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ABSTRACT

DONG WANG: SOME STATISTICAL APPROACHES TO THE ANALYSIS OF
MATRIX-VALUED DATA.

(Under the direction of Young K. Truong and Haipeng Shen.)

In many modern applications, we encounter data sampled in the form of two-dimensional

matrices. Simple vectorization of the matrix-valued observations would destroy the intrinsic

row and column information embedded in such data. In this research, we study three statistical

problems that are specific to matrix-valued data.

The first one concerns dimension reduction for a group of high-dimensional matrix-valued

data. We propose a novel dimension reduction approach that has nice approximation prop-

erty, computes fast for high dimensionality, and also explicitly incorporates the intrinsic two-

dimensional structure of the matrices. We discuss the connection of our proposal with existing

approaches, and compare them both numerically and theoretically. We also obtain theoretical

upper bounds on the approximation error of our method.

The second one is a group independent component analysis approach. Motivated by anal-

ysis of groups of high-dimensional imaging data, we develop a framework in the frequency

domain through Whittle log-likelihood maximization. Our method starts with efficient popula-

tion value decomposition, and then models each temporally-dependent source signal via para-

metric linear processes. The superior performance of our approach is demonstrated through

simulation studies and the ADHD200 data.

The third one addresses the problem of regression with matrix-valued covariates. We con-

sider the bilinear regression model, where two coefficient vectors are used to incorporate matrix

covariates. We propose two maximum likelihood based estimators. Both estimators are shown

to achieve the information lower bound and hence are theoretically optimal under the classical
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asymptotic framework. We further propose a bilinear ridge estimator and derive its conver-

gence property. The superior performances of the proposed estimators are demonstrated both

theoretically and numerically.
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CHAPTER 1: INTRODUCTION

As the technology advances, data with complex structures have become more and more

common. One particular type exhibits the form of a two-dimensional (2D) matrix, such as 2D

image data, functional magnetic resonance imaging data, daily temperature data, call center

data, mortality rate data, among others. These matrix-valued data are usually high dimensional

and have both column-column and row-row correlations.

Traditional statistical approaches are mostly developed for the vector-valued data. Apply-

ing these approaches to matrix-valued data usually involves the so-called vectorization oper-

ation. This operation can bring two potential problems: (1) the resulting vector is usually in

very high dimension and thus traditional statistical approaches are not applicable or scalable;

(2) this process ignores the intrinsic 2D structure embedded in the matrix data. Hence, statisti-

cal approaches preserving the 2D nature are necessary and can potentially improve the analysis

efficiency.

In this research, we develop new statistical approaches on the matrix-valued data from three

perspectives.

In Chapter 2, we develop a computationally efficient approach to reduce the dimension-

ality of a group of high-dimensional matrices simultaneously. This approach is based on the

model proposed in Ye (2005) which approximates multiple matrices by common left and right

basis and subject-specific coefficients. The original estimator generalized low rank approxi-

mations of matrices (GLRAM) (Ye, 2005) is an iterative procedure which is computationally

expensive. Ding and Ye (2005) proposed a non-iterative procedure which is computationally

fast under the name two-dimensional singular value decomposition (2DSVD). Both GLRAM

and 2DSVD are applicable to small or moderate sample size. To deal with massive dataset,



Crainiceanu et al. (2011) proposes the population value decomposition (PVD) approach which

is a two-stage singular value decomposition procedure. Our procedure is a modified version of

the PVD algorithm which differs from PVD in the second stage. We take the relative impor-

tance of singular vectors into consideration. Our procedure is computationally and mathemati-

cally almost equivalent to the GLRAM and 2DSVD approaches, but requires significantly less

memory, and it also improves the performance of PVD by a considerable amount while keep-

ing the attractive feature of PVD of little storage space. The error bound of our procedure has

been established theoretically and its superior performance has been demonstrated empirically.

In Chapter 3, we study independent component analysis for a group of matrices. Tradi-

tional ICA originally aims at blind source separation for a single matrix by decomposing the

observed data matrix into the product of the mixing matrix and the unobserved source signal

matrix. When it is extended to the group analysis, many recent papers consider various as-

sumptions on the mixing and signal matrices, such as whether the matrix is homogeneous or

heterogeneous across subjects. Nevertheless, the existing group ICA methods do not consider

the temporal correlation within each source which is prevalent in many applications and may

play an important role in the analysis. The correlation structure is exploited in a single sub-

ject ICA paper by Lee et al. (2011) and the method is named parametric independent colored

sources (PICS). We generalize their work to handle the correlation and the group nature si-

multaneous by an approach named group PICS (GPICS). GPICS models each source temporal

signal via a parametric time series model, which enables us to solve for the time series param-

eters and the mixing matrices iteratively through maximizing the Whittle log-likelihood in the

spectral domain. Various combinations of the homogeneity and heterogeneity assumptions can

be flexibly accommodated in our model. Lastly, we make use of the novel group dimension

reduction tool described in Chapter 2 to first reduce the size of one dimension, usually the ex-

tremely high dimensional spatial domain, and feed the resulting output to the likelihood, which

innovatively makes the procedure more scalable and even applicable for data larger than the
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memory size. The superior performance of GPICS is shown when compared with the popular

group ICA approaches through simulation and a real data example.

Chapter 4 addresses the problem of regression with matrix-valued predictors by maintain-

ing the matrix structure via a bilinear form. We consider the scenarios where the sample size

is much larger than the two dimensions of the matrix. The bilinear form naturally leads to an

iterative flip-flop procedure since it reduces to the linear model while one dimension is fixed.

Although the iterative procedure has no guarantee to converge to the global optimum, which is

the maximum likelihood estimator, we can still demonstrate that the stationary point achieves

the same information lower bound as the maximum likelihood estimator. Due to the compu-

tational concerns, a non-iterative procedure is introduced as well, which is even more scalable

and desirable for big data and meanwhile possesses an identical asymptotic efficiency as the

iterative procedure. The advantage of the proposed methods over straightforward vectorization

are demonstrated both theoretically and numerically. Moreover, we also consider the scenarios

where the sample size is comparable or even smaller than the dimensions of the matrix. We

propose a bilinear ridge estimator which is an extension of the ridge estimator for linear regres-

sion. We further establish an upper bound on the excess prediction error of the bilinear ridge

estimator.
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CHAPTER 2: ADJUSTED POPULATION VALUE DECOMPOSITION

2.1 Introduction

As the technology advances, matrix-valued data are more and more common. For instance,

a typical functional magnetic resonance imaging (fMRI) data set is usually represented as a

group of matrices of the same size, where each matrix is the measurement of the blood oxy-

gen level dependent contrast for one subject, with each column corresponding to a vectorized

three-dimensional image at a certain time point, and each row being a sequence of temporal

observations for a particular brain voxel.

These matrices are often of high or even ultra-high dimension that needs a large amount of

memory. For instance, a collection of fMRI data for 100 subjects may consist of 100 matri-

ces with the spatial dimension corresponding to as many as 200, 000 voxels and the temporal

dimension consisting of around 200 time points, which altogether requires about 30 gigabytes

(GB) memory in double precision. Hence, it is crucial to develop a group-wise dimension re-

duction technique that is precise and scales well for high-dimensional data, which is the goal

of the current chapter.

Most conventional dimension reduction techniques were developed for groups of vector-

valued data, such as the popular principal component analysis (PCA) (Jolliffe, 2002). To apply

these approaches directly to matrix-valued data, we need to vectorize each matrix. The con-

ventional one dimensional (1D) PCA then projects vector-valued observations onto a set of

orthogonal directions that preserve the maximum amount of variation in the data. These direc-

tions are characterized by the leading eigenvectors of the sample covariance matrix. However,

the vectorization ignores the intrinsic two-dimensional (2D) structure embedded in the matri-

ces, and creates high-dimensional vectors that increase computational/memory burden. This



usually makes the follow-up dimension reduction not efficient.

Several dimension reduction methods have been developed that incorporate the 2D struc-

ture of matrices. Motivated by 1DPCA, 2DPCA of Yang et al. (2004) projects each matrix onto

the principal eigen-space of the row-row covariance matrix without vectorization. 2DPCA can

also be understood through the perspective of a one-side-type low rank approximation to ma-

trices. However, 2DPCA only takes into consideration the row-row covariance matrix. To

fully capture both the row-row and column-column correlations, Ye (2005) proposed the gen-

eralized low rank approximations of matrices (GLRAM) approach which is a two-side-type

low rank approximation. The idea of GLRAM originates from the minimization of the sum of

squared residuals. The optimization criterion has no closed form solution and naturally leads

to an iterative algorithm that can be slow. To achieve better computational efficiency, Ding and

Ye (2005) proposed a non-iterative algorithm named two-dimensional singular value decom-

position (2DSVD) which only implements eigen-decomposition on the row-row and column-

column covariance matrices. Zhang and Zhou (2005) independently proposed two-directional

two-dimensional principal component analysis ((2D)2PCA) that is intrinsically equivalent to

2DSVD. The reduction of the computation cost inevitably makes the reconstruction error of

2DSVD and (2D)2PCA larger than GLRAM, the optimal iterative procedure.

Besides computational speed, the limitation of the computer memory is another major hur-

dle that one has to tackle when analyzing massive data. Take the aforementioned fMRI data

for example. The large amount of memory needed is beyond general computer capacity and

the various algorithms discussed above are hence not implementable.

To cope with memory-demanding data and further speed up the computation, recently

Crainiceanu et al. (2011) proposed the population value decomposition (PVD) approach that

essentially boils down to a two-step singular value decomposition (SVD) algorithm. In the first

step, SVDs are applied separately to individual matrices that are of relatively small size, and

the leading left and right singular vectors are retained. This can be performed either in parallel
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or sequentially and often requires much less memory. In the second step, the leading left and

right singular vectors obtained in the first step are concatenated column-wise, respectively; and

SVD is applied again to each concatenated matrix. These aggregated matrices are substantially

smaller than the raw data matrices if one only keeps the few leading singular vectors. The

resulting left singular vectors in the second step are used to obtain the final approximation for

the original matrices. Obviously, ignoring the higher-order singular vectors in the first step

results in less accuracy for PVD. But PVD effectively reduces the computational burden, and

is applicable for high-dimensional matrices.

One drawback of PVD is that the computational efficiency does come at the price of re-

duced approximation accuracy. In this chapter, we further improve PVD and develop an ad-

justed PVD (APVD) algorithm that has the same computational cost and requires the same

amount of memory as PVD, but produces more precise results. In fact, APVD often performs

as accurate as GLRAM and 2DSVD for matrices of small to moderate sizes when they can be

computed.

The key idea of the APVD modification arises from the observation that PVD assigns equal

weights in the group-level SVD to those leading singular vectors obtained in the first SVD

step. We all know that the singular vectors have a natural order of relative importance as

reflected by the corresponding singular values. Hence, we adjust PVD by incorporating the

relative importance of the singular vectors, which indeed results in a more accurate estimation

of the group components. The first step of APVD is the same as PVD. While in the second

step, our APVD procedure concatenates the scaled singular vectors, i.e. the product of the

singular vectors and their corresponding singular values from each individual matrix, instead

of concatenating just the singular vectors. Furthermore, we establish theoretical justification

for APVD in terms of upper bound on the normalized reconstruction errors.

The rest of this chapter is organized as follows. In Section 2.2, we state the model and

give a brief review of the GLRAM, 2DSVD, and PVD procedures. In Section 2.3, we then

6



describe the APVD algorithm, and compare the computational complexities of the various

approaches along with their connections. The theoretical properties of APVD are studied in

Section 4.3. Numerical comparisons through simulation studies and a classical face image

data set are presented in Section 2.5, to show that APVD performs comparable to GLRAM and

2DSVD and better than PVD. We conclude in Section 2.6, and relegate all proofs to 2.7.

2.2 Preliminaries

2.2.1 The model

Consider there are I matrices of dimension m×n, denoted as Xi, i = 1, . . . , I . To achieve

group dimension reduction for the matrices, a reasonable model can be written as

Xi = LWiR
T + Ei, (2.1)

where L ∈ Rm×rL and R ∈ Rn×rR are orthonormal matrices representing the left and right

group components respectively, Wi ∈ RrL×rR is the individual coefficient matrix, and the error

matrix Ei contains the individual approximation errors. Throughout this chapter, we assume

that
∑I

i=1 Xi = 0. If we choose rL � n and rR � m, the size of the individual component

Wi (rLrR) is much smaller than the size of the original data (mn), which achieves the goal of

dimension reduction.

The decomposition of Xi as in (2.1) is closely related to the SVD of a single matrix. Sup-

pose I = 1, that is, there is only one matrix. Then the optimal L and R that minimize the sum

of squares of the approximation errors in Ei are the r = min(rL, rR) leading left and right sin-

gular vectors of X1, and W1 can always be required to be a diagonal matrix with the r leading

singular values. When I > 1, Model (2.1) relaxes the requirement that all of the subject-

specific terms Wi should be diagonal matrices and only keep the orthonormal constraints of

the group components. The reason is that the subspace spanned by the columns of L (or R)
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can be thought of as the best rank rL (or rR) subspace that spans the column (or row) subspace

of all the Xi’s; the Wi’s are the coefficients when projecting Xi onto L and R, which are not

necessarily diagonal matrices.

2.2.2 Review of existing methods

The GLRAM, 2DSVD, PVD (and APVD) procedures offer different ways of estimating

Model (2.1), as we shall review below. Least squares offers a natural criterion for model

estimation. It can be shown that the least square estimator ofWi is given by Ŵi = L̂TXiR̂, once

we obtain the group component estimates, L̂ and R̂. Therefore, for the rest of this chapter, we

focus on the estimation of L and R. Moreover, for simplicity, we describe how each approach

can be used to estimate the left component L; R can be estimated in the same way using the

transpose of Xi.

The GLRAM of Ye (2005) borrows the minimum reconstruction error property of SVD and

seeks L, R and Wi to minimize the reconstruction error in the least square sense:

min
L,R,Wi

I∑
i=1

‖Xi − LWiR
T‖2

F , (2.2)

s.t. RTR = IrR , L
TL = IrL ,

L ∈ Rm×rL , R ∈ Rn×rR and Wi ∈ RrL×rR ,

where ‖ · ‖F is the matrix Frobenius norm.

Ye (2005) pointed out that the optimization problem (2.2) has no closed form solutions

for L and R. Hence, GLRAM solves the problem in an iterative fashion. In each iteration, it

alternates the updating of L (or R) as the leading rL (or rR) eigenvectors of
∑I

i=1XiRR
TXT

i

(or
∑I

i=1X
T
i LL

TXi), by fixingR (or L) as the corresponding estimate obtained in the previous

iteration. The algorithm terminates until it reaches a certain convergence criterion.

The 2DSVD of Ding and Ye (2005) offers an alternative estimation approach that is non-

8



iterative. It estimates L by either SVD of the concatenated data matrix or eigen-decomposition

of the column-column covariance matrix. One can concatenate the matrices as

A = [X1, X2, . . . , XI ], and then perform SVD on A to obtain the leading rL left singular

vectors as the estimate for L. Alternatively, the relationship between eigen-decomposition and

SVD suggests that the left singular vectors of A are the same as the eigenvectors of the matrix

AAT , which equal to the eigenvectors of the column-column covariance matrix
∑I

i=1XiX
T
i .

Note that the column-column covariance matrix plays a role similar to the sample covariance

matrix in the single-matrix case. We comment that 2DSVD reduces the computational cost of

the GLRAM procedure but does not directly minimize the objective function in (2.2). Hence it

offers an approximation solution to the optimization problem (2.2).

Unfortunately, neither of GLRAM and 2DSVD is applicable for high-dimensional ma-

trices. For example, in many neuroimaging studies, the dimension of each matrix and the

number of subjects are usually very large. For the fMRI data example in Section 4.1, we

have m = 200, 000, n = 200 and I = 100. It follows that the sizes of the concatenated

matrix A and the column-column covariance matrix
∑I

i=1 XiX
T
i are 200, 000 × 20, 000 and

200, 000× 200, 000, which respectively require about 30 and 300 GB to store in double preci-

sion. Apparently, the enormous sizes of the matrices make their storage nearly impossible in

general computers, and their SVD and eigen-decomposition computationally prohibitive.

The PVD approach of Crainiceanu et al. (2011) aims at overcoming these physical com-

puter memory and computation limitations when dealing with massive data. Recall that 2DSVD

computes the left singular vectors of the concatenated matrix A. Instead of combining all the

raw data matrices, the idea of PVD is to only concatenate the dominating singular vectors of

the individual matrices. This idea naturally makes PVD a two-step SVD approach. Formally,

PVD first performs SVD on each individual matrix, denoted as Xi = UiDiV
T
i where Ui is the

m× ri orthonormal left singular vector matrix, Di is the ri× ri diagonal singular value matrix

with the diagonal entries being the positive singular values in descending order, Vi is the n× ri

9



orthonormal right singular vector matrix, and ri denotes the rank of Xi. Given the SVDs, only

the first kui and kvi columns of Ui and Vi are retained and denoted as Ũi and Ṽi respectively.

The matrices Ũi, i = 1, . . . , I , are then concatenated as P ∗ ≡ [Ũ1, Ũ2, . . . , ŨI ]. In the second

step, PVD estimates L with the first rL left singular vectors of P ∗. Similarly, PVD obtains the

estimate for R with the first rR left singular vectors of Q∗ ≡ [Ṽ1, Ṽ2, . . . , ṼI ].

PVD replaces one SVD on a single large matrix with many SVDs on relatively small ma-

trices, and can efficiently reduce the computational cost. Coming back to the previous fMRI

data example, the size of each individual matrix is 200, 000 × 200 which requires about 0.3

GB memory and the corresponding SVD can be easily computed. If we retain the first 10

left singular vectors from each matrix, the aggregated matrix of the singular vectors is of size

200, 000× 1, 000 which requires about 1.5 GB, and it is still feasible to obtain its SVD.

2.3 Adjusted population value decomposition

We propose to further improve PVD with one adjustment - proper incorporation of the

singular values inDi. Our motivation of the adjustment for PVD is from the fact that PVD gives

equal weights to all singular vectors. As mentioned in Section 4.1, one important property of

SVD is that the singular vectors of a matrix has a relative importance order which is reflected by

their singular values. Taking this order information into consideration by scaling each singular

vector with its corresponding singular value, it can potentially improve the estimation accuracy

on the estimates of group components.

We present our adjusted population value decomposition (APVD) approach in this section.

We first present the APVD algorithm in Section 2.3.1, and then discuss its memory and com-

putation complexities in Sections 2.3.2 and 2.3.3, and its connections with PVD and 2DSVD

in Section 2.3.4.

10



2.3.1 The APVD algorithm

Our APVD procedure modifies the PVD approach by taking into account the relative im-

portance of the singular vectors in the group-level SVD step of PVD, while keeping the first

SVD step intact.

The complete APVD procedure is presented below in Algorithm 2.1.

Algorithm 2.1 The APVD algorithm

1. Perform SVD on each Xi and obtain Xi = UiDiV
T
i .

Let Ũi and Ṽi denote the first kui and kvi columns of Ui and Vi respectively.
Let D̃u

i and D̃v
i be the corresponding diagonal matrices with the diagonal elements being

the first kui and kvi singular values of Xi respectively.
Define P ≡ [Ũ1D̃

u
1 , Ũ2D̃

u
2 , . . . , ŨID̃

u
I ] and Q ≡ [Ṽ1D̃

v
1 , Ṽ2D̃

v
2 , . . . , ṼID̃

v
I ].

2. Perform SVD on P and Q.
Obtain the APVD estimates of L and R as the first rL and rR left singular vectors of P
and Q respectively.

Selection of kui and kvi For both PVD and APVD, one needs to choose kui and kvi in the

individual-level SVD step. Our numerical experience suggests that as long as kui ≥ rL, k
v
i ≥

rR, the specific choices of kui and kvi do not matter that much. The condition that the number

of the components preserved in the first step should be no smaller than the rank of the final

estimator is intuitive, in that we must not throw away any useful information in each individual

matrix. Since the smaller these two quantities kui and kvi are, the less time-consuming the

algorithm is, we recommend to set kui = rL and kvi = rR in practice.

2.3.2 Memory complexity

We want to compare the amount of memory needed by each of the four methods: GLRAM,

2DSVD, PVD, and APVD. The four methods do not necessarily need to load all data matrices

into memory at the same time except the SVD algorithm for 2DSVD, i.e. one can load one

data matrix into memory at a time, perform the calculation and then remove it. Hence, we
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compare the memory requirement using the largest matrix size needed to do SVD or eigen-

decomposition for each approach.

For ease of illustration, we assume that, for PVD and APVD, the numbers of components

kept in the second SVD step are the same across different subjects and equal the desired ranks,

kui = rL, kvi = rR, i = 1, ..., I . Furthermore, the ranks are assumed to be significantly smaller

than the size of the original matrix, i.e. rL � n, rR � m, which is usually the case for

dimension reduction to be useful. Without loss of generality, we assume that m ≥ n.

GLRAM needs to do an eigen-decomposition of size m×m to obtain the estimate of L at

each iteration. 2DSVD has two versions: the one that computes the SVDs of the concatenated

matrix needs to do SVD on a matrix of size m × nI or n ×mI; the other one that computes

the eigen-decomposition of the covariance matrices needs to calculate eigen-decomposition on

a matrix of maximum size m ×m. As for PVD and APVD, the algorithms need to do SVDs

on matrices of size m × n in the first step and of maximum size m × rLI during the second

step. By introducing the notations a ∨ b = max(a, b) and a ∧ b = min(a, b), the maximum

matrix size to do SVD for PVD and APVD is m× (n ∨ (rLI)). The above comparison results

are summarized in Table 2.1.

Maximum matrix size APVD PVD 2DSVD GLRAM
for SVD m× (n ∨ (rLI)) m× (n ∨ (rLI)) m× nI or n×mI

for eigen-decomposition m×m m×m

Table 2.1: The maximum matrix sizes for the four estimation approaches.

Back to the fMRI data example with m = 200, 000, n = 200, I = 100, and rL = rR = 10

(for example). The matrices of size m× nI and m×m require 30 GB and 300 GB computer

memory respectively. On the other hand, the matrix of size m× (n∨ (rLI)) only needs 1.5 GB

memory. Hence, in this case, the 2DSVD and GLRAM approaches need much more memory

than APVD and PVD.
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2.3.3 Computation complexity

We compare the computational time complexities of these four algorithms as follows,

which are summarized in Table 2.2.

• Suppose GLRAM converges afterK iterations. During each iteration, one needs to com-

pute
∑I

i=1XiRR
TXT

i and
∑I

i=1X
T
i LL

TXi, which takes O ((m+ n)(mrR + nrL)I)

flops; the follow-up eigen-decomposition requires O (m3 + n3) flops. Hence, GLRAM

can be computed in O (K(m+ n)(mrR + nrL)I +Km3 +Kn3) flops.

• When 2DSVD computes the SVDs of [X1, X2, . . . , XI ] and [XT
1 , X

T
2 , . . . , X

T
I ] which

are of size m × nI and n ×mI , the calculation takes O (mnI(m ∧ (nI) + n ∧ (mI)))

flops. When 2DSVD computes the eigen-decompositions of
∑I

i=1 XiX
T
i and∑I

i=1 X
T
i Xi, the matrix multiplication consumes O (m2nI +mn2I) and the

eigen-decompositions takes O (m3 + n3) flops.

• The first step of PVD and APVD consists of I individual SVDs of matrices of sizem×n

and can be implemented in O (mn2I) flops. The second step involves two SVDs of ma-

trices of size m× rLI and n× rRI and needsO (mrLI(m ∧ (rLI)) + nrRI(n ∧ (rRI)))

flops.

