
FAST ALGORITHMS FOR BROWNIAN DYNAMICS WITH
HYDRODYNAMIC INTERACTIONS

Wenhua Guan

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Mathematics in the College of Arts and Sciences.

Chapel Hill
2016

Approved by:

Jingfang Huang

Gary A. Huber

Laura Miller

Katie Newhall

Jan F. Prins



c� 2016
Wenhua Guan

ALL RIGHTS RESERVED

ii



ABSTRACT

Wenhua Guan: Fast Algorithms for Brownian Dynamics with
Hydrodynamic Interactions

(Under the direction of Jingfang Huang)

In this dissertation, we contribute on three fundamental parts of Brownian dynamics simulations

with hydrodynamic interactions. The first part of the dissertation is to derive the formulas for

computing the electric field gradients by the new version of fast multipole method(FMM) [1] and to

implement them as new functions for existing FMM solvers. In the second part of the dissertation,

we discuss how to decompose the far-field Rotne-Prager-Yamakawa potential into four far-field

Laplace FMM calls including electrostatic potential, electric field and field gradient terms. A

parallelized Rotne-Prager-Yamakawa solver based on the new version of fast multipole method has

been developed with tunable accuracy. The solver makes it computationally viable for large-scale,

long-time Brownian dynamic simulations with hydrodynamic interactions. In the third part, a model

is built toward an accurate description of hydrodynamic effects on the translational and rotational

dynamics of complex, rigid macromolecules with arbitrary shape in suspension. The grand diffusion

matrix is calculated by employing the bead-shell model for describing the shape and structure of

macromolecules in the many-body system. Two fast algorithms based on block conjugate gradient

method and the Schur complement method are developed for computing the translational and

angular velocities, as well as the displacements and orientations in order to track the trajectories of

the macromolecules in the complex structured biological systems.
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CHAPTER 1

Introduction

1.1 Background

The interiors of all living cells are crowded with biological macromolecules, such as proteins,

nuclear acids (RNA, DNA), carbohydrates, polymeric lipids and so on. Macromolecules are constantly

moving around by diffusion in biological systems. Diffusion is basically the random motion of

molecules which is driven by thermal energy. It is one of the fundamental questions that is being

pursued by scientists in molecular biology, cellar biology and beyond. Molecules, macromolecules

and nanoparticles, under diffusive transport in a fluid medium, is of interest in many biological

applications, such as drug delivery and separation processes [6]. Moreover, a detailed study of the

transport, regulation and dynamics of molecules inside cells can help us to understand how healthy

cells change to disease states and provide important information to the developers of therapeutic

drugs. Micro and nano drug delivery systems are developed to deliver the drug to the desired tissue

in the human body so that it increases the efficiency and effectiveness of the treatment and minimizes

the side effects associated with the drug [7]. Therefore, the understanding of these mechanisms

will also help researchers to develop preemptive treatment, monitored by a wrist-worn device for

detecting diseases. Recently, Google has been working on a nanoparticle pill that can identify cancers,

heart attacks and other diseases before they become a problem.

There are mainly two classes of methods for simulating the diffusion in biological systems.

Traditional one-scale continuum models, such as the Navier-Stokes equation for Newtonian fluids, do

not incorporate the size of the biomolecules explicitly, nor do they incorporate the shape changes of

the molecules. They are far from capturing the multiscale-multiphysics mechanics in a biological

systems. The other class of methods treats the diffusing molecules individually, for example, molecular

dynamics and Brownian dynamics methods. Molecular dynamics [8] is a computational method which

describes equilibrium and dynamics properties of a biological system, and computes the motions of



individual molecules. Hence, the detailed information on the dynamic behaviors of both solute and

solvent molecules are included in molecular dynamics at an atomic level of description. The molecular

dynamics is more accurate compared with the other coarse-grained models. However, accounting for

the effect of the solvent molecules on the solute will require a prohibitive computational cost for

long-time simulations [9].

Brownian dynamics is a mesoscopic method for simulating the diffusive behavior of particles which

undergoes Brownian motion in fluids. In Brownian dynamics, the solvent is treated as a continuum

and the impact of the explicit solvent molecules to the solute molecules are replaced instead by

an instantaneous friction force and a fluctuating force. The reason why the Brownian dynamics

methods allow one to simulate much larger time scales than in molecular dynamics simulations is

because Brownian dynamics techniques are able to coarse-grain out the fast modes of the solvent

molecules [10]. The Brownian dynamics method takes the advantage of the large separation in

time scales between the rapid motion of solvent molecules and the slow motion of the Brownian

particles, the mass and size of which are larger than those of the host medium particles [11]. The

core of the Brownian dynamics simulation is a first or second order stochastic differential equation

in time for the position of the solute molecules which allows for studying the temporal evolution

and dynamics of complex fluids. Brownian dynamics techniques have been widely used in biology,

biochemistry, chemical engineering and materials sciences [12, 13]. It has many applications, such as

protein folding [14, 15], DNA bending and supercoiling [16, 17, 18], steering in enzyme/substrate

encounter [19, 20, 21, 22], and diffusion in crowded cells [23, 24].

An important effect that helps Brownian dynamics algorithms to capture correctly the dynamics of

the Brownian particles in dilute solution is the hydrodynamic interaction. Hydrodynamic interaction

is the dominant factor in this intracellular diffusion and crucial to macromolecular motion in vivo

[25]. A particles moving in a viscous fluid will induce a local flow field that will affects the movements

of other particles. As a result, the other particles will feel this local flow field and experience

the corresponding movements. The movements of the other particles are said to be resulted

from hydrodynamic interactions of the original particle. These long-range, nonlinear many-body

interactions, mediated by the solvent, are commonly called hydrodynamic interactions (HIs) which

depend on the configuration of all particles in fluids. Traditional Brownian dynamics simulations

often neglect or simplify the hydrodynamic effects which describe the dynamic correlations between

2



the Brownian particles mediated by fast momentum transfer through the solvent since it will result

in high computational cost. It may cause unphysical results as soon as the time scale exceeds a few

collision times. Proper treatment of hydrodynamic interactions is essential in simulation studies of

Brownian particles in the flow.

Given the ability of Brownian dynamics techniques in bridging different time and length scales, it

becomes essential for developing fast algorithms in Brwonian dynamics simulations with hydrodynamic

interactions to study the dynamics of macromolecules. Current algorithms for dynamical modeling

fail to perform a simulation long enough to observe a large-scale conformational change. The

massive number of parameters and iterations required to accurately model a reasonably-sized many-

body system of macromolecules at proper resolution are beyond even the processing abilities of

supercomputers. Understanding the interplay between different mechanisms at various scales presents

formidable challenges to conventional mathematical modeling and solution techniques, and thus

requires the development of accurate and robust multiscale models and efficient algorithms for

simulations. Below, the Brownian dynamics model with hydrodynamic interactions will be presented

for describing the motions of spherically symmetric particles and the associated computation

challenges. The rotations of these particles can be neglected due to their symmetric geometry. Based

on the model for spherical particles, the Brownian dynamics translational-rotational model for rigid

macromolecules of arbitrary shape is described and the corresponding diffusion matrix has been

calculated through the deformation of the macromolecules by bead-shell model.

The goal of this dissertation is to derive state-of-the-art fundamental algorithms to advance

Brownian dynamics simulations with hydrodynamic interactions and implement the fast algorithms

as solvers to accelerate the numerical simulations. These simulations will be suitable for a broad

class of flows and physical scales and allowing for further simulating notable complex-structured

macromolecules, as well as forcing terms.

1.2 Ermak-McCammon Model for Spherical Particles

Consider a suspension of N identical spherical particles of radius a, immersed in an incompressible

Newtonian fluid of viscosity ⌘ at low Reynold number. When the inertial relaxation times are short

compared to the timescale of interest, it is often possible to ignore inertia in the governing equation.

3



A Langevin description of the N -particle system is presented below and a random force representing

the action of the thermal motion is added to Newton’s equation. Rotations of the particles will not

be accounted for since they are spherically symmetric. For particle i, i = 1, . . . , N with translational

velocity Vi, from Newton’s Second Law, there is

mi
dVi

dt
= F

t
i = F

h
i + F

B
i + F

nh
i . (1.1)

Here, mi is the generalized mass of particle i. The total force F

t
i on particle i is composed of three

parts: the frictional force F

h
i from the particle moving through the viscous solvent, a Brownian

force F

B
i due to the random successive collision of the solvent molecules with the Brownian particle,

and all deterministic non-hydrodynamic force F

nh
i for particle i. The non-hydrodynamic force is

also called systematic force which includes any external body force and force due to the interaction

potential energy between Brownian particles, like the electrostatic interactions and Vander Waals

interactions.

The hydrodynamic force F

h
i acting on particle i tends to decrease the energy and depends on

the appropriate components of the configuration-dependent tensor ⇣, which is called hydrodynamic

friction tensor. Due to the linearity of the Stokes equations, the forces exerted by the fluid on the

particles depend linearly on the translational velocities of the particles. This relation defines

F

h
i = �

NX

j=1

⇣ij
dxj

dt
. (1.2)

Let Fh
= [F

h
1

, . . . ,Fh
N ]

T , x = [x

1

, . . . ,xN ]

T be the hydrodyanmic forces and locations of all particles.

The above equation can be written as

F

h
= �⇣

dx

dt
. (1.3)

According to the Stokes-Einstein relation, the N -particle diffusion tensor D and the friction tensor

⇣ has relation

D = kBT⇣
�1, (1.4)

where kB is the Boltzman constant and T is the temperature. The diffusion tensor, a 3N ⇥ 3N dense

matrix describing the hydrodynamic interactions, is usually modeled by Rotne-Prager-Yamakawa

4



tensor or the Oseen tensor. The difference between these two tensors are elaborated in chapter 3.

Notably, both the Roten-Prager-Yamakawa tensor and the Oseen tensor are divergence-free, which

considerably simplifies the computation of Brownian dynamics models.

X

j

@Dij

@rj
⌘ 0. (1.5)

The Brownian force F

B
i (t) arising from the thermal fluctuations in the fluid and tending to

increase the energy of the particle is characterized by [26]

< F

B
i (t) > = 0

< F

B
i (t)F

B
j (s) > = 2kBT⇣ij�(t� s).

(1.6)

The angle brackets in Equation (1.6) denote an ensemble average. � is the Dirac’s delta function.

The amplitude of the correlation between the Brownian forces at t and s results from the fluctuation-

dissipation theorem for the N -body system. The time scale �t researchers are interested in is longer

than ⌧ = m/6⇡⌘a (momentum relax time of the particle after a Brownian impluse) but smaller than

the time the configuration changes. The fluctuating forces are considered instantaneous.

The evolution equation for the particles is described by following Ermak-McCammon model [11]

by integrating Equation (1.1) over time step �t. The displacement vector �x for all small rigid

spherical particles during time step �t due to the non-hydrodynamic force F

nh and the Brownian

force F

B is given by

�x(�t) =
�t

kBT
D · Fnh

+R(�t) +r ·D�t (1.7)

< R(�t) >= 0, < R(�t)R(�t) >= 2D�t. (1.8)

Equation (1.7) can also be obtained from Fokker-Planck or Smolochowski equation for the

N -particle probability distribution function. Equation (1.7) is the heart of the Brownian dynamic

simulations which describes N particles suspended in unbounded flow interacting through hydro-

dynamic, interparticle, external, and Brownian forces. It simply states that the displacement of a

particle includes three parts. There is a deterministic contribution due to the non-hydrodynamic

or systematic force, and two contributions from Brownian motion: a random displacement which

5



makes the fluctuation-dissipation theorem satisfied and a displacement due to the configuration-space

divergence of the N -particle diffusivity r ·D�t. This term becomes zero when the diffusion matrix

D is modeled by Oseen tensor and Roten-Prager-Yamakawa tensor because they are divergence-free.

For rigid, spherical particles without considering rotations, there are three computational chal-

lenges for the Brownian dynamic simulations with hydrodynamic interactions :

1. The electrostatic field around the target molecule is only computed once at the initial step of

the simulation due to prohibitive computational cost using existing methods. Such temporal

approximation presents major limitations in accuracy of the simulations, especially in the

situations when the ligand is not small in size, or the concentration of ions is high (as in real

biological ranges), or when boundaries or interfaces are present. The Adaptive Fast Multipole

Poisson-Boltzmann (AFMPB) solver [27] is an open-source software developed by Huang and

the collaborators for solving the linearized Poisson-Boltzmann (LPB) equation which models

the electrostatic interactions in biomolecular systems. AFMPB has significant improvements

in computational efficiency and numerical stability over other existing LPB solvers.

2. The first term on the right side of Equation (1.7) is mainly a matrix-vector multiplication

between the diffusion matrix and the non-hydrodynamic force. Direct evaluation of it will

result in O(N2

) complexity, where N is the number of spherical particles. Additionally, since

the diffusion matrix D for spherical Brownian particles is configuration-dependent and dense,

explicit construction of it will result in high memory usage. For example, according to Liu and

Chow [28], the memory storage for the diffusion matrix D of 10K particles will be as huge as 32

GB, which is impracticable for large-scale and long-time simulation. To reduce the complexity

for diffusion-force matrix-vector evaluation, various fast algorithms have been developed, for

example, Ewald summation [29], Particle mesh techniques including the Particle Mesh Ewald

(PME) method [30] and the Smooth Particle Mesh Ewald (SPME) method [31] with complexity

O(NlogN). The other methods include Method of local corrections [32], multigrid methods

[33], panel clustering method and precorrected-FFT [34], and fast multipole method [35].

3. The third challenge for Brownian dynamic simulations is the random process generation. A

common method for computing the Brownian displacement is to apply the Cholesky factoriza-

tion which scales O(N3

) and limits the Brownian dynamics simulation with hydrodynamic
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interactions for small scales. Matrix factorization techniques D = B ·BT and D =

p
D ·

p
D

(Davis, 1987 [36]) require forming the diffusion matrix D explicitly and result in high memory

usage. Iterative methods based on Krylov subspace methods and Chebyshev approximations
p
D · F ⇡ p(D)F are practical for large-scale time simulation if the fast evaluation of the

matrix-vector multiplication D · F is performed properly. Fundamentally, D · F will be accel-

erated tto reduce the overall computation cost for each time step of the Brownian dynamic

simulations with hydrodynamic interactions.

In this dissertation, how to apply the new version of the fast multipole method [1] to compute

the electric field gradients will be firstly presented. The fast evaluation of the electric field gradients

is very important in many areas, such as nuclear quadrupole resonance. Then, for rigid, spherical

particles with a small radius, a fast algorithm based on the new version of FMM for computing the

matrix-vector multiplication between the diffusion matrix and the non-hydrodynamic force will be

described. The Rotne-Prager-Yamakawa tensor is applied to describe the diffusion of the particles

with hydrodynamic interactions. The far-field part of the Rotne-Prager-Yamakawa potential is

decomposed into four Laplace fast multipole calls combined with the elastic potential term, fields

terms and electric field gradients by the developed new version of the fast multipole solver in Chapter

1. The near field of the Rotne-Prager-Yamakawa potential is computed directly. Based on this, the

random process generation issue can be resolved by the iterative Krylov subspace methods combining

the Chebyshev approximations efficiently.

1.3 Brownian Dynamics Model for Rigid Macromolecules of Arbitrary Shape

Macromolecules in fluids exhibit a variety of complex translational, rotational and bending

motions and phase behavior which can illuminate many fundamental issues in statistical mechanics.

For macromolecules with complex, ubiquitous structures, the deformation, size and shape are crucial

to model the anisotropic diffusivity of the particles in solution. Measurement of the relation time

constants associated with the motions is essential for characterizing the molecules and predicting

their macroscopic behavior. The rotations of the macromolecules cannot be neglected if the shapes

of them are not spherically symmetric. In addition to the technological and biological importance,

modeling the translational and rotational dynamics of the macromolecules is an indispensable step

7



toward the large-scale long-time Brownian dynamics simulation. Before describing the translational-

rotational displacement of the many-body system, we will start with how to compute the grand

diffusion(mobility) matrix, through which the translational and angular velocities of particles can be

obtained. Further the translational and angular velocities can be applied to compute the displacement

and orientation of the macromolecules in the many-body system.

