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ABSTRACT 

Christopher Andrew Lavender: RNA Structure Prediction using High-Throughput Chemical Modification 
Techniques 

(Under the direction of Kevin M. Weeks) 
 
 

Functional RNA molecules require the formation of defined structures in order to perform their 

critical tasks in biology. Complete understanding of this structure-function relationship in RNA requires the 

elucidation of accurate RNA structural models. RNA chemical modification has proven to be an invaluable 

tool in the characterization of RNA structure. Recently, the throughput of RNA chemical modification 

approaches has increased significantly through the adaptation of chemical modification techniques to 

next-generation sequencing platforms. In this work, I create several new methodologies for the generation 

of accurate RNA structural models based on high-throughput RNA chemical modification analysis. First, I 

create a general methodology for predicting three-dimensional RNA structures based on RNA interactions 

implicated by biochemical and bioinformatic approaches. In this work, I develop a three-dimensional 

model for the hepatitis C virus internal ribosome entry site (HCV IRES) pseudoknot domain. This 

methodology is then applied to a new high-throughput chemical modification approach called RING-MaP 

(RNA interaction groups identified by mutational profiling). Implicated interactions from RING-MaP 

analysis allow for accurate prediction of RNA tertiary folds. Second, I create an algorithm for the 

comparison of high-throughput chemical modification data from related RNA sequences. Using SHAPE 

chemical modification alone, this approach allows recapitulation of ribosomal RNA alignments made 

using sequence identity. Chemical modification data for three HIV-related viral RNA genomes are then 

compared. Following creation of chemical modification-dependent alignments, statistically related RNA 

structures are found across the three viral genomes. Consensus secondary structures considering both 

chemical modification data and covariation are then made, recapitulating all known RNA structures in the 

HIV genome and suggesting previously undescribed functional elements. 
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CHAPTER 1: INTRODUCTION 

1.1 Structure-function relationships in ribonucleic acid 

As evidenced by its place in the central dogma of biology, ribonucleic acid (RNA) was originally 

thought to be a passive intermediate in the translation of genetic information from deoxyribonucleic acid 

(DNA) to protein. However, this viewpoint was challenged in the 1980s by the discovery of “ribozymes,” 

discrete, structured RNA elements that catalyzed chemical reactions.
1
 This, along with discovery of RNA 

interference pathways in the 1990s, challenged the traditional role of RNA in the central dogma. Today, 

RNA is considered an essential player in gene regulation.
2, 3

 

 Functional RNAs require the formation of defined three-dimensional structures in order to function 

properly.
3
 As such, RNA follows the same structure-function paradigm established for proteins. Complete 

understanding of the function of a given RNA requires characterization of that RNA’s structure. RNA 

structure is conceptualized as being hierarchical. Folding of an RNA structure begins with formation of 

base pairs, with the base-pairing arrangement of RNA defined as its secondary structure. Following 

formation of its secondary structure, an RNA molecule then folds into a final three-dimensional structure, 

known as its tertiary structure. Complete structural characterization of an RNA molecule requires 

knowledge of both its secondary and tertiary structures. 

1.2 Established means of RNA structure characterization 

 Following the discovery of functional RNA molecules, approaches were developed to characterize 

RNA structure. RNA secondary structures could be predicted with high accuracy using covariance 

approaches.
4-6

 These covariance models were developed considering a number of different RNA 

sequences that were related evolutionarily. An RNA covariance model describes the Watson-Crick base 

pairs that may be formed by all or most members of an RNA family. RNA tertiary structures were 

determined by adapting X-ray crystallography techniques, and later NMR techniques, to RNA.
7-10

 X-ray 

crystallography techniques allowed atom-by-atom reconstructions of RNA structures based on X-ray 

diffraction patterns.  
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Figure 1.1 Structure-selective chemical modification of RNA. (A) Generation of an ensemble of 
chemically modified RNA molecules. (B) Chemical modifications used in RNA structure characterization 
techniques. In SHAPE, 1M7 selectively modified the 2ʹ-hydroxyl position of unstructured RNA residues. 
DMS selectively methylates the adenosines and cytidines of unstructured RNA positions. 
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 However, covariation modeling and X-ray crystallography carry significant drawbacks. For an 

accurate covariation model to be developed, hundreds of different RNA sequences may be required,  

limiting the application of covariation modeling to only well-studied RNAs. X-ray crystallography 

determination has not been the wide-ranging success for RNA as it has been for proteins, owing largely 

to the difficulty in crystallizing RNA molecules. As such, only a small number of functional RNA structures 

have been able to be determined by X-ray crystallography. Both covariance modeling and X-ray 

crystallography are limited in the number of RNA molecules that are suitable targets. 

1.3 RNA structure prediction directed by biochemical experimentation 

 To address the limitations of traditional techniques, new approaches combining computational 

structure prediction and biochemical characterization technique have been developed. Directing 

secondary structure prediction by SHAPE reactivity measurements has proven to be a robust and 

accurate means of predicting RNA secondary structure.
11, 12

 In this approach, an electrophilic chemical 

moiety, termed a SHAPE reagent, reacts with the 2ʹ-hydroxyl group of ribose sugars in a folded RNA 

molecule (Figure 1.1). The SHAPE reagent preferentially modifies nucleotides that are not constrained by 

base pairing or other molecular interactions. Positions of modification are then resolved using primer 

extension, with the reverse transcription reaction stopping at modified residues. Relative lengths of the 

cDNA library are used to assign positions of modification, with the extent of modification determined by 

comparison with a background control. The end result is a measure of nucleotide flexibility at each 

position in an RNA molecule. This information is then used to generate a pseudo-energy term that directs 

structure prediction in an RNA folding algorithm.
11

 

 Biochemical information has also been used to direct tertiary structure prediction of RNA 

molecules. In these approaches, biochemical measurements that describe or imply short contact 

distances between positions in an RNA molecule are used to constrain molecular dynamics simulations. 

Biochemical approaches used in these methods include chemical modification, crosslinking, and 

fluorescence resonance energy transfer (FRET) techniques.
13-18

 These techniques have proven to be 

successful, but they are often not generalizable. Most have been applied to only a handful of RNAs, 

reflecting a difficulty in application or a limited number of suitable RNA targets. Moreover, modeling  
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Figure 1.2 Next-generation sequencing. Though there are many distinct next-generation sequencing 

platforms, in each approach many different sequencing reactions are performed in parallel while being 

spatially separated. In the Illumina platform, sequencing reactions are spatially separated on a glass chip. 

The glass surface is coated with sequencing library-specific primers. Individual DNA molecules anneal to 

these primers, and individual DNA colonies are amplified using PCR. Individual colonies are 

characterized using a sequencing-by-synthesis approach using fluorescently labeled DNA nucleotides.  
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approaches are often designed to incorporate information from only a single biochemical technique and 

may not be immediately adapted to another. 

1.4 The emergence of high-throughput RNA structure assays 

 The development of biochemical RNA assays has been tightly coupled to the development of 

nucleic acid sequencing approaches. For instance, in many RNA structure assays such as SHAPE, 

chemical modifications or strand cleavages are resolved using size-based comparisons made by 

electrophoresis. This same methodology is used in Sanger sequencing, where base identities are 

determined by comparing the relative size of DNA fragments generated in the presence of strand-ending 

dideoxynucleotides.
19

 Just as the throughput of Sanger sequencing was increased through the transition 

from gel electrophoresis to capillary electrophoresis, similar gains were made by applying that same 

transition to SHAPE.
20

 

 In recent years, the throughput of sequencing has increased exponentially as next-generation 

sequencing (NGS) techniques have emerged.
21

 There are a number of NGS platforms available for use 

today that utilize different sequencing approaches, but they each share a common feature: A multitude of 

sequencing reactions are performed in parallel and resolved simultaneously (Figure 1.2). The number of 

sequences generated in a single NGS experiment range from tens of thousands to hundreds of millions. 

 Researchers have been quick to adapt RNA biochemical assays to NGS approaches. In the 

SHAPE-seq method, cDNA generated in a SHAPE experiment is used to generate an NGS library 

following ligation of DNA adapters and PCR amplification.
22

 In PARS, RNA cleaved by structure-specific 

enzymes is converted to DNA following RNA-RNA ligation of primer binding sites.
23

 In both techniques, 

the positions of chemical modification or enzymatic cleavage are found at sites of DNA-RNA or RNA-RNA 

ligation. Enhanced throughput is possible with both methods; however, these approaches do a poor job of 

recapitulating experimental results from low-throughput approaches.
24

 This is believed to be due in part to 

strong biases introduced in ligating single-stranded DNA or RNA molecules.
25

 

 A new approach developed by the Weeks lab allows resolution of chemical modification positions 

by NGS while avoiding the ligation biases associated with other techniques. In this approach, termed 

mutational profiling (MaP), positions of chemical modification are resolved by analyzing mutation rates in  

cDNA following reverse transcription of modified RNA transcripts (Siegfried et al., in preparation) (Figure 
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Figure 1.3 Mutational profiling. In the mutational profiling approach, chemically modified RNA is reverse 
transcribed. Under specific reaction conditions, reverse transcriptase incorporates mutations in cDNA at 
positions that correspond to chemically modified RNA nucleotides. Reverse transcription generates an 
ensemble of cDNA molecules with mutations based on RNA chemical modifications. 
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Figure 1.4 Representative SHAPE data for the HIV-1 TAR stem loop (Siegfried et al., in preparation). 
Mutation rates from chemically modified RNA are compared to background and denatured controls to 
determine a SHAPE reactivity value for each position in an RNA molecule. Positions with high SHAPE 
reactivity (orange and red) are found in looped regions, while positions with low SHAPE reactivity (black) 
are found in base-paired regions. 
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1.3). This approach exploits a recently described phenomenon in which reverse transcriptase will read 

through a chemical modification under specific conditions but with an increased chance of incorporating a 

mutation at the modified position. By analyzing mutation rates over a cDNA-based sequencing library, the 

extent of chemical modification at each position in the RNA may be found (Figure 1.4). 

 To date, MaP has been successfully applied to SHAPE and dimethyl sulfate (DMS) modification 

experiments. By coupling these experiments to NGS techniques, a number of small RNA molecules 

under different experimental conditions may be analyzed simultaneously. Additionally, genome- and 

transcriptome-scale interrogation of RNA structures is possible. However, the development of new 

analytical and bioinformatic techniques is required in order to take advantage of the high throughput of 

these methods. 

1.5 Research overview 

 The goal of my research has been the development of new techniques to generate RNA structure 

models. Central to this goal has been the development of new techniques for the analysis of data from 

high-throughput RNA structure assays. The techniques developed fit broadly into two different research 

directions. The first is the directed modeling of three-dimensional RNA folds based on data from 

biochemical approaches. The second is the prediction of consensus secondary structures based on 

chemical modification data from related RNA molecules. Under both directions, new methods and new 

biologically relevant hypotheses have been made. 

1.5.1 Tertiary structure prediction using RNA contacts implicated by high-throughput chemical 
modification techniques  

A modeling methodology was created for incorporation of biochemical data into molecular 

dynamics simulations in order to predict RNA tertiary folds. Based on RNA-RNA contacts implicated by a 

variety of biochemical and bioinformatic techniques, energy potentials were used to bias molecular 

dynamics simulations of RNA molecules. In test predictions, statistically significant native-like folds (p < 

0.01) were predicted for four RNA molecules ranging in length from 45 to 158 nucleotides. 

Using this approach, a tertiary fold was predicted for the previously undescribed hepatitis C virus 

internal ribosome entry site (HCV IRES) pseudoknot domain. The model generated agreed with 

independent solvent accessibility measurements and fit well into published cryo-electron microscopy 

density maps. Based on the model, we hypothesize that the pseudoknot domain is involved in positioning 
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of the AUG start codon of the IRES into the ribosomal initiation site. The similarity of the model’s topology 

to that of tRNA suggests that the IRES employs molecular mimicry as a functional strategy. 

This general methodology was adapted to predict RNA folds based on RING-MaP, a new 

technique developed to find RNA interactions based on NGS-resolved DMS modification experiments. 

Despite the variability in implicated RNA interactions, native-like folds were predicted for three test case 

RNAs. By coupling this modeling methodology with a generalizable biochemical approach, structure 

determination may be applied to many new RNA targets. 

1.5.2 Sequence comparisons of high-throughput chemical modification data 

 A method was developed to compare high-throughput chemical modification data across related 

RNAs. The method compares SHAPE reactivities between any two nucleotides by a pairwise scoring 

approach. Using this scoring system, sequence alignments for 16S and 23S rRNA were generated 

considering SHAPE chemical modification data alone. Alignment quality was similar to that of sequence-

identity based approaches. 

 SHAPE-dependent sequence alignments were then performed across three HIV-related RNA 

genomes. Using linear regression analysis, areas across these genomes that were statistically 

interdependent were found. Based upon sequence alignment and SHAPE reactivities, consensus 

secondary structure models were found for the HIV-related strains. All known functional RNA elements of 

the HIV genome were recapitulated. A number of additional consensus elements were found, indicating 

possible functional elements newly discovered in this work. 
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CHAPTER 2: ROBUST AND GENERIC RNA MODELING USING INFERRED CONSTRAINTS 

2.1 Introduction 

Critical RNA structures directly regulate gene expression, splicing, and translation.
1
 but the 

structures of most biologically important RNA folds are currently unknown. Recent studies highlight 

significant successes in ab initio structure prediction of local helical structure and of small RNA motifs.
2-4

 

However, the ability of current approaches to predict RNA structure accurately decreases rapidly with 

increasing RNA size. De novo prediction of large RNA structures with complex, nontrivial, three-

dimensional folds from sequence alone remains beyond the realm of current automated algorithms. A 

compelling alternative is to develop modeling methods for facile incorporation of readily obtained 

experimental information. 

Long-range constraints for RNA modeling can be inferred from a variety of biochemical and 

bioinformatic techniques, ranging from chemical footprinting and cross-linking to sequence covariation.
5-7

 

Algorithms devised thus far are making significant progress toward the goal of incorporating specific 

classes of tertiary structure information into RNA structure refinement.
8-11

 However, current refinement 

approaches still make large assumptions about the nature of the constraint information used and are 

closely tied to the specific techniques employed to infer long-range interactions. 