Computation Complexity
APVD O (mn2I +mrLI(m ∧ (rLI)) + nrRI(n ∧ (rRI)))
PVD O (mn2I +mrLI(m ∧ (rLI)) + nrRI(n ∧ (rRI)))

2DSVD O (m2nI +mn2I +m3 + n3)
or O (mnI(m ∧ (nI) + n ∧ (mI)))

GLRAM O (K(m+ n)(mrR + nrL)I +Km3 +Kn3)

Table 2.2: Comparison of computation complexity for the four approaches.
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2.3.4 Connections of APVD with PVD and 2DSVD

GLRAM optimizes the least squares criterion but is computationally the most expensive

approach. 2DSVD is less costly to compute and has been shown to be near-optimal (Ding and

Ye, 2005). Both PVD and APVD attempt to overcome the memory limitation of GLRAM and

2DSVD through individual dimension reduction prior to SVD of the concatenated matrix.

In this section, we further investigate the connection between APVD and 2DSVD, as well

as between APVD and PVD. We first show that 2DSVD and APVD produce similar estimates.

Given the near-optimality of 2DSVD, it follows that APVD also possesses nice estimation

property. We then prove that, under certain conditions, PVD and APVD recover the same

subspace, although in most scenarios APVD estimates better.

APVD and 2DSVD Consider the SVD of Xi as Xi = UiDiV
T
i . Note that APVD concate-

nates the leading components of the scaled singular vectors {UiDi}, while 2DSVD concate-

nates the original data matrices {Xi}. The following Proposition 1 suggests that if APVD

concatenates the full set of the scaled singular vectors from each subject, then APVD and

2DSVD give the same estimates for L and R in Model (2.1).

Proposition 1 The concatenated data matrix [X1, X2, . . . , XI ] and the concatenated scaled

singular vector matrix [U1D1, U2D2, . . . , UIDI ] have the same set of left singular vectors and

the singular values. Similarly, [XT
1 , X

T
2 , . . . , X

T
I ] and [V1D1, V2D2, . . . , VIDI ] have the same

set of left singular vectors and singular values.

Given the above equivalence, when APVD only concatenates the first kui scaled singular

vectors, instead of the full set, the estimates from APVD are not exactly the same as those

from 2DSVD, but they are close as we show below. 2DSVD computes the left singular vectors

of [X1, X2, . . . , XI ], which are the eigenvectors of
∑I

i=1XiX
T
i . On the other hand, APVD

calculates the left singular vectors of [Ũ1D̃
u
1 , Ũ2D̃

u
2 , . . . , ŨID̃

u
I ], which are the eigenvectors of∑I

i=1 Ũi(D̃
u
i )2ŨT

i . Since XiX
T
i = UiD

2
iU

T
i ≈ Ũi(D̃

u
i )2ŨT

i , we obtain L̂APV D ≈ L̂2DSV D.
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APVD and PVD We remind that P ∗ ≡ [Ũ1, Ũ2, . . . , ŨI ], Q∗ ≡ [Ṽ1, Ṽ2, . . . , ṼI ], P ≡

[Ũ1D̃
u
1 , Ũ2D̃

u
2 , . . . , ŨID̃

u
I ], and Q ≡ [Ṽ1D̃

v
1 , Ṽ2D̃

v
2 , . . . , ṼID̃

v
I ]. The second step of PVD cal-

culates SVD of P ∗ and Q∗, while APVD does SVD on P and Q.

The PVD procedure concatenates the singular vectors while APVD concatenates the scaled

singular vectors. If every singular vector in the aggregated matrix of PVD has a corresponding

scaled vector in APVD, the column spaces of the two aggregated matrices would be the same.

On the other hand, a fundamental property of SVD is that the left singular vectors correspond-

ing to the non-zero singular values represent an orthonormal basis of the matrix column space.

Therefore, the full set of the left singular vectors with non-zero singular values of the two ag-

gregated matrices are basis representing the same subspace. Hence, there exists an orthogonal

transformation relationship between the two full sets of singular vectors with non-zero singular

values. We summarize the relationship between APVD and PVD in the following proposition.

Proposition 2 The ranks of P and P ∗ are the same and we denote it by rP . Moreover, the first

rP left singular vectors of P ∗ are orthogonal rotations of the first rP left singular vectors of P .

Similar results hold for Q and Q∗.

Proposition 2 shows the orthogonal transformation relationship between APVD and PVD

only if rL = rP . In practice, rL is usually smaller than rP since we take kui greater than or equal

to rL. Hence, in most cases, there does not exist an orthogonal transformation relationship

between the estimates by PVD and APVD. Simulation results in Section 2.5 show that APVD

outperforms PVD measured by subspace recovery and normalized reconstruction errors.

2.4 Theoretical properties

In this section, we study some theoretical properties of APVD regarding normalized recon-

struction error which is a measure of accuracy of the proposed procedure. We will show that

the normalized reconstruction error is bounded from above by the normalized information lost

15



of the two-step SVD for both one-side and two-side type approximations. Before we proceed

to the main results, we first introduce some notations.

In both SVD steps of the APVD approach, we only retain the first few singular vectors and

singular values which can explain most of the variance. The amount of information kept or lost

in each step can be characterized by the singular values or eigenvalues. For the first SVD step,

let

θu = min
i∈{1,...,I}

∑kui
j=1 d

2
ij∑ri

j=1 d
2
ij

, and θv = min
i∈{1,...,I}

∑kvi
j=1 d

2
ij∑ri

j=1 d
2
ij

, (2.3)

where dij is the jth singular value of Xi in descending order. Then θu and θv denote the

minimum fraction of variances kept from individual matrices.

Recall that P and Q are defined as

P ≡ [Ũ1D̃
u
1 , Ũ2D̃

u
2 , . . . , ŨID̃

u
I ], and Q ≡ [Ṽ1D̃

v
1 , Ṽ2D̃

v
2 , . . . , ṼID̃

v
I ]

which are the aggregation matrices of the scaled singular vectors. Let dPj and dQj be the jth

singular values of P and Q in descending order, respectively. Similar to θu and θv, we define

θP =

∑rL
j=1 d

2
Pj∑rP

j=1 d
2
Pj

, and θQ =

∑rR
j=1 d

2
Qj∑rQ

j=1 d
2
Qj

, (2.4)

which represent the information we retain in the second SVD step.

The normalized reconstruction error r is a commonly used metric to measure and compare

the performances of various approaches. It is defined as

r =

∑I
i=1 ‖Xi − X̂i‖2

F∑I
i=1 ‖Xi‖2

F

, (2.5)

where X̂i denotes the reconstruction of Xi. We present the upper bound of r for the APVD

approach in terms of θP , θQ, θu and θv in the following theorems.
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2.4.1 Upper bound for the two-side type approximation

The following theorem specifies how the normalized reconstruction error of the proposed

APVD approach is bounded from above by the normalized information lost in the two SVD

steps.

Theorem 1 Consider Model (2.1) and assume that the estimates of L and R are given by the

APVD procedure. Then the upper bound of the normalized reconstruction error r is

r ≤ (1− θuθP ) + (1− θvθQ).

From the definitions, we know that θu denotes the minimum fraction of variances retained

in the first SVD step, and θP represents the fraction of information kept in the second SVD step

for estimating L. Hence, the fraction of variances kept in the two SVD steps is at least θuθP .

It follows that the normalized information lost is at most 1− θuθP for estimating L. Similarly,

1− θvθQ is the largest normalized information lost for estimating R. Theorem 1 shows that the

normalized reconstruction error is bounded from above by the sum of the maximum fraction

of variances lost while estimating the left and right components.

2.4.2 Upper bound for the one-side type approximation

We comment here that our APVD procedure can also be used to estimate group components

of the 2DPCA model (Yang et al., 2004) which is a one-side type low rank approximation of

matrices. To be more specific, 2DPCA approximates each m× n matrix Xi, i = 1, . . . , I , by a

product of one group-specific right component R2DPCA of size n× rR and one subject-specific

term W 2DPCA
i of size m× rR, i.e.,

Xi = W 2DPCA
i (R2DPCA)T + Ei, (2.6)
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where Ei of size m× n is the error matrix.

The APVD estimation procedures of L and R in the two-side type model (2.1) are seperate

processes. Hence, the estimate of R obtained by APVD can also be used as an estimate of

R2DPCA in Model (2.6). The subject-specific term W 2DPCA
i can be obtained via Ŵ 2DPCA

i =

XiR̂2DPCA. It follows that Xi can be reconstructed by X̂i = Ŵ 2DPCA
i (R̂2DPCA)T . The upper

bound of the normalized reconstruction error under the 2DPCA model (2.6) is given by the

following theorem.

Theorem 2 Consider model (2.6) and assume the estimate of R2DPCA is given by the APVD

procedure. Then the upper bound of the normalized reconstruction error r is

r ≤ 1− θvθQ.

Similar to the interpretation of Theorem 1, Theorem 2 shows that the normalized recon-

struction error is bounded from above by the maximum fraction of variances lost when esti-

mating the right group component.

2.5 Numerical studies

We evaluate the performance of our proposed APVD approach through simulations in Sec-

tions 2.5.1 and 2.5.2. The simulation results show that APVD performs comparable to GLRAM

and 2DSVD in terms of estimation accuracy and all three methods are more accurate than PVD.

We then apply the methods to a well-known face image database in Section 2.5.3.

We compare the performance of the methods in terms of subspace recovery, normalized

reconstruction errors, and computational time. Since the columns of L and L̂ form two sets

of orthonormal basis, we use the following metric to measure the discrepancy between the

corresponding subspaces:

D(L̂, L) = ‖L̂L̂T − LLT‖2, (2.7)
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where ‖ · ‖2 denotes the matrix spectral norm. This distance metric equals the sine of the

largest canonical angle between two subspaces, and has been used by Golub and Van Loan

(1996) among others in the dimension reduction literature. We note that 0 ≤ D(L̂, L) ≤ 1

with a smaller value corresponding to a better estimate. Similarly, we can define the distance

for the right group component as

D(R̂, R) = ‖R̂R̂T −RRT‖2. (2.8)

2.5.1 Simulation: subspace recovery and normalized reconstruction errors

Data are simulated according to Model (2.1):

Xi = LWiR
T + Ei,

for i = 1, 2, . . . , I with I = 10, rL = 10 and rR = 6. The jth column of L (and R) is

(0, 0, . . . , 0, 1, 0, . . . , 0)T with the jth entry being 1 and the others being 0. Each entry of the in-

dividual component Wi is i.i.d. N(0, 1), and each entry of the error matrix Ei is i.i.d. N(0, σ2)

where σ is the noise level determined as follows. We use rLrR/(mnσ2) to approximate the

signal to noise ratio (SNR). Then σ is given by
√
rLrR/(mn · SNR). In all simulations, we

consider SNR as 2 to calculate the corresponding value of σ.

For 2DSVD and GLRAM, we take the first rL = 10 and rR = 6 leading eigenvectors of

the corresponding matrices as the estimates of L and R. For APVD and PVD, we take kui = 10

and kvi = 6 in the first-step SVD and rL = 10 and rR = 6 in the second-step SVD.

Figure 2.1 shows the results for m = 100 and n = 50 over 100 simulation replications.

Panels (a) and (b) depict the boxplots of the distances between the estimated subspaces and the

underlying truth for L and R, respectively. Panel (c) compares the boxplots of the normalized

reconstruction errors r (2.5). According to all three measures, APVD achieves comparable

performance as the near-optimal 2DSVD and the optimal GLRAM, all of which outperform
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PVD.
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Figure 2.1: Boxplots comparing four approaches for subspace recovery and normalized reconstruction
errors over 100 simulation runs for m = 100 and n = 50. (a) Distances between the sub-
spaces spanned by L̂ and L defined in (2.7). (b) Distances between the subspaces spanned
by R̂ and R defined in equation (2.8). (c) Normalized reconstruction errors r defined in
(2.5).

Furthermore, Table 2.3 compares the average results for four (m,n) paris over 100 runs:

(100, 20), (100, 50), (500, 100) and (500, 250). We can see that GLRAM achieves the best

performance in all three measures, APVD performs comparable to 2DSVD and outperforms

PVD. In terms of computing time, 2DSVD is the fastest one, while APVD and PVD have

nearly the same speed, both of which are faster than the iterative GLRAM.

m n Approach D(L̂, L) D(R̂, R) r Time

100 20 APVD 0.276 (0.030) 0.086 (0.012) 0.306 (0.012) 0.009 (0.001)
PVD 0.502 (0.094) 0.147 (0.023) 0.335 (0.014) 0.009 (0.003)

2DSVD 0.278 (0.030) 0.083 (0.011) 0.306 (0.012) 0.003 (0.000)
GLRAM 0.267 (0.028) 0.078 (0.010) 0.305 (0.012) 0.038 (0.001)

100 50 APVD 0.177 (0.017) 0.080 (0.007) 0.322 (0.014) 0.020 (0.001)
PVD 0.380 (0.063) 0.129 (0.014) 0.342 (0.014) 0.019 (0.000)

2DSVD 0.179 (0.018) 0.079 (0.007) 0.322 (0.014) 0.007 (0.015)
GLRAM 0.171 (0.015) 0.076 (0.007) 0.322 (0.014) 0.054 (0.002)

500 100 APVD 0.120 (0.010) 0.034 (0.003) 0.328 (0.013) 0.216 (0.009)
PVD 0.213 (0.025) 0.067 (0.010) 0.334 (0.013) 0.215 (0.009)

2DSVD 0.120 (0.011) 0.034 (0.003) 0.328 (0.013) 0.199 (0.007)
GLRAM 0.119 (0.010) 0.034 (0.003) 0.328 (0.013) 1.750 (0.077)

500 250 APVD 0.076 (0.007) 0.033 (0.002) 0.333 (0.013) 0.737 (0.026)
PVD 0.162 (0.020) 0.063 (0.009) 0.337 (0.013) 0.738 (0.028)

2DSVD 0.076 (0.007) 0.033 (0.002) 0.333 (0.013) 0.343 (0.013)
GLRAM 0.075 (0.007) 0.033 (0.002) 0.333 (0.013) 2.613 (0.106)

Table 2.3: Average results for four (m,n) pairs based on 100 simulation runs. Standard errors are shown
in parentheses.

The above simulation results offer great support for APVD (over PVD). It performs compa-
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rable with 2DSVD and GLRAM in these small to moderate simulation studies. When GLRAM

and 2DSVD can not be computed for high-dimensional matrices, we expect that APVD still

outperforms PVD.

2.5.2 Simulation: choices of rL, rR, kui and kvi

In this simulation, we study how different choices of rL, rR, kui and kvi can affect the

estimation of L and R. Data are simulated according to Model (2.1) with I = 10, m = 100

and n = 50. The true rank of L and R are chosen to be 15. The matrices L, R, Wi and Ei are

simulated in the same way as in Section 2.5.1. We replicate the simulation 100 times.

For APVD and PVD, we choose the same number of singular vectors in the first SVD step

for each individual matrix, i.e. kui = ku and kvi = kv for all i. Note that rL and rR represent the

numbers of columns of L̂ and R̂ respectively. We study how the number of components affects

the normalized reconstruction error by letting (1) the four parameters equal and vary together;

(2) ku and kv are fixed at 20 while rL and rR change; and (3) rL and rR are fixed at 5 while ku

and kv vary. The results are shown in Figure 2.2.
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Figure 2.2: The choices of the numbers of singular vectors. (a) ku = kv = rL = rR and vary from 1 to
20. (b) ku = kv = 20 and rL = rR vary from 1 to 20. (c) rL = rR = 5 and ku = kv vary
from 5 to 20. The dotted vertical lines represent the locations of the true ranks of L and R.

Figure 2.2(a) studies the question of how many components we need to choose. We take
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ku = kv = rL = rR and vary them together from 1 to 20. Recall that the true ranks of

L and R are 15. As the numbers of columns of L̂ and R̂ (rL and rR) increase, the more

components are used to approximate the data matrices and hence the normalized reconstruction

errors decrease for all four methods. We note that the errors decrease quickly towards the

true rank 15 and slowly after 15. Moreover, APVD, 2DSVD and GLRAM have comparable

normalized reconstruction errors and are smaller than the PVD approach for all cases.

Figure 2.2(b) investigates how the number of components chosen in the second SVD step

will affect the final estimates. We set ku = kv = 20 and let rL = rR vary from 1 to 20. As the

number of components increases, the errors decreases. As in Figure 2.2(a), there is a change

of decreasing rate at the true rank 15. We can see that APVD has comparable performance as

2DSVD and GLRAM and outperforms PVD.

Figure 2.2(c) studies the relation between the number of components chosen in the first

SVD step and the final estimates. We set rL = rR = 5 and let ku = kv change from 5

to 20. Here the numbers of the first SVD step (ku and kv) are chosen to be greater than or

equal to the numbers of the second SVD step (rL and rR). This is reasonable since we should

preserve information in each matrix. We note the following observations: (1) the error of

the PVD procedure goes up ; (2) the normalized error of APVD changes little as ku and kv

increase; and (3) APVD is very close to 2DSVD. These observations show the advantages of

incorporating the singular values in the analysis. Below we provide intuitive explanations for

the observations.

We illustrate (1) and (2) using the left group component L. As ku increases, new singular

vectors or scaled singular vectors from individual subjects are gradually added into the ag-

gregation matrices. For the PVD method, since the newly added singular vectors are treated

equally to the previous ones, the leading eigenspace of the aggregation matrix will be affected

by these new unit vectors. However, if the new vectors are scaled and the scales are relatively

small compared to the previous ones, the principal eigenspace is still dominated by the previous
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scaled singular vectors. Hence, the eigenspace will remain stable as ku increases. These ex-

plain why the normalized errors of the PVD procedure go up but those of the APVD algorithm

only vary slightly. As for (3), recall from Section 2.3.4 and Proposition 1, the estimates from

2DSVD are the same as the APVD ones when we take the full sets of individual scaled singu-

lar vectors. From (2), we know that adding more individual scaled singular vectors will only

slightly vary the leading eigenspace. Hence, the normalized reconstruction errors of APVD are

very close to those of 2DSVD.

2.5.3 Application to the AT&T Database of Faces

We apply the four methods (GLRAM, 2DSVD, PVD, APVD) to the well-known AT&T

Database of Faces (Samaria and Harter, 1994), and demonstrate their real applicabilities. The

database contains 400 gray-scale images of faces of size 92 × 112 from 40 individuals. There

are 10 face images per individual.

For each individual subject, let Xi ∈ R92×112 denote the ith image, i = 1, 2, . . . , 10. We

first subtract the mean image X =
∑10

i=1Xi/10 from each image, and consider the following

model for each individual:

Xi −X = LWiR
T + Ei.

We then apply the four methods to estimate the model, and obtain the reconstruction for each

image as

X̂i = L̂L̂T (Xi −X)R̂R̂T +X.

Here, we take ku = kv = rL = rR = 20. We perform the model fitting and reconstruction

separately for each of the 40 subjects.

For a particular subject, Figure 2.3 shows the original face images, and the reconstruction

results from each method. The first row contains the original images, while the second to the

fifth rows are the reconstructed images given by APVD, PVD, 2DSVD and GLRAM, respec-

tively. As one can see, the reconstructed images given by APVD are visually very similar to
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the ones from 2DSVD and GLRAM, all of which are better than the PVD reconstructions and

capture more finer details.

We then randomly choose 10 representative subjects and select 1 representative image for

each subject. The images and the reconstructions are shown in Figure 2.4. We can make the

same observations as in Figure 2.3 that APVD gives finer reconstructions than PVD, and works

comparably with 2DSVD and GLRAM.
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Figure 2.3: One particular subject: the true images (first row) and the reconstructed images by APVD
(second row), PVD (third row), 2DSVD (fourth row), and GLRAM (fifth row).

2.6 Conclusions

We consider the problem of dimension reduction for groups of matrix-valued data, mo-

tivated by analysis of high-dimensional neuroimaging data. We develop a computationally

efficient method - adjusted population value decomposition (APVD) that requires significantly

less memory than most of the existing methods. Our method performs comparably with the

state of the art algorithms such as GLRAM and 2DSVD when they can be computed for ma-
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Figure 2.4: Ten representative subjects with one representative image per subject.

trices of small-to-moderate sizes, and improves the performance of PVD by a considerable

amount but maintains the nice property of PVD that it requires little storage space. Further-

more, we establish the error bound of APVD theoretically and demonstrate its superior perfor-

mance numerically.

2.7 Proofs

Before we proceed to the proofs, we introduce some notations. Let uij and vij denote the

jth column of Ui and Vi respectively for j = 1, . . . , ri. We define P and Q as the aggregated

matrices [Ũ1D̃
u
1 , Ũ2D̃

u
2 , . . . , ŨID̃

u
I ] and [Ṽ1D̃

v
1 , Ṽ2D̃

v
2 , . . . , ṼID̃

v
I ]. Write M = PP T and N =

QQT . Let the eigen-decomposition of M be

M = UMΛMU
T
M ,
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where UM is an m by rM matrix with orthonormal columns, ΛM is an rM by rM diagonal

matrix with diagonal entries λM1 ≥ λM2 ≥ . . . ≥ λMrM > 0, and rM denotes the rank of M .

Similarly, we can define the eigen-decomposition of N by

N = VNΛNV
T
N ,

with an orthonormal matrix VN of size n× rN and a diagonal matrix ΛN with diagonal entries

λN1 ≥ λN2 ≥ . . . ≥ λNrN > 0.

From the relation between eigen-decomposition and SVD, we know that the eigenvectors of

M and the left singular vectors of P are the same, and λMj = d2
Pj . Similarly, the eigenvectors

of N and the left singular vectors of Q are the same, and λNj = d2
Qj . Hence, the estimates of

the APVD procedure can be obtained from the eigenvectors of M and N .

To be more specific, let ŨM and ṼN consist of the first rL and rR columns of UM and VN

respectively. Then ŨM and ṼN are the final estimates of L and R by the APVD approach. For

the rest of this chapter, we will use the eigenvectors and eigenvalues of M and N instead of

the left singular vectors of P and Q. Moreover, we define the following quantities

θM =

∑rL
t=1 λMt∑rM
t=1 λMt

, and θN =

∑rR
t=1 λNt∑rN
t=1 λNt

, (2.9)

where θM and θN represent the normalized information retained in the second SVD step. Then

we have θM = θP and θN = θQ.

Proof of Proposition 1. Let F denote the aggregated data matrix [X1, X2, . . . , XI ] and G

denote the concatenated matrix [U1D
u
1 , U2D

u
2 , . . . , UID

u
I ]. Firstly we note that the left singular

vectors of F and G are the same as the eigenvectors of FF T and GGT . The singular values of

F and G are the square roots of the corresponding eigenvalues of FF T and GGT . Hence we
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only need to show that FF T = GGT . Observe that

FF T =
I∑
i=1

XiX
T
i =

I∑
i=1

ri∑
j=1

d2
ijuiju

T
ij,

and

GGT =
I∑
i=1

UiD
u
iD

u
i U

T
i =

I∑
i=1

ri∑
j=1

d2
ijuiju

T
ij.

Then we have

FF T = GGT .