Here, the hydrodynamic interactions of the macromolecules which can be viewed as rigid bodies

will be studied. Many biological macromolecules and their associations are rigid-like molecules.

Such examples can be proteins(such as collagen, spectrin, tubulin, myosin, actin, and keratin),

polysaccharides(such as cellulose and xanthan gum), viruses(like Pfl and fd bacteriophages and

tobacco mosaic viruses ), and short duplex DNAs [37].

The Brownian trajectories followed by a single rigid body is associated by a 6⇥ 6 grand diffusion

tensor D containing terms related to the translational and rotational diffusivities, where D can

be calculated from the shape of the rigid particle. The rigid macromolecule in dilute solutions is

treated as a particle immersed in a hydrodynamic continuum in many theories for the rotational

and translational diffusion coefficients. The computation of the grand diffusion matrix for rigid

particles begins with simple, symmetric shapes such as revolution ellipsoids [38, 39, 40] or cylinders

[41, 42]. To enable the computation for macromolecules of arbitrary shape, boundary element

methods [43, 44, 45] and bead modeling techniques [46, 47, 48, 49, 50, 51, 52] have been widely used.

There is pioneering work on rotational Brownian motion using Euler angles [53, 54], oriented rotation

angles [55], and other representations [56, 57]. These representations either involve singularities or

redundancies, or complex analytical expressions with trigonometric functions. Additionally, most

of the prior work about rotational diffusion has the assumption that the grand diffusion matrix is

independent of the configuration of the body distribution [53, 54, 58].

From Equation (1.2), the translational and angular velocity of the particle due to the non-

hydrodynamic force/torque can be computed as

0

B@
V

⌦

1

CA =

1

kBT
D

0

B@
F

nh

T

nh

1

CA =

0

B@
Dtt Dtr

Drt Drr

1

CA

0

B@
F

nh

T

nh

1

CA , (1.9)

where F

nh and T

nh are the non-hydrodynamic force and torque. The subscripts t and r mean
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translation and rotation respectively. Dtt,Dtr = Drt, and Drr are 3⇥ 3 matrix.

For a many-body system in suspension, the associated grand diffusion matrix ~
D describing the

hydrodynamic interactions among the macromolecules is a 6m⇥ 6m matrix, where m is the number

of the bodies. Finding the grand diffusion matrix is the fundamental problem in constructing the

numerical algorithms for tracing the motion of macromolecules in viscous fluids. The bead-shell

model along with the mechanism is applied to compute the intermolecular mobility matrix and to

build a model for the relationship between the translational and rotational velocities and the general

forces/torques exerted on the macromolecules. Actually, in the complex, rigid many-body system,

the grand diffusion matrix is ~
D = (QDQT

)

�1, where D is the diffusion matrix among all beads of the

m bodies. Since the beads are spherically symmetric, the rotations of the beads are not considered.

And matrix Q is a transformation matrix with size 6m⇥ 3N and N is the total number of beads for

the m-body system. The Rotne-Prager-Yamakawa tensor is employed to describe the matrix D. The

grand diffusion matrix ~
D is still symmetric positive definite according to our analysis. Rather than

computing a matrix-vector multiplication, readers will see in chapter 4, a linear equation is solved by

two fast algorithms to obtain the general velocities including the translational and angular velocities.

Similarly, after using Euler-Maruyama scheme, the m-body translational-rotational displacement

can be described by

0

B@
�x

�'

1

CA =

�t

kBT
~
D

0

B@
F

nh

T

nh

1

CA+

p
2�tBf +r · ~D�t, (1.10)

where x is the vector position of the center of the macromolecules, and ' describes their orientations.

F and T are forces and torques which are evaluated at the beginning of every time step. It is

specific to the field or external agent, for example, from polarization. ~
D is the 6m ⇥ 6m grand

diffusion matrix between the macromolecules, where m is the number of the macromolecules or

colloidals. Still, the last term of the right side in Equation (1.10) is zero due to Equation (1.5) for

the Rotne-Prager-Yamakawa tensor or the Oseen tensor.

From the Equation (1.10), each translational-rotational displacement can be decomposed into

two parts. One part is the displacement due to the non-hydrodynamic force and the other part of

displacement is due to the Brownian force. By multiplying the general velocities with �t, the increase
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of the displacement for the macromolecules due to non-hydrodynamic forces/torques will be obtained.

This displacement is basically the first term of the Brownian dynamics for macromolecules. Moreover,

the rigid characteristics of the macromolecules can be used to construct a specific preconditioner to

accelerate the convergence rate of the iterative methods for solving the linear equation Equation

(1.9).

Different from the diffusion matrix D for rigid small spherical particles, the grand diffusion

matrix of the many-body macromolecules will become ~
D = (QD

�1QT
)

�1 (D is the diffusion matrix

among all beads of the macromolecules). Instead of evaluating a matrix-vector multiplication in the

Brownian dynamics model for spherical particles,

0

B@
�x

nh

�'nh

1

CA =

�t

kBT
~
D

0

B@
F

nh

T

nh

1

CA , (1.11)

the displacements and orientations of the macromolecules due to the systematic force will be obtained

through solving a linear equation

(QD

�1QT
)

0

B@
�x

nh

�'nh

1

CA =

�t

kBT

0

B@
F

nh

T

nh

1

CA . (1.12)

Also, it will result in corresponding changes for computing the displacement or orientation due to

the Brownian force. From these, it shows that the algorithms for simulating the Brownian dynamics

with hydrodynamic interactions of the macromolecules are quite different from the ones for spherical

particles which are treated as point charges with a small radius.

1.4 Outline of the Dissertation

There are mainly three chapters in this dissertation. The outline of the dissertation is as follows.

In chapter 2, the data structures and the mathematical fundamentals of the new version of the

fast multipole method [1] will be summarized firstly. Then how to apply the fast multipole method to

compute the field, as well as the electric field gradients will be presented. The electric field gradients

are quite important in applications of solid-state physics(ionic crystals), biochemistry, and are also

main factors contributing to depolarization of the nerve fiber in MRI scans. Our contribution in
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this chapter is that the formulas for computing the electric gradient fields using the new version

of the fast multipole method [1] have been derived. The computation of field gradients has been

added as a function to existing FMM solver. Through utilizing a combination of the local expansion

coefficients of the potential, the calculation of the electric field gradients by the new version of the

fast multipole method is shown to be efficient with tunable accuracy. The pseudo code for the

adaptive algorithm will be presented, as well as the numerical performance for particles with different

kinds of distributions.

In chapter 3, the Rotne-Prager-Yamakawa tensor is employed to approximate the mobility of

the spherically symmetric particles in fluids. The hydrodynamic forces mediated by the fluids

is assumed to act on the center of the particles. A fast algorithm based on the new version of

the fast multipole method is proposed for evaluating a matrix-vector multiplication between the

Rotne-Prager-Yamakawa tensor and the force vector of all the particles. Efficient evaluation of this

matrix-vector multiplication is essential for the simulation of Brownian dynamics with hydrodynamic

interactions. The diffusion matrix represented by Rotne-Prager-Yamakawa tensor is configuration-

dependent.The vector is the deterministic non-hydrodynamic forces exerted on the particles. The

Rotne-Prager-Yamakawa(RPY) solver with tunable accuracy is parallelized on the multicore systems

and numerical results have demonstrated its efficiency. The RPY solver we have developed makes it

computationally viable for large-scale and long-time Brownian dynamic simulations.

In chapter 4, the hydrodynamic interactions of the macromolecules of arbitrary shape will be

considered. The bead-shell model is applied to represent the rigid, complex-structured macromolecules

in which the diffusion tensor of the beads is approximated by the Rotne-Prager-Yamakawa tensor.

The diffusion tensor of the biological macromolecules of arbitrary shape in stokes fluid of the many-

body system has been computed. A concise model has been developed to describe the relationship

between the translational and rotational dynamics and the forces or torques of the macromolecules.

Two algorithms based on block conjugate gradient method and the Schur complement method are

presented in this chapter to solve the model and compute the translational and rotational dynamics

in complex systems. A preconditioner has been devised by employing the rigid structure of the

macromolecules to accelerate the convergence of the iterative method. Numerical experiments

of these two methods have been carried out and the results show that these methods have the

advantages in both speed efficiency and memory saving. The displacements and the orientations can
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be obtained immediately for tracking the trajectories of the macromolecules. The hydrodynamic

theory makes it potentially attractive for modeling more complex structured large-scale biomolecular

systems and can provide guidelines for computational tools of the bead modeling.
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CHAPTER 2

Computation of Electric Field Gradients by Fast Multipole Method

Many applications in computational physics, molecular dynamics, and celestial mechanics require

the rapid evaluation of pairwise interactions between all particles. These interactions could be

Coulombic or gravitational. It will cause substantial computational cost for evaluating the interactions

of large-scale ensembles of particles.

Given a system of N particles, each particle with a charge qi (or mass mi) at location x

i

=

(xi, yi, zi), the electrostatic(or gravitational) potential requires to evaluate

�(x

i

) =

X

j 6=i

qj
||xi � xj ||

, (2.1)

which could be written as a matrix-vector multiplication for N particles. The matrix has zeros

on the diagonal and { 1

||xi�xj ||} on the off diagonals with the corresponding vector described by all

charges {qi}, i = 1, . . . , N .

The electrostatic field is the negative of the derivatives of the potential function and described

by the expression

E(x

i

) = �r� =

X

j 6=i

qj
xi � x

j

||xi � xj ||3
. (2.2)

The Electric Field Gradients (EFG) is defined as the gradient of the fields, or the negative of the

second derivative of the electrostatic potential. It is a ground state property of solids in physics. It

is also used to measure the rate of change of the electric field at an atomic nucleus generated by

the electronic charge distribution and the other nuclei. The EFG at the nuclear center is caused by

the surrounding charge distribution (for example atoms, bonds, electrons, molecular structure, etc).

Thus, it is very sensitive to even the most subtle changes in structure, bonding, and dynamics. The



EFG is described by a second-rank tensor

¨

� = rE = �

2

66664

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

3

77775
. (2.3)

For the position of each particle x = (x

(1),x(2),x(3)

) = (x, y, z), the EFG of a set of N charges in

rectangular coordinates is [59]

¨

�ij(x) =

NX

k=1,xk 6=x

qk

 
�ij
r3k

�
3r

(i)
k r

(j)
k

r5k

!
, i, j = 1, 2, 3. (2.4)

Here, qk is the charge of particle k. r = x� xk is the relative position between the current particle

and the particle k. The distance between the current particle and particle k is rk = kr
k

k
2

. Each of

the nine components describes the gradient of the electric field vector components with respect to

position. The tensor is traceless because 1

r is the kernel of the Laplace equation.

Direct evaluation of (2.1) for N particles will result in O(N2

) operations which will be computa-

tionally intensive and time-consuming when N is large. To make large-scale problems tractable, there

are many fast summation methods which reduce the complexity of the matrix-vector multiplication

(2.1) from O(N2

) to a lower order. The well-known Fast Fourier Transform(FFT) method and the

related algorithms are based on a translation invariant and applicable for uniform spatial grids with

complexity O(NlogN). Methods like pre-corrected FFT [60, 61], Particle Mesh methods, Particle

Mesh Ewald methods[30], and the hierarchical SVD methods [62] all belong to this category.

Another class of the fast summation algorithms is the tree-code algorithms by Appel [63] and

Barnes and Hut [64]. The key idea in tree-code algorithms is treating the distant particles as a single

large particle centered at the center of clusters and using low order spherical harmonics to compute

multipole coefficients that are used to evaluate the potentials from distant particles. The potential

from the nearby particles is computed individually and the overall complexity is O(NlogN).

The third category of the fast summation algorithms is the fast multipole method(FMM)

which was originally introduced by Greengard and Rokhlin in 1987 [65, 66]. Utilizing the far-field

expansions of the Barnes-Hut algorithm, the fast multipole method takes advantage of near-field
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or local expansions. The influence of a cluster of source points on a cluster of target points could

be evaluated in an efficient way by the fast multipole method, while in Barnes-hut algorithm the

influence of a cluster of sources is computed on a single target point. With local and multipole

expansions, upward and downward passes, the FMM reduces the complexity to O(N) and has been

applied to many applications in computational electromagnetics, molecular dynamics, computational

fluids and solid mechanics.

Though the fast multipole method [65, 66] is highly successful in two dimensions, the three-

dimensional version of the original method has been shown less efficient compared to Barnes-Hut tree

algorithms and the FFT-related algorithms due to the huge prefactor in front of O(N). The major

obstacle to achieving high efficiency at high accuracy in the original FMM is the cost of the multipole

to local translation operator since this translation operator requires 189p4 operations per box. In

1997, a new version of FMM was introduced by Greengard and Rokhlin[1] and a scheme has been

introduced to reduce the cost of the multipole-to-local expansions by applying exponential translation

operators. This scheme utilizes an intermediate "plane-wave" representation to diagonalize the

expensive translation operator and apply a "merge-and-shift" technique to reduce the number of

the translations. The new FMM is significantly faster than the previous implementation at any

desired level of precision, especially for three-dimensional applications and a break-even point of

approximately 600 for 6 digits precision is numerically observed.

In this chapter, the data structures and the mathematical fundamentals of the new version of the

fast multipole method will be summarized in the first two sections. Next, how to compute the field, as

well as the electric field gradients by the fast multipole method will be presented. Through utilizing

a combination of the local expansion coefficients of the potential, the calculation is shown to be

efficient and with tunable accuracy. The electric gradient fields are quite important in applications of

solid-state physics(ionic crystals), biochemistry (electrical polarizabilities of a molecule), and they are

also main factors contributing to depolarization of the nerve fiber in MRI scans. Previously, people

tried to use perturbation theory [67], finite difference approximation[68, 69], Ewald summation[70],

point charge model[59] and other models [71] to approximately evaluate it. However, to our best

knowledge, there have been no FMM-related method for efficiently evaluating EFG. Applying FMM

to compute EPG will also benefit the fast Rotne-Prager-Yamakawa solver which will be described in

Chapter 2. In the last section of this chapter, some numerical results about evaluating potential,
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field, and electric field gradients using the new version of FMM will be presented.

2.1 Adaptive Tree Structure for the Spatial Domain

In this section, how to construct the adaptive oct-tree data structure of the fast multipole method

will be introduced, as well as some related notations. The fast multipole method decomposes the

domain space hierarchically, yielding an adaptive oct-tree for three-dimensional cases. In this section,

how the oct-tree has been adaptively built according to the distribution of the particles will be

described, as well as the corresponding definitions and data structures. Readers can also refer to the

original description in [2].

Given a set of N particles distributed randomly in R3, the computational domain will be defined

as the smallest cube which contains all the source particles. This single box corresponding to

the entire domain will be viewed as the box at the refinement level 0. Starting from level 0, the

computational domain will be partitioned hierarchically with a tree structure until the number of

points in each leaf box is less than a prescribed constant s. More specifically, the refinement at level

`+ 1 is obtained recursively from partitioning each box at level ` into eight cubic boxes with equal

size if the number of particles in each box is larger than s.

To begin with, a couple of related definitions for the data structure will be introduced. A box b

is said to be the parent of box c if box c is obtained through a single subdivision of box b. And box

c is called the child of box b. The parent box contains more than s particles, while the childless box

or leaf box will have particles less than or equal to s. Boxes at the same level of refinement and

sharing at least a boundary point are called colleagues. And a box is considered to be a colleague of

itself. In three dimension, a box could have 27 colleagues at most.

Mathematically, in [66], two sets {xi}mi=1

and {yi}ni=1

are said to be well separated if there exists

x

0

,y
0

2 R3 and a real number r > 0 such that

|xi � x

0

| < r for all i = 1, · · · ,m,

|yj � y

0

| < r for all j = 1, · · · , n, and

|x
0

� y

0

| > cr,
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where c > c
0

, c
0

> 2 is a constant. In the Oct-tree structure, two boxes at the same level of

refinement but not colleagues of each other is said to be well separated. Or they are well separated

if they are at least one box of the same size apart. The well-separated boxes have the low-rank

property. Information on the two well-separated boxes can be condensed analytically using some

basis functions, such as spherical harmonics for the Laplace kernel.