To address these challenges, we develop a generic and efficient approach for accurately 

predicting RNA folds using tertiary structure information as inferred from diverse biochemical or 

bioinformatic techniques. Distance constraints are incorporated into a discrete molecular dynamics (DMD) 

engine
3
 that uses a single refinement approach for all classes of tertiary structure constraint information. 

RNA nucleotides are represented as three pseudoatoms corresponding to the phosphate (P), sugar (S), 

and base (B) moieties (Figure 2.1A). Three pseudoatoms are sufficient for the development of nucleotide-

resolution RNA models with rigid base-paired helices and physically meaningful base stacking 

interactions, while still allowing large RNAs to be refined efficiently. 

 



13 
 

 

 

 

 

 

 

 

 

Figure 2.1 Long-range constraints used to incorporate inferred RNA contacts. (A) Constraint shown on 
the DMD reduced representation of RNA. Constraint potentials were based on the distance between base 
pseudo-atoms. (B) Square-well representation of long-range constraints. A maximum energy bonus of -
2.0 kcal/mol was applied when base pseudo-atoms were between 10 Å of one another. 
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2.2 Generic tertiary constraint system 

 Inferred pairwise tertiary constraints are incorporated via a generic constraint system that uses a 

potential well with an effective length of 15.0 Å and a depth of 2.0 kcal/mol between base pseudoatoms 

(Figure 2.1B). This constraint system is compatible with techniques that do not directly provide distance 

information but instead merely imply pairwise interactions, as with mutational studies. 

2.3 Selection of test-case RNAs 

Four RNAs were selected to benchmark constrained structure refinement: domain III of the 

cricket paralysis virus internal ribosome entry site (CrPV) (49 nucleotides), a full-length hammerhead 

ribozyme from Schistosoma mansoni (HHR) (67 nucleotides), Saccharomyces cerevisiae tRNA
Asp

 (75 

nucleotides), and the P546 domain of the Tetrahymena thermophilia group I intron (P546) (158 

nucleotides). Each of these RNAs has a complex three-dimensional fold dependent both on local helical 

structure and on long-range tertiary interactions. Prior to publication of the high-resolution structures,
12-15

 

significant biochemical or bioinformatic data describing tertiary interactions were available for each RNA. 

The secondary structure was also known with good accuracy in each case. Only this prior information 

(Table 2.1) was used during refinement. 

2.4 Automated refinement protocol 

A single generic and completely automated refinement protocol was applied to each RNA. 

Simulations begin with the RNA strand in an extended conformation at a high temperature. Constraints 

based on the secondary structure are included, and the molecular system is annealed to allow helices to 

form. Constraints for inferred tertiary interactions are incorporated, and the RNA is cooled to a final target 

temperature. RNA structures from this step (100000) are subjected to automated clustering. The centroid 

of the most populated cluster is selected as the final predicted structure. Given our refinement model, this 

structure is representative of the lowest-free energy state. 

2.5 Final predicted models 

 Refined models for all four test RNAs are accurate (Figure 2.2). The root-mean-square deviations 

(RMSDs) of the phosphate backbone relative to the accepted structures for the CrPV, HHR, tRNA
Asp

, and 

P546 RNAs were 3.6, 5.4, 6.4, and 11.3 Å, respectively. Analysis of the RNA structure prediction  
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Figure 2.2 Comparison of predicted models (red) and accepted high-resolution structures (blue). Spheres 
indicate phosphorus atoms (high-resolution structures) or phosphate pseudo-atoms (predicted models). 
The root-mean-square deviations for CrPV, HHR, tRNA, and P546 RNAs are 3.6, 5.4, 6.4, and 11.3 Å, 
respectively. 
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Table 2.1 Secondary and tertiary interactions used in modeling. All secondary and tertiary structure 

information was available prior to crystallographic structure determination. Note that the numbering of the 

residues is that of the sequences used in modeling (each modeled RNA beginning with position 1) and is 

not necessarily the same as the source references. 

RNA Secondary 
structure 

Tertiary interactions Inferred pair-wise 
tertiary contacts 

Crystal structure 

CrPV ref. 
16

 DMS and kethoxal 
probing,

16
 mutational 

analysis
17

 

U16-G47 
A17-U46 
G18-C45 
G19-C44 
U20-A43 
A21-U42 
G22-U41 

3b31 
15

 

HHR 
18

 Mutational analysis 
19, 20

 A7-A27 
A7-U30 
C61-A27 
C61-U30 

2goz 
14

 

tRNA
asp

 
21

 Chemical protection,
21

 
sequence covariation 

22
 

U8-A14 
A15-U47 
G18-U54 
U19-C55 

2tra 
12

 

P546 
23

 Mutational analysis, 
hydroxyl radical 
protection 

24
 

A51-C121 
A51-G148 

1gid 
13

 

Mutational analysis, 
DMS modification 

25
 

A81-C7 
A81-110 

HCV-PK 
26

 Mutational analysis, 
chemical and enzymatic 
probing, thermodynamic 
calculations 

27
 

U72-A96 
G73-U95 
C74-G94 
G75-C93 
A76-U92 
G77-C91 

none 
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significance (p-value)
28

 shows that the probabilities that these models result from chance are small (2 × 

10
−3

, 2 × 10
−5

, 3 × 10
−6

, and ≤10
−6

, respectively). 

There are two critical results from this analysis of RNAs with known structures. First, native-like 

RNA folds were obtained in every case despite the diversity of structural information used to constrain 

refinement (Table 2.1). Second, prediction quality was maintained as RNA size increased from a 49-

nucleotide pseudoknot to a 158-nucleotide RNA domain with a complex tertiary structure (Figure 2.2). 

2.6. Prediction of the HCV IRES pseudoknot domain 

Having shown that this fully automated approach recapitulates native-like folds for diverse, well-

characterized RNAs, we sought to apply this algorithm to an RNA for which extensive biochemical 

information exists but whose structure is unknown. We focused on the pseudoknot domain in the hepatitis 

C virus (HCV) internal ribosome entry site (IRES). 

IRES elements bypass canonical cap-dependent eukaryotic translation initiation by directly 

recruiting ribosomes to internal sequences in an mRNA.
29, 30

 Structural studies have significantly 

improved our understanding of functional mechanisms of IRES elements.
15, 31

 High-resolution structures 

are available for many elements of the HCV IRES;
32, 33

 however, the three-dimensional fold for the 

pseudoknot domain (HCV-PK) has not been determined. The pseudoknot domain consists of a 

pseudoknot at the base of domain III (dIII) and its flanking structures (Figure 3A). Mutation of the 

pseudoknot inhibits translation initiation in HCV replication.
27, 34

 Compensatory mutations that restore the 

pseudoknot do not always restore HCV translation activity, suggesting that sequence conservation is 

required for functions beyond base pairing. The pseudoknot domain contains the AUG start codon for 

translation of the HCV polypeptide (yellow in Figure 2.3A). Solvent accessibility experiments show the 

pseudoknot domain is the most highly structured element in the IRES.
35

 Extensive available biochemical 

information and intense biomedical interest make the HCV-PK RNA an ideal candidate for deriving 

biological insights based on structural modeling. 

A three-dimensional model for the HCV-PK domain RNA was refined using the same fully 

automated folding algorithm as for the four test RNAs. Base pairs in the pseudoknot were modeled as 

generic tertiary constraints. 
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Figure 2.3 Predicted model for the HCV-PK domain. (A) Secondary structure of the HCV-PK domain. 
Stem loop structures are annotated by color. (B) Predicted tertiary fold. Spheres indicate the positions of 
phosphate pseudo-atoms. The coloring of stem loops is consistent across (A) and (B). 

  



19 
 

The predicted HCV-PK structure is dominated by two structural features (Figure 2.3B). The first is 

the four-way junction comprised of stems at the base of dIII (red and purple), dIIIe (cyan), and dIIIf (blue). 

The second consists of base stacking interactions between the pseudoknot (blue) and dIV (green). The 

nucleotide linkages between these two motifs are short and lock the dIV helix in a conformation 

perpendicular to the plane described by the helices of the four-way junction. 

2.7 Independent support of the HCV-PK model 

Two classes of independent experiments support the proposed structure for the HCV-PK RNA. 

First, the predicted tight RNA folding in the four-way junction and pseudoknot is supported by protection 

from hydroxyl radical cleavage, indicative of solvent inaccessible regions of the RNA backbone.
35

 Solvent 

inaccessible regions fall precisely in the interior of the four-way junction and at the interface of this 

element with the pseudoknot (red and yellow spheres in Figure 2.4B). 

Second, the HCV-PK model is consistent with cryo-EM electron density maps of the 

IRES−ribosome complex. Our model of the HCV-PK is that of the uncomplexed IRES, and conformational 

changes occur in both the ribosome and IRES when the IRES interacts with ribosomal subunits and 

translation initiation factors.
36, 37

 For example, domain IV likely unfolds to allow positioning of the start 

codon in the P-site.
38-40

 Nevertheless, the core of our model fits well in the density assigned to the 

pseudoknot domain in the cryo-EM electron density maps of the IRES−ribosome complex.
37

 The critical 

correlations are that dII and dIII (orange and purple, respectively, in Figure 2.4A) are positioned to 

connect sensibly with the rest of the IRES, and the perpendicular orientation of the pseudoknot (blue) 

allows the AUG start codon in dIV (yellow in Figures 2.4A and 2.5) to be positioned in or near the mRNA 

channel. 

2.8 Discussion 

2.8.1 Comparison with similar prediction approaches 

 Our approach compares favorably to other coarse-grained RNA modeling approaches. Folds for 

tRNA
Phe

 and the P546 domain have been predicted with the program NAST in which each RNA 

nucleotide is represented by a single pseudoatom.
2
 NAST modeling was constrained using structure 

information similar to that used in our refinements. Of the resulting models, the most accurate had 

RMSDs relative to the accepted structure of 8.0 and 16.3 Å for tRNA and P546, respectively, whereas our  
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Figure 2.4 Validation of the HCV-PK model by independent studies. (A) Fitting of the HCV-PK model into 
a cryo-EM density map.

37
 (B) Positions in the HCV-PK auto-protected from hydroxyl radical cleavages.

35
 

Modest (yellow) and strong (red) auto-protection indicates solvent inaccessibility at a given RNA residue. 
The phosphate backbone for the model is shown with a cartoon tube, while regions of protection are 
additionally represented with a sphere at sugar pseudo-atom positions. 
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approach yields smaller RMSDs of 6.4 and 11.3 Å, respectively. NAST simulations used 300 h per RNA, 

as compared to 18−40 real-time computing hours for the DMD-based refinements (Figure 2). These 

comparisons highlight both the accuracy and efficiency of our constrained DMD approach. 

2.8.2 Functional hypotheses for the HCV-PK domain 

 Several functional hypotheses are consistent with the predicted model. First, the HCV-PK RNA is 

L-shaped, similar to tRNA, and can be aligned with yeast tRNA
Asp

 (Figure 2.6). Formation of a tRNA-like 

structure is consistent with biochemical studies showing that the HCV IRES is cleaved by the tRNA-

recognizing ribonuclease RNase P.
41, 42

 tRNA mimicry also rationalizes the presence of a seven-

nucleotide loop at the end of domain IV, a structural feature that is generally uncommon in RNA but 

present in the anticodon loops of most tRNAs. 

A recent structural study also yielded evidence of tRNA mimicry in domain III of the CrPV IRES.
15

 

Though the HCV-PK model and CrPV experimental structure have distinct folds, both support tRNA 

mimicry as a common strategy employed by IRES structures and are consistent with extensive examples 

of tRNA mimicry in biologically diverse RNAs.
43

 

Second, the perpendicular orientation of the pseudoknot relative to the four-way junction may 

function to position the AUG start codon for translation initiation. In cryo-EM maps of both the 40S− and 

80S−IRES complexes, density corresponding to the pseudoknot domain is adjacent to the channel 

occupied by the mRNA template during translation.
36, 37

 Thus, dIV and, specifically, the AUG start codon 

will be positioned near the ribosome mRNA exit site. 

These observations support a model in which the IRES pseudoknot domain docks initially near 

the ribosome exit channel, facilitated by its tRNA-like structure (Figure 2.5, left). Our model suggests 

additional conformational changes are required in the IRES and ribosome for the AUG start codon to fully 

occupy the mRNA channel. A modest unfolding of the dIV helix would then allow this element to serve as 

the mRNA template for translation of the HCV polyprotein (Figure 2.5, right). 

2.9 Conclusion 

 RNA structure refinement using inferred constraints consistently yields nativelike models for 

RNAs spanning 49−158 nucleotides. This approach does not require a specific optimized form for the 

long-range constraints but does require knowledge of through-space tertiary interactions. The success of  
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Figure 2.5 Docking of the HCV IRES RNA into the mRNA channel of the 40S ribosome. Cartoons of the 

40S subunit (black) and HCV IRES (gray) are based on cryo-EM studies.
36, 37

 The AUG start site codon, 

mRNA entry and exit sites, and tRNA binding sites are labeled on the 40S subunit. The HCV-PK model is 

colored and positioned in the same orientation relative to the cryo-EM density as Figure 2.4A. 
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Figure 2.6 Alignment of the HCV-PK model (red) with tRNA (blue).
12

 

 

  



24 
 

this approach implies that knowledge of only a few long-range constraints is sufficient to refine accurate 

folds for many RNAs with complex structures. 

The HCV-PK domain model rationalizes substantial preexisting biochemical information for this 

RNA and provides specific and novel functional insights useful for guiding future hypotheses and 

experiments. RNA structure refinement using inferred constraints holds significant promise for 

understanding the functions of many biologically important RNAs whose analysis is recalcitrant to high-

resolution approaches. 

