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Abstract

YING YUAN: Statistical Analysis of Symmetric Positive-definite Matrices.
(Under the direction of Hongtu Zhu and J. S. Marron.)

This dissertation is motivated by addressing the statistical analysis of symmetric positive definite

(SPD) matrix valued data, which arise in many applications. Due to the nonlinear structure of

such data, it is challenging to apply well-established statistical methods to them. Our goal is to

develop statistical models and perform statistical inferences on the Riemannian manifold of the

space of SPD matrices. This dissertation has three major parts.

In the first part, we develop a local polynomial regression model for the analysis of data with

SPD matrix responses on the Riemannian manifold. The independent variable of this model is from

Euclidean space. We examine two commonly used metrics including the affine invariant metric and

the Log-Euclidean metric on the space of SPD matrices. Under each metric, we develop an asso-

ciated cross-validation bandwidth selection method, and derive the asymptotic bias, variance, and

normality of the intrinsic local constant and local linear estimators and compare their asymptotic

mean square errors. Simulation studies are further used to compare the estimators under the two

metrics and examine their finite sample performance.

In the second part, we develop a functional data analysis framework to model diffusion tensors

along fiber bundles as functional responses with a set of covariates of interest, such as age, diagnos-

tic status and gender, in real applications. We propose a statistical model with varying coefficient

functions to characterize the dynamic association between functional SPD matrix-valued responses

and covariates. We calculate a weighted least squares estimation of the varying coefficient functions

under the Log-Euclidean metric in the space of SPD matrices. We also develop a global test statis-

tic to test specific hypotheses about these coefficient functions and construct their simultaneous

confidence bands. Simulated data are further used to examine the finite sample performance of the

estimated varying coefficient functions.
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The third part is to develop a varying coefficient model framework under the affine invariant

metric. This framework is very similar to that in the second part. However, this metric is more

complex than the Log-Euclidean metric, which makes the subsequent estimation of the varying

coefficient functions and the theoretical derivations very challenging. Since there is no explicit form

formula for the estimators, we developed an optimization method for calculating it. We also derive

the asymptotic properties for the estimated coefficient functions, which are important for construct-

ing the simultaneous confidence band and the global test statistic. Moreover, comparisons of the

statistical powers of the varying coefficient models under the affine invariant and Log-Euclidean

metrics are made by using simulated data.

Keywords: Symmetric positive definite matrix, Log-Euclidean metric, affine invariant metric, Lo-

cal polynomial regression, Functional data analysis, Varying coefficient model, Global test statistic,

Simultaneous confidence band.
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Chapter 1

Introduction

Symmetric positive-definite (SPD) matrix-valued data occur in a wide variety of important

applications. For instance,

(1) An approach to computational anatomy has a representing shape in terms of deformation,

where a SPD deformation vector (JJT )1/2 is computed to capture the directional information

of shape change encoded in the Jacobian matrices J at each location in an image (Grenander

and Miller, 2007).

(2) An different type of computational anatomy is done in diffusion tensor imaging (DTI) (Basser

et al., 1994b), where a 3×3 SPD diffusion tensor (DT), which tracks the effective diffusion of

water molecules, is estimated at each voxel (a 3 dimensional (3D) pixel) of an imaging space.

(3) Brain function is studied in functional magnetic resonance imaging (fMRI), where a SPD

covariance matrix is calculated to delineate functional connectivity between different neural

assemblies when the subject is performing a complex cognitive task or perceptual process

(Fingelkurts et al., 2005; Gao et al., 2009).

(4) In classical multivariate statistics, a fundamental task is to model and estimate SPD co-

variance matrices for multivariate measurements, longitudinal data, time series data, among

many others (Pourahmadi, 1999, 2000; Anderson, 2003).

In this dissertation, we consider the situation where the data at hand are random SPD matrix-

valued samples instead of parameters like in the fourth application. Specifically, we focus on two

types of data: (i) the SPD matrix-valued data measured along one curve or (ii) a bunch of curves.



One example application is in DTI, where we obtained: (1) DT’s measured along a fiber tract as

a function of locations; (2) a collection of DT’s along a fiber tract measured as a function of age,

diagnostic status, and gender, while controlling for other clinical variables.

Figure 1.1 (a) displays one fiber tract in the brain, called the splenium tract projected onto a

slice of the FA image from a DTI scan. Along this tract, we have DT’s for each of different subjects

with some specific attributes, such as age, gender and diagnostic status. Each DT is geometrically

represented by an ellipsoid (Figure 1.1 (b)-(e)). In this representation, the lengths of the semiaxes

of the ellipsoid equal the square root of the eigenvalues of a DT, while the eigenvectors define the

direction of the three axes.

Figure 1.1: (a) shows the splenium tract extracted from the tensor atlas projected onto one axial
slice of the FA image from a DTI scan, with color representing FA value. (b)-(e) shows the ellipsoidal
representations of DT’s along the tract for four selected subjects, with some attributes such as age,
gender and diagnostic status, etc..

Four issues arise when we deal with SPD matrix-valued data statistically.

(1) Should the analysis procedure be based on the derived scalar quantities or be based on the

whole SPD matrices?

(2) Should the estimation be parametric or nonparametric?

(3) which metric should be used, Euclidean or non-Euclidean metrics?

(4) Which statistical model should be developed for a collection of SPD matrix-valued curves,

functional data analysis or others?
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In current practice, many statistical analyses of SPD matrix valued data are based on the

derived scalar quantities or carried out for each individual element of SPD matrices (Smith et al.

(2006); O’Donnell et al. (2009); Gao et al. (2009)). For instance, in DTI, classical statistical

methods are applied to fractional anisotropy values (FA is one derived quantity of a diffusion

tensor) along the fiber tracts in order to investigate the change of FA’s. And, in fMRI, they are

applied to inter-regional correlation data in order to explore the development curve of each inter-

regional correlation. This is relatively simple and straightforward because many classical statistical

methods developed for data on Euclidean space can be directly applied in this situation. However,

this method of analysis is not adequate for investigating SPD matrix valued data or their derived

scalar quantities because they only use of part of the information from SPD matrices and so may

not reveal some important characteristics of the data. Moreover, the derived scalar quantities are

linear or nonlinear functions of the estimated eigenvalues of the SPD matrices and thus contain

inherent bias. Hence, estimation and inference based on them can be substantially misleading. Our

simulation results will make this point clearly. Improvements will be made by developing statistical

methods that model the whole SPD matrix as a multivariate unit in this dissertation.

For Data type (i), we have SPD matrix-valued data measured at different spatial locations

(or different time points). We wish to denoise the data and reconstruct the underlying SPD

matrix-valued function. As is known (Fan and Gijbels (1996)), when some assumed underlying

functional forms and distributions are correct, a parametric method is better than a nonparametric

method in terms of computational speed and convergence rate of the estimator. However, the

reality is that the correct model is rarely available. In this situation, the performance of parametric

methods can be very poor and inference based on incorrect assumptions about functional forms and

distributions can be highly doubtful. Nonparametric statistical methods can reduce the reliance

on the assumptions required for estimation and inference, thereby reducing the opportunities for

obtaining misleading results. One contribution of this dissertation is developing a nonparametric

regression method for the analysis of data with SPD matrix valued responses. Specifically, we

develop the local polynomial regression method for SPD matrix valued data, which can be used

to reconstruct the average change of SPD matrices as a function of some covariate, e.g. spatial

location, time point or 3D coordinate. The estimation process of the mean function involves the

choice of metric, which determines the geometry of the space of SPD matrices.
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Here we mention three metrics. One is the Euclidean metric and the other two are non-Euclidean

metrics: the Log-Euclidean and affine invariant metrics (Arsigny (2006) and Schwartzman (2006)).

They correspond to three different geometries: the Euclidean, Log-Euclidean and affine invariant

geometries. If we analyze SPD matrix valued data using the Euclidean metric, the usual estimation

methods widely studied on Euclidean spaces can be directly applied to them. However, this direct

application cannot guarantee the positive-definiteness of the estimates since the estimation highly

depends on the noise structure and the structure of the SPD matrices. It is possible to find

the closest points on the space of SPD matrices to the non-positive estimators. This falls into

the category of extrinsic methods. However, in general, extrinsic methods do not perform well,

especially for the statistical inference (Fletcher (2004)). In contrast, estimations using the Log-

Euclidean or affine invariant metrics do not suffer from this problem since the operations are carried

out by considering the space as a non-Euclidean space, which are intrinsic methods. Hence, in this

work, we develop statistical methods with respect to the above two non-Euclidean metrics. Our

simulation results also show that in some scenarios, for example at moderate noise levels or for non-

gaussian noises, the estimators using the Euclidean metric fail to be SPD matrices and thus cannot

outperform those using the Log-Euclidean or affine invariant metrics. Moreover, even if using the

Euclidean metric can retain the positive-definiteness in some cases, estimators using this metric

suffer from the swelling effect, i.e. the determinant of the Euclidean estimators can be larger than

the original determinants. As said in Fletcher (2004), in DTI, diffusion tensors are assumed to be

covariance matrices of the local Brownian motion of water molecules. Introducing more dispersion

in computations amounts to introducing more diffusion, which is physically unacceptable.

For Data type (ii), we have a collection of SPD matrix-valued data measured along a curve (a

temporal or spatial curve) as a function of age, diagnostic status, and gender, while controlling

for other clinical variables. These data are in essence functional data. Moreover, one of the main

characteristics of these data is the combination of longitudinal or spatial information (time series or

spatial data) with cross-sectional information (attribute data). Data can contain trends that vary

in longitudinal or spatial aspects, that vary across different groups of subjects or objects. Take the

study of fiber tract in DTI as an example. There, each subject is characterized by a set of DT’s

along one of the fiber tracts in his/her brain coupled with its additional attributes such as age,

diagnostic status and gender. The natural approach to dealing with this type of data is functional
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data analysis (FDA). Compared with the classical statistics where the interest centers around a set

of data vectors, FDA can capture trend, processes and dynamic information which are inherent in

the data and thus increase the statistical power in detecting interesting features and in exploring

variability. While there is extensive interest in developing FDA methods, however, most research

focuses are on functional data with the responses in Euclidean space. The functional data in this

dissertation have SPD matrix-valued responses, which lie in a non-Euclidean space. Those methods

for the data on Euclidean space cannot be directly applied.

Another major contribution of this dissertation is the development of varying coefficient model

frameworks for the analysis of SPD matrix valued functions and their association with a set of

covariates of interest, such as age, diagnostic status and gender, in real applications. Our modeling

will be formulated under the two affine invariant metrics mentioned above. The varying coefficient

model framework consists of four integrated components:

(i) a varying coefficient model for characterizing the association between SPD matrix valued

functions with a set of covariates of interest,

(ii) the local polynomial regression method for estimating the coeffient functions in the model,

(iii) global and local test statistics for testing hypotheses of interest

(iv) a resampling or χ2 approximation method for approximating the p-value of the global test

statistic.

The remainder of this dissertation is organized as follows. In Chapter 2, we develop an intrinsic

local polynomial regression model for SPD matrix valued data under two Riemannian metrics:

affine invariant and Log-Euclidean metrics. Under each metric, we develop an associated cross-

validation method for nonparametric analysis of random SPD matrix-valued data and investigate

the asymptotic properties of the estimators. Simulation studies are performed to examine the

finite sample performance of the estimator. In Chapter 3, we establish the varying coefficient

model framework under the Log-Euclidean metric, called VCLE, for analysis of the association

between fiber bundle diffusion tensors and a set of covariates of interest. Under this metric, a

varying coefficient model is formulated and correspondingly, an estimation procedure based on the

local polynomial regression method is proposed to estimate the parameters in the model. We also

5



develop both local and global test statistics to test hypotheses on the varying coefficient functions

and a resampling method is used to approximate the p-value of the test statistics. We construct

a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions

and propose a resampling method to approximate the critical point. We examine the finite sample

performance of VCLE via simulation studies. In Chapter 4, we formulate the varying coefficient

model framework developed in Chapter 3 under another commonly used metric for the space of

SPD matrices, the affine invariant metric, called VCAI. Specification of the model under this

metric involves the matrix exponential transformation and thus brings many more theoretical and

computational difficulties than that in Chapter 3. We develop an annealing evolutionary stochastic

approximation Monte Carlo algorithm for computing the coefficient functions (Liang (2010)). We

also derived the asymptotic properties of the coefficient functions, based on which a global test

statistic is developed to test hypotheses on the varying coefficient functions and a simultaneous

confidence band is constructed.
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Chapter 2

Local Polynomial Regression for SPD Matrices

2.1 Introduction

Symmetric positive-definite (SPD) matrix-valued data occur in many applications. This has

motivated the recent development of several methods for statistical analysis of SPD matrices as

response variables in a Riemannian manifold. Schwartzman et al. (2008) has proposed several

parametric models for SPD matrices and derived the distributions of several test statistics for

comparing differences between the means of the two (or multiple) groups of SPD matrices. Kim

and Richards (2010) have developed a nonparametric estimator for the common density function

of a random sample of positive definite matrices. Zhu et al. (2009) develop a semi-parametric

regression model with SPD matrices as responses in a Riemannian manifold and covariates in a

Euclidean space. This model extends the two-group models studied by Schwartzman (2006) and

Schwartzman et al. (2008) to allow for general covariates and generalizes the parametric modeling in

Schwartzman (2006) by assuming only that certain appropriately defined residuals have mean zero.

Barmpoutis et al. (2007) and Davis et al. (2010) have proposed tensor splines and local constant

regressions for interpolating DTI tensor fields based on the affine invariant metric, but these two

papers do not address several important issues of analyzing random SPD matrices including the

asymptotic properties of the nonparametric estimate proposed. Recently, Dryden et al. (2009)

compare the various choices of metrics of the space of SPD matrices and their properties.

To the best of our knowledge, this is the very first paper for developing an intrinsic local

polynomial regression (ILPR) model for estimating an intrinsic conditional expectation of a SPD

matrix response, S, given a covariate vector x from a set of observations (x1, S1), · · · , (xn, Sn), where

the xi can be either univariate or multivariate. In practice, x can be the arc-length of a specific fiber



tract (e.g., right internal capsule tract), the coordinates in the 3D imaging space, and demographic

variables such as age. Important applications of ILPR include smoothing diffusion tensors along

fiber tracts and diffusion tensor fields, quantifying the change of diffusion and deformation tensors

across groups and along time, and the evolution of inter-regional functional connectivity matrix

with time.

Compared with the existing literature, we make several contributions in this chapter. Since the

space of SPD matrices is a curved space, the standard local polynomial regression method is not

adequate and can lead to an unpleasant effect in image processing (Chefd’hotel et al., 2004). To

account for the curved nature of the SPD space, we consider the affine invariant metric and the Log-

Euclidean metric for the space of SPD matrices in order to examine the effect of different metrics on

carrying out statistical inference in the Riemannian manifold. Under each metric, we develop the

ILPR method for estimating the intrinsic conditional expectation of random SPD responses given

the covariate and derive an approximation to its associated cross-validation method for bandwidth

selection. We establish the asymptotic properties of the ILPR estimators. We show the superiority

of the intrinsic local linear estimator over the intrinsic local constant estimator by examining their

asymptotic mean square errors. As shown in Figure 2.7 in Section 2.5, substantial improvements

can be made by treating SPD matrices in the Riemannian manifold.

The rest of this chapter is organized as follows. In Section 2.2, we develop the ILPR method

and its associated cross-validation method for nonparametric analysis of random SPD matrix-valued

data. We investigate the asymptotic properties of the estimators proposed under the affine invariant

metric in Section 2.3 and the Log-Euclidean metric in Section 2.4, respectively. We examine the

finite sample performance of the estimator via simulation studies in Section 2.5. Finally, we will

analyze a real data set to illustrate a real-world application of the proposed ILPR method in Section

2.6 before offering some concluding remarks in Section 2.7.

2.2 Intrinsic Local Polynomial Regression for SPD matrices

Let Sym+(m) and Sym(m) be, respectively, the set of m × m SPD matrices and the set of

m×m symmetric matrices with real entries. Suppose that (xi, Si), i = 1, · · · , n is an independent

and identically distributed random sample, where Si ∈ Sym+(m). For notational simplicity, we
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focus on a univariate covariate throughout the paper. The question of interest is to estimate an

‘intrinsic conditional expectation’ of S at each x, denoted by D(x), in Sym+(m).

Since Sym+(m) is a curved space, one cannot directly define D(x) = E(S|X = x) for a random

SPD matrix S ∈ Sym+(m). Instead, we introduce an m×m residual matrix of S at D(x), denoted

by ED(x), in Sym(m). The space Sym(m) is a Euclidean space with the Euclidean inner product

given by < A1, A2 >= tr(A1A2) for any A1, A2 ∈ Sym(m). Thus, since ED(x) is in a Euclidean

space, we can directly compute its conditional expectation, which leads to the definition of ‘intrinsic

conditional expectation’ of S at each x as follows:

E{ED(X)|X = x} = Om, (2.2.1)

where Om is the m × m matrix with all elements zero. Heuristically, consider S and D(x) as

lying in Euclidean space, then ED(x) could be defined as S − D(x) and (2.2.1) would reduce to

D(x) = E(S|X = x).

To rigorously define ED(X), we review some basic facts about the geometrical structure of

Sym+(m) in order to introduce addition and subtraction operations in Sym+(m) (Zhu et al., 2009;

Schwartzman, 2006; Dryden et al., 2009). We first introduce the tangent vector and tangent space

at D(x) in Sym+(m). For a small scalar δ > 0, let C(t) be a differentiable map from (−δ, δ) to

Sym+(m) passing through C(0) = D(x). A tangent vector at D(x) is defined as the derivative of

the smooth curve C(t) with respect to t evaluated at t = 0. The set of all tangent vectors at D(x)

forms the tangent space of Sym+(m) at D(x), denoted as TD(x)Sym+(m). We need to introduce a

specific metric << ·, · >>D(x) as an inner product for tangent vectors on TD(x)Sym+(m). For the

given metric, we can calculate << UD(x), VD(x) >>D(x) for any UD(x) and VD(x) on TD(x)Sym+(m)

and then measure the length of the curve in Sym+(m). Furthermore, one can compute the shortest

path, called the geodesic, between points in Sym+(m). Let γD(x)(t, UD(x)) be the geodesic as a

function of t passing through γD(x)(0, UD(x)) = D(x) in the direction of UD(x) ∈ TD(x)Sym+(m).

We introduce the Riemannian exponential and logarithmic maps on Sym+(m) as the addition

and subtraction operations. The Riemannian exponential mapping ExpD(x) : TD(x)Sym+(m) →

Sym+(m) is defined as ExpD(x)(UD(x)) = γD(x)(1;UD(x)). Intuitively, the Riemannian exponen-

tial map starts at D(x) ∈ Sym+(m) and then moves on Sym+(m) in the direction UD(x) ∈

9



TD(x)Sym+(m). We define an open sphere of radius r centered at the ‘origin’D(x) in TD(x)Sym+(m)

as

BD(x)(r) = {UD(x) ∈ TD(x)Sym+(m) :<< UD(x), UD(x) >>D(x)< r2}. (2.2.2)

Since γD(x)(t; sUD(x)) = γD(x)(st;UD(x)) and TD(x)Sym+(m) is a Euclidean space, there is an r > 0

such that the Riemannian exponential map is a diffeomorphism. Inversely, the inverse of the

Riemannian exponential map LogD(x)(·) = Exp−1
D(x)(·) is called the Riemannian logarithmic map

from Sym+(m) to a vector in TD(x)Sym+(m). For small t, we have LogD(x)(γD(x)(t;UD(x))) =

tUD(x). For instance, we consider any two symmetric matrices A1 and A2 in the Euclidean space

Sym(m) with the usual Euclidean metric. Thus, we have LogA1
(A2) = A2 −A1 ∈ TA1Sym(m) and

ExpA1
(A2 −A1) = A1 +A2 −A1 = A2 ∈ Sym(m).

We define ED(X) to be LogD(X)(S) in TD(X)Sym+(m). Thus, the intrinsic conditional expec-

tation of S at X = x is defined as D(x) ∈ Sym+(m) such that

E{LogD(X)(S)|X = x} = Om. (2.2.3)

The next question is to estimate D(X) at each X = x using the observed data {(xi, Si), i =

1, · · · , n}.

Since LogD(x)(Si) is in the Euclidean space Sym(m), we consider estimating D(X) at X = x0

by minimizing a weighted intrinsic least square criterion given by

Gn(D(x0)) =
n∑
i=1

Kh(xi − x0) << LogD(x0)(Si),LogD(x0)(Si) >>D(x0), (2.2.4)

where Kh(u) = K(u/h)h−1, in which h is a positive scalar, and K(·) is a kernel function such as

the Epanechnikov kernel (see Fan and Gijbels (1996); Fan and Yao (1998); Wand and Jones (1995)

for additional discussion). Since << LogD(x0)(S),LogD(x0)(S) >>D(x0) equals the square of the

geodesic distance between S and D(x0), denoted by g(D(x0), S), Gn(D(x0)) can be rewritten as

Gn(D(x0)) =
n∑
i=1

Kh(xi − x0)g(D(x0), Si)2. (2.2.5)

Directly minimizingGn(D(x0)) with respect toD(x0) leads to a weighted intrinsic mean of S1, · · · , Sn ∈
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Sym+(m) at x0, denoted by D̂I(x0), which can be regarded as a generalization of the intrinsic mean

of S1, · · · , Sn ∈ Sym+(m) (Bhattacharya and Patrangenaru, 2005). This is exactly the intrinsic

local constant estimator of D(x0) considered in Davis et al. (2010).

We propose the intrinsic local polynomial regression for estimating D(X) at X = x0 as follows.

Since D(x) is in the curved space, we cannot directly expand D(x) at x0 by using a Taylor’s series

expansion. Instead, we consider the logarithmic map of D(x) at D(x0) in TD(x0)Sym+(m). Since

LogD(x0)(D(x)) for different x0 are in different tangent spaces, we may rotate them back to the

same tangent space TImSym+(m) through a rotation mapping (or parallel transport) φD(x0) :

TD(x0)Sym+(m) → TImSym+(m), where Im is an m × m identity matrix. That is, Y (x) =

φD(x0)(LogD(x0)(D(x))) ∈ TImSym+(m) and LogD(x0)(D(x)) = φ−1
D(x0)(Y (x)), where φ−1

D(x0)(·) is

the inverse map of φD(x0)(·). Moreover, since Y (x0) = φD(x0)(Om) = Om and Y (x) is in the same

space TImSym+(m), we expand Y (x) at x0 by using the Taylor’s series expansion as follows:

LogD(x0)(D(x)) = φ−1
D(x0)(Y (x)) ≈ φ−1

D(x0)(
k0∑
k=1

Y (k)(x0)(x− x0)k), (2.2.6)

where k0 is an integer and Y (k)(x) is the k−th derivative of Y (x) with respect to x divided by k!.

Equivalently, D(x) can be approximated by

D(x) = ExpD(x0)(φ
−1
D(x0)(Y (x))) (2.2.7)

≈ ExpD(x0)(φ
−1
D(x0)(

k0∑
k=1

Y (k)(x0)(x− x0)k)) = D(x, α(x0), k0),

where α(x0) contains all unknown parameters in {D(x0), Y (1)(x0), · · · , Y (k0)(x0)}.

To estimate α(x0), we calculate an intrinsic weighted least square estimator of α(x0) defined by

α̂I(x0;h) = argminα(x0)Gn(α(x0)), (2.2.8)

where Gn(α(x0)) is given by

Gn(α(x0)) =
n∑
i=1

Kh(xi − x0)g(ExpD(x0)(φ
−1
D(x0)(

k0∑
k=1

Y (k)(x0)(x− x0)k)), Si)2. (2.2.9)
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Then we can calculate D(x, α̂I(x0;h), k0), denoted by D̂I(x, h), as an intrinsic local polynomial

regression estimator (ILPRE) of D(x).

We propose to use a leave-one-out cross validation method for bandwidth selection due to its

conceptual simplicity. Larger bandwidths may gain on the variance side, but lose on the bias side

due to oversmoothing. Smaller bandwidths may gain on the bias side, but loses on the variance

side due to undersmoothing. Let D̂(−i)
I (xi;h) be the estimate of D(xi) obtained by minimizing

Gn(α(xi)) with (xi, Si) deleted for a given bandwidth h and all i. The cross-validation score is

defined as follows:

CV(h) = n−1
n∑
i=1

g(Si, D̂
(−i)
I (xi;h))2. (2.2.10)

The optimal h, denoted by ĥ, can be obtained by minimizing CV(h). However, since computing

D̂
(−i)
I (xi;h) for all i can be computationally prohibitive, we suggest to use the first-order approx-

imation of CV(h), whose details will be given below under each specific metric. Although it is

possible to develop other bandwidth selection methods, such as plug-in and bootstrap methods

(Rice, 1984; Park and Marron, 1990; Hall et al., 1992; Härdle et al., 1992), we must deal with

additional computational and theoretical challenges, which will be left for future research.

2.3 Affine Invariant Metric

As discussed in Dryden et al. (2009), various metrics can be defined for tangent vectors on

TD(x)Sym+(m). To assess the effect of different metrics on ILPREs, we consider two commonly

used metrics including the affine invariant and Log-Euclidean metrics and compare the asymptotic

properties of ILPREs, such as asymptotic normality, under these two metrics. Furthermore, we

systematically compare the intrinsic local constant and linear estimators under each metric.

2.3.1 ILPR under the Affine Invariant Metric

We give the explicit form of LogD(x)(S) for the affine invariant metric. We add the notation

of ‘A’ into all geometric quantities under the affine invariant metric. Let exp(·) and log(·) be the

common matrix exponential and logarithm, respectively. A scaled Frobenius inner product on
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TD(x)Sym+(m) based on the affine invariant metric is defined as

<< UD(x), VD(x) >>D(x),A= tr(UD(x)D(x)−1VD(x)D(x)−1). (2.3.1)

The geodesic γD(x),A(t;UD(x)) is given by G(x) exp(tG(x)−1UD(x)G(x)−T )G(x)T for any t, where

G(x) is any square root of D(x) such that D(x) = G(x)G(x)T . Without of loss of generality, G(x)

is assumed to be a lower triangular matrix with strictly positive diagonal terms due to the Cholesky

decomposition.

The Riemannian exponential and logarithm maps are, respectively, given by

ExpD(x),A(UD(x)) = γD(x),A(1;UD(x)) = G(x) exp(G(x)−1UD(x)G(x)−T )G(x)T ,

LogD(x),A(S) = G(x) log(G(x)−1SG(x)−T )G(x)T . (2.3.2)

The geodesic distance between D(x) and S, denoted by gA(D(x), S), is given by

√
tr{log2(G(x)−1SG(x)−T )} =

√
tr{log2(S−1/2D(x)S−T/2)}, (2.3.3)

where S1/2 is any square root of S.

We consider two SPD matricesD(x) andD(x0) = G(x0)G(x0)T . For any UD(x0) ∈ TD(x0)Sym+(m),

the rotation map φD(x0),A is defined by

φD(x0),A(UD(x0)) = G(x0)−1UD(x0)G(x0)−T ∈ TImSym+(m). (2.3.4)

Since LogD(x0)(D(x)) ∈ TD(x0)Sym+(m), combining (2.3.2) and (2.3.4) yields that

Y (x) = φD(x0),A(LogD(x0)(D(x))) = log(G(x0)−1D(x)G(x0)−T ),

D(x) = G(x0) exp(Y (x))G(x0)T . (2.3.5)

In this case, ED(X) can be defined to be log(G(X)−1SG(X)−T ) such that

E{log(G(X)−1SG(X)−T )|X = x} = Om. (2.3.6)
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To compute the ILPR estimator, we use the Taylor’s series expansion to expand Y (x) at x0 as

follows:

D(x) ≈ G(x0) exp(
k0∑
k=1

Y (k)(x0)(x− x0)k/k!)G(x0)T = DA(x, αA(x0), k0), (2.3.7)

where αA(x0) contains all unknown parameters in G(x0) and Y (k)(x0) for k = 1, · · · , k0. Thus, we

can compute α̂IA(x0;h) by minimizing Gn(αA(x0)). Minimizing Gn(αA(x0)) represents a computa-

tional challenge for the affine invariant metric. According to our experience, the standard gradient

methods do not perform well for optimizing Gn(αA(x0)) when k0 > 0. Hence, we develop an an-

nealing evolutionary stochastic approximation Monte Carlo algorithm (see Liang (2010) for good

discussion) for computing α̂IA(x0;h), whose details can be found in the supplementary document.

To simplify the computation of the cross-validation score CVA(h), we suggest the first-order

approximation to CVA(h) as follows:

CVA(h) ≈ n−1
n∑
i=1

gA(Si, D̂IA(xi;h, k0))2 + 2pn(h), (2.3.8)

where D̂IA(x;h, k0) = DA(x, α̂IA(x0;h), k0). The CVA(h) is close to Akaike’s information criterion

(AIC) (Sakamoto et al., 1999) and pn(h) can be regarded as degree of freedom. The explicit form

of pn(h) will be presented in Appendix A.

2.3.2 Asymptotic Properties

To understand the statistical properties of D̂IA(x0;h), we establish the consistency and asymp-

totic normality of the local polynomial estimators α̂IA(x0;h).

We need to introduce some notation for discussion. Let u = (u1, · · · , uk0)T and v = (v1, · · · , vk0)T

be k0 × 1 vectors and U2 = (ui+j) and V2 = (vi+j) for 1 ≤ i, j ≤ k0 be two k0 × k0 matrices with

uk =
∫
xkK(x)dx and vk =

∫
xkK(x)2dx for k ≥ 0. Let fX(x) and f (1)

X (x) be the marginal density

function of X and its first-order derivative with respect to x, respectively. Consider a function

ψ(S,G, Y ) = gA(S,G exp(Y )GT )2, (2.3.9)
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where G is an m × m lower triangle matrix, S ∈ Sym+(m), and Y ∈ Sym(m). Let vecs(C) =

(c11, c21, c22, · · · , cm1, · · · , cmm)T for any m×m matrix C = (cij) and vec(A) = (a11, ..., a1m, a21, ...,

a2m, · · · , am1, · · · , amm)T be the vectorization of an m ×m matrix A = (aij). Let α = (αG, αY ),

in which αG = vecs(G), and αY = vecs(Y ). Let ∂αψ(S,G, Y ) and ∂2
αψ(S,G, Y ) be the first and

second order derivatives of ψ(S,G, Y ) with respect to α, respectively. By substituting Y (X) into

∂αψ(S,G, Y ) and ∂2
αψ(S,G, Y ) and using the decomposition of α = (αG, αY ), we define

 Ψ1(x) Ψ2(x)

Ψ2(x)T Ψ3(x)

 = E{∂2
αψ(S,G, Y (X))|X = x},

 Ψ11(x) Ψ12(x)

Ψ12(x)T Ψ22(x)

 = E[{∂αψ(S,G, Y (X))}⊗2|X = x],

where a⊗2 = aaT for any vector or matrix a and the expectation is taken with respect to S given

X = x. Let 1k0×1 be a k0 × 1 column vector with all elements ones. Finally, we define ℵ(x0;h) =

(w1(x0;h)TΨ2(x0),w(x0;h){1k0×1⊗Ψ3(x0)})T and w(x0;h) = (w2(x0;h)T , · · · , wk0+1(x0;h)T ), in

which for 0 < k ≤ k0 + 1,

wk(x0;h) =

 uk0+kvecs(Y (k0+1)(x0)) if k0 + k is even;

huk0+k+1vecs(Y (k0+1)(x0)f
(1)
X (x0)/fX(x0) + Y (k0+2)(x0)/(k0 + 2)) if k0 + k is odd.

We have the following results, whose proof can be found in Appendix C.

Theorem 2.3.1. Suppose that x0 is an interior point of fX(·). Let H = diag(1, h, · · · , hk0) ⊗ Iq

and αA(x) = (vecs(G(x))T , vecs(Y (1)(x))T , · · · , vecs(Y (k0)(x)/k0!)T )T , in which Iq is an identity

matrix of size q = m(m+ 1)/2.

(i) Under (2.3.6) and conditions (C1)-(C8) in Appendix C, there exist solutions α̂IA(x0;h) to

equation ∂Gn(αA(x0))/∂αA(x0) = 0 such that H{α̂IA(x0;h)−αA(x0)} converges to 0 in probability

as n→∞.

(ii) For k0 = 0, under (2.3.6), conditions (C1)-(C8) in Appendix C and that f (1)
X (x) is continuous
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in a neighborhood of x0, conditioning on x = {x1, · · · , xn}, we have

√
nh[H{α̂IA(x0;h)− αA(x0)} − h2u2vecs{G(1)(x0)

f
(1)
X (x0)
fX(x0)

+ 0.5G(2)(x0)}] →L N(0,Ω0(x0)),(2.3.10)

where Ω0(x0) = u−2
0 f−1

X (x0)v0Ψ1(x0)−1Ψ11(x0)Ψ1(x0)−1 and →L denotes convergence in distribu-

tion.

