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ABSTRACT 

Emily Moeng: The Acquisition of Phonetic Categories1 

(Under the direction of Elliottt Moreton) 

 

Part of learning a language includes determining what variation is meaningful and what variation 

is not meaningful. This dissertation presents a series of artificial language learning experiments to provide 

a timeline of early phonological acquisition in naïve adult learners. The core contribution of this disserta-

tion is to propose a domain-general, two-stage model of distributional learning consisting of a Bias Stage 

followed by a Sensitivity Stage. Additionally, this dissertation will explore the relation that distributional 

learning holds with three factors, attention, environmental context, and lexical acquisition. Chapter 3 

presents a set of experiments to make the core argument that distributional learning occurs in two stages. 

It is argued that the underlying mechanism behind distributional learning is not to directly warp the 

learner’s perceptual space, contrary to models which have been proposed. Chapter 3 will also examine the 

role of attention and its relation to distributional learning. Chapter 4 presents an experiment which investi-

gates the relationship between environmental context and distributional learning. Results of this 

experiment will be used to support a one-stage model of allophony acquisition. Chapter 5 presents a set of 

experiments which explore the disparity between distributional learning and lexical acquisition. 

  

                                                      

1
 Stimuli, data, and analysis script codes used in this dissertation are stored at: 
https://github.com/emoeng/Moeng2018-dissertation 
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CHAPTER 1: INTRODUCTION 

1. Introduction 

Despite being exposed to great variation and little to no explicit instruction, infants acquire linguistic 

structures with remarkable ease. Heart rate studies show that this acquisition begins even while infants are 

still in utero (DeCasper and Fifer, 1980; DeCasper and Spence, 1986; DeCasper et al., 1994). Newborns 

show recognition of their native language’s prosodic structure over other prosodic structures (Mehler et 

al., 1988) and a preference for their mother’s voice over other female voices (Mehler et al., 1978; 

DeCasper and Fifer, 1980). Infants also show a preference for human speech over primate vocalizations 

or human speech played in reverse (Dehaene-Lambertz et al., 2002; Pena et al., 2003; Vouloumanos and 

Werker, 2004, 2007). By the time an infant becomes a year old, they exhibit language-specific discrimi-

nation of sounds which are contrastive in their language (Eilers et al., 1979; Kuhl et al., 1992; Eimas et 

al., 1971; Kuhl et al., 2006). And even though infants initially acquire new words slowly, having an esti-

mated receptive vocabulary of about 60 words and a productive vocabulary of only about 14 words by the 

age of 12 months (Bergelson and Swingley, 2015; also see Caselli et al., 1995; Ferguson et al., 2015), at 

around 18 months of age many infants display what is known as a “vocabulary spurt,” producing as many 

as 60 new words in a 2.5 week period (Goldfield and Reznick, 1990; although see Ganger and Brent 

(2004) who argue that most infants do not undergo a vocabulary spurt). 

The goal of this dissertation is to provide a timeline of segmental acquisition, from the early 

stage of simple perception to the later stage of utilizing acoustic distinctions in a semantically meaningful 

way. Conclusions will be based on experimental evidence from artificial language learning tasks con-

ducted on adult learners, and, when available, evidence that suggests a valid extension to infant learners 

will be discussed. It is hoped that this dissertation will provide a model of early segmental acquisition 
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which can be further tested, as well as set a foundation for future infant language learning studies. In par-

ticular, the timeline of acquisition of allophony presented in Chapter 4 would likely greatly benefit from 

further work on infants. 

2. Synopsis of the Proposal 

The overall contribution of this dissertation is to identify and detail two main, domain-general stages of 

early phonetic category acquisition: a Bias stage followed by a Sensitivity stage. 

 
Figure 1. Schematic of overall proposal. 

The initial stage of acquisition is represented by the leftmost grid in Figure 1. This grid represents the 

learner’s perceptual space. Individual speech tokens can be mapped into this space, where the spatial dis-

tance between two given tokens represents perceptual distance. In reality, this initial grid is already 

warped by the learner’s auditory system (Eimas et al., 1971; Kuhl and Miller, 1975, 1978; Kuhl, 1981; 

Aslin and Pisoni, 1980b) and, if there is one, existing L1 background (Aslin and Pisoni, 1980b; Cristia et 

al., 2011), but for simplicity will be shown as an evenly-distributed grid. This dissertation proposes that 

language learners who notice greater variation will come to expect more sound categories in the speech 

stream compared to learners who do not notice as much variation (Chapter 3). This in turn leads to a 
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change in participant response bias. This is indicated in the first stage, the Bias stage, in Figure 1. As in-

dicated, the learner who notices more variation will hold some rough notion that multiple sound 

categories (two, in the upper succession of grids in Figure 1) exist within their perceptual space. At this 

early stage, the boundaries and the centers of these categories are unknown to the learner, as represented 

by the dotted lines. Likewise, the learner who does not notice as much variation holds the rough notion 

that only a single sound category exists (as shown in the lower succession of grids in Figure 1). Again 

though, the boundaries and center of this category are unknown to the learner. The different number of 

sound categories expected by each of these two learners results in a greater bias towards a “different” re-

sponse in the bimodally-trained learners compared to the monomodally-trained learners. As learning 

progresses, learners form more solid hypotheses of the space each sound category occupies within their 

perceptual map, and experience category-based perceptual warping in a Sensitivity stage. During this 

stage, acoustic members deemed by the learner to belong to the same category are perceived as being 

more similar to one another in within-category compression, and members deemed by the learner to be-

long to different categories are perceived as being more different from one another in across-category 

expansion. These phenomena have been documented in a number of studies within psychology (e.g. Liv-

ingston et al. 1998; Goldstone and Hendrickson, 2010). 

This two-stage proposal contrasts with a one-stage experience-based perceptual warping proposal 

illustrated in Figure 2. 
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Figure 2. Experience-based perceptual warping account of phonetic category acquisition. 

In this proposal, the experience of hearing some acoustic token warps the learner’s perceptual space 

(Guenther and Gjaja, 1996; Boersma et al., 2003). According to this class of models, the act of perceiving 

a token warps the perceptual space towards the token’s mapped location. If two clusters of tokens are ex-

perienced, as shown in the final stage of the topmost succession of grids in Figure 2, this results in two 

“centers of gravity” within the learner’s perceptual space. If only one cluster of tokens is experienced, as 

shown in the final stage of the bottom succession of grids, the learner will have one “center of gravity” in 

their perceptual space. 

The main contribution of this dissertation is to argue for the model illustrated in Figure 1 for early 

segmental acquisition. Evidence supporting this proposal will be laid out in Chapter 3. Additionally, this 

dissertation aims to explore the relationship between this overall proposal and three elements: learner’s 

attention, environmental context, and lexical acquisition. Conclusions regarding each of these will be 

briefly summarized below. 

2.1. RELATIONSHIP OF OVERALL PROPOSAL WITH ATTENTION 

Two experiments presented in Chapter 3 provide evidence that learners’ attention plays some type of role 

in early phonetic category acquisition. Specifically, this chapter argues that attention plays a role in the 

magnitude of the arrows shown leading up to the Bias stage in Figure 1, and possibly also the magnitude 



5 

 

of the arrows leading up to the Sensitivity stage. In other words, this chapter argues that attention either 

aids or hinders phonetic category acquisition. Both of these suggestions are considered in this disserta-

tion, but further research will be needed to determine the exact nature of the role that attention plays. 

2.2. RELATIONSHIP OF OVERALL PROPOSAL WITH ENVIRONMENTAL CONTEXT 

Chapter 4 explores the relationship of phonetic category acquisition with environmental context by map-

ping participants’ early learning trajectories. Dillon, Dunbar, and Idsardi (2013) put forth a model of 

allophony acquisition that occurs in a single stage. This counters proposals such as Peperkamp et al. 

(2003), which models the acquisition of phonetic categories and the allophonic relationships between 

those categories as two separate stages (not to be confused with the Bias-Sensitivity two-stage model of 

phonetic category acquisition shown in Figure 1). This chapter presents evidence supporting a one-stage 

model of allophonic acquisition, suggesting that environmental context is taken into account by the 

learner from the very beginning of acquisition, and not in a second stage. This is schematized in  Figure 3. 

 

 
Figure 3. Relationship of overall proposal with environmental context. 

This model contrasts with a model in which allophonic relationships are acquired in a separate stage of 

acquisition, a Context Stage, as shown in Figure 4. In this model, phonetic categories are acquired first 

(according to this dissertation, this is further broken down into a Bias Stage and a Sensitivity stage), and 
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allophonic relations are acquired in a following stage. In this hypothetical Context Stage, phonetic catego-

ries which occur in complementary environments are collapsed into a single phoneme, and phonetic 

categories which occur in contrastive environments remain as distinct categories. This dissertation finds 

no evidence supporting a Context Stage. 

 

Figure 4. A Context Stage account of allophony acquisition. 

2.3. RELATIONSHIP OF OVERALL PROPOSAL WITH LEXICAL ACQUISITION 

Finally, this dissertation tests for whether any evidence can be found for the incorporation of response 

bias or sensitivity in a word-learning task. Previous research from L1 acquisition (Stager and Werker, 

1997; Pater et al., 2004), L2 acquisition (Daidone and Darcy, 2014), and artificial language learning tasks 

(Hayes-Harb, 2007) all suggest that increased discrimination does not necessarily translate into use of 

some distinction in lexical acquisition (although see or Fennell and Waxman (2010); Rost and McMurray, 

2009; 2010). Chapter 5 builds on a previous artificial language learning task (Hayes-Harb, 2007) to deter-

mine whether a period of sleep and more exposure to stimuli will result in an extension of either response 

bias changes or sensitivity changes to lexical acquisition. I find no evidence that changes in either re-

sponse bias or sensitivity extends to a word-learning task, even over the course of three consecutive days 

of training. Findings from this chapter suggest the need to extend previous explanations of a gap in dis-

crimination and word learning (e.g. Pater et al., 2004; Werker and Curtin, 2005). 
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3. Outline of the Dissertation 

The remaining chapters present the specifics of the timeline described in the previous section. Chapter 2 

provides the reader with background information and motivation regarding the current study. This in-

cludes a discussion of what is known as distributional learning, an oft-cited method used by learners in 

phonetic category acquisition. Previous models of distributional learning which assume a perceptual 

warping account of acquisition, as schematized in Figure 2, are also presented in this chapter. This is fol-

lowed by a summary of basic concepts in Signal Detection Theory and the related concept of Choice 

Theory.  

Chapter 3 introduces a distinction between bias and sensitivity, which will make up the two 

stages of the overall proposal schematized in Figure 1. Chapter 3 then presents three main experiments, 

Experiments A1-A3. These will be used to argue for the overall proposal given in Figure 1. Experiments 

A2 and A3 are followed by two “Tone” experiments, A2-Tone and A3-Tone, which suggest some role 

played by listeners’ attention during early phonetic category acquisition. In addition to presenting evi-

dence for the overall proposal in Figure 1 and finding evidence that attention plays some role in early 

acquisition, Chapter 3 also concludes that distributional learning experiments can be replicated through 

web-based platforms, and not just in a typical laboratory setting. 

Chapter 4 presents Experiment B, which explores the relationship between phonetic category ac-

quisition and environmental context. Experiment B maps the learning trajectories of learners trained on 

one of three statistical distributions in order to determine whether evidence for a separate Context Stage, 

as shown in Figure 4, can be found. Learners are exposed to either 5 minutes of training, 10 minutes of 

training, or 15 minutes of training. 

Chapter 5 presents the “C” Experiments. Two experiments, C1 and C2, explore whether the vari-

ous components learned through distributional learning (changes in bias and sensitivity) extend to a word 

learning task. These experiments train learners over the course of three days in order to determine 

whether a period of sleep results in the incorporation of distributional learning in a word learning task. 
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Experiment C1 tests for evidence that a change in bias extends to word learning, while Experiment C2 

tests for evidence that a change in sensitivity extends to word learning. 

Chapter 6 highlights main findings and summarizes conclusions that were made in previous chap-

ters. It ends with a discussion and suggestions for further research. 

  



9 

 

 

Chapter 2:  

Background Research and Motivation 

1. Introduction 

The main topic under investigation in this dissertation is a statistical learning process utilized by language 

learners known as distributional learning (Maye and Gerken, 2000; Maye et al., 2002). This dissertation 

explores various characteristics of this process in order to propose a model of the underlying mechanism 

that drives distributional learning. This chapter will introduce distributional learning in Section 2, and de-

tail the first experimental support for distributional learning, Maye and Gerken (2000) (Sections 2.1-2.2). 

This will be followed by descriptions of models of distributional learning in Section 2.3. Section 3 briefly 

detours away from distributional learning to describe the main concepts of Signal Detection Theory and 

the related Choice Theory (Luce, 1959), which this dissertation bases its analysis on. Following this, Sec-

tion 4 returns to the question of phonetic category acquisition in a comparison of past studies of 

distributional learning. It will be highlighted that seemingly small variations in both methodology and 

analysis methods measure different aspects of distributional learning. This chapter ends with an acknowl-

edgement of methodological problems in studying distributional learning in artificial language learning 

studies, while also justifying this dissertation’s experiments in Section 5. 

2. Distributional learning 

2.1. MOTIVATION 

Infants show language-specific discrimination of vowels around 6-8 months (Polka and Werker, 1994; 

Kuhl et al., 1992; Trehub, 1976), and language-specific discrimination of consonants at 6-12 months (Ei-

lers et al., 1979; Aslin and Pisoni, 1980a; Eilers et al., 1980; Iverson et al., 2003; Werker et al., 1981; 



10 

 

Werker and Tees, 1983, 1984; Werker and Lalonde, 1988; Best and McRoberts, 1989; Best et al., 1988; 

Trehub, 1976). Although adult Japanese speakers experience considerable difficulty distinguishing be-

tween [ɹ] and [l] (Iverson et al., 2003), 6 month-old Japanese infants can discriminate between these two 

sounds (Kuhl et al., 2006). Similarly, although adult English speakers experience difficulty distinguishing 

between [t] and [ʈ], 8 month old English-learning infants are still able to distinguish these sounds (Werker 

and Tees, 1984). These observations lead to the claim that infants are “citizens of the world” (Gervain and 

Mehler, 2010; Kuhl, 2004), having the ability to distinguish all contrasts which are linguistically-relevant. 

In this view, “acquisition” essentially equates to a loss of contrasts which are not linguistically relevant in 

the language being heard (Eimas, 1978; Morse, 1978, Werker et al., 1981; Gervain and Werker, 2008; 

Gervain and Mehler, 2010).  

Several observations suggest a picture which is more complex than this simple “citizens of the 

world” view of language acquisition. First, some boundaries which fall between contrasting phones ap-

pear to stem from the auditory system, as evidenced in non-human studies and studies with very young 

infants. Chinchillas (Kuhl and Miller, 1975, 1978) and macaque monkeys (Kuhl and Padden, 1982), as 

well as 1-4 month olds (Eimas et al., 1971), show a greater ability to distinguish a pair of sounds which 

straddle a VOT boundary of 20-50 ms3, compared to an equally-spaced pair of sounds which do not strad-

dle this same VOT boundary. This boundary corresponds to the location that many languages, including 

English, use as a boundary to contrast phoneme pairs such as /p/ and /b/. This suggests that at least some 

pairs of phonemes are separated by a natural acoustic boundary (similarly, see Kuhl and Padden, 1983).  

Second, there are several exceptions to the seemingly “universal” discrimination which infants 

appear to exhibit from birth. For example, English makes a contrast between /d/ and /ð/ while French does 

not. However, both English and French 6-8 month olds show poor discriminatory ability between [d] and 

[ð] (Polka et al., 2001; Sundara et al., 2006). Narayan et al. (2010) find an effect of acoustic salience, with 

                                                      

3
 The actual boundary value depends on place of articulation. 
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English-learning infants able to distinguish between syllable-initial [m] and [n] but not between syllable-

initial [n] and [ŋ] at 10-12 months, 6-8 months, and even at 4-5 months of age. Infants acquiring Filipino, 

which does contrast between syllable-initial [n] and [ŋ], do not show the ability to distinguish between 

syllable-initial [n] and [ŋ] at 6-8 months, only showing the ability to distinguish these sounds at 10-12 

months of age. Taken together, these findings suggest that infants do not begin with an ability to distin-

guish all linguistically-relevant contrasts (in this case, [n-ŋ] or [d-ð]), but instead require experience to 

gain sensitivity to at least some contrasts. 

Aslin and Pisoni (1980b) suggest a typology of possible developmental trajectories that contrasts 

may undergo during acquisition:  

1. Maintenance or facilitation. Initially high or partially-developed sensitivity to a contrast re-

mains high (“maintenance”) or improves (“facilitation”) with exposure. 

Example: The continued high sensitivity to syllable-initial [m-n] exhibited by English learning 

infants (Narayan et al., 2010). 

2. Induction. Initially poor sensitivity to a contrast improves with exposure. 

Example: English infants’ sensitivity to [d-ð] (Polka et al., 2001). 

3. Loss. Initially high or partially-developed sensitivity to a contrast declines from lack of exposure. 

Example: The decline in English infants’ sensitivity to [d-ɖ] (Werker and Tees, 1984); the decline 

in Japanese infants’ sensitivity to [ɹ-l] (Iverson et al., 2003). 

4. No effect. Initially poor sensitivity remains poor with lack of exposure. 

Example: French infants’ sensitivity to [d-ð] (Polka et al., 2001; Sundara et al., 2006). 

To this list Cristia et al. (2011) add two types of developmental trajectories: poor sensitivity failing to im-

prove with exposure, and high sensitivity remaining high with lack of exposure. It could be argued that 

non-sibilant fricatives fall into the first category, as Jongman et al. (2003) find that English speakers expe-

rience some difficulty distinguishing [f] and [θ] as well as [v] and [ð] despite these phones being 

contrastive in English; and it could also be argued that English speakers’ high sensitivity to clicks fall into 
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the second category, as Best et al. (1988) finds that English speaking adults and English-learning infants 

show high levels of discrimination to Zulu clicks despite clicks not falling within the English inventory 

and therefore not being linguistically contrastive. 

To summarize, humans begin with natural discriminatory boundaries between some speech 

sounds (e.g. a VOT of around 20-50 ms for stops, the boundary between [m-n]). At least some of these 

boundaries are not human-specific and have been found, for example, in chinchillas and macaque mon-

keys. Humans also begin with no natural boundaries between other speech sounds (e.g. [d-ð], [n-ŋ]). To 

borrow an analogy from Cristia et al. (2011), infant perception begins as a topographical map, with natu-

ral peaks separating speech sounds. Through experience, this initial perceptual topography is warped such 

that new peaks are formed or existing peaks are flattened. The end result should be a language-specific 

perceptual map which aids in the discrimination of all contrastive phonemes in the target language.  

This typology illustrates that language exposure influences sensitivities at least to some contrasts. 

But what aspect of the exposure results in this language-specific discrimination? One proposal is that in-

fants learn which phones are contrastive in their language by learning minimal pairs (MacKain, 1982; 

MacKain and Stern, 1985). If a pair of words differing by exactly one sound have different meanings, in-

fants can infer that the sounds which differ are contrastive in the language they are hearing, and therefore 

that the distinction between these sounds is an important one to make. Because of this, they can attend to 

whatever phonetic dimension(s) the two sounds differ by. However, this minimal pair hypothesis pre-

dicts that infants learn minimal pairs before exhibiting language-specific discrimination, something which 

does not appear to be the case. Language-specific discrimination appears around 6-12 months of age, but 

Caselli et al. (1995) finds that infants at 8 months of age have a receptive vocabulary of only about 36 

words, none of which are minimal pairs. Further, a minimal pair hypothesis would predict that infants 

who are able to discriminate some contrast also attend to this difference in a word-learning task. Stager 

and Werker (1997) presented 14-month old infants with a picture and some label, [bɪ] or [dɪ]. After famil-

iarization, experimenters tested infants’ responses to the same label they had been trained on ([bɪ] or [dɪ]), 
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or on a minimally-different label in a switch trial ([dɪ] or [bɪ]). Stager and Werker found that these 14-

month olds did not make use of their discriminatory ability to distinguish [b] and [d] in this switch task, 

suggesting that infants do not attend to phonetic detail in early word learning (also see Pater et al., 2004). 

Although further studies have found that infants in this age range can learn minimally-differing words in 

certain situations (Rost and McMurray, 2009; 2010; Galle et al., 2015; Fennell and Waxman, 2010), the 

minimal pair hypothesis would still predict that infants make use of phonetic differences during word 

learning, rather than ignore phonetic details in these switch tasks. 

Another proposal for how this topography is warped is known as distributional learning (Maye et 

al., 2000; Maye and Gerken, 2002; Werker et al., 2012). According to this account, language learners map 

tokens into some phonetic space and make use of the relative frequencies at which tokens cluster in re-

gions of this space to infer the number of phonetic categories in the language they are being exposed to 

(Maye and Gerken, 2002; Boersma et al., 2003; Guenther and Gjaja, 1996). Learners exposed to a bi-

modal distribution of tokens along some phonetic dimension(s) will infer that there are two phonetic 

categories, whereas learners exposed to a monomodal distribution will infer that there is only one pho-

netic category. 

It is unclear whether distributions found in natural languages appear to support a distributional 

learning hypothesis. What does seem to be clear is that different phonetic categories exhibit different de-

grees of overlap with other phonetic categories (Moeng, 2016). Figure 5 shows the distribution of velar 

stops mapped along the dimension of VOT as measured by Lisker and Abramson (1964) for English. 

English has two velar stop phonemes, prevoiced velar stop /ɡ/ and voiceless stop /k/. The voiceless stop 

/k/ has two allophones, [kh] found syllable-initially and [k] found elsewhere (Zsiga, 2013).4 Based on the 

data collected by Lisker and Abramson, English speakers appear to be exposed to two large distribution 

                                                      

4
 For simplicity, other allophones such as unreleased [k˺] are ignored. 
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peaks, and one small one. One could imagine two models which explain this data in a way that is compat-

ible with a distributional learning hypothesis. Either learners only notice distribution peaks which fall 

above some threshold, which would lead the English learner to notice only the two large distribution 

peaks shown in Figure 5, or the English learners notice all three peaks, but also learn that two of these 

peaks correspond to allophones of a single phoneme. Either way, the English speakers arrive at the con-

clusion that there are two phonemes, as predicted by distributional learning. 

        
Figure 5. In a figure plotting VOT for velar oral stops, two or three clear peaks can be seen in the English-

speaking data. Figure adapted from Lisker and Abramson (1964). 

Although this data appears to fit well with a model of distributional learning, vowels have been noted to 

exhibit a high level of overlap with other vowel categories. Swingley (2009) maps 11 English monoph-

thongs into an F1 vs. F2 space, as well as an F2-F1 vs. duration space. He finds a high level of overlap 

among these vowels for both of these spaces. A similar claim is made regarding vowel length in Japanese. 

Vowel length is contrastive in Japanese, so a theory of distributional learning would predict that two 

peaks appear for each of the five vowel qualities in Japanese. Bion et al. (2013) measure length for natu-

rally-produced vowels in infant-directed speech. Although they find a significant difference in length 

between long and short vowels, Bion and colleagues fail to find clear peaks in distribution along the dura-

tion dimension, especially for the vowel qualities [a], [e], and [u]. 

The question of whether natural language provides infants with distributions which are clear 

enough to learn from is complicated by the fact that it is unclear how many dimensions a language learner 

might make use of when mapping tokens in some space. For example, Bion et al. (2013) only map Japa-

nese vowels along one dimension, vowel duration, but it is possible that Japanese long and short vowels 
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differ in some other acoustic factors other than length, and that mapping these vowels along multiple di-

mensions may have resulted in a clearer distinction between long and short vowels in Japanese. Swingley 

(2009) considers an F1 vs. F2 space when mapping English monophthongs, as well as an F2-F1 vs. dura-

tion space, but in reality it is unknown whether language learners make use of two dimensions or twenty.  

However, if we put aside the issue of dimensionality and assume that overlap is problematic for at 

least some phonetic categories, various researchers have suggested supplementary cues that infants might 

make use of. Adriaans and Swingley (2012) suggest that infant-directed speech aids infants in finding 

peaks in distribution by directing infants through prosody to “high quality” tokens. Infants can then treat 

these “high quality” tokens as being more important when determining phonetic categories. Adriaans and 

Swingley show that mapping only “focused” vowel tokens, those which are prosodically-exaggerated (ei-

ther through a longer duration, higher average pitch, and/or larger change in pitch compared to the 

average vowel) reduces the level of overlap exhibited in English vowels compared to mapping all vowel 

tokens, exaggerated or not. Others have proposed bootstrapping methods learners might use, such as over-

all wordform (Feldman et al., 2009; 2011, 2013; Thiessen, 2007) or knowledge of very common words 

(Swingley, 2009, 2007), enabling a theory of phonetic category acquisition that is not solely dependent on 

phone distributions. Feldman et al. (2011) find that presenting learners with sounds in different lexical 

environments serves to distinguish those sounds. For example, learners exposed to [ɡutɑ] and [litɔ], but 

not [litɑ] and [ɡutɔ], will have a greater sensitivity to [tɑ] and [tɔ] following training compared to learners 

exposed to [ɡutɑ], [ɡutɔ], [litɑ] and [litɔ]. This has been found for adult learners (Feldman et al., 2011) 

and infants (Feldman et al., 2013; Thiessen, 2007); for an [ɑ-ɔ] contrast (Feldman et al., 2011, 2013), as 

well as a [t-d] contrast (Thiessen, 2007). 

As will be shown below, regardless of whether or not natural language exhibits clear distribu-

tions, both adults and infants are able to make use of clear distributional information in a lab setting, 

lending support to a distributional learning mechanism. 
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2.2. EXPERIMENTAL SUPPORT 

Maye and Gerken (2000) is the first artificial language learning study which provides experimental sup-

port for distributional learning. In this study, adult participants were exposed to CV syllables during a 

training phase which lasted 9 minutes. Exposure syllables during this training phase consisted of fillers, 

[mɑ mæ mɚ lɑ læ lɚ], as well as three 8-point continua: 8 tokens ranging between [dɑ] and [d̥ɑ], 8 tokens 

ranging between [dæ] and [d̥æ], and 8 tokens ranging between [dɚ] and [d̥ɚ]. Continua were created by 

first recording a native English speaker producing the syllables [dɑ dæ dɚ] and [stɑ stæ stɚ]. The initial 

[s] was then removed from the latter three syllables. Three 8-point continua, one for each vowel context, 

were created through re-synthesis.5 The training phase consisted of 384 syllables. Participants were given 

a check sheet with 384 blank boxes on it and were instructed to simply listen and check one box for each 

syllable they heard during this training phase. 

Participants were randomly assigned to one of two groups: a Bimodal group and a Monomodal 

group. These two groups only differed in the frequency distributions that critical stimuli were presented 

in. Participants in the Monomodal group were exposed to a monomodal distribution of continuum points, 

such that continuum points near the center of the continuum (points 4 and 5), were presented four times as 

frequently as continuum points near the endpoints of the continuum (points 1, 2, 7, and 8) (see solid line 

in Figure 15). Participants in the Bimodal group were exposed to a bimodal distribution of continuum 

points, such that continuum points near the endpoints (points 2 and 7) were presented four times as fre-

quently as continuum points at the endpoints (points 1 and 8), and continuum points at the center of the 

continuum (points 4 and 5) (see dotted line in Figure 15). Continuum points will be referred to here as D1-

D8. 

                                                      

5
 Further details were not given. 
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Figure 6. Illustration of familiarization frequency of onsets of critical stimuli for Bimodal and Mono-

modal groups during the training phase of Maye and Gerken (2000). 

Following training, participants were directed to a test phase. In the test phase, participants were pre-

sented with pairs of syllables separated by 500 ms and were asked if they believed the two syllables 

presented were the same word repeated twice, or two different words, in the language they had been ex-

posed to. During this phase, participants heard four types of syllable pairs: filler Same Pairs, which 

consisted of non-identical tokens of the same filler syllable (e.g. [mæ]1 vs. [mæ]2); filler Different Pairs, 

which consisted of different filler syllables (e.g. [mæ] vs. [læ]); critical Same Pairs, which consisted of 

identical tokens of critical syllables taken from the same end of the continuum (e.g. D1æ vs. D1æ); and 

critical Different Pairs, which consisted of tokens taken from opposite ends of the continuum (e.g. D1æ 

vs. D8æ). Maye and Gerken found a greater percentage of “different” responses for critical Different Pairs 

in the Bimodal condition than in the Monomodal condition. They concluded that this study supports the 

theory of distributional learning. 

Maye and colleague’s findings are widely cited (for example, Kuhl, 2004; Kuhl et al., 2006; 

Werker et al., 2012), and have been replicated a number of times. Experimental support has been found 

for adults (Maye and Gerken, 2000; Maye and Gerken, 2001; Hayes-Harb, 2007; Escudero et al., 2011) 

and infants (Maye et al., 2002; 2008; see Cristia, 2018 for a meta-analysis). Attempts to replicate Maye 

and Gerken’s (2000) findings with other stimuli have shown mixed success. Stimuli successfully used in 

replications include the stop pairs [d-d̥], and [ɡ-ɡ̥] (Maye and Gerken, 2000; Maye and Gerken, 2001; 
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Maye et al., 2002; Hayes-Harb, 2007); the vowel pairs [a-ɑ], and [i-ɪ] (Wanrooij et al., 2013; Gulian et al., 

2007; Escudero et al., 2011; Escudero and Williams, 2014); and the Thai tone pairs [33] and [241] (Ong 

et al., 2015). However, Peperkamp et al. (2003) failed to replicate these findings when testing fricatives 

ranging from [ʁ] to [χ] with French-speaking adult participants. And although the Dutch contrast between 

[a] and [ɑ] has been successfully tested in distributional learning studies with adult speakers of Spanish 

(Wanrooij et al., 2013; Escudero et al., 2011), Ong et al. (2016) failed to replicate these findings when 

testing the same contrast with Australian English-speaking adult participants. The authors attribute this 

lack of replication to the higher initial discriminatory ability of [a] and [ɑ] by Australian English speakers 

compared to Spanish speakers, which may indicate that distributional learning can only increase sensitiv-

ity and not decrease it. Maye and Gerken (2001) find that distributional learning of one acoustic cue (e.g. 

[d] vs. [d̥]) fails to extend to a new contrast which varies along the same dimension (e.g. [ɡ] vs. [ɡ̥]), but 

Perfors and Dunbar (2010) find that participants can extend distributional learning to a new contrast if 

training is intensified (i.e. is longer and contains no fillers). Escudero and Williams (2014) find evidence 

that distributional training on adults has long-term effects (up to 12 months) on discriminatory abilities. In 

a meta-analysis, Cristia (2018) concludes that distributional learning as studied on infants using a habitua-

tion/change design shows a robust effect, but that distributional learning as studied with an 

alternating/non-alternating design does not. A further description of her meta-analysis will be given in 

Chapter 3.  

2.3. MODELS OF DISTRIBUTIONAL LEARNING 

Previous explanations of distributional learning rely on acoustic input warping a listener’s perceptual 

space (Boersma et al., 2003; Guenther and Gjaja, 1996). Guenther and Gjaja (1996) model distributional 

learning with self-organizing neural networks. Their model consists of two layers of cells: formant repre-

sentation cells and auditory map cells. Each formant representation cell is connected to all auditory map 

cells through synapses. Depending on input from formant representation cells and on synapse strength, a 

subset of auditory map cells is activated. Activated cells determine what sound is perceived. Learning in 
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this model consists of modifying synapse strengths, so that frequent auditory tokens lead to strengthened 

firing preferences of auditory map cells, and infrequent auditory tokens lead to weaker firing preferences. 

This leads to a perceptual warping of the space such that two auditory tokens near category centers are 

perceived as being more similar to one another compared to two equally-spaced auditory tokens that are 

located further away from the category center.  

Boersma et al. (2003) suggest another perceptual warping model of distributional learning in a 

constraint-based model. In their model, the input consists of an auditory value (e.g. [F1: 300 Hz]), and the 

output consists of a perceived phonetic category (e.g. /F1: 320 Hz/). In this Optimality Theoretic model, 

there are three families of constraints responsible for distributional learning: *CATEG, PERCEIVE, and 

*WARP. This model will be further described in Chapter 3. 

Both the Guenther and Gjaja (1996) model and the Boersma et al. (2003) model are similar in that 

(1) uneven frequency distributions along some acoustic dimension(s) lead to uneven mappings between 

auditory input and perceived value, thereby warping the listener’s perceptual space, and (2) learners are 

not required to hold a large number of exemplars in memory. Rather, experience changes some aspect of 

the entire perceptual system (i.e. through constraint rankings or synapse strengths).  

Chapter 3 will discuss two terms, response bias and sensitivity, and argue that models of percep-

tual warping such as those described by Guenther and Gjaja (1996) and Boersma et al. (2003) predict that 

distributional learning should always be accompanied by a change in sensitivity. The distinction between 

bias and sensitivity comes from ideas in Signal Detection Theory, which is outlined in the following sec-

tion.  

3. Main Concepts in Signal Detection Theory 

This study makes a distinction between response bias (simply, “bias”) and sensitivity in distributional 

learning. These concepts are used in Signal Detection Theory (Peterson et al., 1954; Swets, 2014), which 

models the perceiver’s internal process of discriminating whether some signal is or is not present. Signal 
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Detection Theory assumes that there is some inherent amount of uncertainty in a discrimination process 

which comes in the form of internal noise. The concept of internal noise is based in the idea that whatever 

internal response is occurring during the decision-making process, such as neurons firing in the brain, is 

noisy by nature. In Signal Detection Theory, the decision-making process is assumed to be based on this 

internal response. An organism’s internal response can be modelled as falling along some numeric line, 

with larger values indicating a greater internal response. The greater the internal response, the greater the 

probability that an organism perceives some signal (whether the signal is actually present or not). Due to 

the inherent internal noise of an organism’s neural response, the probability curve of an organism’s inter-

nal response is assumed to be normally distributed. 

As an example, suppose we are modelling the detection process of a participant taking part in a 

lexical decision task. The participant is presented with both Real Word and Nonce Word trials at random, 

in which a real or a nonce word is played to the participant. The participant is asked to press a ‘yes’ but-

ton if the word he or she hears is a real word in English, and a ‘no’ button if it is not an English word. 

Figure 7 illustrates two internal response probability curves. The curve on the left represents the probabil-

ity of the internal response experienced by the participant during a NonceWord trial (No Signal), while 

the curve on the right represents the probability of the internal response experienced by the participant 

during a RealWord trial (Signal). Note that both probability curves are normally (Gaussian) distributed, 

representing the inherent noise experienced by all organisms during neural activity. Overall though, the 

curve representing a NonceWord trial has a lower mean internal response than the curve representing a 

RealWord trial. 
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Figure 7. Internal response when there is a signal, represented by the curve on the right, compared to 

when there is no signal, represented by the curve on the left. In the example here, the Signal curve repre-

sents the probability of the participant’s internal response during a RealWord trial, and the No Signal 

curve represents the probability of the participant’s internal response during a NonceWord trial. 

In Signal Detection Theory, sensitivity is represented by the distance between an organism’s internal re-

sponse when there is a signal and when there is no signal. This distance is called d’ (d-prime) and is 

shown as the distance between the means of both probability curves. A greater d’ represents the internal 

state of an organism that is more able to distinguish between a Signal and No Signal situation. Compare 

the distance between the Signal and No Signal probability curves in Figure 7 and Figure 8. Figure 8 repre-

sents the internal state of an organism with a higher sensitivity (or, a greater d’) to a signal than that 

shown in Figure 7, since the organism’s internal response when there is a signal is more distinct from 

when there is no signal. If d’ is zero, then the organism is unable to distinguish when there is and is not a 

signal since the Signal and No Signal probability curves would fall in identical locations. 

 
Figure 8. Internal state for a signal to which the organism has great sensitivity to, where sensitivity is rep-

resented by d’. 

In order to make a decision, the participant has some criterion response level. Returning to our lexical de-

cision task example, if the internal response experienced is greater than the criterion that this particular 
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participant has, he or she will press the ‘yes’ button, represented by the light-grey and light-striped areas 

in Figure 9. If the internal response experienced is less than the criterion, he or she will press the ‘no’ but-

ton, represented by the dark-grey and dark-striped areas in Figure 9. 

 

 
 

 
Figure 9. Criterion response defines four probabilities: for RealWord trials (top) the location of a partici-

pant’s criterion defines the participant’s hit rate and miss rate; for NonceWord trials (bottom) the location 

of a participant’s criterion defines the participant’s false alarm and correct rejection rate. 

Therefore, since the light-striped area comes from the probability curve representing the participant’s in-

ternal response during a RealWord trial, the light-striped area represents the probability that the 

participant correctly responds ‘yes’ when there is a signal. This is called the participant’s hit rate. The 

light-grey area comes from the probability curve representing the participant’s internal response during a 

NonceWord trial, so the light-grey area represents the probability that the participant incorrectly responds 
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‘yes’ when there is no signal. This is called the participant’s false alarm rate. The dark-striped area repre-

sents the probability that the participant incorrectly responded ‘no’ when there was a signal (miss rate), 

and the dark-grey area represents the probability that the participant correctly responded ‘no’ when there 

was no signal (correct rejection rate). These probabilities are summarized in Figure 10. 

 

  Signal  

R
es

p
o
n

se
 

 Present 

(e.g. RealWord trial) 

Absent  

(e.g. NonceWord trial) 

Present 

(e.g. ‘yes’ response) 
Hit False alarm 

Absent 

(e.g. ‘no’ response) 
Miss Correct rejection 

Figure 10. Participant responses can be divided into four categories: hits, false alarms, misses, and correct 

rejections. In the example given here, a present Signal is represented by a RealWord trial, and an absent 

Signal is represented by a NonceWord trial. A ‘present’ response is represented by a participant respond-

ing ‘yes,’ and an ‘absent’ response is represented by a participant responding ‘no.’ 

Note that in Signal Detection Theory, a participant’s sensitivity to stimuli d’ (represented by the distance 

between a Signal and No Signal curve) is independent of the criterion established by the participant (Mac-

millan and Creelman, 2004:36; also see Stanislaw and Todorov (1999) for examples). Some participants 

may be more inclined to respond ‘yes,’ while others are more conservative in their responses and inclined 

to respond ‘no.’  

Figure 11 represents two participants’ internal states. The top figure shows the internal state of a 

participant who has established a high criterion, and therefore responds ‘no’ most of the time. The bottom 

figure shows the internal state of a participant who has established a low criterion, responding ‘yes’ most 

of the time. Note that the change in criterion levels does not affect sensitivity: both of these participants 

have the same sensitivity d’. 
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Figure 11. Internal state of a participant with a high criterion (top figure) compared to internal state of a 

participant with a low criterion (bottom figure). Note that these particular hypothetical participants have 

identical sensitivities. 

Signal Detection Theory assumes that internal responses are normal in their distribution. Because of this, 

a participant’s sensitivity to stimuli can be calculated if their hit and false alarm rates are known. The z-

score of the probability that a participant correctly responds ‘yes’ when a signal is present (hit rate) will 

give us the number of standard deviations that the criterion is from the Signal probability curve mean. The 

z-score of the probability that a participant incorrectly responds ‘yes’ when a signal is absent (false alarm 

rate) will give us the number of standard deviations that the criterion is from the No Signal probability 

curve mean. If we then subtract the z-score of the false alarm rate from the z-score of the hit rate, this 

gives us the distance between the Signal and No Signal curve (Figure 12). 
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Figure 12. Calculation of d’. 

To summarize, a participant’s sensitivity can be calculated using the equation in (1). 

(1) 𝑑′ = 𝑧(𝐹𝐴) − 𝑧(𝐻𝑅) 

 

Past distributional learning studies which have worked within a Signal Detection framework have calcu-

lated d’ values for individual participants, and then analyzed those values using an ANOVA (e.g. 

McGuire, 2007; Hayes-Harb, 2007; Noguchi, 2016). This dissertation does not directly calculate d’, but 

instead analyzes data using a generalized linear mixed effects model with a logistic link function, which is 

formally identical to Choice Theory, a close cousin of Signal Detection Theory. This is done for two rea-

sons: 1) ANOVAs assume data is normally distributed (which data presented in this dissertation is not6), 

and 2) logistic regressions have been argued to be superior in analyzing categorical data (see Jaeger, 

2008). The following section describes the relationship between Choice Theory and logistic regressions. 

 

 

                                                      

6
 This is especially the case in Experiments A1 and A2, in which responses are heavily skewed towards “same” re-

sponses. 
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3.1. THE RELATIONSHIP BETWEEN CHOICE THEORY AND LOGISTIC REGRESSIONS 

Choice Theory (Luce, 1959) is formally similar to Signal Detection Theory, with the exception that 

Choice Theory assumes that internal noise distributions are logistic rather than normal (Macmillan and 

Creelman, 2004). DeCarlo (1998) further shows that Choice Theory and logistic regressions are formally 

identical, allowing for the statistical analysis of sensitivity and response bias using logistic regressions. 

Several questions arise in using logistic regressions to analyze sensitivity and response bias:  

1) How does one interpret sensitivity in a logistic regression?  

2) How does one interpret response bias in a logistic regression? 

3) How should data be interpreted when both sensitivity and response bias are affected? 

4) How should same-different experiments be analyzed in Choice Theory? 

The remainder of this subsection will attempt to provide answers for these questions and clarify which 

simplifying assumptions will be made in this dissertation.  

3.2. SENSITIVITY IN LOGISTIC REGRESSIONS 

To consider how sensitivity should be interpreted in a logistic regression, it may be useful to review the 

figures from the previous section below. 

 
Figure 13. Figure on the right shows increased sensitivity to Signal and No Signal stimuli compared to the 

figure on the left. 

Figure 13 shows that sensitivity, or d’, measures the distance between the mean internal responses for No 

Signal and Signal trials. Suppose that the figure on the left illustrates participants in Condition X, while 

the figure on the right illustrates participants in Condition Y. In terms of a logistic regression, the effect of 
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one factor, stimulus type (Signal or No Signal), depends on the level of another factor, i.e. which condi-

tion participants are in. In short, Condition X and Condition Y have different sensitivities if one finds a 

significant interaction between stimulus type (Signal or No Signal) and condition (see Macmillan and 

Creelman, 2004; DeCarlo, 1998). Therefore, this dissertation will interpret a significant interaction be-

tween stimulus type and condition as a difference in sensitivity between conditions, where the condition 

with the greater sensitivity has a greater distance between mean responses between Signal and No Signal 

stimuli. 