2.10 Experimental methods 

2.10.1 Sequences of RNA models 

CrPV: 5'-UGCGG UUUUU CAGAU UAGGU AGUCG AAAAA CCUAA GAAAU UUACC UGCU-3' 
 
HHR: 5'-GGAUG UACUA CCAGC UGAUG AGUCC CAAAU AGGAC GAAAC GCCAA AAGGC GUCCU 
GGUAU CCAAU CC-3' 
 
 tRNA

Asp
: 5'-UCCGU GAUAG UUUAA UGGUC AGAAU GGGCG CUUGU CGCGU GCCAG AUCGG 

GGUUC AAUUC CCCGU CGCGG AGCCA-3' 
 
P546: 5'-GAAUU GCGGG AAAGG GGUCA ACAGC CGUUC AGUAC CAAGU CUCAG GGGAA ACUUU 
GAGAU GGCCU UGCAA AGGGU AUGGU AAUAA GCUGA CGGAC AUGGU CCUAA CCACG CAGCC 
AAGUC CUAAG UCAAC AGAUC UUCUG UUGAU AUGGA UGCAG UUC-3' 
 
HCV-PK: 5'-CUCCC CUGUG AGGUU UUCCU CCAGG ACCCC CCCUC CCGGG AGAGC CUUUU 
GGUAC UGCCU GAUAG GGUGC UUGCG AGUGC CCCGG GAGGU CUCGU AGACC GUGCA 
UCAUG AGCAC GAAUC-3' 
 
  Sequences correspond to those used in prior structural studies.

16, 18, 21, 23
 In HHR, where the 

crystallographic model includes two strands, the strands were connected with a 5'-AAAA-3' linker. The 

HCV-PK sequence was taken from genotype 1b.
44

 The HCV-PK model includes nucleotides 40-52, 111-

139, and 285-354, comprising the base of domain II, the four-way junction at the base of domain III, and 

domain IV. During modeling, these three segments of the HCV IRES sequence were connected using two 

5'-UUUU-3' linkers. 

2.10.2 Secondary and tertiary constraint sources 

Sources for the secondary structures and tertiary contact information used to constrain DMD 

refinement are outlined in detail in Table 2.2. Base pairs in the secondary structures were constrained as 

described previously.
3, 10

 Tertiary contacts were imposed using the generic constraint system created in 

this work. 
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2.10.3 RNA discrete molecular dynamics engine (DMD) 

 The DMD engine
3
 models each nucleotide as three pseudo-atoms corresponding to the 

phosphate, sugar, and base moieties. Pair-wise interactions including base pairing, base stacking, 

packing interactions, and electrostatic repulsion are approximated using square-well potentials. In base-

paired regions of the model, distance constraints between base and phosphate pseudo-atoms are used 

to maintain the rigid structure characteristic of the RNA double helix.
10

 

The engine used in this work extends base stacking interactions to both base-paired and single-

stranded RNA regions. Single-stranded stacking interactions contribute -kBT to the RNA free energy, 

where kB is the Boltzmann constant and T equals 300 K (-kBT = -0.6 kcal/mol). This is one-half of the free 

energy contribution assigned to base-paired stacking interactions (-2kBT).
8
 

2.10.4 General constraint system 

 Distance constraints were included between the base pseudo-atoms of residues inferred to 

participate in pair-wise interactions. A maximum free energy bonus of 2.0 kcal/mol was applied when 

base pseudo-atoms were within 10.0 Å of each other. For each 0.5 Å beyond the inter-pseudo-atom 

distance of 10.0 Å, the bonus was reduced by 0.2 kcal/mol, giving the constraint an effective length of 

15.0 Å. The attractive potential is described in Figure 1 and in the following potential function, where d is 

the distance between base pseudo-atoms:  
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2.10.5 General refinement protocol 

 Simulations begin with the RNA strand in an extended linear conformation at a high temperature. 

The RNA sequence and constraints based on secondary structure were the initial input to the DMD 

algorithm. The RNA was first subjected to a folding phase designed to allow base pairs and local helical 

structure to form. In this phase, the RNA was cooled through the following automated steps, where Ti and 

Tf are the initial and final reduced temperatures [in kcal/(mol × kB)]: (1) Ti, Tf = 30, for 10
5
 DMD time units 

(tu); (2) Ti = 0.30, Tf = 0.28, 2 × 10
4
 tu; (3) Ti, Tf =0.28, 10

5
 tu; (4) Ti =0. 28, Tf = 0.26, 2 × 10

4
 tu; (5) Ti, Tf = 
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0.26, 10
5
 tu; (6) Ti = 0.26, Tf = 0.24, 2 × 10

4
 tu; (7) Ti, Tf = 0.24, 10

5
 tu; (8) Ti = 0.24, Tf = 0.22, 2 × 10

4
 tu; 

(9) Ti, Tf = 0.22, 10
5
 tu; (10) Ti, Tf = 0.22, 2 × 10

4
 tu. After step 10, constraints describing tertiary contacts 

were added. The RNA model was then cooled to a target reduced temperature through the following 

steps: (11) Ti, Tf = 0.22, 10
5
 tu; (12) Ti = 0.22, Tf = 0.20, 2 × 10

4
 tu; (13) Ti, Tf = 0.20, 10

5 
tu; (14) Ti = 0.20, 

Tf = 0.18, 2 × 10
4
 tu; (15) Ti, Tf = 0.18, 10

5
 tu; (16) Ti = 0.18, Tf = 0.16, 2 × 10

4
 tu; (17) Ti, Tf = 0.16, 10

5
 tu; 

(18) Ti = 0.16, Tf = 0.14, 2 × 10
4
 tu; (19) Ti, Tf = 0.14, 10

5
 tu; (20) Ti = 0.14, Tf = 0.12, 2 × 10

4
 tu; (21) Ti, Tf = 

0.12, 10
5
 tu; (22) Ti = 0.12, Tf = 0.10, 2 × 10

4
 tu; (23) Ti, Tf = 0.10, 10

5
 tu 100,000 structures are generated 

at this final refinement step. To select a representative structure for each refinement, structures from step 

23 were subjected to hierarchical clustering as described.
10

 Structures were first filtered on the basis of 

energy and simulation distance. Clustered structures were required to have an energy less than the 

median energy from step 23 and were required to be at least 1000 tu apart from other clustered 

structures (to prevent analysis of consecutive structures). Structures were binned by RMSD value into five 

clusters. The centroid of the cluster with the highest population was taken to be the representative 

structure.  

Refinements were performed on a Linux workstation (Intel Pentium 4 processor, 3.2 GHz) 

running Fedora Core 4. Refinement times ranged from 18 (CrPV, 49 nts) to 42 hrs (P546, 158 nts). 

In some cases, the local structure that forms before incorporation of tertiary contact constraints 

restricts conformational space such that residues implicated in a tertiary interaction may not come into 

contact during refinement. In cases where imposed tertiary contacts were not present in the final structure 

(HHR, P546 and HCV-PK RNAs), the refinement was repeated with temporary strong constraints during 

step 10; these constraints simply function to promote initial collapse of the RNA molecule. For a given 

long-range pair-wise interaction, square well potentials were included between each pair of phosphate, 

sugar, and base pseudo-atoms, providing a graduated potential well that extends from an inter-residue 

distance of 10.0 to 155.0 Å. The maximum energy bonus for this constraint set was 20.0 kcal/mol when 

phosphate pseudo-atoms are within 85 Å of each other, 15.0 kcal/mol when sugar atoms are within 30 Å, 

and 10.0 kcal/mol when bases are within 10 Å. 

2.10.6 Fitting of cryo-EM models 

 HCV-PK models were fit into cryo-EM models
37

 manually using UCSF Chimera.
45
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2.10.7 Software used 

RMSD calculations were performed using lsqman
46

 and consider phosphate and phosphate 

pseudo-atom positions. RNA model images were composed using Pymol
47

 with the exception of Figure 

2.4A, which was generated using UCSF Chimera
45

. Clustering was performed using OC
48

. 
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CHAPTER 3: ACCURATE PREDICTION OF RNA TERTIARY FOLDS BY RING-MAP DIRECTED 
MOLECULAR MODELING 

 

3.1 Introduction 

Previously considered the passive intermediate in the transfer of genetic information from DNA to 

protein, RNA is now known to be active participant in a number of biological processes.
1
 RNA actively 

regulates translation and transcription, controlling levels of gene expression.
2
 Many RNA functions 

depend upon the formation of well-defined three-dimensional structures.
3
 Investigation of this structure-

function relationship is critical to the understanding of RNA and its place in biology. 

 RNA interaction group detection by mutational profiling (RING-MaP) is a recently developed 

method for analysis of RNA structure (Homan et al., in preparation; Figure 3.1). RING-Map combines a 

number of chemical and enzymatic processes to reveal interactions within an RNA molecule. In this 

method, multiple structure-selective chemical modification events are detected on a single RNA molecule 

through next-generation sequencing approaches. By comparing chemical modifications across thousands 

of single molecules, nucleotide pairs with highly correlated structure-selective modifications are identified. 

These correlations imply that these nucleotides interact in the three-dimensional structure (Figure 3.2). 

 An attractive application of RING-MaP is to use these implicated interactions to bias molecular 

dynamics simulations in order to predict RNA structures.
4
 RING-MaP describes a great variety of RNA 

interactions, however, and there is no clear way to distinguish interactions of great use to three-

dimensional modeling, such as pair-wise tertiary contacts, from less useful interactions, such as long-

distance interactions associated through coordinated folding. The challenge of modeling RNA using 

RING-MaP-determined RNA interactions is to create a method that accepts a wide-variety of structural 

information but still yields a precise RNA fold. 

 Here, we describe a technique for using RING-MaP-determined RNA interactions to bias RNA 

molecular dynamics simulations in order to produce precise and accurate three-dimensional RNA folds. 

The method utilizes free energy potentials dependent on the through-space distances between RING-  
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Figure 3.1 Characterization of RNA by RING-MaP. (A) Schematic of detection of DMS modifications by 
mutational profiling. Following folding, RNA is modified by DMS, creating an ensemble of chemically-
modified RNA molecules. Mutations are incorporated at modified positions during reverse transcription 
and are detected by NGS techniques. Statistical association analysis is then used to find correlated 
mutation events, implying interactions between nucleotides. (B) Structural breathing results in 
coordinated structure-specific DMS modification. 
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MaP-determined nucleotide pairs. When such pairs are close, an energy bonus is applied such that 

RING-MaP-determined pairs remain in contact when sampled. The quality of RNA structures is 

comparable to structures predicted using constraints identified by other structural characterization 

techniques such as small-angle X-ray scattering.
5
 

3.2 RING-MaP: statistical association of single-molecule chemical modification 

 Chemical modification is a commonly used means of characterizing RNA structure.
6
 In chemical 

modification experiments, a structure-selective chemical is allowed to react with a natively folded RNA. By 

assaying positions of modification, structural inferences may be made about the RNA studied. For 

instance, dimethyl sulfate (DMS) preferentially modifies adenosine and cytosine bases at unstructured 

RNA nucleotides.
7
 Adenosine and cytidine residues that are not modified by DMS are inferred to 

participate in structural interactions. 

Recently, approaches have been developed that allow RNA chemical modification experiments to 

be resolved by sequencing.
8
 One such approach is mutational profiling. Mutational profiling exploits a 

recently described phenomenon in which reverse transcriptase incorporates a mutation at the cDNA 

position corresponding to the modified residue (Siegfried et al., in preparation). Through mutational 

profiling, positions of chemical modification may be determined by sequencing. 

Chemical modification by DMS was measured using next generation sequencing (Figure 3.1A). In 

next-generation sequencing approaches, >10
6
 sequences are rapidly characterized in parallel.

9
 Each 

sequence analyzed is derived from a single DNA molecule in the sequencing library. When a solution-

based ensemble of DMS-modified RNA molecules is analyzed by next generation sequencing, an array of 

single-molecule DMS experiments is effectively performed in parallel.  

Rates of mutation were analyzed by statistical association analysis. To identify correlated 

modifications, all reads where a selected position in the RNA was mutated were selected, and the 

mutation rates for each other position were determined for those reads. These mutation rates were then 

compared to mutation rates across all reads. If a position was found to be mutated at a significantly 

greater or lesser rate when another position was modified, those two positions were considered to be 

correlated. The significance of this correlation was determined by chi-square analysis.  
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Figure 3.2 Nucleotide pairs identified by RING-MaP displayed on high-resolution structures. Red lines are 
drawn between nucleotide pairs implicated in RNA interactions. 
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Pairs of nucleotides with correlated DMS modifications likely participate in common 

intramolecular interactions. These correlations are thought to reflect coordinated structural breathing that 

increases the chance of associated modifications at interacting RNA nucleotides (Figure 3.2B). The 

collection of interactions found by this analysis is defined as an RNA interaction group, or RING. 

3.3 Characterization of RING-MaP RNA interactions 

 In order to incorporate RING-MaP interactions into molecular dynamics simulations, the 

interacting pairs must be related to some structural metric such as through-space distance between 

correlated residues. Therefore, the first step in incorporating RING-MaP data was structural 

characterization of RING-MaP interaction networks. In previous work, RING-MaP RNA interactions were 

determined for three RNA molecules: the thymine pyrophosphate-dependent RNA riboswitch (TPP), the 

P5-P4-P6 domain of the Tetrahymena thermophila Group I intron (P546), and the catalytic domain of 

Bacillus stearothermophilus ribonuclease P (RNase P) (Homan et al., in preparation). High-resolution 

structures derived from X-ray crystallography are available for each of these RNAs.
9-11

 Through-space 

distance distributions for correlated nucleotide pairs with absolute correlations greater than 0.025 were 

determined for each RNA based on corresponding high-resolution structures (Figure 3.3A).  

Pair-wise through-space distances for identified interactions were found to follow a normal 

distribution (Figure 3.3B). The average pair-wise through-space distance for RING-MaP pairs was 23.2 Å. 

The variability in through-space distances is reflected in a standard deviation of 13.0 Å. Despite this 

variability, the average distance considering the three RNAs individually was fairly consistent. TPP, P546, 

and RNase P have average through-space distances of 21.0 Å, 25.1 Å, and 23.5 Å, respectively. 