(iii) For k0 > 0, under the conditions of Theorem 2.3.1 (ii) and condition (C9), conditioning on x,

we have

√
nh[H{α̂IA(x0;h)− αA(x0)} −

hk0+1

(k0 + 1)!
N (x0)−1ℵ(x0;h)] →L N(0,Ω(x0)), (2.3.11)

where Ω(x0) = f−1
X (x0)N (x0)−1N ∗(x0)N (x0)−1 and N (x) and N ∗(x) are, respectively, given by

N (x) =

 u0Ψ1(x) u⊗Ψ2(x)

uT ⊗Ψ2(x)T U2 ⊗Ψ3(x)

 ,N ∗(x) =

 v0Ψ11(x) v ⊗Ψ12(x)

vT ⊗Ψ12(x)T V2 ⊗Ψ22(x)

 .

Theorem 2.3.1 delineates the asymptotic bias, covariance, and asymptotic normality of α̂IA(x0;h)

for k0 ≥ 0. Based on Theorem 2.3.1, it is straightforward to derive the asymptotic bias, covariance,

and asymptotic normality of D̂IA(x0;h, k0) for k0 ≥ 0. Moreover, to have a direct comparison

between the affine invariant and Log-Euclidean metrics, we calculate the asymptotic biases and

covariances of log(D̂IA(x0;h, k0)) ∈ Sym(m). Subsequently, we calculate the asymptotic mean

squared error (AMSE) conditional on x as

AMSE(log(D̂IA(x0;h, k0))) = E(tr[{log(D̂IA(x0;h, k0))− log(D(x0))}2]|x)

= tr{bias(vecs(log(D̂IA(x0;h, k0))|x)⊗2}+ tr{Cov(vecs(log(D̂IA(x0;h, k0)))|x)}.

Furthermore, we may consider a constant bandwidth that minimizes the asymptotic mean inte-

grated squared error (AMISE) as

AMISE(log(D̂IA(.;h, k0))) =
∫

AMSE(log(D̂IA(x;h, k0)))w(x)dx

for a given weight function w(x).
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We are interested in comparing the asymptotic properties of the intrinsic local constant D̂IA(x0;h, 0)

and the local linear estimator D̂IA(x0;h, 1). For the intrinsic local constant estimator, it follows

from the delta method that AMSE(log(D̂IA(x0;h, 0))) can be approximated as

h4u2
2tr([GD(x0)Tvecs{G(1)(x0)f

(1)
X (x0)fX(x0)

−1 + 0.5G(2)(x0)}]⊗2)

+ {nh}−1tr{GD(x0)⊗2Ω0(x0)}, (2.3.12)

where GD(x0) = {∂vec(log(G(x0)⊗2))/∂vecs(G(x0))T }T . The asymptotic bias and variance of

D̂IA(x0;h, 0) are similar to those of the Nadaraya-Watson estimator when both response and co-

variate are in Euclidean space (Fan, 1992). Minimizing AMSE(log(D̂IA(x0;h, 0))) leads to the

asymptotically optimal local bandwidth which is given by

hopt,A(x0; 0) =

[
n−1tr{GD(x0)⊗2Ω0(x0)}

4u2
2tr([GD(x0)Tvecs{G(1)(x0)f

(1)
X (x0)fX(x0)

−1 + 0.5G(2)(x0)}]⊗2)

]1/5

. (2.3.13)

With some calculations, the optimal bandwidth for minimizing AMISE(log(D̂IA(x0;h, 0))), denoted

by hopt,A(0), is given by

hopt,A(0) =

[
n−1

∫
tr{GD(x0)⊗2Ω0(x0)}w(x)dx

4u2
2

∫
tr([GD(x0)Tvecs{G(1)(x0)f

(1)
X (x0)fX(x0)

−1 + 0.5G(2)(x0)}]⊗2)w(x)dx

]1/5

.

(2.3.14)

For the intrinsic local linear estimator, AMSE(log(D̂IA(x0;h, 1))) is given by

0.25h4u2
2tr[{GD(x0)TΨ1(x0)−1ΨT

2 (x0)vecs(Y (2)(x0))}⊗2] + (nh)−1tr{GD(x0)⊗2Ω0(x0)}. (2.3.15)

Minimization of AMSE(log(D̂IA(x0;h, 1))) leads to the asymptotically optimal local bandwidth,

denoted by hopt,A(x0; 1), which is given by

hopt,A(x0; 1) =
(

n−1tr{GD(x0)⊗2Ω0(x0)}
u2

2tr[{GD(x0)TΨ1(x0)−1ΨT
2 (x0)vecs(Y (2)(x0))}⊗2]

)1/5

. (2.3.16)
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Furthermore, the optimal bandwidth for minimizing AMISE(log(D̂IA(x0;h, 1))) is

hopt,A(1) =
(

n−1
∫

tr{GD(x0)⊗2Ω0(x)}w(x)dx
u2

2

∫
tr[{GD(x0)TΨ1(x0)−1ΨT

2 (x0)vecs(Y (2)(x0))}⊗2]w(x)dx

)1/5

. (2.3.17)

For interior points, both the intrinsic local constant and linear estimators have the same covari-

ance, but different biases. Particularly, the intrinsic local constant estimator has two leading terms

with one associated with the marginal density fX(.). This result is similar to the well-known results

on the superiority of the local linear over the Nadaraya-Watson estimator when both response and

covariate are in Euclidean space (see Fan and Gijbels (1996) for good discussion). However, for

the intrinsic local constant estimator, its bias depends on the first and second order derivatives of

G(x), whereas the bias of the intrinsic local linear estimator is only associated with the second-order

derivative of Y (x).

We consider ILPRE near the edge of the support of fX(x). Without loss of generality, we

assume that the design density fX(.) has a bounded support [0, 1] and consider the left-boundary

point x0 = dh for some positive constant d. The asymptotic consistency and normality of ILPRE

are valid for the boundary points after slight modifications on the definition of uk and vk. De-

note uk,d =
∫∞
−d x

kK(x)dx and vk,d =
∫∞
−d x

kK2(x)dx. Correspondingly, u, U2, V2, U0 and V0 are

replaced by ud, U2,d, V2,d, U0,d and V0,d, respectively. Let ck0+2,d = (uk0+2,d, · · · , u2k0+1,d)T and

ℵd(0+) = (uk0+1,dΨ2(0+), ck0+2,d⊗Ψ3(0+))Tvecs(Y (k0+1)(0+)). For the boundary points, we have

the following asymptotic results under the affine invariant metric.

Theorem 2.3.2. Suppose that x0 = dh is a left boundary point of fX(.).

(i) Under conditions (C1)-(C8) in Appendix C, there exist solutions, denoted by α̂IA(x0;h), to the

equation ∂Gn(αA(x0))/∂αA(x0) = 0 such that H{α̂IA(x0, h)−αA(x0)} converges to 0 in probability

as n→∞.

(ii) For k0 = 0 and under conditions (C1)-(C8) in Appendix C, conditioning on x = {x1, · · · , xn},

we have

√
nh[H{α̂IA(0+;h)− αA(0+)} − hu−1

0,du1,dG
(1)(0+)] →L N(0,Ω0,d(0+)) (2.3.18)

where Ω0,d(0+) = f−1
X (0+)u−2

0,dv0,dΨ1(0+)−1Ψ11(0+)Ψ1(0+)−1.
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(iii) For k0 > 0 and under the same conditions as in Theorem 2.3.2 (ii) and condition (C9),

conditioning on x = {x1, · · · , xn}, we have

√
nh[H{α̂IA(0+;h)− αA(0+)} − hk0+1

(k0 + 1)!
Nd(0+)−1ℵd(0+)] →L N(0,Ωd(0+)). (2.3.19)

where Ωd(0+) = f−1
X (0+)Nd(0+)−1N ∗

d (0+)Nd(0+)−1 and Nd(0+) and N ∗
d (0+) are, respectively,

given by

Nd(0+) =

 u0,dΨ1(0+) ud ⊗Ψ2(0+)

udT ⊗Ψ2(0+)T U2,d ⊗Ψ3(0+)

 and

N ∗
d (0+) =

 v0,dΨ11(0+) vdT ⊗Ψ12(0+)

vd ⊗ΨT
12(0+) V2,d ⊗Ψ22(0+)

 .

It follows from Theorem 2.3.2 (ii) and (iii) that when x0 is at the boundary, the asymptotic

average mean squared errors of intrinsic local constant and linear estimators are, respectively,

AMSE(log(D̂IA(0+;h, 0))) = Op(h2 + (nh)−1) and AMSE(log(D̂IA(0+;h, 1))) = Op(h4 + (nh)−1).

Thus, the rate of convergence for intrinsic local constant estimator at boundary points is slower

than that at points in the interior. Thus, the intrinsic local constant estimator suffers from the

well-known boundary effects. However, the intrinsic local linear estimator adapts automatically

at the boundary points and its rate of convergence is not influenced by the location of points.

Thus, the intrinsic local linear (or polynomial) estimators share the same property of automatic

adaptation to the boundary as local polynomial estimators in Euclidean space (Fan, 1992).

2.4 Log-Euclidean Metric

2.4.1 ILPR under Log-Euclidean Metric

We introduce an ‘L’ into all geometric quantities under the Log-Euclidean metric (see Arsigny

(2006) for details of the geometry of the space of SPD matrices under this metric). Let ∂D(x) log(.)

and ∂log(D(x)) exp(.) be, respectively, the directional derivatives in the direction of D(x) ∈ Sym+(m)

of the log map and in the direction of log(D(x)) ∈ Sym(m) of the exp map. The map ∂D(x) log(.)

is a linear mapping from TD(x)Sym+(m) to TISym+(m). A scaled Frobenius inner product on
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TD(x)Sym+(m) based on the Log-Euclidean metric is defined as

<< UD(x), VD(x) >>D(x),L=< ∂D(x) log(UD(x)), ∂D(x) log(VD(x)) >, (2.4.1)

where UD(x) and VD(x) are in TD(x)Sym
+(m). The geodesic γD(x),L(t, UD(x)) is given by exp(log(D(x))

+t∂D(x) log(UD(x))) for any t. Under the Log-Euclidean metric, the Riemannian exponential and

logarithm maps are, respectively, given by

ExpD(x),L(UD(x)) = exp(log(D(x)) + ∂D(x) log(UD(x))), (2.4.2)

LogD(x),L(S) = ∂log(D(x)) exp(log(S)− log(D(x))).

The geodesic distance between D(x) and S is uniquely given by

dL(D(x), S) =
√
tr[{log(D(x))− log(S)}⊗2]. (2.4.3)

We consider two SPD matrices D(x) andD(x0). For any UD(x0) ∈ TD(x0)Sym
+(m), the rotation

map φD(x0),L : TD(x0)Sym
+(m) → TImSym+(m) is defined by

φD(x0),L(UD(x0)) = ∂D(x0) log(UD(x0)) ∈ TImSym+(m). (2.4.4)

Recall that LogD(x0),L(D(x)) is in TD(x0)Sym+(m). Combining (2.4.2) and (2.4.4) yields that

Y (x) = φD(x0),L(LogD(x0)(D(x))) = log(D(x))− log(D(x0)),

D(x) = exp(log(D(x0)) + Y (x)). (2.4.5)

In this case, ED(X) can be defined to be log(S)− log(D(X)) such that

E{log(S)− log(D(X))|X = x} = Om. (2.4.6)

To compute the ILPR estimator, we use the Taylor’s series expansion to expand log(D(x0)) at
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x0 as follows:

D(x) ≈ exp(
k0∑
k=0

(log(D(x0)))(k)(x0)(x− x0)k/k!) = DL(x, αL(x0), k0), (2.4.7)

where αL(x0) = (vecs(log(D(x0)))(x0))T , · · · , vecs(log(D(x0)))(k0)(x0))T )T . Thus, we can compute

α̂IL(x0;h) by minimizing Gn(α(x0)). For the Log-Euclidean metric, α̂IL(x0;h) has the explicit

expression as

α̂IL(x0;h) = vec({
n∑
i=1

Kh(xi − x0)Xi(x0)⊗2}−1
n∑
i=1

Kh(xi − x0)Xi(x0)vecs(log(Si))T ),

where Xi(x) = (1, (xi−x), · · · , (xi−x)k0)T . Furthermore, substituting α̂IL(x0;h) intoDL(x, αL(x0), k0),

we have D̂IL(x;h, k0) = DL(x, α̂IL(x0;h), k0).

Let ek0+1,i be the (k0 + 1) unit vector having 1 in the i-th entry and 0 elsewhere. Let

eTk0+1,i{
∑n

j=1Kh(xj − x)Xj(x)⊗2}−1Kh(xi − x)Xi(x) = ai(x). The cross-validation score CV(h)

can be simplified as follows ,

CV(h) = n−1
n∑
i=1

gL(Si, D̂IL(xi;h))2/{1− ai(xi)}2. (2.4.8)

Replacing ai(xi) in equation (2.4.8) by the average of a1(x1), · · · , an(xn), we can get the following

generalized cross-validation (GCV) score

GCV(h) = n−1
n∑
i=1

gL(Si, D̂IL(xi;h))2/{1−
n∑
i=1

ai(xi)/n}2. (2.4.9)

Without special saying, for the Log-Euclidean metric, we use generalized cross-validation score

GCV(h) to select the bandwidth throughout this paper.

2.4.2 Asymptotic Properties

Under the Log-Euclidean metric, we examine the consistency and asymptotic normality of

ILPRE for both of the interior and boundary points. We need some additional notation. Let

U0 = (ui+j) and V0 = (vi+j) for 0 ≤ i, j ≤ k0 be two (k0 + 1) × (k0 + 1) matrices. Let ΣED
(x) be

Cov(vecs(log(S) − log(D(x)))|X = x). We define M(x0;h) = (M1(x0;h)T , · · · ,Mk0+1(x0;h)T )T ,
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in which for 0 < k ≤ k0 + 1,

Mk(x0;h) =


uk0+kvecs((log(D(x0)))(k0+1)) if k0 + k is even;

huk0+k+1vecs((log(D(x0)))(k0+1)f
(1)
X (x0)/fX(x0) if k0 + k is odd.

+(log(D(x0)))(k0+2)/(k0 + 2))

Theorem 2.4.1. Suppose that x0 is an interior point of fX(.).

(i) Under conditions (C1)-(C4) in Appendix C, we have H{α̂IL(x0;h)−αL(x0)} converges to 0 in

probability as n→∞.

(ii) For k0 = 0, under (2.4.6) and conditions (C1)-(C4) and (C10) in Appendix C and that f (1)
X (x)

is continuous in a neighborhood of x0, conditioning on x = {x1, · · · , xn}, we have

√
nh[H{α̂IL(x0;h)− αL(x0)} − h2u2vecs(0.5(log(D(x0)))(2) +

f
(1)
X (x0)
fX(x0)

(logD(x0))(1))]

→L N(0,Σ0(x0)), (2.4.10)

where Σ0(x0) = f−1
X (x0)v0ΣED

(x0).

(iii) For k0 > 0, under the conditions of Theorem 2.4.1 (ii), conditioning on x, we have

√
nh[H{α̂IL(x0;h)− αL(x0)} −

hk0+1

(k0 + 1)!
(U−1

0 ⊗ Iq)M(x0;h)] →L N(0,Σ(x0)), (2.4.11)

where Σ(x0) = f−1
X (x0)(U−1

0 V0U−1
0 )⊗ ΣED

(x0).

Theorem 2.4.1 delineates the asymptotic properties of α̂IL(x0;h, k0). Since vecs(log(D̂IL(x0;h, k0)))

is a subvector of α̂IL(x0;h, k0), Theorem 3 covers the asymptotic properties of the intrinsic local con-

stant and linear estimators of D(x0) for k0 = 0, 1. In particular, the asymptotic bias and variance

of D̂IL(x0;h, 0) are closely related to those of the Nadaraya-Watson estimator when both response

and covariate are in Euclidean space (Fan, 1992). For the intrinsic local constant estimator, by

Theorem 2.4.1 (iii), AMSE(log(D̂IL(x0;h, 0))) equals

h4u2
2tr([vecs{0.5(log(D(x0)))(2) + f

(1)
X (x0)fX(x0)−1(log(D(x0)))(1)}]⊗2)

+v0(nhfX(x0))−1tr{ΣED
(x0)}. (2.4.12)
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Minimizing AMSE(log(D̂IL(x0;h, 0))) leads to the asymptotically optimal local bandwidth which

is given by

hopt,L(x0; 0) =

[
v0{nfX(x0)}−1tr{ΣED

(x0)}
4u2

2tr([vecs{0.5(log(D(x0)))(2) + f
(1)
X (x0)fX(x0)−1(log(D(x0)))(1)}]⊗2)

]1/5

.

(2.4.13)

With some calculations, the optimal bandwidth for minimizing AMISE(log(D̂IL(x0;h, 0))), denoted

by hopt,L(0), is given by

[
v0{nfX(x0)}−1

∫
tr{ΣED

(x0)}w(x)dx

4u2
2

∫
tr([vecs{0.5(log(D(x0)))(2) + f

(1)
X (x0)fX(x0)−1(log(D(x0)))(1)}]⊗2)w(x)dx

]1/5

. (2.4.14)

For the intrinsic local linear estimator, AMSE(log(D̂IL(x0;h, 1))) is given by

0.25h4u2
2tr[{vecs(log(D(x0))(2))}⊗2] + v0{nhfX(x0)}−1tr{ΣED

(x0)}. (2.4.15)

Intrinsic local constant and linear estimators have the same covariance, their differences are con-

cerned only with their biases. The local constant estimator has one more term h2u2f
(1)
X (x0)fX(x0)−1

vecs(log(D(x0))(1)), which depends on the marginal density fX(.).Minimization of AMSE(log(D̂IL(x0;h, 1)))

leads to the asymptotically optimal local bandwidth, denoted by hopt,L(x0; 1), which is given by

hopt,L(x0; 1) =
[
{nfX(x0)}−1v0tr{ΣED

(x0)}
u2

2tr[{vecs(log(D(x0))(2))}⊗2]

]1/5

. (2.4.16)

Furthermore, the optimal bandwidth for minimizing AMISE(log(D̂IL(x0;h, 0))) is

hopt,L(1) =
[
n−1v0

∫
tr{ΣED

(x)}{fX(x)}−1w(x)dx
u2

2

∫
tr[{vecs(log(D(x))(2))}⊗2]w(x)dx

]1/5

. (2.4.17)

We present the asymptotic properties of the intrinsic estimators under the Log-Euclidean metric

at boundary points below.

Theorem 2.4.2. Suppose that x0 = dh is a left boundary point of fX(.). Let dk0,d = (uk0+1,d, · · · ,

u2k0+1,d)T .

(i)Under conditions (C1)-(C4) in Appendix C, we have H{α̂IL(x0;h) − α(x0)} converges to 0 in
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probability as n→∞.

(ii) For k0 = 0, under conditions (C1)-(C4) and (C10) in Appendix C, conditioning on x =

{x1, · · · , xn}, we have

√
nh[H{α̂IL(x0;h)− α(x0)} − hu−1

0,du1,dvecs((log(D(0+)))(1))] →L N(0,Σ0,d(0+)), (2.4.18)

where Σ0,d(0+) = f−1
X (0+)u−2

0,dv0,dΣED
(0+).

(iii) For k0 > 0, under the conditions of Theorem 2.4.2 (ii), conditioning on x = {x1, · · · , xn}, we

have

√
nh[H{α̂IL(x0;h)− α(x0)} −

hk0+1

(k0 + 1)!
(U−1

0,d ⊗ Iq)(dk0,d ⊗ vecs((log(D(0+)))(k0+1)))]

→L N(0,Σd(0+)), (2.4.19)

where Σd(0+) = f−1
X (0+)(U−1

0,dV0,dU−1
0,d )⊗ ΣED

(0+).

2.4.3 Comparisons

We study the asymptotic relative efficiency of the intrinsic local constant and linear estimators

in an interior point x0 under the affine invariant and Log-Euclidean metrics by comparing their

AMSEs/AMISEs. We use AMSEopt and AMISEopt to denote the AMSE and AMISE evaluated

at their optimal bandwidth. We first compare AMSEopt for the intrinsic local constant estimators

under the affine invariant and Log-Euclidean metrics. Specifically, with some calculations, we see

that as n approaches∞, the ratio of AMSEopt(log(D̂IA(x0;h, 0))) over AMSEopt(log(D̂IL(x0;h, 0)))

converges to

rMSE(A,L; 0) =
[
tr{GD(x0)⊗2Ψ1(x0)−1Ψ11(x0)Ψ1(x0)−1}

tr{ΣED
(x0)}

]4/5

×

{
tr([GD(x0)Tvecs{f (1)

X (x0)fX(x0)
−1G(1)(x0) + 0.5G(2)(x0)}]⊗2)

tr[vecs{f (1)
X (x0)fX(x0)−1 log(D(x0))(1) + 0.5 log(D(x0))(2)}⊗2]

}1/5

, (2.4.20)

which is the product of two terms. The first term is associated with the ratio of the covariances of

the intrinsic local constant estimators of log(D(x0)) under the two metrics, while the second term is

associated with their biases. Consider the simplest scenario with m = 1 such that D(x0) = G(x0)2
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and G(x0) > 0. By simple calculations, we can show that the first term equals one and the second

term equals

{
f

(1)
X (x0)fX(x0)

−1G(1)(x0) + 0.5G(2)(x0)

f
(1)
X (x0)fX(x0)−1G(1)(x0) + 0.5G(2)(x0)− 0.5(G(1)(x0))2/G(x0)

}2/5

,

which yields that rMSE(A,L; 0) > 1 if and only if

0.25(G(1)(x0))2/G(x0) < f
(1)
X (x0)fX(x0)

−1G(1)(x0) + 0.5G(2)(x0).

Thus, whether rMSE(A,L; 0) is greater than 1 depends on both the design density and D(x) itself

as a function of x.

Similarly, we define rMISE(A,L; 0) as the ratio of AMISEopt(log(D̂IA(x0;h, 0))) over AMISEopt(

log(D̂IL(x0;h, 0))). Following similar arguments to rMSE(A,L; 0), when m = 1, we have that

rMISE(A,L; 0) > 1 if and only if

0.25
∫
{G(1)(x)}2G(x)−1w(x)dx <

∫
{f (1)
X (x)fX(x)−1G(1)(x) + 0.5G(2)(x)}w(x)dx.

Therefore, in terms of AMSEopt and AMISEopt, the affine invariant metric is not uniformly superior

to or worse than the Log-Euclidean metric for reconstructing all D(x).

We compare AMSEopt for the intrinsic local linear estimators under the affine invariant and Log-

Euclidean metrics. As n approaches∞, the ratio of AMSEopt(log(D̂IA(x0;h, 1))) over AMSEopt(log(D̂IL(

x0;h, 1))) converges to

rMSE(A,L; 1) =
[
tr{GD(x0)⊗2Ω0(x0)}

tr{ΣED
(x0)}

]4/5

×

{
tr({GD(x0)TΨ1(x0)−1ΨT

2 (x0)vecs(Y (2)(x0))}⊗2)
tr[vecs{log(D(x0))(2)}⊗2]

}1/5

. (2.4.21)

We also consider the simplest scenario with m = 1 such that D(x) = G(x0)2 exp(Y (x)) and G(x0) >

0. With some calculations, we can show that rMSE(A,L; 1) equals one when m = 1. Thus, the

two metrics are actually the same for one dimensional case. However, when m > 1, it is unclear

whether rMSE(A,L; 1) equals to 1 or not.
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2.5 Simulation

We conducted three sets of Monte Carlo simulations to examine the finite sample performance

of ILPREs for SPD matrices. The first set of simulations was to compare our intrinsic local constant

and linear estimators under the affine invariant and Log-Euclidean metrics with other smoothing

methods including local constant and linear estimators under the Euclidean metric and tensor spline

estimator in Barmpoutis et al. (2007). The second set was to compare the performance of the intrin-

sic local linear estimators under the two metrics: the affine invariant and Log-Euclidean metrics.

The third set was to evaluate the importance and effect of directly smoothing SPDs on the SPD-

derived scalar measures. We set m = 3 and assume that the underlying SPD matrix function has

the form: D(x) = exp(M(x)), where M(x) =


−0.1(x+ 0.1) 0.2(x+ 0.1) sin(0.75x)

0.2(x+ 0.1) 0.6(x+ 0.1) −0.4(x+ 0.1)

sin(0.75x) −0.4(x+ 0.1) 0.5(x+ 0.1)

 .

We generated n design points xi, i = 1, · · · , n independently from a N(0, 0.25) distribution. In the

following we generated the simulated data using three different noise models:

1. Riemannian log normal noise model: it assume that C(xi)−1 logD(xi)(Si)C(xi)−T has a symmetric

matrix variate normal distribution N(0,Σ) (see Schwartzman (2006) for details), where D(xi) =

C(xi)⊗2 and Si is the simulated SPD matrix. Thus we first simulated εi ∈ Sym(3) from N(0,Σ)

and then calculated Si = C(xi) exp(εi)C(xi)T . We chose covariance matrice Σ as follows:

Σ1 = 2


0.3 0.049 0.052

0.049 0.2 0.0424

0.052 0.0424 0.1


and Σ2 = 4Σ1. The simulated SPD matrix data is shown in Figure 2.1 (a).

2. Log normal noise model: it assume that log(Si) has a symmetric matrix variate normal distri-

bution N(0,Σ) (see Schwartzman (2006)). Thus we simulated εi from N(0,Σ) and then calculated

Si = exp(log(D(xi)) + εi). The simulated SPD matrix data is shown in Figure 2.1 (b).

3. Rician noise model: this noise model is commonly assumed in DT-MRI studies. The diffusion-

weighted MR signal was simulated for 31 gradient directions rk, k = 1, · · · , 31 with b-factor bk =

1000s/mm representing the magnitude of the diffusion gradients and four baseline images are

26



considered. We set the baseline signal intensity w0 at 1500 and σ0 = 75 to obtain a signal-to-noise

ratio 25. For a given diffusion tensor D(xi), we add complex Gaussian noise having a standard

deviation σ0 to the simulated real signal w0 exp(−bkrkD(xi)rk) at the k-th acquisition. i.e. we

calculated

wi,k =
√

(w0 exp(−bkrkD(xi)rk) + ε1,k)2 + ε22,k

where ε1,k and ε2,k were generated from a Gaussian random generator with mean zero and standard

deviation σ0 as the resulting diffusion weighted MR signal at the k-th acquisition. Then the diffusion

tensor Si was estimated from the 35 diffusion-weighted images by applying a least squares technique

to the log-transformed signal intensities. The simulated DT (SPD matrix) data is shown in Figure

2.1 (c).

We set n = 50 and then simulated 100 data sets for each case. For each simulated dataset

{(xi, Si) : i = 1, · · · , n}, we apply our methods and also the local constant and linear methods

under the Euclidean metric to estimate the SPD matrix function and the bandwidth was chosen

separately for each estimator using its corresponding cross-validation method.

Figure 2.2 displays the estimated SPD using local linear regression under the affine invariant,

Log-Euclidean and Euclidean metrics for the three different noise models. Note that three smooth-

ing methods did an excellent job of recovering ground truth for the Rician noise model. For the

other two noise models, our intrinsic local linear regression methods outperform that using the

Euclidean metric. There is a clear swelling effect when using Euclidean smoothing method.

Figure 2.1: Ellipsoidal representations of the simulated SPD matrix data along the design points
under the three different noise models: (a) Riemannian log normal, (b) log normal and (c) Rician
noise models, colored with FA values defined in (2.5.1).

2.5.1 Simulation 1

We compared our intrinsic local constant and linear estimators for SPD matrices under both

the affine invariant and Log-Euclidean metrics with local constant and linear estimators under the
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Figure 2.2: Ellipsoidal representations of the true (a) and estimated SPD matrix data along the
design points using three smoothing methods: ((b), (e) and (h)) ILPR under the affine invariant
metric, ((c), (f) and (i)) ILPR under the Log-Euclidean metric and ((d), (g) and (j)) LPR under
the Euclidean metric and under the three different noise models: (b)-(d) Riemannian log normal,
(e)-(g) log normal and (h)-(j) Rician noise models, colored with FA values defined in (2.5.1).

Euclidean metric and tensor spline method in Barmpoutis et al. (2007), respectively. For each

simulated dataset, an Average (over the design points, xi, for i = 1, · · · , n) Geodesic Distance

(AGD) across all pairs of the estimated and true SPD matrices D̂(xi) and D(xi) was calculated as

AGDj = n−1
n∑
i=1

g(103D̂j(xi), 103D(xi)).

At each sample point xi, a Local Average (over simulated realizations, j = 1, · · · , N) Geodesic

Distance (LAGD) was calculated as

LAGD(xi) = N−1
N∑
j=1

g(103D̂j(xi), 103D(xi)),

where D̂j(xi) are the estimated SPD matrices at the sample point xi at the j-th replication. We

take three different metrics for calculating the geodesic distance: affine invariant, Log-Euclidean

and Euclidean metrics. Results for the three different noise models are summarized in Figure 2.3

and Figure 2.4.

First, we observe that the comparison measurements based on three different metrics reveal
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Figure 2.3: Boxplots of the AGD using the intrinsic local constant and linear estimators under
the Log-Euclidean, affine invariant and Euclidean metrics, and tensor spline smoothing method,
based on 100 replications for the three noise models: (a)-(c) Riemannian log normal, (d)-(f) log
normal, and (g)-(i) Rician at sample size 50. The first, second and third columns correspond to
comparisons based on geodesic distances under the affine invariant, Log-Euclidean and Euclidean
metrics. LCL, LLL, LCR, LLR, LCE, LLE and SP represent the intrinsic local constant and
linear estimators under the Log-Euclidean, affine invariant and Euclidean metrics and tensor spline
smoothing method, respectively.

similar results. In addition, as expected, under each of three metrics considered, the local linear

estimator is superior to the local constant estimator. Also, our intrinsic estimators perform better

than the local constant and linear estimators under the Euclidean metric and the tensor spline

method for the first two noise models. For the third noise model, our intrinsic local estimator

under the Log-Euclidean metric works best. The second one is the estimator under the Euclidean

metric. The third one is that under the affine invariant metric. It appears that the tensor spline

method cannot compete with the other six methods. Moreover, it is observed that the variances of

the AGD’s based on the affine invariant metric are larger than those based on the Log-Euclidean

metric. This suggests that the Log-Euclidean metric may be more useful. More can be observed

from Figure 2.4, which displays the LAGD’s at each sample point . We observed that, at interior
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Figure 2.4: The log10(LAGD) curves at each sample point using the intrinsic local constant (solid
line) and linear (dotted line) estimators under the Log-Euclidean(lines with circles), affine invariant
(lines with +’s ) and Euclidean metrics (lines with squares), and tensor spline smoothing method
(lines with diamonds), based on 100 replications for the three noise models: (a)-(c) Riemannian log
normal, (d)-(f) log normal, and (g)-(i) Rician at sample sizes 50. The first, second and third columns
correspond to comparisons based on geodesic distances under affine invariant, Log-Euclidean and
Euclidean metrics.

points, the differences are generally of smaller magnitude than those near the boundaries. In

addition, note that the LAGD curves using the intrinsic local method under the affine invariant

metric are rather rough. This is because the AIC-like bandwidth selection method selects a small

bandwidth in order to adapt to the poor performances of the estimators at the edge.

2.5.2 Simulation 2

The second set of simulation studies, which was the same as the first, except for the relatively

high noise level, Σ2, compared the finite sample performance of the intrinsic local linear estimators

under the affine invariant and Log-Euclidean metrics. Figure 2.3 did not reveal the superiority

of the affine invariant metric over the Log-Euclidean metric. Figure 2.5 and 2.6 suggests that,

when the noise level is high, the intrinsic local linear estimator under the affine invariant metric

outperforms that under the Log-Euclidean metric. The results are similar by using comparison
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measurements under three different metrics.
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Figure 2.5: Boxplots of the AGD using the intrinsic local linear estimators under the Log-Euclidean,
Riemannian and metrics, based on 100 replications for the first two noise models: (a)-(c) Rieman-
nian log normal and (d)-(f) log normal at sample size 50. The first, second and third columns
correspond to comparisons based on geodesic distances under the affine invariant, Log-Euclidean
and Euclidean metrics. LLL and LLR represent the intrinsic local linear estimators under the
Log-Euclidean and affine invariant metrics, respectively.

2.5.3 Simulation 3

The third set of simulation studies was to examine the importance and effect of directly smooth-

ing SPDs on the more commonly considered SPD-derived scalar summary measures. We considered

the usual scalar measure derived from a 3×3 SPD matrix, called fractional anisotropy (FA), which

is a measure of the dominance of the largest eigenvalue of the SPD matrix. FA is a scalar value

between zero (all eigenvalues are the same) and one (two eigenvlues equal 0) used in DTI, defined

as

FA =

√
3{(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2}

2(λ2
1 + λ2

2 + λ2
3)

(2.5.1)

with eigenvalues λ1, λ2, λ3 and their average λ̄, that describes the variation of the three eigenvalues

of a 3×3 SPD matrix. We compared two different methods for smoothing FA’s. The first smoothing

method was to first calculate the FA’s from all SPD matrices and then use the classic local linear

regression in Euclidean space to smooth the FA’s. The second and third smoothing methods

were to first apply the intrinsic local linear estimator under the Log-Euclidean and affine invariant
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Figure 2.6: The log10(LAGD) curves at each sample point using the intrinsic local linear estima-
tors under the Log-Euclidean (solid line) and affine invariant (dotted line) metrics based on 100
replications for the first two noise models: (a)-(c) Riemannian log normal and (d)-(f) log normal at
sample sizes 50. The first, second and third columns correspond to comparisons based on geodesic
distances under the affine invariant, Log-Euclidean and Euclidean metrics.

metrics, respectively, to smooth SPD matrices and then calculate smoothed FA curves based on

the smoothed SPD matrices. For each method, we assess its performance via the Mean Absolute

Deviation Error (MADE) defined by MADE = n−1
∑n

i=1 |FA(xi) − F̂A(xi)|, where FA(xi) and

F̂A(xi) are, respectively, the true and estimated FA values at the sample point xi for i = 1, 2, · · · , n.