While traversing down the tree structure, a box c can inherit from its parent box b about the

condensed information contributed from boxes that are all well-separated from b. The interaction list

of a box b is composed of boxes well-separated from b which are also the children of the colleagues

of b’s parent. In three-dimensional space, the interaction list of each box has 189 boxes at most.

Then the information from all well-separated boxes of b are from two parts: one is inherited from b’s

parent and the other one is from the interaction list of box b. Figure 2.1 shows the interaction list in

two dimension. For each box b at a given level, it will associate with five lists of boxes with different

b

Figure 2.1: Blue boxes are colleagues of box b and white boxes are the interaction list of b.

sizes. The definitions of these lists are as below:

List 1 of box b denoted by Ub:

• If b is a parent box, Ub is empty;
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• If b is a leaf box, Ub is composed of all the childless boxes adjacent to b and box b.

List 2 of box b denoted by Vb:

• It consists of all boxes in the interaction list. i.e. all the children of the colleagues of b’s

parent that are well separated from b.

List 3 of box b denoted by Wb:

• If b is a parent box, Wb is empty;

• If b is a leaf box, Wb consists of all descendant of b’s colleagues whose parents are adjacent

to b but not adjacent to b themselves. Each box w in Wb is separated from b by a distance

no less than the length of the side of w.

List 4 of box b denoted by Xb

• It is composed of all boxes c such that b 2 Wc.

• All boxes in Xb are childless and larger than b.

List 5 of box b denoted by Yb

• It is formed by all boxes that are well-separated from b’s parent.

Figure 2.1 shows the associated five lists of box b. To reduce the huge factor in front of O(N) of

the original FMM, the new version of FMM introduced plane wave based translation operators

to diagonalize the multipole-to-local translations from box b to its interaction list boxes. The

interaction list of box b will be partitioned into six lists associated with the six coordinate directions

(+z,�z,+y,�y,+x,�x) in three-dimensional space. Corresponding directions and the definitions

of the directional lists are as below and Figure 2.1 shows the uplist of b.

• +z direction is referred to as up. The Uplist for a box b is formed of the boxes in the interaction

list which lie above b and are separated by at least one box in the +z direction.

• �z direction is referred to as down. The Downlist for a box b consists of the boxes in the

interaction list which lie below b and are separated by at least one box in the �z direction.
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Figure 2.2: Box b and its associated lists in two dimension

• +y direction is referred to as north. The Northlist for a box b consists of the boxes in the

interaction list which lie north of b. They are separated by at least one box in the +y direction,

and are not contained in the Up, Down lists.

• �y direction is referred to as south. The Southlist for a box b consists of the boxes in the

interaction list which lie south of b. They are separated by at least one box in the �y direction,

and are not contained in the Up, Down lists.

• +x direction is referred to as east. The Eastlist for a box b consists of the boxes in the

interaction list which lie east of b. They are separated by at least one box in the +x direction

and are not contained in the Up, Down, South, North lists.

• �x direction is referred to as west. The Westlist for a box b consists of the boxes in the

interaction list which lie south of b. They are separated by at least one box in the �x direction

and are not contained in the Up, Down, South, North lists.
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Figure 2.3: The uplist of Box b [2]

2.2 Approximation and Translation

2.2.1 Mathematical Preliminaries

The spherical harmonics Y m
n (✓,�) are the angular portions of the solution to Laplace equation

in spherical coordinates. The definition of spherical harmonics of degree n and order m in [1] is as

below;

Y m
n (✓,') =

r
2n+ 1

4⇡

s
(n� |m|)
(n+ |m|)P

|m|
n (cos ✓)eim', 8n � 0, |m|  n (2.5)

Here, Pm
n are the associated Legendre functions which can be defined by the Rodrigues’s formula

Pm
n (x) = (�1)

m
(1� x2)m/2 dm

dxm
Pn(x), (2.6)

where Pn(x) denotes the Legendre polynomial of degree n and satisfies

P�m
n = (�1)

m (n�m)!

(n+m)!

Pm
n .
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All together this gives Y �m
n = (�1)

m
(Y m

n )

⇤, 8n � 0, 0  m  n.

A different definition of spherical harmonics in quantum physics is expressed as :

¯Y m
n (✓,') =

r
2n+ 1

4⇡

s
(n�m)

(n+m)

Pm
n (cos ✓)eim', 8n � 0, 0  m  n. (2.7)

When 0  m  n, there is ¯Y �m
n = (

¯Y m
n )

⇤.

For a given value of n, there are 2n+ 1 independent solutions of this form, one for each integer

m with �n  m  n. The restrictions of n and |m| to non-negative integers with |m|  n is a

consequence of the requirement that Pm
n should be non-singular at cos ✓ = ± 1.

The Lemma 1 will be used for the computation of the field and the electric field gradient.

Lemma 1. (Properties of Spherical harmonics) For any n � 0, 0  m  n, there are

Y m
n =

¯Y m
n (2.8)

Y �m
n = (�1)

m
¯Y �m
n . (2.9)

Derivatives As in [72], define the sphercal tensor operators

r
0

= @z,r+

= � 1p
2

(

@

@x
+ i

@

@y
),r� =

1p
2

(

@

@x
� i

@

@y
) (2.10)

there are

@

@x
= � 1p

2

(r
+

�r�), (2.11)

@

@y
=

ip
2

(r
+

+r�), (2.12)

@

@z
= r

0

. (2.13)

Lemma 2. If f(r) is a function about r, and ¯Y m
n is the spherical harmonic function defined by 2.7,

8n � 1, |m|  n, and define

↵(n,m) =

s
(n+m)(n�m)

(2n+ 1)(2n� 1)

,�±(n,m) =

s
(n⌥m� 1)(n⌥m)

2(2n� 1)(2n+ 1)

, (2.14)
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there are

r
0

[f(r) ¯Y m
n ] = ↵(n+ 1,m)(

df

dr
� n

r
f) ¯Y m

n+1

+ ↵(n,m)(

df

dr
+

n+ 1

r
f) ¯Y m

n�1

,

(2.15)

r±[f(r) ¯Y
m
n ] = �⌥(n+ 2,m)(

df

dr
� n

r
f) ¯Y m±1

n+1

+ �±(n,m)(

df

dr
+

n+ 1

r
f) ¯Y m±1

n�1

.

(2.16)

Proof. The details of the proof can be reached at [72].

Lemma 3. (Properties) Suppose for any n � 1, |m|  n, ↵(n,m),�(n,m) are defined as 2.14, there

are

↵(n,m) = ↵(n,�m), (2.17)

�
+

(n,m) = ��(n,�m). (2.18)

Apply Theorem 2 to f(r) = rn, there are

Corollary 1. If f(r) = rn, n � 1, Y m
n is defined by Equation (2.5), there are

r
0

[rnY m
n ] = (2n+ 1)↵(n,m)rn�1Y m

n�1

, 8n � 1, |m|  n, (2.19)

r±[r
nY m

n ] = �(2n+ 1)�±(n,m)rn�1Y m±1

n�1

, 8n � 1, |m|  n. (2.20)

Lemma 4. Let f, g be real functions whose derivative exists at every point, there is

(r
+

)(f + ig) = �[r�(f � ig)]⇤. (2.21)

For spherical harmonics defined by Equation (2.5), combine Lemma 3 and Lemma 4, the following

theorem for spherical harmonics can be derived.

Theorem 2.2.1. The corresponding derivatives of spherical harmonics defined by Equation (2.5)

are as below:

r
0

[rnY m
n ] = (2n+ 1)↵(n,m)rn�1Y m

n�1

8n � 0, |m|  n; (2.22)
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r
+

[rnY m
n ] =

8
><

>:

�(2n+ 1)�
+

(n,m)rn�1Y m+1

n�1

8n � 1, 0  m  n;

(2n+ 1)�
+

(n,m)rn�1Y m+1

n�1

8n � 1,�n  m  �1;

(2.23)

r�[r
nY m

n ] =

8
><

>:

�(2n+ 1)��(n,m)rn�1Y m�1

n�1

8n � 0, 1  m  n;

(2n+ 1)��(n,m)rn�1Y m�1

n�1

8n � 0,�n  m  0.
(2.24)

2.2.2 Approximation Operators

All hierarchical N-body algorithms are based on the idea of evaluating combined effect of a set

of distant particles instead of treating them individually. In this chapter, the Laplace kernel will

be used as an example to present how the fast multipole methods extract, condense and transmit

information on the adaptive Oct-tree structures. Two expansions operators including the multipole

expansion and the local expansion, are fundamental in FMM. The multipole expansions allow one to

group a cluster of particles that lie close together and treat them as if they are a single source. The

local expansions transfer information from long range to near range. The proof of the theorems will

be neglected. Interested readers can refer to [2] [66] for details.

Theorem 2.2.2 (Multipole Expansion). Suppose N particles with charges {qi}Ni=1

and positions

{xi = (⇢i,↵i,�i)}Ni=1

are located in a box centered at the origin. Then for any point x = (r, ✓,�) 2 R3

outside the box, the potential �(x) is given by

�(x) =

1X

n=0

nX

m=�n

Mm
n

rn+1

· Y m
n (✓,�), (2.25)

where the multipole expansion coefficients Mm
n are given by

Mm
n =

NX

i=1

qi · ⇢ni · Y �m
n (↵i,�i). (2.26)

Furthermore, for any p � 1,

������(x)�
pX

n=0

nX

m=�n

Mm
n

rn+1

· Y m
n (✓,�)

����� 
 PN

i=1

|qi|
r � a

!⇣a
r

⌘p+1

.
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where a is the radius of the smallest sphere enclosing the box.

The above theorem describes an efficient representation of the far field potential due to a collection

of sources. TSM means source-to-multipole operator and TLT is the local-to-target operator.

Theorem 2.2.3 (Local Expansion). Suppose N particles with charges {qi}Ni=1

and positions {xi =

(⇢i,↵i,�i)}Ni=1

are located outside the sphere Sa of radius a centered at the origin. Then for any

point with coordinates x = (r, ✓,�) 2 Sa outside the box, the potential �(x) generated by the charges

q
1

, q
2

, . . . , qN is described by the local expansion

�(x) =

1X

j=0

jX

k=�j

Lk
j · Y k

j (✓,�) · rj , (2.27)

where the local expansion coefficients Lk
j are given by

Lk
j =

NX

l=1

ql ·
Y �k
j (↵l,�l)

⇢j+1

l

. (2.28)

Furthermore, for any p � 1,

������
�(x)�

pX

j=0

jX

k=�j

Lk
j · Y k

j (✓,�) · rj+1

������

 PN

i=1

|qi|
a� r

!⇣r
a

⌘p+1

.

2.2.3 Translation Operators

To form multipole expansions for all level of boxes, the FMM applies a divide-and-conquer

strategy to collect the compressed information through merging and shifting its children’s multipole

expansions for each parent box level by level. The following multipole-to-multipole translation

operator TMM is applied in an upward pass for forming all the multipole expansions.

Theorem 2.2.4 (Translation of a Multipole Expansion TMM ). Suppose N particles with charges

{qi}Ni=1

and positions {xi = (⇢i,↵i,�i)}Ni=1

are located in a sphere D centered at x
0

= (⇢,↵,�). Then

for any point x = (r, ✓,�) 2 R3 \D, the potential generated by the charges {qi}Ni=1

is given by

�(x) =

1X

n=0

nX

m=�n

Om
n

r0n+1

· Y m
n (✓0,�0

), (2.29)
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where (r0, ✓0,�0
) are the spherical coordinates of the vector x� x

0

.

Then for any point x = (⇢, ✓,�) outside a sphere D
1

with radius a+ ⇢ centered at the origin,

�(x) =

1X

j=0

jX

k=�j

Mk
j

rj+1

· Y k
j (✓,�),

where

Mk
j =

jX

n=0

nX

m=�n

Ok�m
j�n · i|k|�|m|�|k�m| ·Am

n ·Ak�m
j�n · ⇢n · Y �m

n (↵,�)

Ak
j

, (2.30)

with Am
n defined by the formula

Am
n =

(�1)

n

p
(n�m)! · (n+m)!

. (2.31)

Furthermore for any p � 1,

������
�(x)�

pX

j=0

jX

k=�j

Mk
j

rj+1

· Y k
j (✓,�)

������

 PN

i=1

|qi|
r � (a+ ⇢)

!✓
a+ ⇢

r

◆p+1

.

The linear operator defined by Equation (2.29) converts the old multipole expansion coefficients

Ok
j into the new multipole expansion Mk

j and will denoted by TMM . The above theorem can be

used to obtain all multipole expansions from the finest level of boxes to the coarsest level in the

upward pass.

In the downward pass from the coarsest refinement level to the finest level, local-to-local translation

operator TLL is carried out firstly to shift the parent box’s local expansion which contains the far-field

particle contributions into the center of the children’s boxes.

Theorem 2.2.5 (Translation of a Local expansion TLL). Consider a point x = (⇢, ✓,�) in a box

centered at x
0

= (⇢,↵,�). The spherical coordinates of the vector x� x

0

is (⇢0, ✓0,�0
). The pth order

local expansion of its parent box is described by

�(x) =

pX

n=0

nX

m=�n

Om
n · Y m

n (✓0,�0
) · r0n. (2.32)
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Then the local expansion of that box is

�(x) =

pX

j=0

jX

k=�j

Lk
j · Y k

j (✓,�) · rj , (2.33)

where

Lk
j =

pX

n=j

nX

m=�n

Om
n · i|m|�|m�k|�|k| ·Am�k

n�j ·Ak
j · Y

m�k
n�j (↵,�) · ⇢n�j

(�1)

n+jAm
n

, (2.34)

with Am
n defined by (2.31).

After the local-to-local expansions in the downward pass, a box c has inherited information from

its parent box b. The second step for box c is trying to collect information from its interaction

list. Since all boxes in the interaction list are well-separated from c, a multipole-to-local expansion

operator TML is applied to approximate the contribution from the interaction list of c instead of

communicating with each particle in this region.

Theorem 2.2.6 (Conversion of a Multipole Expansion into a Local expansion TML). Suppose `

charges of strengths {qi}`i=1

are located inside a sphere D
x0 centered at x

0

= (⇢,↵,�) with radius

a, and ⇢ > (c+ 1)a for some constant c > 1. Then the corresponding multipole expansion given by

(2.25) converges inside another sphere D
0

with radius a centered at the origin. For any point x 2 D
0

with spherical coordinates (r, ✓,�), its potential due to charges inside D
x0 is described by

�(x) =

1X

j=0

jX

k=�j

Lk
j · Y k

j (✓,�) · rj , (2.35)

where

Lk
j =

1X

n=0

nX

m=�n

Om
n · i|k�m|�|k|�|m| ·Am

n ·Ak
j · Y

m�k
n+j (↵,�)

(�1)

nAm�k
n+j · ⇢j+n+1

. (2.36)

Furthermore, for any p � 1,

������
�(x)�

pX

j=0

jX

k=�j

Lk
j · Y k

j (✓,�) · rj+1

������

 PN

i=1

|qi|
ca� a

!✓
1

c

◆p+1

. (2.37)

The last step for the downward pass is to evaluate the local expansion at each particle of all leaf

boxes and combine the near-field interactions.
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In all of the above expansions, the multipole-to-local expansion is the bottleneck and the

complexity is O(p4) if the expansions are approximated with p2 terms for each box. In three

dimensions, a given box could have up to 189 boxes in its interaction list. As a result, in the original

FMM method, the multipole-to-local expansion for a given box could cost 189p4 operations which

makes it not practical especially for large-scale problems.