3.3. RESPONSE BIAS IN LOGISTIC REGRESSIONS 

To consider bias should be interpreted in a logistic regression, consider again the figures below. 

  
Figure 14. Figure on the right shows increased bias towards “yes” responses compared to the figure on the 

left. 

Figure 14 shows two situations with differing response criteria, but the same sensitivity, or d’. Again, 

suppose that the figure on the left illustrates participants in Condition X, while the figure on the right il-

lustrates participants in Condition Y. In terms of a logistic regression, the odds of a “yes” response 

increases for all stimuli type, both Signal and No Signal stimuli alike, between Condition X and Condi-

tion Y. That is, the factor of condition has an effect on response, regardless of stimulus type. This case 

would present itself as a main effect of condition (see Macmillan and Creelman, 2004; DeCarlo, 1998). 

Therefore this dissertation will interpret a significant main effect of condition as a difference in response 

bias between conditions, where the condition with the greater mean “different” responses has a greater 

bias towards a “different” response. 
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3.4. SENSITIVITY AND RESPONSE BIAS IN LOGISTIC REGRESSIONS 

Suppose a situation where a significant interaction between condition and stimulus type is found, and a 

significant main effect of condition is also found. Would this mean that Condition X and Condition Y dif-

fer in both sensitivity and response bias? This subsection argues that this is not always an accurate 

inference that can be made.  

If an interaction between condition and stimulus type is found, then the effect of stimulus type on 

response is dependent on condition. If this is the case, it does not make sense to average response over 

levels of the stimulus type factor, since it has already been found that the effect of each of the levels of 

stimulus type depends on condition. In other words, if we find that Condition Y has increased sensitivity 

compared to Condition X, and also find that Condition Y is more likely to respond “yes” when we aver-

age over all stimulus types, we cannot be certain that this overall increased “yes” response comes (1) 

solely from one level of the stimulus type factor, (2) from all levels of the stimulus type factor, or (3) 

from some combination of (1) and (2). The reason we cannot disambiguate between each of these three 

situations is that we already know that the effect of condition depends on stimulus type through the signif-

icant interaction between condition and stimulus type. Therefore, in the same way main effects are not 

interpretable when there is an interaction, we cannot determine through main effects whether response 

bias was also affected or not if we also find a significant difference in sensitivities between conditions. 

For the purposes of simplification, this dissertation will not attempt to disambiguate situations in which 

both a significant interaction and a significant main effect are found. Therefore, this dissertation will not 

interpret main effects as a difference in response bias between conditions if an interaction between condi-

tion and stimulus type is found.  

3.5. ADAPTING CHOICE THEORY TO SAME-DIFFERENT EXPERIMENTS 

In addition to the above simplification, this dissertation will also make the assumption that participants 

treat the difference in pairs of sounds played side by side as a Signal or No Signal stimulus. That is, this 

dissertation assumes that the “signal” being detected is a difference in acoustics. This is not the only way 
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to analyze same-different experiments through signal detection type models, and DeCarlo (2013) argues 

for several alternate analyses using nonlinear models. However, for the purposes of this dissertation, Dif-

ferent Pairs will simply be treated as “Signals,” and Same Pairs will be treated as “No Signal” stimuli so 

that data can be analyzed using generalized linear models. 

3.6. SUMMARY OF ANALYSIS TO BE USED 

To briefly summarize, this dissertation will adhere to the following conventions to interpret findings: 

(1) A significant interaction between condition and stimulus type will be interpreted as a 

significant difference in sensitivity between conditions. 

(2) A significant main effect of condition will be interpreted as a significant difference in 

response bias between conditions… 

(3) … unless a significant interaction between condition and stimulus type was also 

found, in which case a main effect will not be interpreted. 

Additionally, same-different experiments will be treated as no-yes or noSignal-signal experiments. 

4. Variations in Distributional Learning Experiments 

This section returns to distributional learning, with the aim of providing a typology of past methodologies 

used in studies which have been modelled on Maye and Gerken (2000). I believe this is important as 

small changes in both methodology and analysis can potentially result in the measurement of different as-

pects of distributional learning. 

Maye and Gerken (2000) were originally interested in participants’ decision-making, categoriza-

tion skills. They were interested in determining whether, given two perceptibly-different syllables, 

participants categorized these tokens as belonging to the same category, or to two separate categories. 

This would be similar to being given a dark blue swatch and a light blue swatch and being asked whether 

these belonged to the “same” category. Viewers are able to distinguish the two, but would say they belong 

to the “same” category since they are both “blue.” This type of task tests participants’ upper-level deci-

sion-making process, rather than any low-level discriminatory process. I will refer to this as an “open-

numbered categorization.” 
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This is opposed to a discrimination task, where participants hear two very similar syllables, and 

must determine whether the two are identical tokens, or if they are acoustically different from one an-

other. This would be similar to looking at two very identical light blue color swatches and determining if 

there is any perceptible difference between the two. 

Maye and Gerken (2000) used a same-different task to analyze participants’ categorizations. In 

order to ensure that they were analyzing categorization rather than discrimination, they included non-

identical filler tokens. “Same” fillers were different recordings of the “same” syllable (e.g. two separate 

recordings of the syllable ma). In this way, the experimenters meant to ensure that participant were basing 

their responses on upper-level decision-making (“open-numbered categorization”), and were not simply 

listening for any acoustic difference (“discrimination”). Despite this safeguard, when listening to these 

tokens myself, the “same” fillers did indeed sound identical to my ears. Even if these tokens are different 

recordings, if they fall below the level of perceptible difference to a human listener (as they did for me), 

they do not necessarily keep the participant from treating the task as a simple discrimination task. Be-

cause of this I believe the same-different task used by Maye and Gerken is still ambiguous between being 

an open-numbered categorization task (e.g. participants respond that dark blue and light blue are the 

“same” since they are both blue, despite being perceptibly distinct from one another) and a discrimination 

task (e.g. participants respond that two swatches of blue are only the “same” if they are perceptibly identi-

cal). 

Rather than using a same-different methodology, some distributional studies have opted to use an 

ABX (or XAB) task to test participants (Ong et al., 2015). In this task, participants hear three syllables, and 

are asked to categorize the third syllable as belonging to the category of the first syllable or the second 

syllable (or the first syllable as belonging to the category of the second or third syllable in an XAB task). 

If it is the case that X is identical to A or to B (or close enough that a participant perceives the two as be-

ing identical), this task becomes a discrimination task. If all three syllables are acoustically distinct 
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enough from one another to be discriminable by the participant, this task would be a “closed-number cate-

gorization task.” That is, the nature of the task is such that the participant knows that there are two 

categories, A and B, among the three sounds they are hearing. Their task is simply to determine whether X 

belongs to the category represented by A, or the category represented by B. (This section makes a distinc-

tion between closed-number and open-numbered categorization tasks, because, as will be discussed in 

further chapters, I believe that distributional learning begins with a Bias stage, which would only be cap-

tured with an open-numbered categorization task.) 

Since the stimuli used in a study are often not available for future readers to access, it is difficult 

to categorize past studies as being open-numbered categorization tasks, closed-number categorization 

tasks, or discrimination tasks. The studies presented in this dissertation will follow Maye and Gerken 

(2000) in using a same-different methodology with Same Pair fillers which are discriminable from one 

another, in hopes that participants will treat the task as an open-numbered categorization task. 

Past studies also vary in the methods used to analyze participants’ responses. Some studies meas-

ure the percentage of “correct” responses in Different Pairs (Maye and Gerken, 2001; Pajak and Levy, 

2011; Hayes-Harb, 2007), while others measure d-prime (Noguchi, 2016; Hayes-Harb, 2007). As will be 

further discussed in Chapter 3, I believe these two measure different aspects of learners’ responses. 

So far, this chapter has blurred the distinction between first language acquisition, second lan-

guage acquisition, and artificial language learning experiments. The theory of distributional learning is 

motivated by infants’ developmental trajectories. That is, infants exhibit language-specific perceptual 

warping from 6-12 months of age, before they know enough minimal pairs for this warping to be at-

tributed solely to lexical learning (although see Swingley (2009) and Feldman et al. (2013) for 

supplemental learning based on lexical form). Yet, several experiments supporting distributional learning 

have been conducted on adults. Because this dissertation bases its proposal on results from artificial lan-

guage learning experiments conducted on adults, this inconsistency is addressed in the following section 
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by providing justification for using artificial language experiments to study distributional learning, but 

also by acknowledging the need for replication work with infants. 

5. The Relationship Between Natural and Artificial Language Learning 

Artificial language learning studies offer us a unique window into human language acquisition. However, 

as with any methodology, these types of studies do have weaknesses that should be acknowledged. This 

section provides justification for studying distributional learning with artificial language learning experi-

ments on adults, while also acknowledging weaknesses of this methodology. 

One of the main weaknesses of artificial language learning studies has to do with the unclear sta-

tus as to what is being modelled. On one hand, it could be argued that artificial languages are indicative of 

second language acquisition, since adult participants experience interference from their first language 

(Schwartz and Sprouse, 1996) and have passed any theorized critical period of language acquisition 

(Lenneberg, 1967). Even if one assumes that various mechanisms used in language learning function 

throughout a language learner’s life, it is possible that some mechanisms are stronger at various points in 

development. For example, Thiessen and Saffran (2003) tested 7-month and 9-month infants in a speech 

segmentation task. Infants were presented with conflicting cues as to where word boundaries occur. The 

9-month old infants used stress to segment speech into words when stress and statistical cues indicated 

different word boundaries, tending to segment speech into trochaic “words,” while the 7-month old in-

fants used statistical cues, tending to segment speech at regions of low transitional probabilities. Thiessen 

and Saffran suggest that infants rely more heavily on statistical cues early on (at 7 months), and only 

make use of other cues, such as typical stress patterns, later on (at 9 months). If differences in cue 

weighting are apparent at 7 months compared to 9 months of age, there must be a number of differences 

between cue weightings used by adults and those used by infants. On the other hand, one could argue that 

artificial language learning studies are reflective of first language acquisition, since (although dependent 

on the particular study’s methodology) artificial language learning studies often do not present learners 

with the type of explicit instructions that a second language learner might receive (for example, Maye and 
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Gerken, 2000; Saffran et al., 1997; Noguchi, 2016; Feldman et al., 2011), which can have an effect on ac-

quisition (see Zhang (2013) for an example of the effect of explicit instruction on Chinese tone 

acquisition). Some artificial language learning studies draw conclusions about the nature of second lan-

guage acquisition (Hayes-Harb, 2007; Escudero et al., 2011), while others draw tentative conclusions 

about the nature of first language acquisition (Peperkamp et al., 2003; Maye and Gerken, 2001; Noguchi, 

2016). A number of adult studies are followed up with a replication study on infants before conclusions 

regarding first language acquisition are made (e.g. Maye and Gerken (2000) followed by Maye et al. 

(2002; 2008); Feldman et al. (2011) followed by Feldman et al. (2013)). There is also the very real possi-

bility that artificial languages are not indicative of any natural linguistic process (for a discussion of this 

possibility, see Moreton and Pater, 2012). The ambiguity in what is being modelled in adult artificial lan-

guage learning studies is particularly important to keep in mind since the main topic under investigation 

here, distributional learning, was primarily motivated by observations of language development in infants 

(Maye and Gerken, 2000), as summarized in the previous section. 

With that being said, this dissertation presents a series of artificial language learning experiments 

conducted on adults. Since no experiments reported here are conducted on infants, this dissertation re-

mains agnostic as to whether findings reflect general cognitive mechanisms utilized by both adults and 

infants in language acquisition, or are only indicative of adult cognition, and will simply refer to “lan-

guage learners.” It is still hoped that results can be extended to first language acquisition, since the overall 

topic under study, distributional learning, has been found in both adult (Maye and Gerken, 2000; Ong et 

al., 2015; Hayes-Harb, 2007; Maye and Gerken, 2001; Noguchi, 2016) and infant experiments (Maye et 

al., 2002; Yoshida et al., 2010), and since other phenomena also reliant on statistical tracking have been 

claimed to occur in both adults and children (Saffran et al., 1997). When available, results from infant 

studies which appear to corroborate this dissertation’s findings will be mentioned. 
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6. Research Questions and Structure of Dissertation 

This dissertation is interested in defining a timeline of early phonological acquisition. Although initially 

meant as a simple replication study, the data presented in Chapter 3 suggests a necessary distinction be-

tween two stages of phonetic category acquisition, a Bias Stage and a Sensitivity Stage. Overall, this 

dissertation seeks to answer the following question:  

(1) What are the stages in early phonological acquisition? 

The main goal of this dissertation is to formulate a timeline of phonological acquisition based on experi-

mental evidence. In answering this question, this dissertation explores the interaction of distributional 

learning with various phenomena, indicated below: 

(2) How does distributional learning interact with attention? (Chapter 3) 

(3) How does distributional learning interact with environmental context? (Chapter 4) 

(4) How does distributional learning interact with word learning? (Chapter 5) 

I argue in this dissertation that phonetic category learning occurs in two stages, a Bias Stage and a Sensi-

tivity Stage. This will be supported by a series of experiments, the “A” Experiments, in Chapter 3. Results 

of the “A” Experiments also indicate an effect of attention on distributional learning. Chapter 4 explores 

the relationship between phonetic category acquisition and allophony acquisition, and presents experi-

mental support for a one-stage model of allophony acquisition (Experiment B), as suggested by Dillon et 

al. (2013). Finally, this dissertation discusses the gap between phonetic category acquisition and func-

tional phonemes that are used to differentiate words in a set of “C” Experiments, presented in Chapter 5.  

7. Summary 

To summarize, this chapter showed that despite supplemental theories which have been suggested (Feld-

man et al., 2013; Thiessen, 2007), distributional learning makes up a large portion of the explanation of 

how infants come to exhibit language-specific discrimination at such an early age. Experimental support 

for distributional learning is primarily based on artificial language studies which have been conducted on 
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adults; but, importantly, these experiments have also been replicated on infants. This chapter then intro-

duced two main concepts from Signal Detection Theory, response bias and sensitivity, and illustrated how 

these two concepts are independent of one another. Specific guidelines regarding the interpretation of this 

dissertation’s experimental results were then laid out. Following this, this chapter highlighted seemingly 

small differences in both methodology and analysis between past distributional learning experiments. The 

next chapter will further discuss response bias and sensitivity. It will be shown that 1) the seemingly 

small differences in methodology and analysis of past distributional learning experiments have resulted in 

the measurement of different things, and 2) past models of distributional learning predict that sensitivity, 

and not necessarily bias, is directly affected by distributional learning. A set of experiments (the “A” Ex-

periments) will be presented which counter these sensitivity models of distributional learning. 
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Chapter 3:  

Response Bias and Sensitivity in Distributional Learning, and the Role of Attention 

1. Introduction 

The original goal of this set of experiments was to determine whether distributional learning, which has 

been found in in-person experiments, could be replicated through an online platform. In the process of 

doing so, two main theoretical conclusions were also reached: (1) the distribution of exposure can affect 

learners’ response bias (also simply “bias”) independently of their sensitivity, and (2) attention plays a 

role in distributional learning. The first contribution regarding the distinction between response bias and 

sensitivity in distributional learning is supported with three main “A” Experiments: Experiments A1, A2, 

and A3. The second theoretical contribution regarding attention in distributional learning will be dis-

cussed in two follow-up “Tone” experiments, A2-Tone and A3-Tone. Finally, as all experiments were 

conducted online using the online participant pool known as Mechanical Turk, this chapter ends with two 

more contributions which are methodological in nature, by giving suggestions for conducting perceptual 

experiments online.  

Of these four contributions, the primary theoretical contribution of this chapter regards the dis-

tinction between response bias and sensitivity. This study argues for a two-stage model of phonetic 

category acquisition7: a Bias Stage followed by a Sensitivity Stage. This runs contrary to models which 

base distributional learning in perceptual warping (Guenther and Gjaja, 1996; Boersma et al., 2003), 

which do not predict a Bias Stage of phonetic category acquisition. Although all experiments conducted 

                                                      

7
 Not to be confused with the theoretical two-stage model of allophonic acquisition, discussed in Chapter 4. 
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here were conducted on adults, Section 7 will present evidence that this two-stage model is supported by 

past infant studies of distributional learning. 

Section 2 provides background for this study. Section 3 states this chapter’s main research ques-

tions and provides a summary of results from all experiments conducted in this chapter. Sections 4-6 

describe the methodology and results of the three main “A” Experiments conducted, A1, A2, and A3. 

This is followed by a summary and discussion of response bias and sensitivity in distributional learning in 

Section 7, including possible supporting evidence of a distinction between bias and sensitivity from past 

distributional learning studies conducted on infants (Yoshida et al., 2010; Maye and Gerken, 2002). Sec-

tion 8 presents two “Tone” experiments, Experiment A2-Tone and Experiment A3-Tone. Results of these 

experiments will be used to argue that attention plays a role in distributional learning in Section 9. Sec-

tion 10 provides suggestions for those wishing to conduct perceptual experiments online through 

platforms such as Mechanical Turk. Section 11 discusses unexpected results involving filler trials and 

provides possible explanations for these results. Section 12 concludes with a summary of results and an 

overview of contributions made in this chapter. 

2. Background 

This section begins with a summary of the methodology and conclusions of Maye and Gerken (2000) 

(Section 2.1), which forms the basis of the experiments conducted here. Following this, Section 2.2 pro-

vides a background on the medium used in these distributional learning experiments, Mechanical Turk. 

Section 2.3 describes the distinction between a learner’s response bias (i.e. their inclination to respond 

one way or the other) and their sensitivity (i.e. their ability to perceive a phonetic distinction). Section 2.4 

then simulates one perceptual warping model of distributional learning in order to show that this model 

predicts a change in sensitivity, but not in response bias. 
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2.1. DISTRIBUTIONAL LEARNING AND MAYE AND GERKEN (2000) 

Distributional learning refers to a type of statistical learning in which the distribution of the input guides 

learners in making some inference regarding the number and identity of phonetic categories in the speech 

stream (Maye and Gerken, 2000; Maye et al., 2002; Kuhl, 2004; Werker et al., 2012). Learners exposed to 

a bimodal distribution of tokens along some phonetic dimension(s) will infer that there are two phonetic 

categories each centered at the two peaks of the bimodal distribution, whereas learners exposed to a mon-

omodal distribution will infer that there is only one phonetic category, centered at the peak of the 

monomodal distribution (see Chapter 2 for further background regarding distributional learning). This 

section provides an overview of Maye and Gerken (2000), who first provide evidence for distributional 

learning in an artificial language learning study, since the methodologies of all “A” Experiments are 

based on this study. Readers who have already read Chapter 2 may wish to skip to Section 2.2. 

Maye and Gerken (2000) is the first artificial language learning study which provides experi-

mental support for distributional learning. As detailed in Chapter 2, Maye and Gerken trained adult 

participants on syllables during an approximately 9-minute training phase. Critical syllables during this 

training phase began with an alveolar stop taken from an 8-point continuum ranging between a prevoiced 

stop [d] and a voiceless unaspirated stop [d̥]. Each of these were followed by one of three nuclei, [ɑ æ ɚ], 

and had no coda. Participants were either trained on a bimodal distribution or a monomodal distribution 

of critical syllables. The monomodal distribution of critical syllables consisted of a higher frequency of 

continuum points near the center of the continuum (points 4 and 5), than those taken from the ends of the 

continuum (points 1, 2, 7, and 8) (see solid grey line in Figure 15). The bimodal distribution of critical 

syllables consisted of a higher frequency of continuum points near the endpoints of the continuum (points 

2 and 7) than those at the endpoints (points 1 and 8) or in the center (points 4 and 5) (see dotted black line 

in Figure 15). For simplicity, continuum points will be referred to as D1-D8. 
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Figure 15. Illustration of the familiarization frequency of onsets of critical stimuli for Bimodal and Mono-

modal groups during the training phase of Maye and Gerken (2000). 

Following training, participants were directed to a test phase in which they were presented with pairs of 

syllables and were asked if they believed the two syllables presented were the same word repeated twice, 

or two different words, in the language they had been exposed to. Maye and Gerken found a greater per-

centage of “different” responses in the Bimodal condition than in the Monomodal condition when 

participants were presented with the endpoints of the continuum, D1 and D8. They conclude that this study 

supports distributional learning. 

Maye and Gerken’s findings have led to a number of follow-up experiments by various research-

ers. Experimental support has been found for adults (Maye and Gerken, 2000; Maye and Gerken, 2001; 

Hayes-Harb, 2007; Escudero et al., 2011) and infants (by measuring looking times) (Maye et al., 2002; 

Yoshida, 2010; Maye et al., 2008; Liu and Kager, 2014; Wanrooij et al., 2014; ter Schure et al., 2016). 

These follow-up experiments on distributional learning have had mixed success. Stimuli successfully 

used in replications include the stop pairs [d] vs. [d̥], and [ɡ] vs. [ɡ̥] (Maye and Gerken, 2000; Maye and 

Gerken, 2001; Maye et al., 2002; Hayes-Harb, 2007); the vowel pairs [a] vs. [ɑ], and [i] vs. [ɪ] (Gulian et 

al., 2007; Escudero et al., 2011); and the Thai tone pairs [33] and [241] (Ong et al., 2015). However, Pe-

perkamp et al. (2003) failed to replicate these findings when testing fricatives ranging from [ʁ] to [χ] with 

French-speaking adult participants. Two out of three experiments presented in Yoshida et al. (2010) (one 
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with [d] – [d̥] critical onsets, another with [d] – [ɖ]) were reported as non-replications with English-learn-

ing 10-month old infants. (The reported non-replication in Yoshida et al. (2010) will be discussed further 

in Section 7.)  

Cristia (2018) performed a meta-analysis on distributional learning studies that were conducted 

on infants. She concludes that there are two types of methodologies that have been utilized in infant distri-

butional learning studies: an alternating/non-alternating design and a habituation/change design.8 Results 

of the meta-analysis suggest that infant distributional learning studies which follow an alternating/non-

alternating design (e.g. Maye et al., 2002) do not show robust results when taken together, possibly indi-

cating a non-effect or a very small effect size associated with distributional learning. On the other hand, 

studies which follow a habituation/change design do show a robust effect, supporting the theory that in-

fants make use of distributional learning. Since this dissertation only reports the results of adult studies, I 

did not utilize either of these methodologies. (Descriptions of each methodology type can be found in the 

footnote below.) 

2.2. WEB-BASED EXPERIMENTS 

The original purpose of these experiments was simply to determine whether the web is an appropriate 

platform for conducting distributional learning experiments, as further chapters build on the assumption 

that distributional learning can be replicated online. Mechanical Turk (“MTurk”) is an online participant 

                                                      

8
 Both types of methodologies begin with a training phase in which infants are exposed to auditory stimuli (where 

critical syllables are presented with either a bimodal or monomodal frequency distribution). In an alternating/non-

alternating design, infants are then exposed to alternating or non-alternating trials during the test phase. Alternating 

trials consist of a string of critical syllables (e.g. continuum points 1 and 8) played one after another in an alternating 

fashion. Non-alternating trials consist of a string of just one of these continuum points (e.g. either continuum point 1 

or continuum point 8), played repeatedly. Experimenters would then analyze the difference in looking times to alter-

nating and non-alternating trials, under the assumption that the greater the difference in looking times to these two 

types of trials, the more infants are distinguishing between continuum points 1 and 8. 

In a habituation/change design, test phases consist of habituating infants to one critical token (e.g. playing contin-

uum point 1 continuously) in a habituation trial. Once infants habituate to the token, a change trial begins and a 

different critical token is played (e.g. continuum point 8). The experimenter analyzes the difference between looking 

times in habituation trials and change trials.  
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pool hosted by Amazon, an electronic commerce company. MTurk began as an online labor market for 

tasks which are difficult to automate, such as tagging photographs with keywords or selecting the best im-

age out of a sample of images to represent some product. However, an increasing number of researchers 

have turned to MTurk as a means of recruiting participants (Shapiro et al., 2013; Schnoebelen and Kuper-

man, 2010). A number of papers have addressed the validity of conducting psychological experiments or 

surveys online (Denby et al., 2017; Crump et al., 2013; Gosling et al., 2004; Schnoebelen and Kuperman, 

2010), and conclude that in-lab and online studies produce similar results (although see Paolacci and 

Chandler (2014) for warnings regarding the representativeness of the MTurk participant pool to the gen-

eral population). Denby et al. (2017) find no significant difference in results between a phonotactics 

learning experiment conducted in-lab and online. Crump et al. (2013) replicate results from a number of 

common psychological tasks on MTurk. Schnoebelen and Kuperman (2010) compare results from online 

and in-lab experiments for two linguistics experiments (a word prediction sentence completion task and a 

semantic similarity judgment task) and also conclude that in-lab and online results were similar. 

Although these results are encouraging, the types of tasks reviewed in these studies do not require 

the ability to detect the fine phonetic detail required in a distributional learning task. Only a few studies 

have been conducted online which also rely on the ability to distinguish phonetic contrasts. Kleinschmidt 

(2017) finds that MTurk is suitable for at least some speech perception experiments, in an experiment in-

volving synthetic stimuli in which onsets fall along a continuum between /b/ and /p/, with each of the 

continuum steps differing in VOT in 10 ms increments (also see Kleinschmidt and Jaeger, 2012; Klein-

schmidt and Jaeger, 2015 for further speech perception experiments conducted on Mechanical Turk). The 

experiments presented in this chapter use critical stimuli drawn from (1) a continuum ranging from voice-

less unaspirated [ɡ̥] (as in skill rather than kill) to prevoiced [ɡ] (as in gill), a continuum which has been 

successfully implemented in (in-lab) distributional learning experiments such as Maye and Gerken (2001) 

as well as Hayes-Harb (2007), and (2) a continuum ranging from a voiceless alveopalatal fricative [ɕ] to a 
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voiceless retroflex fricative [ʂ], a continuum which has been successfully implemented in an allophony 

learning experiment, Noguchi (2016). 

Since the experimenter cannot be sure that the participant is wearing headphones or even listening 

during an online experiment, adapting previous distributional learning experiments to an online platform 

gave rise to a few methodological considerations. To ensure participants were paying attention, catch tri-

als were initially added to both the training and test phases in order. These trials required participants to 

take some sort of action upon hearing them (e.g. pressing a “1” or a “2” depending on how many tones 

they had heard). Details of these methodological considerations and their effect on experimental outcomes 

will be discussed in Section 10. 

While this background section has so far provided context regarding the methodological contribu-

tion of this chapter, the remaining subsections will focus on the theoretical contribution of this chapter, by 

first defining two terms: bias and sensitivity. 

2.3. RESPONSE BIAS VS. SENSITIVITY 

This subsection first argues for a distinction to be made between two phenomena: response bias (also 

simply “bias”) and sensitivity. Following this, analysis methods used by previous experimental studies on 

distributional learning are reviewed to highlight the fact that past studies differ in which metrics are used 

as supporting evidence for distributional learning, and that the metrics used measure different phenomena.  

To illustrate the difference between response bias and sensitivity, suppose a subject is given the 

task of determining whether two marbles drawn randomly from a bag are the same color or are two differ-

ent colors. Half of the participants are told that there exist two shades of green in the bag while the other 

half of the participants are not told anything about the number of shades of green. In reality though, there 

is only one shade of green marble. In this scenario, one might imagine that the participants who are told 

that there are two different shades of green in the bag are more likely to respond that two green marbles 

are different shades compared to participants who are not told anything about the number of shades of 
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green in the bag, even though all participants are seeing the same exact same shade of green. In this first 

scenario, we can say that the group of participants told that there are two shades of green is more biased 

towards a “different” response compared to the group of participants who had not been told anything re-

garding the number of shades of green in the bag. Even when faced with two marbles with the exact same 

shade, participants with a bias towards a “different” response are more likely to respond “different” com-

pared to the participants who are not told anything about the number of shades of green, simply because 

they are expecting there to be two shades of green in the bag. 

Although this is a hypothetical example, factors which affect response bias have been identified 

(Macmillan and Creelman, 2004; Stretch and Wixted, 1998; Dougal and Rotello, 2007; Baddeley and 

Colquhoun, 1969; See et al., 1997; Davenport, 1969). For example, Dougal and Rotello (2007) presented 

participants with a list of words during a training phase. In a following test phase, participants were pre-

sented with words that had been presented during testing, as well as words which had not been presented 

during testing. Participants were asked to determine whether they encountered each word in the training 

phase. Dougal and Rotello found that, regardless of whether or not a word was actually encountered dur-

ing training, participants were more likely to respond that they recalled the word from the training phase 

if the word was a negative emotion-related word, compared to positive or neutral words. Therefore partic-

ipants had a greater bias towards responding that a word was encountered before if it was a negative 

emotion-related word than if it was a positive or neutral word. Similarly, in a task involving detection of a 

vibration through a transmitter placed around participants’ arms, participants’ response biases were found 

to be affected by a scoring system based on their performance. If more points were subtracted for missing 

a detection (Signal Detection Theory terminology: “miss”) or responding when there was no signal (SDT: 

“false alarm”), participants were more conservative in their responses, exhibiting lower response biases 

towards responding that there had been a vibration, but the same sensitivity (d’) to stimuli (Davenport, 

1969). Response bias also changes based on the probability that some signal is encountered (See et al., 
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1997). Participants who encountered some signal at a low probability were more conservative in their re-

sponses compared to participants encountering the signal at a high probability (Baddeley and Colquhoun, 

1969; See et al., 1997). 

Returning to the marble example, we can imagine another scenario, identical to the one above, 

except this time two different shades of green actually exist in the bag. In this scenario, one might imag-

ine that the group that had been told that two different shades of green exist has become better at 

detecting whether two green marbles are the same or different shades compared to the other group. That 

is, their sensitivity to the slight difference in shade is heightened because they know a difference exists, 

and their heightened awareness makes them more sensitive of the different shades. In this scenario, the 

group with the higher sensitivity responds “different” more often when the two marbles are actually dif-

ferent shades of green, but crucially also responds “same” more often when the two marbles are the same 

shade of green. In the previous scenario, the group with the lower response bias responded “different” 

more often even when the two marbles were the same shade of green. Sensitivity differences have been 

found in numerous tasks. For example, trained radiologists show higher sensitivity to low-contrast dots on 

X-rays than novice students (Sowden et al., 2000). Iverson and Kuhl (1995) find that participants have 

lower sensitivities (measured in d’) to pairs of stimuli near prototypical vowel centers than those near 

non-prototypical vowels. Guion et al. (2000) find that native English speakers have significantly greater 

sensitivity to the contrast between [ɹ] and [l] compared to native Japanese speakers, while native Japanese 

speakers have greater sensitivity to the contrast between [ɾ] and [d] (measured in Signal Detection The-

ory’s A’, an estimate of the area under an ROC curve which does not require the assumption that the 

response variable is normally-distributed (Stanislaw and Todorov, 1999). They also find that native Japa-

nese speakers with more English experience have higher sensitivities compared to Japanese speakers with 

less English experience to some contrasts made in English, like /ɹ/ and /w/, but not to other contrasts, like 

/ɹ/ and /l/. A number of distributional learning studies find that groups trained on a bimodal distribution 
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have a higher sensitivity (measured in d’) to critical stimuli after training than a monomodal or control 

group (Hayes-Harb, 2007; Noguchi, 2016). 

The scenario of drawing two marbles from a bag is similar to the scenario presented to a partici-

pant in a distributional learning experiment. During the test phase, the participant is asked to determine 

whether two sounds, rather than marbles, are the same or different. One can imagine two different theo-

ries regarding the underlying mechanism behind distributional learning, each of which makes different 

predictions regarding sensitivity and response bias, stated below. 

1) The Sensitivity Hypothesis: Distributional learning causes sensitivity to improve, such that 

phones which are presented in a bimodal distribution to the learner are perceived as being 

more distinct from one another than phones which are presented in a monomodal distribution. 

The more perceptually distinct two given sounds are, the more likely a learner is to believe 

that these two sounds are “different.” Therefore, a bimodal distribution results in increased 

discriminatory ability (sensitivity) between the endpoints. Note that a change in response bias 

may occur later. A schematic of this is shown in Figure 16. 

2) The Bias Hypothesis: Bimodal training results in learners being more likely to think that two 

sound categories exist in the speech stream compared to monomodal training. Therefore, the 

bimodal learners have a greater bias towards responding “different.” For example, a learner is 

more likely to think there must be two “g”-like sounds in the speech stream if exposed to a 

bimodal distribution of “g” sounds. Perception, however, is not directly affected by distribu-

tional learning (although a change in sensitivity may occur later). A schematic of this is 

shown in Figure 17. 
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Figure 16. Illustration of the Sensitivity Hypothesis. 

      
Figure 17. Illustration of the Response Bias Hypothesis. 

When sensitivity increases, it is expected that learners will be better at determining that two different 

stimuli are in fact different, as well as better at determining that two identical stimuli are the same. How-

ever, when the bias to respond “different” increases, it is expected that learners will respond that pairs of 

stimuli are different more often, regardless of whether they are in fact the same or different. This is sum-

marized in Table 1. 
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 Percentage of “different” 

responses for Different Pairs 

Percentage of “different” 

responses for Same Pairs 

 (e.g. D1a vs. D8a) (e.g. D1a vs. D1a) 

Increased bias towards 

“different” response 
↑ ↑ 

Increased sensitivity ↑ ↓ 

Increased bias toward 

“different” response and 

increased sensitivity 

↑↑ ↑ 

Table 1. Effect of increased bias towards a “different” response compared to effect of increased sensitiv-

ity on a learner's responses. The third scenario, in which both response bias and sensitivity are affected, is 

shown here, but not discussed, as no evidence is found for it in the set of experiments conducted in this 

chapter. 

Previous metrics used to measure distributional learning either measure sensitivity, or are incon-

clusive in whether they measure sensitivity or response bias. Maye and Gerken (2000) analyze the 

percentage of times participants respond that critical Different Pairs are “different,” finding that the par-

ticipants trained on a monomodal distribution respond “different” less often than participants trained on a 

bimodal distribution. However, as can be seen in Table 1, this finding is compatible with an increase in 

sensitivity or in an increase in bias towards a “different” response. Since Maye and Gerken only analyze 

the effect on Different Pairs, it is unclear whether sensitivity or response bias is the factor being affected. 

Noguchi (2016) on the other hand measures sensitivity in the form of d-prime values. He finds that partic-

ipants in the control condition have lower d-prime values than participants trained on a bimodal 

distribution. The current study will analyze both sensitivity and response bias. (Noguchi (2016) does not 

report on response bias.) 

The distinction between sensitivity and response bias is an important one to make, because per-

ceptual warping accounts of distributional learning (such as those suggested by Guenther and Gjaja 

(1996) and Boersma et al. (2003)) predict that sensitivity will always be affected by distributional learn-

ing, since a change in sensitivity is the underlying cause of distributional learning in these models. The 

current study measures both sensitivity and response bias, and will conclude that both can be affected by 

distributional learning. I argue that direct perceptual warping accounts of distributional learning are not 



48 

 

supported by this study. Rather, a change in response bias occurs at an initial stage of distributional learn-

ing, followed by a change in sensitivity at a second stage.  

2.4. DISTRIBUTIONAL LEARNING IN FUNCTIONAL PHONOLOGY 

In Chapter 2, two models of distributional learning were described: one by Boersma et al. (2003) and the 

other by Guenther and Gjaja (1996). Both of these models predict that perceptual warping always accom-

panies distributional learning. This section will briefly summarize the main ideas in Boersma et al.’s 

Optimality Theoretic model of distributional learning, and then show how these concepts translate to the 

same-different task in Maye and Gerken (2000). 

Boersma et al. (2003) models distributional learning within Functional Phonology, a framework 

which attempts to explain theories of phonology with functional phonetic principles, such as minimiza-

tion of perceptual confusion (Boersma, 1998). In order to see how the model in Boersma et al. (2003) can 

be extended to the task in Maye and Gerken (2000), suppose the learner is faced with a distribution of 8 

stops ranging in prevoicing from 0 ms to 140 ms in 20 ms intervals.  

According to Boersma et al.’s model, training exposure to a bimodal distribution of these stops 

will lead the learner to be more sensitive to the endpoints of the continuum, as opposed to training expo-

sure to a monomodal distribution. In terms of a same-different task, this would mean that bimodal training 

results in more “different” responses to Different Pairs, and fewer “different” responses to Same Pairs 

than monomodal training. In Boersma et al.’s model, there are two levels of representation: the acoustic 

representation, which makes up the input; and the phonetic categorization, which makes up possible can-

didate outputs. There are three families of constraints responsible for distributional learning: *CATEG, 

PERCEIVE, and *WARP. The *CATEG(ORIZE) constraints punish perceptual categories with some particu-

lar acoustic value. For example, a high-ranked *CATEG (/0 ms/) would have the effect of prohibiting 

categorization of some input into a category with a prevoicing value of /0 ms/. PERCEIVE constraints re-

quire the listener to perceive (categorize) an auditory input with a particular acoustic value as a member 

of some category, so the null candidate /–/ violates PERCEIVE ([0 ms]) if the input was [0 ms]. *WARP 
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constraints are violated if the difference between the acoustic value of the input and that of the output is 

greater than the amount defined by the *WARP constraint. For example, *WARP (20 ms) is violated if the 

difference between the acoustic value of the input (e.g. [0 ms]) and the acoustic value of the candidate 

(e.g. /20 ms/) is equal to or greater than 20 ms. Initially, all *CATEG constraints are ranked high, and all 

PERCEIVE constraints are ranked low.  

[20 ms] *CATEG 

(/0 ms/) 

*CATEG 

(/20 ms/) 

PERCEIVE 

([20 ms]) 

*WARP 

(20 ms) 

/0 ms/ *!   * 

/20 ms/  *!   

☞  /–/   *  

Figure 18. Tableau illustrating the initial state in which *CATEG constraints are ranked high and 

PERCEIVE constraints are ranked low. 

As seen in Figure 18, initially an input value of [20 ms] would be perceived as the null candidate  /-/, due 

to the higher-ranked *CATEG constraints. According to this model, the learner is unsatisfied with perceiv-

ing the null category, and so will categorize the input value as its identical counterpart value, in this case, 

/20 ms/. This target winner is indicated in the tableaus with a check mark. Knowing this target, the learner 

now reranks their constraints, in this case lowering the *CATEG (/20/) constraint and raising the PERCEIVE 

([20]) constraint (see Figure 19). Over time, PERCEIVE ([20]) will outrank *CATEG (/20/). 

[20 ms] 

/20 ms / 

*CATEG 

(/0 ms/) 

*CATEG 

(/20 ms/) 

PERCEIVE 

([20 ms]) 

*WARP 

(20 ms) 

/0 ms/ *!   * 

√  /20 ms /  *! →   

☞  /–/   ← *  

Figure 19. An example of *CATEG demotion and PERCEIVE promotion. Figure from Boersma et al. 

(2003). 

Following the Gradual Learning Algorithm, reranking occurs in small increments. After hearing many [20 

ms] values, the learner’s *CATEG (/20 ms/) constraint will be lower than the learner’s PERCEIVE ([20 

ms]), resulting in the winning candidate /20 ms/. Therefore at this point, the learner categorizes an input 

of [20 ms] as belonging to a /20 ms/ category. 



50 

 

If learners heard all 8 prevoicing values in identical relative amounts, the learner would simply 

perceive all incoming values as belonging to its own category. However, since the learner does not re-

ceive a non-modal input of prevoicing categories, various *CATEG constraints will outrank other *CATEG 

constraints. For example, if a learner hears more stops with [20 ms] of prevoicing than stops with [0 ms] 

prevoicing, then the PERCEIVE and *CATEG constraints associated with a 20 ms prevoiced token 

(PERCEIVE [20] and *CATEG /20/) will move more than the PERCEIVE and *CATEG constraints associated 

with the stop with 0 ms prevoicing token (PERCEIVE [0] and *CATEG /0/). Crucially, this will lead to 

*CATEG constraints associated with more commonly-heard tokens to be ranked beneath *CATEG con-

straints associated with less commonly-heard tokens. Therefore in this model, the nonuniform nature of 

the input distribution results directly in perceptual warping.  

[0 ms] 

/0 ms/ 

PERCEIVE 

([20 ms]) 

PERCEIVE 

([0 ms]) 

*CATEG 

(/0 ms/) 

*CATEG 

(/20 ms/) 

*WARP 

(20) 

√  /0 ms/   *! →   

☞ /20 ms/    ← * ← * 

/–/  *!    

Figure 20. Sample tableau for listener who has heard more [20 ms] tokens than [0 ms] tokens. Upon hear-

ing a [0 ms] token, this listener will perceive it as being /20 ms/. 

So far this section has described the basic framework behind the Functional Phonology model of distribu-

tional learning. The following subsections will attempt to extend this model so that we can see what 

predictions it makes when faced with a same-different task. To preview, Sections 2.4.1-2.4.3 can be sum-

marized as follows: the theoretical end state of the learner as described by Boersma et al. (2003) predicts 

increased sensitivity to stimuli in a same-different task (Section 2.4.1). However, whether the learner can 

arrive at this theorized end state is another question. Section 2.4.2 provides evidence suggesting that mod-

elling the learning process with the Gradual Learning Algorithm and by choosing parameters carefully 

seems capable of resulting in the theorized end state used in Section 2.4.1. However, as noted in Section 

2.4.3, the choice of these parameters appears to be arbitrary, and this learner does not naturally converge 

on the end state grammar used in Section 2.4.1. 
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2.4.1 Boersma et al. (2003): From (Theoretical) End State Rankings to Same-Different Experiment 

This section translates the theoretical end state constraint rankings of Boersma et al. (2003)’s model to a 

same-different task in order to determine what predictions this model of distributional learning makes in 

the task given in Maye and Gerken (2000). It will be shown that there exists a choice of end state con-

straint rankings which predicts an increase in sensitivity.  

Recall that Maye and Gerken (2000)’s participants were presented either with Same Pairs, which 

were identical pairs of syllables taken from the endpoints of an 8-point continuum, or with Different 

Pairs, which were syllables taken from the opposite ends of the 8-point continuum. The A1 and A2 Ex-

periments described later will make use of a velar stop continuum ranging between [ɡ̥], which has 0 ms of 

prevoicing, and [ɡ], which has 140 ms of prevoicing. Participants will be asked to respond “same” if they 

believe the pair consists of the same syllables, and “different” if they believe the pair consists of two dif-

ferent syllables. Therefore Same Pairs consist of either a [0 ms]/[0 ms] pair of syllables, or a [140 

ms]/[140 ms] pair. Different Pairs consist of either a [0 ms]/[140 ms] pair of syllables, or a [140 ms]/[0 

ms] pair. A participant will respond “same” in this same-different task if they map both inputs of the trial 

pair to the same output; otherwise they will respond “different.” 