Figure 2.7 reveals that the more intrinsic smoothing method outperforms the first smoothing

method for the first two noise models. For the Rician noise model, three methods can be comparable

but the method under the Log-Euclidean metric is slightly better. This also indicates the possible

major improvements of directly smoothing manifold data over the post smoothing method done

by the first method. We also calculated the median of MADEs based on the 100 replications (see

Figure 2.7(d)-(f)). The first method cannot reconstruct the trend of the FA curve for the first two

noise models, whereas the second and third intrinsic methods can accurately estimate the FA curve

and reveal its critical features such as the valley.

2.6 HIV Imaging Data

We assess the integrity of white matter in human immunodeficiency virus (HIV) by using DTI

and our IPLRE. We consider 46 subjects with 28 HIV+ subjects (20 males and 8 females whose

mean age is 40.0 with SD 5.6 years) and 18 healthy controls (9 males and 9 females whose mean
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Figure 2.7: Boxplot of the MADE’s using the three smoothing methods (1 (2 or 3) represents the
first (second or third) method) based on 100 replications for three noise models: (a) Riemannian log
normal and (b) log normal with covariance matrix Σ1 and (c) Rician at sample size 50. Smoothed
FA curves for the realizations with median MADE for three noise models: (d) Riemannian log
normal and (e) log normal with covariance matrix Σ1 and (f) Rician. The true FA curve (the
solid line), the estimated FA curve using the first method (the dash-dotted line), using the second
method (the dotted line) and using the third method (dashed line). This shows that the more
intrinsic approach is much better for the first two models and three methods can be comparable
but the method under the Log-Euclidean metric is slightly better.

age is 41.2 with SD 7.4 years). Diffusion-weighted images and T1 weighted images were acquired

for each subject. The diffusion tensor acquisition scheme includes 18 repeated measures of six

non-collinear directions, (1,0,1), (-1,0,1), (0,1,1), (0,1,-1), (1,1,0), and (-1,1,0) at a b-value of 1000

s/mm2 and a b = 0 reference scan. Forty-six contiguous slices with a slice thickness of 2 mm

covered a field of view (FOV) of 256 mm2 with an isotropic voxel size of 2 × 2 × 2 mm3. High

resolution T1 weighted (T1W) images were acquired using a 3D MP-RAGE sequence. A weighted

least square estimation method was used to construct the diffusion tensors (Zhu et al., 2007b).

Since in the previous DTI findings, the diffusion tensors in the splenium of the corpus callosum

were found significantly different between the HIV+ and control groups, we examine the finite

sample performance of our method by using this fiber tract. The tensors along the tract were

extracted by using the method described in Zhu et al. (2010b). Figure 2.8 displays the splenium of

the corpus callosum and the ellipsoidal representation of full tensors on that tract from one selected

subject. This involves three steps: (i) registration and atlas construction, (ii) fiber tracking on the
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atlas and (iii) collection of tensor data on the atlas fiber tracts.

Figure 2.8: (a)The splenium of the corpus callosum in the analysis of HIV DTI data. (b)The
ellipsoidal representation of full tensors on the fiber tract from a selected subject.

We calculated the intrinsic local linear estimator of the SPD matrices along this selected tract

for each subject under each metric. See Figure 2.9 for the raw and estimated sequences of tensors

along the fiber tracts from one subject. It is observed from the ellipsoidal representation of diffusion

tensor data (Figure 2.9 (a)) that the data are noisy. It is shown from Figure 2.9 (b) and (c) that

the tensors are more spherical at the beginning with low FA values and more anisotropic in the

middle part with high FA values. The methods under both metrics reveal very similar trend of

diffusion tensors changing along the fiber tract, especially at the first and last third parts. Some

differences appear on the right side of the middle part. The estimated tensors in this part are more

anisotropic using the method under the Log-Euclidean metric.

Figure 2.9: (a) Ellipsoidal representations of the diffusion tensor data and estimated tensors using
the intrinsic local linear regression under the (b)Log-Euclidean and (c) affine invariant metrics
along the fiber tract f1 colored with FA values. The estimated tensors in the middle right part
(highlighted in the red line) are more anisotropic using the method under the Log-Euclidean metric.
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In many applications, tensor-derived diffusion measures (such as FA, MD (the trace of a diffusion

tensor) and PE (the largest eigenvalue of a diffusion tensor) ) are derived from noisy diffusion

tensor data and standard statistical methods for data in Euclidean space are applied for statistical

analysis. However, these scalar measures do not capture all information in the full diffusion tensor

and thus can decrease the sensitivity of detecting subtle changes of the white matter structure. For

comparison purposes, we also applied the standard local linear regression to the FA, MD and PE

data as we did in Section 3.3.3, where we observed differences between the two different smoothing

methods for the scalar measures in the simulation. Figure 2.10 shows that there is not much

difference between the intrinsic local linear estimators under the two metrics. However, the two

smoothing methods are quite different in smoothing FA and PE curves, especially in the middle

part around 10 to 25. The smoothed curve is more inclined to the raw curve using the naive method

of directly smoothing FA and MD data. The reason is that this naive method is based on only part

of information from the diffusion tensor data.
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Figure 2.10: (a) FA’s , (b) MD’s and (c) PE’s derived from the raw tensor data (dot line) and
estimated tensors using the intrinsic local linear regression under the affine invariant (dash-dot line)
and Log-Euclidean (dash line) metrics as the function of arc-length along the tract f1. Estimated
FA function along the fiber tract f1 by using the standard local linear regression for scalars (solid
line).

Finally, we estimated the mean diffusion tensor curve for each of the two groups: HIV and

control groups. In order to detect meaningful group differences, registration is crucial. The 46 HIV

DTI data used in our studies, included the splenium tracts and tensors on them are the registered

data, which are in the same atlas space. Figure 2.11 displays the estimated mean diffusion tensors

along the fiber tract for the two groups using the intrinsic local linear regression for SPD matrices

under both the Log-Euclidean and affine invariant metrics. We can observe some obvious changes

of diffusion tensors of HIV subjects along the splenium corpus callosum compared with those in

35



the control group. We also calculated the differences of FA values derived from the the estimated

mean diffusion tensors, which corresponds to the color differences in Figure 2.11, and the geodesic

distances between estimated mean tensors at each point along the tract. The results are shown in

Figure 2.12. This result agrees with previous DTI findings that the splenium of the corpus callosum

has been detected as abnormal for the HIV group (Filippi et al. (2001) and Chen et al. (2009)).

Figure 2.11: Ellipsoidal representations of estimated mean tensors along the fiber tract f1 for the
control and HIV groups using the intrinsic local linear regression under the Log-Euclidean ((a) and
(b)) and affine invariant ((c) and (d)) metrics colored with FA values.

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

arc length
(a)

F
A

 D
iff

er
en

ce

 

 
Riemannian
Log−Euclidean

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

arc length
(b)

G
D

 

 

Riemannian
Log−Euclidean

Figure 2.12: (a) FA differences and (b) geodesic distances between pairs of mean diffusion tensors
of HIV and control groups along the fiber f1 under the Log-Euclidean (the solid line) and affine
invariant (the dashed line) metrics.
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2.7 Conclusion and Discussion

We have systematically investigated the intrinsic local polynomial regression methods under two

metrics on the space of SPD matrices. Moreover, we have derived the asymptotic bias and variance

of ILPRE. We also have developed a relatively straightforward cross-validation bandwidth selection

method under each metric. Our theoretical and numerical results have shown that the intrinsic

local linear estimator outperforms the intrinsic local constant estimator under both metrics. The

proposed cross validation bandwidth selector is straightforward and relatively simple to derive

and implement for SPD matrix variate data. However, the relatively high variance of the cross

validation bandwidth selector is regarded widely as an impedient to its good performance (Jones

et al., 1996; Härdle et al., 1992). In the future, we plan to develop better bandwidth selection

methods to reduce the variability of cross validation.

Moreover, we have applied our ILPRE to HIV diffusion tensor curve data in Section 2.6. From

the average diffusion tensor curves for the HIV and control groups, we can observe some obvious

changes of diffusion tensors of HIV subjects along the spleninium corpus callosum compared with

the control group. However, it is important to compare the two groups of tensor curves by using

some formal statistical hypothesis testing method. For curve data with responses in Euclidean

space, Fan and Lin (1998) developed an adaptive Neyman test. Zhang and Chen (2007) proposed

a global L2-norm-based test statistic to test a general hypothesis testing problem about the group

differences. However, no literature is on hypothesis testing for curve data with responses on the

space of SPD matrices. In the future, it will be interesting to propose tests for comparing the

differences across multiple groups of SPD curves.
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Chapter 3

Varying Coefficient Models for Modeling Diffusion

Tensors Along White Matter Bundles

3.1 Introduction

Diffusion Tensor Imaging (DTI), which can track the effective diffusion of water in the human

brain in vivo, has been widely used to map the microstructure and organization of fiber tracts

and to assess the integrity of anatomical connectivity in white matter (Basser et al., 1994a,b).

In DTI, the degree of diffusivity and the directional dependence of water diffusion in each voxel

can be quantified by a 3 × 3 symmetric positive definite (SPD) matrix, called a diffusion tensor

(DT), and its three eigenvalue-eigenvector pairs {(λk,vk) : k = 1, 2, 3} with λ1 ≥ λ2 ≥ λ3. Fiber

tracts in white matter can be constructed by consecutively connecting the principal directions

(v1) of DTs in adjacent voxels (Basser et al., 2000). Therefore, DTs and tensor-derived quantities

(e.g., fractional anisotropy (FA)) are distributed along these white matter fiber tracts for each

subject. As an illustration, Figure 3.1 (a) presents the right internal capsule tract and Figure 3.1

(b) presents DTs along this tract obtained from 10 subject’s, in which each DT is geometrically

represented by an ellipsoid. In this representation, the lengths of the semiaxes of the ellipsoid equal

the square root of the eigenvalues of a DT, while the eigenvectors define the direction of the three

axes. Mathematically, these diffusion tensors along the fiber tract are functionals of SPD matrices.

Our research of interest is to statistically model SPD functionals as responses with covariates of

interest, such as age and gender, across multiple subjects.

Statistical approaches have been developed for the statistical analysis of tensor-derived quanti-

ties along fiber tracts. A tract-based spatial statistics framework was developed to construct local

diffusion properties along a white matter skeleton and then perform pointwise hypothesis tests



Figure 3.1: (a) The right internal capsule tract. (b) The ellipsoidal representation of full tensors
on the fiber tract from 10 selected subjects, colored with FA values.

at each grid point of the skeleton (Smith et al., 2006). A model-based framework was developed

to construct the medial manifolds of fiber tracts and then to test pointwise hypotheses based on

diffusion properties along the medial manifolds (Yushkevich et al., 2008). However, since these two

methods ignore the functional nature of diffusion properties along fiber tracts, they can suffer from

low statistical power in detecting interesting features and in exploring variability in tract-based dif-

fusion properties. A functional data analysis framework was used to compare a univariate diffusion

property along fiber tracts across two (or more) populations for a single hypothesis test per tract

by using functional principal component analysis and the Hotelling T 2 statistic (Goodlett et al.,

2009). Their method has two major limitations including only consideration of a univariate diffusion

property and the lack of control for other covariates of interest, such as age. To address these two

limitations, a functional regression framework was proposed to analyze multiple diffusion properties

along fiber tracts as functional responses with a set of covariates of interest, such as age, diagnostic

status and gender (Zhu et al., 2010b). An alternative approach, called the generalized functional

linear model, was developed with a scalar outcome (e.g., diagnostic group) as responses and fiber

bundle diffusion properties as varying covariate functions (or functional predictors) (Goldsmith

et al., 2010).

The calculated diffusion properties, which are nonlinear and linear functions of the estimated

three eigenvalues of DT containing inherent bias, may be substantially different from the true

diffusion properties (Pierpaoli and Basser, 1996; Zhu et al., 2007b; Anderson, 2001). Numerical

simulations have shown that estimates of the largest eigenvalue in a DT usually overestimate the

true value of λ1 and that estimates of the smallest eigenvalue usually underestimate λ3 (Pierpaoli
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and Basser, 1996; Zhu et al., 2007b; Anderson, 2001). These differences between the estimated

and true eigenvalues, referred to as “sorting bias”, subsequently bias the estimation of diffusion

properties that are calculated from the values of these estimated eigenvalues (Pierpaoli and Basser,

1996; Zhu et al., 2007b; Anderson, 2001). The sorting bias is pronounced in three types of degenerate

DT including isotropic (λ1 = λ2 = λ3), oblate (λ1 = λ2 > λ3 ), or prolate ( λ1 > λ2 = λ3). Previous

studies have shown that a major portion of DTs along fiber tracts are prolate tensors (Zhu et al.,

2006), and thus directly comparing these biased diffusion properties along fiber tracts can create

‘statistical artifacts’ including biased parameter estimates and incorrect test statistics and p−values

for hypotheses of interest as shown in Section 3.3.

To avoid these statistical artifacts, it is important to directly analyze estimated DTs along

fiber tracts. There are several advantages of comparing the estimated DTs along fiber tracts with

covariates. The first one is that the standard weighted least squared estimates of true DTs are

almost unbiased (Zhu et al., 2007b). Moreover, as shown in Section 3.3.1, directly modelling DTs

along fiber tracts as a smooth SPD process allows us to incorporate smoothness constraint to further

reduce noise in the estimated DTs along fiber tracts, which subsequently leads to reduced noise

in estimated diffusion properties along the fiber tracts. Furthermore, the use of scalar diffusion

properties ignores the direction information of DT, and thus it can lose the statistical power in

detecting the differences in DT oriented in different directions.

There is a growing interest in the DTI literature in developing statistical methods for direct

analysis of DTs in the space of SPD matrices. Schwartzman et al. (2008) proposed several paramet-

ric models for SPD matrices and derived the distributions of several test statistics for comparing

differences between the means of the two (or multiple) groups of SPD matrices. Kim and Richards

(2010) developed a nonparametric estimator for the common density function of a random sample

of positive definite matrices. Zhu et al. (2009) developed a semi-parametric regression model with

SPD matrices as responses in a Riemannian manifold and covariates in a Euclidean space. Barm-

poutis et al. (2007) and Davis et al. (2010) proposed tensor splines and local constant regressions

for interpolating DTI tensor fields based on the Riemannian metric.

In this chapter, we propose a varying coefficient model (VCLE) to use varying coefficient func-

tions to characterize the association between fiber bundle diffusion tensors and a set of covariates.

Since the space of SPD matrices is a Riemanian manifold, to the best of our knowledge, our VCLE
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is the first paper for developing a functional data analysis framework for modeling functional

manifold-valued responses with covariates in Euclidean space. To account for the curved nature

of the SPD space, we employ the Log-Euclidean metric in Arsigny et al. (2006) and then use a

weighted least squares estimation method based on the geodesic distance under the Log-Euclidean

metric to estimate the varying coefficient functions. Furthermore, we develop global test statistics

to test hypotheses on the varying coefficient functions and use a resampling method for approximat-

ing its p−value. Finally, we construct a simultaneous confidence band to quantify the uncertainty

in the estimated coefficient functions and propose a resampling method to approximate the critical

point.

The rest of this chapter is organized as follows. Section 3.2 presents VCLE and related statistical

inference. Section 3.4 illustrates an application of VCLE in a clinical study of neurodevelopment.

Section 3.3 examines the finite sample performance of VCLE via simulation studies. Section 3.5

presents concluding remarks.

3.2 Methodologies

In this section, we present our VCLE for the statistical analysis of DTs along fiber tracts as

functional responses with a set of covariates. To compare DTs in populations of DTIs, we use the

DTI atlas building followed by atlas fiber tractography and fiber parametrization as described in

Goodlett et al. (2009) to extract DTI fibers and establish DTI fiber correspondence across all DTI

fiber correspondence across all DTI datasets from different subjects. For the sake of simplicity, we

do not include these image processing steps here, which have been discussed in details in Goodlett

et al. (2009); Zhu et al. (2010b).

3.2.1 Varying Coefficient Model for Functional SPD data

We need to introduce some notation. Let Sym+(3) and Sym(3) be, respectively, the set of

3 × 3 SPD matrices and the set of 3 × 3 symmetric matrices with real entries. Let vecs(C) =

(c1,1, c2,1, c2,2 · · · , cm1,1, · · · , cm1,m1)
T for any m1 ×m1 symmetric matrix C = (ck,l). Let Ivecs(·)

be the inverse operator of vecs(·) and (al) be a q× 1 vector with the l-th element al. Let vec(C) =

(c1,1, · · · , c1,m2 , · · · , cm1,1, · · · , cm1,m2)
T for any m1 ×m2 matrix C = (ck,l) and C ⊗D denote the
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Kronecker product of two matrices C and D.

Let x ∈ [0, L0] be the arc length of any point on a specific fiber bundle relative to a fixed end

point of the fiber bundle, where L0 is the longest arc length on the fiber bundle. For the i-th

subject, we measure a diffusion tensor, denoted by Si(xj) ∈ Sym+(3), at the arc length xj ∈ [0, L0]

for the j-th location grid point on the fiber bundle for j = 1, · · · , nG and i = 1, · · · , n, where nG and

n denote the numbers of grid points and subjects, respectively. We consider a varying coefficient

model given as follows:

log(Si(x)) = Ivecs((zTi βl(x))) + Ui(x) + Ei(x) for i = 1, · · · , n, (3.2.1)

where log(·) denotes the matrix logarithm, Ei(x) ∈ Sym(3) is a 3× 3 symmetric matrix of measure-

ment errors, and Ui(x) ∈ Sym(3) characterizes both individual matrix variations from Ivecs((zTi βl(x)))

and the correlation structure between log(Si(x)) and log(Si(x′)) for different x and x′. Moreover,

zi and βl(x) = (β1l(x), · · · , βrl(x))T are, respectively, a r × 1 vector of covariates of interest with

zi,1 = 1 and its associated vector of varying coefficient functions of x for l = 1, · · · , 6. Model (3.2.1)

can be regarded as a generalization of varying coefficient models, which have been widely studied

and developed for longitudinal, time series, and functional data (Fan and Zhang, 1999; Wu and

Chiang, 2000; Fan et al., 2003; Fan and Zhang, 2008; Wang et al., 2008).

Let SP(µ,Σ) denote a stochastic process with mean µ(x) and covariance matrix function Σ(x, x′)

for any x, x′ ∈ [0, L0]. It is also assumed that vecs(Ei(x)) and vecs(Ui(x)) are independent and

respectively, independent and identical copies of SP (0,ΣE) and SP (0,ΣU ). Moreover, vecs(Ei(x))

and vecs(Ei(x′)) for x 6= x′ are assumed to be independent and thus ΣE(x, x′) takes the form of

ΣE(x)1x=x′ . Finally, the covariance structure of vecs(log(Si(xj))), denoted by ΣS(x, x′), is given

by

ΣS(x, x′) = Cov(vecs(log(Si(x))), vecs(log(Si(x′)))) = ΣU (x, x′) + ΣE(x, x)1x=x′ . (3.2.2)

Since E(vecs(Ei(x))) = E(vecs(Ui(x))) = 0, we are interested in making statistical inference on

β(x) and reconstruct

D(z, β(x)) = exp(E(log(S(x)))) = exp(Ivecs((zTβl(x)))), (3.2.3)
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where exp(·) denotes the matrix exponential.

As an illustration, in our clinical study on early brain development, we are interested in studying

the evolution of the diffusion tensor along one selected fiber tract in 96 healthy pediatric subjects

(Figure 3.1). We consider a multivariate varying coefficient model of diffusion tensor along a specific

tract as follows:

log(Si(x)) = Ivecs((β1l(x) + β2l(x)×Gi + β3l(x)×Gagei)) + Ui(x) + Ei(x) (3.2.4)

for i = 1, · · · , 96, where Gagei and Gi, respectively, denote the gestational age at the scan time

and the gender of the i-th infant. In this case, β(x) is an 18× 1 vector of coefficient functions with

βl(x) = (β1l(x), β2l(x), β3l(x))T and zi = (1,Gi,Gagei)T .

3.2.2 Weighted Least Squares Estimation

Before estimating the coefficient functions, we first introduce the Log-Euclidean metric and the

geometry of the space of SPDs under this metric (see Arsigny (2006) for details). Let ∂D(x) log(.)

and ∂log(D(x)) exp(.) be, respectively, the directional derivatives in the direction of D(x) ∈ Sym+(m)

of the log map and in the direction of log(D(x)) ∈ Sym(m) of the exp map. The map ∂D(x) log(.)

is a linear mapping from TD(x)Sym+(m) to TISym+(m). A scaled Frobenius inner product on

TD(x)Sym+(m) based on the Log-Euclidean metric is defined as

<< UD(x), VD(x) >>D(x)=< ∂D(x) log(UD(x)), ∂D(x) log(VD(x)) >, (3.2.5)

where UD(x) and VD(x) are in TD(x)Sym
+(m). The geodesic γD(x)(t, UD(x)) is given by exp(log(D(x))+

t∂D(x) log(UD(x))) for any t. Under the Log-Euclidean metric, the geodesic distance between D(x)

and S is uniquely given by

d(D(x), S) =
√

tr[{log(D(x))− log(S)}⊗2]. (3.2.6)

To estimate the coefficient functions in β(x) = (βT1 (x), · · · , βTq (x))T , we develop a weighted

least squares estimation method based on an adaptive local polynomial kernel (LPK) smoothing

technique (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and Zhang, 2006; Ramsay and
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Silverman, 2005; Welsh and Yee, 2006; Zhang and Chen, 2007) under the Log-Euclidean metric.

Let h(1) be a given bandwidth. Specifically, using Taylor’s expansion, we can expand βl(xj) at x

to obtain

βl(xj) ≈ βl(x) + β̇l(x)(xj − x) = Al(x)yh(1)(xj − x), (3.2.7)

where yh(xj − x) = (1, (xj − x)/h)T and Al(x) = (βl(x), h(1)β̇l(x)) is an r × 2 matrix, in which

β̇l(x) = (β̇1l(x), · · · , β̇rl(x))T is an r × 1 vector and β̇kl(s) = dβkl(s)/ds for k = 1, · · · , r. We

calculate a weighted least squares estimate of Al(x) as follows.

Let K(·) be a kernel function, such as the Gaussian and uniform kernels (Fan and Gijbels, 1996;

Wand and Jones, 1995). For a fixed bandwidth h(1), we calculate a weighted least squares estimate

of Al(x), denoted by Âl(x), which minimizes an objective function given by

n∑
i=1

nG∑
j=1

Kh(1)(xj − x)tr{[log(Si(xj))− Ivecs((zTi Al(x)yh(1)(xj − x)))]⊗2}, (3.2.8)

where Kh(1)(·) = K(·/h(1))/h(1) is a rescaled kernel function and a⊗2 = aaT for any vector or any

matrix a. It can be shown that vec(Âl(x)) = (β̂1l(x), h(1)ˆ̇b1l(x), · · · , β̂rl(x), h(1)ˆ̇brl(x))T is given by

Σ(h(1), x)−1
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)[zi ⊗ yh(1)(xj − x)](log(Si(xj)))l, (3.2.9)

where Σ(h(1), x) =
∑n

i=1

∑nG
j=1Kh(1)(xj − x)[z⊗2

i ⊗ yh(1)(xj − x)⊗2]. Thus, we have

β̂l(x) = (β̂1k(x), · · · , β̂rl(x))T = [Ir ⊗ (1, 0)]vec(Âl(x)), (3.2.10)

where Ir is an r × r identity matrix.

We pool the data from all n subjects and select an estimated bandwidth h(1), denoted by ĥ(1)
e

by minimizing the cross-validation score given by

CV1(h(1)) = (nnG)−1
n∑
i=1

nG∑
j=1

tr{[log(Si(xj))− Ivecs((zTi β̂l(xj , h
(1))(−i)))]⊗2}, (3.2.11)

where β̂l(x, h(1))(−i) is the weighted least squares estimator of βl(x) for the bandwidth h(1) based

on observed data with the observations from the i-th subject excluded. Finally, by substituting
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ĥ
(1)
e into Equation (3.2.10), we can obtain an estimate of βl(x), denoted by β̂l,e(x). Combining all

β̂l,e(x) leads to β̂e(x) = [β̂1,e(x), · · · , β̂q,e(x)].

3.2.3 Smoothing Individual Functions and Estimating Covariance Matrices

To simultaneously construct the individual function Ui(x), we also employ the local polynomial

kernel smoothing technique. Specifically, using Taylor’s expansion, we can expand Ui(xj) at x to

obtain

Ui(xj) ≈ Ui(x) + U̇i(x)(xj − x), (3.2.12)

which is equivalent to

vecs(Ui(xj)) ≈ vecs(Ui(x)) + vecs(U̇i(x))(xj − x) = Di(x)Tyh(2)(xj − x), (3.2.13)

where Di(x) = (vecs(Ui(x)), h(2)vecs(U̇i(x)))T is a 2×6 matrix. We develop an algorithm to estimate

Di(x) as follows. For each fixed x and each bandwidth h(2), the weighted least square estimator of

Di(x) can be calculated by minimizing an objective function given by

nG∑
j=1

Kh(2)(xj − x)tr{[log(Si(xj))− Ivecs((zTi β̂l,e(xj))− (Di(x)Tyh(2)(xj − x)))]⊗2}.

With some calculation, it can be shown that the weighted least square estimate of Di(x), denoted

as D̂i(x), has the following explicit expression:

Σ1(h(2), x)−1
nG∑
j=1

Kh(2)(xj − x)yh(2)(xj − x)(vecs(log(Si(xj))− (zTi β̂l,e(xj))))
T , (3.2.14)

where Σ1(h(2), x) =
∑nG

j=1Kh(2)(xj − x)yh(2)(xj − x)⊗2. Let e2,1 = (1, 0)T . Then, vecs(Ui(x)) can

be estimated by

vecs(Ûi(x))T = eT1,2D̂i(x) =
nG∑
j=1

K̃0
h(2)(xj − x, x)(vecs(log(Si(xj)))− (zTi β̂l,e(xj)))

T , (3.2.15)

where K̃0
h(2)(·, ·) is the empirical equivalent kernel (Fan and Gijbels, 1996). Finally, let Ri be a

matrix with the j-th row vecs(log(Si(xj)))− (zTi β̂l,e(xj))
T and S be a nG × nG smoothing matrix
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with the (i, j)-th element K̃0
h(2)(xj − xi, xi). We can obtain

(vecs(Ûi(x1)), · · · , vecs(Ûi(xnG)))T = SRi. (3.2.16)

Let (C)j represent the j-th column vector in a m1×m2 matrix C and Sjj be the (j, j) element

of the matrix S. Let Λ be a 6× 6 diagonal matrix with q diagonal entries 1, 2, 1, 2, 2, 1. We pool the

data from all n subjects and select an estimated bandwidth of h(2), denoted as ĥ(2)
e , by minimizing

the cross-validation score given by

CV2(h(2)) = n−1
n∑
i=1

nG∑
j=1

‖Λ1/2((Ri)j − (SRi)j)‖2

(1− Sjj)2
. (3.2.17)

Replacing Sjj in Equation (3.2.17) by the average of S11, · · · ,SnGnG , we can get the following

generalized cross-validation (GCV) score

GCV2(h(2)) = n−1

∑n
i=1 tr{(Ri − SRi)⊗2}
(1− n−1tr(S))2

. (3.2.18)

Without special saying, for this part, we use generalized cross-validation score GCV2(h(2)) to select

the bandwidth throughout this paper. Based on ĥ
(2)
e , we can use Equation (3.2.15) to estimate

vecs(Ui(x)) and Ui(x), denoted by vecs(Ûi,e(x)) and Ûi,e(x), respectively, for all i.

After obtaining Ûi,e(x), we can estimate the mean function U(x) and the covariance function

ΣU (x, x′). Specifically, we estimate U(x) and ΣU (x, x′) by using their empirical counterparts based

on the estimated Ûi,e(x):

Ûe(x) = n−1
n∑
i=1

Ûi,e(x) and

Σ̂U (x, x′) = (n− q)−1
n∑
i=1

vecs(Ûi,e(x))vecs(Ûi,e(x′))T .

We construct a nonparametric estimator of the covariance matrix ΣE(x, x) as follows. Let

Êi(xj) = log(Si(xj)) − Ivecs((zTi β̂l,e(xj))) − Ûi,e(xj) be estimated residuals for i = 1, · · · , n and
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j = 1, · · · , nG. We consider the kernel estimate of ΣE(x, x) given by

Σ̂E(x, x) = (n− q)−1
n∑
i=1

nG∑
j=1

Kh(3)(xj − x)vecs(Êi(xj))⊗2∑nG
j=1Kh(3)(xj − x)

. (3.2.19)

Let Σ̃E(xj , xj) = (n− q)−1
∑n

i=1 vecs(Êi(xj))⊗2. To select an estimated bandwidth h(3), denoted by

ĥ
(3)
e , we minimize the cross-validation score given by

CV3(h(3)) = (nnG)−1
n∑
i=1

nG∑
j=1

tr{[vecs(Êi(xj))⊗2 − Σ̂E(xj , xj , h(3))(−i)]⊗2Σ̃E(xj , xj)−1]⊗2}, (3.2.20)

where Σ̂E(x, x, h(3))(−i) is the weighted least squares estimator of Σ̂E(x, x) based on observed data

with the observations from the i-th subject excluded. Based on ĥ(3)
e , we can use Equation (3.2.19)

to estimate ΣE(x, x), denoted by Σ̂E,e(x, x).

3.2.4 Asymptotic Properties

We will use the following theorems to construct the global test statistics and simultaneous

confidence bands for coefficient functions, whose detailed assumptions can be found in Appendix

D and whose proofs are similar to those in Zhu et al. (2010a).

Theorem 3.2.1. If assumptions (C1)-(C6) in Appendix D are true, then
√
n{vec(β̂(x) − β(x) −

0.5u2β̈(x)h(1)2[1 + op(1)]) : x ∈ [0, L0]} converges weakly to a centered Gaussian process G(·) with

covariance matrix ΣU (x, x′)⊗ Ω−1
Z .

Theorem 3.2.1 establishes weak convergence of β̂(x) as a stochastic process indexed by x ∈ [0, L0]

and forms the foundation for constructing global test statistic and simultaneous confidence bands

for β(·).

Theorem 3.2.2. If assumptions (C1)-(C7) in Appendix D are true, then

sup
(x,t)∈[0,L0]2

|Σ̂U (x, t)− ΣU (x, t)| = Op(n−1/2 + (nGh(2))−1 + ĥ(1)2
e + h(2)2 + (log n/n)1/2).

Theorem 3.2.2 shows the uniform convergence of Σ̂U (x, t) . This result is useful for constructing

the global and local test statistics for testing the covariate effects.
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3.2.5 Hypothesis Test

In neuroimaging studies, some scientific questions require the comparison of fiber bundle diffu-

sion tensors along fiber bundles across two (or more) diagnostic groups and the assessment of the

development of fiber bundle diffusion properties along time. Such questions can often be formulated

as linear hypotheses of β(x) as follows:

H0 : Rβ(x) = b0(x) for all x vs. H1 : Rβ(x) 6= b0(x), (3.2.21)

where R is a t× 6r matrix of full row rank and b0(x) is a given t× 1 vector of functions .

We propose both local and global test statistics. The local test statistic can identify the exact

location of significant grid point on a specific tract. At a given grid point xj on a specific tract, we

test the local null hypothesis H0(xj) : Rβ(xj) = b0(xj) against H1(xj) : Rβ(xj) 6= b0(xj). We use

a local test statistic Tn(xj) defined by

Tn(xj) = nd(xj)T {R(Σ̂U (xj , xj)⊗ Ω̂−1
Z )RT }−1d(xj), (3.2.22)

where Ω̂Z = n−1
∑n

i=1 z⊗2
i and d(x) = R(β̂o(x)T − bias(β̂o(x)T )) − b0(x). Following Fan and

Zhang (2000), a smaller bandwidth leads to a small value of bias(β̂o(x)). Moreover, according to

our simulation studies below, we have found that the effect of dropping bias(β̂o(x)) is negligible

and therefore, we drop it from now on.

We test the null hypothesis H0 : Rβ(x) = b0(x) for all x using a global test statistic Tn defined

by

Tn = n

∫ L0

0
d(x)T [R(Σ̂U (x, x)⊗ Ω̂−1

Z )RT ]−1d(x)dx. (3.2.23)

Let XR(·) be a Gaussian process with zero mean and covariance structure ΣR(x, x′), which is given

by

ΣR(x, x′) = {R(Σ̂U (x, x)⊗ Ω̂−1
Z )RT }−1/2{R(Σ̂U (x, x′)⊗ Ω̂−1

Z )RT }{R(Σ̂U (x′, x′)⊗ Ω̂−1
Z )RT }−T/2.