Proof of Theorem 2. We can expressM andN in terms of the singular vectors and the singular

values of the individual matrices as follows:

M = PP T =
I∑
i=1

kui∑
j=1

d2
ijuiju

T
ij, (2.10)

N = QQT =
I∑
i=1

kvi∑
j=1

d2
ijvijv

T
ij. (2.11)

The estimate L̂ is given by ŨM . We first give a lower bound on the sum of squares of the

reconstructions α =
∑I

i=1 ‖ŨM ŨT
MXi‖2

F . It is clear that

α =
I∑
i=1

tr(ŨM Ũ
T
MXiX

T
i ŨM Ũ

T
M) =

I∑
i=1

tr(ŨT
MXiX

T
i ŨM),

where tr(·) denote the trace of a square matrix. The second equality holds because the columns

of ŨM are orthonormal. If we exchange the order of the trace and sum operators and write

XiX
T
i in terms of the singular vectors and the singular values of Xi, we have

α = tr

(
ŨT
M(

I∑
i=1

XiX
T
i )ŨM

)
= tr

(
ŨT
M(

I∑
i=1

ri∑
j=1

d2
ijuiju

T
ij)ŨM

)
.
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Partitioning the first kui singular vectors and singular values into one group and the rest into

the other group for each matrix Xi yields

α = tr

ŨT
M(

I∑
i=1

kui∑
j=1

d2
ijuiju

T
ij)ŨM

+ tr

ŨT
M(

I∑
i=1

ri∑
j=kui +1

d2
ijuiju

T
ij)ŨM

 .

The matrix
∑I

i=1

∑ri
j=kui +1 d

2
ijuiju

T
ij is positive semidefinite. Then, it follows that

tr

ŨT
M(

I∑
i=1

ri∑
j=kui +1

d2
ijuiju

T
ij)ŨM

 ≥ 0,

and hence

α ≥ tr

ŨT
M(

I∑
i=1

kui∑
j=1

d2
ijuiju

T
ij)ŨM

 .

Note that
∑I

i=1

∑kui
j=1 d

2
ijuiju

T
ij is M by equation (2.10). Together with equation (2.9), we

have

α ≥ tr(ŨT
MMŨM) =

rL∑
t=1

λMt = θM
rM∑
t=1

λMt.

We note that
∑rM

t=1 λMt = tr(M) and by (2.10), we have

tr(M) = tr(
I∑
i=1

kui∑
j=1

d2
ijuiju

T
ij) =

I∑
i=1

kui∑
j=1

d2
ij.

Together with the definition of θu in equation (2.3), it follows that

α ≥ θMθu
I∑
i=1

ri∑
j=1

d2
ij.

The Frobenius norm of each data matrix is connected with its singular values, which leads

to ‖Xi‖2
F =

∑ri
j=1 d

2
ij . Thus,

α ≥ θMθu‖Xi‖2
F .
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Now we can establish the upper bound for the normalized reconstruction error r through α as

follows.

∑I
i=1 ‖Xi − ŨM ŨT

MXi‖2
F∑I

i=1 ‖Xi‖2
F

= 1−
∑I

i=1 ‖ŨM ŨT
MXi‖2

F∑I
i=1 ‖Xi‖2

F

≤ 1− θuθM = 1− θuθP .

Similarly, we can prove that

∑I
i=1 ‖Xi −XiṼN Ṽ

T
N ‖2

F∑I
i=1 ‖Xi‖2

F

= 1−
∑I

i=1 ‖XiṼN Ṽ
T
N ‖2

F∑I
i=1 ‖Xi‖2

F

≤ 1− θvθN = 1− θvθQ.

Proof of Theorem 1. Let

α =
I∑
i=1

‖ŨM ŨT
MXi‖2

F , and β =
I∑
i=1

‖XiṼN Ṽ
T
N ‖2

F .

Then from the proof of Theorem 2, we know that

α =
I∑
i=1

‖ŨM ŨT
MXi‖2

F =
I∑
i=1

‖ŨT
MXi‖2

F ≥ θMθu
I∑
i=1

‖Xi‖2
F , (2.12)

and

β =
I∑
i=1

‖XiṼN Ṽ
T
N ‖2

F =
I∑
i=1

‖XiṼN‖2
F ≥ θNθv

I∑
i=1

‖Xi‖2
F . (2.13)

Let Ũ c
M ∈ Rm×(m−rL) and Ṽ c

N ∈ Rn×(n−rR) be two orthonormal matrices such that

ŨM Ũ
T
M + Ũ c

M Ũ
cT
M = Im×m, and ṼN Ṽ

T
N + Ṽ c

N Ṽ
cT
N = In×n.

Then the reconstruction error is given by

I∑
i=1

‖Xi − ŨM ŨT
MXiṼN Ṽ

T
N ‖2

F =
I∑
i=1

tr(ŨM Ũ
T
MXiṼ

c
N Ṽ

cT
N XT

i + Ũ c
M Ũ

cT
M XiX

T
i ).
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Since the matrix Ũ cT
M XiṼ

c
N Ṽ

cT
N XT

i Ũ
c
M is positive semidefinite, we have

tr(Ũ cT
M XiṼ

c
N Ṽ

cT
N XT

i Ũ
c
M) ≥ 0.

Thus,

I∑
i=1

‖Xi − ŨM ŨT
MXiṼN Ṽ

T
N ‖2

F

≤
I∑
i=1

tr
(
ŨM Ũ

T
MXiṼ

c
N Ṽ

cT
N XT

i + Ũ c
M Ũ

cT
M XiX

T
i + Ũ c

M Ũ
cT
M XiṼ

c
N Ṽ

cT
N XT

i

)
=

I∑
i=1

(
‖XiṼ

c
N‖2

F + ‖Ũ cT
M Xi‖2

F

)
.

By the following equalities

‖Ũ cT
M Xi‖2

F = ‖Xi‖2
F − ‖ŨT

MXi‖2
F , and ‖XiṼ

c
N‖2

F = ‖Xi‖2
F − ‖XiṼN‖2

F ,

and together with (2.12) and (2.13), we can establish the upper bound for the normalized re-

construction error as follows.

∑I
i=1 ‖Xi − ŨM ŨT

MXiṼN Ṽ
T
N ‖2

F∑I
i=1 ‖Xi‖2

F

≤

∑I
i=1

(
‖Xi‖2

F − ‖XiṼN‖2
F

)
+
∑I

i=1

(
‖Xi‖2

F − ‖ŨT
MXi‖2

F

)
∑I

i=1 ‖Xi‖2
F

≤ (1− θNθv) + (1− θMθu)

= (1− θvθQ) + (1− θuθP ).
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CHAPTER 3: GROUP PARAMETRIC INDEPENDENT COLORED SOURCES

3.1 Introduction

Independent Component Analysis is a statistical method for extracting factors or compo-

nents from a random vector x. One way to approach this problem is to express the random

vector as a linear mixture of some underlying, latent or hidden source random vector s so that

x = As, (3.1)

where A is a non-random matrix. To make this ill-defined problem more tractable, it is neces-

sary to impose some conditions on the hidden source s. A common approach is to assume the

source consists of independent components or independent random variables that are nongaus-

sian. See (Hyvärinen et al., 2001; Stone, 2004) for a survey of this idea and a wide variety of

applications.

The main appeal of ICA is its flexibility in representing multivariate data. Typically, the

random vector x is viewed as an array of sensors that can be recorded repeatedly resulting a

huge amount of data both in space (sensors) and time (repetition). The sensor array can be

one-dimensional as in the cock-tail party problem originally formulated in terms of the blind

source separation (BSS) in signal processing (Hyvärinen et al., 2001); two-dimensional as

in electroencephalogram (EEG), magnetoencephalographic (MEG) brain activation recordings

(Vigário et al., 2000); or three-dimensional functional magnetic resonance imaging (fMRI) for

examining brain dynamics (McKeown et al., 1998). The number of sensors ranges from two

for the BSS problem to hundreds of thousands in fMRI. The temporal part may be short, a few

hundred time points in fMRI; or long, millions in EEG. So the data to be considered are very



high in dimension. Finding ways to visualize them is one of the strengths of ICA.

Many ICA algorithms have been developed to estimate sources. For instance, Infomax

(Bell and Sejnowski, 1995), fastICA (Hyvärinen et al., 2001), Kernel ICA (Bach and Jordan,

2002), and ProDenICA (Hastie and Tibshirani, 2002). Most of these methods employed only

the marginal density information of the sources. However, for fMRI data and other functional

type neuroimaing data, usually there exist temporal autocorrelation structures for each source

(Worsley et al., 2002). Incorporating this temporal information into ICA would conceivably

reveal more features of the sources.

Recently, Lee et al. (2011) proposed a novel ICA algorithm by considering the spectral

properties of the sources and the algorithm is named colorICA or parametric independent col-

ored sources (PICS). The algorithm assumes that each temporal source has its own parametric

autocorrelation specified by the autoregressive (AR), moving average (MA), or autoregressive

moving average (ARMA) structures. The approach is carried out in the spectral domain via

the Whittle likelihood (Whittle, 1952) which is expressed as a function of the sensor time se-

ries along with the source parameters (both the correlation or ARMA coefficients and noise

variance), and a matrix reflecting linear mixing operations (mixing matrix). The estimates of

time series parameters and mixing matrix are obtained by minimizing the negative Whittle

log-likelihood.

The new approach is very suitable for multivariate data analysis whose temporal pattern is

the key to the analysis, very much like an important predictor or carrier in regression problems.

For example, in many brain activation experiments, the subjects will carry out certain tasks

such as finger tappings that have some temporal patterns. The main interest is to correlate

these patterns with the spatial brain maps. Specifically, an fMRI dataset consists a series of

three-dimensional (3D) images observed over time. Each 3D image represents measurements

of blood oxygen level dependent (BOLD) contrast at a specific time point. Before statistical

analysis, these 3D images are usually transformed into vectors via vectorization operation and
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hence the four-dimensional (4D) fMRI dataset can be represented by a two-dimensional (2D)

space-time matrix. Each column of the matrix consists a vectorized 3D image and each row

is a temporal course at a particular spatial location (voxel). Lee et al. (2011) considered de-

composing the fMRI data into a set of spatial maps and the associated temporal courses. The

core of the analysis is to extract the main temporal component carrying the experimental task

information along with its activation brain map. It was also demonstrated that the temporal

correlations did play an important role in extracting the source features.

The description given so far is based on the notion of temporal features. That is, the source

temporal components are considered to be independent time series. This form of ICA is re-

ferred to as temporal ICA (tICA). A parallel development can be formulated in terms of spatial

features, where the spatial maps are independent random vectors, viewed as the columns of the

mixing matrix. This is known as spatial ICA (sICA). Most algorithms are developed based on

(3.1) since sICA is the transpose version of tICA. Thus, PICS is a tICA approach because the

algorithm assumes independent temporal sources.

In recent years, a great deal of effort has been put into extending ICA to multi-subjects

analysis. Contrary to the above single subject analysis in which the data is acquired for one run,

one session, or one subject; many human brain mapping studies involve multiple runs, sessions,

or subjects. The main question now is how to compare brains of two subjects, or brains of

several groups of subjects. Motivated by these situations, Calhoun et al. (2001) proposed the

group ICA (GICA) approach which applies ICA to multiple subjects or groups. GICA has

enjoyed an increasing popularity in the analysis of multiple neuroimaging observations and

many GICA procedures have been developed over the last ten years. See Calhoun et al. (2009),

Calhoun and Adali (2012) and Hyvärinen (2013) for more related reviews on this topic.

Multiple fMRI observations can be organized in a hierarchical way such that one obser-

vation from upper level consists of various samples from one level below. For instance, the

dataset would have many groups and each group contains multiple subjects (i.e., a two-level
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organization). The most two commonly studied hierarchical organizations are one-level (i.e.,

multiple subjects) and two-level (i.e., various groups with each group consisting of multiple

subjects). The organization has levels more than two can be analyzed in a similar way. Hence,

in this chapter, we focus on these two types. GICA on one-level and two-level organizations

are named multisubject GICA and multigroup GICA respectively. Multisubject GICA usually

assumes heterogeneity across subjects while multigroup GICA assumes homogeneity among

subjects within the same group and heterogeneity across groups. In the following, we only

review multisubject GICA. Multigroup GICA can be extended by additional homogeneity sub-

jects constraint.

One of the goals of multi-subject GICA is to identify features shared by subjects. Recall

that single subject ICA decomposes fMRI data into spatial maps and temporal courses. Based

on prior knowledge on the data, we are interested in estimating common spatial maps, temporal

courses, or both. These different types of priors are named group structures. Each GICA ap-

proach assumes one or more types of group structures as a prior and the estimation procedure

is mainly directed by the assumption. Calhoun et al. (2001) imposes common spatial maps and

subject specific temporal courses assumptions and conducts analysis via sICA. Beckmann and

Smith (2005) assumes both common spatial maps and temporal courses with subject specific

loadings and the approach is an extension of probabilistic ICA (PICA) (Beckmann and Smith,

2004). The Matlab toolbox GIFT and software package MELODIC which implement afore-

mentioned two approaches have been widely used in GICA studies. Guo and Pagnoni (2008)

and Guo (2011) proposed Expectation-Maximization (EM) algorithm based GICA approach

which can incorporate various group structures. Esposito et al. (2005) assumes that each indi-

vidual subject IC can be represented as a function of group common components and proposed

to apply single subject ICA first on each individual matrix and then categorizes single subject

ICs via self-organizing clustering. Guo and Tang (2013) assumes similar group structure such

that subject ICs are group common components with subject specific noise and proposed an
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EM algorithm to estimate them.

All of the aforementioned GICA approaches do not consider the temporal autocorrela-

tion structures. Some of them can only incorporate one type of group structures and most

of them are based on sICA and not scalable to large datasets. In this chapter, we propose a

novel tICA type GICA approach which is an extension of PICS to group inferences. We name

our approach group parametric independent colored sources (GPICS). GPICS represents each

temporal source by a parametric time series model and hence automatically takes the auto-

correlation structures into account. Moreover, if the prior knowledge is that subjects share

the same temporal sources, previous GICA approaches would assume individuals have exactly

same set of temporal courses. However, GPICS would assume the sources of each subject

have same time series models and allows temporal courses to be different across subjects. This

makes GPICS take the subject level noise into consideration. Furthermore, the parameters are

estimated through maximizing log-likelihood in the spectral domain by an iterative procedure.

The log-likelihood is a function of data samples, time series parameters and mixing matrices.

Hence, various group structures can be accommodated into GPICS. In addition, the procedure

only needs one step dimension reduction via PCA on the spatial direction for single subjects.

Since the temporal direction of single subject fMRI data is usually small, after spatial direction

dimension reduction step, GPICS is scalable to a large number of subjects.

3.2 Background on ICA and PICS

We first introduce some basic definitions and notations for time series analysis in Section

3.2.1 and review ICA model in Section 3.2.2. We provide details of PICS procedure in Section

3.2.3.

35



3.2.1 Preliminaries

This section describes some basic notions and tools for analyzing time series considered in

this chapter.

Let Y (t), t = 0,±1,±2, . . . denote a real-valued stationary time series in the strict sense.

That is, the finite dimensional distribution of Y (t1 + u), Y (t2 + u), . . . , Y (tk + u) is equal

to the finite dimensional distribution of Y (t1), Y (t2), . . . , Y (tk) for k = 1, 2, . . . and u ∈ R

(Brillinger, 2001; Brockwell and Davis, 2009). The autocovariance function is defined by

c(u) = cov(Y (t), Y (t + u)), u ∈ R. Suppose the condition
∑

u |c(u)| < ∞ holds. Then the

spectral density function or simply spectrum of Y is defined by

f(r) =
1

2π

∞∑
u=−∞

c(u) exp{−iru}, −2π ≤ r ≤ 2π.

Much of statistical inference will be focused on estimating the spectral density function f(r)

for r ∈ [−2π, 2π]. Here r is referred to as the frequency. Note that this will lead to an estimate

of the autocovariance function c(·) via the inverse Fourier transformation (Brillinger, 2001).

A popular approach to estimate the spectral density function is based on the discrete Fourier

transform (DFT), which can be described as follows. Consider a realization

Y (0), Y (1), . . . , Y (T − 1) of length T from the time series Y . The DFT of that realization is

defined by

ϕ(rk, Y ) =
T−1∑
t=0

Y (t) exp(−irkt), rk = 2πk/T, k = 0, . . . , T − 1.

The second-order periodogram is given by

f̃(rk, Y ) =
1

2πT
|ϕ(rk, Y )|2, k = 0, . . . , T − 1.

Alternatively, the spectrum f can be estimated by fitting parametric time series models.
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This will now be described. Let B denote the backshift operator, i.e., BY (t) = Y (t − 1).

The AR process of order p (AR(p)), MA process of order q (MA(q)) and ARMA process of

orders p and q (ARMA(p,q)) can be written as Φ(B)Y (t) = z(t), Y (t) = Θ(B)z(t) and

Φ(B)Y (t) = Θ(B)z(t) respectively where z(t) ∼ WN(0, σ2) and t = 0,±1,±2, . . .. Here

Φ(z) = 1− φ1z − · · · − φpzp and Θ(z) = 1 + θ1z + · · ·+ θqz
q are AR and MA polynomials

of degree p and q respectively.

For these processes, the spectral density functions will be a rational function whose coeffi-

cients are identified by the parameters of the processes. This type of spectral density functions

will be denoted by f(r,φ), where φ is a vector of parameters specified by the ARMA models

above. Consequently, the statistical estimation will concentrate on the estimation of φ using

some types of likelihood approach (Brockwell and Davis, 2009).

The Whittle likelihood (Whittle, 1952) is one of such approaches. The basic idea of this

approach is to compare the periodogram and the parametric model based estimates. This is

given by

L(f ;Y ) = −1

2

T−1∑
k=0

{
f̃(rk, Y )

f(rk,φ)
+ ln f(rk,φ)

}
. (3.2)

Under some appropriate conditions, it has been shown that the Whittle estimates possess some

optimal properties (Dzhaparidze and Kotz, 1986).

This procedure will be applicable if the source in ICA or BSS is given by the Y series.

However, a modification is necessary if the source is observed through the mixtures. That is,

the observed series Y is a mixture of the source(s). This is how the notion of independent

components (IC) was developed. Before describing ICA, it is necessary to note that the above

description for the univariate time series Y can be extended to vector-valued series. More

specifically, let x(t) ∈ RM for t = 0, 1, . . . , T−1 denote T observations of a real-valued vector

stationary process with mean 0 and autocovariance function cxx(u) = cov(x(t),x(t + u))

satisfying the condition
∑∞

u=−∞ |cxx(u)| < ∞. Then the second-order periodogram is given
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as

f̃(rk,X) =
1

2πT
ϕ(rk,X)ϕ∗(rk,X),

where ϕ(rk,X) =
∑T−1

t=0 x(t) exp{−irkt} is the DFT and ∗ denotes conjugate transpose oper-

ator.

3.2.2 Independent Component Analysis

ICA assumes observed multivariate signals as a linear mixture of hidden independent sources

such that at most one source can have Gaussian distribution. Let x(t) = [x1(t), x2(t), . . . , xM(t)]T

be an M dimensional random vector representing the observation signal at time point t for

t = 0, 1, . . . , T − 1 and let the vector s(t) = [s1(t), s2(t), . . . , sM(t)]T denote the corre-

sponding random multivariate source signal. The noise-free ICA model can be mathematically

expressed as:

x(t) = As(t), t = 0, 1, . . . , T − 1. (3.3)

Here A is a nonsingular deterministic matrix of size M ×M representing the linear mixing

operator and it is called mixing matrix. The inverse of A is denoted as W = A−1 under the

name unmixing matrix.

Given T observations x(0),x(1), . . . ,x(T − 1), ICA aims at recovering the mixing matrix

A and sources s(0), s(1), . . . , s(T−1). Let X = [x(0), . . . ,x(T−1)] and S = [s(0), . . . , s(T−

1)] be the row-wise concatenation of x(t) and s(t) respectively. Then, for t = 0, 1, . . . , T − 1,

Equation (3.3) can be combined and written in a concise form as:

XM×T = AM×MSM×T . (3.4)

The source signals S can be recovered by Ŝ = ŴX where Ŵ is an estimate of the unmixing

matrix W.

As an important application, ICA has been widely used in fMRI data analysis. Let Y of
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size V × T denote a single observation where V and T are the numbers of voxels and time

points respectively. Each row of Y is a temporal course at a specific voxel and each column

represents a vectorized 3D image at a time point. Single subject ICA aims at decomposing Y

as outer products of M spatial maps (represented by the columns of HV×M and the associated

temporal courses (denoted by the corresponding row of SM×T ). Then ICA decomposition on

the observation Y can be written as

YV×T = HV×MSM×T .

For fMRI data, V is usually very large. Hence, there is usually a pre-processing step to reduce

the dimension of Y to M × T and ICA decomposition is conducted via Equation (3.4). We

will discuss the data pre-processing further in Section 3.3.3

3.2.3 Parametric Independent Colored Sources

Suppose the sources sj(0), sj(1), . . . , sj(T − 1) were available. Then each source can be

fitted by a parametric model using the Whittle likelihood (3.2) given by

L(fjj; sj) = −1

2

T−1∑
k=0

{
f̃(rk, sj)

fjj(rk,φj)
+ ln fjj(rk,φj)

}
,

where fjj(·) is the spectral density function of the j-th source. Since ICA assumes that sources

are mutually independent, the joint Whittle log-likelihood for all sources is the sum of individ-

ual ones and can be written as

L(f ; s) = −1

2

M∑
j=1

T−1∑
k=0

{
f̃(rk, sj)

fjj(rk,φj)
+ ln fjj(rk,φj)

}
,

where f = [f11, f22, . . . , fMM ]T and s = [s1, s2, . . . , sM ]T .

In practice, our observations are the mixture signals x(t) for t = 0, 1, . . . , T − 1. Recover
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the source signals through the unmixing matrix W via s(t) = Wx(t), we can express the

second-order periodogram of source sj in terms of the observation matrix X and the unmixing

matrix W by

f̃(rk, sj) = eTj Wf̃(rk,X)WTej,

where ej ∈ RM with the jth element being 1 and others being 0. Then the source log-likelihood

can be rewritten as

L(W, f ; X) = −1

2

M∑
j=1

T−1∑
k=0

{
eTj Wf̃(rk,X)WTej

fjj(rk,φj)
+ ln fjj(rk,φj)

}
+ T ln|det(W)|. (3.5)

In fMRI study, it has been shown that modeling the temporal sources via AR type time

series is efficient (Worsley et al., 2002; Lee et al., 2011). Hence, in this chapter, we would

only consider the AR type sources. MA and ARMA models can be considered similarly. The

spectral density of AR(pj) model is given by

fjj(r,φj) =
σ2
j

2π|Φ(e−ir)|2
.

Moreover, let φ and σ2 symbolically denote all source AR coefficients and noise levels, i.e.,

φ = [φ11, . . . , φ1p1 , . . . , φMpM ]T and σ2 = [σ2
1, . . . , σ

2
M ]T . Then we can rewrite the Whittle

log-likelihood L(W, f ; X) as L(W,φ,σ2; X).

Without loss of generality, we may assume that the unmixing matrix is orthogonal. In fact,

this can be achieved by prewhitening the data before applying ICA. See Section 3.3.3, Lee

et al. (2011) and the references therein. To derive the estimates of time series model parameters

and unmixing matrix with the orthogonality constraint, Lee et al. (2011) proposed a Lagrange

multiplier method, named cICA-YW, by minimizing a constraint negative log-likelihood,

F PICS(W,φ,σ2,λ; X) = −L(W,φ,σ2; X) + λTC, (3.6)
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where λ ∈ RM(M+1)/2 is the Lagrange multiplier, and C ∈ RM(M+1)/2 with C(i−1)M+j =

(WWT − IM×M)ij for i = 1, . . . ,M and j = 1, . . . , i.

