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Abstract

VONN WALTER: DiNAMIC - A Method for Assessing the Statistical
Signficance of DNA Copy Number Aberrations.

(Under the direction of Dr. Andrew Nobel and Dr. Fred Wright.)

DNA copy number gains and losses are commonly found in tumor tissue, and some of these

aberrations play a role in tumor genesis and development. Although high resolution DNA copy

number data can be obtained using array-based techniques, no single method is widely used

to distinguish between recurrent and sporadic copy number aberrations. Here we introduce

Discovering Copy Number Aberrations Manifested In Cancer (DiNAMIC), a novel method

for assessing the statistical significance of recurrent copy number aberrations. DiNAMIC uses

two resampling schemes - a permutation method and a bootstrap procedure - both of which

largely preserve the correlation structure found in the underlying DNA copy number data. It

is important to maintain as much of the correlation structure as possible when resampling,

and we believe this may yield additional power to detect recurrent aberrations. Extensive

simulation studies show that DiNAMIC controls false positive discoveries in a variety of

realistic scenarios. We use DiNAMIC to analyze two publicly available tumor datasets, and

our results show that DiNAMIC detects multiple loci that have biological relevance. Although

DiNAMIC provides methods for detecting CNAs, loci that exhibit aberrant copy number do

not always lie in genes related to the tumor phenotype. Therefore we introduce methods

for computing confidence intervals around CNAs. Copy number datasets often contain data

obtained from subjects with different subtypes of a given tumor type, and the tumor subtypes

can harbor distinct genetic mutations. Because groups of subjects may have similar copy

number profiles, we present methods for determining which subjects contribute to a given

CNA. Some studies collect both DNA copy number and clinical data from subjects, but no

methods for jointly analyzing both data types are widely used. We describe a preliminary
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testing procedure for comparing the locations of CNAs and loci whose copy number values

are highly associated with a given clinical variable.
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Chapter 1

Introduction to DiNAMIC

Background
DNA copy number aberrations (CNAs) are commonly found in tumor tissue, and can

range from losses (deletions) of one or both copies of chromosomal regions to gains of numer-
ous additional copies (amplifications). The size of these aberrations can range from entire
chromosome arms to less than 100 kb (Myllykangas and Knuutila, 2006). A variety of plat-
forms are used to detect CNAs, and provide quantitative signals that reflect the underlying
discrete copy number (Coe et al. 2007, Davies et al. 2005, Zhao et al. 2004). Much of the
statistical effort in analyzing CNAs has focused on discerning copy number at each location
within individual tumors (Olshen et al. 2004, Venkatraman and Olshen 2007, Hupe et al.
2004), and in handling the potential contamination of normal tissue in tumor samples (Sun
et al. 2009).

In contrast to heritable copy number variation, CNAs are the result of genomic instability
in somatic tumor tissue (Albertson et al. 2003). From the earliest days of modern cancer
genetics, it was recognized that such instability could unmask or promote the effects of tumor
suppressors and oncogenes (Knudsen 1971, Stratchan and Read 1999). However, surveys of
a number of tumor types (e.g. Miller et al. 2003) demonstrate that sporadic gains and losses
can also occur throughout the genome, likely representing generic genomic instability, with
little effect on tumor progression. The phenomenon of recurrent CNAs, which affect the same
region in multiple tumors, is of great interest, as such CNAs may highlight genes or regions
that are directly involved in tumor progression. Past studies have detected recurrent CNAs
in a wide range of tumor types, and extensive catalogs of these discoveries can be found in
the Mitelman Database (Mitelman et al. 2010) and the Genetic Alterations in Cancer (GAC)
database (Jackson et al. 2006).

Despite the apparent successes in the field, there is no clear basis for a general approach for
sensitive detection of recurrent CNAs, as many regions important for tumor progression may
affect only a minority of tumors. The task of distinguishing between sporadic and recurrent
CNAs is thus largely a statistical issue. The instability-selection model provides a statistical
framework specific to loss of heterozygosity data (Newton et al. 1998), but even for this
specific data type difficulties remain in assessing significance over multiple markers (Sterrett
and Wright 2007). The problem of assessing significance for general copy-number data has
received relatively little attention until recently (Shah 2008). Few of the existing methods
(reviewed below) provide an explicit description of the null hypothesis being tested, or fully



acknowledge the inherent correlation structure of copy-number data. For these reasons, it has
been difficult to place the techniques in a traditional statistical framework, or to understand
error rates on a genome-wide scale. The purpose of this thesis is to introduce an explicit
testing scheme for recurrent CNAs that preserves correlations inherent to the data.

Before proceeding to our testing framework, we review the current methods for copy
number calling/segmentation, which can serve as a useful intermediary to the detection of
recurrent CNAs. Numerous technologies are available to measure DNA copy number, ranging
from array comparative genomic hybridization (Coe et al. 2007, Davies et al. 2005) at tens
of thousands of probes, to high density SNP platforms (up to 1 million probes or more, Zhao
et al. 2004). Reviews of the technologies are provided elsewhere (Davies et al. 2005, Zhao
et al. 2004), but a common feature is that a quantitative signal is extracted at each probe
that reflects underlying copy number, with additional noise and potentially probe-specific
bias inherent to the platform.

Regional losses and gains within a single tumor typically cover contiguous sets of numer-
ous probes (Myllykangas and Knuutila 2006), and so segmentation approaches (Olshen et al.
2004, Venkatraman and Olshen 2007, Hupe et al. 2004) are popular as a means to estimate
the underlying copy number state at each position per tumor. Here we distinguish between
discrete segmentation, where the copy number is constrained to the non-negative integers,
and continuous segmentation, where the segmented values need not be integers. Examples
of continuous segmentation include methods that essentially average over quantitative probe
values within a genomic region determined by the algorithm to be a copy number segment.
Regardless of the segmentation procedure, technical artifacts and differences in probe charac-
teristics can lead to probe-specific bias, potentially reducing the accuracy of segmentation. A
number of authors have established the presence of probe bias. Marioni et al. (2007) showed
that aCGH data exhibits serial autocorrelation, a phenomenon they termed “genomic waves,”
and Komura et al. (2006) noted a correlation between apparent DNA copy number and GC
content. For sufficient sample sizes, the approach introduced in Chapter 3 can be used to
correct the bias by comparing intensities of individual probes using data from surrounding
probes (via segmentation), without the need to model or otherwise consider the sequence
context.

We also clarify that we are interested in somatic copy number changes in tumors, rather
than heritable copy number variants (CNVs). As the resolution of typing technologies in-
creases, it is possible that CNVs, which are rarely larger than 1 Mb (Itsara et al. 2009) and
thus considerably shorter than the aberrations found in solid tumors (Albertson et al. 2003),
can be mistaken for recurrent CNAs. The distinction can be clarified by comparisons of
matched tumor and normal tissue. Researchers using tumor-only datasets should be alert to
the possible presence of common copy number polymorphisms when interpreting the results
of our method (Redon et al. 2006).

Over a dozen software packages for analyzing DNA copy number data are discussed by
Rueda and Diaz-Uriate (2008), Baross et al. (2007), and Shah (2008). We focus here on the
approaches that attempt to identify recurrent copy-number changes, highlighting the input
formats and a few relevant similarities and differences.

• STAC (Diskin et al. 2006) and CGHregions (van de Wiel and van Wieringen 2007)
require discrete segmented input data, i.e. categorical values such as aberrant/normal,
gain/normal/loss, or some numerical equivalent.
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• GISTIC (Beroukhim et al. 2007) requires continuous segmented input data, such as one
might obtain from a segmentation program such as GLAD (Hupe et al. 2004) or DNAcopy
(Olshen et al. 2004, Venkatraman and Olshen 2007).
• KC-SMART (Klijn et al. 2008) and MSA (Guttman et al. 2007) accept continuous input

data, such as log2 intensity ratios, although MSA performs discrete segmentation internally
and then makes multiple calls to the STAC algorithm.
• GISTIC, KC-SMART, STAC, and MSA assess the statistical significance of the most

striking marker or region using permutation-based null distributions, while adjusting for mul-
tiple comparisons. However, the resulting output differs among the methods. GISTIC pro-
duces false discovery rate (FDR) q-values for the ’significant’ regions. STAC and MSA control
the family-wise error rate (FWER) by using the max-T procedure of Westfall and Young
(1993), while KC-SMART controls FWER by using a Bonferroni adjustment.
• GISTIC and KC-SMART analyze genome-wide data, whereas STAC and MSA analyze

data at the level of the chromosome or chromosome arm.
Here we introduce DiNAMIC (Discovering Copy Number Aberrations Manifested In

Cancer), a new procedure to map recurrent CNAs and assess their statistical significance.
DiNAMIC can be applied in the analysis of data from individual chromosomes or genome-
wide. The input can consist of segmented data, either discrete or continuous. Alternately,
quantitative probe measurements may be used directly, although the reader is advised to
read the material on probe bias in Chapter 2 before analyzing individual probe-level data.
DiNAMIC is computationally fast, statistically robust, and requires no specialized software.
We believe that DiNAMIC is a valuable addition to the methods available to search for
recurrent CNAs.

Data Format and Definitions

We assume that the available numerical data is contained in an n ×m matrix X. Each
row of X corresponds to DNA copy number or LOH data obtained from one subject at m
markers, while each column of X corresponds to data at a single marker for n subjects. Thus
xi,j represents DNA copy number or LOH data for subject i at marker j. Because LOH
data can be viewed as a special case of copy number data, all subsequent discussions of copy
number data will also refer to LOH data.

Markers at which multiple subjects exhibit high or low copy number are of interest, because
these are potentially sites of recurrent copy number aberration. Thus it is natural to examine
local summary statistics for each marker. We define Si to be the sum of the entries in the ith

column of X, leading to the local summary statistics S1, S2, . . . , Sm.
In addition to the local summary statistics, we also want a global summary statistic T (X)

for the entire data matrix that is sensitive to the presence of copy number gains and losses.
We will restrict our attention to

T (X) = max(S1, S2, . . . , Sm),

and, if appropriate,

T (X) = min(S1, S2, . . . , Sm),

where Si represents the ith column sum. These choices focus attention on the markers that are
most likely to be important, and they will be used when we assess the statistical significance
of CNAs.
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Permutation, Cyclic Shift, and Assessing Statistical Significance

Random variation in DNA copy number will be found in both normal and tumor samples,
so it important to have methods for determining whether a given dataset contains statisti-
cally significant CNAs. This can be done if we have a distribution for T (X) under the null
hypothesis that no CNAs are present. Because we make no assumptions about the entries in
X - i.e. they may be discrete segmented, continuous segmented, or continuous values - it is
not possible to find or estimate parametric distributions of T (X). For this reason we consider
a permutation null distribution for T (X), an approach that is also taken by GISTIC, STAC,
MSA, and KC-SMART.

A variety of permutation schemes are possible. Because entries in different rows come from
different subjects, permuting entries across rows should be avoided. KC-SMART randomly
permutes the DNA copy number values within a given row. GISTIC’s null distribution is
based on a convolution of histograms, which is equivalent to randomly permuting entries in a
given row. On the other hand, STAC and MSA perform random rearrangements of aberrant
regions within a given row. Such permutations maintain the serial structure of the aberrant
regions but not the serial structure of the normal regions.

DNA copy number data is inherently correlated, and both discrete segemented and con-
tinuous segmented copy number data can be very highly correlated. Information is lost if
we ignore the existence of this correlation, so within each row it is desirable to maintain as
much of the serial structure as possible under permutation. This provides motivation for
DiNAMIC’s permutation scheme.

Let Xi· = xi,1xi,2 . . . xi,m be the ith row of X, which corresponds to the data from the ith

subject. If 1 ≤ k ≤ m, we define a cyclic shift of Xi· of index k to be

σk(Xi·) = xi,kxi,k+1 . . . xi,mxi,1 . . . xi,k−1.

More generally, a cyclic shift σ(X) of X is found by applying cyclic shifts σk to each row
of X, where the shift index k can vary from one row to the next. This yields a total of mn

distinct cyclic shifts.
Biological motivation for using cyclic shifts can be found by considering DNA copy number

on circular bacterial chromosomes. Here the serial structure of the copy number data from
a given row is completely preserved under cyclic shifts. Thus if the observed copy numbers
for each row mimic a circular stationary process, the correlation structure is not changed by
performing cyclic shifts.

Although human chromosomes are linear, not circular, the cyclic shift σk(Xi·) maintains
the serial structure between the markers, except at the breakpoint xi,k−1. In an n × m
matrix the number of markers m is much larger than the total number of breakpoints n,
so it follows that the difference between linear chromosomes and circular chromosomes is
negligible. Therefore under stationarity we again conclude that when performing cyclic shifts
there is no appreciable alteration in the correlation structure. We discuss this topic in greater
depth in Chapter 8.

We now describe our method for assessing the statistical signficance of T (X) =
max(S1, S2, . . . , Sm) using cyclic shifts.

1. Perform N random cyclic shifts σ1(X), σ2(X), . . . , σN (X).

2. Compute T (σi(X)) for i = 1, 2, . . . , N .

4



3. p(T (X)) =
∑N

i=1 I(T (σi(X)) ≥ T (X))
N

.

When T (X) = min(S1, S2, . . . , Sm) we obtain p(T (X)) by reversing the inequality in step 3.
This definition yields a p-value for T (X) that is easy to interpret and adjusted for multiple
comparisons. Moreover, it allows us to assess (a) ’high only’ significance, as one would do
for LOH data, or (b) ’high and low’ significance, which would be of interest for copy number
data.

In tumor samples markers can exhibit recurrent high or low copy number because of
somatic mutations that provide a growth advantage. However, certain copy number variants
(CNVs) are known to be common in populations, and these could also lead to markers that
exhibit statistically significant high or low copy number. Although GISTIC automatically
compares its discoveries with a database of known CNVs, currently DiNAMIC does not have
this capability. As a result, the user is advised to compare DiNAMIC’s discoveries with a
CNV database such as the Database of Genomic Variants (Iafrate et al. 2004).

5



Chapter 2

Methods for DiNAMIC

As noted in the introduction, variations in probe hybridization affinity can lead to probe-
specific bias for DNA copy number measurements. Here we present a simple bias-correction
procedure that does not require information about probe length or nucleotide content. We
then introduce “peeling,” DiNAMIC’s sequential technique to assess the significance of mul-
tiple markers, while accounting for previously discovered markers. However, we begin this
chapter with a brief discussion of the null hypothesis and some working assumptions regarding
stationarity.

Null Hypothesis, Working Assumptions, and Stationarity

Suppose X is a random matrix with iid rows Xi·. Our null hypothesis is that the (mul-
tivariate) distributions of the Xi· are finite dimensional distributions of a stationary process.
Stationarity of the mean structure of the Xi· implies that the expected values of the col-
umn sums of X are the same, and thus there are no recurrent CNAs. Chapter 8 contains
a more complete discussion of the relevant distributions of T (X), covariance structures, and
the effect of cyclic shifts on covariance structures. For now, however, we note that the for-

mula p̂(T (X) > t) =
1
N

N∑
i=1

I(T (σi(X)) > t) is likely to give a good approximation to the true

probability when the covariance structure of the Xi· is stationary and the number of markers
is large.

In practice we have a fixed data matrix X, not a realization of a random matrix. Our null
hypothesis is that no recurrent CNAs are present, and thus we expect to see only random
variation in the column sums of X. We may no longer make assumptions about the covariance
structure of the rows or the column sums of X. Thus we make a working assumption that
the empirical correlation structure of the columns of X mimics that of a stationary process.

Probe Bias in DNA Copy Number Data

Probe-specific variations in hybridization affinity can lead to corresponding variations in
array intensity. These in turn can result in biased estimates of DNA copy number, and
hence markers may appear to harbor recurrent CNAs even though their underlying copy
number values are normal. Thus probe bias can lead to a situation where the null hypothesis
is violated, not because of the presence of underlying recurrent CNAs, but rather due to
technical artifacts.
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Figure 2.1: Histograms of Observed (White) and Expected (Black) t-Statistics Based on t-
Tests of Columns of Resid(Z) = Z−Seg(Z), where Z is the chromosome 2 data from Kotliarov
et al. (2006)

To get some sense of the potential magnitude of the bias, suppose Z is the chromosome
2 data from the glioma dataset of Kotliarov et al. (2006), and let Seg(Z) be a continuous
segmented version of Z obtained using DNAcopy. Segmentation algorithms use the existing
data to model the true underlying copy number as a piece-wise constant function, so the
column means of Resid(Z) = Z − Seg(Z) have expected value zero, and any variation should
reflect random error. However, the histograms in Figure 2.1 show that the t-statistics obtained
by performing t-tests on each column of Resid(Z) are very different from the expected t-
statistics.

Probe bias can lead to matrices with statistically significant column sums, even in the
absence of recurrent CNAs. Failure to correct for this bias can result in increased type I
error. Nevertheless, none of the currently available methods for analyzing DNA copy number
data appear to have addressed this issue. One possible method for obtaining a bias-corrected
version of the data is to perform continuous segmentation as a preprocessing step, and then
analyze the segmented data. (GISTIC takes this approach, although Beroukhim et al. (2007)
make no mention of probe bias.) Unfortunately, simulations show that probe bias may still
be present in segmented data.

We use DiNAMIC to analyze simulated 50× 2000 data matrices that include probe bias.
First we create 50 × 2000 matrices Y that contain null copy number values. The specific
scheme for creating the matices Y is discussed in detail in the Simulation Studies section in
Chapter 3. Here we simply note that Y = 2 + ((G1 − G2) ∗ S) + N , where G1 and G2 are
simulated with the instability-selection model that is discussed in Chapter 8. Next we use the
chromosome 2 data from Kotliarov et al. (2006) to create a 50×2000 matrix W that contains
probe bias. In particular, W is a 50×2000 submatrix of the matrix Resid(Z) described earlier.