Although exact guidelines for how initial constraint rankings should be determined for a given 

stimulus set are not given, Boersma and colleagues provide a set of initial constraint rankings for a hypo-

thetical example involving vowel heights. This section will follow the general range of numbers that 

Boersma and colleagues use in their initial state, but, as they do not provide rankings after learning simu-

lations have occurred, this section speculates on the constraint rankings in the final state. It will be shown 

that constraint rankings can be chosen so that a bimodally-trained learner has greater sensitivity to the 

endpoints of the stimulus set compared to a monomodally-trained learner, as determined in a same-differ-

ent task. 
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Boersma and colleagues arrange the initial ranking of the *WARP family of constraints so that the 

greater the amount of warping, the higher the constraint’s initial rank. For example, *WARP(100) is ini-

tially ranked at 100, and *WARP(120) is initially ranked at 120. This reflects a greater penalty for 

perceiving an output the more it veers from its original input and can be accomplished by fixing rankings 

of higher *WARP constraints above lower *WARP constraints. Boersma and colleagues also distinguish 

between very low-warping *WARP constraints, and rank all of these at the very low value of -109. They 

justify this in terms of psychoacoustics: some differences fall below the Just-Noticeable Difference value 

(JND), and so are not distinguishable by participants. This group of initially low-ranked constraints will 

be referred to as “bottom-ranked” *WARP constraints. 

The level of warping allowed in this model will determine how many Different Pairs are mistak-

enly categorized as being the “same” by a participant. If all *WARP constraints which warp the input by 

60 or fewer ms are categorized as “bottom-ranked” *WARP constraints, and all other *WARP constraints 

are high-ranked, an input of [0 ms] will not be categorized as any input which differs by more than 60 ms. 

Therefore [0 ms] can have a possible output of /0/, /20/, /40/, and /60/, but not of /80/ since *WARP(80) is 

a high-ranked constraint. Similarly, for an input of [140 ms], possible outputs include /140/, /120/, 100/, 

and /80/, but not /60/ (see Figure 21, left). 

                      
Figure 21. (left) Possible outputs for an input of [0] and [140] when all *WARP constraints including and 

below *WARP(60) are very low ranked. (right) Possible outputs for an input of [0] and [140] when all 

*WARP constraints including and below *WARP(80) are very low ranked. 
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If, however, *WARP(80) is included as one of the “bottom-ranked *WARP constraints,” an input of [0 ms] 

is allowed to have an output of /80/, and an input of [140 ms] is allowed to have an output of /60/ (see 

Figure 21, right).  

If we wish to allow some incorrect “same” responses to a Different Pair, then we will need an in-

put of [140] and an input of [0] to occasionally have the same output. This is only possible if we allow 

*WARP(80) to be included in the set of “bottom-ranked” *WARP constraints. For this simulation, 

*WARP(80) will be our cut-off point, and all *WARP constraints above this will be high-ranked con-

straints. This section uses the constraint rankings shown in Table 2 to simulate the end state for a 

bimodally-trained learner (left) and monomodally-trained learner (right).  

Constraint Ranking  

(Bimodal) 

 Constraint Ranking  

(Monomodal) 

 

*WARP (/140 ms/) 140  *WARP (/140 ms/) 140  

*WARP (/120 ms/) 120  *WARP (/120 ms/) 120  

*WARP (/100 ms/) 100  *WARP (/100 ms/) 100  

PERCEIVE (/20 ms/) 40  PERCEIVE (/60 ms/) 40  

PERCEIVE (/120 ms/) 40  PERCEIVE (/80 ms/) 40  

PERCEIVE (/40 ms/) 20  PERCEIVE (/40 ms/) 20  

PERCEIVE (/100 ms/) 20  PERCEIVE (/100 ms/) 20  

PERCEIVE (/0 ms/) 10  PERCEIVE (/0 ms/) 10  

PERCEIVE (/60 ms/) 10  PERCEIVE (/20 ms/) 10  

PERCEIVE (/80 ms/) 10  PERCEIVE (/120 ms/) 10  

PERCEIVE (/140 ms/) 10  PERCEIVE (/140 ms/) 10  

*CATEG (/140 ms/) -10  *CATEG (/140 ms/) -10  

*CATEG (/80 ms/) -10  *CATEG (/120 ms/) -10  

*CATEG (/60 ms/) -10  *CATEG (/20 ms/) -10  

*CATEG (/0 ms/) -10  *CATEG (/0 ms/) -10  

*CATEG (/100 ms/) -20  *CATEG (/100 ms/) -20  

*CATEG (/40 ms/) -20  *CATEG (/40 ms/) -20  

*CATEG (/120 ms/) -40  *CATEG (/80 ms/) -40  

*CATEG (/20 ms/) -40  *CATEG (/60 ms/) -40  

*WARP (80 ms) -109  *WARP (80 ms) -109  

*WARP (60 ms) -109  *WARP (60 ms) -109  

*WARP (40 ms) -109  *WARP (40 ms) -109  

*WARP (20 ms) -109  *WARP (20 ms) -109  

Table 2. Possible end state ranking for bimodally-trained learner (left) and monomodally-trained learner 

(right). 
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Note that all *WARP constraints have the same ranking for both learners. PERCEIVE and *CATEG con-

straints associated with most frequently-heard tokens ([20] and [120] for the bimodally-trained 

participant; [60] and [80] for the monomodally-trained participant) have shifted the most during training, 

and so are the furthest apart from one another. To take the bimodal learner for example, PERCEIVE(/20/) 

and *CATEG([20]) are both associated with the frequently-heard [20]. Because of this, they have moved 

more than the constraints PERCEIVE(/140/) and *CATEG([140]). Specifically, PERCEIVE(/20/) and 

*CATEG([20]) are ranked at 40 and -40 respectively, which is more distant than the relative ranking of 

PERCEIVE(/140/) and *CATEG([140]), which are ranked at 10 and -10. 

In order to test the predictions that the Boersma et al. model makes on an artificial language 

learning experiment modelled on Maye and Gerken (2000), a given set of constraint rankings will be 

evaluated by using the OT Learning tools available in Praat 6.0.29 (Boersma, 2002), speech analysis soft-

ware which also has functions for evaluating Optimality Theoretic grammars and running learning 

simulations. Praat was provided with the constraint rankings shown in Table 2, and was asked to simulate 

input-output pairs, with inputs chosen randomly (and uniformly) from the 8 possible inputs [0 ms], [20 

ms]…[140 ms]. Outputs were evaluated with an evaluation noise of 40. The non-zero evaluation noise 

assumes that each constraint is represented by a Gaussian probability distribution centered around final 

ranking values with a standard deviation of 40.  

To translate these input-output pairs to a same-different task, this section calculates the probabil-

ity that a given input is categorized as each of the 8 possible prevoicing categories (/0 ms/, /20 ms/, … 

/140 ms/), for the two inputs corresponding to the two endpoints of the continuum, [0 ms] and [140 ms]. 

This would correspond to the probability of categorizing input as /Gn/ given an input of [G1], or 

𝑃(/𝐺𝑛/ | [𝐺1]), and the probability of categorizing input as /Gn/ given an input of [G8], or 𝑃(/𝐺𝑛/ | [𝐺8]). 

In order to calculate the probability of responding “same” or “different” on a same-different task, the 

probability of an output of each prevoicing category given an input of [0 ms] or [140 ms] would need to 

be calculated. These are shown in Figure 22.  
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Figure 22. Probability that an input of [0 ms] (top) and an input of [140 ms] (bottom) are categorized in 

each of the 8 possible prevoicing categories. 

For the purposes of this chapter, this section is only interested in the comparison between monomodally- 

and bimodally-trained grammars, rather than the exact probability values. The probability of a “different” 

response on a Different Pair is calculated using Equation (1); the probability of a “different” response on 

a Same Pair is calculated using Equation (2). 

(1)  𝐷𝑖𝑓𝑓𝑃𝑎𝑖𝑟 𝑝𝑟𝑜𝑏. 𝑜𝑓 "d" 𝑟𝑒𝑠𝑝. = 1 − ∑ 𝑃(/𝐺𝑛/ | [𝐺1])  ∗  𝑃(/𝐺𝑛 / | [𝐺8])

8

𝑛=1

 

(2)  𝑆𝑎𝑚𝑒𝑃𝑎𝑖𝑟 𝑝𝑟𝑜𝑏. 𝑜𝑓 "d" 𝑟𝑒𝑠𝑝. = 1 −
1

2
∗ (∑ 𝑃(/𝐺𝑛/|[𝐺1]) ∗  𝑃(/𝐺𝑛/|[𝐺1])

8

𝑛=1

+ ∑ 𝑃(/𝐺𝑛/|[𝐺8])  ∗  𝑃(/𝐺𝑛/|[𝐺8])

8

𝑖=1

) 

In Equation (1), the 𝑃(/𝐺𝑛/|[𝐺1])  ∗  𝑃(/𝐺𝑛/|[𝐺8]) component calculates the probability that both inputs 

[G1] and [G8] were categorized as the same category /Gn/. This is done for all 8 possible categories and 
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summed up. This summation represents the probability of a “same” response if a participant is presented 

with a Different Pair (G1 vs. G8). This is subtracted from 1 to represent the probability of a “different” re-

sponse. The equation in (2) follows similar logic, and simply calculates the average of two [G1] inputs 

being categorized as the same category with the probability of two [G8] inputs being categorized as the 

same category. The percentage of “different” responses for Same Pairs and Different Pairs are presented 

in Table 3. 

 Same Pair Diff Pair 

Monomodal 73.1% 77.3% 

Bimodal 69.0% 97.7% 

Table 3. Predicted percentage of “different” responses in a same-different task based on the rankings 

given in Table 2. 

Exact percentages are not especially important here. These could be altered to fit a given study’s results 

by changing parameters of the evaluation (such as the evaluation noise) or by changing the relative dis-

tance between constraint rankings. What should be noted here is the differences in percentages between 

the monomodally- and bimodally-trained grammars. The bimodally-trained grammar responds that fewer 

Same Pairs are “different” and more Different Pairs are “different” compared to the monomodally-trained 

grammar. In other words, the bimodal group is more sensitive than the monomodal group to stimuli and 

therefore to the difference between Same Pairs and Different Pairs. Therefore, according to this model, 

nonuniform frequency distribution directly leads to perceptual warping, such that the bimodal group has a 

greater sensitivity to stimuli than the monomodal group.  

2.4.2 Boersma et al. (2003): From Initial State to End State 

In order to test whether the constraint rankings found in the previous section can be learned, this section 

will simulate this model with the Gradual Learning Algorithm as implemented in Praat 6.0.29 (Boersma, 

2002). The Gradual Learning Algorithm is an error-driven model for constraint-based grammars which 

updates rankings of constraints in small (“gradual”) increments. At each iteration, the GLA selects an in-

put and provides an output based on its current ranking. “Learning” occurs when there is a mismatch 
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between this output and the target output. Using the above example of a learner faced with a distribution 

of 8 stops ranging in prevoicing from 0 ms to 140 ms in 20 ms intervals, the learner’s initial state consists 

of 23 constraints, given in Table 4. Each constraint is given an initial ranking and a plasticity value. Initial 

rankings determine how high or low a constraint starts out at the beginning of learning. Boersma et al. 

(2003) state that all *CATEG constraints initially outrank all PERCEIVE constraints. Therefore all *CATEG 

constraints were given an initial ranking of 1, and all PERCEIVE constraints were given an initial ranking 

of -1. “Bottom-ranked” *WARP constraints were given the initial ranking of -109
, while all other *WARP 

constraints were given the initial rankings of 100 or more (*WARP(100) at 100; *WARP(120) at 120; 

*WARP(140) at 140). Plasticity defines how much or how little a constraint can be promoted or demoted 

at each iteration of the GLA, with a value of 0 corresponding to a constraint which cannot be promoted or 

demoted. All constraints were given a plasticity of 1, with the exception of *WARP constraints, which 

were given a plasticity of 0. The initial grammar is given in Table 4. 

Constraint Initial Ranking Plasticity 

*WARP (140 ms) 140 0 

*WARP (120 ms) 120 0 

*WARP (100 ms) 100 0 

*CATEG (/140 ms/) 1 1 

*CATEG (/120 ms/) 1 1 

*CATEG (/100 ms/) 1 1 

*CATEG (/80 ms/) 1 1 

*CATEG (/60 ms/) 1 1 

*CATEG (/40 ms/) 1 1 

*CATEG (/20 ms/) 1 1 

*CATEG (/0 ms/) 1 1 

PERCEIVE (/140 ms/) -1 1 

PERCEIVE (/120 ms/) -1 1 

PERCEIVE (/100 ms/) -1 1 

PERCEIVE (/80 ms/) -1 1 

PERCEIVE (/60 ms/) -1 1 

PERCEIVE (/40 ms/) -1 1 

PERCEIVE (/20 ms/) -1 1 

PERCEIVE (/0 ms/) -1 1 

*WARP (80 ms) -109 0 

*WARP (60 ms) -109 0 

*WARP (40 ms) -109 0 

*WARP (20 ms) -109 0 

Table 4. Initial state of the learner. 
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In addition to an initial grammar, the GLA as implemented in Praat also takes an input file. The input file 

provides the learner with relative frequencies of input tokens, as well as a target winner for each input. At 

each iteration of the algorithm, the GLA updates its constraint rankings if the actual winner and the target 

winner do not match. 

To obtain simulated end state grammars, the algorithm was initially run twice: once with a mono-

modal input, and once with a bimodal input. The distribution frequencies matched those used in Maye and 

Gerken (2000) (see Figure 15). That is, the monomodal input presented the algorithm with the following 

relative frequencies: [0 ms] = n, [20 ms] = n, [40 ms] = 2n, [60 ms] = 4n, [80 ms] = 4n, [100 ms] = 2n, 

[120 ms] = n, [140 ms] = n. The bimodal input presented the algorithm with the following relative fre-

quencies: [0 ms] = n, [20 ms] = 4n, [40 ms] = 2n, [60 ms] = n, [80 ms] = n, [100 ms] = 2n, [120 ms] = 4n, 

[140 ms] = n. The GLA chose inputs randomly from these distributions at each iteration. 

The GLA was run with the following parameters: Evaluation noise = 2, Update rule = Symmetric 

all, Initial plasticity = 20, Replications per plasticity = 1,000,000, Plasticity decrement = 0.1, Number of 

plasticities = 10, Relative plasticity spreading = 0.1, Honour local rankings, Number of chews = 1. The 

resulting rankings after the GLA was run on a bimodal and monomodal distribution are shown in Table 5.  
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Final Ranking - Monomodal Training  Final Ranking - Bimodal Training 

Constraint Ranking  Constraint Ranking 

*WARP (140 ms) 140  *WARP (140 ms) 140 

*WARP (120 ms) 120  *WARP (120 ms) 120 

*WARP (100 ms) 100  *WARP (100 ms) 100 

PERCEIVE ([20 ms]) 20.7  PERCEIVE ([0 ms]) 23.0 

PERCEIVE ([120 ms]) 20.0  PERCEIVE ([140 ms]) 18.3 

PERCEIVE ([0 ms]) 19.8  PERCEIVE ([20 ms]) 17.9 

PERCEIVE ([140 ms]) 18.5  PERCEIVE ([120 ms]) 16.9 

PERCEIVE ([80 ms]) -1.0  PERCEIVE ([100 ms]) -1.0 

PERCEIVE ([40 ms]) -1.0  PERCEIVE ([40 ms]) -1.0 

PERCEIVE ([60 ms]) -1.0  PERCEIVE ([60 ms]) -1.0 

PERCEIVE ([100 ms]) -1.0  PERCEIVE ([80 ms]) -1.0 

*CATEG (/20 ms/) -8.8  *CATEG (/60 ms/) -8.0 

*CATEG (/120 ms/) -8.8  *CATEG (/80 ms/) -8.0 

*CATEG (/140 ms/) -8.9  *CATEG (/0 ms/) -8.7 

*CATEG (/0 ms/) -8.9  *CATEG (/140 ms/) -8.7 

*CATEG (/100 ms/) -9.5  *CATEG (/100 ms/) -8.9 

*CATEG (/40 ms/) -9.5  *CATEG (/40 ms/) -8.9 

*CATEG (/60 ms/) -10.3  *CATEG (/20 ms/) -10.4 

*CATEG (/80 ms/) -10.3  *CATEG (/120 ms/) -10.4 

*WARP (80 ms) -109  *WARP (80 ms) -109 

*WARP (60 ms) -109  *WARP (60 ms) -109 

*WARP (40 ms) -109  *WARP (40 ms) -109 

*WARP (20 ms) -109  *WARP (20 ms) -109 

Table 5. End state constraint rankings after monomodal training (left) and bimodal training (right). 

After training, all PERCEIVE constraints outrank *CATEG constraints, allowing the learner to categorize 

input. The crucial rankings to note here are those among the *CATEG family. Recall that the peak of the 

monomodal distribution is located at [60 ms] and [80 ms], and that the peaks of the bimodal distribution 

are located at [20 ms] and [120 ms]. Note the *CATEG constraints associated with those prevoicing cate-

gories (highlighted in grey in Table 5). After monomodal training, the *CATEG constraints of VOT values 

corresponding to peaks of the bimodal distribution, *CATEG (/120 ms/) and *CATEG (/20 ms/), are higher-

ranked than the *CATEG constraints of VOT values corresponding to the peak of the monomodal distribu-

tion, *CATEG (/60 ms/) and *CATEG (/80 ms/). However, after bimodal input, the *CATEG constraints of 

VOT values corresponding to peaks of the bimodal distribution are lower-ranked than the *CATEG con-

straints of VOT values corresponding to the peak of the monomodal distribution. In other words, 
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constraints corresponding to tokens presented to learners more often were promoted more during con-

straint re-ranking, resulting in lower-ranked corresponding *CATEG constraints. This simulation was run 

three more times with the same parameter settings to ensure qualitatively similar outcomes. In all cases, 

*CATEG(/20 ms/) and *CATEG(/120 ms/) were higher-ranked than *CATEG(/60 ms/) and *CATEG(/80 

ms/) in the end state that was trained on a monomodal input, and lower-ranked than *CATEG(/60 ms/) and 

*CATEG(/80 ms/) in the end state that was trained on a bimodal input. 

The final rankings given in Table 5 were translated to a same-different task, following the method 

given in the previous subsection. The predicted percentage of “different” responses is given in Table 6. 

 Same Pair Diff Pair 

Monomodal 50.82% 99.56% 

Bimodal 49.76% 99.64% 

Table 6. Predicted percentage of “different” responses in a same-different task based on the rankings 

given in Table 5. 

The predicted percentage of “different” responses in a same-different task for the learned end state con-

straint rankings show only a slight difference between monomodal and bimodal training, especially when 

compared to the predicted responses given in Table 3, which was derived from contrived end state con-

straint rankings (specifically, those given in Table 2). However, we see that the difference in percentages 

trend in the same direction as those shown in Table 3: the bimodally-trained end state is better at deter-

mining that Same Pairs are the same than the monomodally-trained end state (as shown by the slightly 

lower percentage of “different” responses to Same Pairs), but better at determining that Different Pairs are 

different (as shown by the slightly higher percentage of “different” responses to Different Pairs). There-

fore, although I was not able to come up with a set of parameters which resulted in same-different 

response percentages that are as distinct as those derived from the contrived end state constraint rankings, 

it does appear that a set of parameters exists which would result in similar same-different responses as 

those shown in Table 3. 
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2.4.3 Boersma et al. (2003): Weaknesses of the Model 

To summarize, Section 2.4.1 showed that 1) the constraint rankings proposed in Boersma et al. (2003) can 

be translated into the results of a same-different experiment similar to that used by Maye and Gerken 

(2000), and 2) there exists an end state of constraint rankings which results in greater sensitivity to the 

endpoint stimuli as determined in a same-different experiment. Specifically, the constraints proposed in 

Boersma et al. (2003) can be ranked in a way so that sensitivity as observed in a same-different task is 

greater for a bimodally-trained learner compared to a monomodally-trained learner. Section 2.4.2 at-

tempted to show that the end state could be arrived at with the correct choice of beginning state constraint 

rankings and parameters. It showed that the general idea of the theoretical end state used in Section 2.4.1 

could be arrived at, but did not develop a principled way of setting these initial rankings and model pa-

rameters.  

The greatest weakness is that the model put forth in Boersma et al. (2003) does not put forward a 

set of principles to determine initial rankings and parameters. This is not a trivial matter, as parameters 

relating to plasticity and amount of training exposure the model was given would have a great effect on 

the end state grammar. Additionally, attempts at simulations which are not reported here appear to indi-

cate that evaluation noise and the distances between constraint rankings seem to have a large impact on 

the exact percentages of predicted “different” responses in a same-different experiment. End state con-

straint rankings learned through the GLA yielded only very small differences in the percentage of 

“different” responses between the monomodally and bimodally-trained grammars (only a 0.1% difference 

for the simulation reported here). These parameters would need to be further grounded in some phonetic 

or perceptual basis in order for this model to have predictive power. 

3. Research Questions and Summary of All “A” Experiments 

As stated in the introduction, the main purpose of this study was originally to determine whether Mechan-

ical Turk is a suitable platform for conducting distributional learning experiments. In attempting to 
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replicate results though, two (arguably) more interesting research questions emerged. Specific research 

questions in the order they will be presented in are as follows: 

1) Is there experimental support for the Bias Hypothesis or the Sensitivity Hypothesis? (Sections 

4-7) 

2) Does attention play a role in distributional learning? (Sections 8-9) 

3) Can Maye and Gerken (2000) be replicated on Mechanical Turk? (Section 10) 

The remainder of this section will first present a summary of the designs of the five experiments, referred 

to in this dissertation as the “A” Experiments, conducted in this chapter. This will be followed by a pre-

view of the conclusions of the research questions stated above. 

3.1. SUMMARY OF EXPERIMENTAL DESIGNS 

The five experiments described in this chapter differ in either critical stimuli used and/or in procedure. 

Although these differences will be detailed in further sections, this section briefly highlights the main dif-

ferences in methodology of each experiment. Table 7 provides a summary of these differences. 

 Experiment A1 Experiment A2 Experiment A3 Experiment A2-Tone Experiment A3-Tone 

S
ti

m
u

li
 

Created by author Originally used by 
Maye and Gerken 

(2001) 

Created by author Originally used by 
Maye and Gerken 

(2001) 

Created by author 

[ɡɑ - ɡ̥ɑ] 
[ɡæ - ɡ̥æ] 

[ɡɚ - ɡ̥ɚ] 

[ɡɑ - ɡ̥ɑ] 
[ɡæ - ɡ̥æ] 

[ɡɚ - ɡ̥ɚ] 

[ɕɑ - ʂɑ] 
[ɡɑ - ɡ̥ɑ] 
[ɡæ - ɡ̥æ] 

[ɡɚ - ɡ̥ɚ] 

[ɕɑ - ʂɑ] 

P
ro

ce
d
u

re
 

--- --- --- 
Train Check tones  
included 

Train Check tones  
included 

R
es

u
lt

s:
 E

v
id

en
ce

 f
o

r 

d
is

tr
ib

u
ti

o
n

al
 l

ea
rn

in
g
? 

Yes, for Bias Stage Yes, for Bias Stage 
Yes, for Sensitivity 

Stage 
No No 

Table 7. Summary of key differences in all “A” Experiments. Complete summary of is given in Table 16. 
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Three main experiments were conducted: A1-A3. A pilot experiment related to Experiment A1 seemed to 

indicate that the inclusion of catch trials during the training phase may play some role in whether we find 

evidence for distributional learning or not. In order to follow up on these results, Experiments A2 and A3 

are each paired with a similar experiment, A2-Tone and A3-Tone respectively, to explore the possible 

role of attention on distributional learning. 

The main difference between Experiments A1-A3 is in their stimuli. Experiment A1 made use of 

critical stimuli and filler stimuli which were created by the author and which focused on the stop contrast 

[ɡ-ɡ̥]. Experiments A2 and A2-Tone made use of critical stimuli and filler stimuli which were originally 

used by Maye and Gerken (2001) and were subsequently used by Hayes-Harb (2007) which focused on 

the same [ɡ-ɡ̥] stop contrast. Experiments A3 and A3-Tone used critical stimuli created by the author, fo-

cusing on a fricative contrast ([ɕ-ʂ]). 

3.2. SUMMARY OF RESULTS 

Two theoretical and two methodological contributions are made in this chapter. The theoretical contribu-

tions regard details surrounding distributional learning which have not been previously reported on. They 

are as follows: 

1) Distributional learning does not necessarily affect listeners’ sensitivity. Models suggested 

by Boersma et al. (2003) and Guenther and Gjaja (1996) directly attribute distributional 

learning to perceptual warping. These models predict that distributional learning affects lis-

teners’ sensitivity. However, this study finds that an increase in sensitivity does not 

necessarily accompany distributional learning. This chapter proposes an alternate two-stage 

model of phonetic category learning to explain this result9 (See Experiments A1-A3) 

                                                      

9
 Not to be confused with the one- or two-stage models of allophony acquisition discussed in Chapter 4. 
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2) Attention plays a role in distributional learning. With the exception of Ong et al. (2015) 

which will be discussed further in the discussion section, the role of attention has not been 

noted in previous studies on distributional learning. However, the current study finds evi-

dence to suggest that the level of attention affects whether or not distributional learning 

occurs (Compare Experiments A2 and A3 with Experiments A2-Tone and A3-Tone) 

The methodological contributions regard the logistics of carrying out experiments online. These methodo-

logical contributions are as follows:  

3) Online evidence for distributional learning. Previous artificial language learning experi-

ments supporting distributional learning have been conducted in lab settings. This chapter 

describes the first known support for distributional learning in an artificial language learning 

experiment conducted on an online platform, Mechanical Turk. (See Experiments A1-A3) 

4) An effect of catch trials during training. Seemingly minor methodological changes were 

made to adapt a previous in-lab distributional learning experiment (Maye and Gerken, 2000) 

to an intended replication study conducted online. Specifically, catch trials were included 

during training to ensure participants were paying attention. This set of experiments con-

cludes that these catch trials had an effect on participants’ responses: experiments which 

included catch trials failed to replicate Maye and Gerken’s results. (Compare Experiments A2 

and A3 with Experiments A2-Tone and A3-Tone) 

The following three sections report the methodology and results of Experiments A1-A3, which differ in 

the stimuli. 

4. Experiment A1 

The original goal of Experiment A1 was to determine whether distributional learning could be replicated 

through an online platform. Participants were asked to participate only if they (1) had no known history of 

speech or hearing impairments, (2) were a native speaker of English, (3) had regular access to a computer 

with an internet connection, and (4) were using a computer able to play audio. Because this experiment 
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was conducted online rather than face-to-face, only participants using a computer in the United States 

were allowed to participate to increase the chance that the participant would be a native English speaker. 

This can be done through MTurk “qualifications,” which are attributes that participants (“Workers,” to 

use the MTurk terminology) on MTurk can obtain. Qualifications used to screen participants in Experi-

ment A1 were as follows: 

• Only Workers who were ages 18-25 were allowed to participate10 

• Only Workers using a computer in the United States were allowed to participate 

• Only Workers who had an approval rating of equal or greater to 90% on all tasks they had com-

pleted on MTurk (“HITs”) were allowed to participate 

• Only Workers who had at least 50 tasks approved by those putting forth tasks (“Requesters”) 

were allowed to participate 

 

4.1. STIMULI 

Stimuli consisted of critical syllables and filler syllables. Onsets of critical syllables were drawn from 

three 8-point continua ranging between voiceless unaspirated [ɡ̥] (skill), and prevoiced [ɡ] (gill). Contin-

uum points will be referred to as G1-G8, where G1 indicates the most [ɡ]-like end of the continuum, and 

G8 indicates the most [ɡ̥]-like end. Following Maye and Gerken (2000), each of the three continua dif-

fered in following nucleus: [ɡɑ]-[ɡ̥ɑ], [ɡæ]-[ɡ̥æ], and [ɡɹ̩]-[ɡ̥ɹ̩]. Stimuli were recorded by the 

experimenter, a native speaker of English.  

Recordings were made in a soundproof booth on an Acer netbook at 44100 Hz using a Logitech 

H390 USB Headset microphone. Recordings were made in Praat 6.0.29 (Boersma, 2002), software for 

                                                      

10
 A previous version of this experiment did not include any restriction on age. This experiment found the unusual 

result that the Bimodal group responded that pairs were different less often than the Monomodal group. This is sur-

prising given the results of Maye and Gerken (2000), Maye and Gerken (2001), and Hayes-Harb (2007), who find 

that the group trained on a bimodal distribution of critical phones is significantly more likely to respond that critical 

pairs are different compared to the group trained on a monomodal distribution of critical phones. Although differing 

in a few other respects to the design of the experiments discussed here, it was decided that only 18-25 year olds 

should be tested in future experiments, as it was assumed that most participants in previous distributional learning 

experiments were undergraduate students. Results of this experiment will not be discussed here, but can be found in 

Moeng (2017). 
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speech analysis, synthesis, and manipulation. Before any manipulations were performed, all stimuli (both 

critical and filler) were scaled to a peak intensity of 72 dB in Praat. The experimenter recorded tokens of 

[sk-] and [ɡ-] followed by each of the three context vowels [ɑ æ ɚ] and removed the [s] portion from the 

[sk]-initial syllables. These formed the end points of each of the [ɡ]-[ɡ̥] continua. Prevoicing was then re-

moved from the [ɡ-] syllables. All cuts were made where the waveform crossed 0 Hz to avoid clicks and 

other unnatural non-speech sounds when splicing sounds together. All splicing was done in Praat. Each of 

the three pairs of endpoints ([ɡ̥ɑ ɡ̥æ ɡ̥ɚ] from [sk-] syllables with the [s] portion removed, and [ɡɑ ɡæ ɡɚ] 

with the pre-voicing removed) were then input into TANDEM-STRAIGHT (details of the process 

TANDEM-STRAIGHT uses to create continua can be found in Kawahara et al. (2008)), which is a piece 

of software which creates natural-sounding continua between two sounds. TANDEM-STRAIGHT allows 

the user to mark any number of landmarks on one spectrogram (for example, the beginning of the steady 

state of the vowel, the onset of voicing, etc.) that corresponds with a similar landmark on another spectro-

gram, so that durations between landmarks can be stretched or compressed in the intervening continuum 

points. It has also been used in other linguistic studies to create continua (for example, Noguchi, 2016; 

McAuliffe and Babel, 2016). TANDEM-STRAIGHT returned 6 intermediate stimuli, for a total of 8 con-

tinuum points including the endpoints. Following this, the prevoicing which had been removed from the 

[ɡ-] portion of the [ɡæ] token (which was 140 ms in length) was shortened into 8 equal prevoicing por-

tions ranging from 0-140 ms in length (0, 20, 40… 140). These prevoicing portions were then spliced 

back onto each of the continuum points (for all three continua), with the 140 ms prevoicing portion being 

spliced onto the [ɡ]-most end (G1), the 20 ms prevoicing portion being spliced onto the penultimate of the 

[ɡ̥]-most end (G7), and the [ɡ̥]-most end (G8) having no prevoicing spliced on. (Therefore, all three com-

pleted continua began with varying lengths of prevoicing, all manipulated from the [ɡæ] recording.)  
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 Stimuli created by the author 
Stimuli used by Maye and Gerken (2001) and 

Hayes-Harb (2007) 

G1ɑ 

  

G4ɑ 

  

G8ɑ 

 

  
Figure 23. First 300 ms of spectrograms of G1ɑ, G4ɑ, and G8ɑ for stimuli created by the author (left), 

and for stimuli created by Jessica Maye and LouAnn Gerken (right). 
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All stimuli were judged by the author, a native speaker of English, to sound natural. For visual reference, 

Figure 23 (left-most column) shows the first 300 ms of the spectrograms of the continuum points G1ɑ, 

G4ɑ, and G8ɑ, as created by the author. For comparison, the first 300 ms of the spectrograms of G1ɑ, G4ɑ, 

and G8ɑ stimuli originally used by Maye and Gerken (2001) and also used by Hayes-Harb (2007) are 

shown on the right. Some notable differences between the stimuli created by the author and the stimuli 

created by Maye and Gerken (2001) are as follows: 1) the stimuli created by the author (left) were about 

twice as long in duration compared to the stimuli created by Maye and Gerken (for example, 768 ms vs. 

468 ms for G1ɑ), and 2) the stimuli created by Maye and Gerken have a cutoff frequency of 5000 Hz, 

whereas the stimuli created by the author have a cutoff frequency of 22050 Hz. It was not believed that 

these differences would affect performance, and so were left in. 

4.2. PROCEDURE 

Experiment A1 consisted of 5 parts, summarized in Table 8 and described in this section. 

Procedure Abbreviated directions Sample trial stimuli 

1. Sound check Press “1” or “2” to indicate beeps heard ::one tone:: 

::two tones:: 

2. Practice test Are these two words the same or different? sheep vs. ship 

sheep1 vs. sheep2 

3. Training  Listen carefully G1a 

ma 

4. Test Are these two words the same or different? 

 

G1a vs. G8a 

G1a vs. G1a 

5. Questionnaire Please provide background information  

(responses will not affect payment) 

 

Table 8. Summary of procedure in Experiment A1. 

At the beginning of the experiment, participants were given the following instructions: 

[Page 1] 

Just a few things to keep in mind before you begin! 

Please wear headphones for the duration of this experiment...  

Please do not write any words down while taking this experiment... 

...And please do not click on your browser's back or refresh button. 
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[Page 2] 

A few more things to keep in mind before you begin... 

As this is a scientific experiment, it is important that you devote your full attention to this 

HIT11! There will be a number of checks in place to ensure that you are paying attention 

to the task at hand, and you may not be paid if you do not pass these checks. Please do 

not do other tasks or shrink the browser window, and please do not remove your head-

phones. 

If you are unable to devote your full attention to this HIT, which is expected to take about 

30 minutes, please do not do this HIT. 

Participants were then directed to a Sound Check, the purpose of which was to 1) ensure participants were 

wearing headphones, and 2) encourage participants to pay attention and not give random responses. The 

Sound Check consisted of 3 one-tone tokens and 3 two-tone tokens, presented in random order. Partici-

pants were instructed to press the “1” or “2” keys if they heard one of these “beep” tokens, to indicate 

how many “beeps” they had heard. Tones were chosen to be at a low enough frequency that most com-

puter speakers would not pick up on the sound (50 Hz), thereby testing whether participants were wearing 

headphones or not. Tones were 340 ms long, and were spaced by 140 ms of silence for the two-tone to-

kens. Participants were excluded from analysis if they failed to answer 5 out of 6 of these trials correctly. 

12 participants in Experiment A1 failed to meet this criterion. 

Following the Sound Check, participants were directed to a Practice Test phase. During the Prac-

tice Test phase, participants were given the following instructions: 

[Page 1] 

In this English practice test, you will hear two words in English, and will be asked if they 

are repetitions of the same word, or if they are two different words 

If you think they are repetitions of the same word, press the “S” key for “Same”. 

If you think they are different words, press the “D” key for “Different”. 

                                                      

11
 A “HIT” (Human Intelligence Task) is a term used in Mechanical Turk, referring to a task that a participant 

(“Worker”) can complete. 
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Participants were then presented with pairs of English words produced by the same speaker that were ei-

ther Same Pairs, or Different Pairs. Same Pairs consisted of repetitions of the same word that were 

different enough to be distinguished as different tokens (e.g. lock1 vs. lock2). Different Pairs consisted of 

English minimal pairs (e.g. lock vs. rock, desk vs. disk). Participants were asked to press the “S” key if the 

pairs of words that they heard were the “same” word, or the “D” key of they were “different” words. Pairs 

were separated by 1 second, and participants were given 10 seconds to respond before the next pair was 

played. Responses were scored as “correct” if participants responded “different” on Different Pairs and 

“same” on Same Pairs. Participants who answered fewer than 5/8 correct on the Practice Test were ex-

cluded. No participants in Experiment A1 failed to meet this criterion. 

During the Train phase, participants heard a monomodal or bimodal distribution of phones, de-

pending on which condition they were in. The Bimodal group heard a bimodal frequency of phones of the 

frequencies shown in the dotted line in Figure 2, and the Monomodal group heard a monomodal fre-

quency distribution of phones of the frequencies shown in the solid line in Figure 2. These frequency 

values follow those used by Maye and Gerken (2000). This resulted in 16 critical tokens from each of the 

three continua (1+1+2+4+4+2+1+1, or 1+4+2+1+1+2+4+1). In addition, three recordings of 8 filler sylla-

bles ([fɑ], [fæ], [tɛ], [tej], [mæ], [næ], [sɛ], and [zɛ]) were made. Each of these 24 filler tokens were 

repeated twice during each Train repetition. Tokens within a Train repetition were presented in random 

order. 
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Figure 2. Familiarization frequency of critical stimuli for the Bimodal (dashed line) and Monomodal 

(solid line) groups during the Train phase. 

Each Train repetition was repeated 4 times, resulting in a total of 192 fillers, and 192 critical tokens. 

Following the Train phase, participants were directed to a Test phase. The Test phase was similar 

to the Practice Test phase, except participants were given pairs of words they had heard in the artificial 

language they had heard during the Train phase. Again, participants were given pairs of syllables that 

were either Same Pairs, or Different Pairs. Critical Same Pairs consisted of repetitions of the same exact 

token (i.e. G1a vs. G1a; or G8æ vs. G8æ), while filler Same Pairs consisted of different tokens of the same 

syllable ([sɛ]1 vs. [sɛ]2). Filler Same Pairs were judged by the experimenter to sound different enough to 

be distinguished as separate tokens. Critical Different Pairs consisted of pairs that occurred on opposite 

ends of the 8-point continuum (i.e. G1a vs. G8a), whereas filler Different Pairs consisted of different pairs 

of syllables ([sɛ] vs. [zɛ]). During the Test phase, participants were shown the following instructions: 

This next part will be similar to the practice testing you did earlier in English, but this 

time it will ask you about the made-up language that you just heard. 

 

Like before, please place one finger over the "S" key and another key over the "D" keys 

on your keyboard, as shown below. 
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Like before, if you think they are repetitions of the same word, press the "S" key for 

"Same". 

If you think they are different words, press the "D" key for "Different". 

Words in a pair were separated by 1 second, and participants were given 10 seconds to respond before the 

next pair was played. 

Each Test repetition consisted of 4 critical pairs (2 Same Pairs and 2 Different Pairs), for each of 

the three vowel contexts, resulting in 12 critical pairs. Each Test repetition also contained 4 filler Same 

Pairs and 4 filler Different Pairs. There were two repetitions of each Test phase resulting in a total of 24 

critical pairs and 16 filler pairs. Participants were instructed to press the “S” key if the pairs of words that 

they heard were the “same” word, or the “D” key of they were “different” words. Pairs were separated by 

1 second, and participants were given 10 seconds to respond before the next pair was played. 

Following the Test phase, participants were directed to a questionnaire. The questionnaire in-

cluded questions regarding language background, a question regarding English fluency, and a question 

regarding having a history of a speech or hearing disorder. Participants were told that their responses 

would not negatively affect them and to please answer truthfully. Participants were excluded from analy-

sis if they reported not being a native speaker of English (no participants in Experiment A1 were excluded 

from analysis for this reason), or if they reported having a history of a speech or hearing disorder (1 par-

ticipant in Experiment A1 was excluded from analysis for this reason). A copy of the questionnaire is 

included in the Appendix. 

Participants were placed randomly into one of two conditions: a Monomodal group or a Bimodal 

group. In total, 13 participants were rejected from analysis (some for multiple reasons), leaving 27 in the 

Bimodal group and 34 in the Monomodal group. 

 

 

 



73 

 

4.3. ANALYSIS 

This section will first describe the model used to analyze results for all “A” Experiments, and then explain 

how the results of the fitted model will be interpreted. Section 4.4 will present the results of the fitted 

model for Experiment A1. 

4.3.1 Model used in analysis 

The regression formula described below will model one dependent variable, Response, with two fixed 

effects: (1) Distribution, a between-subject, within-item factor consisting of two levels {bimodal, mono-

modal}and (2) PairType, a within-subject, between-item factor consisting of two levels {same, diff}. 

This will be done separately for critical and filler trials. The dependent variable Response consists of two 

levels, s and d, where s corresponds to a participant response of “same” during the Test phase, and where 

d corresponds to a participant response of “different” during the Test phase. Random effects for Subject 

and Item will also be included in the model described below. All variables are summarized in Table 9.  

Variable 

type 

Effect 

type 
Factor name Factor type Level names Description 

In
d

ep
en

d
en

t 

v
ar

ia
b

le
s F
ix

ed
 

ef
fe

ct
s 

Distribution Between-subject, 

within-item 

bimodal 

monomodal 

Distribution type received by the participant 

during Train phase 

PairType Within-subject, 

between-item 

same 

diff 

Type of pair presented during Test phase 

(Same Pair or Different Pair) 

R
an

d
o

m
 

ef
fe

ct
s Subject 

 

  Each individual participant (coded by ID) 

Item   Each individual item presented during the Test 

phase 

D
ep

en
d

en
t 

v
ar

ia
b

le
s 

 

Response  s 

d 

Response given by participant 

Table 9. Variables used in regression analysis for “A” Experiments. 

All statistical tests were completed in R (R Core Team, 2014), using the glmer function from the lme4 

package (Bates et al. 2015) to fit a generalized linear mixed-effects model (GLMM) with a logistic link 

function (“mixed logit model”). Significance was set at a level of p< 0.05. Two separate regressions were 

conducted to compare the effect of Distribution and PairType on Response: one for critical items, and one 

for filler items. This dissertation follows suggestions made by Clark (1973) for variables to include as 
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random effects, and suggestions made by Barr et al. (2013) for how to translate random effects used in an 

ANOVA into the random effects structure of the formula used to fit a regression. Clark (1973) argues that 

items, and not just subjects, must be accounted for as random effects in an ANOVA. That is, not only are 

individual subjects more or less inclined to respond one way or another, but individual test items also 

bring their own idiosyncratic individual behavior, which may not be entirely representative of the entire 

lexicon, to the experiment. The inclusion of subject and item random effects increases the generalizability 

of the results of this particular experiment to other subjects, as well as to other test items.  

