNA polymerase II complex processivity.  Rev binds to a separate RNA structure, the 

Rev Responsive Element (RRE). Rev brings unspliced and partially spliced RNA 

transcripts that contain this region out of the nucleus through nuclear export machinery.  

Without Rev neither genomic nor partially spliced RNA transcripts would make it out of 

the nucleus for translation or assembly. 

 HIV-1 also has 4 accessory proteins with important functions in vivo (69).  Vif 

directs the degradation of the cellular antiviral protein APOBEC3G (discussed further in 

Diversity).  Vpr has several functions related to transcription: it stimulates LTR driven 

gene expression, promotes nuclear transport of the HIV DNA complex, and can modulate 

RT mutation rates.  Vpu is an integral membrane protein that is not found in virions.  One 

function of Vpu is to downregulate CD4 in the ER, allowing envelope protein bound to 

CD4 to continue to the cell surface.  Vpu also enhances virus release by interacting with 

the cellular protein Tetherin, which retain virus to the cell surface (102).  The final 
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accessory protein is Nef.  Nef is membrane-associated and is synthesized at high levels 

very early in infection.  It downregulates several cell-surface markers, including CD4 and 

MHC class I and II (discussed below).  

 

1.2.3 Env  

 gp120 is the main viral surface protein seen by the immune system on circulating 

virus, and is therefore a frequent target of the humoral immune response. During the 

course of disease the env gene becomes highly diverse within a virus population in a 

single person (51, 141).  This diversity is largely generated by random mutations that 

occur during reverse transcription followed by selection. Mutations that result in immune 

evasion confer a selective advantage in subsequent viral replication (16). The advantage, 

however, must be greater than any deleterious fitness effects the mutation might have on 

subsequent viral replication (111, 130).  These mutations build over the course of 

infection through continuous targeting by the immune system, which will be discussed 

further below. 

 Diversity in the coding region of gp120 is not uniform. There are 5 regions of 

high variability in gp120 coding region, called variable regions 1-5 (91).  These regions 

correlate to flexible loops without secondary structure, most of which are on the surface 

of the protein and are likely to come into contact with antibodies.  The amino acid 

sequence flexibility of variable loops allows the virus to tolerate changes that evade 

selective immune pressure.  Changes in length and glycosylation patterns within variable 

regions 1, 2, and 4 are predicted to affect CD4 and coreceptor binding of the virus.  V1 

and V2 lie near the CD4 binding site on gp120, and changes in V4 alter the orientation 
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and packing of ‘shielding’ glycans near the CD4 binding site (35).  Without these loops 

the virus can be more easily targeted by antibodies (discussed in 1.5.1).   

  

1.3 Viral Mechanisms for Diversity 

 As discussed above, reverse transcription creates a large amount of viral genetic 

diversity that accumulates during HIV infection, resulting in a viral quasispecies within 

each chronically infected patient. Using this diversity HIV can expand its host range and 

evade immune pressures. It is also the biggest obstacle to stopping the pandemic, as 

mutations result in drug resistance and a moving vaccine target. HIV genetic diversity is 

a direct result of several factors.  These factors include the viral mutation and 

recombination rates, the viral replication rate, the size of the viral population, and 

selective forces (including immune selection as well as competition between viruses).  In 

this section I will discuss viral mutation and recombination rates, followed by host 

selective forces and how these impact the disease course. 

 

1.3.1  Reverse Transcription 

 Reverse transcriptase (RT) is a heterodimer with RNA-dependent and DNA-

dependent polymerase, and RNase H activity.  RT is incorporated into the core of the 

virus making it ready to begin reverse transcription without new protein synthesis in the 

target cell. 

  Reverse transcription (69) occurs in the cytoplasm of the host cell after entry of 

the virus into the cell and uncoating of the viral core.  The process of genome replication 

requires the binding of a cellular tRNA to the primer binding site (PBS) at the 5’ end of 
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the positive-sense RNA that makes up the HIV genome.  Minus-strand DNA synthesis is 

initiated using this tRNA primer and continues through the repeat region R at the 5’ end 

of the genome to create the minus-strand strong-stop DNA (-ssDNA).  As this minus 

strand is copied, the RNase H domain of the reverse transcriptase heterodimer follows 

behind the polymerase activity to degrade the template RNA. The –ssDNA is transferred 

to the 3’ end of the RNA genome facilitated by binding to the 3’ repeat region R that is 

identical to the 5’ repeat.  Minus-strand synthesis continues to the end of the RNA 

genome, which due to the RNase H activity is now at the PBS.  RNase H degrades all of 

the genome except two small pieces of RNA, one immediately upstream of U3 called the 

PPT.  The PPT RNA remains bound to the newly formed minus-strand DNA, and serves 

as the primer and thus initiation site for positive-strand DNA synthesis.  Positive-strand 

synthesis continues to the 5’ end of the minus-strand template.  This new positive-strand 

DNA is called plus strong stop DNA (+ssDNA).  At this point a second strand-transfer 

event occurs.  The 3’ end of the +ssDNA binds to the 3’ end of the minus-strand DNA 

using the PBS and the complementary tRNA sequence copied at the end of the +ssDNA.  

Reverse transcription continues for both strands, using each other as template.  The 

resulting double-stranded DNA makes the linear intermediate that is transported to the 

nucleus for integration.  

 Because reverse transcription relies on 2 template switches, it is hypothesized that 

HIV RT has evolved to have low template affinity and processivity (69).  These traits 

then lead to high error rates, including substitutions, insertions, deletions, and 

recombination.   
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1.3.2 Substitutions, insertions, and deletions 

 Mutations are thought to principally depend on the fidelity of 4 steps (115, 146): 

minus-strand reverse transcription, plus-strand reverse transcription, cellular RNA-

polymerase II, and modification of templates. 

 RT has no exonucleolytic proofreading activity, and errors can occur in either 

minus or plus-strand synthesis.  The rate of these errors depends on the type of error and 

the sequence context of the error, including secondary structure.  If mutations occur in the 

minus strand, they will be copied into the plus strand.  Mutations that occur in the plus 

strand will only be in one strand, though these mismatches can be repaired by cellular 

machinery (either back to wt or to the mutation). Substitutions are the most frequent type 

of error, but RT commonly makes other mutations.  Frameshift mutations occur in 

stretches of identical nucleotides, and the longer the stretch the more likely the 

frameshift.  Deletions and insertions are the result of template switching, a third kind of 

RT error.  Cellular RNA polymerase II transcribes proviral HIV DNA to make new 

genomes.  However, considering retroviruses have mutation rates approximately 1 

million times greater than eukaryotic cells, it is likely any mutations made by RNA-

polymerase II are vastly overshadowed by RT errors (115). 

 The final mechanism for mutation is the modification of templates. Members of 

the APOBEC (apolipoprotein B mRNA-editing enzyme) family exert cytosine deaminase 

activity on the single-stranded minus-strand DNA during reverse transcription (3, 142). 

These C to T changes in the minus strand register as G to A transitions in the plus-strand 

sequence. The previous round of replication determines the ability of APOBEC to cause 

mutations in the subsequent round of replication. The viral protein Vif can facilitate the 
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degradation of APOBEC in producer cells, thus excluding it from new virions and 

preventing its activity in the subsequent round of reverse transcription.  Newer studies 

have also found evidence that APOBEC blocks infectivity of HIV even without cytosine 

deaminase activity (12, 105).  APOBEC may also interfere with elongation of DNA 

synthesis and strand transfer during reverse transcription. 

 

1.3.3 Recombination 

 Recombination is a significant mechanism of HIV diversity, as evidenced by the 

large number and distribution of circulating recombinant forms of HIV (106).  

Recombination requires that the 2 different viral genomes be present in a single virion, 

which can occur in virus produced from a dually infected cell.   

 Work by Zhang et al. (165) has shown that at least 98% of recombination events 

occur during minus strand synthesis.  There are 2 leading hypotheses of recombination  

during minus strand synthesis (57, 165).  The first is forced-copy-choice.  In this model, 

when the RT complex encounters a break in the genomic RNA during HIV minus-strand 

synthesis, it switches to the second intact RNA template and continues reverse 

transcription. The second hypothesis, the minus-strand replacement model, also occurs 

during minus-strand synthesis.  In this model, the tail of the newly forming strand of 

DNA is single-stranded after RNase H activity, this tail then forms a hybrid duplex with 

the second template, and eventually displace the RT complex to this new template.  Both 

of these models could occur to produce the large amount of recombination seen in HIV 

infection. 
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1.4 Host Mechanisms that Drive Evolution 

 The wide variety of random mutations during reverse transcription creates the 

mutants that can evade immune system pressure of the host. Replication of viruses 

without these adaptive mutations is prevented by the immune system, and the mutants 

that can grow become a significant component of the viral population.  In fact, several 

studies have correlated lower rates of non-synonymous mutations with disease 

progression, considering this a marker for a weaker immune response (122, 141, 157).  

Cytotoxic T-lymphocytes and neutralizing antibodies drive the selective outgrowth of 

these mutants.   

 

1.4.1 Cytotoxic T-Lymphocytes 

 Cytotoxic T-lymphocytes (CTLs) have a significant role in driving HIV evolution 

and restricting viral replication (38, 58, 90, 96).  CTLs are part of the T-lymphocyte (T-

cell) lineage.  These cells recognize foreign peptides generated from proteins inside 

infected cells (59).  There are 2 main lineages of T-lymphocytes, CD4+ T-cells and 

CD8+ T cells.  The main function of CD4+ T cells is to activate either macrophages or B-

cell, serving a ‘helper’ function.  CD8+ T cells recognize cells infected with pathogens 

and directly kill these target cells, and are therefore named cytotoxic.  Because HIV-1 

infects cells, it becomes a major target of CTLs during infection. 

 CTLs recognize foreign peptides presented as part of the human leukocyte antigen 

(HLA) complex class I. HLA class I are cell surface proteins found on nearly all 

nucleated cells that display linear peptides from the cytoplasm of the cell in a groove on 

the surface of the HLA.  Therefore, when foreign peptides are presented in HLA class I it 
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indicates the cell itself is infected with a pathogen, and CTLs subsequently kill the 

infected cell.  Each CTL recognizes a specific peptide/HLA complex determined by 

genetic recombination of the T-cell receptor genes during T-cell development.  HLA 

class I binds peptides of 8-10 amino acids in length which are held in the HLA groove by 

interactions at either end of the peptide.  Other ‘anchor’ amino acids within a peptide also 

stabilize this interaction.  Each human genome has 3 HLA loci (thus up to 6 alleles) and 

each different allele encodes a protein that will bind peptides of certain characteristics 

depending on the composition of the HLA groove.  Thus, when HIV infects a cell, some 

peptides from viral proteins being translated in the cytoplasm will fit in these grooves and 

are presented on the surface of the cell.  The CTL specific for this peptide will bind and 

become activated. If this is a new infection, the CTL will be naïve and require 2-7 days to 

differentiate and proliferate into an army of effector cells.  If prior recognition has 

occurred, memory CTLs will recognize the peptide and can activate much more rapidly. 

 HIV is able to survive in the face of this immune pressure in part because of the 

large number of random mutations created by RT.  Once a CTL recognizes a particular 

peptide, infected cells are killed and replication of that variant is controlled (17).  If a 

mutation occurs at an amino acid important for a target peptide binding in the HLA 

groove, this mutant will avoid recognition and continue to replicate.  The ability of CTLs 

to control viral replication overall, however, depends on several factors, including HLA 

haplotype.  Certain alleles, and therefore certain epitope specificities, have been found to 

be associated with rapid (24) or slow (64) progression of disease, and homozygosity at 

the HLA class I loci has been associated with a poor disease prognosis (24).  Fewer HLA 
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alleles are hypothesized to result in a CTL response of less breadth.  In general, a 

dynamic interplay exists between the CTL response and viral diversity over time. 

  

1.4.2 Cytotoxic T-Lymphocytes in Infants 

 CTL responses in infants are slower to develop, more narrow, and weaker than 

those of adults (25, 87).  HIV-specific CTL are infrequently seen prior to six months of 

age, even though all lineages of immune system cells develop during gestation, and can 

be found in the fetus after 12 weeks gestation (60).  The naïve-cell bias and activation 

unfriendly characteristics of the immature immune system likely have a role in the 

reduced effectiveness of the infant immune system, as compared to adults, in responding 

to HIV.  Because HIV infects immune system cells that help to regulate the immune 

system as a whole, targeting these cells could have a distinct effect in the naïve, 

activation-refractory immune environment of the infant (139).  Even though the infant 

immune response is deficient through 3 years of age (22, 89, 131), several studies have 

seen sequence evidence for selection early in infant infection that includes CTL epitopes 

(77, 87). 

   

1.4.3 Neutralizing Antibodies in Adults 

 A second method of immune pressure on HIV by the host are antibodies (59).  

Antibodies are made by B-lymphocytes (B-cells) that, upon activation, differentiate into 

the antibody-producing plasma cells. B-cell receptors (BCR), which are also created 

through genetic recombination during B-cell development, bind their specific antigen and 

migrate to lymph nodes where they receive additional maturation signals from CD4+ 
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cells and cytokines.  From these signals they become activated and differentiate into 

plasma cells. Antibodies serve dual functions of neutralization and opsonization to stop 

pathogens in the extracellular environment.   

Antibodies are shaped like a ‘Y’ and are made up of 2 heavy and 2 light chains. 

Variable regions in each chain, along with 1 constant region from each chain, form the 

arms of the Y, and are called the Fab (Fragment Antigen Binding) region of the antibody.  

The Fab region is unique for each B-cell, in both the surface-expressed BCR and secreted 

antibodies.  The 2 constant regions of each heavy chain that form the base of the Y are 

called the Fc region.  The Fc region determines the effector function of the Ig.  There are 

5 classes of Fc regions, each with different functions.  IgG is the principle Ab of the 

blood and extracellular fluid in tissues.  It efficiently promotes opsonization of target 

antigen by phagocytes and activation of complement.  IgG antibodies are the most 

abundant isotype and make up a large proportion of the anti-HIV antibody pool. 

Neutralizing antibodies to autologous HIV-1 typically appear within 1-2 months 

of infection  (32, 94, 156) and increase in breadth and number during the course of 

infection (47, 81, 120).  Antibodies recognize extracellular antigens, not processed 

peptides, and thus can directly neutralize the spread of infections.  Neutralizing 

antibodies, or antibodies that interfere with HIV receptor binding or fusion with the target 

cell, often correlate with changes in env (47, 120).  Viruses with mutations in envelope 

that reduce the affinity of a neutralizing antibody for its epitope can selectively replicate 

over wild-type virus, thus changing the viral population over time with successive 

responses.  Also, as with CTLs, the breadth and number of antibody responses to certain 

HIV epitopes has been correlated to disease progression (6, 42).  Overall, neutralizing 
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antibodies play a significant role in shaping the evolution of HIV throughout the course 

of infection. 