(3.2.24)

It follows from Theorem 3.2.1 that
√
n{R(Σ̂U (x, x)⊗ Ω̂−1

Z )RT }−1d(x) converges weakly to XR(x).

Therefore, let ⇒ denote weak convergence of a sequence of stochastic processes, it follows from the
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continuous mapping theorem that as both n and nG converges to infinity, we have

Tn ⇒
∫ L0

0
XR(x)TXR(x)dx.

Based on that result, we develop a wild bootstrap method to approximate the p-value of Tn.

Step (i): Fit model (3.2.1) under the null hypothesis H0, which yields β̂∗e (xj) = (β̂∗l,e(xj)),

Û∗i,e(xj) and Ê∗i,e(xj) for i = 1, · · · , n and j = 1, · · · , nG.

Step (ii): Generate a random sample τ (g)
i and τi(xj)(g) from a N(0, 1) generator for i = 1, · · · , n

and j = 1, · · · , nG and then construct

Ŝi(xj)(g) = exp(log(D(zi, β̂∗l,e(xj))) + τ
(g)
i Û∗i (xj) + τi(xj)(g)Ê∗i (xj)).

Then, based on Ŝi(xj)(g), we recalculate h̃
(1)
e , β̂e(x)(g), and d(x)(g) = Rβ̂e(x)(g) − b0(x). We

compute

T (g)
n = n

∫ L0

0
d(x)(g)T {R(Σ̂U (x, x)⊗ Ω̂−1

Z )RT }−1d(x)(g)dx,

Tn(xj)(g) = nd(xj)(g)T {R(Σ̂U (xj , xj)⊗ Ω̂−1
Z )RT }−1d(xj)(g) for j = 1, · · · , nG.

Step (iii): Aggregate the results of Step (2) over g = 1, · · · , G to obtain {T (g)
n,max = max1≤j≤nG Tn(xj)

(g) :

g = 1, · · · , G} and calculate p(xj) = G−1
G∑
g=1

1(T (g)
n,max ≥ Tn(xj)) for each xj . The p(xj) is the cor-

rected p-value at the location xj .

Step (iv): Aggregate the results of Step (2) over g = 1, · · · , G to obtain {T (g)
n : g = 1, · · · , G}

and calculate p = G−1
G∑
g=1

1(T (g)
n ≥ Tn). If p is smaller than a pre-specified significance level α, say

0.05, then we reject the null hypothesis H0.

3.2.6 Confidence Band

We construct a confidence band for D(z, β(x)) ∈ Sym+(3) over x ∈ [0, L0] given a fixed z.

Specifically, for a given significance level α, we construct a simultaneous confidence region in the

space of SPD matrices for each z, based on the critical value Cz(α) such that

P (d(D(z, β(x)), D(z, β̂(x))) ≤ Cz(α) for all x ∈ [0, L0]) = 1− α. (3.2.25)

49



Note that d(D(z, β(x)), D(z, β̂(x))) =
√

tr[{Ivecs(zT {βl(x)− β̂l(x)})}2]. By the Theorem 3.2.1,

supx∈[0,L0]

√
n{β̂l,e(x)−βl(x)} converges in distribution to Gl(x), where Gl(·) is a centered Gaussian

process indexed by x ∈ [0, L0], we have that as n→∞,

√
nd(D(z, β(x)), D(z, β̂(x))) ⇒

√
tr[{Ivecs((zTGl(x)))}2].

To determine Cz(α), we develop an efficient resampling method (Zhu et al., 2007a; Kosorok, 2003)

to approximate it. Let er,l be the r×1 vector with the l-th element 1 and all others 0, and r̂i,l(xj) =

(vecs(log(Si(xj))))l − zTi β̂l,e(xj). For g = 1, · · · , G, we independently simulate {τ (g)
i : i = 1, · · · , n}

from N(0, 1) for all l, and then we calculate a stochastic process Gl(x)(g), which is defined as follows:

√
neTl [Ir ⊗ (1, 0)]vec(Σ(h(1), x)−1

n∑
i=1

τ
(g)
i

nG∑
j=1

Kh(1)(xj − x)[zi ⊗ yh(1)(xj − x)]r̂i,l(xj)). (3.2.26)

Finally, we calculate supx∈[0,L0]

√
tr[{Ivecs((zTGl(x)(g)))}2]/n for all g = 1, · · · , G and use the

resulting 1− α empirical percentile to estimate Cz(α).

Moreover, we can construct confidence bands for the functional coefficients β(x) = (β1(x)T , · · · ,

βq(x)T )T with βl(x) = (β1l, · · · , βrl)T in model (3.2.1). Specifically, for a given significance level α,

we construct a confidence band for each βkl(x), k = 1, · · · , r such that

P (β̂L,αkl (x) < βkl(x) < β̂U,αkl (x) for all x ∈ [0, L0]) = 1− α, (3.2.27)

where β̂L,αkl (x) and β̂U,αkl (x) are the lower and upper limits of the confidence band. It follows from

Theorem 3.2.1 that supx∈[0,L0] |
√
n[β̂kl,e(x)−βkl(x)]| converges in distribution to supx∈[0,L0] |Gkl(x)|.

We define the critical point Ckl(α) such that P (supx∈[0,L0] |Gkl(x)| ≤ Ckl(α)) = 1 − α. Thus, a

1− α simultaneous confidence band for βkl(x) is given as follows:

(
β̂kl,e(x)−

Ckl(α)√
n

, β̂kl,e(x) +
Ckl(α)√

n

)
. (3.2.28)

Let ekl be an 6r × 1 vector with the (l − 1)r + k-th element 1 and all others 0. The critical point

Ckl(α) can be calculated as 1−α empirical percentile of supx∈[0,L0] |eklGl(x)(g)| for all g = 1, · · · , G.
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3.3 Simulation Studies

We conducted three sets of Monte Carlo simulations. The first set of simulations was to evaluate

the Type I and II error rates of the global test statistic Tn. The second set was to compare the power

in detecting the group effect using either the whole diffusion tensor or the diffusion properties. The

third set was to evaluate the coverage probabilities of the simultaneous confidence bands of the

functional coefficients β(x) and D(z, β(x)) for each z. We simulate diffusion tensors along the right

internal capsule tract (Figure 3.1 (a)) as follows:

Si(x) = exp(Ivecs((β1l(x) + β2l(x)×Gi + β3l(x)×Gagei)) + Ui(x) + Ei(x)) (3.3.1)

where Gagei and Gi, respectively, denote the gestational age at the scan time and gender of the i-th

infant, vecs(Ui(x)) = ((Ui(x))1, · · · , (Ui(x))6)T is a Gaussian process with zero mean and covariance

matrix ΣU (x, x′) and vecs(Ei(x)) = ((Ei(x))1, · · · , (Ei(x))6)T is a Gaussian random vector with zero

mean and covariance matrix ΣE(x, x)1(x = x′). To mimic imaging data, we used the diffusion

tensors along the right internal capsule tract from all 96 infants in our clinical data to estimate

β(x) by β̂(x) via equation (3.2.10), U(x) by Û(x) via equation (3.2.15), and E(x) by Ê(x) via Ê(x) =

log(Si(x)) − Ivecs((β̂l(x)Tz)) − Û(x). We fixed all the parameters at their values obtained from

our clinical data, except that we assumed (β31(x), · · · , β36(x)) = c(β̂31(x), · · · , β̂36(x)), where c is a

scalar which takes a different value as specified below to study the power and (β̂31(x), · · · , β̂36(x))

were estimators obtained from our clinical data. Figure 3.2 displays the estimated diffusion tensors

using the VCLE method when c = 1 by using two covariate (Figure 3.2 (c)) and univariate (Figure

3.2 (d)) modeling. Note that the multivariate modeling did a better job of recovering ground truth

than univariate modeling. It is also observed from Figure 3.3 that the multivariate modeling obtains

a smaller geodesic distance between simulated and estimated diffusion tensors the the univariate

modeling does.

3.3.1 Simulation 1

In neuroimaging studies, a lot of scientific questions require the assessment of the development

of fiber bundle diffusion tensors across time. In this simulation study, the questions were formulated
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Figure 3.2: Ellipsoidal representations of the true (a), simulated (b) and estimated (c) (based on
two covariates) and (d) (based on univariate) diffusion tensors along the the right internal capsule
tract, colored with FA values.
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Figure 3.3: Geodesic distances between simulated and estimated diffusion tensors (solid lines (based
on two covariates) and dash-dotted (based on univariate)) along the the right internal capsule tract.

52



as the hypotheses test H0 : β31(x) = · · · = β36(x) = 0 for all x along the right internal capsule

tract against H1 : β3l(x) 6= 0 for at least one x on the tract for some l = 1, · · · , 6. We first assumed

c = 0 to assess the Type I error rates (size)for the global test statistic Tn, and then we assumed

c = .2, .4, .6, and .8 to examine the Type II error rates (power) for Tn at different effect sizes. In

order to evaluate the Type I and II error rates at different sample sizes, we also consider sample

size n = 48 except n = 96. For n = 96, the values of gender and gestational age were taken those

of the 96 infants in our clinical study. For n = 48, we randomly chose 18 males from the 36 male

infants and 30 females from the 60 female infants. Then for all simulations, we used their values of

gender and gestational age to simulate the diffusion tensors along the right internal capsule tract.

Note that the number of grid points on the right internal capsule equals nG = 112 for both cases.

We applied the VCLE procedure to the simulated diffusion tensors. Particularly, we approxi-

mated the p-value of Tn using the wild bootstrap method described in the hypothesis test discussed

in Section 3.2.5. For each simulation, the significance levels were set at α = .05 and .01, and 100

replications were used to estimate the rejection rates. For a fixed α, if the Type I rejection rate is

smaller than α, then the test is conservative, whereas if the Type I rejection rate is greater than α,

then the test is anticonservative, or liberal.

Figure 3.4(a) displays the rejection rates for Tn based on the resampling method for both sample

sizes (n = 48 or 96) and all effect sizes (c = 0, .2, .4, .6, or .8) at both significance levels (α = .01 or

.05) using full diffusion tensors. The statistical power for rejecting the null hypothesis increases with

the sample size, the effect size and the significance level, which is consistent with our expectation.

3.3.2 Simulation 2

For each simulated diffusion tensor generated in 3.3.1 , we calculated its three eigenvalues, FA

and MD values. Then we applied the VCLE procedure for multiple measures to the simulated

values of FA, MD, joint FA and MD, each of the eigenvalues, and the three eigenvalues together,

respectively and then tested the significance of the gestational age effect. Figure 3.4(b)-(h) displays

the power for detecting the gestational age effect in each of these cases. First, as in Figure 3.4 (a), it

is also observed that the statistical power for rejecting the null hypothesis increases with the sample

size, the effect size and the significance level. Second, it is observed that the statistical power is

much higher when we use the whole tensor instead of FA, MD, λ1, λ2 or λ3 alone. Third, the power
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Figure 3.4: Simulation study: Type I and Type II error rates. Rejection rates of Tn based on the
resampling method are calculated at five different values of the effect size c for sample sizes of 48
(dash-dotted lines), 96(solid lines) subjects at the .05 (lines with diamond markers) and .01(lines
with circle markers) significance levels using (a) diffusion tensor; (b) FA values; (c) MD values; (d)
joint values of FA and MD; (e) λ1; (f)λ2; (g)λ3; and (h) joint values of λ1, λ2 and λ3.

is a little higher at small effect size when we use the joint FA and MD values instead of full diffusion

tensors while at higher effect size, they almost have the same power (Fig. 3.4(a) and (d)). Fourth,

the power is higher using three eigenvalues together than using the full diffusion tensors. Last, it is

noted that the Type I error is greater than the .05 significance level when we use the joint FA and

MD values (Fig. 3.4(d)) or use the three eigenvalues together (Fig. 3.4(h)). It means that the test

is liberal. As mentioned in Section 3.1, the calculated diffusion properties, which are nonlinear and

linear functions of the estimated three eigenvalues of DT containing inherent bias (sorting bias),

may be substantially different from the true diffusion properties. Thus directly comparing these

biased diffusion properties along fiber tracts can create incorrect p-values for hypotheses of interest.

3.3.3 Simulation 3

The third set of Monte Carlo simulations was carried out to evaluate the coverage probabilities

of the simultaneous confidence bands for regression coefficients β(x) and for D(z, β(x)) for a fixed

z . The simulation setup is the same as in the first set of simulations except c = 1 and the

sample size is 96. The 95% and 99% simultaneous confidence bands were considered. As suggested

by Fan and Zhang (2000), an appropriate smaller bandwidth would improve the accuracy of the

confidence bands. In our simulations, we used a shrinkage factor .6. For simplicity, we do not

consider estimating the bias of β̂(x).
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Table 3.1: Simulated coverage probabilities for coefficient functions based on 500 simulations for
VCLE methods

α = .05 α = .01

intercept gender Gage intercept gender Gage

β1(x) .942 .938 .946 .988 .988 .988

β2(x) .936 .952 .956 .982 .992 .988

β3(x) .940 .936 .948 .990 .992 .988

β4(x) .946 .960 .938 .990 .998 .994

β5(x) .932 .950 .942 .984 .988 .990

β6(x) .942 .940 .946 .990 .988 .988

Table 3.1 summarizes the empirical coverage probabilities based on 500 simulations for α = .01

and and .05. The coverage probabilities are quite close to the claimed confidence levels. Figure

3.5 depicts typical 95% simultaneous confidence bands for vectors of coefficient functions βl(x) for

l = 1, · · · , 6. For each l, βl(x) contains three coefficient functions which correspond the intercept,

age and gestational age. It is observed that the length of the simultaneous confidence bands for the

second and third functions in β1(x), β3(x) and β6(x) are large. This is because of large variances

of corresponding parts in data.

Figure 3.6 summarizes the empirical coverage probabilities for D(z, β(x)) based on 500 simula-

tions for α = .01 and and .05. The coverage probabilities are quite close to the claimed confidence

levels.

3.4 A Real Example

We investigate early brain development by using DTI and our VCLE. We consider 96 healthy

infants (36 males and 60 females) whose mean gestational age was 245.6 days with SD: 18.5 days

(range: 192-270 days). A 3T Allegra head only MR system was used to acquire all the images.

The system was equipped with a maximal gradient strength of 40 mT/m and a maximal slew rate
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Figure 3.5: Typical 95% simultaneous confidence bands for vectors of coefficient functions βl(x) for
l = 1, · · · , 6. The solid, dotted, dash-dotted curves are the true curves, the estimated coefficient
functions and the 95% confidence bands, respectively.
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Figure 3.6: Simulated coverage probabilities for D(z, β(x)) based on 500 simulations for α = .05
(solid lines with diamond markers ) and α = .01 (solid lines with circle markers ), (a)for female (b)
for male at different gestational ages, respectively.

of 400 mT/(m·msec). The DTI images were obtained by using a single shot EPI DTI sequence

(TR/TE=5400/73 msec) with eddy current compensation. The six non-collinear directions at the

b-value of 1000 s/mm2 with a reference scan (b=0) was applied. The voxel resolution was isotropic

2 mm, and the in-plane field of view was set as 256 mm in both directions. To improve the

signal-to-noise ratio of the images, a total of five scans were acquired and averaged. A weighted

least square estimation method (Zhu et al., 2007b; Basser et al., 1994a) was used to construct the

diffusion tensors. Then DTI atlas building followed by atlas based tractography procedure was

employed to process all 96 DTI datasets. We chose the right internal capsule tract to illustrate the

applicability of our method. Diffusion tensors were extracted along this fiber tract for all the 96

infants (Goodlett et al., 2009).

In this study, we have two specific aims. The first one is to compare diffusion tensors along the

selected fiber bundle across the male and female groups and thus illuminate the gender effect on the

development of these fiber bundle diffusion tensors. The second one is to delineate the development

of fiber bundle diffusion tensor across the gestational age effect. To statistically test the effects, we

applied our VCLE to diffusion tensors along the fiber tract. For the the selected tract, we fitted the

VCLE model (3.2.1) to the diffusion tensors from all 96 subjects, in which z = (1, gender,Gage)T .

Then, we used equation (3.2.10) to estimate the functional coefficients β(x). For the hypothesis

testing, we constructed the global test statistic Tn via equation (3.2.23) to test the gender and age

effects for the diffusion tensors. The p value of Tn was approximated using the resampling method

with G = 2, 000 replications. Finally, we constructed the 95% simultaneous confidence bands for
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Figure 3.7: The − log10(p) values of test statistics Tn(xj) for testing gender or gestational age effect
of diffusion tensors on the right internal capsule tract in panel (a) showing no significant gender
effect, in panel (b) showing significant gestational age effect.

the functional coefficients β(x).

We statistically test the effects of gender and gestational age on the diffusion tensors along the

right internal capsule tract. To test the gender effect, we calculated the local test statistics Tn(xj)

and their corresponding p values across all grid points on the right internal capsule tract. It is

observed from Figure 3.7 (a) that all grid points have not significant − log10(p) values, which are

less than 0.8. Then, we also computed the global test statistic Tn = 792.70 and its associated

p-value p = 0.335 indicating no gender effect. It is observed from Figure 3.7 (b) that the − log10(p)

values of Tn(xj) for testing the gestational age effect at some grid points of the right tail are greater

than 1.4 while a very high significant gestational age effect was found with Tn = 1361.16 and its

p−value p = 0.01. This indicates that diffusion tensors along the right internal capsule tract do

not differ significantly between male and female groups but are significantly associated with the

gestational age. We picked a grid point with the significant p value of Tn(x) and observed that the

diffusion tensors become more spherical with the gestational age (Figure 3.8). This indicates the

increasing pattern of diffusion.

The estimated coefficient functions along with the 95% simultaneous confidence bands are de-

picted in Figure 3.9. From Table 2, one can see that the gender effect, is not significant at the 5%

level. In fact, from Figure 3.9, the values of coefficient functions for this variable are close to zero

over a lot of parts of the whole interval. The coefficients for the gestational age are statistically

significant.

Finally, the 95% critical values for D(z, β(x)) and the estimated D(z, β(x)) along the right

internal capsule tract over gestational ages for female and male groups, respectively, are depicted

58



Figure 3.8: The ellipsoidal representations of (a) raw and (b) smoothed diffusion tensors changing
with the gestational age at one point on the right internal capsule tract with significant gestational
age effect.

in Figure 3.10. From this figure, we can see that the uncertainty of estimation of D(z, β(x)) is

larger on the two sides (especially on the left side) and smaller in the middle.

3.5 Discussion

We have developed the VCLE method for diffusion tensors along fiber tracts in the Riemannian

manifold of SPD matrices under the Log-Euclidean metric. From the application end, VCLE is

demonstrated in a clinical study of neurodevelopment for revealing the complex inhomogeneous

spatiotemporal maturation patterns as the apparent changes in fiber bundle diffusion tensors.

Another commonly used metric on the Riemannian manifold of SPD matrices is the Riemannian

metric. In contrast, some operations, e.g. average or interpolation of a set of tensors under the Log-

Euclidean and Riemannian metrics, are theoretically and practically very similar (Arsigny (2006)).

Moreover, some statistical methods based on the two metrics have very similar results. For instance,

in Chapter 2, no big differences are found in using local polynomial smoothing methods based on

them. However, the Riemannian metric is affine invariant. Affine invariance is a desirable feature

for imaging processing, e.g. segmentation. In this scenario, as shown in Barmpoutis et al. (2007),

the method using the Riemannian metric outperformed the method using the Log-Euclidean metric.

So it is interesting to develop the varying coefficient method under the Riemannian metric and then

compare the statistical powers of detecting group differences under these two different metrics.
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Figure 3.9: 95% simultaneous confidence bands for coefficient functions. The solid curves are the
estimated coefficient functions, and the dashed curves are the 95% confidence bands. The thin
horizontal line is the line crossing (0, 0).
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Figure 3.10: The 95% critical values for D(z, β(x)) over gestational ages for female (a) and male
(b) groups, respectively. The ellipsoidal representation of the estimated D(z, β(x)) along the right
internal capsule tract over gestational ages for female (c) and male (d) groups, respectively.
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Chapter 4

Varying Coefficient Model for SPD Matrix Valued

Functional Data under the Affine Invariant Metric

4.1 Introduction

SPD-matrix valued functional data appear in many applications. One of the most important

applications is in medical imaging. As studied in Chapter 3, in DTI, a collection of DT’s are

measured along a specific white matter fiber tract (e.g. the splenium or right internal capsule

tract) for each subject. Mathematically, these DT’s along the fiber tract are functionals of SPD

matrices. The natural approach to dealing with this type of data is functional data analysis (FDA).

The simple and straightforward way is to perform FDA based on the derived scalar quantities of

the SPD matrices, e.g. eigenvalues of the matrix or FA values calculated based on the eigenvalues.

However, as shown in the simulation studies of our previous chapters, this way of analysis is not

appropriate because it can only account for a portion of variability in the data and risk loss of

information and low statistical power in detecting group differences. At this point, a statistical

analysis framework is needed to characterize the association between SPD matrix valued functions

and a set of covariates, and permit to perform group comparisons and statistical inferences based

on the whole SPD matrix.

The literature of recent years reflects a lot of interests in developing statistical methods in

the space of SPD matrices (Schwartzman et al. (2008); Kim and Richards (2010); Zhu et al.

(2009);Barmpoutis et al. (2007); Davis et al. (2010); Whitcher et al. (2007); Commowick et al.

(2008)). This involves a basic but important question: defining the distance between SPD matrices

since the measurement of the distance between SPD matrices is the foundation on which the

subsequent statistical analysis, such as model formulation, estimation or statistical inference is



based. To define the distance, a metric is needed to given at first. So far, several metrics have

been proposed for statistical analysis of SPD matrix valued data, including the Eulcidean and

non-Euclidean (e.g. affine invariant and Log-Euclidean) metrics (Whitcher et al. (2007); Arsigny

et al. (2006); Pennec et al. (2006)). Since more than one metric is admissible for the space of SPD

matrices, selecting among them and determining which one would best characterize the distance

between SPD matrices and would lead to high statistical power for hypothesis tests are challenging

issues. Whitcher et al. (2007) investigated the effect of Euclidean and Log-Euclidean metrics on

the tensor statistical test and their results were in favor of the Euclidean metric. The results in

Barmpoutis et al. (2007) show that the affine invariant and Log-Euclidean metrics are better than

the Euclidean metric in smoothing diffusion tensors using tensor spline methods. Pasternak et al.

(2010) pointed out that the affine invariant metric may be the appropriate metric for quantities that

are log-normally distributed and the Euclidean metric appropriate for quantities that are normally

distributed. Dryden et al. (2009) made comparisons of various choices of metrics in different noise

models. They observed that in some cases, the Log-Euclidean metric outperformed the Euclidean

metric while in some cases, the affine invariant metric perform the best compared with the Log-

Euclidean and Euclidean metrics.

We have developed a functional data analysis framework for SPD matrix data under the Log-

Euclidean metric in Chapter 3. To investigate the effect of the metric on statistical analysis of SPD

matrix valued functional data, we formulate the varying coefficient model under the affine invariant

metric, called VCAI. Similar to Chapter 3, we use varying coefficient functions to characterize the

association between fiber bundles diffusion tensor and a set of covariates. We use a weighted least

squares estimation method based on the geodesic distance to estimate the varying coefficient func-

tions. However, the geodesic distance is defined under the affine invariant metric. Compared with

the Log-Euclidean metric, this metric is more complex in terms of computational and theoretical

difficulties. There is no closed form formula for the estimators under the affine invariant metric.

Nonlinear optimization algorithm has to be used for computing the estimators. We also establish

the asymptotic properties of the estimators, which are the foundation of constructing the global

test statistic and simultaneous confidence band. Furthermore, we develop a global test statistic to

test hypotheses on the varying coefficient functions and use a resampling method for approximating

its p−value. Finally, we construct a simultaneous confidence band to quantify the uncertainty in
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the estimated coefficient functions and propose a resampling method to approximate the critical

point.

The rest of the paper is organized as follows. Section 4.2 presents VCAI and related statistical

inference. Section 4.3 examines the finite sample performance of VCAI via simulation studies.

Section 4.4 illustrates an application of VCAI in a clinical study of neurodevelopment. Section 4.5

presents concluding remarks.

4.2 Methodologies

In this section, we present our VCAI for the statistical analysis of functional data with SPD

matrix valued responses with a set of covariates under the affine invariant metric. This framework

is similar to that in Chapter 3. The challenges in computation and theoretical derivations come

from the complexity of the affine invariant metric. The details are given below.

4.2.1 Varying Coefficient Model for SPD Matrix Valued Functional Data

Consider a varying coefficient model to characterize the relationship between p×p SPD matrix-

valued functional responses Si(x) under the common design and a r × 1 vector of covariates of

interest, denoted by zi, observed from n independent subjects. The model is given as follows:

log[D(zi, β(xj))−1/2Si(xj)D(zi, β(xj))−T/2] = Ui(xj) + Ei(xj), i = 1, 2, · · · , n, (4.2.1)

where β(x) is a qr×1 vector of functions of x with q = p(p+1)/2, Ei(x) ∈ Sym(p) are measurement

errors and Ui(x) ∈ Sym(p) characterize individual curve variations from D(zi, β(x)).

For the sake of comparison with model (3.2.1) in Chapter 3, we use a matrix logarithm model

for D(zi, β(x)). This model assumes that the matrix logarithm of D(zi, β(x)) can be denoted as

log(D(zi, β(x))) = log(C(zi, β(x))⊗2) = Y (zi, β(x)). (4.2.2)

where Y (zi, β(x)) is modeled as vecs(Y (zi, β(x))) = (zTi β1(x), · · · , zTi βq(x))T with βl(x) = (β1l(x), · · · ,

βrl(x))T and C(zi, β(x)) = exp(Y (zi, β(x))/2).

For notational simplicity, functional responses Si(x) are assumed to be measured at the same
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nG location points x1 = 0, x2, · · · , xnG = L0 for i = 1, · · · , n. Let SP(µ,Σ) denote a stochastic

process with mean µ(x) and covariance matrix function Σ(x, y). We assume the stochastic process

has finite support, i.e. x ∈ [0, L0], 0 < L0 <∞. We also assume that vecs(Ei(x)) and vecs(Ui(x)) are

independent with vecs(Ei(x)) ∼ SP (0,ΣE),ΣE(x, y) = ΣE(x)1x=y and vecs(Ui(x)) ∼ SP (0,ΣU ).

Moreover, vecs(Ei(x)) and vecs(Ei(x′)) for x 6= x′ are assumed to be independent and thus ΣE(x, x′)

takes the form of ΣE(x)1x=x′ .

Like model (3.2.1) in Chapter 3, model (4.2.1) can also be regarded as a generalization of varying

coefficient models, which have been widely studied and developed for longitudinal, time series, and

functional data (Fan and Zhang, 1999; Wu and Chiang, 2000; Fan et al., 2003; Fan and Zhang,

2008; Wang et al., 2008). Models (3.2.1) and (4.2.1) are very similar. Both use a matrix logarithm

model for D(z, β(x)). Both models assume the same error distributions. The big difference is that

the residual matrix of the functional response S(x) at the population mean function D(z, β(x)) in

model (4.2.1) is defined based on the Riemannian logarithm map under the affine invariant metric

while in model (3.2.1), it is based on the Riemannian logarithm map under the Log-Euclidean

metric (see Section 2.2, 2.3 and 2.4 in Chapter 2 for the formulation of a residual matrix of S(x)

at D(z, β(x))) .

Like the classical varying coefficient model for functional data with responses on the Euclidean

space (see Fan and Zhang (2008) for details), for model (4.2.1), we focus on carrying out statistical

inferences on β(x), including constructing simultaneous confidence bands for β(x) and developing

global test statistics for general hypothesis testing problem on β(x).

4.2.2 Weighted Least Squares Estimation

To estimate the coefficient function in β(x) , we have developed a weighted least squares estima-

tion method based on an adaptive local polynomial kernel (LPK) smoothing technique under the

affine invariant metric. Specifically, using Taylor’s expansion, we can expand β(x) at x to obtain

β(xj) ≈ β(x) + β̇(x)(xj − x) = A(x)yh(1)(xj − x), (4.2.3)

where yh(1)(xj − x) = (1, (xj − x)/h(1))T and A(x) = (β(x), h(1)β̇(x)) is an rq× 2 matrix, in which

β̇(x) are the derivatives of the vector β(x) with respect to x, respectively. For each fixed x and
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each bandwidth h(1), a weighted least square estimator of A(x), can be calculated by minimizing

an objective function given by

n∑
i=1

nG∑
j=1

Kh(1)(xj − x)tr[{log(C(zi, A(x)yh(1)(xj − x))−1Si(xj)C(zi, A(x)yh(1)(xj − x))−T )}⊗2],(4.2.4)

where K(.) be a kernel function and Kh(.) = K(./h)/h is a rescaled kernel function. Since the dis-

tance in the objective function (4.2.4) is the geodesic distance under the affine invariant metric, the

weight least square estimate of A(x), denoted as Â(x), does not appear to have the explicit expres-

sion. This minimization problem is computationally challenging since the standard gradient meth-

ods do not perform well in this scenario. Hence, we will develop an annealing evolutionary stochastic

approximation Monte Carlo algorithm (Liang (2010)) for calculating the estimate. After we have

the estimate of vec(Â(x)) = (β̂11, h
(1) ˆ̇
β11, · · · , β̂r1, h(1) ˆ̇

βr1, · · · , β̂1q, h
(1) ˆ̇
β1q, · · · , β̂rq, h(1) ˆ̇

βrq)T , we

can obtain the estimate of the coefficient function β(x)

β̂(x) = {Iqr ⊗ (1, 0)}vec(Â(x)). (4.2.5)

We now investigate the asymptotic properties of the coefficient functions β̂(x), whose assump-

tions and detailed proofs can be found in the Appendix E. To establish the asymptotic properties

of β̂(x). We need the following notations. Let ψ(S,C) = tr[{log(C−1SC−T )}⊗2], be a function

of C = exp(Y/2) and S ∈ Sym+(m), ∂Y ψ(S,C) and ∂2
Y ψ(S,C) be the first and second deriva-

tives of ψ(S,C) with respect to Y, respectively. Let Λ be a q × q diagonal matrix with q diago-

nal entries 1, 2, 1, 2, 2, 1 · · · , 2, · · · , 2, 1 and Yk denote the k-th element of vecs(Y ). Let C(k)(x, z) =

−C(z, β(x))−1∂CC
T

∂Yk
C(z, β(x))−T and M (k,k

′
)(v, u, z) = Λvecs(C(k)(v, z))(Λvecs(C(k

′
)(u, z)))T . Let

ME(v, u, z) and MU (v, u, z) be q×q matrices with the (k, k
′
) entry tr{ΣE(v, u)M (k,k

′
)(v, u), z)} and

tr{ΣU (v, u)M (k,k
′
)(v, u, z)}, respectively. Let ΩE(v, u) = E{ME(v, u, z) ⊗ z⊗2} and ΩU (v, u) =

E{MU (v, u, z)⊗ z⊗2}. Let X be denoted as {x1, · · · , xnG}.

Theorem 4.2.1. If the assumptions (M1)-(M9) are true in Appendix E, then the following results

hold:

(i) when the assumption (M10) in Appendix E is true,
√
n{β̂(x)−β(x)−0.5u2β̈(x)h(1)2{1+o(1)}) :

x ∈ [0, L0]} converges weakly to a centered Gaussian process with covariance matrix Σβ(x, x
′
) =
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4[E{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}]−1ΩU (x, x

′
)
[
E{∂2

Y ψ(S(x
′
), C(z, β(x

′
)))⊗ z⊗2}

]−T
.

(ii) the asymptotic bias and covariance of β̂(x) given X = {xj , j = 1, · · · , nG} are, respectively,

0.5u2β̈(x)h(1)2[1 + o(1)] and

Σβ,X (x, h) = 4
[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1 (n−1en(x) +

(nnGh(1))−1π(x)−1v0{ΩU (x, x) + ΩE(x, x)}{1 +O(h(1))}+

n−1[ΩU (x, x) + h(1)2u2{Ω(2,0)
U (x, x)π(x) + 2Ω(1,0)

U (x, x)π̇(x) + ΩU (x, x)π̈(x)}π(x)−1

+Op(n−1
G ) + op(h(1)2)])

[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−T

, (4.2.6)

where en(x) = Op((nGh(1))−1/2) is a random matrix of X and ΩU (x, x) with E{en(x)} = 0 and is

defined in the appendix.

Theorem 4.2.1 establishes weak convergence of β̂(x) as a stochastic process indexed by x ∈

[0, L0]. Based on Theorem 4.2.1, it is straightforward to derive the asymptotic bias and variance of

log(D(z, β(x))), which are combined together to give the asymptotic mean square error (AMSE)

of log(D(z, β(x))) as

AMSE(log(D(z, β̂(x)))) = E[tr{Ivecs(Y (z, β̂(x))− Y (z, β(x)))⊗2}]

= 0.25u2
2h

(1)4tr[{(Λ1/2 ⊗ z)β̈(x)}⊗2] + tr{(Λ1/2 ⊗ z)Σβ,X (x, h(1))(Λ1/2 ⊗ z)T }.