7



The segmented matrix Seg(X) is obtained by applying DNAcopy to X = Y +W . We obtain
an observed type I error of .2368 when we follow the procedure for analyzing null datasets at
the α = .05 level, as outlined in the section on Simulation Studies of Chapter 3.

Because of this problem we recommend the following procedure for removing probe bias
in n × m matrices X containing continuous copy number data as a pre-processing step in
DiNAMIC.

1. Segment X to get Seg(X), and then compute Resid(X) = X − Seg(X).

2. Let d = (dj)mj=1, where dj = Resid(X)·j , the mean of the entries in the jth column of
Resid(X).

3. Let D be an n×m matrix with each row equal to d.

4. Define X̃ = X −D.

5. Segment X̃ to get Seg(X̃).

The vector d is an estimate of the probe bias in X, and this estimated bias is removed
when we compute X̃ = X −D. However, it is not appropriate to use DiNAMIC to analyze
X̃, for reasons that we now describe. First note that the column sums of X̃ and Seg(X) are
identical, by construction. Although the rows of Seg(X) are piecewise constant, the rows of
X̃ are not. Instead, the entries of X̃ contain noise, and thus extra variability, when compared
to the entries of Seg(X). As a result, additional variability is also seen in the column sums of
cyclic shifts of X̃, but not in the column sums of X̃. Thus values of T (σ(X̃)) tend to be more
extreme than those of T (X̃), which leads to conservative behavior by DiNAMIC. Performing
the final segmentation to obtain Seg(X̃) appears to solve this problem.

We now discuss simulations that illustrate the effectiveness of our bias correction proce-
dure. Let X = Y + W be the simulated copy number matrices with bias that were defined
earlier. Then let Xk be the matrix obtained by performing k iterations of the bias correction
procedure. For example, X0 = X, and X1 = Seg(X̃). We may then view

MSEk =
1
mn

n∑
i=1

m∑
j=1

(Yij − (Xk)ij)2

as a measure of goodness of fit. When we average over 50 simulated matrices X, Figure 2.2
shows that k = 1 has a better fit than k = 0. However, repeating (1) - (5) does not yield
improvements in fit.

Peeling

Natrajan et al. (2006) obtain genome-wide copy number data based on tumor samples
taken from patients with Wilms’ tumors. By analyzing this data in conjuction with data on
tumor relapse, these authors conclude that copy number gains in chr1q are associated with
increased risk of tumor relapse. In addition, they note correlations between gains in chr1q
and losses in both chr16 and chr1p. Based on these results, it is likely that that the dataset
contains CNAs at multiple loci.

Let X represent the matrix of log2 copy numbers from Natrajan et al. (2006). The column
sums of X after segmentation and bias-correction are plotted in Figure 2.3. We performed
1000 random cyclic shifts of X, and after each cyclic shift the maximum and minimum column
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Figure 2.2: Plot of Mean Values of MSEk to Illustrate Goodness of Fit Based on the Peeling
Procedure

sum were recorded. The .975 quantile of the maxima and the .025 quantile of the minima
are represented by horizontal green lines in the figure. The horizontal red line represents the
mean of the column sums.

Although marker 196, the location of the maximum column sum of X, appears to be highly
significant, comparison to the given quantiles shows that there are a number of other markers
that also appear to be significant. Therefore it would be useful to extend DiNAMIC so that
the significance of multiple markers can be assessed. The GISTIC procedure of Beroukhim et
al. (2007) does this, and the significance of a ’new’ region is assessed conditional on having
found the previously most significant region - a process termed peeling. GISTIC’s peeling
algorithm is based on the q-values associated with genomic regions. Because DiNAMIC
computes the p-value of the most aberrant marker, our peeling method, which is described
below, is different from that of GISTIC.

For a given data matrix X there are three components of our peeling procedure. First, we
find the most significant marker, call it k. Then we find all of the entries in X that contribute
to the significance of marker k. Finally, we multiply these entries of X by a scaling factor τ
to create a new data matrix X̂ in which marker k has been nullified. At this point we can
apply the ideas discussed earlier to assess the significance of the markers in X̂ conditional
having found marker k in X.

We begin by indicating how marker k is chosen. If X contains LOH data, the most
significant marker k is the one corresponding to the maximum column sum. The situation is
slightly more complicated if X contains copy number data. First, we use N random cyclic
shifts to find the p-values of the minimum and maximum column sums. If these p-values are
distinct, k is the marker corresponding to the column with the smallest p-value. When these
p-values are equal, k is chosen to be marker whose column sum is farthest from the median
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Figure 2.3: Plot of Column Sums of the Wilms’ Tumor Data of Natrajan et al. (2006), together
with Horizontal Lines Representing Quantiles of the Maximum and Minimum Column Sums
Under Repeated Cyclic Shifts

of all column sums.
Next we describe how to find the matrix entries that contribute to the significance of

marker k. For convenience, we assume that the kth column sum is maximal. We write xi·
and x·j for the means of the ith row and jth column of X, respectively, and x·· for the grand
mean of X.

1. Find the largest interval [a, b] containing k such that the column means x·j > x·· for all
j ∈ [a, b].

2. If necessary, reduce [a, b] so that the interval contains only markers from the same
chromosome arm as marker k.

3. Let I = {i : xik > xi·} be the set of rows such that the entry xik exceeds the mean of
the ith row.

4. For each i ∈ I find the maximal interval [ai, bi] such that (i) [ai, bi] ⊆ [a, b], (ii) k ∈
[ai, bi], (iii) xij > xi· for all j ∈ [ai, bi].

We say that {xij : i ∈ I, j ∈ [ai, bi]} is the set of all matrix entries that contribute to the
significance of marker k.

We now provide an example to illustrate the first two steps of the peeling procedure. The
top plot in Figure 2.4 shows the column sums for a 50×100 simulated data matrix X, as well
as a horizontal line representing the mean of the column sums. Based on the column sums,
the most significant marker is k = 37. The bottom plot of Figure 2.4 shows a heat map of a
50× 100 binary matrix Y . An entry yij of Y is 1 if the corresponding entry xij was found in
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Figure 2.4: An Illustration of the Peeling Procedure in a Simulated 50 × 100 Matrix X. A
Plot of the Column Sums of X (top), and a Heat Map of Binary Matrix Y Whose Entries
are Defined by the Peeling Procedure (bottom)

steps (1) - (4); these are represented in the figure by white blocks. Otherwise yij = 0, which
correspond to the red blocks in the figure. The vertical blue lines represent the interval from
steps (1) and (2). We refer to this as the peak interval.

We conclude by showing how to compute τ , the scaling factor, and X̂, the new data
matrix.

5. Find a constant τ such that

nx·· =
n∑
i=1

xikI(xik ≤ xi·)+
n∑
i=1

xi·I(xik > xi·) + τ
n∑
i=1

(xik − xi·)I(xik > xi·).

6. Define

x̂ij =

{
τxij if i ∈ I and j ∈ [ai, bi];
xij otherwise.

7. Let X̂ be an n×m matrix whose entries are x̂ij .

By construction, the mean of the kth column of X̂ is x··. Thus marker k is null in the new
dataset X̂, as are neighboring markers. Figure 2.5 shows the column sums for the Wilms’
tumor data that appeared in Figure 2.3 before peeling (black) along with the column sums
after peeling (green). Before peeling column 196 yielded the most significant column sum,
but after peeling the column sums around this marker are no longer significant.

Now that X̂ has been constructed we can assess the statistical significance of the most
aberrant marker in X̂ conditional on having found marker k in the original data matrix X.
This is done by using the ideas presented earlier, but now applied to X = X̂. Because we are
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Figure 2.5: Plot of the Column Sums of the Wilms’ Tumor Data of Natrajan et al. (2006)
Before and After Peeling Marker 196

interested in assessing the statistical significance of T (X̂), we must use cyclic shifts of X̂, our
current observed data. Using a null distribution based on values of T (σ(X̂)) provides more
power to detect aberrant markers in X̂ than a null distribution based on values of T (σ(X)),
because the extreme values that contributed to the signficance of marker k in X have been
nullified. Although GISTIC performs peeling, it uses the same null distribution to assess the
significance of all peeled regions, an approach that may yield conservative results.

Quick Look and Detailed Look

DiNAMIC provides two methods for assessing the statistical significance of CNAs present
in a data matrix X: Quick Look and Detailed Look. Both options start by using N random
cyclic shifts to simulate a null distribution for T (X). In Quick Look this null distribution is
used to obtain the p-value of the most significant marker k. DiNAMIC then performs the
peeling algorithm to find the peak interval around k and the new data matrix X̂. The output
consists of the genomic locations of k, the endpoints of the peak interval, and p(k). Then X
is set equal to X̂, and the process is repeated R times using the original distribution of T (X).
Because we use the distribution of T (X) = max(S1, . . . , Sm) and T (X) = min(S1, . . . , Sm)
from the original matrix X to assess the significance of markers found in peeled versions of
X, the resulting p-values are adjusted for multiple comparisons.

In contrast, Detailed Look starts by using the null distribution of T (X) to find the most
significant marker k and its p-value p(k). It then performs the peeling algorithm to find
the peak interval around k and the new data matrix X̂. Finally, it produces the genomic
locations of k, the endpoints of the peak interval, as well as p(k) as output. X is set equal to
X̂, and then the process is repeated R times, including the simulation of the null distribution.
Detailed Look is much more computationally intensive than Quick Look, because a new null
distribution for T (X) is created after each peeling. However, we believe that Detailed Look
provides more accurate p-values and may have additional power to detect CNAs missed by
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Chapter 3

Results of Data Analysis with DiNAMIC

In this chapter we describe the real and simulated datasets that were analyzed in order
to assess DiNAMIC’s performance and statistical properties. We use DiNAMIC to analyze a
number of different datasets that were simulated under the null hypothesis that no recurrent
CNAs are present, and the results of these analyses are discussed. In addition, we present the
results of simulations that were performed under alternative hypotheses to measure power
and test peeling accuracy. We conclude this chapter with a discussion of the loci found when
DiNAMIC was used to analyze two publicly available tumor datasets.

Simulation Studies and Statistical Properties

A variety of simulated null datasets were created and subsequently analyzed with Di-
NAMIC in order to study its behavior under the null hypothesis that no recurrent CNAs are
present. The instability-selection model of Newton et al. (1998) is used to simulate certain
copy number matrices. Briefly, the instability-selection model produces matrices in which
the entries in a given row are simulated according to a binary Markov chain. The reader is
referred to Chapter 8 for a more complete description of this model. Different marker spacing
and correlation schemes were considered in an effort to show that DiNAMIC is robust to the
type of deviation from stationarity that can be found in real datasets. The simulated datasets
include:
• 50× 2000 matrices X = 2 + ((G1−G2) ∗ S) +N , where ∗ denotes element-wise multi-

plication. Here G1 and G2 are independently generated under the instability-selection
model with equally spaced markers on the interval (0, 1), ω = δ = .05, λ = 50, and
starting locations x1 = .15 and x2 = .6, respectively. Note that 2+G1−G2 represents a
matrix of idealized copy number data in which the entries in a given row correspond to a
Markov chain with three states (copy number = 1, 2, or 3). The transition probabilities
for the Markov chain are derived from the instability-selection model. Element-wise
multiplication by the matrix S is used to simulate adjustments in observed copy num-
ber arising from normal tissue contamination of tumor samples. The degree of normal
contamination should be constant for a given sample, so each row of S is constant. It
follows that all columns of S are identical, and we simulate these entries by taking a
random sample of size n from a Uniform(.7, .9) distribution. The entries of the matrix
N are iid normal with mean 0 and variance .25. The variance is chosen to be .25 so that
random variation in the entries of N can occasionally result in one-unit copy number
changes in X.



Null Simulation Model Type I Error
Copy Number Data .0449
Segmented Copy Number Data .0408
Serially Correlated Normal .0414
Clumped Copy Number Data (25%) .0487
Clumped Copy Number Data (50%) .0494
Clumped Copy Number Data (75%) .0469
Clumped Copy Number Data (100%) .0420

Table 3.1: DiNAMIC’s Observed Type I Error for Different Copy Number Data Simulation
Procedures Under the Null Hypothesis

• Continuous segmented versions of X = 2+((G1−G2)∗S)+N , where the segmentation
was performed by DNAcopy.

• A variant of X = 2 + ((G1 − G2) ∗ S) + N in which the matrices G1 and G2 are
generated using a common set of unequally spaced markers. A fraction of the markers,
which ranges from 25% to 100%, are contained in one of eight equally spaced clumps of
size .025. The remaining markers are uniformly distributed on the remaining intervals
in (0, 1).

• 97× 3288 matrices X, where the entries of each row Xi· are serially correlated normal
random variables with mean 0 and variance 1. In order to make the data structure as
realistic as possible, the correlations of adjacent entries in Xi· are fixed to equal the
sample correlations between the corresponding columns of the Wilms’ tumor dataset of
Natrajan et al. (2006).

Table 3.1 gives the observed type I error under each of the above null simulation scenarios.
In each case the observed type I error was computed as follows.

1. Create a data matrix X l using the appropriate simulation scheme.

2. Compute p̂(T (X l)) using N = 1000 cyclic shifts of X l.

3. Determine whether T (X l) is significant at the α = .05 level.

Steps (1) - (3) are repeated 10,000 times, and the observed type I error is defined to be the
proportion of T (X l) that are significant at the α = .05 level. We consider the more extreme
of the maximum and minimum column sums, so T (X l) is significant if p̂(T (X l)) < .025.

The values of the observed type I error given in Table 3.1 suggest that DiNAMIC is
slightly conservative, which seems reasonable in light of the effect of the cyclic shift procedure
on the underlying correlation of the markers. Markers on either side of a breakpoint will
be essentially independent, and hence they are more likely to exhibit greater variability than
neighboring markers in the original data. As a result, the distribution of the maximum column
sum after cyclic shift should yield larger values than the corresponding distribution for the
original data, and similarly for the minimum column sums. Because the values in Table 3.1
are quite close to .05, any difference in the distributions appears to be very minor.
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Although we have considered realistic correlation structures so far, additional simulations
demonstrate that type I error can be inflated in situations where a sufficiently large fraction
of the markers are much more highly correlated than others. As an example, we simulate
50× 2001 matrices X in which the entries of each row Xi· of X are serially correlated normal
with mean 0 and variance 1. The correlations between the first 1000 pairs of neighboring
markers in Xi· is defined to be .9999, whereas the correlations between the second 1000 pairs
of markers in Xi· is set to 0. A total of 1000 data matrices are simulated, and an observed
type I error of .411 is found using the procedure described above. The likely cause of the
observed anticonservative behavior is that the empirical correlation structure of such datasets
does not mimic that of a stationary process. Based on our investigation of publicly available
datasets and our knowledge of marker spacing in arrays that yield DNA copy number data,
it appears to be highly unlikely that such extreme correlation structures will be found in real
datasets.

Power Simulations and Peeling Accuracy

Earlier we noted that type I error is preserved when we analyze a variety of null datasets
using DiNAMIC. Now we discuss power simulations based on datasets that are simulated
under the alternative hypothesis. Following the notation introduce earlier, we begin by simu-
lating 50×2000 matrices Y = 2+((G1−G2)∗S)+N . Initially we consider the case when one
of G1 and G2 is simulated under the alternative hypothesis ω > δ and the other is simulated
under the null hypothesis ω = δ. We then create X = Y + W , where W is the 50 × 2000
matrix containing probe bias that was defined in the section on Probe Bias in Chapter 2.
Finally, we apply DiNAMIC to Seg(X̃), where X̃ is the bias-corrected version of X.

DiNAMIC detects the most aberrant locus in a given dataset, even if multiple CNAs are
present. For this reason we believe that simulations based on a single alternative loci demon-
strate DiNAMIC’s power to detect CNAs. Simulating G1 under the alternative hypothesis
corresponds to the situation where we have a single gain locus, while simulating G2 under
the alternative means that we have a single loss locus. Power values are shown in Figure 3.1
when .10 ≤ ω ≤ .35. By symmetry, we expect to have equal power to detect gains and losses,
and this conclusion is supported by the power curves in Figure 3.1. Larger values of ω − δ
lead to greater power, as expected.

Next we present a variant of the above scenario in which both G1 and G2 are simulated
under the alternative hypothesis. Simulations with one gain and one loss locus use Y =
2+((G1−G2)∗S)+N , whereas simulations with two gain loci use Y = 2+((G1+G2)∗S)+N .
The preceeding discussion shows that DiNAMIC has equal power to detect gains and losses,
so simulations based on two loss loci should yield similar results to those obtained from two
gain loci. Thus we do not consider this scenario.

To find both alternative loci we must use DiNAMIC to find the first alternative locus,
peel it, then find the second alternative locus. Because of the randomness associated with the
instability-selection model, the two most significant markers need not occur exactly at the
alternative loci. However, the most significant marker should be close to the true location if
ω− δ is large. We choose ω = .35 and δ = .05. We are interested in whether peeling the most
significant marker affects the location of the next most significant marker, especially when
two different loci (representing gains and losses, respectively) are in the same region. This
situation is among the most challenging, as the presence of gain and loss loci in the same region
can “cancel” each other and appear as normal copy number. The presence of multiple loci
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Figure 3.1: Power Curves for DiNAMIC’s Cyclic Shift Procedure

of the same type (e.g. gain/gain) presents challenges as well, with an intermediate location
potentially appearing as the most significant.

Let p1 and p2 represent the locations of the first two peeled markers, and suppose t1 and t2
are the locations of the true alternative loci. We measure the accuracy of the peeled markers
by computing

SS = min{(p1 − t1)2 + (p2 − t2)2, (p1 − t2)2 + (p2 − t1)2}.