 

1.4.4 Neutralizing Antibodies in Infants 

 Antibody responses are delayed and less potent in the first months of life.  B cells, 

like T cells, are also mostly naïve in the neonatal immune system.  Because B cells rely 

on helper T cells and lymph node organization (which is not fully developed at birth (60)) 

for activation, antibody production is also deficient in the first months of life.  Infant 

antibodies to HIV proteins of narrow breadth may be seen as early as 2 months (113), and 

this response increases through the first year of life (138). Infant IgG production does not 

reach full capacity until 1 year, and other isotypes until 7 years, of age (60). 

 Infants gain some protection from HIV infection in the face of this deficiency 

through the fortification of their immune system with maternal IgG antibodies.  Maternal 

antibodies can enter the infant circulation through both the placenta and breast milk (60). 

Neutralizing antibody titers found in infants are proportional to those in their mothers 

(144, 163).   The relationship between maternal antibodies and infant HIV infection will 

be discussed in detail below. 

 

1.5 Virologic Characteristics of Transmission  

 A significant bottleneck occurs during both vertical and horizontal transmission. 

Despite the high viral diversity within a chronically infected person, often only a single 

variant is transmitted to a new host. This phenomenon has recently been extensively 

studied in horizontal transmission, with fewer, and smaller, vertical transmission studies. 
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Data are conflicting on the mechanisms driving these transmissions, and 3 hypotheses 

have been suggested (168). The first hypothesis is that a limited inoculum seeds new 

infections, thus the bottleneck is a stochastic event.  Selective amplification is the second 

hypothesis, and argues that multiple variants are transmitted, but that biological 

characteristics determine which is able to dominate the population.  Selective 

transmission is the third hypothesis, this postulates that certain viral characteristics allow 

particular viruses to be transmitted from the donor more easily.  To aid in the 

development of both new interventions to prevent transmission and effective vaccine 

strategies, the driving mechanism(s) must be identified, and detailed transmission 

mechanisms elucidated.  This work should include distinctions between horizontal and 

vertical transmission, as well as distinctions between types of transmission within these 

groups (injecting drug use versus heterosexual sex, in utero versus intrapartum, etc) and 

subtype.  This would determine if future prevention  strategies that are developed can be 

universal or will be limited by transmission method or subtype.   

 

1.5.1 Horizontal Transmission 

 Horizontal transmission is the main method of HIV-1 transmission worldwide.  

The most common routes of horizontal transmission include vaginal and anal sex as well 

as parenteral exposures (149).  High viral RNA load increases rates of transmission for 

all routes, while the presence of ulcers on HIV-exposed tissues increases sexual 

transmission rates.  The most effective interventions to prevent transmission either reduce 

viral load (through antiretroviral drugs), or provide a barrier between the donor and 

possible recipient (condoms, etc). Breaks in the mucosal epithelium caused by ulcers 
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likely increase the virus access to target cells, and increased viral load means more virus 

and an increased chance of the low-probability event (114).  The mechanisms used by 

viruses to infect, however, remain murky.  The data discussed below aim to determine 

whether the transmission bottleneck is driven by selection or random chance.  

 Bottleneck during Transmission.  There is significantly less genetic diversity in 

cohorts of acutely infected subjects compared to cohorts of chronically infected subjects. 

Because env is the most variable gene in the HIV genome, it is often studied as a marker 

of viral population diversity. Previous studies have shown that chronically infected 

subjects have high env diversity, while subjects with acute infection have relatively 

homogeneous viral populations (78, 84, 121, 126, 158, 168).  These results were 

consistent across multiple subtypes and modes of horizontal transmission.  Where donor 

viral populations were available, the transmitted virus was often a minor variant in the 

donor.  These data often looked at small regions of env in only a small number of 

subjects, but did reliably show a strong genetic bottleneck during horizontal transmission. 

 Advances in sequencing technology have paved the way for larger regions of env 

to be studied, and more quantitative analyses to be completed.  Keele and colleagues (67) 

recently published a paper using single genome amplification to examine the viral RNA 

population in 102 individuals recently infected with subtype B HIV.  Their methods 

reduce artificial mutations and recombination that occur during extra rounds of PCR used 

in traditional methods of cloning and sequencing.  Seventy-six percent of the subjects 

were infected with a single variant from the donor, while the other 24% were infected 

with between 2 and 5 viruses.  A second study by Abrahams and colleagues (2) showed 

similar findings for 69 subjects recently infected with subtype C.  They found 78% of 
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subjects were infected with a single variant, and 22% with multiple variants.  As part of 

their analysis, Abrahams reported that combining the 102 subjects published in the Keele 

study with the 69 subjects in her study and looking at the distribution of multiple variant 

transmission events, they do not follow the Poisson distribution, and thus do not appear 

as independent events of low probability.  Additional mechanisms could therefore drive 

transmission of multiple variants.  These data include a large number of subjects and 

strongly indicate that while single variants are most often transmitted, transmission of 

multiple variants is not rare and occurs at a rate of approximately 1 in 4 horizontal 

transmissions. 

 Characteristics of Transmitted Virus.  Viral variants comprising new infections 

have been shown to have a more compact gp120, with shorter V1/2 regions and fewer N-

linked glycosylation sites, than virus in chronic infection (27, 35, 82), though not all have 

confirmed this finding (44, 83).  Much of the work involved less than 10 transmission 

pairs, and there are also several important differences between the studies that could 

explain the conflicting results.  First, they were done on 3 different subtypes.  The 2 

studies of subtype C infected pairs both show shorter variable loop lengths and fewer 

glycosylation sites in recently transmitted virus populations (27, 35).  In subtype B 

transmission pairs, 2 studies showed no differences (27, 44), and one showed only a trend 

that was not significant after correcting for multiple comparisons (83).   An additional 

study of subtype B infection did find, however, that both loop length and glycosylation 

sites increased from the time of acute infection, suggesting a decrease occurred 

previously (82).  Another confounding factor comparing viral characteristics within pairs 

is the status of the donor.  A donor who was recently infected would already have 
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relatively homogeneous compact virus, and there would be no room for selection.  This 

was considered by Liu and colleagues and they re-analyzed a previous study of subtype B 

transmission pairs (83) along with their new data, only including transmission pairs 

where the diversity in the donor was more than 1% greater than the diversity in the 

recipient, and still found no significant differences.  This is an imperfect measure of 

recent infection, however, because recently infected individuals may have high overall 

diversity within their viral population if they were infected with multiple variants.  This 

analysis could be re-done to include only pairs where the donor had high diversity, 

indicative of chronic infection using phylogenetic tree analysis.  Larger studies must be 

done to resolve these conflicting data in subtype B and confirm the result in subtype C.  

Currently published studies, however, provide reasonable evidence to suggest that newly 

transmitted viruses have shorter variable loops and fewer N-linked glycosylation sites 

than virus from chronically infected subjects infected with subtypes A or C.  

 Neutralizing Antibodies and Transmission.  One hypothesis for compact virus 

transmission is that the recipient has no neutralizing antibodies to HIV-1, and because 

compact viruses are more fit for replication they take over the viral population.  There is 

an abundance of evidence to show that virus with shorter V1, V2, and V4 variable loops 

and fewer glycosylation sites are more neutralization sensitive (40, 62, 63, 70, 112, 162).  

Other studies have also shown transmitted virus in the recipient to be more sensitive to 

neutralizing antibodies from the donor than the donor viral population (35, 47).  Virus 

within a chronically infected person evades immune pressure over time through changes 

in glycosylation sites and variable loops (107).  Before an immune response is mounted 

in a newly infected recipient, however, glycosylation sites and variable loops are not 
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under selection and viral characteristics will drive the composition of the viral 

population.  More compact viruses may be transmitted because they are more ‘fit,’ with 

greater ease of receptor/coreceptor binding and more efficient replication (111).  While 

more data are needed to confirm these hypotheses and examine subtype differences, the 

current model suggests that within a transmission pair, compact viruses may be 

transmitted more often, possibly because they are more fit in the donor. 

 

1.5.2 Vertical Transmission 

 Transmission from mother-to-child (vertical transmission) correlates with 

increased maternal viral RNA load, decreased CD4 count, prolonged membrane rupture 

prior to delivery, and presence of coinfections (133). As with factors associated with 

horizontal transmission, it is easy to create probable hypotheses as to how these factors 

would increase transmission rates.  What is less clear, however, is the underlying 

mechanism(s) driving transmission overall.   

Though additional factors complicate these studies, a benefit to vertical 

transmission studies is that they more often include transmission pairs than horizontal 

transmission studies.  These pairs provide unique and valuable information about the 

donor virus population compared with the recipient population.  While this information 

may aid in a better understanding of vertical transmission, differences between vertical 

and horizontal transmission may limit the ability to generalize findings. Infants share 

HLA alleles with their mothers, which has been shown to give some CTL escape variants 

an advantage in the infant (88).  Also, maternal antibodies are passed into the infant 

through the placenta and breast milk, thus the virus inoculum encounters a partial 
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immune response already primed for that particular variant.  Despite the challenges of 

studying vertical transmission, the continued high rates of vertical transmission and 

scientific opportunity provided by transmission pairs, make discovering the mechanisms 

of HIV transmission from mother-to-child an urgent need. In the next section I will 

discuss what is known about vertical transmission with regard to the three leading 

hypotheses: limited inoculum, selective amplification, and selective transmission (168).   

Transmission that occurs at different times (in utero, intrapartum, post-partum) 

could have distinct driving mechanisms.  While the ability to study MTCT is limited for 

ethical reasons, there are leading hypotheses for each transmission mode.  In utero 

transmission likely occurs through the placenta.  Studies have shown that HIV can at 

least pass through layers of the trophoblast cells that line the placental barrier in vitro, 

and that chroioamnionitis increases transmission rates.  It should be noted that levels of 

maternal IgG increase in the infant during pregnancy, reach a peak at the time of 

delivery, then drop slowly after birth at a rate dependent on breastfeeding (60).  

Intrapartum transmission likely occurs primarily through the placenta, though some 

studies suggest a role for vaginal secretions in natural births (61).  Prolonged placental 

membrane rupture during labor also increases transmission rates (74), likely due to 

mixing of the maternal and infant circulations.  Post-partum transmission occurs through 

breastfeeding, which is increased with mastitis.  It is important to consider how each 

proposed mechanism of transmission might differ with timing.   

 Bottleneck during Transmission.  A viral genetic bottleneck also occurs during 

vertical HIV-1 transmission (18, 158, 159, 166).  Many early studies of vertical 

transmission amplified small regions of env to demonstrate the bottleneck and determine 
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qualitative selection characteristics.  Dickover et al. (37) used the heteroduplex mobility 

assay (HMA) to measure viral diversity among mother-infant pairs (MIPs) during MTCT 

of subtype B HIV-1.  They examined V3-V5 in 36 non-transmitting women, and 14 in 

utero (IU) and 9 intrapartum (IP) transmitting MIPs.  Their data showed that women 

whose infants were infected IU had lower viral diversity, lower CD4+ T-cell counts, and 

a higher viral RNA load than women who did not transmit the virus.  They also observed 

that infants infected IU were more likely to be infected with maternal variants that were 

detected in the mothers (‘major’ maternal variants, 8/14 versus 1/9), while infants 

infected IP were more likely to be infected with a single variant that was not detected in 

the mother (‘minor’ maternal variants, 6/9 versus 2/14).  The remaining infants were 

infected with multiple variants.  They concluded that, compared to both the IP- and non-

transmitting women, the women who transmitted IU had poor immunologic control of 

their infections, and that significant differences exist in selection mechanisms of IU 

transmission compared to IP and NT.  In another study, Renjifo et al. (118) reported that 

42/53 infants infected IU harbored a single variant at transmission, and 11/53 received 

multiple variants.  They did not amplify maternal samples to determine if major or minor 

variants were transmitted, but they did not find an association between maternal viral 

load and multiple variants being transmitted.  Other studies including small numbers of 

pairs with no transmission timing data have demonstrated transmission of both minor (5), 

major, and multiple (110, 135) maternal variants.  More recent studies examining larger 

regions of env have confirmed this bottleneck (129, 154).  While all studies identified 

relatively homogeneous infant populations, only the study by Dickover et al. had the 

power and methodology to address selection in relation to transmitted maternal variant 



 23

abundance.  Thus, genetic diversity data within env suggest a different driving 

mechanisms between IU and IP transmission, and that the genetic bottleneck during 

transmission is not random.   

 Characteristics of Transmitted Virus.  Sequences of larger regions of env have 

also been analyzed to determine if preferential transmission of compact viruses occurs in 

mother-to-child transmission pairs. Samleerat et al. (129) sequenced V1-V5 in 6 IU and 

11 IP transmission pairs infected with subtype CRF01_AE.  They found no evidence for 

shorter variable loops or number of glycosylation sites in IU or IP pairs, or for all pairs.  

They did, however, find evidence of selection for specific glycosylation sites during 

transmission.  This suggests that while glycosylation overall may not alter transmission 

rates, particular glycans may aid in either transmission or amplification once in the host. 

A second study of 12 IP pairs (160) found that while there was not a difference in V1-V5 

sequence length, there were fewer glycosylation sites in infant sequences compared to 

matched maternal sequences.  This study included subjects infected with subtypes A, C, 

and D. This study also found shorter V1-V5 length to correlate with greater neutralization 

sensitivity, though not number of glycosylation sites.  Because these are the first studies 

able to examine these characteristics, and for only one subtype was there a sizeable 

number of transmission pairs, larger datasets should be analyzed to confirm results and 

clarify existing results. Thus, current data show differing evidence, possibly dependent on 

subtype, for whether or not compact viruses are preferentially transmitted during mother-

to-child transmission. 

 Neutralizing Antibodies and Transmission.  Neutralizing antibodies (NAB) are 

able to prevent or modulate HIV infection in animal models, and efforts are underway to 
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harness the power of neutralizing antibodies as part of HIV prevention and treatment 

strategies. In a model macaque system, combinations of neutralizing antibodies given 

intravenously protected infant macaques from oral challenge with SHIV (7, 56, 125).  In 

another study of macaques immunized at birth, upon a subsequent challenge with SIV, 

the immunized monkeys were infected, but had higher titers of broadly reactive antibody 

responses and progressed more slowly than unvaccinated infected monkeys (152).  

Another study demonstrated the value of broadly NAB to show that monkeys infected 

with SIVsm that progressed rapidly to disease either lacked an antibody response or it 

was narrow in breadth (43).  This same study also reported results from cases of both 

horizontal and vertical transmissions in humans. They detected NAB in only 50% of 

infected subjects, but the subjects with these antibodies had lower rates of transmission.   

The level and breadth of antibody responses needed to prevent transmission or slow 

disease, as well as how to elicit these responses, remains unknown.  In addition, 

responses to subtype B have been characterized in significantly more detail than 

responses to the prevalent subtypes worldwide, subtypes A and C.  The study of broadly 

reactive NAB responses that occur naturally could provide clues as to how to develop and 

use antibodies for treatment and prevention purposes. 

 Viral resistance to autologous neutralizing antibodies is often transmitted 

vertically. One study of subtype B transmission events found that mothers of infants 

infected IU had lower autologous NAB titers than mothers of infants infected IP or NT 

(36).  Wu et al. (160) found that even for a subset of women enriched for those whose 

virus was sensitive to autologous sera, the virus from their IP infected infants was 
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resistant to maternal sera.  These women were infected with either subtypes A, C, or D.   

