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ABSTRACT 
 

YUKIKO MAKIHARA: Functional Implications of H-reflex Modulation and Modification 
in Human Soleus, Medial Gastrocnemius, and Lateral Gastrocnemius Muscles 

(Under the direction of Richard L. Segal) 

 

Sensorimotor integration of the central nervous system (CNS) plays an important role 

in motor control.  In order to evaluate this highly complicated phenomenon, the H-reflex has 

been used as a window to assessing neural activity in the spinal cord.  This dissertation 

investigated principles governing functional association among the H-reflexes in three calf 

muscles.  First, the H-reflexes of the soleus, and medial and lateral gastrocnemii (MG and 

LG) were examined during walking, and between standing and walking.  The H-reflexes of 

all three muscles showed similar phase-dependent and task-dependent modulations, and thus, 

the H-reflexes of three muscles are synergistically modulated to facilitate ongoing motor task.  

Second, long-term modifications of the H-reflexes in the three muscles, induced by the 

soleus H-reflex operant down-conditioning, were examined.  Operant conditioning induced 

acute adaptation in the soleus and MG H-reflexes, however, long-term change occurred only 

in the soleus H-reflex.  It appeared that compensatory plasticity may occur to prevent long-

term change in the MG H-reflex, and in turn, to preserve the existing repertoire of motor 

skills.  Third, effects of long-term change in the soleus H-reflex induced by operant 

conditioning were investigated during locomotion.  Although decrease of the soleus H-reflex 

was retained across conditioning sessions, the soleus locomotor H-reflex did not change.  

Other EMG activity as well as joint kinematics were maintained the same after conditioning, 
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and thus, the normal locomotion was preserved.  Minimum adjustment of reflex gain could 

be the mechanism responsible for maintaining the appropriate reflex during walking.  Based 

on findings from the three studies, the present dissertation demonstrated that the CNS 

controls the H-reflexes of the three synergist muscles to be synergistic and/or possibly 

compensatory, which are logical directions to facilitate or preserve the motor skills in the 

current behavioral repertoire.  Furthermore, especially in the existing repertoire, normal 

locomotion is maintained due to minimum adjustment by the CNS.  Thus, the CNS is shown 

to be capable of accommodating a new skill while preserving the current motor skills.  

Preserving the existing repertoire may not occur in patients with abnormal movement pattern, 

and thus, similar investigations with patients should occur in the future.
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CHAPTER 1 
 
 
 
 

INTRODUCTION 



1. Control of a movement 

Movement plays a crucial role in human life allowing us to purposefully achieve 

specific goals.  Impairments in movement due to injury or disease can cause disabilities in 

almost all aspects of quality of life by limiting one’s ability to participate in normal social 

activity.  Thus, principles governing human movements are one of the main interests in 

behavioral science and clinical fields. 

In natural circumstances (as opposed to experimental situations in animals such as 

decerebration or deafferentation), the human motor system and sensory system interact with 

each other in complex ways through activity of the central nervous system (CNS).  The CNS 

comprises two major different levels for motor control; the cerebral cortex and the spinal 

cord, which interact directly or indirectly through the brain stem (Ghez, 1991).  The 

interaction of the cortex and spinal cord is also under continuous influence from two 

subcortical systems; the basal ganglia and the cerebellum.  Through the sensorimotor 

integration of the CNS in motor control, so-called “integrative action” of the CNS 

(Sherrington, 1947), humans are able to produce appropriate movements and function in the 

environment.  It is assumed that information (i.e., input) available in the environment is 

accepted by the sensory system, integrated by the function of the CNS, and converted into 

output as observable response in the motor system (Schmidt and Lee, 2005).  Thus, 

sensorimotor integration of the CNS is information processing that occurs in the interval 

between the presentation of the stimulus and the beginning of the response (i.e., reaction-

time).  There are at least three processing stages in the sensorimotor integration of the CNS, 

which are organized hierarchically and in parallel.  First, sensory input from receptors in 

many different sites such as muscles, joints, tendons, skin, eyes, and ears are processed in 

 
 2



parallel to sense and identify the stimulus.  This stage is called stimulus-identification stage.  

After the stimulus has been properly identified, the information is processed in two 

sequential stages.  The second stage following the stimulus identification is called response-

selection stage in which a response to be made is decided.  The response could be either one 

of a number of actions in the existing repertoire, or no action at all (i.e., the stimulus is 

ignored).  Finally, after the response has been selected, the organization of the selected 

response is programmed.  This stage is called response-programming stage, which is the 

final stage of the information processing that lead to execution of the appropriate motor 

response. 

As shown in the concept of information processing, one way to model motor control 

is that humans heavily rely on sensory information to regulate movements.  This notion is 

represented in closed-loop control system theory (Schmidt and Lee, 2005).  Closed-loop 

systems are important particularly during a movement that lasts for a period of time.  Once 

the action is initiated, feedback signals from the sensory receptors occurred as a consequence 

of the current movement are sent back to the information processing centers.  In the 

information processing centers, the feedback signals are received and processed in which the 

difference between the actual and desired states (i.e., error) is computed.  Then, the response 

is programmed so as to reduce the error.  Thus, decisions about future action are 

continuously made throughout the movement in a closed loop to provide ongoing control.  In 

contrast to the closed-loop system is an open-loop system, in which the motor response is 

programmed in advance without considering any sensory information (i.e., feed-forward 

system).  For example, movement can be initiated in response to internally driven needs (i.e., 
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voluntary movement); however, control of ongoing movement is dependent on sensory input 

and can be modified by feedback.                     

One feature of studying sensorimotor integration of human CNS in motor control is 

that, in most cases, it is not directly measurable, probably because CNS activity underlying 

control of movement is a highly complicated and distributed phenomenon.  Thus, 

experiments studying motor control need to be designed to have a specific window to 

measure CNS activation.  For example, imaging techniques such as functional MRI or 

positron emission tomography have been used to identify changes in brain activity during a 

sequence of simple motor skill learning (Jenkins et al., 1994; Penhune and Doyon, 2002; 

Floyer-Lea and Matthews, 2005; Lehericy et al., 2005).  Transcranial magnetic stimulation 

(TMS) has been used to investigate corticospinal tract (CST) activity (Perez et al., 2007; 

Thompson et al., 2011).  Spinal cord reflexes have been studied as a window into evaluating 

activity in the spinal cord (Schieppati, 1987; Brooke et al., 1997; Wolpaw, 2010). 

The H-reflex, sometimes referred to as the “electrical analogue” of the stretch reflex, 

has been extensively examined in both healthy and neurologically impaired humans as a 

window to neural processing in the spinal cord (Schieppati, 1987; Brooke et al., 1997; 

Pierrot-Deseilligny and Mazevet, 2000; Zehr, 2002; Misiaszek, 2003).  Thus, in the general 

introduction of the present dissertation, fundamental knowledge about the H-reflex will be 

reviewed in the next section.  The H-reflex is largely monosynaptic (Magladery et al., 1951), 

and electrically induced spinal reflex.  While the pathway of the H-reflex is wholly spinal, it 

is also influenced by descending inputs from the brain (Wolpaw, 2010).  Since the H-reflex 

participates in other motor tasks such as locomotion as a part of the stretch reflex (Yang et al., 

1991), examining the H-reflex provides insights about how the Ia afferent pathway is 

 
 4



modulated within a task or modified over a course of motor learning, aging, and development.  

Current knowledge regarding modulation and modification of the H-reflex will be reviewed 

in the sections 3 and 4 following the section 2 below.   

 

2. The H-reflex 

Low intensity percutaneous electrical stimulation on a mixed (i.e., containing both 

afferent and efferent axons) peripheral nerve evokes the Hoffman reflex (or the H-reflex) in 

humans.  The pathway of the H-reflex was demonstrated to be monosynaptic consisting of 

primary afferent fibers, its synapse on the motoneuron, and the motoneuron (Magladery et al., 

1951).  This pathway is considered to be the electrical analogue of the stretch reflex, but it 

bypasses fusimotor drive and muscle spindle discharge.  In addition, there are more 

differences such as the afferent fibers contributing to the reflex, activity pattern of activated 

afferents, and patterns of afferent input dispersion between the stretch reflex and the H-reflex 

(Burke, 1983).   

The H-reflex can be seen in most muscles in which the nerve is accessible for surface 

stimulation.  Indeed, the H-reflex has been investigated in more than 20 muscles in the 

human body (Misiaszek, 2003).  Moreover, in a research setting, the strength of the electrical 

stimulation can easily be adjusted, which allows an experimenter to control the H-reflex 

systematically.  Due to the relative ease of handling, the H-reflex has become an attractive 

clinical/research tool (Misiaszek, 2003) and has been used widely as a window to study 

neural plasticity of the spinal cord (Zehr, 2002). 

 

2.1 Evoking the H-reflex 
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Recording of the H-reflex as EMG activity is possible in the following scenario (Zehr, 

2002).  If low intensity percutaneous stimulation is sufficient enough (i.e., above the 

threshold) for activation of Ia afferents and neurotransmitter release at the Ia afferent and 

alpha-motoneuron synapse, it causes postsynaptic depolarization of alpha-motoneurons.  If 

excitatory postsynaptic potentials (EPSPs) exceed the threshold, then the motoneurons fire 

action potentials resulting in neurotransmitter release at the neuromuscular junction.  This 

causes depolarization of the muscle fibers, which is recorded in EMG activity as an H-reflex, 

and results in muscle contraction.  A simple schema for monosynaptic part of the H-reflex 

pathway is shown in Figure 1.1. 

 Stimulation of a mixed peripheral nerve may evoke both a response through sensory 

(afferent)-motor (efferent) arc (i.e., H-reflex) and a direct motor response (i.e., M-wave) 

depending on stimulus intensity.  When intensity of percutaneous stimulation increases from 

a low level, the axons of Ia afferents are recruited before the axons of alpha motoneurons 

because axon diameter of the Ia afferent is larger than that of motoneuron (Kukulka, 1992).  

Thus, when the stimulation strength changes from low to high, the H-reflex is recorded 

without the M-wave, and then with the M-wave.  In addition, as the stimulation strength 

increases, additional Ia afferents and motoneurons are recruited resulting in a larger H-reflex 

and M-wave up to the intensity when the H-reflex starts to decrease (i.e., maximum H-reflex, 

review in the next section).  Because of this corresponding relationship, the M-wave size is 

often used as an indication of stimulation constancy for the H-reflex. 

 

2.2 Recruitment curve 
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 When the stimulus intensity incrementally increases from a low level to a high level, 

recruitment curves of the H-reflex and the M-wave are concurrently recorded.  The H-reflex 

size increases linearly with the stimulation intensity until it reaches the maximimum H-reflex 

(Hmax).  During this ascending limb of the H-reflex recruitment curve, the motoneurons are 

recruited into the H-reflex activation from the smallest to the largest in accordance with the 

size principle due to differences in input resistance (Henneman et al., 1965).  On the other 

hand, the order of the recruitment for the M-wave is from the largest motoneurons to the 

smallest motoneurons because electrical stimulation first activates axons with larger 

diameters (Pierrot-Deseilligny and Mazevet, 2000).  Since impulses on the motoneuron 

axons that are elicited by the electrical stimulation propagate in both directions (i.e., to the 

spinal cord: antidromic and to the muscle: orthodromic), the reflex activation of relatively 

large motoneurons collide with antidromic motor volley on the same motor axons.  This 

collision causes the typical shape of the H-reflex recruitment curve in which the size of the 

H-reflex falls to almost silent after it passes the Hmax (Schieppati, 1987).   Indeed, in the 

human soleus, activation of slow-twitch fibers (i.e., innervated by smaller motoneurons) is 

mainly responsible for the H-reflex (Buchthal and Schmalbruch, 1970). 

 

2.3 Factors that affect the H-reflex 

 When H-reflex size is compared across sessions to look into specific changes in the 

reflex pathway, any external factors that affect the H-reflex size must be maintained the same 

between sessions.  There are several factors that have been suggested to have substantial 

influence on H-reflex size.   
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Background excitability 

 Generally, H-reflex size is linearly associated with level of voluntary contraction 

because the number of motoneurons that are recruited in the reflex activity increases as the 

excitability of the motoneuron pool raises toward threshold (Burke et al., 1989).  Thus, when 

comparing H-reflex size between different tasks or different time line, maintaining the 

background activity of the target muscle at the same relative level [e.g., percentage of 

maximum voluntary contraction (MVC)] when the reflex is evoked is important.  The 

motoneuron pool excitability (i.e., background excitability) can be monitored through surface 

EMG of the muscle of interest.  Contraction of the muscle is also useful for reducing 

variability in the latency and size of the H-reflex (Burke et al., 1989; Funase and Miles, 

1999), and thus it is recommended that the H-reflex be tested when the target muscle is 

activated at a certain relative level (Zehr, 2002).  There are some studies reporting non-linear 

part of the H-reflex size vs. background excitability association in humans especially in a 

high background EMG level (Edamura et al., 1991; Loscher et al., 1996).  When the 

background EMG activity exceeds approximately 50% of the MVC, increment of the H-

reflex becomes smaller in some subjects.  However, most data are well fitted by a straight 

line. 

 

Stimulus efficacy 

 When comparing H-reflex size between tasks or in a series of sessions, the Ia afferent 

volley that is received by alpha motoneurons must be consistent so that any changes 

occurring in the H-reflex pathway (i.e., presynaptic and postsynaptic facilitation and 

inhibition) can be accurately recorded.  During H-reflex measurement using surface 
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electrodes, the size of the M-wave is used as an indication of the stimulus efficacy.  By 

monitoring and keeping the M-wave size at the same level, the stimulus efficacy can be 

maintained consistent, and changes in the H-reflex pathway such as size modulation can be 

measured.   

One typical methodological error arises from movement of the stimulating electrodes 

on the skin, particularly when movement or change of a posture is involved in a test 

condition.  Changes in distance between the nerve and the stimulus electrodes easily alter the 

activation of the Ia afferent, causing changes in the H-reflex size that are independent of 

changes in the reflex pathway (Brooke et al., 1997).  This error can be avoided by using a 

consistent posture and/or adjusting the stimulus intensity during the experiment so as to 

maintain the same M-wave size. 

 

Presynaptic inhibition 

The H-reflex was originally proposed as a monosynaptic reflex (Magladery et al., 

1951).  Due to the direct synaptic connection between the Ia afferent and alpha motoneuron, 

the H-reflex has been thought to reflect directly the excitability of the motoneuron pool.  

Zehr pointed out that this earlier notion leading to misinterpretation of the H-reflex still 

continues to the present day (Zehr, 2002).  It is clear that the synaptic connection between the 

Ia afferent and the alpha motoneuron is under continuous modification.  Thus, the H-reflex 

size is not a direct measure of the excitability of the motoneuron pool.  Presynaptic inhibition 

(PSI) at the synapse between the Ia afferent and the alpha motoneuron has been discussed 

extensively as a primary source for modification of the H-reflex size (Capaday and Stein, 

1987a, 1989; Stein, 1995; Brooke et al., 1997). 
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Presynaptic inhibition is mediated by inhibitory spinal interneurons acting on the Ia 

afferent terminals (Eccles et al., 1962).  PSI is a mechanism that affects neurotransmitter 

release at the Ia terminals, which results in reduction of the motoneuron depolarization.  

Postsynaptic properties such as the membrane potential of the motoneuron are not directly 

affected by PSI.  Thus, the H-reflex size and the excitability of the motoneuron are separately 

regulated due to the presence of PSI (Cook and Cangiano, 1972).  That is, the H-reflex size 

can be altered by the PSI with consistent background activity, or conversely, changes in 

background activity with constant PSI can also alter H-reflex size. 

The activity of inhibitory interneurons that mediate PSI are influenced by many 

factors including peripheral feedback from the muscle spindle and Golgi tendon organ both 

in a target muscle and other muscles, cutaneous receptors, joint receptors, vestibular 

receptors, and neck receptors, and descending supraspinal inputs (Schieppati, 1987; Stein, 

1995; Brooke et al., 1997).  Zehr suggested that those factors can be controlled by 

maintaining the subject’s posture, intension, and contraction of other muscles (Zehr, 2002). 

 

Inputs from other afferent pathways 

 Another piece of evidence indicating that the H-reflex is not a pure monosynaptic 

reflex was presented by Burke et al (1984).  Considering the fact that the electrical 

stimulation to elicit the H-reflex is applied over the skin covering a “mixed” nerve, afferent 

volleys would not be exclusively composed of homonymous Ia activity, but rather 

contaminated by other afferent signals.  Burke et al. (1984) estimated the rising times of the 

composite EPSPs evoked by subthreshold electrical stimulation in single motor units of the 

soleus motoneurons in humans.  They found that much of the EPSPs were summed in raising 
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the motoneuron membrane potential to threshold, and that motoneuron discharge occurred a 

few milliseconds after the onset of the EPSPs.  A few milliseconds would be ample time for 

oligosynaptic inputs such as group Ib activity to reach the motoneuron pool.  In addition, 

they showed, using surface EMG recordings, that the rising phase of the H-reflex was long 

enough for the oligosynaptic inputs to contaminate the H-reflex waveform.  Thus, they 

suggested that the H-reflex waveform, especially the later portion of the signal, is likely to be 

affected by the oligosynaptic inputs.  However, they also suggested that the H-reflex, when 

compared to the stretch reflex, contains significant excitation that is contributed by the 

monosynaptic pathway due to its shorter duration of the rising phase. 

 

3. Modulation of the H-reflex 

Although the H-reflex can be evoked in many muscles, the soleus is the most 

commonly used muscle in human lower extremity studies (Brooke et al., 1997; Capaday, 

1997; Zehr, 2002; Misiaszek, 2003).  Therefore, this section will review current findings 

regarding modulation of the soleus H-reflex pathway.  

 

3.1 Task-dependent modulation 

 It was shown by Akazawa et al. that size of the soleus stretch reflex in mesencephalic 

cats is strongly modulated depending on the ongoing-task (i.e., standing or walking, 

Akazawa et al., 1982).  Task-dependent modulation of the human soleus H-reflex was shown 

for standing vs. walking (Capaday and Stein, 1986; Kido et al., 2004a) and walking vs. 

running (Capaday and Stein, 1987b; Edamura et al., 1991).  In those studies, the H-reflex 

sizes evoked at the same background level were compared between two different tasks.  The 
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results demonstrated that the reflex is largest during standing, smaller during walking, and 

even smaller during running.  In addition, Edamura et al. (1991) reported that the form of 

locomotion (i.e., walking or running), not the speed or level of EMG activity, is the most 

important determinant for the task-dependent modulation of the soleus H-reflex.  It is 

suggested that lowering the reflex gain would reduce saturation of the stretch reflex pathways 

(or motoneuron pool), which would be appropriate for the muscle to be prepared for an 

unexpected stretch, to contribute to locomotor activity, and to reduce possible instability (i.e., 

tremor) (Capaday and Stein, 1987b; Edamura et al., 1991). 

The task-dependent modulation of the soleus H-reflex is also reported in other 

movements.  Dyhre-Poulsen et al. (1991) investigated the size of the human soleus H-reflex 

during landing (from a downward jump) and hopping.  The H-reflex size was low at landing 

(i.e., touchdown the ground) while the reflex was high at the touchdown during hopping.  

Those results clearly indicate that the soleus stretch reflex pathway is modulated in an 

appropriate way to support execution of the intended task. 

 

3.2 Phase-dependent modulation 

Akazawa et al. also suggested phase-dependency of the stretch reflex in 

mesencephalic cats based on the gait cycle (Akazawa et al., 1982).  Later, the phase-

dependent modulation within a gait cycle was demonstrated in various studies using human 

soleus stretch reflex (Yang et al., 1991) or, more intensively, the H-reflex (Capaday and Stein, 

1986; Yang and Whelan, 1993; Kido et al., 2004a; Krauss and Misiaszek, 2007).  It was 

commonly shown that, in healthy human subjects, the H-reflex of the soleus during walking 

reaches its peak during the late stance phase, falls rapidly to a low level at the beginning of 
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the swing phase, and stays low throughout the swing phase.  Those results suggest that the 

stretch reflex pathway of the soleus is prepared so that walking is carried out effectively even 

in the face of unexpected perturbations.  That is, the stretch reflex activity of the soleus 

during the stance phase could support propulsion of the body while suppression of such 

reflex activity in the swing phase ensures that the muscle would not oppose ankle 

dorsiflexion, even if a sudden stretch is applied on the muscle. 

 

3.3 Context-dependent modulation 

The H-reflex size of the soleus during walking is also modulated based on context of 

the task.  Krauss and Misiaszek (2007) investigated the soleus H-reflex size in healthy 

humans when postural threat (perturbation in anterior-posterior direction) was applied during 

walking.  Their results showed that the reflex size at heel contact significantly increased 

when compared to normal walking.  Similarly, Schneider and Capaday (2003) reported that, 

during backward walking, the soleus H-reflex size in untrained subjects increased 

significantly in mid-swing phase.  Since the increase of the reflex size disappeared 

immediately when the subject was allowed to hold handrails in both studies, those results 

suggested that the increase of the H-reflex would be related to task uncertainties, such as the 

balance perturbation and foot contact with the ground.  They also suggested that the increase 

of the H-reflex size at the heel contact (forward walking) or mid-swing (backward walking) 

may be important to control ankle joint angle and stiffness at ground contact.    

On the other hand, Llewellyn et al. (1990) compared the human soleus H-reflex size 

between treadmill walking and walking on a narrow beam (3.5 cm wide, 34 cm from the 

floor) at the same background EMG levels.  They found that, during the beam walking, the 
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H-reflex size was considerably suppressed and that the EMG pattern was dominated by co-

contraction of the soleus and tibialis anterior instead of typical reciprocal pattern.  In this 

context, the H-reflex itself would be a source of instability, and thus, the authors suggested 

that this suppression of the H-reflex size is probably related to technique to walk when 

postural stability is threatened. 