3.4 Incorporation of RING-MaP information into molecular dynamics simulations  

Energy potentials used to restrain molecular dynamics simulations were based upon pair-wise 

distance statistics. For a given RING-MaP nucleotide pair, if the distance between the two constituent 

nucleotides was less than 36 Å (the sum of the average and standard deviation distances) or 23 Å (the 

average distance), an energy bonus of -0.3 kcal/mol or -0.6 kcal/mol, respectively, was applied (Figure 

3.3C). The maximum energy bonus of -0.6 kcal/mol is equal to the energy potential applied for a single 

nucleotide stack in the modeling engine. Molecular dynamics simulations were also constrained by RNA 

secondary structure. The secondary structure for each RNA was taken from the corresponding crystal   
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Figure 3.3 Characterization of through-space distances in high-resolution structures for RING-MaP pairs 
and subsequent energy potential design. (A) Stacked column histogram of C1’-C1’ through-space 
distances for TPP (green), P546 (red), and RNase P (blue). (B) Histogram considering C1’-C1’ distances 
for all three RNAs. The described normal distribution is shown with a dotted line. (C) Energy potential well 
used to bias molecular dynamics simulations. Internucleotide distances of 23 Å corresponds to the 
average distance, and 36 Å corresponds to the sum of the average and standard deviation distances. 
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structure. Secondary structure may be accurately predicted by comparative analysis or chemical 

modification-directed algorithms,
12, 13

 and constraint by a known secondary structure is common in 

knowledge-directed modeling approaches.
14

 

Energy potentials derived from RING-MaP analysis were incorporated into RNA discrete 

molecular dynamics (RNA DMD) simulations.
15

 RNA DMD is distinguished from other molecular dynamics 

approaches by two characteristics. First, an RNA molecule is modeled using a reduced atom 

representation. Each RNA nucleotide is represented using only three pseudo-atoms that correspond to 

the sugar, base, and phosphate groups. Second, force field interactions are approximated using square-

well potentials based on experimentally-derived values. These two approximations allow for efficient and 

robust sampling of RNA conformational space. 

RNA DMD simulations were performed using replica exchange; that is, multiple simulations were 

run in parallel. Over the course of the simulations, the temperature factor that governs energy transfer 

during simulations was varied. In RING-MaP-biased modeling, a total of eight replicas were run in 

parallel, with each replica run for 1,000,000 time units. The temperature factors used were 0.1000, 

0.1375, 0.1750, 0.2125, 0.2500, 0.2875, 0.3250, and 0.3625, representing a broad range of temperature 

factors commonly used in RNA DMD refinement. Prior to initiating simulations, energy potentials based 

on RING-MaP analysis and constraints based on known secondary structures were incorporated. 

Simulations were performed for all RING-Map characterized RNAs. 

3.5 Filtering generated structures by radius of gyration 

 Following molecular dynamics simulation, structural snapshots were generated at every 1,000 

time units for each replica. Structures generated from RING-MaP-biased simulations were compared with 

structures generated using no constraints. In comparisons of radius of gyration values for biased and 

unbiased simulations, a bias-dependent collapsed state was apparent (Figure 3.4). In order to ensure that 

predicted structures reflected this collapsed state, structures were filtered on the basis of radius of 

gyration. 

 To do this, radius of gyration histograms were created for both biased simulations and unbiased 

controls. The unbiased histogram was scaled such that its difference from the biased histogram was 

minimized. A difference histogram was then generated, yielding a histogram describing the RING pair- 
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Figure 3.4 Radius of gyration distributions of biased (red) and unbiased (blue) simulations of P546. The 
derived log-normal distribution for the bias-dependent collapsed state is shown with a dotted line. 
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dependent collapsed state. A log-normal distribution was then fit to this difference in order to characterize 

the collapsed state (Figure 3.4). Only structures with radii of gyration within one geometric standard 

deviation of the geometric mean were considered in further analyses. Radius of gyration filtering resulted 

in an ensemble with higher predictive accuracy as measured by root mean square deviation (RMSD) from 

accepted structures (Figure 3.6). 

3.6 Selection of a final predicted structure by hierarchical clustering 

 Hierarchical clustering was used to characterize the structural ensemble and generate a final 

predicted structure.
16

 For those RNA models selected by radius of gyration, the 250 models with the 

lowest free energies were analyzed by clustering (structural ensembles with 10 representative models are 

shown for each RNA in Figure 3.5). Clustering was performed based on RMSD values between models in 

the structure ensemble. Clustering was performed such that the greatest RMSD value allowed in a given 

cluster was less than the sum of the predicted average and standard deviation RMSDs.
17

 

 For each RNA, clustering resulted in only a few clusters or a single cluster. For P546, all 

structures were within a single cluster. TPP and RNase P each had a prominent primary cluster. In 

analyses of 250-structures ensembles, the most populated cluster for TPP contained 249 structures and 

that for RNase P contained 210 structures. The clustering results show that RING-biased molecular 

dynamics simulations are convergent on relatively well-determined RNA folds, indicating a high level of 

precision. 

 From each simulation, the centroid of the most populated cluster was taken to be the final 

predicted structure (Figure 3.5). To evaluate the final predicted models, RMSD values were calculated 

using the phosphate backbones of the predicted models and accepted high-resolution structures. For 

TPP, P546, and RNase P, the predicted structures had RMSDs of 9.6 Å, 17.1 Å, and 22.4 Å, respectively. 

TPP, P546, and RNase P predictions had p-values of 0.002, 1.1 x 10
-5

, and 1.4 x 10
-5

, respectively, 

indicating that the predictions have a high degree of statistical significance.
17

 

Of the many contacts found in RING-MaP analysis of RNase P, few were found between 

nucleotides making up the P3-P2-P19 helical stack and the rest of the RNA. Based on this observation, 

the area excluding the P3-P2-P19 helical stack was determined by RING analysis to be the structural  
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Figure 3.5 Reference models, limited structure ensembles, and final predicted structures for TPP, P546, 
and RNase P. Ten representative models (blue) for each RNA molecule were found by hierarchical 
clustering of RING MaP-biased simulations. The final predicted structure (blue) for each RNA is shown 
aligned to the reference X-ray crystal structure (grey). 
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Figure 3.6 Sequential improvements in RMSDs during refinement. RMSD histograms were calculated for 
representative structures for both biased (red) and unbiased (blue) simulations. RMSD histograms were 
also calculated for representative structures after filtering by radius of gyration (green) and after selection 
by lowest free energy (black). 
  



42 
 

core of the molecule. Within this RING-determined structural core, the predicted structure has an RMSD 

of 14.4 Å with a p-value less than 1.0 x 10
-6 

(Figure 3.7). 

3.7 Discussion 

 With RMSD values ranging from 9.6 to 22.4 Å for RNA molecules as large as 268 nucleotides, 

RING-MaP-directed modeling successfully recapitulated known RNA folds (Figure 3.5). RING-MaP-

directed modeling correctly modeled fold-defining tertiary motifs, such as the bent-hinge motif of P546 

that allows for two-helix packing. The degree of accuracy of RING-MaP-directed modeling was 

comparable to other low-resolution structural determination techniques such as modeling based on small 

angle X-ray scattering data.
5
 

 A distinct advantage of RING MaP-dependent modeling is that RING-MaP analysis may be 

performed under various conditions, allowing generation of solution-specific structures. This is most 

readily shown by the success modeling TPP, a riboswitch that binds thiamine pyrophosphate. The high-

resolution structure of TPP was determined in the ligand-bound conformation. Our solution chemical 

probing of TPP RNA was performed in the presence of ligand, and RING-directed modeling successfully 

recapitulated the ligand-bound fold (Figure 3.5). In future experiments, RING-directed modeling may be 

used to discover and define structural changes in an RNA molecule due to external factors such as the 

presence of RNA-binding proteins or ligands. 

 The methods developed in this work may also be used with other RNA characterization 

techniques. As a whole, this refinement strategy incorporates pair-wise data on the basis of statistical 

guidelines, allowing incorporation of data from other sources, such as crosslinking studies or fluorescence 

resonance energy transfer (FRET) analysis. Each step in the methodology may see application 

individually, as each leads to greater model accuracy as measured by RMSD (Figure 3.6).  

3.8 Conclusion 

 RING MaP-dependent modeling results in accurate structure prediction for RNAs ranging in 

length from 80 to 268 nucleotides, with TPP, P546, and RNase P predictions having RMSDs relative to 

high-resolution structures of 9.6 Å, 17.1 Å, and 22.4 Å, respectively. As application of RING-MaP is 

generic, characterization by RING-MaP and subsequent structure prediction may be applied to other  
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Figure 3.7 RING-MaP-determined structural core of RNase P. The quality of alignment of the predicted 
model (blue) to the reference high-resolution structure (grey) for the whole model is shown on the left; 
alignment based only on the structural core is shown on the right. 
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biologically relevant RNA molecules. The modeling methodologies developed here may be applied to 

other RNA structure characterization techniques. 

3.9 Experimental methods 

3.9.1 Selection of pairwise contacts implicated by RING-MaP 

 RING-MaP nucleotide pairs were selected on the basis of absolute correlation coefficient. Only 

nucleotide pairs with an absolute correlation coefficient greater than 0.025 were considered in analysis. 

RING-MaP nucleotide pairs were excluded if the positions of the two constituent nucleotides were less 

than or equal to 11 nucleotides apart. RING-MaP pairs also excluded if they were considered already 

implicated in a secondary structure contact: Considering positions ni and nj in a RING-MaP nucleotide pair 

and positions mi and mj in any given base pair in constraining secondary structure, if |ni - mi| + |nj - mj| <= 

11, the nucleotide pair was considered implicated by secondary structure contacts.  

3.9.2 Energy potential system used for implicated contacts 

 A free energy bonus E was applied based on the distance d between the two constituent sugar 

pseudo-atoms in a RING-MaP nucleotide pair (Figure 3.3C): 

  {

           ⁄            

           ⁄                 

           

 

3.9.3 Replica exchange molecular dynamics simulations 

 Molecular dynamics simulations were performed using the RNA DMD engine.
15

 Simulations were 

performed using replica exchange with eight replicas run in parallel, with each being run for 1,000,000 

time units. The eight replicas were run with temperature factors of 0.1000, 0.1375, 0.1750, 0.2125, 

0.2500, 0.2875, 0.3250, and 0.3625, where the temperature factors used described heat exchange by the 

Andersen thermostat. An unbiased control simulation with identical parameters was run in parallel. 

3.9.4 Filtering by radius of gyration 

 Structures were generated at every 1000 time units. The ensemble of structures for the biased 

simulation was compared to the unbiased control in order to determine a constraint-dependent collapsed 

state. Radius of gyration histograms were created for both the biased and unbiased simulations (Figure 

3.4). The unbiased histogram was then normalized to the biased histogram such that the difference 

between the two was minimized by least squares. The normalized unbiased histogram was then 
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subtracted from the biased histogram. A log-normal distribution was then fit to this difference using least 

squares, giving a distribution describing the collapsed state. The log-normal is described by the following 

probability distribution function, where x is a given radius of gyration, σ is the location parameter, and μ is 

the scale parameter: 

 ( )  
 

 √  
  (     )    ⁄  

The geometric mean was taken as eμ, and the geometric standard deviation was taken as eσ. The 

structural ensemble was filtered such that each structure taken forward in the analysis had a radius of 

gyration within one geometric standard deviation of the geometric mean.  

3.9.5 Hierarchical clustering and final structure selection 

 From the ensemble of structures selected by radius of gyration, the 250 structures with the lowest 

free energy were analyzed by hierarchical clustering based on pair-wise RMSD.
16

 In previous work, 

Hajdin et al. showed that the RMSDs relative to a known high-resolution structure for molecular dynamics 

simulation-generated RNA decoys follow a length-dependence based on that RNA’s chain length.
17

 They 

were able to develop an equation that relates RNA chain length to a predicted mean RMSD value. 

Clustering was performed such that within each cluster the greatest RMSD value between any given pair 

was less than the sum of the standard deviation and mean RMSD values predicted for a given RNA 

based on chain length. 

 The final predicted structure was taken as the centroid of the most populated cluster. To find ten 

structures representative of the most populated cluster, the constituent structures of the most populated 

cluster were themselves clustered with the number of clusters constrained to be ten. The centroids of 

those ten clusters were considered as a limited representation of the whole structure ensemble. 

3.9.6 Software used 

 Least-squares fitting and statistical analysis were performed using the SciPy and NumPy 

modules of Python.
18

 Clustering analysis was performed using OC.
19

 Images of three-dimensional RNA 

structures were generated using Pymol.
20
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CHAPTER 4: MODEL-FREE RNA STRUCTURE ALIGNMENT INCORPORATING CHEMICAL 
PROBING DATA 

 

4.1 Introduction 

In recent decades, RNA has been found to be an active participant in gene expression and 

regulation. As discoveries related to the function of RNA were being made, the fundamental 

understanding of the human genome was changing. Initially, most of the human genome was believed to 

be translated into protein. In 1964, it was estimated that the human genome contained 6.7 million genes 

based on the assumption that nearly the entire genome encoded for protein.
1
 With publication of the 

human genome sequence in 2001, the number of predicted genes dropped to between 30,000 and 

40,000.
2
 In this same report, it was noted that a majority of the human genome was transcribed into RNA 

although many regions do not appear to encode proteins. Recent estimates suggest that only 2.94% of 

the human genome is translated into protein, but 62.1% and 74.7% of the genome is transcribed into 

processed and primary transcripts, respectively.
3, 4

 

 A current challenge is the characterization and categorization of the RNA elements transcribed 

across the human genome. For a vast majority of RNA transcripts, no structures or functions are known. 

To address this problem, a number of sequence comparison techniques are being used to find related 

RNA elements and to annotate the transcriptome. A number of these comparison approaches consider 

secondary structures of RNA molecules. Structure-informed approaches such as Infernal and Foldalign 

perform alignments based on both sequence and local secondary structure.
5, 6

 These approaches are 

necessarily limited by our current understanding of RNA structure. Though great strides have been made 

in ab initio prediction of RNA secondary structures, the best current approaches only correctly predict 40-

70% of known base pairs.
7
 Secondary structure prediction approaches also do not consider RNA tertiary 

structures like pseudoknots. Moreover, optimization and benchmarking of these approaches are confined 

to known RNA structure motifs, themselves limited to structures that have been studied by high-resolution 

structure characterization techniques such as X-ray crystallography and nuclear magnetic resonance 
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(NMR) spectroscopy. RNA structure prediction techniques are therefore likely biased by a small number 

of well-characterized elements. 