If t1 and t2 are sufficiently close, then peeling the most significant marker could affect the next
most significant marker. This would cause the accuracy of the second peeling to decrease,
and in turn lead to large values of SS. However, the effect of the first peeling on the second
should decrease as the distance between t1 and t2 increases. Thus SS should decrease as the
distance between t1 and t2 increases, and beyond a certain distance threshold we expect to
see only random variation in SS. In addition, peeling p1 should have more of an effect on the
location of p2 if both alternative loci are gains, but less of an effect if one alternative locus is
a gain while the other is a loss.

Various distances between t1 and t2 are considered, where distance is measured by the
number of markers between t1 and t2. SS is then computed for each simulated matrix Seg(X̃).
Because SS is sensitive to differences between pi and tj caused by the random nature of the
instability-selection model, we compute a trimmed mean of the SS values, denoted TMSS,
where we trim 20% of both the highest and lowest observations. Table 3.2 shows the TMSS
values for various spacings between the alternative loci. The results are as expected. For the
gain/loss scenario, once the markers are sufficiently far apart (greater than 100 markers in
the simulations), the TMSS drops dramatically as the true locations can be nearly discerned.
For the gain/gain scenario, the locations need to be at a greater distance (200 markers or
more) for detecting both loci, as the peeling procedure for one locus can effectively nullify the
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Distance TMSS for gain/loss TMSS for gain/gain
100 21144.5 98097.4
125 140.2 57980.5
150 156.9 50404.1
200 83.5 84.3
300 58.3 64.7
400 94.7 84.5

Table 3.2: Values of TMSS to Illustrate the Accuracy of DiNAMIC’s Peeling Procedure When
There Are Two Alternative Loci

resolution for the detecting the second locus (Table 3.2).
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Gain Marker DiNAMIC GISTIC
1q21 X
1q23 X
2p16 X
6p25 X X
6q24 X
7q21 X
7q34 X
8p23 X X
8q24 X
9q34 X X
11p15 X
12p13 X X
12q12 X
13q31 X
15q11 X
16p13 X
18q11 X
18q22 X
20p11 X

Loss Marker DiNAMIC GISTIC
1p31 X
1p21 X
3q13 X
4p15 X
4q31 X
4q32 X
5p15 X
5q11 X
9p21 X
10p15 X X
10q11 X
11p13 X X
11q22 X
11q23 X
13q21 X
14q21 X X
15q12 X X
16q23 X
16q24 X
17q12 X X
18q11 X
19p12 X
21q21 X X
22q12 X
22q13 X

Table 3.3: Markers in the Glioma Dataset of Natrajan et al. (2006) Discovered by DiNAMIC’s
Detailed Look and GISTIC

Application to Real Datasets

As we saw above, the dataset of Natrajan et al. (2006) contains a number of copy number
gain and loss loci that are potentially statistically significant. Using both DiNAMIC’s De-
tailed Look and GISTIC, we analyze a segmented version of this dataset that was obtained by
applying the bias correction scheme. Because no normal reference set is available, the thresh-
olds for amplification and deletion, which are required input parameters for GISTIC, are set
to the default values of ±.1. Table 3.3 shows all markers that are peeled by DiNAMIC with
a p-value less than .05, as well as all regions that are found by GISTIC to have q-values less
than .05. Under the null hypothesis the FWER and the FDR are identical, so when α = .05
it is not appropriate to use GISTIC’s default q-value threshold of .25. GISTIC automatically
analyzes gains and losses separately; for DiNAMIC we call a peeled marker a gain (loss) if its
column sum was maximal (minimal).

Natrajan et al. (2006) note that the most common copy number gains are found in 1q, 8,
and 12, with focal gains located at 1q22-25, 8p21-12, and 12p13. Both DiNAMIC and GISTIC
detect markers corresponding to these gains. In addition, both methods detect markers in
9q34, the site of the SET oncogene. An analysis of different Wilms’ tumor samples conducted
by Carlson et al. (1998) noted an overabundance of SET protein. Natrajan et al. (2006)
state that gains at 13q31 and 16p13 are associated with tumor relapse, and both gain loci are
found by DiNAMIC but not by GISTIC. DiNAMIC’s detection of 7q34 and 8q24 is noteworthy
because the oncogenes BRAF and c-Myc lie in these regions, respectively, neither of which
was detected by GISTIC.

Losses at 10p15 and 11p13 are found by Natrajan et al. (2006) in a number of subjects;
these are the sites of WT1 and WT2, genes known to be associated with Wilms’ tumor. Both
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loci are detected by DiNAMIC and GISTIC. The same authors conclude that loss of 21q22
is associated with tumor relapse; both methods detect the nearby locus 21q21. Although
the loss sites that the two methods detect on 1p, 11q, 16q, and 22q are not identical, the
differences appear to be minor. Using linkage analysis, Rahman et al. (1996) discovered
FWT1/WT4, a familial Wilms’ tumor gene located on 17q12. This site is also detected by
both methods. The gene PDCD6 is located on 5p15, a site that is found by DiNAMIC but not
GISTIC. Because PDCD6 is know to be associated with programmed cell death, detection of
this locus may have biological relevance.

GISTIC and DiNAMIC’s Detailed Look are also used to analyze the glioma dataset of
Kotliarov et al. (2006). As above, GISTIC’s amplification and deletion thresholds are set
to the default values of ±.1, because no normal reference set was available. In addition, the
equality of the FDR and the FWER under the null hypothesis implies that GISTIC’s q-value
threshold should be set equal to α = .05. With these settings, GISTIC finds 47 significant
gain regions and 20 significant loss regions. Using DiNAMIC, over 100 loci for gains and
losses are found to be significant at the α = .05 level.

Table A1 in the Appendix provides a list of all of the significant regions found by GISTIC,
as well as a list of the 100 most significant loci detected by DiNAMIC. Instead of providing a
complete discussion of these results, we highlight some of the similarities and differences. Of
the 67 significant regions detected by GISTIC, 53 lie in cytobands that are also detected by
DiNAMIC. Eight of the remaining 14 regions that GISTIC classifies as significant lie in peak
intervals around sites detected by DiNAMIC, so the overall differences in these locations is not
large. Kotliarov et al. (2006) provide lists of markers that exhibited homozygous deletions,
heterozygous deletions, or greater than 5-fold amplifications in at least 10% of all samples in
their Supplementary Tables S2 - S4. GISTIC detects no significant regions on chr1. However,
on chr1 DiNAMIC finds four significant sites that lie in cytobands for markers that also
appeared in Tables S2 - S4 of Kotliarov et al. (2006).
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Chapter 4

Bootstrap Methods for Analyzing Copy
Number Aberrations

In the section on Simulation Studies of Chapter 3 we noted that DiNAMIC can exhibit
inflated type I error under extreme marker correlation structures. Although the exact reason
for this phenomenon is not clear, the likely cause is the lack of stationarity in the correlation
structure. This motivates our interest in developing an alternate resampling scheme that
preserves the correlation structure of the markers.
The Centered Bootstrap Procedure

We briefly recall the notation from the Data Format and Definitions section of Chapter 1.
The numerical data is contained in an n×m matrix X. The ith row Xi· of X corresponds to
the data from the ith subject atm markers, and the jth columnX·j represents the copy number
values for the n subjects at marker j. The column sums S1, . . . , Sm of X form local summary
statistics for the copy number data at each marker, and markers that exhibit recurrent high
or low copy numbers will yield large or small column sums, respectively. The global summary
statistics T (X) = max(S1, . . . , Sm) and T (X) = min(S1, . . . , Sm) focus attention on the
markers that are the most likely sites of recurrent copy number aberrations.

DiNAMIC assesses the statistical significance of the observed value of T (X) under the null
hypothesis that no recurrent CNAs are present. An approximation to the null distribution of
T (X) is obtained by computing T (σ(X)) for a large number of independent cyclic shifts σ. We
now introduce a bootstrap approach for creating an approximation for the null distribution
of T (X). As is shown in Proposition 4.1, the bootstrap approach to resampling preserves the
underlying correlation structure of the data.

The following procedure is used to assess the statistical significance of the observed value
of T (X) = max(S1, . . . , Sm) in a matrix X whose expected column sum is zero.

1. Let d = (dj)mj=1, where dj = x·j is the mean of the entries in the jth column of X,

2. Let D be an n×m matrix with each row equal to d,

3. Define Y = X −D,

4. For b = 1, . . . , B, form the n×m matrix Y b,∗ by taking a random bootstrap sample of
the rows of Y ,

5. Compute T (Y 1,∗), . . . , T (Y B,∗),



6. p(T (X)) =
1
B

B∑
b=1

I(T (X) > T (Y b,∗)).

Reversing the inequality in (6) allows us to compute p(T (X)) for T (X) = min(S1, . . . , Sm).
The matrix Y is created in order to center the column sums of X at zero, and because

of this we refer to the method as the centered bootstrap procedure. Although it may seem
unusual at first, this approach is similar to what is done in other bootstrap hypothesis testing
scenarios. For example, when a bootstrap t-test is performed to determine if an observed

sample mean µ̂obs is different from zero, the significance of the observed statistic tobs =
µ̂obs

σ̂obs

is assessed using the empirical distribution of statistics tb =
µ̂obs − µ̂b

σ̂b
, where µ̂b and σ̂b are

obtained from the bth bootstrap sample of the data. The expected value of tb is zero, so the
resulting empirical distribution of the tb is appropriate for assessing the significance of tobs.

If the rows Xi· of X are iid with multivariate distribution F , then by combining the
results of Proposition 4.1 and Proposition 4.2 we see that the centered bootstrap procedure
preserves the underlying correlation structure of the column sums of X. In practice the data
matrix X is fixed, not random, but we expect the empirical correlations Corr(X·j , X·j′) and
Corr(Y b,∗

·j , Y b,∗
·j′ ) to be similar for any columns 1 ≤ j, j′ ≤ m.

Proposition 4.1. Let X be an n × m matrix whose rows Xi· are iid with mean µ =
(µ1, . . . ,mum), define d = (d1, . . . , dm) to be the vector of column means of X, and let
Y be an n × m matrix with rows Yi· = Xi· − d. Define Y ∗ to be an n × m matrix
whose rows are obtained by taking a random bootstrap sample of the rows of Y . Then

Cov
( n∑
i=1

Y ∗ij ,

n∑
i=1

Y ∗ij′
)

= (n− 1)Cov(Xij , Xij′) for 1 ≤ j, j′ ≤ m.

Proof. By definition,

Cov
( n∑
i=1

Y ∗ij ,

n∑
i=1

Y ∗ij′
)

= E
( n∑
i=1

Y ∗ij

n∑
i=1

Y ∗ij′
)
−E
( n∑
i=1

Y ∗ij

)
E
( n∑
i=1

Y ∗ij′
)
.

Now

E
( n∑
i=1

Y ∗ij

)
= E

(
E
( n∑
i=1

Y ∗ij |Y
))

=nE
(
E
(
Y ∗ij |Y

))
= nE

( 1
n

n∑
i=1

Yij

)
= E

( n∑
i=1

Yij

)
= 0,

and similarly E
( n∑
i=1

Y ∗ij′
)

= 0. Next note that
n∑
i=1

Y ∗ij

n∑
i=1

Y ∗ij′ =
n∑
i=1

Y ∗ijY
∗
ij′+

n∑
i=1
i 6=i′

n∑
i′=1

Y ∗ijY
∗
i′j′ .

Because Y ∗ij and Y ∗i′j′ are independent when i 6= i′, the above computations show that

E
( n∑
i=1
i 6=i′

n∑
i′=1

Y ∗ijY
∗
i′j′

)
= 0. Thus Cov

( n∑
i=1

Y ∗ij ,
n∑
i=1

Y ∗ij′
)

reduces to E
( n∑
i=1

Y ∗ijY
∗
ij′

)
. However this
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equals nE
(
E
(
Y ∗ijY

∗
ij′ |Y

))
= nE

( 1
n

n∑
i=1

YijYij′
)

, which equals E
( n∑
i=1

YijYij′
)

. By defini-

tion of the entries in Y , this in turn may be rewritten as nE
((
Xij − dj

)(
Xij′ − dj′

))
=

nE
[(
Xij −

1
n

n∑
i=1

Xij

)(
Xij′ −

1
n

n∑
i=1

Xij′

)]
. Because of the independence of elements in dis-

tinct rows, this simplifies to (n− 1)E(XijXij′)− (n− 1)µjµj′ = (n− 1)Cov(Xij , Xij′). �

In the following proposition we restrict our attention the entries in a single column of the
matrices X and Y from the centered bootstrap procedure.

Proposition 4.2. Let X = {X1, . . . , Xn} be iid with variance σ2, and define Y = {X1 −
X, . . . ,Xn −X} to be a centered version of X. If Y ∗ = {Y ∗1 , . . . , Y ∗n } is a random bootstrap

sample of Y , then Var
( n∑
i=1

Y ∗i

)
= (n− 1)σ2.

Proof. Write Var
( n∑
i=1

Y ∗i

)
= E

(
Var
( n∑
i=1

Y ∗i |Y
))

+ Var
(
E
( n∑
i=1

Y ∗i |Y
))

. Since E(Y ∗i |Y ) =

E
( 1
n

n∑
j=1

Yj

)
= 0 for all i, it follows that Var

(
E
( n∑
i=1

Y ∗i |Y
))

= 0. Therefore the independence

of the Y ∗i conditional on Y allows us to reduce Var
( n∑
i=1

Y ∗i

)
to

n∑
i=1

E
(

Var
(
Y ∗i |Y

))
. We view

Y as a population when taking bootstrap samples, so Var
(
Y ∗i |Y

)
= s2Y = s2X , the sample

variance of X. Since E(s2X) =
n− 1
n

σ2, the result follows. �

Simulation Studies

Here the centered bootstrap procedure is used to analyze copy number matrices simulated
under both the null and alternative hypotheses. The 50 × 2000 simulated matrices have the
form X = ((G1−G2)∗S)+N , where the notation is the same as in the section on Simulation
Studies in Chapter 3. We consider the null hypothesis ω = δ, and also the case when one of
G1 and G2 is simulated under the alternative hypothesis ω > δ and the other is simulated
under the null hypothesis ω = δ.

Simulating G1 under the alternative corresponds to the situation where we have a single
gain locus, while simulating G2 under the alternative means we have a single loss locus. Power
values are shown in Figure 4.1 when δ = .05 and .05 ≤ ω ≤ .3 for both the centered bootstrap
procedure (Boot in the figure) and cyclic shift (CS in the figure). For each value of ω we
compute p(T (X)) using the cyclic shift procedure with N = 1000 random cyclic shifts and
the centered bootstrap procedure with B = 1000 random bootstrap samples. The process is
repeated for 1000 matrices X, and the proportion of p-values significant at the α = .05 level is
recorded. Like cyclic shift, the centered bootstrap procedure has equal power to detect gains
and losses of the same magnitude. Moreover, larger values of ω − δ lead to greater power.
However, the centered bootstrap procedure is noticably less powerful than cyclic shift.

This decrease in power is also apparent when analyzing real datasets. For example, when
we use the centered bootstrap procedure to analyze the Wilms’ tumor dataset of Natrajan et
al. (2006), a total of 26 loci are significant at the α = .05 level based on B = 1000 random

23



●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30

0.
2

0.
4

0.
6

0.
8

Power Comparison for Cyclic Shift
and Centered Bootstrap

Omega

P
ow

er

●

●

●

●

●

●●

●

C.S. Gain
C.S. Loss
Boot Gain
Boot Loss

Figure 4.1: Power Curves for the Centered Bootstrap and Cyclic Shift Procedures

bootstrap samples. These loci are listed in Table 4.1, which appears at the end of this chapter.
On the other hand, the cyclic shift procedure identifies 32 significant loci at the α = .05 level
using N = 1000 random cyclic shifts.

The Quantile-Adjusted Bootstrap Procedure

The conservative behavior exhibited by the cented bootstrap procedure implies that the
values of T (Y b,∗) tend to be more extreme than those of T (X). By assumption the expected
column sums of X are zero, and the same is true for the expected column sums of Y b,∗.
Proposition 4.2 shows that we cannot attribute the conservative behavior to increased vari-
ance. However, our next result offers a possible explanation, because it shows that in certain
situtations the column sums of Y b,∗ can have larger kurtosis than the column sums of the
original data matrix.

Proposition 4.3. Let X, Y , and Y ∗ be as in Proposition 4.2. In addition, suppose the Xi ∈

X have kurtosis κ. If W =
n∑
i=1

Y ∗i , then the kurtosis of W is κ
[n2 − 3n+ 3
n2(n− 1)

+
3(n− 1)
n2σ4

]
+

6
n

.

Proof. By definition, the kurtosis of W is
E((W − µW )4)
E((W − µW )2)2

− 3. However, µW = E(W ) =

E(E(W |Y )), and E(W |Y ) =
n∑
i=1

E(Y ∗i |Y ) = nY = 0 by construction. Thus the kurtosis of

W reduces to
E(W 4)
E(W 2)2

− 3. For convenience, we examine the numerator and denominator

separately, starting with the denominator.