This dissertation also follows suggestions made by Barr et al. (2013) for the random effects struc-

ture of the formula fitted in the regression. Barr et al. argue that if a factor would be a between-subject 

factor in an ANOVA, it is sufficient to include only a random intercept by subject into the random effects 

structure in a regression. Likewise, if a factor would be a between-item factor in an ANOVA, it is suffi-

cient to include only a random intercept by item into the random effects structure. However, if a factor 

would be a within-subject factor in an ANOVA, both a random intercept by subject as well as a random 

slope by subject are necessary in a regression model. Likewise, if a factor would be a within-item factor 

in an ANOVA, both a random intercept by item as well as a random slope by item are necessary to in-

clude in the random effects structure in a regression model. In a follow-up paper, Barr (2013) claims that 

a random effects structure is unnecessary to account for interactions between a between-subject factor and 

a within-subject factor. 

Since the current design consists of one between-subject within-item factor (Distribution) as well 

as one within-subject between-item factor (PairType), the formula used in the regression is as follows: 

(5) Response ~ Distribution*PairType + (1+PairType|Subject) + (1+Distribu-

tion|Item) 

The formula in (5) tests for the effect on participant Response of the interaction between Distribution and 

PairType, for the simple effect of Distribution within the reference of PairType (diff), and for the simple 
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effect of PairType within the reference level of Distribution (bimodal). A random slope by subject is in-

cluded for PairType and a random slope by item is included for Distribution. 

4.3.2 Model interpretation  

The results of the mixed logit model are interpreted in the following way, as justified in Chapter 2: a sig-

nificant main effect of Distribution without a significant interaction between Distribution and PairType is 

interpreted as evidence for a difference in response bias (see Section 2.3) between the two groups of par-

ticipants. That is, if participants trained on Distribution X have a greater bias towards a “different” 

response compared to participants trained on Distribution Y, we would expect to see participants trained 

on Distribution X to respond “different” more often than participants trained on Distribution Y for all tri-

als, regardless of whether or not the trial consisted of a Same Pair (e.g. G1ɑ vs. G1ɑ) or a Different Pair 

(e.g. G1ɑ vs. G8ɑ). We expect to see this in the results of a fitted model as a significant main effect of Dis-

tribution, but not as a significant interaction between Distribution and PairType since, in this scenario, the 

effect of PairType would not differ depending on which Distribution participants were exposed to.  

An interaction between Distribution and PairType will be interpreted as a difference between 

groups of participants in sensitivity to the slight distinction between G1 and G8. That is, if participants 

trained on Distribution X are more sensitive to the acoustic differences between G1 and G8 compared to 

participants trained on Distribution Y, we would expect participants trained on Distribution X to respond 

“different” more often than participants trained on Distribution Y for critical Different Pairs, but to also 

respond “different” less often for critical Same Pairs, resulting in a significant interaction between Distri-

bution and PairType. 

4.4. RESULTS 

A generalized linear mixed model with a logit link function (GLMM) was fitted to the formula in (5), 

where the reference cell was bimodal diff. Summaries of the fixed effects in the mixed logit model with 

treatment coding are shown in Table 10. No interaction between Distribution and PairType was found for 
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critical trials (p = 0.650), but an interaction was found for filler trials (p = 0.047). To test for a main effect 

of Distribution on Response, a planned contrast analysis was performed in the context of the overall 

model using the glht function from the multcomp package (Hothorn et al., 2017) in R. This planned 

contrast revealed a main effect of Distribution for critical trials (p = 0.049), with the Bimodal group hav-

ing greater odds of responding d than the Monomodal group. No main effect was found for filler trials (p 

= 0.817). 

Predictor Coefficient SE Wald Z p 

CRITICAL     

(Intercept) -1.502 0.405 -3.707 <0.001 *** 

Distribution=monomodal -0.990 0.434 -2.280 0.023 * 

PairType=same -4.174 1.652 -2.526 0.012 * 

Interaction=monomodal & same -0.513 1.130 -0.454 0.650 

FILLER 

(Intercept) 2.834 0.517 5.486 <0.001 *** 

Distribution=monomodal 0.769 0.605 1.271 0.204 

PairType=same -4.169 0.709 -5.881 <0.001 *** 

Interaction=monomodal & same -1.743 0.877 -1.988 0.047 * 

Table 10. Summary of fixed effects in the mixed logit model in Experiment A1. 

   
Figure 24. Log odds of participants responding d for critical trials (left) and filler trials (right) in Experi-

ment A1. Error bars indicate standard error. 
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4.5. DISCUSSION 

If “distributional learning” is taken to only refer to greater sensitivity for bimodally-trained learners com-

pared to monomodally-trained learners, then Experiment A1 fails to find evidence for distributional 

learning. If, however, the definition of “distributional learning” is more widely-defined to include a 

greater bias towards a “different” response for bimodally-trained learners compared to monomodally-

trained learners, then Experiment A1 is the first indication known to the author that distributional learning 

can be replicated through an online platform such as MTurk. Further, Experiment A1 appears to support 

the Bias Hypothesis of distributional learning. 

Unexpectedly, a significant interaction between Distribution and PairType was found for the filler 

trials, with the bimodal group having lesser sensitivity to filler trials compared to the monomodal group. 

This and other unexpected results will be discussed in Section 11. 

In order to determine if these results were particular to the stimuli of this experiment, Experiment 

A1 was followed by Experiment A2. The goal of Experiment A2 is to replicate the results of Experiment 

A1 with stimuli from Maye and Gerken (2001). 

5. Experiment A2 

The goal of Experiment A2 was to replicate the results of Experiment A1 using stimuli which have been 

used in past studies. Experiment A2 followed the methodology of Maye and Gerken (2001) and Hayes-

Harb (2007) as closely as possible, using stimuli obtained from Maye and Gerken. The procedure also 

closely followed that used in Maye and Gerken (2001), with the small addition of the Sound Check task 

(identical to that used in Experiment A1) preceding the experiment.12 The following exclusion criteria 

were used: 

                                                      

12 Many thanks to Rachel Hayes-Harb, LouAnn Gerken, and Jessica Maye for sending me and allowing 

me to use their stimuli. 
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• Fewer than 5/6 on the pre-experiment Sound Check (7 excluded) 

• Fewer than 5/8 correct on the Practice Test (1 excluded) 

• Reported not being a native speaker of English (0 excluded) 

• Reported a history of a speech or hearing disorder (1 excluded) 

 

In total, 7 participants were rejected from analysis from Experiment A2, leaving 21 in the Bimodal group 

and 27 in the Monomodal group. 

5.1. PROCEDURE 

The procedure of Experiment A2 was identical to that followed by both Maye and Gerken (2000) and the 

phonetic learning part of the experiment conducted by Hayes-Harb (2007), but was preceded by the 

Sound Check task described in Experiment A1. As was the case for Experiment A1, this experiment con-

sisted of a Sound Check, Practice Test phase, a Train phase, and a Test phase, followed by a 

Questionnaire. Each Train repetition consisted of 16 critical tokens for each of the three vowel contexts, 

two repetitions of four separate tokens of 6 fillers [mɑ mæ mɚ lɑ læ lɚ]. Each Train repetition was re-

peated 4 times, resulting in a total of 192 fillers, 192 critical tokens. As noted earlier, stimuli are those 

used by Maye and Gerken (2001) as well as Hayes-Harb (2007). Examples of select continuum points can 

be found in Figure 23 on page 67. The Test phase consisted of 2 critical Same Pairs and 2 critical Differ-

ent Pairs for each of the 3 vowel contexts resulting in 12 critical pairs, as well as 2 filler Same Pairs and 2 

filler Different Pairs for each of the 3 vowel contexts, resulting in 12 filler pairs. 

5.2. RESULTS 

Again, a generalized linear mixed model with a logit link function (GLMM) was fitted to the formula in 

(5), with the reference cell being bimodal diff. Summaries of the fixed effects in the mixed logit model 

with treatment coding for Experiment A2 are shown in Table 11. For Experiment A2, no interaction be-

tween Distribution and PairType was found for critical trials (p = 0.114), or for filler trials (p = 0.228).  
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Predictor Coefficient SE Wald Z p 

CRITICAL     

(Intercept) -2.152 0.318 -6.773 <0.001 *** 

Distribution=monomodal -1.420 0.485 -2.927 0.003 ** 

PairType=same -1.255 0.471 -2.667 0.008 ** 

Interaction=monomodal & same 0.982 0.622 1.579 0.114 

FILLER     

(Intercept) 2.977 0.471 6.316 <0.001 *** 

Distribution=monomodal 0.529 0.568 0.932 0.351 

PairType=same -5.720 0.673 -8.503 <0.001 *** 

Interaction=monomodal & same -1.001 0.830 -1.206 0.228 

Table 11. Summary of fixed effects in the mixed logit model in Experiment A2. 

   
Figure 25. Log odds of participants responding d for critical trials (left) and filler trials (right) in Experi-

ment A2. Error bars indicate standard error. 

To test for a main effect of Distribution on Response, a planned contrast analysis was performed on the 

fitted GLMM using the glht function from the multcomp package (Hothorn et al., 2017) in R. The 

planned contrast revealed a main effect of Distribution was found for critical trials (p = 0.033), with the 

Bimodal group having greater odds of responding d than the Monomodal group. No main effect was 

found for filler trials (p = 0.934). 
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5.3. DISCUSSION 

As with Experiment A1, no significant interaction between Distribution and PairType was found. How-

ever, there was a significant main effect of Distribution on participant response, with participants in the 

Bimodal group having greater (log-)odds of responding “different” than participants in the Monomodal 

group. Therefore bimodally-trained participants exhibit a greater bias towards a “different” response com-

pared to monomodally-trained ones in both Experiment A1 and Experiment A2. Again, Experiment A2 

appears to find support for the Bias Hypothesis of distributional learning. 

6. Experiment A3 

The two previous experiments found evidence that bimodally-trained participants have a greater bias to-

wards a “different” response compared to monomodally-trained participants. However, previous studies 

claim to find greater sensitivity in bimodally-trained participants compared to monomodally-trained ones. 

The goal of Experiment A3 was to determine if using different critical stimuli resulted in greater sensitiv-

ity for bimodally-trained participants. It was believed that the stimuli used in Experiments A1 and A2 did 

not lead to a difference in sensitivity among conditions because they were perceptually very similar. It 

was thought that using critical stimuli which ranged between more perceptually distinct endpoints might 

lead to evidence that bimodal training causes an increase in sensitivity compared to monomodal training. 

Therefore this experiment will use a contrast used by Noguchi (2016), which tests a fricative distinction 

[ɕɑ-ʂɑ].  

Although the original intent was to choose critical endpoint stimuli which are more perceptually 

distinct from one another, it should be noted that [ɡ-ɡ̥] and [ɕ-ʂ] differ in more than just their perceptual 

distinctness. This issue is discussed further in the discussion section.  

Following Experiments A1 and A2, Experiment A3 used the following criteria to exclude partici-

pants from analysis: 
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• Fewer than 5/6 on the pre-experiment Sound Check (28 excluded13) 

• Fewer than 5/8 correct on the Practice Test (4 excluded) 

• Reported not being a native speaker of English (1 excluded) 

• Reported a history of a speech or hearing disorder (0 excluded) 

 

As detailed later, critical stimuli fall along a continuum between [ɕɑ] – [ʂɑ], so unlike the previous exper-

iments, this pair of experiments also excluded participants who had experience with more than one 

voiceless post-alveolar fricative as phonemes, following Noguchi (2016) who also used this contrast as 

critical stimuli. Before the experiment, participants were asked to not participate if they had studied or 

had experience with German, Mandarin, Japanese, or Russian. In a following questionnaire, they were 

asked what experience they had with other languages and were told that their responses would not affect 

payment. 3 participants in Experiment A3-2 were excluded for reporting experience with a language with 

more than one voiceless post-alveolar fricative. In total, 32 participants were rejected from analysis from 

Experiment A3 (some for multiple reasons), leaving 22 in the Bimodal group and 27 in the Monomodal 

group. 

6.1. STIMULI 

Stimuli consisted of critical syllables and filler syllables. Following Noguchi (2016), onsets of critical syl-

lables were drawn from an 8-point continuum ranging between an alveopalatal fricative [ɕ] to a retroflex 

fricative [ʂ]. Continuum points will be referred to as S1-S8, where S1 indicates the most [ɕ]-like end of the 

continuum, and S8 indicates the most [ʂ]-like end. Although previous experiments followed critical onsets 

with three different rimes ([ɑ æ ɚ]), the current experiment follows Noguchi (2016) and all onsets are 

only followed by [ɑ]. Filler syllables consisted of the syllables [tɑ tʰɑ fɑ hɑ]. 

                                                      

13
 A large number of participants were excluded for this reason. I believe this is because the initial instructions that 

MTurkers received when determining whether they want to participate in this experiment differed from the initial 

instructions in the A1 and A2 experiments. In the initial instructions of the A1 and A2 experiments, prospective par-

ticipants were directed to a page where they could play the one or two tones. These prospective participants were 

told that if they could not hear the tones played on this page, they should not take the experiment. The A3 experi-

ments failed to include this. 
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All recordings, filtering, and splicing were done in Praat (version 6.0.29, Boersma, 2002), soft-

ware for speech analysis, synthesis, and manipulation. Stimuli were recorded by the experimenter, a 

native speaker of English and heritage speaker of Mandarin. Recordings were made in a soundproof booth 

on an HP Spectre laptop at 44100 Hz using an ATR2500-USB Audio Technica microphone. Before ma-

nipulations were made, all recordings were high-pass filtered for frequencies equal to or below 200 Hz. 

All cuts were made where the waveform crossed 0 Hz to avoid clicks and other unnatural non-speech 

sounds when splicing sounds together.  

For critical syllables, tokens of the two endpoints of the target continuum [ɕɑ] and [ʂɑ] were rec-

orded. Recordings were made such that test syllables were preceded by a dummy syllable [ɑ] (e.g. [ɑ ɕɑ]), 

as these same test syllables would be used in Experiment B, reported on in Chapter 4. However, test sylla-

bles [ɕɑ] and [ʂɑ] sounded like they had been produced in isolation. The fricative portions of the test 

syllables [ɕɑ] and [ʂɑ] ([ɕ] and [ʂ]) and vowel portions ([ɑ]) were isolated. The middle 160 ms of each 

fricative was extracted using a parabolic windowing function. The mean intensity of each fricative was 

adjusted to 60 dB. To create the fricative portion of the 8-point continuum, the endpoint fricatives were 

overlapped in varying amounts, with the second point of the continuum consisting of 6/7ths of the [ɕ] to-

ken and 1/7th of the [ʂ] token, the third point of the continuum consisting of 5/7ths of the [ɕ] token and 

2/7th of the [ʂ] token, etc. The continuum between vowels was created by using TANDEM-STRAIGHT, 

software which creates natural-sounding continua between two sounds. The vowel spliced from [ɕɑ] and 

the vowel spliced from [ʂɑ] were used as input into TANDEM-STRAIGHT (Kawahara et al., 2008). 

TANDEM-STRAIGHT allows the user to mark any number of landmarks on one spectrogram (for exam-

ple, the beginning of the steady state of the vowel, the onset of voicing, etc.) that corresponds to a similar 

landmark on another spectrogram, so that durations between landmarks can be stretched or compressed in 

the generated continuum points. TANDEM-STRAIGHT returned 6 intermediate stimuli, for a total of 8 

continuum points including the endpoints. All vowel continuum points were then scaled to have a mean 

intensity of 72 dB. Following this, each of the 8 fricative sounds were spliced onto their corresponding 8 
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vowel sounds, creating an 8-point continuum between [ɕɑ] and [ʂɑ]. Each of these syllables was scaled to 

have an average intensity of 74 dB. Critical syllables will be referred to as S1a-S8a, where S1a refers to the 

most [ɕɑ]-like end, and S8a refers to the most [ʂɑ]-like end. Examples of critical syllables S1a and S8a are 

shown in Figure 26. 
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 Experiment A3 Stimuli 

S1ɑ 

 

S4ɑ 

 

S8ɑ 

 

 
 

Figure 26. First 500 ms of critical syllables S1a (top), S4a (middle), and S8a (bottom). 
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6.2. PROCEDURE 

Again, the procedure consisted of a Sound Check, Practice phase, a Train phase, and a Test phase, fol-

lowed by a Questionnaire. The Sound Check, Practice phase, and all instructions were identical to those 

used in previous “A” Experiments. As with previous “A” Experiments, participants heard a monomodal 

or bimodal distribution of the 8-point continuum of critical phones, depending on which condition they 

were in. Rather than hearing three different rime contexts though, participants heard three repetitions of 

each distribution of critical S1-8a tokens per block. In addition, 4 recordings of 4 filler syllables ([tʰɑ], [tɑ], 

[fɑ], [hɑ]) were made. Each of these 16 filler tokens were repeated 3 times during each train block. Each 

block was repeated 4 times, resulting in a total of 192 critical tokens, and 192 filler tokens. The Train 

phase lasted for about 10 minutes. 

As with the previous “A” Experiments, the Test phase presented participants with pairs of sylla-

bles that were either Same Pairs, or Different Pairs. Same Pairs consisted of repetitions of the same exact 

token for critical tokens (e.g. S1a vs. S1a), or different tokens for filler tokens (e.g. [fɑ]1 vs. [fɑ]2). Filler 

Same Pairs were judged by the experimenter to sound different enough to be distinguished as separate to-

kens. Critical Different Pairs consisted of pairs that occurred on opposite ends of the 8-point continuum, 

for critical tokens (i.e. S1a vs. S8a). The Test phase consisted of 12 critical Same Pairs, 12 critical Differ-

ent Pairs, 12 filler Same Pairs, and 12 filler Different Pairs. 

6.3. RESULTS 

A generalized linear mixed model with a logit link function (GLMM) was fitted to the formula in (5), 

with the reference cell being bimodal diff. Summaries of the fixed effects in the mixed logit model with 

treatment coding for Experiment A3 are shown in Table 12. An interaction between Distribution and 

PairType was found for critical trials (p = 0.037). Surprisingly, an interaction between Distribution and 

PairType was found for filler trials as well (p = 0.009). Results are shown in Figure 27. 
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Figure 27. Log odds of participants responding d for critical trials (left) and filler trials (right) in Experi-

ment A2. Error bars indicate standard error. 

Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) 2.365 0.809 2.922 0.003 ** 

Distribution=monomodal -1.978 1.040 -1.903 0.057 

PairType=same -6.489 0.963 -6.738 <0.001 *** 

Interaction=monomodal & same 2.439 1.166 2.091 0.037 * 

FILLER TRIALS     

(Intercept) 4.112 0.759 5.415 <0.001 *** 

Distribution=monomodal -1.599 0.780 -2.052 0.040 * 

PairType=same -6.957 0.944 -7.371 <0.001 *** 

Interaction=monomodal & same 2.549 0.978 2.606 0.009 ** 

Table 12. Summary of fixed effects in the mixed logit model in Experiment A3. 

To test for a main effect of Distribution on Response, a planned contrast analysis was performed on the 

fitted GLMM using the glht function from the multcomp package (Hothorn et al., 2017) in R. The 

planned contrast revealed no main effect of Distribution for critical trials (p = 0.229) or filler trials (p = 

0.474).14 

                                                      

14
 This test is included for symmetry with Experiments A1 and A2, but note that this dissertation would not have 

interpreted a significant main effect of Distribution, since a significant interaction between Distribution and 

PairType had already been found (see Chapter 2 for reasoning). 
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6.4. DISCUSSION 

Although an unexpected significant interaction between Distribution and PairType was found for filler 

trials (discussed further in Section 11), this section concludes that the exposure length (192 critical trials) 

and stimuli used in Experiment A3 was able to induce greater sensitivity in a bimodally-trained group of 

participants compared to a monomodally-trained group of participants, as a significant interaction be-

tween Distribution and PairType was found for critical trials. Experiment A3 appears to be the first 

evidence that sensitivity changes through distributional learning, and not only bias changes, can be found 

through an online platform. While Experiments A1 and A2 found support for the Bias Hypothesis, the re-

sults of Experiment A3 appear to support the Sensitivity Hypothesis. 

As noted earlier, the original intent in choosing the [ɕ-ʂ] contrast was to choose critical endpoint 

stimuli which are more perceptually distinct from one another, in the hopes that this would result in a dif-

ference in sensitivity between conditions. However, [ɡ-ɡ̥] and [ɕ-ʂ] differ in more than just their 

perceptual distinctness. Specifically, it could be argued that [ɡ] and [ɡ̥] belong to separate phonemes for 

English speakers ([ɡ] being an allophone of /ɡ/ and [ɡ̥] being an allophone of /k/), or it could be argued 

that English speakers categorize syllable-initial [ɡ] and [ɡ̥] as free variants of a single phoneme /ɡ/. On the 

other hand, [ɕ] and [ʂ] could be argued to be both categorized by an English listener as a single phoneme 

/ʃ/, or one or both sounds may be categorized as foreign, non-English phones. This dissertation did not 

test English speakers with a categorization task to determine exactly how participants were categorizing 

the specific tokens used in these experiments, but ideally follow-up work should be conducted to provide 

a more complete picture of the differences between the stimuli used in Experiments A1-A3. Additionally, 

follow-up discrimination tasks should also be conducted so that the perceptual distinctness of critical 

stimuli used in these experiments can be quantitatively compared. 
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7. Discussion of Experiments A1-A3: Bias and Sensitivity 

Experiments A1-A3 show that distributional learning can, but does not necessarily, affect learners’ sensi-

tivities to stimuli. 

7.1. CURRENT PROPOSAL: A TWO-STAGE MODEL 

This section focuses on the results of Experiments A1-A3 to put forth a model of distributional learning. 

In Section 2.3, two hypotheses were outlined regarding the driving mechanism behind distributional 

learning: the Sensitivity Hypothesis, and the Bias Hypothesis, illustrated in Figure 28. Models which base 

distributional learning in perceptual warping, such as Guenther and Gjaja (1996) and Boersma et al. 

(2003), assume a sensitivity-based account. In these models, each token experienced by a language 

learner serves to change the perceptual system, either in synapse weights (as in Guenther and Gjaja, 1996) 

or in constraint rankings (as in Boersma et al., 2003). This is seen in the top image in Figure 28. In a bias-

based account, learners form rough hypotheses regarding the number of categories in the speech stream 

before identifying category boundaries or category means.  
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Figure 28. Illustration of the Sensitivity Hypothesis (top) and Bias Hypothesis (bottom). 

The set of experiments conducted in this chapter finds support for sensitivity changes, as well as changes 

in response bias. Specifically, Experiment A3 finds support for a change in sensitivity, and Experiments 

A1 and A2 find support for changes in bias. The following proposals are considered: 

1) Hypothesis 1: Learning method differs for different stimuli. Learners make use of at least 

two methods when acquiring phonetic categories: sensitivity-based distributional learning, 

and bias-based distributional learning. The method used depends on properties of the stimuli. 

2) Hypothesis 2: A change in sensitivity precedes a change in bias. Distributional learning 

occurs in stages, with a change in sensitivity occurring first, and a change in bias occurring 
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second. The speed at which learners proceed through each stage depends on properties of the 

stimuli. 

3) Hypothesis 3: A change in bias precedes a change in sensitivity. Distributional learning 

occurs in stages, with a change in bias occurring first, and a change in sensitivity occurring 

second. The speed at which learners proceed through each stage depends on properties of the 

stimuli. 

Although further research is required to test each of these hypotheses, this section will present evidence 

for Hypothesis 3. This evidence will come in the form of previous studies’ results which were reported as 

non-replications. In doing so, this chapter will also provide support that the results of Experiments A1-A3 

may not be limited to artificial language learning studies conducted on adults, and may also be applicable 

to first language acquisition. 

In Chapter 2, it was noted that there was an issue in studying distributional learning with artificial 

language learning tasks with adults. Namely, although studies like the current one test the effect of distri-

bution on adults, the motivation for distributional learning lies in observations regarding language 

development in infants – we know that infants cannot be acquiring phonetic categories through minimal 

pairs because they show language-specific discrimination of phonetic categories by 12 months of age 

(Kuhl et al., 2006; Mattock and Burnham, 2006; Werker and Tees, 1984; Seidl et al., 2009; Cheour et al., 

1998; Polka and Werker, 1994), but only know an estimated 36 words by 8 months of age, none of which 

are minimal pairs (Caselli et al., 1995), and still confuse minimally-different words like bih and dih at 14 

months (Werker et al., 2002; Stager and Werker, 1997; although see Yoshida et al., 2009; Rost and 

McMurray, 2009; 2010). Although this chapter acknowledges that the current study is unable to make 

claims about infant language development for this reason, the results of several past infant studies seem to 

support this chapter’s proposal. 

In order to test the effect of distribution on infants, Maye et al. (2002) measure looking times af-

ter distributional training. The test phase consisted of both alternating trials and non-alternating trials. In 
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alternating trials, infants were exposed to a string of tokens alternating between endpoints of the critical 

continuum they had been exposed to during training (D1a…D8a…D1a…D8a…). In non-alternating trials, 

infants were exposed to a string of identical tokens, either D3 (D3a…D3a…D3a…) or D6 

(D6a…D6a…D6a…)15. Infant looking times were measured for both TrialTypes, under the assumption that 

the more attuned an infant is to the difference between the endpoints D1 and D8, the greater the difference 

in looking times to alternating than non-alternating trials due to a novelty preference for alternating trials. 

Both 6-month old and 8-month old infants were tested. Maye and colleagues mainly highlight their find-

ing that, when the 6-month and 8-month infants’ data are pooled together, there is a significant simple 

effect of TrialType (alternating or non-alternating) in the Bimodal condition (with Bimodal infants look-

ing longer at alternating trials than non-alternating trials), but not the Monomodal condition. They 

interpret this as increased sensitivity in the Bimodal condition to the difference between TrialTypes. 

However, they do also report a significant main effect of Distribution within both the 6-month olds and 8-

month olds data, with both age groups having longer looking times on alternating and non-alternating tri-

als if trained on a bimodal distribution than if trained on a monomodal distribution (p < 0.05 for both age 

groups). We can see this in Figure 29, which graphs data reported in Maye et al. (2002). Note that the Bi-

modal conditions for both age groups have longer mean looking times for both alternating and non-

alternating trials. 

                                                      

15
 Continuum points 1, 8, 3, and 6 were all experienced the same number of times by the Bimodal and Monomodal 

conditions (see Figure 15 on page 3). 
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Figure 29. Looking times for infants in Maye et al. (2002). 

Similar results are reported in Yoshida et al. (2009), who also measure looking times. Yoshida et al. con-

duct three experiments with 10-month old infants. Only Experiment 1 and Experiment 3, which use the 

same stimuli from Maye et al. (2002), will be discussed here.16 

        
Figure 30. Looking times for infants in Experiments 1 and 3 in Yoshida et al. (2010). 

                                                      

16
 Experiment 2 tests a different contrast (retroflex-dental). 
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Yoshida and colleagues note a significant main effect of Distribution in Experiment 1 (p = 0.002), with 

the Bimodal group looking longer than the Monomodal group at both alternating and non-alternating tri-

als. Despite this main effect, the authors report the results of Experiment 1 as a non-replication of Maye et 

al. (2002) since the Bimodal group does not show a significant difference between alternating and non-

alternating trials. Yoshida and colleagues suggest that 10-month olds are more resistant to distributional 

learning than the 6-8 month olds tested in Maye et al. (2010) and go on to test the effects of a longer fa-

miliarization phase in Experiment 3.17 In Experiment 3, they find the predicted simple effect of TrialType 

for the Bimodal condition (0.018), but not for a Non-modal (“Flat”) condition. (see Figure 30).18 

Yoshida et al.’s study provides us with evidence that a change in bias and a change in sensitivity 

occur sequentially. Infants trained for just one familiarization phase exhibit a difference in bias, while 

infants trained for two familiarization phases exhibit a difference in sensitivity. Although one could claim 

that the sensitivity finding in Experiment A3 was a result of the use of a fricative contrast rather than the 

stop contrast used in Experiments A1 and A2, the results from Yoshida et al. (2010) lend support to the 

two-stage model of distributional learning described in Hypothesis 3: learners’ biases change first, as seen 

in Yoshida and colleagues’ Experiment 1, and we only find a change in sensitivities after longer familiari-

zation times, as seen in Yoshida and colleagues’ Experiment 3. 

Returning to all three hypotheses, I would like to note that although Yoshida et al.’s study lends 

support to Hypothesis 3, this support should not disqualify Hypothesis 1 from also being true. There are 

many differences between the critical stimuli used in Experiments A1/A2 and those used in Experiment 

A3, and it is possible that one of these differences or a combination of these differences led participants to 

use different learning methods. Below I will point out some stimulus differences that may have resulted in 

                                                      

17 The third experiment also differs from the first experiment in that infants are exposed to either a bimodal distri-

bution or a flat, non-modal distribution. 

18
 Interestingly, they also find a significant main effect using a different contrast in Experiment 2, but find that the 

Bimodal condition has shorter looking times than a Flat condition. 
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the use of different learning methods. However, it should be noted that this is speculation, since I did not 

carry out any direct comparison studies using my specific stimuli and any studies referenced below 

reached conclusions based on their own set of stimuli which of course differ from my own. To summa-

rize, I consider the following differences as having a possible effect on learning method: 1) a difference in 

degree of categorical perception between stops and fricatives, 2) a difference in the level of naturalness 

between my stop and fricative continua, and 3) a (likely) difference in perceptual distance between con-

tinuum endpoints. 

There are a number of differences between the critical stimuli used in Experiments A1/A2 and 

those used in Experiments A3, most notably that the critical stimuli in Experiments A1 and A2 were 

stops, whereas the critical stimuli used in Experiment A3 were fricatives. It is possible that fricatives by 

nature are perceived less categorically than stops are. Both stops and fricatives appear to be perceived cat-

egorically at least in some cases (Strand and Johnson, 1996; Repp, 1981; Sharma and Dorman, 1999), but 

it is possible that the degree of categorical perception differs between different pairs of speech sound. No 

study I know of directly compares the degree of categorical perception between stops and fricatives 

though, and a comparison would need to be completed with my specific stimuli to see if this may have 

contributed to the different findings in Experiments A1/A2 and Experiment A3. Along these lines, Repp 

(1981) suggests that fricatives are perceived categorically when perceived as speech, but gradiently when 

perceived as non-speech noise. If this observation is special to fricatives, it’s possible that some partici-

pants perceived the fricative stimuli as non-speech noise, and therefore in a gradient manner. Again, a 

direct comparison of the perceptual properties of my specific stimuli would need to be completed to deter-

mine if there is a significant difference in perception of the stop and fricative critical stimuli used in these 

experiments. The idea of different modes of processing for different classes of phones is not a new one. 

Toro and colleagues (2008) argue for two different modes of processing of vowels and consonants in 

what they refer to as the “CV Hypothesis.” They support their hypothesis by showing that participants 

will generalize template-like rules for vowels (i.e. generalizing the ABA pattern in the word tapena to 
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biduki), but not for consonants. Consonants, on the other hand, are used to extract words from a speech 

stream. If the stops were perceived more categorically than the fricatives were, the fricative stimuli may 

have been more conducive to a shift in sensitivity, which may be why Experiment A3 is the only experi-

ment we find any evidence for sensitivity changes. 

It is also possible that factors unrelated to phone type played some role. Blomert and Mitterer 

(2004) find that speech continua which sound more natural are perceived less categorically than continua 

which sound synthetic. While the critical continua I used sounded similar in terms of naturalness to my 

ears, it could have been the case that one was more natural than the other, leading to different degrees of 

categorical perception between critical continua. 

It is also likely that the perceptual distance between continuum endpoints differed between exper-

imental stimuli. I did not carry out any discrimination tests to measure Just-Noticeable Differences 

(JNDs) between endpoints, but based on my own listening of these stimuli, I would predict that the end-

points of the fricative stimuli are more perceptually distinct than the endpoints of the stop stimuli, which 

conceivably could have resulted in participants utilizing different learning methods for different critical 

continua. 

This chapter proposes a two-stage model for the acquisition of phonetic categories. In the first 

stage, learners form a rough idea of the number of phonetic categories in the speech stream. During this 

stage, the distribution of phones encountered affects learners’ response bias, such that exposure to a bi-

modal distribution of phones causes learners to expect two phonetic categories and a monomodal 

distribution of phones causes learners to expect one phonetic category. This is illustrated in Figure 31. 
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Figure 31. Illustration of proposed mechanism behind phonetic category acquisition. 

In this Bias Stage, the learner only has a general idea of the number of phonetic categories, and does not 

have well-defined category means or category boundaries. A greater expectation or assumption that two 

categories exist results in more overall responses that a given pair of critical stimuli are “different,” 

whether or not they are actually different or not. This can be seen in Experiments A1 and A2, where bi-

modally-trained participants were more likely to respond “different” compared to monomodally-trained 

participants, even for pairs which were identical (e.g. G1a vs. G1a). 

What is responsible for the difference in these expectations or assumptions held by the bimodally- 

and monomodally-trained language learners? Although further research is required to determine the root 

cause of these differing assumptions, it is suggested here that this can be explained by how much partici-

pants notice variation in the training phase. Since the bimodal group hears more tokens at the continuum 

points 2 and 7 and the monomodal group hears more tokens at continuum points 4 and 5, it is more likely 

that a participant during bimodal training will encounter continuum point 2 followed by continuum point 

7 (or vice versa) than a participant during monomodal training, who is more likely to encounter contin-

uum point 4 followed by continuum point 5. Because continuum points 2 and 7 are more acoustically 

distinct, a bimodally-trained participant may be more consciously aware of the difference between critical 
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stimuli than a monomodally-trained participant, simply because they hear two distinct tokens presented 

side-by-side more often than the monomodal participants. Even if the bimodal participants are not able to 

identify what the acoustic difference between these two sounds might be, we could imagine they might 

have a stronger awareness that there at least are two different sounds compared to the monomodal partici-

pants, resulting in more “different” responses when the bimodal participants are presented with pairs of 

critical syllables. There are at least two ways this could be tested. The first would be to train participants 

on a bimodal or monomodal distribution along one phonetic dimension, but then test participants with 

pairs of sounds which differ along a different phonetic dimension. If participants with a greater bias to-

wards a “different” response believe there are two different sounds but truly do not know how they differ, 

participants would be expected to respond that pairs of sounds are different even along an untrained di-

mension.19 

A second way to test this would be to present participants with non-random bimodal distribution 

of phones. Specifically, one group of participants could be exposed to a bimodal distribution in which the 

continuum points 2 and 7 occur side by side very often (e.g. in the order 2-7-2-7-1…etc.). Another group 

of participants could also be exposed to a bimodal distribution of phones, but in an order such that only 

consecutive continuum points are presented side by side (e.g. in the order 1-2-2-2-3-4-5-6-7-7-7-8…etc.) 

Supposing the differences in bias can be explained as an awareness of variation in the speech sig-

nal, one would still need to explain how some distributional learning experiments result in greater 

sensitivity in bimodally-trained participants compared to monomodally-trained participants. This second 

stage could potentially be explained with some perceptual warping distributional learning mechanism 

such as those suggested by Guenther and Gjaja (1996) or Boersma et al. (2003), but I believe this can be 

explained with domain-general mechanisms which have already been thoroughly documented in the psy-

chology literature: across-category expansion and within-category compression (Livingston et al., 

                                                      

19
 Many thanks to Stefan Gries for this interesting suggestion for future research. 
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1998; Goldstone, 1994; Goldstone and Hendrickson, 2010; Nosofsky, 1986). That is, the formation of 

some category warps perception such that items within a category are perceived as being more similar to 

one another, and items from different categories are perceived as being more dissimilar from one another. 

This has been found for visual stimuli, such as drawings of hypothetical microorganisms (Livingston et 

al., 1998), drawings of chick genitalia (Livingston et al., 1998), faces of well-known (Beale and Keil, 

1995) and unknown faces (Levin and Beale, 2000), drawings of rock formations (Kurtz and Gentner, 

1998), squares varying in brightness and size (Goldstone, 1994), shapes (de Beeck et al., 2003), and col-

ors (Winawer et al., 2007; Ӧzgen and Davies, 2002). Infants exposed to individual monkey faces each 

with a different label show a novelty preference when shown an unseen monkey face, whereas infants ex-

posed to those same monkey faces either without a label or all labeled as “monkey” do not (Scott and 

Monesson, 2009). This has also been found for (non-linguistic) auditory stimuli such as white noise sam-

ples (Guenther et al., 1999) and musical chords (Burns and Ward, 1978).  

To summarize, this section proposes that learners exposed to a bimodal distribution of phones are 

presented with more examples of stimuli which are different enough to be noticeable. This leads to an in-

crease in awareness that there are two different sounds in a Bias Stage of distributional learning. Learners 

who are more aware that there are two different sounds are more likely to attempt to categorize these 

sounds into different categories, and category-based perceptual warping results in greater sensitivity to 

sounds which cross category boundaries in a Sensitivity Stage. Neither of these stages require the pro-

posal of a special mechanism for phonetic category acquisition. 

8. “Tone” Experiments 

As mentioned earlier, the original purpose of the “A” Experiments was to simply attempt to replicate 

Maye and Gerken (2000) over the web. One pilot experiment, not reported here, was initially conducted 

with this goal in mind. This pilot experiment differed from Maye and Gerken (2000)’s study in a number 

of ways. In particular, it was thought that a number of catch trials should be included throughout the ex-

periment in order to ensure that participants taking this experiment in some unknown setting would be 
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paying attention to stimuli. Although this pilot differed from Experiments A1-A3 in a number of ways, 

one of these differences seemed worth following up on. That is, the pilot experiment failed to show any 

significant differences in responses between bimodally- and monomodally-trained participants during the 

Test phase. It was hypothesized that one methodological difference in particular might be responsible for 

this: during the Train phase, catch trial tones were randomly interspersed with stimuli. This concurrent 

Train Catch task had the goal of ensuring that participants were wearing headphones and paying attention. 

To do this, each Train repetition contained 6 randomly-interspersed catches: 3 one-tone tokens and 3 two-

tone tokens. Participants were instructed to press the “1” or “2” keys if they heard one of these tone to-

kens, to indicate how many tones they had heard. Tones were chosen to be at a low enough frequency that 

most computer speakers would not pick up on the sound (50 Hz), thereby testing whether participants 

were wearing headphones or not. Tones were 340 ms long, and were 140 ms apart for the two-tone to-

kens. Participants were given the following instructions: 

For the most part, you will be listening passively and will not need to click on anything. 

However, to help you keep your attention on the task, you will hear one or two low-toned 

beeps randomly-interspersed throughout. As quickly as possible, please press “1” if you 

hear one beep, and “2” if you hear two beeps. 

In order to follow up on whether or not the inclusion of this monitoring task had an effect on distribu-

tional learning, two further experiments were designed which were identical to Experiments A2 and A3, 

with the exception that each included these Train Catch tones during the Train phase in addition to the 

original Train stimuli. These two experiments are called Experiments A2-Tone and A3-Tone respectively. 

The following exclusion criteria were used: 

• Fewer than 5/6 on the pre-experiment Sound Check (Exp A2-Tone: 14 excl, Exp A3-Tone: 21 

excl20) 

• Fewer than 5/8 correct on the Practice Test (Exp A2-Tone: 0 excl, Exp A3-Tone: 8 excl) 

• Reported not being a native speaker of English (Exp A2-Tone: 0 excl, Exp A3-Tone: 2 excl) 

• Reported a history of a speech or hearing disorder (Exp A2-Tone: 0 excl, Exp A3-Tone: 5 excl) 

                                                      

20
 A large number of participants were excluded for this reason. See the proposed explanation in Footnote 13. 
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In addition, 5 participants in Experiment A3-Tone were excluded from analysis for reporting having ex-

perience with a language with more than one voiceless post-alveolar fricative during the questionnaire. In 

total, 14 participants were rejected from analysis from Experiment A2-Tone, leaving 28 in the Bimodal 

group and 31 in the Monomodal group. 28 participants were rejected from analysis from Experiment A3-

Tone, leaving 24 in the Bimodal group and 19 in the Monomodal group. 

8.1. METHODS 

The procedure and stimuli of Experiments A2-Tone and A3-Tone were identical to their Experiments A2 

and A3 respectively, with the exception of the inclusion of a concurrent Train Check “beep”-monitoring 

task in these Tone Experiments. Each Train repetition consisted of 3 one-tone tokens and 3 2-tone tokens. 

Each Train repetition was repeated 4 times, resulting in a total of 192 fillers, 192 critical tokens, and 24 

beep tokens.  

8.2. RESULTS: EXPERIMENT A2-TONE 

A generalized linear mixed models with a logit link function (GLMM) was fitted to the formula in (5), 

with the reference cell being bimodal diff. For Experiment A2-Tone, the model using the default Laplace 

Approximation algorithm failed to converge in 10,000 evaluations. Because of the failure to converge, an 

Adaptive Gauss-Hermite Quadrature algorithm was used instead (by setting nAGQ to 0 in R). Summaries 

of the fixed effects in the mixed logit model with treatment coding for Experiment A2-Tone are shown in 

Table 13. For Experiment A2-Tone, no interaction between Distribution and PairType was found for criti-

cal trials (p = 0.551), or for filler trials (p = 0.986).  
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Predictor Coefficient SE Wald Z p 

CRITICAL     

(Intercept) -2.170 0.354 -6.137 <0.001 *** 

Distribution=monomodal -0.189 0.483 -0.391 0.696 

PairType=same -1.584 0.426 -3.720 <0.001 *** 

Interaction=monomodal & same -0.197 0.598 -0.329 0.742 

FILLER 

(Intercept) 3.736 0.557 6.714 <0.001 *** 

Distribution=monomodal 0.101 0.800 0.127 0.899 

PairType=same -6.551 0.715 -9.161 <0.001 *** 

Interaction=monomodal & same -0.217 1.034 -0.210 0.834 

Table 13. Summary of fixed effects in the mixed logit model in Experiment A2-Tone. 

   
Figure 32. Log odds of participants responding d for critical trials (left) and filler trials (right) in Experi-

ment A2-Tone. Error bars indicate standard error. 

To test for a main effect of Distribution on Response, a planned contrast analysis was performed on the 

fitted GLMM using the glht function from the multcomp package (Hothorn et al., 2017) in R. The 

planned contrast revealed no main effect of Distribution for critical trials (p = 0.551) or filler trials (p = 

0.986).  
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8.3. RESULTS: EXPERIMENT A3-TONE 

A generalized linear mixed models with a logit link function (GLMM) was fitted to the formula in (5), 

with the reference cell being bimodal diff. For Experiment A3-1, the model using the default Laplace Ap-

proximation algorithm failed to converge in 10,000 evaluations. Because of the failure to converge, an 

Adaptive Gauss-Hermite Quadrature algorithm was used instead. Summaries of the fixed effects in the 

mixed logit model with treatment coding for Experiment A3 are shown in Table 14. For Experiment A3, 

no interaction between Distribution and PairType was found for critical trials (p = 0.742), or for filler tri-

als (p = 0.834). Results are shown in Figure 33. 

Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) 1.027 0.684 1.500 0.134 

Distribution=monomodal -0.822 1.032 -0.797 0.425 

PairType=same -4.349 0.703 -6.185 <0.001 *** 

Interaction=monomodal & same -0.457 1.173 -0.390 0.697 

FILLER TRIALS     

(Intercept) 2.799 0.487 5.753 <0.001 *** 

Distribution=monomodal 1.433 0.982 1.459 0.145 

PairType=same -4.837 0.593 -8.159 <0.001 *** 

Interaction=monomodal & same -1.535 1.121 -1.370 0.171 

Table 14. Summary of fixed effects in the mixed logit model in Experiment A3-Tone. 

 
Figure 33. Log odds of participants responding d for critical trials (left) and filler trials (right) in Experi-

ment A3-Tone. Error bars indicate standard error. 
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To test for a main effect of Distribution on Response, a planned contrast analysis was performed on the 

fitted GLMM using the glht function from the multcomp package (Hothorn et al., 2017) in R. The 

planned contrast revealed no main effect of Distribution in Experiment A3-Tone for critical trials (p = 

0.151) or filler trials (p = 0.222). 

8.4. DISCUSSION 

The addition of Train Catch tones during the Train phase appeared to have a negating effect on distribu-

tional learning as Experiments A2-Tone and A3-Tone, which only differed from Experiments A2 and A3 

in the inclusion of the beep tokens, failed to show a significant effect of Distribution. 

9. Discussion: Attention in Distributional Learning 

For each of the tone/no-tone counterpart experiments conducted here, experiments which contained Train 

Catch tones resulted in no significant difference between bimodally-trained and monomodally-trained 

participant responses to critical stimuli. This seems to suggest that attention plays some sort of role in dis-

tributional learning. Although this study is not equipped to say what this role may be, this section 

provides support for two competing hypotheses: 1) that attention facilitates distributional learning, and 2) 

that attention impedes distributional learning. 

Before providing support for these two hypotheses, this section briefly reports on results from the 

after-experiment questionnaire to determine how participants self-reported their attention levels. The 

questionnaire in all experiments asked participants how much attention they were paying to various 

phases of the experiment, and whether or not they would pay more, the same, or less attention if this same 

experiment were being conducted in a lab setting. Participants were given the following options, for both 

the Train phase and the Test phase: (a) I focused all of my attention on this portion of the experiment, (b) I 

mostly paid attention, (c) I was not paying very much attention, or (d) I paid very little attention. Very 

few participants reported “not paying very much attention” or reported paying “very little attention.” A 
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glance at how participants responded to options (a) and (b) suggests that the inclusion of Catch trials did 

not have a large impact on reported attention levels. A breakdown of responses is shown in Table 15. 

  Did not contain Train Catch tones Contained Train Catch tones 

  Exp. A1 Exp. A2 Exp. A3 Exp. A2-Tone Exp. A3-Tone 

Train 

phase 

I focused all of my 

attention on this por-

tion of the 

experiment 

58% 52% 78% 68% 61% 

I mostly paid atten-

tion 
38% 47% 20% 30% 37% 

Test 

phase 

I focused all of my 

attention on this por-

tion of the 

experiment 

84% 85% 88% 95% 84% 

I mostly paid atten-

tion 
15% 15% 12% 5% 16% 

Table 15. Questionnaire responses regarding participants’ attention. 

Although statistical tests were not performed, numerically participants in all experiments reported paying 

more attention during the more active Test phase, with a greater percentage of participants reporting fo-

cusing “all” of their attention to that portion (specifically, 84-95%). No clear difference in self-reported 

responses between Tone and No Tone experiments can be seen. Speculation regarding the inclusion of 

tones and their role in participant responses is given below. 

9.1.1 A case for attention facilitating distributional learning 

Although catch tones were included to maintain participants’ attention on the task at hand, the addition of 

the tone-monitoring task may have decreased participants’ attention to the syllables they were being ex-

posed to by taking away attentional resources from the training phase. If so, this lack of attention to the 

training data may have been responsible for the absence of distributional learning for Tone experiments. 

In other words, this training task may have in essence become a task in which participants were listening 

for tones and treating actual stimuli as outside noise to be filtered. A similar finding has been made for 

speech segmentation. Learners are able to make use of transitional probabilities to segment a stream of 

speech (Saffran et al. 1996), but if their attention is diverted, they exhibit less learning. Toro et al. (2005) 

and Saffran et al. (1997) both exposed learners to a speech stream in a segmentation experiment. Both 
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found that learners were able to successfully make use of transitional probabilities if attention was di-

verted to a task with little demand that did not make use of the same sensory modality (like drawing while 

listening to the speech stream). However, Toro et al. found that more demanding tasks or tasks that made 

use of the same sensory modality (that is, a concurrent auditory task) negatively affected participants’ 

abilities to segment speech using transitional probabilities.  

9.1.2 A case for attention impeding distributional learning 

On the other hand, it could be argued that the tone-monitoring task increased participants’ attention to the 

training phase, and that this increased attention impeded distributional learning in the Tone experiments. 

Cutler et al. (1987) make a distinction between comprehension-oriented attention and perception-oriented 

attention. Some researchers find evidence that increased perception-oriented attention prevents listeners 

from shifting phonetic category boundaries to allow for talker variation (McAuliffe and Babel, 2016; Pitt 

and Szostak, 2012). For example, Pitt and Szostak (2012) played English words to participants, replacing 

[s] with [ʃ] and [ʃ] with [s]. In a following lexical decision task, participants who were told to simply lis-

ten during the training phase were more tolerant of variation, and were more likely to respond that non-

words such as [s]andelier and [ʃ]erenade were English words, compared to participants who had been ex-

plicitly told that they should pay attention to the pronunciation of the speaker before the training phase. 

Pitt and Szostak conclude that participants were more able to shift their phoneme category boundaries if 

their (perception-oriented) attention had not been directed to the talker’s pronunciation. 

Again, this set of experiments is not equipped to say whether attention facilitated or impeded dis-

tributional learning. Interestingly though, Ong et al. (2015) appears to find results which contradict those 

presented here. In a distributional learning experiment using Thai tones, Ong and colleagues fail to find 

evidence for distributional learning unless they had a concurrent task in which they monitored non-lin-

guistic acoustic tones (or “beeps”). These divergent results may be due to the differing natures of the 

critical stimuli used in each experiment (perhaps an acoustic monitoring task has a different effect on su-

persegmentals such as lexical tone), or may be due to the differing natures of the monitoring stimuli 
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themselves. The monitoring stimuli used here were very low-frequency pure tones, and so may have been 

more difficult to detect than the monitoring stimuli used by Ong and colleagues. Further research is 

needed to determine what role the monitoring task played in these experiments. 

10. Discussion: Distributional Learning Online 

In addition to the above theoretical contributions of this chapter, this study also makes two methodologi-

cal suggestions for those wishing to conduct phonetic experiments on Mechanical Turk. This section 

concludes that (1) it is possible to replicate results of studies that require fine phonetic distinctions on 

MTurk, and (2) changes made to adapt an experiment from a lab-based experiment to an online experi-

ment should be kept to a minimum. 

Regarding (1), I believe that the inclusion of a short task confined to the beginning of an MTurk 

experiment, particularly a task which requires participants to listen for sounds which most computer 

speakers cannot pick up (50 Hz non-linguistic tones in this case), is sufficient encouragement to partici-

pants to wear headphones for the duration of the experiment. Questions were included in the post-

experiment questionnaire for all “A” Experiments to determine whether participants were actually wear-

ing headphones. Participants were specifically told that their answers would not affect their payment. 

Participants were asked to respond whether they were (a) wearing headphones the entire time, (b) wearing 

headphones most of the time, (c) wearing headphones some of the time, or (d) not wearing headphones at 

all. Most of the participants reported that they were wearing headphones the entire time, with only a few 

reporting wearing headphones only “most of the time,” (one each in Experiments A1, A2, and A2-Tone, 

and three in A3-Tone), and only one participant reported wearing headphones “some of the time” or not 

wearing headphones at all (in Experiment A3). 

In attempting to replicate distributional learning online, it was initially believed that certain 

changes needed to be made to ensure that participants were paying attention and wearing headphones. 

However, results of this study suggest that forcing participants to pay attention to non-linguistic interven-

ing stimuli may have had unintended effects, at least for distributional learning. Therefore, it is suggested 
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that only minimal changes, such as including a short sound check at the beginning of the experiment, 

should be made when attempting to replicate studies over the web. 

11. Discussion: Filler Trials 

This study found some unexpected results with regards to filler trials. Since filler stimuli were identical 

across conditions, it was not expected that there would be any significant differences in participant re-

sponses for Test filler pairs. However, the following two unexpected results were found: 

1) A significant interaction between Distribution and PairType was found for filler trials in Ex-

periment A1 (greater sensitivity to fillers in the monomodal condition). 

2) A significant interaction between Distribution and PairType was found for fillers in Experi-

ment A3 (greater sensitivity to fillers in the bimodal condition). 

Although further research is needed, this section provides some speculation as to why we see an effect on 

filler trials. 

First, it should be noted that the only two instances where filler trials exhibited any significant 

results were in experiments for which the author created the stimuli. That is, Experiment A1 and A3 used 

stimuli created by the author, but Experiment A2 used stimuli from Maye and Gerken (2001). I believe 

the main difference in these stimuli had to do with how much the repetitions of “same” stimuli varied. 

These experiments followed up on the methodology of Maye and Gerken (2000) who asked participants 

whether a pair of stimuli were repetitions of the “same” syllable or were “different” syllables. Because of 

this, it was decided beforehand that these experiments should not be discrimination tasks, in which partic-

ipants would respond “different” if they could detect any difference whatsoever in the acoustics of a given 

pair of stimuli. Therefore when creating stimuli, I purposely made sure that repetitions of filler syllables 

(e.g. [fɑ]1 vs. [fɑ]2) were distinguishable as different tokens. However, upon listening later to the stimuli 

provided by Maye and Gerken, it was determined that the filler tokens used by Maye and Gerken were 

not different enough to be distinguished by a participant as being two different tokens of the same sylla-

ble. Because filler Same Pairs were so similar as to be perceptually identical, it would be unlikely that any 
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participant would respond that a filler Same Pair was actually “different.” Because of this, I believe the 

filler stimuli used by Maye and Gerken exhibit a floor effect. However, this only explains why my filler 

stimuli sometimes behaved differently from those used by Maye and Gerken. Why would training change 

how participants responded to fillers? 

Although further research is needed, I believe the significant differences across conditions for 

filler trials come from increased attention to small variations depending on which condition a participant 

is in. If it is the case that bimodally-trained participants pay more attention to stimuli because of the 

greater number of 2-7 or 7-2 pairs during training, it is possible that this increased attention bled over into 

the filler stimuli. This increased attention to variation may have caused participants to form various hy-

potheses regarding the filler stimuli. As for why the fillers in Experiment A1 and Experiment A3 show 

opposite behaviors, that may simply be because the fillers across these two experiments were different. 

How participants treated them due to increased attention to variation may come from a number of factors, 

such as what dimension(s) filler tokens varied from one another, how noticeable the variation between 

filler tokens was, and how similar or dissimilar filler tokens were from critical tokens. 

12. Conclusion 

In a set of five artificial language learning experiments conducted through Mechanical Turk, this chapter 

makes a distinction between bias and sensitivity. A brief summary of the procedure and results of the 

“A” Experiments21 can be found in Table 16. 

 

                                                      

21
 Two other experiments were conducted, but the results and methodology of these experiments are not included in 

this dissertation. One of these experiments tested all participants over the age of 18 who volunteered (rather than 

being restricted to the ages of 18-25), and another experiment used a vowel continuum, rather than a stop contin-

uum, as its critical stimuli. Details of these experiments can be found in Moeng (2017). The experiment which tested 

all participants over the age of 18 found an “anti” distributional learning effect, with bimodal participants respond-

ing less often than monomodal participants that critical stimuli were “different” from one another. Details of this 

experiment can be found in Moeng (2017). 
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 A1 Experiment A2 Experiments A3 Experiments 
 Exp. A1 Exp. A2 Exp. A2-Tone Exp. A3 Exp. A3-Tone 

S
ti

m
u

li
 

Created by author 
Originally used by Maye and Gerken 

(2001) 
Created by author 

G1a-G8a 

G1ae-G8ae 

G1r-G8r 

S1a-S8a 

P
ro

ce
d

u
re

 

Sound Check 

Practice Test 

Train phase 

 

Train phase Train phase 

   + catch trials 

Train phase Train phase 

   + catch trials 

Test phase Test phase Test phase Test phase Test phase 

Questionnaire 

R
es

u
lt

s:
 E

v
id

en
ce

 f
o

r 
 

d
is

tr
ib

u
ti

o
n

al
 l

ea
rn

in
g

? 

Yes, specifically in response 

bias 

Yes, specifically 

in response bias 
No 

Yes, specifically in 

sensitivity 
No 

Table 16. Summary of stimuli, procedures, and results for all “A” Experiments. 

This study finds evidence for distributional learning through an online platform, in response bias and in 

sensitivity. Experiments A1 and A2 find that the bimodal group has a greater bias towards a “different” 

response than the monomodal group, while Experiment A3 finds that the bimodal group has a higher sen-

sitivity than the monomodal group. Additionally, no evidence for distributional learning in either bias or 

in sensitivity was found for those experiments which contained Train Catch tones, Experiments A2-Tone 

and A3-Tone. 

Additionally, two suggestions were made in Section 7 regarding follow-up experiments to test for 

evidence of the Bias Stage of this model: 1) an experiment which trains learners on a contrast varying 

along one phonetic dimension but tests learners on a different phonetic dimension, and 2) an experiment 

in which participants receive bimodal training such that tokens are arranged in a non-random fashion (ei-

ther with many 2-7 tokens played side-by-side, or with only consecutive continuum points played side-

by-side). 
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The main contribution of this chapter was to propose a model in which phonetic category acquisi-

tion occurs in two stages: first, learners form rough expectations regarding the number of sound 

categories in the speech stream in an Bias Stage. Following this, learners’ sensitivities change through 

general cognitive mechanisms which drive within-category compression and across-category expansion 

(Goldstone, 1994) in a Sensitivity Stage. This two-stage model of phonetic category acquisition (not to be 

confused with the one-stage model of allophony acquisition presented in the next chapter) counters pre-

dictions made by previous accounts of distributional learning (Guenther and Gjaja, 1996; Boersma et al., 

2003), which predict that a change in sensitivity always accompanies distributional learning. The follow-

ing chapter will examine the role that contextual environment plays in distributional learning. 
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Chapter 4: 

Distributional Learning and Allophony: A One Stage Model of Allophony Acquisition 

1. Introduction 

Although the previous chapter focused on the acquisition of phonetic categories, the current chapter ex-

plores the acquisition of allophonic relationships. Following Dillon et al. (2013), this chapter addresses a 

model followed by a number of acquisitionists that phonetic category acquisition is the first step in a two-

step model of phonological acquisition (for example, see Peperkamp et al., 2003; Peperkamp et al., 2006; 

Noguchi, 2016; Harris, 1963), as opposed to an alternative model, in which allophones and rules relating 

allophones to one another are acquired simultaneously (Dillon et al., 2013). In order to address the ques-

tion of whether phonetic categories and allophonic relationships between those categories are acquired in 

one stage or in two stages, Experiment B maps the learning trajectory of learners exposed to one of three 

types of distributions, where learners are trained for either 5 minutes, 10 minutes, or 15 minutes. The fol-

lowing two conclusions are made in this chapter: 1) results from Noguchi (2016) which explores the 

learning of allophonic relationships can be replicated on Mechanical Turk; and 2) non-significant trends 

found in this experiment support a one-stage model of phoneme acquisition. Although further research is 

necessary, this chapter also discusses possible further support for the model proposed in the previous 

chapter; specifically the two-stage model consisting of a Bias Stage followed by a Sensitivity Stage. The 

results of experiment in this chapter suggest that participants exposed to a monomodal distribution experi-

ence prolonged uncertainty regarding the number of categories in the language, compared to those 

exposed to a bimodal distribution22. 

                                                      

22
 Specifically, a “Bimodal-NonComp” distribution rather than a “Bimodal-Comp” distribution, as described later. 
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2. Background 

This section will provide background literature on learning allophonic relationships in Section 2.1, and 

background on past models of allophony acquisition in Section 2.2. 

2.1. LEARNING COMPLEMENTARY DISTRIBUTION 

A number of studies have found evidence that suggests that pairs of sounds which belong to the same 

phoneme (sound pairs in a “phonemic” relationship) are processed differently than pairs of sounds which 

belong to the same phoneme (sound pairs in an “allophonic” relationship). In particular, listeners exhibit 

less sensitivity to sound pairs which are allophonic in their language compared to sounds which are pho-

nemic (Peperkamp et al., 2003; Boomershine et al., 2008; Seidl and Cristia, 2012; Johnson and Babel, 

2010). This could be attributed at least in part to the tendency for allophonic sound pairs to exhibit greater 

perceptual similarity than phonemic pairs (Pegg and Werker, 1997; Yuan and Liberman, 2011), but can-

not be solely attributed to perceptual similarity. Boomershine et al. (2008) find that English speaking 

adults are less sensitive to the difference between pairs of phones which are allophonic in English ([ɾ] and 

[d]) than they are to pairs of phones which are phonemic in English ([d] and [ð]). However, Spanish 

speaking adults showed the opposite pattern: they showed low sensitivity to [d] and [ð], which are allo-

phonic in Spanish, and greater sensitivity to [ɾ] and [ð], which are phonemic in Spanish. This suggests 

that lower sensitivity to allophonic pairs than to phonemic pairs cannot be solely attributed to a lesser per-

ceptual distance between allophonic pairs, since the English and Spanish speakers showed the opposite 

pattern for the same phones [d] and [ð].  

Seidl et al. (2009) finds evidence that the distinction between phonemic and allophonic relation-

ships develops somewhere between 4 and 11 months of age. In an infant language learning study, Seidl 

and colleagues exposed English-learning and French-learning infants to a phonological pattern which de-

pended on vowel nasality. Crucially, vowel nasality is contrastive in French, but not in English. The 

English-learning 4-month olds and French-learning 11-month olds were able to learn the pattern, but the 
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English-learning 11-month olds were not, suggesting that sensitivity to a contrast which is not phonemic 

decreases by the time an infant is 11 months of age. 

The studies above show that phonemic and allophonic pairs are processed and discriminated dif-

ferently. However, there are only a few studies which have been designed to catch the acquisition process 

of an allophonic relationship and its associated change in sensitivity within the lab, the way that Maye and 

colleagues’ distributional learning experiments were able to measure a change in sensitivity caused by 

different frequency distributions within the lab. The remainder of this section summarizes findings from 

Peperkamp et al. (2003) and Noguchi (2016), who both test whether the predictability of a phone based 

on its phonetic environment can bring about a change in participant sensitivity. 

Peperkamp et al. (2003) tested three groups of native French speakers: a Monomodal group, a Bi-

modal group, and a Bimodal+Assimilation group. Critical stimuli consisted of tokens taken from an 8-

point continuum ranging between the fricatives [ʁ] and [χ], each preceded by a vowel. These were fol-

lowed by CV context syllables, which began with either a voiced or voiceless consonant, creating VCTarget 

+ CVContext “phrases.” The Monomodal group heard a monomodal distribution of the fricatives [ʁ] and [χ] 

during the training phase, and both Bimodal groups heard them in a bimodal distribution. The Bi-

modal+Assimilation group only heard the [ʁ]-half of the continuum before voiced consonants, and the 

[χ]-half of the continuum before voiceless consonants. During the test phase, participants were presented 

with pairs of 2-word VC.CV “phrases,” and were asked whether the first words in these two phrases were 

the same or different. This test phase occurred once before the exposure phase, and once after. Peperkamp 

and colleagues found that the Bimodal group was the only group to show a significant difference between 

the pre- and post-test phases, but they found no significant interaction across groups. Peperkamp and col-

leagues suggest that, since the Bimodal group resulted more learning (numerically) between pre- and 

post-test phases than the Bimodal+Assimilation group, environmental context may play a role in distribu-

tional learning. However, given the lack of significant interaction across groups, the authors also caution 

that the results from their experiment are unclear. They also note that their experiment failed to replicate 
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Maye and Gerken (2000), since there was no significant interaction between the Bimodal and Monomodal 

groups. Results may have been affected by the fact that Peperkamp and colleagues tested native speakers 

of French, who already have the phonological rule specified in the Bimodal+Assimilation group. 

In a recent dissertation, Noguchi (2016) tested three groups of participants: a Non-Complemen-

tary group, a Complementary group, and a Control group. The first two groups heard a bimodal 

distribution of critical syllables with the onset ranging from an alveopalatal fricative [ɕa] to a retroflex 

fricative [ʂa] in an 8-point continuum. (The Control group did not hear any of the critical syllables con-

taining fricatives.) The Non-Complementary group heard all 8 points of the continuum following one of 

four context syllables, all of which ended with [i], and also all 8 points of the continuum following one of 

four context syllables, all of which ended with [u] (e.g. [liɕa], [liʂa], [luɕa], and [luʂa]) (see Figure 34, 

left).  

  
Figure 34. Training distributions for Non-Complementary (left) and Complementary (right) conditions in 

Noguchi (2016). 

The Complementary group only heard the four tokens on the [ɕa]-side of the 8-point continuum (referred 

to here as S1a-S4a) following syllables ending with [i], and the four tokens on the [ʂa]-side of the 8-point 

continuum (referred to here as S5a-S8a) following syllables ending with [u] (e.g. [liɕa] and [luʂa]) (see 

Figure 34, right). Subsequently, participants were tested on whether they believed the syllables presented 

in isolation were the “same” or “different” from one another. Noguchi found that the Complementary 
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group had lower sensitivity (lower d’) than the Control and the Non-Complementary groups. Noguchi in-

terprets this result as showing that the Complementary group treated [ɕ] and [ʂ] as allophones of the same 

phoneme. 

2.2. A ONE- OR TWO-STEP MODEL OF ALLOPHONY ACQUISITION 

The tradition of studying the acquisition of phonetic categories (for example, Maye and Gerken, 2000; 

McGuire, 2007; Boersma et al. 2003) in isolation from the study of the acquisition of phonemes consist-

ing of multiple phonetic categories (for example, Boersma and Hayes, 2001; Peperkamp et al., 2006) has 

carried on under the assumption that phonetic categories are formed before language learners form pho-

nemes which consist of multiple phonetic categories (such as Harris, 1963; see Dillon et al., 2013 for a 

discussion). Peperkamp et al. (2003) explicitly propose that language learners construct phonemes in two 

steps: first by constructing a number of phonetic categories, and subsequently by clustering these catego-

ries into phonemes based on whether they occur in distinct contexts.  

However, Dillon et al. (2013) argue that a two-step model of phoneme acquisition is not a feasi-

ble hypothesis for how language learners acquire allophonic relationships, given the large amount of 

category overlap exhibited across phonemes. They draw from the example of Inuktitut, which contains 

three vowel phonemes: /i/, /u/, and /a/. Each of these phonemes consist of two allophones: respectively [i], 

[u] and [a] which occur after non-uvulars, and lowered vowel qualities [e], [o], and [ɑ] which occur after 

uvulars. In a two-step model, the learner must discover six phonetic categories in an initial step, then de-

termine that [i] and [e] for example occur in complementary environments and therefore are allophones of 

a single phoneme.  

In a clustering analysis of Inuktitut vowels, Dillon and colleagues show that a machine learner 

performs poorly if tasked with determining the six allophones of Inuktitut. They show that a simple mix-

ture of Gaussians model either discovers too few allophones, or discovers clusters which do not resemble 

actual phonetic categories well enough for learners to then determine that these categories are in comple-

mentary environments with other categories in a second step. Because of this, Dillon and colleagues 
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suggest a one-step model of phonological acquisition, in which allophones and rules relating allophones 

to one another are acquired in a single step. In their model, learners search for subsets of sets, under the 

condition that subsets are Gaussian-distributed and are in complementary distribution with other subsets 

within their set. They find that modelling with a multivariate mixture of linear models is more accurate in 

approximating the allophones and phonemes of Inuktitut compared to a simple mixture of Gaussians 

model. 

The artificial language learning experiment described below will test for whether experimental 

evidence supports a two-stage model or a one-stage model by mapping the learning trajectory of partici-

pants exposed to one of three distribution types. 

3. Research Question 

This study has two goals. The first is to simply replicate the results of Noguchi (2016) through Mechani-

cal Turk. In a two-day long study, Noguchi found that even after one day of training a group trained on a 

bimodal distribution where S1a-S4a occurred after [i] and S5a-S8a occurred after [u] (Bimodal-Comp 

group) 23 had significantly lower d’ values than a group trained on a bimodal distribution where all tokens 

along the S1a-S8a continuum occurred after [i] and after [u] (Bimodal-NonComp group). This study will 

also include a monomodal group for comparison. 

The second and more interesting goal of this study is to determine whether there is experimental 

evidence for a one-stage model of phoneme acquisition or a two-stage model. In order to do so, this study 

will randomly place participants into one of three training conditions: Bimodal-Comp training, which 

                                                      

23
 Noguchi (2016) gives articulatory reasons that this rule, [ɕ] after [i] and [ş] after [u], is more natural than the op-

posite rule, [ɕ] after [u] and [ş] after [i], based on shared phonetic features between the target fricative and the 

contextual vowel. The articulations of palatal [ɕ] and high front vowels both require a raised tongue body, and the 

articulations of retroflex [ş] and back vowels both require a retracted tongue body. Noguchi (2016) conducts a sec-

ond experiment with both a natural and an unnatural condition. Only those who were in the condition which was 

trained on the natural rule show decreased sensitivity compared to the Non-Complementary group; those trained on 

the unnatural rule showed no evidence of decreased sensitivity.   
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will consist of exposure to a bimodal frequency distribution where both peaks of the bimodal distribution 

occur in complementary environments; Bimodal-NonComp training, which will consist of exposure to a 

bimodal frequency distribution where both peaks of the bimodal distribution occur in non-complementary 

environments; and Monomodal training, which will consist of exposure to a monomodal frequency dis-

tribution. Learners will be exposed to one of three exposure times, with the greatest exposure period 

consisting of roughly the same number of critical tokens as that found in Noguchi’s first day of training. 

Noguchi found a significant difference in d’ values between the Bimodal-Comp and Bimodal-NonComp 

groups after one day of training, so this study will use that point as roughly the last exposure time in order 

to determine how each group behaves before that point. 

The previous chapter found a difference in sensitivity between the bimodally- and monomodally-

trained participants for the [ɕ-ʂ] critical stimuli (Experiment A3). Therefore, it is expected that the Bi-

modal-NonComp group will achieve a higher sensitivity than the Monomodal group at some point in time 

(see blue (Monomodal) and green (Bimodal-NonComp) lines in Figure 35). Additionally, based on Nogu-

chi (2016) it is predicted that the Bimodal-NonComp group will have a significantly higher sensitivity 

compared to the Bimodal-Comp group after exposure to at least 256 critical syllables during training (see 

red (Bimodal-Comp) and green (Bimodal-NonComp) points in Figure 35). 

 
Figure 35. Predicted results as amount of exposure increases. This study will test participants trained in 

one of three exposure amounts, with 96 critical tokens in the shortest amount of training, and 288 critical 
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tokens in the greatest amount of training. The training phase of the first day of Noguchi (2016) consisted 

of 256 critical tokens. 

The learning trajectory of interest is that of the Bimodal-Comp group. The learning trajectory of the Bi-

modal-Comp training is hypothesized to follow one of two trajectories, shown with the dotted lines in 

Figure 35. If phoneme acquisition follows a two-step model in which learners first acquire phonetic cate-

gories through distributional learning, and then learn that two phonetic categories are allophones of a 

single phoneme, one would expect the Bimodal-Comp group to initially pattern with the Bimodal-

NonComp group, and later pattern with the Monomodal group. If phoneme acquisition follows a one-

stage model of acquisition, in which learners are searching for subsets of sets from the very beginning, 

where each subset must be in complementary distribution with any other subsets in the same set, then the 

Bimodal-Comp group should always pattern with the Monomodal group. To summarize, the two research 

questions asked in this chapter are as follows: 

(1) Can the results of Noguchi (2016) be replicated through an online platform such as 

Mechanical Turk? 

(2) Does experimental evidence support a one- or a two-stage model of allophony acqui-

sition? 

 

This study successfully replicates Noguchi (2016) on Mechanical Turk, and finds non-significant trends 

which more strongly support a one-stage model of allophony acquisition over a two-stage model. Some 

support is also found for the model proposed in the previous chapter, that a change in bias precedes a 

change in sensitivity. 

4. Methodology 

Experiment B closely follows the methodology of Noguchi (2016). The main differences between Nogu-

chi and the current experiment are that (1) the current study trains participants on one of three exposure 

amounts, (2) a Rule Test phase will be included to determine whether there is evidence that learners ex-

posed to a complementary distribution of critical phones learned a phonological rule, and (3) a group 

trained on a monomodal distribution (rather than the control group used by Noguchi) will be included. 
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4.1. STIMULI  

Four types of syllables were created: critical syllables, filler syllables, context syllables, and generaliza-

tion syllables. Following Noguchi (2016), onsets of critical syllables were drawn from an 8-point 

continuum ranging between an alveopalatal fricative [ɕ] to a retroflex fricative [ʂ], and each onset was 

followed by [ɑ]. Continuum points will be referred to as S1a-S8a, where S1a indicates the most [ɕɑ]-like 

end of the continuum, and S8a indicates the most [ʂɑ]-like end. Filler syllables consisted of four different 

tokens each of the syllables [tɑ] and [tʰɑ]. Context syllables were [pi pu hi hu ni nu], where each of the 

three onsets end with either [i] or [u]. Generalization syllables also ended in either [i] or [u], but had dif-

ferent onsets [ti tu fi fu li lu kʰi kʰu mi mu ɹi ɹu].24 

All recordings, filtering, and splicing were made in Praat (version 6.0.29, Boersma, 2002), soft-

ware for speech analysis, synthesis, and manipulation. Stimuli were recorded by the experimenter, a 

native speaker of English and heritage speaker of Mandarin. Recordings were made in a soundproof booth 

on an HP Spectre laptop at 44100 Hz using an ATR2500-USB Audio Technica microphone. All syllable 

types were recorded in two-syllable “phrases,” with context syllables and generalization syllables occur-

ring phrase-initially, and test syllables and filler syllables occurring phrase-finally. Specifically, context 

and generalization syllables were followed by the dummy syllable [ʃɑ] (e.g. [li ʃɑ]), and test syllables and 

filler syllables were preceded by the dummy syllable [ɑ] (e.g. [ɑ ɕɑ]). Before manipulations were made, 

all recordings were high-pass filtered for frequencies that were equal to or less than 200 Hz. Dummy syl-

lables (i.e. phrase-final [ʃɑ] and phrase-initial [ɑ]) were then spliced out. All cuts were made where the 

waveform crossed 0 Hz to avoid clicks and other unnatural non-speech sounds when splicing sounds to-

gether.  

                                                      

24
 Noguchi (2016) modelled his artificial language on Mandarin, and so used voiceless unaspirated stops (e.g. [t]) 

rather than voiced stops (e.g. [d]). Likewise, note that [p] is a voiceless unaspirated stop, not to be confused with 

[pʰ]. 
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For critical syllables, tokens of the two endpoints of the target continuum [ɕɑ] and [ʂɑ] were rec-

orded (again, spliced from an original recording of dummy-critical “phrases”). The fricative portions ([ɕ] 

and [ʂ]) and vowel portions ([ɑ]) were isolated. The middle 160 ms of each fricative was extracted using a 

parabolic windowing function. The mean intensity of each fricative was adjusted to 60 dB. To create the 

fricative portion of the 8-point continuum, the endpoint fricatives were overlapped in varying amounts, 

with the second point of the continuum consisting of 6/7ths of the [ɕ] token and 1/7th of the [ʂ] token, the 

third point of the continuum consisting of 5/7ths of the [ɕ] token and 2/7th of the [ʂ] token, etc. The con-

tinuum between vowels was created by using TANDEM-STRAIGHT, software which creates natural-

sounding continua between two sounds. The vowel spliced from [ɕɑ] and the vowel spliced from [ʂɑ] 

were used as input into TANDEM-STRAIGHT (details of the process TANDEM-STRAIGHT uses to 

create continua can be found in Kawahara et al. (2008). TANDEM-STRAIGHT returned 6 intermediate 

stimuli, for a total of 8 continuum points including the endpoints. All vowel continuum points were then 

scaled to have a mean intensity of 72 dB. Following this, each of the 8 fricative sounds were spliced onto 

their corresponding 8 vowel sounds, creating an 8-point continuum between [ɕɑ] and [ʂɑ]. Each of these 

syllables was scaled to have an average intensity of 74 dB. Critical syllables will be referred to as S1a-S8a, 

where S1a refers to the most [ɕɑ]-like end, and S8a refers to the most [ʂɑ]-like end. Spectrograms of criti-

cal syllables S1a, S3a, S6a, and S8a are shown in Figure 26. Note that these critical syllables are identical 

to those used in Experiments A3-1 and A3-2 from the previous chapter. 
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Figure 36. First 500 ms of critical syllables S1a (top left), S3a (top right), S6a (bottom left), and S8a (bot-

tom right). 

Each of the 6 context syllables were concatenated before each of the 8 critical syllables and each of the 8 

filler syllables. This made up the stimuli to be used during training. Each of the 12 generalization sylla-

bles were concatenated before S1a and S8a, and before each of the 8 filler syllables. These stimuli were 

used in the Rule Test, which is described below. 
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4.2. PROCEDURE 

Participants were randomly placed into one of three Distributions: Bimodal-Comp, Bimodal-NonComp, 

or Monomodal. Participants were also randomly placed into one of three ExposureTimes (One, Two, or 

Three), and one of two TestOrders (RuleFirst or PhoneFirst). This experiment consisted of five parts: a 

Practice Phone Test in English, followed by a Train phase, followed by two tests, a Phone Test and a Rule 

Test, followed by a Questionnaire. Participants were directed to either the Phone Test first or the Rule 

Test first depending on which TestOrder condition they were in. 

Procedure Abbreviated directions Sample trial stimuli 

1. Practice phone test Are these two words the same or different? sheep vs. ship 

sheep1 vs. sheep2 

2. Training  Listen carefully ni S1a 

ni ta 

3. Phone Test 

 

Are these two words the same or different? 

 

S1a vs. S8a 

S1a vs. S1a 

3. Rule Test Which of these two phrases are allowed in 

this language? 

ni S1a vs. ni S1a 

5. Questionnaire Please provide background information  

(responses will not affect payment) 

 

Table 17. Summary of procedure in Experiment B. 

At the beginning of the experiment, participants were given the following instructions: 

[Page 1] 

Just a few things to keep in mind before you begin! 

Please wear headphones for the duration of this experiment...  

Please do not write any words down while taking this experiment... 

...And please do not click on your browser's back or refresh button. 

 

[Page 2] 

A few more things to keep in mind before you begin... 

As this is a scientific experiment, it is important that you devote your full attention to this 

HIT25! Please do not do other tasks or shrink the browser window, and please do not re-

move your headphones. 

                                                      

25
 A “HIT” (Human Intelligence Task) is a term used in Mechanical Turk, referring to a task that a participant 

(“Worker”) can complete. 
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If you are unable to devote your full attention to this HIT, which is expected to take about 

20-40 minutes, please do not do this HIT. 

Participants were then directed to the English Practice Phone Test.26 They were given the following in-

structions: 

In this English practice test, you will see two buttons on the screen: one labelled 

“SAME”, and one labelled “DIFFERENT”. 

You will hear someone saying two things in English. They are either two repetitions of 

the same word or two different words. If you think they are repetitions of the same word, 

press the “SAME” button. If you think they are different words, press the 

“DIFFERENT” button. 

During the English Practice Phone Test, participants were given a pair of English words, such as sheep 

and ship. Participants were asked to determine whether the second words in these phrases were the same 

word, or two different words. Participants were given 4 same pairs (e.g. ship1 vs. ship2), and 4 different 

pairs (e.g. ship1 vs. sheep1). No feedback was given. 

After completing the Practice Phone Test, participants were directed to a Train phase. They were 

given the following instructions: 

[Page 1] 

Great job! Later, we will do the same thing with a foreign language. First though, you 

will listen to short phrases in this foreign language. Each recording consists of two 

words. Words in this language are very short and consist of only one syllable. Therefore 

a phrase could be something like “wa ko”. 

This will take 10-20 minutes. Your main job is to listen carefully. 

[Page 2] 

Please remember: DO NOT WRITE ANY WORDS DOWN. You may draw or sketch while 

you are listening to pass the time, but please do not write any words down. This section 

will feel very long since you are listening passively for the most part, but in reality takes 

no more than about 20 minutes. 

                                                      

26
 Note that there was no Sound Check phase in this experiment, in order to keep the experiment from being too 

long and avoid fatigue for participants in ExposureTime Three. 



124 

 

Exposure items presented during the training phase consisted of context syllables followed by critical syl-

lables (e.g. ni S1a), or context syllables followed by filler syllables (e.g. ni ta). 

Participants in the Bimodal-Comp and Bimodal-NonComp groups were exposed to critical 

phones whose frequencies fell in a bimodal distribution, and participants in the Monomodal group were 

exposed to critical phones whose frequencies fell in a monomodal distribution. Bimodal-NonComp and 

Monomodal groups were exposed to all continuum points S1a-S8a after [i] and [u], whereas the Bimodal-

Comp group only heard S1a-S4a (the [ɕ]-like end of the continuum) after [i], and S5a-S8a (the [ş]-like end 

of the continuum) after [u] (Noguchi, 2016). This is articulatorily more natural than the opposite pattern, 

S1a-S4a after [u], and S5a-S8a after [i], as palatal consonants and high front vowels both require a raised 

tongue body, and retroflex consonants and back vowels require a retracted tongue body. Figure 37 illus-

trates the frequency distributions participants were exposed to. 

     

 
Figure 37. Illustration of familiarization frequency for Bimodal-NonComp group (top-left), Monomodal 

group (top-right), and Bimodal-Comp group (bottom) during training. 
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Each block of training consisted of one of each of the 6 context syllables [pi pu hi hu ni nu] fol-

lowed by 16 critical syllables S1a-S8a (following the distributions shown in Figure 3), resulting in 96 

critical phrases per block. Each block of training also consisted of one of each of the 6 context syllables 

followed by one of the 4 tokens of 2 filler syllables, resulting in 48 fillers per block. Participants in the 

ExposureTime One group were exposed to one block of training stimuli (96 critical stimuli), which took 

about 5 minutes; participants in the ExposureTime Two group were exposed to two blocks of training 

stimuli (192 critical stimuli), which took about 10 minutes; and participants in the ExposureTime Three 

group were exposed to three blocks of training stimuli (288 critical stimuli), which took about 15 minutes.   

After training, participants were directed to one of the two test phases, the order of which de-

pended on which TestOrder participants were in. Before the Phone Test, participants were given the 

following instructions: 

Great job! This next part will be similar to the practice test you did earlier in English, 

but this time it will ask you about the foreign language that you heard. 

Again, you will see two buttons on the screen: a “SAME” button, and a “DIFFERENT” 

button. You will hear a person saying two things in the foreign language you heard. If 

you think they are repetitions of the same word in this language, press the “SAME” but-

ton. If you think they are different words, press the “DIFFERENT” button. 

In the Phone Test, participants were presented with pairs of syllables. The Phone Test consisted of 12 crit-

ical Different Pairs (S1a vs. S8a), 12 critical Same Pairs (S1a vs. S1a or S8a vs. S8a), 12 filler Different 

Pairs ([ta]1 vs. [tʰa]1), and 12 filler Same Pairs ([ta]1 vs. [ta]2). 

The purpose of the Rule Test was to determine whether participants had learned the phonological 

rule that [ɕ] occurs after [i] and [ʂ] occurs after [u], and, if so, whether they had generalized this rule to 

apply to newly-heard syllables. Before the Rule Test, participants were given the following instructions: 

Great job! In this next section, you will hear a short phrase in this foreign language. You 

will be asked whether the phrase is allowed in the language you heard. 

Please note that you have not heard all of the phrases that are allowed in this language. 

If you are not sure if the phrase is allowed or not, just select your best guess. 
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In the Rule Test, participants heard one two-syllable phrase and were given two button options to click 

on. One button read This phrase IS allowed, and the other read This phrase is NOT allowed. Trials in the 

rule test consisted of either critical trials or filler trials. In critical trials, participants heard either S1a or 

S8a preceded by either a context syllable [pi pu hi hu ni nu] which they had heard during training (“old 

trial”), or a new generalization syllable [ti tu fi fu li lu kʰi kʰu mi mu ɹi ɹu] which they had not heard dur-

ing training (“new trial”). Critical trials were either Legal trials, which conformed to the rule that S1a 

follows [i] and S8a follows [u], or Illegal trials, which violated this rule. Filler trials consisted of a gener-

alization syllable followed by either [ta] or [tha]. Participants heard 24 old trials (12 Legal, 12 Illegal)27, 

24 new trials (12 Legal, 12 Illegal), and 24 filler trials. 

Participants in the PhoneFirst condition were presented with the Phone Test first, followed by the 

Rule Test. Participants in the RuleFirst condition took the Rule Test first, followed by the Phone Test. 

After the experiment, participants were directed to a short questionnaire which asked about par-

ticipants’ demographic information (age, place of residence, etc.), language background (native language, 

languages studied, history of speech or hearing disorder, etc.), and attention levels during participation. 

Participants were also asked whether they had noticed any patterns and whether they used any strategies 

during the experiment. 