  Sequence comparison considering structure-dependent chemical modification is attractive 

alternative to comparisons considering ab initio or concurrent structure prediction. RNA chemical 

modification is robust and is not limited by the current understanding of RNA structure. Current chemical 

modification approaches, such as SHAPE, are not limited to specific bases and allow characterization of 

virtually all nucleotides of any RNA target. The adaptation of RNA chemical modification approaches to 

next-generation sequencing (NGS) platforms allows for high-throughput analysis with approaches rapidly 

advancing towards transcriptome-scale assays.
8
 

 In this work, a sequence comparison approach that considers chemical modification data is 

introduced and evaluated. We found that a SHAPE-dependent alignment that was blind to base identity 

had comparable accuracy to traditional sequence comparison techniques. Approaches that consider both 

SHAPE modification and sequence identity showed improved accuracy relative to approaches 

considering only base identity. Chemical modifications were compared using a simple pair-wise scoring 

function that may be applied to a variety of current and future sequence comparison techniques. 

4.2 Selection of test-case RNA molecules and subsequent data generation 

 In order to develop a method for RNA sequence comparison by chemical modification, target 

RNAs for chemical modification must first be selected. For development and evaluation of SHAPE-

dependent RNA structure alignment, ribosomal RNA was used. Ribosomal RNA was selected based on 

two criteria. First, ribosomal RNA has been extensively characterized. The majority of the nucleotides 

described by high-resolution structures in the RCSB Protein Data Bank are found in ribosomal RNAs; 

currently 83% of nucleotides in RNA structures belong to rRNA. Thousands of ribosomal RNA sequences 

have been curated and aligned in the Comparative RNA Web site (CRW), with secondary and tertiary 

structures predicted based on covariation analysis.
9
 Second, ribosomal RNA contains a variety of 

secondary and tertiary RNA structure motifs. Ribosomal RNA has been a primary source for RNA motifs 

for knowledge-based structure prediction methods such as the MC-Fold | MC-Sym pipeline.
10

 

 Three ribosomal RNA samples were considered during development of this approach. Ribosomal 

RNA samples were taken from cell cultures of Escherichia coli, Clostridium difficile, and   
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Figure 4.1 Histogram of the absolute differences in SHAPE reactivities for associated nucleotides in 

CRW alignments. Differences between related pairs are shown in red, and differences between pairs in a 

randomized control are shown in blue. Pairs were randomized over eight individual trials; average values 

are shown and standard deviation values are included as error bars. 
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Haloferax volcanii. These ribosomal RNA samples represent a diverse test set; compared to E. coli, C. 

difficile and H. volcanii have percent nucleotide identities of 72.6% and 59.7%, respectively. The three 

ribosomal samples were analyzed using SHAPE chemistry, in which structural flexibility at a given 

position is determined by the extent of modification by chemical probe.
11

 In the immediate future, large-

scale RNA chemical modification experiments will almost certainly be detected using NGS approaches. 

To accommodate this, all data for the ribosomal samples were generated using SHAPE-MaP, a new 

approach for determining SHAPE reactivity values using NGS platforms (Siegfried et al, in preparation). 

Ribosomal RNA data for E. coli were obtained in previous experiments (Siegfried et al, in preparation), 

and data for C. difficile and H. volcanii were determined as part of this work. 

4.3 Comparison of SHAPE data for related RNA sequences 

 Following characterization of ribosomal RNA samples, SHAPE data were compared for related 

RNA nucleotides. Related nucleotides were taken from annotated sequence comparisons from the 

Comparative RNA Project web site.
9
 The absolute differences in SHAPE reactivities were found for each 

related nucleotide pair. These differences were then plotted as a histogram (Figure 4.1, in red). The 

distribution of the SHAPE reactivity differences in related RNA nucleotides follows an exponential decay 

distribution. In order to gauge the significance of the association of SHAPE reactivity values, SHAPE data 

were randomly resorted, and absolute differences were calculated for randomly assigned pairs (Figure 

4.1, in blue). The distributions indicate that the difference in SHAPE reactivities between two related 

nucleotides is likely to be smaller than the difference between two unrelated nucleotides. Based on 

Student’s t-test, these two distributions were found to be significantly different from one another with a p 

value < 10
-6

. 

4.4 SHAPE-based scoring function and alignment approach 

 Global SHAPE-dependent sequence comparisons were made using a pair-wise dynamic 

programming algorithm illustrated schematically in Figure 4.2.
12

 The algorithm utilizes recursion to 

optimally align two sequences based on a pair-wise scoring function between individual nucleotides. The 

algorithm also incorporates penalties based on gap openings and gap extensions, where gaps are 

unaligned regions of sequence.  
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Figure 4.2 Schematic of a general dynamic programming approach. (A) First, a comparison matrix F for 

sequences x and y is generated and subsequently filled using a scoring function. Scoring proceeds 

across a given row until that row ends, and then scoring proceeds on the next row. The scoring function 

considers previously determined scores in the matrix. (B) Following matrix generation, a trace-back 

function follows the highest scores in the comparison matrix, generating the optimal global alignment. 
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Figure 4.3 Scoring function used to compare SHAPE values at positions i and j in sequences x and y, 

respectively. 
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Pair-wise SHAPE comparisons were scored by an exponential decay function (Figure 4.3). This 

function is described by the following equation, where i and j are SHAPE values for any two given 

nucleotides and N0, λ, and b are parameters for the exponential decay function: 

            
  |   |    

Parameters N0, λ, and b, as well as gap opening and extension penalties, were optimized by grid 

searches for 16S and 23S ribosomal RNA. The resulting alignment was compared to an accepted 

pairwise alignment from the CRW. Parameters were selected based on the average sensitivities for 

pairwise alignments of E. coli RNA to C. difficile and to H. volcanii RNA. 

4.5 Quality of SHAPE-based alignments 

 SHAPE-based alignments were performed for all 16S and 23S ribosomal RNA pairs 

(representative region of alignment shown in Figure 4.4). In order to evaluate the accuracy of the 

alignment algorithm with optimized parameters, qualities of alignments were compared to global 

sequence alignments performed using the Needle algorithm on the EMBOSS server using default 

parameters. Both SHAPE-based and Needle alignments were evaluated by computing the sensitivity 

relative to accepted CRW alignments. 

 SHAPE-based alignments were comparable in quality to Needle alignments (Table 4.1). For 16S 

rRNA, SHAPE-based alignments have sensitivities of 84% and 77% for alignments of E. coli to C. difficile 

and to H. volcanii, respectively. Alignments with Needle have sensitivities of 84% and 72%, respectively. 

For 23S rRNA, SHAPE-based alignments have sensitivities of 80% and 43% for alignments to C. difficile 

and to H. volcanii, respectively, whereas alignments with Needle have sensitivities of 83% and 58%. 

4.6 Incorporating a base-identity match score into SHAPE-based alignments 

 An additional scoring term considering base identity was included in the SHAPE-alignment 

algorithm. If in a pair-wise comparison the two bases of a given nucleotide pair were identical, that pair 

was scored as a match; otherwise the pair was scored as a mismatch. The score terms associated with 

both matches and mismatches were optimized by a grid search. Gap opening and gap extension 

penalties were re-optimized given this new scoring system. 

 Alignments considering both base identity and SHAPE data showed significant improvements 

relative to alignments considering only SHAPE data (Table 4.1). For 16S rRNA, alignments of E. coli to  
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Figure 4.4 Representative section of the SHAPE-dependent global alignment between E. coli and C. 

difficile 16S ribosomal RNAs. Only SHAPE values (red and blue lines) were used in the generation of this 

alignment. Alignment is shown as a function of E. coli sequence numbering. 
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Table 4.1 Sensitivities of pairwise SHAPE-dependent alignments relative to accepted CRW alignments. 
Pairwise sensitivities were also determined from multiple sequencing alignments generated using T-
Coffee. 

 

Sequence 1 Sequence 2 

Sensitivity (sens) relative to CRW alignments (%) 

Needle 
alignment 

SHAPE-only 
alignment 

SHAPE and 
base identity 

(pairwise) 

SHAPE and 
base identity 

(MSA) 

E. coli 16S 
C. difficile 16S 84 84 96 96 

H. volcanii 16S 72 77 90 90 

E. coli 23S 
C. difficile 23S 83 80 96 96 

H. volcanii 23S 58 43 75 75 
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C. difficile and to H. volcanii have sensitivities of 96% and 90%, respectively, when both base identity and 

SHAPE data are considered. For 23S rRNA, alignments to C. difficile and to H. volcanii have sensitivities 

of 96% and 75%, respectively. 

4.7 Generation of multiple sequence alignments with T-Coffee 

 The SHAPE-based alignments were in turn be applied to T-Coffee
13

 in order to generate multiple 

sequence alignments (MSAs) for both 16S and 23S rRNA samples. With generation of MSAs, alignment 

quality did not significantly change (Table 4.1). Had a larger number of sequences been compared, the 

MSA may have resulted in an increase in alignment accuracy relative to CRW MSAs. 

4.8 Secondary structure prediction with SHAPE-directed alignments 

 Both sequence comparisons and SHAPE data have been used to direct secondary structure 

prediction.
14

 Given that SHAPE-based alignments effectively combine both these sets of information, we 

sought to predict secondary structures using SHAPE-based alignments. Sequence comparison-based 

secondary structure predictions are highly dependent on alignment quality.
15, 16

 Therefore, success in 

secondary structure prediction would offer further validation of the SHAPE-based alignment approach. 

The generated alignments were used as arguments in secondary structure prediction with 

RNAalifold and RNAfold in the Vienna package.
17-19

 RNAalifold uses a pseudo-free energy potential to 

bias predictions based on covariation. Base pairs supported by covariation are given a free-energy 

bonus. RNAalifold and RNAfold were modified to accept SHAPE data as an argument. As has been used 

in past approaches, a pseudo free energy term was incorporated based on SHAPE reactivity.
20

 

Secondary structure prediction was performed in two steps. In the first step, a consensus fold considering 

all RNA sequences was determined using RNAalifold. Base pairs with a pairing probability greater than 

95% were taken forward into the second step, in which additional base pairs were found for each 

individual sequence using SHAPE-directed RNAfold. 

 Structures were predicted for 16S and 23S ribosomal RNAs (16S E. coli prediction shown in 

Figure 4.5). The predicted structures were compared to those based on covariation models found in the 

CRW. All SHAPE reactivity-based predicted structures had sensitivities greater than 85%, indicating 

structure predictions of high accuracy (Table 4.2). Predictions considering both sequence alignment and 

SHAPE reactivities had higher sensitivity and positive predictive values (ppvs) than RNAfold predictions  
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Figure 4.5 Predicted secondary structure for E. coli 16S rRNA following constrained RNAfold prediction. 

Predicted pairs that exactly match the covariation model are shown in black, and predicted pairs that 

match after modest refolding are shown in purple. Predicted pairs not in the covariation model are shown 

in blue. Covariation pairs not in the predicted structure are shown using red lines. E. coli SHAPE values 

are shown by coloring of individual residues. Areas with SHAPE-supported alternative folds are shown 

boxed in blue. 
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Table 4.2 Sensitivities (sens) and positive predictive values (ppvs) for secondary structure predictions.  
 

RNA structure 
predicted 

RNAfold (SHAPE 
only) 

RNAalifold 
consensus, >95% 
pairing probability 

RNAfold 
constrained by 

consensus base 
pairs 

Constrained 
RNAfold without 

alternative 
structure regions 

sens 
(%) 

ppv (%) 
sens 
(%) 

ppv (%) 
sens 
(%) 

ppv (%) 
sens 
(%) 

ppv (%) 

E. coli 16S 90.7 83.5 79.2 91.6 95.5 88.5 98.1 89.8 

C. difficile 16S 90.9 83.8 84.3 90.3 95.0 86.6 97.6 87.9 

H. volcanii 16S 90.1 81.3 74.8 89.3 90.6 84.1 90.1 85.3 

     

E. coli 23S 84.2 78.2 78.0 89.9 85.3 79.0  
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considering SHAPE data alone. Given the sensitivity of covariation-based approaches to alignment 

quality, the successful modeling further validates the utility of the SHAPE-based alignment. 

4.9 Discussion 

4.9.1 Success and further application of SHAPE-based comparisons 

 SHAPE-based alignments have accuracies similar to traditional approaches that consider base 

identity. When both SHAPE data and base identity are considered, alignment quality increased 

significantly, with alignment sensitivities greater than 95% for alignments of E. coli ribosomal RNA to C. 

difficile sequences. 

 SHAPE-based alignments were performed with a dynamic programming algorithm in which a 

pair-wise scoring system was used. The pair-wise scoring system is analogous to the substitution 

matrices commonly used in alignment approaches. SHAPE-based sequence comparisons may also be 

readily applied to other existing sequencing systems. For methods using a heuristic scoring system, such 

as BLAST, a SHAPE-based scoring system may be applied following optimization.
21

 SHAPE-based 

sequence alignments may also be used to train Markov-based alignment methods.
5
 

4.9.2 Alternative base-pairing arrangements in the 16S rRNA 

 Areas of disagreement between SHAPE-based prediction and established covariation models 

(Figures 4.6 and 4.7) may be indicative of alternative structures adopted by the ribosome under the 

experimental conditions used for SHAPE probing. In various regions of each of the three rRNAs, the 

SHAPE-based models are in better agreement with SHAPE reactivities than the covariation models. For 

instance, the stem-loop beginning at E. coli 16S residue 1074 does not form in SHAPE-based predicted 

structures and is not present in the RNAalifold consensus fold when SHAPE data is included (Figure 4.6). 