To make the original fast multipole method more promising, a new version of FMM [1] based

on a new diagonal form for translation operators was introduced to produce high accuracy at an

acceptable computation cost. Interested readers can also refer to [73],[74], and [75] for other version

translation operators. Here, the plane-wave expansion with exponential basis [2] will be presented

to diagonalize the TML operator. In three dimension, six plane-wave expansions for direction

(+z,�z,+y,�y,+x,�x) are introduced and the multipole-to-local translator has been decomposed

into TML = TEL � TEE � TME , where TME is the multipole-to-exponential operator, TEE represented

the exponential-to-exponential operator, and TEL denoted as the exponential-to-local operator. This

decomposition will reduce the cost from 189p4 to 6p3 + 189p2 for each box. If the merge and shift

strategy is applied, the cost for multipole to local expansion will be 6p3 + 40p2 and this result could

be further improved to 15p2logp+ 40p2 by applying FFT.

In the new version of FMM, the interaction list of a given box c has been subdivided into Uplist,

Downlist, Eastlist, Westlist, Northlist, and Southlist. These six lists are corresponding to directions

(+z,�z,+y,�y,+x,�x). For any box c in the six interaction lists of b, the multipole expansion

centered in b will be firstly translated into an exponential expansion about a center of a box, then

shift it using exponential-to-exponential expansion to a new center of an interaction list box. Once

the exponential expansions from the interaction list boxes have been collected, the exponential

expansions will be translated to a local expansion in box c using exponential-to-local operator.

The translations of upward (+z) direction are illustrated here and translations for the other

directions can be processed similarly.

Theorem 2.2.7 (Multipole Expansion to Exponential expansion TME). Suppose box b containing

N charges {qi, i = 1, . . . , N} is centered at the origin and with unit volume. The charges are located

at points {xi = (xi, yi, zi)}. Let x be the location of a particle in box c and c 2 Uplist(b). Given the
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multipole expansion of �(x) as

�(x) =

1X

n=0

nX

m=�n

Mm
n

rn+1

· Y m
n (✓,�). (2.38)

Then ������
�(x)�

s(✏)X

k=1

M(k)X

j=1

W (k, j)e��kzei�k(x cos↵j+y sin↵j)

������
< A✏, (2.39)

and

W (k, j) =
!k

M(k)

1X

m=�1
(�i)|m|eimaj

1X

n=|m|

Mm
np

(n�m)!(n+m)!

�n
k , (2.40)

where A =

PN
i=1

|qi|, {�k,!k} are the quadrature nodes and weights returned by the generalized

Gaussian quadrature. s(✏) denotes the number of �k’s for accuracy requirement ✏. For each �k, M(k)

denotes the number of quadrature needed for the trapezoid rule. And ↵j =
2⇡j
Mk

.

TME maps the multipole expansion coefficients {Mm
n )}, n = 0, . . . , p,m = �n, . . . , n to the

corresponding exponential expansion coefficients {W (k, j)}.

Theorem 2.2.8 (Exponential to Exponential expansion TEE). Suppose box b containing N charges

{qi, i = 1, . . . , N} is centered at the origin and with unit volume. The charges are located at points

{xi = (xi, yi, zi)}. Let x be the location of a particle in box c. c is a box in Uplist(b) and centered at

(x
1

, y
1

, z
1

). Given the exponential expansion centered at the origin of �(x) as

�(x) =

s(✏)X

k=1

M(k)X

j=1

W (k, j)e��kzei�k(x cos↵j+y sin↵j)
+O(✏), (2.41)

then

�(x) =

s(✏)X

k=1

M(k)X

j=1

V (k, j)e��k(z�z1)ei�k((x�x1) cos↵j+(y�y1) sin↵j)
+O(✏), (2.42)

where

V (k, j) = W (k, j)e��kz1ei�k(x1 cos↵j+y1 sin↵j). (2.43)

The exponential-to-exponential operator maps the original set of exponential expansion coefficients

{W (k, j)} to the shifted exponential expansion coefficients {V (k, j)}, where (x
1

, y
1

, z
1

) is the vector

from the center of box b to the center of box c.
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Theorem 2.2.9 (Exponential expansion to Local expansion TEL). Suppose box b containing N

charges {qi, i = 1, . . . , N} is centered at the origin and with unit volume. The charges are located at

points {xi = (xi, yi, zi)}. Let x be the location of a particle in box c and c 2 UPlist(b). Given the

exponential expansion of �(x) as

������
�(x)�

s(✏)X

k=1

M(k)X

j=1

W (k, j)e��kzei�k(x cos↵j+y sin↵j)

������
< A✏, (2.44)

where A =

PN
i=1

|qi|, {�k,!k}. Then

������(x)�
1X

n=0

nX

m=�n

Lm
n · Y m

n (✓,�) · rn
����� < A✏, (2.45)

where

Lm
n =

(�i)|m|
p

(n�m)!(n+m)!

s(✏)X

k=1

(��k)
n

M(k)X

j=1

W (k, j)eim↵j . (2.46)

Translation operator TEL maps the shifted set of exponential expansion coefficients {W (k, j)} to

the corresponding truncated harmonic expansion coefficients {Lm
n }, n = 0, . . . , p,m = �n, . . . , n.

2.3 Local Expansions of the Fields and Electric Field Gradients

This section will start with how to use the local expansion coefficients of the far-field potential to

derive the far-field part of the fields and the electric field gradients. Next the function of computing

the electric field gradients using FMM is added for existing FMM solver. The near-field calculations

will be directly evaluated and the details will be omitted here.

2.3.1 Electrostatic Fields

Lemma 5. Consider a point x = (r, ✓,�) outside a box centered at the origin. There are N particles

with charges {qj}Nj=1

and locations {xj = (⇢j ,↵j ,�j)}Nj=1

in the box, the pth order local expansion of

the potential � at x is described by

�(x) =

pX

`=0

X̀

m=�`

Lm
` · Y m

` (✓,�) · r`. (2.47)
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Here, Lm
` is the local expansion coefficients given by

Lm
` =

NX

j=1

qj ·
Y �m
` (↵j ,�j)

⇢`+1

j

. (2.48)

So L�m
` = (Lm

` )

⇤. Define the notations below for all 0  `  p� 1, |m|  `,

D
0

(`,m) = (2`+ 3)↵(`+ 1,m)Lm
`+1

Y m
` r`, (2.49)

Dp(`,m) = (2`+ 3)�
+

(`+ 1,m� 1)Lm�1

`+1

Y m
l r`,

Dm(`,m) = (2`+ 3)��(`+ 1,m+ 1)Lm+1

`+1

Y m
l r`,

the pth order local expansion of the potential � under spherical tensor operators at x is described by

r
0

(�) =

p�1X

`=0

D
0

(`, 0) +

p�1X

`=1

X̀

m=1

2<(D
0

(`,m)), (2.50)

r
+

[�] =

p�1X

`=0

"
0X

m=�`

�
X̀

m=1

#
Dp(`,m), (2.51)

r�[�] =

p�1X

`=0

" �1X

m=�`

�
X̀

m=0

#
Dm(`,m). (2.52)

Proof.

r
0

(�) =

pX

`=0

X̀

m=�`

Lm
` r

0

(r`Y m
` )

=

pX

`=1

`�1X

m=�(`�1)

Lm
` ↵(`,m)(2`+ 1)r`�1Y m

`�1

. ( 0  |m|  `� 1

(2.53)

Let `0 = `� 1 and change back the index from `0 to `.

r
0

(�) =

p�1X

`=0

X̀

m=�`

Lm
`+1

↵(`+ 1,m)(2`+ 3)r`Y m
`

=

p�1X

`=0

(2`+ 3)↵(`+ 1, 0)L0

`+1

Y 0

` r
`

+

p�1X

`=1

X̀

m=1

2(2`+ 3)↵(`+ 1,m)<(Lm
`+1

Y m
` )r`.

(2.54)
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r
+

(�) =

pX

`=0

X̀

m=�`

Lm
` r

+

(r`Y m
` )

=

pX

`=1

�1X

m=�(`�1)

Lm
` �

+

(`,m)(2`+ 1)r`�1Y m+1

`�1

+

pX

`=1

`�1X

m=0

Lm
` (��

+

(`,m))(2`+ 1)r`�1Y m+1

`�1

.

(2.55)

Let `0 = `� 1,m0
= m+1, and change back index to `,m, the theorem can be derived easily. Similar

procedure could be applied to r�(�).

Theorem 2.3.1. [Electronic Fields of the far-field Part] The pth order local expansion of electrostatic

fields (�@�
@x ,�

@�
@y ,�

@�
@z ) due to the charges located in boxes well separated from box b can be evaluated

as below

@�

@x
=

p
2

"
p�1X

`=1

X̀

m=1

<(Dp(`,m))�
p�1X

`=0

X̀

m=0

<(Dm(`,m)

#
, (2.56)

@�

@y
=

p
2

"
p�1X

`=1

X̀

m=1

=(Dp(`,m))�
p�1X

`=0

X̀

m=0

=(Dm(`,m)

#
, (2.57)

@�

@z
=

p�1X

`=0

D
0

(`, 0) +

p�1X

`=1

X̀

m=1

2<(D
0

(`,m)). (2.58)

Proof. Note that

Dp(`,�m) = Dm(`,m)

⇤, (2.59)

D
0

(`,�m) = D
0

(`,m)

⇤. (2.60)

According to Lemma 5, the pth order of local expansions of the partial derivatives of potential �

can be derived from

@�

@x
= � 1p

2

p�1X

`=0

"
X̀

m=0

(Dp(`,�m) +Dm(`,m))�
X̀

m=1

(Dp(`,m) +Dm(`,�m))

#

=

1p
2

p�1X

`=0

"
�
X̀

m=0

2<(Dm(`,m)) +

X̀

m=1

2<(Dp(`,m))

#
. (2.61)

Follow the same procedure to get the proof of Equation (2.57) and Equation (2.58).
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2.3.2 The far-field Electric Field Gradients

Corollary 2. For 8` � 1, |m|  `, there are

r2

+

[rlY m
` ] = (2l � 1)(2l + 1)�

+

(`,m)�
+

(`� 1,m+ 1)r`�2Y m+2

`�2

,

r2

�[r
lY m

` ] = (2l � 1)(2l + 1)��(`,m)��(`� 1,m� 1)r`�2Y m�2

`�2

,

r2

0

[rlY m
` ] = (2l � 1)(2l + 1)↵(`,m)↵(`� 1,m)r`�2Y m

`�2

,

r
+

r�[r
lY m

` ] = (2l � 1)(2l + 1)�
+

(`,m)��(`� 1,m+ 1)r`�2Y m
`�2

,

r
+

r
0

[rlY m
` ] = �(2l � 1)(2l + 1)↵(`,m)�

+

(`� 1,m)r`�2Y m+1

`�2

,

r�r0

[rlY m
` ] = �(2l � 1)(2l + 1)↵(`,m)��(`� 1,m)r`�2Y m�1

`�2

. (2.62)

Proof. Apply Theorem 2.2.1 repeatedly to get the conclusions.

Theorem 2.3.2. Consider a point x = (r, ✓,�) outside a box centered at the origin. There are N

particles with charges {qj}Nj=1

and locations {xj = (⇢j ,↵j ,�j)}Nj=1

in the box, the pth order local

expansion of the potential � at x is described by

�(x) =

pX

`=0

X̀

m=�`

Lm
` · Y m

` (✓,�) · r`. (2.63)

Here, Lm
` is the local expansion coefficients given by

Lm
` =

NX

j=1

qj ·
Y �m
` (↵j ,�j)

⇢`+1

j

. (2.64)
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Define the notations below:

Dpp(`,m) = (2`+ 3)(2`+ 5)�
+

(`+ 2,m� 2)�
+

(`+ 1,m� 1)r`Lm�2

`+2

Y m
` ,

Dmm(`,m) = (2`+ 3)(2`+ 5)��(`+ 2,m+ 2)��(`+ 1,m+ 1)r`Lm+2

`+2

Y m
` ,

Dpm(`,m) = (2`+ 3)(2`+ 5)�
+

(`+ 2,m)��(`+ 1,m+ 1)r`Lm
`+2

Y m
` ,

Dmp(`,m) = (2`+ 3)(2`+ 5)��(`+ 2,m)�
+

(`+ 1,m� 1)r`Lm
`+2

Y m
` ,

D
00

(`,m) = (2`+ 3)(2`+ 5)↵(`+ 2,m)↵(`+ 1,m)r`Lm
`+2

Y m
` ,

Dp0(`,m) = (2`+ 3)(2`+ 5)↵(`+ 2,m� 1)�
+

(`+ 1,m� 1)r`Lm�1

`+2

Y m
` ,

Dm0

(`,m) = (2`+ 3)(2`+ 5)↵(`+ 2,m+ 1)��(`+ 1,m+ 1)r`Lm+1
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Proof. First, note that
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Dpm(`,m) = Dmp(`,�m)
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Similarly derivation could be obtained as:
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2.4 Algorithm for Adaptive FMM

In this section, a pseudo-code of adaptive FMM for computing the electrostatic potential, fields

and field gradients will be presented. An adaptive tree data structure will be built recursively until

the number of charges in each box is fewer than s, i.e. to be a childless box. If a box contains more

than s particles, it will be subdivided into eight child boxes. And this box is considered as a parent

box. Before the discussion, the following notations will be reviewed or introduced.

• B
0

is denoted as the computational domain with all particles. Bl is denoted as all nonempty

boxes at the refinement level l. A box without charges or particles (empty box) will not be

further considered.

• For each box b at the refinement level `, it will associate with five lists denoted by Ub, Vb,Wb, Xb, Yb.

• For each box b, the interaction list Vb will be further subdivided into Uplist(b), Downlist(b),

Northlist(b), Southlist(b), Eastlist(b), Westlist(b) for the exponential expansions in TML.

• Each box b is associated with fourteen expansions:
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1. A multipole expansion �(b) described by (2.25) representing the potential generated by

charges inside b which is valid in R3 \ {Ub [ Vb}.

2. A local expansion  (b) described by (2.27) representing the potential generated by charges

outside Ub [Wb.

3. Six outgoing exponential expansions WUp
b , WDown

b , WNorth
b , WSouth

b , WEast
b , WWest

b of

the form Equation (2.38) representing the potential generated by charges located in b

and valid in the Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist(b).

4. Six ingoing exponential expansions V Up
b , V Down

b , V North
b ,V South

b , V East
b , V West

b of the

form 2.42 representing the potential inside b generated by charges located in b and valid

in the Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist(b).

The algorithm below is the pseudo code for new version of the adaptive fast multipole method.

Algorithm 1 ADAPTIVE FMM

Input : Particle locations {xi}Ni=1

, charges {qi}Ni=1

, precision ✏, the maximum number of particles

in leaf box s

Output : Potential �(xi), field E(xi), and electric field gradients �xx(xi), �yy(xi), �zz(xi),

�xy(xi), �yz(xi), �xz(xi).

Initialization

1: Choose pth order of the multipole expansion according to ✏.

Step 1 : Generating Adaptive Oct-Tree Structure

2: for l = 0, 1, . . . , lmax do . lmax - the maximum refinement level

3: for each box b 2 Bl do

4: if b contains more than s charges then

5: Divided b into eight child boxes. Add the nonempty child boxes to Bl+1

.

6: end if

7: end for

8: end for . nbox - Total number of boxes created

9: for each box bi, i = 1, · · · , nbox do

10: Create Lists Ubi , Vbi ,Wbi , Xbi
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11: Subdivide Vbi into Up,Down,North, South,East,West lists.

12: end for

Step 2 : Upward Pass - Multipole Expansion TSM

. A pth order multipole expansion is formed for each box b about its center.

13: for each box bi, i = 1, · · · , nbox do

14: if bi is childless then

15: Use Theorem 2.2.2 to form pth order multipole expansion �bi

16: else

17: Use Theorem 2.2.4 to merge multipole expansion from its children into �bi .

18: end if

19: end for

Step 3 : Downward Pass - Local Expansion TLT

. For each box b, add the contribution from particles in Xb to its local expansion

20: for each box bi, i = 1, · · · , nbox do

21: for each box c 2 Xbi do

22: if the number of particles in bi is less than p2 then

23: Compute potential, field, field derivatives at each point of �bi directly from particle in

c

24: else

25: Generate a local expansion at bi’s center due to charges in c using Theorem 2.2.3 and

add it to  bi .