4.3. PARTICIPANTS 

Participants were asked to participate only if they (1) had no known history of speech or hearing impair-

ments, (2) were a native speaker of English, (3) had regular access to a computer with an internet 

connection, and (4) were using a computer able to play audio. Because this experiment was conducted 

online rather than face-to-face, only participants using a computer in the United States were allowed to 

                                                      

27
 Note that “Old” and “New” refer to the familiarity of the syllable, and not of the phrase. Therefore, an “Old Ille-

gal” trial is a trial which consists of an Old context syllable (one used during Training) followed by a critical 

syllable, where the entire “phrase” violates the rule that S1a follows [i] and S8a follows [u].  
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participate to increase the chance that the participant would be a native English speaker using an MTurk 

qualification (attributes that participants on MTurk can obtain). In addition, since the onsets of the critical 

syllables ranged between [ɕ] and [ʂ], following Noguchi (2016), participant responses were not included 

in analysis if they reported having some background in a language with more than one voiceless post-al-

veolar fricative as phonemes. Participants were asked to not participate if they had some language 

background in Mandarin Chinese, Japanese, Russian, or German. Qualifications used to screen partici-

pants are as follows: 

• Must be using a computer in the United States 

• Must have an approval rating of equal or greater to 90% on all tasks completed on MTurk 

• Must have had at least 50 completed MTurk tasks approved 

 

431 participants were recruited through Mechanical Turk. Participants were excluded if they: 1) scored 

fewer than 5/8 correct on the practice English test (15 excluded for this); 2) reported having a speech or 

hearing disorder in the questionnaire (4 excluded for this); 3) reported not being a native English speaker 

(1 excluded for this); or 4) reported having some sort of back-ground with a language with more than one 

voiceless post-alveolar fricative (22 excluded for this). The number of participants analyzed per condition 

are displayed in Table 18 (note that some participants were excluded for more than one reason). 

  ExposureTime One ExposureTime Two ExposureTime Three 

Bimodal-Comp PhoneFirst 23 23 25 

RuleFirst 18 17 18 

Total 41 40 43 

Bimodal-NonComp PhoneFirst 31 17 19 

RuleFirst 20 16 21 

Total 51 33 40 

Monomodal PhoneFirst 28 23 26 

RuleFirst 20 21 25 

Total 48 44 51 

Table 18. Number of participants included in analysis per condition. 

The number of participants that were included in the analysis ranged between 33 in the Bimodal-

NonComp, ExposureTime Two condition, to 51 in the Bimodal-NonComp, ExposureTime One and Mon-

omodal, ExposureTime Three condition. 
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5. Results 

This section first describes the results of the Phone Test (Section 5.1), followed by results of the Rule 

Test (Section 5.2). 

5.1. PHONE TEST 

The Phone Test will be analyzed the same way the Test results from Chapter 3 were analyzed, but will 

include a third independent factor, ExposureTime. As with Chapter 3, this section will be adhering to the 

following conventions to interpret findings: 

(1) A significant interaction between condition and stimulus type will be interpreted as a 

significant difference in sensitivity between conditions 

(2) A significant main effect of condition will be interpreted as a significant difference in 

response bias between conditions… 

(3) … unless a significant interaction between condition and stimulus type was also 

found, in which case a main effect will not be interpreted. 

Again, results of this same-different test will be treated as no-yes or noSignal-signal experiments (see 

Chapter 2). 

The regression used in analysis modelled one dependent variable, Response, with three fixed ef-

fects: (1) Distribution, consisting of three levels {bimodal-comp, bimodal-nonComp, monomodal}, (2) 

PairType, consisting of two levels {same, diff}, and (3) ExposureTime, consisting of three levels {one, 

two, three}. The dependent variable Response consists of two levels, s and d, where s corresponds to a 

participant response of “same” during the Test phase, and where d corresponds to a participant response 

of “different” during the Test phase. The regression formula initially used is shown in (1). 

(1) Response ~ Condition*PairType*ExposureTime + (1 + PairType|Sub-

ject) + (1 + ExposureTime + Condition|Item) 

Due to a failure to converge, the random effects structure was simplified (see Barr et al., 2013). The final 

formula the regression was fitted to included random slopes by Subject and by Item, as shown in (2). 

(2) Response ~ Distribution*PairType*ExposureTime + (1|Subject) + (1|Item) 

 

Results of the model for critical and filler stimuli are shown in Table 19. 
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Predictor Coefficient SE Wald Z p 

CRITICAL     

(Intercept) -0.095 0.328 -0.288 0.773 

Distribution=bimodalNonComp 0.639 0.436 1.467 0.142 

Distribution=monomodal -0.186 0.442 -0.42 0.675 

PairType=same -4.230 0.309 -13.686 <0.001 *** 

ExposureTime=three 0.006 0.452 0.013 0.990 

ExposureTime =two 0.445 0.458 0.972 0.331 

Interaction=bimodalNonComp & same -0.003 0.383 -0.008 0.993 

Interaction=monomodal & same -0.497 0.443 -1.121 0.262 

Interaction=bimodalNonComp & three -0.270 0.629 -0.428 0.668 

Interaction=monomodalNonComp & three 0.330 0.617 0.534 0.593 

Interaction=bimodalNonComp & two -0.672 0.652 -1.031 0.303 

Interaction=monomodalNonComp & two -0.431 0.634 -0.68 0.496 

Interaction=same & three 0.672 0.387 1.736 0.083 

Interaction=same & two 0.498 0.387 1.287 0.198 

Interaction=bimodalNonComp & same & three -0.903 0.547 -1.65 0.099 

Interaction=monomodalNonComp & same & three 0.002 0.560 0.004 0.997 

Interaction=bimodalNonComp & same & two -0.143 0.533 -0.267 0.789 

Interaction=monomodalNonComp & same & two -0.334 0.599 -0.558 0.577 

FILLER     

(Intercept) 2.756 0.217 12.685 <0.001 *** 

Distribution=BimodalNonComp -0.121 0.268 -0.453 0.651 

Distribution=Monomodal -0.201 0.269 -0.746 0.456 

PairType=same -5.271 0.270 -19.51 <0.001 *** 

Timepoint=Three 0.199 0.293 0.680 0.496 

Timepoint=Two -0.254 0.278 -0.913 0.361 

Interaction=bimodalNonComp & same 0.125 0.325 0.385 0.700 

Interaction=monomodal & same 0.096 0.330 0.290 0.772 

Interaction=bimodalNonComp & three 0.054 0.403 0.135 0.893 

Interaction=monomodalNonComp & three 0.098 0.390 0.252 0.801 

Interaction=bimodalNonComp & two 0.226 0.393 0.574 0.566 

Interaction=monomodalNonComp & two 0.433 0.382 1.132 0.258 

Interaction=same & three -0.277 0.352 -0.785 0.433 

Interaction=same & two -0.087 0.351 -0.247 0.805 

Interaction=bimodalNonComp & same & three -0.160 0.489 -0.328 0.743 

Interaction=monomodalNonComp & same & three -0.144 0.477 -0.302 0.763 

Interaction=bimodalNonComp & same & two 0.585 0.479 1.220 0.222 

Interaction=monomodalNonComp & same & two -0.132 0.480 -0.274 0.784 

Table 19. Results of GLMM for the phone test. 

Follow-up contrasts in the context of the overall model were completed to test the following hypotheses: 

• The interaction between Distribution and PairType is significant for the Bimodal-Comp group 

compared to the Bimodal-NonComp group 

• The interaction between Distribution and PairType is significant for the Bimodal-Comp group 

compared to the Monomodal group 

• The interaction between Distribution and PairType is significant for the Bimodal-NonComp 

group compared to the Monomodal group 
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These three hypotheses were tested at each of the three ExposureTimes. Results are summarized in Table 

20. 

ExposureTime Distribution comparison Coefficient SE Wald Z p 

CRITICAL      

One Bimodal-NonComp vs. Bimodal-Comp -0.003 0.383 -0.008 0.993 

 Monomodal vs. Bimodal-Comp -0.497 0.443 -1.121 0.262 

 Monomodal vs. Bimodal-NonComp -0.494 0.405 -1.220 0.223 

Two Bimodal-NonComp vs. Bimodal-Comp -0.146 0.372 -0.392 0.695 

 Monomodal vs. Bimodal-Comp -0.831 0.403 -2.060 0.039 * 

 Monomodal vs. Bimodal-NonComp -0.685 0.424 -1.614 0.106 

Three Bimodal-NonComp vs. Bimodal-Comp -0.906 0.391 -2.316 0.021 * 

 Monomodal vs. Bimodal-Comp -0.494 0.343 -1.442 0.149 

 Monomodal vs. Bimodal-NonComp 0.411 0.387 1.063 0.288 

FILLER      

One Bimodal-NonComp vs. Bimodal-Comp 0.125 0.325 0.385 0.700 

 Monomodal vs. Bimodal-Comp 0.096 0.330 0.290 0.772 

 Monomodal vs. Bimodal-NonComp -0.030 0.308 -0.096 0.923 

Two Bimodal-NonComp vs. Bimodal-Comp 0.710 0.352 2.017 0.044 * 

 Monomodal vs. Bimodal-Comp -0.036 0.349 -0.103 0.918 

 Monomodal vs. Bimodal-NonComp -0.746 0.344 02.168 0.030 * 

Three Bimodal-NonComp vs. Bimodal-Comp -0.035 0.365 -0.096 0.924 

 Monomodal vs. Bimodal-Comp -0.048 0.344 -0.140 0.889 

 Monomodal vs. Bimodal-NonComp -0.013 0.351 -0.038 0.970 

Table 20. Summary of follow-up contrasts testing specific hypotheses for the Phone Test. 

At ExposureTime Two, the interaction between Condition and PairType when comparing the Bimodal-

Comp group with the Monomodal group is significant for critical trials (p = 0.039), with those exposed to 

a Bimodal-Comp distribution having 0.831 lesser log-odds of responding “different” than those exposed 

to a Monomodal distribution at that ExposureTime. At ExposureTime Three, the interaction between 

Condition and PairType when comparing the Bimodal-Comp group with the Bimodal-NonComp group is 

significant for critical trials (p = 0.021), with participants exposed to a Bimodal-Comp distribution having 

-0.906 lesser log-odds of responding “different” than those exposed to a Bimodal-NonComp distribution. 

There are no significant interactions between Condition and PairType at ExposureTime One. Sensitivity 

at each ExposureTime is shown in Figure 38. 
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Figure 38. The difference (in log-odds) of participants responding that critical Same Pairs are “different” 

and responding that critical Different Pairs are “different.” 

Findings are interpreted as follows: with the least amount of exposure tested in this experiment (Expo-

sureTime 1), no groups differ significantly from one another in terms of sensitivity. At the second-most 

amount of exposure tested in this experiment (ExposureTime 2), the Bimodal-Comp group and the Mono-

modal group do not pattern together in terms of sensitivity, with the Monomodal group having 0.831 

more sensitivity (measured in log-odds) than to the Bimodal-Comp group. At ExposureTime 3, the Bi-

modal-Comp and Bimodal-NonComp groups do not pattern together, with the Bimodal-NonComp group 

having 0.906 more sensitivity (measured in log-odds) than the Bimodal-Comp group, successfully repli-

cating findings from Noguchi (2016), who finds that a Bimodal-Comp group has lowered sensitivity 

compared to a Bimodal-NonComp group. 

For filler trials, there was a significant interaction between Condition and PairType between the 

Bimodal-Comp and Bimodal-NonComp groups at ExposureTime Two (p = 0.044), as well as a signifi-

cant interaction between the Monomodal and Bimodal-NonComp groups at ExposureTime Two (p = 

0.030). It is unclear what resulted in the significantly lower sensitivity for the Bimodal-NonComp group 

in filler stimuli at the second ExposureTime. 
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Figure 39. The difference (in log-odds) of participants responding that filler SamePairs are “different” and 

responding that filler DiffPairs are “different.” 

Because the previous chapter argued for a model in which a change in bias precedes a change in 

sensitivity, main effects of Distribution are also tested for. Tests were done in the context of the overall 

model (that is, those results shown in Table 19). Results are shown in Table 21. 
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ExposureTime Distribution Comparison Estimate SE Wald Z p 

CRITICAL      

One Bimodal-NonComp vs. Bimodal-Comp -0.638 0.441 -1.444 0.149 

 Monomodal vs. Bimodal-Comp 0.434 0.464 0.936 0.349 

 Monomodal vs. Bimodal-NonComp 1.072 0.434 2.471 0.014 * 

Two Bimodal-NonComp vs. Bimodal-Comp 0.106 0.485 0.218 0.827 

 Monomodal vs. Bimodal-Comp 1.032 0.465 2.223 0.026 * 

 Monomodal vs. Bimodal-NonComp 0.927 0.490 1.890 0.059 

Three Bimodal-NonComp vs. Bimodal-Comp 0.083 0.462 0.181 0.857 

 Monomodal vs. Bimodal-Comp 0.103 0.434 0.237 0.812 

 Monomodal vs. Bimodal-NonComp 0.020 0.447 0.044 0.965 

FILLER      

One Bimodal-NonComp vs. Bimodal-Comp 0.059 0.202 0.290 0.772 

 Monomodal vs. Bimodal-Comp 0.153 0.205 0.744 0.457 

 Monomodal vs. Bimodal-NonComp 0.094 0.192 0.489 0.625 

Two Bimodal-NonComp vs. Bimodal-Comp -0.460 0.223 -2.06 0.040 * 

 Monomodal vs. Bimodal-Comp -0.214 0.215 -0.994 0.320 

 Monomodal vs. Bimodal-NonComp 0.245 0.218 1.125 0.261 

Three Bimodal-NonComp vs. Bimodal-Comp 0.084 0.222 0.379 0.704 

 Monomodal vs. Bimodal-Comp 0.126 0.210 0.602 0.547 

 Monomodal vs. Bimodal-NonComp 0.042 0.214 0.195 0.845 

Table 21. Results of hypothesis testing within the context of the overall model for main effect of Distribu-

tion (regardless of PairType) for the Phone Test. Rows in grey are not interpreted since these comparisons 

yielded significant interactions between Distribution and PairType (see Table 20). 

A significant main effect of Distribution at ExposureTime One when the Bimodal-NonComp and Mono-

modal groups are compared is found, with the Bimodal-NonComp group having 1.072 greater log-odds of 

responding “different” than the Monomodal group, regardless of PairType. This supports what was found 

in the previous chapter: exposure to a bimodal (non-complementary) distribution led to greater log-odds 

of a “different” response compared to exposure to a monomodal distribution of phones. Figure 40 summa-

rizes the results of the follow-up contrasts testing for main effects for critical and filler stimuli. 
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Figure 40. Main effect of Distribution for critical trials (top) and filler trials (bottom). 

Two other significant main effects of Distribution are also found, but are not interpreted here. This is due 

to the fact that these same comparisons showed a significant interaction between PairType and Distribu-

tion. See Chapter 2, Section 3.4 for a detailed explanation as to why these cases are not interpreted. 
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5.2. RULE TEST 

This section reports on results of the Rule Test, which tests whether participants 1) learn the rule that [ɕ] 

occurs after [i] and [ʂ] occurs after [u], and 2) generalize this rule to syllables they were not exposed to 

during training. 

The regression used in the analysis of results of the rule test modelled one dependent variable, 

RuleResponse, with three fixed effects: (1) Distribution, consisting of three levels {bimodal-comp, bi-

modal-nonComp, monomodal}, (2) TrialType, consisting of two levels {legal, illegal}, and (3) 

ExposureTime, consisting of three levels {one, two, three}. The dependent variable RuleResponse con-

sists of two levels, l and i, where l corresponds to a participant pressing the button labelled This phrase IS 

allowed (or “legal”) during the rule test phase, and where i corresponds to a participant pressing the but-

ton labelled This phrase is NOT allowed (or is “illegal”). The regression formula initially used is shown 

in (3). 

(3) RuleResponse ~ Condition*TrialType*ExposureTime + (1 + Trial-

Type|Subject) + (1 + ExposureTime + Condition|Item) 

Due to a failure to converge, the random effects structure was simplified (see Barr et al., 2013). The final 

formula the regression was fitted to included random slopes by Subject and by Item, as shown in (4). 

(4) RuleResponse ~ Distribution*TrialType*ExposureTime + (1|Subject) + 

(1|Item) 

 

The regression was fitted once to old trials, and once to new trials. Results are summarized in Table 22. 
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Predictor Coefficient SE Wald Z p 

OLD     

(Intercept) 1.603 0.256 6.268 <0.001 *** 

Distribution=bimodalNonComp 0.203 0.330 0.616 0.538 

Distribution=monomodal 0.374 0.336 1.113 0.266 

TrialType=legal 0.209 0.199 1.047 0.295 

ExposureTime=three 0.319 0.344 0.927 0.354 

ExposureTime =two -0.168 0.344 -0.487 0.627 

Interaction=bimodalNonComp & legal -0.574 0.229 -2.506 0.012 * 

Interaction=monomodal & legal -0.239 0.236 -1.010 0.313 

Interaction=bimodalNonComp & three 0.134 0.484 0.277 0.782 

Interaction=monomodalNonComp & three -0.096 0.473 -0.204 0.839 

Interaction=bimodalNonComp & two -0.086 0.491 -0.175 0.861 

Interaction=monomodalNonComp & two 0.063 0.478 0.132 0.895 

Interaction=legal & three -0.133 0.242 -0.548 0.584 

Interaction=legal & two 0.233 0.239 0.975 0.330 

Interaction=bimodalNonComp & legal & three 0.536 0.346 1.550 0.121 

Interaction=monomodalNonComp & legal & three 0.299 0.339 0.883 0.377 

Interaction=bimodalNonComp & legal & two 0.200 0.337 0.592 0.554 

Interaction=monomodalNonComp & legal & two -0.307 0.334 -0.916 0.360 

NEW     

(Intercept) 0.602 0.265 2.275 0.023 * 

Distribution=bimodalNonComp -0.256 0.278 -0.922 0.357 

Distribution=monomodal -0.035 0.283 -0.125 0.901 

TrialType=legal -0.151 0.274 -0.550 0.582 

ExposureTime=three -0.414 0.291 -1.426 0.154 

ExposureTime =two -0.157 0.295 -0.530 0.596 

Interaction=bimodalNonComp & legal 0.293 0.194 1.508 0.132 

Interaction=monomodal & legal 0.236 0.200 1.182 0.237 

Interaction=bimodalNonComp & three 0.275 0.403 0.681 0.496 

Interaction=monomodalNonComp & three 0.028 0.395 0.070 0.944 

Interaction=bimodalNonComp & two 0.013 0.419 0.030 0.976 

Interaction=monomodalNonComp & two -0.261 0.405 -0.645 0.519 

Interaction=legal & three 0.180 0.205 0.879 0.380 

Interaction=legal & two 0.001 0.208 0.006 0.996 

Interaction=bimodalNonComp & legal & three -0.260 0.284 -0.915 0.360 

Interaction=monomodalNonComp & legal & three -0.243 0.278 -0.873 0.383 

Interaction=bimodalNonComp & legal & two -0.337 0.294 -1.144 0.253 

Interaction=monomodalNonComp & legal & two -0.069 0.286 -0.243 0.808 

Table 22. Results of GLMM for the rule test. 

Follow-up contrasts in the context of the overall model were completed to test the following hypotheses: 

• The interaction between Distribution and TrialType is significant for the Bimodal-Comp group 

compared to the Bimodal-NonComp group 

• The interaction between Distribution and TrialType is significant for the Bimodal-Comp group 

compared to the Monomodal group 

• The interaction between Distribution and TrialType is significant for the Bimodal-NonComp 

group compared to the Monomodal group 
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These three hypotheses were tested at each of the three ExposureTimes. Results of the follow-up contrasts 

are shown in Table 23. The difference in an “allowed” response (measured in log-odds) between legal 

and illegal trials is shown in Figure 41 (old trials) and Figure 42 (new trials). The higher the number, the 

higher the sensitivity is to the rule that [ɕɑ] occurs after [i] and [ʂɑ] occurs after [u].  

ExposureTime Distribution Comparison Coefficient SE Wald Z p 

OLD      

One Bimodal-NonComp vs. Bimodal-Comp 0.574 0.229 2.506 0.012 * 

 Monomodal vs. Bimodal-Comp 0.239 0.236 1.010 0.312 

 Monomodal vs. Bimodal-NonComp -0.336 0.225 -1.495 0.135 

Two Bimodal-NonComp vs. Bimodal-Comp 0.375 0.248 1.512 0.130 

 Monomodal vs. Bimodal-Comp 0.545 0.237 2.304 0.021 * 

 Monomodal vs. Bimodal-NonComp 0.171 0.247 0.690 0.490 

Three Bimodal-NonComp vs. Bimodal-Comp 0.0385 0.259 0.148 0.882 

 Monomodal vs. Bimodal-Comp -0.061 0.243 -0.249 0.803 

 Monomodal vs. Bimodal-NonComp -0.099 0.258 -0.384 0.701 

NEW      

One Bimodal-NonComp vs. Bimodal-Comp -0.293 0.194 -1.508 0.131 

 Monomodal vs. Bimodal-Comp -0.236 0.200 -1.182 0.237 

 Monomodal vs. Bimodal-NonComp 0.057 0.189 0.302 0.763 

Two Bimodal-NonComp vs. Bimodal-Comp 0.044 0.221 0.198 0.843 

 Monomodal vs. Bimodal-Comp -0.166 0.205 -0.813 0.416 

 Monomodal vs. Bimodal-NonComp -0.210 0.215 -0.976 0.329 

Three Bimodal-NonComp vs. Bimodal-Comp -0.034 0.207 -0.162 0.871 

 Monomodal vs. Bimodal-Comp 0.008 0.195 0.039 0.969 

 Monomodal vs. Bimodal-NonComp 0.041 0.196 0.209 0.834 

Table 23. Results of Rule Test for old trials and new trials. 

 
Figure 41. Results of Rule Test, old trials. 
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Figure 42. Results of Rule Test, new trials. 

Since the Bimodal-Comp conditions were the only conditions which were exposed to the phonological 

rule that [ɕɑ] occurs after [i] and [ʂɑ] occurs after [u], one would only expect the groups exposed to Bi-

modal-Comp distributions to have greater sensitivity to the difference between legal and illegal trials if 

they had learned this phonological rule. Evidence of this is found for ExposureTime One for old trials, 

where the Bimodal-Comp group has significantly greater sensitivity to the difference between legal and 

illegal trials than the Bimodal-NonComp group (and numerically greater sensitivity than the Monomodal 

group), and also during ExposureTime Two for old trials (Figure 41), where the Bimodal-Comp group 

has significantly greater sensitivity to the difference between legal and illegal trials than the Monomodal 

group (and numerically greater sensitivity than the Bimodal-NonComp group). However, there are no sig-

nificant differences between groups at any other ExposureTimes, even at ExposureTime Three. It is 

unclear why the Bimodal-Comp group shows evidence of learning the rule after 10 minutes of training 

(ExposureTime Two), but not after 15 minutes of training (ExposureTime Three). This may be an indica-

tion that the Rule Test used is not an accurate reflection of learners’ knowledge of phonological rules they 

may have acquired, and/or that participants in ExposureTime Three were showing signs of fatigue. There 
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does not appear to be any evidence that the Bimodal-Comp group generalized any type of rule to the new 

generalization syllables that they had not heard during training (Figure 42). 

6. Discussion 

Experiment B trained participants on one of three distribution types (Bimodal-Comp, Bimodal-NonComp, 

and Monomodal distributions) for one of three ExposureTimes (5 minutes, 10 minutes, or 15 minutes) in 

order to examine the effect of environmental context over the time course of early category learning. It 

was predicted that either results would show evidence for 1) a two-stage model, in which the Bimodal-

Comp and Bimodal-NonComp learning trajectories initially patterned together and showed greater initial 

sensitivity than the Monomodal learning trajectory in a first stage, and then in a second stage the Bi-

modal-Comp and Monomodal learning trajectories patterned together and showed less sensitivity than the 

Bimodal-NonComp learning trajectory; or 2) a one-stage model in which the Bimodal-Comp learning tra-

jectory and Monomodal learning trajectory always patterned together. Neither of the predictions made by 

these models were clearly borne out in Experiment B, but this chapter concludes that results of this exper-

iment are better explained by a one-stage model of allophonic acquisition than by a two-stage model. This 

is primarily because, numerically, the sensitivity in the Bimodal-Comp learning trajectory is always lower 

than that of the Bimodal-NonComp and Monomodal learning trajectories. This suggests the Bimodal-

Comp group was never initially “tricked” into believing that there were two sound categories /ɕ/ and /ʂ/. 

Therefore it does not appear this group ever solely took frequency distributions into account, disregarding 

environmental context. 

The most unexpected learning trajectory was that of the learners trained on a Monomodal distri-

bution. Numerically, learners trained on the Monomodal distribution showed the highest sensitivity to 

critical stimuli at ExposureTimes One and Two, and significantly higher sensitivity at ExposureTime 

Two compared to the Bimodal-Comp group. Although more research is needed, I believe this may sug-

gest a period of prolonged uncertainty in the Monomodal group compared to the Bimodal-Comp group. 

That is, learners trained on a Bimodal-Comp distribution appear to have learned that critical items S1a-S4a 
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and S5a-S8a belong to a single phoneme quicker than the Monomodal group. This would be difficult to 

explain in a two-stage model in which bimodal learners initially learn that there are two phonetic catego-

ries, but I believe these results fit with Dillon and colleagues’ one-stage model of phoneme acquisition. 

Dillon and colleagues start with the assumption that the learner knows the conditioning environments of 

each pair of Inuktitut allophones, but note that their model does not capture exactly how learners deter-

mine these environments. It follows that a learner must entertain a number of hypotheses regarding 

whether there are conditioning environments, and if so, what they are. Results from this study can be ex-

plained if a learner’s hypothesis testing is modelled as a search specifically for multiple subsets with some 

conditioning environment relating subsets to one another, where learners only settle on the hypothesis that 

there is a single subset after all other natural conditioning environments have been tested. In this study, 

the Bimodal-Comp group quickly determined these conditioning environments and settled on the hypoth-

esis that [ɕ] and [ʂ] are allophones of a single phoneme by ExposureTime Two, where [ɕ] occurs after [i] 

and [ʂ] occurs after [u]. On the other hand, the Monomodal group may still be entertaining and testing 

various hypotheses regarding possible conditioning environments, and so do not settle on the hypothesis 

that there is just one post-alveolar fricative phoneme as quickly as the Bimodal-Comp group does. 

6.1. COMPARISON WITH EXPERIMENT A3 

Because critical stimuli were identical to those used in Experiment A3 and the procedures between the 

two experiments were similar, this section provides a comparison of the current study’s results and those 

in Experiment A3. 
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Figure 43. Log-odds of participants responding “different” for critical trials at all three ExposureTimes in 

Experiment B and in Experiment A3. Error bars indicate standard error. 

Figure 43 shows the log-odds of a “different” response during the Phone Test of Experiment B and the 

only test phase in Experiment A3. Both of these test phases presented participants with pairs of syllables 

and asked participants to respond whether they believed these to be different syllables or repetitions of the 

same syllable. Experiment A3 found greater sensitivity for those trained on a bimodal distribution com-

pared to those trained on a monomodal distribution. This can be seen in Figure 43 over the “Exp A3” 

label as greater sensitivity in the greater distance between the BiNon-Diff mean and the BiNon-Same 

mean, compared to the distance between the Mono-Diff mean and the Mono-Same mean. That is, those 

trained on a bimodal (non-complementary) distribution responded “different” more when presented with 

Different Pairs and “different” less when presented with Same Pairs, compared to those trained on a mon-

omodal distribution. Participants in Experiment A3 were exposed to 192 critical syllables presented in 

isolation. Participants in ExposureTimes One, Two, and Three in Experiment B were exposed respec-

tively to 96, 192, and 288 critical syllables presented in phrases. If one assumes the model presented in 



142 

 

the previous chapter, it appears that the presentation of critical syllables within phrases slowed the acqui-

sition process since not even participants trained with 288 critical syllables showed a significant 

difference in sensitivity between the Bimodal-NonComp and Monomodal groups. This acquisition pro-

cess may be slowed simply from the greater mental burden placed on learners from the need to process 

additional contextual syllables. Further ExposureTimes might have eventually led to a greater sensitivity 

in those trained on a Bimodal-NonComp distribution compared to those trained on a Monomodal distribu-

tion. However, more research is necessary to determine if this is the case. If further research were to be 

conducted, training should be split across more than one day, since this study finds evidence that the Bi-

modal-Comp group learned the phonological rule at ExposureTime Two, but not at ExposureTime Three, 

therefore possibly suggesting training fatigue for those in ExposureTime Three. 

6.2. EARLIER EXPOSURE TIME 

This study chose to train participants on one of three exposure times: one which lasted about 5 minutes, 

one which lasted about 10 minutes, and one which lasted about 15 minutes. I concluded that results were 

better explained by a one-stage model of allophony acquisition, since the Bimodal-Comp group was never 

“tricked” into initially patterning with the Bimodal-NonComp group. That is, this experiment was set up 

so that results would have to show a “hump” in sensitivity in the Bimodal-Comp group in order to deter-

mine there was evidence for a two-stage model (see the copy of Figure 35 below). 
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Figure 44. Comparison of the predicted change in sensitivity as amount of exposure increases (top; copy 

of Figure 35) and actual change in sensitivity as amount of exposure increases (bottom; copy of Figure 

38). 

One weakness of the current study was that neither prediction made by the one- or two-stage models was 

clearly borne out with significant differences in sensitivity between groups of learners. Even if we ignore 

this and draw conclusions from numerical results, another possible problem with this study is that Expo-

sureTimes may not have been well-chosen. That is, it is possible that any initial “hump” in sensitivity in 

the Bimodal-Comp group occurred very early on in training, before the first ExposureTime tested (see 

Figure 45). 
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Figure 45. Hypothetical scenario illustrating an early “hump” in sensitivity for Bimodal-Comp group 

which could be missed by the first ExposureTime tested. 

This possibility should be kept in mind, but I also do not believe this is a likely scenario, as this would 

require a significant amount of learning to have occurred before 5 minutes of training. 

6.3. UNEXPECTED RESULTS OF FILLER STIMULI 

As with the “A” Experiments, Experiment B also found unexpected results for filler test pairs. Specifi-

cally, the Bimodal-NonComp group showed significantly lower sensitivity than both the Bimodal-Comp 

and Monomodal groups for ExposureTime Two participants. Further research is necessary to determine 

whether this is an anomaly, or if something about the type and amount of exposure this group received 

would have some sort of effect on filler trials. 

7. Conclusion 

This experiment successfully replicates results from Noguchi (2016) on an online platform. Although re-

sults do not clearly support predictions of a one or a two-stage model of allophonic acquisition, results of 

this experiment are better explained by a one-stage model of allophony. At no point during the learning 

trajectory mapped in this study did the Bimodal-Comp group have higher sensitivities than the Mono-

modal group, and at ExposureTime 2 (which corresponded to hearing 192 critical stimuli and about 10 
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minutes of training) even exhibited significantly lower sensitivities than the Monomodal group. At Expo-

sureTime 3 (which corresponded to hearing 288 critical stimuli and about 15 minutes of training), the 

Bimodal-Comp and Monomodal groups numerically appear to pattern together, with the Bimodal-Comp 

group having significantly lower sensitivities than the Bimodal-NonComp group. This is better explained 

by the one-stage model, which predicts that the Bimodal-Comp and Monomodal groups will pattern to-

gether throughout the time course of acquisition. 
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Chapter 5:  

A Gap in Both Bias and Sensitivity in Applications to Word Learning 

1. Introduction 

In Chapter 3, it was argued that distributional learning occurs in two stages: a Bias Stage followed by a 

Sensitivity Stage. The current chapter explores the gap between learners’ sound categories and use of 

those sound categories in lexical entries by examining whether learning from either the Bias Stage or the 

Sensitivity Stage extends to a word learning stage. Experiments C1 and C2, following assumptions based 

on results from Experiments A1 and A3 respectively, train and test participants over the course of three 

days, and find no evidence that either changes in bias or in sensitivity extend to a word learning task. Sev-

eral proposals have been made to explain the gap in phone discrimination (i.e. sensitivity) and word 

learning (Pater et al., 2004; Werker and Curtin, 2005). The finding that there is also a gap in bias and 

word learning, necessitating an extension to these past proposals. 

2. Background 

The motivation for the “C” Experiments is two-fold. First, there is a well-documented gap in performance 

when it comes to discrimination and word learning (Pater et al., 2004; Stager and Werker, 1997; Werker 

et al., 2002). Since the “A” Experiments find evidence that distributional learning has two effects, one on 

response bias and one on sensitivity, the “C” Experiments were designed to test whether this gap in per-

formance was found for both response bias and for sensitivity. The second observation motivating the “C” 

Experiments concerns the role of sleep in the consolidation of knowledge. Past studies have found that 

sleep is necessary for the integration of some knowledge with existing knowledge (Gaskell and Dumay, 

2003; Leach and Samuel, 2007; Fenn et al., 2003). Following these observations, the “C” Experiments are 

conducted over the course of three days in order to determine whether a period of sleep is necessary to 
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overcome any gap between discriminatory abilities and word learning. This section begins with back-

ground on the gap in discrimination and word learning, followed by background on the possible role sleep 

may play. 

2.1. A GAP BETWEEN PHONE DISCRIMINATION AND LEXICAL ACQUISITION 

Numerous studies in both L1 and L2 acquisition point to a gap between the ability to discriminate phones, 

and the utilization of that discriminatory ability in distinguishing lexical items (L1: Pater et al., 2004; 

Stager and Werker, 1997; Werker et al., 2002; Hallé and de Boysson-Bardies, 1996; Kay-Raining Bird 

and Chapman, 1998; L2: Darcy et al., 2013; Daidone and Darcy, 2014; Weber and Cutler, 2004). Infants 

show language-specific discrimination of phones by the age of 12 months (Cheour et al., 1998; Kuhl et 

al., 2006; Kuhl et al., 1992; Mattock and Burnham, 2006; Mattock et al., 2008; Polka and Werker, 1994; 

Seidl et al., 2009; Werker and Tees, 1984; Best et al., 1995; Pegg and Werker, 1997; Tsao et al., 2006; 

Werker and Lalonde, 1988), but still confuse minimally-different words at 14 months (Werker et al., 

2002; Werker et al., 1998; Pater et al., 2004). For example, Stager and Werker (1997) find that 14-month 

old infants trained on sound-meaning pairs (for example, Meaning A paired with Sound [bɪ] and Meaning 

B paired with Sound [dɪ]) failed to notice when sound-meaning pairs were switched with similar-sound-

ing words (for example Meaning B paired with Sound [bɪ] rather than [dɪ]), despite being able to 

distinguish between [b] and [d] at the age of 8 months. This finding has been replicated with words con-

forming to English phonotactics (e.g. [bɪn] vs. [dɪn]), words differing in voicing (e.g. [bɪn] vs. [pʰɪn]), and 

words differing in both voicing and place of articulation (e.g. [pʰɪn] vs. [dɪn]) (Pater et al., 2004). Stager 

and Werker argue that infants use less phonetic detail when learning words than when, as they put it, “lis-

tening to syllables.” Follow-up studies find that this difficulty in learning minimally-differing words is 

particular to a certain age group and to a particular experimental design. Older infants (17 and 20 months) 

do notice a switch between the two minimally-differing sounds [bɪ] and [dɪ] in a word-learning task 

(Werker et al., 2002), suggesting that this failure to notice a switch occurs only for younger infants. Fur-

ther studies find that the difficulty to learn minimally-differing words can be alleviated if variation is 
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introduced by way of multiple talkers (Rost and McMurray, 2009; 2010) or through a single talker (Galle 

et al., 2015), and also if conditions are conducive to word-referent mappings (Fennell and Waxman, 

2010). 

One could argue that the amount of exposure infants are given to a novel word is insufficient for 

the infant to form a phonetically-detailed lexical entry. How do infants fare with known words? Hallé and 

de Boysson-Bardies (1996) find evidence that 11-month olds treat high-frequency words that have been 

minimally altered still as high-frequency words, suggesting they do not notice phonetic detail even for 

familiar words. The 11-month old French infants showed preference to high-frequency words that had 

been altered into non-words (e.g. [kɑto] for gâteau) over low-frequency words (e.g. [byzar] busard). Fur-

ther, the infants did not show any preference between high-frequency unaltered words (e.g. [ɡɑto] gâteau) 

and high-frequency altered words (e.g. [kɑto] for gâteau). Results suggest that infants still process altered 

high-frequency words as being high-frequency words, failing to utilize phonetic detail to distinguish even 

familiar words. Hallé and de Boysson-Bardies suggest a distinction between a “lexical mode,” in which 

infants are focused on word recognition and ignore phonetic details, and a “neutral mode,” in which in-

fants are not concerned with word recognition or comprehension and instead are focused on the details of 

the pronunciation. 

Hallé and de Boysson-Bardies found evidence for a lexical frequency preference, where fre-

quency was determined by overall wordform rather than requiring the label to be an exact match to an 

existing label. That is, infants appeared not to have noticed the mispronunciation. While Hallé and de 

Boysson-Bardies’s study did not require a label-referent mapping, “mispronunciation sensitivity” studies 

aim to determine when a mispronunciation is great enough to interfere with this label-referent mapping. 

That is, is the minimally differing label treated by the language learner as being an equally good label of 

the referent as the correct label? Swingley and Aslin (2000) test this by presenting 18-23 month olds with 

two pictures. Children heard sentences containing a label for one of the pictures that was either pro-

nounced correctly (baby) or mispronounced (vaby). For both the correctly pronounced and the 



149 

 

mispronounced label, children correctly identified the referent, but did so more slowly when the label had 

been mispronounced. A recent meta-analysis finds no developmental change in mispronunciation sensi-

tivity from 6-30 months (Von Holzen and Bergmann, 2018). 

That listeners use less phonetic detail in lexical tasks than in discriminatory tasks is mirrored in 

L2 studies as well. For example, Spanish contains an alveolar tap /ɾ/ and an alveolar trill /r/. In intervo-

calic positions, switching one phone with the other causes a change in meaning (e.g. [peɾo] ‘but’ 

compared to [pero] ‘dog’). In a lexical decision task, English-speaking L2 learners of Spanish fail to iden-

tify Spanish words with intervocalic /ɾ/ pronounced as [r] or intervocalic /r/ pronounced as [ɾ] (e.g. quiero 

/kieɾo/ pronounced as [kiero]) as being non-words in Spanish, despite being able to successfully classify 

minimal pairs as containing intervocalic [ɾ] or [r] in an ABX task and therefore being able to discriminate 

between the two sounds (Daidone and Darcy, 2014). 

In artificial language learning studies, Hayes-Harb (2007) examines this gap in a replication study 

of Maye and Gerken (2000), followed by a word-learning component. She first trained one group of par-

ticipants on a bimodal distribution of phones (from voiceless unaspirated stop [ɡ̥] to prevoiced stop [ɡ]), 

and another group on a monomodal distribution of phones. As predicted by Maye and Gerken (2000), 

learners in the monomodal group were more likely to say that the ends of the continuum (e.g. [ɡɑ] vs. 

[ɡ̥ɑ]) were the “same.” Subsequently, participants from both groups were trained on lexical items. For ex-

ample, participants heard [ɡɑnt] and were told that the meaning of this word was ‘boot.’ Following this 

word-training, participants were tested on whether participants in the bimodal group had encoded the two 

ends of the continuum [ɡ] and [ɡ̥] differently in the words they were trained on more than the monomodal 

group had. The author did so by testing participants on the opposite ends of the continuum: if they had 

been trained that [ɡɑnt] was the word for ‘boot’, they were asked whether [ɡ̥ɑnt] was a mispronunciation. 

She did not find any difference between the bimodal group and the monomodal group in this word-learn-

ing task. 
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On the other hand, Perfors and Dunbar (2010) do find evidence that distributional learning aids a 

following word learning task. In their study, participants are placed in either a bimodal or control group 

(there was no monomodal condition). Participants in the bimodal group heard 912 critical tokens with on-

sets ranging between [ɡ] and [ɡ̥] and no fillers, while participants in the control group heard 912 tokens 

beginning with [d] and [tʰ], but no critical tokens. Following this intensely focused training task with no 

fillers, participants were tested on discrimination of [ɡ] and [ɡ̥] in an ABX task. In a following word 

learning task, participants were presented with minimal pairs each paired with some picture indicating the 

word’s meaning. For example, learners were trained that one image was a [ɡ]ipur, while another was a 

[ɡ̥]ipur. Perfors and Dunbar find that participants in the bimodal group (1) responded correctly on more 

critical trials in the ABX discrimination task than the control group, and (2) responded correctly to the 

word learning phase more than the control group. 

Although Perfors and Dunbar’s study appears to find evidence that learners trained on a bimodal 

distribution can extend their distributional learning to a following word learning task, there are a few 

weaknesses which could be improved. First, their study does not test a monomodally-trained group of 

participants. Therefore, it is unclear from their study whether the bimodal learners are simply better at the 

task because they receive more exposure to critical stimuli, or whether their performance really was due 

to distributional learning. Second, Perfors and Dunbar test learners with an ABX discrimination task and 

use minimal pairs in their word learning task. As discussed in Chapter 2, an ABX task already implicitly 

tells participants that there exist (at least) two critical categories and, according to the model put forward 

in this dissertation, places learners at the second stage of distributional learning. The use of minimal pairs 

in the word learning task has the same effect, since learners are being clearly shown that there are two 

similar sounds with different semantic referents. Third, Perfors and Dunbar’s study did not include any 

filler items. Although not necessarily an issue, it is possible that the lack of fillers caused participants to 

use more explicit methods of learning, and to form specific hypotheses. This dissertation does not make 

specific claims regarding the implicit or explicit nature of distributional learning, but the lack of fillers in 
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Perfors and Dunbar (2010) is still important to keep in mind. For these reasons, the current study will fol-

low the procedure of Hayes-Harb (2007), which I believe more closely imitates natural language 

acquisition, with the exception that the current study will increase exposure to take place over the course 

of three days. 

2.1.1 Past proposals 

How has this gap between phone discrimination and word learning been explained by past researchers? 

Although a number of proposals have been made, this section will focus on two: one by Werker and Cur-

tin (2005), and one by Pater et al. (2004).  

Werker and Curtin (2005) describe an all-encompassing framework, PRIMIR (Processing Rich 

Information from Multidimensional Interactive Representations), to explain early linguistic development. 

This model is made up of three planes: the General Perceptual plane, which contains phonetic infor-

mation; the Word Form plane, which contains meaningless extracted units; and the Phonemic plane, 

which is made up of language-specific phonetic categories. In addition, there are three filters: initial bi-

ases, task demands, and developmental level. These filters determine where the learner directs his or her 

attention in regards to each of the three planes (see Figure 46) for a given task. 

 
Figure 46. Effect of filters (shown by the rectangle) on attention to each of the three planes (shown by dif-

ferent shades on the ball). Figure from Werker and Curtin (2005). 