The predicted models also differ from the covariation models in the 16S structure near the decoding site 

(Figure 4.7). These predicted models may be representative of states adopted by the ribosome during the 

dynamic process of translation. If these regions are excluded from prediction sensitivity calculations, the 

sensitivity of the E. coli 16S prediction increases from 95.5% to 98.1%. 

4.10 Conclusion 

 SHAPE-dependent alignment is highly accurate and allows for consideration of RNA structure 

during sequence comparisons. SHAPE-based alignments had accuracies comparable to traditional  
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Figure 4.6 Consensus alternative structures for the stem-loop at E. coli 16S rRNA residues 1069 to 1106. 
(A) Structures for the covariation and predicted models are shown with base pairs predicted in the 
RNAalifold consensus shown in black and base pair predicted in the constrained RNAfold prediction 
shown in gray. (B) SHAPE reactivities are shown for this region of the alignment with areas participating 
in RNAalifold consensus base pairs highlighted in gray.  
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Figure 4.7 Consensus alternative structures for the structural element at E. coli 16S rRNA residues 921 

to 933, 1384 to 1411, and 1489 to 1505. (A) Structures for the covariation and predicted models are 

shown with base pairs predicted in the RNAalifold consensus shown in black and base pair predicted in 

the constrained RNAfold prediction shown in gray. (B) SHAPE reactivities are shown for this region of the 

alignment with areas participating in RNAalifold consensus base pairs highlighted in gray. 



63 
 

sequence identity-based approaches. The alignments generated by this technique were used to provide 

information for secondary structure prediction techniques. Predictions were highly accurate when 

compared to accepted models. Differences from the accepted models are supported by SHAPE 

reactivities and suggest the presence alternative structures not necessarily consistent with covariation. 

Based upon success with a dataset derived from NGS approaches, SHAPE-based alignments may see 

utility in future high-throughput structure-based RNA motif searches and in structure characterization. 

4.11 Experimental Methods 

4.11.1 E. coli ribosomal RNA SHAPE-MaP data 

 E. coli ribosomal RNA SHAPE-MaP data were taken from previous studies (Siegfried et al., in 

preparation). 

4.11.2 Preparation of C. difficile ribosomal RNA 

 C. difficile was grown in BHIS medium
22

 at 37 °C under anaerobic conditions (90% N2, 5% CO2, 

and 5% H2).
23

 Cells were grown to an OD600 of 1.0. Cells were collected by centrifugation (10 min, 4 °C, 

4,000´g). The pellet was washed with 1x TE [10 mM Tris (pH 8.0), 1 mM EDTA]. The supernatant was 

discarded, and the pellet was allowed to air-dry for 5 minutes. 

 To lyse the cells, 1 mL TRIsure (Bioline) was added to the pellet. The resultant mixture was 

incubated at room temperature for 5 minutes. The mixture was then transferred to a vial containing 250 

μL 0.1 mm glass beads. Cells were lysed by bead beater over two 90 second pulses, with cells held on 

ice in between pulses. The resultant mixture was extracted with 200 μL chloroform, with the aqueous 

phase taken forward. 

 Following lysis, this solution was extracted three times with phenol [(pH 8.0): chloroform:isoamyl 

alcohol; 25:24:1], followed by three times with chloroform. The RNA-containing solution was exchanged 

for folding buffer [50 mM Hepes (pH 8.0), 200 mM potassium acetate (pH 8.0), and 5 mM MgCl2] using a 

pre-equilibrated gel filtration column (G-25 column, GE). The quantity of RNA was found using absorption 

spectroscopy. 

4.11.3 Preparation of H. volcanii ribosomal RNA 

 Growth medium was prepared by bringing 600 ml 30% salt solution [4 M sodium chloride, 150 

mM magnesium chloride hexahydrate, 150 mM magnesium sulfate heptahydrate, 100 mM potassium 
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chloride, 5 mM Tris (pH 7.5)], 5 g bacteriological peptone (LP37; Oxoid), and 1 g yeast extract (LP21; 

Oxoid) to 1 L with deionized water. Cells were grown to an OD600 of 0.8. Cells were collected by 

centrifugation (5 min, 4 °C, 14,000´g). 

 Cells were lysed by incubation in low salt solution [220
 
μL 50 mM Hepes (pH 8.0) and 5 mM 

MgCl2; incubation at 22 °C for 5 min, followed by incubation on ice for 5 min]. Following lysis, this solution 

was extracted three times with phenol [(pH 8.0): chloroform:isoamyl alcohol; 25:24:1], followed by three 

times with chloroform. The RNA-containing solution was exchanged for folding buffer [50 mM Hepes (pH 

8.0), 200 mM potassium acetate (pH 8.0), and 5 mM MgCl2] using a pre-equilibrated gel filtration column 

(G-25 column, GE). The quantity of RNA was found using absorption spectroscopy. 

4.11.4 SHAPE-MaP characterization of ribosomal RNA 

 Determination of SHAPE reactivity by SHAPE-MaP requires three different experiments: chemical 

modification of native RNA, chemical modification of denatured RNA, and a no-modification control. All 

chemical modifications were performed using 1-methyl-7-nitroisatoic anhydride (1M7). Chemical 

modification of native RNA and the no-modification control were performed in parallel. To 1x folding buffer 

[50 mM HEPES (pH 8.0), 200 mM potassium acetate (pH 8.0), and 5 mM MgCl2] was added to a 

concentrated RNA solution (280 ng H. volcanii total RNA or 70 ng C. difficile total RNA) to a final volume 

of 90 μL. The RNA solution was incubated at 37° C for 30 minutes. Following incubation, 10 μL DMSO 

(no-modification control) or 10 μL 100 mM 1M7 in DMSO (native 1M7-modified sample) was added to the 

RNA solution. The RNA solution was then held at 37 °C for 3 minutes.  

 For the denatured control, 25 μL 4x denatured control buffer [200 mM HEPES (pH 8.0), 16 mM 

EDTA] and 50 μL deionized formamide were added to a concentrated RNA solution (280 ng H. volcanii 

total RNA or 70 ng C. difficile total RNA), and deionized water was added to a final volume of 90 μL. This 

solution was held at 95 °C for 1 minute, and then 10 μL 100 mM 1M7 in DMSO was added. The 

combined solution was held at 95 °C for 1 minute. 

 After modification, all three samples were purified using an RNeasy Min-Elute kit (Qiagen), eluting 

into 22 μL Qiagen elution buffer. To prepare sequencing libraries, the purified RNA samples were first 

fragmented using divalent cations: 20 μL of RNA solution was combined with 30 μL fragmentation buffer 

[250 mM Tris (pH 8.3), 375 mM KCl, 15 mM MgCl2], held at 94 °C for 4 minutes, and then transferred 
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immediately to ice. Fragmented RNA was then purified using a G-25 column (GE), eluting into 1x TE [10 

mM Tris (pH 8.0), 1 mM EDTA]. 

 Following fragmentation, reverse transcription (RT) was performed with random primers. A 20-μL 

aliquot of fragmented RNA was combined with 2 μL random DNA nonamers (200 ng/μL). The solution 

was incubated at 65 °C for 5 minutes and then moved to ice. To this solution, 7 μL reaction buffer [286 

mM Tris (pH 8.0), 429 mM KCl, 57 mM DTT, 2.9 mM dNTP mix (dATP, dCTP, dGTP, and dTTP, 2.9 mM 

each)], 4 μL 60 mM MnCl2, and 5 μL water were added. The solution was pre-incubated at 25 °C for 2 

minutes prior to adding 2 μL Superscript II (Invitrogen). The reaction was incubated at 25 °C for 10 

minutes, 42 °C for 180 minutes, and 70 °C for 15 minutes. Following reverse transcription, the RNA was 

purified using a G-25 column (GE), eluting into 1x TE. 

 The cDNA was converted to a double-stranded DNA library with Illumina platform-specific 

sequence tags. First, 40 μL of the purified RT product was used in a 80-μL second-strand synthesis 

reaction using standard conditions (NEBNext Second Strand Synthesis Module, New England Biolabs). 

The second strand synthesis reaction was applied to a PureLink PCR Micro Kit (Life Technologies), 

eluting into 12 μL elution buffer. A 10-μL aliquot of the purified DNA solution was then used in a 50-μL 

end repair reaction using standard conditions (NEBNext End Repair Module, New England Biolabs). 

Following end repair, the DNA was purified using a 1.6x Ampure XP Bead clean-up (Agencourt, Beckman 

Coutler), eluting into a final volume of 30 μL 1x TE. 

 To incorporate Illumina platform-specific sequence tags, a dA-tailing reaction was first used to 

incorporate a single-nucleotide overhang on the 3ʹ ends of the double-stranded DNA. A 15-μL aliquot of 

purified DNA from the end repair step was used in a 20-μL dA-tailing reaction (NEBNext dA-Tailing 

Module, New England Biolabs). Standard manufacturer-recommended conditions were used. Illumina 

sequences were incorporated using a ligation step with Illumina iAdapters (prepared in house). 

Immediately following completion of the dA-tailing reaction, 7.5 μL 5x reaction buffer (NEBNext Quick 

Ligation Module, New England Biolabs), 2.5 μL 125 nM DNA adapter, 3.75 μL Quick T4 DNA Ligase 

(New England Biolabs), and 3.75 μL water were added to the dA-tailing reaction mix. The ligation reaction 

was then incubated at 20 °C for 15 minutes. The ligation reaction was purified using a 1.0x Ampure XP 
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Bead clean-up (Agencourt, Beckman Coutler). This bead cleanup was performed twice with final elution 

into 20 μL 10 mM Tris, pH 8.0. 

 Illumina libraries were prepared using emulsion PCR [REF]. The aqueous phase was composed 

of 5 μL of double-stranded DNA, 10 μL 10 μM Illumina-specific forward strand primer, 10 μL 10 μM 

Illumina-specific reverse strand primer, 40 Q5 5x reaction buffer (New England Biolabs), 100 μL 20 g/L 

bovine serum albumin, 4 μL dNTP mix (10 mM each, dATP, dCTP, dGTP, dTTP), 2 μL Q5 high-fidelity 

polymerase (New England Biolabs), and 29 μL water. The DNA was amplified in a 35-cycle PCR reaction 

(denaturation: 94 °C for 30 seconds; annealing: 67 °C for 30 seconds; extension: 72 °C for 30 seconds). 

To purify the PCR product, the reaction was first applied to a PureLink PCR cleanup column (Life 

Technologies). The column eluent was then purified using a 1.0x Ampure XP Bead clean-up (Agencourt, 

Beckman Coutler). This bead cleanup was performed twice with elution into 12 μL 10 mM Tris, pH 8.0. 

 The concentrations of sequencing samples were determined by Qubit High Sensitivity DNA 

fluorescence assays (Life Technologies) and High Sensitivity DNA Bioanalyzer assays (Agilent). Each 

sample was diluted to 2 nM and pooled. The pooled library was sequenced using an Illumina MiSeq (300 

cycles - PE kit). 

 Sequences were aligned and mutation events counted using the SHAPE-MaP analysis pipeline 

(Siegfried et al, in preparation). SHAPE reactivities were generated considering mutation rates in the 

native 1M7-modified sample, the denatured 1M7-modified sample, and the background control. 

4.11.5 SHAPE-based RNA alignment 

 SHAPE-based alignment of two sequences x and y began with declaration of an empty score 

matrix F and an empty pointer matrix P. Each matrix had dimensions m by n, where m and n are the 

lengths of sequences x and y plus 1, respectively. The zeroth row and zeroth column of each matrix were 

set to 0. Every other cell in the matrix was populated by recursion with sequence values xi and yj 

corresponding to Fi,j. The value at each cell in score matrix F was determined by functions s(xi, yj) and g(i, 

j), which describe a pair-wise comparison score and associated gap penalty, respectively. This recursion 

took the following form, where i and j describe the position of a given cell and xi and yj are the SHAPE 

values of each sequence at ith and jth positions: 
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        {

          (     )

        (     )

        (     )

 

The pointer matrix records the direction of the recursion and whether or not a gap was included in the 

alignment. A cell Pi,j was assigned based on the maximum value found in the calculation of cell Fi,j: 

     {

                (     ) 

               (     ) 

               (     )

 

The scoring function is described by the following equation, with parameters N0, λ, and b: 

 (     )     
  |     |    

The gap penalty function g is dependent on values in the pointer matrix P, with parameters GOP (gap 

open penalty) and GEP (gap extension penalty): 

 (   )  {

          

           

           
 

If base identity was considered during alignment, it was added as an additional scoring term b in the 

recursion, where x’i and y’j are the base identities at positions i and j in sequences x and y, respectively:  

        {

          (     )   (  
   

 
 
)

        (     )

        (     )

 

The scoring function b is described by the following equation with parameters MATCH and MISMATCH. 

 (       )  {
             

                
 

When considering base identity, values in matrix P also considered the scoring function b: 

     {

                (     )   (       ) 

               (     ) 

               (     )

 

 Following population of F and P matrices, a trace-back operation was used to find the optimal 

alignment. The trace-back operation began at the maximum value in the F matrix. This represents the 3ʹ-

most position of the alignment. At any given position i, j, the next position was selected based on pointer 

matrix P. If Pi,j = 1, the next position in the alignment was a match, and the next position considered in the 

F matrix was Fi-1,j-1. If Pi,j = -1 or Pi,j = -2, the next position in the alignment was a gap, and the next 
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position considered in the F matrix was Fi,j-1 or Fi-1,j, respectively. The trace-back operation was finished 

when a position was encountered where i = 0 or j = 0. 

 The SHAPE scoring parameters N0, b, and λ, the base-identity scoring parameters MATCH and 

MISMATCH, and the gap penalty parameters GOP and GEP were optimized using grid search. In 

experiments considering only SHAPE values, N0 = 4, b =-1, λ = 1, GOP = 5, and GEP = 0. When both 

SHAPE and base identity were considered, N0 = 4, b = -1, λ = 1, GOP = 9, GEP = -0.5, MATCH = 1, and 

MISMATCH = -1.5. 