If we expand, we see that W 2 =
( n∑
i=1

Y ∗i

)2
=

n∑
i=1

(Y ∗i )2 +
n∑
i=1

n∑
j=1
j 6=i

Y ∗i Yj . Thus E(W 2|Y ) =
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n∑
i=1

E((Y ∗i )2|Y ) +
n∑
i=1

n∑
j=1
j 6=i

E(Y ∗i Y
∗
j |Y ). However, Y ∗i and Y ∗j are independent conditional on

Y , so E(Y ∗i Y
∗
j |Y ) = E(Y ∗i |Y )E(Y ∗j |Y ) = 0, as noted above. Thus E(W 2|Y ) =

n∑
i=1

E((Y ∗i )2|Y ) = nm2, where m2 =
1
n

n∑
i=1

(
Yi − Y

)2
. It follows that E(W 2) = nE(m2) =

(n− 1)σ2.
Now consider W 4. If we expand we get sums of terms like (Y ∗i )4, (Y ∗i )3Y ∗j ,

(Y ∗i )2(Y ∗j )2, (Y ∗i )2Y ∗j , Y
∗
k , and Y ∗i Y

∗
j Y
∗
k Y
∗
l . Because the Y ∗i and Y ∗j are independent con-

ditional on Y , all of E((Y ∗i )3Y ∗j |Y ), E((Y ∗i )2Y ∗j Y
∗
k |Y ), and E(Y ∗i Y

∗
j Y
∗
k Y
∗
l |Y ) are zero. Thus

the expectation of W 4 reduces to the sum of expectations of terms of the form (Y ∗i )4 and

(Y ∗i )2(Y ∗j )2. As above, E((Y ∗i )4|Y ) = m4, where m4 =
1
n

n∑
i=1

(
Yi − Y

)4
. In addition,

E((Y ∗i )2(Y ∗j )2|Y ) = E((Y ∗i )2|Y )E((Y ∗j )2|Y ) = m2
2. Now we need to compute the coeffi-

cients of (Y ∗i )4 and (Y ∗i )2(Y ∗j )2 in the expansion of W 4 and count the number of times the
various terms arise.

Since (Y ∗1 +· · ·+Y ∗n )4 =
∑

k1,...,kn

(
4

k1, . . . , kn

)
(Y ∗1 )k1 · · · (Y ∗n )kn , the coefficients of (Y ∗i )4 and

(Y ∗i )2(Y ∗j )2 can be found by computing the appropriate multinomial coefficient. For example,

the multinomial coefficient of (Y ∗1 )4 is
(

4
4, 0, . . . , 0

)
= 1, and similarly for any other (Y ∗i )4.

On the other hand, the coefficient of (Y ∗1 )2(Y ∗2 )2 is
(

4
2, 2, 0, . . . , 0

)
= 6, and similarly for the

other (Y ∗i )2(Y ∗j )2.
Next we count the number of times the terms arise. The number of terms of the form (Y ∗i )4

can be found by computing the number of ways to partition 4 into non-negative summands

k1, . . . , kn, one of which is 4. There are
(
n

1

)
= n ways to choose the non-zero term 4, and

the remaining n− 1 terms are automatically zero. Similarly, there are
(
n

2

)
=
n(n− 1)

2
ways

to partition 4 into non-negative summands k1, . . . , kn, two of which equal 2.
Combining the above results we see that the kurtosis of W is κ(W ) =

E(W 4)
E(W 2)2

− 3 =
nE(m4) + 3(n)(n− 1)E(m2

2)
(n− 1)2σ4

− 3. Joanes and Gill (1998) note that E(m4) =

(n− 1)(n2 − 3n+ 3)
n3

µ4 +
3(n− 1)(2n− 3)

n3
σ4 = q1(n)µ4 + q2(n)σ4, where µ4 is the fourth

central moment. Next we write E(m2
2) = V ar(m2) + E(m2)2. Since m2 =

n− 1
n

s2, it fol-

lows that V ar(m2) =
(n− 1

n

)2( 2σ4

n− 1
+
κ

n

)
. If we write q3 =

(n− 1)2

n2
, then κ(W ) may

be written as
n[q1(n)µ4 + q2(n)σ4] + 3(n)(n− 1)[V ar(m2) + q3(n)σ4]

(n− 1)2σ4
− 3. Simplifying this

expression gives the desired form. �

Assume the entries in X are normally distributed with mean 0 and variance σ2. The
column sums of X are normally distributed with mean 0, variance nσ2, and kurtosis equal
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to zero. However, Propositions 4.2 and 4.3 show that the column sums of Y b,∗ have mean 0,

variance (n−1)σ2, and kurtosis equal to
6
n

. The positive kurtosis implies that the distribution

of the column sums of Y b,∗ has more weight in the tails than the distribution of the column
sums of X. Therefore the values of T (Y b,∗) are more extreme than those of T (X), which may
explain the conservative behavior of the centered bootstrap procedure.

We now present a modified version of the centered bootstrap procedure that attempts to
adjust for the increased kurtosis found in the column sums of the bootstrap matrices. The
quantile-adjusted bootstrap procedure is based on a t-distribution with n+4 degrees of freedom,

which is known to have kurtosis equal to
6
n

. In practice, other symmetric distributions
with mean 0 and the correct kurtosis could be chosen. Although we have not investigated
this problem to date, study of the higher moments of the column sums before and after
bootstrap resampling may yield additional insight into whether quantile adjustment based on
a t-distribution with n+ 4 degrees of freedom is optimal.

The following procedure assesses the statistical significance of the observed value of
T (X) = max(S1, . . . , Sm) in a matrix X whose expected column sum is zero.

1. Let c = (cj)mj=1, where cj = x·j is the mean of the entries in the jth column of X,

2. Let C be an n×m matrix with each row equal to c,

3. Define Y = X − C,

4. For b = 1, . . . , B, form the n×m matrix Y b,∗ by taking a random bootstrap sample of
the rows of Y ,

5. For each b ∈ 1, . . . , B do the following:

(a) Compute Sb,∗1 , . . . , Sb,∗m , the column sums of Y b,∗.

(b) Let σb be the standard deviation of Sb,∗1 , . . . , Sb,∗m .

(c) Let tb = (tb1, . . . , t
b
m), where tbi =

√
n+ 4

(n+ 4)− 2

( 1
σb

)
Sb,∗i . By construction the

entries in tb have variance
n+ 4

n+ 4− 2
, which is appropriate for t random variable

with n+ 4 degrees of fredom.

(d) Let zb = (zb1, . . . , z
b
m), where zi = Φ−1(Fn+4(ti)), where Fn+4 is the cumulative dis-

tribution function for a t distribution with n+ 4 degrees of freedom, and Φ is the
cumulative distribution function for a standard normal distribution. This quan-
tile adjustment is used to account for the increased kurtosis caused by bootstrap
resampling.

(e) Let z̃b = (z̃b1, . . . , z̃
b
m), where z̃i =

√
n

n− 1

(
σb

)
zi. The entries of z̃b should be

normally distributed with approximately the same variance as the column sums of
X.

6. p(T (X)) =
1
B

B∑
b=1

I(T (X) > max(z̃b)).
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Figure 4.2: Power Curves for the Centered Bootstrap, Quantile-Adjusted Bootstrap, and
Cyclic Shift Procedures

The simulations described in the discussion of the centered bootstrap procedure were
repeated using the quantile-adjusted bootstrap procedure. The centered bootstrap procedure
exhibited equal power to detect gains and losses under the alternative hypothesis, and by
construction the quantile-adjusted bootstrap should behave similarly. Thus we restrict our
attention to gains when simulating the alternative hypothesis. As we see from Figure 4.2,
the quantile-adjusted bootstrap procedure is conservative under the null hypothesis, but not
as conservative as the centered bootstrap procedure. Moreover, even though the quantile-
adjusted bootstrap procedure is less powerful than the cyclic shift procedure, the difference in
power decreases as omega increases. This suggests that if a CNA has a sufficiently large effect
size, it will be classified as statistically significant by both the quantile-adjusted bootstrap
and cyclic shift procedures.

We now apply the centered bootstrap and quantile-adjusted bootstrap procedures to the
Wilms’ tumor dataset of Natrajan et al. (2006). For the sake of comparison, we also include
the results produced by the cyclic shift procedure. As we see from Table 4.1, a total of 27 loci
were detected by the quantile-adjusted bootstrap procedure (Q.B.), which is one more than
the number found by the centered bootstrap procedure (C.B.), but five less than the number
detected by cyclic shift (C.S.). Thus when analyzing real datasets we obtain results similar
to those suggested by the power simulations.
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Gain C.S. C.B. Q.B.
1q23 X X X
2p16 X X X
6p25 X X X
6q24 X X X
7q34 X X X
8p23 X X X
8q24 X X X
9q34 X X X
12p13 X X X
12q12 X X X
13q31 X X X
15q11 X
16p13 X X X
18q11 X X
18q22 X
20p11 X X X

Loss C.S. C.B. Q.B.
1p31 X X X
3q13 X
4p15 X X X
4q31 X X X
5p15 X X X
5q11 X
10p15 X X X
10q11 X
11p13 X X X
11q22 X X X
14q21 X X X
15q12 X X X
16q24 X X X
17q12 X X X
21q21 X X X
22q13 X X X

Table 4.1: Locations of Significant Markers in the Glioma Dataset of Natrajan et al. (2006),
as Determined by the Cyclic Shift (C.S.), Centered Bootstrap (C.B.), and Quantile-Adjusted
Bootstrap (Q.B.) Procedures
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Chapter 5

Confidence Intervals for Aberrant Markers

By construction, the cyclic shift, centered bootstrap, and quantile-adjusted bootstrap
procedures identify and assess the statistical significance of recurrent CNAs. Although we
expect the most aberrant marker k in a given dataset to lie near a relevant gene, it is possible
that marker k does not lie inside a gene, or lies inside a gene that does not contribute to the
tumor phenotype. Thus we would like to have methods for identifying genomic regions around
aberrant markers that potentially harbor relevant genes. The peeling procedure identifies a
peak region around each aberrant marker, but there is nothing statistically meaningful about
the peak region. This motivates our interest in developing methods for finding confidence
intervals or sets around aberrant markers.

Conceptual motivation for the construction of confindence intervals in the context of
genetic aberrations can be found in the instability-selection model of Newton et al. (1998).
These authors assume the existence of a true tumor suppressor gene locus xs. Under the
instability-selection model, a cell is more likely to be found in tumor tissue if at least one
of its ancestors exhibited LOH at xs than if none of its ancestors exhibited LOH at xs. We
take an analogous approach for copy number aberrations. If ktrue is the locus of a gene that
contributes to the tumor phenotype, then a cell is more likely to be found in tumor tissue if at
least one of its ancestors had a copy number aberration at ktrue than if none of its ancestors
had a copy number aberration at ktrue. We assume that the initiating copy number aberration
at ktrue - gain or loss - corresponds to the function of the gene containing the marker ktrue -
oncogene or tumor suppressor, respectively.

It is unlikely that all tumor samples in a given dataset contain cells that are ancestors
of cells that had a CNA at the same locus ktrue. However, if a marker k is highly aberrant,
a subset of the samples may contain cells that are ancestors of cells that had a common
underlying CNA. Thus it is reasonable to view a confidence interval around an aberrant
marker k in the traditional setting as the estimate of an unknown parameter, which in this
case is the location of the common underlying CNA.

A number of researchers have investigated methods for computing confidence intervals
for quantitative trait loci (QTLs). Lander and Botstein (1989) proposed confidence intervals
based on a one unit change from the maximum LOD score, and this approach was refined by
Mangin et al. (1994) for QTLs with a small effect size. The bootstrap approach of Visscher
et al. (1996) for constructing confidence intervals around QTLs provides the basis for our
first approach.



A Bootstrap Method for Computing Confidence Intervals
As noted above, Visscher et al. (1996) present a bootstrap method for computing confi-

dence intervals for QTLs. Briefly, for a given n×m data matrix X of allelotypes and vector
y = (y1, . . . , yn)T of phenotypes, the authors create matrices Xb,∗ and vectors yb,∗ by taking
the same bootstrap sample of the rows of X and the entries of y. For b = 1, . . . , B, the
LOD scores for each dataset Xb,∗ and vector yb,∗ are computed, and the location zb of the
maximum LOD score is recorded. If c and d are the

α

2
and 1− α

2
quantiles of {zb}Bb=1, then

[c, d] is a confidence interval at level 1−α for the location of the true quantitative trait locus
for the original data X and y.

Although we are interested in computing confidence intervals for underlying CNAs, not
QTLs, the basic idea behind the method of Visscher et al. (1996) translates readily to our
situation. Let X be an n ×m matrix of copy number data, and assume the most aberrant
marker k corresponds to the maximum column sum. The bootstrap method for computing a
confidence interval [c, d] at level 1− α for ktrue, the true underlying copy number aberration,
proceeds as follows:

1. For b = 1, . . . , B form matrices Xb,∗ by taking bootstrap samples of the rows of X.

2. For each matrix Xb,∗, find kb, the location of the maximum column sum.

3. Let c and d be the
α

2
and 1− α

2
quantiles of {kb}Bb=1.

In (2) we choose kb to be the location of the minimum column sum if the most aberrant
marker k in X corresponds to the minimum column sum.

Simulation Results for the Bootstrap-Based Method
We consider 50× 2000 simulated copy number matrices X = Seg(Y ), where Y = ((G1−

G2) ∗ S) + N , as above. Let ω1 and ω2 be the rates of LOH at ktrue1 and ktrue2 in G1 and
G2, respectively. Thus ktrue1 and ktrue2 represent the locations of the true underlying copy
number aberrations in X if ω1, ω2 > δ. Because of symmetry, we restrict our attention to
the case where G1 is simulated under either the null hypothesis ω1 = δ or the alternative
hypothesis ω1 > δ, whereas G2 is always simulated under the null hypothesis ω2 = δ. Thus
ktrue1 = .15 is the only underlying copy number aberration.

In our simulations we compute the size of the confidence interval produced for each sim-
ulated matrix X, as well as the level of coverage, i.e. the proportion of confidence intervals
that contain the alternative locus ktrue1 = .15. In particular, we proceed as follows:

1. Use DNAcopy to create X = Seg(Y ), where Y = ((G1 − G2) ∗ S) + N is a matrix of
simulated copy number data.

2. Compute p(T (X)) using the cyclic shift procedure.

3. If p(T (X)) < .025, find the most aberrant marker k in X.

4. Use the bootstrap-based method to find the confidence interval at level 1−α containing
k.

5. Record the number of markers in each confidence interval, and determine if it contains
ktrue1 = .15.
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Figure 5.1: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Bootstrap Procedure for Segmented Copy Number Data Simulated with the
Instability-Selection Model

The plots in Figure 5.1 show the coverage and median confidence interval width for the
bootstrap method when α = .05 based on 1000 simulated segmented matrices X for each effect
size ω1 = .05, .15, .25, and .35. Although the coverage value are near the horizontal line at
y = .95 when ω1 ≥ .15, the confidence intervals are very large for all but the largest effect
size. Because of this, we wish to explore other methods for computing confidence intervals.
Test-Based Methods for Computing Confidence Intervals

In the instability-selection model the maximum likelihood estimate (MLE) x̂s of xs is the
location that exhibits the greatest frequency of LOH. Moreover, ω̂, the observed frequency of
LOH at x̂s, is the MLE of ω, the true rate of LOH at xs. Since ω̂ is a consistent estimator of
ω, the difference |ω̂ − ω| is small with high probability if the number of samples n is large.

These ideas provide the basis of our test-based approach for constructing confidence in-
tervals. We expect the observed mean copy number at the most aberrant marker k to be
close to the mean copy number at the true underlying locus ktrue, so the difference between
the mean copy number values at the two locations should be close to zero. Suppose the
most aberrant marker k corresponds to the maximum column sum, let x·k be the mean copy
number in column k, and write X·j for the jth column of the n ×m matrix X. Briefly, our
“narrow t” method for producing a confidence interval containing marker k at level 1 − α
uses t-tests to compare the mean of x·k1−X·j to zero, where 1 is a vector of 1’s. Starting at
j = k and then moving in either direction, markers j are added to the confidence interval if
the one-sided t-test is not significant at level α. We use one-sided t-tests because x·k is the
largest column mean. Clearly the confidence interval contains k, and the process continues
in either direction until the first time a significant p-value is encountered. More specifically,
the narrow t method uses the following steps to find the markers contained in the confidence
interval:

1. If k = m, then proceed to step (4); otherwise, let jright = k + 1.

2. Define pjright
to be the p-value associated with a one-sided t-test to determine if the
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mean of x·k1−X·jright
is not equal to zero, where 1 is a vector with all entries equal to

1.

3. If pjright
≥ α and jright < m, define jright = jright +1 and return to step (2); if pjright

< α,
then define jright = jright − 1 and proceed to step (4); if jright = m and pjright

≥ α,
proceed to step (4).

4. If k = 1, then proceed to step (7); otherwise, let jleft = k − 1.

5. Define pjleft to be the p-value associated with a one-sided t-test to determine if the mean
of x·k1−X·jleft is not equal to zero.

6. If pjleft ≥ α and jleft > 1, define jleft = jleft − 1 and return to step (5); if pjleft < α, then
define jleft = jleft + 1 and proceed to step (7); if jleft = 1 and pjleft ≥ α, proceed to step
(7).

7. The 1− α level confidence interval around marker k is [jleft, jright].

We now describe two variations of the above method. The first is to create a confidence
set J consisting of all markers j in the same chromosome arm as k such that pj ≥ α, where
pj is the p-value associated with a one-sided t-test to determine if the mean of x·k1−X·j is
different from zero. The construction of J is called the “set t” approach. If both the narrow
t and the set t procedures are applied at the same marker k, it is clear that the confidence
interval [jleft, jright] produced by narrow t will be contained in the corresponding confidence
set J produced by set t. Although J = [jleft, jright] in some situations, J could consist of
multiple disjoint intervals, one of which is [jleft, jright]. Our second variation is the “wide t”
method, which is simply to take the left-most and right-most markers in the interval J found
by the set t method. Wide t produces a contiguous interval [a, b] that contains all intervals in
J , including [jleft, jright]. Even though narrow t and wide t produce contiguous intervals, we
use the term confidence sets to refer to the confidence intervals or confidence sets produced
by the three procedures.