 

3.4 Mechanisms underlying the H-reflex modulation 

  As reviewed above, the H-reflex size is generally correlated with background 

activation level.  It is also well known that the soleus H-reflex modulation and EMG activity 

have similar patterns during a gait cycle (i.e., high in the stance phase and almost silent in the 

swing phase).  However, the H-reflex modulation is apparently not a simple consequence of 

the background excitability of the agonist or antagonist activity.  In the study by Yang and 

Whelen (1993), healthy human subjects were trained to activate the soleus voluntarily during 

swing phase or trained to walk without activating the TA.  In both cases, the H-reflex was 

modulated based on the phase of the gait cycle just as seen in normal walking.  Capaday and 

Stein (1989) showed that, in decerebrate cats, postsynaptic inhibition of the motoneurons 

cannot separately control the reflex size and the background activity.  As mentioned above, 

the H-reflex size is modulated independently of the background EMG activity.  Thus, by 

exclusion, presynaptic inhibition is discussed most extensively as a neural mechanism that 

modulates the H-reflex pathway (Capaday and Stein, 1987b, a; Stein and Capaday, 1988; 

Edamura et al., 1991; Yang and Whelan, 1993; Stein, 1995).  Nevertheless, the exact site of 

those modulations needs to be further examined. 
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4. Modification of the H-reflex  

The CNS, thought to be hard-wired and inflexible, is now recognized to have 

capability for change (Wolpaw, 2010).  This ability of the CNS to change is defined as neural 

plasticity.  According to Ludlow et al. (2008), “neural plasticity is the ability of the central 

nervous system (CNS) to change and adapt in response to environmental cues, experience, 

behavior, injury or disease”.  Furthermore, they added that neural plasticity results from 

changes in function of neural pathways such as neural connectivity that occur through 

changes in synaptic strength and some other mechanisms.  Thus, changes in function of 

neural pathways constitute the basis for neural plasticity.  Neural plasticity occurs in response 

to environmental influences, experience, practice, learning, development, aging, change in 

use, injury or disease, and produces changes in behavior.  Neural plasticity occurs 

continuously throughout life to induce movement adaptations, some of which are achieved 

quickly while others take a long time.  For example, coordinated steps by a dancer, accurate 

fingering technique in a pianist, walking capability gradually acquired during development, 

and abnormal movement pattern after stroke or spinal cord injury are all products of neural 

plasticity, producing positive or negative consequences.  As will be reviewed below, 

modifications of the H-reflex caused by neural plasticity may represent adaptation of the 

nervous system to meet particular requirements for each task, and thus, neural plasticity in 

the H-reflex pathway may contribute a specific motor skill. 

 

4.1 Cross-sectional studies 

It is well known that trained ballet dancers have smaller soleus H-reflexes than other 

aerobically trained individuals and control subjects (Nielsen et al., 1993).  The modification 
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of the soleus H-reflex size induced by long-term exercise training may represent specific 

adaptations to meet particular requirements of the training.  That is, frequent use of 

cocontraction between antagonistic ankle muscles in ballet dancers may lead to suppression 

of the soleus H-reflex (Nielsen et al., 1993).  On the other hand, smaller soleus H-reflex size 

is also reported in volleyball players and sprinters when compared to non-trained subjects 

(Casabona et al., 1990).  Since the H-reflex is mainly constituted by activation of smaller 

motoneurons (i.e., slow twitch fibers, Buchthal and Schmalbruch, 1970), the H-reflex activity 

may not be involved in explosive muscle contractions used in volleyball and sprinting 

(Casabona et al., 1990).  Thus, application of the H-reflex for assessing adaptation of large 

motoneurons that would be induced by explosive contraction training is limited (Ross et al., 

2001).  Furthermore, the number of those cross-sectional studies in humans is still limited 

and there is always possibility of contamination of intrinsic genetic factors (Casabona et al., 

1990; Zehr, 2002). 

 

4.2 Longitudinal studies 

After four weeks of hopping training, inhibition of the H-reflex during hopping 

compared to standing that was evident before the training disappeared (Voigt et al., 1998).  

After 20 days of bed rest, the soleus maximum H-reflex/maximum M-wave ratio 

(Hmax/Mmax ratio) decreased from 63.3 % to 26.7 % (Yamanaka et al., 1999).  As a very 

short-term change, the H-reflex size can voluntarily be decreased in a day of balance training 

(Trimble and Koceja, 1994).  Furthermore, the soleus Hmax/Mmax ratio became smaller 

after 30-minute training of cocontraction of the ankle dorsi- and plantarflexors (Perez et al., 
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2007).  Those observed modifications seem to reflect neural plasticity in the H-reflex 

pathway, which underlies functional adaptation during motor learning.  

The effects of aging (“detraining” effects) on the soleus H-reflex size in healthy 

humans have also been examined in a few studies by comparing “young” (i.e., 19-31 years 

old) and “old” (i.e., 60-84 years old) subject groups.  Generally, the Hmax/Mmax ratio in the 

old group was significantly smaller than that in the young group (Sabbahi and Sedgwick, 

1982; Koceja et al., 1995).  Kido et al. (2004a) investigated H-reflex decreases during the 

aging process by testing subjects ranging in age from 22 to 82 years, instead of comparing 

two representatives groups (i.e., “young” or “old”), and found that the H-reflex size 

decreased gradually with age.  In addition, Koceja et al. (1995) reported that the 

Hmax/Mmax ratios of the young individuals were smaller when the subjects were standing 

than when lying prone (i.e., posture-dependent H-reflex modulation) whereas this modulation 

was not measured in the old individuals.  Similarly, Kido et al. (2004a) demonstrated that, 

although the H-reflex size was always larger during standing than during walking in young 

subjects, this task-dependent H-reflex modulation was less pronounced in the old subjects.  

Interestingly, the rhythmic H-reflex modulation during a gait cycle (i.e., phase-dependent 

modulation) was preserved in the old individuals despite the gradual decrease of the 

Hmax/Mmax ratio with aging (Kido et al., 2004a).  An increase in the presynaptic inhibition 

acting on Ia terminals with aging has been shown and proposed as a possible explanation for 

the decrease of the H-reflex size with aging (Morita et al., 1995).  

Neural plasticity in the human soleus H-reflex also occurs during development.  

Hodapp et al. (2007) reported that the soleus H-reflex size during mid-stance phase in 

healthy children (15-16 years old) was significantly depressed when compared to children 
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with diplegic cerebral palsy (CP) in the same age group.  The mid-stance H-reflex sizes were 

not different between healthy children and children with CP in 5-11 aged groups, suggesting 

that age-dependent H-reflex depression during walking that occurs with maturation of the 

CNS is most likely to involve plasticity in the supraspinal structures and corticospinal tract, 

which are affected in children with CP. 

 

4.3 Operant conditioning of the H-reflex 

As reviewed above, among several approaches, the H-reflex has been used widely as 

a convenient tool to study neural plasticity.  Nevertheless, the H-reflex is only a window to 

evaluate changes in the spinal cord activity associated with changes in motor behavior.  

Operant conditioning, proposed by Wolpaw and his colleagues, utilizes this H-reflex as a 

target task (i.e., increase or decrease the H-reflex size, Wolpaw, 1987).  Because the H-reflex 

pathway is influenced by descending inputs from the brain, this pathway can be operantly 

conditioned.  That is, animals or human subjects are trained to be able to produce descending 

influence that is appropriate to the target task to earn a reward.  According to a general 

definition of a skill as a behavior that is adaptive and acquired through practice (Compact 

Oxford English Dictionary, 1993), this change in the reflex size is a simple motor skill.  

Hence, operant conditioning paradigms have been used as a model for studying long-term 

neural plasticity during motor skill learning (Wolpaw and Tennissen, 2001; Wolpaw, 2010).   

A series of operant conditioning studies showed that the size of the spinal stretch 

reflex (SSR) or the H-reflex can be operantly conditioned in monkeys, rats, mice, and 

humans (Wolpaw et al., 1983; Wolpaw, 1987; Evatt et al., 1989; Chen and Wolpaw, 1995; 

Carp et al., 2006a; Thompson et al., 2009).  In this laboratory model, animals or subjects 
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were conditioned to make the reflex smaller or larger so as to increase the reward 

contingency.  Additional studies revealed many possible neural mechanisms underlying this 

reflex change.  Down-conditioning causes changes in motoneuron properties [firing threshold 

and axonal conduction velocity (Carp and Wolpaw, 1994, 1995; Carp et al., 2001)] as well as 

changes in synaptic terminals on the motoneuron and spinal interneurons [GABAergic 

terminals and interneurons (Wang et al., 2006, 2009)].  Up-conditioning has been less 

understood compared to down-conditioning, however; it is suggested that up-conditioning is 

associated with plasticity in spinal interneurons (Carp and Wolpaw, 1995; Wolpaw and Chen, 

2001), and that down-conditioning and up-conditioning are not mirror images (Wolpaw, 

2007, 2010).  In addition, animal data were used to demonstrate that the sensorimotor cortex 

(hindlimb area) and cerebellum are essential for successful conditioning (Chen and Wolpaw, 

2005; Chen et al., 2006a; Wolpaw and Chen, 2006), and that, of the major descending and 

ascending tracts, only the corticospinal tract (CST) conveys this training-inducing 

descending influence from the brain to the spinal cord (Chen et al., 2002; Chen and Wolpaw, 

2002; Chen et al., 2006a).  Furthermore, detailed analysis revealed two distinct phases of the 

reflex change over the course of the operant conditioning, each of which is suggested to 

reflect plasticity at two sites, the brain (i.e., supraspinal) and the spinal cord (Wolpaw and 

O'Keefe, 1984; Thompson et al., 2009).  Those results suggest that interaction of the 

supraspinal plasticity and the spinal cord plasticity account for the overall reflex change. 

 

5. Interaction of soleus H-reflex and locomotion 

Ia afferent pathways of the soleus have been shown to have important roles in 

locomotion.  In addition, since the part of the Ia afferent pathway is the target pathway to be 
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conditioned during the H-reflex operant conditioning, the effects of soleus H-reflex operant 

conditioning on locomotion have been studied in rats. 

 

5.1 Contributions of the Ia afferent pathway to locomotion 

Yang et al. (1991) used a pneumatic device to apply small and rapid dorsiflexion to 

the ankle joint to stretch the soleus of human subjects.  The size of the consequent soleus 

stretch reflex was correlated with velocity of the disturbance.  The authors estimated that 30-

60% of the soleus activation was contributed by reflex activity induced by velocity-sensitive 

(i.e., Ia afferents) inputs particularly during early stance phase.  Bennett et al. (1996) 

demonstrated using decerebrated and spinal cats that ankle extensor force was substantially 

contributed by the stretch reflex of the triceps surae (25% during tonic contraction and 50% 

during locomotion) by comparing the extensor force before and after deafferentation.  

Furthermore, Stein et al. (2000) showed in decerebrate cats that the ankle extensor force 

measured when the triceps surae muscles were stretched in a way mimicking the normal 

pattern was 35% more than when the muscles were isometrically held.  Thus, in normal 

walking, the muscle spindle afferent pathways contribute to generation of the triceps surae 

EMG activity and force production during stance phase of locomotion. 

 

5.2 Effects of soleus H-reflex operant conditioning on locomotion in rats 

In the study by Chen et al. (2005), normal rats performed two treadmill sessions 

before and after the soleus H-reflex operant conditioning and locomotion changes were 

assessed by soleus H-reflex sizes (locomotor H-reflex), soleus EMG bursts (locomotor EMG), 

and the duration, length, and symmetry of a step cycle.  The soleus locomotor H-reflex and 
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locomotor EMG at the second gait assessment was larger in the up-conditioned rats while 

smaller in the down-conditioned rats when compared to the first gait assessment, and the 

change of locomotor EMG and locomotor H-reflex had strong positive correlation.  Since 

other fundamental gait parameters such as length, duration, and symmetry of the step cycle 

did not change after operant conditioning, the authors suggested that operant conditioning 

may have induced compensatory changes, probably in the activity of other muscles, so that a 

locomotion pattern was still produced properly after the conditioning. 

Another locomotion study was conducted by Chen et al. (2006b) to determine the 

effects of soleus operant up-conditioning on locomotion using rats with spinal cord injury.  

Rats prepared with midthoracic spinal cord injury were either exposed or not exposed to right 

soleus H-reflex up-conditioning.  Two treadmill sessions were performed before and after the 

conditioning period.  Before the conditioning, the treadmill locomotion showed clear 

asymmetry in the onset times of the right and left soleus EMG activity.  After the 

conditioning, this asymmetry was corrected in the conditioned group whereas it persisted in 

the control group.  The soleus locomotor H-reflex and locomotor EMG activity during the 

second treadmill session in the conditioned group were significantly bigger than those 

recorded in the first session and had significant positive correlation while there was no 

significant increase in the control group.  Together with the finding from the previous study, 

it seems likely that operant conditioning of the soleus H-reflex in rats would induce 

compensatory plasticity to preserve the locomotion pattern when locomotion is performed 

properly (i.e. normal rats) whereas it would trigger different plastic changes to correct 

locomotion when a gait abnormality, such as asymmetry, already exists (i.e. spinal cord 
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injury rats).  Thus, they suggested that the protocol of operant conditioning might be a useful 

approach for people with spinal cord injury to improve their walking function.  

 

6. Synergism among the soleus, MG, and LG 

As reviewed above, acute modulation and long-term modification of the soleus H-

reflex have been extensively studied.  Surprisingly, previous studies exclusively focused on 

the soleus H-reflex, and to date, there have been very limited numbers of studies 

investigating modification and modulation of the H-reflex in its synergists, medial and lateral 

gastrocnemii (MG and LG, respectively).  Those three muscles are innervated by the tibial 

nerve (i.e., synergists), and therefore, changes in the soleus H-reflex pathway would most 

likely affect MG and LG H-reflex pathways.  Traditionally, the soleus, MG, and LG muscles 

were categorized as a group of synergist muscles for ankle plantar flexion (i.e., the triceps 

surae); however, many studies report that they should not be treated the same.  Thus, we 

cannot simply assume that the MG and LG H-reflexes are modified and modulated in the 

same way as the soleus H-reflex.   

Anatomically, the soleus is a single-joint plantar flexor whereas the gastrocnemii 

muscles are two-joint muscles crossing both the ankle and knee joints.  Accordingly, their 

muscle length and consequent motor output are affected differently by each joint motion 

(Kawakami et al., 1998).  Furthermore, in cats, the LG has been shown to consist of 

anatomically defined subvolumes (i.e., compartments) (English and Letbetter, 1982), and 

each compartment has a different activation pattern during locomotion (English, 1984).  The 

human LG is also compartmentalized by its architecture (Segal et al., 1991) and EMG 

activity (Wolf et al., 1993) whereas the human MG is not likely to be compartmentalized 
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(Wolf and Kim, 1997).  Differences in histochemical properties regarding muscle fibers types 

have also been reported (Johnson et al., 1973; Gollnick et al., 1974; Edgerton et al., 1975); 

while the human soleus has a higher percentage of type I fibers (slow-twitch fiber, 70-90%) 

compared to type II fibers (fast-twitch fiber, 10-30%), the gastrocnemii muscles contain a 

similar portion of both fiber types (50%).  The fiber type differences are associated with their 

resistance to fatigue (Ochs et al., 1977), contractile properties (Vandervoort and McComas, 

1983), and characteristics of EMG activity during functional tasks such as standing and 

walking (Joseph and Nightingale, 1952; Campbell et al., 1973; Duysens et al., 1991).   

As for EMG activity, the soleus is often categorized as a tonic muscle and the 

gastrocnemii as phasic muscles because the soleus has a main role in tonic activity such as 

postural control (Joseph and Nightingale, 1952; Fitzpatrick et al., 1992) whereas the 

gastrocnemii are silent until phasic activity such as walking starts to provide impetus to a 

motion (Campbell et al., 1973).  Furthermore, forward propulsion of the trunk during 

walking is primarily given by the soleus whereas the MG mainly contributes to vertical body 

support (McGowan et al., 2008).  Differences in activation of the soleus, MG, and LG during 

plantarflexion task have also been reported.  Segal and Song (2005) demonstrated, using 

functional MRI, that human MG and LG activated differentially during 1-min unilateral heel-

raise exercise, with the MG being activated significantly more than the LG.  Moreover, their 

results showed that, in the soleus, MG, and LG, activation of a proximal part of the muscle 

was significantly more than that of a distal part in all three muscles.  During concentric ankle 

plantarflexion exercise in a sitting position, the activation of the LG was reported to be more 

than that of the soleus and MG (Giordano and Segal, 2006).  In this study, only MG and LG, 

not the soleus, showed differential activation between the proximal and distal part of the 
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muscle (proximal was larger than distal).  Interestingly, despite the difference in medial-

lateral spatial location between the MG and LG, force directions generated by those muscles 

were downward with subject-specific medial and lateral deviations, and were not 

significantly different (Giordano et al., 2009).  However, the MG and LG in cats were 

reported to have substantial off-sagittal torques (i.e., toe-out and eversion torques) in addition 

to the classical sagittal plane torque (i.e., plantarflexion) (Lawrence et al., 1993). 

Levy (1963) measured the stretch reflexes as well as the H-reflexes of the human 

soleus and MG in a prone position and found that the amplitudes of both stretch and H-

reflexes were always greater in the soleus than in the MG.  He linked the amplitude 

differences to an observation of previous animal studies, which demonstrated that density of 

the muscle spindles is greater in the soleus than in the MG in cats (Hagbarth and Wohlfart, 

1952; Swett and Eldred, 1960).  In addition, the motoneurons of the soleus have a larger total 

EPSP, which was exerted by Ia afferent volleys in a wide variety of muscles, than that of the 

MG and LG in cats (Eccles et al., 1957; Scott and Mendell, 1976) and in monkeys (Carp, 

1993). 

 

7. Development of dissertation project 

Based on available anatomical, histological, and electrophysiological evidence, it is 

conceivable that the MG and LG H-reflex modulation and modification would be 

independent from those in the soleus H-reflex.  That is, the H-reflexes of those three muscles 

would not necessarily be modulated and modified in the same direction (i.e., synergistic 

association).  In order to establish solid basis of our understanding for modulation and 

modification of the H-reflexes occurring in the three synergist muscles, the first project of 
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this dissertation investigated the H-reflex size modulation of the soleus, MG, and LG during 

walking and between standing and walking (Chapter 2), and the H-reflex modification of the 

three muscles induced by operant conditioning of the soleus H-reflex (Chapter 3).   

The second project of the dissertation was developed to fill another gap in the 

literature: effects of the soleus H-reflex operant conditioning on locomotion in humans.  

There is no systematic human study to look into interaction between the soleus H-reflex 

operant conditioning and locomotion, which might lead to development of a new 

rehabilitative strategy to restore locomotor function in patients with neurological damage.  

Thus, as an attempt to provide insights about the functional implication of the operant 

conditioning, effects of the soleus H-reflex operant down-conditioning on locomotion in 

healthy humans was investigated (Chapter 4).  The specific aims and hypotheses are listed 

below: 

 

Chapter 2 

Specific Aim 

To delineate characteristics of MG and LG H-reflex modulation during walking and 

between standing and walking, and to compare it to the well-known soleus H-reflex 

modulation in healthy humans.  Experiments for this aim involved examining the soleus, 

MG, and LG H-reflexes during standing and walking. 

Hypothesis 

The H-reflexes of the three muscles would be modulated similarly to facilitate the 

execution of ongoing motor tasks. 
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Chapter 3 

Specific Aim 

To determine whether and to what extent the H-reflexes of the MG and LG are 

concurrently modified after successful operant down-conditioning of the soleus H-reflex 

in healthy humans.  Experiments for this aim involved operant down-conditioning of the 

soleus H-reflex with periodic concurrent monitoring of the MG and LG H-reflexes. 

Hypothesis 

The MG and LG H-reflexes would decrease in response to successful down-conditioning 

of the soleus H-reflex.  However, the decrease of the H-reflex would be less in the MG 

and LG than in the soleus. 

 

Chapter 4 

Specific Aim 

To investigate interaction of soleus H-reflex operant down-conditioning with locomotion 

in healthy humans.  Experiments for this aim involved locomotion assessment using 

EMG activity and kinematic analyses before and after the soleus H-reflex down-

conditioning. 

Hypothesis 

Operant down-conditioning would induce primary changes in the locomotor EMG and 

locomotor H-reflex of the soleus, but compensatory changes in other muscles would also 

occur so that the joint kinematics as well as other locomotor parameters would not 

change. 
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The conceptual model for developing those dissertation projects is presented in 

Figure 1.2. 

 

8. General methodology 

Operant conditioning protocols for human soleus H-reflex 

In manuscripts 2 and 3 for this dissertation, operant down-conditioning technique for 

human soleus H-reflex was used as method to induce neural plasticity.  Protocols for the H-

reflex conditioning in human soleus have been established and reported thoroughly by 

Thompson et al. (2009).  Instead of describing details of the protocols in each of the 

manuscripts, complete methodology for the human soleus operant down-conditioning is 

given below.  A brief description of the conditioning method is also provided in manuscripts 

2 and 3. 

 

Session schedule 

There are 6 baseline sessions and 30 down-conditioning sessions spread over 12 

weeks (i.e., 3 sessions per week).  Each session takes less than 90 minutes and is performed 

at the same time of the day to control for diurnal variations in H-reflex size (Wolpaw and 

Seegal, 1982; Chen and Wolpaw, 1994; Carp et al., 2006b; Lagerquist et al., 2006; 

Thompson et al., 2009).  Each subject participates in one or two preliminary sessions to 

determine MVC value and appropriate M-wave size and background EMG activity range of 

the soleus which are used as targets for the rest of the sessions.  Electrical stimulation that is 

set at just above the M-wave threshold is applied, and the M-wave size at this stimulus 

intensity is chosen as the target M-wave.  The target M-wave stimulus level should elicit the 
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H-reflex on the ascending part of the H-reflex recruitment curve (see below: Session 

protocol).  The target background activity range is selected to be a similar range of the 

activity during natural standing (i.e., usually 10-15% of MVC).  The subject is asked to 

maintain the background activity in the target range with an aid of visual feedback (see 

below: Visual feedback). 

 

Session protocol 

EMG recording electrodes are placed on the skin overlying soleus and tibialis anterior 

(TA), and the stimulating electrodes on the skin overlying the tibial nerve (see below for 

details: Electrical stimulation and EMG recording).  Then all sessions begin with an H-

reflex/M-wave recruitment curve measurement while the subject stands naturally and keeps 

the background activity of the soleus within the target range.  To obtain the recruitment curve, 

stimulus intensity is increased in steps of 1.25–2.5 mA from the soleus H-reflex threshold to 

just above the level that is required to elicit the Mmax (Zehr and Stein, 1999; Kido et al., 

2004a; Thompson et al., 2009).  Four sets of EMG responses recorded at each intensity are 

averaged. 

Following the recruitment curve measurement, protocols are separated between 

baseline and conditioning sessions.  In either protocol, the subject stands with the soleus 

activity within the target range, and the stimulus level is set so as to elicit the target soleus 

M-wave size (i.e., just above the M-wave threshold).  Small adjustments in stimulus strength 

are occasionally needed to maintain the same soleus M-wave size. 

During baseline sessions, 225 control H-reflexes are elicited after the recruitment 

curve measurement.  The 225 trials are partitioned into three blocks of 75 trials.  The H-
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reflexes are simply recorded and the subject does not receive any encouragement or feedback 

regarding the reflex size. 