The cICA-YW algorithm alternatingly updates [vecT (W),λT ]T and time series parameters

φ and σ2 by fixing the others where vec(W) transforms matrix W into a vector of length M2

by stacking columns of W on top of each other. It updates the unmixing matrix and Lagrange

multiplier via Newton-Raphson method as

[vecT (W̌), λ̌
T

]T = [vecT (W̊), λ̊
T

]T − (F̈ (W̊, φ̊, σ̊2, λ̊))−1Ḟ (W̊, φ̊, σ̊2, λ̊),

where Ḟ and F̈ are first and second derivatives of Equation (3.6) with respect to [vecT (W),λT ],

and ˇ and˚denote variables in current and previous iterations respectively. After obtaining

unmixing matrix updates, the sources can be estimated by Š = W̌X. The jth row of Š are

T observations of the jth source. Then the AR coefficients and noise levels of this source are

estimated via Yule-Walker method and the order pj can be selected by traditional approaches

such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Finally,

the algorithm is terminated if the Amari error (Amari et al., 1996) between W̌ and W̊ is below

a pre-specified threshold. The Amari error is defined as

d(W̌,W̊) =
1

M

M∑
i=1

(∑M
j=1 |Gij|

maxj |Gij|
− 1

)
+

1

M

M∑
j=1

(∑M
i=1 |Gij|

maxi |Gij|
− 1

)
,

where G = W̌W̊−1.

3.3 Methodology

In this section, we provide details of our GPICS approach which is an extension of PICS

to group inference. We start with some notations and group structures considered by GPICS.

Then we present the objective functions involving unmixing matrix and time series parame-

ters in Section 3.3.1 and optimization procedures in Section 3.3.2. The inputs of GPICS are
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dimension reduced and prewhitened from raw data. Hence, we describe approaches for di-

mension reduction of a group of images in Section 3.3.3 which is needed for both pre- and

post-processing the data.

We illustrate our approach using the multigroup hierarchical organization type since multi-

subject GPICS is a special case of multigroup GPICS by taking only one subject in each group.

Suppose we observe G groups of data samples and each group has ng subjects. Let Xgi of size

M ×T denote the ith observation matrix from group g for g = 1, 2, . . . , G and i = 1, 2, . . . , ng

with single subject ICA decomposition Xgi = AgiSgi where Agi and Sgi are mixing matrices

and temporal courses respectively. Further let φgij = [φgij1, φ
gi
j2, . . . , φ

gi
jpj

]T and σ2gi
j denote the

AR coefficients and noise level of the jth source of subject i in group g.

We construct group structures for GPICS as follows. Within each group, we assume that

the group is homogeneous both in space and time, i.e., Agi = Ag, φgij = φgj , and σ2gi
j = σ2g

j .

Between groups, we can impose four different kinds of structures: (1) H00: Homogeneous in

both space and time, i.e., Ag = A, φgj = φj and σ2g
j = σ2

j ; (2) H01: Homogeneous in space

but not in time, i.e., Ag = A; (3) H10: Homogeneous in time but not in space, i.e., φgj = φj

and σ2g
j = σ2

j ; and (4) H11: Inhomogeneous in both space and time. We summarize the four

group structures in Table 3.1.

Group structure Mixing matrix Unmixing matrix AR coefficients AR noise level
H00 Agi = Ag = A Wgi = Wg = W φgij = φgj = φj σ2gi

j = σ2g
j = σ2

j

H01 Agi = Ag = A Wgi = Wg = W φgij = φgj σ2gi
j = σ2g

j

H10 Agi = Ag Wgi = Wg φgij = φgj = φj σ2gi
j = σ2g

j = σ2
j

H11 Agi = Ag Wgi = Wg φgij = φgj σ2gi
j = σ2g

j

Table 3.1: Summary of group structures.

3.3.1 Objective functions of GPICS

In this section, we present objective functions used to estimate unmixing matrices and time

series parameters of GPICS. Recall that the objective function of PICS has two parts: the

one that contains negative Whittle log-likelihood and the other one that involves penalties the
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unmixing matrices. In analogy with the single subject case, the objective function of GPICS

also consists of two parts and it varies across group structures. In the following, we use the

equation

FGS(W,φ,σ2,λ; X) = −LGS(W,φ,σ2; X) + JGS(W), (3.7)

to symbolically represent the objective functions for GPICS. Here, GS stands for one particular

group structure (i.e., GS = H00, H01 or H10), W, φ, σ2, λ and X represent unmixing matrices,

time series parameters and data samples for all subjects respectively and the dimension of these

quantities may vary with group structures, andLGS(·) and JGS(·) denote Whittle log-likelihood

and penalty terms for group structure GS respectively.

Since the observations are independent, the joint log-likelihood of all samples is the sum of

all individual ones, i.e.,

LGS(W,φ,σ2; X) =
G∑
g=1

ng∑
i=1

L(Wgi,φgi,σ2gi; Xgi), (3.8)

where L(Wgi,φgi,σ2gi; Xgi) is given in Equation 3.5. Plugging Equation (3.5) and group

structures in Table 3.1 into Equation (3.8), we can write the Whittle log-likelihood of GPICS

in terms of subject level unmixing matrices, time series parameters and data samples. The

expressions are summarized in Table 3.2.

For the cases H00 and H01, we have only one universal unmixing matrix W across all

subjects. Hence, the penalty term is just λTC where λ is the Lagrange multiplier and C

is explained in Equation (3.6). For the case H10, the unmixing matrices are different across

groups. We need to penalize every unmixing matrix in the objective function as
∑G

g=1 λ
gTCg

where λgTCg is the penalty term for the gth unmixing matrix Wg. The penalty terms for three

group structures are summarized in Table 3.2.
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GS LGS(W,φ,σ2; X) JGS(W)

H00 −
1

2

∑
g,i,j,k

{
eTj Wf̃(rk,X

gi)WT ej

fjj(rk)
+ ln fjj(rk)

}
+
∑
g,i

T ln|det(W)| λTC

H01 −
1

2

∑
g,i,j,k

{
eTj Wf̃(rk,X

gi)WT ej

fgjj(rk)
+ ln fgjj(rk)

}
+
∑
g,i

T ln|det(W)| λTC

H10 −
1

2

∑
g,i,j,k

{
eTj Wg f̃(rk,X

gi)WgT ej

fjj(rk)
+ ln fjj(rk)

}
+
∑
g,i

T ln|det(Wg)|
∑
g

λgTCg

Table 3.2: Summary of Whittle log-likelihood and penalty terms for GPICS.
∑

g,i,j,k,
∑

g,i and
∑

g are
abbreviations of

∑G
g=1

∑ng
i=1

∑M
j=1

∑T−1
k=0 ,

∑G
g=1

∑ng
i=1 and

∑G
g=1 respectively.

3.3.2 Optimization procedures

Recall that PICS alternatingly updates the vector containing unmixing matrix and Lagrange

multiplier and the vector of times series parameters by fixing the others. We propose to op-

timize the GPICS objective function, Equation (3.7), in a similar way. We iteratively updates

the set of unmixing matrices and associated Lagrange multipliers via Newton-Raphson method

and the set of time series parameters via Yule-Walker method. For different group structures,

the updating rules vary slightly. We start with how to update the unmixing matrix and Lagrange

multiplier of various group structures and then present the estimation procedure of obtaining

time series parameters.

Updating unmixing matrices and Lagrange multipliers. For the H00 and H01 cases, the

objective functions contain only one unmixing matrix W and Lagrange multiplier λ. And thus

these parameters can be updated via Newton-Raphson method in the same way as PICS by

[vecT (W̌), λ̌
T

]T = [vecT (W̊), λ̊
T

]T − (F̈GS(W̊, φ̊, σ̊2, λ̊))−1ḞGS(W̊, φ̊, σ̊2, λ̊), (3.9)

where GS stands for H00 and H01.

For the H10 case, the objective function contains G unmixing matrices {Wg} for g =

1, 2, . . . , G. We use F 10,g(Wg,φ,σ2,λg; X) to denote the objective function for the gth group

and L10,gi(Wg,φ,σ2,λg; bXgi) to denote the Whittle log-likelihood of subject i in group g.
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Then we have

F 10,g(Wg,φ,σ2,λg; X) = −
ng∑
i=1

L10,gi(Wg,φ,σ2,λg; Xgi) + λgTCg,

and

F 10(W,φ,σ2,λ; X) =
G∑
g=1

F 10,g(Wg,φ,σ2,λg; X).

Since Wg and λg only appear in F 10,g(Wg,φ,σ2,λg; X), we can update them one by one via

[vecT (W̌g), λ̌
gT

]T = [vecT (W̊g), λ̊
gT

]T − (F̈ 10,g(W̊g, φ̊, σ̊2, λ̊
g
))−1Ḟ 10,g(W̊g, φ̊, σ̊2, λ̊

g
).

(3.10)

Updating time series parameters. After updating the unmixing matrices, source temporal

courses can be recovered by S̊gi = W̊Xgi for the H00 and H01 cases and S̊gi = W̊gXgi for

the H10 case. Then time series model parameters can be estimated from these source temporal

courses.

In the H00 case, for the jth source, there exists only one set of parameters across sub-

jects. Let s̊giTj denote the jth row of S̊gi and φ̌j and σ̌2
j are updating AR coefficients and

variance of this source. We concatenate {̊sgiTj } horizontally and denote it as r̊j = [̊s11T
j , s̊12T

j ,

. . . , s̊1n1T
j , . . . , s̊GnGTj ]. r̊j can be considered as a temporal course of length TN where N =∑G

g=1 ng is the total number of subjects. Then φ̌j and σ̌2
j can be estimated from r̊j by Yule-

Walker method.

In the H01 case, time series parameters are different across groups. For the jth source

parameters of group g, only data in group g contribute to the estimation. Within this group, it

is a H00 structure and thus φ̌
g

j and σ̌2g
j can be estimated from r̊gj = [̊sg1Tj , s̊g2Tj , . . . , s̊

gngT
j ] via

Yule-Walker method.

In the H10 case, the time series parameters are the same across subjects. Hence, we can

adopt a similar idea as in H00 case that collects all temporal courses associated with the jth
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source from all subjects and concatenate them to estimate φ̌j and σ̌2
j . Different from the H00

case, we need to match temporal components across subjects and groups because ICA does

not have an order among ICs. From our experiences, as long as the initial Wg is close to

the truth, the order of ICs in iteration steps would not change. Hence if we could give good

initials of Wg, we do not need to match ICs within the iteration steps but match them among

initials. Applying H00 algorithm on each group, we obtain initial estimates for Wg which is

denoted as Wg
init. We estimate the group sources as Sginit = Wg

init[X
g1,Xg2, . . . ,Xgng ] for

g = 1, 2, . . . , G. Then we match the row orders of Sginit for g = 2, 3, . . . , G with the row order

of S1
init by correlation coefficients. For instance, we calculate the correlation coefficients of

the first row of S1
init with each row of Sginit and find the row has the maximum absolute co-

efficient. Then we move this row to the first row of Sginit. Continue this process for the rest

rows of S1
init until all rows of Sginit are matched to S1

init. We further adjust column orders of

Wg
init corresponding to the row orders of Sginit. Once the orders of initial Wg

init are matched,

in each iteration step, we can estimate φ̌j and σ̌2
j from r̊j = [̊s11T

j , s̊12T
j , . . . , s̊1n1T

j , . . . , s̊GnGTj ]

via Yule-Walker approach. We note that only in the H10 case we need to consider the order

matching problem. This is because the orders of temporal sources is determined by the order

of unmixing matrix. The same mixing matrix assumption in the H00 and H01 cases naturally

makes the order of unmixing matrix fixed across subjects, and thus the order of temporal com-

ponents.

Initialization We need first give unmixing matrices initials as part of the inputs. For the H00

and H01 cases, Winit can be given as identity matrix or estimated by any single subject ICA

algorithm applied on the concatenation matrix [X11,X12, . . . ,X1n1 , . . . ,XGnG ]. For the H10

structure, as described above, the algorithm first gets estimates of Wg
init and then reorder the

columns of Wg
init by matching temporal components via correlation coefficients.
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Stopping criterion The algorithm is terminated if d(W̌,W̊) for H00 and H01 cases or

maxg∈{1,2,...,G} d(W̌g,W̊g) for H10 case is below a pre-specified threshold level.

Summary of GPICS procedure. In general, GPICS procedure first initializes unmixing ma-

trices by appropriate choices based on group structure assumptions. And then alternatingly

updates unmixing matrices and time series parameters by fixing the others. The algorithm

stops when the Amari distances of unmixing matrices between two successive iterations are

below a pre-defined threshold. The algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 GPICS algorithm
Initialize unmixing matrices W or Wg based on group structure assumptions.
Alternatingly do the following two steps until the Amari distance of W or maximum distances
of {Wg} between two iteration steps are below the threshold.

1. Recover the source signals by S̊gi = W̊gXgi or S̊gi = W̊Xgi. Estimate time series pa-
rameters for the jth source by Yule-Walker method on the jth row of [̊Sg1, S̊g2, . . . , S̊gng ]
for the gth group of H01 case or [̊S11, S̊12, . . . , S̊1n1 , . . . , S̊GnG ] of the H00 and H10 cases.

2. Update unmixing matrices and Lagrange multipliers via Equation (3.9) for H00 and H01

cases and Equation (3.10) for the H10 case.

3.3.3 Dimension reduction of a group of images

In single subject fMRI ICA analysis, the input XM×T is dimension reduced and prewhitened

(pre-processing) data of the real fMRI observation YV×T , i.e., V ≥ M and 1
T
XXT = IM×M .

For GPICS, the inputs {Xgi
M×T} also need dimension reduction and prewhitening so that the

orthogonal unmixing matrices assumptions are satisfied. In this section, we present details on

dimension reduction and prewhitening of raw observations {Ygi
V×T} according to the GPICS

group structure assumptions. We start with a brief review of single subject fMRI data pre-

processing and then extend it to group dimension reduction.

Suppose YV×T has singular value decomposition (SVD) as Y = PDQT where P and Q

are orthogonal matrices of size V × r and T × r respectively, D is diagonal matrix of size r× r
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with the ith diagonal entry being singular value di and r is the rank of Y. Let P̃V×M and Q̃T×M

contain the first M columns of P and Q respectively and let diagonal matrix D̃M×M consist

of the first M singular values as diagonal entries. The dimension reduction step is done by

projecting columns of Y onto the subspace spanned by the columns of P̃ by Ỹ = P̃Y = D̃Q̃T .

The prewhitening step is applied on the reduced data Ỹ by
√
T D̃−1Ỹ =

√
T Q̃T . Hence, the

pre-processed data X is actually X =
√
T Q̃T . On the other hand, the goals of single subject

ICA applied to fMRI data are to estimate spatial maps and associated temporal courses by

decomposing Y as YV×T ≈ HV×MSM×T . Therefore, after applying ICA on X by X = AS,

we can recover spatial maps H by Ĥ = P̃D̃Â/
√
T .

Single subject ICA pre-processes the raw data by projecting columns onto a subspace

and the result is the scaled first M right singular vectors of the raw data. Motivated by

this fact, GPICS does the pre-processing by approximately project columns of each data ma-

trix onto a common subspace with orthogonal right subject specific components. Formally,

GPICS do the groupwise dimension reduction by Ygi ≈ P̃D̃Q̃giT for H00 and H01 cases and

Ygi ≈ P̃gD̃gQ̃giT for the H10 case where P̃V×M or P̃g
V×M are orthogonal matrices repre-

senting groupwise common left components, D̃M×M or D̃g
M×M consists of groupwise singular

values, and Q̃gi
T×M are orthogonal matrices denoting subject specific right components. We

shall discuss how to obtain the approximation later. The dimension reduced and prewhitened

data Xgi are given as Xgi =
√
T Q̃qiT . After applying GPICS onto {Xgi}, we can obtain group

spatial maps by Ĥ = P̃D̃Â/
√
T for H00 and H01 cases or Ĥg = P̃gD̃gÂg/

√
T for the H10

case.

We shall illustrate how to obtain group and subject-specific components only on the H10

structure because these components in theH00 andH01 cases can be derived in the same way by

taking all raw data {Ygi} as one single group. GPICS approximates Ygi by Ygi ≈ P̃gD̃gQ̃giT .

The left components P̃g and singular values D̃g can be obtained by the 2DSVD method (Ding

and Ye, 2005) to small and moderate dimensions and APVD approach to massive dataset.
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2DSVD first concatenates data matrices along temporal direction as [Yg1,Yg2, . . . ,Ygng ], fol-

lowed by SVD decomposition PgDgQgT on this aggregation matrix, and then extracts the first

M components and singular values from Pg and Dg to form P̃g and D̃g. APVD is a two

step SVD procedure. In the first step, APVD decomposes each data matrix through SVD by

Ygi = PgiDgiQgiT and extracts the first M left components and singular values from each

subject. In the second step, APVD concatenates the scaled left singular vectors horizontally

by [P̃g1D̃g1, P̃g2D̃g2, . . . , P̃gngD̃gng ], followed by another SVD step on the aggregation matrix

and extracts the first M left components and singular values as the final estimates of P̃g and

D̃g. By splitting one SVD on large matrix as in 2DSVD to several SVDs on relatively small

matrices, APVD is efficiently scalable to large dataset.

After obtaining the group components P̃g and D̃g,we propose to derive subject specific

right components Q̃gi as follows. Let p̃gj and q̃gij , j = 1, 2, . . . ,M , denote the jth column

of P̃g and Q̃gi respectively. Let Q̃gi
j = [q̃gi1 , q̃

gi
2 , . . . , q̃

gi
j ] be the matrix containing the first j

columns of Q̃gi and let Q̃gi
0 = 0T×T . Then, for j = 1, 2, . . . ,M , we can obtain columns q̃gij of

Q̃gi sequencially by the recursive equation

q̃gij =

(
IT×T − Q̃gi

j−1Q̃
giT
j−1

)
YgiT p̃gj

‖
(
IT×T − Q̃gi

j−1Q̃
giT
j−1

)
YgiT p̃gj‖

.

In summary, our GPICS procedure to fMRI data first reduces the dimension and prewhitens

the raw data. And then appropriate GPICS algorithm shown in Algorithm 3.1 is applied to these

pre-processed data based on group structure assumptions.

3.4 Simulations

In this section, we examine the performance of GPICS through simulations and compare

our approach with the fastICA based group ICA approaches. The results will demonstrate that

GPICS works better than fastICA based approaches in both blind source separation and brain
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active region detections.

3.4.1 Blind source separation

In the first simulation, we study GPICS performance of recovering blind sources. We test

the procedure under three different group structures. For each case, we generate 2 groups of

data with 5 subjects in each group. Data samples are generated from the model Xgi = ASgi

for H00 and H01 cases and Xgi = AgSgi for the H10 case, g = 1, 2 and j = 1, 2, . . . , 5, where

A and Ag are of size 4×4 and Sgi has dimension 4×512. Hence, the number of ICs is M = 4

and the number of time points is T = 512.

In each simulation run, we randomly generate one orthogonal mixing matrix for the H00

and H01 cases and two for the H10 case. Let φgj , j = 1, . . . , 4, denote the coefficients for the

jth source of group g. Each row of Sgi is generated from an AR model with coefficients given

in Table 3.3. In the H00 case and H10 cases, φ1
j = φ2

j , we take the set 1 coefficients for all

subjects. In the H01 case, we take the set 1 and set 2 coefficients for the subjects in the first and

second group respectively. The noise of all sources are generated from uniform[−
√

3,
√

3].

φ1 φ2 φ3 φ4

set 1 [0.8] [−0.6,−0.5] [0.1,−0.8] [−0.85,−0.7, 0.2]
set 2 [0.5,−0.12] [0.6] [−0.7,−0.3] [0.3]

Table 3.3: AR coefficients.

We estimate A or Ag and time series parameters by both GPICS and fastICA procedures.

GPICS approach was described in Section 4.2. For the fastICA based procedures, in the H00

and H01 cases, we concatenate data matrices along temporal direction as [X11,X12, . . . ,X25]

and do an ICA decomposition via fastICA on this aggregation matrix to derive common mixing

matrix. In the H10 case, we do fastICA separately on two aggregation matrices [Xg1,Xg2, . . . ,

Xg5] for g = {1, 2} to obtain group specific mixing matrices. The Amari distances between

the estimates and the truth for both approaches are calculated. The temporal courses are recov-

ered by Ŝgi = ŴXgi or Ŝgi = ŴgXgi. Then we calculate all pairs of correlation coefficients
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between the estimated temporal courses and the truth. We did 100 runs for each group struc-

ture. The results are shown in Figure 3.1 for Amari distances and Figure 3.2 for temporal

correlations.

Figure 3.1 shows the boxplots of Amari distance between the estimation mixing matrices

and the truth for 100 simulation runs. Each subplot corresponds to one group structure. We can

see that our GPICS method performs consistently better than fastICA based approaches in all

group structures. Moreover, there is more variability found in the fastICA based procedures.

Figure 3.2 shows the boxplots of temporal correlations of estimated temporal courses and

the truth. Each column corresponds to one group structure and each row represents one IC. In

most cases GPICS has correlations nearly 1 and they are higher than fastICA in all cases. The

latter case also exhibits a much larger variance in the range of correlations.
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Figure 3.1: Boxplots of 100 simulation runs of Amari distances of estimated mixing matrices and the
truth. The GPICS based estimates are consistently near the value zero while the estimates
of fastICA based approaches vary greatly with means above zero.

3.4.2 Brain active region detection

In this simulation, we apply our GPICS method to a toy fMRI example to test the perfor-

mance of identifying brain active regions under three group structures.

We first generate two sets of 3D images of size 20 × 20 × 10 with each set consisting of

4 images. Figure 3.3 shows slices 2,4,6,8 and 10 for each image. Each slice in the figure is

of size 20 × 20. For each image set, we then vectorize images in this set into column vectors

of length 4, 000 and concatenate them horizontally. We represent the concatenation matrix by

Hg
4,000×4 where g ∈ {1, 2}.
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Figure 3.2: Boxplots of 100 simulation runs for temporal correlations of the estimation sources and the
truth. The GPICS based estimates are consistently near the value 1 for perfect correlation
while the fastICA estimates vary greatly with means below 1.

For each simulation, we generate 2 groups of data and each group has 5 subjects. The data

are generated by the model Ygi = H1Sgi for the H00 and H01 cases or Ygi = HgSgi for the

H10 case where g = 1, 2, i = 1, 2, . . . , 5 and Sgi is of size 4× 128.

Temporal courses are simulated in a signal with additive noise form. The signal of the first

IC is a boxcar type function. It starts with an interval of time points being 0, followed by the

same interval of time points being 1, and continue this process for the rest. The time interval of

boxcar type function for set 1 and 2 are 30 and 40 respectively. In the H00 and H10, the signals

are from set 1. In the H01, we take signals from group g = 1, 2. The signal of the second and

the third ICs are being sine functions with different frequencies and phases. The signals are

summarized in Table 3.4.

IC1 IC2 IC3
set 1 sin(2π1.17t+ 1.61) sin(2π0.3t+ 1.45)

set 2 sin(2π2t+ 1.3) sin(2π2.1t+ 1.1)

Table 3.4: Two sets of signals for the first three ICs.

The AR coefficients for the noise part are given in Table 3.3. Similar to simulations in
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Figure 3.3: Simulated spatial maps.

Section 3.4.1, we use the first set of AR coefficients for the H00 and H10 cases and both sets

for H01 case. The σgj of each AR time series is derived from signal to noise ratio (SNR) by

SNR = (Signal variance)/(Noise variance) based on the corresponding AR model.

For each simulation run, We first do a group dimension reduction by prewhitening {Ygi}

to yield the pre-processed data matrix {Xgi}. Then we carry out similar GPICS and fastICA

based analysis on {Xgi} as shown in Section 3.4.1. Finally, we reconstruct the brain images

Ĥg by the estimated mixing matrices and the group common left components and singular

values. To examine significant active regions, we standardize each column of Hg to obtain the

z scores and those regions with |z| > 2 are determined as active regions. We did 100 runs for

each simulation.

Figure 3.4 shows temporal correlations of 100 simulation runs with T = 128 and SNR =

0.5. Figure 3.5 shows selective sliced of estimated brain active regions in the H00 case. We

can see that GPICS has consistent higher correlations than the fastICA based approaches and

recover cleaner active regions.