Simulation Results for the Test-Based Methods

Here we consider two methods for simulating 50× 2000 segmented copy number matrices
X. The first creates the matrices Y = ((G1−G2)∗S)+N using the instability-selection model,
and then uses DNAcopy to produce X = Seg(Y ). The second method produces X = Seg(Y ),
where Y = Y 1−Y 2, and the rows of each of Y 1 and Y 2 are generated independently using a
multivariate normal model with a common autoregressive correlation structure. Specifically,
the entries of the ktrue1 column of Y 1 are a1 + εi1, where a1 ≥ 0 and the εi1 are iid N(0, .25);
similarly, the entries of the ktrue2 column of Y 2 are a2 + εi2, where a2 = 0 and the εi2 are iid
N(0, .25). Here we choose ktrue1 = 300 and ktrue2 = 1200, which corresponds to true locations
.15 and .6 when we have 2000 equally spaced markers on a chromosome of length 1. Once
the ktrue1 entry of a row of Y 1 is simulated, the remaining entries in the row are simulated
using an AR(1) model with correlation ρ = .9, and similarly for Y 2. Setting a1 equal to 0
corresponds to the null hypothesis that there are no recurrent copy number aberrations. On
the other hand, a1 > 0 represents the alternative hypothesis with a single gain locus.

Our simulation scheme for computing confidence intervals is identical to the procedure
described above for the bootstrap method, only now in step (4) we use narrow t, set t, and
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Figure 5.2: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Test-Based Procedures for Segmented Copy Number Data Simulated with the
Instability-Selection Model

wide t. Figures 5.2 and 5.3 show the coverage and median size of the confidence sets produced
by the three procedures when α = .05 based on 1000 simulated matrices X = Seg(Y ). Both
methods of simulating copy number matrices Y are considered. The horizontal lines in the
left-hand plots of Figures 5.2 and 5.3 are located at 1 − α, and clearly the coverage for all
three methods exceeds 1 − α when the effect size ω1 or a1 is sufficiently large. In spite of
this, as we see from the right-hand plots of Figures 5.2 and 5.3, the sizes of the confidence
intervals produced by narrow t are consistently small over a range of effect sizes. This stands
in marked contrast to the simulation results from the bootstrap-based method.

The fact that the narrow t method provides overcoverage merits some discussion. Assume
the use of t-tests is appropriate in a matrix X, and suppose the true mean copy number at
ktrue, call it µ, is known. Also assume that µ is larger than µj , the mean copy number at any
marker j 6= ktrue. If we perform t-tests of H0 : µ−x·j = 0 vs. Ha : µ−x·j > 0 at level α, where
x·j is the mean of the entries in the jth column of X, then by inverting the test we should
obtain confidence sets that provide coverage at level 1 − α. Moreover, these confidence sets
are identical to the ones produced by the set t procedure. Because the confidence interval
produced by narrow t at a given marker is contained in the corresponding confidence set
produced by set t, the narrow t method should undercover if these assumptions are true.

If k is the marker corresponding to the maximum column sum, then the columns X·k and
X·ktrue are correlated, and the correlation is potentially very high, because we are analyzing
segmented matrices. For example, in one simulated matrix the average value of the observed
correlation between neighboring columns was .48, whereas in the segmented version of the
same matrix it was .98. This high level of correlation may explain why the use of t-tests
provides overcoverage, because the resulting t statistics exhibit less variation than they would
if the use of t-tests was appropriate. In an effort to explore this idea we repeat the coverage
simulations for 50 × 2000 matrices X = ((G1 − G2) ∗ S) + N , but now we compute the
confidence intervals around the most aberrant marker in X, not Seg(X).

The plots in Figure 5.4 show the coverage and median widths when we use the test-based
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Figure 5.3: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Test-Based Procedures for Segmented Copy Number Data Simulated with an
AR(1) Model

methods to compute confidence intervals in unsegmented matrices X. Unlike the previous
simulations, the level of coverage provided by the set t method is approximately correct.
However, because the confidence intervals produced by narrow t are contained in the confi-
dence sets produced by set t, the narrow t procedure now provides undercoverage. Although
these results do not prove anything, they suggest that correlation in the data, particularly
the correlation induced by segmentation, may explain why the test-based methods produce
overcoverage. It follows that the tn−1 distribution may not be appropriate for assessing the
significance of the test statistics that arise when applying the test-based methods. We now
present a method for computing confidence intervals that attempts to account for the corre-
lation present in the data.
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Figure 5.4: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Test-Based Procedures for Unsegmented Copy Number Data Simulated with
the Instability-Selection Model

Bootstrap Test-Based Methods for Computing Confidence Intervals

As noted above, because of the high degree of correlation among the columns of segmented
matrices, it may not be appropriate to use standard t-tests in the test-based methods for
computing confidence intervals around aberrant markers. Instead of attempting to find the
correct parametric distribution, we will use bootstrapping to approximate the distribution
of the t-statistics that arise when comparing the mean of x·k1 −X·j to zero. By taking the
appropriate quantile of these t-statistics, we obtain a threshold τ for the test statistics that
is not based on a particular distribution.

We now provide a description of the procedure used to compute the threshold τ in the
bootstrap version of the narrow t. Bootstrap versions of the set t and wide t procedures are
easily defined once τ is known. Let X be a data matrix, and suppose the most aberrant
marker k comes from the maximum column sum of X.

1. Create matrices Xb,∗ for b = 1, . . . , B by taking boostrap samples of the rows of X.

2. Let kb be the maximum column sum of Xb,∗.

3. Compute tb, the t-statistic associated with testing whether the mean of xb,∗·kb
1 − Xb,∗

·k
equals zero.

4. Let τ be the 1− α quantile of the {tb}.

In Figure 5.5 we see empirical CDFs of the bootstrap t statistics based on 250 simulated
50× 2000 matrices X = Seg(Y ), where Y = ((G1−G2) ∗S) +N . For the sake of comparison
we include the CDF for the standard t49 distribution in each plot, as well as a horizontal line
at y = .95. We see that the empirical CDF changes depending on the effect size, and as a
result the bootstrap test threshold τ can be very different from the corresponding threshold
for a t49 distribution.
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Figure 5.5: Comparison of CDFs of Standard t-Statistics and Empirical t-Statistics Produced
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Figure 5.6: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Bootstrap Test-Based Procedures for Segmented Copy Number Data Simulated
with the Instability-Selection Model

Simulation Results for the Bootstrap Test-Based Methods

We now examine the coverage and size of the confidence sets produced by the bootstrap
test-based procedures. We use the instability-selection and autoregressive models to simulate
our copy number matrices Y , as above, and then use our new methods to find confidence
intervals in X = Seg(Y ). Figure 5.6 and 5.7 show the coverage and median size of the level
1 − α confidence sets produced by the empirical bootstrap versions of the narrow t and set
t procedures when α = .05. For the sake of comparison, we also show the values produced
by the narrow t and set t methods when ordinary t-tests are performed, and we use the
terminology narrow t nominal and set t nominal when discussing these methods. The values
for the wide t versions of both methods are not included, because the confidence intervals
they produce are excessively large.

The empirical bootstrap version of set t provides coverage close to 1− α, especially when
the copy number matrices X are simulated using the instability-selection model, and this is
appealing. However, the fact that the median width of the confidence sets for the empirical
bootstrap version of set t is consistently larger than the median width of the confidence
intervals for the empirical bootstrap version of narrow t suggests that the confidence sets
produced by set t regularly consist of multiple disjoint intervals. As noted above, only one of
these disjoint intervals contains k, the most aberrant marker. On the other hand, narrow t
nominal produces a single interval that always contains k, and this method provides excellent
coverage when analyzing segmented matrices. It seems unlikely that researchers using our
methods will search for relevant genes in intervals that do not contain the most aberrant
marker, so we recommend using the narrow t nominal method, because it produces small
confidence intervals that have excellent coverage.

Confidence Intervals in Real Datasets

Although our analysis of confidence sets found in simulated datasets has been informative,
we also wish to compute confidence intervals around aberrant markers in real datasets. We
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Figure 5.7: Plots Illustrating the Coverage and Median Width of Confidence Intervals Pro-
duced by the Bootstrap Test-Based Procedures for Segmented Copy Number Data Simulated
with the AR(1) Model

begin by finding the confidence intervals produced by narrow t nominal for the 10 most
aberrant markers in the Wilms’ tumor dataset of Natrajan et al. (2006). The locations and
sizes of the first 10 confidence intervals are presented in Table 5.1, and as we see the sizes vary
considerably. Figure 5.8 shows a plot of the column sums for the Wilms’ tumor data, and
the markers corresponding to the confidence intervals from Table 5.1 are plotted in red. Not
surprisingly, the widths of the confidence intervals appear to be correlated with the breadth
of the peaks and valleys in the plot of the column sums.

For the sake of comparison, we also examine the confidence intervals produced by narrow
t nominal for the 10 most aberrant markers in the glioma dataset of Kotliarov et al. (2006).
These confidence intervals are presented in Table 5.2, and one notable difference between these
confidence intervals and the ones from the Wilms’ tumor dataset is the number of confidence
intervals that contain a small number of markers. Here eight of the ten confidence intervals
consist of fewer than 10 markers, and none contain more than 30 markers. In contrast, some
of the confidence intervals in the Wilms’ tumor dataset are considerably larger. Figure 5.9
shows a plot of the column sums of the glioma dataset, and again the markers in the various
confidence intervals are plotted in red. Unlike Figure 5.8 above, Figure 5.9 contains no broad
peaks or valleys. Thus the aberrations in the glioma dataset appear to be more focal than
those in the Wilms’ tumor dataset.

In an effort to gain further insight into the differences in the sizes of the confidence intervals
found in the Wilms’ tumor and glioma datasets, we apply nominal t narrow to the glioblastoma
dataset of Veerhaak et al. (2010) and a subset of the lung adenocarcinoma dataset of Weir
et al. (2007). The glioblastoma copy number data was computed using Agilent 244K CGH
arrays, whereas Affymetrix 250K Sty arrays were used to produce the lung adenocarcinoma
copy number values. Both platforms have approximately 230,000 markers, so unlike the
previous two examples, we now have similar marker density. Tables 5.3 and 5.4 list the 10
most aberrant markers for each of the two datasets, along with the lengths of the confidence
intervals produced by nominal t narrow. 82 of the 178 samples in the glioma dataset of
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Chromosome Start (bp) End (bp) Length (bp) # Markers
1 142890039 204133558 61243519 107
12 34318876 38270107 3951231 3
8 1790659 7582067 5791408 7
17 31504138 31981051 476913 3
12 28640 34318876 34290236 62
11 26552615 36307918 9755303 17
11 77441058 133753868 56312810 65
7 142791137 142888442 97305 2
1 54039750 113215387 59175637 92
8 48787057 144572963 95785906 91

Table 5.1: Confidence Intervals Produced by Narrow t Nominal for the 10 Most Aberrant
Markers in the Wilms’ Tumor Dataset of Natrajan et al. (2006)
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Figure 5.8: Plot of Column Sums for the Wilms’ Tumor Data of Natrajan et al. (2006) with
Confidence Intervals from Table 7 (Red)
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Figure 5.9: Plot of Column Sums for the Glioma Data of Kotliarov et al. (2006) with
Confidence Intervals from Table 8 (Red)
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Chromosome Start (bp) End (bp) Length (bp) # Markers
7 54769208 55245458 476250 28
6 32837799 32847290 9491 3
18 67523710 67524503 793 3
10 67452445 67453443 998 7
9 21762317 22268100 505783 23
8 21079131 21084492 5361 4
1 213286968 213287293 325 4
5 147771053 147771548 495 2
1 235706544 235707543 999 2
12 165786 546804 381018 9

Table 5.2: Confidence Intervals Produced by Narrow t Nominal for the 10 Most Aberrant
Markers in the Glioma Dataset of Kotliarov et al. (2006)

Chromosome Start (bp) End (bp) Length (bp) # Markers
7 54816762 55271892 455130 34
9 21899332 22076798 177466 23
6 32586131 32595402 9271 2
8 39363050 39499752 136702 18
14 105594189 105609466 15277 3
11 5738494 5756408 17914 4
7 141687978 141705163 17185 2
12 9452803 9528590 75787 2
10 89478842 89701960 223118 25
20 1506379 1516966 10587 2

Table 5.3: Confidence Intervals Produced by Narrow t Nominal for the 10 Most Aberrant
Markers in the Glioblastoma Data of Veerhaak et al. (2010)

Kotliarov et al. (2006) were glioblastoma, which may explain some of the similarities in the
sizes of the confidence intervals in the glioblastoma and glioma datasets. In contrast, the lung
adenocarcinoma dataset yields a number of large confidence intervals. These results suggest
that the differences in the sizes of the confidence interval in the Wilms’ tumor and glioma
datasets are not solely attributable to differences in array density. Instead, the nature of the
underlying aberrations - broad or focal - may also play a significant role.
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Chromosome Start (bp) End (bp) Length (bp) # Markers
5 165712 2193755 2028043 179
8 143949216 146264218 2315002 88
7 1887594 3259036 1371442 149
1 151683544 155570779 3887235 302
20 59800328 62374173 2573845 193
18 62060664 62060963 299 3
19 37779881 41450737 3670856 308
17 69642107 78605474 8963367 686
12 109880996 109884154 3158 2
7 154565104 154576232 11128 2

Table 5.4: Confidence Intervals Produced by Narrow t Nominal for the 10 Most Aberrant
Markers in the Lung Adenocarcinoma Dataset of Weir et al. (2007)
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Chapter 6

Identifying Subjects that Contribute to
Aberrant Markers

Analysis of gene expression data shows that even within the same tumor type, subjects
with distinct tumor subtypes may have different expression profiles. For example, Verhaak
et al. (2010) use concensus clustering of gene expression data obtained from 202 subjects to
identify four distinct subtypes of glioblastoma. These authors also show that different types of
copy number aberrations are found in the subtypes. Therefore it is reasonable to expect that
different subjects in a given dataset can have distinct copy number profiles. This motivates
our interest in determining which subjects “contribute” to a given CNA.

Suppose the most aberrant marker k corresponds to the maximum column sum. Although
it is likely that a number of subjects will have high copy number values at marker k, some
subjects may have normal or even low copy number. One simple approach for identifying the
subjects that have high copy number is to rank the entries in the kth column of the data matrix
X. However, because we typically analyze segmented matrices, we do not expect a subject’s
copy number values to produce a peak that consists of a single marker. Thus it is preferable
to rank the mean copy number for each subject over a common interval J . We average over
a common interval, as opposed to subject-specific intervals, because this does not allow the
shape of any one subject’s copy number profile to confer an advantage or disadvantage when
the mean copy numbers are ranked. Analysis of subject-specific intervals may be a subject of
future research.

Now we examine the common interval J . Large intervals include more markers, and hence
more information, but they may lead to a dilution of the effect of the aberrant marker k. Focal
aberrations should be more prone to dilution caused by overly large intervals, but the effect
on broad aberrations is likely to be minimal. Since we are trying to determine which subjects
contribute to the CNA at marker k, we want the effect of marker k on the mean copy number
over J , if present for a given subject, to be large. Thus we prefer to make the interval J
narrow.

One way to find J is to use the nominal t narrow procedure introduced in Chapter 5 to
produce a confidence interval at level 1 − α. In the simulations below we use α = .05. The
peeling procedure provides an alternate method for defining J . Let [ai, bi] be the intervals
defined by the peeling procedure in an n × m copy number matrix, where i ∈ I and I ⊆
{1, . . . , n}. If 0 < s ≤ 100, the s% threshold interval J is defined to be the set of all markers
j that are contained in at least s% of the intervals [ai, bi].



Although ranking average copy number values is conceptually simple, it has some limi-
tations. For example, suppose two subjects have the same mean copy number value on an
interval J containing the aberrant marker k. In addition, assume that the first subject has
multiple CNAs throughout the genome, whereas the second subject has a single CNA, namely
at k. If we rank the mean copy numbers, we cannot distinguish between these two subjects.
However, since the first subject has multiple CNAs, we may wish to assess its contribution
to the aberration at marker k relative to its contribution to other aberrations. Thus we now
present an alternative to ranking average copy numbers.

Suppose J is an interval containing marker k, the location of the maximum column sum,
and let |J | be the genomic length of J in base pairs. For any subject i we can compute the
empirical p-value of xiJ , the mean copy number for subject i over the interval J , by comparing
xiJ to the mean copy number for subject i over all intervals of length |J |. We then rank the
subjects according to their p-values.
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Alternative True Null True
Called Alternative l11 l12 l1·

Called Null l21 l22 l2·
l·1 l·2 l

Table 6.1: Possible Outcomes for a Binary Classifier

Simulation Results

We wish to determine how well the two ranking approaches identify subjects that con-
tribute to a given aberrant marker. As above, we will consider 50×2000 copy number matrices
X whose entries are simulated using either the instability-selection model or an AR(1) model
under both the null and alternative hypothesis. Unlike our earlier simulations, however, the
rows of X will no longer be iid. Instead, a random subset of rows of size n1 < 50 will be
simulated under the alternative hypothesis that a CNA is present at a fixed locus ktrue with
a given effect size. Here we restrict our attention to copy number gains, so we have either
ω1 > δ or a1 > 0 when the copy number values are simulated using the instability-selection
model or the AR(1) model, respectively. The remaining rows of X will be simulated under
the null hypothesis.

Suppose that the methods for defining J and ranking the subjects are fixed. For 1 ≤ r ≤ n,
let R ⊆ {1, . . . , n} denote the set of the r most highly ranked subjects. Since we know which
n1 rows are simulated under the alternative hypothesis, we can assess the degree to which R
reflects the truth. We then record the results of such a binary classifier in a 2× 2 table such
as Table 6.1.

Our simulated data matrices have 50 rows, and n1 of them are simulated under the
alternative hypothesis. Therefore in Table 6.1 we have l = 50, l·1 = n1, and l·2 = 50 − n1.

By definition, the true positive rate is TPR =
l11

l·1
, and the false positive rate is FPR =

l12

l·2
.