During the down-conditioning sessions, the recruitment curve measurement is 

followed by a block of 20 control H-reflexes.  This control block is performed in the same 

way as the baseline sessions described above.  Then, 225 conditioned H-reflexes (i.e., three 

blocks of 75 trials) are elicited, in which the subject is provided immediate visual feedback 

on the soleus H-reflex size at each trial (see below: Visual feedback) and asked to decrease 

the reflex size. 

 

Electrical stimulation and EMG recording 

Surface electrodes are placed in the popliteal fossa to stimulate the tibial nerve using 

a stimulator.  For the EMG activity recording, a pair of surface electrodes is placed 

longitudinally on the skin over the soleus below the gastrocnemii (i.e., just above the 

insertion to the Achilles tendon) with an interelectrode distance of 3 cm.  Locations for the 

nerve stimulating electrodes are determined to minimize the H-reflex threshold and 

maximize the Hmax and the Mmax sizes of the soleus.  To evaluate antagonist activity 

during the conditioning, another pair of EMG recording electrodes is placed on the skin over 

the center of the TA.  Locations for all electrodes are mapped using permanent skin marks 

such as scars and moles at the preliminary session to minimize session-to-session variability.  

For the subsequent sessions, the electrodes are placed based on those landmarks.   

 The EMG and nerve stimulus signals are recorded for a period of 200 ms in response 

to each electrical stimulus pulse including a pre-stimulus period of 50 ms.  In addition, the 

soleus EMG signals are rectified and averaged every 100 ms.  The result is immediately 
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shown on the computer screen as a bar graph for visual feedback (see below: Visual 

feedback).  The visual feedback is provided to help the subject maintain the soleus 

background EMG activity within the specified range.  If the soleus background EMG is kept 

in the target range for 2 s and if 5 s is passed since the last stimulus (i.e., the minimum 

interstimulus period is 5 s), a square stimulus pulse with 1 ms of duration is delivered to elicit 

the H-reflex and M-wave. 

 

Visual feedback 

 Visual feedback is provided on the computer screen and contains two bar graphs 

(Figure 1.3): one for the background EMG activity of the soleus (left) and the other for the 

soleus H-reflex size (right). 

The background graph has a shaded area that shows the target background range 

specifically defined for each subject.  The bar, which is updated every 100 ms, represents 

current level of rectified soleus EMG activity.  The bar turns green when the top is in the 

shaded area.  If the bar stays green for at least 2 s (and if 5 s is passed since the last stimulus), 

stimulation is delivered.  The subject is allowed to move between trials, and asked to make 

the bar green for more than 2 s only when he/she is ready to receive the stimulation.  Thus, 

the inter-stimulus interval is controlled by the subject and varies within and across sessions.  

The visual feedback screen for the background activity is exactly the same for both the 

control and conditioning trials. 

The feedback graph regarding the H-reflex size is different between the control and 

conditioning trials.  During the control trials, the graph shows only a green vertical bar 200 

ms after the each stimulus, which represents a mean rectified EMG activity in H-reflex 
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interval of the soleus (typically 30-45 ms after the stimulus).  During the conditioning trials, 

the feedback graph includes a shaded area that represents a reward criterion (see below: The 

reward criterion).  The vertical bar is updated 200 ms after each stimulus, and is green if the 

top of the bar is below the reward criterion (i.e., successful trial) and otherwise red (i.e., 

failure trial).  Thus, the bar is used by the subject to determine whether the trial is a success.  

The reflex size feedback graph during the conditioning trials also constantly shows a thick 

horizontal line that represents the average H-reflex size of the soleus during the six baseline 

sessions for each subject.  This baseline average line informs the subject how much the reflex 

size is “improved” (i.e., decreased) during the conditioning sessions when compared to the 

baseline sessions.  In addition, during the conditioning trials, ongoing success rate updated at 

each stimulus is provided at the bottom of the screen. 

 

The reward criterion 

 The reward criterion during the conditioning trials is based on the performance of the 

immediately preceding block of trials.  Thus, for the first block of 75 conditioning trials, the 

reward criterion is based on the average of the block of 20 control trials.  For the second and 

third blocks of 75 conditioning trials, the reward criterion values are based on the preceding 

conditioning block.  The reward criterion is set at 60% from the lowest end of the soleus 

reflex size distribution.  Therefore, 60% of the trials would be successful (i.e., less than the 

criterion) if the distribution of the soleus H-reflex size for the current block is similar to that 

of the previous block.  For each block during the conditioning sessions, the subject earns an 

extra monetary reward (up to ten dollars) if the success rate exceeds 50% or the average 

reflex size is lower than the average of the baseline sessions. 
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Figure 1.1: Spinal pathway of the H-reflex 
The spinal pathway of the H-reflex is mainly monosynaptic, consisting of Ia afferent, alpha 
motoneuron, and a synapse between them.  Electrical stimulation is percutaneously applied 
on a “mixed nerve”, which elicits afferent volley to evoke an H-reflex and a direct motor 
response (M-wave).
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Figure 1.2: Conceptual model that led to development of the dissertation project 
Solid arrows indicate findings already reported in the literature, and dotted arrows indicate 
lack of knowledge to date.  Numbers in red indicate chapter numbers in the dissertation.  
Solid arrows: Control of a movement such as walking is done by complex integration 
between sensory and motor systems through activity of the central nervous system (CNS).  
Sensorimotor integration of the CNS induces H-reflex size modulation of the soleus during 
walking.  In addition, neural plasticity in the CNS occurring during operant conditioning 
modifies the soleus H-reflex.  Modification of the soleus H-reflex by operant conditioning 
has been shown to have effects on locomotion in animals.  
Dotted arrows: Previous studies have exclusively investigated the soleus H-reflex, and H-
reflexes in other muscles such as its synergists, medial and lateral gastrocnemii (MG and LG) 
have not been well studied.  Thus, whether or not the three muscles are modulated and 
modified in the same direction is unknown.  The first project of this dissertation studied 
modulation of the MG and LG H-reflexes during locomotion (Chapter 2) and modification of 
the MG and LG H-reflexes induced by soleus operant conditioning (Chapter 3). As the 
second project, effects of modified H-reflex in the soleus (and possibly in the MG, and LG, if 
the soleus conditioning affects those synergists) on locomotion were analyzed (Chapter 4) in 
terms of EMG activity, H-reflex modulation, and kinematics.
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Figure 1.3: Visual feedback screen 
There are two graphs on the visual feedback screen: feedback on soleus background EMG 
activity (left) and on soleus H-reflex size (right).   
Left: This graph is the same between baseline and conditioning sessions.  The target 
background EMG activity, which is set at each subject’s natural standing level, is shown as 
shaded area.  If the background EMG activity remains in the target range for 2 s, the H-reflex 
is elicited. 
Right: This graph is presented only during the conditioning trials.  The H-reflex size bar, 
representing mean rectified soleus EMG in the H-reflex interval (typically 30-45 ms after 
stimulus), appears 200 ms after the stimulus pulse.  The horizontal thick line shows the 
subject’s average H-reflex size during the baseline sessions.  The shaded area indicates the 
range of the H-reflex sizes that satisfies the reward criterion.  The criterion is based on the H-
reflex sizes of the immediately preceding block: the criterion for the first block of 75 trials is 
based on the 20 control trials, the second block is based on the first bock, and third block is 
based on the second block.  The bar turns green if its height is within the shaded area and the 
trial is counted as successful.  If the height of the bar exceeds the shaded area, it turns red and 
the trial is counted as a failure.  The ongoing success rate is shown at the bottom of the 
screen and updated after each trial. 
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ABSTRACT 

Introduction: The soleus H-reflex is dynamically modulated during walking.  However, 

modulation of the gastrocnemii H-reflexes has not been studied systematically. 

Methods: The medial and lateral gastrocnemii (MG and LG) and soleus H-reflexes were 

measured during standing and walking in humans.   

Results: Maximum H-reflex amplitude was significantly smaller in MG (mean 1.1 mV) and  

LG (1.1 mV) than in soleus (3.3 mV).  Despite these size differences, the reflex amplitudes 

of the three muscles were positively correlated.  The MG and LG H-reflexes were phase- and 

task-dependently modulated in ways similar to the soleus H-reflex.   

Discussion: Although there are anatomical and physiological differences between the soleus 

and gastrocnemii muscles, the reflexes of the three muscles are similarly modulated during 

walking and between standing and walking.  The present findings support the hypothesis that 

these reflexes are synergistically modulated during walking to facilitate the ongoing 

movement. 

 
 44



INTRODUCTION 

The soleus H-reflex is dynamically modulated during motor tasks in humans.  The 

soleus H-reflex amplitude at a given background electromyography (EMG) level decreases 

from standing to walking, and from walking to running (i.e., task-dependent modulation) 

(Capaday and Stein, 1986, 1987a; Edamura et al., 1991; Kido et al., 2004a).  Furthermore, 

the soleus H-reflex is modulated during walking depending on the phase of the gait cycle (i.e., 

phase-dependent modulation) (Capaday and Stein, 1986; Yang and Whelan, 1993; Kido et al., 

2004a).  In contrast to the large number of studies investigating modulation of the soleus H-

reflex, the number of studies on H-reflexes of its synergists, medial and lateral gastrocnemii 

(MG and LG, respectively) has been limited to specific tasks such as hopping (Moritani et al., 

1990; Dyhre-Poulsen et al., 1991), landing (Dyhre-Poulsen et al., 1991; McDonagh and 

Duncan, 2002), and lengthening and shortening contraction (Pinniger et al., 2001).  In 

general, the H-reflexes of the soleus and the gastrocnemii were modulated during a motor 

task in similar ways, although Pinniger et al. (2001) found that the ratio of maximum H-

reflex to maximum M-wave was larger in the soleus than in the MG.  On the other hand, 

Moritani et al. (1990) reported that the amplitude of the MG H-reflex during hopping elicited 

shortly after foot contact increased as force and speed of the motor task increased whereas 

the soleus H-reflex showed an opposite pattern.  However, this study had only one subject 

and the H-reflex size was not evaluated in relation to the background EMG level; thus, it is 

not clear how differently the H-reflex is modulated during hopping between the soleus and 

the MG.  The MG and LG, together with the soleus, are traditionally considered as one 

functional unit of ankle plantarflexor muscles (i.e., the triceps surae) (Murray et al., 1976).  
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However, to date, questions of whether and to what extent the MG and LG H-reflexes are 

modulated between and during standing and walking have not been studied.  

 There are several clear differences between the gastrocnemii and soleus.  

Anatomically, the gastrocnemii muscles are two-joint muscles operating at both the ankle 

and knee joints, whereas the soleus is a single-joint plantarflexor muscle.  Thus, ankle and/or 

knee joint motion influences their lengths and consequent motor outputs differently 

(Kawakami et al., 1998).  Histochemical properties (i.e., muscle fiber type) are also different 

between the soleus and gastrocnemii (Johnson et al., 1973; Gollnick et al., 1974; Edgerton et 

al., 1975).  Their fiber type differences affect their resistance to fatigue (Ochs et al., 1977), 

contractile properties (Vandervoort and McComas, 1983), and EMG activity patterns during 

standing and walking (Joseph and Nightingale, 1952; Campbell et al., 1973).  The 

gastrocnemii are often categorized as phasic muscles because they are mainly activated 

during phasic activity (e.g., walking) to provide impetus to a motion (Campbell et al., 1973), 

whereas the soleus is categorized as a tonic muscle because it has a main role in tonic actions 

such as postural control (Joseph and Nightingale, 1952; Fitzpatrick et al., 1992).  Duysens et 

al. (1991) reported that the soleus was constantly activated during standing while the MG 

was almost silent, causing the EMG activity of the soleus to be always larger than that of the 

MG.  During walking, the MG was nearly as active as the soleus but its activation started 

later in the stance phase. 

As for the differences in spinal reflexes, Levy (1963) measured stretch reflexes and 

H-reflexes of the human soleus and MG in a prone position and found that the amplitudes of 

both reflexes were always greater in the soleus than in the MG.  He linked the amplitude 

differences to an observation in previous animal studies, which demonstrated that muscle 
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spindle density is greater in the soleus than in the MG in cats (Hagbarth and Wohlfart, 1952; 

Swett and Eldred, 1960).  Furthermore, in cats, the soleus motoneurons were reported to have 

larger total excitatory post-synaptic potentials (EPSPs) produced by Ia afferent volleys from 

a variety of muscles than its synergists MG and LG (Eccles et al., 1957; Scott and Mendell, 

1976).  The larger total EPSP in the soleus than in the MG and LG was also reported in a 

non-human primate study (Carp, 1993).  Moreover, in decerebrated cats, Nichols (1989) 

showed that organizations of the heterogenic reflexes (either excitatory or inhibitory) among 

the three muscles were different between quiescent condition (i.e., resting) and activated 

condition, and thus, suggested that the soleus and gastrocnemii have different roles in 

coordinating posture and movement.  

In sum, based on the available anatomical, histological, and electrophysiological 

evidence, it is conceivable that gastrocnemii and soleus spinal reflexes are differently 

modulated during motor tasks.  However, to our knowledge, there has been no study 

systematically investigating task- and/or phase-dependent modulation of the MG or LG H-

reflexes.  Thus, in the present study, we examined the MG and LG H-reflexes during 

standing and walking to delineate the characteristics of MG and LG H-reflex modulation, and 

to compare it to the well-known soleus H-reflex modulation. 

 

MATERIALS AND METHODS 

General Procedure 

Twenty-four subjects with no known neurological disorders (13 men and 11 women 

aged 21-54 yrs) participated in the study.  The subjects understood the purposes and 

procedures of the experiments and signed the consent form before participation.  All 
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protocols were approved by the Institutional Review Boards for Human Research of the 

University of North Carolina at Chapel Hill (Chapel Hill, NC) and Helen Hayes Hospital 

(West Haverstraw, NY).  

In all experiments, EMG activity was recorded from the soleus, MG, LG, and tibialis 

anterior (TA) muscles with self-adhesive surface Ag-AgCl electrodes (Vermed, Bellows 

Falls, VT).  After placing the EMG electrodes on the skin over the muscles, maximum 

voluntary contraction (MVC) was measured for soleus, MG, and LG during standing.  Then, 

the H-reflexes and the M-waves of the three muscles were elicited by stimulating the tibial 

nerve while the subject was standing upright or walking on a treadmill. 

 

Electrical Stimulation and EMG Recording 

 Self-adhesive surface Ag-AgCl electrodes (2.2 × 2.2 cm for the cathode and 2.2 × 3.5 

cm for the anode; Vermed, Bellows Falls, VT) were placed on the skin over the popliteal 

fossa to stimulate the tibial nerve using a Grass S48 stimulator (with CCU1 constant current 

unit and SIU5 stimulus isolation unit; Astro-Med, West Warwick, RI).  For EMG activity 

recording, a pair of self-adhesive surface Ag-AgCl electrodes (2.2 × 3.5 cm, Vermed, 

Bellows Falls, VT) was placed longitudinally on the skin over the soleus just below the 

gastrocnemii with an interelectrode distance of 3 cm.  EMG recording electrodes were also 

placed over the center of the muscle bellies of the MG, LG, and TA.  Pairs of electrodes for 

the soleus, MG, and LG muscles were placed at least 7 cm apart between the muscles to 

minimize the cross-talk.  Locations for the nerve stimulating electrodes were determined to 

minimize the H-reflex threshold and maximize the maximum H-reflex (Hmax) and M-wave 

(Mmax) amplitudes of the soleus.  Thus, the stimulus location was optimized to the soleus H-
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reflex.  However, in a pilot experiment, stimulation at the optimum location for the soleus H-

reflex also maximized the Hmax and Mmax of the MG and LG.  Therefore, the same 

stimulus location was used for eliciting the soleus, MG, and LG H-reflexes simultaneously, 

and presumably, this location was optimum for all three muscles.  

 EMG signals were amplified, band-pass filtered (10-1000 Hz), and recorded with a 

custom-made system and Axoscope (Molecular Devices Inc., Sunnyvale, CA) at 5000 Hz 

(for standing data) or 2000 Hz (for walking data).  During standing, the EMG and nerve 

stimulus signals were recorded for a period of 200 ms in response to each test stimulus pulse 

including a prestimulus period of 50 ms.  In addition, the soleus EMG signals were rectified, 

averaged every 100 ms, and shown on the computer screen as a bar graph for visual feedback.  

If the soleus background EMG was kept in the specified range (typically 10-15% MVC) for 2 

s and if 5 s had passed since the last stimulus (i.e., the minimum interstimulus period was 5 s), 

a square stimulus pulse with 1 ms of duration was delivered to elicit the H-reflex and M-

wave.  During the measurement of the standing H-reflexes with various background activity 

levels, the visual feedback was used to help the subject grade the background EMG activity 

from 5 to 100% MVC levels.  In order to simplify the task, no feedback of the MG and LG 

background EMG activity was provided.  During walking, the EMG activity, heel contact, 

and nerve stimulation signals were continuously recorded while the H-reflexes were elicited 

at pseudo-random intervals (i.e., interstimulus interval of 2.5-4.5 s).  This was to ensure that 

the H-reflexes were obtained at various phases throughout the entire gait cycle.  No more 

than one stimulus was delivered per gait cycle, and there was at least one gait cycle without 

stimulation between stimulated cycles (Yang and Stein, 1990; Kido et al., 2004a, b). 
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MVC measurements of the soleus, MG, and LG 

 The MVC values of the soleus, MG, and LG were determined as the maximum 

rectified EMG level.  The subject stood on both feet with slightly raised heels from the 

ground, and often shifted body weight onto the tested leg as the level of contraction increased.  

Also, if necessary, vertical resistance was applied by either pressing down the subject’s 

shoulders or asking the subject to push up against the hand-rail that was placed in front of the 

subject for balancing.  The subject was asked to exert maximum effort to activate the 

plantarflexors for 5 s.  Three MVC measurements were made with short breaks in between.  

Average EMG activity of the middle 3 s was calculated for each muscle and the highest value 

of the three trials was taken as the muscle’s MVC. 

 

H-reflex measurements of the soleus, MG, and LG 

For all 24 subjects, the H-reflex and M-wave recruitment curves were obtained from 

the soleus, MG, and LG simultaneously while the subject stood and maintained a pre-defined 

level (usually 10-15% of the MVC) of rectified soleus EMG activity (see Electrical 

stimulation and EMG recording).  Stimulus intensity was increased in steps of 1.25–2.5 mA 

from the soleus H-reflex threshold to just above the level that was required to elicit the 

Mmax in all three muscles (Zehr and Stein, 1999; Kido et al., 2004a; Thompson et al., 2009).  

Generally, ten different stimulus intensities were used to obtain the recruitment curve, and 

four EMG responses were recorded and averaged at each stimulus intensity.  

For 19 subjects, the H-reflexes of the soleus, MG, and LG were elicited 225 times (3 

blocks of 75 trials) to examine the relation among the three muscles’ H-reflexes.  The trial 

occurred during standing while the soleus EMG activity was maintained within a pre-defined 
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range (i.e. 10-15% MVC) (see EMG recording and electrical stimulation).  Stimulus level 

was set at just above the soleus M-wave threshold.  Small adjustments were occasionally 

needed to maintain the same soleus M-wave amplitude throughout the 225 trials.  

For 11 subjects, the H-reflexes of the soleus, MG, and LG were measured during 

standing with various levels of background activity and during walking to assess task- and 

phase-dependent modulation of the H-reflex.  During standing, the subject was instructed to 

match the soleus background activity at target levels (4 to 5 different levels within 5-100% 

MVC range) while approximately 10 consecutive stimuli were applied at each level (see 

EMG recording and electrical stimulation).  Thus, roughly 50 H-reflexes were recorded from 

the soleus, MG, and LG.  Small adjustments of stimulus current were occasionally made to 

maintain the same soleus M-wave amplitude. 

 After completing the H-reflex measurement during standing, the subject walked on a 

non-inclined treadmill at his/her comfortable speed (average 0.9 m/s) while the tibial nerve 

was pseudo-randomly stimulated to elicit the H-reflexes (see Electrical stimulation and EMG 

recording).  This self-selected speed was slower than the typical normal walking speed (i.e., 

1.1-1.2 m/s, Duysens et al., 1991) probably because loud noise from the treadmill motor 

made the subject feel they walked at a faster speed than the actual speed.  Foot switches 

(Bortec Biomedical, Calgary, Canada) were inserted between the subject’s shoe and the heel 

to detect heel contact during walking.  Several different stimulus intensities were used to 

obtain the H-reflexes with the same M-wave size across different phases of the gait cycle 

(Capaday and Stein, 1986; Llewellyn et al., 1990; Edamura et al., 1991) (see Data analysis). 

 

Data analysis 
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All analyses were done with a custom-written MATLAB program (Mathworks, 

Natick, MA).  To measure the background activity level during standing, rectified EMG 

activity in the 50-ms prestimulus period was averaged.  For the background activity during 

walking, the EMG data measured during unstimulated steps were averaged and used as the 

control EMG activity (Yang and Stein, 1990; Kido et al., 2004a, b).  Thus, the background 

activity of the stimulated step at a certain time in the gait cycle was calculated from the 

averaged EMG activity during the unstimulated steps at a corresponding time.  

 The H-reflex and the M-wave amplitudes were measured as the peak-to-peak values 

in each reflex window (i.e., typically 30-45 ms post-stimulus for the H-reflex and 5-23 ms 

post-stimulus for the M-wave).  For all three muscles, the Hmax, Mmax, and Hmax/Mmax 

ratio were obtained from the recruitment curve measurement.  In order to evaluate the MG 

and LG H-reflex amplitudes during standing in relation to the soleus H-reflex amplitudes, the 

MG or LG H-reflexes were plotted against the soleus H-reflexes.  Then, using linear 

regression analysis, their correlations were measured as the coefficient of determination (R2). 

 To investigate the task- and phase-dependent modulation of the H-reflex, trials with 

consistent M-wave size were selected for data analysis so as to compare between tasks (i.e. 

standing and walking) or across various phases of the gait cycle at equal stimulus intensities 

(Capaday and Stein, 1986; Llewellyn et al., 1990; Edamura et al., 1991).  Thus, some of the 

responses with too large or too small M-waves were eliminated from further analyses.  The 

standing data with various background EMG levels were sorted based on the background 

activity, and the H-reflex amplitude and background activity were averaged every 4-5 trials 

to yield approximately ten data points for each muscle.  For the walking data, the gait cycle 

was determined using heel contact signals.  Then, the entire gait cycle was divided into 12 
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equal bins, and each muscle’s H-reflex amplitudes and background activity were averaged 

for each bin (Kido et al., 2004a).  Approximately 10 responses were averaged in each bin.  