Therefore, a lack of NAB response may increase the risk of IU transmission.  

 Broadly Neutralizing Antibodies.  Additional studies have correlated the 

neutralizing antibody titer of maternal sera against heterologous virus with MTCT.  Two 

studies testing neutralizing antibody titer against the tissue culture lab-adapted strain MN 

found opposite results.  One study by Guevara et al found mothers infected with subtype 

C HIV had increased neutralizing antibody titer in transmitters (49), while another by 

Bongertz et al found women with presumed subtype B infections (based on location) had 

decreased NAB titer in transmitters (14).  Using a heterologous subtype C primary 

isolate, however, Guevara et al found no difference in NAB titer with transmission.  In 

another study of NAB titer to virus pseudotyped with the envelopes of heterologous virus 

of the same subtype, in 3 of 4 envelopes there was no difference in NAB titer with 

transmission (9).  With the 4th envelope, increased titer was seen in non-transmitters 

compared to transmitters, and when stratified by timing there was a significantly lower 

NAB titer among IP transmitting mothers as compared to NT.  A very similar study did 

not find a correlation between binding or neutralizing antibodies to primary cultured virus 

and MTCT (85), but did not consider timing of transmission.  The 2 studies looked at 

women infected with different HIV-1 subtypes, yet otherwise had very similar methods.  

These studies again suggest timing should be an important consideration when analyzing 

studies of NAB and transmission.  Results also seem to vary considerably depending on 

the virus used in the neutralization assays, particularly whether the subtype of the virus 

used in the assay is the same as the subtype of the infected serum donor. 
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 Subtype and neutralizing antibody activity.  Horizontal transmission studies 

have demonstrated neutralizing antibodies can have different effects depending on mode 

and/or the infecting HIV-1 subtype.  Viral envelopes isolated from people acutely 

infected with subtype C are sensitive to neutralization by antibodies from the chronically 

infected transmission partner, while envelopes from people acutely infected with subtype 

B are not (35, 44).  These studies also found antibodies from people early in infection 

with subtype C were more potent, yet more restricted in the recognition of heterologous 

envelopes, than antibodies from people infected with subtype B.  In addition, several 

antibodies with broad neutralizing activity against subtype B HIV-1 have been identified, 

yet these antibodies do not have the same activity against subtype C, nor have similarly 

broadly reactive neutralizing antibodies been found against subtype C (11, 80).  Whether 

this is because these antibodies do not exist, or because subtype C has not been as widely 

studied as subtype B, is unknown. This limitation only further indicates the need to 

perform studies with all prevalent subtypes before any generalizations about HIV-1 

mother-to-child transmission mechanisms can be made.  

 Sequence Evolution in Early Infection.  After T cell activation in the infant, 

HLA alleles common to both the mother and infant could continue certain CTL pressure, 

while new infant alleles could select new mutations.  Infants lack memory immune 

responses, and both B and T cells are slow to activate in the infant.  If IgG in the mother 

were the main driver of the glycosylation pattern and loop length in her viral population, 

then one might predict there would be no significant changes in these characteristics after 

transmission to the infant.  If immune responses other than maternal IgG contributed a 
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significant portion of selection against compact virus from the mother, then differences 

may be detected in comparing the viral populations in the MIPs in future studies.   

 

1.6  Conclusions 

 The following work aims to build upon the data described above to further clarify 

viral characteristics during in utero, intrapartum, and post-partum transmission of subtype 

C HIV-1.  It will study broadly reactive neutralizing antibody titers in subtype C infected 

mothers who did and did not transmit to their infants. 



Chapter 2 

 
 

The Molecular Epidemiology of HIV-1 Envelope Diversity During HIV-1 Subtype C 
Vertical Transmission in Malawian Mother-Infant Pairs  
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2.1  Abstract 

Objective:  To study the relationship between HIV-1 subtype C genetic diversity and 

mother-to-child transmission and to determine if transmission of HIV-1C V1/V2 env 

variants occurs stochastically.   

Design: Case-case-control study of Malawian mother-infant pairs consisting of 32 non-

transmitting women, 25 intrauterine (IU) transmitters and 23 intrapartum (IP) transmitters 

in Blantyre, Malawi. 

Methods: A heteroduplex tracking assay against the highly variable HIV env V1/V2 

region was used to characterize the relationship between HIV diversity and HIV-1 
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MTCT.  The relative abundance of the maternal env variants was quantified, and based 

on the env variants detected in the infant plasma, categorized as transmitted or 

untransmitted. The V1/V2 region was sequenced from two mother-infant pairs and a 

phylogenetic tree was built. 

Results: No relationship was found between transmission and overall maternal env 

diversity.  Infants had less diverse HIV-1 populations than their mothers, and IU-infected 

infants had fewer V1/V2 variants and were more likely to harbor a homogeneous V1/V2 

population than infants infected IP. V1/V2 sequences cloned from two mother-infant 

transmission pairs support multiple env variant transmission when multiple variants are 

detected, rather than single variant transmission followed by diversification.  Almost 50% 

of the HIV-infected infants contained V1/V2 env variants that were not detected in 

maternal plasma samples, and, transmission of env variants was not related to their 

abundance in maternal blood. 

Conclusions:   These data suggest that the predominant mechanism(s) of HIV-1 subtype 

C MTCT differs by the timing of transmission and is unlikely to be explained by a simple 

stochastic model. 
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2.2 Introduction 

HIV-1 subtype C is the most prevalent subtype worldwide, and it is the dominant 

subtype in Sub-Saharan Africa, where one-half of all infected women and children live 

(46).  Approximately 30% of infants born to untreated HIV-positive women will become 

infected with the virus, of whom approximately 20% will become infected in utero, 50% 

intrapartum, and the remaining 30% through breast milk (31).  Little is known about the 

mechanism of transmission among these distinct groups, but several maternal 

characteristics are associated with increased rates of MTCT, including high viral RNA 

load, advanced disease status(159), and low CD4+ T-cell count (133). 

One consistent feature of vertical HIV-1 transmission is a viral genetic bottleneck 

from mother to infant (18, 158, 159, 166), whereby the genetic diversity of HIV-1 in the 

maternal viral population is greater than that in their infected infants.  The bottleneck has 

been attributed to various factors involving selection, including some that are virus-

specific  while others the result of donor/recipient immune responses (36, 160).  In 

contrast to selective mechanisms, vertical transmission could also be a stochastic event, 

dependent solely on the donor’s viral burden with chance favoring the most abundant 

maternal variant for transmission, as suggested by at least one study (154).   

Most previous studies of HIV-1 MTCT have involved small numbers of mother-

infant pairs; in this report, we used a heteroduplex tracking assay (HTA) and 

phylogenetic analyses to study the viral diversity of the HIV-1 subtype C in 25 IU 

mother-infant pairs (MIPs), 23 IP MIPs, and 32 nontransmitting HIV-1-positive mothers.  

In addition, we used a mathematical simulation in an attempt to fit our data to a stochastic 

model of transmission.  
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2.3 Materials and Methods 

2.3.1 Study Participants   

 The HIV-1 seropositive pregnant women and their infants 

included in this study were participants in the Malaria and HIV-1 in Pregnancy (MHP) 

prospective cohort (74, 98, 99).  This study was approved by both the Malawi College of 

Medicine Research Committee and the UNC IRB.  Informed consent was obtained from 

the participants. 

 Plasma was isolated from maternal blood collected at labor-ward admission, from 

the umbilical cord at delivery, and from infant heel-sticks at three time-points:  within 48 

hours of birth, 6-weeks, and 12-weeks of age.  Women and their newborn infants 

received single-dose nevirapine according to the HIVNET 012 protocol (48).  Infants 

who were HIV-1 DNA negative by real-time PCR (86) at 0 and 6 weeks had their 

mothers defined as non-transmitters (NT); infants who were HIV-1 DNA positive at birth 

were defined as in utero (IU) infections; and infants who were HIV-1 DNA negative at 

birth but DNA positive at 6 weeks were defined as intrapartum infections (IP) (19).  

However, four infants who were HIV-1 DNA negative but HIV-1 RNA positive by 

reverse-transcriptase polymerase chain reaction (RT-PCR) at birth were classified as IU. 

 As reported elsewhere, there were 65 infants infected IU, 89 infants infected IP or 

post-partum, and 418 infants HIV-free at 12 weeks. Samples were chosen from these 

participants, based on availability, and after RT-PCR, a total of 32/418 NT, 25/65 IU, and 

23/89 IP samples were included in the final dataset.  Samples were excluded from this 

study if there was insufficient maternal/infant plasma, the RT-PCR was negative where 
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the DNA was positive, or the HTA patterns were not reproducible due to poor sampling 

of low abundance variants.  Compared to the included samples, the median log10 RNA 

copies/ml was significantly lower in the excluded samples. 

 

2.3.2 Laboratory Tests   

 Genomic DNA was analyzed for the presence of HIV-1 DNA by real-time PCR 

(86).  Plasma HIV-1 RNA was quantified using Amplicor HIV-1 Monitor v1.5 (Roche 

Diagnostics).  CD4+ T-cells were quantified by FACScan (Becton Dickinson). 

 

2.3.3 Viral RNA Isolation   

 Viral RNA was isolated from peripheral blood plasma using the QIAmp viral RNA 

kit (Qiagen).  Plasma from 6 women whose RT-PCR reaction was negative was 

concentrated by centrifugation and amplicons were obtained from 5.  

 

2.3.4 RT-PCR   

 The Titan One-Tube RT-PCR system (Roche) or the Stratagene Accuscript RT-

PCR system was used to amplify the HIV-1 subtype C V1/V2 region of the env gene as 

previously described (68).  All samples were RT-PCR amplified in two independent 

reactions to allow assessment of the quality of sampling.  

 

2.3.5 Heteroduplex Tracking Assay (HTA)   

 The HTA (33, 34, 68) was used to document viral diversity as previously described 

(53) using a subtype C V1/V2 env probe derived from the DU151 clone (20, 68).  
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2.3.6 Data Analysis   

 ImageQuant TL software (Molecular Dynamics/GE Healthcare) was used to 

quantify the intensity of each heteroduplex band and calculate the percent abundance.  An 

HTA band was included as an env variant if: 1) it was not present in the probe alone lane; 

2) on average it comprised greater than 2 % of the total viral population; and 3) it was 

present in both PCR replicates.  Reproducibility in sampling of the population of HIV-1 

variants was determined using the percent change between duplicates, as previously 

described (103).  The maternal replicates had a median 7 % (IQR:3,10) difference; the 

reproducibility of the replicates among the first positive infant samples was ~1%, perhaps 

due to presumed high RNA viral loads and observed low viral complexity among the 

infants.  Validation of proper sampling is done to limit the appearance of population 

differences where none exists (53).  Infant V1/V2 env variant bands with a corresponding 

band in the maternal sample (determined by migration in the gel) were defined as 

“detected.”  If an infant V1/V2 env variant had no corresponding band in the maternal 

sample (or the band was below the level of detection, as described above), the band was 

defined as “undetected.”  

 

2.3.7 Sequencing of V1/V2   

 RT-PCR products were amplified and cloned into a plasmid vector (121).  V1/V2 

sequences from individual clones were manually edited and aligned with MAFFT version 

5.8, using the L-INS-i method (66).  A maximum likelihood phylogenetic tree was 

constructed using Tree-puzzle (version 5.2) with a gamma time-reversible (GTR) 
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evolutionary model (137).  Phylogenetic trees were subjected to 1000 puzzling steps, 

with reliability values greater than 0.70 considered significant. 

 

2.3.8 Mathematical Modeling   

 Transmission was modeled as a multinomial experiment, where variants were 

selected from the mother, with replacement, at probabilities equal to their observed 

frequency in the maternal viral population.   For each mother-infant pair, the number of 

viruses sampled was equal to the number of variants observed in the infant.  We 

simulated 10,000 multinomial transmission events for each pair and recorded the 

probability of each event depending on whether the infant received the mother’s most 

frequent variant.  The probability of the infant not receiving the most abundant maternal 

variant is the binomial probability of 0 successes: 

 

(1) P(y= 0) =
n

0

 

 
 

 

 
 p

0(1− p)n  

and the probability of receiving it is the probability of 1 or more success: 

(2) P(y≥1) =1−
n

0

 

 
 

 

 
 p

0(1− p)n 

where n = the number of variants in the infant and p = the proportion of the mother’s most 

abundant variant.  We calculated the joint probability for all IP (or IU) transmissions as the sum 

of the log probabilities, since transmission events for each pair are independent.  The 

significance of the observed probability value is equal to the fraction of the random simulations 

that generated a probability equal to or less than the probability of the observed data.  A low 
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value rejects the hypothesis of stochastic transmission for the observed data.  All modeling was 

conducted in R (1), and scripts are available on request. 

 

2.3.9 Statistical Methods   

 Parametric, continuous variables were compared using a two-sided t-test.  Non-

parametric, continuous variables were compared using the Mann-Whitney or Kruskal-Wallis 

statistic.  Paired non-parametric continuous variables were compared with the Wilcoxon 

matched-pairs signed-ranks test.  A chi-squared or two-sided Fisher’s exact statistic was used to 

compare proportions.  All calculations were done using STATA v.8.2.  

 

2.4 Results 

2.4.1 Participant Characteristics   

 In this study we analyzed plasma from 32 non-transmitting mothers (NT), 25 transmitting 

mother-infant pairs (MIPs) whose infants were infected with HIV-1 in utero (IU), and 23 

transmitting MIPs whose infants were infected intrapartum (IP) (74).  Baseline characteristics of 

the subset of mothers selected for the three groups (NT, IU, and IP) are outlined in Table I.   

 

2.4.2 V1/V2 env Diversity in Mothers   

 The number of unique HIV-1 variants in each subject was determined using a 

heteroduplex tracking assay (HTA) querying the HIV-1 env variable regions 1 and 2 (V1/V2).  

Representative HTA autoradiographs are shown in Figure 1. Among the 80 pregnant women 

characterized, we detected a median of 3 V1/V2 env variants per subject (interquartile range 

[IQR]: 2, 4.5).  There was a weak positive correlation between the number of maternal V1/V2 
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env variants and log10 HIV-1 RNA copies (correlation coefficient = 0.23, p=0.05).  CD4 T-cell 

counts below 200 cells/ml were associated with a greater number of maternal V1/V2 env variants 

(p=0.01).  Table I shows that the transmission groups had a similar number of maternal V1/V2 

env variants.  This suggests that differences in maternal V1/V2 env diversity are not significantly 

associated with vertical HIV-1 transmission. 

 

2.4.3 V1/V2 env Diversity in Infected Infants   

 In order to characterize the transmission of HIV-1 variants, we compared the V1/V2 env 

variants present in the maternal plasma at enrollment with the variants detected in the infant’s 

first HIV-1-positive plasma sample:  at birth for the children infected IU and at 6 weeks for the 

children infected IP (Table I).  Fewer V1/V2 env variants were detected in the IU- and IP-

infected infants than in their mothers (IU p=0.0006, IP p=0.005).  Thus, during vertical HIV-1 

transmission a restricted number of variants are transmitted from mother to child, representing a 

genetic bottleneck. 