Note that the bandwidth that minimizes AMSE(log(D(z, β(x)))) is of the order (nnG)−1/5 if the

terms n−1h(1)2 and n−1en in Equation (4.2.6) are ignored. Theorem 4.2.1 also forms the foundation

for constructing global test statistic and simultaneous confidence bands for β(·).

A straightforward bandwidth selection method is cross-validation. The idea is to pool the data

from all n subjects and select an estimated bandwidth of h(1), by minimizing the cross-validation

score given by

CV (h(1)) =
1

nnG

n∑
i=1

nG∑
j=1

tr[{log(C(zi, β̂(−i)(xj , h(1)))−1Si(xj)C(zi, β̂(−i)(xj , h(1)))−T )}⊗2] (4.2.7)

where β̂(−i)(x, h(1)) is the weighted least squares estimator of β(x) for the bandwidth h(1) based

on observed data with the observations from the i-th subject excluded. However, since computing
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β̂(−i)(xj , h(1)) for all i can be computationally prohibitive, we use plug-in method (Park and Marron,

1990) which is based on the result in Theorem 4.2.1. For a given weight function w(x), the

asymptotic mean integrated squared error (AMISE) of D(z, β(x)) is

AMISE(log(D(z, β̂(x)))) =
∫

AMSE(log(D(z, β̂(x))))w(x)dx

= 0.25u2
2h

(1)4

∫
tr[{(Λ1/2 ⊗ z)β̈(x)}⊗2]w(x)dx

+
∫

tr{(Λ1/2 ⊗ z)Σβ,X (x, h(1))(Λ1/2 ⊗ z)T }w(x)dx. (4.2.8)

So with respect to this criterion, the optimal bandwidth is the one minimizing AMISE(log(D(z, β̂(x)))),

denoted by ĥ(1)
e . If the terms n−1h(1)2 and (n)−1en are ignored, then we have

ĥ(1)
e =

(
(nnG)−1v0

∫
tr{(Λ1/2 ⊗ z)Σβ,0(x, x)(Λ1/2 ⊗ z)T }π(x)−1w(x)dx

0.25u2
2

∫
tr[{(Λ1/2 ⊗ z)β̈(x)}⊗2]w(x)dx

)1/5

, (4.2.9)

where Σβ,0(x, x) = (
[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1 {ΩU (x, x) + ΩE(x, x)}1/2)⊗2. The plug-in

bandwidth selection idea is to replace the unknown quantities in Equation 4.2.9 by their estimators.

For unknown quantity β(x) and β̈(x), we replace them by a parametric polynomial fit of degree 4.

We take w(x) = π(x)w0(x), where w0(x) is a given weight function. In this way the problem of π(x)

sorts itself out. Based on ĥ(1)
e , we can obtain an estimate of β(x), denoted by β̂e(x). This bandwidth

selection method may tend to oversmoothing since we ignore two terms in Equation (E.0.36), which

are introduced by the within-curve dependence. So in practice, we select the bandwidth slightly

smaller than this optimal bandwidth.

4.2.3 Smoothing Individual Functions and Estimating Covariance Matrices

As we did in Chapter 3, we also employ the local polynomial kernel smoothing technique

to simultaneously construct the individual function Ui(x) and then construct a nonparametric

estimator of the covariance matrix ΣE(x, x). The computational procedures are similar to that in

Section 3.2.3 of Chapter 3. The only difference comes from modeling the residual matrix of the

functional response S(x) at the population mean function D(z, β(x)). In the following, we will give
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detailed derivations. Using Taylor’s expansion, we can expand Ui(xj) at x to obtain

Ui(xj) ≈ Ui(x) + U̇i(x)(xj − x), (4.2.10)

which is equivalent to

vecs(Ui(xj)) ≈ vecs(Ui(x)) + vecs(U̇i(x))(xj − x) = Di(x)Tyh(2)(xj − x), (4.2.11)

where yh(2)(xj − x) = (1, (xj − x)/h(2))T and Di(x) = (vec(Ui(x)), h(2)vec(U̇i(x)))T is a 2 × q

matrix. For each fixed x and each bandwidth h(2), the weighted least square estimator of Di(x)

can be calculated by minimizing an objective function given by

nG∑
j=1

Kh(2)(xj − x)tr[{log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T )− Ivecs(Di(x)Tyh(2)(xj − x))}⊗2].

With some calculation, it can be shown that the weighted least square estimate of Di(x), denoted

as D̂i(x), has the following explicit expression:

Σ1(h(2), x)−1
nG∑
j=1

Kh(2)(xj − x)yh(2)(xj − x){vecs(log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T ))}T ,

(4.2.12)

where Σ1(h(2), x) =
∑nG

j=1Kh(2)(xj − x)yh(2)(xj − x)⊗2. Then, vecs(Ui(x)) can be estimated by

vecs(Ûi(x)) = eT1,2D̂i(x) =
nG∑
j=1

K̃0
nG,h(2)(xj−x, x){vecs(log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T ))},

(4.2.13)

where K̃0
nG,h(2)(., .) is the empirical equivalent kernel. Finally, let Ri be a nG × q matrix with the

j-th row vecs(log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T ))T and S be a nG × nG smoothing matrix

with the (i, j)-th element K̃0
nG,h(2)(xj − xi, xi). We can obtain

(vecs(Ûi(x1)), · · · , vecs(Ûi(xnG)))T = SRi. (4.2.14)

We pool the data from all n subjects and select an estimated bandwidth of h(2), denoted as

69



ĥ
(2)
e , by minimizing the cross-validation score given by

CV2(h(2)) = n−1
n∑
i=1

nG∑
j=1

‖Λ1/2((Ri)j − (SRi)j)‖2

(1− Sjj)2
. (4.2.15)

Replacing Sjj in equation (4.2.15) by the average of S11, · · · ,SnGnG , we can get the following

generalized cross-validation (GCV) score

GCV2(h(2)) = n−1

∑n
i=1 tr[{Λ1/2(Ri − SRi)}⊗2]

(1− n−1tr(S))2
. (4.2.16)

Without special saying, for this part, we use generalized cross-validation score GCV2(h(2)) to select

the bandwidth throughout this chapter.

After obtaining Ûi,e(x), we can estimate the mean function U(x) and the covariance function

ΣU (x, y) by using their empirical counterparts based on the estimated Ûi,e(x):

Ûe(x) = n−1
n∑
i=1

Ûi,e(x) and

Σ̂U (x, y) = (n− q)−1
n∑
i=1

vecs(Ûi,e(x))vecs(Ûi,e(y)). (4.2.17)

We construct a nonparametric estimator of the covariance matrix ΣE(x, x) as follows. Let

β̂e(x) = [β̂1,e(x), · · · , β̂q,e(x)] and Êi(xj) = log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T ) − Ûi,e(xj) be

estimated residuals for i = 1, · · · , n and j = 1, · · · , nG. We consider the kernel estimate of ΣE(x, x)

given by

Σ̂E(x, x) = (n− q)−1
n∑
i=1

nG∑
j=1

Kh(3)(xj − x)vecs(Êi(xj))⊗2∑nG
j=1Kh(3)(xj − x)

. (4.2.18)

Let Σ̃E(xj , xj) = (n− q)−1
∑n

i=1 vecs(Êi(xj))⊗2. To select an estimated bandwidth h(3), denoted by

ĥ
(3)
e , we minimize the cross-validation score given by

CV3(h(3)) = (nnG)−1
n∑
i=1

nG∑
j=1

tr{[vecs(Êi(xj))⊗2 − Σ̂E(xj , xj , h(3))(−i)]⊗2Σ̃E(xj , xj)−1]⊗2}, (4.2.19)

where Σ̂E(x, x, h(3))(−i) is the weighted least squares estimator of Σ̂E(x, x) based on observed data

with the observations from the i-th subject excluded. Based on ĥ(3)
e , we can use (4.2.18) to estimate
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ΣE(x, x), denoted by Σ̂E,e(x, x).

We will use the following theorems to construct the global test statistics and simultaneous

confidence bands for coefficient functions, whose detailed proofs can be found in the Appendix E.

Theorem 4.2.2. We have the following results.

(i) If assumptions (M1)-(M6) and (M10) in Appendix E are true, then

sup
(x,t)∈[0,L0]2

|Σ̂U (x, t)− ΣU (x, t)| = Op(n−1/2 + (nGh(2))−1 + ĥ(1)2
e + h(2)2 + (log n/n)1/2).(4.2.20)

(ii) If assumptions (M1)-(M6) and (M10)-(M11) in Appendix E are true, then supx∈[0,L0] |Σ̂E(x, x)−

ΣE(x, x)| = op(1).

Theorem 4.2.2 (i) shows the uniform convergence rate of Σ̂U (x, t) which is useful for constructing

the global and local test statistics for testing the covariate effects. Theorem 4.2.2 (ii) do not

present the uniform convergence rate of Σ̂E(x, x) because one focus of this Chapter is to derive the

asymptotic distribution of a global test statistic, which does not involve Σ̂E(x, x).

4.2.4 Hypothesis Test

Like the classical varying coefficient models, it is interesting to investigate if an estimated

coefficient function is significantly away from zero or if the estimated coefficient function is really

varying (Fan and Zhang, 2000, 2008). In general, consider the linear hypotheses of β(x) as follows:

H0 : Rβ(x) = b0(x) for all x vs. H1 : Rβ(x) 6= b0(x), (4.2.21)

where R is a t × rq matrix of full row rank and b0(x) is a given t × 1 vector of functions. In

order to test the null hypothesis H0 : R(β(x)) = b0(x) for all x, we need to construct a global

test statistic Tn. We can construct it in the same manner as we did in Section 3.2.5 of Chapter 3.

However, the two test statistics are not the same since they depend on the asymptotic covariance

of the estimated coefficient functions. Under the affine invariant metric, the global test statistic is

defined by

Tn = n

∫ L0

0
d(x)T {RΣβ(x, x)RT }−1d(x). (4.2.22)
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where d(x) = Rvec(β̂e(x) − bias(β̂e(x))) − b0(x). Using the same arguments as those in Section

3.2.5 of Chapter 3, we can show that

Tn ⇒
∫ L0

0
XR(x)TXR(x)dx,

where XR(·) is a Gaussian process with zero mean and covariance structure ΣR(x, x
′
), which is

given by

ΣR(x, x
′
) = {RΣ̂β(x, x)RT }−1/2{RΣ̂β(x, x

′
)RT }{RΣ̂β(x

′
, x

′
)RT }−T/2. (4.2.23)

Based on this result, we develop a wild bootstrap method to approximate the p-value of Tn.

Step (1): Fit model (4.2.1) under the null hypothesis H0, which yields β̂∗e (xj), Û∗i,e(xj) and

Ê∗i,e(xj) for i = 1, · · · , n and j = 1, · · · , nG.

Step (2): For g = 1, · · · , G, generate a random sample τ (g)
i and τi(xj)(g) from a N(0, 1) generator

for i = 1, · · · , n and j = 1, · · · , nG and then construct

Ŝi(xj)(g) = C(zi, β̂∗e (xj)) exp(τ (g)
i Û∗i (xj) + τi(sj)(g)Ê∗i (xj))C(zi, β̂∗e (xj))

T .

Then, based on Ŝi(xj)(g), we recalculate h̃(1)
e , β̂e(x)(g), bias(β̂e(x)(g)), and d(x)(g) = R(β̂e(x)(g) −

bias(β̂e(x)(g))) − b0(x). We also note that R(β̂e(x)(g)) ≈ b0 and R(bias(β̂e(x)(g))) ≈ 0. Thus, we

can drop the term bias(β̂e(x)(g)) in d(x)(g) for computational efficiency. Subsequently, we compute

T(g)
n = n

∫ L0

0
d(x)(g)T {RΣβ(x, x)RT }−1d(x)(g)dx, (4.2.24)

Tn(xj)(g) = nd(xj)(g)T {RΣβ(x, x)RT }−1d(sj)(g) for j = 1, · · · , nG.

Step (3): Aggregate the results of Step (2) to obtain {T (g)
n,max = max1≤j≤nG Tn(xj)

(g) : g =

1, · · · , G} and calculate p(xj) = G−1
G∑
g=1

1(T (g)
n,max ≥ Tn(xj)) for each xj . The p(xj) is the corrected

p-value at the location xj .

Step (4):Aggregate the results of Step (2) to obtain {T (g)
n : g = 1, · · · , G} and calculate p =

G−1
G∑
g=1

1(T (g)
n ≥ Tn). If p is smaller than a pre-specified significance level α, say 0.05, then we

reject the null hypothesis H0.
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4.2.5 Confidence Band

We construct confidence bands for the functional coefficients β(x) = (β1(x)T , · · · , βq(x)T )T with

βl(x) = (β1l, · · · , βrl)T in model (4.3.1). Specifically, for a given significance level α, we construct

a confidence band for each βkl(x) such that

P (β̂L,αkl (x) < βkl(x) < β̂U,αkl (x) for all x ∈ [0, L0]) = 1− α, (4.2.25)

where β̂L,αkl (x) and β̂U,αkl (x) are the lower and upper limits of the confidence band. It follows from

Theorem 4.2.1 that supx∈[0,L0] |
√
n[β̂kl,e(x)−βkl(x)]| converges in distribution to supx∈[0,L0] |Gkl(x)|.

We define the critical point Ckl(α) such that P (supx∈[0,L0] |Gkl(x)| ≤ Ckl(α)) = 1 − α. Thus, a

1− α simultaneous confidence band for βkl(x) is given as follows:

(
β̂kl,e(x)−

Ckl(α)√
n

, β̂kl,e(x) +
Ckl(α)√

n

)
. (4.2.26)

Recall that ekl be an qr × 1 vector with the (l − 1)r + k-th element 1 and 0 otherwise. For

g = 1, · · · , G, we independently simulate {τ (g)
i : i = 1, · · · , n} from N(0, 1) for all l, and then we

calculate a stochastic process Gl(x)(g), which is defined as follows:

√
n{(1, 0)⊗ Iqr}

 n∑
i=1

nG∑
j=1

Kh(1)(xj − x)
{
yh(1)(xj − x)⊗2 ⊗ ∂2

Y ψ(Si(xj), C(zi, β̂(xj)))T ⊗ z⊗2
i

}−1

n∑
i=1

τ gi

nG∑
j=1

Hh(1)(xj − x)⊗ {∂Y ψ(Si(xj), C(zi, β̂(xj)))⊗ zi}, (4.2.27)

where Hh(1)(u− x) = Kh(1)(u− x)yh(1)(u− x). The critical point Ckl(α) can be calculated as 1−α

empirical percentile of supx∈[0,L0] |eklGl(x)(g)| for all g.

Theorem 4.2.3. If assumptions (M1)-(M6) and (M9)-(M11) in Appendix E are true, then G(g)
l (·)

converges weakly to Gl(·) conditional on the data.
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4.3 Simulation Studies

We conducted three sets of Monte Carlo simulations. The first set was to examine the bias

and variance of the estimated coefficient functions using varying coefficient model under the affine

invariant and Log-Euclidean metrics. The second set was to compare the Type I and II error rates

of the global test statistic Tn using varying coefficient model under the affine invariant and Log-

Euclidean metrics. The third set was to evaluate the coverage probabilities of the simultaneous

confidence bands of the functional coefficients β(x) under the affine invariant metric.

We simulate 3× 3 SPD matrices (DT’s) along the right internal capsule tract (Figure 3.1 (a))

as follows:

Si(x) = exp(Ivecs((β1l(x) + β2l(x)×Gi + β3l(x)×Gagei)/2)) exp(Ui(x) + Ei(x))

exp(Ivecs((β1l(x) + β2l(x)×Gi + β3l(x)×Gagei)/2)) (4.3.1)

where Gagei, Gi, vecs(Ui(x)) and vecs(Ei(x)) are the same as those in Section 3.3 of Chapter 3. To

mimic imaging data, we also used the diffusion tensors along the right internal capsule tract from

all 96 infants in our clinical data to estimate β(x) by β̂(x) via solving the nonlinear optimization

problem in Equation (4.2.4), U(x) by Û(x) via Equation (4.2.14), and E(x) by Ê(x) via Ê(x) =

log(exp(−Ivecs((β̂l(x)Tz/2)))S(x) exp(−Ivecs((β̂l(x)Tz/2))) − Û(x). We fixed all the parameters

at their values obtained from our clinical data, except that we assumed (β31(x), · · · , β36(x)) =

c(β̂31(x), · · · , β̂36(x)), where c is a scalar which takes a different value as specified below to study

the power and (β̂31(x), · · · , β̂36(x)) were estimators obtained from our clinical data.

4.3.1 Simulation 1

The first set of Monte Carlo simulations was carried out to compare the varying coefficient

models under both the Log-Euclidean and affine invariant metrics in estimating the coefficient

functions. Recall that VCAI (VCLE) is denoted as the varying coefficient model under the affine

invariant (Log-Euclidean) metric. For each simulated data, we use the VCAI and VCLE to estimate

the coefficient functions, respectively. Then we calculate the bias and standard error of β(x). The

results are presented in Table 4.1. All estimators have smaller biases than the standard deviations.
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Figure 4.1: Ellipsoidal representations of the simulated (a), true (b) and estimated diffusion tensors
along the the right internal capsule tract using VCAI (c) and VCLE (d), respectively, for one selected
subject from one simulation, colored with FA values.
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Figure 4.2: Average geodesic distances between simulated and estimated diffusion tensors along the
the right internal capsule tract using VCAI (solid line) and VCLE (dash-dotted line), respectively.

Moreover, the biases using VCAI are smaller than those using VCLE while the standard deviations

using VCLE are smaller than those using VCAI. One possible reason is that the estimators in

VCAI do not have explicit form and is obtained by using a nonlinear optimization method. This

may make the results more variable. However, both estimators using VCAI and VCLE perform

reasonably well in reconstructing the individual SPD matrix. Figure 4.1 displays the raw, true and

estimated SPD matrices using the VCAI and VCLE methods when c = 1 for one selected subject

from one simulation. Note that both VCAI and VCLE did a comparably good job in recovering

ground truth. We also calculate the average geodesic distances between the true and estimated SPD

matrices. It is observed from Figure 4.2 that the geodesic distance curve obtained by using VCAI

is more rough compared with that using VCLE. This may also be due to the nonlinear estimation

methods.
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Table 4.1: Bias and standard deviation (SD) for coefficient functions based on 200 simulations

VCAI VCLE

intercept gender Gage intercept gender Gage

Bias ×100 β1(x) 0.2633 0.0965 0.1416 0.3098 0.2342 0.1659

β2(x) 0.0957 0.0579 0.0516 0.1298 0.0538 0.0522

β3(x) 0.2667 0.0795 0.1830 0.2733 0.1401 0.1392

β4(x) 0.1122 0.0660 0.0787 0.1407 0.0599 0.0864

β5(x) 0.1258 0.0595 0.0637 0.1330 0.0808 0.0589

β6(x) 0.2339 0.0904 0.1520 0.3144 0.1813 0.1456

SD×100 β1(x) 1.9963 1.9658 1.9171 1.8672 1.8102 2.0228

β2(x) 0.6975 0.6761 0.6916 0.5224 0.5247 0.5032

β3(x) 1.8477 1.8600 1.7693 1.6346 1.6529 1.8108

β4(x) 0.8943 0.8742 0.8692 0.7348 0.7379 0.7158

β5(x) 0.8267 0.8191 0.8186 0.6686 0.6686 0.6531

β6(x) 1.7861 1.8263 1.7439 1.6529 1.6318 1.7623
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Figure 4.3: Simulation study: Type I and Type II error rates. Rejection rates of Tn based on
the resampling method are calculated at five different values of the effect size c using varying
coefficient models under the affine invariant (dash-dotted lines) and Log-Euclidean (solid lines)
metrics at sample sizes of 96 subjects at the .05 (lines with diamond markers) and .01(lines with
circle markers) significance levels.

4.3.2 Simulation 2

In neuroimaging studies, some scientific questions require the assessment of the development of

fiber bundle diffusion tensors across time. In this simulation study, the questions were formulated

as the hypotheses test H0 : β31(x) = · · · = β36(x) = 0 for all x along the right internal capsule

tract against H1 : β3l(x) 6= 0 for at least one x on the tract for some l = 1, · · · , 6. We first assumed

c = 0 to assess the Type I error rates (size) for the global test statistic Tn, and then we assumed

c = .2, .4, .6, and .8 to examine the Type II error rates (power) for Tn at different effect sizes.

For all simulations, we used the values of gender and gestational age from our clinical data to

simulate the 3× 3 SPD matrices (DT’s) along the right internal capsule tract. For each simulated

SPD matrices, we applied VCAI and VCLE to test the significance of the gestational age effect,

respectively. The significance levels were set at α = .05 and .01 and 100 replications were used to

estimate the rejection rates. Figure 4.3 displays the power for detecting the gestational age effect

in each of these cases. It is also observed that the statistical power for rejecting the null hypothesis

increases with the effect size and the significance level. In addition, the statistical power using the

varying coefficient models under the Log-Euclidean and affine invariant metrics are comparable for

large effect sizes. For the small effect sizes, the statistical power under the affine invariant metric is

higher. However, the type I error rate is greater than the .05 significance level under this metric.
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Table 4.2: Simulated coverage probabilities for coefficient functions based on 200 simulations for
VCAI methods

α = .05 α = .01

intercept gender Gage intercept gender Gage

β1(x) .960 .930 .925 .995 .990 .985

β2(x) .915 .925 .945 .990 .995 1.0

β3(x) .970 .930 .935 .990 .985 .985

β4(x) .960 .955 .935 .995 .995 .975

β5(x) .940 .965 .920 .995 .980 .970

β6(x) .965 .930 .930 .995 .985 .985

4.3.3 Simulation 3

The third set of Monte Carlo simulations was carried out to evaluate the coverage probabilities

of the simultaneous confidence bands for regression coefficients β(x) using VCAI. The simulation

setup is the same as in the first set of simulations except c = 1 and the sample size is 96. The 95%

and 99% simultaneous confidence bands were considered. As suggested by Fan and Zhang (2000),

an appropriate smaller bandwidth would improve the accuracy of the confidence bands. In our

simulations, we used a shrinkage factor .6. For simplicity, we do not consider estimating the bias

of β̂(x).

Table 4.2 summarizes the empirical coverage probabilities based on 200 simulations for α = .01

and and .05. The coverage probabilities are quite close to the claimed confidence levels. Figure

4.4 depicts typical 95% simultaneous confidence bands for vectors of coefficient functions βl(x) for

l = 1, · · · , 6. For each l, βl(x) contains three coefficient functions which correspond the intercept,

age and gestational age. It is observed that the length of the simultaneous confidence bands for the

second and third functions in β1(x), β3(x) and β6(x) are large. This is because of large variances

of corresponding parts in data.
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Figure 4.4: Typical 95% simultaneous confidence bands for vectors of coefficient functions βl(x) for
l = 1, · · · , 6. The solid, dotted, dash-dotted curves are the true curves, the estimated coefficient
functions and the 95% confidence bands, respectively.
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4.4 A Real Example

In this section, we apply our VCAI procedure to the same DT data in Section 3.4 of Chapter 3

in order to investigate early brain development. In this study, we also have the same two specific

aims. The first one is to compare diffusion tensors along the selected fiber bundle across the male

and female groups and thus illuminate the gender effect on the development of these fiber bundle

diffusion tensors. The second one is to delineate the development of fiber bundle diffusion tensor

across the gestational age effect. To statistically test the effects, we applied our VCAI to diffusion

tensors along the fiber tract. For the the selected tract, we fitted the VCAI model (4.3.1) to the

diffusion tensors from all 96 subjects, in which z = (1, gender,Gage)T . Then, we used the annealing

evolutionary stochastic approximation Monte Carlo algorithm to estimate the functional coefficients

β(x). For the hypothesis testing, we constructed the global test statistic Tn via equation (4.2.22) to

test the gender and age effects for the diffusion tensors. The p value of Tn was approximated using

the resampling method with G = 100 replications. Finally, we constructed the 95% simultaneous

confidence bands for the functional coefficients β(x).

We statistically test the effects of gender and gestational age on the diffusion tensors along the

right internal capsule tract. To test the gender effect, we calculated the local test statistics Tn(xj)

and their corresponding p values across all grid points on the right internal capsule tract. It is

observed from Figure 4.5 (a) that most grid points do not have significant − log10(p) values, which

are less than 1.0. Then, we also computed the global test statistic Tn = 850.40 and its associated

p-value p = 0.37 indicating no gender effect. It is observed from Figure 4.5 (b) that the − log10(p)

values of Tn(xj) for testing the gestational age effect at some grid points of the right tail are greater

than 2.0 while a very high significant gestational age effect was found with Tn = 1397.82 and its

p−value p = 0.01. This indicates that diffusion tensors along the right internal capsule tract do

not differ significantly between male and female groups but are significantly associated with the

gestational age. Moreover, the model under the affine invariant metric can detect more significant

grid points than that under the Log-Euclidean metric.

The estimated coefficient functions along with the 95% simultaneous confidence bands are de-

picted in Figure 4.6.
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Figure 4.5: The − log10(p) values of test statistics Tn(xj) for testing gender or gestational age effect
of diffusion tensors on the right internal capsule tract in panel (a) showing no significant gender
effect, in panel (b) showing significant gestational age effect.
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Figure 4.6: 95% simultaneous confidence bands for coefficient functions. The solid curves are the
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4.5 Summary

In this chapter, we have developed a varying coefficient model for SPD matrix valued functional

data under the affine invariant metric in order to investigate the effect of different metrics for the

space of SPD matrices on statistical inferences. Our simulation results suggest that the estimators

based on the affine invariant metric have smaller biases and larger variances compared with those

based on the Log-Euclidean metric. Both estimators give reasonable good approximations to the

ground truth. In addition, the statistical power using the invariant metric can be slightly higher

in detecting the group differences when the effect size is small. However, using VCAI involves

more complex computations and in general is time-consuming. It will be the case for the statistical

analysis of general manifold data, for which there is no alternative simple metric like the Log-

Euclidean metric for the space of SPD matrices.

In addition, our model can be generalized to statistical analysis of any general manifold valued

functional data given their Riemannian geometry. For instance, a new imaging technique called high

angular resolution diffusion imaging (HARDI) (Tuch (2002)) has been used to imaging complex

oriented structures in the brain. Unlike DTI, which models the diffusion with a single tensor

and can only reveal a single prevalent fiber direction, HARDI measures water diffusion along many

uniformly distributed directions on the sphere and can characterize more complex fiber orientations.

Based on HARDI measures, the orientation distribution function (ODF) can be reconstructed at

each voxel (Frank (2002); Tuch (2004); Rathi et al. (2009)), which can be used to characterize

diffusion. This provides a new type of random samples, which are manifold valued data. The

question arises naturally: how to perform statistical analysis on this manifold valued data? By

considering the ODF data on a Riemannian manifold, it is possible to extend our methods for DT’s

to the analysis of ODF data.
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Appendix A

Cross Validation Bandwidth Selection (2.3.8)

In this section, we will derive the first-order approximation to the cross validation score CVA(h)

in (2.3.8). We need some notation as follows:

M(S,D) = tr{log(S−1/2DS−T/2)2},

G
(−i)
n,A (αA(x)) =

∑
j 6=i

gA(Sj , DA(xj , αA(x), k0))2,

α̂
(−i)
A (x, h) = argminαA(x)G

(−i)
n,A (αA(x)),

α̂A(x, h) = argminαA(x)Gn,A(αA(x)), ∆α̂(−i)
A (x, h) = α̂

(−i)
A (x, h)− α̂A(x, h),

∂DM(S,D) =
∂tr{log(S−1/2DS−T/2)2}

∂vecs(D)
,

∂GM(S,GGT ) =
∂tr{log(S−1/2GGTS−T/2)2}

∂vecs(G)
,

∂2
DM(S,D) =

∂2tr{log(S−1/2DS−T/2)2}
∂vecs(D)∂vecs(D)T

,

E(S,D, x, x0) = DA(x, αA(x0), k0)−1/2SDA(x, αA(x0), k0)−T/2,

M(S, x− x0, αA(x0)) = tr{log(S−1/2D(x, αA(x0), k0)S−T/2)2},

∂αA(x0)M(S, x− x0, αA(x0)) =
∂tr{log(S−1/2D(x, αA(x0), k0)S−T/2)2}

∂αA(x0)
,

∂2
αA(x0)M(S, x− x0, αA(x0)) =

∂2tr{log(S−1/2D(x, αA(x0), k0)S−T/2)2}
∂αA(x0)∂αA(x0)T

,

H(−i)(x, αA(x), h) =
∑
j 6=i

Kh(xj − x)∂2
αA(x)M(Sj , xj − x, αA(x)).

Let Ĝ(−i)
A (xi, h) and ĜA(xi, h) be, respectively, the subcomponents of α̂(−i)

A (x, h) and α̂A(x, h)

corresponding to G(x). Then, by using the Taylor’s series expansion, we can approximate the cross

validation at bandwidth h by

CVA(h) = n−1
n∑
i=1

gA(Si, D̂
(−i)
A (xi, h))2 = n−1

n∑
i=1

tr{log(S−1/2
i D̂

(−i)
A (xi, h)S

−T/2
i )2}
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≈ n−1
n∑
i=1

gA(Si, D̂A(xi, h))2 + 2pn(h),

where pn(h) can be regarded as the degree of freedom for ILPR and is given by

pn(h) = (2n)−1
n∑
i=1

{∂GM(Si, D̂A(xi, h))Tvecs(Ĝ(−i)
A (xi, h)− ĜA(xi, h))}. (A.0.1)

Since α̂(−i)
A (xi, h) and α̂A(xi, h) minimize G(−i)

n,A (αA(xi)) and Gn,A(αA(xi)), respectively, we have

0 =
∑
j 6=i
{Kh(xj − xi)∂α(xi)M(Sj , xj − xi, α̂

(−i)
A (xi, h))} (A.0.2)

≈
∑
j 6=i
{Kh(xj − xi)∂α(xi)M(Sj , xj − xi, α̂A(xi, h))}

+
∑
j 6=i

Kh(xj − xi)∂2
α(xi)

M(Sj , xj − xi, α̂A(xi, h))∆α̂
(−i)
A (xi, h)

= −Kh(0)∂α(xi)M(Si, 0, α̂A(xi, h))

+
∑
j 6=i

Kh(xj − xi)∂2
α(xi)

M(Sj , xj − xi, α̂A(xi, h))∆α̂
(−i)
A (xi, h).

This yields that

∆α̂(−i)
A (xi, h) = Kh(0)H(−i)(xi, α̂A(xi, h), h)−1∂α(xi)M(Si, 0, α̂A(xi, h)). (A.0.3)

Furthermore, at a given xi, we consider αA(xi) = (α(1)(xi)T , α(2)(xi)T )T and α(−i)
A (xi, h) = (α(−i)

(1),IA(xi, h)T ,

α
(−i)
(2),IA(xi, h)T )T , in which α(1)(xi) and α

(−i)
(1),IA(xi, h), respectively, correspond to the unknown

parameters in G(xi). Suppose that H(−i)(xi, α̂A(xi, h), h) can be decomposed according to the

decomposition α(xi) = (α(1)(xi)T , α(2)(xi)T )T as follows:

H(−i)(xi, α̂A(xi, h), h) =

 H
(−i)
11,IA(xi, h) H

(−i)
12,IA(xi, h)

H
(−i)
21,IA(xi, h) H

(−i)
22,IA(xi, h)

 .

It can be shown that all elements in ∂α(2)(xi)M(Si, 0, α̂A(xi, h)) equal zero. Thus, by using the

nullity theorem, we have

∆α̂(−i)
(1),IA(xi, h) = Kh(0)H(−i)

11·2,IA(xi, h)−1∂α(1)(xi)M(Si, 0, α̂A(xi, h)), (A.0.4)
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where H(−i)
11·2,IA(xi, h) = H

(−i)
11,IA(xi, h) − H

(−i)
12,IA(xi, h)H

(−i)
22,IA(xi, h)−1H

(−i)
21,IA(xi, h). By substituting

(A.0.4) into (A.0.1), we have

pn(h) = (2n)−1Kh(0)
n∑
i=1

{∂GM(Si, D̂A(xi, h))TH
(−i)
11·2,IA(xi, h)−1∂GM(Si, D̂A(xi, h))}, (A.0.5)

which finishes the proof of (2.3.8).

In order to calculate CVA(h), we need the first order derivatives of matrix logarithm and

exponential, ∂GM(S,GGT ), and the first-order and second-order derivatives ofM(S, x−x0, αA(x0))

with respect to αA(x0) as follows.

Lemma A.0.1. (i) The first-order derivative of M(S,GGT ) with respect to vecs(G) is given by

∂M(S,GGT )
∂Gj

= 2tr{log(GTS−1G)G−1∂(GGT )
∂Gj

G−T }, (A.0.6)

where Gj is the j−th unknown element in vecs(G).

(ii) Suppose that D(α) ∈ Sym+(m) and M(α) ∈ Sym(m) are differentiable functions of α, the

first order derivatives of log(D(α)) and exp(M(α)) with respect to the j−th component of αj are,

respectively, given by

∂ exp(M(α))
∂αj

=
∫ 1

0
exp((1− s)M(α))

∂M(α)
∂αj

exp(sM(α))ds, (A.0.7)

∂ log(D(α))
∂αj

=
∫ 1

0
[{D(α)− Im}s+ Im]−1∂D(α)

∂αj
[{D(α)− Im}s+ Im]−1ds. (A.0.8)

Proof of Lemma A.0.1. Since tr{log(S−1/2GGTS−T/2)2} = tr{log(G−1SG−T )2}, It follows from

Proposition 2.1 in Maher (2005) that

∂M(S,GGT )
∂Gj

= 2tr{log(G−1SG−T )GTS−1G∂Gj (G
−1SG−T )}.