In order to examine the performance of identifying active regions with respect to the SNR

and time points T , we further repeat the above simulations by varying SNR and T . We calculate

the false positive (FP) and false negative (FN) rates and report the average over 100 simulations

runs. In Figure 3.6, we fix the number of time points to be T = 256 and vary SNR as 0.5, 1, 2
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Figure 3.4: Temporal correlations of 100 simulation runs of the estimation temporal courses and the
truth. The variability in the fastICA based approaches is clearly greater than the one with
GPICS.
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Figure 3.5: Estimated brain active regions for the case H00

and 4. In Figure 3.7, we fix SNR = 0.5 and change T as 128, 256, 512 and 1024. Due to space

reason, we only report FNR and FPR for the first group in the H10 case. We see that GPICS

works consistently better than the fastICA based approaches.

3.5 Real data analysis

In this section, we apply our GPICS approach to one of the open-access resting-state fMRI

(rs-fMRI) datasets, the ADHD-200 Sample (Milham et al., 2012). The dataset contains a large

collection of rs-fMRI and structural MRI scans of 491 typically developing controls and 285
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Figure 3.6: False positive and false negative rates as a function of SNR.

attention deficit hyperactivity disorder (ADHD) patients from 8 participating sites (for more

details, see http://fcon_1000.projects.nitrc.org/indi/adhd200/).

For this study, we utilize the publicly available pre-processed data by the Athena pipeline

(http://neurobureau.projects.nitrc.org/ADHD200/

Introduction.html). Briefly, the pipeline to fMRI data includes slice timing correc-

tion, deobliquing, motion correction, registration into MNI152 standard brain space at 4mm

× 4mm × 4mm resolution, nuisance variance removing, and a 6-mm full width at half max-

imum (FWHM) Gaussian filter spatial smoothing. Detailed information regarding the pre-

processing steps can be found at http://www.nitrc.org/plugins/mwiki/index.

php/neurobureau:AthenaPipeline. Each processed fMRI image is of size 49×58×

47. We further apply a mask onto each image to extract voxels inside the brain and results in a

vector of length 30, 316. The number of time points of each subject is 172. Hence, each fMRI

data matrix as the inputs of GPICS is of 30, 316× 172.

We choose 30 subjects from each of the three groups: typically developing controls group,
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Figure 3.7: False rates as a function of the sample size.

ADHD combined subtype group and ADHD inattentive subtype group. We conduct GPICS

separately on the three groups. For each group, we assume that subjects share the same spatial

maps but different time series models (i.e., H01 case). This group structure assumption is

consistent with the one commonly used in multisubject GICA approaches such as GIFT. Since

the number of voxels is relatively large, we use APVD to do the dimension reduction instead of

2DSVD. H01 type GPICS algorithm is applied on each group and 20 ICs are obtained. In order

to identify active voxels, we further calculate the z scores by standardizing each IC and those

voxels with |z| > 2 are marked as active. Finally, we present identified voxels by overlaying

their z scores onto an anatomical template.

For each group, the identified default mode network, visual network and auditory network

are provided in Figure 3.8. Each column shows results of one group and each row is a type of

brain network. For the default mode and auditory networks, signals are stronger in two ADHD

subtypes than control group. While for the visual network, control group has larger absolute

z scores than ADHD subtypes. It would be interesting to test the difference among control
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groups and ADHD patients. We leave a detailed investigation to a later study.

Figures 3.9–3.11 show the three networks identified by the GPICS and the fastICA based

approaches for the three subgroups. We can see that GPICS identifies the frontal part of the

DMN in all subgroups. For the visual and auditory networks, GPICS and fastICA based ap-

proaches have comparable results.

−8 −5 −2 2 5 8

Typically Developing Children ADHD−Combined ADHD−Inattentive

Default mode network

Visual network

Auditory network

Figure 3.8: ADHD-200 GPICS results.

3.6 Conclusions

In this chapter, we present a new group ICA approach, GPICS. This approach takes the

source temporal dependence into consideration by modeling each source via a parametric time

series model. The parameters of the time series models and the unmixing matrices are es-

timated via the Whittle likelihood in the spectral domain. By applying the APVD approach

developed in Chapter 2 as a pre-processing step, our method can deal with high dimensional

neuroimaging data. The numerical performance of the GPICS approach was demonstrated by

both simulations and a real data analysis.
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Figure 3.9: Three networks identified by GPICS and fastICA based approaches for typically developing
children group.
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Figure 3.10: Three networks identified by GPICS and fastICA based approaches for ADHD-combined
group.
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Figure 3.11: Three networks identified by GPICS and fastICA based approaches for ADHD-inattentive
group.
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CHAPTER 4: SCALAR-ON-MATRIX BILINEAR REGRESSION ANALYSIS

4.1 Introduction

Multiple linear regression is one of the most important statistical tools to establish the re-

lationship between a scalar response variable and a vector of explanatory variables. In many

modern applications, instead of vector-valued covariates, there has been an explosion of data

sampled in the form of matrices. For instance, researchers often collect matrix-valued medi-

cal images and seek to study the association between such images and clinical traits of inter-

est (Zhou et al., 2013). Intriguing problems as such are arising more and more frequently in

other fields as well, including finance, economics, agriculture, chemistry, and biology.

One critical feature of the matrix-valued covariates is that there exist important structural

information that should be incorporated into the regression analysis, such as column and/or

row correlations, low rank properties, and so on. One simple idea is to vectorize the matrix

covariates and then apply the classical linear regression. As tempting as it seems, such vec-

torization can result in a vector of (sometimes) daunting length, in comparison to sample size;

more importantly, it destroys structural information intrinsic to the matrix form.

Hence, one interesting question is how to preserve the two-dimensional form of the matrix

covariates. This problem has gained attentions from various researchers over the past few years,

for example, in discriminant component analysis (Dyrholm et al., 2007), sufficient dimension

reduction (Li et al., 2010), logistic regression analysis (Hung and Wang, 2013), scalar-on-

matrix regression (Zhao and Leng, 2014), among others.

In this chapter, we consider the scalar-on-matrix regression setting, with a scalar response

and matrix covariates. This name originates from imaging analysis, where the matrix covariates

are images. Other names in the literature include matrix regression or matrix-variate regression.



In particular, we adopt the bilinear regression model of Zhao and Leng (2014), which assumes

that the conditional expectation of the response relates to the matrix covariate X as αTXβ,

where α and β are the two coefficient vectors. The standard linear regression equates the

conditional expectation of the response and a linear combination of the vector predictors. Given

the fact that a matrix is organized in two directions (rows/columns), the above bilinear form is

a natural way to extend the linear form to incorporate matrix covariates.

We firstly consider scenarios where the dimensions of the matrix covariates are smaller than

the sample size. Our contributions are both methodological and theoretical. We propose two

maximum likelihood based estimators for the model parameters. The first estimator is obtained

through an iterative algorithm, while the second estimator is a truncated version of the first one,

both of which are shown to work well numerically. We then consider the classical asymptotic

framework, allowing the sample size to grow, and derive the asymptotic efficiency of both

estimators, as well as the inefficiency of the linear regression estimator from the vectorization

approach. These fundamental asymptotic results can provide further insights into estimators

of higher order tensor data (Zhou et al., 2013). Furthermore, the asymptotic optimality of the

truncated estimator may shed lights on other iterative estimators such as the one in the tensor

regression model (Zhou et al., 2013). Because our results reassert the phenomenon that early

stopping can merit the efficiency of an iterative estimator in the context of covariance matrix

estimation (Werner et al., 2008) or precision matrix estimation (Zhou, 2014) of matrix-valued

random variables.

We secondly propose a bilinear ridge estimator to deal with the case that the dimensions

of the matrix covariates are comparable to or even larger than the sample size. This bilinear

ridge estimator is obtained through optimizing the sum of the goodness-of-fit term and an

appropriate penalty term. We note that the form of the penalty term, which is of its own

interest, is important to study the theoretical properties of the estimator. We carefully choose

the one that is a combination of the ridge type penalties on α and β with appropriate scaling.
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With this form, we establish an upper bound for the excess prediction error. The bound contains

two terms: one is as a result of the ridge type regularization, while the other one is due to the

randomness in the data.

Although having the same bilinear model as Zhao and Leng (2014), our setting is different

from theirs. They are interested in cases where there are a limited number of observations in

comparison with the dimensions of the matrix covariates, which are also of great interest. They

make additional useful assumptions that the coefficient vectors are both sparse, and consider

penalized regression techniques for model estimation.

The bilinear regression model in this chapter can be viewed as a special case of the gen-

eralized tensor regression model of Zhou et al. (2013), which considers tensor covariates and

employs a multilinear form in the context of exponential family distributions. In addition, our

model is a special case of the regularized matrix regression model of Zhou and Li (2014) when

their coefficient matrix is assumed to be rank one.

The rest of this chapter is organized as follows. We first describe the scalar-on-matrix

bilinear regression model in Section 4.2.1, and introduce the iterative estimator in Section

4.2.2 and its truncated version in Section 4.2.3. We then study the theoretical properties of

both estimators in Section 4.3. We propose the bilinear ridge estimator and study its theoretical

properties in 4.4. The numerical results of the plain bilinear estimators are presented in Section

4.5.

4.2 Scalar-on-matrix bilinear regression analysis

4.2.1 Bilinear regression model

Classical linear regression model assumes

yi = xTi β0 + εi, i = 1, . . . , n, (4.1)
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where xi ∈ Rp is the vector of covariates, yi ∈ R is the scalar response, εi is the additive

noise, and β0 ∈ Rp is the unknown coefficient vector. Given n independent and identically

distributed observations {(xi, yi)}ni=1, the goal is to estimate the true parameter vector β0.

When dealing with matrix covariates, we adopt the following bilinear regression model of

Zhao and Leng (2014):

yi = αT0 Xiβ0 + εi = βT0 XT
i α0 + εi, i = 1, . . . , n, (4.2)

where the response yi ∈ R and the random noise εi ∈ R remain the same as in the traditional

linear regression, with Xi ∈ Rp×q being the covariate matrix, and α0 ∈ Rp, β0 ∈ Rq being

unknown parameter vectors of interest. Furthermore, we make the assumption that the noise is

normally distributed: εi ∼ N (0, τ 2). We propose two estimators for the unknown parameters

α0 and β0 in Sections 4.2.2 and 4.2.3, and investigate their theoretical properties in Section 4.3.

The above bilinear model (4.2) has a natural connection with the conventional linear re-

gression model (4.1). Define θ0 = β0 ⊗ α0, where ⊗ denotes the Kronecker product. Then

the bilinear model (4.2) can be re-expressed in the form of the general linear regression model

(4.1) as

yi = vecT (Xi)θ0 + εi, (4.3)

where vec(Xi) denotes the vectorization operator by concatenating the columns of Xi one by

one. The equivalence between (4.2) and (4.3) is due to the fact thatαT0 Xiβ0 = vec(αT0 Xiβ0) =

(βT0 ⊗ αT0 )vec(Xi) = (β0 ⊗ α0)Tvec(Xi) = vecT (Xi)θ0, where the second and third equal-

ities hold because of the properties of the Kronecker product and the vectorization opera-

tor. Furthermore, denote X = [vec(X1), vec(X2), . . . , vec(Xn)]T , y = [y1, y2, . . . , yn]T and

ε = [ε1, ε2, . . . , εn]T . Then Model (4.3) can be written in the matrix form as

y = Xθ0 + ε. (4.4)
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In terms of parameter estimation, note that αT0 Xiβ0 = (γαT0 )Xi(1/γβ0) for any non-zero

constant γ, which suggests that the parameter vectors α0 and β0 are identifiable only up to a

scale factor. Nevertheless, their Kronecker product θ0 = β0⊗α0 is identifiable. Therefore, for

the rest of the chapter, we compare the performance of various estimators, α̂ and β̂ of α0 and

β0 respectively, through their Kronecker product θ̂ = β̂ ⊗ α̂, by quantifying the discrepancy

θ̂ − θ0.

We want to point out one advantage of the bilinear regression model (4.2) in terms of num-

ber of regression coefficients involved. Although Model (4.2) and Model (4.3) are equivalent,

the bilinear regression model (4.2) has p+q regression coefficients, while the linear model (4.2)

consists of pq coefficients if no assumption is made upon θ0. When either p or q or both are

large, this leads to parsimonious model description and estimation efficiency for the bilinear

model. Later we demonstrate such efficiency gain theoretically in Section 4.3.3, and numeri-

cally in Section 4.5.3.

To study theoretical properties of the estimators derived in Section 4.3, we consider the

random design setting where each covariate matrix Xi is assumed to follow a matrix normal

distribution with zero mean; see Gupta and Nagar (2000); Kollo and von Rosen (2006) for more

detailed information. The matrix normal distribution is a natural extension of the multivariate

normal distribution from a random vector to a random matrix. Mathematically, a random

matrix has a matrix normal distribution, denoted by

Xi ∼ N (0p×q,Σp×p,Ψq×q), (4.5)

if and only if its vectorization has a multivariate normal distribution with the following covari-

ance structure, vec(Xi) ∼ N (0pq,Ψ⊗Σ),

Due to the equivalent definition and the property of the Kronecker product, one can easily

see that the covariance of the ijth entry and the klth entry of the random matrix X is the product
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of the ikth entry of Σ and the jlth entry of Ψ, i.e.

cov(Xij, Xkl) = ΣikΨjl,

which implies that the covariance can be decomposed as the product of two parts: the row

covariance Σ and the column covariance Ψ. Such row-column decomposition is reasonable

for many applications, and is the most prevalent choice for distributions of a random matrix in

recent literature (Allen and Tibshirani, 2012; Leng and Tang, 2012; Yin and Li, 2012; Zhou,

2014).

The reason that we choose the random design over the fixed design is two-fold. First,

under the random design, the formula for the asymptotic covariance of the estimators are rather

intuitive, as to be shown and discussed in Section 4.3, which offer nice interpretation and

insights. On the other hand, if the fixed design were employed, the corresponding expressions

would be rather involved and incomprehensible. This is due to the nice property of a normal

distribution: its higher order moments are expressible through its first two moments. Second,

it is well known that, for the standard linear regression, under the fixed design assumption, the

covariance of the least squares estimator, which is also the maximum likelihood estimator, is

τ 2(XTX)−1, which converges to τ 2Σ−1
XX/n, i.e. the same as its asymptotic covariance under

the random design setting. Therefore, from this perspective, the choice of the design will not

matter.
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4.2.2 The maximum-likelihood based flip-flop estimator

We now derive the maximum likelihood estimator (MLE) under Model (4.2). Noting (4.5),

the probability density function for the matrix normal Xi is

f(Xi | Σ,Ψ) =
1

(2π)pq/2|Ψ⊗Σ|1/2
exp

(
−1

2
vecT (Xi)(Ψ⊗Σ)−1vec(Xi)

)
=

1

(2π)pq/2|Ψ|p/2|Σ|q/2
exp

(
−1

2
tr(Σ−1XiΨ

−1XT
i )

)
,

which leads to the log-likelihood of Σ and Ψ given Xi,

`(Σ,Ψ; Xi) = −pq
2

log(2π)− q

2
log |Σ| − p

2
log |Ψ| − 1

2
tr(Σ−1XiΨ

−1XT
i ).

Then given n independent and identically distributed observations {Xi, yi}ni=1, the joint log-

likelihood can be written as

`(α0,β0, τ
2,Σ,Ψ;X,y) = −n

2
log(2πτ 2)−

∑n
i=1(yi −αT0 Xiβ0)2

2τ 2
+

n∑
i=1

`(Σ,Ψ; Xi). (4.6)

In the above log-likelihood equation (4.6), the only term that contains α0 and β0 is the

residual sum of squares
∑n

i=1(yi − αT0 Xiβ0)2. Hence, the maximum likelihood estimates of

α0 and β0 can be obtained equivalently from the minimization of the residual sum of squares.

Let α̂mle and β̂mle denote the maximum likelihood estimates of α0 and β0 respectively. Math-

ematically, they can be derived from the following optimization problem,

(α̂mle, β̂mle) = argmin
α∈Rp, β∈Rq

h(µ), (4.7)

where

h(µ) = h(α,β) =
n∑
i=1

(yi −αTXiβ)2, with µ = [αT βT ]T .

66



The objective function h(µ) is not convex with respect to µ, but is bi-convex with respect

to α and β. The bi-convexity means that h(α,β) is convex with respect to α (or β) when β

(or α) is fixed. A natural approach to solve a bi-convex optimization problem is to optimize

over one while fixing the other. When β or α is fixed, the bilinear model (4.2) reduces to the

classical linear model with Xiβ ∈ Rp or XT
i α ∈ Rq as the covariate vector and α or β as the

coefficient vector respectively. Therefore, we can solve for α and β by iterating between the

following two steps,

α(β) = ( 1
n

∑n
i Xiββ

TXT
i )−1( 1

n

∑n
i Xiβyi),

β(α) = ( 1
n

∑n
i XT

i αα
TXi)

−1( 1
n

∑n
i XT

i αyi),
(4.8)

where we have defined two operators α(·) : Rq 7→ Rp and β(·) : Rp 7→ Rq that map α and

β back and forth. Performing the mapping once decreases the value of the objective function

defined in (4.7). In other words, the algorithm with iterations is a block descent algorithm.

To be more specific and to better distinguish between the current algorithm and the one to

be proposed later in Section 4.2.3, the iterative algorithm works as follows. Let β(0) = βinit

be the initialization of β. We alternate the updates for α and β by letting α(2i+1) = α(β(2i))

and β(2i+2) = β(α(2i+1)) for i = 0, 1, 2, . . ., and stop the updating process once ‖α(2i+1) −

α(2i−1)‖2
2 and ‖β(2i+2) − β(2i)‖2

2 are both below a pre-specified tolerance level. The procedure

is summarized below in Algorithm 4.1.

Differentiating the objective function (4.7) w.r.t. α and β and setting the derivatives to zero,

one can easily verify that the global optimizer, the MLE, must satisfy the following stationary

equations:

α̂mle = α(β̂mle), and β̂mle = β(α̂mle), (4.9)

where the operators α(·),β(·) are defined in (4.8). Since α̂mle and β̂mle are functions of each

other and intertwined, finding the MLE is a nontrivial task. Due to the non-convexity and

biconvexity of the objective function, it may have several local minimums. The proposed
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iterative procedure is not guaranteed to converge to the global minimizer, which is the MLE.

Therefore, we name the estimates from the iterative algorithm after convergence, which are

local stationary points, as the maximum-likelihood based flip-flop estimator and denote them

by α̂ff , β̂ff and θ̂ff = β̂ff⊗α̂ff , respectively. The terminology flip-flop has been used extensively

in research areas involving alternating procedures (Werner et al., 2008; Zhou, 2014).

Sample size. In order to uniquely updateα(β) andβ(α), we need the matrices
∑n

i Xiββ
TXT

i

and
∑n

i XT
i αα

TXi to be non-singular. These two matrices are sums of n rank-1 matrices

Xiββ
TXT

i and XT
i αα

TXi of size p× p and q × q respectively. Hence, this requires that n is

at least as large as p and q, i.e.,

n ≥ max(p, q). (4.10)

Recall that the sample size requirement for the general linear model to be identifiable is n ≥ pq.

We can see that the sample size requirement for the bilinear model can indeed be much smaller

than that for the linear model when p or q is large.

Convergence. When α or β is fixed, we write h(α,β) as h(β) or h(α) to reflect the fact

that it is a function of β or α. Since h(α) and h(β) are convex, α(β) and β(α) are the

(global) minimizers of h(α) and h(β). Hence, each updating step would reduce the value of

the objective function h(α,β). On the other hand, h(α,β) is bounded from below by 0. Hence,

Algorithm 4.1 will converge as long as the sample size n satisfies the above requirement (4.10).

4.2.3 A truncated flip-flop estimator

The aforementioned flip-flop estimator involves an iterative procedure. When p and q are

large, the computational load can be very intensive. For faster computation, we propose the

following truncated flip-flop estimator which is partially motivated by the separable covariance

matrix estimation problem (Werner et al., 2008).

Truncation means that we stop the flip-flop Algorithm 4.1 at β(2) and α(3). Let α̂tf , β̂tf ,

and θ̂tf = β̂tf ⊗ α̂tf denote the truncated flip-flop estimators. In particular, they are defined as
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Algorithm 4.1 The Flip-flop Estimation Algorithm

1. Randomly initialize β by βinit, denote β(0) = βinit and let i = 0.

2. Given i, do the following

α(2i+1) = α(β(2i)) = (
1

n

n∑
i

Xiβ(2i)β
T
(2i)X

T
i )−1(

1

n

n∑
i

Xiβ(2i)yi),

β(2i+2) = β(α(2i+1)) = (
1

n

n∑
i

XT
i α(2i+1)α

T
(2i+1)Xi)

−1(
1

n

n∑
i

XT
i α(2i+1)yi).

3. If ‖α(2i+1)−α(2i−1)‖2
2 and ‖β(2i+2)−β(2i)‖2

2 are both larger than a pre-specified thresh-
old, update i to be i + 1 and go to step (2). Otherwise, output α̂ff = α(2i+1) and
β̂ff = β(2i+2).

follows,

β̂tf = β(2) = β(α(βinit)),

α̂tf = α(3) = α(β̂tf) = α(β(α(βinit)),

where βinit is an initialization of β0.

This truncated flip-flop estimator only consists of three iteration steps. Hence, it can sig-

nificantly improve the computational speed especially when p and q are large. Asymptotically,

the theoretical studies in Section 4.3 show that the truncated flip-flop estimator achieves the

same asymptotic covariance matrix as the flip-flop estimator, both of which are much more

efficient than the linear regression estimator. As for finite sample performance, the simulation

studies in Section 4.5 confirm that the truncated flip-flop estimation performs comparably as

the flip-flop estimator.
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4.3 Asymptotic properties

4.3.1 Consistency and asymptotic covariance

Henceforth, we denote the asymptotic covariance matrix of any estimator θ̂ for θ0 by

acov(θ̂) = limn→∞ cov(θ̂). The asymptotic property of the flip-flop estimator is given by

the following Theorem 3. Since the flip-flop estimator is not necessarily the maximum likeli-

hood estimator (MLE), the proof of the theorem does not directly follow from the property of

MLE. We obtain the asymptotic covariance of the flip-flop estimator through deriving the first

order expansion of the stationary equations (4.9) and computing the covariance of the leading

terms.

Theorem 3 Let θ̂ff denote the flip-flop estimator of θ0 given by Algorithm 4.1 under Model

(4.2) and Assumption (4.5). Then θ̂ff is a consistent estimator of θ0, and its asymptotic covari-

ance is given by

acov(θ̂ff) =
τ 2

n

(
(αT0 Σα0)−1Ψ−1 ⊗ (α0α

T
0 ) + (βT0 Ψβ0)−1(β0β

T
0 )⊗Σ−1

−(αT0 Σα0)−1(βT0 Ψβ0)−1(β0β
T
0 )⊗ (α0α

T
0 )
)
.

The right hand side (RHS) consists of three terms, which can be interpreted as follows.