Receiver operating characteristic (ROC) curves are used to assess the accuracy with which
R captures the true alternative rows for each value of r in 1, . . . , n. We now describe our
simulation scheme in detail:

1. Create a 50× 2000 copy number matrix Y in which n1 < 50 of the rows are simulated
under the alternative hypothesis that a CNA is present at locus ktrue, and the remaining
50−n1 rows are simulated under the null hypothesis that no CNA is present. We consider
n1 = 10, 20, 30, and 40.

2. Compute X = Seg(Y ), then use the cyclic shift procedure to find p(T (X)).

3. If p(T (X)) is significant at the α = .05 level, use either narrow t nominal or the s%
threshold procedure to define an interval J around k, the marker corresponding to the
maximum column sum. Here we consider s = 90, but in later simulations we use smaller
values of s.

4. Rank the subjects i = 1, . . . , n according to either (i) their mean copy numbers xiJ , or
(ii) their empirical p-values p(xiJ).

5. For r = 1, . . . , 50 find the r most highly ranked subjects based on each choice of J and
each ranking scheme. Then compute the TPR and FPR for that value of r.
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Figure 6.1: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with an AR(1) Model Under the Null Hypothesis

Plotting the TPR and FPR for r = 1, . . . , 50 gives an ROC curve for a single matrix. The
figures below display ROC curves that are averaged over 250 simulated matrices X = Seg(Y ).
Figure 6.1 shows the ROC curves when we use an AR(1) model to simulate the copy number
values, and the effect size a1 in the n1 rows is zero. Here all rows are iid and simulated under
the null hypothesis. Because there are no true differences in the rows, we do not expect any
of the classification methods to perform better than if they selected rows at random. Thus
the ROC curves should follow the y = x line, which they do.

We now examine the performance of the classification methods when the effect size is not
zero. Figure 6.2 shows ROC curves for the four methods when we use the AR(1) model to
generate the copy number values, and the effect size is a1 = .6. We measure the effectiveness
of a classification method by the area under its ROC curve. It follows that ranking mean copy
number values over the interval J defined by narrow t nominal (narrow c.n. in the figure)
slightly underperforms the other three methods, which are essentially equivalent to each other.
However, the difference between this method and the other three decreases as the number of
alternative rows increases.
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Figure 6.2: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with an AR(1) Model Under the Alternative Hypothesis
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Figure 6.3: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with the Instability-Selection Model Under the Alternative Hypothesis

Figure 6.3 shows ROC curves when the copy number values are simulated using the
instability-selection model, and the effect size is ω1 = .5. Here we see that the methods based
on the use of average copy number over J (thresh c.n. and narrow c.n.) yield better results
than the methods based on empirical p-values (thresh p-val and narrow p-val). Moreover, if
we restrict our attention to the use of average copy number, the s% threshold method for
defining J is preferable to nominal t narrow. When we use empirical p-values to classify
subjects, both methods of defining J yield similar performance.

It is natural to wonder if the performance of classification schemes based on the s%
threshold method for defining J is sensitive to the threshold s. Thus we repeat the simulations
described above using s = 75 instead of s = 90. As s decreases, the size of J increases. Thus we
do not expect to see improved results when we use smaller values of s, because the simulated
matrices contain focal CNAs. If we compare Figure 6.4 to Figure 6.2 we see that the black
curve is lower in Figure 6.4, whereas all others are similar to the corresponding curves in
Figure 6.2.

Now we consider the s% threshold method for defining J with s = 75 and matrix entries
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Figure 6.4: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with an AR(1) Model Under the Alternative Hypothesis and Threshold s = 75
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Figure 6.5: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with the Instability-Selection Model Under the Alternative Hypothesis and Threshold
s = 75

simulated according to the instability-selection model. If we compare Figure 6.5 with Figure
6.3, we see that the black curve is now lower, but all others are essentially unchanged. These
results, combined with the ones in Figure 6.4, suggest that using the mean copy number over
J to classify subjects is sensitive to the size of J , whereas the method based on empirical
p-values is not.

We conclude this chapter by investigating the degree to which the classification schemes
are affected by the underlying level of genomic instability. In the instability-selection model,
the parameter δ represents the background probability of LOH. Since we consider copy number
matrices Y = ((G1 −G2) ∗ S) + N in which G1 and G2 are simulated using the instability-
selection model with the same parameters λ and δ, the number and size of random CNAs, and
hence the level of underlying genomic instability, increase with δ. The segmented matrices
X = Seg(Y ) should reflect the level of genomic instability present in Y . Because we only
consider datasets simulated with this single model, the scope of our conclusions must be
viewed accordingly. However, they provide a basis for future work.
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The curves in Figure 6.3 were created using δ = .05. In the following simulations we
consider three other possiblities: (1) δ = .01, (2) δ varies randomly across subjects according
to a Unif(.01, .1) distribution, and (3) δ = .15. The ROC curves based on these simulations
are shown in Figures 6.6, 6.7, and 6.8, respectively, which appear on the following pages.

Comparing Figures 6.3, 6.6, 6.7, and 6.8, we observe decreasing performance among the
methods that rank according to mean copy number as the level of genomic instability rises.
To see why this might be the case, suppose the level of genomic instability is low. We have
xiJ , the average copy number for row i over the interval J , for 1 ≤ i ≤ 50. If row i is simulated
under the null hypothesis, then it is unlikely that the rank of xiJ will be high, because the
low level of variability in the copy number values implies that xiJ should be close to x··, the
grand mean of X. Next consider the rows simulated under the alternative hypothesis, and let
ω̂1 denote the proportion of the n1 alternative rows that contain an observed CNA at ktrue.
If i is one of the ω̂1n1 rows that contain an observed CNA at ktrue, then xiJ should be much
larger than x··, and hence highly ranked. Thus when we choose the r most highly ranked
subjects based on their mean copy number over J , and r ≤ ω̂1n1, we expect to accurately
identify subjects that are truly alternative. This level of accuracy should decrease once r
becomes sufficiently large, which may explain why the black and red ROC curves in Figure
6.6 change markedly once they reach a certain height.

Now assume the level of genomic instability is high. The increased genomic instability will
lead to greater variability of the values xiJ , regardless of whether row i is simulated under the
null or alternative hypothesis. This in turn increases the probability that xiJ is highly ranked
when row i is simulated under the null hypothesis. As a result, we expect the performance
of a classification method based on ranking the xiJ to decrease when the level of genomic
instability increases.

Next we turn our attention to the methods that rank subjects according to the empirical
p-values p(xiJ). First assume the level of genomic instability is low. If i is one of the ω̂1n1

rows simulated under the alternative hypothesis that contain an observed CNA at ktrue, then
xiJ should be large in comparison to the mean copy number over other intervals of length |J |
in row i. It follows that p(xiJ) is small for these i. However, if row i is simulated under the
null hypothesis, p(xiJ) could be small by chance, even if xiJ is close to x··. Thus classifying
subjects according to the ranks of their empirical p-values is potentially more problematic
than classifying them according to the ranks of the xiJ when we have low levels of genomic
instability.

Again assume the level of genomic instability is high. In the instability-selection model,
p11 = 1 − (1 − δ)(1 − e−λd) is the transition probability for two consecutive 1’s when the
markers are separated by distance d. Thus as δ increases, so does p11, and hence the expected
length of strings of consecutive 1’s also increases. Here we are considering X = Seg(Y ), where
Y = ((G1 − G2) ∗ S) + N . The entries of both X and Y have expected value 0. It follows
that 1’s in G1 or G2 produce CNAs in Y and X = Seg(Y ). Thus the expected size of a CNA
increases with δ. Under the alternative hypothesis ω1 > δ, CNAs at ktrue will likely be gains.
Thus increases in δ lead to larger values of xiJ and smaller values of p(xiJ). Although null
rows can still yield small values of p(xiJ) by chance, these are no more likely now than they
were when the level of genomic instability was low. Hence the performance of a classification
method based on ranking p(xiJ) should increase with the level of genomic instability.

Based on our simulations, no single method of identifying subjects is clearly superior to the
others. Moreover, the performance of the methods can vary depending on the method used to
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Figure 6.6: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with the Instability-Selection Model Under the Alternative Hypothesis and δ = .01
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Figure 6.7: ROC Curves Comparing the Classification Methods for Copy Number Data
Simulated with the Instability-Selection Model Under the Alternative Hypothesis and δ ∼
Unif(.01, .1)
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Figure 6.8: ROC Curves Comparing the Classification Methods for Copy Number Data Sim-
ulated with the Instability-Selection Model Under the Alternative Hypothesis and δ = .15
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simulate the copy number data, the size of the common interval J , and the underlying level of
genomic instability. However, our results suggest that (1) small intervals yield better overall
performace than large intervals, (2) ranking subjects according to their mean copy number xiJ
is preferable when the level of genomic instability is low, and (3) ranking subjects according
to their empirical p-values p(xiJ) becomes increasingly appealing as the level of genomic
instability rises. Future simulations and analyses of real datasets will undoubtedly provide
additional insight into the performance of these or other methods of identifying subjects.
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Chapter 7

Joint Analysis of Copy Number and
Clinical Data

Historically after the discovery of a tumor of a given type, a patient’s overall prognosis was
determined by their age, the size of the tumor, the histological type and pathological grade of
the tumor, and the level of tumor invasiveness. However, van’t Veer et al. (2000) developed a
method of predicting patient prognosis based on gene expression data that outperformed the
classical methods based on clinical data. Using unsupervised clustering techniques to analyze
gene expression data from 295 breast cancer patients, these authors created a gene expression
profile based on 70 genes. Their profiling scheme classifies patients as having a “good” or
“poor” prognosis, where the two categories are distinguished by the likelihood of developing
distant metastases. Because adjuvant therapies are of limited benefit to patients with a good
prognosis, physicians can use this classification scheme to match each patient to the most
appropriate level of treatment.

It is natural to hope that methods similar to those of van’t Veer et al. (2000) can be
developed for DNA copy number data. We will not attempt to create profiling methods based
on DNA copy number data here, although this may be the subject of future research. Instead,
we consider a related problem: Given copy number and clinical data from a set of patients,
are there associations between the CNAs and any of the clinical variables? Information about
such associations is potentially useful for researchers, because it could provide additional
insight into disease progression. We present a testing procedure, as well as some results based
on preliminary investigations.

A Testing Procedure for Copy Number and Covariate Data

Tumors in the glioma dataset of Kotliarov et al. (2006) are classified according to tumor
type - glioblastoma, astrocytoma, oligodendroglioma, or mixed glioma - as well as tumor grade
- 2, 3, or 4. Although we have copy number data for all 178 subjects in the study, tumor grade
data is only available for 174 subjects. Thus we restrict our attention to these 174 subjects.
In an effort to determine if tumor grade is associated with DNA copy number, for each of the
j = 1, . . . , 113199 autosomal markers we construct a linear model X·j = β0,j+β1,jZ·1+β2,jZ·2.
Here X·j = (X1,j , . . . , X174,j) is a vector containing the copy number measurements at the
jth marker, Z·1 = (Z1,1, . . . , Z174,1) is a vector of indicator variables Zi,1 that equal 1 if and
only if the ith subject has tumor grade 3, and Z·2 = (Z1,2, . . . , Z174,2) is a vector of indicator



Figure 7.1: Column Sums from the Glioma Dataset of Kotliarov et al. (2006) (top), F Statistics
from the Linear Model Regressing Copy Number on Tumor Grade (bottom)
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variables Zi,2 that equal 1 if and only if the ith subject has tumor grade 4.
The top of Figure 7.1 shows a plot of the column sums of X, and the bottom shows a plot

of the F statistics produced by the test of H0,j : β1,j = β2,j = 0 vs. Ha : β1,j 6= 0 or β2,j 6= 0
for j = 1, . . . , 113199. Large F statistics appear throughout chromosome 10, and the marker
that produces the maximum F statistic is close to the locus of a statistically significant loss.
Thus it is natural to wonder if the two sites are the same. We now formalize this question in
the context of hypothesis testing.

Clearly the underlying location of a CNA will be different than the locus that produces
a large test statistic if the two lie on different chromosomes. Thus suppose that X is an
n×mc matrix of copy number measurements from n subjects at mk markers on chromosome
c. Next let Z be an n× l matrix representation of a given clinical variable suitable for use in
a linear model. In the above example, Z is a 174 × 3 matrix whose columns are a vector of
1’s representing covariate values for the intercept and the values of indicator variables that
classify tumor stage into one of three values. Write X·j for the entries in the jth column of X,
and consider the linear model X·j = Zβj , where βj = (β0,j , β1,j , . . . , βl−1,j). Finally, let Fj be
the test statistic corresponding to the global test that βs,j = 0 for all s ≥ 1. If k is the most
aberrant marker in X, we wish to test H0 : k = arg max(Fj) vs. Ha : k 6= arg max(Fj). We
now outline our hypothesis testing procedure when k corresponds to the maximum column
sum:

1. For b = 1, . . . , B, form the n×mc matrix Xb,∗ and the n× l matrix Zb,∗ by taking the
same bootstrap sample of the rows of X and Z.

2. Record kb,∗, the location of the maximum column sum in Xb,∗, and arg max(F b,∗j ) for

each value of b. Here F b,∗j is the test statistic for the global test in the linear model

Xb,∗
·j = Zb,∗βj for j = 1, . . . ,mc.

3. Compute db = kb,∗ − arg max(F b,∗j ). In practice we normalize the marker positions so
that the values of j lie on the interval (0, 1).

4. If npos = |db : db > 0|, and nneg = |db : db < 0|, then the p-value for the hypothesis test

is
2
B

min(npos, nneg).

The linear model in the above procedure can easily be replaced by with a Cox propor-
tional hazards model if the clinical data consists of censored survival times. Moreover,
− log10(p−values) can be used instead of test statistics.

Analyzing the Glioma Data

Now we apply the testing procedure to specific chromosomes of the glioma dataset of
Kotliarov et al. (2006), beginning with chromosome 10. The top two plots in Figure 7.2 show
the column sums of the copy number matrix for chromosome 10 for each marker and a plot of
the F statistics for each marker. The most aberrant marker is k = 2965, and the maximum
test statistic appears at marker 3763. The bottom left plot shows a scatterplot of kb,∗ vs.
arg max(F b,∗j ) based on B = 500 bootstrap samples, the y = x line, and a red X marking the
location of the k and the largest test statistic in the observed data. Finally, in the bottom
right we have a histogram of the db values, along with a vertical line at 0.

The scatterplot in the lower left shows that the location of kb,∗ is remarkably stable when
we take bootstrap samples. Although the values of arg max(F b,∗j ) exhibit more variation,
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Figure 7.2: Plot of the Column Sums of the Chromosome 10 Glioma Data of Kotliarov et al.
(2006) (top left); Plot of the Test Statistics Based on a Regression Model of Copy Number on
Tumor Stage (top right); Scatterplot of Locations for the Most Aberrant Marker and Largest
Test Statistic Under Bootstrap Resampling (bottom left); Histogram of Values of db Under
Bootstrap Resampling (bottom right)
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the peaks in the histogram of db and the fact that the kb,∗ are essentially constant imply
that certain markers repeatedly yield the maximum test statistic under bootstrapping. Our
testing procedure yields a p-value of .916, so we fail to reject the null hypothesis that the
most aberrant marker produces the largest test statistic.

Next we repeat this analysis for chromosome 1, and here we obtain very different results.
Based on the plot of the column sums in Figure 7.3, there appears to be a loss around marker
7818 and a gain around marker 8863, both of which lie in the q arm. Moreover, the scatterplot
in the bottom left of Figure 7.3 shows that these two loci consistently reappear when we find
the most aberrant marker under bootstrap resampling. While the observed test statistics in
the observed data are large throughout most of the p arm of the chromosome, they are small
on the q arm. The scatterplot shows that under bootstrap resampling the maximum test
statistic is almost always found in the p arm. The resulting values of db are all positive, so
the p-value for our test is zero. Thus we reject the null hypothesis that the most aberrant
marker produces the largest test statistic.

The results of the analysis of chromosome 1 show that the testing procedure has some
promise, because for this dataset it is able to distinguish markers that lie on distinct chromo-
some arms. On the other hand, when analyzing chromosome 10, the procedure produces a
very high p-value even though in the observed data there are almost 800 markers separating
the most aberrant marker and the marker producing the largest test statistic. At this point
it is not clear if the method has limited resolution, or if we can obtain superior results after
making some refinements. Only limited simulation studies have been performed to date, but
we hope that future investigations will provide additional insight.
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Figure 7.3: Plot of the Column Sums of the Chromosome 1 Glioma Data of Kotliarov et al.
(2006) (top left); Plot of the Test Statistics Based on a Regression Model of Copy Number on
Tumor Stage (top right); Scatterplot of Locations for the Most Aberrant Marker and Largest
Test Statistic Under Bootstrap Resampling (bottom left); Histogram of Values of db Under
Bootstrap Resampling (bottom right)
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Chapter 8

Statistical Theory

We begin this chapter by formally defining different distributions of a global statistic T (X)
that arise when resampling the rows of X. Although these definitions are applicable in any
resampling scheme, our subsequent discussion focuses on DiNAMIC’s cyclic shift procedure.
We present some theoretical results when the rows Xi· of X are iid and follow a given para-
metric distribution. Two cases are considered in depth: (1) Xi· ∼ MVN(µ,Σ), and (2) the
Xi· are generated by the instability-selection model of Newton et al. (1998). We also present
some preliminary results when Xi· ∼ MVN(µ,Σ) and Σ has an AR(1) correlation structure
that may be useful in future studies of DiNAMIC’s asymptotic behavior.

The Unconditional and Conditional Distributions

Although the details vary from one method to the next, DiNAMIC, GISTIC, KC-SMART,
STAC, and MSA use permutation-based methods for resampling a data matrix X. We wish
to define distributions that arise in the context of resampling, and for convenience we write
π for a fixed but unspecified resampling procedure. For example, π = σ when we restrict our
attention to cyclic shifts.