Because log(G−1SG−T )GTS−1G = GTS−1G log(G−1SG−T ) and

∂Gj (G
−1SG−T ) = −G−1(∂GjG)G−1SG−T −G−1SG−T (∂GjG)G−T ,
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we have

∂M(S,GGT )
∂Gj

= −2
n∑
i=1

tr{log(G−1SG−T )(G−1 ∂G

∂Gj
+
∂GT

∂Gj
G−T )},

which yields (A.0.6). The proof of (A.0.7) and (A.0.8) can be found in Higham (2008).

Lemma A.0.2. Let αj(x0) be the jth element of αA(x0). The jth element of the vector ∂αA(x0)M(S, x−

x0, αA(x0)) is given by

∂αj(x0)M(S, x− x0, αA(x0)) = −2tr[log(E(S,D, x, x0))D(x, αA(x0), k0)−1/2 ×

{∂αj(x0)D(x, αA(x0), k0)}D(x, αA(x0), k0)−T/2].

The (j, k)−th element of ∂2
αA(x0)M(S, x− x0, αA(x0)) is given by

∂2M(S, x− x0, αA(x0))
∂αj(x0)∂αk(x0)

= −2tr[
∂ log(E(S,D, x, x0))

∂αk(x0)
D(x, αA(x0), k0)−1/2 ×

{∂αj(x0)D(x, αA(x0), k0)}D(x, αA(x0), k0)−T/2]− 2tr(log(E(S,D, x, x0))

∂[D(x, αA(x0), k0)−1/2{∂αj(x0)D(x, αA(x0), k0)}D(x, αA(x0), k0)−T/2]
∂αk(x0)

).

Proof of Lemma A.0.2. By using Lemma A.0.1 and matrix differentiation, we can easily prove

Lemma A.0.2.
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Appendix B

Annealing Evolutionary Stochastic Approximation

Monte Carlo

We now develop an annealing evolutionary stochastic approximation Monte Carlo algorithm for

computing α̂IA(x0;h). Quite recently, the stochastic approximation Monte Carlo algorithm (Liang

et al., 2007) has been proposed in the literature as a general simulation technique, which possesses

a nice feature in that the moves are self-adjustable and thus not likely to get trapped by local

energy minima. The annealing evolutionary SAMC algorithm (Liang, 2010) represents a further

improvement of stochastic approximation Monte Carlo for optimization problems by incorporating

some features of simulated annealing (Kirkpatrick et al., 1983) and the genetic algorithm (Goldberg,

1989) into its search process.

Like the genetic algorithm, annealing evolutionary stochastic approximation Monte Carlo works

on a population of samples. Let αl = (αA,[1], . . . , αA,[l]) denote the population, where l is the

population size, and αA,[i] = (αi1, . . . , αiq(k0+1)) is a q(k0+1)-dimensional vector called an individual

or chromosome in terms of genetic algorithms. Thus, the minimum of the objective function

Gn(αA(x0)), αA(x0) ∈ B, can be obtained by minimizing the function U(αl) =
∑l

i=1Gn(αA,[i]).

An unnormalized Boltzmann density can be defined for the population as follows,

ψ(αl) = exp
{
−U(αl)/τ

}
, αl ∈ Bl, (B.0.1)

where τ = 1 is called the temperature, and Bl = B×· · ·×B is a product sample space. The sample

space can be partitioned according to the function U(αl) into b subregions: E1 = {αl : U(αl) ≤ δ1},

E2 = {αl : δ1 < U(αl) ≤ δ2}, · · · , Eb−1 = {αl : δb−2 < U(αl) ≤ δb−1}, and Eb = {αl : U(αl) >

δb−1}, where δ1 < δ2 < . . . < δb−1 are b − 1 known real numbers. We note that here the sample

space is not necessarily partitioned according to the function U(αl), for example, the function

λ(αl) = min{Gn(αA,[1]), . . . , Gn(αA,[l])} also works.

Let$(δ) denote the index of the subregion that a sample with energy u belongs to. For example,
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if αl ∈ Ej , then $(U(αl)) = j. Let B(t) denote the sample space at iteration t. The algorithm

initiates its search in the entire sample space B0 =
⋃b
i=1Ei, and then iteratively searches in the set

Bt =
$(U

(t)
min+ℵ)⋃
i=1

Ei, t = 1, 2, . . . , (B.0.2)

where U
(t)
min is the best function value obtained until iteration t, and ℵ > 0 is a user specified

parameter which determines the broadness of the sample space at each iteration. Note that in

this method, the sample space shrinks iteration by iteration. To ensure the convergence of the

algorithm to the set of global minima, the moves at each iteration are required to admit the

following distribution as the invariant distribution,

fw(t)(αl) ∝
$(U

(t)
min+ℵ)∑
i=1

ψ(αl)

ew
(t)
i

I(αl ∈ Ei), x ∈ Blt, (B.0.3)

where w(t)
i are the working parameters which will be updated from iteration to iteration as described

in the algorithm below.

The annealing evolutionary stochastic approximation Monte Carlo includes five types of moves,

the MH-Gibbs mutation, K-point mutation, K-point crossover, snooker crossover, and linear

crossover operators. See Liang (2010) for the details of the moves. Let ρ1, . . . , ρ5, 0 < ρi < 1

and
∑5

i=1 ρi = 1, denote the respective working probabilities of the five types of moves. The

algorithm can be summarized as follows.

The algorithm:

(a) (Initialization) Partition the sample space Bl into b disjoint subregions E1, . . . ,Eb; choose

the threshold value ℵ and the working probabilities ρ1, . . . , ρ5; initialize a population αl(0) at

random; and set w(0) = (w(0)
1 , . . . , w

(0)
b ) = (0, 0, . . . , 0), Bl0 =

⋃b
i=1 Ei, U

(0)
min = U(αl(0)) and

t = 0. Let Θ be a compact set in Rm.

(b) (Sampling) Update the current population αl(t) using the MH-Gibbs mutation, K-point mu-

tation, K-point crossover, snooker crossover, and linear crossover operators according to the

respective working probabilities.
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(c) (Working weight updating) Update the working weight w(t) by setting

w∗i = w
(t)
i + γt+1Hi(w(t), αl(t+1)), i = 1, . . . , $(U (t)

min + ℵ),

where Hi(w(t), αl(t+1)) = I(αl(t+1) ∈ Ei) for the crossover operators, Hi(w(t), αl(t+1)) =∑l
j=1 I(α

l(t+1,j) ∈ Ei)/l for the mutation operators, and γt+1 is called the gain factor. If

w∗ ∈ Θ, set w(t+1) = w∗; otherwise, set w(t+1) = w∗ + c∗, where c∗ = (c∗, . . . , c∗) and c∗ is

chosen such that w∗ + c∗ ∈ Θ.

(d) (Termination Checking) Check the termination condition, e.g., whether a fixed number of

iterations has been reached. Otherwise, set t→ t+ 1 and go to step (b).

In this article, we follow Liang (2010) to set ρ1 = ρ2 = 0.05, ρ3 = ρ4 = ρ5 = 0.3, and the gain

factor sequence

γt =
t0

max(t0, t)
, t = 0, 1, 2, . . . , (B.0.4)

with t0 = 5000. In general, a large value of t0 will allow the sampler to reach all the subregions

very quickly even for a large system. As shown in Liang (2010), it can converge weakly toward a

neighboring set of global minima of U(αl) in the space of energy. More precisely, the sample αl(t)

converges in distribution to a random population with the density function

fw(αl) ∝
$(Umin+ℵ)∑

i=1

ψ(αl)∫
Ei
ψ(αl)dαl

I(x ∈ Ei), (B.0.5)

where Umin is the global minimum value of U(α),

Regarding the setting of other parameters, we have the following suggestions. In the algorithm,

the moves are reduced to the Metropolis-Hastings moves (Metropolis et al., 1953; Hastings, 1970)

within the same subregions. Hence, the sample space should be partitioned such that the MH moves

within the same subregion have a reasonable acceptance rate. In this article, we set ui+1−ui ≡ 0.2

for i = 1, . . . , b− 1.

The crossover operator has been modified to serve as a proposal for the moves, and it is no longer

as critical as to the genetic algorithm. Hence, the population size l is usually set to a moderate

number, ranging from 10 to 100. Since ℵ determines the size of the neighboring set toward which
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the method converges, ℵ should be chosen carefully for efficiency of the algorithm. If ℵ is too small,

it may take a long time for the algorithm to locate the global minima. In this case, the sample

space may contain a lot of separated regions, and most of the proposed transitions will be rejected

if the proposal distribution is not spread out enough. If ℵ is too large, it may also take a long time

for the algorithm to locate the global energy minimum due to the broadness of the sample space.

In practice, the values of l and ℵ can be determined through a trial and error process based on

the diagnosis for the convergence of the algorithm. If it fails to converge, the parameters should

be tuned to larger values. As suggested by Liang (2010), the convergence of the method can be

diagnosed by examining the difference of the patterns of the working weights obtained in multiple

runs. In this article, we set l = 50 and ℵ = 50.

90



Appendix C

Assumptions and Proof of Theorems 2.3.1, 2.3.2, 2.4.1

and 2.4.2

Assumptions

The following assumptions are needed to facilitate development of our methods, although they

are not the weakest possible conditions. We need some notation. Recall that ψ(S,G, Y ) =

gA(S,G exp(Y )GT )2 and α = (αG, αY ), where G is an m×m lower triangle matrix, S ∈ Sym+(m),

Y ∈ Sym(m), αG = vecs(G), and αY = vecs(Y ). We define

 ∂αGψ(S,G, Y )

∂αY ψ(S,G, Y )

 =

 ψG(S,G, Y )

ψY (S,G, Y )

 ,

 ∂2
αG
ψ(S,G, Y ) ∂2

αGαY
ψ(S,G, Y )

∂2
αY αG

ψ(S,G, Y ) ∂2
αY
ψ(S,G, Y )

 =

 ψGG(S,G, Y ) ψGY (S,G, Y )

ψY G(S,G, Y ) ψY Y (S,G, Y )

 .

(C1) The kernel functionK(.) is a continuous symmetric probability density function with bounded

support, say [−1, 1].

(C2) The regression function D(x) ∈ Sym+(m) has a continuous (k0 + 1)-th order derivative in a

neighborhood of x0.

(C3) The bandwidth h tends to zero and nh→∞.

(C4) The design density fX(.) is continuous in a neighborhood of x0 and fX(x0) > 0.

(C5) The conditional density f(S|X = x) is continuous in a neighborhood of x0.

(C6) E{∂2
αψ(S,G, Y (X))|X = x} and E[{∂αψ(S,G, Y (X))}⊗2|X = x] are continuous in a neigh-

borhood of x0.
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(C7) The matrices N (x) =

 u0Ψ1(x) u⊗Ψ2(x)

uT ⊗Ψ2(x)T U2 ⊗Ψ3(x)

 is positive definite in a neighborhood

of x0.

(C8) Let ‖.‖ be the L2 norm of a matrix, η0 be a lower triangle matrix, η1 ∈ Sym(m), and

Uδ = {(η0, η1) : ‖η0‖2 + ‖η1‖2 ≤ δ2}. As δ → 0,

E{sup
Uδ

‖∂2
αψ(S,G(x0) + η0, Y (X) + η1)− ∂2

αψ(S,G(x0), Y (X))‖|X = x} = o(1),

E{sup
Uδ

‖∂αψ(S,G(x0) + η0, Y (X) + η1)− ∂αψ(S,G(x0), Y (X))

−∂2
αψ(S,G(x0), Y (X))(vecs(η0)T , vecs(η1)T )T ‖|X = x} = o(δ),

are uniformly in x in a neighborhood of x0.

(C9) There exists a b > 0 such that E{‖∂αψ(S,G(x0), Y (X))‖b+2|X = x} is bounded in a neigh-

borhood of x0.

(C10) Suppose that ΣED
(x) = Cov{ED(X)|X = x} is continuous in a neighborhood of x0 and

there exists a b > 0 such that E{‖ED(X)‖b+2|X = x} is bounded in a neighborhood of x0.

Remark: Assumptions (C1)-(C10) are standard conditions for ensuring the asymptotic properties

of local polynomial estimators when x0 is an interior point of fX(·) (Fan and Gijbels, 1996; Fan and

Yao, 1998; Wand and Jones, 1995). Some conditions can be released with additional technicalities

of proofs. For instance, the bounded support restriction on K(·) in (C1) is not essential and

can be removed if we put restriction on the tail of K(·). Condition (C2) ensures that Y (x) =

log(G(x0)−1D(x)G(x0)−T ), G(x), and log(D(x)) have a continuous (k0 + 1)-th order derivative in

a neighborhood of x0. Moreover, assume that fX(.) has a bounded support [0, 1]. All assumptions

can be easily modified when x0 is a boundary point, say left boundary point x0 = dh or right

boundary point x0 = 1 − dh for some d > 0. For instance, we require that conditions (C2)-(C10)

hold in the left neighborhood of 0 or the right neighborhood of 1. For condition (C2), we also need

to introduce fX(0+) as x0 is the left boundary point and fX(1−) as x0 is the right boundary point.

For condition (C7), N (x) is also needed to make some modifications. For simplicity, we omit these

details.
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Proof of Theorems 2.3.1, 2.3.2, 2.4.1 and 2.4.2

In this section, we will give the detailed proof of Theorems 2.3.1-2.4.2. Since the proof of

Theorem 2.3.2 involves more details, we only prove Theorem 2.3.2 and the proof of Theorem 2.3.1,

2.4.1 and 2.4.2 follows the same lines of arguments. In addition, for notational simplicity, we only

prove these theorems for the local linear regression for the k0 > 0 case. We also prove theorems for

the local constant regression because the proof requires some different treatments. The following

lemmas are needed for our technical proofs.

Lemma C.0.3. Let R(X) = Y (X) − Y (1)(x0)(X − x0) and assume that conditions (C1)-(C5),

(C7) and (C8) hold. For any random m ×m lower triangle matrix sequence ηi0 and any random

symmetric matrix sequence ηi1 ∈ Sym(m), for i = 1, · · · , n, if max
1≤i≤n

‖ηi0‖ = op(1) and max
1≤i≤n

‖ηi1‖ =

op(1), then we have the following results:

n∑
i=1

hKh(xi − x0)ψGG(Si, G(x0) + ηi0, Y (xi) + ηi1)

= nhfX(0+)u0,dΨ1(0+){1 + op(1)}, (C.0.1)
n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l

= nhl+1fX(0+)ul,dΨ2(0+){1 + op(1)}, (C.0.2)
n∑
i=1

hKh(xi − x0)ψY Y (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l

= nhl+1fX(0+)ul,dΨ3(0+){1 + op(1)}, (C.0.3)
n∑
i=1

hK(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)T vecs(R(xi))(xi − x0)l

=
1
2
nhl+3fX(0+)ul+2,dΨ2(0+)T vecs(Y (2)(0+)){1 + op(1)}, (C.0.4)
n∑
i=1

hK(xi − x0)ψY Y (Si, G(x0) + ηi0, Y (xi) + ηi1)T vecs(R(xi))(xi − x0)l

=
1
2
nhl+3fX(0+)ul+2,dΨ3(0+)T vecs(Y (2)(0+)){1 + op(1)}. (C.0.5)

Proof of Lemma C.0.3. We only prove (C.0.2), while the remainings can be shown using the same

arguments. It is easy to see that

n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l
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=
n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0), Y (xi))(xi − x0)l +

n∑
i=1

hKh(xi − x0){ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))}(xi − x0)l

= Tn1 + Tn2.

Let Zj,k = hKh(X − x0)(ψGY )j,k(X − x0)l, where (ψGY )j,k is the (j, k)-th element of the matrix

ψGY . For the (j, k)-th element (Tn1)j,k in the matrix Tn1, we have

(Tn1)j,k = nE(Zj,k) +Op

(√
nE(Z2

j,k)
)
. (C.0.6)

We calculate the first two moments of Zj,k below. Note that

E(Zj,k) = E{hKh(X − x0)(ψGY )j,k(X − x0)l}

=
∫ 1

0
hKh(y − x0)(y − x0)l(Ψ2(y))j,kfX(y)dy

= hl+1

∫ 1

−min{d,1}
K(z)zl(Ψ2(zh+ x0))j,kfX(zh+ x0)dz, (C.0.7)

which can be approximated by hl+1A withA =
∫ 1
−min{d,1}K(z)zl(Ψ2(0+))j,kfX(x0)dz. Specifically,

we consider the difference given by

In,1 ≡ |
∫ 1

−min{d,1}
K(z)zl(Ψ2(zh+ x0))j,kfX(zh+ x0)dz −A|.

Applying the dominated convergence theorem together with the boundedness and continuity as-

sumptions on fX(.) and Ψ2(.), we get lim
n→∞

In,1 = 0. Thus,

E(Zj,k) = hl+1fX(0+)(Ψ2(0+))j,kul,d{1 + o(1)}. (C.0.8)

Since fX(x) and E{(ψGY )2j,k|X = x} are bounded, there exists a d3 > 0 such that |fX(x)E{(ψGY )2j,k|X =

x}| < d3 for all x. So we have

E(Z2
j,k) = E{h2K2

h(X − x0)(ψGY )2j,k(X − x0)2l}
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=
∫ 1

0
h2K2

h(y − x0)(y − x0)2lfX(y)E{(ψGY )2j,k|X = y}dy

= h2l+1

∫ 1

−min{d,1}
K2(z)z2lfX(zh+ x0)E{(ψGY )2j,k|X = zh+ x0}dz

≤ d3h
2l+1

∫ 1

−min{d,1}
K2(z)z2ldz.

By the continuity of K(.), we have
∫ 1
−min{d,1}K

2(z)z2ldz < d4 for a given d4 > 0 and

E(Z2
j,k) ≤ d3d4h

2l+1. (C.0.9)

Combining with (C.0.6), (C.0.8) and (C.0.9), we have

(Tn1)j,k = nhl+1(fX(x0)Ψ2(x0)ul,d{1 + o(1)}+Op(1/
√
nh))j,k

= nhl+1fX(0+)(Ψ2(0+))j,kul,d{1 + op(1)}.

That is, Tn1 = nhl+1fX(0+)ul,dΨ2(0+){1 + op(1)}.

To prove (C.0.2), it suffices to show that Tn2 = op(nhl+1). Let ∆n0 = {η10, · · · , ηn0} and

∆n1 = {η11, · · · , ηn1}, where ηi0 is lower triangle matrix and ηi1 ∈ Sym(m) for i = 1, · · · , n. For

any given δ > 0, denote Dδ = {∆n = (∆n0,∆n1) : ‖ηi0‖2 + ‖ηi1‖2 ≤ δ2,∀i ≤ n}. Define

V (∆n) =
1

nhl+1

n∑
i=1

hKh(xi − x0)(xi − x0)l{ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)

−ψGY (Si, G(x0), Y (xi))}.

Then, we have

sup
Dδ

‖V (∆n)‖ ≤ 1
nhl+1

n∑
i=1

hKh(xi − x0)(xi − x0)l

sup
Dδ

‖ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))‖.

By using condition (C8), as δ → 0, we have

εδ = E{sup
Dδ

‖ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))‖|xi = x} = o(1).
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Therefore, as δ → 0, we have

E

{
sup
Dδ

‖V (∆n)‖

}
≤ εδ

1
nhl+1

E

{
n∑
i=1

hKh(xi − x0)(xi − x0)l
}
→ 0.

Since max
1≤i≤n

‖ηi0‖ = op(1) and max
1≤i≤n

‖ηi1‖ = op(1), we have V (∆̂n) = op(1) for ∆̂n = (∆̂n0, ∆̂n1) with

∆̂n0 = (η10, · · · , ηn0)T and ∆̂n1 = (η11, · · · , ηn1)T . Thus, Tn2 = nhl+1V (∆̂n) = op(nhl+1), which

finishes the proof of (C.0.2).

Lemma C.0.4. Assume that conditions (C1)-(C8) hold. Then we have

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (1)(x0)(xi − x0))

=
1
2
nh3fX(0+)u2,dΨ2(0+)T vecs(Y (2)(0+)){1 + op(1)}+
n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (xi)), (C.0.10)

n∑
i=1

hKh(xi − x0)ψY (Si, G(x0), Y (1)(x0)(xi − x0))(xi − x0)l

=
1
2
nhl+3fX(0+)ul+2,dΨ3(0+)T vecs(Y (2)(0+)){1 + op(1)}+
n∑
i=1

hKh(xi − x0)ψY (Si, G(x0), Y (xi))(xi − x0)l. (C.0.11)

Proof of Lemma C.0.4. We just prove (C.0.10), while the second one can be similarly shown. We

consider

Jn ≡
n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (xi)−R(xi))

=
n∑
i=1

hKh(xi − x0)[ψG(Si, G(x0), Y (xi)) + ψGY (Si, G(x0), Y (xi))Tvecs(−R(xi))

+{ψG(Si, G(x0), Y (xi)−R(xi))− ψG(Si, G(x0), Y (xi))

−ψGY (Si, G(x0), Y (xi))Tvecs(−R(xi))}]

= Jn1 + Jn2 + Jn3. (C.0.12)

We need to consider Jn1, Jn2, and Jn3 as follows. By using condition (C2) and the Taylor’s
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series expansion, we have

max
1≤i≤n

{‖R(xi)‖1(|xi − x0| ≤ h)} ≤ 1
2

sup
|ξ−x0|≤h

‖Y (2)(ξ)‖h2 = Op(h2).

Let Dδ = {∆n = (η1, · · · , ηn) : ‖ηj‖ ≤ δ, ηj ∈ Sym(m),∀j ≤ n} for any δ > 0. Define

V (∆n) =
1
nh

n∑
i=1

hKh(xi − x0){ψG(Si, G(x0), Y (xi) + ηi)− ψG(Si, G(x0), Y (xi))

−ψGY (Si, G(x0), Y (xi))Tvecs(ηi)},

By using condition (C8), as δ → 0, we have εδ = E{sup
Dδ

‖ψG(Si, G(x0), Y (xi)+ηi)−ψG(Si, G(x0), Y (xi))−

ψGY (Si, G(x0), Y (xi))Tvecs(ηi)‖|xi = x} = o(δ) uniformly in a neighborhood of x0. Therefore, for

all |xi − x0| ≤ h, we have, as δ → 0,

E{sup
Dδ

‖V (∆n)‖} ≤ εδ
1
nh
E

{
n∑
i=1

hKh(xi − x0)

}
= o(1).

Since max
1≤i≤n

{‖R(xi)‖1(|xi − x0| ≤ h)} = Op(h2) = op(1), we have V (∆̂n) = op(h2), where ∆̂n =

(R(x1), · · · , R(xn)). This leads to Jn3 = nhV (∆̂n) = op(nh3). Applying equation (C.0.4) in Lemma

C.0.3 to the second term Jn2 in (C.0.12), we get

Jn2 =
1
2
nh3fX(0+)u2,dΨ2(0+)Tvecs(Y (2)(0+)){1 + op(1)},

which yields (C.0.10).

Lemma C.0.5. Assume that conditions (C1)-(C9) hold. Let

Tn ≡

 ∑n
i=1 hKh(xi − x0)ψG(Si, G(x0), Y (xi))∑n

i=1 hKh(xi − x0)(xi − x0)ψY (Si, G(x0), Y (xi))/h

 . (C.0.13)

Then Tn/
√
nh is asymptotically normal with mean zero and covariance matrix

ΣT = fX(0+)

 v0,dΨ11(0+) v1,dΨ12(0+)

v1,dΨ12(0+)T v2,dΨ22(0+)

 {1 + o(1)}, (C.0.14)
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where vj,d for j = 0, 1, 2 and Ψ11(x), Ψ12(x) and Ψ22(x) are defined in Section 2.3.2.

Proof of Lemma C.0.5. Let T (ij)
G , and T (ij)

Y denote the jth elements of ψG(Si, G(x0), Y (xi)) and

ψY (Si, G(x0), Y (xi)), respectively. Let

Tni =

 hKh(xi − x0)ψG(Si, G(x0), Y (xi))

hKh(xi − x0)(xi − x0)ψY (Si, G(x0), Y (xi))/h

 .

Note that Tni are independent and Tn =
∑n

i=1 Tni.

It follows from (2.3.6) and Lemma A.0.2 that E(Tni) = E(Tn) = 0 and the covariance matrix

of Tn/
√
nh is

n

nh
E

h2K2
h(X − x0)

 ψGψ
T
G, ψGψ

T
Y (X − x0)/h

ψY ψ
T
G(X − x0)/h, ψY ψ

T
Y (X − x0)2/h2


 .

Using the same arguments as in Lemma C.0.3, we can obtain the asymptotic expression for the

covariance matrix of Tn, which equals Σ in (C.0.14). Finally, we will show that the sequence

Tni/
√
nh satisfies the Linderberg-Feller condition:

n∑
i=1

E[‖ Tni√
nh
‖21

{
‖ Tni√

nh
‖ > ε

}
] → 0 for any ε > 0. (C.0.15)

Let b > 0 and ‖T ′
ni‖2 = (T (i1)

G )2 + · · ·+ (T (iq)
G )2 + h−2{(T (i1)

Y )2 + · · ·+ (T (iq)
Y )2}(xi − x0)2.

E

[∥∥∥∥ Tni√
nh

∥∥∥∥2

1
{∥∥∥∥ Tni√

nh

∥∥∥∥ > ε

}]
≤ Ki ≡ E

{(
K(h−1(xi − x0))

)b+2 ‖T ′
ni‖(b+2)

(
√
nh)b+2(ε)b

}

=
∫ 1

−min{d,1}

K(z)b+2E{‖T ′
ni‖(b+2)|xi = zh+ x0}

(
√
nh)b+2h−1εb

fX(zh+ x0)dz

≤
∫ 1

−min{d,1}

E{‖ψα(Si, G(x0), Y (X))‖b+2|X = zh+ x0}
{K(z)}−b−2 (

√
nh)b+2fX(zh+ x0)−1h−1εb

dz.

Combining conditions (C4) and (C9) yields that there is a constant d5 > 0 such that
∑n

i=1Ki ≤

d5nh/(
√
nh)b+2 → 0. Thus, it follows from the Linderberg-Feller theorem that Tn/

√
nh is asymp-

totically normal with mean 0 and covariance Σ.

Proof of Theorem 2.3.2 (i). Let Ỹ (1)(x0) = hY (1)(x0), γ = (vecs(G(x))T , vecs(Ỹ (1)(x))T )T and
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γ0 = (vecs(G(x0))T , vecs(hY (1)(x0))T )T . Thus, Gn(γ) can be written as

n∑
i=1

hKh(xi − x0)ψ(Si, G(x0), Ỹ (1)(x0)(xi − x0)/h).

Let Uδ(γ0) = {γ : ||γ − γ0|| < δ} for δ > 0. We will show that for any small δ > 0,

lim
n→∞

P{ inf
γ∈Uδ(γ0)

Gn(γ) > Gn(γ0)} = 1. (C.0.16)

By a Taylor’s series expansion, we have

Gn(γ)−Gn(γ0) = G(1)
n (γ0)T (γ − γ0) +

1
2
(γ − γ0)TG(2)

n (γ∗)(γ − γ0), (C.0.17)

where γ ∈ Uδ(γ0) and γ∗ = (vecs(G(x∗))T , vecs(Ỹ (1)(x∗))T )T lies in between γ(x0) and γ.

It follows from lemmas C.0.4 and C.0.5 that

(nh)−1G(1)
n (γ0)

=
1
nh

n∑
i=1

hKh(xi − x0)

 ψG(S,G(x0), Y (1)(x0)(xi − x0))

ψY (S,G(x0), Y (1)(x0)(xi − x0))(xi − x0)/h


=

1
2
h2fX(0+)vecs(Y (2)(0+))

 u2,dΨ2(0+)

u3,dΨ3(0+)

 {1 + op(1)}

+
1
nh

n∑
i=1

hKh(xi − x0)

 ψG(Si, G(x0), Y (xi))T

h−1(xi − x0)ψY (Si, G(x0), Y (xi))T


=

1
2
h2fX(0+)(u2,dΨ2(0+)T , u3,dΨ3(0+)T )Tvecs(Y (2)(0+)){1 + op(1)}+

1
nh
Tn

= op(1).

We define ∆(S,G, Y,X) as

 ψGG(S,G, Y ) (X − x0)h−1ψY G(S,G, Y )

(X − x0)h−1ψGY (S,G, Y ) (X − x0)2h−2ψY Y (S,G, Y )

 . (C.0.18)
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With some calculation, we have

1
nh
G(2)
n (γ∗) =

1
nh

n∑
i=1

hKh(xi − x0)[{∆(Si, G(x∗), Ỹ (1)(x∗)(xi − x0)h−1, xi)

−∆(Si, G(x0), Y (xi), xi)}+ ∆(Si, G(x0), Y (xi), xi)]

≡Mn1 +Mn2.

It follows from (C.0.1), (C.0.2) and (C.0.3) in Lemma C.0.3 that

Mn2 = fX(x0)

 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)

 {1 + op(1)},

which is positive definite in probability. Note that ‖G(x∗)−G(x0)‖ ≤ δ and for all |xi − x0| < h,

we have max
i
‖Ỹ (1)(x∗)(xi − x0)/h− Y (xi)‖ ≤ max

i
‖R(xi)‖+ δ. Then it follows from Lemma C.0.3

that lim sup
δ→0

lim sup
n→∞

‖Mn1‖ = 0 in probability. Thus, for any γ ∈ Uδ(γ0), we have for sufficiently

small δ > 0

lim
n→∞

P [ inf
γ∈Uδ(γ0)

1
nh

(γ − γ0)TG(2)
n (γ∗)(γ − γ0) > 0.5afX(x0)δ2] = 1,

which yields that Gn(γ) has a local minimum γ̂ = (vecs(Ĝ)T , vecs(hŶ (1))T )T in the interior of

Uδ(γ0). Then, we have lim
n→∞

P{‖γ̂n − γ0‖ ≤ δ} = 1. This implies Theorem 2.3.2 (i).

Proof of Theorem 2.3.2(iii). Let η̂0 = Ĝ−G(x0) and η̂1i = {Ŷ (1)−Y (1)(x0)}(xi−x0)−R(xi). The

estimator γ̂ satisfies the following local estimating equations:

n∑
i=1

Kh(xi − x0)∂γψ(Si, Ĝ, Ŷ (1)(xi − x0)) = 0, (C.0.19)

where ∂γψ(S,G, Y ) ≡
(
ψG(S,G, Y )T , (X − x0)ψY (S,G, Y )T

)T
. It follows from (C.0.19) that

n∑
i=1

hKh(xi − x0)[∂γψ(Si, G(x0), Y (xi)) + ∂2
αγψ(S,G(x0), Y (xi))T (vecs(η̂0)T , vecs(η̂1i)T )T

+ {∂γψ(S,G(x0) + η̂0, Y (xi) + η̂1i)− ∂γψ(S,G(x0), Y (xi))

− ∂2
αγψ(S,G(x0), Y (xi))T (vecs(η̂0)T , vecss(η̂1i)T )T }] = 0. (C.0.20)

Note that the second term on the left hand side of (C.0.20) equals the sum of Ln1 and Ln2, which
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can, respectively, be approximated by

Ln1 =
n∑
i=1

hKh(xi − x0)∆(Si, G(x0), Y (xi), xi)

 vecs(η̂0)

h · vecs(Ŷ (1) − Y (1)(x0))


= fX(0+)nh

 u0,dΨ1(0+) u1,dΨ2(0+)

u1,dΨ2(0+)T u2,dΨ3(0+)


 vecs(η̂0)

h · vecs(Ŷ (1) − Y (1)(x0))

×

{1 + op(1)},

Ln2 =
n∑
i=1

hKh(xi − x0)∆(Si, G(x0), Y (xi), xi)

 vecs(Om)

h · vecs(R(xi))


=

1
2
fX(0+)nh3

 u2,dΨ2(0+)

u3,dΨ3(0+)

 vecs(Y (2)(0+)){1 + op(1)}.

By the consistency of γ̂ = (vecs(Ĝ)T , vecs(hŶ (1))T )T , we have ‖η̂0‖ = op(1) = Op(‖Ĝ − G(x0)‖)

and

sup
{i:|xi−x0|≤h}

‖η̂i1‖ ≤ sup
{i:|xi−x0|≤h}

{‖R(xi)‖+ h‖Ŷ (1) − Y (1)(x0)‖}

= Op(h2 + h‖Ŷ (1) − Y (1)(x0)‖) = op(1).

Thus, it follows from (C8) and Lemma C.0.4 that the third term on the left hand side of (C.0.20)

is at the order of op(nh){h2 + ‖Ĝ−G(x0)‖+ h‖Ŷ (1) − Y (1)(x0)‖}. Let

Bn =
h2

2

 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)


−T  u2,dΨ2(0+)T

u3,dΨ3(0+)T

 vecs(Y (2)(0+)){1 + op(1)}.