 We observed a contrast between the infant V1/V2 env diversity patterns during IU 

and IP transmission, suggesting a qualitative difference in HIV-1 transmission:  IU-

infected infants tend to be infected with single variants that are more often detected in the 

maternal plasma, while IP-infected infants tend to be infected with multiple V1/V2 env 

variants typically composed of a mixture of detected and undetected maternal variants 

(Table I).  Overall, there was no association between the number of variants transmitted 

and maternal CD4+T cell count less than 200 cells/ml (p=0.2). 

 To confirm whether the multiple HTA bands in the infant correspond to the 

transmission of multiple maternal variants, as opposed to the rapid diversification of a 
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single transmitted variant, we created a phylogenetic tree of V1/V2 env region sequences 

from two mother-infant pairs whose infant samples harbored multiple variants (Fig. 2).  If 

multiple maternal variants were transmitted we would expect multiple branches of 

intermingled maternal and infant sequences, while if transmission of a single maternal 

variant were followed by outgrowth and diversification in the infant then the infant 

samples would cluster together on the same branch.  In the MHP-2017 transmission pair, 

the HTA indicated that the infant was infected with one detected and one undetected 

maternal variant that composed 86% and 14% of the infant viral population, respectively.  

In the tree, a majority of the maternal and infant sequences cluster together, likely 

representing the variant with high abundance, while a separate branch at the top of the 

tree likely represents the low abundance variant.  In MHP-3765, the HTA indicated that 

the infant was infected with two env variants, composing 84% and 16% of the infant viral 

population, both detected in the maternal plasma.  The phylogenetic tree for this pair 

shows that maternal and infant sequences are commingled on multiple branches, 

suggesting transmission of multiple maternal variants.  Therefore, in the two mother-

infant pairs that were sequenced, the phylogenetic trees are consistent with the HTA data 

and support the transmission of multiple variants. 

 

2.4.4 Modeling the Genetic Bottleneck at Vertical Transmission   

 We determined the relative abundance of each maternal V1/V2 env variants 

within the sample population, and used that information to determine if our data were 

consistent with a stochastic mechanism of transmission.  Transmitted variants that were 

undetected in the maternal peripheral plasma viral population were assigned an 
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abundance of 1%.  As seen in Fig. 3A & B, both high and low abundance maternal 

variants were detected in the first positive infant sample; this suggests variant abundance 

was not strongly associated with either IU or IP transmission (IU, p=0.6; IP, p=0.6).  The 

probability of IU or IP transmission of the observed variants, according to their 

abundance in maternal plasma, was compared to a set of 10,000 simulated transmissions 

where the maternal variants were sampled based on abundance (Fig. 3C & D).  When the 

observed data are compared to the simulated data sets, they do not support the bottleneck 

being generated by random sampling of plasma-associated maternal variants based on 

abundance; in other words, the observed data correspond to an uncommon outcome (IU 

p=0.003, IP p=0.007).  In order to exclude the possibility that our observed transmission 

pattern was skewed by the inclusion of the undetected maternal variants, we repeated the 

simulation using only the detected maternal variants.  Similar to the previous simulation, 

the observed transmission pattern remained an uncommon outcome  (IU p=0.02, IP 

p=0.006), providing further support for a non-stochastic bottleneck mechanism.  

 

2.4.5 Umbilical Cord Plasma   

 Finally, we used the V1/V2 env HTA to determine if HIV-1 isolated from 

umbilical cord plasma more closely resembles the infant or the maternal viral population.  

Umbilical cord plasma samples from the six NT women examined were V1/V2 env RT-

PCR negative (data not shown).  Similarly, for three infants infected IP, the cord blood 

V1/V2 env RT-PCR reaction was negative (Fig. 4).  In contrast, in four infants infected 

IU the cord blood sample had a viral population that was indistinguishable from the 

infant birth sample but distinct from the mother’s sample.  These results show that cord 
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blood plasma represents the HIV-1 population present in the infant and suggests that cord 

blood plasma could be a readily accessible source of the HIV-1 population present at 

birth in IU-infected infants.  

 

2.5 Discussion 

In this report, we describe the relationship between genetic diversity in HIV-1 env 

V1/V2 region and subtype C HIV-1 MTCT in NT mothers, and IU- and IP-transmitting 

mother-infant pairs. We found no relationship between the amount of maternal env 

diversity and the rate of MTCT, but we did observe a significant genetic bottleneck 

between the matched maternal and infant infections.  The pattern of transmitted V1/V2 

variants differed by the timing of HIV-1 transmission: infants infected IU frequently 

harbored single variants which were more often detected in the maternal plasma, and 

infants infected IP frequently harbored multiple variants that were more often a mixture 

of detected and undetected maternal variants.  Finally, modeling of our data showed that 

on average MTCT did not favor transmission of the most abundant env variants present in 

maternal plasma, arguing against a stochastic model of vertical transmission. 

 These conclusions are based on data generated with a HTA against the env V1/V2 

region, which could have several limitations. First, although the HTA cannot reliably 

sample genomic variants composing less than 1% of the viral population, sampling of 

these low abundance variants with DNA sequencing would require a minimum of 300 

cloned env genes per sample. Second, it could be argued that a measure of HIV-1 

diversity should sample larger regions than the approximately 400 base-pairs sampled 

with our assay. However, the HTA is most sensitive to sequence and size changes on 
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genomic regions of this size, and this region is one of the most heterogeneous region in 

the HIV-1 genome (145). These limitations must be balanced against the resources 

required to generate similar data via DNA sequencing, and owing to this constraint, we 

have chosen to sample a larger number of mother-infant pairs, in a hypervariable region 

of the env gene, rather than report diversity of longer regions of env in fewer mother-

infant pairs. Finally, any misclassification of population diversity derived from using the 

V1/V2 region as a surrogate for actual diversity is likely to be non-differential, and is 

unlikely to bias our comparisons. 

 The observation of similarity in HIV-1 env diversity in women in this study is 

different from the findings of Dickover and colleagues (37), who examined HIV-1 

subtype B env diversity (using a heteroduplex mobility assay approach).  Dickover et al. 

observed that women who transmitted IU had lower V3/V4 diversity (and lower CD4+ T 

cell counts), suggesting that women who transmit IU have poor immunologic control of 

their HIV-1.  In our study women in all groups had similar diversity. There are, however, 

many differences between that US-based cohort and our Malawi-based cohort, such as 

coinfections, that could account for this difference. Other differences between the studies 

that could have caused this discrepancy are the region of the env gene examined, the 

sensitivity of the HTA as compared to the HMA, and the presence of subtype B versus C 

HIV-1 in the two different cohorts (161). 

 The bottleneck of population diversity during vertical HIV-1 transmission seen 

here has been previously reported (18, 158, 159, 166), though few have had a large 

enough sample size to reach significance or detect other characteristics of transmission.  

In addition to the reduction in viral diversity in infants, we found that the pattern of 
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transmitted V1/V2 variants differed by the timing of HIV-1 transmission, with IU 

transmission more often representing a single variant, and IP transmission more often 

involving multiple variants.  A confounder of this result could be that the first positive 

sample from infants infected IU was collected within 48 hours of single-dose nevirapine 

treatment, which may have lowered viral RNA load and created an artificial bottleneck.  

However, we do not believe this to be significant considering the turnover rate of HIV-

infected cells, the slow decline of viral RNA in the presence of a single dose of 

nevirapine relative to the timing of sampling (97), and the relative ease of HIV 

amplification in these samples from small volumes of infant plasma, which suggests high 

viral RNA loads.  

 Among the 48 transmission events examined in this study, nearly 50% included 

the transmission of variants we were unable to detect in the mother’s blood plasma.  

While the origin of these undetected variants is unknown, there are several possibilities, 

including the following:  a compartmentalized HIV-1 population that was not in 

equilibrium with the sampled peripheral blood; low-abundance maternal variants; or 

variants that arose in the infant de novo, as the virus evolved in response to the single 

dose nevirapine exposure or its new environment.  If infants are being infected with 

compartmentalized viruses, it remains possible that the transmitted viruses were the most 

abundant variants in those compartments.  Regardless, on average, in our data set, the 

most abundant maternal variant observed in the blood plasma was not the most frequently 

transmitted variant in the infant by either time window of transmission (IU or IP). 

 Given that the data presented herein fail to support a simple stochastic MTCT 

model, the most plausible mechanisms for the bottleneck are either transmission of many 
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variants followed by selective amplification of the detected variants, or selective 

transmission (168).  In the selective amplification model, viruses representing the 

maternal repertoire are transmitted, but only a subpopulation grows out in the new host.  

Maternal antibodies, antiretroviral drugs, or the infant immune response could all restrict 

outgrowth of some variants in the infant or be involved in selection.  Distinguishing 

between these mechanisms is difficult as variants in the infant need to undergo 

amplification before they can be detected.   

   Despite the strong bottleneck, more than one variant was often seen in infant 

viral populations.  Multiple mechanisms could account for the presence of multiple 

variants in infant infections, including: 1) multiple transmissions of a single variant, 2) a 

single transmission of multiple variants, 3) a single transmission event with a multiply-

infected cell, or 4) a single transmission event with rapid diversification, or evolution, 

between the transmission event and the time of population sampling.  We examined the 

potential for early evolution after transmission by comparing the viral population in the 

first positive infant sample with the subsequent samples collected at 6-week intervals 

(data not shown).  Using changes in env diversity as a measure of viral evolution, we 

observed diversification in many of the IU- and IP-infected children following 

transmission.  To begin to address the question of early evolution generating apparent 

diversity, we selected two mother-infant pairs, whose infant’s viral populations were 

comprised of two variants, and subjected the viral populations to sequence analysis.  Our 

results showed that in these two cases the magnitude of viral diversity measured in the 

infant was comparable to that present in the mother. Although we cannot exclude rapid 

diversification in the infant after transmission, this observation is most consistent with 
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transmission of multiple variants from the mother.  

 In thirteen samples of cord blood, we observed that env diversity in cord blood 

always reflected the infant viral population and not the maternal population.  This 

observation has practical implications as, in general, the study of early pediatric HIV-1 is 

limited by the amount of blood available from infant heel-stick or blood spot 

preparations.  For children infected in utero, our finding mitigates this limitation, as 

milliliter amounts of cord blood are easily collected after delivery. 

 In summary, we observed that in a majority of the infants infected IU we detected 

a single HIV-1 V1/V2 variant, while in a majority of the IP-infected infants we detected 

multiple variants in a study of the largest cohort of MTCT pairs published to date.  There 

was also a trend for IP-infected infants to harbor more variants that were not detected in 

the maternal sample than IU-infected infants, resulting in undetected maternal variants in 

approximately 50% of all infected infants.  Building on these observations we exploited 

the quantitative nature of the HTA, coupled with mathematical models, and found these 

data do not support a stochastic or abundance-based model of subtype C HIV-1 MTCT.  

Therefore, these findings argue for a mother-to-child transmission model involving 

selection or selective outgrowth.  These results are similar to the subtype B data 

published by Dickover and colleagues (37), thus extending the MTCT paradigm to 

subtype C.    
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Table 2.1  Participant Characteristics 

 

Non-
transmitters  

(N=32) 

IU MTCT  
(N = 25) 

IP MTCT  
(N = 23) 

P 

Maternal Age                  
median, (range) 

23.5 (16,31) 24 (18,32) 25 (16,37) 0.2 * 

Maternal CD4 T-cells ≤ 
200/µL 

9 (29%) 4 (16%) 13 (57%) 0.01 § 

Duration of membrane 
rupture (hrs.) median(IQR) 

1(0.17, 4) 1.0 (0.33, 13) 1.8 (0.1, 2.5) >0.5 * 

Gestation (weeks)  
median(IQR) 

 
40 (38, 40) 

 
38 (37, 39) 

 
38 (36, 40) 

 
0.01 

Maternal HIV-1 RNA load 
(copies/mL)  median, (IQR) 4.9 (4.5, 5.3) 4.8 (4.4, 5.3) 5.3 (4.9, 5.5) 0.1 † 

Maternal NVP dose taken 30 (94%) 24 (96%) 22 (96%) >0.5 § 

Infant NVP dose taken 32 (100%) 25 (100%) 23 (100%) >0.5 § 

Primigravidae 9 (28%) 7 (28%) 2 (9%) 0.2 § 

Spontaneous vertex 
delivery 

20(63%) 17 (68%) 18 (78%) 0.4 § 

Maternal V1/V2 variants 3 (2,4) 3 (2,4) 4 (2,6) >0.5* 

Infant V1/V2 variants n/a 1 (1,2) 2 (1,4) 0.04* 

Infants initially infected 
with a single V1/V2 variant 

n/a 14 (56%) 6 (26%) 0.05* 

Transmitted virus†† 
Only detected variants 

Any undetected variant 
n/a 

 
16 (64%) 
9 (36%) 

 
9 (39%) 
14 (61%) 

0.15§ 

 
Data are n (%) unless listed otherwise. 
 1 NT sample was missing CD4 T-cell data 
 *Kruskal-Wallis test for equality of populations 
§ Fisher’s exact statistic  
† One-way ANOVA 
 4 IU and 6 IP participants did not have maternal viral load data 
††Any detected includes pure populations of undetected maternal variants as well as mixtures of detected 
and undetected maternal variants 
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Figure 2.1  Heteroduplex Tracking Assays.  Autoradiographs of V1/V2 heteroduplex 
tracking assays against plasma associated HIV-1 isolated from mother-infant pairs 
(MIPS).  Panel A shows examples of IU MIPs who transmitted a single variant (MHP: 
345, 1040, 414), an undetected maternal variant (MHP:1485), a detected maternal variant 
(MHP:345, 414), and a mixture of detected/undetected maternal variants (MHP: 896).  
Panel B shows examples of IP MIPS who transmitted multiple variants 
(MHP:158,312,2261,3663,3765), detected variants (MHP:312,377,3765) and mixtures of 
detected/undetected (MHP:158, 3663). M=maternal plasma at delivery, N= infant plasma 
at birth, Fu1= infant plasma 6 weeks post-partum, Fu2= infant plasma 12 weeks post-
partum,*= single stranded probe. 
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Figure 2.2 Phylogenetic Tree. V1/V2 sequences from two mother-infant pairs whose 
infants were infected intrapartum.  A total of 24-30 V1/V2 env clones from each mother 
and infant were sequenced, aligned using MAFFT, and used to build a maximum 
likelihood phylogenetic tree.  Maternal samples are represented by squares and infant 
samples are represented by circles (MHP 2017 = open shapes; MHP 3765=filled shapes).  
Parenthesis represent the number of clones with identical sequences. 
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Figure 2.3  HIV-1 envelope V1/V2 Variant Transmission.  The proportional abundance 
of each maternal V1/V2 variant was determined by the heteroduplex tracking assay and 
quantified by phoshorimaging.  Graphed are the abundances of the transmitted versus 
untransmitted variants in the A) IU mother-infant pairs, and B) IP mother-infant pairs.  
Transmitted variants that were undetected in the maternal viral population were assigned 
a relative abundance of 0.01.  The solid horizontal line represents the median abundance 
per group. Histogram of the probability of transmission obtained from random sampling, 
for both C) IP and D) IU transmissions, we sampled from the variant distributions 
described by the mothers’ HTAs according to their abundance in order to mimic a 
stochastic transmission process.  Shown are the summed log probabilities (see Methods) 
for 10,000 such samples.  The probability of the observed data is indicated by a vertical 
line.  The fraction of the random samples attaining a probability equal to or less than the 
observed data is indicated. 
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Figure 2.4: Umbilical Cord Plasma.  Autoradiographs of V1/V2 heteroduplex tracking 
assays against plasma-associated HIV-1 isolated from mother-infant pairs whose infants 
became HIV-infected: A) in utero, B) intrapartum. PA= probe alone, Mat=maternal 
plasma at delivery, N= infant plasma at birth, Fu1= infant plasma 6 weeks post-partum, 
cord= venous umbilical cord plasma, * = single stranded probe. 
 