26: end if

27: end for

28: end for

Step 4 : Downward Pass - Multipole-to-Local Translation TML

. Multipole to Local translations:

1. For each box b on level l, l = 2, . . . , lmax, create the outgoing exponential expansion WDir
b

from the multipole expansion of b at every direction in Vb using Theorem 2.2.7.

2. Then translate WDir
b to the center of each box c 2 Dirlist(b) using Theorem 2.2.8 and add
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the translated exponential expansion to its incoming exponential expansion V Dir
c .

3. Convert V Dir
c into a local expansion using Theorem 2.2.9 and add it to  c.

29: for l = 2, . . . , lmax do

30: for Dir = Up,Down,North, South,East,West do

31: for each box b 2 Bl do

32: for each box c 2 Xbi do

33: Convert �(b) into WDir
b by TME in Theorem 2.2.7.

34: Add the translated expansion to V Dir
c

35: end for

36: end for

37: for each box c 2 Bl do

38: Convert V Dir
c into a local expansion using Theorem 2.2.8 and add it to  (c).

39: end for

40: end for

41: end for

Step 5 : Downward Pass - Local-to-Local Translation TLL

. Shift the center of the local expansion from each parent box b to its children.

42: for each box bi, i = 1, · · · , nbox do

43: if bi is a parent box then

44: Shift the local expansion  bi into the center of its children using TLL

45: Add the translated expansions to children’s local expansion.

46: end if

47: end for

Step 6 : Evaluation of Potentials, Fields, Electric Field Gradients at leaf nodes

48: for each box bi, i = 1, · · · , nbox do

49: if bi is childless then

50: Use the local expansion  bi to compute the potential, field, electric field gradients at each

charge of bi.

51: end if

52: end for
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Step 7 : Evaluation of Potentials, Fields, Electric Field Gradients by Wb

. For each childless box b, evaluate the potentials, fields, electric field gradients contributed by

particles in Wb.

53: for each box bi, i = 1, · · · , nbox do

54: if bi is childless then

55: for each box c 2 Wbi do

56: if the number of charges in c no more than p2 then

57: Compute the potential, fields, electric field gradients at each charge of bi directly

from particles in c.

58: else

59: Compute the potential, fields, electric field gradients at each charge of bi from

multipole expansion �c.

60: end if

61: end for

62: end if

63: end for

Step 8:Evaluation of Potentials, Fields, Electric Field Gradients-Near-field Interaction

64: for each box bi, i = 1, · · · , nbox do

65: if biis childless then

66: Compute the potential, fields, electric field gradients at each charge of bi directly for all

charges in Ubi .

67: end if

68: end for

2.5 Numerical Results

The algorithm described in the previous section has been implemented as solvers. The numerical

experiments are performed on nodes of killdevil, each node with 12-core, 2.93 GHz Intel processor.

The numerical results for a variety of charge distributions are described in this section: particles
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randomly distributed in a cube, particles randomly distributed on the surface of a sphere, and

particles randomly distributed on the surface of the first octant. For each distribution, the numerical

tests were performed with 3-digit, 6-digit, and 9-digit accuracy. The maximum number of charges

allowed in each leaf box is set to be 80. To satisfy the corresponding accuracy, the approximation

terms p has been selected as 9 for 3-digit accuracy, 18 for 6-digit accuracy, and 27 for 9-digit accuracy.

The L
2

norm of the relative error in the FMM approximation is computed as

Error =

sPN
i=1

|�(xi)� �i|2PN
i=1

|�(xi)|2
(2.75)

Here, assume �(xi) is the potentials of particles computed by direct evaluation for particle i and �i

is the numerical approximation by the new version of FMM for particle i. Similarly, the error for the

fields and electric field gradients can be defined. Below are some notations for the numerical results.

• N - the number of the particles.

• Levels - the number of levels used in the hierarchy tree structure.

• Boxes - the number of the multipole expansion used.

• p - the number of the approximation terms for different accuracy. Here, p = 9, 18, 27 for 3-digit,

6-digit, 9-digit accuracy correspondingly.

• Tfmm�idigit - the time for ith digit accuracy using FMM, i = 3, 6, 9.

• Tdir - the time for direct evaluation of all particles.

2.5.1 Cube

In the first set of the numerical experiments, the charges were distributed randomly in a

[�5, 5]⇥ [�5, 5]⇥ [�5, 5] cube. The numerical error results with 3-digit, 6-digit and 9-digit accuracy

with 12 threads are presented in Table 2.1, Table 2.2, and Table 2.3.

In Table 2.4, the running-time results produced by the new version of adaptive FMM with

different accuracy are compared to the direct evaluation of the potential, fields, and the electric field

gradients for all particles.
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Figure 2.4: Charges randomly distributed in a cube

Table 2.1: Error Results of the new version of FMM for 3-digit accuracy with charges randomly
distributed in a cube

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 4.9e-5 2.4e-4 1.8e-4 4.4e-4 2.6e-6 1.5e-6 3.0e-6 3.0e-6 5.8e-6 5.4e-6
20000 4.9e-5 2.9e-4 1.8e-4 3.2e-4 1.4e-6 1.3e-6 3.9e-6 2.9e-6 5.2e-6 1.1e-6
50000 5.2e-5 2.9e-4 3.9e-4 4.2e-4 8.9e-6 3.6e-6 4.4e-6 3.2e-6 1.7e-6 3.0e-5
100000 5.2e-5 2.9e-4 3.7e-4 5.2e-4 4.2e-6 3.9e-6 3.6e-6 1.1e-6 1.8e-6 2.3e-6
200000 5.2e-5 3.5e-4 4.5e-4 5.8e-4 7.7e-6 7.9e-6 7.9e-6 2.8e-6 4.4e-5 5.6e-6
500000 5.3e-5 3.6e-4 4.8e-4 6.0e-4 8.6e-6 7.1e-6 6.7e-6 8.5e-6 6.0e-5 8.8e-6
1000000 5.3e-5 3.6e-4 4.7e-4 6.1e-4 2.8e-6 2.2e-6 5.9e-6 2.2e-6 3.9e-6 2.0e-6

Table 2.2: Error results of the new version of FMM for 6-digit accuracy with charges randomly
distributed in a cube

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 3.5e-8 1.6e-7 1.0e-7 2.0e-6 6.6e-9 3.7e-9 7.2e-9 6.6e-9 1.3e-8 1.1e-8
20000 3.5e-8 1.7e-7 8.0e-8 1.2e-7 3.1e-9 2.5e-9 8.1e-9 5.0e-9 1.0e-8 1.8e-9
50000 4.0e-7 1.8e-7 1.7e-7 1.6e-7 2.3e-8 9.0e-9 1.0e-8 7.1e-9 3.8e-9 6.4e-9
100000 4.0e-7 1.6e-7 1.4e-7 1.7e-7 9.6e-9 8.3e-9 7.8e-9 2.2e-9 3.5e-9 4.1e-9
200000 4.0e-7 1.7e-7 1.5e-7 1.7e-7 1.5e-8 1.4e-8 1.4e-8 4.5e-9 7.2e-9 8.4e-9
500000 4.1e-8 1.8e-7 1.6e-7 1.7e-7 2.1e-8 1.6e-8 1.5e-8 1.7e-8 1.2e-8 1.6e-8
1000000 4.1e-8 1.7e-7 1.4e-7 1.7e-7 5.7e-9 4.2e-9 1.2e-8 3.6e-9 6.8e-9 3.2e-9
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Table 2.3: Error results of the new version of FMM for 9-digit accuracy with charges randomly
distributed in a cube

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 3.8e-11 1.2e-10 6.8e-11 1.5e-10 9.0e-12 4.4e-12 9.1e-12 8.4e-12 1.7e-11 1.3e-11
20000 3.8e-11 1.1e-10 5.4e-11 8.8e-11 3.9e-12 3.3e-12 1.0e-11 6.9e-12 1.2e-11 2.2e-12
50000 4.3e-11 1.1e-10 1.1e-10 1.2e-10 3.1e-11 1.2e-11 1.4e-11 9.6e-12 4.8e-12 7.8e-12
100000 4.3e-11 8.1e-11 8.6e-11 1.2e-10 1.3e-11 1.1e-11 9.7e-12 2.9e-12 4.4e-12 4.9e-12
200000 4.3e-11 7.3e-11 7.9e-11 1.2e-10 1.8e-11 1.7e-11 1.7e-11 5.5e-12 8.4e-12 9.5e-12
500000 4.5e-11 7.5e-11 8.2e-11 1.2e-10 2.7e-11 2.1e-11 1.9e-11 2.2e-11 1.5e-11 2.0e-11
1000000 4.5e-11 5.7e-11 6.3e-11 1.1e-10 6.9e-12 5.1e-12 1.4e-11 4.4e-12 8.0e-11 3.6e-12

Table 2.4: Timing results of the new version of FMM with charges randomly distributed in a cube

N Levels Boxes p s Tfmm�3digit Tfmm�6digit Tfmm�9digit Tdir

10000 3 585 9-18-27 80 0.05s 0.08s 0.16s 0.63s
20000 3 585 9-18-27 80 0.14s 0.21s 0.31s 2.50s
50000 4 4537 9-18-27 80 0.26s 0.45s 0.91s 15.6s
100000 4 4681 9-18-27 80 0.52s 0.86s 1.52s 62.51s
200000 4 4681 9-18-27 80 1.76s 2.27s 3.31s 250.00s
500000 5 37449 9-18-27 80 2.21s 4.30s 8.43s 1565s
1000000 5 37449 9-18-27 80 6.32s 9.62s 15.6s 6134s

If the electric field gradients are computed, there will be six more variables to be evaluated

comparing the original code with one potential variable plus three variables for the fields. Thus,

the running time of the near-field part should be around 2.5 times of the code without computing

second order derivatives. The efficiency of the far-field approximation in the original FMM has

been improved by using the exponential expansion in the new version of FMM. The approximation

expansions terms are respectively 9,18, and 27 for 3-digit, 6-digit, and 9-digit accuracy. The far-field

running time is supposed to be 1 : 4 : 9. After adding the function for computing the electric field

gradients, the far-field running time only dominates for larger digit accuracy. Therefore, the ratio

between the near-field running time and the far-field running time will be different comparing the

code without computing the electric field gradients or with the original FMM.
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2.5.2 Surface of A Unit Sphere

The second set of numerical experiments is for charges distributed randomly on the surface of the

unit sphere centered at the origin. Table 2.5, Table 2.6, and Table 2.7 are the L
2

norm numerical

error results of potential, fields and electric field gradients computed by the new version of FMM. In

Table 2.8, the running-time results produced by the new version of adaptive FMM with different

accuracy are compared to the direct evaluation of the potential, fields, and the electric field gradients

for all particles randomly distributed on the surface of the sphere.

Figure 2.5: Charges randomly distributed on the surface of the sphere

Table 2.5: Error results of the new version of FMM for 3-digit accuracy with charges randomly
distributed on the surface of a sphere

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 1.2e-4 1.3e-6 4.8e-6 2.4e-5 8.9e-9 2.6e-8 2.1e-7 2.4e-8 2.3e-7 8.0e-7
20000 1.2e-4 9.3e-7 1.2e-6 1.0e-5 5.8e-9 1.5e-8 4.6e-9 2.9e-9 3.0e-8 4.3e-8
50000 1.3e-4 1.4e-6 1.1e-6 4.6e-6 1.4e-8 6.4e-9 7.6e-9 8.3e-9 3.9e-8 2.7e-8
100000 1.3e-4 7.8e-7 1.3e-6 1.8e-5 5.2e-9 1.1e-8 6.8e-9 8.0e-8 4.8e-7 7.3e-7
200000 1.3e-4 1.3e-6 6.9e-7 1.8e-5 3.8e-9 2.1e-9 3.2e-9 3.3e-9 2.3e-7 4.9e-8
500000 1.5e-4 6.6e-7 4.8e-7 4.6e-6 2.2e-8 2.7e-9 2.4e-9 1.9e-9 2.9e-8 5.5e-8
1000000 1.6e-4 2.2e-6 1.9e-6 2.4e-6 4.2e-8 1.9e-8 2.4e-8 1.3e-8 1.1e-8 1.8e-8
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Table 2.6: Error results of the new version of FMM for 6-digit accuracy with charges randomly
distributed on the surface of a sphere

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 7.1e-8 1.6e-9 5.1e-9 2.6e-8 2.2e-11 6.9e-11 6.1e-11 5.4e-11 4.1e-10 1.3e-9
20000 7.1e-8 1.1e-9 1.8e-9 1.3e-8 1.8e-11 6.9e-11 2.1e-11 5.8e-12 6.7e-11 1.2e-10
50000 9.7e-8 2.3e-9 2.2e-9 6.0e-9 6.5e-11 3.2e-11 3.8e-11 1.7e-11 6.9e-11 1.4e-10
100000 8.8e-8 1.3e-9 2.3e-9 1.5e-8 2.2e-11 5.1e-11 3.7e-11 1.4e-11 1.1e-9 2.0e-9
200000 8.4e-8 1.8e-9 1.0e-9 1.0e-8 1.1e-11 6.2e-12 1.2e-11 7.4e-12 3.7e-10 1.1e-10
500000 8.9e-8 9.2e-10 6.2e-10 2.8e-9 6.2e-11 7.7e-12 7.5e-12 3.0e-12 7.4e-11 1.3e-10
1000000 9.9e-8 2.6e-9 1.9e-9 1.5e-9 1.1e-10 4.7e-11 5.7e-11 2.2e-11 2.5e-11 5.8e-11

Table 2.7: Error results of the new version of FMM for 9-digit accuracy with charges randomly
distributed on the surface of a sphere

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 4.5e-11 1.5e-12 4.3e-12 2.0e-11 3.1e-14 8.7e-14 7.3e-14 7.8e-14 6.6e-13 2.1e-12
20000 4.4e-11 9.3e-13 1.5e-12 1.3e-11 2.8e-14 8.6e-14 2.5e-14 1.0e-14 1.3e-13 2.3e-13
50000 5.3e-11 2.3e-12 2.0e-12 6.8e-12 7.9e-14 6.3e-14 7.2e-14 3.6e-14 3.1e-13 2.5e-13
100000 6.1e-11 1.6e-12 2.8e-12 4.3e-11 3.9e-14 8.8e-14 5.3e-14 5.0e-13 7.0e-11 1.1e-11
200000 5.7e-11 2.0e-12 1.5e-12 3.5e-11 2.8e-14 2.0e-14 2.1e-14 3.0e-14 2.4e-12 6.5e-13
500000 6.0e-11 1.1e-12 1.1e-12 1.1e-11 2.7e-13 2.5e-14 2.1e-14 1.9e-14 5.0e-13 1.1e-12
1000000 7.8e-11 3.6e-12 3.2e-12 6.1e-12 2.3e-13 1.0e-13 8.6e-14 1.2e-13 8.7e-14 3.8e-13

Table 2.8: Timing results of the new version of FMM with charges randomly distributed on the
surface of a sphere

N Levels Boxes p s Tfmm�3digit Tfmm�6digit Tfmm�9digit Tdir

10000 6 427 9-18-27 80 0.06s 0.11s 0.19s 0.63s
20000 7 890 9-18-27 80 0.19s 0.19s 0.31s 2.50s
50000 8 2496 9-18-27 80 0.32s 0.49s 0.82s 15.62s
100000 10 4037 9-18-27 80 0.61s 0.95s 1.54s 62.5s
200000 11 9355 9-18-27 80 1.26s 2.00s 3.28s 250.0s
500000 12 20741 9-18-27 80 2.99s 4.70s 7.72 1565s
1000000 13 46209 9-18-27 80 5.86s 9.42s 15.8s 6135s
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2.5.3 First Octant of the Unit Sphere

The third set of numerical experiments is for charges distributed randomly on the surface of the

first octant of the unit sphere centered at the origin. Table 2.9, Table 2.10, and Table 2.11 are for

the L
2

norm numerical error results of potential, fields and electric field gradients computed by the

new version of FMM. In Table 2.12, the timing results produced by the new version of adaptive

FMM with different accuracy are compared to the direct evaluation of the potential, fields, and the

electric field gradients for all particles randomly distributed on the surface of the first octant of the

unit sphere.