For a simple discrimination task, a participant’s “task demands” filter may be shifted so that only the 

General Perceptual plane is engaged (for example, the leftmost schematic in Figure 46, where the darkest 



152 

 

shade indicates the General Perceptual plane). For tasks which require matching word forms with con-

cepts, the task demands filter may shift so that the participant’s attention is balanced evenly across all 

three planes, with the end result that less of the General Perceptual plane is engaged than it was for the 

discrimination task. In this model, the learner’s overall cognitive capacity (in the form of the “develop-

mental level” filter), as well as his or her attention levels and where attention is directed (in the form of 

the “task demands” filter), plays a role in how much phonetic detail is being utilized in a given task. The 

gap we see between discrimination and the application of discriminatory ability to a word learning task is 

the result of attention being shifted away from the General Perceptual plane.  

Pater et al. (2004) also rely on explaining this gap with attention levels, although they formalize 

their model in a different way. Their model is framed within Optimality Theory. In their model, faithful-

ness constraints are demoted with respect to markedness constraints when a listener's attention or 

cognitive resources are diminished. This follows proposals such as Boersma (1998) and Davidson et al. 

(2004). Lower faithfulness constraints result in a simplification of the perceived structure, resulting in 

neutralization of a contrast. Therefore, for Pater et al., the gap between phone discrimination and word 

learning is the result of fewer available resources due to the greater cognitive complexity which a word 

learning task demands compared to a discrimination task, which in turn lowers faithfulness constraints. 

While both of these proposals center around the role of attention, neither explicitly make any 

claims regarding response bias. This study will argue that bias as well as sensitivity should also be in-

cluded as a factor affected by attention levels. 

2.2. A POSSIBLE ROLE OF SLEEP  

One possible reason Hayes-Harb (2007) failed to find evidence for distributional learning extending to a 

word learning phase is that participants were not exposed to enough tokens. Another possible reason is 

that the exposure period took place over a single day, and there is also reason to think that participants 

need a period of sleep in order to integrate learned information with existing information (Gaskell and 

Dumay, 2003; Leach and Samuel, 2007; Fenn et al., 2003). Gaskell and Dumay (2003) find that newly-
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learned words only exhibit lexical competition effects after a period of sleep, arguing that there are two 

stages of word learning: “lexical engagement” (also “phonological learning”) and “lexical consolidation” 

(Leach and Samuel, 2007; Gaskell and Dumay, 2003). Lexical engagement is an initial stage of word 

learning in which the phonological form is quickly acquired, while the second stage is slower, and refers 

to the integration of this form with existing information. Therefore it is possible that Hayes-Harb did not 

find evidence that participants extended newly-learned phonetic categories to a word-learning task simply 

because participants needed to go through a period of sleep. 

3. Research Question and Summary 

This study seeks to further explore the gap between discriminatory abilities and phonological knowledge 

in word learning by testing whether this gap exists for both response bias and sensitivity. Two research 

questions asked in this chapter are as follows: 

(1) Is there evidence that changes in response bias caused by distributional learning ex-

tend to a word learning task, either before or after a period of sleep? 

(2) Is there evidence that changes in sensitivity caused by distributional learning extend 

to a word learning task, either before or after a period of sleep? 

 

In addition, this study will test the following hypothesis: 

(3) Participants in Hayes-Harb (2007) simply needed a period of sleep to integrate newly-

learned phonetic category information with word-related information. 

 

This study finds no evidence that changes in bias or sensitivity as gained from distributional learning ex-

tend to a word learning task, even over the course of three days of training. 

Two experiments are presented in this chapter: Experiments C1 and C2. Experiments C1 and C2 

are based on the assumption that distributional learning has had some sort of effect on learners. Specifi-

cally, Experiment C1 assumes that, by the end of training, bimodal learners have a greater bias towards a 

“different” response compared to monomodal learners. This assumption is based on results of Experiment 
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A1, which finds that after exposure to 192 critical stimuli ranging between [ɡ] and [ɡ̥] and 192 fillers, bi-

modally-trained participants exhibit greater bias towards a “different” response than monomodally-trained 

participants. Experiment C1 will be identical to Experiment A1 up through the training phase (see Figure 

47).  

Similarly, Experiment C2 assumes that, by the end of training, bimodal learners have greater sen-

sitivities to the endpoints of the critical stimulus continuum. This assumption will be based on results of 

Experiment A3, which used the critical stimuli [ɕɑ] – [ʂɑ]. Experiment C2 will be identical to Experiment 

A3 up through the training phase. Figure 47 gives a comparison of the procedure for each experiment. 

The boxed portions are completely identical between Experiment A1 and Experiment C1, and between 

Experiment A3 and Experiment C2. Because of this, this chapter will assume that the results of Experi-

ments A1 and A3 are indicative of participants’ behaviors when they begin the word learning phase in 

Experiments C1 and C2, respectively. 

Experiments A1, A3  Experiments C1, C2 

  DAY 1 DAY 2 DAY 3 

  Login Login Login 

  --- Sleep questionnaire Sleep questionnaire 

Sound check  Sound check Sound check Sound check 

English practice word test  English practice word test English practice word test English practice word test 

Training  Training Training Training 

  Word learning Word learning Word learning 

Phone test  Word test Word test Word test 

Questionnaire  --- --- Questionnaire 

Figure 47. Comparison of Experiments A1/A3 (left) with Experiments C1/C2 (right). The boxed portions 

in Experiment A1 is completely identical to the portion in Experiment C1, and the boxed portion in Ex-

periment A3 is completely identical to the portion in Experiment C2. 

Experiments C1 and C2 primarily differ in the stimuli being used and, because of that, what stage of dis-

tributional learning learners are assumed to be in by the time they enter the word learning phase. 

Specifically, Experiment C1 assumes that learners have entered the bias stage by the end of the first day’s 

training phase, and Experiment C2 assumes that learners have entered the sensitivity stage by the end of 

the first day’s. A comparison of Experiments C1 and C2 is shown in Figure 48. 
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Experiment C1 Experiment C2 

Critical stimuli [ɡ] – [ɡ]̥ [ɕ] – [ʂ] 

Assumption 

Distributional learning results in greater 

bias towards a “different” response in the 

bimodal group compared to the mono-

modal group, for these particular stimuli in 

the training period given 

Distributional learning results in greater 

sensitivities in the bimodal group com-

pared to the monomodal group, for these 

stimuli in the training period given 

Assumption 

based on… 
Results of Experiment A1 Results of Experiment A3 

Preview of re-

sults 

No evidence that changes in response bias 

from distributional learning extend to a 

word-learning task 

 

No evidence that changes in sensitivities 

from distributional learning extend to a 

word-learning task 

 

Figure 48. Comparison of Experiments C1 and C2. 

4. Experiment C1 

Experiment C1 tests Research Questions 1 and 3. Specifically, Experiment C1 tests for evidence of a gap 

in response bias between a discrimination task and a word-learning task, and, if there is such evidence, it 

tests whether sleep is necessary to overcome this gap.  

4.1. METHODOLOGY 

Experiment C1 closely follows the methodology of Hayes-Harb (2007). The main differences between 

Hayes-Harb (2007) and the current experiment are that (1) this study only trains participants on a bimodal 

and monomodal distribution, (2) and participants participate in Train-WordLearning-Test phases repeated 

each day over the course of three consecutive days in order to test the effect of increased exposure. 

4.2. STIMULI  

Stimuli consisted of four types of syllables: no-coda critical syllables, no-coda filler syllables, coda criti-

cal syllables, and coda filler syllables. No-coda filler syllables were identical to the filler syllables used in 

Experiment A1. No-coda critical syllables were also identical to those used in the Experiment A1 and 

consisted of onsets drawn from an 8-point continuum ranging between [ɡ̥] and [ɡ], followed by one of 

three nuclei, [ɑ æ ɹ̩]. Details of the creation of this continuum can be found in Chapter 3. Examples of G1ɑ 

and G8ɑ are copied from Chapter 3, in Figure 23.  
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Figure 49. Initial 300 ms of spectrograms of G1ɑ (left) and G8ɑ (right) for critical stimuli. 

Coda critical syllables were created by splicing codas to shortened no-coda critical syllables. To obtain 

codas, the following six syllables were recorded: [ɡɑmp], [ɡɑsp], [ɡæŋ], [ɡævz], [ɡɹ̩k], [ɡɹ̩ʃ]. The codas 

for each of these syllables were spliced out, with cuts being made at positive-going zero crossings. The 

ends of no-coda critical syllables were removed (with cuts also being made at positive-going zero cross-

ings). The lengths removed were based on trial and error, and ranged from 60-70 ms for each syllable. I 

tried to ensure that the amount removed from the ends of each syllable were consistent within each of the 

three continua (one for each nucleus type [ɑ æ ɹ̩]). No shortened no-coda critical syllable sounded irregu-

lar to my ears when played side by side with other members of the same continuum. Before concatenating 

shortened no-coda critical syllables and codas, the intensity of codas were either raised or lowered. The 

amount and direction that coda intensities were altered so that they would sound most natural when 

spliced together with the shortened no-coda critical syllables was determined through trial and error. After 

concatenating shortened no-coda critical syllables and (intensity-modified) codas, pitch blips at the con-

catenation point were smoothed out if necessary. This was done using Praat’s pitch tier editor. If a pitch 

modulation was detectable at the splice point, 3-4 points from the pitch tier at the point of concatenation 

were removed. After manipulations were completed, all 8 members of a word “series” (e.g. G1-8 ɑmp) 

were played side by side to ensure that all members sounded uniform. 
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Coda filler syllables were simply recorded and were not created through concatenation. Two to-

kens of each of the following filler syllables were recorded: [fɑs], [fæs], [tɛb], [tejb], [mæfs], [næfs], 

[sɛm], [zɛm].  

4.3. PROCEDURE 

Participants were again recruited through Mechanical Turk. This experiment took place over the course of 

three days. Experiment C1 consisted of 8 phases, only some of which were presented on each day of the 

experiment. A summary of the phases presented on each day is shown in Figure 50. 

Day 1 Day 2 Day 3 

Login Login Login 

--- Sleep questionnaire Sleep questionnaire 

Sound check Sound check Sound check 

English practice word test English practice word test English practice word test 

Training Training Training 

Word learning Word learning Word learning 

Word test Word test Word test 

--- --- Questionnaire 

Figure 50. Summary of procedure on each day. The double-boxed portion indicates a procedure identical 

to that found in Experiment A1 before the test phase. 

Each day began with a Login, which prompted users to enter their Mechanical Turk ID. This ensured that 

the same participant was logging in each day. On Days 2 and 3, this was followed by a Sleep Question-

naire, which asked participants how many hours they had slept the previous night, and how they would 

rate the quality of their sleep. Following this was a Sound Check, identical to that used in the “A” Exper-

iments. Again, participants heard one or two 50 Hz tones in order to ensure that participants were wearing 

headphones. Participants were instructed to press the “1” or the “2” key to indicate the number of tones 

they had heard. 

During each block of Training, participants heard 16 tokens drawn from each of the three critical 

no-coda continua, for a total of 48 critical no-coda syllables per block. Additionally, they heard two repe-

titions of three different tokens of filler no-coda syllable: [fɑ fæ tɛ tej mæ næ sɛ zɛ], for a total of 48 
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fillers per block. Training on each day consisted of 4 blocks, for a total of 192 critical syllables and 192 

filler syllables per day. 

Following training, participants were directed to a Word-Learning phase. The word-learning 

phase presented participants with sound-meaning pairs that made up words in this artificial language. 

Sounds consisted of critical and filler coda syllables. For critical items, onsets of each “word” consisted of 

either G1-4 or G5-8. Which half of the continuum the word began with was determined by the learner’s sub-

condition. For instance, the sound corresponding to the meaning ‘apple’ in this experiment was Gamp, 

where “G” consisted of the first four continuum points G1-4 if participants were in subcondition A, and G5-

8 if in subcondition B. Each participant heard all 4 tokens (corresponding to the 4 continuum points of 

each half of the critical continuum) of each critical word once during this word learning phase. Therefore 

participants saw a picture of each critical word’s meaning 4 times, and heard each of the word’s 4 audi-

tory tokens once, on each of the 3 days of this experiment. For filler trials, participants only heard one 

repetition of two auditory tokens paired with some meaning (rather than 4, in order to keep this phase 

short). Again, the sound paired with some meaning depended on the participant’s subcondition. See Fig-

ure 51 for a list of sound-meaning pairs presented to each subcondition.  

Subcondition A Subcondition B Meaning 

G1-4 ɑmp G5-8 ɑmp apple 

G5-8 ɑsp G1-4 ɑsp fork 

G1-4 æŋ G5-8 æŋ chair 

G5-8 ævz G1-4 ævz boot 

G1-4 ɹ̩k G5-8 ɹ̩k elephant 

G5-8 ɹ̩ʃ G1-4 ɹ̩ʃ lamp 

fɑs1, fɑs2 fæs1, fæs2 motorcycle 

tɛb1, tɛb2 tejb1, tejb2 onion 

mæfs1, mæfs2 næfs1, næfs2 horse 

sɛm1, sɛm2 zɛm1, zɛm2 trumpet 

Figure 51. Sound-meaning pairs presented during the word learning phase. 
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For each trial of the word learning phase, the auditory stimulus was played and the picture paired with 

that sound was presented on the screen for 2000 ms, before the next trial began. Participants were in-

structed to simply try to memorize the words presented in this phase, and were reminded not to write 

anything down. 

Following the word learning phase, participants were directed to a test phase. Before the test 

phase, participants were given the following directions: 

Great work! This next phase is the TESTING phase of the experiment, and will be similar 

to the practice test you did earlier in English. This time it will ask you about the foreign 

language that you just heard. 

Like before, please place one finger over the "M" and another finger over the "N" key on 

your keyboard. 

Like before, if you think the word you hear and the image you see MATCH, press the 

“M” key. 

If you think the word you hear and the image you see do NOT match, press the “N” key. 

 

Please use what you have learned about the language during the LISTENING phase. If 

you are not sure, please make your best guess and move on to the next pair. 

In the word test phase, participants were presented with randomized trials of sound-meaning pairs. In 

each trial, a picture was shown on the screen, and participants heard a sound. For each trial, sound-mean-

ing pairs were either matched (MatchedPair) or mismatched (MismatchedPair). MatchedPair trials 

presented the same sound-meaning pair participants had been trained on during the word learning phase. 

MismatchedPair trials presented the same picture participants had seen, but the auditory stimulus did not 

match what participants had heard during the word learning phase. For critical Mismatched trials, partici-

pants were presented with an auditory stimulus whose onset was drawn from the opposite end of the 

continuum as those they had been exposed to during the word learning phase. For example, a participant 
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in subcondition A was heard G1-4ɑmp paired with the meaning ‘apple’ during the word learning phase. 

During testing, MismatchedPair trials consisted of the audio stimulus G1ɑmp paired with a picture of an 

apple, and MismatchedPair trials consisted of the audio G8ɑmp paired again with a picture of an apple. 

Only continuum points G1 and G8 were presented during testing.  

 For filler trials, MatchedPairs again consisted of a sound-meaning pair that participants had been 

exposed to during the word learning phase. Sounds in MismatchedPairs differed from audio participants 

had been trained on by one segment (e.g. [fɑs] / [fæs]).  

Meaning Matched (for Subcond. A) 

Mismatched (for Subcond. B) 

Mismatched (for Subcond. A) 

Matched (for Subcond. B) 

apple G1 ɑmp G8 ɑmp 

fork G8 ɑsp G4 ɑsp 

chair G1 æŋ G8 æŋ 

boot G8 ævz G4 ævz 

elephant G1 ɹk G8 ɹk 

lamp G8 ɹʃ G1 ɹʃ 

motorcycle fɑs fæs 

onion tɛb tejb 

horse mæfs næfs 

trumpet sɛm zɛm 

Figure 52. Summary of MatchedPairs and MismatchedPairs. 

A brief summary of each phase presented in this experiment is shown in Figure 53. 
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Phase Abbreviated directions Example 

Login   

Sleep questionnaire 

(only on Days 2 and 3) 

How well did you sleep? How much 

sleep did you get? 

 

Sound check Press the ‘1’ if you hear 1 beep, the 

‘2’ if you hear 2 

 

English practice word test Press ‘m’ if the sound matches the 

picture you see, ‘n’ if they do not 

match 

disk (see picture of a desk) 

Training Listen carefully G3a 

ma 

Word learning Try to memorize these words G1-4amp (see picture of apple) 

Test Press ‘m’ if the sound matches the 

picture you see, ‘n’ if they do not 

match 

G8amp (see picture of apple) 

Questionnaire 

(only on Day 3) 

  

Figure 53. Summary of each phase in Experiment C1. 

A total of 69 participants participated on the first day. 52 of these participants took all three days of the 

experiment. Because the questionnaire took place on the third day, only participants who had participated 

all three days were considered for analysis. Participants were excluded from analysis if they reported in 

their questionnaire answers that they: (1) had a history of a speech or hearing disorder (3 participants ex-

cluded for this reason); (2) were not native speakers of English (1 participant excluded for this reason); 

(3) wrote down words (1 participant excluded for this reason28).  

Participants were also excluded if they: (1) received a combined score across all three days of less 

than 15/18 on the sound check (11 participants excluded for this); or (2) a combined score across all three 

days of less than 15/24 on the English practice test (0 excluded for this). This left a total of 37 participants 

(18 bimodal, 19 monomodal), with some participants excluded for multiple reasons. 

 

 

                                                      

28
 This participant reported writing down the word for trumpet, saying they had thought they would not remember it. 

They also reported that they did not end up needing to refer back to it. 
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4.4. ANALYSIS 

4.4.1 Model to be used in analysis: Bias and Sensitivity Tests 

The regression formula described below models one dependent variable, Response, with three fixed ef-

fects: (1) Distribution, a between-subject, within-item factor consisting of two levels {bimodal, 

monomodal}, (2) PairType, a within-subject, between-item factor consisting of two levels {matchedPair, 

misMatchedPair}, and (3) Day, a within-subject, within-item factor consisting of three levels {day1, 

day2, day3}. This was done separately for critical and filler trials. The dependent variable Response con-

sists of two levels, m and n, where m corresponds to a participant response that the sound-picture pair 

“matched” during the Test phase, and where n corresponds to a participant response that the sound-pic-

ture pair “did not match” during the Test phase. Random effects for Subject and Item were also included 

in the model described below. All variables are summarized in Table 9.  

Variable 

type 

Effect 

type 
Factor name Factor type Level names Description 

In
d

ep
en

d
en

t 

v
ar

ia
b

le
s F
ix

ed
 

ef
fe

ct
s 

Distribution Between-subject, 

within-item 

bimodal 

monomodal 

Distribution type received by the partici-

pant during Train phase 

PairType Within-subject, 

between-item 

matchedPair 

misMatchedPair 

Type of pair presented during Test phase 

(MatchedPair or MismatchedPair) 

Day Within-subject, 

within-item 

day1 

day2 

day3 

Day session 

R
an

d
o

m
 

ef
fe

ct
s 

Subject 

 

  Each individual participant (coded by ID) 

Item   Each individual item presented during the 

Test phase 

D
ep

en
d

en
t 

v
ar

ia
b

le
s 

 

Response  m 

n 

Response given by participant 

Table 24. Variables used in regression analysis for Experiment C1, testing for bias and sensitivity. 

As with previous chapters, all statistical tests were completed in R (R Core Team, 2014), using the 

glmer function from the lme4 package (Bates et al. 2015) to fit a generalized linear mixed-effects 

model (GLMM) with a logistic link function (“mixed logit model”). Significance was set at a level of p< 
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0.05. Two separate regressions were conducted to compare the effect of Distribution and PairType on Re-

sponse: one for critical items, and one for filler items. Continuing the procedure for analysis used in 

previous chapters, this chapter follows suggestions made by Clark (1973) for variables to include as ran-

dom effects, and suggestions made by Barr et al. (2013) and Barr (2013) for the random effects structure 

of the formula fitted in the regression by including random slopes for the highest-order combination of 

within-unit factors (PairType*Day for Subject; Distribution*Day for Item)29. The formula initially fitted 

to the regression is shown in (1). 

(1) Response ~ Distribution*PairType*Day + (1+PairType*Day|Subject) + 

(1+Distribution*Day|Item) 

The formula in (1) failed to converge, so the random effects structure was simplified to that shown in the 

formula in (2), and an Adaptive Gauss-Hermite Quadrature algorithm was used (by setting nAGQ to 0 in 

R) rather than the default Laplace Approximation algorithm. 

(2) Response ~ Distribution*PairType*Day + (1+PairType|Subject) + (1+Dis-

tribution |Item) 

4.4.2 Model interpretation  

Experiment C1 is primarily interested in testing response bias; however, for completeness, both bias and 

sensitivity will be tested for here. As before, results of the regression are interpreted as follows: an inter-

action of Distribution and PairType will be interpreted as a difference between the bimodal and 

monomodal conditions in sensitivity (referred to here as the Sensitivity Test). A significant main effect of 

Distribution without a significant interaction between Distribution and PairType is interpreted as evidence 

for a difference in bias between the bimodal and monomodal conditions (referred to hear as the Bias 

Test). As in previous chapters, a main effect of Distribution with a significant interaction will not be con-

sidered interpretable in this analysis (see Chapter 2 for a discussion). 

                                                      

29
 See Chapter 3 for details regarding the reasoning behind the random effects structure used. 
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4.4.3 Model to be used in analysis: Sleep Tests 

This study also tests for an effect of amount of sleep. The regression formula used to test for an effect of 

sleep models Response, with three fixed effects: (1) Distribution {bimodal, monomodal}, (2) 

PairType{matchedPair, misMatchedPair}, and (3) SleepAmount, factor consisting of two levels {less, 

more}, where “less” applied to subject responses if they reported having slept less than 8 hours the night 

before, and “more” applied to subject responses if they reported having slept 8 or more hours the night 

before. This will be done separately for critical and filler trials. The dependent variable Response con-

sists of two levels, m and n, where m corresponds to a participant response that the sound-picture pair 

“matched” during the Test phase, and where n corresponds to a participant response that the sound-pic-

ture pair “did not match” during the Test phase. Random effects for Subject and Item were also included 

in the model described below. To do this, the formula in (3) was used. 

(3) (Response ~ Condition*PairType*SleepAmount + (1+PairType|Subject) + 

(1+Condition|Item) 

4.5. RESULTS 

4.5.1 Bias and Sensitivity Tests 

Results of the regression fitted to formula (2) are shown in Table 25. Figure 54 and Figure 55 display re-

sults of Experiment C1 split by PairType. 
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Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) -2.033 0.377 -5.397 <0.001 *** 

Distribution=monomodal 0.262 0.484 0.542 0.588 

PairType=misMatchedPair -0.527 0.470 -1.12 0.263 

Day=two -1.351 0.608 -2.222 0.026 

Day=three -1.650 0.732 -2.254 0.024 

Interaction=monomodal & misMatchedPair 0.414 0.616 0.672 0.502 

Interaction=monomodal & two 0.817 0.763 1.072 0.284 

Interaction=monomodal & three -0.031 0.976 -0.031 0.975 

Interaction= misMatchedPair & two 0.613 0.790 0.777 0.437 

Interaction= misMatchedPair & three -1.410 1.235 -1.141 0.254 

Interaction=monomodal & misMatchedPair & two -1.088 0.990 -1.099 0.272 

Interaction=monomodal & misMatchedPair & three 2.229 1.399 1.593 0.111 

FILLER TRIALS     

(Intercept) -2.544 0.609 -4.177 <0.001 *** 

Distribution=monomodal 0.144 0.753 0.191 0.849 

PairType=misMatchedPair 2.700 0.612 4.414 <0.001 *** 

Day=two -0.323 0.649 -0.498 0.618 

Day=three -0.510 0.724 -0.704 0.481 

Interaction=monomodal & misMatchedPair 0.037 0.845 0.044 0.965 

Interaction=monomodal & two 0.240 0.874 0.275 0.784 

Interaction=monomodal & three 0.726 0.931 0.779 0.436 

Interaction= misMatchedPair & two 0.939 0.744 1.261 0.207 

Interaction= misMatchedPair & three 1.322 0.785 1.682 0.093 

Interaction=monomodal & misMatchedPair & two -0.833 1.003 -0.831 0.406 

Interaction=monomodal & misMatchedPair & three -0.851 1.032 -0.825 0.410 

Table 25. Results of GLMM for Experiment C1. 

 
Figure 54. Results from Experiment C1 split by PairType, critical trials. 
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Figure 55. Results from Experiment C1 split by PairType, filler trials. 

Follow-up contrasts within the context of the overall model were performed to test two specific hypothe-

ses, on each of the three days: 1) that there is a main effect of Distribution (interpreted as bias, referred to 

here as the “Bias Test”), and 2) that there is a significant interaction between Distribution and PairType 

(interpreted as sensitivity, referred to here as the “Sensitivity Test”). Results of these follow-up contrasts 

are shown in Table 26. No main effect of Distribution is found on Day 1 for critical (p = 0.320) or filler (p 

= 0.738) trials; no main effect of Distribution is found on Day 2 for critical (p = 0.227) or filler (p = 

0.975) trials; and no main effect of Distribution is found on Day 3 for critical (p = 0.094) or filler (p = 

0.355) trials. A significant interaction is found for critical trials on Day 3, although in the opposite direc-

tion of that predicted (that is, the monomodal group has a significantly higher sensitivity compared to the 

bimodal group). Figure 56 shows results corresponding to the Bias Test, and Figure 57 shows results cor-

responding to the Sensitivity Test. 
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Day Coefficient SE Wald Z p 

BIAS: CRITICAL TRIALS 

Day 1 -0.469 0.472 -0.994 0.320 

Day 2 -0.743 0.615 -1.208 0.227 

Day 3 -1.553 0.929 -1.673 0.094 

BIAS: FILLER TRIALS 

Day 1 -0.162 0.485 -0.335 0.738 

Day 2 0.014 0.458 0.031 0.975 

Day 3 -0.462 0.500 -0.925 0.355 

SENSITIVITY: CRITICAL TRIALS  

Day 1 -0.414 0.616 -0.672 0.501 

Day 2 0.674 0.822 0.820 0.412 

Day 3 -2.643 1.284 -2.058 0.040 * 

SENSITIVITY: FILLER TRIALS   

Day 1 -0.037 0.845 -0.044 0.965 

Day 2 0.796 0.885 0.900 0.368 

Day 3 0.814 0.910 0.894 0.371 

Table 26. Summary of follow-up contrasts testing specific hypotheses. The Bias Test tests for whether the 

log-odds of a Bimodal n response is significantly greater than the log-odds of a Monomodal n response. 

The Sensitivity Test tests for whether (log-odds of BimodalMismatched – log-odds of BimodalMatched) 

is significantly greater than (log-odds of MonomodalMismatched – log-odds of MonomodalMatched). 

Hypothesis tests were done for each of the three days. 

        
Figure 56. Bias results for Experiment C1. Figures show the total log-odds that participants responded 

that sound-picture pairs did not match, regardless of whether they were MatchedPairs or Mismatched-

Pairs, for critical trials (left) and filler trials (right). 
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Figure 57. Sensitivity results for Experiment C1. Figures show the difference in log-odds for participant 

responses that sound-picture pairs did not match between MismatchedPairs and MatchedPairs, for critical 

trials (left) and filler trials (right). Higher log-odds indicate higher sensitivities (i.e. a greater distance in 

responses between MisMatchedPairs and MatchedPairs). 

4.5.2 Sleep Tests 

This study also tests for any effect of sleep amount on responses, fitting a regression to the formula in (3). 

Since participants only received sleep-related questions when logging back into the experiment on Days 2 

and 3, only responses from Days 2 and 3 are analyzed in this section. The reference cell is bimodal, 

matchedPair, more. Results of the regression are shown in Table 27. 
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Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) -3.835 0.694 -5.530 <0.001 *** 

Distribution=monomodal 0.884 0.814 1.086 0.277 

PairType=misMatchedPair -1.026 1.052 -0.975 0.330 

SleepAmount=less 0.137 0.754 0.181 0.856 

Interaction=monomodal & misMatchedPair 0.84237 1.081 0.779 0.436 

Interaction=monomodal & less -0.042 0.954 -0.044 0.965 

Interaction=misMatchedPair & less -0.241 1.153 -0.209 0.834 

Interaction=monomodal & misMatchedPair & less -0.510 1.427 -0.357 0.721 

FILLER TRIALS     

(Intercept) -3.111 0.629 -4.950 <0.001 *** 

Distribution=monomodal 0.902 0.688 1.312 0.190 

PairType=misMatchedPair 4.400 0.761 5.784 <0.001 *** 

SleepAmount=less 0.190 0.739 0.257 0.797 

Interaction=monomodal & misMatchedPair -1.161 0.989 -1.173 0.241 

Interaction=monomodal & less -0.552 0.951 -0.581 0.561 

Interaction=misMatchedPair & less -0.924 0.947 -0.976 0.329 

Interaction=monomodal & misMatchedPair & less 0.653 1.280 0.510 0.610 

Table 27. Results of GLMM for Experiment C1, testing for an effect of sleep. 

No significant interaction is found between Condition, PairType, and SleepAmount, for critical trials (p = 

0.721), or for filler trials (p = 0.610). 

Follow-up contrasts within the context of the overall model were performed to test two specific 

hypotheses: 1) that there is a significant interaction between Distribution and Sleep, and 2) that there is a 

significant main effect of Sleep. Results of the follow-up contrast testing for a significant interaction be-

tween Distribution and Sleep are shown in Table 28. Results of the follow-up contrast testing for a 

significant main effect of Sleep are shown in Table 29. 

Trial Type Coefficient SE Wald Z p 

Critical Trials 0.297 0.843 0.352 0.725 

Filler Trials 0.226 0.582 0.388 0.698 

Table 28. Summary of follow-up contrasts testing for an interaction between Distribution and Sleep, Ex-

periment C1. 

Trial Type Coefficient SE Wald Z p 

Critical Trials 0.132 0.420 0.315 0.752 

Filler Trials 0.385 0.289 1.331 0.183 

Table 29. Summary of follow-up contrasts testing for a main effect of Sleep, Experiment C1. 

The amount of sleep reported by the participant for the previous night does not appear to have an effect 

on participant response. We do not find any significant interaction between SleepAmount and Condition, 
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for either critical trials (p = 0.725) or for filler trials (p = 0.698). We also do not find any main effect of 

SleepAmount on Response, for either critical trials (p = 0.752) or for filler trials (p = 0.183). 

4.6. DISCUSSION: EXPERIMENT C1 

Although this experiment did not directly test for distributional learning, it is assumed in this chapter that 

the training phase had a similar effect as that found in the “A” Experiments, since the procedure up 

through the training phase was identical to that of Experiment A1. If one assumes that distributional 

learning took place for the participants in this experiment and caused a difference in bias between the bi-

modal and monomodal groups (as was the case in Experiment A1), then no evidence is found that 

participants extended this difference in bias to a following word learning task in any of the three days 

tested (Figure 56). Perhaps unsurprisingly, no evidence of a difference in sensitivity between the bimodal 

and monomodal groups is found on Days 1 or 2. This is not surprising to find on Day 1 given that Experi-

ment A1 concluded that participants being trained on these particular stimuli only change their biases and 

not their sensitivities after a single session of training. However, on Day 3, a significant difference in sen-

sitivity between the bimodal and monomodal groups is found, in the opposite direction of that predicted 

by distributional learning. That is, the monomodal group has a greater sensitivity than the bimodal group 

in this word learning task. This study is unable to explain this difference in sensitivity. 

To summarize, Experiment C1 uses stimuli that resulted in greater bias towards a “different” re-

sponse in the bimodal group compared to the monomodal group after distributional training. If these 

changes in biases had carried over into a word-learning task, we would expect participants in the bimodal 

group to respond that a given sound-meaning pair does not match more than participants in the mono-

modal group. That is, they would be more hesitant to say that a sound-meaning pair which began with a 

“g”-like sound matched if they believed that there were two “g”-like sounds in the language, since they 

would be entertaining the possibility that it was the wrong “g”. Even over the course of three days, no evi-

dence is found that any change in bias gained from distributional learning extends to a word learning task. 
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This study also does not find that the bimodal group exhibits greater sensitivity to critical stimuli com-

pared to the monomodal group (although this study unexpectedly finds that the monomodal group has a 

greater sensitivity than the bimodal group on Day 3).  

Experiment C1 tested for whether a change in response bias extends to a following word learning 

task, and found that it does not. For Experiment C1, this study assumed that learners trained in the bi-

modal group had greater bias towards a “different” response compared to learners in the monomodal 

group, because Experiment C1 was identical in procedure and stimuli to Experiment A1, which did find 

evidence for a change in bias. Experiment C2 will utilize a different set of critical stimuli (those used in 

Experiment A3). Experiment C2 will then test whether changes in sensitivities as a result of distributional 

learning can be extended to a word learning task. 

5. Experiment C2 

Experiment C1 finds no evidence that learners extended any sort of learned difference in their response 

biases to a word-learning task, even over the course of three days of training. Critical stimuli used in Ex-

periment C1 have only been shown in this dissertation to result in bimodally-trained participants having a 

greater bias towards responding that a pair of critical syllables are “different” compared to monomodally-

trained participants. Therefore, to test whether sensitivity shows a similar gap, Experiment C2 makes use 

of critical stimuli which have been shown in Chapter 3 to result in distributional learning in the form of 

changes in sensitivity (i.e. greater sensitivity in bimodally-trained learners than in monomodally-trained 

ones). Specifically, Experiment C2 tests Research Questions 2 and 3, by testing for evidence of a gap in 

sensitivity between a discrimination task and a word-learning task, and, if there is, test whether helps 

overcome this gap.  

5.1. METHODOLOGY 

The procedure of Experiment C2 follows that of Experiment C1. The main difference is that critical stim-

uli consist of [ɕɑ] – [ʂɑ], rather than [ɡɑ ɡæ ɡɹ̩] – [ɡ̥ɑ ɡ̥æ ɡ̥ɹ̩]. 
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5.1.1 Stimuli 

Critical stimuli were based off those used in Experiment A3. No-coda stimuli were identical to those used 

in Experiment B, and ranged from [ɕɑ] – [ʂɑ] (see Figure 58). As with Experiment C1, coda critical stim-

uli were created by splicing shortened no-coda critical stimuli with intensity-adjusted codas. To obtain 

shortened no-coda critical stimuli, approximately 20 ms were removed from the ends of all no-coda criti-

cal stimuli (where splice points were made at positive-going zero crossings). Intensity-adjusted codas 

originated from the following recorded syllables: [ʃɑmp], [ʃɑsp], [ʃɑŋ], [ʃɑvz], [ʃɑd], and [ʃɑb]. Codas 

from each of these syllables were removed, and their intensities were modified in Praat. The amount of 

intensity-modification was chosen through trial and error so that splicing no-coda critical stimuli with co-

das sounded natural. Note that while the critical stimuli in Experiment C1 were made up of three different 

nucleus types ([ɑ æ ɹ̩]), the stimuli in this experiment all had the same [ɑ] nucleus. No-coda filler stimuli 

were identical to those used in Experiment C1. 

  

Figure 58. First 500 ms of critical syllables S1a (left) and S8a (right). 

5.1.2 Procedure 

Participants were again recruited through Mechanical Turk. This experiment took place over the course of 

three days. As the case with Experiment C1, Experiment C2 consisted of 8 phases, only some of which 
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were presented on each day of the experiment. A summary of the phases presented on each day is shown 

in Figure 59. 

Day 1 Day 2 Day 3 

Login Login Login 

--- Sleep questionnaire Sleep questionnaire 

Sound check Sound check Sound check 

English practice word test English practice word test English practice word test 

Training Training Training 

Word learning Word learning Word learning 

Word test Word test Word test 

--- --- Questionnaire 

Figure 59. Summary of procedure on each day. The double-boxed portion indicates a procedure identical 

to that found in Experiment A1 before the test phase. 

Each day began with a login, which prompted users to enter their Mechanical Turk ID. On Days 2 and 3, 

this was followed by a sleep questionnaire, which asked participants how many hours they had slept the 

previous night, and how they would rate the quality of their sleep. Following this was a sound check, 

identical to that in Experiment C1. 

During each block of training, participants heard three repetitions of 16 tokens drawn from the 

critical S1a-S8a continuum, for a total of 48 critical no-coda syllables per block. Additionally, they heard 4 

different tokens of 4 filler syllables ([tʰɑ], [tɑ], [fɑ], [hɑ]). Each of these 16 filler tokens were repeated 3 

times during each train block, for a total of 48 fillers per block. Training on each day consisted of 4 

blocks, resulting in a total of 192 critical syllables and 192 filler syllables per day. 

Following training, participants were directed to a word-learning phase. The word-learning 

phase was identical to that presented to participants in Experiment C1, but used different critical stimuli. 

Sound-meaning pairs in each subcondition are shown in Figure 60.  
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Subcondition A Subcondition B Meaning 

S1-4 ɑmp S5-8 ɑmp apple 

S5-8 ɑsp S1-4 ɑsp fork 

S1-4 ɑŋ S5-8 ɑŋ chair 

S5-8 ɑvz S1-4 ɑvz boot 

S1-4 ɑd S5-8 ɑd elephant 

S5-8 ɑb S1-4 ɑb lamp 

fɑs1, fɑs2 fæs1, fæs2 motorcycle 

tɛb1, tɛb2 tejb1, tejb2 onion 

mæfs1, mæfs2 næfs1, næfs2 horse 

sɛm1, sɛm2 zɛm1, zɛm2 trumpet 

Figure 60. Sound-meaning pairs presented during the word learning phase. 

As was the case for Experiment C1, each trial consisted of an auditory stimulus and a visual presented on 

the screen for 2000 ms, before the next trial began. Participants were instructed to simply try to memorize 

the words presented in this phase, and were reminded not to write anything down. 

Following the word learning phase, participants were directed to a test phase. Directions and pro-

cedure were identical to those given in Experiment C1. Again, in the word test phase, participants were 

exposed to sound-picture pairs that were either MatchedPairs or MismatchedPairs.   

Meaning Matched (for Subcond. A) 

Mismatched (for Subcond. B) 

Mismatched (for Subcond. A) 

Matched (for Subcond. B) 

apple S1 ɑmp S8 ɑmp 

fork S8 ɑsp S4 ɑsp 

chair S1 ɑŋ S8 ɑŋ 

boot S8 ɑvz S4 ɑvz 

elephant S1 ɑd S8 ɑd 

lamp S8 ɑb S1 ɑb 

motorcycle fɑs fæs 

onion tɛb tejb 

horse mæfs næfs 

trumpet sɛm zɛm 

Figure 61. Summary of MatchedPairs and MismatchedPairs. 

A brief summary of each phase presented in this experiment is shown in Figure 62. 
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Phase Abbreviated directions Example 

Login   

Sleep questionnaire 

(only on Days 2 and 3) 

How well did you sleep? How much 

sleep did you get? 

 

Sound check Press the ‘1’ if you hear 1 beep, the 

‘2’ if you hear 2 

 

English practice word test Press ‘m’ if the sound matches the 

picture you see, ‘n’ if they do not 

match 

disk (see picture of a desk) 

Training Listen carefully S3a 

fa 

Word learning Try to memorize these words S1-4amp (see picture of apple) 

Test Press ‘m’ if the sound matches the 

picture you see, ‘n’ if they do not 

match 

S8amp (see picture of apple) 

Questionnaire 

(only on Day 3) 

  

Figure 62. Summary of each phase in Experiment C2. 

A total of 104 participants participated on the first day. 68 of these participants took all three days of the 

experiment. Because the questionnaire took place on the third day, only participants who had participated 

all three days were considered for analysis. Participants were excluded from analysis if they reported in 

their questionnaire answers that they: (1) had a history of a speech or hearing disorder (0 participants ex-

cluded for this reason); (2) were not native speakers of English (0 participants excluded for this reason); 

(3) wrote down words (0 participants excluded for this reason); or (4) reported having some background 

in a language with two or more voiceless post-alveolar fricatives as phonemes (10 participants excluded). 

A copy of the questionnaire is included in the Appendix.  

Participants were also excluded if they: (1) received a combined score across all three days of less 

than 15/18 on the sound check (12 participants excluded for this); or (2) a combined score across all three 

days of less than 15/24 on the English practice test (0 excluded for this). This left a total of 47 participants 

(27 bimodal, 20 monomodal), with some participants excluded for multiple reasons. 
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5.2. ANALYSIS AND RESULTS 

5.2.1 Bias and Sensitivity Tests 

Experiment C2 followed the analysis used in Experiment C1 (see Section 4.4 for details). The results of 

the GLMM are shown in Table 30. Figure 63 (critical trials) and Figure 64 (filler trials) display results of 

Experiment C2 split by PairType. 

Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) -1.987 0.303 -6.560 <0.001 *** 

Distribution=monomodal 0.180 0.386 0.467 0.641 

PairType=misMatchedPair 0.596 0.365 1.633 0.103 

Day=two 0.050 0.386 0.129 0.897 

Day=three -0.541 0.395 -1.369 0.171 

Interaction=monomodal & misMatchedPair 0.017 0.532 0.032 0.975 

Interaction=monomodal & two -0.717 0.573 -1.252 0.211 

Interaction=monomodal & three -0.385 0.597 -0.644 0.520 

Interaction= misMatchedPair & two -0.287 0.450 -0.638 0.524 

Interaction= misMatchedPair & three 0.417 0.467 0.893 0.372 

Interaction=monomodal & misMatchedPair & two 0.080 0.700 0.114 0.909 

Interaction=monomodal & misMatchedPair & three 0.106 0.716 0.149 0.882 

FILLER TRIALS     

(Intercept) -1.722 0.387 -4.450 <0.001 *** 

Distribution=monomodal -0.327 0.475 -0.687 0.492 

PairType=misMatchedPair 1.435 0.434 3.305 0.001 

Day=two -1.126 0.459 -2.451 0.014 

Day=three -1.191 0.482 -2.470 0.014 

Interaction=monomodal & misMatchedPair 0.237 0.656 0.362 0.718 

Interaction=monomodal & two 0.858 0.673 1.276 0.202 

Interaction=monomodal & three -0.225 0.831 -0.270 0.787 

Interaction= misMatchedPair & two 1.576 0.548 2.876 0.004 

Interaction= misMatchedPair & three 2.459 0.572 4.301 <0.001 *** 

Interaction=monomodal & misMatchedPair & two -0.836 0.813 -1.028 0.304 

Interaction=monomodal & misMatchedPair & three 0.122 0.955 0.128 0.898 

Table 30. Results of GLMM for Experiment C2. 
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Figure 63. Results from Experiment C2 split by PairType, critical trials. 