 

 



Chapter 3 

 

HIV-1 Subtype C env Diversity, Env Length and Glycosylation in in utero and 

intrapartum Mother-to-Child Transmission 

 

The following material will be submitted under the following authors: 

Russell ES, Kwiek JJ, Keys J, Barton K, Mwapasa V, Meshnick S, and Swanstrom R 

 Table 3.1, 3.3 and Figure 3.1, 3.2 – Russell ES with help from Kwiek JK and  
  Barton K 
 Table 3.2 – Keys J 

 

3.1 Introduction 

 The mechanisms of HIV-1 mother-to-child transmission (MTCT) remain unclear.  

Without intervention, 15-35% of infants born to HIV+ women will become infected 

either in utero (IU), intrapartum (IP), or through breastfeeding.  Short-course 

antiretroviral treatment can reduce this incidence to 10-15%, and the combination of 

elective cesarean sections, highly active antiretroviral therapy (HAART) and formula 

feeding can further reduce transmission events to <2% (92). Factors that correlate with 

increased transmission include higher maternal viral load, low CD4+ count, and some 

coinfections (133). One part of understanding transmission is defining characteristics of 
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viruses that initiate new infections, which could give insight as to how transmission 

occurs and which steps are the most vulnerable targets for a new intervention. The HIV-1 

Env protein gp120 is on the surface of the virus, and is likely to participate in 

mechanisms of transmission. env gene diversity increases throughout infection (115), 

with mutations selected in response to immune system pressure (54, 140, 156). Despite 

the viral heterogeneity present within a chronically infected pregnant woman, a strong 

genetic bottleneck occurs during transmission, and a homogeneous virus population is 

often seen in vertically infected infants (5, 135, 154, 159). Multiple variants are also 

transmitted, though in a minority of infections (129, 154, 164).  

Viral characteristics have been identified that transmit more often in some 

transmission studies. Differences in glycosylation sites and variable loop lengths are 

common within a single quasispecies. Sugars protect the envelope protein from antibody 

recognition, and can become targets themselves (21, 141), while variable loops shield 

epitopes critical for viral replication from neutralizing antibodies (40, 112, 127).  To date, 

horizontal transmission has been more extensively studied than vertical transmission. 

Shorter variable loops and fewer putative N-linked glycosylation sites (PNGS) in env 

were seen in acutely infected subjects compared to subjects with chronic infection in 

studies of subtypes A and C, though not in subtype B (27, 35, 81, 83, 129).  Less work 

has been done in vertical transmission. In one study of subtype CRF_AE no difference in 

sequence length or glycosylation sites was seen, while another study found fewer 

glycosylation sites in transmitted viruses of multiple subtypes (129, 160). Though a 

genetic bottleneck occurs during both horizontal and vertical transmission, critical 

differences in the biological circumstances for these transmissions preclude the ability to 
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extend findings from one type of transmission to another. Maternal antibodies against the 

infecting quasispecies are present in the infant, unlike in horizontal transmission, and 

may play a role in selection (13).  Also, even within vertical transmission, differences 

have been seen in viral populations transmitted IU or IP (9, 37, 75), and also in 

transmission rates by subtype (119, 161).  Therefore, viral characteristics of transmission 

must be confirmed independently for different modes of transmission and subtypes.  

 In a previous study we used the heteroduplex tracking assay to assess viral 

diversity in 32 non-transmitting women, and 25 IU and 23 IP transmitting mother-infant 

pairs (75).  We found that IU infected infants were more likely to harbor a homogeneous 

viral population than infants infected IP, who also had more evidence of multiple variant 

transmission.  Based on mathematical modeling of the data, we found that the most 

abundant maternal plasma-associated variant was not detected in the infant most often, 

indicating selection occurred at some point in the event.    

In this study we report env sequence data for 10 IU and 9 IP MTCT pairs infected 

with subtype C HIV-1.  These data were obtained using single-genome amplification to 

avoid artifactual recombination during the PCR amplification, thus allowing analysis of 

sequence linkage as it existed in vivo.  Homogeneous viral populations were seen in 7 

IU-infected infants and 5 IP-infected infants, while the remaining infants had evidence of 

multiple variant transmissions. We found that virus from infants infected IP, but not from 

infants infected IU, have shorter variable loops and fewer putative N-linked glycosylation 

sites than matched maternal virus over the V1-V5 region. The differences were small, 

however, leaving the biological relevance unclear. We also saw evidence of selection and 

likely recombination occurring in the infant viral population over longitudinal samples, 
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again with possible differences depending on transmission timing.  Our data suggest 

different prevailing mechanisms could drive MTCT depending on when the virus is 

transmitted, with implications for vaccine design.   

 

3.2 Materials and Methods  

3.2.1 Study Participants 

 Plasma samples were collected as part of the Malaria and HIV-1 in Pregnancy 

(MHP) prospective cohort (74, 75, 98, 99).  The MHP study was approved by both the 

Malawi College of Medicine Research Committee and the Institutional Review Board at 

the University of North Carolina at Chapel Hill. Informed consent was obtained from all 

participants. 

Plasma was isolated from blood collected at labor-ward admission from the 

women, from the umbilical cord, and from infant heel-sticks at three time-points: within 

48 hours of birth, at 6-weeks, and at 12-weeks of age. Women and their newborn infants 

received single-dose nevirapine according to the HIVNET 012 protocol (48). HIV 

transmission from mother-to-infant was categorized by timing according to Bryson et al. 

(19) as follows: infants who were HIV-1 DNA negative by real-time PCR (86) at 0 and 6 

weeks were defined as non-transmitters (NT); infants who were HIV-1 DNA positive at 

birth were defined as in utero (IU) infections; and infants who were HIV-1 DNA negative 

at birth and DNA positive at 6 weeks were defined as intrapartum infections (IP).  Given 

these definitions it is impossible to distinguish between late in utero, intrapartum and 

early breastfeeding transmissions.  Overall, 10/35 in utero and 9/39 intrapartum 

transmission pairs were included in this study based on availability of the plasma, ability 
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to obtain PCR products, and the confirmation of a phylogenetic linkage of maternal and 

infant sequences. 

 

3.2.2 Single-genome amplification   

 Viral RNA was isolated from plasma samples using the QIAmp Viral RNA Mini 

Kit (Qiagen, Germantown, MD, USA).  The single-genome amplification (SGA) method 

for the env gene was used for RT-PCR (128).  Briefly, cDNA was generated using 

Superscript III Reverse Transcriptase and Oligo(dT) Primer, followed by RNaseH 

treatment (Invitrogen Corp, Carlsbad, CA). The env gene was amplified by nested PCR 

from the dilution of cDNA that resulted in approximately 30% positive PCR reactions.  

These conditions ensure that the large majority of amplifications are initiated with a 

single template, and eliminates artifactual recombination during PCR between multiple 

template sequences.  

 

3.2.3 Phylogenetic Analysis  

 V1-V5 sequences were generated then manually edited and aligned using MAFFT 

version 5.8, using the L-INS-i method (66).  The alignment was converted to PHYLIP 

format and a maximum likelihood phylogenetic tree was constructed using PHYML (50) 

with an evolutionary model determined by FindModel (www.lanl.gov).  Trees were 

resampled 100 times and bootstrap values greater than 70 were considered significant.  A 

neighbor-joining tree including sequences from all pairs and consensus sequences from 

each subtype was constructed to assess quality control.  Matched maternal and infant 
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sequences formed monophyletic groups separate from the other pairs, all pairs clustered 

with subtype C sequences. 

 

3.2.4 Statistical Methods   

 Sequence and glycosylation differences between pairs were calculated and 

hypotheses were tested using a linear generalized estimating equation (STATA 

Software), with standard errors calculated using robust variance estimators.  The 

Bonferroni correction for multiple comparisons was used to determine p-value 

significance. 

 To compare IU and IP maternal sequences to a dataset of subtype C chronic 

sequences we pulled 10 sequences from the dataset of >1000 sequences with 

replacement, calculated a mean for each population and variance, and then calculated a 

difference in means between each population and corresponding variance.  This was 

repeated 10,000 times for each parameter and we obtained a bootstraped standard error 

around the difference in means between chronics and mothers. The confidence intervals 

were calculated using the bootstrapped SE to get bootstrapped CI’s around the difference 

in means.  Anything that crossed zero indicated that mean length was not statistically 

different between the two populations. 

 

3.3 Results 

3.3.1 Subject Characteristics   

 We amplified the entire env gene (~2600 bp) and sequenced the V1-V5 region 

(~1kb) generated from the blood for 19 mother-to-child transmission (MTCT) pairs.  Ten 
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infants were HIV+ at birth and classified as being infected in utero (IU), nine infants 

were HIV- at birth but positive at 6 weeks and classified as being infected intrapartum 

(IP). We amplified a median of 15 sequences (range 4-24) per subject.  Characteristics of 

these pairs can be found in Table 3.1.   

 

3.3.2 What Is the Complexity of the Transmitted Virus In Vertical Transmission?  

 We and others have observed a severe genetic bottleneck during vertical 

transmission (37, 75, 159).  Here we confirm this observation in subtype C HIV-1 

vertical transmission with sequence data. Using phylogenetic analysis, we found the 

maternal viral population was more diverse than the matched infant population in all 

transmission pairs (Fig. 3.1). We observed a homogenous sequence population in 70% of 

infants infected IU, and for 56% in infants infected IP. All infant sequences formed a 

single viral lineage for eight IU, and five IP transmission pairs (eg. pair 1100, Fig. 3.1a), 

though for one IU-infected infant, 3321, there is branching within that single lineage 

from a putative recombination event (data not shown). Recent maternal infection is 

suspected in pair 1585 suggested by few supported branches, and short branch lengths 

with intermingled mother and infant sequences (data not shown). Thus, our data indicate 

that a single variant was transmitted in more than half of IU and IP transmission pairs. 

 The remaining 7 infants (3 IU and 4 IP) had evidence of infection with multiple 

maternal variants.  In 5 cases we interpret 2 variants seeding the infection (3 IU- 1851, 

2570, 3321; 2 IP- 2038, 2684), and in 2 cases we interpret 3 variants (IP- 312, 819).  

Sequences did not cluster on a single branch in these infants. Infants 1851 and 2570 had 

identical infant sequence tree topologies, with all but 1 or 2 variants homogeneous on a 
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single node, resembling single variant transmission (eg. pair 2570, Fig. 3.1b), while the 

remaining variants were found with maternal sequences in a separate lineage.  As 

mentioned above, 3321 has branching within a single infant lineage.  We examined these 

sequences using the Highlighter tool (www.hiv.lanl.gov) and found evidence that the 

5’end of the amplicon is the product of recombination with a second variant. Though the 

second variant was not amplified from the maternal population, in that subject our 

sampling gave a 95% chance to detect sequences that made up 33% or more of the viral 

population. We conclude recombination occurred due to the identical pattern in 2 

sequences, and the low probability that this new variant could have developed in the short 

time of infection.  From infant 2038 we amplified 2 distinct homogeneous populations, 1 

population comprised 11/17 sequences, and the second comprised 6 sequences (Fig. 

3.1c).  This demonstrates our only case of multiple homogeneous variants making up a 

significant portion of the viral population.  In the other 3 IP pairs, 312, 2684 and 819, 

there was significant branching within the infant sequences, often mingled with maternal 

sequences and having low bootstrap values for nodes with infant sequences. We visually 

inspected these sequences using the Highlighter tool and found evidence of 

recombination (Fig. 3.2), though again, we did not amplify all parental variants. This 

recombination could have occurred in the mother and the multiple recombined sequences 

were transmitted to the infant, or, more likely, there could have been transmission of 

multiple variants to the infant and early recombination events followed by selective 

amplification.  Regardless of when the recombination occurred, these data indicate that a 

minimum of 2 variants were transmitted.  In cases where multiple variants are 

transmitted, their phylogenetic history can be quickly complicated by recombination and 
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potential selective outgrowth. Overall, there is  a significant reduction in viral genetic 

diversity after transmission from mother to child for both IU and IP pairs. 

  

3.3.3 Features of the Transmitted Env Sequence   

 Infants infected IP had HIV-1 sequences that were shorter than the matched 

maternal sequences and had fewer PNG sites over the V1-V5 region of env; however this 

was not seen in the HIV-1 sequences of IU-infected infants. Maternal and infant sequence 

lengths were grouped according to transmission timing and compared using a linear 

generalized estimating equation with an exchangeable correlation matrix.  Infant 

sequences were significantly shorter for IP (p<0.001), but not IU (p=0.409), transmission 

pairs (Table 3.2). Maternal sequences from IP mothers were longer than those from IU 

mothers raising the possibility that the IP mothers happened to represent a biased 

samples. But, based on bootstrapped SE (10,000 replications), neither the IU nor IP 

maternal mean sequence length were statistically different between our sample of 

maternal sequences and a large database of sequences from individuals with established 

subtype C infection (p=0.6 and 0.4 for IU and IP respectively). Therefore, we see 

statistical differences in mother and infant V1-V5 sequence length in IP, but not IU, 

transmission pairs. Given the small size of the differences, the biological significance is 

unknown. 

We determined the number of PNG sites in each sequence using the N-Glycosite 

program (167). Over the entire V1-V5 region, there were significantly fewer PNG sites 

comparing sequences from IP mother-infant pairs (Table 3.2, p<0.001).  This significance 

is driven by differences in V2 and V4.  While there were no glycosylation site changes in 
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IU transmission pairs overall, when analyzed by variable loop there were fewer sites in 

the V1 and V2 regions.  This was countered, however, by a significant increase in 

glycosylation sites in C3.  Because of the high variability within V1/V2, including 

insertions and deletions, we were unable to identify common sites that were lost, though 

it could be possible that the overall number of sites in V1-V5 is more important than the 

location of the lost sites.  Thus, our data find that subtype C viruses with fewer N-linked 

glycosylation sites and shorter variable loops are transmitted IP though not IU, but 

whether the overall number is biologically important requires further testing.    

 

3.3.5 Early env Gene Sequence Evolution In the Infant   

 Several mechanisms could cause env gene diversity within the infant, including 

recombination, neutral mutations, and selected mutations.  We examined our env 

sequences for evidence of each.  