1. To gain insight of the first term, we recall that for the classical linear regression model

(4.1) with random design xi
i.i.d.∼ N (0,Σ), the ordinary least square/MLE estimator β̂

is consistent and has asymptotic covariance τ2

n
Σ−1. In the bilinear model (4.2), suppose

that α0 is known and we are interested in estimating β0. Then the covariates become

ai = XT
i α0 with a multivariate normal distribution N (0, (αT0 Σα0)Ψ), due to the prop-

erty of the matrix normal assumption (4.5) on Xi. In addition, the bilinear model reduces

to the classical linear regression model yi = aTi β0 + εi. It is straightforward to realize

that the MLE of β0 when α0 is known, say β̂α0
, is consistent and has asymptotic co-
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variance acov(β̂α0
) = (αT0 Σα0)−1Ψ−1τ 2/n. Under the assumption that α0 is known,

the estimator for θ0 = β0 ⊗ α0, say θ̂α0 , is simply the Kronecker product of the es-

timator of β0 and the known α0, i.e., θ̂α0 = β̂α0
⊗ α0. Due to the property of the

Kronecker product, it can be easily seen that θ̂α0 is consistent and has asymptotic covari-

ance acov(θ̂α0) = (αT0 Σα0)−1Ψ−1 ⊗ (α0α
T
0 )τ 2/n, which is identical to the first term

of the RHS.

2. Similarly, exchanging the roles of α and β in the above discussion produces the asymp-

totic covariance of estimating θ0 when β0 is known, which is the second term on the

RHS.

3. The last term (αT0 Σα0)−1(βT0 Ψβ0)−1(β0β
T
0 )⊗ (α0α

T
0 ) is a positive semi-definite ma-

trix and is subtracted from the first two terms. The appearance of this term reveals that

the asymptotic covariance of the estimator of the bilinear model is not the simple sum of

the asymptotic covariances for estimating one of the unknown coefficient vectors while

assuming the knowledge of the other, it is less than the sum as a matter of fact. This is

somewhat surprising at first sight. Yet, when we recall that α0 and β0 are only identifi-

able up to a scale factor and that the first two terms on the RHS of Theorem 3 estimate

the scaling factor twice, it becomes sensible to eliminate the redundancy, which is the

purpose of the third term.

The third term corresponds to the case when we know the directions of both of the two

coefficient vectors α0 and β0 but not their scale, i.e., the bilinear model reduces to a

simply linear regression model without intercept,

yi = ναT0 Xiβ0 + εi,

where ν ∈ R is the only unknown scalar parameter, and αT0 Xiβ0 is the one dimensional

predictor that has a univariate normal distribution N (0, (βT0 Ψβ0)(αT0 Σα0)). Again by
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the property of the MLE of the classical linear regression model in the random design

setting, we have the consistency of the estimator ν̂ and its asymptotic variance acov(ν̂) =

(βT0 Ψβ0)−1(αT0 Σα0)−1τ 2/n. It follows that θ̂α0,β0
, the estimator under the current

setup, should be ν̂β0 ⊗ α0, which is a consistent estimator of θα0,β0
= νβ0 ⊗ α0 with

asymptotic covariance matrix acov(θ̂α0,β0
) = τ 2/n(βT0 Ψβ0)−1(αT0 Σα0)−1(β0β

T
0 ) ⊗

(α0α
T
0 ), which is the same as the third term on the RHS.

As discussed above, the three-term decomposition of the asymptotic covariance of the flip-

flop estimator is intuitive and meaningful. It helps us better understand the nature and difficulty

of the bilinear problem.

We want to emphasize that Theorem 3 holds for all flip-flop estimators whenever Algorithm

4.1 converges, which may or may not converge to the global minimum of the objective function,

and hence may or may not reach the MLE. In other words, Theorem 3 provides some theoretical

justification and ensures that one initialization, no matter how to initialize, is sufficient in the

sense of achieving least asymptotic covariance, although in practice people may still try a few

initial points and hope to obtain the global optimal, which however cannot be guaranteed.

Similarly, the following Theorem 4 states the asymptotic properties of the truncated esti-

mator.

Theorem 4 Let θ̂tf denote the truncated flip-flop estimator of θ0 under Model (4.2) and As-

sumption (4.5). Then θ̂tf is consistent for θ0, and its asymptotic covariance is given by

acov(θ̂tf) =
τ 2

n

(
(αT0 Σα0)−1Ψ−1 ⊗ (α0α

T
0 ) + (βT0 Ψβ0)−1(β0β

T
0 )⊗Σ−1

−(αT0 Σα0)−1(βT0 Ψβ0)−1(β0β
T
0 )⊗ (α0α

T
0 )
)
.

Theorem 4 has two implications that are worth noting.

First of all, the asymptotic covariances of the flip-flop estimator and the truncated flip-flop

estimator are identical. Even though the truncated estimator terminates the flip-flop algorithm
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after merely three iteration steps, it is asymptotically as efficient as the iterative algorithm

reaching convergence. Therefore, computationally, the truncated flip-flop estimator is much

more appealing for large sample size n, because each iteration step involves the inversion of

either a p× p or q × q matrix, which can be rather time-consuming for relatively large p or q.

Secondly, although the truncated flip-flop estimator consists of only three steps, its perfor-

mance does not depend the initialization after all, which is surprising to some extent. In fact,

the effects of the initialization on the estimations of α0 and β0 cancel each other after three

steps. In comparison, if the flip-flop algorithm is discontinued after two steps, i.e., we consider

the new estimator θ̂ = β(α(βinit)) ⊗ α(βinit), the cancellation will not occur and it can be

shown that the asymptotic covariance of this estimator would rely upon the initialization βinit.

The same two phenomena arise in the context of covariance matrix estimation (Werner

et al., 2008) and precision matrix estimation (Zhou, 2014) under the assumption of separable

covariance matrix. Although our bilinear regression problem is apparently very distinct from

theirs, we all adopt the usage of matrix variate normal distribution. Hence our conjecture is

that this separable covariance assumption is the origin of the above interesting phenomena.

In spite of the connection and the analogous phenomena among the three problems, there

exist certain significant differences in the technical results. We will show in the next theorem

that our flip-flop estimator achieves the information lower bound. In comparison, Werner et al.

(2008) did not show that the asymptotic covariance matched the lower bound for covariance

matrix estimation, and Zhou (2014) did not provide any lower bound.

4.3.2 Cramér-Rao lower bound and the MLE

The Cramér-Rao lower bound (CRLB) establishes a lower bound on the variance of an

estimator. Ideally, the inverse of the Fisher information matrix with respect to θ, which has

the special structural assumption β ⊗ α, can be used directly as the CRLB. Since the bilinear

regression model is expressed in terms of µ = (αT ,βT )T , it is natural to use the chain rule
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and the Fisher information matrix with respect to µ to derive the CRLB. Nonetheless, α and

β are identifiable only up to a scale factor in the bilinear model, the Fisher information matrix

with respect to µ is rank deficient and hence non-invertible. By using results on parameter

estimation with singular information matrices in Stoica and Marzetta (2001b), we can obtain

the desired CRLB in the following theorem.

Theorem 5 The Cramér-Rao lower bound for any unbiased estimator θ̂ of θ0 under Model

(4.2) and Assumption (4.5) is given by

acov(θ̂) � AJ(µ)†AT , (4.11)

where the matrix inequality A � B is understood to mean that the matrix A − B is positive

semi-definite, † denotes the Moore-Penrose pseudoinverse, A is the Jacobian matrix

A =
∂θ

∂µT
= [β ⊗ Ip×p Iq×q ⊗α], (4.12)

and J(µ) is the Fisher information matrix when the model is parameterized by µ:

J(µ) =
n

τ 2

 (βT0 Ψβ0)Σ Σα0β
T
0 Ψ

Ψβ0α
T
0 Σ (α0Σα

T
0 )Ψ

 . (4.13)

Moreover, when the expressions (4.12) and (4.13) are plugged back into the general formula

(4.11) and the pseudoinverse is completely computed, we have the following explicit CRLB,

acov(θ̂) � τ 2

n

(
(αT0 Σα0)−1Ψ−1 ⊗ (α0α

T
0 ) + (βT0 Ψβ0)−1(β0β

T
0 )⊗Σ−1 (4.14)

−(αT0 Σα0)−1(βT0 Ψβ0)−1(β0β
T
0 )⊗ (α0α

T
0 )
)
.

Note that the CRLB in Theorem 5, Equation (4.14), is attained by both the flip-flop estima-

tor and the truncated estimator asymptotically, which shows that both estimators are efficient.
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We next examine whether the maximum likelihood estimator (MLE), i.e., the global opti-

mizer of the objective function (4.7) if obtainable numerically, achieves the CRLB as well. It

is well known that the MLE possesses a few attractive limiting properties, efficiency being one

of them. However, when over-parameterization occurs, we encounter the same problem of the

singularity of the Fisher information matrix as in the derivation of the CRLB. Nevertheless,

θ0 is identifiable and estimable, which enables us to apply the techniques described in Shapiro

(1986) to derive the asymptotic distribution of the MLE.

Theorem 6 Suppose Model (4.2) and Assumption (4.5) hold. Let θ̂mle = β̂mle ⊗ α̂mle where

β̂mle and β̂mle are defined in (4.7). Then we have the following convergence in distribution

θ̂mle − θ0 → N (0,A(ATJ(θ)A)†AT ),

where A is the Jacobian matrix defined in Theorem 5, and J(θ) is the Fisher information

matrix with respect to θ when no structural assumption θ = β ⊗ α is assumed, i.e., J(θ) =

n
τ2

Ψ⊗Σ. Furthermore, the asymptotic covariance of the maximum likelihood estimator, when

fully expanded, coincides with the CRLB in Theorem 5.

Theorems 3-6 altogether depict the following overall picture. The MLE is the most favor-

able choice due to its statistical advantages, including obtaining the lowest asymptotic mean

squared error among all consistent estimators. However, it is computationally intractable,

which makes us resort to the flip-flop estimator. It turns out that the flip-flop estimator as a

surrogate can achieve the information lower bound, even though it is only a stationary point.

More surprisingly, the truncated flip-flop estimator, another alternative to the MLE, which is

computationally even more competitive, is as efficient as the MLE and the flip-flop estimator.
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4.3.3 Asymptotic efficiency

All of the three estimators, the flip-flop, the truncated flip-flop, and the maximum likelihood

estimators, are asymptotically optimal. It is also interesting to investigate their performance

compared to the general linear regression model with the vector covariate being the vectoriza-

tion of the original matrix covariate. Let θ̂lm denote the estimator of θ0 in the linear regression

model (4.4). It is well known that θ̂lm is a consistent estimator of θ0, with its asymptotic co-

variance as acov(θ̂lm) = τ 2/nΨ−1 ⊗ Σ−1. Then the following theorem states that the three

estimators of θ0 mentioned above are asymptotically more efficient than the linear regression

estimator.

Theorem 7 Let θ̂ff , θ̂tf , θ̂mle and θ̂lm be the flip-flop, truncated flip-flop, maximum likelihood,

and linear regression estimators of θ0 under Model (4.2) and Assumption (4.5). Then we have

acov(θ̂lm) � acov(θ̂ff) = acov(θ̂tf) = acov(θ̂mle), where the matrix inequality is defined in

Theorem 5.

Theorem 7 shows the efficiency gain when taking the Knocker product structure into con-

sideration, assuming that the bilinear model is true and the matrix covariate follows a matrix

normal distribution. Simulation results in Section 4.5 further demonstrate that the two bilinear

estimators, θ̂ff and θ̂tf , both of which are computable in reality, perform better than the linear

estimator θ̂lm for finite sample size.

4.4 Bilinear ridge regression

The flip-flop and truncated flip-flop estimators require that n > max(p, q). In practice, n is

sometimes comparable to or even smaller than p or q. To overcome the limitation of the sample

size, we propose a bilinear ridge estimator in this section.
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4.4.1 Bilinear ridge estimator

With ridge penalties on both α and β, the bilinear ridge estimator are the solutions to the

following optimization problem,

argminα∈Rp,β∈Rq
1

n

n∑
i=1

(
yi −αTXiβ

)2

+λα‖β‖2
Ψ‖α‖2

2 + λβ‖α‖2
Σ‖β‖2

2 + λαλβ‖α‖2
2‖β‖2

2, (4.15)

where ‖α‖2
Σ = αTΣα and ‖β‖2

Ψ = βTΨβ are two vector norms.

The objective function in this optimization problem (4.15) is also a bi-convex function.

Similar to the optimization problem (4.7), we solve this bi-convex optimization problem through

an iterative approach. We denote the estimators by (α̂λ, β̂λ) and name it as flip-flip bilinear

ridge estimator. In parallel to the operators in (4.8), we define the following two operators for

the flip-flop bilinear ridge estimator,

αλ(β) =
(
1
n

∑n
i Xiββ

TXT
i + λα‖β‖2ΨI + λβ‖β‖22Σ + λαλβ‖β‖22I

)−1
( 1
n

∑n
i Xiβyi),

βλ(α) =
(
1
n

∑n
i XT

i ααTXi + λα‖α‖22Ψ + λβ‖α‖2ΣI + λαλβ‖α‖22I
)−1

( 1
n

∑n
i XT

i αyi),
(4.16)

With the above two operators, the iterative procedure to solve the optimization problem

(4.15) is now given in Algorithm 4.2.

Algorithm 4.2 The Flip-flop Bilinear Ridge Estimation Algorithm

1. Initialize β(0) by βinit.

2. Given i, do the following

αr(2i+1) = αλ(βr(2i)), and βr(2i+2) = βλ(αr(2i+1)),

where the operators αλ(·) and βλ(·) are given in (4.16).

3. If the errors ofα andβ between two iteration steps are below the threshold, the algorithm
stops. Otherwise, go to step 2.
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4.4.2 Theoretical properties of the flip-flop bilinear ridge estimator

In this section, we study the theoretical properties of the flip-flop bilinear ridge estimator

through the excess prediction error. We start with introducing some more notations.

The eigen-decompositions of Σ and Ψ are denoted as follows,

Σ =

p∑
j=1

µjuju
T
j and Ψ =

q∑
k=1

νkvkv
T
k ,

where µ1 ≥ µ2 ≥ · · · ≥ 0 and ν1 ≥ ν2 ≥ · · · ≥ 0 are eigen-values of Σ and Ψ respectively,

and uj for j = 1, 2, . . . , p and vk for k = 1, 2, . . . , q are eigen-vectors of Σ and Ψ respectively.

Define the following two quantities,

dα =

p∑
j=1

(
µj

µj + λα

)2

, and dβ =

q∑
k=1

(
νk

νk + λβ

)2

. (4.17)

It can be seen that dα ≤ p and dβ ≤ q. The dα and dβ are called effective dimensions in

literature (e.g., Hsu et al., 2014) and they play an important role in the development of the

convergence rate of the excess prediction error.

Define ᾱ and β̄ as follows.

ᾱ = (Σ + λαI)−1Σα0,

β̄ = (Ψ + λβI)−1Ψβ0.

Note that ᾱ and β̄ does not depend on the training data {(Xi, yi), i = 1, 2, . . . , n} and

hence are deterministic. They characterize the limiting behavior of α̂λ and β̂λ which will be

seen in the proof of Theorem 8.

Now we show the theoretical properties of the flip-flop bilinear ridge estimators through the

excess prediction error which is a quantity that measures the prediction accuracy. Let (X̃, ỹ)

be a new pair of measurements independent of (Xi, yi) for i = 1, 2, . . . , n. Suppose α̂λ and β̂λ

78



are known and take expectation with respect to X̃ and ỹ, the excess prediction error is given by

E
(

(ỹ − α̂Tλ X̃β̂λ)
2 − (ỹ −αT0 X̃β0)2

)
= ‖β̂λ ⊗ α̂λ − β0 ⊗α0‖2

Ψ⊗Σ.

The following theorem shows the rate of convergence of the excess prediction error.

Theorem 8 Suppose λα and λβ satisfy

n−1dα = o(1), and n−1dβ = o(1),

where dα and dβ are given in (4.17). Then the excess prediction error has the following upper

bound,

E‖β̂λ ⊗ α̂λ − β0 ⊗α0‖2
Ψ⊗Σ

≤ 2‖β̄ ⊗ ᾱ− β0 ⊗α0‖2
Ψ⊗Σ

+O

(
dα + dβ

n
(τ 2 + ‖β̄ ⊗ ᾱ− β0 ⊗α0‖2

Ψ⊗Σ)

)
. (4.18)

There are no explicit conditions for the matrix dimensions p and q, but implicit conditions

through dα and dβ, the effective dimensions. The conditions n−1dα = o(1) and n−1dβ = o(1)

state that the excess prediction error converges as long as dα and dβ grow slower than n.

The upper bound contains two terms. The first term, ‖β̄⊗ ᾱ−β0 ⊗α0‖2
Ψ⊗Σ, on the right

hand side is deterministic. The second term is because of the random design and the noise. It

describes that the rate of convergence is n−1(dα + dβ), which is the sum of effects from the

row and column dimensions.

4.5 Simulations

In this section, we show the results of numerical experiments to compare the performance

of the proposed flip-flop and truncated flip-flop estimators with the linear regression estimator.
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4.5.1 Simulation setup

Throughout this section, the data are generated according to Model (4.2). We consider the

following four simulation setups.

• Model I Both α0 and β0 follow the N(0, I) distribution, i.e., all of the entries of α0

and β0 are independent standard normal and they are mutually independent. Σ and Ψ

are both identity matrices.

• Model II α0 and β0 are simulated in the way as in Model I. The ij-th entry of Σ

and Ψ are σij = 0.3|i−j| and ψij = 0.5|i−j| respectively. In this way, the magnitude of

the off-diagonal entries decay as they move away from the diagonal, which ensures that

the entries of Xi that are further apart are less correlated. This auto-regressive type of

correlation structure is reasonable for many real applications.

• Model III α0 and β0 are simulated as smooth curves: the ith entry of α0 is cos(2πi/p)

and the jth entry of β0 is sin(2πj/q) respectively. Σ and Ψ are simulated the same way

as in Model II.

• Model IV α0 and β0 are set to have linear forms: α0 = [1, 2, . . . , p]T and β0 =

[1, 2, . . . , q]T . Σ and Ψ are the same as in Models II and III.

Moreover,α0 and β0 are normalized so that they have unit length: ‖α0‖2 = 1 and ‖β0‖2 =

1. Hence, the four models are comparable to each other.

As for the covariate matrix Xi, we generate it from Xi = Σ1/2ZiΨ
1/2, where the entries

of Zi are i.i.d. standard normal random variables. From the basic property of matrix normal

distributions, Xi follows a matrix normal distribution N (0,Σ,Ψ).

We choose to fix the value of p to be 10, and let the number of columns q range in

{10, 20, 40}, so that different aspect ratios are included. Regarding to the noise part εi, we

take it to be N(0, τ 2). The choice of τ can be back traced in a way that makes the signal

80



to noise ratio snr range in {.5, 1, 2, 4}, where snr is defined as snr = var(αT0 Xiβ0)/τ 2 =

(αT0 Σα0)(βT0 Ψβ0)/τ 2 for a given setup with specific α0, β0, Σ, Ψ and τ 2.

For each simulation setup, we vary the size of the training data to be {1000, 2000, 5000,

10000}, and fix the size of the test data at 1000. We ran 100 simulations, apply each algorithm

under comparison, and summarize the results using the following two performance measures.

For estimation accuracy, we calculate the l2 distance between the estimated coefficient vector

and the truth,

D = ‖θ̂ − θ0‖2.

For out-of-sample prediction accuracy, we use the test data to evaluate the mean squared pre-

diction error

MSPE = average(yi − ŷi)2.

4.5.2 The effects of algorithm initialization

Both the flip-flop and truncated flip-flop estimators start from a random initialization. A

natural question to address is whether the initialization affects the estimation accuracy, and how

we should choose the initials. We study this question under Model I, with snr = 1, q = 20,

and the sample size n ranging in {1000, 2000, 5000, 10000}. For each value of n, we simulated

n training samples and randomly generated 100 initials. The results of the `2 distances between

the estimates and the truth are shown in Figure 4.1.

0

0.2

0.4

0.6

0.8

1

Dff Dtf Dff Dtf Dff Dtf Dff Dtf

n = 1000 n = 2000 n = 5000 n = 10000

Figure 4.1: The simulation results for 100 random initials under Model I, with snr = 1 and q = 20. D
is the `2 norm between the true and estimated coefficient vectors.
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Fig. 4.1 shows that the flip-flop estimator, Dff , does not depend on the initial. For each

n, the 100 randomly generated initials always result in the same `2 distance. This is primarily

because the flip-flop estimator is a convergent result of the algorithm.

On the contrary, the truncated flip-flop estimator, Dtf , highly depends on the initial, and

this dependence decreases with increasing sample size n. Recall that the truncated flip-flop

algorithm stops after three iterations. If the iterative algorithm does not converge within three

steps, the truncated estimates are very much determined by the point we start the algorithm.

As the sample size n increases, the flip-flop algorithm converges faster, or needs fewer steps to

converge. This makes the truncated estimator closer to the truth, and thus reduces the depen-

dence of the truncated estimator on the initial value.

In practice, we recommend randomly generating an initial for the iterative procedure but

trying a few different initials for the truncated one. In all the following simulations, we ran-

domly generate 10 initials for the truncated algorithm, and choose the one with the smallest

mean squared error to be the truncated flip-flop estimate.

4.5.3 Simulation results

Representative results are reported in Tables 4.1-4.3. The simulation results for the other

combinations are quite similar to the ones we report here and thus are omitted.

Table 4.1 summarizes the results under different models with increasing sample size n,

while fixing the signal to noise ratio snr = 1 and the dimension q = 20. Table 4.2 studies how

the estimation and prediction accuracy vary with decreasing aspect ratio p/q (increasing q) and

fixed snr = 2 and n = 2000. Table 4.3 reports the effects of snr with fixed n = 5000 and

q = 10.