Let π be a specific resampling procedure, and define P to be the set of all possible
resampled versions of X. Thus |P| = mn if we resample using cyclic shifts, and |P| = (m!)n if
we resample by taking random permutations of the elements in each row of X, as is done for
KC-SMART and GISTIC. Note that |P| is not uniquely defined for STAC and MSA, because
the number of distinct STAC permutation depends on both the number and the size of the
aberrant regions in each row of X. For the sake of generality, in the following definitions we
assume that X is random and follows a given distribution.

1. We write X ∼ Fn when X is an n×m matrix with rows X1·, X2·, . . . Xn· that are iid with
(multivariate) distribution function F . Let fn be the density function or probability
mass function associated with Fn.

2. If X ∼ Fn, the distribution function of T (X) is

GTU (t) = p(T (X) > t),

the true unconditional distribution.

3. If X ∼ Fn and π is a random resampling that is independent of X, then the distribution
of T (π(X)) is



GRU (t) = p(T (π(X)) > t),

the resampling unconditional distribution.

4. The true conditional probability of a resampling π̃(X) of X is

pTC(π̃(X)|{π(X) : π ∈ P}) =
fn(π̃(X))∑
π∈P f

n(π(X))
.

It is important to note that under Fn the values {fn(π(X))}π∈P need not be identical.
More generally, the true conditional probability of an event A is

pTC(A|{π(X) : π ∈ P}) =
∑
π̃∈P

pTC(π̃(X)|{π(X) : π ∈ P})I(π̃(X) ∈ A)).

5. The resampling conditional probability of a resampling π̃(X) of X is

pRC(π̃(X)|{π(X) : π ∈ P}) =
fn(π̃(X))∑
π∈P f

n(π(X))

under the assumption that the values {fn(π(X))}π∈P are identical. Thus

pRC(π̃(X)|{π(X) : π ∈ P}) =
1
|P|

.

It follows that the resampling conditional probability of an event A is

pRC(A|{π(X) : π ∈ P}) =
∑
π̃∈P

( 1
|P|

)
I(π̃(X) ∈ A).

6. The true conditional distribution of T (X) is

GTC(t) = pTC(T (π̃(X)) > t|{π(X) : π ∈ P})
=

∑
π̃∈P

pTC(π̃(X)|{π(X) : π ∈ P})I(T (π̃(X)) > t).

7. The resampling conditional distribution of T (X) is

GRC(t) = pRC(T (π̃(X)) > t|{π(X)}) =
∑
π̃∈P

( 1
|P|

)
I(T (π̃(X)) > t).

8. Let P̃ be a subset of P containing N elements. If N is large, then

ĜRC(t) =
∑
π̃∈P̃

( 1
N

)
I(T (π̃(X)) > t)
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is an approximation to GRC(t).

In the remainder of the chapter we illustrate how these distributions arise naturally in the
context of the cyclic shift procedure, and why it is important to be aware of the differences
between them. In an effort to emphasize that we are restricting our attention to cyclic
shifts, we replace the term resampling from the preceeding definitions with cyclic. Similarly,
we replace the subscript R with C. For example, this leads to the definition of the cyclic
conditional distribution

GCC(t) = pCC(T (σ̃(X)) > t|{σ(X)}) =
∑
σ̃∈P

( 1
mn

)
I(T (σ̃(X)) > t).

Stochastic Processes

Definition. Suppose (Ω,F , P ) is a probability space, and let T be an index set. A stochastic
process F with state space X is a collection of X-valued random variables {Ft : t ∈ T}.
Given any finite subset T̃ = {t1, . . . , tn} of T , the distribution function F̃ = F |T̃ is a finite
dimensional distribution of F .

Definition. A stochastic process F is stationary if its finite dimensional distributions are
translation-invariant. Specifically, if T̃ = {t1, . . . , tn} and F̃ = F |T̃ is a finite dimensional
distribution of F , then F̃ = F̃t, where F̃t = FT̃+t and T̃ + t = {t1 + t, . . . , tn + t}.

Anderson (1960) defined a Gaussian process X(θ) on a circle with the properties that (i)
0 ≤ θ ≤ 2π, (ii) X(0) = X(2π), and (iii) E(X(θ)) = 0. It was shown that X(θ) has a Markov
property if the correct covariance structure is chosen. This motivates the following definition.

Definition. Let Σ be an n × n covariance matrix for a Gaussian process X(θ) defined at
angles 0 = θ1 < θ2 < · · · < θn ≤ 2π on a circle. Σ has an Anderson covariance structure if

Cov(X(θi), X(θj)) =
cosh[λ(|θi − θj | − π)]

cosh[λπ]
for some λ.

Some matrices with an Anderson covariance structure satisfy a more general property,
which we define now.

Definition. An n× n matrix M is circulant if it has the form

M =


m0 m1 m2 . . . mn−1

mn−1 m0 m1 . . . mn−2

mn−2 mn−1 m0 . . . mn−3
...

...
...

. . .
...

m1 m2 m3 . . . m0

.

Therefore for i, j ∈ {0, 1, . . . , n− 1} the (i, j) entry of M is M(i,j) = m[j−i], where [y] denotes
y mod n and m[j−i] is the appropriate entry of the first row of M . Note that we start indexing
our rows and columns at 0, not 1.

We now show that some matrices with an Anderson covariance structure are circulant.

Lemma 8.1. If the angles 0 = θ1 < θ2 < · · · < θn ≤ 2π are equally spaced, then a matrix
with the Anderson covariance structure is circulant.

Proof. If we define θk =
2π(k − 1)

n
for k = 1, . . . , n, then the (i, j) entry of the Anderson

covariance matrix is M(i,j) = Cov(X(θi), X(θj)). Therefore
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M(i,j) =
cosh[λ(|2(i−1)π

n − 2(j−1)π
n | − π)]

cosh[λπ]
=

cosh[λ(2π
n |i− j| − π)]

cosh[λπ]
.

For circulant matrices M(i,j) = m[j−i], but it is easy to see that when the θk are defined as

above the m[j−i] entry of the first row is
cosh[λ(2π

n |j − i| − π)]
cosh[λπ]

. �

Next we prove a result about multivariate normal densities with circulant covariance
matrices.

Lemma 8.2. Suppose z = (z0, z1, . . . , zn−1) ∼MVN(µ,Σ), where µ is a constant vector and
Σ is circulant. If f is the density of z, then f(z0, z1, . . . , zn−1) = f(zn−1, z0, z1, . . . , zn−2). It
follows that f is invariant under any cyclic shift of the arguments.

Proof. Assume first that µ = 0 so that f(z) =
1

(2π)
n
2 |Σ|

1
2

exp
(
−1

2
zTΣ−1z

)
. It is known

that the inverse of a circulant matrix is also circulant. Therefore it suffices to show that
zTMz = z̃TM z̃ whenever M is the circulant matrix given in the above definition, z =
(z0, z1, z2, . . . , zn−1), and z̃ = (zn−1, z0, z1, . . . , zn−2). Both zTMz and z̃TM z̃ are sums of
terms of the form zizj for i ≤ j. We will show that the coefficients of zizj are the same in
each expression.

First consider zTMz. It is easy to see that the coefficient of z2
i is M(i,i) = m0, and when

i < j the coefficient of zizj is M(i,j) +M(j,i) = m[j−i] +m[i−j]. Next we examine z̃TM z̃. The
coefficient of z2

i is now M([i+1],[i+1]), but for any i this is m0 because M is circulant. If i < j
the coefficient of zizj is M([i+1],[j+1]) + M([j+1],[i+1]). However, since M is circulant we may
write this as m[(j+1)−(i+1)] +m[(i+1)−(j+1)] = m[j−i] +m[i−j].

For a general constant vector µ = (c, . . . , c) we replace the terms zizj in the above argu-
ment with (zi − c)(zj − c). �

Suppose X is an n×m matrix whose rows Xi· are iid MVN(µ,Σ), where µ is a constant

vector and Σ is circulant. If we write fn for the density of X, then fn(X) =
n∏
i=1

f(Xi·).

However, Lemma 8.2 implies that fn(σ(X)) = fn(X) for any cyclic shift σ. This implies that

the true conditional probability pTC(σ(X)) is
1
mn

for any cyclic shift σ. As a result, the true

conditional distribution GTC(t) of T (X) coincides with the cyclic conditional distribution
GCC(t).

Assume that X is an n×m matrix with rows X1·, . . . , Xn· that are iid MVN(µ,Σ), and
let {σi}Ni=1 be random cyclic shifts that are independent of X. For any real number t we are

interested in ĜCC(t) =
∑N

i=1 I(T (σi(X)) ≥ t)
N

as an estimator of GTU (t) = p(T (X) > t).

Proposition 8.1. Let X be an n×m matrix with rows X1·, . . . , Xn· that are iid MVN(µ,Σ),
where µ is a constant vector. If Σ is circulant, then ĜCC(t) is an unbiased estimator of GTU (t).

Proof. E(ĜCC(t)) = E
[∑N

i=1 I(T (σi(X)) ≥ t)
N

]
=

1
N

N∑
i=1

E(I(T (σi(X)) ≥ t)) =

1
N

N∑
i=1

p(T (σi(X)) ≥ t) = p(T (σ(X)) > t). However, since µ is constant and Σ is circulant,

Lemma 2 implies that the above expression equals p(T (X) > t), as needed. �
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The Instability Selection Model

The instability selection model, which was introduced by Newton et al. (1998) and studied
by Newton and Lee (2000), is a parsimonious parametric model for allelic loss that accounts
for both genetic instability and selection into tumor tissue. It can be used to test for the
presence of tumor suppressor genes in binary n×m matrices X containing LOH data from n
tumor samples at a common set of m markers x1, . . . , xm on a chromosome of length 1. Each
row Xi· of X is called an allelotype, and it is assumed that distinct allelotypes are independent
and identically distributed.

As noted in Newton and Lee (2000), the distribution of the Xi· is determined by four
parameters: x, the proposed location of a tumor suppressor; ω, the rate of loss at x; δ, the
background rate of loss; and λ, a parameter that governs the rate of transitions between
regions of loss and retention. The entries in Xi· are modeled using a binary Markov process
starting at x and moving towards the telomeres. The transition probabilities are determined
by δ, λ, and the distances between the markers xi. We write the transition probabilities
as pij = p(xk = i|xk−1 = j) for i, j ∈ {0, 1}, where 1 represents LOH. If d is the distance
between two adjacent markers, the instability-selection model gives p10 = δ(1− e−λd), p01 =
(1− δ)(1− e−λd), p00 = 1− p10, and p11 = 1− p01.

If we view the LOH state at x as a Bernoulli random variable, we can use the condi-
tional probabilities given above to find the unconditional probability of LOH at markers in
a given row of a data matrix X. Let θ = (x, ω, δ, λ) be the model parameters. The prob-
abability of the allelotype Xi· is Pθ(Xi·) = (1 − ω)Pθ(Xi·,left|L(x) = 0)Pθ(Xi·,right|L(x) =
0)+ωPθ(Xi·,left|L(x) = 1)Pθ(Xi·,right|L(x) = 1), where L(x) is the loss state at x, and Xi·,left
and Xi·,right denote the loss states at the markers to the left and right of x, respectively.
Because of the Markov assumption, the conditional probabilities can be written as products
of the transition probabilities between adjacent markers. Moreover, since the rows of X come
from unrelated subjects and thus are assumed to be independent, it is possible to compute
the probability of an entire data matrix X once we have x, the marker locations, and values
for ω, δ, and λ. In all subsequent discussions we assume that x = x1, where x is the presumed
location of a tumor suppressor gene.

To illustrate the conditional distributions defined earlier we consider

X =


0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0

 ,

a matrix of LOH data generated by the instability-selection model. Here we have 10 equally
spaced markers on the interval (0, 1), λ = 5, and either ω = δ = .4 or ω = δ = .02. Because
there are 104 cyclic permutations of X, we can compute the exact true conditional and
cyclic conditional distributions. However, the unconditional distributions cannot be evaluated
because there are 2104

binary 4× 10 matrices. Tables 8.1 and 8.2 provide the probabilities of
each value of T (X) = max(S1, . . . , S10) under the true conditional distribution GTC(t) and
cyclic conditional distribution GCC(t).

The probabilities given by the cyclic conditional distribution are unaffected by any changes
to the parameters in the model, which makes sense in light of the fact that all cyclic shifts are
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t pTC(T (σ̃(X)) = t|{σ(X)}) pCC(T (σ̃(X)) = t|{σ(X)})
0 0 0
1 .1997 .2
2 .6854 .7
3 .1149 .1
4 0 0

Table 8.1: Probabilities under the True Conditional and Cyclic Conditional Distributions
when ω = δ = .4

t pTC(T (σ̃(X)) = t|{σ(X)}) pCC(T (σ̃(X)) = t|{σ(X)})
0 0 0
1 .2230 .2
2 .6803 .7
3 .0967 .1
4 0 0

Table 8.2: Probabilities under the True Conditional and Cyclic Conditional Distributions
when ω = δ = .02

equally likely. Although the probabilities given by the true conditional distribution do change
with the parameters, the effect is minor, and in each case they are closely approximated by
the probabilities obtained from the cyclic conditional distribution.

As we saw above, for matrices X with iid rows Xi· ∼ MVN(µ,Σ) the true conditional
distribution equals the cyclic conditional distribution if Σ is circulant. We now describe the
correlation structure for the instability selection model. Newton and Lee (2000) note that two
markers separated by a distance d have correlation exp(−λd). Under the null hypothesis ω = δ
it follows that if all markers are equally spaced with common distance d between adjacent
markers, then the Xi· have an AR(1) correlation structure with correlation ρ = exp(−λd).
Although this appears to be a well-known result in the theory of binary Markov chains, in
the Appendix we present an alternate proof that uses techniques from linear algebra.

If X is an n × m matrix whose rows Xi· are independent and generated by the same
instability selection model with equally spaced markers, then clearly the column sums also
have an autoregressive covariance structure. Our next result describes the covariance structure
of X after a applying a random cyclic shift.

Theorem 8.1. Let X be an n × m binary matrix whose rows Xi· are independent and
generated by the instability selection model with equally spaced markers and ω = δ. If σ(X)
is a random cyclic shift of X, then the covariance matrix for the column sums of σ(X) is
circulant.
Proof. Let u = (u1, u2, . . . , um) be the vector of column sums of X, and write ũ =
(ũ1, ũ2, . . . , ũm) for the vector of column sums of X̃ = σ(X). We wish to compute Cov(ũi, ũj).
Because the entries in a given row follow a one-step Markov model, it suffices to find Cov(ũ1, ũi).

Now Cov(ũ1, ũi) = Cov(
n∑
k=1

x̃k1,
n∑
l=1

x̃li) =
n∑
k=1

n∑
l=1

Cov(x̃k1, x̃li), where x̃ij represents an entry
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of X̃. However, because the entries in distinct rows are independent the above sum reduces

to
n∑
k=1

Cov(x̃k1, x̃ki).

Since all rows behave the same way, we drop the subscript k for ease of notation.
Cov(x̃1, x̃i) = E(x̃1x̃i) − E(x̃1)E(x̃i) = p(x̃1 = 1, x̃i = 1) − δ2. Now p(x̃1 = 1, x̃i = 1) =
p(x̃1 = 1, x̃i = 1|no break)p(no break) + p(x̃1 = 1, x̃i = 1|break)p(break), where ’break’ rep-
resents the event that the cyclic shift introduces a break between columns 1 and i.

When the cyclic shift does not introduce a break between columns 1 and i, Theorem A.1

implies that Cov(x̃1, x̃i) = δ
(

1− δ
)(p11 − δ

1− δ

)i−1
. Therefore p(x̃1 = 1, x̃i = 1|no break) =

δ
(

1− δ
)(p11 − δ

1− δ

)i−1
+ δ2. Next we consider the case when the cyclic shift does intoduce a

break between columns 1 and i. If (x̃1, . . . , x̃m) = σl(x1, . . . , xm), then

x̃j =

{
xj+l−1 if j + l − 1 ≤ m
xj+l−m−1 if j + l − 1 > m

Thus Cov(x̃1, x̃i) = Cov(xl, xl+i−m−1). As above, Theorem A.1 implies that

Cov(xl, xl+i−m−1) = δ
(

1− δ
)(p11 − δ

1− δ

)m−i+1
, because (xl+i−m−1, . . . , xl) is a substring of

(x1, . . . , xm). Therefore p(x̃1 = 1, x̃i = 1|break) = δ
(

1− δ
)(p11 − δ

1− δ

)m−i+1
+ δ2.

Earlier we noted that

Cov(x̃1, x̃i) = p(x̃1 = 1, x̃i = 1|no break)p(no break) + p(x̃1 = 1, x̃i = 1|break)p(break)− δ2.

Thus if we substitute the values of the conditional probabilities we obtain Cov(x̃1, x̃i) =

δ
(

1− δ
)[(p11 − δ

1− δ

)i−1(m− i+ 1
m

)
+
(p11 − δ

1− δ

)m−i+1
(
i− 1
m

)]
. This simplifies to

δ
(

1− δ
)[

exp
(
−λ(i− 1)

m

)(m− i+ 1
m

)
+ exp

(
−λ(m− i+ 1)

m

)( i− 1
m

)]
. In general the (i, j)

entry of the covariance matrix is

Cov(uj , ui) = nδ(1− δ)
[
exp
(
−λ|i− j|

m

)(m− |i− j|
m

)
+ exp

(
−λ(m− |i− j|)

m

)( |i− j|
m

)]
,

and it is easy to verify that this matrix is circulant. �

In short, the above theorem shows that under the instability selection model with equally
spaced markers the covariance of two column sums after cyclic shift is a weighted average
of entries of the covariance matrix of the column sums before cyclic shift. It is not hard to
see that a corresponding result holds for a AR(1) covariance matrix, or any other banded
covariance matrix, for that matter. To illustrate the result, suppose ΣAR is a 5×5 covariance
matrix based on an AR(1) correlation structure with correlation ρ and variance 1. Assume X
is an n× 5 matrix whose rows Xi· ∼MVN(0,ΣAR), and let ΣCirc be the correlation matrix
of the column sums of σ(X), where σ is a random cyclic shift. Then
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Figure 8.1: Heat Maps for the Correlation Matrices ΣAR (left) and ΣCirc (right)

ΣAR =


1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ
ρ4 ρ3 ρ2 ρ 1

 and ΣCirc =


1 a b b a
a 1 a b b
b a 1 a b
b b a 1 a
a b b a 1

 ,

where a =
1
5

(
4ρ+ ρ4

)
and b =

1
5

(
3ρ2 + 2ρ3

)
.