 As discussed above, we inferred that recombination occurred prior to the first 

positive time point in 3/9 IP and 3/10 IU-infected infants. Several identical sequences 

were amplified in each infant population.  Recombination was inferred when one or more 

sequences had regions with identity to other infant sequences and regions with many 

differences.  We were unable to confirm recombination by statistical tests due to the 

limited diversity between many of the sequences and because of limited template 

sampling, and also the absence of some parental sequences.  An example of this inferred 

recombination is in sequences from infant 312 (Fig. 3.2).  Of the 18 sequences amplified 

from the 6-week infant plasma sample, 12 are part of a homogeneous lineage (Inf6-a-l).  

The 6 other sequences have conserved mutations in the 3’ third of the V1-V5 region that 
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are too numerous to be attributed to random mutations over 6-weeks (Inf6-m-r).  We 

attribute these changes to a second variant that was transmitted and recombined with the 

major variant in this population.  The argument for recombination is supported by the 

detection of a second variant at the 12-week plasma sample that contains nearly all of this 

3’ motif, and a distinct 5’ sequence (Inf12-l,m).  We cannot rule out, of course, an 

additional transmission event through breastfeeding of a maternal variant that matched 

the exact 3’ sequence by chance, though this seems unlikely.  Performing this analysis in 

all of the infant sequence populations, we infer recombination in 3 IU and 3 IP first-

positive infant samples. 

 The random incorporation of neutral mutations could also contribute to infant 

diversity. We tested sequences from first positive time points for fit with the neutral 

mutation model of horizontal transmission developed by Keele and colleagues (67). We 

adjusted the model for sequence length, and tested it only against monophyletic lineages 

within each infant.  This model uses the fraction of identical sequences obtained at a time 

point to predict the length of infection up to 50 days. This model does not incorporate 

selection because horizontally infected adults should not have pre-existing immune 

responses to HIV.  Yet, infants have maternal antibodies that likely place the Env protein 

under selective pressure from the moment of transmission, thus the significance of the 

predictions is interpreted with caution. At 6-weeks, 3 of 9 IP-infected infants were 

modeled to be infected between 35-49 days prior, 3 predicted significantly fewer days of 

infection (6-18 days prior), and 3 significantly greater (>50 days- outside the model 

prediction range). The model could be said to fit the data for 6 of the infants classified as 

infected IP, including the possibility that one or more of the 3 infants with shorter 
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predicted infection times were infected at a later time through breastfeeding. In infants 

infected IU, the model predicts that 6 of 10 infants were infected within the last 50 days 

of pregnancy, and 3 greater than 50 days prior to birth.  Thus, based on the model 

developed by Keele and colleagues, and considering the possibility of early breastfeeding 

transmission events in IP-infected infants, neutral mutations can account for some early 

infant evolution. 

 We calculated the synonymous to nonsynonymous substitution ratio (dS/dN) for 

all infant populations using SNAP (71).  Synonymous nucleotide changes do not result in 

an amino change, while non-synonymous changes do.  Where 2 variants were detected, a 

separate dS/dN ratio was calculated for each lineage (Table 3.3).  No dS/dN ratio could 

be calculated for the sequence populations in the first times points of 3 IU and 3 IP pairs 

because there were only non-synonymous mutations. The dS/dN ratios were >1 for all 

calculated populations except the 12 week sample in infant 819.  Values <1 would 

indicate that evolution in the population is being driven by selection. Therefore, even 

though only non-synonymous substitutions occurred in 6 viral populations analyzed, 

dS/dN calculations do not support selection as driving diversity in the V1-V5 region of 

infant sequences up to 12 weeks of age. 

  While protein selection may not drive diversity over the entire V1-V5 region, 

many fixed and clustered mutations were detected in the infant populations.  At the 

second time point 5 IP infants had fixed mutations and all 4 IU-infected infants had fixed 

mutations. We defined fixed mutations as changes from the infant consensus seen in 

multiple sequences.  Further evidence of selection is seen in 1 IU and 5 IP infant 

sequence populations with different non-synonymous mutations at a single amino acid 
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and/or glycosylation site. In infant 312 there are 3 sequence changes and 1 deletion (some 

fixed) in both 6- and 12-week sequences that all remove the same glycosylation site in 

C3. These fixed and clustered mutations are likely due to selection by the high levels of 

maternal antibodies during the first 12 weeks, and possibly CD8+ T cell activity in some 

infants (87). 

 

3.3.4 Longitudinal Infant Evolution  

 Plasma was available from a second time point for 8 of 9 IP-infected infants and 4 

of 10 IU-infected infants.  All but one of these samples were taken at 12 weeks, therefore 

6 weeks from the previous positive sample for the IP-infected infants, and 12 weeks after 

birth for IU-infected infants.  In 1 IU-infected infant, 2444, the 12-week sample was not 

available, and sequences were amplified from the 6-week time point. 

 We observed 4 phenomena in comparing the infant viral populations in 

longitudinal samples. Populations were either similar, had evidence of recombination, 

had a new variant emerge, or had a significant shift in variant abundance.  Using 

phylogenetic trees, we found that 3 of 8 IP and 3 of 4 IU infants had viral populations 

with little evolution between time points. Recombination was seen in 2 IP infants 

between 2 variants sequenced at time one for infants 819 and 2684, and recombination 

was seen with variants not previously sequenced in one additional IP infant, 312. A 

second maternal variant not detected in the first time point was amplified at 12 weeks in 

one IU-infected infant, 1551, and one IP-infected infant, 2909. Because our sensitivity 

was ~25%, these variants that were detected at the second time point could have been 

present as minor variants at the first time points, or they could be the result of second 
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transmission events through breastfeeding. In 2038 two variants were amplified at the 

first time point, with 11 and 6 sequences per variant.  Both variants were again amplified 

at 12 weeks, but only 1 of 22 sequences clustered with the second population (Fig. 3.1d).  

This population shift was significant (38% to 4%; p < 0.01- Fisher Exact Test). Thus, 

significant changes occurred over 6-12 weeks in more than half of the infant viral 

populations, with recombination being likely in 3/8 IP but not observed in four IU-

infected infants. 

  

3.4 Discussion 

We analyzed subtype C HIV-1 env sequences from the plasma of 10 IU and 9 IP 

mother-infant transmission pairs.  A severe genetic bottleneck during transmission was 

confirmed in all pairs, and there were no significant differences in genetic diversity 

between IU or IP transmitting mothers or infected infants, though there is a trend in for 

increased IP infant diversity.  These data agree with previous studies of mother-to-child 

transmission (5, 37, 129, 135, 154, 159).  

In our previous study using samples from this cohort, we examined the diversity 

of V1/V2 using the heteroduplex tracking assay (HTA) in 25 IU and 23 IP mother-infant 

pairs, as well as 32 women whose infants remained uninfected for 12 weeks.  We 

concluded that fewer variants are transmitted to infants infected IU than IP (75). We see a 

similar trend in this study that includes fewer pairs, even considering the different 

sensitivities of the methods used.  HTA can detect variants as low as 2% in abundance, 

while, with the average of 15 sequences per patient, this sequencing will detect 95% of 

variants with greater than 20% abundance. In the 3 infants (819, 2038, 2684) reported 
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with 2 variants with >20% abundance by HTA (24%, 34%, and 20%, respectively), the 

sequencing data showed a heterogeneous infant population. For all pairs where we 

performed both the HTA and sequencing analysis, the number of V1/V2 variants is 

similar. The sequence information in this study provides a significant amount of 

additional data, including specific mutations, glycosylation sites, and inferences about 

recombination and evolution. Thus, these data build upon our earlier study. 

 We found evidence of heterogeneous viral populations in the first HIV+ sample 

for 3 of 10 IU-infected infants and 4 of 9 IP-infected infants, 8/19 overall. Previous 

studies using methods of similar sensitivities have been done looking at a similar env 

fragment.  These studies looked at transmission of subtype A and CRF01_AE and found 

a heterogeneous infant viral population in 7/13 (4/6 IU, 3/7 IP) and 3/17 pairs (unknown 

transmission timing), respectively (129, 154). There is no significant difference in rates 

of multiple variant transmissions between our current study and these 2 previous studies. 

Thus, our data agree with previous studies of other subtypes on how often multiple 

variants are transmitted in MTCT. 

 The reduction in sequence length and number of glycosylation site reported in 

horizontal transmission have yet to be examined in subtype C vertical transmission. 

Fewer glycosylation sites and shorter variable loops encoded in env were found in 

subjects recently infected through horizontal transmission with subtypes C and A (27, 

35), though not with subtype B (67). It is hypothesized that variants with fewer 

glycosylation sites and shorter sequences are often found in acute infection because the 

recipient has not yet produced an immune response, and these characteristics are 

associated with sensitivity to neutralization (156). Because maternal antibodies are 
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transmitted to the infant, this rationale would not be supported in vertical transmission if 

antibodies are indeed a driving force in this selection. In a study by Samleerat and 

colleagues of MTCT of subtype CRF01_AE, no reduction in overall sequence length or 

number of glycosylation sites was seen between 17 maternal and infant pairs overall, or 

when stratified by transmission timing (6 IU, 11 IP) (129). Our report here, with subtype 

C MTCT pairs, demonstrates differences in sequence length and number of glycosylation 

sites between mother-infant pairs, and between transmission timing groups. Though 

statistically significant, the biological relevance has yet to be determined.  A closer 

examination of the p-values slopes of the statistical models lends support to the idea that 

viral populations from infants infected IP with subtype C are different than IU, and 

transmission events in other subtypes.  For glycosylation sites, Samleerat et al. reported 

p=0.40 for IU, and p=0.31 for IP pairs.  Our subtype C IU pairs look similar, p=0.331, 

but not the IP pairs, p<0.001. Samleerat et al. did, however, identify glycosylation sites 

N301 and N 384 at the beginning of V3 and the end of C3, respectively, that appeared to 

be enriched in the infant populations. In our study infants infected both IU and IP had 

fewer glycosylation sites in V1/V2, but in V4 only IU infants had fewer sites. These data 

provide the preliminary data for a larger study to examine the overall difference in 

glycosylation sites and the specific sites that are gained or lost between mother-infant 

transmission pairs infected with different subtypes and at different times. 

 Significant changes occurred in infant viral populations in the first 12 weeks of 

HIV-1 subtype C infection.  These changes include neutral evolution, recombination, 

shifts in abundance of variants, and possibly super-infection through breast milk.  All of 

these changes must be considered when devising new interventions to prevent 
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transmission.  If a single variant is seeding the viral population, but several additional 

variants are in the infants at low levels (which could be the source of new 

recombinants/variants at 12 weeks), then the infant viral population may be more 

complex than it appears.  The complexity and characteristics of the transmitted 

population could provide clues to mechanisms of transmission, and alter the approach to 

prevention, including a vaccine or new drug development.  Studies of large cohorts with a 

deep analysis of the sequence population at early time points are needed.   

 We also saw examples of clustered mutations occurring in the infants, possibly in 

response to CTL or neutralizing antibody responses.  This was unexpected because infant 

immune responses are known to be very weak through this time (25, 87, 113, 138).  

Additional studies with longitudinal sampling in pairs with known HLA haplotypes and 

antibody specificities would lend insight into the source of these early selection events. 

 We found that single and multiple variants of HIV-1 subtype C are transmitted 

from mother-to-infant at approximately the same rate as horizontal transmission.  We 

also identified viruses with shorter sequence lengths and fewer glycosylation sites in V1-

V5 compared to the matched maternal sequences that were transmitted to infants infected 

IP, but not IU.  Neutral mutations drive evolution in the infant populations over the entire 

V1-V5 sequence, though selection does occur over small regions.  
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Table 3.1  Patient Characteristics 

Pair 
MHP 

Study ID 

Maternal 
Viral Load 

(log10) 

Maternal 
CD4 Count 

Transmission 
No. 

Maternal 
Sequences 

No. 1st 
Positive Infant 

Sequences 

No. 12 
Week 
Infant 

Sequences 

1468 4.6 274 IU 13 17 14 

1551 4.7 360 IU 13 12 16 

1585 4.4 529 IU 9 14 ND 

1629 4.8 342 IU 17 19 ND 

1851 ND 761 IU 14 16 ND 

2199 3.8 476 IU 4 15 12 

2444 4.8 511 IU 18 11 16* 

2570 ND 65 IU 15 12 ND 

2797 ND 399 IU 19 21 ND 

3321 ND 220 IU 9 11 ND 

312 5.3 180 IP 18 18 14 

819 4.4 891 IP 5 16 23 

874 4.9 228 IP 15 16 15 

1100 5.4 127 IP 16 16 ND 

1846 5.7 44 IP 19 24 12 

1945 5.5 157 IP 14 19 17 

2038 4.4 156 IP 8 21 23 

2684 4.7 122 IP 15 14 11 

2909 5.3 1092 IP 19 12 21 
 

* Six-week sample 
ND = no data 
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Figure 3.1  Representative maximum likelihood phylogenetic trees.  Circles represent 
maternal V1-V5 sequences, squares represent first positive infant sequences, and 
triangles represent second positive infant sequences.  a. Pair 1100, b. Pair 2570, c. Pair 
2038. 
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Chapter 4 

 

Broadly Neutralizing Maternal Antibodies in Subtype C MTCT 

 

4.1  Introduction 

 Preventing mother-to-child transmission (MTCT) relies on long, expensive drug 

treatments, cesarean section, and formula feeding of the infant (72).  These prevention 

methods are not feasible in most resource-poor areas of the world where MTCT 

continues to infect 15-40% of infants born to HIV+ women (92).  Less expensive short-

course drug therapies can reduce in utero and intrapartum transmission by 60-70%, yet 

coverage and cost remain barriers, and these therapies do not prevent post-partum 

transmission through breastfeeding.  Breast milk infects 15% of infants born to HIV+ 

women (39).  Even if formula were acceptable, feasible, and affordable, formula feeding 

cannot provide the protection from infectious diseases that breast milk can (29, 30, 147), 

making breast milk or formula about equal in terms of infant morbidity and mortality in 

resource-poor settings with high HIV-1 prevalence (28).  Thus, interventions that could 

protect the infant from HIV infection, yet still allow the mother to breastfeed would be 

most desirable. While highly active antiretroviral therapy to the mother could fill this 

role, there are also many unresolved issues with long-term drug administration, including 

the high expense, limited access, possible toxicity to the infant (148), and the evolution of 
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resistance (95).  An effective vaccine given to pregnant women and infants immediately 

after birth could protect the infant from MTCT, and possibly HIV transmission for life.  

Before a vaccine can be developed, however, it is necessary to determine mechanisms of 

transmission, including how transmission is naturally prevented in the majority of infants. 

If this mechanism were known, future interventions could elicit that protection in all 

pregnant women and their infants, or bolster it in those for whom it is weak.   

 Neutralizing antibodies from the mother play a significant role in protecting 

infants from pathogens (26), and are a likely candidate for a natural protection 

mechanism against HIV infection (73, 100).  Animal studies have demonstrated that 

neutralizing antibodies elicited by a vaccine can protect infant macaques against infection 

or at least slow disease progression (152), while direct administration of the appropriate 

antibodies can block transmission (45, 116).  Studies of mother-to-child transmission 

have come to conflicting conclusions about the role of neutralizing antibodies (8, 9, 15, 

49, 76, 134), though possibly for identifiable reasons.  The breadth of the neutralizing 

antibody response has been shown to depend on subtype (13), and differences in 

neutralizing antibody levels can correlate with the timing of transmission (9).  The fact 

that many previous MTCT studies did not analyze considering these factors could explain 

at least part of the discrepancies. 