Then from (C.0.20), we obtain that

γ̂ − γ0 = Bn + {nhfX(0+)}−1

 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)


−T

Tn{1 + op(1)}.

Finally, Theorem 2.3.2 (iii) follows from Lemma C.0.5 and the Slutsky’s theorem.

The above derivation holds for any k0 > 0. When k0 = 0 and K(.) is symmetric, the following
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modifications need to be made.

Lemma C.0.6. Let η0(X) = G(X)−G(x0). Assume that conditions (C1)-(C5) and (C7) hold. If

x0 is an interior point of fX(·), then we have

n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi))

= nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}. (C.0.21)

If x0 is a boundary point of fX(·), then we have

n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi))

= nh2fX(0+)Ψ1(0+)G(1)(0+)u1,d{1 + op(1)}. (C.0.22)

Proof of Lemma C.0.6. We only prove equation (C.0.21). Let

Tn1 =
n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi)).

For the (j)-th element (Tn1)j of the vector Tn1, we have

(Tn1)j = nE(Zj) +Op(
√
nE(Z2

j )). (C.0.23)

We calculate the first two moments of Zj below. Note that

E(Zj) = E[hKh(X − x0)(ψGG(Si, G(X))vecs(η0(X)))j ]

=
∫ ∞

−∞
hKh(y − x0)(E{ψGG(Si, G(X))|X = y}vecs(η0(y)))jfX(y)dy

= h

∫ 1

−1
K(z)(E{ψGG(Si, G(X))|X = zh+ x0}vecs(η0(zh+ x0)))jfX(zh+ x0)dz,

By a Taylor’s series expansion, we have η0(zh+ x0) = G(1)(x0)zh+G(2)(x0)(zh)2/2. Applying the

dominated convergence theorem together with the continuity assumptions on f
(1)
X (·) , G(.)(2) and
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Ψ1(.) yields

E(Zj) = h3u2(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})j{1 + o(1)}. (C.0.24)

By the continuity f (1)
X (x) and G(x)(2) together with condition (C7), we have

E(Z2
j ) = E{h2K2

h(X − x0)(ψGG(Si, G(xi))vecs(η0(xi)))2j}

=
∫ ∞

−∞
h2K2

h(y − x0)fX(y)(E{ψGG(S,G(X))|X = y}vecs(η0(y)))2jdy

= h

∫ 1

−1
K2(z)z2lfX(zh+ x0)(E{ψGG(S,G(X))|X = zh+ x0}

vecs(η0(zh+ x0)))2jdz

= h3{1 +O(h)} (C.0.25)

Combining with (C.0.23),(C.0.24) and (C.0.25), we have

(Tn1)j = nh3[(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})ju2{1 + o(1)}

+Op(1/
√
nh3)]

= nh3(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})ju2{1 + op(1)}.

That is, Tn1 = nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}.

Lemma C.0.7. Assume that conditions (C1)-(C7) hold. If x0 is an interior point of fX(·), then

we have

n∑
i=1

hKh(xi − x0)ψG(Si, G(xi))

= nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}+

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0)). (C.0.26)

If x0 is the left boundary point of fX(·),

n∑
i=1

hKh(xi − x0)ψG(Si, G(xi)) (C.0.27)
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= nh2fX(0+)Ψ1(0+)G(1)(0+)u1,d{1 + op(1)}+
n∑
i=1

hKh(xi − x0)ψG(Si, G(x0)).

Lemma C.0.8. Assume that conditions (C1)-(C9) hold. Let

Tn ≡
n∑
i=1

hKh(xi − x0)ψG(Si, G(xi)). (C.0.28)

Then Tn/
√
nh is asymptotically normal with mean zero and covariance matrices

Σ = fX(x0)v0Ψ11(x0){1 + o(1)} if x0 is an interior point of fX(x), (C.0.29)

Σ = fX(0+)v0Ψ11(0+){1 + o(1)} if x0 = dh is a boundary point of fX(x). (C.0.30)

The proof is similar to the proof of Lemma C.0.5.

Proof of Theorem 2.3.2(ii). We use Lemmas 6-8 and follow the same lines of Theorem 2.3.2 (iii) to

prove Theorem 2.3.2 (ii).
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Appendix D

Assumptions in Theorems 3.2.1 and 3.2.2

Assumption C1. Ei(x) and Ui(x) are identical and independent copies of SP(0,ΣE) and SP(0,ΣU ),

respectively, and Ei(x) and Ui(t) are independent for x 6= t. Moreover, with probability one, the sam-

ple path of Ui(x) has continuous second-order derivatives on [0, L0] and E[supx∈[0,L0] ||U(x)||r12 ] <∞

and E{supx∈[0,L0][||U̇(x)||2 + ||Ü(x)||2]r2} <∞ for all r1, r2 ∈ (2,∞), where || · ||2 is the Euclidean

norm.

Assumption C2. All components of β(x) and ΣE(x, x) have continuous second derivatives on [0, L0].

The fourth moments of Ei(x) are continuous on [0, L0]. All components of ΣU (x, t) have continuous

second-order partial derivatives with respect to (x, t) ∈ [0, L0]2. Moreover, ΣE(x, x) and ΣU (x, x)

are positive for all x ∈ [0, L0].

Assumption C3. The grid points X = {xj , j = 1, · · · , nG} are independently and identically

distributed with density function π(x), which has the bounded support [0, L0]. For some constants

πL and πU ∈ (0,∞) and any x ∈ [0, L0], πL ≤ π(x) ≤ πU and π(x) has continuous second-order

derivative.

Assumption C4. The kernel function K(t) is a symmetric density function with a compact support

[-1, 1] and Lipschitz continuous.

Assumption C5. The covariate vectors zi are independently and identically distributed with Ezi =

µz and E[||zi||42] <∞ and that E[z⊗2
i ] = ΩZ is invertible.

Assumption C6. Both n and nG converge to ∞, h(1) = o(1), nGh(1) →∞, h(1)−1| log h(1)|1−2/q1 ≤

n
1−2/q1
G , where q1 ∈ (2, 4).

Assumption C7. E[|Ei(xj)|q2 ] < ∞ for some q2 ∈ (4,∞); h(2) = o(1), nGh(2) → ∞, and

(h(2))−4(log n/n)1−2/q2 = o(1).
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Appendix E

Proof of Theorems 4.2.1, 4.2.2 and 4.2.3

Assumptions

The following assumptions are needed to facilitate the technical details, although they are not

the weakest possible conditions.

Assumption M1. vecs(Ei(x)) and vecs(Ui(x)) are identical and independent copies of SP(0,ΣE)

and SP(0,ΣU ), respectively, and Ei(x) and Ei(x′) are independent for x 6= x′. Moreover, with

probability one, the sample path of Ui(x) has continuous second-order derivatives on [0, L0] and

E[supx∈[0,L0] ||U(x)||r12 ] < ∞ and E{supx∈[0,L0][||U̇(x)||2 + ||Ü(x)||2]r2} < ∞ for r1, r2 ∈ (2,∞),

where || · ||2 is the Euclidean norm.

Assumption M2. All components of β(x) and ΣE(x, x) have continuous second derivatives on [0, L0].

The fourth moments of Ei(x) are continuous on [0, L0]. All components of ΣU (x, x′) have continuous

second-order partial derivatives with respect to (x, x′) ∈ [0, L0]2. Moreover, ΣE(x, x) and ΣU (x, x)

are positive for all x ∈ [0, L0].

Assumption M3. The grid points X = {xj , j = 1, · · · , nG} are independently and identically

distributed with density function π(x), which has the bounded support [0, L0]. For some constants

πL and πU ∈ (0,∞) and any x ∈ [0, L0], πL ≤ π(x) ≤ πU and π(x) has continuous second-order

derivative.

Assumption M4. The kernel function K(x) is a symmetric density function with a compact support

[-1, 1] and Lipschitz continuous.

Assumption M5. The covariate vectors zi are independently and identically distributed with Ezi =

µz and E[||zi||42] <∞ and that E[z⊗2
i ] = ΩZ is invertible.

Assumption M6. Both n and nG converge to ∞, h(1) = o(1), nGh(1) →∞, h(1)−1| log h(1)|1−2/q1 ≤

n
1−2/q1
G , where q1 ∈ (2, 4).

Assumption M7. E{∂2
Y ψ(S(X), C(z, β(X)))|X = x,Z} is bounded, where Z = {z1, · · · , zn}.

Assumption M8. Let ‖.‖ be the L2 norm of a matrix, η be a lower triangle matrix, Uδ = {η : ‖η‖ ≤
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δ}. As δ → 0, E{sup
Uδ

‖∂2
Y ψ(S(X), C(z, β(X) + η))− ∂2

Y ψ(S(X), C(z, β(X)))‖|X = x,Z} = o(1) are

uniformly in x in a neighborhood of x.

Assumption M9. There exists a b > 0 such that E
{
‖∂Y ψ(S(X), C(z, β(X)))‖2+b|X = x,Z

}
is

bounded in a neighborhood of x.

Assumption M10. E[|Ei,k(xj)|q2 ] < ∞ for some q2 ∈ (4,∞) and all k; h(2) = o(1), nGh(2) → ∞,

and h(2)−4(log n/n)1−2/q2 = o(1).

Assumption M11. E[|Ei,k(xj)|q3 ] < ∞ for some q3 ∈ (4,∞) and all k; h(3) = o(1), nGh(3) → ∞,

and h(3)−2(log n/n)1−2/q3 = o(1).

Proof of Theorem 4.2.1

We need some notations. Recall that Λ is a q × q diagonal matrix with q diagonal entries

1, 2, 1, 2, 2, 1 · · · , 2, · · · , 2, 1. Let

Xn(x) =
√
n{β̂(x)− β(x)− 0.5u2h

(1)2β̈(x)}+ op(h(1)2)

C(k)(xj , zi) = −C(zi, β(xj))−1∂CC
T

∂Yk
C(zi, β(xj))−T

C(xj , zi) = (Λvecs(C(1)(xj , zi)), · · · ,Λvecs(C(q)(xj , zi)))T

∆nG(x;Ui, zi, h(1)) = n−1
G

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ {C(xj , zi)vecs(Ui(xj))} −∫
Kh(1)(u− x)yh(1)(u− x)⊗ {C(u, zi)vecs(Ui(u))}π(u)du,

TE(h(1), x) = 2
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ [{C(xj , zi)vecs(Ei(xj))} ⊗ zi]

TU (h(1), x) = 2
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ [{C(xj , zi)vecs(Ui(xj))} ⊗ zi]

Hh(1)(u− x) = Kh(1)(u− x)yh(1)(u− x).

Recall that

ψ(S,C) = tr[{log(C−1SC−T )}⊗2], (E.0.1)

where C = exp(Y/2) and S ∈ Sym+(m) and ∂Y ψ(S,C) and ∂2
Y ψ(S,C) are the first and second

derivatives of ψ(S,C) with respect to Y, respectively.
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By Equation (4.2.4), we have

n∑
i=1

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ {∂Y ψ(Si(xj), C(zi, β(x)))⊗ zi} = 0. (E.0.2)

Let R(X) = β(X)− β(x)− β̇(x)(X − x).

Lemma E.0.9. The first-order derivative of ψ(S,C) with respect to vecs(Y ) is given by

∂ψ(S,C)
∂Yj

= −2tr{log(C−1SC−T )C−1∂CC
T

∂Yj
C−T }, (E.0.3)

where Yj is the j-th element in vecs(Y ).

The proof is similar to Lemma A.0.1. It follows from Lemma E.0.9 that

∂Y ψ(Si(xj), C(zi, β(xj))) = 2C(xj , zi)vecs(Ei(xj) + Ui(xj)). (E.0.4)

Lemma E.0.10. Assume that assumptions (M2)-(M8) hold. For any random vector ηj ∈ Rrq, for

j = 1, · · · , nG, if max
1≤j≤nG

‖ηj‖ = op(1), then we have

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂2
Y ψ(Si(xj), C(zi, β(xj) + ηj))⊗ z⊗2

i }(xj − x)l

= nh(1)l+1π(x)ulE{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}(1 + op(1)), (E.0.5)

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂2
Y ψ(Si(xj), C(zi, β(xj) + ηj))⊗ z⊗2

i }R(xj)(xj − x)l

=
1
2
nh(1)l+3π(x)ul+2E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}β̈(x)(1 + op(1)). (E.0.6)

Proof of Lemma E.0.10. We only prove (E.0.6) while the other one can be shown using the same

arguments. It is easy to see that

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂2
Y ψ(Si(xj), C(zi, β(xj) + ηj))⊗ z⊗2

i }R(xj)(xj − x)l

= h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)[∂2
Y ψ(Si(xj), C(zi, β(xj))) + {∂2

Y ψ(Si(xj), C(zi, β(xj) + ηj))

−∂2
Y ψ(Si(xj), C(zi, β(xj)))}]⊗ z⊗2

i }R(xj)(xj − x)l
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= Tn1 + Tn2.

Let Mk denote the k-th element of h(1)Kh(1)(X−x){(∂2
Y ψ(S(X), C(z, β(X)))⊗z⊗2}R(X)(X−x)l.

For the k-th element (Tn1)k in the vector Tn1, we have

(Tn1)k = nnGE(Mk) +Op

(√
nnGE(M2

k )
)
. (E.0.7)

We calculate the first two moments of Mk. Applying the dominated convergence theorem and the

boundedness and continuity assumptions on π(.), β̈(x) and E{∂2
Y ψ(S(x), C(z, β(x))) ⊗ z⊗2}, we

have

E(Mk) = E[h(1)Kh(1)(X − x)({∂2
Y ψ(S(X), C(z, β(X)))⊗ z⊗2}R(X))k(X − x)l]

=
1
2
h(1)l+3

∫ 1

−1
h(1)K(t)tl+2E[({∂2

Y ψ(S(th(1) + x), C(z, β(th(1) + x)))⊗ z⊗2}

β̈(ξh(1) + x))k]π(th(1) + x)dt

=
1
2
h(1)l+3ul+2π(x)(E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}β̈(x))k{1 + o(1)} (E.0.8)

Since E{∂2
Y ψ(S(X), C(z, β(X)))|X = x,Z = z} is bounded, there exists d1, d2 > 0 such that

E(M2
k ) = E[h(1)2K2

h(1)(X − x)({∂2
Y ψ(S(X), C(z, β(X)))⊗ z⊗2}R(X))2k(X − x)2l]

=
1
4
h(1)2l+5

∫ 1

−1
h(1)K2(t)t2l+4(E{∂2

Y ψ(S(th(1) + x), C(z, β(th(1) + x)))⊗ z⊗2}

β̈(ξh(1) + x))2kπ(th(1) + x)dt

≤ d1h
(1)2l+5

∫ 1

−1
K2(t)t2l+4dt

≤ d1d2h
(1)2l+5 (E.0.9)

Combining (E.0.7), (E.0.8) and (E.0.9), we have

(Tn1)k =
1
2
nnGh

(1)l+3[ul+2π(x)(E{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}β̈(x))k{1 + o(1)}

+Op(1/
√
nnGh(1))]

= nnGh
(1)l+3ul+2π(x)(E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}β̈(x))k{1 + op(1)}
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That is, Tn1 = nnGh
(1)l+3ul+2π(x)E{∂2

Y ψ(S(x), C(z, β(x))) ⊗ z⊗2}β̈(x){1 + op(1)}/2. To prove

(E.0.6), it suffices to show that Tn2 = op(nnGh(1)l+3). Let 4nG = {η1, · · · , ηnG} where ηj ∈ Rrq for

j = 1, · · · , nG. For any given δ > 0, denote Dδ = {4nG : ‖ηj‖ ≤ δ,∀j ≤ nG}. Define

V (4nG) =
1

nnGh(1)l+3
h(1)

n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂2
Y ψ(Si(xj), C(zi, β(xj) + ηj))

−∂2
Y ψ(Si(xj), C(zi, β(xj)))} ⊗ z⊗2

i R(xj)(xj − x)l

By assumptions (M5) and (M8), as δ → 0, we have

εδ = E{sup
Dδ

‖{∂2
Y ψ(Si(xj), C(zi, β(xj) + ηj))− ∂2

Y ψ(Si(xj), C(zi, β(xj)))} ⊗ zi‖} = o(1).

Therefore, as δ → 0, we have

E{sup
Dδ

‖V (4nG)‖} ≤ εδE{
n∑
i=1

nG∑
j=1

h(1)Kh(1)(xj − x)‖R(xj)‖(xj − x)l → 0

Since max
1≤j≤nG

‖ηj‖ = op(1), we have V (4̂nG
) = op(1) for 4̂nG

= {η1, · · · , ηnG} Thus, Tn2 =

nnGh
(1)l+3V (4̂nG

) = op(nnGh(1)l+3), which completes the proof.

Lemma E.0.11. Assume that assumptions (M2)-(M8) hold. Then we have

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂Y ψ(Si(xj), C(zi, β(xj)−R(xj)))⊗ zi}(xj − x)l

=
1
2
nh(1)l+3π(x)ul+2E{∂2

Y ψ(S(x), C(Z, β(x)))⊗ Z⊗2}β̈(x)(1 + op(1)) +

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi}(xj − x)l. (E.0.10)

Proof of Lemma E.0.11. We consider

Jn ≡ h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x){∂Y ψ(Si(xj), C(zi, β(xj)−R(xj)))⊗ zi}(xj − x)l

= h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)(xj − x)l[∂Y ψ(Si(xj), C(zi, β(xj))) +

∂2
Y ψ(Si(xj), C(zi, β(xj)))(−R(xj)) +
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{∂Y ψ(Si(xj), C(zi, β(xj)−R(xj)))− ∂Y ψ(Si(xj), C(zi, β(xj)))−

∂2
Y ψ(Si(xj), C(zi, β(xj)))(−R(xj))}]⊗ zi

= Jn1 + Jn2 + Jn3.

We will consider Jni i = 1, 2, 3. By using the assumption (M2) and Taylor’s series expansion, we

have

max‖R(xj)‖1(xj − x) ≤ h(1) ≤ 1
2

sup
|ξ−x|≤h

‖β̈(ξ)‖h(1)2 = Op(h(1)2).

Let Dδ = {4nG = (η1, · · · , ηnG) : ηj ∈ Rrq,∀j ≤ nG} for any δ > 0. Define

V (4nG) =
1

nnGh(1)
h(1)

n∑
i=1

nG∑
j=1

Kh(1)(xj − x)(xj − x)l{∂Y ψ(Si(xj), C(zi, β(xj) + ηj))−

∂Y ψ(Si(xj), C(zi, β(xj)))− ∂2
Y ψ(Si(xj), C(zi, β(xj)))ηj} ⊗ zi.

By Assumption M8, as δ → 0,We have εδ = E[‖∂Y ψ(Si(xj), C(zi, β(xj)+ηj))−∂Y ψ(Si(xj), C(zi, β(xj)))−

∂2
Y ψ(Si(xj), C(zi, β(xj)))vecs(ηj)‖xj = x] = o(δ) uniformly in a neighborhood of x. Therefore,

E{sup
Dδ

‖V (4nG)‖} ≤ εδ
1

nnGh(1)
E

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)(xj − x)l

 = o(1).

Since max‖R(xj)‖1(xj − x) ≤ h(1) ≤ Op(h(1)2), we have V (4̂nG
) = op(h(1)2), where 4̂ = (R(x1), · · · ,

R(xnG)). This leads to Jn3 = nh(1)V (4̂nG
) = op(nh(1)3). Applying Equation (E.0.6) in Lemma

E.0.10 to Jn2, we get

Jn2 =
1
2
nh(1)l+3π(x)ul+2E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}β̈(x)(1 + op(1)),

which yields (E.0.10).

Lemma E.0.12. Let

Tn ≡
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ {∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi}

Then (i) if assumptions (M1)-(M6) and (M9) are true, then conditioning on X , the covariance
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matrix of {(1, 0)⊗ Iqr}Tn/(
√
nnG) is

Cov({(1, 0)⊗ Iqr}Tn/(
√
nnG)|X ) = 4(nGh(1))−1π(x)v0[ΩE(x, x) + ΩU (x, x) +

Op{(nGh(1))−1/2 + h(1)}] + en(x) + π(x)2ΩU (x, x) + h(1)2u2{Ω(2,0)
U (x, x)π(x) +

2Ω(1,0)
U (x, x)π̇X(x) + ΩU (x, x)π̈X(x)}π(x) + o(h(1)2), (E.0.11)

where en(x) = Op{(nGh(1))−1/2} with E{en(x)} = 0.

(ii) if assumptions (M1)-(M6) and (M9) are true, then conditioning on X , {(1, 0)⊗Iqr}Tn/(
√
nnG)

is asymptotically normal with mean zero and covariance matrix ΣT = 4π(x)2ΩU (x, x).

Proof of Lemma E.0.12. Let

Tni ≡
nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ {∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi}.

Note that conditioning on X , Tni are independent and Tn =
∑n

i=1 Tni. It follows from Equa-

tion (4.2.1) and Lemma E.0.9 that E(Tni|X ) = 0. Conditioning on X , the covariance matrix of

Cov(Tn|X ) =
∑n

i=1Cov(Tni|X ) =
∑n

i=1E(T ⊗2
ni |X ). Note that E(T ⊗2

ni |X ) = E{E(T ⊗2
ni |X ,Z)}. Let

Hh(1)(u−x) = Kh(1)(u−x)yh(1)(u−x) with yh(1)(u−x) = (1, (u−x)/h(1))T . With some calculations,

we have

E(T ⊗2
ni |X ,Z) =

nG∑
j,j
′
=1

Hh(1)(xj − x)Hh(1)(xj′ − x)T ⊗

E{∂Y ψ(Si(xj), C(zi, β(xj)))∂Y ψ(Si(xj′ ), C(zi, β(xj′ )))
T |X ,Z} ⊗ z⊗2

i .

Recall that M (k,k
′
)(v, u, z) = Λvecs(C(k)(v, z))(Λvecs(C(k

′
)(u, z)))T and ME(v, u, z) and MU (v, u, z)

are q×q matrix with the (k, k
′
) entries tr{ΣE(v, u)M (k,k

′
)(v, u), z)} and tr{ΣU (v, u)M (k,k

′
)(v, u, z)},

respectively. Let c(xj , zi) be a q × 1 vector with the k-th element tr[{Ei(xj) + Ui(xj)}C(k)(xj , zi)].

By Lemma E.0.9

E{∂Y ψ(Si(xj), C(zi, β(xj)))∂Y ψ(Si(xj′ ), C(zi, β(xj′ )))
T |X ,Z}

= 4E{c(xj , zi)c(xj′ , zi)
T |X ,Z}

= 4(ME(xj , xj′ , zi) +MU (xj , xj′ , zi))
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It follows that

E(T ⊗2
n |X ,Z) = 4n

nG∑
j,j′=1

Hh(1)(xj − x)Hh(1)(xj′ − x)T ⊗ E{(ME(xj , xj′ , z) +MU (xj , xj′ , z))⊗ z⊗2}

≡ 4n(AE(x) +AU (x)) (E.0.12)

We approximate AE(x) and AU (x) as follows. Since AE(x) = E{AE(x)} + Op(
√

Var(AE(x))),

we have

AE(x) = nGh
(1)−1[π(x)

 v0 v1

v1 v2

⊗ ΩE(x, x) +Op{(nGh(1))−1/2 + h(1)}], (E.0.13)

where ΩE(v, u) = E(ME(v, u, z)⊗ z⊗2).

Moreover, AU (x) can be written as the sum of A(1)
U (x) =

∑nG
j=1Hh(1)(xj − x)Hh(1)(xj − x)T ⊗

E(MU (xj , xj , z)⊗z⊗2) and A(2)
U (x) =

∑nG

j 6=j′ Hh(1)(xj−x)Hh(1)(xj′ −x)
T ⊗E(MU (xj , xj′ , z)⊗z⊗2).

Particularly, A(2)
U (x)/{nG(nG − 1)} is a U-statistic (DasGupta, 2008). Similar to AE(x), it can be

shown that

A
(1)
U (x) = nGh

(1)−1[π(x)

 v0 v1

v1 v2

⊗ E(MU (x, x, z)⊗ z⊗2)Op{(nGh(1))−1/2 + h(1)}].

For A(2)
U (x), we define three 2qr×2qr matrices: UU (x) = (UU ,ml(x)) = A

(2)
U (x)/{nG(nG−1)}, θ(x) =

(θml(x)) = E(UU (x)) and PU (v) = (PU ,ml(v)) =
∫ L0

0 Hh(1)(v − x)Hh(1)(u − x)T ⊗ E(MU (v, u, z) ⊗

z⊗2)π(u)du, where m = (m
′−1)qr+(k−1)r+m1 and l = (l

′−1)qr+(k
′−1)r+ l1 for m

′
, l
′
= 1, 2

and m1, l1 = 1, · · · , r. By using the Hajek projection, we have

UU ,ml(x) = θml(x) +
2
nG

nG∑
j=1

(PU ,ml(x)− θml(x)) + Ẽn,ml(x) for m, l = 1, · · · , 2qr,

where 2
∑nG

j=1(PU ,ml(x) − θml(x))/nG is the projection of UU ,ml(x) − θml(x) onto the set of all

statistics the form
∑nG

j=1 fj(x). Thus, with some calculations, we have

Var(Ẽn,ml(x)) = Var(UU ,ml(x)− θml(x))−Var{ 2
nG

nG∑
j=1

(PU ,ml(x)− θml(x))} = O((nGh(1))−2).
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Let ΩU (v, u) = (ΩU ,kk′,m1l1(v, u)) with ΩU ,kk′,m1l1(v, u) = E[tr(ΣU (v, u)M (k,k
′
)(v, u, z))(z⊗2)m1,l1 ].

As h(1) → 0, it follows from Taylor’s expansion that

θml(x) + o(h(1)2) = π(x)2um′−1ul′−1ΩU ,kk′ ,m1l1
(x, x) +

h(1)π(x)2Ω(1,0)

U ,kk′ ,m1l1
(x, x)(um′ul′−1 + um′−1ul′ ) +

h(1)ΩU ,kk′ ,m1l1
(x, x)π̇X(x)π(x)(um′ul′−1 + um′−1ul′ ) +

0.5h(1)2um′+1ul′−1{Ω
(2,0)

U ,kk′ ,m1l1
(x, x)π(x) + 2Ω(1,0)

U ,kk′ ,m1l1
(x, x)π̇X(x) +

ΩU ,kk′ ,m1l1
(x, x)π̈X(x)}π(x) + h(1)2um′ul′{Ω

(1,1)

U ,kk′ ,m1l1
(x, x)π(x)2 +

2Ω(1,0)

U ,kk′ ,m1l1
(x, x)π̇X(x)π(x) + ΩU ,kk′ ,m1l1

(x, x)π̇2
X(x)}+

0.5h(1)2um′−1ul′+1{Ω
(2,0)

U ,kk′ ,m1l1
(x, x)π(x) + 2Ω(1,0)

U ,kk′ ,m1l1
(x, x)π̇X(x) +

ΩU ,kk′ ,m1l1
(x, x)π̈X(x)}π(x)

Let m0 = (k − 1)r + m1 and l0 = (k
′ − 1)r + l1 and en = (en,m0l0(x)) with en,m0l0(x) =

2
∑nG

j=1{PU ,m0l0(x)− θm0l0(x)}/nG + Ẽn,m0l0(x). We have en,m0l0(x) = Op((nGh(1))−1/2) and thus

((1, 0)⊗ Iqr)AU (x)((1, 0)⊗ Iqr)T = n2
Gen(x) + n2

Gπ(x)2ΩU (x, x) + n2
Gop(h

(1)2)

nGh
(1)−1{π(x)v0ΩU (x, x) +Op((nGh(1))−1/2) +Op(h(1))}+

n2
Gh

(1)2u2{Ω(2,0)
U (x, x)π(x) + 2Ω(1,0)

U (x, x)π̇X(x) + ΩU (x, x)π̈X(x)}π(x) (E.0.14)

Substituting (E.0.13) and (E.0.14) into (E.0.12), we can obtain (E.0.11).

Finally, we will show that the sequence Tn/(
√
nnG) satisfies the Linderberg-Feller condition:

n∑
i=1

E

{∥∥∥∥ Tni√
nnG

∥∥∥∥2

1
(∥∥∥∥ Tni√

nnG

∥∥∥∥ > ε

)
| X

}
→ 0 for any ε > 0.

Let Tnij ≡ Kh(1)(xj−x)

 1
xj − x

h(1)

⊗(∂Y ψ(Si(xj), C(zi, β(xj)))⊗zi) and ‖T ′
nij‖2 = ‖∂Y ψ(Si(xj),

C(zi, β(xj)))‖2{1 + (xj − x)2/h(1)2}‖zi‖2. Then by partial sums of moment inequality, we have

E

{∥∥∥∥ Tni√
nnG

∥∥∥∥2

1
(∥∥∥∥ Tni√

nnG

∥∥∥∥ > ε

)
|X ,Z

}
≤ Ki ≡

E
{
‖
∑nG

j=1 Tnij‖2+b|X ,Z
}

(nn2
G)1+b/2εb
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≤
n1+b
G

∑nG
j=1E

{
‖Tnij‖2+b|X ,Z

}
(nn2

G)1+b/2εb

=
n1+b
G

∑nG
j=1Kh(1)(xj − x)2+bE

{
‖∂Y ψ(Si(xj), C(zi, β(xj)))‖2+b|X ,Z

}
(nn2

G)1+b/2εb‖zi‖2+b{1 + (xj − x)2/h(1)2}−1−b/2

=
(v0 + v2)1+b/2E

{
‖∂Y ψ(S(X), C(zi, β(X)))‖2+b|X = x,Z

}
n1+b/2εb‖zi‖2+b

Combining assumptions (M5) and (M9)yields that there is a constant d > 0 such that
∑n

i=1

∑nG
j=1Ki ≤

dn/n1+b/2 → 0. Thus, it follows from the Linderberg-Feller theorem that Tn/
√
nnG is asymptoti-

cally normal with mean 0 and covariance ΣT .

Lemma E.0.13. If assumptions (M1)-(M9) are true, then conditioning on X , Xn(x) is asymptoti-

cally normal with mean zero and covariance matrix Σβ(x, x
′
) = 4

[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1

ΩU (x, x
′
)
[
E{∂2

Y ψ(S(x
′
), C(z, β(x

′
)))⊗ z⊗2}

]−T
.

Proof of Lemma E.0.13. Let −η̂(xj) = R(xj)− (β̂(x)−β(x))− ( ˆ̇
β(x)− β̇(x))(xj −x). By Equation

(4.2.4), we have

h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ (∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi

+{∂2
Y ψ(Si(xj), C(zi, β(xj)))⊗ zTi ⊗ zi}η̂(xj) + [∂Y ψ(Si(xj), C(zi, β(xj) + η̂(xj)))⊗ zi

−∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi − {∂2
Y ψ(Si(xj), C(zi, β(xj)))⊗ zTi ⊗ zi}η̂(xj)])

= 0. (E.0.15)

Note that the second term on the left hand side of (E.0.15) is

−h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)
{
yh(1)(xj − x)⊗ ∂2

Y ψ(Si(xj), C(zi, β(xj)))⊗ z⊗2
i

}
R(xj)

+h(1)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)
{
yh(1)(xj − x)⊗2 ⊗ ∂2

Y ψ(Si(xj), C(zi, β(xj)))⊗ z⊗2
i

}
 β̂(x)− β(x)

h(1){ ˆ̇
β(x)− β̇(x)}

 ≡ L1 + L2 (E.0.16)
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By Lemma E.0.10, L1 and L2 can, respectively, be approximated by

L1 = −1
2
π(x)nnGh(1)3


 u2

0

⊗ E{∂2
Y ψ(S(x), C(z, β(x)))⊗ Z⊗2}

 β̈(x)(1 + op(1)),

L2 = π(x)nnGh(1)


 1 0

0 u2

E{∂2
Y ψ(S(x), C(z, β(x)))⊗ Z⊗2}


 β̂(x)− β(x)

h(1){ ˆ̇
β(x)− β̇(x)}


(1 + op(1)).

By the same arguments as those in Lemma E.0.11 and Assumption (M8), we have that the third

term on the left hand side of Equation (E.0.15) is given by op(nnGh(1)){‖h(1)2‖+ ‖β̂(x)− β(x)‖+

h(1)‖ ˆ̇
β(x)− β̇(x)‖}, which converges to zero in probability faster than the second term on the left

hand side of Equation (E.0.15).

Let

B =
h(1)2

2


 1 0

0 u2

⊗ E{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}


−1


 u2

0

⊗ E{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}

 β̈(x)(1 + op(1))

Then from Equation (E.0.15), we have

 β̂(x)− β(x)

h(1){ ˆ̇
β(x)− β̇(x)}

 = B − {nnGh(1)π(x)}−1


 1 0

0 u2

⊗ E{∂2
Y ψ(S(x), C(z, β(x)))⊗ z⊗2}


−1

Tn(1 + op(1)).

So, we have

√
n{β̂(x)− β(x)− 0.5u2h

(1)2β̈(x)} = −
√
n{nnGh(1)π(x)}−1

[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1

{(1, 0)⊗ Iqr}Tn(1 + op(1)). (E.0.17)
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Finally, it follows from Equation E.0.17, Lemma E.0.12 and the Slutsky’s theorem that

√
n{β̂(x)− β(x)− 0.5u2h

(1)2β̈(x)} →L N(0,Σβ(x, x
′
)).