To compare the H-reflex amplitudes between the two tasks, the standing and walking H-

reflexes were plotted as a function of the background EMG activity for each muscle 

(Capaday and Stein, 1986, 1987a).  To evaluate H-reflex modulation during walking, the 

modulation index (i.e., 100 × (maximum H-reflex – minimum H-reflex) / maximum H-

reflex) (Zehr and Kido, 2001; Kido et al., 2004a) was calculated over the gait cycle.  For 

statistical comparison between muscles and tasks, the background EMG activity and the H-

reflex amplitude were normalized using the MVC value and the Mmax amplitude, 

respectively, and averaged across the subjects.  All group average data were presented as 

mean ± standard error (SE).  Statistical differences among the muscles were examined using 

paired t-test, if not indicated otherwise.  The α level was set at 0.05.  To correct the 

significance level for multiple comparisons, Sidak correction (1-(1-α)1/n) was used to 

determine the p-value threshold.  That is, for comparing among the three triceps muscles (i.e., 

3 potential comparisons), we used 1-(1-0.05)1/3 = 0.017 as the threshold for significance.  

 

RESULTS  

Hmax and Mmax during standing  

Typical examples of H-reflexes and M-waves during standing in the soleus, MG, and 

LG are shown in Figure 2.1.  The H-reflexes and the M-waves of the three muscles were 

simultaneously recorded in response to a test stimulus, while the background EMG activity 

levels of the soleus, MG, and LG remained within a narrow range [mean ± 1 standard 

deviation (SD) range for soleus: 10.9 ± 1.6 – 16.8 ± 2.8, MG: 4.5 ± 1.0 – 9.5 ± 1.6, LG: 4.4 ± 
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1.0 – 7.6 ± 1.7 (%MVC, mean ± SE)] throughout the measurement.  The average 

Hmax/Mmax ratios (± SE) from 24 subjects for the soleus, MG, and LG were 0.45 (± 0.05), 

0.20 (± 0.03), and 0.20 (± 0.03), respectively.  The average Hmax/Mmax ratio of the soleus 

was significantly larger than that of the MG and LG (p<0.01, paired t-test, for both MG and 

LG).  There were no significant differences in the average Mmax among the three muscles 

(soleus: 8.12 ± 0.58 mV, MG: 6.84 ± 0.56 mV, and LG: 6.47 ± 0.57 mV, paired t-test).  The 

average Hmax of the soleus was significantly larger than that of the MG and LG (p<0.01, 

paired t-test, for both MG and LG, soleus: 3.33 ± 0.36 mV, MG: 1.14 ± 0.12 mV, and LG: 

1.13 ± 0.14 mV). 

Each trace in Figure 2.1a, c, and e is an average of 225 trials at a constant stimulus 

level during standing.  The stimulus intensity was set at just above the soleus M-wave 

threshold, indicated by arrows on Figure 2.1b, d, and f.  Thus, the reflexes of all three 

muscles were elicited in the ascending part of the recruitment curve (i.e., before the Hmax 

level.  These panels show that the absolute H-reflex amplitude of the soleus was much larger 

than that of the MG and LG at a given stimulus level.  In addition, the latencies of both the 

H-reflex and the M-wave were slightly shorter for the MG and LG than for the soleus (for the 

soleus, MG, and LG, M-wave latencies were 10ms, 6ms, and 9ms, and H-reflex latencies 

were 32ms, 31ms, and 30ms, respectively), due to the more proximal locations of the MG 

and LG electrodes compared to the soleus electrodes. 

 

MG and LG H-reflexes in relation to the soleus H-reflex 

The correlations among the H-reflex amplitudes of the soleus, MG, and LG were 

examined during standing with consistent background activity (see above) and M-wave 
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amplitude [mean ± 1 standard deviation (SD) range for soleus: 4.1 ± 0.8 – 5.6 ± 1.0, MG: 

12.5 ± 2.9 – 18.0 ± 4.0, LG: 17.5 ± 6.2 – 20.2 ± 7.0 (%Mmax, mean ± SE)].  Sample 

correlation plots from one subject are shown in Figure 2.2a-c.  In Figure 2.2a and b, all data 

points were below the unity slope lines (i.e. dotted lines), suggesting that the amplitudes of 

the MG and LG H-reflexes were smaller than that of the soleus.  Although there were 

amplitude differences between the soleus and both gastrocnemii, the H-reflex amplitudes in 

the three muscles were strongly correlated with each other.  Significant linear correlations 

were present in all pairs in all subjects (p<0.01), and the average R2 values (± SE) among all 

subjects for the soleus-MG, soleus-LG, and MG-LG pair were 0.47 ± 0.06, 0.57 ± 0.05, 

0.48 ± 0.06, respectively.  There were no statistical differences in R2 values among the pairs. 

  

Task-dependent modulation of the H-reflex 

Figure 2.3 shows the H-reflexes during standing and walking in one subject as a 

function of the background activity.  The group average M-wave amplitudes (± SE) were 

matched between the tasks: standing vs. walking, 0.60 ± 0.08 mV vs. 0.67 ± 0.08 mV for the 

soleus (p=0.14, paired t-test), 0.68 ± 0.10 mV vs. 0.66 ± 0.09 mV for the MG (p=0.38), and 

0.86 ± 0.23 mV vs. 0.77 ± 0.20 mV for the LG (p=0.14).  In Figure 2.3, the linear regression 

lines are fitted to aid the H-reflex amplitude comparison between the tasks.  R2 values of the 

fitted lines for the soleus, MG, and LG are 0.74, 0.74, and 0.83, respectively, for standing, 

and 0.63, 0.55, and 0.82 for walking.  In group data, slopes of the regression lines for the 

soleus H-reflex were 36.0 ± 7.7 (standing) vs. 39.3 ± 5.8 (walking), for the MG were 17.0 ± 

3.5 vs. 14.8 ± 1.9, and for the LG were 21.5 ± 4.5 vs. 27.6 ± 4.2.  None of the slopes in the 

three muscles showed significant differences between standing and walking (p=0.68, 0.53, 
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and 0.22, for the soleus, MG, and LG, respectively, paired t-test).  Intercepts of the regression 

lines for the soleus H-reflex were 2.64 ± 0.37 (standing) vs. 0.14 ± 0.13 (walking), for the 

MG were 0.93 ± 0.14 vs. 0.15 ± 0.04, and for the LG were 1.44 ± 0.2 vs. 0.12 ± 0.06, and 

differences between the tasks were significant in all three muscles (p<0.01, paired t-test).  As 

seen in Figure 2.3, the soleus H-reflex amplitude was greater during standing than during 

walking, similar to the finding of Capaday and Stein (1986).  This task-dependent 

modulation of the reflex amplitude was also seen in the MG and LG.   

Since there were relatively few data points below 20% of the MVC during standing 

and above 60% MVC during walking, the data from background EMG levels between 20% 

and 60% MVC were used for the rest of the analysis (Kido et al., 2004a).  For the statistical 

comparison between the tasks, the background EMG activity was normalized using the MVC 

value, and the H-reflex amplitude was normalized using the Mmax value.  The average H-

reflex amplitudes (%Mmax), when the background EMG level was 20-60% MVC, were 

calculated for each subject.  The mean values among all subjects are shown in Figure 2.4.  

The H-reflex amplitude was significantly larger during standing than during walking in all 

three muscles (p<0.01 in the soleus and MG, p<0.05 in LG, paired t-test).  The relative size 

difference between the tasks (i.e. walking amplitude/standing amplitude ratio) was calculated 

for each muscle and for each subject.  The group average ratios (± SE) for the soleus, MG, 

and LG were 0.64 ± 0.08, 0.49 ± 0.06, and 0.71 ± 0.10, respectively, which did not differ 

significantly from each other (p=0.17 for soleus vs. MG, p=0.61 for soleus vs. LG, and 

p=0.07 for MG vs. LG).   

 

Phase-dependent modulation of the H-reflex 
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 Figure 2.5 shows H-reflex modulation during walking as a function of the gait cycle 

phases as well as the locomotor EMG activity in the soleus, MG, and LG in one subject.  The 

locomotor EMG activity for each muscle was obtained by averaging 73 unstimulated steps.  

The M-wave amplitudes were consistent throughout the gait cycle as indicated by dotted 

lines.  The average M-wave amplitudes showed no significant changes throughout the 12 

bins (p=0.12 for soleus, p=0.86 for MG, and p=0.10 for LG, one-way repeated measures 

ANOVA).  Similar to the previous studies (Capaday and Stein, 1986; Llewellyn et al., 1990; 

Edamura et al., 1991; Kido et al., 2004a), the soleus H-reflex amplitude was low at heel-

contact, gradually increased to its maximum value toward late stance phase, and rapidly 

decreased at the beginning of the swing phase.  This strong phase-dependent modulation was 

also seen in the MG and LG.  Indeed, average modulation indices (± SE) of the three muscles 

among all subjects were high (98.3 ± 0.3 for the soleus, 96.1 ± 0.9 for the MG, and 96.1 ± 0.7 

for the LG), indicating that the H-reflexes in each muscle are highly modulated during 

walking based on gait cycle phase.  The modulation indices for the MG and LG were 

statistically smaller than that for the soleus (p<0.01 for both MG and LG, paired t-test), 

probably due to smaller H-reflex amplitudes in the MG and LG.   Patterns of the EMG 

activity and H-reflex modulation were similar during locomotion in each muscle (i.e., high in 

the late stance phase and silent during the swing phase).  

 

DISCUSSION 

The purpose of this study was to examine the H-reflexes of the MG and LG in 

humans, in comparison to the well-known soleus H-reflex.  The H-reflexes of the soleus, MG, 

and LG were measured during standing and walking to examine the phase- and task-
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dependency of the reflex amplitudes.  Although the Hmax/Mmax ratios were significantly 

different between the soleus and the gastrocnemii, the H-reflex amplitudes in response to 

single test stimuli were strongly correlated among the three muscles during standing.  The 

MG and LG H-reflex amplitudes were modulated depending on the task (i.e., standing vs. 

walking) and on the phase of the gait cycle.  The pattern of the modulation was similar to that 

seen with the soleus H-reflex. 

 

The Hmax/Mmax ratios of the MG and LG were smaller than that of the soleus 

 The Hmax amplitudes calculated from the recruitment curves of the three muscles 

were significantly different: the soleus Hmax was larger than the MG or LG Hmax.  While 

there were no statistical differences in the Mmax of all three muscles, the Hmax/Mmax ratio 

of the soleus was significantly larger than that of the MG or LG.  Those results are consistent 

with previous animal data (Messina and Cotrufo, 1976).  Several possible explanations can 

be given regarding what make the Hmax/Mmax ratios different between the soleus and the 

gastrocnemii.  First, the soleus and the gastrocnemii have different compositions of muscle 

fiber types.  Type I (“slow”) muscle fibers are predominant in the soleus (70-90%) whereas 

type I and II (“fast”) muscle fibers are equally common (50% for both types) in the 

gastrocnemii (Johnson et al., 1973; Gollnick et al., 1974; Edgerton et al., 1975).  Thus, 

motoneurons that innervate the soleus and the gastrocnemii have different properties such as 

axon diameter and cell size, which will greatly influence the recruitment of H-reflex and M-

wave at different stimulus levels in each muscle (Henneman and Mendell, 1981).  During the 

recruitment curve measurement, the motoneurons are recruited into the H-reflex activation by 

the Ia afferent volley from the smallest to largest in an orderly manner in accordance with the 
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size principle (Henneman et al., 1965) while the order of the recruitment is reversed for the 

M-wave (i.e., from the largest motoneurons to the smallest motoneurons) as electrical 

stimulation first activates axons with larger diameters (Pierrot-Deseilligny and Mazevet, 

2000).  Thus, the reflex activation of relatively large motoneurons would be occluded by the 

antidromic motor volley on the same motor axons, contributing to the falling part of the H-

reflex recruitment curve (Schieppati, 1987).  Indeed, in the human soleus, activation of slow-

twitch fibers (i.e., innervated by smaller motoneurons with smaller axon diameters) is mainly 

responsible for the H-reflex (Buchthal and Schmalbruch, 1970).  The fact that the soleus 

motoneuron pool contains more small motoneurons to be recruited into the H-reflex than the 

MG or LG pools would, at least partially, explain the smaller Hmax amplitudes of the MG 

and LG when compared to that of the soleus.  Second, it is known that the size of Ia EPSP is 

larger in soleus motoneurons than in MG and LG motoneurons in cats (Eccles et al., 1957; 

Mendell and Henneman, 1971; Scott and Mendell, 1976) and non-human primates (Hongo et 

al., 1984; Carp, 1993).  This would partially explain why the H-reflex amplitudes of the MG 

and LG were smaller than that of the soleus (see Figure 2.1).  In addition, in cats, the number 

of muscle spindles is greater in the soleus than in the MG (Hagbarth and Wohlfart, 1952).  If 

the same uneven distribution of the spindles exists in human, the number of Ia afferents is 

presumably smaller in the gastrocnemii than in the soleus, possibly leading to less 

homonymous Ia excitation of the motoneuron at a given stimulus level in the gastrocnemii 

when compared to the soleus.  However, the counts of the muscle spindles in cats are not 

consistent between studies (Hagbarth and Wohlfart, 1952; Swett and Eldred, 1960), and 

human data are unavailable.  Other factors that affect the H-reflex amplitude, such as 

presynaptic inhibition and postsynaptic inhibition (Capaday and Stein, 1987b, 1989; Stein, 
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1995), may differently influence H-reflex recruitment (i.e., Hmax and Hmax/Mmax ratio) 

between the soleus and gastrocnemii (see Discussion by Schieppati, 1987), although, to our 

knowledge, there has been no study reporting the different influence of pre- or postsynaptic 

inhibition among the three muscles.    

 

The amplitudes of the MG and LG H-reflexes co-vary with soleus H- reflex amplitude 

 In the present study, the intensity of the electrical stimulation for eliciting the H-

reflex in all three muscles was set at just above the soleus M-wave threshold during standing 

(Figure 2.2).  Thus, the reflexes of all three muscles were elicited in the ascending part of the 

recruitment curve (i.e., before the Hmax level, see arrows in Figure 2.1b, d, and f).  H-reflex 

and M-wave sizes of the three muscles did not either positively or negatively correlate with 

each other (R2 < 0.03), further confirming that the H-reflexes of the three muscles were 

elicited in the ascending part of the recruitment curve, and therefore, possibility that 

antidromic motor volley of the MG and LG motor axons would decrease the size of the MG 

and LG H-reflexes can be avoided.  Despite the smaller amplitudes of the MG and LG H-

reflexes compared to the soleus, the H-reflex amplitudes of the three muscles were strongly 

positively correlated with each other.  This suggests that, although there are several 

mechanical and physiological differences between the soleus and the gastrocnemii (Joseph 

and Nightingale, 1952; Campbell et al., 1973; Ochs et al., 1977; Vandervoort and McComas, 

1983; Duysens et al., 1991), the excitability of the H-reflex pathway is modulated in similar 

ways among the three muscles.   
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The MG and LG H-reflexes are task- and phase-dependently modulated similarly to the 

soleus H-reflex 

 The excitability of the H-reflex pathway is similarly modulated between the soleus 

and gastrocnemii not only during standing (as discussed above) but also during walking.  

Although the H-reflex amplitudes of the MG and LG were smaller than that of the soleus 

during standing and walking, the standing reflexes were larger than the walking reflexes in 

all three muscles (Figure 2.4).  The extent of this task-dependent modulation (indicated by 

the walking reflex/standing reflex ratio) was not significantly different among the three 

muscles, which suggests that the reflexes were similarly modulated between standing and 

walking among the three muscles.  In addition, the modulation indices during walking 

showed high values for all three muscles (>96%), indicating that the reflex amplitudes of all 

three muscles are similarly modulated with gait cycle phase.  

 The fact that the MG and LG H-reflexes are task- and phase-dependently modulated 

in ways similar to the soleus H-reflex supports the hypothesis that the soleus, MG, and LG 

H-reflex pathways function as one synergistic unit.  That is, similar modulations of the H-

reflex pathways of soleus, MG, and LG contribute to successful walking.  As suggested by 

Capaday et al. (1987a) and Edamura et al. (1991), lowering the reflex gain from standing to 

walking (i.e., task-dependent modulation) would ensure that the stretch reflex pathways (or 

net motor outputs) are not saturated during walking so that those muscles can contribute to 

locomotor activity.  Also, during walking, activation of the soleus, MG, and LG motoneurons 

by Ia excitatory inputs (i.e., stretch reflex activity) in the stance phase would contribute to 

upward and forward propulsion of the body (Capaday and Stein, 1986), while suppression of 
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such reflex activity in the swing phase would prevent it from opposing ankle dorsiflexion (i.e, 

phase-dependent modulation) (Capaday and Stein, 1986).   

In sum, the H-reflex amplitudes of the MG and LG are smaller than that of the soleus.  

Despite these amplitude differences and the functional differences previously reported, the 

soleus, MG, and LG H-reflexes are similarly modulated between tasks (i.e., standing vs. 

walking) and within a task (i.e., across the gait cycle).  These results suggest that the reflex 

pathways of the three muscles function synergistically to support successful execution of 

motor tasks such as walking. 
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Figure 2.1: Standing H-reflexes and recruitment curves in the soleus, MG, and LG 
Examples of typical standing H-reflexes (a, c, and e) and recruitment curves (b, d, and f) 
elicited in the soleus (SOL), MG, and LG from one subject.  The H-reflexes and the M-
waves of the three muscles were simultaneously recorded in response to a test stimulus, and 
the background activity levels of the soleus, MG, and LG were maintained throughout the 
measurement.  Each data point of the recruitment curve was an average of four reflexes at the 
same stimulus intensity.  The vertical dashed lines indicate the onsets of the M-wave and H-
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reflex.  The Hmax/Mmax ratios calculated from the recruitment curves (b, d, and f) were 
0.50, 0.14, and 0.16 for the soleus (Mmax 9.9 mV, Hmax 4.9 mV), MG (Mmax 9.1 mV, 
Hmax 1.3 mV), and LG (Mmax 8.3 mV, Hmax 1.3 mV), respectively.  Each trace in a, c, and 
e is an average of 225 trials at the same stimulus intensity, which was set at just above the 
soleus M-wave threshold (indicated by the arrows on b, d, and f).  The absolute H-reflex 
amplitude of the soleus was much larger than that of the MG and LG at this stimulus level.  
Also the latencies of both the H-reflex and the M-wave were slightly shorter for the MG and 
LG than for the soleus (for the soleus, MG, and LG, M-wave latencies were 10ms, 6ms, and 
9ms, and H-reflex latencies were 32ms, 31ms, and 30ms, respectively).
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Figure 2.2: Correlation of the peak-to-peak H-reflex amplitudes 
Correlation of the peak-to-peak H-reflex amplitudes among the soleus (SOL), MG, and LG 
measured during standing in a single subject (a: SOL-MG, b: SOL-LG, and c: MG-LG).  The 
dotted lines are unity lines, on which amplitudes of two given muscles are the same size.  All 
the data points in a and b were below the unity lines.  Although the absolute amplitudes of 
the MG and LG are much smaller than the soleus, they are strongly correlated in a linear 
fashion.  R2 values are shown in each panel.
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Figure 2.3: Sample task-dependent modulation of the H-reflexes 
The H-reflex amplitudes during walking and standing plotted against the background EMG 
activity for each muscle in one subject.  The M-wave amplitudes were well-matched between 
the two tasks.  The H-reflex amplitudes at a given EMG level were larger during standing 
than during walking in all three muscles.
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Figure 2.4: Task-dependent modulation of the H-reflexes 
The mean H-reflex amplitudes (normalized using the Mmax amplitude) in the background 
activity range of 20-60% MVC averaged among all subjects (n=11) for each task.  *: The H-
reflex amplitudes during walking were significantly smaller than those during standing in all 
three muscles [p<0.01 in the soleus (SOL) and MG, p<0.05 in LG, paired t-test].  The 
relative size differences between the tasks were not statistically different among the three 
muscles.
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Figure 2.5: Phase-dependent modulation of the H-reflexes and EMG activity during walking 
The H-reflex and M-wave amplitudes during walking as a function of a gait cycle (a, c, and 
e) as well as EMG activity during walking (b, d, and f) in one subject.  a, c, e) The gait cycle 
(from heel contact to the next heel contact) was divided into 12 equal bins and the reflexes 
elicited in the same bin were averaged together.  The M-wave amplitudes (dotted lines) were 
kept consistent throughout the gait cycle for each muscle.  The H-reflex amplitudes were 
highly modulated between phases in all muscles.  The modulation indices for this subject 
were 98.9, 97.6, and 97.4 for the soleus, MG, and LG, respectively.  b, d, f) The locomotor 
EMG activity for each muscle was obtained by averaging 73 unstimulated steps.  The 
locomotor EMG activity and the amplitude modulation of the H-reflex were similar in each 
muscle. 
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CHAPTER III 
 
 
 
 
 

SECOND MANUSCRIPT 
 
 
 
 
 

Operant down-conditioning of soleus H-reflex in humans: effects on gastrocnemius H-
reflexes



ABSTRACT 

Long-term modification of the medial and lateral gastrocnemii (MG and LG) H-

reflexes induced by successful operant down-conditioning of the soleus H-reflex was 

investigated in humans.  Previously, final conditioned soleus H-reflex has been shown to be a 

sum of rapid within-session task-dependent adaptation (difference between control and 

conditioned H-reflex within a session) and gradual across-session long-term change (time-

course change in control reflex).  The conditioning protocol is suggested to induce task-

dependent adaptation originating in supraspinal plasticity, which in turn, produces long-term 

changes reflecting spinal plasticity.  There were six baseline and 30 down-conditioning 

sessions.  The MG and LG H-reflexes were concurrently recorded with the soleus H-reflex 

every six sessions.  Each conditioning session had 20 control trials and 225 conditioning 

trials.  After the conditioning, the soleus H-reflex showed significant decrease in conditioned 

H-reflex, control H-reflex, and within-session decrease whereas, for synergists, significant 

within-session change occurred only in the MG H-reflex, and neither the MG nor the LG 

control H-reflexes decreased.  Thus, the within-session decrease was differentially induced 

among the three muscles.  Additionally, since the MG H-reflex had a continuous within-

session decrease throughout the conditioning, compensatory plasticity may have occurred to 

prevent long-term change in the MG H-reflex pathway.  A compensatory plasticity would 

reflect a strategy of the brain and spinal cord to impose the least impact of the conditioning 

on the existing wide repertoire of motor skills.  The present study suggests that operant 

conditioning has differential effects on the target muscle and the synergist muscles. 
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INTRODUCTION 

 The H-reflex, sometimes referred to as the “electrical analogue” of the stretch reflex, 

has been extensively studied in both healthy and neurologically impaired humans (Schieppati, 

1987; Brooke et al., 1997; Pierrot-Deseilligny and Mazevet, 2000; Zehr, 2002; Misiaszek, 

2003).  Our recent study showed that, in humans, H-reflex size of the soleus is highly 

correlated with H-reflex sizes of its synergists medial gastrocnemius (MG) and lateral 

gastrocnemius (LG) during standing (Makihara et al., 2010).  Furthermore, the H-reflexes of 

the three muscles are similarly modulated during walking (i.e., phase-dependent modulation) 

and between walking and standing (i.e., task-dependent modulation), supporting the 

hypothesis that the reflexes of the three muscles are synergistically modulated to facilitate the 

execution of ongoing motor tasks.     