Figure 2.6: Charges randomly distributed on the surface of the first octant

Table 2.9: Error results of the new version of FMM for 3-digit accuracy with charges randomly
distributed on the surface of the first octant

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 1.0e-4 1.8e-6 3.3e-6 1.3e-5 8.8e-9 1.4e-8 1.6e-8 2.5e-8 1.6e-7 2.7e-7
20000 1.2e-4 1.7e-6 1.5e-6 5.9e-6 3.9e-8 1.1e-8 1.3e-8 6.8e-9 1.4e-7 5.5e-8
50000 1.3e-4 1.9e-6 2.7e-6 4.3e-6 2.7e-8 5.3e-8 2.2e-8 1.9e-8 3.2e-8 1.0e-7
100000 1.2e-4 3.3e-7 9.7e-7 1.0e-5 1.0e-9 2.7e-9 1.7e-9 2.3e-9 2.1e-7 2.0e-7
200000 1.1e-4 1.4e-7 1.1e-6 2.9e-6 3.2e-10 7.8e-10 5.8e-10 1.4e-9 3.9e-8 2.5e-8
500000 1.5e-4 7.6e-7 1.4e-6 2.2e-6 3.7e-9 7.2e-9 6.4e-9 1.2e-8 5.8e-9 1.8e-8
1000000 1.5e-4 6.4e-7 5.2e-7 7.9e-7 4.7e-9 1.8e-9 2.3e-9 1.4e-9 2.0e-9 2.6e-9
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Table 2.10: Error results of the new version of FMM for 6-digit accuracy with charges randomly
distributed on the surface of the first octant

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 6.5e-8 2.4e-9 4.4e-9 2.1e-8 2.2e-11 3.5e-11 4.7e-11 4.8e-11 4.5e-11 6.7e-10
20000 7.4e-8 2.3e-9 1.9e-9 9.2e-9 6.7e-11 2.5e-11 2.9e-11 1.5e-11 3.3e-10 1.2e-10
50000 8.1e-8 2.3e-9 3.2e-9 4.7e-9 7.3e-11 1.4e-10 7.6e-11 4.3e-11 9.1e-11 2.3e-10
100000 8.0e-8 3.8e-10 1.3e-9 1.1e-8 3.4e-12 7.1e-12 5.3e-12 4.3e-12 4.3e-10 6.1e-10
200000 7.1e-8 2.3e-10 1.8e-9 2.7e-9 1.2e-12 3.1e-12 2.9e-12 3.5e-12 8.5e-11 6.9e-11
500000 9.6e-8 1.1e-9 1.8e-9 1.9e-9 1.3e-11 1.8e-11 2.6e-11 2.2e-11 1.3e-11 3.9e-11
1000000 9.8e-8 1.1e-9 7.7e-10 5.5e-10 2.1e-11 5.4e-12 1.1e-11 4.1e-12 4.0e-12 6.0e-12

Table 2.11: Error results of the new version of FMM for 9-digit accuracy with charges randomly
distributed on the surface of the first octant

N � �x �y �z �xx �yy �zz �xy �xz �yz

10000 4.2e-11 3.0e-12 4.3e-12 2.2e-11 3.5e-14 7.9e-14 8.7e-14 9.2e-14 1.2e-12 1.2e-12
20000 4.1e-11 3.2e-12 1.9e-12 9.6e-12 2.5e-13 8.1e-14 3.7e-14 3.7e-14 1.3e-12 3.0e-13
50000 4.5e-11 3.3e-12 3.2e-12 8.0e-12 2.8e-13 4.2e-13 2.0e-13 1.4e-13 3.9e-13 1.0e-12
100000 4.4e-11 7.4e-13 1.6e-12 2.4e-11 1.2e-14 1.5e-14 1.7e-14 1.8e-14 4.5e-12 4.3e-12
200000 4.1e-11 3.0e-13 2.1e-12 6.5e-12 5.6e-15 9.0e-15 9.0e-15 1.5e-14 5.0e-13 5.9e-13
500000 5.4e-11 1.2e-12 2.1e-12 4.8e-12 2.2e-14 3.6e-14 4.5e-14 5.8e-14 5.6e-14 1.4e-13
1000000 5.3e-11 1.0e-12 1.0e-12 1.7e-12 5.9e-14 1.6e-14 2.3e-14 1.9e-14 2.3e-14 3.7e-14

Table 2.12: Timing results of the new version of FMM with charges randomly distributed on the
surface of the first octant

N Levels Boxes p s Tfmm�3digit Tfmm�6digit Tfmm�9digit Tdir

10000 7 428 9-18-27 80 0.06s 0.10s 0.16s 0.63s
20000 8 861 9-18-27 80 0.11s 0.18s 0.30s 2.50s
50000 9 2345 9-18-27 80 0.38s 0.51s 0.84s 15.7s
100000 10 4170 9-18-27 80 0.57s 0.92s 1.52s 62.5s
200000 11 9645 9-18-27 80 1.25s 1.90s 3.16s 250.1s
500000 12 20620 9-18-27 80 3.06s 4.75s 7.77s 1565s
1000000 14 46158 9-18-27 80 6.15s 9.54s 15.9s 6134.9s
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CHAPTER 3

Adaptive Rotne-Prager-Yamakawa Solver by Multipole Methods

In this chapter, a fast algorithm will be presented for computing the matrix-vector multiplication,

which is essential for the simulation of Brownian dynamics with hydrodynamic interactions. The

algorithm is based on the development of the new version of the FMM solver with new functions

of computing the field gradients as shown in the last chapter. The diffusion matrix is represented

by the Rotne-Prager-Yamakawa tensor which is configuration-dependent. The Brownian particles

with a small radius are spherically symmetric. The hydrodynamic forces mediated by the fluid are

assumed to act on the center of the particles.

To describe hydrodynamic interactions, consider an ensemble of N particles suspended in a

viscous fluid with a low Reynolds number. The motion of a particle in the fluid will induce a local

flow field, which will be felt by the other particles. As a result, the other particles will experience a

force mediated by the fluid. By generating and reacting to a local fluid velocity, particles experience

interactions with each other mediated by the solvent, which is called the hydrodynamic interactions

between the particles.

The hydrodynamic interactions are long-range, many-body interactions. Due to the multi-body

and nonlinear characteristics of the hydrodynamic interaction, it is hard to take the full complexity

into consideration. Various approximations have been introduced to make the computation more

tractable. Usually, the hydrodynamic interactions are described by a position-dependent inter-particle

diffusion tensor. The Rotne-Prager-Yamakawa approximation [76] is one of the approximations that

has been widely used to study the mobility of spherical particles with a finite size in an unbounded

domain. It is very popular in modeling the hydrodynamic interactions in colloidal suspensions and

polymer solutions. There are mainly two reasons why RPY approximation is so popular. Firstly, it

includes all long-range force terms up to R�3, where R is the distance between the two particles.

Secondly, the diffusion matrix described by RPY tensor is positive definite when the two particles

are not overlapping (the distance of the center of the two particles is larger than the diameter of the



particles ). This characteristic ensures the fluctuation-dissipation balance [76] and is very important

in Brownian Dynamic simulations. When generating the Brownian forces, the square root or the

Cholesky decomposition of the covariance matrix has to be computed to make sure the Brownian

forces satisfy the fluctuation-dissipation theorem. Without the symmetric positive definite property,

the results of the Brownian dynamic simulations will result in a nonphysical behavior. Something

needed to be pointed out is that the lubrication is not included in the RPY tensor. If the particles

get very close (less than the diameter of the particle), corrections have to be added to make sure

the diffusion matrix is positive-definite. Only the pairwise approximation (two-body hydrodynamic

interactions) is included in the RPY tensor and therefore it is not a good approximation to study

solutions with a high particle concentration [77].

Assume D is the diffusion matrix describing the hydrodynamic interactions of the particles

with dimension 3N ⇥ 3N and F is the deterministic non-hydrodynamic force vector exerted on

the particles with dimension 3N . The non-hydrodynamic forces are forces due to the interaction

potential energy between Brownian particles or external forces exerted on the particles. In Brownian

dynamics simulations, D · F is constantly required to be evaluated to study the motion of the

particles, as well as the displacement of the particles due to the systematic forces F exerted on the

spherical particles. Since D involves the hydrodynamic interactions between all particles, it is a

dense matrix. Direct evaluation of D ·F will be O(N2

) complexity. Also, the memory requirement is

expensive if the matrix D is generated explicitly. According to Liu and Chow [28], for 10K particles,

storage for D is as huge as 32 GB.

To overcome the O(N2

) cost of direct evaluation, various fast algorithms have been developed to

reduce the complexity to O(NlogN) or O(N). In 1986, Beenakker provided [29] Ewald summation

for the RPY mobility tensor and variant. Later on, Particle mesh techniques including the Particle

Mesh Ewald (PME) method [30] and the Smooth Particle Mesh Ewald (SPME) method [31] have

been extensively used for calculating hydrodynamic interactions with O(NlogN) computation scaling.

Other methods include methods of local corrections [32], multigrid methods [33], panel clustering

methods, precorrected-FFT [34] and so on. In 2013, Liang decomposed the RPY tensor into harmonic

potentials and its fields, which required four harmonic FMM calls and the harmonic potentials are

evaluated by kernel-independent FMM [78]. In this chapter, the RPY tensor is decomposed into four

harmonic FMM calls with different charges. The decomposition here required evaluating potentials,
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electric fields, and the field gradients. The algorithm for evaluation those terms is described in

Chapter 2. Another difference is the harmonic potentials are evaluated by the new version of the

fast multipole method [1] which works efficient in three-dimensional simulations. The fast RPY

solver has been parallelized on the multi-core and multi-processor systems. The numerical results

show that the method shown below has a better performance. Specifically, there is going to be

a three-dimensional force vector corresponding to each particle. To apply the new version of fast

multipole methods, the far-field RPY potential is decomposed into four Laplace FMM calls, with

each particle corresponding to one scalar component related to the force. This scalar component is

sometimes marked as "charge" in this chapter to match the description of the electrostatic potential

in Chapter 2. They are not physical charges. The adaptive, fast RPY solver developed in this

dissertation computationally enables the large-scale complex Brownian dynamics simulations viable

and has a direct application to the problem of how to deal with the long-range hydrodynamic

interactions in computer simulations of macromolecular solutions.

In the first section of this chapter, the definition of the RPY tensor and the formulation of the

RPY potential will be introduced. Here, the force exerted on each particle are treated as charges to

keep consistent with the description in Chapter 2. The matrix-vector multiplication between the

diffusion matrix and the force vector is called potentials. In the second section, it will show how

to decompose the RPY tensor into four harmonic potentials, electric fields, and field gradients and

apply the Laplace FMM subroutines to collect the far-field contributions of RPY potential. In the

third section, a pseudocode for the fast RPY algorithm with multipole methods will be presented.

The numerical results in the last section are to illustrate the performance of the fast RPY solver

developed in this thesis.
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3.1 Rotne-Prager-Yamakawa Tensor

Given N particles with charges {qi}Ni=1

and locations {xi}Ni=1

, the definition of the RPY tensor

is as below:

D(xm,xn) =
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Here, kB is the Boltzmann constant. T is the absolute temperature and ⌘ is the solvent viscosity. a

is the radius of each bead. m,n represents the indices of the particles. rmn is the distance between

the particle i and particle j. r

mn

= x

m

� x

n

. I is the 3⇥ 3 identity matrix. ⌦ is the outer product

and D(xm,xn) is a 3⇥ 3 matrix.

An important property of the RPY tensor is

X

n

@D(xm,xn)

@rn
= 0. (3.2)

This property greatly simplifies the computation of the displacements for particles since it is not

necessary to compute the gradient of the diffusion tensor. For each particle m,m = 1, . . . , N , one

requires to evaluate

U(xm) =

NX

n=1

D(xm,xn)Fn, (3.3)

where U(x

m

) = (U

(1)

m ,U
(2)

m ,U
(3)

m )

T is the RPY potential at xm. D(xm,xn) satisfies Equation (3.1)

and Fn is the systematic force exerted on particle n.

To rapidly evaluate Equation (3.3), the same adaptive oct-tree data structure as was used in

fast multipole method will be applied. The strategy is to cluster particles at various spatial lengths

and compute the interactions with other clusters that are sufficiently far away. The parallelized

new version of the fast multipole method for the three-dimensional Laplace equation [1] has been
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employed to compute the far-field part. Interactions with nearby particles will be handled directly.

U(xm) =

X
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)F
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+

X

xn2⌦far
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= Unear(xm) +Ufar(xm) (3.4)

Here, if xm is in a box b, ⌦near means the list Ub and ⌦far are the remaining four lists Vb,Wb, Xb, Yb

which are well-seperated from box b. Assume the spherical particles have a small radius. For two

particles m and m in well-separated boxes(or no overlapping), the relative position between particle

m and n rmn = |x
m

� x

n

| > 2a and how to evaluate the far-field RPY potential will be focused on

in the next section.

3.1.1 Far-field Rotne-Prager-Yamakawa Evaluation with Multipole Methods

For any two particles m and n, when rmn = |x
m

� x

n

| > 2a, for i, j = 1, 2, 3, rewrite the

formulation of D(xm,xn). Here, Dij(xm,xn) means the element on the ith row and jth floor of the

3⇥ 3 matrix D(xm,xn). Before started, two formulas are shown as below:
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These two formulas will be applied in the rewritten process.
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Here, C
1

=

kBT
8⇡⌘ , C2

=

kBTa2

12⇡⌘ . Dij(xm,xn) is the element on ith row and jth column of the 3⇥ 3

matrix D(xm,xn), i, j = 1, 2, 3,m, n = 1, . . . , N .

According to Equation (3.3) and Equation3.13, the ith element of the far-field part of the
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Rotne-Prager-Yamakawa potential for the particle m is
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In the following, define the far-field harmonic potential
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the far-field part of the electric field as
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and the far-field part of the electric field gradient for particle m as
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E
(i)
far represents the ith element of the field vector and ¨

�far. ¨

�

(ij)
far denotes the element on the ith

row and jth column of the electric field gradient matrix. Eventually, there is

U

(i)
far = C

1

�far(xm,F(i)
n ) + C

1

3X

j=1

x

(j)
m Efar(xm,F(j)

n )

�E
(i)
far(xm, C

1

(x

n

· F
n

)) + C
2

3X

j=1

¨

�

(ij)
far(xm,F(j)

n ), i = 1, 2, 3. (3.8)

So to evaluate the far-field part of the RPY potential, firstly build the adaptive oct tree according to

the particle positions {xi}Ni=1

. Then one needs call four times far-field FMM subroutines with charges

54



{F(1)

n }Nn=1

, {F(2)

n }Nn=1

, {F(3)

n }Nn=1

, {C
1

(x

n

·F
n

)}Nn=1

separately. Note here, only the contribution from

the far-field part of the harmonic potential will be collected �far, field Efar and electric field

gradients ¨

�far.

3.1.2 Near-field Rotne-Prager-Yamakawa Potential Evaluation

For the near-field part of the RPY potential, follow Equation 3.1 and compute Unear particle by

particle in a direct way. Define C
0

=

kBT
6⇡⌘a , when m = n, according to Equation 3.1,

D(xm,xm)Fm = C
0

Fm. (3.9)

When rmn = |xm � xn| > 2a,

D(xm,xn)Fn =

C
1

rmn
Fn + C

1

G(xm,xn)Fn +

C
2

r3mn

Fn � 3C
2

r2mn

G(xm,xn)Fn, (3.10)

where the matrix G(xm,xn) is

G(xm,xn) =

2

66664
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and rmn = xm � xn = (r

(1)

mn, r
(2)

mn, r
(3)

mn). So the near field potential is

Unear(xm) =

X

xn2⌦near

D(x

m

,x
n

)F

n

= C
0

Fm +

X

xn(n 6=m)2⌦near

D(x

m

,x
n

)F

n

. (3.12)

To summarize, the RPY potential for spherical particles with radius a at xm

U(xm) = Unear(xm) +Ufar(xm).

Unear(xm) will be computed directly by Equation (3.12), while Ufar(xm) will be evaluated by

Equation (3.8) through calling the far-field part of the new version of Laplace FMM described by
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Algorithm 1.