Lemma E.0.14. If assumptions (M1)-(M6) are true, then we have

sup
x∈[0,L0]

n−1/2h(1)|TE(h(1), x)| = Op(
√
nGh(1)| log h(1)|) = op(nGh(1)). (E.0.18)

Proof of Lemma E.0.14. We define Fn(xj) = 2n−1/2
∑n

i=1[{C(xj , zi)vecs(Ei(xj))} ⊗ zi],

n−1/2h(1)TE(h(1), x) = h(1)
nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ Fn(xj),

n−1/2h(1)T ′E(h
(1), x) = h(1)

nG∑
j=1

Kh(1)(xj − x)yh(1)(xj − x)⊗ Fn(xj)1(||Fn(xj)||2 ≤ γnG),

n−1/2h(1)T̃E(h(1), x) = n−1/2h(1){T ′E(h(1), x)− E[T ′E(h
(1), x)|X ,Z]},

where γnG is a positive scalar. The proof of Lemma E.0.14 consists of three steps. In Step 1, we

show that

sup
x∈[0,L0]

n−1/2h(1)||TE(h(1), x)− T̃E(h(1), x)||2 = op(
√
nGh(1)| log h(1)|). (E.0.19)

In Step 2, we define an equally-spaced grid X̃ = {x̃l = lh(1) : l = 0, · · · , L0h
(1)−1} and then show

that

max
l
h(1)||n−1/2T̃E(h(1), x̃l)||2 = Op(

√
nGh(1)| log h(1)|). (E.0.20)

In Step 3, we show that

max
l

sup
x∈[x̃l−1,x̃l]

n−1/2h(1)||T̃E(h(1), x̃l−1)− T̃E(h(1), x)||2 = O(
√
nGh(1)| log h(1)|). (E.0.21)

Combing equations (E.0.19)-(E.0.21), we can finish the proof of Lemma E.0.14.

In Step 1, to show (E.0.19), we note that n−1/2h(1)||TE(h(1), x)− T̃E(h(1), x)||2 is upper bounded
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by

d

nG∑
j=1

||Fn(xj)||21(||Fn(xj)||2 ≥ γnG) + d

nG∑
j=1

E[||Fn(xj)||21(||Fn(xj)||2 ≥ γnG)|X ,Z],

where d is a positive scalar. Let γnG = δ(nG/| log h(1)|)1/q1 . It follows from the partial sums

moment inequality (DasGupta, 2008) that as γnG →∞, we have

max
j
E[||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)|X ,Z] = op(1).

Let ck(xj , zi) be the k-th element of the qr × 1 vector C(xj , zi)vecs(Ei(xj))} ⊗ zi for k = 1, · · · , qr.

For any c > 0 with q1 + c < 4, we have

max
j
E[||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)|X ,Z]

≤ max
j
E[‖n−1/2

n∑
i=1

{C(xj , zi)vecs(Ei(xj))} ⊗ zi‖q1+c|X ,Z]/γcnG

≤ max
j
n−(q1+c)/2c(q1)n(q1+c)/2−1(qr)(q1+c)/2−1

n∑
i=1

qr∑
k=1

E[|ck(xj , zi)|q1+c]/γcnG
= o(1).

Therefore, we can show that

nG∑
j=1

E[||Fn(xj)||21(||Fn(xj)||2 ≥ γnG)|X ,Z]

≤
nG∑
j=1

E[||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)|X ,Z]/γq1−1
nG

≤ o(1)n1/q1
G | log h(1)|1−1/q1 ≤ o(

√
nGh(1)| log h(1)|). (E.0.22)

Furthermore, we have

Var(
nG∑
j=1

||Fn(xj)||21(||Fn(xj)||2 ≥ γnG))

≤ EZEE{[
nG∑
j=1

||Fn(xj)||21(||Fn(xj)||2 ≥ γnG)]2|X ,Z}

≤ EZEE{[
nG∑
j=1

d2||Fn(xj)||221(||Fn(xj)||2 ≥ γnG)]|X ,Z}
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≤ EZEE [
nG∑
j=1

d2||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)|X ,Z]/γq1−2
nG

≤ max
j
E[||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)]nG/γq1−2

nG

≤ max
j
E[||Fn(xj)||q12 1(||Fn(xj)||2 ≥ γnG)]nGh(1) = o(nGh(1)| log h(1)|), (E.0.23)

where d2 is a finite universal constant (DasGupta, 2008).

Therefore, combing equations (E.0.22) and (E.0.23), we have

nG∑
j=1

||Fn(xj)||21(||Fn(xj)||2 ≥ γnG) = op(
√
nGh(1)| log h(1)|),

which yields (E.0.19).

In Step 2, to prove (E.0.20), we note that

h(1)||Kh(1)(xj − x){Fn(xj)1(||Fn(xj)||2 ≤ γnG)− (E.0.24)

E[yh(1)(xj − s)⊗ Fn(xj)1(||Fn(xj)||2 ≤ γnG)|X ,Z]}||2

≤ d3(nG/| log h(1)|)1/q1 ≤ d3

√
nGh(1)/| log h(1)|, (E.0.25)

where d3 is a positive scalar.

Furthermore, let EX denote the expectation to xj , we have

Var(
nG∑
j=1

h(1)Kh(1)(xj − x)yh(1)(xj − x)⊗ Fn(xj)1(||Fn(xj)||2 ≤ γnG)|Z)

≤
nG∑
j=1

EX {h(1)2Kh(1)(xj − x)2E[yh(1)(xj − x)⊗2 ⊗ Fn(xj)⊗21(||Fn(xj)||2 ≤ γnG)|X ,Z]}

≤
nG∑
j=1

h(1)2EX [Kh(1)(xj − x)2n−1
n∑
i=1

yh(1)(xj − x)⊗2 ⊗ {C(xj , zi)ΣE(xj , xj)C(xj , zi)T ⊗ z⊗2
i }]

= Op(nGh(1)).

Therefore, by applying Bernstein inequality to each component of h(1)n−1/2T̃E(h(1), x̃l) (van der

Vaar and Wellner, 1996), we can prove (E.0.20). For instance, let e1 be a dim(T̃E(h(1), x̃l)) × 1

119



vector with the first element 1 and zero otherwise, we have

P (max
l
|e1h

(1)n−1/2T̃E(h(1), x̃l)| > t) ≤ E[exp(−1
2

t2

v(Z) + td3

√
nGh(1)/| log h(1)|/3

)|Z], (E.0.26)

where t is a positive scalar, and v(Z) ≥ Var(e1h
(1)n−1/2T̃E(h(1), x̃l)|Z). By setting t = C ′

√
nGh(1)| log h(1)|

for large C ′ > 0, we can show that the right hand side of (E.0.26) is at the order of h(1)C′′ , where

C ′′ is a positive scalar. Thus,

P (max
l
|e1h

(1)n−1/2T̃E(h(1), x̃l)| > C ′
√
nGh(1)| log h(1)|) → 0 as h(1) → 0.

In Step 3, we focus on the first component of yh(1)(xj − x). We first consider a function class,

denoted by Fl, which is given by

Fl = {wl(X;x) = h(1)[Kh(1)(X − x̃l)−Kh(1)(X − x)]Fn(X)1(||Fn(X)||2 ≤ γnG) : x ∈ [x̃l−1, x̃l]}.

It follows from Assumption M4 and γnG that Fj is a pointwise measurable class of functions and

supx∈[0,L0] |wl(X;x)| ≤ d4γnG ≤ d′4
√
nGh(1)/| log h(1)|. Let ||φ||B = supz∈B |φ(z)| for any real

valued function φ defined on a set B and τ1, · · · , τnG be a sequence of independent Rademacher

random variables independent of observed data. It follows from an inequality of Talagrand (Tala-

grand, 1994; Einmahl and Mason, 2000) that conditional on Z, we have for suitable finite constants

A1, A2 > 0

P{||
nG∑
j=1

[wl(xj ;x)− E[wl(xj ;x)|Z]||Fl
≥ A1(E[||

nG∑
j=1

τjwl(xj ;x)||Fl
|Z] + t)|Z}

≤ 2[exp(−A2t
2/(nGVFl

(Z))) + exp(−A2t/(d′4
√
nGh(1)/| log h(1)|))], (E.0.27)

where VFl
(Z) = supx∈[x̃l−1,x̃l]

Var(wl(X;x)|Z). It can be shown that

VFl
(Z) ≤ sup

x∈[x̃l−1,x̃l]
EX{h(1)2[Kh(1)(X − x̃l)−Kh(1)(X − x)]2E[Fn(X)⊗2|X,Z]}

≤ d5h
(1)n−1

n∑
i=1

EX{C(X, zi)ΣE(X,X)C(X, zi)T } ⊗ z⊗2
i .
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where d5 is a positive scalar. By setting t = d6

√
nGh(1)| log h(1)| for large d6, we can show that

A2t
2/(nGVFj′ (Z)) = d′6| log h(1)| and A2t/(d′4

√
nGh(1)/| log h(1)|) = d′′6| log h(1)|. Moreover, it fol-

lows from assumption M4 that Fj′ is a pointwise measurable Vapnik and Cervonenkis (VC) class

(van der Vaar and Wellner, 1996). By using Proposition A.1 of (Einmahl and Mason, 2000), we

can show that maxlE[||
∑nG

j=1 τjwl(xj ;x)||Fl
|Z] ≤ O(

√
nGh(1)| log h(1)|). This yields (E.0.21).

Let ΠnG(·) be the sampling distribution function based on X and Π(·) be the distribution

function of xj .

Lemma E.0.15. Let (C(u, zi)vecs(Ei(u))(k) be the k-th element of the q×1 vector C(u, zi)vecs(Ei(u)

If assumptions (M1)-(M6) are true, then for any r ≥ 0 and i, we have

sup
x∈[0,L0]

∣∣∣∣∫ Kh(1)(u− x)
(u− x)r

h(1)r
d[ΠnG(u)−Π(u)]

∣∣∣∣ = Op(n
−1/2
G h(1)−1), (E.0.28)

sup
x∈[0,L0]

∣∣∣∣∫ Kh(1)(u− x)
(u− x)r

h(1)r
(C(u, zi)vecs(Ei(u)))(k)dΠnG(u)

∣∣∣∣ = Op(

√
| log(h(1))|
nGh(1)

).

(E.0.29)

Proof of Lemma E.0.15. Equation (E.0.28) follows from the integration by parts, while (E.0.29)

can be proved by using the same arguments of Lemma E.0.14.

Lemma E.0.16. If assumptions (M1)-(M6) are true, then we have

sup
x∈[0,L0]

‖n−1/2
n∑
i=1

∆nG(x;Ui, zi, h(1))⊗ zi‖ = Op((nGh(1))−1/2 + h(1)−1n
−1/2
G ). (E.0.30)

Proof of Lemma E.0.16. Let τ1, · · · , τn be a sequence of independent Rademacher random variables

independent of observed data. It follows from the symmetrization inequality (van der Vaar and

Wellner, 1996) that

E||n−1/2
n∑
i=1

∆nG(x;Ui, zi, h(1))⊗ zi||[0,L0] ≤ 2E{Eτ ||n−1/2
n∑
i=1

∆nG(x;Ui, zi, h(1))⊗ τizi||[0,L0]]}.

We consider a function class, denoted by FU , which is given by

FU = {f(z,U ;x) = ∆nG(x;U , z, , h(1))⊗ z : x ∈ [0, L0]}.
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Let N(ε,FU , dQ) be the minimal number of dQ-balls with radius ε needed to cover FU . It follows

from that for any fixed {(z1,U1), · · · , (zn,Un)}, we have

Eτ ||n−1/2
n∑
i=1

∆nG(x;Ui, zi, h(1))⊗ τizi||[0,L0]

≤ Eτ‖n−1/2
n∑
i=1

∆nG(x0;Ui, zi, h(1))⊗ τizi‖2 + c0

∫ Dn

0

√
logN(ε,FU , d2;z,U )dε,(E.0.31)

where x0 is any point in [0, L0] and and c0 > 0 is a positive constant. Moreover, we define

D2
n = sup

x∈[0,L0]
|n−1

n∑
i=1

tr{[∆nG(x;Ui, zi, h(1))⊗ zi]⊗2}|, (E.0.32)

d2;z,U (x1, x2)2 = n−1
n∑
i=1

tr{z⊗2
i }||∆nG(x1;Ui, zi, h(1))−∆nG(x2;Ui, zi, h(1))||22.

The proof of (E.0.31) consists of two steps. First, we note that

[Eτ‖n−1/2
n∑
i=1

∆nG(x0;Ui, zi, h(1))⊗ τizi‖2]2 ≤ n−1
n∑
i=1

‖zi‖22||∆nG(x0;Ui, zi, h(1))||22. (E.0.33)

With some calculations, we have

E[||∆nG(x0;Ui, zi, h(1))||22] = n−1
G E[

∫ L0

0
Kh(1)(u− x0)2tr(yh(1)(u− x0)⊗2)

‖C(u, zi)vecs(Ui(u))‖22du−
∫ L0

0
Kh(1)(u− x0)Kh(1)(v − x0)yh(1)(u− x0)Tyh(1)(v − x0)

{C(u, zi)vecs(Ui(u))}T {C(v, zi)vecs(Ui(v))}dudv]

= O(n−1
G + n−1

G h(1)−1). (E.0.34)

Thus, we have [Eτ |n−1/2
∑n

i=1 ∆nG(x0;Ui, zi, h(1))⊗ τizi|]2 = O(n−1
G + n−1

G h(1)−1).

Second, it is noted that

∆nG(x;Ui, zi, h(1)) =
∫ L0

0
Kh(1)

(u− x)yh(1)(u− x)⊗ C(u, zi)vecs(Ui(u))d[ΠnG(u)−Π(u)].
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It follows from an integration by parts that ||∆nG(x;Ui, zi, h(1))||2 is upper bounded by

c1h
(1)−1 sup

x∈[0,L0]
|ΠnG(x)−Π(x)| sup

x∈[0,L0]
[‖C(x, zi)vecs(Ui(x))‖2 + ‖∂xC(x, zi)vecs(Ui(x))‖2],

where c1 is a positive constant. Therefore, we have

Dn ≤ An = c0h
(1)−1 sup

x∈[0,L0]
|ΠnG(x)−Π(x)|√√√√n−1

n∑
i=1

[‖zi‖22{ sup
x∈[0,L0]

‖C(x, zi)vecs(Ui(x))‖2 + ‖∂xC(x, zi)vecs(Ui(x))‖2}2].

It follows from the integration by parts that there is a positive scalar c̃1 such that

‖∆nG(x1;Ui, zi, h(1))−∆nG(x2;Ui, zi, h(1))‖2

= ‖
∫ L0

0
[Hh(1)(u− x1)−Hh(1)(u− x2)]C(x, zi)vecs(Ui(x))d[ΠnG(u)−Π(u)]‖

≤ |x1 − x2|c̃1h(1)−1 sup
x∈[0,L0]

|ΠnG(x)−Π(x)| sup
x∈[0,L0]

[‖C(x, zi)vecs(Ui(x))‖2 +

‖∂xC(x, zi)vecs(Ui(x))‖2]. (E.0.35)

For any given x1, x2 ∈ [0, L0], we have d2;z,U (x1, x2) ≤ c2|x1−x2|An, where c2 is positive scalar.

Therefore, we have N(εAn,FU , d2;z,U ) = O(ε−1) and

∫ Dn

0

√
logN(ε,FU , d2;z,U )dε ≤

∫ 1

0

√
logN(εAn,FU , d2;z,U )dεAn

= O(h(1)−1n
−1/2
G log log(nG)) = Op(h(1)−1n

−1/2
G ).

Proof of Theorem 4.2.1 . The proof of Theorem 4.2.1 (i) consists of two steps. The first step is to

show the finite convergence of {Xn(x) : x ∈ [0, L0]}. The second step is to check the asymptotic

continuity of Xn(x) as x varies in [0, L0]. Moreover, Theorem 4.2.1 (ii) is a consequence of Theorem

4.2.1 (i).

In the first step, it follows from Lemma E.0.13 that at a single point x, Xn(x) converges weakly

to N(0,Σβ(x)). The finite convergence can be directly verified by generalizing the asymptotic
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distribution of Xn(x) at one point to any finite number of points using the Cramer-Wold theorem

(DasGupta, 2008).

In the second step, we will show the stochastic continuity of Xn(x). It follows from equations

(E.0.4) and (E.0.17) that

√
n{β̂(x)− β(x)− 0.5u2h

(1)2β̈(x)} = −
√
n{nnGh(1)π(x)}−1

[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1 {TE(h(1), x) + TU (h(1), x)}{1 + op(1)}.

It follows from lemmas E.0.14 and E.0.15 that

n−1/2n−1
G TE(h(1), x) = Op((nGh(1))−1/2

√
| log h(1)|)Op(| log(hnG,k)|(nGhnG,k)

−1)

hold uniformly for all x ∈ [0, L0]. Thus, it follows from the Slutsky’s lemma and the con-

tinuous mapping theorem that we only need to show the asymptotic tightness of the sequence

{X̃n(x) : x ∈ [0, L0]} defined by X̃n(x) = n−1/2n−1
G TU (h(1), x). Note that X̃n(x) can be writ-

ten as the sum of n−1/2
∑n

i=1 ∆nG(x;Ui, zi, h(1)) ⊗ zi and X̂n(x) = n−1/2
∑n

i=1

∫ L0

0 Hh(1)(u − x) ⊗

{C(xj , zi)vecs(Ui(xj))}π(u)du⊗ zi. It follows from Lemma E.0.16 that we only need to show that

X̂n(x) is asymptotic tight.

The asymptotic tightness of X̂n(x) can be proved by verifying a classical, simple sufficient

condition (van der Vaar and Wellner, 1996). The X̂n(x) can be written as

X̂n(x) = n−1/2
n∑
i=1

∫ L0

0
Hh(1)(u− x)⊗ [C(u, zi)vecs(Ui(u))− C(x, zi)vecs(Ui(x))]π(u)du

⊗zi + n−1/2
n∑
i=1

∫ L0

0
Hh(1)(u− x)π(u)du⊗ {C(x, zi)vecs(Ui(x))⊗ zi} (E.0.36)

Let em be a 2qr × 1 vector with the m-th element 1 and zero otherwise. Note that the first term

on the right hand side of (E.0.36) equals

n−1/2
n∑
i=1

∫
[0,L0]∩[x−h(1),x+h(1)]

H1(u)[C(x+ h(1)u, zi)vecs(Ui(x+ h(1)u))−

C(x, zi)vecs(Ui(x))]π(x+ h(1)u)du⊗ zi

124



Therefore, it follows from assumptions M1-M3 that

E{em[X̂n(x)− X̂n(x2)]}2 = (x1 − x2)2O(1). (E.0.37)

Therefore, we can finish the proof of Theorem 4.2.1.

Proof of Theorem 4.2.2

We define

E i(x) =
nG∑
j=1

K̃nG,h(2)(xj − x)vecs(Ei(xj)),

∆Ui(x) =
nG∑
j=1

K̃nG,h(2)(xj − x)vecs(Ui(xj)− Ui(x)), (E.0.38)

∆β(x, zi) =
nG∑
j=1

K̃nG,h(2)(xj − x)vecs(log(C(zi, β(xj))−1Si(xj)C(zi, β(xj))−T )

− log(C(zi, β̂e(xj))−1Si(xj)C(zi, β̂e(xj))−T )),

∆i(x) = E i(x) + ∆Ui(x) + ∆β(x, zi).

Let E i,k(x), ∆Ui,k(x), ∆βk(x, zi), Ûi,k(x) and Ui,k(x) denote the k-th element of E i(x), ∆Ui(x),

∆β(x, zi), Ûi(x) and Ui,k(x) for k = 1, · · · , q, respectively. We need the following two lemmas,

whose detailed proofs can be found in Zhu et al. (2010a).

Lemma E.0.17. If assumptions (M1), (M3), (M4) and M(10) are true, then we have

sup
(x,t)

n−1|
n∑
i=1

E i,k(x)Ui,k′(t)| = Op(n−1/2(log n)1/2). (E.0.39)

Lemma E.0.18. If assumptions (M1), (M3), (M4) and (M10) are true, then we have

sup
(x,t)

n−1|
n∑
i=1

E i,k(x)E i,k′(t)| = O((nGh(2))−1 + (log n/n)1/2) = op(1). (E.0.40)
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Proof of Theorem 4.2.2 Recall that ∆i,k(x) = vecs(Ûi,k(x)− Ui,k(x)) and

n−1
n∑
i=1

Ûi,k(x)Ûi,k′(t) = n−1
n∑
i=1

∆i,k(x)∆i,k′(t) + n−1
n∑
i=1

Ui,k(x)∆i,k′(t) (E.0.41)

+n−1
n∑
i=1

∆i,k(x)Ui,k′(t) + n−1
n∑
i=1

Ui,k(x)Ui,k′(t).

The proof consists of two steps. The first step is to show that the first three terms on the right

hand side of (E.0.41) converge to zero uniformly for all (x, t) ∈ [0, L0]× [0, L0] in probability. The

second step is to show the uniform convergence of n−1
∑n

i=1 Ui,k(x)Ui,k′(t)T to ΣU ,kk′(x, t) over

(x, t) ∈ [0, L0]× [0, L0] in probability.

We first show that

sup
(x,t)

n−1|
n∑
i=1

∆i,k(x)Ui,k′(t)| = Op(n−1/2 + ĥ(1)2
e + h(2)2 + (log n/n)1/2). (E.0.42)

Since

|
n∑
i=1

∆i,k(x)Ui,k′(t)| ≤ n−1{|
n∑
i=1

E i,k(x)Ui,k′(t)|+ |
n∑
i=1

∆Ui,k(x)Ui,k′(t)|+

|
n∑
i=1

∆βk(x, zi)Ui,k′(t)|}, (E.0.43)

it is sufficient to focus on the three terms on the right-hand side of (E.0.43).

Since
√
n{β̂e(·) − β(·) − 0.5u2ĥ

(1)2
e β̈(·)(1 + op(1))} weakly converges to a Gaussian process in

`∞([0, L0]) as n→∞, it is asymptotically tight. Thus, by Tayler’s expansion, we have

∆β(x, zi) = −
nG∑
j=1

K̃nG,h(2)(xj − x)∂Y vecs(log(C(zi, β(xj))−1Si(xj)C(zi, β(xj))−T ))⊗ zTi 0.5u2

ĥ(1)2
e β̈(xj)(1 + op(1)) +

nG∑
j=1

K̃nG,h(2)(xj − x)∂Y vecs(log(C(zi, β(xj))−1Si(xj)C(zi, β(xj))−T ))⊗ zTi

{0.5u2ĥ
(1)2
e β̈(xj)(1 + op(1)) + β(xj)− β̂e(xj)}
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Thus,

‖∆βk(x, zi)‖ ≤ (Op(h(1)2
e ) +Op(n−1/2))

sup
x
‖E[∂Y vecs(log(C(zi, β(x))−1Si(x)C(zi, β(x))−T ))]⊗ zTi ‖2. (E.0.44)

So, we have

n−1
n∑
i=1

‖∆βk(x, zi)Ui,k′(t)‖ ≤ (Op(h(1)2
e ) +Op(n−1/2))

sup
(x,t)

n−1
n∑
i=1

‖E[∂Y vecs(log(C(zi, β(x))−1Si(x)C(zi, β(x))−T ))]⊗ zTi ‖2|Ui,k′(t)|

= Op(h(1)2
e ) +Op(n−1/2).

Similarly, we have

n−1|
n∑
i=1

∆Ui,k(x)Ui,k′(t)| ≤ n−1
n∑
i=1

sup
x,t∈[0,L0]

|∆Ui,k(x)Ui,k′(t)| = Op(h(2)2) = op(1).

It follows from Lemma E.0.17 that sup(x,t) n
−1{|

∑n
i=1 E i,k(x)Ui,k′(t)| = O((log n/n)1/2). Similarly,

we can show that sup(x,t) n
−1|
∑n

i=1 ∆i,k(t)Ui,k′(x)| = Op(n−1/2 + ĥ
(1)2
e + h(2)2 + (log n/n)1/2).

We can show that

sup
(x,t)

‖n−1
n∑
i=1

[Ui,k(x)Ui,k′(t)− ΣU ,kk′(x, t)]‖ = Op(n−1/2). (E.0.45)

Since |Ui,k(x1)Ui,k′(t1)−Ui,k(x2)Ui,k′(t2)| ≤ 2(|x1−x2|+ |t1−t2|) sup
x∈[0,L0]

|U̇i,k(x)| sup
x∈[0,L0]

|Ui,k′(x)| holds

for any (x1, t1) and (x2, t2), the functional class {Ui,k(u)Ui,k′(v) : (u, v) ∈ [0, L0]2} is a Vapnik and

Cervonenkis (VC) class (van der Vaar and Wellner, 1996; Kosorok, 2008). Thus, it yields that

(E.0.45) is true.

Finally, we can show that

sup
(x,t)

n−1|
n∑
i=1

∆i,k(x)T∆i,k′(t)| = Op((nGh(2))−1 + (log n/n)1/2 + ĥ(1)4
e + h(2)4). (E.0.46)
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It follows from the Cauchy-Schwartz inequality that

|
n∑
i=1

∆i,k(x)∆i,k′(t)| ≤ O(1) sup
(x,t)

[|
n∑
i=1

E i,k(x)E i,k′(t)|+ |
n∑
i=1

∆Ui,k(x)∆Ui,k′(t)|+

|
n∑
i=1

∆βk(x, zi)∆β′k(t, zi)|].

It follows from Lemma E.0.18 that sup(x,t) n
−1|
∑n

i=1 E i,k(x)E i,k′(t)| = O((nGh(2))−1+(log n/n)1/2).

Since supx∈[0,L0] |∆Ui,k(x)| = O(1) supx∈[0,L0] |Üi,k(x)|h(2)2, we have sup(x,t) n
−1|
∑n

i=1 ∆Ui,k(x)∆Ui,k′(t)|

= O(1)h(2)4. Furthermore, by (E.0.44), we have |
∑n

i=1 ∆βk(x, zi)∆βk′(t, zi)| = Op(n−1 + ĥ
(1)4
e ).

Combining (E.0.41)-(E.0.45) leads to sup(x,t) |Σ̂U ,kk′(x, t)−ΣU ,kk′(x, t)| = Op(n−1/2+(nGh(2))−1+

ĥ
(1)2
e +h(2)2+(log n/n)1/2). So sup(x,t) ‖Σ̂U (x, t)−ΣU (x, t)‖ = Op(n−1/2+(nGh(2))−1+ĥ(1)2

e +h(2)2+

(log n/n)1/2). Similar to the arguments in (E.0.41)-(E.0.45), we can show that supx |Σ̂E(x, x) −

ΣE(x, x)| = op(1).

Proof of Theorem 4.2.3

Proof of Theorem 4.2.3. We define G̃(x)(g) as follows:

√
n{(1, 0)⊗ Iqr}

 n∑
i=1

nG∑
j=1

Kh(1)(xj − x)
{
yh(1)(xj − x)⊗2 ⊗ ∂2

Y ψ(Si(xj), C(zi, β(xj)))⊗ z⊗2
i

}−1

n∑
i=1

τ gi

nG∑
j=1

Hh(1)(xj − x)⊗ {∂Y ψ(Si(xj), C(zi, β(xj)))⊗ zi}. (E.0.47)

Following the arguments in (Kosorok, 2003; Zhu and Zhang, 2006; Zhu et al., 2010a), we will prove

Theorem 4.2.3 in three steps. In Step 1, we will prove the unconditional weak convergence of

G̃(x)(g). In Step 2, we will prove the weak convergence of G̃(x)(g) conditional on the data. In Step

3, we will prove the weak convergence of G(x)(g) conditional on the data by showing that G̃(x)(g)

and G(x)(g) are asymptotically equivalent as n→∞.

In Step 1, it follows from Equation (E.0.4) that

G̃(x)(g) = 2
√
n{(1, 0)⊗ Iqr} n∑

i=1

nG∑
j=1

Kh(1)(xj − x)
{
yh(1)(xj − x)⊗2 ⊗ ∂2

Y ψ(Si(xj), C(zi, β(xj)))⊗ z⊗2
i

}−1
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n∑
i=1

nG∑
j=1

Hh(1)(xj − x)⊗ {C(xj , zi)vecs(Ei(xj) + Ui(xj))⊗ τ gi zi}.

Therefore, by treating τ
(g)
i zi as the new ’covariate’ vector, we can apply the same arguments in

the proof of Lemma (E.0.13) to prove that G̃(g)
k converges to Gk in distribution; that is, G̃(g)

k is

asymptotically measurable.

In step 2, we define

S(x, t) = n−1n−2
G

n∑
i=1

nG∑
j,j′=1

Hh(1)(xj − x)Hh(1)(xj′ − t)T ⊗ ∂Y ψ(Si(xj), C(zi, β(xj)))

∂Y ψ(Si(xj′), C(zi, β(xj′)))T ⊗ z⊗2
i ,

SUU (x, t) = 4n−1n−2
G

n∑
i=1

nG∑
j,j′=1

Hh(1)(xj − x)HhnG,k
(xj′ − t)T ⊗ C(xj , zi)vecs(Ui(xj))

vecs(Ui(xj′))TC(xj′ , zi)T ⊗ z⊗2
i ,

SUE(x, t) = 4n−1n−2
G

n∑
i=1

nG∑
j,j′=1

Hh(1)(xj − x)Hh(1)(xj′ − t)T ⊗ C(xj , zi)vecs(Ui(xj))

vecs(Ei(xj′))TC(xj′ , zi)T ⊗ z⊗2
i ,

SEE(x, t) = 4n−1n−2
G

n∑
i=1

nG∑
j,j′=1

Hh(1)(xj − x)Hh(1)(xj′ − t)T ⊗ C(xj , zi)vecs(Ei(xj))

vecs(Ei(xj′))TC(xj′ , zi)T ⊗ z⊗2
i .

By Lemma E.0.10, conditional on data, G̃(x)(g) is a normal random vector with zero mean and

covariance given by (nnGπ(x))−2{(1, 0)⊗ Iqr}
[
diag(1, u2)⊗ E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1

S(x, t)
[
diag(1, u2)⊗ E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1 {(1, 0)T ⊗ Iqr}. It is easy to see that

S(x, t) = SUU (x, t) + SUE(x, t) + SUE(t, x) + SEE(x, t). (E.0.48)

Following the arguments of lemmas E.0.17 and E.0.18, we can show that SUE(x, t) + SUE(t, x) +

SEE(x, t) = o(1). Furthermore, it can be shown that E[SUU (x, t)] = 4diag(1, 0)⊗ΩU (x, x)+O(ĥ(1)
e )

and Cov[SUU (x, t)] = O(n−1). Let Covτ be denoted as the covariance with respect to τ (g)
i condi-

tional on the data. Therefore, we have Covτ [G̃(x)(g), G̃(t)(g)] converges to 4{E(∂2
Y ψ(S(x), C(z, β(x)))

⊗z⊗2)}−1ΩU (x, x)
[
E{∂2

Y ψ(S(x), C(z, β(x)))⊗ z⊗2}
]−1 in probability. We can obtain the marginal

convergence of G̃(x)(g) in the conditional central limit theorem by using the Cramer-Wald method.
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For each δ > 0, let X̃δ = {lδ : l = 0, · · · , L0δ
−1} be an equally δ−spaced grid and [0, L0]δ(x) as-

sign to each x ∈ [0, L0] a closest element of X̃δ. The finite convergence results yield supf∈BL1(`∞([0,L0])

|Eτf(G̃(g)([0, L0]δ))−Ef(G([0, L0]δ))| → 0 in probability, as g →∞. Due to the continuity of G(x),

we haveG([0, L0]δ(x)) → G(x) almost surely as δ → 0, that is, limδ→0 supf∈BL1(`∞([0,L0]) |Eτf(G̃([0, L0]δ))

−Ef(G([0, L0]))| = 0. Finally, we have

sup
f∈BL1(`∞([0,L0])

|Eτf(G̃(g)([0, L0]δ(·)))− Eτf(G̃(g))| ≤ Eτ ( sup
|x−x′|2<δ

|G̃(g)(x)− G̃(g)(x′)|).

Thus, the expectation on the left side of the above equation is smaller than E(sup|x−x′|2<δ |G̃
(g)(x)−

G̃(g)(x′)|), which was established by the unconditional weak convergence of G̃(g)(·) in Step 1. This

finishes the proof of Step 2.

Let ∆∂Y ψ(zi, xj) = ∂Y ψ(Si(xj), C(zi, β̂(xj))) − ∂Y ψ(Si(xj), C(zi, β(xj))). In Step 3, following

the arguments in Theorem 4.2.3 of Kosorok (2003), we only need to prove that

∆n,β = sup
x∈[0,L0]

n−1
n∑
i=1

tr[{n−1
G

nG∑
j=1

Hh(1)(xj − x)⊗∆∂Y ψ(zi, xj)}⊗2 ⊗ z⊗2
i ] = op(1).

It follows from the proof of Theorem 4.2.2 that ∆n,β = Op(n−1 + (ĥ(1)
e )4), which converges to zero

in probability. This finishes the proof of Theorem 4.2.3.
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