 Broadly reactive neutralizing antibodies that have been studied have the lowest 

neutralizing activity against subtype C virus (11), though this data is likely to be biased 

because most antibodies were originally isolated from subtype B infected subjects.  A 

previous study found that sera from women infected with subtype CFR01_AE whose 

infants were infected intrapartum had higher neutralizing antibody titers against a viral 
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isolate of the same subtype than women whose infants were infected in utero or who 

remained uninfected (9).  There were no differences in titer against 3 viral isolates of 

different subtypes.  Comprehensive studies are needed to resolve these data and identify 

common neutralization sensitive epitopes among all prevalent subtypes.  

 We correlated heterologous neutralizing antibody titers in sera from pregnant 

women infected with HIV-1 subtype C with the infection status of their infant.  Women 

were classified as non-transmitters and women who transmitted in utero or intrapartum.  

Titers were measured against virus pseudotyped with two neutralization sensitive subtype 

B Env proteins and two neutralization sensitive subtype C Env proteins, one subtype C 

Env was generated from an isolate from the same country in which the sera were 

collected.  There was no correlation between heterologous neutralizing antibody titer and 

transmission status.  These data demonstrate the difficulty in identifying subtype C 

antibodies with broad neutralizing activity even within the same subtype. 

 

4.2 Materials and Methods 

4.2.1 Patient Sera 

 Serum samples were collected as part of the Malaria and HIV in Pregnancy Study 

(74, 75, 98, 99).  Blood was collected from pregnant women upon admission to the labor 

ward.  Infants were tested for HIV-1 infection at birth, then again at 6 and 12 weeks.  All 

available sera from women who transmitted HIV in this study were used in the analysis 

of neutralizing antibodies, and sera from 48 non-transmitting women were randomly 

chosen from the study population. 
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4.2.2 Envelope Clones 

 Envelope clones were chosen based on their known neutralization sensitivity and 

subtype. SF162 is highly sensitive to neutralization.  JRCSF was isolated from a subject 

infected with subtype B and is known to be moderately sensitive to neutralization. TV-1 

is a moderately sensitive subtype C Env.  MW965 was isolated from a Malawian subject 

infected with subtype C and was chosen for its relative sensitivity to neutralization 

(David Montefiori, personal communication).  JRCSF and SF612 were obtained from the 

AIDS Reference Reagent Repository, MW965 and TV-1 were generous gifts from David 

Montefiori. 

 

4.2.3 Pseudotyped Virus 

 Pseudotyped virus was made according to previously published protocols (93).  

Briefly, 293T cells were plated on day -1.  The env expression plasmid and ∆env pNLCH 

backbone plus luciferase (a gift from Jerry Jeffrey) were cotransfected into the cells on 

day 0 using FuGENE 6 transfection reagent (Roche, Indianapolis, IN).  On day 2 

supernatants were harvested, centrifuged, and frozen at -80C in 1ml aliquots.   

 

4.2.4 Neutralizing Antibody Assay 

 Neutralizing antibody assays were performed as described (93).  Virus was added 

to serum dilutions (1:20 and higher) and incubated at 37°C.  After 1 hour TZM-bl cells 

were added.  Two days later the cells were washed with PBS and lysed using Luciferase 

Reagent (Promega Corporation, Madison,WI).  Plates were read on a luminometer.  
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Titers are reported as the highest dilution with greater than 50% inhibition of infectivity 

as compared to a no-serum infection within the same experiment. 

 

4.2.5 Statistics 

 Titers were compared with the Kruskal-Wallis statistic using Prism 4 (Graphpad 

Software, Inc.). 

 

4.3 Results 

4.3.1 Subjects   

 Serum was obtained from HIV+ pregnant women in labor in Blantyre, Malawi.  

Women were considered non-transmitting (NT) if their infants were uninfected at birth 

and 6 weeks.  Women were classified to have transmitted in utero (IU) if their infants 

were HIV+ at birth, and transmitted intrapartum (IP) if their infants were HIV- at birth 

and positive at 6 weeks.  Sera from 48 NT, 21 IU, and 20 IP women were available for 

this study. 

 

4.3.2 Heterologous Neutralizing Antibody Titers  

 Each serum was tested for neutralizing antibody activity against virus 

pseudotyped with 4 heterologous envelopes, 2 subtype C and 2 subtype B. TV-1 is a 

moderately sensitive subtype C Env.  Median neutralizing antibody titers were similar for 

all transmission modes against this Env, NT, IP = 80, IU = 40 (p=0.30, data not shown).  

MW965 is a neutralization-sensitive subtype C envelope isolated from a Malawian 

subject. Women in this cohort are all likely infected with subtype C (unpublished data), 
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making MW965 a heterologous virus of the same subtype. Median neutralizing antibody 

titers were the same for women of all 3 transmission groups, NT, IU, and IP = 180 (p = 

0.7) (Figure 4.1a).   

 SF162 is a subtype C Env and is highly sensitive to neutralizing antibodies, and 

median titers were not different against this virus, NT, IU, and IP = 10 (p=0.71, data not 

shown).  JRCSF is a moderately neutralization sensitive subtype B envelope.  Median 

neutralizing antibody titers were also similar for JRCSF (NT=60, IU=60, IP=120; p = 

0.4) (Figure 4.1b).  Thus, neutralizing antibody titers against a heterologous virus of the 

same, or different, subtypes did not correlate with transmission or transmission timing of 

subtype C HIV-1 from mother-to-child. 

 

4.4 Discussion 

 Limited data are currently available to give insight into the role of neutralizing 

antibodies in mother-to-child transmission for relevant subtypes due to a lack of 

appropriate samples.  In this study we tested for a correlation between mother-to-child 

transmission of subtype C HIV-1 and heterologous neutralizing antibody titer in sera 

from 48 non-transmitting (NT), 21 in utero transmitting (IU), and 20 intrapartum (IP) 

transmitting women.  We found no differences in titer against a virus pseudotyped with a 

heterologous subtype C envelope, or of a subtype B envelope. 

 Conflicting results have been found in studies correlating mother-to-child 

transmission and heterologous antibody responses (9, 15, 23, 49, 136).  Many studies 

have been small, from women infected with a variety of subtypes, and have not separated 

transmission events by timing.  A comprehensive study by Barin et al. (9) tested sera 
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from 62 NT, 11 IU, and 17 IP women, 81 of whom were infected with HIV-1 subtype 

CRF01_AE, against 4 heterologous viruses.  The 4 viruses were of subtypes CRF01_AE, 

B, F, and CRF02_AG.  They found that women whose infants were infected intrapartum 

had significantly lower neutralizing antibody titers to the CRF01_AE pseudovirus than 

NT women or women whose infants were infected IU.  They also found that there was no 

correlation between neutralization and transmission status against the other 3 viruses of 

different subtypes.  Thus, in their study, lower titers of heterologous antibodies against 

virus of the same subtype correlated with IP transmission, while there were no 

correlations with the titer of antibodies against viruses of different subtypes.  In the study 

reported here, however, we found no association between heterologous NAB titer and 

transmission for either the subtype C or subtype B pseudotyped viruses we assayed.  

These results could be related to a reported lack of NAB breadth in subtype C infections 

(81).  It could also be the case that a correlation would be seen against an Env protein 

from a different isolate.  Regardless, unlike a similar study of women infected with 

subtype CRF01_AE, we found no difference between neutralizing antibody titers of sera 

from NT, IU, and IP women infected with subtype C HIV against heterologous virus of 

the same subtype.  

 In this study we explored the relationship between heterologous neutralizing 

antibodies and mother-to-child transmission of subtype C HIV-1.  We found no 

association between heterologous NAB titer and transmission, unlike has been seen with 

other subtypes (9).  These results further highlight the importance of research on the 

prevalent subtypes of HIV-1.  Subtype C currently causes more infections than any other 



 78

subtype (149), yet the least is known about how to neutralize it (11).  Further work should 

identify epitopes common among subtype C viruses that are susceptible to neutralization. 

 

4.4 Future Directions 

 Autologous neutralizing antibodies have been shown to protect infants from 

MTCT, particularly for IP transmission. In one study by Wu et al (160) the transmitted 

viral variants were more resistant to maternal NAB than untransmitted maternal variants 

in infants infected IP with subtypes A, C, or D. This demonstrates that infants were 

protected from neutralization-sensitive variants.  Another study found that low 

autologous NAB titer in women infected with subtype B correlated with IU transmission 

when compared to NT and IP women (36).  Thus, neutralizing antibodies are able to 

protect infants from infection with viral variants that are sensitive to these antibodies. 

 In the future we will examine the ability of autologous NAB to protect infants 

from infection in a subset of pairs from the MHP study.  We are currently cloning env 

genes from viral RNA isolated from IU (n=10) and IP (n=6) transmission pairs.  These 

clones will be used to make pseudotyped virus and will be tested for sensitivity to 

heterologous sera and monoclonal antibodies.  These assays will determine whether 

transmitted variants are inherently more resistant to neutralization than matched maternal 

populations.  The pseudoviruses will also be tested against autologous maternal sera.    

We hypothesize that in this relatively large number of subtype C MTCT pairs we will 

find that IP-infected infants are protected from infection with viruses that are sensitive to 

autologous neutralizing antibodies. 
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Figure 4.1. Lowest titer of maternal serum with > 50% inhibition of infectivity.  NT = 
non-transmitting women.  Median titer denoted by line.  a. Titer against virus pseudo-
typed with subtype C Env MW965. b. Titer against virus pseudotyped with subtype B 
Env JRCSF. 

 

 



Chapter 5 

 

Diversity in env during HIV-1 Subtype C Mother-to-Child Transmission 

 

5.1 Introduction 

 HIV mother-to-child transmission (MTCT) through breastfeeding is responsible 

for one third to one half of infections in infants in Sub-Saharan Africa, where 90% of 

HIV infected children live (149).  Short-course drug regimens, which can reduce in utero 

(IU) and intrapartum (IP) MTCT from 15-25% to approximately 10% (92), are currently 

recommended for HIV+ pregnant women in regions where HAART, elective cesarean 

section, and formula feeding are not feasible or safe.  These regimens, however, do little 

to reduce transmission through breastfeeding, which infects approximately 15% of 

infants born to HIV+ women (39). 

 New interventions are needed that can be applied in developing countries, yet this 

is difficult because little is known about the mechanism(s) of transmission.  The oral 

cavity and gastrointestinal tract of breastfed infants come into frequent contact with viral 

particles each day from both cell-free and cell-associated HIV-1 (79, 101, 150).  Higher 

concentrations of HIV in breast milk correlate to higher rates of transmission (123, 124).  

Common hypotheses for transmission routes include breaches in mucosal surfaces, 
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transport across M cells, or indirect infection of epithelial cells (108).  The fact that 85% 

of infants remain uninfected despite ingesting large amounts of HIV-infected breast milk 

indicates the inefficiency of the transmission process and highlights the need to define the 

mechanism of transmission and the usually protective mechanisms that preclude 

transmission (55, 151, 153).  This work so far has pointed to several protective innate 

immune factors against HIV-1 infection in vitro and in vivo, , many being natural ligands 

for the HIV coreceptors CCR5 and CXCR4, while other factors may increase infection 

(41).  The acidic pH of the stomach (132), and the presence of anti-HIV factors in saliva 

(143) may also play protective roles. Studies must now begin to determine whether 

transmission is a result of a random virus breaking through these protections by chance, if 

there are specific viral characteristics that evade protection mechanisms, or a combination 

of these or other factors. 

 There are limited data on the characteristics of virus transmitted through 

breastfeeding, and much of what is known has focused on small regions of env and/or the 

characterization of only a few sequences from each subject (117, 155), though a genetic 

bottleneck has been observed.  Studies of in utero and intrapartum transmission have 

shown differences in the characteristics of transmitted virus if the infant was infected in 

utero or intrapartum (37, 75).  In addition, studies of horizontal transmission have 

demonstrated differences in viral characteristics of transmitted viruses depending on the 

infecting subtype (27, 35).  In subtypes C and A viruses with fewer glycosylation sites 

and shorter lengths (i.e. more ‘compact’ viruses) are transmitted, though not in subtype B 

transmission events.  Viral characteristics during breast milk transmission of subtype C 
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should also be determined in order to understand whether interventions for prevention of 

transmission would likely be effective for all modes of MTCT and all subtypes. 

 In this study we amplified env from 3 HIV+ mother-infant pairs where the infant 

was infected through breast milk.  We sequenced gp120 and found heterogeneous viral 

populations in the mothers and relatively homogenous populations in the infants.  In two 

infants we found evidence of single variant transmission, while multiple variants were 

transmitted to one infant.  Infant sequences had fewer N-linked glycosylation sites and 

shorter sequences than maternal sequences.  Though the study is small, these results are 

consistent with selection for virus with shorter variable loops and fewer glycosylation 

sites during transmission of HIV-1 subtype C from mother-to-child through breast milk. 

 

5.2 Materials and Methods 

5.2.1 Study Participants 

 Plasma samples were collected as part of the Malaria and HIV-1 in Pregnancy 

(MHP) prospective cohort (74, 75, 98, 99).  The MHP study was approved by both the 

Malawi College of Medicine Research Committee and the Institutional Review Board at 

the University of North Carolina at Chapel Hill.  Informed consent was obtained for all 

participants. 

Plasma was isolated from blood collected at labor-ward admission from the 

women, from the umbilical cord, and from infant heel-sticks at three time-points: within 

48 hours of birth, at 6-weeks, and at 12-weeks of age.  Women and their newborn infants 

received single-dose nevirapine according to the HIVNET 012 protocol (48).  HIV 

transmission from mother-to-infant was categorized by timing where infants who were 
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HIV-1 DNA negative by real-time PCR (86) at 0 and 6 weeks, then positive at 12 weeks 

were classified as infected post-partum through breastfeeding (BF).  

 

5.2.2 Single-genome amplification   

 Viral RNA was isolated from plasma samples using the QIAmp Viral RNA Mini 

Kit (Qiagen, Germantown, MD, USA).  The single-genome amplification (SGA) method 

for the env gene was used for RT-PCR (128).  Briefly, cDNA was generated using 

Superscript III Reverse Transcriptase and Oligo(dT) Primer, followed by RNaseH 

treatment (Invitrogen Corp, Carlsbad, CA).  The env gene was amplified by nested PCR 

from the dilution of cDNA that resulted in approximately 30% positive PCR reactions.  

These conditions ensure that the large majority of amplifications are initiated with a 

single template, and eliminates artifactual recombination during PCR between multiple 

template sequences.  