3.2 Adaptive Rotne-Prager-Yamakawa Algorithm with Multipole Methods

The algorithm below is the pseudo code for the adaptive, fast RPY algorithm by the new version

of fast multipole methods. The adaptive oct-tree structure from the new version of fast multipole

methods will still be applied in evaluating the RPY potential. The far-field evaluation of electrostatic

potentials, fields, and field gradient will follow the adaptive new version of fast multipole method

discussed in Chapter 2. Interested readers can refer to Algorithm 1 for details. This adaptive RPY

algorithm is essential for the Brownian dynamic simulations with hydrodynamic interactions.

Algorithm 2 ADAPTIVE RPY ALGORITHM WITH MULTIPOLE METHODS

Input : N Particles with locations {xm}Nm=1

and external forces on each particle {Fm}Nm=1

.

Precision ✏ and the maximum number of particles in leaf box s, Boltzmann constant kB,

temperature T , fluid viscosity ⌘, radius of particle a

Output : RPY Potential {U(xm)}Nm=1

.

1: Choose pth order of the multipole expansion according to ✏.

2: Generate the adaptive Oct-Tree structure and obtain Lists Ub, Vb,Wb, Xb for each box b.

3: for j = 1, 2, 3 do

4: Call the far-file part of Algorithm 1 with charges {F(j)
n }Nn=1

.

5: Collect the harmonic potentials �far, fields Efar and electric field gradients ¨

�far.

6: Add the corresponding part to Ufar by Equation 3.3.

7: end for

8: Call the far-field part of Algorithm 1 with charges {C
1

(x

n

· F
n

)}Nn=1

, collecting the fields Efar

and add it to Ufar.

9: Compute the near-field RPY potential Unear at each point of the childless box b directly for all

charges in Ub following Equation (3.1).

Note here, since there is only concurrent read of the adaptive data structures, the four far-field FMM

evaluations and the near-field calculation can be finished simultaneously by different threads. Here,

the RPY solver is parallelized on multi-core systems.
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3.3 Numerical Results

In this chapter, the numerical results of the fast RPY solver will be presented by the new version

of the multipole method [1]. There are two sets of numerical experiments. One is for spherical

particles randomly distributed on the surface of a cylinder, and the other set is for spherical particles

randomly distributed on eight faces. The numerical tests were performed with 3-digit, 6-digit, and

9-digit accuracy for spherical Brownian particles randomly distributed on the surface of cylinder and

eight faces. The maximum number of particles allowed in each leaf box is set to be 80.

3.3.1 Cylinder

In the first set of experiments, the charges were distributed randomly on the surface of a cylinder.

The running time and the numerical error results with 3-digit, 6-digit and 9-digit accuracy using

12 threads are presented in Table 3.1. Table 3.2 shows the running time of the fast Rotne-Prager-

Yamakawa solver with different number of threads. The accuracy is 6-digit. Table 3.3 shows the

parallel efficiency for particles randomly distributed on the surface of the cylinder. Figure 3.3.1

shows the speedup of fast RPY solver for particles distributed on the surface of cylinder.

Figure 3.1: Particles randomly distributed on the surface of a cylinder
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Table 3.1: Numerical results of RPY solver for particles randomly distributed on the surface of the
cylinder(12 threads)

N E
3digit E

6digit E
9digit Trpy�3digit Trpy�6digit Trpy�9digit Tdir

10000 2.3e-5 2.3e-8 1.3e-10 0.06s 0.14s 0.31s 0.50s
20000 4.0e-5 4.0e-8 2.0e-10 0.14s 0.34s 0.77s 2.01s
50000 7.6e-5 7.6e-8 2.8e-10 0.34s 0.87s 1.88s 12.58s
100000 3.7e-5 3.8e-8 2.1e-10 0.65s 1.69s 3.49 50.36s
200000 7.0e-5 6.2e-8 2.9e-10 1.34s 3.44s 6.94 201.56s
500000 8.1e-5 8.0e-8 3.4e-10 3.28s 7.27s 15.0s 1155.48s
1000000 6.3e-4 7.5e-7 1.4e-9 8.01s 19.4s 39.1s 4966.99s

Table 3.2: Running time of RPY solver of 6-digit accuracy for particles randomly distributed on the
surface of the cylinder

N 1 thread 2 threads 4 threads 8 threads 12 threads

10000 1.82s 0.92s 0.48s 0.26s 0.19s
20000 3.69s 1.87s 0.98s 0.51s 0.36s
50000 9.20s 4.76s 2.43s 1.26s 0.85s
100000 19.32s 9.80s 4.99s 2.63s 1.84s
200000 41.80s 21.21s 10.97s 5.54s 3.84s
500000 101.79 51.44s 26.30s 13.56s 9.25s
1000000 212.10 106.48 54.93 28.31s 19.21s

Table 3.3: Speedup of RPY solver of 6-digit accuracy for particles randomly distributed on the
surface of the cylinder

N 1 thread 2 threads 4 threads 8 threads 12 threads

10000 1 1.96 3.79 7.03 9.68
20000 1 1.98 3.76 7.29 10.34
50000 1 1.94 3.79 7.33 10.81
100000 1 1.97 3.88 7.35 10.50
200000 1 1.97 3.81 7.54 10.90
500000 1 1.98 3.87 7.51 11.01
1000000 1 1.99 3.86 7.49 11.04
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Figure 3.2: Speedup of particles randomly distributed on the surface of the cylinder
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3.3.2 Eight Surface

In the second set of experiments, the charges were distributed randomly on an eight surface.

The running time and the numerical error results with 3-digit, 6-digit and 9-digit accuracy using 12

threads are presented in Table 3.4. Table 3.5 shows the running time of the fast RPY solver with

different number of threads with 6-digit accuracy. Table 3.6 shows the parallel efficiency for particles

randomly distributed on the eight surface.

Figure 3.3: Particles randomly distributed on an eight surface

Table 3.4: Numerical Results of RPY solver for particles randomly distributed on the eight surface
(12threads)

N E
3digit E

6digit E
9digit Trpy�3digit Trpy�6digit Trpy�9digit Tdir

10000 6.9e-6 1.0e-8 8.2e-12 0.10s 0.23s 0.48s 0.50s
20000 1.1e-5 1.7e-8 1.3e-11 0.23s 0.52s 1.00s 2.02s
50000 2.2e-5 3.3e-8 2.7e-11 0.61s 1.18s 2.34s 12.58s
100000 3.5e-5 5.3e-8 4.4e-11 1.18s 2.53s 4.90s 50.36s
200000 5.7e-5 8.4e-8 7.2e-11 1.82s 3.62s 9.09s 183.38s
500000 1.0e-4 1.6e-7 1.3e-10 5.32s 11.72s 22.83s 1268.32s
1000000 1.6e-4 2.4e-7 2.0e-10 10.73s 19.15s 44.8s 4973.18s

The numerical results show that the fast RPY solver developed here can handle multi-million
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Table 3.5: Running time of RPY solver of 6-digit accuracy using different threads for particles
randomly distributed on the eight surface

N 1 thread 2 threads 4 threads 8 threads 12 threads

10000 2.39s 0.95s 0.62s 0.27s 0.23s
20000 5.39s 2.20s 1.41s 0.63s 0.52s
50000 12.73s 5.53s 2.72s 1.45s 1.18s
100000 27.25s 11.46s 6.95s 3.23s 2.53s
200000 48.73s 20.37s 12.26s 5.26s 3.62s
500000 108.13s 55.11s 28.13s 14.49s 9.89s
1000000 214.71s 107.18s 65.07s 28.06s 19.15s

Table 3.6: Speedup of RPY solver of 6-digit accuracy using different threads for particles randomly
distributed on the surface of the eight surface

N 1 thread 2 threads 4 threads 8 threads 12 threads

10000 1 2.52 3.85 8.85 10.39
20000 1 2.45 3.82 8.56 10.37
50000 1 2.30 4.68 8.78 10.79
100000 1 2.38 3.92 8.44 10.77
200000 1 2.39 3.97 9.26 13.46
500000 1 1.96 3.84 7.46 10.93
1000000 1 2.00 3.30 7.65 11.21

spherical Brownian particle simulations and that the parallel solver has nearly linear speed up on

multi-core systems. The fast parallel RPY solver with tunable accuracy makes it computationally

viable for large-scale long-time Brownian dynamic simulations.
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Figure 3.4: Speedup of particles randomly distributed on the eight surface
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CHAPTER 4

Hydrodynamic Interactions of Complex, Rigid, Biological Macromolecules in

Suspension

Hydrodynamic methods play a vital role in characterizing the structures of biological macro-

molecules and biomolecular complexes. In Chapter 3, the RPY tensor is employed to approximate

the mobility of the spherical particles in fluids. Since the real biological systems are much more

complicated, for example, there are boundaries or the immersed particles are not spheres, it is not

possible to use the RPY tensor given above. Modeling the dynamics of the macromolecules can

be very challenging. First, finding the associated diffusion matrix is fundamentally important in

constructing the numerical algorithms for tracking the motion of the many-body macromolecules

in viscous fluids. Also, the original Brownian-dynamics model by Ermak and McCammon only

consider the translational motion of the spherically symmetric particles or particles composed of

spherically symmetric subunits. For complex-structured macromolecules, they also execute rotational

Brownian motion arising from the fluctuating torque by the surrounding solvent molecules. Generally

speaking, biological macromolecules can be classified into rigid, flexible and semi-flexible types.

Many structures, such as proteins and viruses, have rigid, well-defined geometries. For a rigid

body, hydrodynamic friction only occurs on the surface of solid particles and the interior of the

particle is inaccessible to solvent. The purpose of this chapter is to present an accurate model of the

hydrodynamic effect on the translational and rotational dynamics in complex many-body systems

with rigid macromolecules. Diffusion including translation and rotational dynamics has been widely

studied in a wide range of environments including cytoplasm of cells [79], concentrated suspensions

[80], gels or hydrogels [81, 82, 83, 84, 85, 86, 87], and mucus [88].

Earlier work in this field used macromolecules with simple geometric structures (such as spheres,

ellipsoids, or cylinders ) to describe the shape of fairly symmetric macromolecules in a low resolution.

Nonetheless, these simple models are inadequate to accurately describe more complicated structures

and cannot reveal the more complicated, unique conformation of macromolecules with higher



Figure 4.1: Complex biological macromolecule structures [4]

resolutions. To develop a more precise approach for studying the hydrodynamic effects of the

macromolecules, Oseen and Burgers firstly took into account the hydrodynamic interactions between

frictional subunits [89, 90]. Then Kirkwood modeled polymers as arrays of frictional centers of

hydrodynamic resistance [46, 91] based on Oseen-Burgers formulation and developed the theory for

the translational frictional coefficients. Those frictional centers can be viewed as subunits making up

the macromolecular structure without considering the finite size of these subunits. The hydrodynamic

forces are distributed on the subunit surface rather than the centers. Bloomfield advanced Kirkwood’s

theory by calculating the translational and rotational diffusion coefficients of complex structures in

two ways. He developed the shell model in which the shape of a macromolecule has been outlined

using an ensemble of identical, small spherical subunits(beads) [92]. Also, in the subunit model he

developed, a macromolecule is built up using a finite number of spherical subunits with different size

[47]. In subsequent works, McCammon,1976 [11]; Garcia de la Torre and Bloomfield, 1977, 1978

[93, 94, 95]; Swanson et 1978 [96], the approximation contained in Kirkwood’s original bead model

has been removed and the friction forces at each element were assumed to act at the bead center.

The updated bead model has been widely used in Brownian dynamics simulation to approximate

the complex structure of macromolecules by smaller and geometrically simpler frictional elements

and compute the diffusion tensor between macromolecules.

In this work, a concise model has been built to describe the hydrodynamic interactions between

the macromolecules with arbitrary shape. The theory and methods for calculating the hydrodynamic

properties between the macromolecules will be shown, including approximate methods that may

be needed to treat models with a very large number of elements. Two algorithms have been

64



developed for computing the translational and rotational dynamics in many-body complex systems.

A preconditioner has been devised by employing the rigid property of the macromolecules to accelerate

the convergence of the algorithms. All of these hydrodynamic theories can be used to calculate

the frictional properties of rigid macromolecules more accurately from the structures and provide

guidelines for computational tools for the bead modeling.

4.1 Hydrodynamic Interactions

The effects of hydrodynamic interactions mediated by the host solvent are included through

a position-dependent inter-particle friction tensor. A commonly used model for describing the

hydrodynamic interactions in colloidal suspensions and polymer solutions is the Rotne-Prager-

Yamakawa(RPY) tensor. It has been applied to dilute solutions of large molecules and colloidal

particles. For symmetric spheres in Stokes flow, the RPY tensor will neglect the hydrodynamic

rotation-rotation and rotation-translation coupling and is defined as following:

D(xi,xj) =

8
>>>>><

>>>>>:

kBT
6⇡⌘aI i = j
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8⇡⌘rij
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Here, kB is the Boltzmann constant, T is the absolute temperature, ⌘ is the solvent viscosity, a is

the radius of each bead. i, j represents the indices of the particles. rij is the distance between the

particle i and particle j. r

ij

= x

i

� x

j

. I is the 3⇥ 3 identity matrix.

4.2 Bead-Shell Model

Earlier studies distinguish the bead model and the shell model. Bead models are methods for

representing a complex-structured particle with a few beads (either identical or different in size) to

approximately occupy the volume of the particle. Alternatively, in the shell model, a great number

of small, identical, spherical subunits are arranged to outline the overall particle shape. Since the

hydrodynamic forces are distributed on the subunit surfaces, the shell model is more appropriate

for hydrodynamics. Also, if higher resolution is required, the fine details of the macromolecular
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Figure 4.2: (A) Atomistic DNA model (B) Bead Model with each DNA residue modeled with a
single pseudoatom (C) Bead-shell model with surfaces covered with spherical elements(By Maciej
Dlugosz [5])

structure can be adequately modeled by decreasing the size of the beads in the shell model.

Calculating the diffusion tensor of the macromolecules is essential in the Brownian simulation

of macromolecules. The bead model has been applied to reproduce the experimental diffusion

coefficients of a single macromolecule analytically [97, 98], where the macromolecule is set to be at

least partly flexible. In the Brownian dynamic simulation of one macromolecule, those beads can be

viewed as a chemical unit, such as an atom, amino acid or even a protein domain. Only the bead-level

diffusion coefficients are computed. For complex-structured macromolecules in many-body systems, it

is difficult to obtain the diffusion tensor by the bead model analytically when the macromolecules are

modeled as rigid bodies. Numerical methods are constantly applied to obtain the approximation. In

2012, Wang [99] showed that the bead models produce very accurate diffusion tensors for two spheres

where beads have no overlap. Here, the bead-shell model is applied to study the hydrodynamic

effects for the macromolecules for the many-body system. Note, typical distances between beads are

larger than bead sizes. The idea is first to compute the bead-level diffusion tensor, then convert the

bead-level diffusion tensor into the diffusion tensor of the macromolecules.

4.3 Mathematical Formulation of the many-body System in Suspensions with
Bead Model

Consider a system of m rigid bodies with arbitrary shape suspended in an unbounded viscous

fluid at low Reynolds number with body k having Nk beads on its surface. Then the number

of beads for the whole system is N =

Pm
k=1

Nk. Given the systematic(non-hydrodynamic) body
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forces/torques ~F of the whole system, how does one compute the general velocities ~V of the bodies?

Here, ~V is the translational/angular velocities of all bodies and ~F is forces/torques of all bodies.

~V = [V
1

,⌦
1

, . . . , Vm,⌦m]

T , ~F = [F
1

, ⌧
1

, . . . , Fm, ⌧m]

T (4.1)

Suppose ~
vb are the velocities of all beads of the whole system, vk are the bead velocities of Body k.