  

 
Figure 64. Results from Experiment C2 split by PairType, filler trials. 
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Follow-up contrasts were done in the context of the overall model to test two specific hypotheses: 1) that 

there was a main effect of Distribution (Bias Test), and 2) that there is a significant interaction between 

Distribution and PairType (Sensitivity Test). These hypotheses were tested on each of the three days. Re-

sults are shown in Table 31. 

 

Day Coefficient SE Wald Z p 

BIAS: CRITICAL TRIALS 

Day 1 -0.188 0.317 -0.595 0.552 

Day 2 0.489 0.403 1.214 0.225 

Day 3 0.143 0.447 0.320 0.749 

BIAS: FILLER TRIALS 

Day 1 0.208 0.312 0.667 0.505 

Day 2 -0.232 0.366 -0.634 0.526 

Day 3 0.371 0.444 0.837 0.402 

SENSITIVITY: CRITICAL TRIALS  

Day 1 -0.017 0.532 -0.032 0.975 

Day 2 -0.097 0.589 -0.164 0.869 

Day 3 -0.123 0.610 -0.202 0.840 

SENSITIVITY: FILLER TRIALS   

Day 1 -0.237 0.656 -0.362 0.718 

Day 2 0.599 0.728 0.823 0.411 

Day 3 -0.359 0.882 -0.408 0.683 

Table 31. Summary of follow-up contrasts testing specific hypotheses. The Bias Test tests for whether the 

log-odds of a Bimodal n response is significantly greater than the log-odds of a Monomodal n response. 

The Sensitivity Test tests for whether (log-odds of BimodalMismatched – log-odds of BimodalMatched) 

is significantly greater than (log-odds of MonomodalMismatched – log-odds of MonomodalMatched). 

Hypothesis tests were done for each of the three days. 

No significant main effect of Distribution is found on any of the three days. No significant interaction be-

tween Distribution and PairType is found on any of the three days. Figure 65 shows results corresponding 

to the Bias Test. Figure 66 shows results corresponding to the Sensitivity Test. 
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Figure 65. Bias results for Experiment C1. Figures show the total log-odds that participants responded 

that sound-picture pairs did not match, regardless of whether they were MatchedPairs or Mismatched-

Pairs, for critical trials (left) and filler trials (right). 

        

Figure 66. Sensitivity results for Experiment C1. Figures show the difference in log-odds for participant 

responses that sound-picture pairs did not match between MismatchedPairs and MatchedPairs, for criti-

cal trials (left) and filler trials (right). Higher log-odds indicate higher sensitivities (i.e. a greater dis-tance 

in responses between MismatchedPairs and MatchedPairs). 
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5.2.2 Sleep Tests 

As with Experiment C1, this study also tests for any effect of sleep amount on responses, fitting a regres-

sion to the formula in (3). Since participants only received sleep-related questions when logging back into 

the experiment on Days 2 and 3, only responses from Days 2 and 3 are analyzed in this section. The refer-

ence cell is bimodal, matchedPair, more. Results of the regression are shown in Table 32. 

Predictor Coefficient SE Wald Z p 

CRITICAL TRIALS     

(Intercept) -2.345 0.396 -5.921 <0.001 *** 

Distribution=monomodal -0.505 0.593 -0.852 0.394 

PairType=misMatchedPair 0.592 0.404 1.468 0.142 

SleepAmount=less -0.086 0.447 -0.193 0.847 

Interaction=monomodal & misMatchedPair 0.183 0.632 0.289 0.773 

Interaction=monomodal & less 0.036 0.743 0.048 0.962 

Interaction=misMatchedPair & less 0.447 0.529 0.845 0.398 

Interaction=monomodal & misMatchedPair & less 0.032 0.847 0.038 0.970 

FILLER TRIALS     

(Intercept) -3.149 0.559 -5.628 <0.001 *** 

Distribution=monomodal 0.374 0.675 0.554 0.579 

PairType=misMatchedPair 3.673 0.646 5.682 <0.001 *** 

SleepAmount=less -0.006 0.626 -0.010 0.992 

Interaction=monomodal & misMatchedPair -0.529 0.893 -0.592 0.554 

Interaction=monomodal & less -0.421 0.941 -0.448 0.654 

Interaction=misMatchedPair & less 0.138 0.772 0.179 0.858 

Interaction=monomodal & misMatchedPair & less 0.476 1.173 0.406 0.685 

Table 32. Results of GLMM for Experiment C2, testing for an effect of sleep. 

No significant interactions between Condition, PairType, and SleepAmount are found for critical trials (p 

= 0.970), or for filler trials (p = 0.685). 

Follow-up contrasts within the context of the overall model were performed to test two specific 

hypotheses: 1) that there is a significant interaction between Distribution and Sleep, and 2) that there is a 

significant main effect of Sleep. Results of the follow-up contrast testing for a significant interaction be-

tween Distribution and Sleep are shown in Table 33. Results of the follow-up contrast testing for a 

significant main effect of Sleep are shown in Table 34. 

Trial Type Coefficient SE Wald Z p 

Critical Trials -0.052 0.528 -0.098 0.922 

Filler Trials 0.183 0.562 0.326 0.744 

Table 33. Summary of follow-up contrasts testing for an interaction between Distribution and Sleep, Ex-

periment C1. 
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Trial Type Coefficient SE Wald Z p 

Critical Trials -0.163 0.268 -0.609 0.542 

Filler Trials 0.029 0.278 0.103 0.918 

Table 34. Summary of follow-up contrasts testing for a main effect of Sleep, Experiment C2. 

The amount of sleep reported by the participant for the previous night does not appear to have an effect 

on participant response. We do not find any significant interaction between SleepAmount and Condition, 

for either critical trials (p = 0.922) or for filler trials (p = 0.744). We also do not find any main effect of 

SleepAmount on Response, for either critical trials (p = 0.542) or for filler trials (p = 0.918). 

5.3. DISCUSSION: EXPERIMENT C2 

Experiment C2 finds no evidence that any difference in sensitivity assumed to exist between bimodally-

trained participants and monomodally-trained participants (where this assumption is based on results of 

Experiment A3) carries over to a word learning task, even over the course of three days of training and 

testing. 

6. Discussion 

This chapter seeks to determine whether knowledge gained from distributional learning carries over to a 

word-learning task. In two three-day long experiments, this study finds no evidence that either of the two 

aspects of distributional learning (changes in bias or sensitivity) extend to word learning. 

Although proposals have been made regarding the gap in sensitivity from discrimination to word 

learning tasks (Werker and Curtin, 2005; Pater et al., 2004), these proposals do not predict a gap in re-

sponse bias as well. Based on results of this study, this chapter argues that these proposals should be 

extended so that attention levels also play a role in response bias: specifically, the greater cognitive de-

mands of a word learning task result in less attention to phonetic detail as well as less explicit inference 

from the participant that there are multiple contrastive phonemes (and therefore less inference that mini-

mal pairs exist) in the speech signal. 
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Additionally, this study does not find support for the hypothesis that the participants in an artifi-

cial word learning task similar to Hayes-Harb (2007) simply needed a period of sleep to integrate newly-

learned phonetic category information in a word learning task, since this experiment finds no evidence 

that sensitivity or response bias extended to word learning even on Days 2 and 3. 

7. Conclusion 

If participants are assumed to have reached the bias stage in distributional learning by the time of the 

word-learning phase on Day 1 of Experiment C1, then this study finds no evidence that these biases ex-

tend to word learning. Although it is unknown what stage of distributional learning learners in 

Experiment C1 have reached on Days 2 and 3, this study still does not find evidence that the response bias 

from Day 1 has extended to a word learning phase on these days. Similarly, if it is assumed that partici-

pants have reached the sensitivity stage in distributional learning by the time of the word-learning phase 

on Day 1 of Experiment C2, then this study finds no evidence that this sensitivity extends to word learn-

ing, even on Days 2 and 3. This lack of evidence suggests that there is both a gap in sensitivity, as well as 

in response bias, when participants are faced with the more cognitively-demanding nature of a word 

learning task. This is the case even after participants have had a chance to sleep, contradicting the hypoth-

esis that a period of sleep is all that is necessary to integrate phonetic category acquisition with the 

application of phonetic categories to word learning. 
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Chapter 6:  

Discussion and Conclusion 

1. Introduction 

The overall goal of this dissertation has been to provide a detailed timeline of segmental acquisition, start-

ing from learning phonetic categories, to determining allophonic relationships between phonetic 

categories, to utilizing sound categories in a meaningful, linguistic way in word learning. This was done 

through a series of artificial language learning experiments on naïve adult listeners recruited over the web 

using Mechanical Turk. This chapter begins with a summary of significant findings from Experiments A-

C in Section 2. This will be followed in Section 3 by an outline of the overall proposed timeline of seg-

mental acquisition. Section 4 will address outstanding questions and will attempt to shed light on 

unexplained (and unexpected) significant results, as well as suggest topics for further research. 

2. Summary of Findings 

The main contribution of this dissertation has been to make a distinction between response bias and sensi-

tivity in phonetic category acquisition. Table 35 provides a summary of all significant findings, either in 

bias or in sensitivity, in Experiments A-C. 
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Experiment  Critical Stimuli Filler Stimuli 

A1  Bias 

(Bi > Mono) 

Sensitivity 

♦ (Mono > Bi) 

A2  Bias 

(Bi > Mono) 

--- 

A3  Sensitivity 

(Bi > Mono) 

Sensitivity 

♦ (Bi > Mono) 

A2-Tone  --- --- 

A3-Tone  --- --- 

    

Experiment  Critical Stimuli Filler Stimuli 

B  

(Phone Test) 

Time 1 Bias  

(Bi-NonComp > Mono) 

 

Time 2 Sensitivity  

(Mono > Bi-Comp) 

Sensitivity  

♦ (Bi-Comp > Bi-NonComp)  

♦ (Mono > Bi-NonComp) 

Time 3 Sensitivity  

(Bi-NonComp > Bi-Comp) 

 

    

Experiment  Old Stimuli New Stimuli 

B 

(Rule Test) 

Time 1 Sensitivity  

(Bi-Comp > Bi-NonComp) 

--- 

Time 2 Sensitivity  

(Bi-Comp > Mono) 

--- 

Time 3 --- --- 

    

Experiment  Critical Stimuli Filler Stimuli 

C1 Day 1 --- --- 

Day 2 --- --- 

Day 3 Sensitivity  

♦ (Mono > Bi) 

--- 

C2 Day 1 --- --- 

Day 2 --- --- 

Day 3 --- --- 

Table 35. Summary of significant results in Experiments A-C. Diamonds indicate unexpected/unex-

plained findings. 

This section will briefly summarize conclusions based on these results. Findings which were unexpected 

and are so far unexplained are marked with diamonds. These will be discussed further in this chapter. 

Experiments A1 and A2 found a significantly greater bias towards a “different” response for bi-

modally-trained participants compared to monomodally-trained ones, while Experiment A3 found a 
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significantly greater sensitivity in bimodally-trained participants compared to monomodally-trained ones. 

Together, the results from Experiments A1-A3 were used to argue for a two-stage process for distribu-

tional learning of phonetic categories. First, participants undergo a Bias Stage, in which their attention is 

drawn to variation in the input. This has the effect of creating general rough ideas regarding the number 

of distinct sound categories in the input. Over time, the acoustic location of the mean and boundaries of 

each phonetic category become more solid. Following this, participants experience perceptual warping in 

a Sensitivity Stage, where acoustic stimuli deemed to belong to the same category are perceived as being 

more similar to one another and acoustic stimuli deemed to belong to separate categories are perceived as 

being more distinct from one another. This model does not require language-specific cognitive mecha-

nisms, and instead can be explained using domain-general processing. 

Experiments A2-Tone and A3-Tone followed up on Experiments A2 and A3, only differing in the 

inclusion of low-frequency tones interspersed with speech stimuli during the Train phase. The inclusion 

of these tones resulted in non-results for both Experiments A2-Tone and A3-Tone. These non-results 

were used to argue that attention plays a role in distributional learning, although the exact nature of that 

role is left for future research. 

The main goal of Experiment B was to determine whether experimental evidence could be found 

for a two-stage or a one-stage model of allophony acquisition. Experiment B contained two tests: a Phone 

Test and a Rule Test. Participants were exposed to one of three lengths of training, where training was 

either monomodal, bimodal and not in complementary distribution (“Bimodal-NonComp”), or bimodal 

and in complementary distribution (“Bimodal-Comp”). At the longest exposure time (Time 3), Experi-

ment B finds that the Bimodal-NonComp group has a significantly greater sensitivity to critical stimuli 

than the Bimodal-Comp group, replicating results from Noguchi (2016). At the middle exposure time 

(Time 2), the Monomodal group exhibited significantly higher sensitivity to critical stimuli than the Bi-

modal-Comp group. Although these results are not clear evidence for either the one- or the two-stage 

model of allophony acquisition, Chapter 4 concludes that these results are better explained with a one-
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stage model rather than a two-stage one, since at no point in time does the Bimodal-Comp group exhibit 

greater numeric sensitivity to critical stimuli than the Monomodal group, even exhibiting significantly 

less sensitivity to critical stimuli than the Monomodal group at Time 2. Additionally, Experiment B finds 

further support for the two-stage model of phonetic category acquisition provided in Chapter 3, as evi-

dence for greater bias towards a “different” response is found in the Bimodal-NonComp group compared 

to the Monomodal group at Time 1. 

The Rule Test of Experiment B shows 1) a lack of generalization of the phonological rule to new 

syllables, and 2) a possible effect of fatigue. As only the Bimodal-Comp group was exposed to the phono-

logical rule that [ɕ] occur after [i] and [ʂ] occur after [u], only the Bimodal-Comp group was expected to 

show sensitivity to this rule. The phonological rule was tested with both stimuli experienced during train-

ing (Old stimuli), as well as stimuli not heard during training (New stimuli). The Bimodal-Comp group 

does show the expected sensitivity to the phonological rule they had been trained on at Times 1 and 2. 

Specifically, the Bimodal-Comp group shows greater sensitivity to the difference between phonologi-

cally-legal and phonologically-illegal phrases than the Bimodal-NonComp group at Time 1, as well as the 

Monomodal group at Time 2. There is no evidence that participants generalized this rule to new syllables 

though, as only Old stimuli yielded this significant difference. No significant differences were found in 

New stimuli. A possible effect of participant fatigue can be seen at Time 3, as even with the most training, 

the Bimodal-Comp group does not show significantly greater sensitivity to phonologically-legal and ille-

gal phrases compared with either of the other groups. 

Finally, the “C” Experiments tested whether changes in bias (Experiment C1) or sensitivity (Ex-

periment C2) caused by distributional learning could be extended to a word learning task. Neither 

experiment shows any evidence of this being the case, although Experiment C1 had the unusual finding 

that participants in the Monomodal condition exhibited greater sensitivity to stimuli than those in the Bi-

modal condition on Day 3. Although further research is necessary to determine the cause of this, a 
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breakdown of results of Experiment C1 seem to indicate that this unusual result seems to come solely 

from the behavior of Bimodal participants on Day 3 responding to Mismatched trials (see Figure 67). 

 
Figure 67. Breakdown of results from Experiment C1, critical trials. Note the location of the Bimodal-

Mismatch point on Day 3. 

As seen in Figure 67, the Bimodal group on Day 3 is very unlikely to (correctly) respond that Mismatch 

trials (i.e. pictures which did match the wordform they had originally been trained on) did not in fact 

match the correct pronunciation. Further research is necessary to explain this result, but it is thought that 

this is a chance occurrence isolated to the Bimodal group. 

The following section takes a step back from the data and provides a summary of the overall pro-

posal presented in this dissertation. 

3. Synopsis of the Proposal 

The overall contribution of this dissertation is to provide a timeline of early segmental acquisition. A 

schematic of this proposal is shown in Figure 68. 
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Figure 68. Schematic of overall proposal. 

The grid here represents the learner’s perceptual space. The initial stage of acquisition is represented by 

the leftmost grid in Figure 68. This dissertation proposes that language learners who notice greater varia-

tion will have a greater bias toward believing that there are two different sound categories in the speech 

stream, compared to learners who do not notice as much variation. Specifically, Chapter 3 argues that 

learners trained on phones ranging along an 8-point continuum whose frequencies form a bimodal distri-

bution will be more likely to hear continuum points 2 and 7 side by side more often than learners who 

hear these same continuum points in a frequency that forms a monomodal distribution. Monomodally-

trained learners on the other hand will be more likely to hear continuum points 4 and 5 side by side. Since 

the points 2 and 7 are more acoustically distinct from one another, bimodally-trained learners are more 

likely to notice variation between the two tokens compared to monomodally-trained learners. This raised 

awareness of variation in the speech stream in turn makes learners either more likely to think there are 

more phones in the speech stream, or more likely to think that variation must be linguistically significant 

and not just a chance occurrence. Learners trained on the bimodal distribution form a rough notion that 

there are two phonetic categories, whereas learners trained on the monomodal distribution form a rough 

notion that there is only one. Crucially, at the Bias Stage, the identity of each phonetic category is only a 

rough notion to the learner, as indicated by the dotted lines. It is only later during the Sensitivity Stage 
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that the learner forms a more solid concept of the distinction between each phonetic category. At this 

stage, learners experience category-based perceptual warping. Specifically, sounds deemed by the learner 

to belong to the same category are perceived as being more similar to one another through within-cate-

gory compression, and sounds deemed by the learner to belong to different categories are perceived as 

being more different from one another through across-category expansion. The concepts of within-cate-

gory compression and across-category expansion are borrowed from the psychology literature (e.g. 

Livingston et al. 1998; Goldstone and Hendrickson, 2010). 

This proposal contrasts with an experience-based perceptual warping proposal illustrated in Fig-

ure 69. Here, the experience of perceiving a token warps the learner’s perceptual space. Experience-based 

perceptual warping proposals have been made by researchers such as Guenther and Gjaja (1996) and Bo-

ersma et al. (2003). 

 
Figure 69. Experience-based perceptual warping account of phonetic category acquisition. 

This overall proposal is discussed in terms of its interaction with three main topics: attention, environ-

mental context, and lexical acquisition. Experiments A2-Tone and A3-Tone provide evidence that 

attention plays some role in the magnitude of the arrows shown in leading up to the Bias Stage, and possi-

bly also the magnitude of the arrows leading up to the Sensitivity Stage. Experiment B provides some 

evidence that environmental context is accounted for early on, rather than at a later stage of acquisition 
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occurring after the acquisition of phonetic categories. And last, the “C” Experiments find no evidence that 

changes in bias or sensitivity extend to a word learning task, even after three consecutive days of training. 

4. Discussion and Further Research 

Results of this dissertation raise a number of questions for further research. These will be discussed in this 

section. 

4.1. BEHAVIOR OF FILLER STIMULI 

One of the main problems with the experiments reported here is that a number of them yielded significant 

results for the filler stimuli. Ideally, these stimuli should be able to act as controls, in order to determine 

whether there is something unexpected in the actual design of the experiment. One could argue that these 

significant results with the filler items indicate that there is some underlying problem with the design of 

the experiment. This may be the case, but I believe the behavior with the fillers can be explained by the 

nature of the “same” stimuli I created for these experiments. All experiments which exhibited unexpected 

significant results for filler trials were experiments for which I had created the stimuli, rather than use 

those created by a previous researcher. As explained in the discussion section of Chapter 3, my “same” 

fillers were created with the thought that these same-different experiments should be differentiated from 

discrimination tasks, and instead should require participants to make some sort of explicit decision re-

garding a pair of stimuli’s “sameness” (in keeping with discussion provided in Maye and Gerken, 2000). 

Therefore, I purposely recorded repetitions of “same” syllables so that they could be distinguished by ear 

as being different tokens. This differed from the stimuli provided by Maye and Gerken. To my ears, repe-

titions of “same” filler tokens used by Maye and Gerken were so similar as to be perceptually identical. 

Because of this, it would be unlikely that any participant would respond that a filler Same Pair was actu-

ally “different.” I believe the filler stimuli used by Maye and Gerken exhibited a floor effect for this 

reason. As for why my fillers exhibited the unexpected behavior of being seemingly affected by condition 

despite being presented identically in bimodal and monomodal conditions, it may be the case that training 

had an effect on all stimuli. It may be the case that participants were in essence calibrating what counted 
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as a simple variation in pronunciation and what counted as a linguistically-meaningful replacement of 

phonemes during training. Training had the effect of shrinking or stretching what counted as “meaning-

less” variation, and participants used this distance on all stimuli, not just those responsible for the 

shrinking or stretching. If a pair of stimuli, critical or not, fit the learner’s current hypothesis of being 

“meaningless” variation, they would respond that the pair of syllables were the “same.” If not, they would 

respond “different.” This basic concept is captured by the “yardstick model” presented in DeCarlo (2013), 

who presents several models for translating Signal Detection Theory concepts into a same-different exper-

iment. I believe it would be interesting to conduct future distributional learning work within the 

framework of this model. 

4.2. LACK OF SIGNIFICANT FINDINGS IN “C” EXPERIMENTS 

The “C” Experiments failed to yield any significant results, with the exception of the unexplained greater 

sensitivity in the monomodally-trained participants compared to the bimodally-trained ones on Day 3 of 

Experiment C1. It is unclear whether much should be read into this overall lack of significance. One 

could argue that participants simply need more exposure, or that the experiment was flawed in some other 

way. These experiments report on a “gap” between discrimination and word learning, but in reality, it 

may be premature to report this when the “end” of the gap was not found. That is, it is unknown how 

much training participants would need or what other factors would be necessary for participants to make 

use of their knowledge in a word learning task. The next step for these “C” Experiments may be to re-

work these experiments to be more similar to those presented by Perfors and Dunbar (2010), Rost and 

McMurray (2009, 2010), or Fennell and Waxman (2010), who did find evidence that learners were able to 

extend the results of distributional learning to a word learning task. Although some weaknesses of Perfors 

and Dunbar (2010) were pointed out in Chapter 5 (namely, the unnaturalness of the task), it would be in-

teresting to work from this study and gradually make the task more natural (for example, by adding in 

fillers) to see what parameters were necessary in order to observe this extension of distributional learning 

to word learning in an artificial language learning study. 
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4.3. HOW “LINGUISTIC” IS DISTRIBUTIONAL LEARNING? 

One point that I believe is important to keep in mind has to do with the nature of distributional learning. 

Maye and Gerken (2000) first introduce distributional learning as an alternative explanation to acquiring 

phonetic categories through minimal pairs. This can be argued since 1) infants exhibit language-specific 

discrimination of phones before learning minimal pairs (see Caselli et al., 1995), and 2) infants with the 

ability to discriminate two sounds ignore this same phonetic detail when presented with minimal pairs 

(Stager and Werker, 1997; Pater et al., 2004). However, the gap seen between distributional learning and 

the use of this information in a linguistically-meaningful way (i.e. to distinguish meaning) raises the ques-

tion of whether distributional learning truly is “linguistic.” It may be the case that the presentation of 

minimal pairs or near-minimal pairs is necessary to form linguistically-relevant phonemes, where replac-

ing one with the other causes a change in word meaning.  

Seidl and Cristia (2012) distinguish between a “strong” form of this lexical hypothesis, that mini-

mal pairs are necessary for sound acquisition, and a “weak” form of this hypothesis, lexical bootstrapping 

in the form of near-minimal pairs. The minimal pair hypothesis in its strong form is unlikely to be true for 

the reasons stated above. However, a lexical bootstrapping hypothesis does appear to be supported (Feld-

man et al., 2013; Thiessen, 2007; Swingley, 2009). Thiessen (2007) finds that 14-month olds fail to 

discriminate syllables beginning with [t] and [d] if trained on the minimal pairs [tɔ] and [dɔ], but are able 

to discriminate syllables beginning with [t] and [d] if trained on labels which differed in their overall 

wordforms, dawbow and tawgoo30. Being presented with clear evidence in the form of minimal pairs did 

not appear to indicate to the infant that [t] and [d] were contrastive. Rather, it was the presentation of dis-

tinct wordforms that brought about the increased discrimination between [t] and [d]. It may be the case 

that “distributional learning” results in early discriminatory abilities, but that these abilities are either so 

small as to not have a noticeable impact on word-learning, or are not utilized in linguistically-meaningful 

                                                      

30
 IPA transcriptions were not provided. 
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ways. That is, it is possible that distributional learning is not a mechanism for language acquisition, and 

instead is simply the residual side effect of talkers having some target gesture in mind. Another possibility 

is that distributional learning plays more of a role in shifting existing phoneme categories to accommo-

date talker variation, rather than in the acquisition of new categories (Xie et al., 2017).  

4.4. PHONETIC DISTANCE 

A further question that has not been systematically studied in this dissertation has to do with phonetic dis-

tance between critical tokens. Maye and Gerken (2000) specifically test participants on continuum points 

1 and 8, since both the bimodal and monomodal participants heard the exact same number of tokens of 

these two endpoints. However, it remains an open matter whether perceptually that remains the case. End-

points used for these distributional learning experiments are by necessity very similar to one another, so 

that a smooth continuum can be synthesized. Although the endpoints, I believe, are perceptually distinct, 

consecutive (or even near-consecutive) continuum points are not. Any two consecutive continuum points 

are so similar that they may as well be identical from the participant’s point of view. If this is the case, 

then it may very well be that bimodally-trained participants are perceiving Phone 1 and Phone 8 more 

than the monomodally-trained participants during training, and so during testing respond “different” more 

often due to the frequency of these sounds, rather than any sort of distributional inference. This study did 

not investigate this question, but I believe it is an important one for future distributional learning studies 

to keep in mind. It may be necessary to have a pre-test using the continuum points to ensure that each 

continuum point is at least 1 Just-Noticeable Difference (JND) away from its neighbor. 

4.5. WEAKNESSES AND FUTURE RESEARCH 

4.5.1 L1 vs. L2 

One of the major weaknesses of the experiments presented here is that they seek to provide answers re-

garding early sound acquisition, but do so by conducting experiments on adults. One could argue that 

these experiments are more indicative of second language acquisition than first language acquisition. 
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However, these experiments also come up short when explaining second language acquisition, due to the 

artificial nature of the tasks presented to participants. Learners acquiring a second language likely receive 

more explicit instruction, whether through formal education or through interactions with native speakers 

in which minimal pairs are presented to illustrate a mistake that the learner is making.  

Where possible, this study tried to draw parallels between experimental results and first language 

studies. However, the experiments presented here would undoubtedly benefit greatly by being followed 

up on work with infants. Specifically, I believe Experiment B regarding the timeline of allophony acquisi-

tion would greatly benefit from further infant studies. 

4.5.2 Properties of the Stimuli 

Two types of critical continua were used in this dissertation: a stop continuum and a fricative continuum. 

These stimuli differed from one another in a number of ways. First, the two differ acoustically, with stops 

being abrupt by nature and fricatives being uniform and continuous throughout the duration of their pro-

duction. (See the discussion in Chapter 3, end of Section 7). Second, the stop continuum used in this 

dissertation ranged between two allophones which are prototypical for English speakers: the prevoiced [ɡ] 

is a prototypical allophone of word-initial /ɡ/, and [ɡ̥] is a prototypical allophone of /k/ when in an onset 

preceded by /s/. However, the fricative continuum ranged between two non-prototypical endpoints [ɕ] and 

[ʂ], which, to an English speaker are likely both perceived as non-prototypical variants of /ʃ/.  

Future work would greatly benefit from testing various properties of stimuli used and obtaining 

perceptual information. Ideally, I believe the following should be obtained for all critical stimuli to be 

used in distributional experiments: 1) perceptual distance between each critical continuum point, 2) proto-

typicality ratings to existing categories, 3) similarity judgments of the endpoints to one another. 

Regarding (2), it would be interesting to more systematically test the distributional learning of contrasts 

according to how the endpoints of the critical continuum are classified within the Perceptual Assimilation 

Model (Best, 1995). 
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4.6. SUMMARY AND FUTURE STUDY 

This dissertation has presented a series of artificial language learning experiments with the goal of outlin-

ing a timeline of early phonological acquisition in naïve adult learners. The two-stage model of 

distributional learning presented here is a domain-general model drawing on phenomena observed within 

psychology (e.g. across-category expansion and within-category compression), rather than one which is 

language-specific (e.g. the perceptual warping model presented by Boersma et al. (2003)). A few sugges-

tions have been made throughout regarding areas for future research. Some of the most interesting topics 

for future research (I believe) lie in the following areas: 

1) Stimuli: How do learners treat different types of stimuli in distributional learning? Could the 

typology of contrast types in Best’s Perceptual Assimilation Model be incorporated into mod-

els of distributional learning? 

2) Allophony: As far as I am aware, this dissertation and Noguchi (2016) are the only studies 

which have successfully shown that a decrease in sensitivity can be found in the lab by ex-

posing learners to phones which are in complementary distribution, and both of these studies 

have been on adults. I believe this is an important area for more research, especially in the 

form of infant studies, utilizing a wider variety of critical stimuli. 

3) Attention: I suggest in this dissertation that “distributional learning” may be the result of 

heightened awareness of variation in the speech stream. Further exploration of this idea may 

shed light on the underlying mechanism driving distributional learning. 

 

And finally, I believe both past and future studies may benefit from re-analyzing their results in light of 

the two-stage model presented in this dissertation. As was shown in Chapter 3, the reported non-replica-

tion of Maye et al. (2002), Yoshida et al. (2011), appears to find support for a Bias Stage. I believe past 

and future work will benefit from considering distributional learning as a two-stage process. 
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APPENDIX 3.1: NUMBER OF PARTICIPANTS IN “A” EXPERIMENTS 

  A1 A2 A3 A2-Tone A3-Tone 

Exclusion reason      

 Sound check (< 5/6) 12 7 28 14 21 

 Practice (< 5/8) 0 1 4 0 8 

 

Train Check tone-monitoring 

task (< 10/24)31 N/A N/A N/A (2)32 Data not collected 

 Not native English speaker 0 0 1 0 2 

 Speech/hearing disorder 1 1 0 0 5 

 

Experience with language with 

more than one voiceless post-

alveolar fricative N/A N/A 3 N/A 5 

Total rejected  

(some for multiple reasons) 13 7 32 14 28 

Total participants      

 Bimodal 27 21 22 28 24 

 Monomodal 34 27 27 31 19 

 

  

                                                      

31
 In actuality, the first experiment to be completed was a pilot “Tone” experiment which contained the Train Check 

tone-monitoring task. The original goal of the tone-monitoring task had been to ensure that participants were paying 

attention during the Train phase. Because of this, participants who correctly responded to fewer than 10/24 of moni-

toring trials were to be excluded from analysis. However, after it was hypothesized that the monitoring trials might 

have a negative effect on distributional learning, the “Non-tone” experiments (Experiments A1-A3) were designed. 

In order to directly compare the effect of including monitoring tokens on participants’ behavior, it was decided that 

participants should not be excluded for incorrect responses to monitoring trials, since only the “Tone” experiments 

contained these trials and comparisons of results could be attributed to testing different populations (those who were 

paying attention and therefore passed the monitoring task, compared to the general population). Therefore, this ex-

clusion criterion was not utilized in this dissertation. 

That being said, the number of participants who would have been excluded under this criterion is still given here for 

reference. It happens that these 2 participants who failed this criterion had also failed the sound check, and therefore 

would not have been included in the analysis even if the monitoring task criterion had been adhered to. 

32
 As noted in the Footnote 31, these 2 participants also happened to fail the Sound check criterion, and therefore 

would not have been included in the analysis either way. 
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APPENDIX 3.2: PARTICIPANT QUESTIONNAIRE FOR “A” EXPERIMENTS 

The text that was given to participants during the questionnaire section of all “A” Experiments is shown 

below. 

 

[Page 1] 

You're almost done! Please fill out the following questionnaire regarding your language back-

ground. You will NOT be negatively affected based on your answers, so please answer truthfully. 

Press the “Y” to continue to the questionnaire 

 

[Page 2] 

Do you remember any of the words you heard from this artificial language? If so, please list them 

below. 

If you noticed any patterns in the foreign language you heard, please list them. 

Did you use a strategy when learning this artificial language or when trying to determine 

whether words were the same or different? If so, what strategy did you use? 

 

[Page 3] 

Where have you lived? 

What languages do you have experience with? For example, list any languages your parents may 

speak, or any languages you have studied in school or have studied on your own. For each, 

please indicate how fluent you are (for example: how long you've studied it, how comfortable you 

feel with each language...). 

 

[Page 3]  

How comfortable are you with English? 

o I'm a native speaker 

o I'm pretty comfortable with speaking/understanding English 

o I am not comfortable with speaking/understanding English 
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How old are you? 

o 18-25 years old 

o 26-35 years old 

o 36-45 years old 

o 46-65 years old 

o Over 66 years old 

o Prefer not to answer 

What is your sex? 

o Female 

o Male 

o Other/prefer not to answer 

Do you have any background studying or reading about linguistics or phonetics?  

o Yes 

o No 

o Prefer not to respond 

Do you have a history of a speech or hearing disorder? 

o Yes 

o No 

o Prefer not to respond 

During the LISTENING portion (where you simply listened to words), how much attention would 

you say you were paying to this study? (Remember, your answer will NOT affect payment, so 

please answer truthfully!) 

o I focused all of my attention on this portion of the experiment 

o I mostly paid attention 

o I was not paying very much attention 

o I paid very little attention 
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During the LISTENING portion, were you wearing headphones the entire time? 

o Yes, I was wearing headphones the entire time 

o I was wearing headphones most of the time 

o I was wearing headphones some of the time 

o No, I did not wear headphones at all  

During the TESTING portion (where you heard two words and were asked whether they were the 

same or different in this language), how much attention would you say you were paying to this 

study? (Remember, your answer will NOT affect payment, so please answer truthfully!) 

o I focused all of my attention on this portion of the experiment 

o I mostly paid attention 

o I was not paying very much attention 

o I paid very little attention 

During the TESTING portion, were you wearing headphones the entire time? 

o Yes, I was wearing headphones the entire time 

o I was wearing headphones most of the time 

o I was wearing headphones some of the time 

o No, I did not wear headphones at all  

If you were taking this same experiment in a lab setting, do you think you would pay... 

o More attention 

o Less attention 

o About the same level of attention 

 

[Page 4]  

Were you doing other things during the course of this experiment? Were there outside distrac-

tions? If so, please briefly explain. 

If you have any other comments regarding this experiment, please write them here. 
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APPENDIX 4.1: NUMBER OF PARTICIPANTS IN EXPERIMENT B 

  B 

Exclusion reason  

 Sound check (not included to keep experiment short) N/A 

 Practice (< 5/8) 15 

 Not native English speaker 1 

 Speech/hearing disorder 4 

 Experience with language with more than one voiceless 

post-alveolar fricative 22 

Total rejected  

(some for multiple reasons) 40 

  ExposureTime One 15 

  ExposureTime Two 12 

  ExposureTime Three 13 

Total participants  

 Bimodal-Comp  
  ExposureTime One 41 (23 PhoneFirst, 18 RuleFirst) 

  ExposureTime Two 40 (23 PhoneFirst, 17 RuleFirst) 

  ExposureTime Three 43 (25 PhoneFirst, 18 RuleFirst) 

 Bimodal-NonComp  
  ExposureTime One 51 (31 PhoneFirst, 20 RuleFirst) 

  ExposureTime Two 33 (17 PhoneFirst, 16 RuleFirst) 

  ExposureTime Three 40 (19 PhoneFirst, 21 RuleFirst) 

 Monomodal  

  ExposureTime One 48 (28 PhoneFirst, 20 RuleFirst) 

  ExposureTime Two 44 (23 PhoneFirst, 21 RuleFirst) 

  ExposureTime Three 51 (26 PhoneFirst, 25 RuleFirst) 

 

  



201 

 

APPENDIX 4.2: PARTICIPANT QUESTIONNAIRE FOR EXPERIMENT B 

The text that was given to participants during the questionnaire section of Experiment B is shown below. 

 

[Page 1] 

You're almost done! Please fill out the following questionnaire regarding your language back-

ground. You will NOT be negatively affected based on your answers, so please answer truthfully. 

Press the “Y” to continue to the questionnaire 

 

[Page 2] 

Do you remember any of the words you heard from this artificial language? If so, please list them 

below. 

If you noticed any patterns in the foreign language you heard, please list them. 

How did you approach the tasks in this experiment? Did you use a strategy when learning this 

artificial language or during either test phase? If so, what strategy did you use? 

 

[Page 3] 

Where have you lived for more than 3 years? Please provide state and country. 

What languages do you have experience with? For example, list any languages your parents may 

speak, or any languages you have studied in school or have studied on your own. For each, 

please indicate how fluent you are (for example: how long you've studied it, how comfortable you 

feel with each language...). 

Have you studied linguistics or phonetics? If so, please briefly explain here. 

 

[Page 3]  

How comfortable are you with English? 

o I'm a native speaker 

o I'm pretty comfortable with speaking/understanding English 

o I am not comfortable with speaking/understanding English 
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How old are you? 

o 18-25 years old 

o 26-35 years old 

o 36-45 years old 

o 46-65 years old 

o Over 66 years old 

o Prefer not to answer 

What is your sex? 

o Female 

o Male 

o Other/prefer not to answer 

Do you have a history of a speech or hearing disorder? 

o Yes 

o No 

o Prefer not to respond 

Please be honest (your answer will NOT affect your payment) -- how much were you listening 

during this experiment? 

o I paid attention the whole time, and I listened to the whole experiment 

o I mostly paid attention, and I listened to the whole experiment 

o I did not pay very much attention, but I listened to the whole experiment 

o I listened to most of the experiment 

o I only listened to part of the experiment 

 

[Page 4]  

Please specify your attention level during this experiment. For example, were there any distrac-

tions in the room you were taking this in? Did you remove your headphones? If so, for how long? 
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APPENDIX 5.1: NUMBER OF PARTICIPANTS IN “C” EXPERIMENTS 

  C1 C2 

Exclusion reason   

 Sound check (< 15/18) 11 12 

 Practice (< 15/24) 0 0 

 Not native English speaker 1 0 

 Speech/hearing disorder 3 0 

 Experience with language with more than one voiceless post-alveolar 

fricative N/A 10 

 Reported writing down words during experiment 1 0 

Total rejected  

(some for multiple reasons) 15 21 

Total participants   

Total participated at least one day 69 104 

Total participated all three days 52 68 

 Bimodal 18 27 

 Monomodal 19 20 
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APPENDIX 5.2: PARTICIPANT QUESTIONNAIRE FOR “C” EXPERIMENTS 

The text that was given to participants during the questionnaire section of all “C” Experiments is shown 

below. 

 

[Page 1] 

You're almost done! Please fill out the following questionnaire regarding your language back-

ground. You will NOT be negatively affected based on your answers, so please answer truthfully. 

Press the “Y” to continue to the questionnaire 

 

[Page 2] 

Do you remember any of the words you heard from this artificial language? If so, please list them 

below. 

If you noticed any patterns in the foreign language you heard, please list them. 

Did you use a strategy when learning this artificial language or when trying to determine 

whether words were the same or different? If so, what strategy did you use? 

 

[Page 3] 

Where have you lived? 

What languages do you have experience with? For example, list any languages your parents may 

speak, or any languages you have studied in school or have studied on your own. For each, 

please indicate how fluent you are (for example: how long you've studied it, how comfortable you 

feel with each language...). 

 

[Page 3]  

How comfortable are you with English? 

o I'm a native speaker 

o I'm pretty comfortable with speaking/understanding English 

o I am not comfortable with speaking/understanding English 
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What is your sex? 

o Female 

o Male 

o Other/prefer not to answer 

Do you have any background studying or reading about linguistics or phonetics?  

o Yes 

o No 

o Prefer not to respond 

Do you have a history of a speech or hearing disorder? 

o Yes 

o No 

o Prefer not to respond 

How much attention would you say you were paying to this study on Day 1? (Remember, your 

answer will NOT affect payment, so please answer truthfully!) 

o I focused all of my attention on this portion of the experiment 

o I mostly paid attention 

o I was not paying very much attention 

o I paid very little attention 

How much attention would you say you were paying to this study on Day 2? (Remember, your 

answer will NOT affect payment, so please answer truthfully!) 

o I focused all of my attention on this portion of the experiment 

o I mostly paid attention 

o I was not paying very much attention 

o I paid very little attention 

How much attention would you say you were paying to this study on Day 3? (Remember, your 

answer will NOT affect payment, so please answer truthfully!) 

o I focused all of my attention on this portion of the experiment 

o I mostly paid attention 
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o I was not paying very much attention 

o I paid very little attention 

Were you wearing headphones the entire time on Day 1? 

o Yes, I was wearing headphones the entire time 

o I was wearing headphones most of the time 

o I was wearing headphones some of the time 

o No, I did not wear headphones at all  

Were you wearing headphones the entire time on Day 2? 

o Yes, I was wearing headphones the entire time 

o I was wearing headphones most of the time 

o I was wearing headphones some of the time 

o No, I did not wear headphones at all  

Were you wearing headphones the entire time on Day 3? 

o Yes, I was wearing headphones the entire time 

o I was wearing headphones most of the time 

o I was wearing headphones some of the time 

o No, I did not wear headphones at all  

If you were taking this same experiment in a lab setting, do you think you would pay... 

o More attention 

o Less attention 

o About the same level of attention 

 

[Page 4, only included in Experiment C2]  

In this experiment, there were two 'sh'-like sounds. Did you notice that there were two? 

If you noticed that there were two 'sh'-like sounds, did you think that switching one of these 'sh' 

sounds for the other caused a change in word meaning? 
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For example, in English we can say 'help' with more of a closed 'eh' sound ('h(eh)lp') or 

with more of an open 'ah' sound ('h(ah)lp'), but these different pronunciations still refer 

to the same word. But if we switch the 'h' sound with a 'k' sound, it now refers to a type of 

seaweed, 'kelp', and so DOES cause a change in word meaning.  

Did you think switching one of these 'sh' sounds for the other 'sh' sound did NOT cause a 

change in word meaning (as in 'help'~'halp'), or did you think that switching one for the 

other DID cause a change in  word meaning (as in 'help'~'kelp')? 

 

Is there anything you noticed about the 'sh' sound(s) while taking this experiment? 

 

[Page 4 (Experiment C1) or 5 (Experiment C2)]  

PLEASE BE HONEST: Did you write down any of the words from the artificial language? If so, 

which words? 

Were you doing other things during the course of this experiment? Were there outside distrac-

tions? If so, please briefly explain. 

If you have any other comments regarding this experiment, please write them here. 
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