 The H-reflex is frequently used as a tool to investigate adaptive plasticity of the spinal 

cord (Zehr, 2002; Misiaszek, 2003; Knikou, 2008).  Over the last three decades, it has been 

shown that the H-reflex or the spinal stretch reflex can be operantly conditioned in different 

species including monkeys, rats, mice, and humans (Wolpaw et al., 1983; Wolpaw, 1987; 

Evatt et al., 1989; Chen and Wolpaw, 1995; Carp et al., 2006b; Thompson et al., 2009).  

Recently, Thompson et al. (2009) showed in humans that the soleus H-reflex change induced 

by operant conditioning was the sum of rapid within-session (i.e., task-dependent) adaptation 

and gradual across-session (i.e., long-term) change.  The protocol was designed to turn the 

rapid component on and off while leaving the slow across-session component unaffected, 

enabling the measurement of the two distinguishable phenomena that differ in time of onset, 

rate of development, and flexibility.  It was suggested that the conditioning protocol induces 
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task-dependent adaptation originating from the brain, and in turn, produces long-term change 

in the spinal cord.  

 While the supraspinal and spinal mechanisms underlying the H-reflex changes 

induced by operant conditioning have been intensively studied (Wolpaw and O'Keefe, 1984; 

Carp and Wolpaw, 1994, 1995; Carp et al., 2001; Chen et al., 2002; Chen and Wolpaw, 2002, 

2005; Chen et al., 2006; Wang et al., 2006; Wolpaw and Chen, 2006; Thompson et al., 2009; 

Wang et al., 2009), the impact of conditioning on muscles that are not directly conditioned 

has been much less investigated (Wolpaw et al., 1983).  In monkeys, Wolpaw et al. (1983) 

reported that effects of operant conditioning of the biceps brachii stretch reflex were 

relatively specific to the target muscle (i.e., biceps brachii), and the reflexes in its synergists 

(i.e., brachialis and brachioradialis) were changed to a lesser extent.  Similar results have 

been reported for the biceps brachii stretch reflex in humans (Wolf and Segal, 1996).  

However, in the lower extremities, despite a large number of studies done in the past 20 years 

(Chen and Wolpaw, 1995, 2005; Carp et al., 2006b; Chen et al., 2006; Thompson et al., 

2009; Chen et al., 2010; Wolpaw, 2010), effects of the soleus H-reflex conditioning on its 

synergists, the MG and LG H-reflexes have not been studied.  Thus, the purpose of the 

present study was to investigate whether and to what extent the H-reflexes of the MG and LG 

are modified by successful operant down-conditioning of the soleus H-reflex.  Specifically, 

the present study focused on evaluating the extent of task-dependent adaptation and long-

term change of the MG and LG H-reflexes in relation to the soleus H-reflex. 

 

MATERIALS AND METHODS 

Study Overview 
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The H-reflexes of the MG and LG were concurrently measured with the soleus H-

reflex at every six sessions over the course of operant conditioning.  The study protocol was 

approved by the Institutional Review Board of Helen Hayes Hospital and all subjects gave 

written consent prior to participation.  Eight subjects (two women and six men, aged 21-54 

years) with no known history of neurological disease or injury participated in the study.  All 

subjects were physically active; four subjects (21, 27, 29, and 31 years old) had a regular 

exercise routine such as going to a gym or playing basketball at least 1-2 times per week.  

Although the other three subjects (31, 33, and 43 years old) did not exercise regularly, their 

jobs and life styles were not sedentary but rather including physical activity.  The last subject 

who was the oldest in the subject group (i.e., 54 years old) was retired, but doing volunteer 

work at a senior home 3-4 times per week.  

In the preliminary session prior to operant conditioning, the maximum voluntary 

contraction (MVC) values for the soleus, MG, and LG were measured as the maximum 

rectified EMG levels during isometric contraction in standing.  Then, for each subject, target 

soleus background EMG window and target M-wave size for H-reflex trials were determined 

during natural standing.  The target background window was set around the subject’s natural 

standing level (i.e., usually 10-15% MVC).  Tibial nerve stimulation just above the soleus M-

wave threshold was selected, and the M-wave size at this stimulus level was used as the 

target M-wave size.  For all the H-reflex trials throughout the study, the soleus M-wave size 

and the soleus background EMG levels were kept constant (Thompson et al., 2009).   

 

Operant conditioning of the soleus H-reflex 
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The operant conditioning protocol for the human soleus H-reflex has been described 

elsewhere (Thompson et al., 2009) and is briefly summarized here.  The protocol comprised 

six baseline sessions and 30 down-conditioning sessions spread over 12 weeks (i.e., 3 

sessions per week).  Each subject’s sessions always occurred at the same time of day to 

control for diurnal variations in H-reflex size (Wolpaw and Seegal, 1982; Chen and Wolpaw, 

1994; Carp et al., 2006a; Lagerquist et al., 2006).  

Each session began with an H-reflex/M-wave recruitment curve measurement during 

standing while the subject maintained the soleus background EMG activity in the target 

window.  Then, in each of the baseline sessions, 225 control H-reflexes were elicited, which 

was divided into three blocks of 75 trials.  In each conditioning session, 20 control H-reflexes 

were elicited as in the baseline sessions and then 225 conditioned H-reflexes were elicited.  

The difference between the control and conditioning trials was that, in the control trials, the 

H-reflex was simply elicited without any feedback or encouragement to change H-reflex size.  

On the other hand, in the conditioning trials, the subject was asked to decrease the soleus H-

reflex and was given visual feedback regarding the reflex size immediately after each 

stimulus.  The visual feedback showed whether the resulting H-reflex was smaller than a 

criterion value (i.e., successful or not).  The reward criterion was based on the performance 

of the immediately preceding block of trials (i.e., for the first block of 75 conditioning trials, 

the reward criterion was based on the average of the block of 20 control trials, the criterion 

for the second block was based on the first block, and the criterion for the third block was 

based on the second block).  The reward criterion was set at 60% from the lowest end of the 

soleus reflex size distribution.  Therefore, if the distribution of the soleus H-reflex size in the 

current block was the same as that in the preceding block, 60% of the trials would have been 

 
 78



successful.  The visual feedback screen also showed a thick horizontal line representing the 

average soleus H-reflex size in the baseline sessions for each subject, and the ongoing 

successful rate was also printed to screen.   

During the H-reflex measurements, the subject was asked to maintain a natural 

standing posture and not to contract (i.e., tense up) any muscle in the body.  Between each 

trial, the subject was allowed to move within a limited area.  Although some subjects 

preferred to stand still throughout a block, others tended to move, such as taking steps in a 

same place or shaking legs.  During the conditioning sessions, the subject was encouraged to 

maximize success rate, to focus on every trial, and to decrease the H-reflex size as much as 

possible within a session.  The thick horizontal line representing the baseline average was 

useful for the subject to tell how much he/she improved during the conditioning.  To 

maximize the subject’s motivation, attention, and conscious involvement in improving 

success rate, verbal encouragement was given between the conditioning blocks.  The subject 

was instructed to explore different techniques for decreasing the soleus H-reflex size and to 

identify the most effective strategy.   

The MG and LG H reflexes were measured at every six sessions concurrently with 

the soleus H-reflex.  Note that there was no feedback regarding the background EMG activity 

and H-reflex size of the MG or LG.    

 

Electrical Stimulation and EMG Recording 

In order to elicit the H-reflex and M-wave, the tibial nerve was stimulated in the 

popliteal fossa using a Grass S48 stimulator (with CCU1 constant current unit and SIU5 

stimulus isolation unit; Astro-Med, West Warwick, RI) with self-adhesive surface Ag-AgCl 
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electrodes (2.2 × 2.2 cm for the cathode and 2.2 × 3.5 cm for the anode; Vermed, Bellows 

Falls, VT).  The stimulating electrode pair was placed so as to minimize the H-reflex 

threshold, maximize the maximum H-reflex (Hmax) and the maximum M-wave (Mmax) 

sizes of the soleus, and to avoid stimulation of other nerves.  Thus, the stimulus location was 

optimized to the soleus H-reflex.  However, in a pilot experiment, stimulation at the optimum 

location for the soleus H-reflex also maximized the Hmax and Mmax for the MG and LG.  

Therefore, as in a previous study (Duclay et al., 2009), the same stimulus location was used 

for eliciting the soleus, MG, and LG H-reflexes simultaneously, and presumably, this 

location was optimum for all three muscles.  Soleus EMG activity was recorded using a pair 

of self-adhesive surface Ag-AgCl electrodes (2.2 × 3.5 cm, Vermed, Bellows Falls, VT) 

placed longitudinally just below the gastrocnemii with the centers of electrodes 3 cm apart.  

To evaluate antagonist activity during the conditioning, another pair of EMG recording 

electrodes was placed on the skin over the belly of tibialis anterior (TA).  To measure the 

MG and LG H-reflexes, in every six sessions, pairs of EMG recording electrodes were placed 

on the skin over the center of MG and LG muscle bellies (see Operant conditioning of the 

soleus H-reflex).  EMG electrodes for the soleus, MG, and LG muscles were placed at least 

7cm apart to minimize the cross-talk.  To avoid session-to-session variability in electrode 

placement, locations of all electrodes were mapped in relation to permanent skin marks such 

as scars and moles in the preliminary session and the electrodes were placed based on this 

mapping in all subsequent sessions. 

EMG signals were amplified, band-pass filtered (10-1000 Hz), sampled at 5,000 Hz, 

and stored.  The soleus EMG activity was rectified and averaged every 100 ms, and the result 

was immediately provided as visual feedback to help the subject maintain the soleus 
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background EMG activity within the specified window (see Thompson et al., 2009 for 

details).  If the soleus background EMG was kept in the target window (typically 10-

15%MVC) for 2 s and if 5 s had passed since the last stimulus, a 1 ms square stimulus pulse 

was delivered to elicit the H-reflex and M-wave.  The EMG and nerve stimulus signals were 

recorded for a period of 200 ms in response to each test stimulus pulse including a 

prestimulus period of 50 ms.  

 

Data analysis 

H-reflex and M-wave sizes of the soleus, MG, and LG were defined as the mean 

rectified size in each reflex window (i.e., for the soleus, typically 30-45 ms post stimulus for 

the H-reflex and 5-23 ms post stimulus for the M-wave) minus average background EMG.  

We calculated the average H-reflex sizes for the entire 225 H-reflex trials (i.e., three 75-trial 

blocks together) and the first 20 within-session control trials (i.e., the first 20 trials of a 

baseline session, which were obtained from the first 75 H-reflex block, or 20 control H-reflex 

trials of a conditioning session) for each session.  Changes in the soleus control and 

conditioned H-reflex sizes across sessions were quantified as a percentage of the average for 

the six baseline sessions.  That is, the control H-reflex size at each of the conditioning 

sessions was normalized using the average of the first 20 trials of six baseline sessions, and 

the conditioned H-reflex size was normalized using average of the entire 225 trials of six 

baseline sessions (i.e., 100% means no change during the conditioning).  For the H-reflexes 

of the MG and LG, although there was no feedback on the MG and LG H-reflex sizes or 

encouragement to decrease them, the MG and LG H-reflexes during the soleus conditioning 

trials are referred to as conditioned reflexes of the MG and LG, as they were measured 
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during the exposure to the conditioning paradigm.  The MG and LG H-reflexes during the 

soleus control trials are referred to as control reflexes of the MG and LG.  The control 

reflexes or conditioned reflexes of the MG and LG during the conditioning sessions were 

normalized by the average of the first 20 trials or the entire 225 trials in the baseline session 6, 

respectively.  We also evaluated the extent of H-reflex size changes within a session by 

calculating the difference between the averaged control H-reflex size and the conditioned H-

reflex size. 

 To determine for each subject whether down-conditioning was successful, the soleus 

H-reflex sizes during the six baseline sessions (# 1-6) were compared to the conditioned 

reflex sizes in the last six conditioning sessions (# 25-30) using unpaired t-test (Thompson et 

al., 2009).  Although the analysis was performed to compare six data points between the 

baseline and conditioning sessions for each subject, they were not paired (i.e., data from 

baseline session #1 was not matched to data from conditioning session # 25), and thus, 

unpaired t-test, not paired, was used.  Only data from successfully conditioned subjects were 

used for further analyses of the MG and LG H-reflexes.  Then, using group data, the H-

reflexes of the MG and LG were compared between the baseline session and the last 

conditioning session by a paired t-test.  In addition, the relation between the soleus and MG 

(or LG) H-reflexes was evaluated by plotting the MG (or LG) H-reflex as a function of the 

soleus H-reflex for each session in each subject.  Linear regression analysis was used to 

obtain the coefficient of determination (R2). 

 

RESULTS 
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 Seven out of eight subjects showed significant decrease of the soleus H-reflex size 

after 30 down-conditioning sessions (i.e., successfully conditioned, see Data analysis).  

Conditioning for one subject who failed (31 years old) was terminated at conditioning 

session #10 because this subject did not follow instructions from the investigator.  Since the 

purpose of this study was to examine the effects of successful soleus H-reflex down-

conditioning on the gastrocnemii H-reflexes, only the data from successfully conditioned 

subjects were used for further analysis. 

 

Stability of EMG recording and conditioning stimulation 

 In order to verify that the quality of EMG recording and the strength of stimulus were 

consistent throughout the study, the Mmax (and Hmax) size, background EMG level, and M-

wave size were compared across sessions and between control reflexes and conditioned 

reflexes.  Neither the Mmax nor the Hmax changed significantly throughout the entire study 

period in all three muscles (for soleus, Mmax: p=0.69 and Hmax: p=0.88, for MG, Mmax: 

p=0.45 and Hmax: p=0.46, and for LG, Mmax: p=0.61 and Hmax: p=0.40, one-way 

repeated-measures ANOVA).  The background EMG activity level remained within a narrow 

window for each muscle [mean ± 1 standard deviation (SD) range for soleus: 10.9 ± 1.6 – 

16.8 ± 2.8, MG: 4.5 ± 1.0 – 9.5 ± 1.6, LG: 4.4 ± 1.0 – 7.6 ± 1.7 (%MVC, mean ± standard 

error)] throughout the course of the study (p=0.23, 0.75, and 0.91 for soleus, MG, and LG, 

respectively, one-way repeated-measures ANOVA).  M-wave size was maintained in a 

narrow window for each muscle [mean ± 1 SD range for soleus: 4.1 ± 0.8 – 5.6 ± 1.0, MG: 

12.5 ± 2.9 – 18.0 ± 4.0, LG: 17.5 ± 6.2 – 20.2 ± 7.0 (%Mmax, mean ± standard error)] 

throughout the course of the study (p=0.22, 0.70, and 0.61 for soleus, MG, and LG, 
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respectively, one-way repeated-measures ANOVA).  When the background EMG activity 

level and M-wave size were compared between the initial 20 trials and the entire 225 trials, 

there were no significant differences for any of the three muscles (p=0.09, 0.42, and 0.95, for 

the soleus, MG, and LG background EMG level, respectively: p=0.84, 0.67, and 0.92, for the 

soleus, MG, and LG M-wave size, respectively, paired t-test) although soleus background 

activity had a trend towards significance.  Furthermore, the background activity of the 

antagonist muscle (i.e., TA) was stable throughout the study (p=0.11, one-way repeated-

measures ANOVA). 

 

Change in the soleus H-reflex 

 Figure 3.1A shows sample sweeps of averaged H-reflex of the soleus (i.e., average of 

entire 225 trials) in the sixth baseline session and the last conditioning session from a 

representative subject.  The soleus H-reflex in the last conditioning was clearly smaller than 

that in the baseline.  For the group of seven subjects, the soleus conditioned H-reflex in the 

last conditioning session was 76.1  3.9 % [mean ± standard error (SE)] of the baseline value, 

comparable to the final H-reflex sizes in the previous animal and human studies (Wolpaw, 

1987; Chen and Wolpaw, 1995; Carp et al., 2006b; Thompson et al., 2009).  This final 

conditioned H-reflex size was significantly smaller than that of the baseline (p<0.01, paired t-

test, see Figure 3.3). 

 Figure 3.1B shows typical examples of the averaged soleus control H-reflexes in the 

sixth baseline session and the last conditioning session in one subject.  The soleus control H-

reflex was decreased after conditioning.  In the last conditioning session, the group mean 
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soleus control reflex was significantly smaller than that in the baseline, 88.8  4.3 % of the 

baseline value (p<0.05, paired t-test, Figure 3.3). 

 During the baseline sessions, the soleus H-reflex size in the first 20 control reflexes 

and all 225 control reflexes were not different (p=0.08, paired t-test).  This result indicates 

that any differences between the 20 control reflexes and the 225 conditioned reflexes during 

the conditioning sessions were due to the exposure to the operant conditioning paradigm.  In 

order to evaluate the extent of this within-session change, the control reflex size was 

subtracted from the conditioned reflex size.  

 Figure 3.2A is an example of within-session change in the soleus H-reflex size 

between the control H-reflex and conditioned H-reflex in the last conditioning session from a 

representative subject. The conditioned H-reflex was clearly smaller than the control H-reflex.  

As a group, the mean within-session decrease was 12.7 ± 2.9 % after down-conditioning, 

which was significantly different from the baseline value (p<0.01, paired t-test, Figure 3.3). 

 

Changes in the MG H-reflex 

The MG H-reflexes were concurrently recorded with the soleus H-reflexes during 20 

control trials and 225 conditioning trials.  Figure 3.1C shows sample sweeps of the averaged 

225 MG H-reflexes in the baseline session and the last conditioning session in one subject.  

The MG conditioned H-reflex size was smaller in the last conditioning session than in the 

baseline session.  Group data showed that the mean MG conditioned H-reflexes in the last 

conditioning session was 85.5  5.1 % of the baseline value, significantly smaller than that in 

the baseline (p<0.05, paired t-test, see Figure 3.3). 
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Figure 3.1D shows typical examples of the averaged control H-reflexes in the 

baseline and last conditioning sessions in one subject.  Unlike the soleus control reflex, the 

MG control reflex did not change after conditioning.  As a group, the mean MG control 

reflex in the last conditioning session was 98.9 ± 6.8 % of the baseline value (p=0.88, paired 

t-test, Figure 3.3). 

There was no significant difference between the 20 control reflexes and all 225 

control reflexes in the baseline session for the MG (p=0.25, paired t-test).  Figure 3.2B shows 

typical examples of the control and conditioned H-reflexes of the MG in the last conditioning 

session in a single subject.  The conditioned H-reflex was clearly smaller than the control H-

reflex.  As a group, this within-session decrease of the MG H-reflex was 13.4 ± 5.1 % in the 

last conditioning session, significantly different from the baseline session (p<0.05, paired t-

test, Figure 3.3). 

 

Changes in the LG H-reflex 

 As in the MG, the LG H-reflexes were concurrently recorded with the soleus H-

reflexes during 20 control trials and 225 conditioning trials.  Figure 3.1E shows examples of 

the averaged 225 H-reflexes of the LG in the baseline session and the last conditioning 

session from one subject.  Unlike the soleus and MG conditioned H-reflex, the LG 

conditioned H-reflexes did not change after conditioning.  In the last conditioning session, 

the group mean was 93.1  12 % of the baseline value, not different from the baseline 

(p=0.59, paired t-test, Figure 3.3). 

 Figure 3.1F shows typical examples of the LG control H-reflexes in the baseline and 

last conditioning sessions from one subject. Unlike the soleus control reflex, the LG control 
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reflex did not change after conditioning.  The group mean of the LG control reflex in the last 

conditioning session was 99.1  11.7 % of the baseline value, not different from the baseline 

(p=0.94, paired t-test, Figure 3.3). 

 During the baseline session, there was no difference between the first 20 control H-

reflexes and all 225 control H-reflexes in the LG H-reflex size (p=0.97, paired t-test).  Figure 

3.2C shows typical examples of the averaged control and conditioned H-reflexes of the LG in 

the last conditioning session in a single subject.  Unlike the soleus and MG, there was no 

apparent within-session change in the LG H-reflex.  The group mean of within-session 

change was -6 ± 4.2% in the last conditioning session, not significantly different from the 

baseline session (p=0.20, paired t-test, Figure 3.3). 

 

Relation between the soleus and gastrocnemius H-reflexes 

 In order to investigate whether the soleus H-reflex operant conditioning has any 

effects on the correlations of H-reflex sizes among the three muscles, coefficient of 

determination (i.e., R2 value) was calculated for the relation between the soleus and MG 225 

H-reflexes, and the soleus and LG 225 H-reflexes in the baseline and last conditioning 

sessions.  Results showed that both pairs (i.e., soleus and MG, and soleus and LG) showed 

strong linear correlations in the baseline session (R2 =0.71 ± 0.06 and 0.73 ± 0.07, mean ± SE, 

for soleus-MG and soleus-LG, respectively).  The R2 values stayed high in the last 

conditioning session (R2 =0.71 ± 0.05 and 0.62 ± 0.08, for soleus-MG and soleus-LG, 

respectively) and did not show significant changes from the baseline (p=0.99 for soleus-MG, 

p=0.24 for soleus-LG, paired t-test).  Those results showed that the positive linear 

correlations between soleus and MG H-reflexes, and soleus and LG H-reflexes were well 
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maintained.  There were no significant differences in the R2 values between the two pairs (i.e., 

soleus-MG and soleus-LG) either in the baseline (p=0.78, paired t-test) or the last 

conditioning session (p=0.23, paired t-test).  

Figure 3.4 shows size distributions of the 225 soleus H-reflexes (in relation to the MG 

H-reflexes) during the baseline and last conditioning sessions in two representative subjects.  

Ranges of mean ± 2 SD are indicated by shaded areas for the baseline (gray) and the last 

conditioning session (blue).  In the subject in Figure 3.4A, the soleus H-reflexes (x-axis) 

exhibited more low values in the last conditioning session, which made its distribution (i.e., 

mean ± 2SD margin) extend towards the lower end from 0.98-1.35 mV (baseline session, 

mean rectified EMG) to 0.74-1.25 mV (last conditioning session).  In another example 

(Figure 3.4B), the distribution for the soleus H-reflex became narrower from 0.32-0.63 mV 

(baseline session) to 0.17-0.39 mV (last conditioning session) by eliminating large responses 

while producing some smaller responses.   