There is

vk = [v1k, . . . , v
Nk
k ]

T , ~vb = [v

1

, . . . ,vm]

T (4.2)

Similarly, the bead forces of Body k fk and bead forces for all beads of the whole system are:

fk = [f1

k , . . . , f
Nk
k ]

T ,~fb = [f

1

, . . . , fm]

T . (4.3)

In Stokes flow, by omitting the sign, the bead velocities and the bead forces have

~
fb = ⇣~vb = kBTD

�1~
vb, (4.4)

where ⇣ is the frictional tensor between the beads. D is the diffusion tensor describing the hydro-

dynamic interactions between beads and modeled by RPY tensor. To study the hydrodynamic

interactions between the macromolecules with the shape described by the bead-shell model, one

needs to compute the grand diffusion matrix. One also wants to know the relationship between

the force/torque and the translational/angular velocities on the body level. So if one can find a

relationship between

• Bead forces - Body force/torque

• Bead velocities - Body translational/angular velocity

according to Equation (4.4), the conclusion can be easily obtained. The problem becomes how to

derive a formula between the translational/angular velocities and the forces/torques on body level?

Theorem 4.3.1. For a many-body system with m macromoleclues, for any k = 1, . . . ,m, the

number of beads on the kth macromolecule is Nk. Assume ~
V denotes the general velocities including

translational velocities

~
V = (V

1

,⌦
1

, · · · , Vm,⌦m)

T ,
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where Vi,⌦i represent the translational velocity and angular velocity of macromolecule i separately.

The general body forces ~
F

~
F = (F

1

, ⌧
1

, · · · , Fm, ⌧m)

T ,

is a composite of non-hydrodynamic forces and torques of all macromolecules. Fi is the force and

⌧i is the torque. D is the diffusion tensor between beads. Then the general forces and the general

velocities of macromolecules have

kBT ( ~QD

�1 ~QT
)

~
V =

~
F (4.5)

Here, D 2 R3N⇥3N , ~Q 2 R6m⇥3N and
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So the grand frictional tensor of the macromolecules in the many-body system is

~⇣ = kBT ( ~QD

�1 ~QT
). (4.6)

And the corresponding grand diffusion tensor of the macromolecules is

~
D = (

~QD

�1 ~QT
)

�1. (4.7)

Proof. To simplify, each macromolecule will be treated as a body. For body k = 1, . . . ,m, the body

force is a summation of all bead forces on body k. There is
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The total force/torque for the whole system can be written as
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Similarly, the bead velocities of body k can be described as
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To summarize, the following equations have been discussed:

8
>>>><

>>>>:
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(4.9)

Rewrite the above formula, the conclusion of Theorem 4.3.1 can be obtained.

The above theorem can be rewritten as

~F =

~⇣~V . (4.10)

or

~V =

1

kBT
~
D · ~F . (4.11)

Here, ~⇣ = kBT ( ~QD

�1 ~QT
) 2 R6m⇥6m and ~

D = (

~QD

�1 ~QT
)

�1 2 Rm⇥m. The diffusion matrix D is

modeled by the RPY tensor for hydrodynamics between all beads of the macromolecules in the

whole system. To obtain the general velocities of the macromolecules, one can either solve the linear

equation of Equation (4.10) or compute the matrix-vector product of Equation (4.11). The difficult

part of solving Equation (4.10) or Equation (4.11) is it is time-consuming to get ~⇣ and ~
D explicitly

since the D is a dense symmetric positive definite matrix with dimension 3N ⇥ 3N and computing

the inverse of D will result in polynomial time complexities.

4.4 Fast Algorithms for the many-body System

Since the friction tensor matrix ~⇣ = kBT ( ~QD

�1 ~QT
) 2 R6m⇥6m, when the number of macro-

molecules m is small, say two, the friction tensor matrix will be only a 12 by 12 matrix. Because

the diffusion matrix of all beads D is symmetric positive definite and the matrix ~Q is full rank, the

friction matrix ~⇣ is still symmetric positive definite. Once an approximation of ~⇣ is achieved, the

general velocities ~
V satisfying Equation (4.10) will be easily obtained.

Since the fast RPY solver has been developed in Chapter 2, the matrix-vector product evaluation

D ·F can be efficiently obtained. Based on this property, two fast algorithms for solving the Equation
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(4.10) have been devised. The first algorithm is based on the block conjugate gradient method

for computing the approximation of the matrix ~⇣, which is finding an approximation matrix B.

This method works for a small number of macromolecules m. Note here, the approximation error

✏ does not have to be very small and accurate numerical solutions of the general velocities of the

macromolecules can still be obtained.

4.4.1 Block Conjugate Gradient Method

Below is the pseudo code of the block conjugate gradient method for computing the approximation

of the grand frictional matrix omitting the constant kBT .

Algorithm 3 Block conjugate gradient method

Input : Bead Positions of all bodies {x
i

}Ni=1

, maxiter, ✏.

Output : B ⇡ ~QD

�1 ~QT .

1: Let R
0

=

~Q, P
0

= R
0

, B
0

= O.

2: for dok = 0 to maxiter

3: Solve (P T
k DPk)↵k = RT

kRk.

4: Bk+1

= Bk +RT
kRk↵k

5: Rk+1

= Rk �DPk↵k

6: if then||Rk+1

|| < ✏

7: break;

8: else

9: Solve �k from ((RkR
T
k ))�k = RT

k+1

Rk+1

;

10: Pk+1

= Rk+1

+ Pk ⇤ �k ;

11: end if

12: end for

13: return Bk+1

.

4.4.2 Numerical Results of the Block Conjugate Gradient Method

In this chapter, the hydrodynamics of spherical macromolecules with subunits on their surfaces

will be considered. Many virus have such shapes, for example, the varicella-zoster virus-one of eight
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herpes viruses known to infect humans and vertebrates. The HIV virus and some nanoparticles also

have the spherical shape and their hydrodynamics can be modeled by bead-shell model. Below,

bead-shell model will be applied to study the two-body macromolecules of identical size in this

simulation. The block conjugate gradient method is applied to obtain the approximation of the

grand frictional matrix. Since the grand frictional matrix is only a 12⇥ 12 matrix, once obtaining

its approximation, it is easy to compute the related linear equations. There are two advantages for

applying the block conjugate gradient method in Brownian dynamics simulations for macromolecules.

First, it is easy to obtain the general velocities of the macromolecules by solving the linear equation

described by Equation (4.10), which means the displacements/orientations of the macromolecules

due to the determinstic non-hydrodynamics forces operating on the macromolecules can be obtained

by simply multiplying a �t of the general velocities. Another advantage of this method is that the

Brownian displacements and orientations are also easy to compute since they can be obtained by

solving a linear equation
q
(

~QD

�1 ~QT
)

~
VB =

~
FB. The right hand side ~

FB is obtained by white

noises and coefficient matrix
q
(

~QD

�1 ~QT
) is described by the square root of the grand frictional

matrix. ~
VB is the random displacements and orientations for the macromolecules. Some similar

research for computing the approximation of block bilinear form CHA�1B where square matrix A is

large and sparse. B and C are rectangular matrices with the same size in [100]. But the matrix D

here are very dense.

Figure 4.3: Bead-shell model of the two body system

72



Below is a figure about the iteration number and the numerical errors of the general velocities.

As the iteration number is increased in the block conjugate gradient method, a more accurate grand

frictional matrix will be obtained. As a result, the general velocities of the macromolecules are more

accurate.

Figure 4.4: Iteration number of the block conjugate gradient method for the hydrodynamics of the
two-body system

4.4.3 Schur Complement Method

Since ~⇣ = kBT ( ~QD

�1 ~QT
), construct matrix

M =

0

B@
D � ~QT

~Q O

1

CA . (4.12)

The Schur complement of M/D = O � ~QD

�1 ~QT
= � 1

kBT
~⇣.

Theorem 4.4.1. Solving the general velocities of the macromolecules which satisfy

~⇣ ~V =

~
F
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is equivalent to

~⇣ ~V =

~
F () M

0

B@
U

~
V

1

CA =

0

B@
O

1

kBT
~
F

1

CA .

Proof. Assume

M

0

B@
V
1

V
2

1

CA =

0

B@
F
1

F
2

1

CA)

8
>><

>>:

DV
1

=

~QTV
2

+ F
1

~QV
1

= F
2

.

Because D is symmetric positive definite, multiply ~QD

�1 on both sides of the first equation

above. The equation below can be obtained

~QD

�1V
1

=

~QD

�1 ~QTV
2

+

~QD

�1F
1

= F
2

Let F
1

= 0 and F
2

=

1

kBT
~
F, the theorem 4.4.1 can be easily verified.

Since the model described in this chapter is for rigid bodies, the conformation of the rigid bodies

will not change along with time which means the relative positions of the beads on the surface of the

same macromolecule are the same. Utilizing this characteristic, a preconditioner can be constructed

since the inverse of the diffusion matrix for each rigid body, i.e. {Dij}Nk
i,j=1

, can be precomputed.

Given the two-body system,

M =

0

B@

D11 D12

D

T
12 D22

� ~QT
1

� ~QT
2

~Q1
~Q2

O

1

CA . (4.13)

Let P
1

=

~Q
1

D�1

11

~QT
1

, P
2

=

~Q
2

D�1

22

~QT
2

, apply the inverse formula of the block matrix. The

preconditioner will be obtained

M
0

=

0

BB@

D

�1
11 (I� ~Q1

T
P�1
1

~Q1D
�1
11 )

D

�1
22 (I� ~Q2

T
P�1
2

~Q2D
�1
22 )

D

�1
11

~QT
1 P�1

1

D

�1
22

~QT
2 P�1

2

�P�1
1

~QT
1 D

�1
11

�P�1
2

~QT
2 D

�1
22

P�1
1

P�1
2

.

1

CCA (4.14)

Similarly, the preconditioner for the many-body system can be devised.
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4.4.4 Numerical Results of Schur Complement Method

In this section, some numerical results of the Schur complement method will be presented.

Consider the spherical rigid bodies with different numbers of spherical subunits on their surface. The

figures below show the iteration number of Schur complement method and the numerical errors. The

comparison has been made between the Schur complement method with and without preconditioner

for the hydrodynamics. The two-body system with different size is first considered. The numerical

errors decrease as the iteration number is increased. The numerical errors of the method with

preconditioners decrease much faster than the method without preconditioners. As the number

of beads for each body increases, the iteration number for the Schur complement method will be

increased. However, the iteration numbers for the method with preconditioners keep almost constant

which means using preconditioners will keep the fast convergence rate even for larger macromolecules.

To prove that, some numerical results will be presented for six-body system with different size. As

shown below, the Schur complement method works for many-body macromolecules.

Figure 4.5: Bead-shell model of the two body system with different sizes
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Figure 4.6: Iteration number of Schur complement method for the hydrodynamics of the two-body
system with different sizes

Figure 4.7: Comparison of iteration number of Schur complement method with and without
preconditioner for the hydrodynamics of the two-body system with different sizes
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Figure 4.8: The bead-shell model of the many-body system with different sizes

Figure 4.9: Comparison of iteration number of Schur complement method with and without
preconditioner for the hydrodynamics of the two-body system with different sizes
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CHAPTER 5

Conclusion

The subject of this dissertation is devising fundamental fast algorithms and developing novel

computational solvers to advance large-scale, long-time Brownian dynamic simulations with hydrody-

namics. The fundamental solvers developed in this dissertation show great promise in parallelization

on modern multicore computers and are suitable for simulating a broad class of flows and physical

scales. They also allow for further simulation of notable complex-structured macromolecules, as well

as forcing terms.

The first part of the dissertation showed the derived formulas for computing the electric field

gradients of the electrostatic interactions by the new version of fast multipole method [1]. The

computation of the electric field gradients was implemented by the new version of fast multipole

method as a new function for existing solvers. The fast evaluation of the electric field gradients is of

importance in many applications, such as solid-state physics, biochemistry and depolarization of the

nerve fiber in MRI scans.

In the second part of the dissertation, the Rotne-Prager-Yamakawa tensor was applied to describe

the hydrodynamic effects of spherical bead particles. A parallelized Rotne-Prager-Yamakawa solver

with tunable accuracy for multi-core systems has been developed to evaluate the matrix-vector

multiplication between the Rotne-Prager-Yamakawa tensor and the non-hydrodynamic force of

the particles suspended in fluids. Combining with the iterative Krylov subspace methods and

the Chebyshev approximations, the random placement of the particles satisfying the fluctuation-

dissipation theorem can be computed with O(N) complexity. The solver is capable of handling

simulations with millions of particles or beads. This ability makes it computationally attractive for

large-scale Brownian dynamic simulations.

In the third part, the anisotropic diffusion of the complex, rigid macromolecules in suspension

was studied. The bead-shell molecular model was applied to build a new model which describes

the hydrodynamic effects on the many-body macromolecules with arbitrary shape. The grand



diffusion matrix and the grand friction matrix were calculated explicitly to present the intermolecular

hydrodynamics. Two fast algorithms based on the block conjugate gradient method and the Schur

complement method have been applied to compute the translational and rotational motion of the

macromolecules. Therefore, the corresponding displacements and orientations experienced by the

diffusing macromolecules can be tracked for the many-body system in fluids. In this way, one can

obtain more realistic dynamics and, consequently, more accurate results with the consideration of

the hydrodynamic interactions.

Finally, some future research topics will be briefly discussed to extend the work of this dissertation

both in algorithms and applications.

• Optimization of the fast Roten-Prager-Yamakawa solver

The fast parallelized Roten-Prager-Yamakawa(RPY) solver developed on multi-core systems

has already shown great scalability. It could still be optimized in two ways. First, by optimizing

the parallelization: the four Laplace-FMM calls in the far field and the direct evaluation in

the near field of the RPY potential can be computed simultaneously. The reason why it can

be parallelized in that way is because there is just concurrent read of the adaptive tree data

structures and the mutual exclusion could be avoided in some sense. Secondly, instead of

calling existing Laplace FMM and traversing the nodes of the tree structure multiple times,

the evaluation of the RPY potential could be computed with just one pass of the upward

traversal and downward transversal of the tree structure. In Laplace FMM, each particle is

characterized with one scalar charge, while in the RPY evaluation, each particle is associated

with a force vector which has three components in total with one component in each direction

of the three-dimensional space. In Chapter 2, the optimized Laplace-FMM solver was applied

to decompose the far-field RPY potential into four Laplace far-field calls with different charges.

By applying the same adaptive tree structure, the evaluation of the RPY solver could be

finished with one pass of the tree structure. This technique may involve complicated derivation

of the mathematical formulas and the corresponding development of the solver. Moreover,

hardware architectures such as GPU and distributed systems may also be worth trying for

performance improvements.

• Novel random process generation
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Current algorithms that have been widely used for random process generation are based

on either matrix factorization or iterative Krylov subspace methods combined with spectral

approximations. The former methods requires explicit covariance matrix formations as the input

for most existing solvers which is memory-consuming. For spherical beads system, the random

displacement in Brownian dynamic simulations could be accelerated by the development of the

fast RPY solver using the iterative methods. For macromolecules with arbitrary shape, because

of the moderate number of macromolecules, their random displacements and orientations can

be obtained through the approximations of the grand diffusion matrix by using the block

conjugate gradient method showed in Chapter 4. This method can be also generalized to

random process generation with other covariance matrices.

• Preconditioner

In Chapter 4, as was showed, proper use of preconditioners can greatly improve the efficiency

of the simulations by exploring the rigid characteristic of the macromolecules. With this idea

in mind, it is possible to apply preconditioners to accelerate random process generation and

reduce the number of the iterators.

• Spatio-temporal coupling

For a large particle ensemble, proper treatment in time integration can not only help to

track the motion of the Brownian particles with enough resolution, but can also advance the

computation using a larger time step to satisfy the long-time simulations. Basically, the time

grids can be partitioned into coarse grids and fine grids. For the motions from long-range and

slowly changed forces, the coarse time grids can be applied to compute the displacements and

orientations. For the short-range parts of the forces which will have big effects on the motions

of the particles, the fine time grids can be applied to capture the changes. Some research

has been done on hybrid parareal Krylov deferred correction method and adaptive deferred

correction methods for choosing applicable time steps and time grids.

• Next-generation Brownian dynamic solver with hydrodynamics

Accounting for all topics described above, it is hoped that the work in this dissertation will

shed light on large-scale and long-time Brownian dynamic simulation with hydrodynamics and

lead researchers to a very promising novel solver.
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