Under all 4 simulation models, the flip-flop and truncated flip-flop estimators work compa-

rable to each other, and both significantly outperform the standard linear regression estimator

for both estimation and prediction. As the sample size n increases (Table 4.1), all methods
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Dff Dtf Dlm MSPEff MSPEtf MSPElm
Model I
n=1000 0.171 (0.022) 0.180 (0.023) 0.497 (0.026) 1.031 (0.046) 1.034 (0.046) 1.258 (0.064)
n=2000 0.119 (0.016) 0.123 (0.018) 0.332 (0.018) 1.012 (0.043) 1.013 (0.044) 1.109 (0.052)
n=5000 0.076 (0.010) 0.076 (0.010) 0.203 (0.010) 1.003 (0.046) 1.003 (0.046) 1.040 (0.049)

n=10000 0.054 (0.007) 0.054 (0.007) 0.143 (0.007) 0.993 (0.041) 0.994 (0.041) 1.010 (0.042)
Model II
n=1000 0.189 (0.027) 0.202 (0.031) 0.618 (0.039) 0.830 (0.037) 0.833 (0.038) 1.013 (0.052)
n=2000 0.159 (0.024) 0.161 (0.024) 0.478 (0.030) 1.107 (0.047) 1.108 (0.047) 1.213 (0.057)
n=5000 0.085 (0.012) 0.086 (0.012) 0.257 (0.016) 0.839 (0.038) 0.839 (0.038) 0.870 (0.041)

n=10000 0.065 (0.009) 0.065 (0.009) 0.181 (0.011) 0.828 (0.034) 0.828 (0.034) 0.842 (0.035)
Model III
n=1000 0.315 (0.049) 0.321 (0.050) 1.296 (0.085) 3.657 (0.156) 3.661 (0.158) 4.414 (0.219)
n=2000 0.227 (0.035) 0.228 (0.035) 0.865 (0.056) 3.581 (0.146) 3.582 (0.147) 3.922 (0.185)
n=5000 0.140 (0.022) 0.140 (0.022) 0.530 (0.033) 3.544 (0.179) 3.544 (0.179) 3.669 (0.179)

n=10000 0.095 (0.015) 0.095 (0.015) 0.372 (0.025) 3.542 (0.170) 3.542 (0.170) 3.607 (0.170)
Model IV
n=1000 0.331 (0.051) 0.337 (0.050) 1.473 (0.097) 4.724 (0.188) 4.727 (0.188) 5.704 (0.284)
n=2000 0.227 (0.035) 0.229 (0.036) 0.983 (0.063) 4.620 (0.196) 4.623 (0.196) 5.068 (0.239)
n=5000 0.145 (0.022) 0.145 (0.021) 0.603 (0.038) 4.582 (0.229) 4.582 (0.229) 4.741 (0.232)

n=10000 0.104 (0.015) 0.104 (0.015) 0.423 (0.028) 4.581 (0.221) 4.581 (0.221) 4.660 (0.219)

Table 4.1: Simulation results with fixed snr = 1 and q = 20

Dff Dtf Dlm MSPEff MSPEtf MSPElm
Model I

q=10 0.070 (0.011) 0.070 (0.011) 0.164 (0.012) 0.502 (0.024) 0.502 (0.024) 0.524 (0.025)
q=20 0.084 (0.011) 0.087 (0.012) 0.235 (0.013) 0.506 (0.021) 0.506 (0.021) 0.554 (0.026)
q=40 0.111 (0.013) 0.120 (0.014) 0.353 (0.015) 0.513 (0.021) 0.515 (0.021) 0.625 (0.026)

Model II
q=10 0.082 (0.014) 0.083 (0.015) 0.221 (0.020) 0.479 (0.023) 0.479 (0.023) 0.500 (0.024)
q=20 0.112 (0.017) 0.114 (0.018) 0.338 (0.021) 0.554 (0.023) 0.554 (0.024) 0.606 (0.028)
q=40 0.159 (0.021) 0.167 (0.022) 0.548 (0.026) 0.634 (0.026) 0.636 (0.026) 0.772 (0.033)

Model III
q=10 0.108 (0.021) 0.109 (0.022) 0.358 (0.032) 1.304 (0.057) 1.304 (0.057) 1.361 (0.060)
q=20 0.160 (0.024) 0.161 (0.025) 0.612 (0.039) 1.791 (0.073) 1.791 (0.073) 1.961 (0.092)
q=40 0.227 (0.026) 0.232 (0.027) 0.980 (0.038) 2.046 (0.087) 2.048 (0.088) 2.499 (0.113)

Model IV
q=10 0.120 (0.023) 0.120 (0.024) 0.452 (0.040) 2.076 (0.091) 2.076 (0.091) 2.167 (0.095)
q=20 0.160 (0.025) 0.162 (0.026) 0.695 (0.045) 2.310 (0.098) 2.311 (0.098) 2.534 (0.119)
q=40 0.230 (0.026) 0.237 (0.027) 1.080 (0.042) 2.488 (0.113) 2.492 (0.114) 3.036 (0.138)

Table 4.2: Simulation results with fixed snr = 2 and n = 2000

improve their estimation and prediction accuracy. From Table 4.2, we can see that increasing q

will raise the problem complexity and thus decrease the performance. Table 4.3 shows that all

estimators increase accuracy with increasing signal to noise ratio snr.

4.6 Discussion

The rank-1 bilinear combination αTXβ is a simple and direct extension of the traditional

linear form. We have proposed two estimators for the bilinear regression model, and demon-

strated that they outperform the linear model estimator both theoretically and numerically. We
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Dff Dtf Dlm MSPEff MSPEtf MSPElm
Model I
snr=0.5 0.087 (0.015) 0.088 (0.015) 0.205 (0.016) 1.999 (0.085) 1.999 (0.085) 2.032 (0.086)
snr=1.0 0.062 (0.010) 0.062 (0.010) 0.145 (0.011) 1.000 (0.043) 1.000 (0.043) 1.016 (0.043)
snr=2.0 0.044 (0.007) 0.044 (0.007) 0.102 (0.008) 0.500 (0.021) 0.500 (0.021) 0.508 (0.021)
snr=4.0 0.031 (0.005) 0.031 (0.005) 0.072 (0.006) 0.250 (0.011) 0.250 (0.011) 0.254 (0.011)
Model II
snr=0.5 0.120 (0.023) 0.120 (0.022) 0.360 (0.035) 3.319 (0.141) 3.320 (0.141) 3.372 (0.143)
snr=1.0 0.085 (0.016) 0.085 (0.016) 0.254 (0.025) 1.660 (0.070) 1.660 (0.070) 1.686 (0.071)
snr=2.0 0.060 (0.011) 0.060 (0.011) 0.180 (0.017) 0.830 (0.035) 0.830 (0.035) 0.843 (0.036)
snr=4.0 0.042 (0.008) 0.042 (0.008) 0.127 (0.012) 0.415 (0.018) 0.415 (0.018) 0.422 (0.018)

Model III
snr=0.5 0.136 (0.024) 0.136 (0.023) 0.438 (0.039) 5.201 (0.238) 5.201 (0.237) 5.288 (0.240)
snr=1.0 0.096 (0.017) 0.096 (0.017) 0.310 (0.028) 2.600 (0.119) 2.600 (0.119) 2.644 (0.120)
snr=2.0 0.068 (0.012) 0.068 (0.012) 0.219 (0.020) 1.300 (0.059) 1.300 (0.059) 1.322 (0.060)
snr=4.0 0.048 (0.008) 0.048 (0.008) 0.155 (0.014) 0.650 (0.030) 0.650 (0.030) 0.661 (0.030)

Model IV
snr=0.5 0.152 (0.030) 0.152 (0.030) 0.553 (0.050) 8.277 (0.375) 8.278 (0.375) 8.424 (0.383)
snr=1.0 0.107 (0.021) 0.107 (0.021) 0.391 (0.035) 4.139 (0.187) 4.139 (0.187) 4.212 (0.191)
snr=2.0 0.076 (0.015) 0.076 (0.015) 0.277 (0.025) 2.069 (0.094) 2.069 (0.094) 2.106 (0.096)
snr=4.0 0.053 (0.010) 0.054 (0.010) 0.196 (0.018) 1.035 (0.047) 1.035 (0.047) 1.053 (0.048)

Table 4.3: Simulation results with fixed n = 5000 and q = 10

also proposed one bilinear ridge estimator to deal with the case that the dimensions are compa-

rable to the sample size. Nevertheless, in some real applications, the underlying data structure

is complex, and thus the rank-1 combination may not be flexible enough to capture all the

information. In those cases, a multi-rank model is necessary, for example, one can consider

an additive bilinear form,
∑

iα
T
i Xβi, for the regression mean. The theoretical and numerical

performances of the multi-rank bilinear model need further investigation.

4.7 Proofs of theorems

In this section, we first provide proofs of Theorem 3 - Theorem 7 which are under the

classical asymptotic setting, i.e., p and q are fixed and n → ∞. We then provide technical

details of the Theorem 8 under the setting that n, p and q → ∞. We start with the proof of

Theorem 4 since the proof of Theorem 3 will adopt the same idea as the proof of Theorem 4.

Proof of Theorem 4. We first prove the consistency property of the estimator θ̂tf . Suppose

the initialization is given by βinit. Let α(1) = α(βinit) denote the estimate of α0 after the first
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iteration step. Then, plugging into the generative model, we get

α(1) = (
1

n

∑
i

Xiβinitβ
T
initX

T
i )−1(

1

n

∑
i

Xiβinitβ
T
0 XT

i α0 +
1

n

∑
i

Xiβinitεi)

def
= (A1)−1(B1α0 + c1),

where we have defined the following quantities, whose limits can be obtained by the law of

large numbers,

A1 =
1

n

∑
i

Xiβinitβ
T
initX

T
i

w.p.1−→ tr(βinitβ
T
initΨ)Σ = (βTinitΨβinit)Σ,

B1 =
1

n

∑
i

Xiβinitβ
T
0 XT

i

w.p.1−→ tr(βinitβ
T
0 Ψ)Σ = (βT0 Ψβinit)Σ,

c1 =
1

n

∑
i

Xiβinitεi
w.p.1−→ 0,

where w.p.1 is a shorthand for with probability 1. It follows that

α(1)
w.p.1−→ βT0 Ψβinit

βTinitΨβinit

α0
def
= γα0

def
= α?.

Here, γ = βT0 Ψβinit

βTinitΨβinit
is a scaler that depends on the initialization and will show up frequently

throughout the proof because α0 and β0 are only identifiable up to a scaler and the flip-flop

algorithm eventually converges to α? = γα0 and β? = γ−1β0, which makes β? ⊗ α? =

β0 ⊗α0.

Let β(2) = β(α(1)) = β(α(βinit)) and α(3) = α(β(2)) = α(β(α(βinit))) denote the

updates of β and α after two and three steps respectively. Similar to the analysis of α(1) we

have

β(2)

w.p.1−→ αT0 Σγα0

γαT0 Σγα0

β0 = γ−1β0
def
= β?,
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and

α(3)
w.p.1−→ βT0 Ψγ−1β0

γ−1βT0 Ψγ−1β0

α0 = γα0 = α?.

Then, it follows that

θ̂tf = β(2) ⊗α(3)
w.p.1−→ β? ⊗α? = β0 ⊗α0.

This completes the proof of consistency.

Next, we derive the first-order expansion of θ̂tf around θ0, which is the key to the compu-

tation of the variance. We use symbol ≈ to represent “equal up to first order”. From now on,

the notation convention is that the subscript star ∗ means the limit and the tilde˜means the first

order term.

As in the consistency part, we start from the analysis of α(1). Let A1∗ = (βTinitΨβinit)Σ,

B1∗ = (βT0 Ψβinit)Σ. By the law of large numbers we know that A1
w.p.1−→ A1∗, B1

w.p.1−→ B1∗

and hence we can write Ã1 = A1−A1∗ and B̃1 = B1−B1∗. Because of the matrix inversion

lemma

(A + Ã)−1 ≈ A−1 −A−1ÃA−1, (4.19)

when A1∗ and A1 = A1∗ + Ã1 are non-singular matrices and Ã1 = o(1), we have

A−1
1 ≈ A−1

1∗ −A−1
1∗ Ã1A

−1
1∗ .

Therefore,

α(1) = A−1
1 (B1α0 + c1) ≈ (A−1

1∗ −A−1
1∗ Ã1A

−1
1∗ )(B1∗α0 + B̃1α0 + c1)

≈ α? + A−1
1∗ B̃1α0 + A−1

1∗ c1 −A−1
1∗ Ã1α? (4.20)

We further let α̃(1) = A−1
1∗ B̃1α0 + A−1

1∗ c1 −A−1
1∗ Ã1α? to denote the first-order term of α(1)
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and hence α(1) ≈ α? + α̃(1).

For β(2), we have

β(2) = (
1

n

∑
i

XT
i α(1)α

T
(1)Xi)

−1(
1

n

∑
i

XT
i α(1)α

T
0 Xiβ0 +

1

n

∑
i

XT
i α(1)εi)

def
= (A2)−1(B2β0 + c2), (4.21)

where

A2 =
1

n

∑
i

XT
i α(1)α

T
(1)Xi, B2 =

1

n

∑
i

XT
i α(1)α

T
0 Xi,

and

c2 =
1

n

∑
i

XT
i α(1)εi ≈

1

n

∑
i

XT
i α?εi.

In order to obtain the first order expansions of matrices A2 and B2, we need the following

notations and results. Let

F =
1

n

∑
i

XT
i ⊗XT

i , and F∗ = vec(Ψ)vecT (Σ).

By the basic fact that E(XT
i ⊗XT

i ) = vec(Ψ)vecT (Σ) and the law of large numbers, we have

F
w.p.1−→ F∗ and hence F̃

def
= F − F∗ = o(1). Now we vectorize matrices A2 and B2 to obtain

their first order expansions.

vec(A2) =
1

n

∑
i

(XT
i ⊗XT

i )vec(α(1)α
T
(1))

≈ (F∗ + F̃)vec
(
(α? + α̃(1))(α? + α̃(1))

T
)
.

Keeping the first-order terms leads to

vec(A2) ≈ F∗vec(α?α
T
? ) + F∗vec(α̃(1)α

T
? ) + F∗vec(α?α̃

T
(1)) + F̃vec(α?α

T
? ).
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Let D = 1
n

∑
i X

T
i α?α

T
? Xi and D∗ = (αT? Σα?)Ψ. Since E(XT

i α?α
T
? Xi) = (αT? Σα?)Ψ,

we have D
w.p.1−→ D∗. Then D̃

def
= D−D∗ = o(1). Now unvectorizing vec(A2) gives

A2 ≈ (αT? Σα?)Ψ + 2(αT? Σα̃(1))Ψ + D̃,

and its inverse by making use of (4.19)

A−1
2 ≈ (αT? Σα?)

−1Ψ−1 − (αT? Σα?)
−2Ψ−1

(
2(αT? Σα̃(1))Ψ + D̃

)
Ψ−1. (4.22)

Applying similar treatment of A2 to B2, we have

B2 ≈
1

γ
(αT? Σα?)Ψ +

1

γ
(αT? Σα̃(1))Ψ +

1

γ
D̃. (4.23)

By Equation (4.21), (4.22) and (4.23), the first order expansion of β(2) is given by

β(2) ≈ β? −
αT? Σα̃(1)

αT? Σα?
β? +

Ψ−1( 1
n

∑
i X

T
i α?εi)

αT? Σα?
. (4.24)

An identical analysis as β(2) for α(3) produces

α(3) ≈ α? −
βT? Ψβ̃(2)

βT? Ψβ?
α? +

Σ−1( 1
n

∑
i Xiβ?εi)

βT? Ψβ?
. (4.25)

The first-order expansion of θ̂tf around θ0 is

θ̂tf − θ0 = β(2) ⊗α(3) − β0 ⊗α0 ≈ (β(2) − β?)⊗α(3) + β(2) ⊗ (α(3) −α?). (4.26)

Plugging Equations (4.20), (4.24) and (4.25) into Equation (4.26), we have the following first-
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order approximation for θ̂tf ,

θ̂tf ≈ θ0 +
Ψ−1( 1

n

∑
i X

T
i α0εi)

αT0 Σα0

⊗α0 + β0 ⊗
Σ−1( 1

n

∑
i Xiβ0εi)

βT0 Ψβ0

−
βT0 ( 1

n

∑
i X

T
i α0εi)

(αT0 Σα0)(βT0 Ψβ0)
(β0 ⊗α0). (4.27)

One feature of the expansion is that it does not involve the initialization any more because of

some cancellations.

Finally, we analyze the asymptotic covariance matrix of θ̂tf . Write the last three terms in

Equation (4.27) as follows

s1 = (αT0 Σα0)−1(Ψ−1 1

n

∑
i

XT
i α0εi)⊗α0,

s2 = (βT0 Ψβ0)−1β0 ⊗ (Σ−1 1

n

∑
i

Xiβ0εi),

s3 = (αT0 Σα0)−1(βT0 Ψβ0)−1(
1

n

∑
i

βT0 XT
i α0εi)β0 ⊗α0.

Note that

acov(θ̂tf) ≈ E(θ̂tf − θ0)(θ̂tf − θ0)T = E(s1 + s2 − s3)(s1 + s2 − s3)T

≈ E(s1s
T
1 + s2s

T
2 + s3s

T
3 + s1s

T
2 − s1s

T
3 − s2s

T
3 + s2s

T
1 − s3s

T
1 − s3s

T
2 ).

Below we will calculate the expectation of each term on the right hand side.

The first term is

s1s
T
1 = (αT0 Σα0)−2

(
(
1

n

∑
i

Ψ−1XT
i α0εi)(

1

n

∑
j

εjα
T
0 XjΨ

−1)

)
⊗ (α0α

T
0 ).
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By the independence of εi and Xi, we have

E(ε2iX
T
i α0α

T
0 Xi) = τ 2(αT0 Σα0)Ψ. (4.28)

Again by the independence of Xi and εi and Equation (4.28), the expectation is given by

E(s1s
T
1 ) = (αT0 Σα0)−1 τ

2

n
Ψ−1 ⊗ (α0α

T
0 ).

Similar arguments as the s1s
T
1 term together with the fact

E(ε2iXiβ0β
T
0 XT

i ) = τ 2(βT0 Ψβ0)Σ,

produce

E(s2s
T
2 ) = (βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗Σ−1.

For the s3s
T
3 term, we have

s3s
T
3 = (αT0 Σα0)−2(βT0 Ψβ0)−2(

1

n

∑
i

βT0 XT
i α0εi)

2(β0β
T
0 )⊗α0α

T
0 .

By equation (4.28), it follows

E(
1

n

∑
i

βT0 XT
i α0εi)

2 =
τ 2

n
(αT0 Σα0)(βT0 Ψβ0),

and hence

E(s3s
T
3 ) = (αT0 Σα0)−1(βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗ (α0α

T
0 ).

For the s1s
T
2 term, we have

s1s
T
2 = (αT0 Σα0)−1(βT0 Ψβ0)−1

(
(
1

n

∑
i

Ψ−1XT
i α0εiβ

T
0 )⊗ (

1

n

∑
j

εjα0β
T
0 XT

j Σ−1)

)
.
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Note that

(Ψ−1XT
i α0β

T
0 )⊗ (α0β

T
0 XT

i Σ−1) = (Ψ⊗α0β
T
0 )(XT

i ⊗XT
i )(α0β

T
0 ⊗Σ−1),

then it follows

E(Ψ−1XT
i α0β

T
0 )⊗ (α0β

T
0 XT

i Σ−1)

= (Ψ−1 ⊗α0β
T
0 )(vec(Ψ)vecT (Σ))(α0β

T
0 ⊗Σ−1)

= (β0β
T
0 )⊗ (α0α

T
0 ),

and hence

E(s1s
T
2 ) = (αT0 Σα0)−1(βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗ (α0α

T
0 ).

For the s1s
T
3 term, we have

s1s
T
3

= (αT0 Σα0)−2(βT0 Ψβ0)−1(
1

n

∑
i

βT0 XT
i α0εi)(

1

n

∑
j

εjΨ
−1XT

j α0β
T
0 )⊗ (α0α

T
0 )

= (αT0 Σα0)−2(βT0 Ψβ0)−1

(
1

n

∑
j

εjΨ
−1XT

j α0(
1

n

∑
i

αT0 Xiεi)β0β
T
0

)
⊗ (α0α

T
0 ).

By the independence of Xi and εj , it follows

E(
1

n

∑
j

εjΨ
−1XT

j α0(
1

n

∑
i

αT0 Xiεi)) =
τ 2

n
(αT0 Σα0)I,

and hence

E(s1s
T
3 ) = (αT0 Σα0)−1(βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗ (α0α

T
0 ).
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By the same treatment of the s1s
T
3 term, the expectation of the s2s

T
3 term is given by

E(s2s
T
3 ) = (αT0 Σα0)−1(βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗ (α0α

T
0 ).

By symmetry, we have E(s1s
T
2 ) = E(s2s

T
1 ), E(s1s

T
3 ) = E(s3s

T
1 ) and E(s2s

T
3 ) = E(s3s

T
2 ).

The asymptotic covariance matrix of θ̂tf then is given as follows,

acov(θ̂tf) ≈ E(s1s
T
1 + s2s

T
2 + s3s

T
3 + s1s

T
2 − s1s

T
3 − s2s

T
3 + s2s

T
1 − s3s

T
1 − s3s

T
2 )

= (αT0 Σα0)−1 τ
2

n
Ψ−1 ⊗ (α0α

T
0 ) + (βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗Σ−1

−(αT0 Σα0)−1(βT0 Ψβ0)−1 τ
2

n
(β0β

T
0 )⊗ (α0α

T
0 ),

which completes the proof of Theorem 4.

Proof of Theorem 3 From the proof of Theorem 4, we know that

α̂ff
w.p.1−→ α?, β̂ff

w.p.1−→ β?.

Hence,

θ̂ff = β̂ff ⊗ α̂ff
w.p.1−→ β? ⊗α? = β0 ⊗α0 = θ0,

which means that θ̂ff is a consistent estimator of θ0. Then

α̃ff
def
= α̂ff −α? = o(1), and β̃ff

def
= β̂ff − β? = o(1).

Note that when the algorithm converges, we have the following

α̂ff = α(β̂ff), and β̂ff = α(β̂ff).

By the exactly same treatment of β(2) in the proof of Theorem 4 and replacing α(1) by α̂ff , we
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have

β̂ff ≈ β? −
αT? Σα̃ff

αT? Σα?
β? +

Ψ−1( 1
n

∑
i X

T
i α?εi)

αT? Σα?
, (4.29)

and similarly,

α̂ff ≈ α? −
βT? Ψβ̃ff

βT? Ψβ?
α? +

Σ−1( 1
n

∑
i Xiβ?εi)

βT? Ψβ?
.

Then the first order approximation of θ̂ff is given by

θ̂ff − θ0 = β̂ff ⊗ α̂ff − θ0

≈
Σ−1( 1

n

∑
i Xiβ?εi)

βT? Ψβ?
⊗α? + β? ⊗

Σ−1( 1
n

∑
i Xiβ?εi)

βT? Ψβ?

−(
αT? Σα̃ff

αT? Σα?
+
βT? Ψβ̃ff

βT? Ψβ?
)(β? ⊗α?). (4.30)

Plugging Equation (4.29) into Equation (4.30), we have

θ̂ff ≈ θ0 +
Ψ−1( 1

n

∑
i X

T
i α0εi)

αT0 Σα0

⊗α0 + β0 ⊗
Σ−1( 1

n

∑
i Xiβ0εi)

βT0 Ψβ0

−
βT0 ( 1

n

∑
i X

T
i α0εi)

(αT0 Σα0)(βT0 Ψβ0)
(β0 ⊗α0). (4.31)

The right hand side of Equation (4.31) is the same as the one in Equation (4.27). And hence the

asymptotic covariance matrix of θ̂ff is the same as θ̂tf . This completes the proof of Theorem 3.

Proof of Theorem 5 The Fisher information matrix J(µ) is given by

J(µ) = −Eµ0

∂2l

∂µ∂µT
= −Eµ0

 ∂2l
∂α∂αT

∂2l
∂α∂βT

∂2l
∂β∂αT

∂2l
∂β∂βT

 .

Calculating the derivatives and taking the expectation, we have

J(µ) =
n

τ 2

 (βT0 Ψβ0)Σ Σα0β
T
0 Ψ

Ψβ0α
T
0 Σ (α0Σα

T
0 )Ψ

 .
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The CRLB for any unbiased estimator θ̂ of θ0 is given by (Stoica and Marzetta, 2001a)

acov(θ̂) � AJ(µ)†AT .

The matrix J(µ)† can be calculated from the formula for partitioned matrices (e.g., Rohde,

1965). Together with Equation (4.12), we have

acov(θ̂) � (αT0 Σα0)−1 τ
2

n
Ψ−1 ⊗ (α0α

T
0 ) + (βT0 Ψβ0)−1 τ

2

n
(β0β

T
0 )⊗Σ−1

−(αT0 Σα0)−1(βT0 Ψβ0)−1 τ
2

n
(β0β

T
0 )⊗ (α0α

T
0 ).

Proof of Theorem 6 By plugging in the expressions for A and J(θ), we have

ATJ(θ)A =
n

τ 2

 (βT0 Ψβ0)Σ Σα0β
T
0 Ψ

Ψβ0α
T
0 Σ (α0Σα

T
0 )Ψ

 .

The above expression is the same as the J(µ) in Theorem 5. Hence, the rest of the proof of

Theorem 6 is identical to the proof of Theorem 5.

Proof of Theorem 7 From general linear regression analysis, it is well known that the asymp-

totic covariance of the linear estimator θ̂lm is given by

acov(θ̂lm) =
τ 2

n
Ψ−1 ⊗Σ−1.

To show the asymptotic efficiency of θ̂ff and θ̂tf , we only need to show acov(θ̂lm)−acov(θ̂ff) �

0 and acov(θ̂lm)− acov(θ̂tf) � 0. This is equivalent to show that

Ψ−1 ⊗Σ−1 +
(βT0 β0)⊗ (α0α

T
0 )

(αT0 Σα0)(βT0 Ψβ0)
− (β0β

T
0 )⊗Σ−1

βT0 Ψβ0

− Ψ−1 ⊗ (α0α
T
0 )

αT0 Σα0

� 0.