4.11.6 Evaluation of RNA sequence alignments 

 From multiple sequence alignments on the CRW, pairwise alignments between E. coli and C. 

difficile and E. coli and H. volcanii were taken for both 16S and 23S rRNA. RNA sequence alignments 

generated in this work were evaluated by comparison to these alignments. Sensitivities were calculated 

as the percentage of matched nucleotides in the CRW alignments found in a given alignment. 

4.11.7 Generation of multiple sequence alignments 

 Multiple sequence alignments were generated using T-Coffee.
13

 First, pairwise alignments were 

generated for all possible pairs between considered sequences. These pair-wise alignments were then 

used as arguments for T-Coffee. Default T-Coffee parameters were used. 

4.11.8 Secondary structure prediction by SHAPE-based RNA alignments 

 Multiple sequence alignments were used as input for RNAalifold of the Vienna RNA software 

package.
18

 Using a new implementation of the RNAalifold algorithm, SHAPE data was used as an 

additional input to constraint secondary structure prediction. Secondary structure prediction and partition 

function calculations were performed using the ribosum matrix with a maximum base pairing distance of 

600 nucleotides. 

 Following RNAalifold prediction, all base pairs in the consensus sequence with pairing 

probabilities greater than 95% were used as constraints in individual follow-up predictions with RNAfold, 

also of the Vienna RNA package.
17

 SHAPE data was also used to constrain secondary structure 

prediction in this step. A maximum base pairing distance of 600 nucleotides was maintained in this follow-

up prediction. 
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4.11.9 Evaluation of secondary structure predictions 

 Predicted secondary structures were evaluated by calculating sensitivity as the percentage of 

base pairs from the CRW covariation model found in predicted structures and by calculating positive 

predictive values (ppvs) as the percentage of predicted pairs found in the covariation model. It should be 

noted that these reference structures are themselves experimental models, and base pairs in these 

models may not necessarily be present in the structure adopted by the ribosomal RNA under 

experimental conditions. To account for this, base pairs in the covariation model whose constituent 

nucleotides have high SHAPE reactivities (both greater > 0.7) were not considered in sensitivity 

calculations. Also, when comparing base pairs between the covariation and predicted models, a modest 

local refolding allowance of 5 nucleotides was included. To be considered a matched pair, for a base pair 

in the covariation model at positions x and y and any base pair in the predicted model at positions xʹ and yʹ 

the following must be true: 

         |    |                 |    |     

Pseudoknots and non-canonical base pairs (with the exception of G-U pairs) were not considered in 

sensitivity and positive predictive value (ppv) calculations. 
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CHAPTER 5: STRUCTURE ALIGNMENT AND CONSENSUS SECONDARY STRUCTURE 
PREDICTION FOR THREE HIV-RELATED RNA GENOMES 

 
5.1 Introduction 

RNA plays an active role in most biological processes.
1
 Multiple examples of RNA functions are 

found in the life cycle of positive-strand RNA lentiviruses. The genomes of RNA viruses function at two 

different levels: the level of encoded proteins and the level of functional higher-order RNA structures. 

Constrained by a small genome size, these viruses make use of genomes that are very efficient in terms 

of sequence allocation, and multiple RNA structures exist in the genomes that regulate replicative 

processes.  

The human immunodeficiency virus (HIV) has well-defined structural RNA elements that play key 

regulatory roles throughout the replication cycle. During transcription of the integrated viral genome, a 

stem-loop structure in the 5ʹ untranslated region (UTR) called the TAR hairpin binds the Tat protein to 

modulate host proteins involved in transcription.
2, 3

 Found within the env gene, the Rev response element 

(RRE) binds the viral protein Rev, allowing for export of unspliced and partially spliced viral mRNA out of 

the nucleus.
4
 During translation, the gag-pol frameshift element modulates the reading frame of the 

ribosome, tightly regulating production of the Gag-Pol polypeptide.
5, 6

 Stem-loop structures in the Psi 

packaging element are required for efficient packaging of viral genome into nascent virions.
7
 To date, 

most characterization of the HIV genome has been directed at the 5ʹ and 3ʹ untranslated regions. Based 

on recent analyses, it is clear that the central coding region of the HIV genome contains extensive base 

pairing and secondary structure.
8, 9

 The question remained as to the functional significance of many of 

these structures. 

  A powerful means to characterize RNA secondary structure is based on chemical modification of 

the RNA. In the SHAPE chemical modification approach, an electrophile with structure-selective reactivity 

preferentially acylates the 2ʹ-hydroxyl of unstructured RNA nucleotides.
10

 The extent of modification is 

inversely proportional to the tendency of an RNA nucleotide to participate in an RNA base pair or other 

structural interactions. Recently, next-generation sequencing has been used to detect the sites of SHAPE 
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Figure 5.1 Flow chart indicating steps in genome comparison analysis. 
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modifications in an approach called SHAPE-MaP (Siegfried et al., in preparation). This approach takes 

advantage of the tendency of reverse transcriptase to incorporate a mutation in cDNA sequence at 

corresponding positions of chemically modified RNA residues. Observed mutation rates are related to an 

absolute scale of SHAPE reactivity. 

 To address the question of the functional significance of RNA structures in the HIV genome, the 

conservation of structural features was characterized across the genomes of HIV and two related 

lentiviruses, SIVcpz MB897 and SIVmac239. A flowchart of the analysis workflow is shown in Figure 5.1. 

Using chemical modification data, structure-dependent sequence alignments were generated for the three 

HIV-related strains. Linear regression analysis was used to find areas in the alignment where chemical 

modification patterns were statistically similar. Finally, secondary structure prediction was performed 

considering both SHAPE reactivities and covariation. This analysis defined regions where structure was 

similar across the three HIV-related strains as supported by chemical modification and sequence 

covariation across three genomes. 

5.2 Selection of virus strains for characterization 

 Viral strains were selected on the basis of similarity to reference HIV strain NL4-3, member of 

HIV-1 group M. One of the selected strains is closely related to HIV-1 NL4-3, and one is distantly related. 

SIVcpz MB897 (SIVcpz) is a strain found in chimpanzees that is closely related to HIV-1 group M 

strains.
11, 12

 SIVmac239 (SIVmac) is a representative of the SIVsm/HIV-2 lineage that is more distantly 

related to HIV-1 group M strains.
13

 SIVcpz and SIVmac have percent identities of 77.4%and 54.6%, 

respectively, when compared to NL4-3 using standard codon-based alignments. 

5.3 Characterization by SHAPE-MaP 

 SHAPE data for HIV was taken from previous analysis (Siegfried et al., in preparation), and 

SHAPE data for SIVcpz and SIVmac were collected for this work. Authentic SIVcpz and SIVmac genomic 

RNAs were purified from mature virions by Dr. Robert Gorelick. In order to preserve the secondary and 

tertiary of the RNA genome, no heating steps, chelating agents, or chemical denaturants were used 

during RNA genome purification.  

Chemical modification of the viral RNAs with SHAPE reagent 1-methyl-7-nitroisatoic anhydride 

(1M7) was performed under physiological conditions.
10, 14

 Following chemical modification, the extent of 
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Figure 5.2 Sample alignment and multi-variable linear regression analysis statistics. At the top, region of 
the SHAPE-dependent alignment is shown. Windowed linear regression statistics are shown for the same 
region as a function of the HIV (NL4-3) sequence, indicating the statistical significance of the relationship 
between SHAPE data sets. F-test p-values for the alignment (black), as well as t-test values assay 
dependence of individual sequences (blue for SIVcpz, green for SIVmac), are shown across the full-
length alignment. Known RNA elements are noted at the bottom of the figure. 

 

  



76 
 

modification at each nucleotide was determined using mutational profiling (Siegfried et al., in preparation). 

SHAPE reactivity values were determined for each position with sufficient read depth in the analyzed 

genomes by comparing mutation rates of a 1M7-modified sample relative to background controls. SHAPE 

reactivity is correlated with the flexibility of a given nucleotide; nucleotides with low SHAPE reactivity tend 

to participate in base pairs or other interactions, whereas nucleotides with high SHAPE reactivity tend to 

be in unstructured regions of the RNA. 

5.4 Generation of a SHAPE-dependent whole-genome alignment 

 Pairwise whole-genome alignments of HIV, SIVcpz, and SIVmac RNAs were created using a 

SHAPE-dependent dynamic programming approach described in Chapter 4. From pairwise comparisons, 

a multiple sequence alignment was generated using T-Coffee
15

 (a representative region of this alignment 

is shown in Figure 5.2). In these alignments, all regions known to contain functional RNA structures were 

aligned; these included elements in the untranslated regions (TAR stems, Psi packaging element) and 

coding regions (gag-pol frameshift element, RRE). Additionally, polypurine tracts in the pol and nef genes 

(cPPT and PPT, respectively) aligned precisely.
16, 17

 Alignment between HIV and SIVcpz also respected 

protein reading frames as all start codons precisely aligned, with the exception of the vpu start codon 

which aligned with a frameshift of precisely 2 codons. 

5.5 Evaluation of interdependence by multi-variable linear regression 

In order to evaluate the relationships among SHAPE data for the three genomes, multi-variable 

linear regression was performed over the multiple sequence alignment considering 200-nucleotide 

windows (Figure 5.2). The dependences of the SHAPE reactivities of HIV on SIVcpz and SIVmac RNAs 

were evaluated using the F-test. SHAPE data were fit to the following relationship by least squares, 

where Y represents HIV SHAPE values and X1 and X2 represent SIVcpz and SIVmac SHAPE values, 

respectively: 

                  

The F-test evaluates the following null hypothesis by the sum of squares due to lack-of-fit for the 

proposed model: 
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Based on derived F-statistic measurements, p-values evaluating the significance of the interdependence 

of SHAPE values determined over the entire alignment. To gauge the contributions of SIVcpz and 

SIVmac individually, t-tests were performed for the fitted model considering only SIVcpz or SIVmac 

nucleotide reactivities (Figure 5.2). 

 The F-test revealed a number of regions across the whole-genome alignment with significant 

interdependences. Statistically similar regions with p-values less than 0.01 were found throughout the HIV 

genome, particularly at the 5ʹ and 3ʹ ends. Statistically similar regions were also found in the coding 

regions of the genome, particularly in gag and env genes, where functional elements like the gag-pol 

frameshift element and RRE have been characterized.
4, 5

 All known functional elements are located in 

statistically interdependent regions. Critically, there are a number of regions of similarity where no 

functional RNA element is known. The t-test results correlate well with F-test results and show that the 

significance of the relationship between HIV and SIVcpz is greater than the relationship between HIV and 

SIVmac. This is consistent with relative sequence identity. 

5.6 Prediction of consensus secondary structures 

 Using the multiple sequence alignment, consensus secondary structures were predicted 

considering base identity and SHAPE data across all three genomes (see Chapter 4). Results from F-test 

analysis were used to select specific regions to evaluate. We considered areas with F-test p-values less 

than 0.01. The ten areas that met this criterion ranged in length from 257 to 2071 nucleotides. Combined, 

these ten areas cover 72.0% of the HIV NL4-3 genome. 

 Consensus secondary structures of these regions of high similarity were generated using 

RNAalifold, which has been updated to incorporate pseudo-energy terms based on covariation and 

SHAPE data into structure predictions considering Turner free energy rules (see Chapter 4).
18-20

 Two 

consensus structures were predicted: Both incorporated SHAPE data; one considered sequence 

alignment for all three genomes and the other considered pairwise alignment between HIV and SIVcpz, 

the two more closely related genomes. Consensus base pairs were then used to constrain a SHAPE-

directed secondary structure prediction considering HIV alone.
18, 21

 Only consensus base pairs with 

pairing probabilities greater than 95% that did not disagree between the two consensus structures were 

used to constrain the HIV-only prediction. 
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Figure 5.3 Secondary structure predictions for the first six interdependent elements of the genome-wide 
alignment as ordered by sequence. Secondary structures shown are for the final constrained HIV 
secondary structure prediction, with consensus base pairs shown in purple (HIV/SIVcpz/SIVmac 
consensus), blue (HIV/SIVcpz consensus), and green (present in both consensus structures), and with 
nucleotides colored by HIV SHAPE reactivity. Predicted elements are shown on the HIV (NL4-3) genome 
with annotations indicating statistical dependence, known RNA elements, major splice sites, and protein 
reading frames.  
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Figure 5.4 Secondary structure predictions for the last four interdependent elements of the genome-wide 
alignment as ordered by sequence. Secondary structures shown are for the final constrained HIV 
secondary structure prediction.  
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 Consensus base pairs are shown on the final constrained HIV model in Figures 5.3 and 5.4. 

Importantly, all known functional RNA elements are recapitulated in this analysis (Figure 5.5). Consensus 

base pairs are highly represented in known functional elements, but consensus base pairs are also found 

in a number of areas with no known function. Generally, consensus base pairs are more represented in 

the 5ʹ and 3ʹ ends of the genome, though regions with many consensus base pairs exist in the central 

coding region of genome.  

5.7 Discussion 

5.7.1 Relationship with previous sequence comparison analysis 

 In a previous study by Pollom et al., the entire SIVmac (SIVmac239) was characterized by 

SHAPE-directed structure prediction.
9
 This was compared to SHAPE-directed secondary structure 

predictions for HIV (NL4-3). Based on a strict codon-based alignment, only 71 base pairs were conserved 

between HIV and SIVmac.
9
 Of these 71 base pairs, 22 were found in previously undescribed structures 

with no known function. In this study, more conserved structures were identified with base pairs. In the 

predicted consensus for HIV, SIVcpz, and SIVmac genomes, 327 base pairs were found with pairing 

probabilities greater than 95% that did not conflict with the HIV-SIVcpz consensus prediction. Though 

these base pairs are highly represented in known functional elements (181 base pairs, 55.4%), many 

consensus base pairs exist in areas with no known function (146 base pairs, 44.6%). 

 In this study, which directly considered sequence alignment in structure prediction, a greater 

number of base pairs in known functional elements were recapitulated, highlighting an increased 

predictive power. The approach described in this paper does not consider a codon-based alignment. The 

identification of known functional elements using our strategy indicates that enforcing a strict codon 

alignment may not necessarily be conducive to RNA structure discovery. Moreover, the occurrence of 

conserved RNA structures, different from the codon alignment, is consistent with RNA and protein 

structures evolving independently, even in coding regions. 