In response to the soleus H-reflex down-conditioning, size distribution of the MG H-

reflexes changed from the baseline session to the last conditioning session (see y-axes in 

Figure 3.4), in similar ways to that of the soleus H-reflexes.  In the example shown in Figure 

3.4A, size distribution of the 225 MG H-reflexes became wider from 0.33-0.50 mV 

(baseline) to 0.22-0.45 mV (last conditioning), by expanding the range towards the lower end.  

In another example of 3.4B, MG H-reflex distribution became narrower from 0.10-0.28 mV 

(baseline) to 0.07-0.21 mV (last conditioning), by eliminating larger responses.  These 

patterns of changes in the MG conditioned H-reflexes were associated with soleus 

conditioned H-reflex change summarized above, suggesting that the soleus and MG 

conditioned H-reflexes changed concurrently in the same direction.  Three out of seven 
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subjects presented this corresponding pattern of changes between the soleus and MG H-

reflexes by expanding the mean ± 2SD ranges to the lower end (i.e., 3.4A pattern), and 

another three subjects showed the narrowed mean ± 2SD ranges of the two muscles at the last 

conditioning session (i.e., 3.4B pattern).  Thus, there were different ways available for the 

subjects to decrease the mean reflex size.  One subject showed a smaller mean ± 2SD range 

for the soleus H-reflex and a larger range for the MG H-reflex at the last conditioning session 

than at the baseline session.   

Size distribution of the 225 LG H-reflexes tended to change from the baseline session 

to the last conditioning session in similar ways as in the soleus and MG H-reflexes (see 

Figure 3.4).  However, the final LG conditioned H-reflex size was 93% of the baseline (see 

Figure 3.3) and changes in size distribution were much less pronounced than those in the 

soleus or MG (data are not shown). 

 

Within-session change and control H- reflex in the soleus and gastrocnemii  

In order to examine how within-session change of the MG or LG H-reflex correlates 

with that of the soleus H-reflex across sessions, the amount of within-session changes in the 

MG or LG H-reflex at every six conditioning sessions (i.e., down-conditioning sessions 6, 12, 

18, 24, and 30) were plotted as a function of the soleus within-session change (Figure 3.5A 

and 3.5B).  Each data point represents the average of all subjects with standard errors in two 

muscles at each session.  As Figure 3.5A and 3.5B show, within-session changes occurred 

rapidly in the three muscles (i.e., down-conditioning session 6).  In addition, within-session 

changes of the two muscles are significantly correlated (R2 = 0.82, p<0.01 for soleus-MG 

plot, R2 = 0.87, p<0.01 for soleus-LG plot) in a positive linear fashion across sessions and 
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most data points are in the area where changes in the two muscles are negative.  Thus, 

within-session decreases concurrently existed among the three muscles in most sessions in 

most subjects.  However, although all data points in the soleus-MG plot (Figure 3.5A) are 

close to the unity slope line (i.e., dotted line) indicating that the amount of within-session 

changes in the soleus and MG are similar, data points in the soleus-LG plot (i.e., Figure 

3.5B) are above the unity slope line suggesting that the extent of LG H-reflex within-session 

change is less than that of the soleus or MG.  The smaller within-session decrease of the LG 

H-reflex, compared to the soleus or MG H-reflex, would probably lead to non-significant 

result of the LG H-reflex within-session change between baseline and the last conditioning 

sessions shown earlier by using the paired t-test (see Figure 3.3).  Furthermore, in both 

Figure 3.5A and 3.5B, within-session decreases in the three muscles across sessions 

fluctuated independent of the time line.  That is, throughout the five sessions (i.e., down-

conditioning sessions 6, 12, 18, 24, and 30), the amount of within-session change did not 

necessarily increase as the session proceeded.  

 Association of the control H-reflex between the soleus and the MG or LG across 

sessions was examined by plotting the amount of control reflexes in the MG or LG as a 

function of the soleus control reflex at every six conditioning sessions (i.e., down-

conditioning sessions 6, 12, 18, 24, and 30) (Figure 3.5C and 3.5D).  Each data point 

represents the average of all subjects with standard errors in two muscles at each session.  In 

both 3.5C and 3.5D, linear correlations of the control H-reflexes between the two muscles are 

not significant (R2 = 0.35, p=0.29 for soleus-MG plot, R2 = 0.03, p=0.77 for soleus-LG plot) 

suggesting that across-session changes in the control H-reflexes of the soleus and MG or LG 

are not in a linear relationship.  However, particularly in the soleus and MG association, 
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gradual decrease of the soleus control reflex was accompanied by decrease of the MG control 

reflex up to the down-conditioning session 24.  Between the session 24 and 30, however, the 

synergistic association between the two muscles (i.e., change in the same direction) was 

reversed.  That is, despite a slight decrease of the soleus control reflex from session 24 to 30, 

the MG control reflex increased.  Therefore, the MG control H-reflex at the last conditioning 

session was not different from that in the baseline session (Figure 3.3).  For the soleus and 

LG association, the synergistic changes from session 6 to session 24 were less clear 

compared to the soleus-MG association (e.g., at session 12, the LG control reflex went up 

while the soleus control  reflex went down).  However, between session 24 and 30, the 

reverse of the synergistic association occurred in the soleus and LG control reflexes, similar 

to the soleus and MG association.  The control H-reflexes of the MG and LG in each subject 

at down-conditioning 24 and 30 are plotted in Figure 3.6A and B.  Five subjects out of seven 

showed increased MG control reflex from session 24 to 30, suggesting that the reverse of the 

synergistic association was not induced by an outlier but rather it might indicate a trend (i.e., 

MG control reflex returns to the baseline value between the session 24 and 30) among those 

subjects.  For the LG control H-reflex, three subjects showed increases from session 24 to 30.    

 

DISCUSSION 

 The present study explored for the first time the effects of soleus H-reflex down-

conditioning on H-reflexes in synergist muscles.  Similar to the previous findings in the 

upper limb (Wolpaw et al., 1983; Wolf and Segal, 1996), the changes in the conditioned H-

reflex of synergists (i.e., MG and LG) were less than that of the target muscle (i.e., soleus, 

Figure 3.3).  Beyond this finding, in the present study, we were able to further differentiate 
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the conditioning effects into the two distinct components of H-reflex changes: rapid task-

dependent adaptation (i.e., within-session change) and long-term change (i.e., across-session 

change in the control H-reflex).  We found that the soleus down-conditioning induces task-

dependent adaptation in the MG and LG (although less) across sessions but not long-term 

change in either of these synergists at the last conditioning session.  Thus, the present results 

suggest that operant conditioning does not simply have less effect on synergists but rather has 

differential effects between the target muscle and synergist muscles with regard to task-

dependent adaptation and long-term change.  

 

Task-dependent adaptation in the MG and LG H-reflexes 

In the present study, within the conditioning sessions, the MG H-reflex size decreased 

from the 20 control trials to 225 conditioning trials, closely following the changes in the 

soleus H-reflex size (see Figure 3.3 and 3.5A).  For the soleus, in the baseline session, there 

seemed to be a natural trend in which five out of seven subjects had larger reflexes in the 225 

control trials than in the first 20 control trials (p=0.08).  Thus, within-session decreases in the 

soleus and MG H-reflexes during the conditioning sessions reflect the subject’s adaptation to 

the task: to decrease the soleus H-reflex (Thompson et al., 2009).  Therefore, operant 

conditioning concurrently induced task-dependent adaptation in the soleus and MG H-

reflexes.  This was somewhat expected as the soleus and MG H-reflex sizes are highly 

correlated during standing (Makihara et al., 2010) (see also pre-conditioning data in Figure 

3.4A).  For the soleus, the background activity tended to be lower during the 225 

conditioning trials than during the first 20 control trials in five subjects (p=0.09), however, 

the variation in the MG or soleus H-reflex size was not associated with the variation in the 
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background EMG activity (R2 < 0.03) or M-wave size (R2 < 0.06).  Thus, task-dependent 

changes in the H-reflex sizes were most likely presynaptic in origin (Stein and Capaday, 

1988; Stein, 1995; Brooke et al., 1997).  Previously, Thompson et al. (2009) suggested that 

cortical and corticospinal tract (CST) activity produce task-dependent changes of H-reflex 

size.  Thus, the observed within-session decreases in the soleus and MG H-reflexes probably 

reflect such supraspinal plasticity that acts through the mechanisms of presynaptic inhibition 

(Meunier and Pierrot-Deseilligny, 1998; Baudry et al., 2010).     

 For the LG H-reflex, within-session decrease was not significant at the last 

conditioning session (Figure 3.3), different from those in the soleus or MG.  In general, the 

extent of within-session decrease in the LG H-reflex was less than that in the MG H-reflex 

(see Figure 3.5A and 3.5B).  As shown in Figure 3.5B, the LG H-reflex did not decrease as 

much as the soleus H-reflex.  This smaller within-session decrease in the LG H-reflex, 

compared to that in the soleus or MG H-reflex, was unexpected, as there were strong positive 

correlations among the H-reflex sizes of those three muscles during standing (Makihara et al., 

2010).  These results indicate that the soleus H-reflex conditioning does not necessarily 

induce task-dependent adaptation of the H-reflex equally among its synergists, even though 

their H-reflex sizes are tightly correlated outside (or even during) the operant conditioning 

paradigm.  As in the soleus and MG, the LG background EMG levels and M-wave sizes were 

not associated with the LG H-reflex sizes (R2 < 0.05 for background EMG vs. H-reflex, R2 < 

0.03 for M-wave vs. H-reflex), and thus, the origin of such rapid (i.e., within-session) 

differential control of the LG H-reflex from the soleus and MG H-reflexes is likely 

presynaptic (Stein and Capaday, 1988; Stein, 1995; Brooke et al., 1997).  Differential 

autogenic (homonymous) and heterogenic (heteronymous) excitation and inhibition among 
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the three muscles were reported in decerebrated cats (Nichols, 1989) and presynaptic 

inhibition has been demonstrated to be selective enough to induce different effects between 

collaterals from the same muscle afferent (Rudomin et al., 1998).  However, actual 

mechanisms that differentiate task-dependent adaptation between the soleus (and MG) and 

LG H-reflexes are unknown.  

 

Long-term change in the MG and LG H-reflexes 

 In the previous study of soleus H-reflex operant conditioning, Thompson et al. (2009) 

suggested that repeatedly induced task-dependent adaptation (i.e., within-session change) of 

the H-reflex, likely a product of supraspinal plasticity, gradually induces plasticity in the 

spinal cord and changes the control H-reflex.  In the present study, to our surprise, after 

successful down-conditioning of the soleus H-reflex, there was no change in the MG control 

H-reflex in spite of the persistent presence of within-session decrease in the MG H-reflex 

(see Figure 3.5A).  Since the amount of within-session H-reflex decrease was essentially the 

same between the soleus and MG, the absence of control H-reflex change (i.e., long-term 

change) in the MG at the last conditioning session cannot be explained by the difference in 

the extent of task-dependent adaptation. 

 Questions arise: why repeatedly induced task-dependent adaptation did not lead to 

long-term change in the MG H-reflex pathway, and, how that happened.  As mentioned 

above, task-dependent adaptation of the soleus H-reflex reflects supraspinal plasticity (i.e., 

most likely changes in CST activity), and when such supraspinal plasticity persists, it 

changes the spinal cord in long-term (Wolpaw and O'Keefe, 1984; Wolpaw et al., 1994; 

Chen et al., 2001; Thompson et al., 2009).  Since the task-dependent within-session decrease 
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in the MG H-reflex was just as much as that in the soleus H-reflex, it can be assumed that 

supraspinal plasticity in the H-reflex pathways induced by the operant conditioning paradigm 

was no different between the soleus and MG.  The control reflex of the two muscles 

decreased synergistically up to session 24, and the association was reversed at session 30.  

Thus, presumably, there would have been a mechanism occurred between the session 24 and 

30 that prevented the supraspinal (i.e., CST activity) plasticity from further inducing long-

term changes in the MG H-reflex pathways.  It could be compensatory plasticity of the spinal 

cord (Wolpaw 2010), which maintained the MG control H-reflex size while the within-

session task-dependent decrease of the MG H-reflex was repeatedly induced.  There have 

been several studies showing compensatory plasticity of the spinal cord, especially among 

the spinal pathways of synergists (Decima and Morales, 1983; Whelan et al., 1995; Whelan 

and Pearson, 1997; Pearson et al., 1999; Bouyer et al., 2001).  For the LG H-reflex, the extent 

of within-session decrease was less than that in the soleus and MG H-reflexes, and thus, it is 

unclear whether a lack of long-term change in the LG H-reflex at the last conditioning 

session has any functional meaning.  However, as shown in Figure 3.5D, the reverse of the 

synergistic association between the soleus and LG control reflexes occurred between session 

24 and 30, just as in the soleus and MG association.  Thus, there might be compensatory 

plasticity in the LG H-reflex pathway to maintain the LG control reflex at the last 

conditioning session. 

When the soleus H-reflex operant conditioning induces long-term changes in the 

soleus H-reflex pathway in healthy humans, minimizing the impact of conditioning on other 

pathways would be an urgent issue.  Thus, it might be the brain and the spinal cord’s best 

interest to preserve the pathways that were not directly conditioned.  The absence of long-
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term change in the MG (and possibly the LG) H-reflex pathway at the last conditioning 

session might reflect the brain and spinal cord’s strategy to accommodate a new skill (i.e., to 

decrease the soleus H-reflex) with minimum impact on synergists’ pathway so as to impose 

the least impact on the existing wide repertoire of motor skills (Chen et al., 2005; Wolpaw, 

2010). 

 

Functional implications 

 Modification of the H-reflex size, as studied in operant conditioning, is not merely an 

experimental phenomenon (Wolpaw and Tennissen, 2001).  Many studies reported changes 

in the soleus H-reflex size that accompanied acquiring of new motor skills (Casabona et al., 

1990; Nielsen et al., 1993; Trimble and Koceja, 1994; Voigt et al., 1998; Perez et al., 2007).  

Those modifications of the H-reflex size induced by exercise training may represent specific 

adaptations to meet particular requirements of the training.  For example, a small soleus H-

reflex in professional ballet dancers (Nielsen et al., 1993) would be a consequence of 

frequent cocontraction in the agonist and antagonist muscles, which would facilitate 

precision of dance skills (Wolpaw, 2010).  Thus, changes of the soleus H-reflex are thought 

to contribute to specific skills across different populations.  As Figure 3.4 shows, a pattern of 

the H-reflex change would vary between individuals probably based on the learning strategy 

(Thompson et al., 2009) as well as the nature and intensity of daily physical activity.  We did 

not find any apparent association between the pattern of the reflex decrease (i.e., extend or 

narrow the distribution) and other parameters such as the original reflex size or the 

Hmax/Mmax ratio.      

 
 96



 When long-term change of the soleus H-reflex is induced by operant conditioning, the 

current behavioral repertoire would be affected.  In order to avoid disruptive influence on the 

current motor behavior while accommodating the change in the soleus H-reflex, minimizing 

the impact of conditioning on synergists (i.e., MG and/or LG) would be the most economical 

strategy because of their functional similarities.  Thus, compensatory plasticity may be 

necessary to maintain the MG control reflex, and as a result, to protect the other behaviors.  

The compensatory plasticity may be constantly present throughout the conditioning period as 

the soleus control reflex decreases to automatically calibrate the MG control reflex.  Indeed, 

Chen et al., (2005) reported in rats that the normal locomotion pattern is preserved despite 

the significant decrease or increase of the soleus H-reflex induced by operant conditioning, 

probably due to compensatory changes in activity of other muscles.  Although the animal 

protocol involves a much higher dosage and volume of conditioning than the human protocol 

(i.e., for rats, 2500-10000 trials per day distributed throughout the 24 hours for 30-70 days, 

Chen and Wolpaw, 1995), final H-reflex size is generally similar between species [for down-

conditioning, monkeys 68% (of control value, Wolpaw, 1987), rats 67% (Chen and Wolpaw, 

1995), mice 71% (Carp et al., 2006b), and humans 69% (Thompson et al., 2009) and 76% 

(present study)].  Thus, effects of soleus H-reflex operant conditioning on functional 

behaviors such as locomotion will need to be investigated to further obtain insights about 

compensatory plasticity in humans. 
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Figure 3.1: Conditioned H-reflexes (left) and control H-reflexes (right) 
Typical examples of averaged conditioned H-reflexes and control H-reflexes in the soleus (A 
and B), MG (C and D), and LG (E and F) in the sixth baseline session (solid) and the last 
conditioning (dotted) from a single subject.  For each sweep, 225 responses were averaged 
together.  The conditioned H-reflex size decreased after the soleus H-reflex down-
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conditioning in the soleus and MG, but not in the LG.  The control H-reflex decreased after 
conditioning only in the soleus.  Background EMG and M-wave size did not change between 
the baseline and last conditioning sessions. 
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Figure 3.2: Within-session change in the last conditioning session 
Typical examples of control H-reflexes (solid) and conditioned H-reflexes (dotted) of the 
soleus (A), MG (B), and LG (C) in the last conditioning session.  The soleus and MG showed 
within-session decrease in H-reflex size from the control H-reflex, but the LG did not.
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Figure 3.3: Group average of the conditioned H-reflexes, control H-reflexes, and within-
session changes 
Bars in the graph represent values in the last conditioning session of each category, which are 
normalized by baseline values.  For the conditioning and control H-reflexes, 100% means 
that the reflex did not change from the baseline.  For within-session change, 0% means that 
there was no difference between the control reflex and conditioned reflex in the last 
conditioning session (i.e., within-session change was 0% in the baseline).  The soleus shows 
significant changes from the baseline to the last conditioning session with regard to the 
conditioned H-reflex, control reflex, and within-session change.  The conditioned H-reflex 
and within-session change of the MG changed significantly, however, the control reflex 
stayed at the baseline level.  For the LG, none of the three measurements changed 
significantly in the last conditioning session.  COND: conditioned H-reflexes, CONT: control 
H-reflexes, WSC: within-session change
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Figure 3.4: Correlation between the soleus and MG conditioned H-reflexes 
Two examples of correlation between the soleus and MG conditioned H-reflexes in the 
baseline and the last conditioning sessions.  The size distribution (i.e., mean ± 2 SD) became 
wider in the last conditioning session in 3.4A whereas it became narrower in 3.4B.  Three 
subjects showed 3.4A pattern, and another three subjects showed 3.4B pattern. 
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Figure 3.5: Correlation plots of with-session changes and control reflexes 
Correlation plots of within-session changes between the soleus and MG H-reflexes (A), and 
soleus and LG H-reflexes (B), and of control H-reflexes between the soleus and MG (C), and 
soleus and LG (D) at conditioning sessions 6, 12, 18, 24, and 30.  Each data point represents 
the average of all subjects with standard errors in two muscles at each session.  Dotted lines 
on the A and B are unity slope lines.  On C and D, between the down-conditioning session 24 
and 30 (i.e., orange diamond and green triangle, respectively), the MG or LG control H-
reflex increased while the soleus H-reflex slightly decreased. DC: down-conditioning. 
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Figure 3.6:  Individual data for control H-reflexes of the MG and LG 
The control H-reflexes of the MG (A) and LG (B) in each subject at down-conditioning (DC) 
24 and 30 represented as a percentage of the baseline value are shown.  The average of the 
MG control reflex was 90% at DC24 and 99% at DC30.  Five subjects out of seven showed 
increased MG control reflex from DC24 to DC30.  For the LG control H-reflex, the average 
was 90% at DC24 and 99% at DC30.  Three subjects showed increases from DC24 to DC30. 
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CHAPTER IV 
 
 
 
 
 

THIRD MANUSCRIPT 
 
 
 
 
 

Locomotor EMG activity is preserved after operant conditioning of the soleus H-reflex 
in healthy human subjects



ABSTRACT 

Long-term change in the soleus H-reflex induced by operant conditioning has been 

shown to persist outside of the conditioning paradigm.  Thus, it is conceivable that such long-

term change in the spinal cord pathway would influence walking, in which the activity of the 

changed pathway has significant roles.  Effects of soleus H-reflex operant down-conditioning 

on locomotion were investigated in healthy human subjects.  For successfully conditioned 

subjects, locomotion analyses were performed pre- and post-conditioning and locomotor H-

reflexes, locomotor EMG, and joint kinematics were compared between the two locomotion 

sessions.  During conditioning, the soleus control reflex showed a significant decrease, 

however, this decrease was not reflected in the locomotor H-reflex.  None of the locomotor 

variables at post-conditioning changed from those at pre-conditioning, and thus, the normal 

locomotion pattern was preserved.  It is suggested that, in the process of H-reflex modulation 

between standing and walking, decreased H-reflexes induced during standing would be 

adjusted during walking so that the appropriate reflex gain for walking could be maintained.  

Locomotor reflex activity was preserved, as well as locomotor EMG activity and kinematics.  

Those results were different from the previous rat study showing that the normal locomotion 

pattern was preserved despite the decrease of locomotor H-reflexes.  For humans who were 

conditioned only an hour per day, behavioral repertoire outside the conditioning paradigm is 

much larger than that for rats who were conditioned most of the day.  Therefore, preserving 

the existing wide variety of skills (e.g., normal walking) with minimum adjustments might be 

essential in humans. 

 
 110



INTRODUCTION 

Operant conditioning of the soleus H-reflex changes the activity of the H-reflex 

pathways in monkeys, rats, mice, and humans (Wolpaw, 1987; Chen and Wolpaw, 1995; 

Carp et al., 2006a; Thompson et al., 2009).  A large part of this H-reflex change continues 

and gradually develops over a long-term period of conditioning.  This long-term change of 

the H-reflex is suggested to reflect spinal cord plasticity (Wolpaw and O'Keefe, 1984; 

Wolpaw et al., 1994; Chen et al., 2001; Thompson et al., 2009).  Since the change of the 

reflex is retained across sessions, spinal cord plasticity persists outside of the conditioning 

paradigm.  Thus, it is conceivable that such long-term change in the spinal cord pathway 

would influence movements in which the activity of the changed pathway has significant 

roles.  Ia afferent pathways, which would be changed by successful soleus H-reflex 

conditioning, contribute to generation of the triceps surae EMG activity and force production 

during stance phase of locomotion (Yang et al., 1991; Bennett et al., 1996; Stein et al., 2000).  

Also, the activity of Ia afferent pathways is phase-dependently modulated during walking 

(i.e., high in the stance phase and low in the swing phase) to facilitate proper and effective 

execution of the task (Capaday and Stein, 1986; Llewellyn et al., 1990; Edamura et al., 1991) 

even in the face of unexpected perturbation (Schmidt and Lee, 2005).  Thus, when the soleus 

H-reflex is changed due to changes in efficacy of Ia (and possibly II) excitation of 

motoneurons by operant conditioning (i.e., spinal cord plasticity, Carp and Wolpaw, 1994; 

Wolpaw, 1997, for review), movement function, such as locomotion, might be changed.  