 

5.2.3 Phylogenetic Analysis  

 Sequences were generated then manually edited and aligned using MAFFT 

version 5.8, with the L-INS-i method (66).  The alignment was converted to PHYLIP 

format and a maximum likelihood phylogenetic tree was constructed using PHYML with 

a HKY85 evolutionary model (50).  Trees were resampled 100 times and bootstrap values 

greater than 70 were considered significant.  A neighbor-joining tree including sequences 

from each pair was constructed to assess quality control.  Matched maternal and infant 

sequences formed monophyletic groups distinct from the other pairs.  Pairwise 
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comparison diversity was calculated within lineages with Molecular Evolutionary 

Genetics Analysis software (MEGA 4.0) using the Kimura-2 parameter. 

 

5.2.4 Statistical Methods  

 Values were compared using the Wilcoxon matched-pairs signed rank test. 

 

5.3 Results 

5.3.1 Subjects   

 Plasma samples were obtained from 3 mother-infant pairs where infants were 

HIV negative at birth and 6 weeks, and HIV positive at 12 weeks.  Transmission was 

classified as having occurred post-partum through breastfeeding (BF).  Single-genome 

amplification was used to obtain 103 env gene amplicons from mothers and infants.  

Phylogenetic linkage of the viral sequences from the mother and infant pairs was 

confirmed using a neighbor-joining tree (data not shown).   

 

5.3.2 Genetic bottleneck   

 A genetic bottleneck was observed between maternal and infant env populations.  

Pairwise diversity was calculated for each viral population.  All maternal populations 

were more heterogeneous than the paired infant populations by pairwise comparison, 

consistent with a bottleneck (Fig. 5.1).  Sequences were next analyzed using maximum 

likelihood phylogenetic trees and the Highlighter tool (www.lanl.gov).  Infant sequences 

formed a single lineage with no intermingled maternal sequences in pairs 1266 and 1677, 

likely representing transmission of a minor maternal plasma variant (Fig. 5.2b-c).  



 85

Because we sequenced an average of 17 maternal env genes, we have 95% confidence we 

sampled variants that comprised >18% of the maternal population.  These minor variants 

detected in the infants could be maternal variants comprising <18%, or they could be 

viral variants compartmentalized in the breast milk.  In pair 1266 all infant sequences 

form a single lineage, but one maternal sequence has continuous sequence identity with 

the infant sequence over 50% of the length of env, likely indicating recombination 

occurred between the similar maternal sequence and an additional unamplified variant.  

This is further evidence that this variant exists in the maternal plasma population, albeit 

at a low frequency.  Thus in 2 of 3 BF mother-infant pairs we found that a single variant 

was transmitted to the infant, and this variant did not represent a majority of the maternal 

plasma viral population.   

 In the remaining mother-infant pair there is evidence for the transmission of at 

least 2 variants.  In pair 942, all infant sequences were found in a single lineage that also 

had 2/19 maternal sequences intermingled (Fig. 5.2a).  Examining these sequences with 

Highlighter, 14/17 infant sequences were nearly identical and were distinct from 

amplified maternal sequences (Fig. 5.3a).  The remaining 2 maternal sequences and 1 

infant sequence were more similar to the majority of the infant sequences than the other 

maternal sequences, but had numerous common differences from the infant consensus.  

The final infant sequence appears to be a recombinant of the infant consensus and minor 

infant variants.  Because we used single-genome amplification, this recombination event 

could not have occurred during PCR, and we propose recombination within the infant as 

the likely source between 2 different sequences.  Both sequences could have transmitted 

to the infant during the same transmission event, or through 2 separate events.  Thus, our 
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data indicate in 1 of 3 BF transmission pairs, 2 closely related variants were transmitted, 

one of which was also detected in the maternal population.   

 

5.3.3 Viral Genetic Characteristics  

 We compared the number of glycosylation sites and sequence length between 

mother and infant viral populations.  Previous work has shown more ‘compact’ viruses 

with fewer glycosylation sites and shorter variable loops are transmitted during horizontal 

transmission of subtype C (35), and during IP vertical transmission (our unpublished 

results).  These differences were seen over the entire env gene in all three pairs (Fig. 5.4), 

though not for each variable loop between sequences from each pair (data not shown).  In 

this data set we found fewer glycosylation sites and shorter variable loops in BF 

transmitted subtype C variants.  The small sample size of this initial study precludes a test 

for statistical significance. 

 

5.3.4 Selective Pressure in Infant   

 Keele et al. (67) recently created a neutral model of HIV-1 sequence evolution 

through the first 50 days of infection.  This model is based on early sequence data from 

subjects infected through horizontal transmission.  We tested this model against our 

sequence data from infants who had tested HIV-1 negative 42 days prior to the positive 

sample (i.e. 6 weeks after birth).  According to the model, with an infection of 42 days or 

less, >60% of sequences should be identical.  Infants in this study had 33, 7, and 20% 

identical sequences (942-major lineage, 1266, and 1677, respectively).  According to this 

model, the infants have more sequence heterogeneity than would be accounted for by 
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random neutral mutations.  If we extend the model beyond 50 days it would predict 

infection times of 99, 238, and 136 days in these infants, respectively.  These infection 

times are extremely unlikely given the additional HIV negative results at birth, and 

therefore suggest selection occurred in these infants.  Because maternal antibodies are 

transmitted to infants through breast milk, this could alter the pattern of evolution in a 

vertically infected infant compared to that of horizontally infected subjects.  However, 

the mutations in the infant sequences do not cluster within variable loops, and are in fact 

often in gp41 (Fig. 5.3a-c).  This region is not targeted by antibodies as often as variable 

loops, thus this could demonstrate cytotoxic T-lymphocyte selection.  Sites of multiple 

mutations can be located in areas of high CTL selection.  We are unable to confirm 

specific epitopes because the HLA type of these women and infants is unknown.  

Therefore, unlike subjects infected through horizontal transmission, env sequences from 

infants infected through breast milk show evidence of selection within the first 6 weeks 

of infection, and this selection may be more consistent with cytotoxic T-lymphocytes 

rather than maternal antibodies. 

   

5.4 Discussion 

 In this study we analyzed env sequences from 3 mother-infant pairs where HIV-1 

subtype C was transmitted through breastfeeding (BF).  Similar to previous studies of in 

utero and intrapartum transmission from mother-to-child (129, 154), and one study with 

limited subtype A sequence data by Rainwater et al. (117), we saw a strong viral genetic 

bottleneck in all three pairs.  For the pairs described herein, pairwise diversity was 

considerably less for the infant, as compared to maternal, sequences for all 3 pairs.  
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Recently, large studies have determined the likelihood of transmission of multiple 

variants in horizontal transmission (2, 67), along with smaller studies in vertical 

transmission (37, 129, 154).  These studies all have similar results, where the majority of 

recently infected subjects have a viral population containing a single variant, while 

approximately 20%  have multiple variants.  Even with our small dataset we mirror these 

results, two variants were detected in 1/3 infants, while only one variant was detected in 2 

infants.  

 The presence of multiple variants in the infant could represent separate 

transmission events, or multiple variants transmitting as part of the same event.  In the 

infant described the two variants are similar yet transmitted from a more diverse maternal 

viral population, therefore multiple transmission events would indicate a strong selection 

for similar characteristics (either during transmission or through selective amplification in 

the infant), or a dramatically different viral population in breast milk compared to 

plasma.  No studies have definitively compared viral populations in plasma and breast 

milk, and the small studies that have been published are conflicting (10, 53, 65).  More 

data are needed to determine the relationship between maternal plasma and breast milk 

viral populations.  

 Sequences from infants had fewer N-linked glycosylation sites and shorter 

variable loops than matched maternal sequences.  Other studies of subtype C and A 

horizontal (27, 35), and subtype C IP (our unpublished results) transmission have 

identified this selection for shorter variable loops and fewer glycosylation sites.  Here we 

extend this finding with a trend in 3 subtype C BF transmission pairs.  No published 

studies have examined loop length and number of glycosylation sites in BF transmission.  
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Research has recently begun to focus in more detail on BF transmission, and additional 

studies with large numbers of pairs covering all relevant subtypes will hopefully be 

completed to fully characterize the BF transmitted virus.  A better understanding of what 

mechanisms drive BF transmission and shared traits of viruses seeding acute infections 

would help in developing new interventions. 

 Early sequence changes in the infant viral population may also provide clues to 

what immune pressures are present and/or absent.  New interventions could bolster 

immune responses naturally present, and perhaps activate deficient responses.  In 

horizontal transmission of HIV-1 the virus recipient immune system is naïve to HIV, but 

has a functional, developed immune system.  Infants receive maternal antibodies through 

the placenta and breast milk, yet new infant responses are slower to activate (25, 87).  We 

analyzed infant sequences using a neutral evolution model developed from subjects 

horizontally infected with HIV-1.  Sequences from these infants infected through BF had 

more heterogeneity than could be accounted for by random neutral evolution.  Thus, we 

conclude that selection is occurring in these infants within the first 42 days of infection.  

If this selection was due to maternal antibody selection, mutations would likely cluster in 

the variable regions of env.  Mutations instead often clustered in gp41 near known CTL 

epitopes.  Not knowing the HLA type of these subjects we cannot confirm CTL escape, 

but it raises an interesting question for future study.  Additional longitudinal studies of 

larger numbers of subjects could be done to characterize early infant responses and 

sequence evolution to determine the source of this diversity. 

 In this study we analyzed env sequence data from 3 HIV-1 subtype C 

breastfeeding transmission pairs.  A strong genetic bottleneck took place during 
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transmission, even when multiple variants were transmitted.  Transmitted variants had 

fewer glycosylation sites and shorter sequences than the average of the maternal 

population.  We also saw evidence for selective evolution in these infants, perhaps as a 

result of cytotoxic T-lymphocytes.  Thus, we present data for selection during both 

transmission and early evolution in these 3 infants. 

 

 

 

 

 

Figure 5.1  Pairwise comparison of maternal and infant sequence populations.  
Error bars indicate standard deviation. 
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Figure 5.4  Length and glycosylation sites differences.  Average and standard deviation 
of:  a. Amino acid length of maternal and infant sequences.  b.  No. of putative 
glycosylation sites in maternal and infant sequences. 
 



Chapter 6 

 

Concluding Remarks 

 

 Chapters 2 and 3 demonstrate a bottleneck in genetic diversity in mother-to-child 

transmission (MTCT) of subtype C HIV-1.  The common hypotheses proposed for this 

bottleneck are: random (stochastic) transmission based on abundance in the maternal 

population, selective transmission from the mother, and selective amplification in the 

infant.   

 In chapter 2 we used abundance data to model stochastic transmission and found 

that infants were too often infected with a minor maternal variant for these transmission 

events to be random.  While this conclusion is robust if the source population of the 

transmitted virus is the same as that of blood, compartmentalization of viral variants in 

the placenta could alter these results and support transmission as a stochastic event.  In 

order to understand in utero (IU) and intrapartum (IP) transmission events there is an 

urgent need for data about how HIV-1 interacts with the placenta, and in turn how these 

interactions affect transmission.  The placenta is home to unique cell types and an 

abundance of immune cells, cytokines, and chemokines.  This environment could result 

in HIV-1 compartmentalization, could effectively control replication, or could result in 

less control of the virus due to a skew towards tolerance.  Elucidating these interactions 

may provide clues for new transmission interventions. 
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 Chapter 3 showed evidence for intrapartum, but not in utero transmission of 

viruses expressing Env proteins with shorter variable loops and fewer glycosylation sites 

(i.e. more ‘compact’ viruses).  While these differences were only statistically significant 

for IP pairs over the entire V1-V5 sequence, similarities were seen in specific loops.  For 

instance, there were fewer glycosylation sites in V1/V2 for both routes of transmission.  

Perhaps it is actually the reduction in V1/V2 glycosylation sites that offers an advantage 

during transmission or amplification in a new host.  Or fewer V1/V2 sites could offer 

better replicative fitness in the infant, and sites in other regions may be related to 

transmission timing.  In order to fully characterize the role of viral characteristics in 

transmission, large studies including multiple subtypes should be carried out.  If variants 

with fewer glycosylation sites in V1/V2 are selected for growth in the infant population, 

antibodies targeting exposed epitopes in this region given to the mother may be effective 

for prevention or better control of the infection.  If C3/V4 exposure is needed for IP 

transmission, antibodies to this region in the mother during labor and delivery could 

reduce transmission.  A better understanding of viral characteristics would provide these 

clues. 

  In chapter 5 we suggested more compact viruses are transmitted in MTCT 

through breastfeeding.  Because the median sequence length and number of glycosylation 

sites was reduced for 3/3 pairs with larger differences than IP pairs, this selection has the 

chance of being more dramatic than for IP transmission.  The limited number of pairs 

precludes our ability to draw solid conclusions.  Short-course antiretroviral drugs, though 

costly, do reduce IU and IP transmission significantly.  In a setting where breast milk is 

the only option for safe infant feeding, antiretroviral drugs would be needed likely for at 
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least six months and possibly up to two years.  This cost is problematic and coverage 

would be even more difficult to expand than it has already been shown to be for short-

course treatments.  For these reasons it is important to dramatically expand the very small 

amount of information that is known about virus transmitted through breastfeeding, 

hopefully to give insight into mechanisms of transmission.  With appropriate sequencing 

of cell-free and cell-associated HIV-1 in breast milk and blood, the source of transmitted 

virus could be determined.  Once the source of the virus is determined, specific 

mechanisms for transmission could be tested in animal models.  Drugs could then be 

developed to give infants before each feeding, or a filter could be placed over the breast 

with binding specificity for a cell type or viral characteristic.  Without knowledge of 

mechanisms the only options for preventing transmission through breast milk will 

continue to be prohibitively expensive drugs and unsafe formula feeding. 

 In chapter 4 we found no association between broadly reactive neutralizing 

antibody titers and IU or IP transmission.  Neutralizing antibodies are the only known 

immune response that could be cultivated in a vaccine to provide sterilizing immunity.  

Neutralizing antibody epitopes common across subtypes have not yet been identified, 

though whether this could be because most studies have examined only subtype B 

epitopes and not because they do not exist.  Future studies need to identify conserved 

epitopes important to all relevant subtypes.  If these epitopes can be identified, work can 

begin to find immunogens for vaccines that elicit neutralizing antibodies to these sites. 

 

6.1 Future Studies to Correlate Neutralizing Antibody Sensitivity with 

Transmission 
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 We are currently gathering data toward this goal by cloning mother and infant env 

sequences from 10 IU and 6 IP transmission pairs and testing these envelopes against 

autologous maternal sera.  The pseudoviruses will also be tested against a panel of 

heterologous monoclonal antibodies and patient sera to determine their general sensitivity 

to neutralization.  The results of this study will determine if virus is able to transmit from 

mother-to-infant in the presence of neutralizing antibodies (either in the maternal or 

infant blood), or if only escape variants are able to seed infant viral populations.  It will 

also show if escape viruses are inherently difficult to neutralize or if perhaps their ability 

to escape is a result of poor immunologic control (which could also be correlated with 

epidemiological data from the mothers).  This study will also show differing ability of 

neutralizing antibodies to block the transmission of sensitive virus depending on the 

timing of transmission, as has been suggested elsewhere (discussed in 1.4.2).  This will 

be the largest comprehensive study to date with the ability to correlate both autologous 

and heterologous neutralizing antibody sensitivity, env sequence, and transmission status 

in subtype C mother-to-child transmission pairs. 
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