 Despite differences in methodology, similar structural elements were predicted in this work and in 

work by Pollom et al. Pollom et al. proposed that a conserved structural element exists at the first splice 

acceptor site A1 (NL4-3 residue 4458/4459).
9
 Perturbation of this stem-loop structure results in 

modulation of HIV splicing. We recapitulate this predicted structure precisely, and as in the work by 
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Figure 5.5 Predicted secondary structures for RNA elements with known function. The secondary 
structures are from the final constrained HIV prediction with consensus base pairs shown in purple, blue, 
and green. The structures of all known functional RNA elements are recapitulated in the final HIV 
secondary structure prediction. 
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Pollom et al., we see agreement between HIV and SIVmac structures in the form of consensus base pairs 

at the base of this stem-loop structure (Figure 5.6B). 

5.7.2 Conserved structural elements with no known function 

 A number of structural elements are conserved among the three HIV-related strains that have no 

known function. A connection between protein folding and structure in mRNA has been hypothesized in 

past studies. Proteins fold co-translationally, and the stability of RNA structure affects ribosomal pausing 

during translation.
22-24

 Changes in local RNA structure have also been shown to modulate protein 

activity.
25

 In past analysis of the HIV genome, a connection was found between the highly structured 

regions of the RNA genome and protein domains and protein-protein junctions in HIV polyprotein 

precursors.
8
 These highly structured regions were suggested to cause ribosomal pausing, allowing 

individual protein domains to fold independently. 

 We predict that a number of structure elements exist at or near protein-protein junctions or at 

domain boundaries (Figure 5.6A). In gag, the junction between p17 (matrix) and p23 (capsid) (residues 

731/732) is found within a helical stack in consensus structures (NL4-3 residues 716 to 773). In gap-pol, 

two such structural elements exist. The first is a long helix (starting at NL4-3 residue 2015) in which is 

nested the junction of protease and reverse transcription proteins (residues 2195/2196); the second 

contains two helical elements (starting at NL4-3 residue 3753) on either side of the junction between 

RNase H and integrase proteins (residues 3775/3776). These elements may represent conserved 

structures that cause ribosomal pausing and allow for the independent folding of protein domains. 

 A predicted structure element is also found to contain a splice acceptor. Consensus base pairs 

are highly represented at the junction between the tat/rev intron and the second tat/rev exon (Figure 

5.6B). Splicing at this site is occurs in 87.38% of HIV-1 transcripts in HIV-infected primary CD4
+
 T cells.

26
 

The putative structural element is a three-way RNA junction with consensus base pairs prevalent in all 

three constituent helices (beginning at NL4-3 residue 7879). The tat/rev intron ends (residue 7914) near 

the junction between first two helices of this element (residues 7915/7916). Though no function in splicing 

is known for this region, RNA structure has been implicated as a regulator of splicing processes.
27

 

Combined with the putative element at splice acceptor 1
9
 and known structural elements near splice 

donor 1
28

, this structure suggests a regulatory role for RNA structure in HIV splicing. 
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Figure 5.6 Elements in the final HIV predicted structure with high concentrations of consensus base pairs 
and no known function. (A) Structural elements located in protein domains and at protein-protein 
junctions. (B) Structural elements near splice sites.  
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5.7.3 Structural features common between cPPT- and PPT-containing elements 

 cPPT- and PPT-containing regions that were statistically interdependent by F-test in whole 

genome alignments (Figure 5.2). Moreover, both regions contained consensus base pairs at or near the 

PPT tract: nucleotides 5ʹ of the PPT were predicted to pair with nucleotides immediately 3ʹ of this 

sequence (Figures 5.3 and 5.4). This result prompted investigation of a possible secondary structure 

shared by regions containing the cPPT and PPT. 

 A SHAPE-dependent alignment was first performed for cPPT and PPT sequences from HIV, 

SIVcpz, and SIVmac, considering six different sequences in total. The boundaries of cPPT- and PPT-

containing regions were selected based on the base-pairing arrangement in consensus secondary 

structures. Because the sequences varied greatly between cPPT and PPT regions, an alignment 

approach considering only SHAPE reactivities was used. This approach has been found to give precise 

alignments for structured RNA molecules (see Chapter 4). Despite the fact that base identity was not 

considered in these alignments, the PPT sequences aligned precisely (Figure 5.7). 

 RNAalifold was used to predict a consensus secondary structure for the six-sequence alignment. 

Consensus base-pairs with pairing probabilities above 95% were then used to constrain single-sequence 

predictions by RNAfold (representative predictions shown in Figure 5.8). cPPT- and PPT-containing 

regions share two structurally similar elements. The first is a helix comprised of four consensus base 

pairs. This element is located two nucleotides after the 3ʹ end of the PPT sequence [HIV NL4-3 residues 

4347 (cPPT) and 8621 (PPT)]. The second element involves pairing of G residues in the 3ʹ end of the 

PPT. Though this element does not appear in consensus structures, this may be due to limitations in our 

secondary structure prediction approach. The approach does not allow for non-canonical base pairs, and 

non-canonical A-G base pairs in this region are supported by SHAPE reactivities in the HIV PPT structure 

(denoted by dashed lines in Figure 5.7). 

 The idea of conserved structures in the cPPT- and PPT-containing regions was proposed in past 

studies.
9
 It is not clear how a conserved intramolecular structure would impact the known function of the 

PPT tract as an RNA primer for second-strand DNA synthesis. However, elements of the consensus 

cPPT/PPT structure are conspicuously positioned near the RNase H cleavage site, suggesting a possible 
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Figure 5.7 SHAPE-only alignment of cPPT and PPT sequences. SHAPE reactivities and sequence 
identities are shown for each of the six sequences. Base pairs with pairing probabilities greater than 95% 
are highlight by gray boxes and shown by connecting lines. 
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Figure 5.8 Predicted structures based on cPPT/PPT alignments. Secondary structures shown are for HIV 
cPPT and PPT regions. Two regions of structural similarity are indicated by boxes: a region with 
consensus base pairs (green) and a region with similar base pair positions relative to the PPT (black). 
Both structural elements are present near the RNase H cleavage site (indicated with an arrow). 
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connection between RNA structure and RNase H recognition. The presence of a conserved RNA 

structure in these elements may also indicate that PPT-containing regions are multifunctional. 

5.8 Conclusion 

 The analysis described in this work revealed regions of HIV genome with structures that are 

statistically correlated with those in related viral genomes. Secondary structures for these regions were 

then predicted in consensus-based approaches that considered both sequence covariation and chemical 

modification data. The resulting structures recapitulated all known functional elements in the HIV RNA 

genome. Consensus base pairs were also found in structural elements with no known function. Based on 

the position of these elements in the HIV genome, these new structural elements may regulate co-

translational protein folding and RNA splicing.  

5.9 Experimental Methods 

5.9.1 Virus production and genomic RNA purification 

 Virus was produced and genomic RNA purified as previously described.
8
 During genomic RNA 

extraction, care was taken to avoid denaturation of RNA structure by heat, metal chelation, or chemical 

denaturants. Following lysis with SDS and proteinase K, viral RNA was extracted using 

phenol/chloroform. The viral RNA was then precipitated in 70% ethanol with 300 mM KCl and was held at 

-80 °C until use. 

5.9.2 Characterization of genomic RNA by SHAPE-MaP 

 Tubes containing roughly 10 μg of precipitated SIVcpz or SIVmac RNA in 70% ethanol were spun 

at 14K RPM at 4 °C for 45 minutes to pellet RNA. Ethanol was removed, and the pellets were held at 

room temperature for 10 minutes to allow the remaining ethanol to evaporate. The pellets were then 

resuspended in 20 μL genome resuspension buffer [50 mM HEPES (pH 8.0), 200 mM potassium 

acetate], and the resulting solution was characterized by absorption spectroscopy to determine RNA 

concentration. 

 In order to determine SHAPE reactivities, three different experiments were performed with SIVcpz 

and SIVmac samples: 1M7 modification of natively-folded RNA, a no-modification background control, 

and 1M7 modification of denatured RNA. RNA modification followed established protocols (Siegfried, et 

al., in preparation). For 1M7 modification of natively-folded RNA and no-modification background controls, 
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aliquots containing 1 μg of SIVcpz or SIVmac RNA were taken from precipitated RNA stocks. To these 1-

μg aliquots, 3 μL of 100 mM MgCl2 was added, and the RNA solution was brought up to a volume of 90 

μL using genome resuspension buffer. The RNA solution was then incubated at 37 °C for 15 minutes 

before adding 10 μL of 100 mM 1M7 in DMSO (1M7 modification of natively folded RNA) or 10 μL neat 

DMSO (background control). The RNA solution was then incubated at 37 °C for 3 minutes, allowing for 

complete reaction of 1M7. The RNA solution was then held on ice until purification. 

 For 1M7 modification of denatured RNA, an aliquot containing 1 μg of SIVcpz or SIVmac RNA 

was taken from precipitated RNA stocks. To this aliquot, 25 μL of 4x denatured control buffer was added 

[200 mM HEPES (pH 8.0), 16 mM EDTA], and the RNA solution was then brought up to volume of 40 μL 

using nuclease-free water. To the RNA solution, 50 μL of deionized formamide was added. The RNA 

solution was held at 95 °C for 1 minute and then added to 10 μL 100 mM 1M7 in DMSO. The reaction 

was held at 95 °C for 1 minute before transferring the reaction to ice. The RNA solution was held on ice 

until purification. 

 RNA from the three SHAPE experiments was then purified using an RNeasy Min-Elute kit 

(Qiagen). Following purification, sequencing libraries were generated as described previously (see 

Chapter 4), and sequencing output was analyzed by the SHAPE-MaP pipeline (Siegfried et al., in 

preparation). Background mutation rates were abnormally high for the first 200 nucleotides of the SIVmac 

genome, resulting in unusual negative peaks for this region. Due to this poor data quality, SHAPE values 

for the first 200 nucleotides of SIVmac239 were taken from previous work
9
. SHAPE-MaP data for all three 

genomes was subsequently used in sequence alignments, linear regression analysis, and consensus 

secondary structure prediction. 

5.9.3 Creation of SHAPE-dependent alignments of genomic RNA 

 SHAPE-dependent alignments were performed as described previously (see Chapter 4). Pairwise 

sequence alignments were generated using a custom dynamic programming-based approach. 

Subsequently, pairwise sequence alignments were used to create a multiple sequence alignment with T-

Coffee.
15
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5.9.4 Multi-variable linear regression and statistical analysis 

 Multi-variable linear regression analysis was performed using NumPy, SciPy, and statsmodels 

Python modules.
29, 30

 Analysis was performed over 200-nt windows. Over each window, only positions 

with SHAPE values for each genome were considered: No gapped positions were included in analysis. 

Multi-variable linear models were created using least squares fitting. F-tests and t-tests were performed 

over each window using the statsmodels module.
30

 

5.9.5 Selections of areas of interest for secondary structure prediction 

 Areas of interest for secondary structure prediction were selected based on F-test statistics of 

multi-variable linear regression models. If a given 200-nt window had an F-test p value less than 0.01, the 

corresponding 200-nt region was selected as an area of interest. Regions with overlapping areas of 

interest were considered in the same secondary structure element. 

5.9.6 Consensus structure prediction using the Vienna software package 

 The secondary structure of each element selected by linear regression analysis was predicted 

using RNAalifold and RNAfold, both of the Vienna-RNA software package.
19, 21, 31

 The secondary 

structure prediction was performed on two levels. First, consensus based pairs were generated using 

RNAalifold. Second, consensus base pairs were used to constrain secondary structure prediction of HIV. 

 Two consensus secondary structures were predicted for each element. The first consensus 

considered HIV, SIVcpz, and SIVmac sequences. The second consensus considered HIV and SIVcpz 

sequences only, with SIVmac removed from the multiple sequence alignment. Consensus structures 

were generated using RNAalifold, considering the ribosum substitution matrix and a max base pairing 

distance of 600 nucleotides.
32

 Consensus structure prediction incorporated SHAPE reactivities using a 

pseudo-energy potential.
18

 

 Following consensus predictions, consensus base pairs were used to constrain an individual 

secondary structure prediction of HIV. Base pairs from each consensus structure with pairing probabilities 

greater than 95% were added to a constraint list. The constraint list was curated in order to remove base 

pairs that disagreed between the two consensus structures. Consensus pairs were excluded if (1) pairs 

with shared nucleotides contradicted each other in terms of base pairing partners or (2) pairs from two 
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consensuses were non-nested. In either circumstance, offending pairs were removed from the combined 

consensus. 

 HIV structure predictions constrained by consensus pairs were performed with RNAfold. 

Predictions were constrained such that curated consensus pairs were maintained in the final structure. 

SHAPE reactivities were incorporated into secondary structure predictions using a pseudo-free energy 

potential.
18

 A maximum base pairing distance of 600 nucleotides was enforced during predictions. 

5.9.7 SHAPE-only alignment of cPPT and PPT sequences 

 Regions containing cPPT and PPT sequences were selected based on constrained HIV 

secondary structure predictions. In predicted cPPT and PPT structures, the 3ʹ end of the PPT was bound 

in a helix; cPPT and PPT regions of interest were selected using this helical element as a guide. cPPT- 

and PPT-containing regions of HIV, SIVcpz, and SIVmac were aligned considering only SHAPE 

reactivities (see Chapter 4).  

5.9.8 Consensus secondary structure prediction for cPPT/PPT alignment 

 RNAalifold was used to predict a consensus secondary structure using the resulting cPPT/PPT 

alignment. RNAalifold predictions were performed considering the ribosum substitution matrix.
32

 SHAPE 

reactivities were incorporated using a pseudo-free energy potential.
18

 From this consensus structure, 

base pairs with pairing probabilities greater than 95% were then used to constrain individual RNAfold 

structure predictions for the six sequences in the alignment. SHAPE reactivities were incorporated into 

these individual structure predictions using a pseudo-free energy potential.
18
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