In rats, Chen et al. (2005) found that the soleus H-reflex and EMG burst during 

locomotion became larger after successful up-conditioning and smaller after successful 

down-conditioning.  In their study, duration, length, and right/left symmetry of the step cycle 
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were not affected, despite the changes in the locomotor H-reflex and EMG activity.  Recent 

studies by Chen et al. showed that the EMG burst and H-reflex size of the vastus lateralis 

during locomotion changed after the soleus H-reflex operant conditioning (Chen et al., 

2009a; Chen et al., 2009b).  These findings suggest that as the soleus H-reflex changes in 

response to operant conditioning, compensatory changes occur in the activity of other leg 

muscles, in order to preserve the normal locomotion pattern (Wolpaw, 2010).  

In the present study, we investigated, in healthy human subjects, effects of soleus H-

reflex operant conditioning on locomotion.  Specifically, we examined H-reflex modulation, 

EMG activity, and kinematics of the legs during locomotion before and after successful 

soleus H-reflex down-conditioning. 

 

MATERIALS AND METHODS 

General procedure 

Eight healthy subjects (two women and six men, age 21-54 yrs old) with no known 

neurological disorders participated in the study.  Only data from successfully conditioned 

subjects (n=7) were used for locomotion analysis.  Each subject walked on a treadmill at self-

selected speed while EMG activity, H-reflexes, and joint angle data were measured.  

Locomotion data were compared before and after the operant conditioning.  All subjects gave 

informed consent before the participation.  All protocols were approved by the Institutional 

Review Board for Human Research at Helen Hayes Hospital, West Haverstraw, NY.   

 

Preliminary session and Operant conditioning sessions 
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 Detailed methodology for the operant conditioning has been reported previously 

(Thompson et al., 2009), and thus briefly summarized here.  There were six baseline sessions 

and 30 down-conditioning sessions, which occurred 3 times per week.  Each subject’s 

sessions always occurred at the same time of day to control for diurnal variations in H-reflex 

size (Wolpaw and Seegal, 1982; Chen and Wolpaw, 1994; Carp et al., 2006b; Lagerquist et 

al., 2006; Thompson et al., 2009).  

In the initial preliminary session prior to the first baseline session, the maximum 

voluntary contraction (MVC) value was determined as maximum rectified EMG level in the 

soleus, MG, and LG.  Next, target soleus background EMG window and M-wave size were 

determined for each subject.  The target background activity was chosen while the subject 

maintained natural standing (i.e., usually 10-15% MVC).  The target M-wave size was the 

reflex amplitude elicited by stimulation set at just above the M-wave threshold.  For all the 

H-reflex trials throughout the study, the soleus M-wave size and the soleus background EMG 

levels were kept constant  

Each session began with an H-reflex/M-wave recruitment curve measurement during 

standing while the subject maintained the soleus background EMG activity in the target 

window.  The soleus EMG activity was rectified and averaged every 100 ms, and the result 

was immediately provided as visual feedback to help the subject maintain the soleus 

background EMG activity within the specified window (see Thompson et al., 2009 for 

details).  In each baseline session, 225 control H-reflexes separated into three blocks of 75 

trials were elicited.  In each down-conditioning session, 20 control H-reflexes were measured 

as in baseline sessions, and then, 225 conditioned H-reflexes divided into three blocks of 75 

trials were elicited.  During the control trials, the H-reflex amplitudes were simply recorded 
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and the subject did not receive any encouragement or feedback regarding the reflex 

amplitude.  During the conditioning trials, the subject was asked to decrease the soleus reflex 

size and provided immediate visual feedback of the soleus H-reflex size at each trial.  The 

visual feedback indicated whether the H-reflex size was smaller than a pre-defined reward 

criterion (i.e., successful or not).  The MG and LG H-reflexes were concurrently measured 

with the soleus H-reflex at every six sessions, but there was no feedback about the 

background EMG activity and the H-reflex size of the MG and LG.  The M-wave sizes of the 

MG and LG were kept the same throughout all measurements. 

 

Locomotion sessions 

 There were two locomotion sessions, one before and one after the conditioning period.  

The post-conditioning locomotion session occurred on the next day or two days after the last 

conditioning session.  At the beginning of each locomotion session, the H-reflex and M-wave 

recruitment curves were simultaneously obtained from the conditioned side soleus, MG, and 

LG.  Then, the maximum voluntary contraction (MVC) values for each of the 12 muscles 

were determined.  Typically, two MVC measurements were made with short breaks in 

between.  The subject was asked to perform the maximum isometric contraction of each 

tested muscle for 5 s, and average rectified EMG in the middle 3 s was used as the MVC 

value for each muscle.   

In order to detect heel-contact signal, foot switches (Bortec Biomedical, Calgary, 

Canada) were inserted between the subject’s shoe and the heel.  Then, the subject walked on 

a treadmill at his/her comfortable speed (average 0.9 m/s) that was kept the same between the 

two locomotion sessions.  This self-selected speed was slower than the typical normal 
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walking speed (i.e., 1.1-1.2 m/s, Duysens et al., 1991) probably because loud noise from the 

treadmill motor made the subject feel they walked at a faster speed than the actual speed.  

The EMG activity of the bilateral soleus, tibialis anterior (TA), MG, LG, vastus lateralis 

(VL), and biceps femoris (BF), and heel-contact signal were continuously recorded during 

the first walking trial.  Next, the tibial nerve was pseudo-randomly stimulated for the 

measurement of locomotor H-reflexes of the soleus, MG, and LG on the conditioned side 

(see Electrical stimulation and EMG recording).  In order to compare the H-reflexes elicited 

at the same stimulus efficacy throughout the gait cycle, various stimulus intensities were used 

(Capaday and Stein, 1986; Llewellyn et al., 1990; Edamura et al., 1991).  By combining all 

data and eliminating responses with too large or too small M-wave from further analysis, H-

reflexes with constant size M-wave (i.e., target M-wave size) across different phases of the 

gait cycle were obtained.  This target M-wave size was kept consistent between the two 

locomotion sessions for each subject.  

 After finishing the measurement of locomotor EMG activity and locomotor H-

reflexes, active infrared markers were placed on five landmarks (acromion, greater trochanter, 

lateral epicondyle of the femur, lateral malleolus, and tips of the toes) and the subject 

returned to the treadmill to walk at the same speed.  Two-dimensional (2D) trajectories of the 

markers in the sagittal plane were captured using a custom-built infrared motion capture 

system at a sampling frequency of 66 Hz.  The 2D joint angle data on the sagittal plane (i.e., 

flexion-extension for the hip and knee, and dorsiflexion and plantarflexion for the ankle) 

were calculated as an angle between adjacent segments. 

 

EMG recordings and electrical stimulation 
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For H-reflex recording, self-adhesive surface Ag-AgCl electrodes (2.2 × 2.2 cm for 

the cathode and 2.2 × 3.5 cm for the anode; Vermed, Bellows Falls, VT) were placed 

unilaterally (i.e., conditioned side) in the popliteal fossa to stimulate the tibial nerve using a 

Grass S48 stimulator (with CCU1 constant current unit and SIU5 stimulus isolation unit; 

Astro-Med, West Warwick, RI).  For reflex EMG activity recording, a pair of self-adhesive 

surface Ag-AgCl electrodes (2.2 × 3.5 cm, Vermed, Bellows Falls, VT) was placed 

longitudinally on the skin over the soleus just below the gastrocnemii with an interelectrode 

distance of 3 cm.  Locations for the nerve stimulating electrodes were determined to 

minimize the H-reflex threshold and maximize the maximum H-reflex (Hmax) and the M-

wave (Mmax) amplitudes of the soleus.  Pairs of EMG recording electrodes were also placed 

over the center of the muscle belly of the TA.  During operant conditioning, pairs of EMG 

electrodes were placed on the skin over medial and lateral gastrocnemii (MG and LG) at 

every six sessions.  Centers of electrodes for the triceps surae muscles were placed at least 7 

cm apart between the muscles to minimize the cross-talk.  For locomotor EMG recording, 

pairs of EMG recording electrodes were placed bilaterally on the soleus, TA, MG, LG, VL, 

and BF.  To avoid session-to-session variability, locations for all electrodes were mapped 

using permanent skin marks such as scars and moles at the first locomotion session.  For the 

second locomotion session, the electrodes were placed based on those landmarks.    

 EMG signals were amplified, band-pass filtered (10-1000 Hz), and recorded with a 

custom-made system and Axoscope (Molecular Devices Inc., Sunnyvale, CA) at 5000 Hz 

(for standing data) or 2000 Hz (for walking data).  During walking, EMG and nerve 

stimulation signals were continuously recorded while the H-reflexes of the soleus, MG, and 

LG were elicited by 1 ms square pulse with pseudo-random intervals (i.e., interstimulus 
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interval of 2.5-4.5 s).  This was to ensure that the H-reflexes were obtained at various phases 

throughout the entire gait cycle but no more than one stimulus per gait cycle was delivered 

and there was at least one gait cycle without stimulation between the stimulated cycles (Yang 

and Stein, 1990; Kido et al., 2004b, a). 

 

Data analysis   

All analyses were done with a custom-written MATLAB program (Mathworks, 

Natick, MA).  For conditioning data, changes in the control and conditioned H-reflex sizes 

across sessions were quantified as a percentage of the average for the baseline (see 

Thompson et al., 2009 for details).  The H-reflex and the M-wave amplitudes during walking 

were measured as peak-to-peak values in each reflex window (i.e., typically 30-45 ms post 

stimulus for the soleus H-reflex and 5-23 ms post stimulus for the soleus M-wave).  The H-

reflex sizes of the soleus, MG, and LG during locomotion were normalized using the Mmax 

size of each muscle and plotted in the function of the gait cycle.  A gait cycle was determined 

by heel contact signals (from one heel contact to the next heel contact of the same side).  

Then, the entire gait cycle for each muscle was divided into 12 equal bins, and H-reflex 

amplitudes recorded in the same bin (i.e., bin 1-12, typically 10 responses in each bin) were 

averaged.  The group average of H-reflex size in each bin was compared between pre- and 

post-conditioning using the paired t-test (α = 0.05).  To correct the significance level for 

multiple comparisons, Sidak correction (1-(1-α)1/n) was used to determine the p-value 

threshold.  That is, for comparing between pre- and post-conditioning for 12 bins (i.e., 12 

potential comparisons), we used 1-(1-0.05)1/3 = 0.004 as the threshold for significance.  In 

addition, the extent of H-reflex modulation during walking was evaluated by the modulation 
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index [i.e., (maximum H-reflex - minimum H-reflex) / maximum H-reflex ×100; calculated 

over the gait cycle for each muscle (Zehr and Kido, 2001; Kido et al., 2004b)]. 

The EMG activity of the 12 muscles during locomotion (without the stimulation) 

were rectified and normalized using the MVC value of each muscle.  An average locomotor 

EMG sweep for each muscle throughout the gait cycle was calculated from many steps (more 

than 200 steps).  The entire gait cycle for each muscle was divided into 12 equal bins, and the 

EMG activity in the same bin was averaged.  The group average EMG activity in each bin 

was compared between the two locomotion sessions by a paired t-test (α = 0.004 with 

previous Sidak correction).  For analyses of total EMG activity in a gait cycle, area under the 

EMG activity curve was calculated from the binned EMG sweep for each muscle and for 

each subject, and compared between the two locomotion sessions using a paired t-test (α = 

0.05). 

For kinematic analysis, angle displacements in several phases of a gait cycle for each 

joint were calculated.  Sample sweeps of ankle, knee, and hip joint angle in the function of 

the gait cycle (normalized as 100%) are presented in Figure 4.1.  Vertical bars on the sweeps 

indicate beginning and end of phases in which each joint displacement was calculated.  For 

the ankle joint, the displacements were calculated between first maximum dorsiflexion (DF1) 

and first maximum plantarflexion (PF1), PF1 and second maximum DF (DF2), DF2 and 

second maximum PF (PF2), and PF2 and third maximum DF (DF3).  For the knee joint, the 

displacements were calculated between first maximum extension (ext1) and first maximum 

flexion (flex1), flex1 and second maximum extension (ext2), ext2 and second maximum 

flexion (flex2), and flex2 and third maximum extension (ext3).  For the hip joint, the 

displacement was calculated between first maximum extension (ext1) and first maximum 
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flexion (flex1).  Then, the group average of displacements in the same phase were compared 

between pre- and post-conditioning using the paired t-test [α = 0.05 for the hip, and α = 0.013 

for 4 potential comparisons (i.e., ankle and knee) with Sidak correction].  Gait cycle time 

(from heel contact of one side to the next heel contact of the same side) and step time (from 

heel contact of one side to heel contact of the other side, expressed in %gait cycle) were also 

calculated and compared between pre- and post-conditioning using the paired t-test (α = 

0.05). 

 

RESULTS 

 The soleus H-reflex operant down-conditioning was successful in seven subjects 

(identified individually by unpaired t-tests between average soleus H-reflex size of the six 

baseline sessions and average conditioned H-reflex size of the last six conditioning sessions).  

All data for locomotion analyses are from those successfully conditioned subjects. 

 

Changes of the soleus, MG, and LG H-reflexes after soleus H-reflex down-conditioning 

 At the last conditioning session, the soleus showed significant decreases both in the 

conditioned [76.1 ± 3.9 % mean ± standard error (SE), p<0.01, paired t-test] and control 

(88.8 ± 4.3 %, p<0.05, paired t-test) H-reflexes when compared to baseline.  Furthermore, 

change of the reflex size within a session (i.e., conditioned H-reflex size minus control reflex 

size) decreased significantly (-12.7 ± 2.9 %, p<0.01, paired t-test).  For the MG, the 

conditioned H-reflex (85.5 ± 5.1 %, p<0.05, paired t-test) and within-session change (-13.4 ± 

5.1 %, p<0.05, paired t-test) decreased significantly while the control reflex did not change 
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(98.9 ± 6.8%).  For the LG, none of those three categories (93.1 ± 12 %, 99.1 ± 11.7 %, and -

6.0 ± 4.2 %) showed significant changes. 

 

Locomotor H-reflex 

 In order to verify that the quality of EMG recording and strength of conditioning 

stimulation were consistent, the Mmax (and Hmax) size and M-wave size were compared 

between two locomotion sessions.  The Mmax size was not significantly different between 

the two sessions in all three muscles (p=0.24, 0.46, and 0.32, for soleus, MG, and LG, 

respectively, paired t-test).  Also, the Hmax size did not differ between the two locomotion 

sessions in all three muscles (p=0.72, 0.92, and 0.56, for soleus, MG, and LG, respectively, 

paired t-test).  The size of the M-wave during the locomotor H-reflex measurement was 

maintained the same for each subject between the two locomotion sessions (p=0.65, 0.54, 

and 0.65, for soleus, MG, and LG, respectively, paired t-test).   

 In Figure 4.2, the average H-reflexes of the soleus, MG, and LG (%Mmax) in each 

bin were plotted (mean ± SE).  The stimulation level was set at just above the M-wave 

threshold, and thus, all H-reflexes were elicited in the ascending limb of the recruitment 

curve.  The size of the H-reflex in the MG or LG during walking was smaller than that of the 

soleus, however, the H-reflexes of the three muscles showed a very similar pattern: increased 

gradually towards the late stance phase, dropped at the beginning of the swing phase, and 

stayed low throughout the swing phase.  The modulation indices of the three muscles were 

high (>0.97) and did not change significantly between the two locomotion sessions (p=0.50, 

0.61, and 0.07, for soleus, MG, and LG, respectively, paired t-test).  When comparing the H-

reflex in each bin between pre- and post-conditioning, no significant differences were found 

 
 120



for any of the 12 bins for the three muscles (paired t-test with Sidak correction).  Thus, the 

size of the locomotor H-reflexes as well as phase-dependent H-reflex modulation in the 

soleus, MG, and LG did not change after the operant conditioning. 

 

Locomotor EMG 

 The EMG activity was recorded in the 6 leg muscles bilaterally (i.e., 12 in total) 

during walking at the subject’s comfortable speed (typically at 0.9 m/s).  All data were 

normalized using the MVC value for each muscle at each session and shown in Figure 4.3 

(mean ± SE).  The MVC values were not statistically different between the two sessions in 

all 12 muscles (paired t-test).  The EMG patterns were very similar between pre- and post-

conditioning sessions.  There were no significant differences in EMG activity between pre- 

and post-conditioning for any of the bins for the 12 muscles investigated (paired t-test with 

Sidak correction).  The area under the binned EMG activity curve, where the muscle was 

activated, was calculated from bins 1-7 for the soleus, MG, and LG, from bins 8-12 and 1-2 

for the TA, and from bins 11-12 and 1-3 for the VL and BF.  Comparison of those areas 

between the pre- and post-conditioning locomotion sessions for each muscle did not show 

significant differences in any of the 12 muscles (paired t-test). 

 

Joint displacement and gait parameters 

 Joint angle displacements in each phase (indicated by vertical bars on the sweeps in 

Figure 4.1) were calculated (mean ± SE) and compared between two locomotion sessions.  

For the ankle joint, the displacements were calculated in four phases, and there were no 

significant differences between pre- and post-conditioning in any of the phases (paired t-test 
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with Sidak correction, Figure 4.4A).  For the knee joint, the gait cycle was divided into four 

phases in which the angle displacements were calculated.  No significant differences were 

found between the two sessions in any of the phases (paired t-test with Sidak correction, 

Figure 4.4B).  For the hip joint, the displacements were compared between pre- and post-

conditioning in one phase, which was not significantly different (paired t-test, Figure 4.4C).   

 The gait cycle time at pre-conditioning (1.17 ± 0.04 s, mean ± SE) was not 

significantly different from that at post-conditioning (1.19 ± 0.04, p=0.22, paired t-test).  

That also indicates that a stride length did not differ between the two sessions because the 

walking speed was the same.  The step times for both side (i.e., from conditioned side to 

contralateral side, and from contralateral side to conditioned side) were calculated and 

expressed as a percentage of the gait cycle.  For both pre- and post-conditioning, the step 

time for one side occupied 50% of the gait cycle, which indicated that step symmetry was 

maintained between the two sessions. 

 

DISCUSSION 

 The present study investigated effects of the soleus H-reflex down-conditioning on 

locomotion in healthy human subjects.  The final conditioned H-reflex size in the soleus was 

76 % of the baseline value in the present group of subjects.  In these subjects, changes in the 

MG and LG H-reflexes were also measured after operant conditioning; the H-reflex size in 

the last conditioning session was 86% of the baseline in the MG and 93% of the baseline in 

the LG.  However, none of these changes were reflected in the locomotor H-reflex or EMG 

activity.   
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In the present group of subjects, the final control H-reflex was also decreased to 89 % 

of the baseline in the soleus after successful down-conditioning.  Because the control reflex 

probably represents the long-term plasticity in the reflex pathway, we expected the locomotor 

H-reflex to also be changed after conditioning.  However, the conditioning-induced smaller 

H-reflex during standing did not transfer to a smaller H-reflex during walking.  For 

individual data, there were no associations between the final soleus control H-reflex size and 

soleus locomotor H-reflexes during the stance phase (early stance phase: average in bin 1-2, 

middle stance: average in bin 3-4, and late stance phase: average in bin 5-6) at post-

conditioning (p=0.15, 0.29, and 0.88, for soleus control reflex vs. locomotor H-reflex in early, 

middle, and late stance phase, respectively, Figure 4.5).  A possible explanation for this 

might be found in task-dependent modulation of the H-reflex (i.e., decrease of H-reflex size 

from standing to walking, Capaday and Stein, 1986; Stein and Capaday, 1988).  This rapid 

modulation in reflex size between the tasks is strongly influenced by the activity of the 

corticospinal tract (Hodapp et al., 2007) and occurs through the mechanisms of presynaptic 

inhibition (Stein and Capaday, 1988; Stein, 1995).  Probably, in the process of reflex gain 

modulation between standing and walking, the decreased H-reflex that occurred in standing 

was adjusted for walking so that the appropriate reflex gain for walking could be maintained 

after conditioning.  Since the Ia afferent pathways have important roles in locomotion (Yang 

et al., 1991; Bennett et al., 1996; Stein et al., 2000), preserving the reflex activity during 

locomotion would be functionally the most relevant.  Locomotor reflex activity was 

preserved, as well as locomotor EMG activity and kinematics (see Figure 4.2, 4.3, and 4.4).  

This is different from animal studies.  
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In rats, Chen et al. (2005) showed that, after successful conditioning, the locomotor 

H-reflex and EMG activity were changed in the direction of conditioning (i.e., increase or 

decrease) to a comparable extent to the conditioned H-reflex change, while the duration and 

symmetry of the step cycle were unchanged.  In their study, the average final conditioned H-

reflex size was about 50% of the baseline value, different from 73 % in the present subject 

group.  Thus, one might suspect that the difference in the conditioning effect on locomotion 

could be due to the difference in the amount of conditioned H-reflex decrease between rats 

and humans.  However, in the present study, even the subject who showed the smallest 

conditioned H-reflex after conditioning (53% of the baseline, similar to the rats in Chen et al., 

2005) showed no change in the locomotor H-reflex and EMG activity (Figure 4.6).  Thus, it 

is unlikely that a lack of change in locomotion in the present subject group is due to the 

limited decrease in the final conditioned H-reflex, compared to rats.   

In response to the conditioning-induced changes in the H-reflex pathway, the rats 

maintained their normal locomotion pattern by compensatory changes in the activity of other 

leg muscles (Chen et al., 2009a; Chen et al., 2009b), whereas the human subjects maintained 

their locomotion by preserving the activity of primary afferents (i.e., by not transferring the 

changed reflex activity from standing to walking).  In humans, this is probably the most 

effective way to maintain normal locomotion, while accommodating a new skill of a smaller 

H-reflex (i.e., operant down-conditioning effects) in standing.  Unlike laboratory animals that 

were continuously exposed to operant conditioning [e.g., 2500-8000 trials per day 

(distributed throughout the 24 hours), for 50 days], humans were only exposed to a discrete 

conditioning schedule (i.e., 1 hour per session, three times a week, 30 conditioning sessions).  

Thus, for humans, the behavioral repertoire outside the conditioning paradigm is much larger 
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than that for rats, and therefore, preserving the existing wide variety of skills (e.g., normal 

walking) with the minimum adjustments at the acquisition of a new motor skill might be 

essential.  Finally, it should also be mentioned that many factors such as anatomical 

differences and locomotion pattern (i.e., quadruped vs. biped) (Courtine et al., 2007) could 

contribute to different effects of conditioning on locomotion between rats and humans.  In 

particular, biped locomotion in humans is much more demanding in maintaining the balanced 

upright posture than quadruped locomotion in rats.  Thus, minimizing any changes during 

normal locomotion, rather than compensating for a change (e.g., smaller soleus locomotor H-

reflex) by inducing additional changes, may be more critical for humans than for rats.  