94



The left hand side equals

(
Ψ−1 − β0β

T
0

βT0 Ψβ0

)
⊗
(

Σ−1 − α0α
T
0

αT0 Σα0

)
.

From the basic fact that the Kronecker product of two positive semi-definite matrices is still

positive semi-definite, we only need to show that

Ψ−1 − β0β
T
0

βT0 Ψβ0

� 0, and Σ−1 − α0α
T
0

αT0 Σα0

� 0.

For every η ∈ Rq, by Cauchy-Schwarz inequality we have

(ηTβ0)2 ≤ (ηTΨ−1η)(βT0 Ψβ0),

and hence it follows that

ηT
(

Ψ−1 − β0β
T
0

βT0 Ψβ0

)
η ≥ 0,

which means that the matrix Ψ−1 − β0β
T
0

βT0 Ψβ0
is positive semi-definite.

By similar arguments we can show that the matrix Σ−1 − α0αT0
αT0 Σα0

is also positive semi-

definite. This completes the proof of Theorem 7.

Proof of Theorem 8 The proof of this theorem adopts a similar idea as the proof of Theorem 3.

Hence, we use a similar set of notations as used in the proof of Theorem 3 but with a subscript

r to represent the bilinear ridge estimator.

Let αr(1) = αλ(βinit), βr(2) = βλ(αr(1)) and αr(3) = αλ(βr(2)). As discovered in the

Theorem 4, the asymptotic result of the truncated estimator does not depend on the initial βinit.

We will first show that the upper bound of the truncated flip-flop bilinear ridge estimator also

does not depend on the initial which is a similar result as in Theorem 4.

Let us first define the following quantities which characterize the limiting behavior ofαr(3)
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and βr(2).

γr =
(
‖βinit‖2

Ψ + λβ‖βinit‖2
2

)−1
(βT0 Ψβinit), αr? = γrᾱ, and βr? = γ−1

r β̄.

Next, we introduce the following four quantities which will be used in the analysis. Let

Dr = n−1

n∑
i=1

XT
i αr?α

T
r?Xi,

Er = n−1

n∑
i=1

XT
i αr?α

T
0 Xi,

Fr = n−1

n∑
i=1

Xiβr?β
T
r?X

T
i ,

Gr = n−1

n∑
i=1

Xiβr?β
T
0 XT

i .

Their expectations are

Dr? = E(Dr) = ‖αr?‖2
ΣΨ, Er? = E(Er) = (αTr?Σα0)Ψ,

Fr? = E(Fr) = ‖βr?‖2
ΨΣ, Gr? = E(Gr) = (βTr?Ψβ0)Σ.

We can further write D̃r = Dr−Dr?, Ẽr = Er−Er?, F̃r = Fr−Fr?, and G̃r = Gr−Gr?,

which are the leading error terms.

The excess prediction error for the estimator (αr(3),βr(2)) is

E
(

(ỹ −αTr(3)X̃βr(2))
2 − (ỹ −αT0 X̃β0)2

)
= E

(
(βTr(2) ⊗αTr(3) − βT0 ⊗αT0 )vec(X̃)

)2

= ‖βr(2) ⊗αr(3) − β0 ⊗α0‖2
Ψ⊗Σ

= ‖βr(2) ⊗αr(3) − βr? ⊗αr? + βr? ⊗αr? − β0 ⊗α0‖2
Ψ⊗Σ

≤ 2‖βr(2) ⊗αr(3) − βr? ⊗αr?‖2
Ψ⊗Σ + 2‖β̄ ⊗ ᾱ− β0 ⊗α0‖2

Ψ⊗Σ. (4.32)
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The second term on the right hand side is deterministic. The upper bound of the expectation

of the first term is given in the following lemma.

Lemma 1 Suppose λα and λβ satisfy

n−1dα = o(1), and n−1dβ = o(1).

Then

E‖βr(2) ⊗αr(3) − βr? ⊗αr?‖2
Ψ⊗Σ

≤ O

(
dα + dβ

n
(τ 2 + ‖β̄ ⊗ ᾱ− β0 ⊗α0‖2

Ψ⊗Σ)

)
.

Lemma 1 together with Equation (4.32) give us the upper bound on the expectation of the

excess prediction error for the estimator (αr(3),βr(2)) which is the right hand side of (4.18).

Similar to the flip-flop and the trucated flip-flop plain bilinear estimators, the flip-flop bilinear

ridge estimator has the same upper bound as its truncated version. This completes the proof of

Theorem 8.

4.8 Proofs of lemmas

Proof of Lemma 1 We first derive the first order approximations of αr(1), βr(2) and αr(3).

Given an initial βinit, let αr(1) = αλ(βinit) be the updated value of α after the first iteration

step. By the definition of the operator αλ, we have

αr(1) = A−1
r1 (Br1α0 + cr1),
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where

Ar1 =
1

n

n∑
i=1

Xiβinitβ
T
initX

T
i + λα‖βinit‖2

ΨI + λβ‖βinit‖2
2Σ + λαλβ‖βinit‖2

2I,

Br1 =
1

n

n∑
i=1

Xiβinitβ
T
0 XT

i ,

cr1 =
1

n

n∑
i=1

εiXiβinit.

Now we derive the first order approximation of Ar1, Br1 and cr1, and hence αr(1). The

expectation of Ar1 is given as follows,

Ar1∗ = E(Ar1) =
(
‖βinit‖2

Ψ + λβ‖βinit‖2
2

)
(Σ + λαI).

Therefore, we can write Ar1 as

Ar1 = Ar1∗ + Ãr1,

where Ãr1 is the term of small order.

Similarly, Br1 can be expressed as

Br1 = Br1∗ + B̃r1,

where Br1∗ = E(Br1) = (βTinitΨβ0)Σ.

Applying the matrix inversion lemma (4.19) and only keeping the first order terms, it fol-

lows that

αr(1) ≈ αr? + α̃r(1), (4.33)

98



where

α̃r(1) = A−1
r1∗B̃r1α0 + A−1

r1∗cr1 −A−1
r1∗Ãr1αr?

= ‖βinit‖−2
Ψ+λβI(Σ + λαI)−1(B̃r1α0 − Ãr1αr? + cr1). (4.34)

Next, let βr(2) be the updated value of β after the second iteration step, i.e., βr(2) =

βλ(αλ(βinit)). By plugging αr(1) into the βλ(·) operator, we have

βr(2) = A−1
r2 (Br2β0 + cr2),

where

Ar2 =
1

n

n∑
i=1

XT
i αr(1)α

T
r(1)Xi + λα‖αr(1)‖2

2Ψ

+λβ‖αr(1)‖2
2I + λαλβ‖αr(1)‖2

2I, (4.35)

Br2 =
1

n

n∑
i=1

XT
i αr(1)α

T
0 Xi,

cr2 =
1

n

n∑
i=1

εiX
T
i αr(1).

We analyze each term in Ar2 and obtain their first order expansions. Let the four terms of

Ar2 in (4.35) be denoted as follows,

Ar21 =
1

n

n∑
i=1

XT
i αr(1)α

T
r(1)Xi, Ar22 = λα‖αr(1)‖2

2Ψ,

Ar23 = λβ‖αr(1)‖2
2I, and Ar24 = λαλβ‖αr(1)‖2

2I.

With the notations of Dr and Er, by plugging αr(1) in (4.33) into the above expression and
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keeping only the first order terms, we can obtain the following first order approximations,

Ar21 ≈ ‖αr?‖2
ΣΨ + 2(α̃r(1)Σαr?)Ψ + D̃r,Ar22 ≈ λα‖αr?‖2

2Ψ + 2λα(αTr?α̃r(1))Ψ,

Ar23 ≈ λβ‖αr?‖2
ΣI + 2λβ(αTr?Σα̃r(1))I,Ar24 ≈ λαλβ‖αr?‖2

2 + 2λαλβ(αTr(1)αr?)I.

By collecting the leading terms and first order terms from Ar21, Ar22, Ar23 and Ar24, and

denoting the leading term of Ar2 by Ar2∗ and the first order term by Ãr2, the following holds:

Ar2∗ = (‖αr?‖2
Σ + λα‖αr?‖2

2)(Ψ + λβI), (4.36)

Ãr2 = 2(α̃Tr(1)Σαr? + λα(αTr?α̃r(1)))(Ψ + λβI) + D̃r. (4.37)

Denote the leading term and the first order term of Br2 by Br2∗ and B̃r2 respectively. Then we

have

Br2∗ = (αTr?Σα0)Ψ, (4.38)

B̃r2 = (α̃Tr(1)Σα0)Ψ + Ẽr. (4.39)

By Equations (4.19), (4.36), (4.38), the first order approximation of βr(2) can be expressed as

βr(2) ≈ βr? + A−1
r2∗cr2 + (A−1

r2∗B̃r2β0 −A−1
r2∗Ãr2βr?) = βr? + β̃r(2). (4.40)

We further define the following two quantities,

crα =
1

n

n∑
i=1

XT
i αr?εi, (4.41)

crβ =
1

n

n∑
i=1

Xiβr?εi. (4.42)

The leading error term in cr2 is crα and 1
n

∑n
i=1 XT

i α̃r(1)εi is of second order.
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Together with plugging (4.36), (4.37), (4.38), (4.39) into (4.40) and further replacing α̃r(1)

by (4.34), one achieves

β̃r(2) = −‖αr?‖−2
Σ+λαI‖βinit‖−2

Ψ+λβIα
T
r?(B̃r1α0 − Ãr1αr? + cr1)βr?

+‖αr?‖−2
Σ+λαI(Ψ + λβI)−1(Ẽrβ0 − D̃rβr? + crα). (4.43)

By identical argument to derive (4.43), we can obtain α̃r(3). The first order error for esti-

mating the Kronecker product βr? ⊗αr? after some cancellation is given as follows,

βr? ⊗ α̃r(3) + β̃r(2) ⊗αr?

= ‖βr?‖−2
Ψ+λβIβr? ⊗ (Σ + λαI)−1(G̃rα0 − F̃rαr? + crβ)

+‖αr?‖−2
Σ+λαI(Ψ + λβI)−1(Ẽrβ0 − D̃rβr? + crα)⊗αr?

−‖βr?‖−2
Ψ+λβI‖αr?‖

−2
Σ+λαI[α

T
r?(G̃rα0 − F̃rαr? + crβ)](βr? ⊗αr?). (4.44)

In what follows, we will denote the three terms on the right hand of the equation by s1, s2, s3

respectively.

The excess prediction error can be bounded as

‖βr(2) ⊗αr(3) − βr? ⊗αr?‖2
Ψ⊗Σ

= ‖s1 + s2 + s3‖2
Ψ⊗Σ

≤ 3‖s1‖2
Ψ⊗Σ + 3‖s2‖2

Ψ⊗Σ + 3‖s3‖2
Ψ⊗Σ. (4.45)

Our task is to bound the three terms separately. The following lemmas give the upper bound

for these terms.
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Lemma 2 Let s1 and s2 be defined in (4.44). We have

E‖s1‖2
Ψ⊗Σ ≤ 2n−1dα(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ)(1 + o(1)), (4.46)

E‖s2‖2
Ψ⊗Σ ≤ 2n−1dβ(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ)(1 + o(1)). (4.47)

Lemma 3 Let s3 be defined in (4.44). The following holds,

E‖s3‖2
Ψ⊗Σ ≤ 2n−1(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ). (4.48)

Now Equations (4.45), (4.46), (4.47) and (4.48) complete the proof of Lemma 1.

Proof of Lemma 2 By the Kronecker product property, we have

‖s1‖2
Ψ⊗Σ

= ‖βr?‖−4
Ψ+λβI‖βr?‖

2
Ψ‖(Σ + λαI)−1(G̃rα0 − F̃rαr? + crβ)‖2

Σ

≤ 2‖βr?‖−4
Ψ+λβI‖βr?‖

2
Ψ‖(Σ + λαI)−1crβ‖2

Σ

+2‖βr?‖−4
Ψ+λβI‖βr?‖

2
Ψ‖(Σ + λαI)−1(G̃rα0 − F̃rαr?)‖2

Σ

def.
= s11 + s12.
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Recall the definition of crβ in (4.42), it follows

E‖(Σ + λαI)−1crβ‖2
Σ

= E‖(Σ + λαI)−1 1

n

n∑
i=1

Xiβr?εi‖2
Σ

= n−2E

(
(
n∑
i=1

εiβ
T
r?X

T
i )(Σ + λαI)−1Σ(Σ + λαI)−1(

n∑
i=1

Xiβr?εi)

)

= τ 2n−2E

(
(
n∑
i=1

βTr?X
T
i )(Σ + λαI)−1Σ(Σ + λαI)−1(

n∑
i=1

Xiβr?)

)
= τ 2n−1E

(
βTr?X

T (Σ + λαI)−1Σ(Σ + λαI)−1Xβr?
)

= τ 2n−1‖βr?‖2
Ψtr

(
(Σ + λαI)−1Σ(Σ + λαI)−1Σ

)
= τ 2n−1‖βr?‖2

Ψ

n∑
i=1

λ2
i

(λi + λα)2

=
τ 2dα
n
‖βr?‖2

Ψ, (4.49)

where the third equality uses the fact that X and ε are independent, the fifth equality comes

from the property of matrix normal distribution, and the last one is based on the definition of

dα.

Hence, (4.49) implies that

Es11 = 2‖βr?‖−4
Ψ+λβI‖βr?‖

4
Ψ

τ 2dα
n

=
2‖βr?‖4

Ψ

(‖βr?‖2
Ψ + λβ‖βr?‖2

2)2

τ 2dα
n

≤ 2
τ 2dα
n

.
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As for s12, we know that

E‖(Σ + λαI)−1(G̃rα0 − F̃rαr?)‖2
Σ

= E(G̃rα0 − F̃rαr?)
T (Σ + λαI)−1Σ(Σ + λαI)−1(G̃rα0 − F̃rαr?)

= Etr((Σ + λαI)−1Σ(Σ + λαI)−1(G̃rα0 − F̃rαr?)(G̃rα0 − F̃rαr?)
T )

= tr
(

(Σ + λαI)−1Σ(Σ + λαI)−1E(G̃rα0 − F̃rαr?)(G̃rα0 − F̃rαr?)
T
)

= tr
(

(Σ + λαI)−1Σ(Σ + λαI)−1E(G̃rα0α
T
0 G̃T

r + F̃rαr?α
T
r?F̃

T
r

−2F̃rαr?α
T
0 G̃T

r )
)
,

where we have used the trick to interchange expectation and trace.

Since G̃r = Gr − EGr,

E(G̃rα0α
T
0 G̃T

r )

= cov(Grα0)

= cov(n−1

n∑
i=1

Xiβr?β
T
0 XT

i α0)

= n−1cov(Xβr?β
T
0 XTα0)

= n−1tr(Ψβr?β
T
0 Ψβ0β

T
r?)tr(α0α

T
0 Σ)Σ

+n−1tr(βr?β
T
0 Ψ)tr(β0β

T
r?Ψ)Σα0α

T
0 Σ

+n−1tr(βr?β
T
0 Ψβr?β

T
0 Ψ)Σα0α

T
0 Σ

−n−1(βTr?Ψβ0)Σα0α
T
0 ((βTr?Ψβ0)Σ)T

= n−1‖α0‖2
Σ‖β0‖2

Ψ‖βr?‖2
ΨΣ + n−1(βT0 Ψβr?)

2Σα0α
T
0 Σ,

where the second last step replies upon the matrix normal distribution property again and the

rest steps are standard.
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A similar derivation will produce

E(F̃rαr?α
T
r?F̃

T
r ) = n−1‖βr?‖4

Ψ‖αr?‖2
ΣΣ + n−1‖βr?‖4

ΨΣαr?α
T
r?Σ.

For the cross-product term, since G̃r = Gr − EGr and F̃r = Fr − EFr,

E(F̃rαr?α
T
0 G̃T

r )

= cov(Frαr?,Grα0)

= cov(n−1

n∑
i=1

Xiβr?β
T
r?X

T
i αr?, n

−1

n∑
i=1

Xiβr?β
T
0 XT

i α0)

= n−1cov(Xβr?β
T
r?X

Tαr?,Xβr?β
T
0 XTα0)

= n−1‖βr?‖2
Ψ(αT0 Σαr?)(β

T
0 Ψβr?)Σ + n−1‖βr?‖2

Ψ(βT0 Ψβr?)Σα0α
T
r?Σ.

Taking the last three displays into consideration, we can group them into two parts

E(G̃rα0α
T
0 G̃T

r + F̃rαr?α
T
r?F̃

T
r − 2F̃rαr?α

T
0 G̃T

r )

= n−1
(
‖α0‖2

Σ‖β0‖2
Ψ‖βr?‖2

ΨΣ + ‖βr?‖4
Ψ‖αr?‖2

ΣΣ

−2‖βr?‖2
Ψ(αT0 Σαr?)(β

T
0 Ψβr?)Σ

)
+n−1

(
(βT0 Ψβr?)

2Σα0α
T
0 Σ + ‖βr?‖4

ΨΣαr?α
T
r?Σ

−2‖βr?‖2
Ψ(βT0 Ψβr?)Σα0α

T
r?Σ
)
.
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Once this is plugged back

E‖(Σ + λαI)−1(G̃rα0 − F̃rαr?)‖2
Σ

= n−1tr
(
(Σ + λαI)−1Σ(Σ + λαI)−1Σ

)
‖βr?‖2

Ψ(
‖α0‖2

Σ‖β0‖2
Ψ + ‖βr?‖2

Ψ‖αr?‖2
Σ − 2(αT0 Σαr?)(β

T
0 Ψβr?)

)
+n−1

(
(βT0 Ψβr?)

2‖α0‖2
Σ̃

+ ‖βr?‖4
Ψ‖αr?‖2

Σ̃

−2‖βr?‖2
Ψ(βT0 Ψβr?)(α

T
0 Σ̃αr?)

)
,

where Σ̃ = Σ(Σ + λαI)−1Σ(Σ + λαI)−1Σ

The first three terms on the right hand of the last equation can be further simplified to

n−1dα‖βr?‖2
Ψ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ,

and the last three terms can be bounded by

n−1
(
‖βr?‖2

Ψ‖β0‖2
Ψ‖α0‖2

Σ̃
+ ‖βr?‖4

Ψ‖αr?‖2
Σ̃

−2‖βr?‖2
Ψ(βT0 Ψβr?)(α

T
0 Σ̃αr?)

)
= n−1‖βr?‖2

Ψ‖βr? ⊗αr? − β0 ⊗α0‖2
Ψ⊗Σ̃

≤ n−1‖βr?‖2
Ψ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ,

where the first line is a simple application of Cauchy-Schwarz inequality and the last line holds

because Σ− Σ̃ is positive definite.

In all,

Es12 = 2‖βr?‖−4
Ψ+λβI‖βr?‖

2
ΨE‖(Σ + λαI)−1(G̃rα0 − F̃rαr?)‖2

Σ

≤ 2n−1‖βr?‖−4
Ψ+λβI‖βr?‖

4
Ψ(dα + 1)‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ

≤ 2n−1dα‖βr? ⊗αr? − β0 ⊗α0‖2
Ψ⊗Σ(1 + o(1))
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Now we have

E‖s1‖2
Ψ⊗Σ ≤ 2n−1dα(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ)(1 + o(1))

And switching the role of α and β will prove

E‖s2‖2
Ψ⊗Σ ≤ 2n−1dβ(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ)(1 + o(1))

Proof of Lemma 3 The expectation of s3 can be written as

E‖s3‖2
Ψ⊗Σ

= ‖βr?‖−4
Ψ+λβI‖αr?‖

−4
Σ+λαI‖αr?‖

2
Σ‖βr?‖2

ΨE[αTr?(G̃rα0 − F̃rαr? + crβ)]2

≤ 2‖βr?‖−4
Ψ+λβI‖αr?‖

−4
Σ+λαI‖αr?‖

2
Σ‖βr?‖2

Ψ(
E[αTr?crβ]2 + E[αTr?(G̃rα0 − F̃rαr?)]

2
)

def
= s31 + s32.

Since

E[αTr?crβ]2

= E[αTr?
1

n

n∑
i=1

Xiβr?εi]
2

=
τ 2

n
E[αTr?Xβr?]

2

=
τ 2

n
‖αr?‖2

Σ‖βr?‖2
Ψ,

we have

s31 = 2
τ 2

n
‖βr?‖−4

Ψ+λβI‖αr?‖
−4
Σ+λαI‖αr?‖

4
Σ‖βr?‖4

Ψ ≤ 2
τ 2

n
.
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As for s32, we have

E[αTr?(G̃rα0 − F̃rαr?)]
2

= tr(αr?α
T
r?E((G̃rα0 − F̃rαr?)(G̃rα0 − F̃rαr?)

T ))

= n−1‖αr?‖2
Σ‖βr?‖2

Ψ‖βr? ⊗αr? − β0 ⊗α0‖2
Ψ⊗Σ

+n−1
(
(βT0 Ψβr?)

2(αT0 Σαr?)
2 + ‖βr?‖4

Ψ‖αr?‖4
Σ

−2‖βr?‖2
Ψ‖αr?‖2

Σ(βT0 Ψβr?)(α
T
0 Σαr?)

)
≤ n−1‖αr?‖2

Σ‖βr?‖2
Ψ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ

+n−1
(
‖αr?‖2

Σ‖βr?‖2
Ψ‖α0‖2

Σ‖β0‖2
Ψ + ‖βr?‖4

Ψ‖αr?‖4
Σ

−2‖βr?‖2
Ψ‖αr?‖2

Σ(βT0 Ψβr?)(α
T
0 Σαr?)

)
= 2n−1‖αr?‖2

Σ‖βr?‖2
Ψ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ,

which implies

s32 ≤ 2
1

n
‖βr?‖−4

Ψ+λβI‖αr?‖
−4
Σ+λαI‖αr?‖

4
Σ‖βr?‖4

Ψ

‖βr? ⊗αr? − β0 ⊗α0‖2
Ψ⊗Σ

≤ 2
1

n
‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ.

The analysis of s31 and s32 shows that

E‖s3‖2
Ψ⊗Σ ≤ 2n−1(τ 2 + ‖βr? ⊗αr? − β0 ⊗α0‖2

Ψ⊗Σ).
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CHAPTER 5: FUTURE WORK

We intend to undertake the following two projects in the future. The first one is an extension

of the bilinear regression and the second one is in the area of covariance matrix estimation.

The first project is an extension of the functional linear regression. The traditional one-way

functional linear regression takes a one dimensional functional predictor. Recently, two-way

functional data are becoming more and more often. We will extend the functional linear model

to bilinear functional model and propose a bilinear functional estimator. We aim at studying

the theoretical properties of the estimator under the framework of Reproducing Kernel Hilbert

Space.

The second project is on covariance matrix estimation and testing, which is an important

problem in multivariate analysis. There has been a large amount of literature on this subject

for vector-valued data. As for matrix-valued data, usually both column-column and row-row

correlations exist, which makes us model the observed data via separable covariance matrices

with one characterizing correlation among columns and the other one among rows. There

has been some recent work on the estimation of separable covariance matrices, but under the

traditional fixed number of parameters and increasing sample size setup. We aim to study the

high dimensional estimation problem with the number of parameters going to infinity under two

possible additional assumptions: sparse or banded covariance matrix. Moreover, the hypothesis

testing problem of some pre-specified structure for the covariance matrix for vector-valued data

has emerged recently as well. We will extend the testing procedure proposed in Cai et al. (2013)

to matrix-valued data. Lastly, we will analyze the theoretical and numerical properties of the

estimation and testing procedures and apply them to real data analysis.
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