Earlier we noted that the true conditional and cyclic conditional distributions need not
coincide if the covariance matrix Σ is not circulant. However, Figure 8.1 shows heat maps of
ΣAR and ΣCirc on the same scale when m = 250 and ρ = .9. Based on the figures, it appears
that the vast majority of the entries in the two matrices are very similar. In fact, the mean
value of the entries in |ΣAR − ΣCirc| is .0053, and this mean value decreases to .0013 when
m = 500 and .00035 when m = 1000. The similarity of these matrices suggests that the
cyclic conditional distribution may closely approximate the true conditional distribution if Σ
is stationary and the number of markers m is large.

Although we do not have any conclusive findings, we now present some preliminary results
which suggest the degree to which the cyclic conditional distribution closely approximates the
true conditional distribution. Suppose ΣAR is an AR(1) covariance matrix with correlation ρ

and variance
1

1− ρ2
. Chan (1997) introduced ΣChan, a circulant approximation to ΣAR. If X

is an n ×m matrix with iid rows Xi· ∼ MVN(0,Σ), we write pmAR(T > t) and pmChan(T > t)
to denote the probability that T (X) > t under the assumption that Σ is AR(1) or Chan’s
circulant approximation, respectively. Chan’s results imply that for any real number t and
for any ε > 0 there exists a natural number m0(t, ε) such that for any m > m0(t, ε), |pmAR(T >
t)− pmChan(T > t)| < ε.

Theorem 8.1 shows that if X has iid rows Xi· ∼MVN(0,ΣAR) and σ is a random cyclic
shift, then there exists a circulant matrix ΣCirc such that the column sums of σ(X) follow an
MVN(0,ΣCirc) distribution. Moreover, the entries of ΣCirc are uniquely defined in terms of
the entries in ΣAR. Although ΣChan is a circulant version of ΣAR, Chan (1997) only defines
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the entries of Σ−1
Chan. Our next result gives the entries of ΣChan.

Lemma 8.3. Let A =



1 + ρ2 −ρ 0 0 . . . 0 0 −ρ
−ρ 1 + ρ2 −ρ 0 . . . 0 0 0
0 −ρ 1 + ρ2 −ρ . . . 0 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 . . . −ρ 1 + ρ2 −ρ
−ρ 0 0 0 . . . 0 −ρ 1 + ρ2


be the m×

m matrix defined in equation (5.3) of Chan (1997). If B = A−1, then the entries of the first
row of B are

B1,j =
( 1

1− ρm
)2(

ρj−1
m−j∑
k=0

ρ2k + ρm−1−j
j−1∑
l=1

ρ2l
)

for 1 ≤ j ≤ dm2 e. Note that the second summand is defined to be zero when j = 1.

Proof. Since A is circulant, it follows that B = A−1 is also circulant. Thus it suffices to define
the elements in the first row of B. However, if the first row of B is B1,1, B1,2, B1,3, . . . , B1,m,
then B1,2 = B1,m, B1,3 = B1,m−1, and so on. Thus we need only define B1,j for 1 ≤ j ≤ dm2 e.

To verify that AB = I we must consider the product of the ith row of A and the jth

column of B for all i and j. However, since AB is also circulant it suffices to consider the
entries in any row or column of AB. We will restrict our attention to the entries in the first
column of AB, and here it suffices to consider the dot product of any row of A and the first
row of B. Since a circulant covariance matrix equals its transpose, AB = I implies that
BA = BTAT = (AB)T = IT = I.

First note that

AB1,1 =
( 1

1− ρm
)2[(

1 + ρ2
)(m−1∑

k=0

ρ2k
)
− 2ρ

(
ρ
m−2∑
k=0

ρ2k + ρm−1
)]
.

If we focus our attention on the quantities inside the square brackets we get

m−1∑
k=0

ρ2k +
m∑
k=1

ρ2k − 2ρ2
m−2∑
k=0

ρ2k − 2ρm = 1 + 2
m−1∑
k=1

+ρ2m − 2
m−1∑
k=1

ρ2k − 2ρm.

However, this simplifies to (1− ρm)2. Thus AB1,1 = 1.

Next consider ABi,1 for i > 1. We claim that ABi,1 = 0, so the term
( 1

1− ρm
)2

will be

ignored. As noted above, it suffices to consider the dot product of the ith row of A and the
first row of B. The ith row of A has only three non-zero elements, namely in positions i−1, i,
and i+ 1. If we write j = i− 1, then there are two cases to consider.
Case 1. The elements B1,j , B1,j+1, and B1,j+2 are all distinct. In this case the dot product
gives

(−ρ)
[
ρj−1

m−j∑
k=0

ρ2k + ρm−1−j
j−1∑
k=l

ρ2l
]
+(1 + ρ2)

[
ρj

m−j−1∑
k=0

ρ2k + ρm−2−j
j∑
l=1

ρ2l
]
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−ρ
[
ρj+1

m−j−2∑
k=0

ρ2k + ρm−3−j
j+1∑
l=1

ρ2l
]
.

Rewriting gives

−ρj
m−j∑
k=0

ρ2k − ρm−j
j−1∑
l=1

ρ2l + ρj
m−j−1∑
k=0

ρ2k + ρm−j
j−1∑
l=0

ρ2l+

ρj
m−j∑
k=1

ρ2k + ρm−j
j∑
l=1

ρ2l − ρj
m−j−1∑
k=1

ρ2k + ρm−j
j∑
l=0

ρ2l.

Combining terms involving either ρj or ρm−j shows that the above expression equals 0.
Case 2. The elements B1,j , B1,j+1, and B1,j+2 are not all distinct. Here we need to consider
two subcases.
Subcase A. m is even, so the repeated elements are B1,j = B1,j+2 for j =

m

2
. Thus the dot

product equals

(−2ρ)
[
ρ

m
2
−1

m−m
2∑

k=0

ρ2k + ρm−1−m
2

m
2
−1∑

l=1

ρ2l
]
+(1 + ρ2)

[
ρ

m
2

m−m
2
−1∑

k=0

ρ2k + ρm−2−n
2

m
2∑
l=1

ρ2l
]
.

Combining terms and simplifying as in Case 1 shows that this expression equals 0.
Subcase B. m is odd, in which case the repeated elements are either B1,j = B1,j+1 or B1,j+1 =

B1,j+2. Both cases are identical, so we consider B1,j = B1,j+1 for j =
m+ 1

2
. Here the dot

product equals

(1− ρ+ ρ2)
[
ρ

m+1
2
−1

m−m+1
2∑

k=0

ρ2k + ρm−1−m+1
2

m+1
2
−1∑

l=1

ρ2l
]
+

(−ρ)
[
ρ

m+1
2
−2

m−(m+1
2
−1)∑

k=0

ρ2k + ρm−
m+1

2

m+1
2
−2∑

l=1

ρ2l
]

Using the same ideas as above, we see that this simplifies to 0. �

The above lemma shows that the entries of ΣChan and ΣCirc are not identical. We write
Σm

Chan and Σm
Circ when both matrices are derived from an m×m covariance matrix Σm

AR, and
suppose Σm

AR has correlation ρ and variance 1. For 1 ≤ j ≤ dm2 e the elements of Σm
Chan and

Σm
Circ are

(Σm
Chan)1j =

( 1
1− ρm

)2(
ρj−1(1− ρ2(m+1−j)) + ρm+1−j(1− ρ2(j−1))

)
and

(Σm
Circ)1,j =

(m+ 1− j
m

)
ρj−1 +

(j − 1
m

)
ρm+1−j .

Therefore
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(Σm
Chan)1,j − (Σm

Circ)1,j = ρj−1
[( 1

1− ρm
)2(

1− ρ2(m+1−j)
)
− m+ 1− j

m

]
+ ρm+1−j

[( 1
1− ρm

)2(
1− ρ2(j−1)

)
− j − 1

m

]
.

If ρ is fixed, then there exists a natural number m0(ε) such that for m > m0(ε) it follows that
|(Σm

Chan)1j−(Σm
Circ)1j | < ε. Our hope is that this result can be used to show that pmChan(T > t)

and pmCirc(T > t) become arbitrarily close as m → ∞. If so, Chan’s result would imply that
the same conclusion holds for pmAR(T > t) and pmCirc(T > t). It would then follow that ĜCC(t)
is an asymptotically unbiased estimator of GTU (t) when Σ has an AR(1) correlation structure.

The above results would imply that true unconditional and cyclic unconditional distri-
butions are asymptotically equivalent when the rows of X are iid multivariate normal with
mean 0 and have a AR(1) covariance matrix Σ. In practice, however, DiNAMIC conditions
on the observed data. Thus we are also interested in whether corresponding results hold for
the true conditional and the cyclic conditional distributions. At the moment it is not clear
what can be said about these conditional distributions, or if the marginal results described
above can be brought to bear.
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Appendix

Theorem A.1. Let x = (x1, x2, . . . , xm) be a binary vector whose entries are generated
by the instability selection model with equally spaced markers and ω = δ. The correlation

matrix Corr(x) is autoregressive with common ratio ρ =
p11 − δ
1− δ

.

Proof. We begin by noting that all of the transition probabilities may be written in terms of
p11, namely p01 = 1−p11, p10 = δ

1−δp01 = δ
1−δ (1−p11), and p00 = 1−p10 = 1−( δ

1−δ )(1−p11).
This rewriting will be used later.

Clearly E(x1) = δ, and from this it follows that E(x2) = p(x2 = 1) = p(x2 = 1|x1 =
1)p(x1 = 1) + p(x2 = 1|x1 = 0)p(x1 = 0) = p11δ + p10(1 − δ) = δ. This in turn implies
that E(xk) = δ for 1 ≤ k ≤ m. Since xk only assumes the values 0 and 1, we also note that
Var(xk) = E(x2

k)− E(xk)2 = E(xk)− E(xk)2 = δ − δ2 for 1 ≤ k ≤ n.
Next we wish to consider Cov(xj , xk) for j < k. If we appeal to the definition and the

comments in the previous paragraph, we may write the covariance as E(xjxk)− δ2. Because
we have a one-step Markov model, it suffices to find a find a formula for E(x1xk). Now
E(x1xk) = p(x1 = 1, xk = 1). When k = 2 we have p(x1 = 1, x2 = 1) = p11δ; if k = 3 we have
p(x1 = 1, x3 = 1) = p(x1 = 1, x2 = 1, x3 = 1) + p(x1 = 1, x2 = 0, x3 = 1) = p2

11δ + p10p01δ.
Thus to compute p(x1 = 1, xk = 1) we must find the sum of the probabilities of all binary
strings of length k whose first and last entries are 1. From now on we assume that all binary
strings have this form, which we write 1x2 . . . xk−11.

A new binary string 1x2 . . . xk−1xk1 of length k+1 can be obtained from an existing binary
string 1x2 . . . xk−11 of length k by adding a 0 or 1 as the new penultimate digit xk. Thus
any string of length k produces exactly two strings of length k + 1. Suppose xk−1 = 0. Then
under the instability selection model p(1x2 . . . xk−11) = zp10, where z = p(1x2 . . . xk−1); this
probability would be zp11 if xk−1 = 1. For convenience, suppose xk−1 = 0. If the xk = 0, then
p(1x2 . . . xk−1xk1) = zp00p10; this probability is zp10p11 if xk = 1. Thus a string of length k
whose probability is zp10 yields two strings of length k+ 1, and the sum of their probabilities
is zp00p10 + zp10p11. Similarly it can be shown that a string of length k whose probability
is zp11 yields two strings of length k + 1 whose probabilities sum to zp01p10 + zp11p11. If we
write all of the above expressions in terms of p11 we see that

z
( δ

1− δ

)(
1− p11

)
yields z

[
1− δ

1− δ

(
1− p11

)]( δ

1− δ

)(
1− p11

)
+z
( δ

1− δ

)[
1− p11

]
p11,

and
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zp11 yields z
[ δ

1− δ

(
1− p11

)](
1− p11

)
+ z
[
p11

]
p11.

The notation and lack of simplification in the above expressions are intentional, and if

we drop the common terms z
( δ

1− δ

)
in the top equation and z in the bottom we see the

following transitions when we examine the probabilities that arise when we consider strings
of length k and k + 1:

(1− p11) yields
[
1−

( δ

1− δ

)(
1− p11

)](
1− p11

)
+
[
1− p11

]
p11,

and

p11 yields
[( δ

1− δ

)(
1− p11

)](
1− p11

)
+
[
p11

]
p11,

If we let a =
( δ

1− δ

)(
1 − p11

)
and b = p11 for the quantities inside the first and second

square brackets, respectively, then we may write these expressions more concisely as

(1− p11) yields [1− a](1− p11) + [1− b]p11

and

p11 yields [a](1− p11) + [b]p11

Here the expressions involving a or b in square brackets can be viewed as coefficients of the
terms (1− p11) and p11.

We now wish to show how to obtain E(x1xk+1) from E(x1xk). If we combine all binary
strings 1x2 . . . xk−11 in which xk−1 = 0 and all binary strings 1x2 . . . xk−11 in which xk−1 = 1,
then we may write E(x1xk) = αp10 + βp11. However, rewriting in terms of p11 gives

E(x1xk) =
[
α
( δ

1− δ

)](
1− p11

)
+
[
β
]
p11 = [α′](1− p11) + [β]p11.

The comments in the previous paragraph imply that

E(x1xk+1) = [α′]([1− a](1− p11) + [1− b]p11) + [β]([a](1− p11) + [b]p11).

Combining terms gives

[α′(1− a) + βa](1− p11) + [α′(1− b) + βb]p11 =
(
p11 (1− p11)

)(b (1− b)
a (1− a)

)(
β
α′

)
.

Thus by using the matrix M =
(
b (1− b)
a (1− a)

)
we can write E(x1xk+1) = vTMw, where

w =
(
β
α′

)
is the vector of coefficients of p11 and (1− p11) in E(x1xk) and v =

(
p11

1− p11

)
.

Using the notation given above, E(x1x2) = δp11 = δvTe1 = δvTM0e1, where e1 =
(

1
0

)
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and M0 is the identity matrix. Therefore the argument in the previous paragraph implies
that when s ≥ 2 we have E(x1xs) = δvTM s−2e1. The matrix M is diagonalizable when

a 6= b, or equivalently λd < ∞. M =
(

1 1
1 a

b−1

)(
1 0
0 b− a

)( a
a−b+1

1−b
a−b+1

1−b
a−b+1

b−1
a−b+1

)
. Rewrit-

ing in terms of δ and p11 gives M =
(

1 1
1 − δ

1−δ

)(
1 0
0 p11−δ

1−δ

)(
δ 1− δ

1− δ δ − 1

)
. Therefore

E(x1xs) = δ
[
p11

(p11 − δ
1− δ

)s−2
− δ
(p11 − δ

1− δ

)s−2
+ δ
]
, and hence we conclude that

Corr(x1, xs) =
Cov(x1, xs)√

Var(x1)Var(xs)
=
E(x1xs)− δ2

δ(1− δ)
=
(p11 − δ

1− δ

)s−1
. �
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Gain Marker DiNAMIC GISTIC
1p36 X
1q23 X
1q25 X
1q32 X
1q43 X
2p25 X X
2q14 X X
2q37 X X
3p26 X
3p25 X
3q23 X X
3q27 X X
4p15 X
4p16 X X
4q35 X
5p15 X X
5q31 X X
5q35 X X
6p21 X X
7p22 X X
7p11 X X
7q11 X
7q36 X X
8p21 X X
8p23 X X
8q24 X X
9p22 X
9q34 X X
10p15 X
10q22 X X
10q26 X
11q13 X X
11q23 X X
11q25 X X

Loss Marker DiNAMIC GISTIC
1p21 X
1p36 X
1q31 X
1q41 X
1q43 X
2q33 X
3p12 X X
3q13 X
4p14 X
4p15 X
4q12 X
4q28 X
4q34 X
5p14 X
5q15 X
5q33 X
6p12 X
6p21 X
6q24 X X
7p11 X
8p21 X
8p23 X X
8q13 X
9p24 X
9p21 X X
10p12 X
10q11 X
10q21 X X
10q26 X X
11p11 X
11p14 X
11p15 X X
11q24 X X
12p13 X X

Table A1. Locations of Significant Markers in the Glioma Dataset of Kotliarov
et al. (2006), as Determined by DiNAMIC’s Cyclic Shift Procedure and GISTIC
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Gain Marker DiNAMIC GISTIC
12p13 X X
12q14 X X
12q15 X X
12q24 X X
13q33 X X
14q11 X X
14q32 X X
15q12 X
16p13 X
16p12 X
16q24 X X
17p13 X
17p12 X
17q12 X
17q25 X X
18q23 X X
19p13 X X
19q12 X
20p13 X X
20q13 X X
21q22 X X
22q11 X X

Loss Marker DiNAMIC GISTIC
12q13 X
12q21 X
13q21 X X
13q22 X
13q33 X
14q11 X
14q12 X X
14q24 X
14q31 X
15q11 X X
18q22 X X
19q13 X X
21q21 X X
22q13 X

Table A1. Locations of Significant Markers in the Glioma Dataset of Kotliarov
et al. (2006), as Determined by DiNAMIC’s Cyclic Shift Procedure and GISTIC
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