The present study showed that the successful down-conditioning of the soleus H-

reflex does not change locomotion in healthy human subjects.  Does this imply that there is 

no therapeutic effect of conditioning?  In rats with incomplete spinal cord injury, Chen et al. 

(2006) found that asymmetric locomotion was improved after successful conditioning.  In 

humans, preliminary results suggest that operant down-conditioning of the H-reflex improves 

spastic gait in people with incomplete spinal cord injury (Pomerantz et al., 2010).  Thus, 

effects of conditioning on locomotion might be different in people after injury or disease, in 

which locomotion is already abnormal. 
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Figure 4.1: Sample sweeps of joint angles 
Sample sweeps of joint angles throughout the gait cycle.  Angle displacement in each phase 
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flex2, and flex2-ext3 for the knee, and ext1-flex1 for the hip) was calculated.  DF: 
dorsiflexion, PF: plantarflexion, ext: extension, flex: flexion, pre: pre-conditioning, post: 
post-conditioning 
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Figure 4.2: Locomotor H-reflexes 
Locomotor H-reflexes of the soleus, MG, and LG averaged from all subjects.  Data are 
expressed in a percentage of the Mmax size (mean ± SE).  The gait cycle was divided into 12 
equal bins and average reflex size in a bin was calculated.  There were no significant 
differences between pre- and post-conditioning in all 12 bins in all three muscles. 
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Figure 4.3: Locomotor EMG  
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Locomotor EMG of the 12 muscles averaged from all subjects (left column: conditioned side, 
right column: contralateral side).  Data are normalized by MVC values (mean ± SE).  As in 
the locomotor H-reflexes, the locomotor EMG was also divided into 12 bins and compared 
between pre- and post-conditioning.  There were no significant differences between pre- and 
post-conditioning in all 12 bins in all muscles.  In addition, the area under the binned EMG 
activity curve, where the muscle was activated, was calculated for each muscle.  Those areas 
between the pre- and post-conditioning locomotion sessions were not significantly different 
in all 12 muscles. 
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Figure 4.4: Joint displacement of the ankle, knee, and hip 

0

10

20

30

40

50

60

70

ext1-flex1 flex1-ext2 ext2-flex2 flex2-ext3

0

10

20

30

40

50

60

70

ext1-flex1 flex1-ext2 ext2-flex2 flex2-ext3

0

10

20

30

40

50

ext1-flex1

0

10

20

30

40

50

ext1-flex1

B. Knee 

C. Hip 

Jo
in

t a
n

g
le

 d
is

p
la

Jo
in

t a
n

g
le

 d
is

p
la

ce
m

en
t 

(d
e

g
re

e
)

de
g

re
e

)
en

t 
(

ce
m

Jo
in

t a
n

g
le

 d
is

p
la

 
 131



Group average of joint angle displacements in the ankle (A), knee (B) and hip (C) in each 
phase at pre-conditioning and post-conditioning locomotion sessions (mean ± SE).  There 
were no significant differences between pre- and post-conditioning in all phases in all three 
joints.  DF: dorsiflexion, PF: plantarflexion, ext: extension, flex: flexion 
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Figure 4.5: Individual conditioned, control, and locomotor H-reflexes  
Individual differences in the soleus conditioned and control H-reflexes after operant 
conditioning, and soleus locomotor H-reflex during stance phase (early stance phase: average 
in bin 1-2, middle stance phase: average in bin 3-4, late stance phase: average in bin 5-6).  
Each value was expressed in percentages of pre-conditioning values.  There was no apparent 
association between decreases of the conditioned or control H-reflex and changes of 
locomotor H-reflexes.
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Figure 4.6: Sample soleus locomotor EMG sweeps  
Sample EMG sweeps at pre- and post-conditioning from the subject who showed the largest 
decrease of the conditioned soleus H-reflex. 
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CHAPTER V 
 
 
 
 
 

SYNTHESIS



1. Summary of findings 

In the first project of this dissertation, the H-reflexes of the MG and LG were 

examined with regard to acute modulation during walking and between standing and walking 

(Chapter 2), and gradual modification induced by operant down-conditioning of the soleus 

H-reflex (Chapter 3).  The modulation and modification of the MG and LG H-reflexes were 

compared with those in the soleus H-reflex to investigate the functional association of the H-

reflexes among the three muscles.  In the second project, effects of successful soleus H-reflex 

operant conditioning on locomotion were examined in healthy humans (Chapter 4).  Major 

findings of the three chapters are summarized in the following sections. 

 

Synergistic modulation of the H-reflexes 

 In Chapter 2, the H-reflexes of the soleus, MG, and LG showed task-dependency and 

phase-dependency in size modulation, and the modulation patterns during walking (i.e., 

phase-dependent modulation) and between standing and walking (i.e., task-dependent 

modulation) were very similar among the three muscles (Table 5.1).  Those findings support 

the hypothesis that the three muscles function as one synergistic unit to facilitate ongoing 

movements.  The functionality of the soleus H-reflex modulation was suggested to support 

successful walking (Capaday and Stein, 1986, 1987; Edamura et al., 1991), and thus, walking 

would be further secured by synergistic modulation of the H-reflexes in the three synergist 

muscles.   

The task-dependent modulation of the soleus H-reflex from standing to walking was 

shown to be acquired with maturation of the CNS (Hodapp et al., 2007).  Thus, rapid 

modulation based on the ongoing task is a learned motor skill through neural plasticity during 
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development.  Based on the finding that the MG and LG H-reflexes are modulated similarly 

to the soleus H-reflex, it appears that neural plasticity during development occurred 

concurrently in the MG and LG H-reflex pathways to establish the synergistic modulation of 

the three muscles.   

It should be mentioned that the synergistic modulation of the soleus, MG, and LG H-

reflexes is not necessarily present in other movements such as running.  Nichols (1989) 

demonstrated that heterogenic inputs from the soleus stretch reflex increase the MG and LG 

stretch reflexes whereas heterogenic inputs from the MG and LG stretch reflexes decrease 

the soleus stretch reflex when the muscles are highly activated.  Inhibition of the soleus 

stretch reflex by the MG and LG heterogenic inputs increased as the MG and LG force 

increased.  In this case, absence of mutual synergism among the three muscles, with 

suppression of the monoarticular muscle (i.e., soleus) and facilitation of the biarticular 

muscles (i.e., MG and LG), is suggested to promote interjoint coordination between the ankle 

and knee joints.  Thus, during a motor task that requires increased contribution of the 

gastrocnemii compared to walking, such as fast running (Duysens et al., 1991), the H-reflex 

modulations among the three muscles would show different associations from those during 

walking. 

 

Compensatory modification of the H-reflexes 

 Findings from Chapter 3 supported the hypothesis that operant conditioning has less 

effect on synergists than on the target muscle.  In addition, rapid within-session task-

dependent adaptation (i.e., differences between conditioned and control H-reflexes) and 

gradual across-session long-term change (i.e., changes in control H-reflexes) were shown to 
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be differentially induced among the three muscles by operant conditioning.  Task-dependent 

adaptation, likely originated in plasticity of the brain, occurred in the soleus and MG H-

reflexes to a similar extent throughout the conditioning period.  However, long-term changes, 

which would reflect spinal cord plasticity, occurred only in the soleus H-reflex, not in both 

the MG and LG H-reflexes at the end of conditioning (Table 5.1).  It has previously been 

shown during human soleus H-reflex operant conditioning that, when task-dependent 

adaptation (i.e., supraspinal plasticity) is repeatedly induced, long-term changes (i.e., spinal 

cord plasticity) are hierarchically induced (Thompson et al., 2009).  Thus, the finding of the 

MG H-reflex showing task-dependent adaptation but no long-term change suggests that there 

may be compensatory plasticity in the MG H-reflex pathway to prevent long-term change of 

the MG H-reflex.  Since long-term changes in the soleus H-reflex persisted outside the 

conditioning paradigm, this lack of synergism (i.e., compensation) may reflect CNS’s 

strategy to preserve other motor skills in which the soleus H-reflex pathways are involved.  

Therefore, compensatory plasticity may be necessary to preserve the current repertoire of 

motor skills.  For the LG H-reflex, the extent of within-session change was less than that in 

the MG and soleus.  However, synergistic association between the soleus and LG control 

reflexes were reversed just as that in soleus and MG control reflexes, resulting in no change 

in the LG control reflex at the end of conditioning.  Thus, there may be compensatory 

plasticity occurred in the LG H-reflex pathway.  Nevertheless, neural mechanisms underlying 

the differential control of the LG H-reflex from the soleus and MG H-reflexes with regard to 

task-dependent adaptation need to be explored.  Finally, differences in H-reflex changes 

appeared among the three muscles during the conditioning would indicate potential evidence 

of some independence among those muscles.   
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 The H-reflexes of the soleus and MG showed rapid within-session decreases.  This 

acute adaptation of synergists in the same direction is opposite from findings reported by 

Akima et al. (2002).  They reported that fatigue of the vastus lateralis induced by 30 minutes 

of electromyostimulation increased the activity of its synergists, vastus medialis and rectus 

femoris during knee extension exercise.  This compensatory reaction of synergists to achieve 

the intended task was available immediately after the electromyostimulation suggesting that 

the CNS is capable of sending commands for acute compensation by activity of synergists.  

One difference of the present study and Akima’s study with regard to acute adaptation in 

synergist muscles would be the task in which the activity of muscles is measured.  That is, if 

changes in activity of one muscle directly affect the performance as the knee extension 

exercise in Akima’s study, synergists are rapidly recruited to provide compensatory activity 

so that the intended task is still executed properly.  On the other hand, during natural standing 

as in this operant conditioning paradigm, the H-reflex activity is not functionally relevant 

because background activity is sufficient to maintain upright posture.  Thus, synergists could 

change in the same direction.  However, once the decrease of the soleus H-reflex persists 

outside the conditioning (i.e., control reflex change), compensation by synergists may be 

necessary to maintain the normal motor skill.   

 

Preservation of normal locomotion 

 Long-term changes in the soleus H-reflex shown in Chapter 3, possibly reflecting 

spinal cord plasticity in the soleus H-reflex pathway, persist across sessions.  Since Ia 

afferent pathways are also functionally involved in locomotion, the soleus H-reflex during 

locomotion (i.e., locomotor H-reflex) was hypothesized to change to a similar extent as 
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changes in the control reflex after conditioning.  However, contrary to the hypothesis, 

operant conditioning did not change the soleus locomotor H-reflex.  Adjustment of reflex 

gain in the process of task-dependent modulation between standing and walking is suggested 

to be responsible for maintaining the appropriate reflex gain during locomotion despite 

persistent decrease of the H-reflex in standing.  As the primary change (i.e., soleus control 

reflex change) did not transfer to locomotion, no changes occurred in locomotor EMG 

activity of other muscles or in joint kinematics (Table 5.1).  Adjusting the reflex gain during 

walking is probably the most effective way to maintain normal locomotion, while 

accommodating operant down-conditioning effects in standing (i.e., a smaller control H-

reflex). 

 

 As proposed in Chapter 1 (General Introduction), sensorimotor integration of the 

CNS plays an important role in motor control.  The present dissertation could promote our 

understanding for principles governing human motor control by the CNS, specifically with 

regard to association among the three calf muscles.  In sum, the dissertation demonstrated 

that the CNS controls the H-reflexes of the three synergistic muscles to be synergistic or 

compensatory, which are logical directions to facilitate or preserve the motor skills in the 

current behavioral repertoire.  Synergism or compensation is available when there are 

multiple muscles with a similar function (i.e., synergists), and the CNS appears to apply this 

advantage in motor control.  Furthermore, especially in the existing repertoire of motor skills, 

normal locomotion is preserved after operant conditioning.  This would emphasize 

importance of normality in human walking and indicate that even a small change (e.g., 

decrease of the soleus locomotor H-reflex) could cause critical influence on human walking.  
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Therefore, it would be the CNS’s role to eliminate the change by minimum adjustment and to 

provide solid control to maintain normal locomotion.    

 

2. Strengths and weaknesses 

Strengths 

In the past, studies investigating modulation and modification in the H-reflex pathway 

almost exclusively examined the soleus.  The soleus and two of its synergists, the MG and 

LG have been treated the same, and therefore, it would probably be a natural tendency to 

assume that same or similar modulation and modification take place in those three muscles.  

However, the present dissertation did demonstrate that those three muscles do not always 

behave in the same direction to the same extent.  Capability of the CNS to control the H-

reflexes of the three muscles similarly or differentially based on the context is applied in 

motor control, which would facilitate or maintain the existing motor skills.  Synergistic or 

compensatory association of the H-reflexes in synergist muscles is new knowledge and 

would establish a more solid basis of our understanding regarding how the CNS concurrently 

controls synergist muscles.  

 In addition, this dissertation involved measurements during functional tasks such as 

walking.  Walking is one of the most fundamental motor skills in humans, and also it is 

destructively affected by injury or disease.  By adding pre- and post-conditioning locomotion 

analyses, this dissertation not only provided new knowledge regarding motor control in 

synergist muscles but introduced the possibility of further developing the operant 

conditioning paradigm as a new therapeutic method.  Clinical implications are discussed in 

the next section. 
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Weaknesses 

 In Chapters 3 and 4 in which effects of successful soleus H-reflex operant 

conditioning on synergists’ H-reflexes or on locomotion were reported, developing a 

“successfully” conditioned group was critically important.  Considering the latest study of 

human soleus H-reflex operant conditioning (Thompson et al., 2009), the subject group in 

this dissertation was appropriate as the sample size and the final reflex size were very similar 

between the two studies.  However, the dissertation involved measurements of the synergists’ 

H-reflexes, for which the effects of conditioning were expected to be more subtle and 

variable than for the target muscle.  Thus, although variability in the effects of conditioning 

on synergists was an inherent feature, having more subjects would have improved the quality 

of statistical analyses.  This weakness is also applied to measurements of the locomotor 

variables.   

 Another weakness would be the number of sessions in which the MG and LG H-

reflexes were recorded.  Since a brief session length (i.e., about 60 minutes) is a key for 

successful conditioning in humans (Thompson et al., 2009), we conducted additional 

measurement of the MG and LG H-reflexes only at every six sessions.  Thus, data for final 

statistical analyses were taken from one session, which might not have represented the true 

value.  In addition, the compensation of MG (and possibly LG) H-reflexes seemed to occur at 

the last conditioning session.  In order to verify that the compensation at session 30 

represents a trend, not a random change, adding more sessions would have been ideal.  There 

is an experimental conflict between increasing the amount of MG and LG data and 

minimizing the session length.  An acceptable compromise to both is necessary in the future. 
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For the locomotion analyses in Chapter 4, the absence of change in the soleus 

locomotor H-reflex was suggested to be due to an adjustment of reflex gain in the process of 

task-dependent modulation.  In order to strengthen this suggestion, task-dependent 

modulation of the soleus H-reflex between standing and walking should have been measured 

in a similar range of background activation before and after the operant conditioning.  In that 

way, whether or not the reflex gain was adjusted by task-dependent modulation (i.e., changes 

in ratio of walking H-reflex vs. standing H-reflex) after the conditioning could be clearly 

shown.  Furthermore, for Chapter 4, we hypothesized that the soleus locomotor H-reflex 

would change after successful conditioning based on a previous animal study (Chen et al., 

2005).  However, that was not the case for humans, which emphasizes that inherent 

differences between species always need to be considered when applying animal data to 

humans.  In particular for the conditioning paradigm, although the final H-reflex size is 

generally similar between species, the animal protocol includes much more dosage and 

volume of conditioning than the human protocol.  The most critical difference is the 

conditioning nature, where humans are conditioned only for an hour, three times per week.  

Thus, humans spend considerable time doing other behaviors resulting in having a much 

wider variety of motor skills than animals during the conditioning period.    

 For locomotion analysis, locomotor H-reflexes, locomotor EMG activity, and joint 

kinematics were measured in separate walking trials.  We chose not to measure all variables 

in a same trial to reduce the amount of accessories such as electrodes, cables, and infrared 

markers attached to the subject, in order to have the subject walk as normal as possible.  

However, this adjustment in protocol made comparison among the locomotor variables less 

than ideal.  Future studies will have to overcome this weakness. 
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 As for the EMG activity data during walking, the maximum voluntary contraction 

(MVC) values were used for normalization.  Although widely used, inaccuracy of the MVC 

normalization was suggested (De Luca, 1997).  Thus, use of a dynamometer to provide 

secure stabilization during the MVC measurement would be preferable, if the equipment is 

accessible.  If a peripheral nerve innervating the muscle of interest is available over the skin 

(e.g., the tibial nerve), using the maximum M-wave value for normalization is also desirable.  

Finally, biomechanical differences between treadmill walking and overground walking have 

been reported in healthy humans (Lee and Hidler, 2008).  Thus, particularly for patient 

populations in the future, fundamental differences between the two forms of locomotion need 

to be taken into consideration, and preferably, functional assessment to look into effects of 

operant conditioning on locomotion should be performed over ground.     

 

3. Future direction 

 In Chapter 4, successful down-conditioning of the soleus H-reflex in healthy humans 

was shown to have no effect on locomotion.  However, there is a study showing the effects of 

operant up-conditioning on locomotion using rats with spinal cord injury (SCI) (Chen et al., 

2006).  Before the conditioning, treadmill locomotion showed clear asymmetry in the onset 

times of the right and left soleus EMG.  After the conditioning, this asymmetry was corrected 

in the conditioned group whereas it persisted in the control group.  Furthermore, in humans, 

preliminary results suggest that operant down-conditioning of the H-reflex improves walking 

in people with incomplete spinal cord injury (Pomerantz et al., 2010).  Thus, it seems effects 

of operant conditioning on locomotion may appear differently in patients with neurological 

damage, whose walking is already abnormal. 
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 Yang et al. (1991) reported that soleus H-reflex modulation during walking is 

significantly less in patients with spastic paretic resulting from neurological damage such as 

spinal cord injury or traumatic brain injury.  The most common pattern was 1) exaggerated 

H-reflex during early stance phase, where the reflex activity would counteract forward 

movement of the body, and 2) less depression of the H-reflex during the swing phase than 

normally occurs (Chapter 2).  In this case, decrease of the soleus H-reflex could be beneficial 

for regaining normal reflex modulation.  Therefore, unlike healthy humans (i.e., Chapter 4), 

changes in the H-reflexes induced by operant down-conditioning would more likely be 

transferred to the locomotor H-reflexes because those are functionally relevant changes.  

Indeed, preliminary data showing improvement of reflex modulation after soleus down-

conditioning were reported (Thompson et al., 2010).  Furthermore, improvement of the H-

reflex modulation appeared to be associated with functional improvement (Thompson et al., 

2010).  Thus, operant down-conditioning may have the possibility of restoring or improving 

locomotor function in patients with spasticity who have exaggerated H-reflexes with 

impaired modulation during walking.  Detailed measurement and analysis of soleus H-reflex 

modulation during walking for each patient will be necessary to decide eligibility for operant 

conditioning.  If, in the future, all system (i.e., software) and equipment for operant 

conditioning of the soleus H-reflex can be converted into a small portable unit, it might be 

possible to perform the conditioning as a home-based therapy.  The largest hurdles will be a 

development of user friendly software and hardware as well as education of patients.  

Particularly, this kind of unit must come with a feedback screen that can be effectively used 

by a patient to maintain background EMG activity.  Most importantly, the software and 

hardware must include an automated way for M-wave size to be controlled throughout 
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baseline and conditioning.  Furthermore, performing operant conditioning during locomotion 

(i.e., treadmill walking) would likely maximize transfer of the conditioning effects to 

locomotion (Barnett et al., 1973), which would facilitate functional benefit of operant 

conditioning in patients. 

 Another common locomotor abnormality in spastic patients with incomplete spinal 

cord injury was found in locomotor EMG activity pattern of the soleus.  Unlike the normal 

soleus EMG activity during the stance phase of walking, which shows a burst-like curve with 

the peak activation in the late stance phase, the soleus in patients is activated throughout the 

stance phase without apparent spikes (Leroux et al., 1999; Pepin et al., 2003).  It is reported 

that the normal burst-like activation pattern of the ankle plantarflexors is the most 

energetically efficient method of powering walking (Kuo, 2002).  Thus, increasing the soleus 

activity during the late stance phase to restore the burst would be beneficial to improve 

walking in patients.  Chen et al. (2006) showed that, in rats with incomplete spinal cord 

injury, operant up-conditioning of the soleus H-reflex enhanced the soleus EMG activity 

during locomotion.  Hence, one might expect that up-conditioning would have potential for 

increasing the peak activity of the soleus in the late stance phase.  However, Sinkjaer et al. 

(2000) reported that, in human soleus stance EMG activity, contribution of the Ia excitation, 

which is targeted in the H-reflex conditioning, is confined to the early stance, and the peak 

activation in the late stance phase is mainly contributed by group Ib afferents.  Therefore, 

based on the current knowledge, it seems down-conditioning of the soleus H-reflex is likely 

the appropriate direction for patients with spasticity and exaggerated reflexes to improve 

their locomotion function.  On the other hand, for patients who have problem in propulsion 

during walking due to lack of the burst-like activation of the soleus, operant conditioning of 
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Ib afferents might be beneficial.  Along the same line, if, in the future, we could expand the 

functional implications of the operant conditioning paradigm to other spinal reflexes and 

other muscles, it would be possible to customize conditioning protocols based on each 

patient’s specific problem.   
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Table 5.1: Summary of the major findings in three chapters 
“×” indicates a variable in each column was measured in each corresponding muscle/joint. 
“no” indicates a variable in each column was not measured in each corresponding 
muscle/joint. MG: medial gastrocnemius, LG: lateral gastrocnemius, TA: tibialis anterior, 
VL: vastus lateralis, BF: biceps femoris, TDA: task-dependent adaptation, LTC: long-term 
change, N/A: not available   
 
Chapter 2 

 
Task-dependent 

modulation 
Phase-dependent 

modulation 

Soleus × × 

MG × × 

LG × × 

Synergistic modulation 
- facilitate the skill 

 
Chapter 3 

 
Conditioned 

H-reflex 
TDA LTC 

Soleus × × × 

MG × × no 

LG no no no 

Compensatory modification 
- preserve the skill 

 
Chapter 4 

 
Changes in 
locomotor 
H-reflex 

Changes in 
locomotor  

EMG 

Soleus no no 

MG no no 

LG no no 

TA N/A no 

VL N/A no 

BF N/A no 

Contralateral 
muscles 

N/A no 

Maintain normal walking  

 
Changes in joint 

kinematics 

Ankle/knee/hip no 
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