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ABSTRACT 

HERMAN D. HIMEL, IV: Development of a Metric to Assess Completeness of Lesions 
Produced by Radiofrequency Ablation in the Heart  

(Under the direction of Professor Stephen B. Knisley) 
 

For approximately 25 years, ablation of cardiac tissue by radiofrequency energy has 

been used to halt arrhythmic conduction in the heart. Efficacy of cardiac ablation for the 

treatment of atrial fibrillation and other arrhythmias depends on the completeness of lesions 

and their ability to block arrhythmic conduction without disturbing sinus rhythm. A rapid 

index of lesion quality measured during surgical ablation procedures may improve the 

probability of long-term success in patients. Trans-lesion stimulus-excitation time delay was 

evaluated as an intraoperative indicator of lesion completeness. Time delay was shown to be 

significantly different for complete vs. incomplete lesions. Further, it was shown that 

activation path length corresponds with time delay, providing an explanation for post-

ablation increases in time delay.  

Time delay of excitation measured on either side of a lesion having a small gap may 

increase after ablation, and then recover over time. This recovery would be important since 

the lesion may then be insufficient to suppress conduction. Although the Langendorff rabbit 

model used in this project is insufficient to observe long-term cardiac remodeling 

phenomena, short term recovery over tens of minutes post-ablation is practical with our 

apparatus. This would be useful for clinicians who may monitor time delay acutely in their 

patients before withdrawing the ablation probe. Complete recovery following initial trans-

lesion block occurred within 5 minutes after ablation, while partial recovery occurred at 14.4 
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± 1.0 minutes after ablation. Recovery of the activation complex occurred at 23.7 ± 7.9 

minutes after ablation. 

Hyperthermia affects the myocardium in a wide variety of ways, including 

denaturation of myofilaments, disruption of the sarcolemmal membrane and/or denaturation 

of membrane ion channels, alterations in cellular metabolism, and alterations in intracellular 

and transmembrane calcium handling. Depending on the extent of the hyperthermic damage 

sustained during ablation, gaps within lesions may recover following a return to 

physiological temperature. Conduction recovery may occur following initially successful 

lesion formation, and it may allow arrhythmic conduction to resume or may result in the 

formation of one or more new arrhythmias. Further, the temperature of tissue within a small 

gap of an ablation lesion may correlate with the recovery of myocytes within these gaps. 

Thus temperature monitoring of ablated tissue may be a useful supplement for monitoring 

block by measuring time delay. 

Temperatures within lesion gaps during complete recovery reached a maximum value 

of 63.44° C, while temperatures within lesions gaps during partial recovery reached a value 

of 52.7 ± 3.0° C. In lesions which did not show initial block, supernormal conduction was 

observed following ablation. Decreases in time delay of 17.8 ± 2.6% were observed, and 

minima of time delay occurred 28.0 ± 4.0 seconds after ablation. A relationship between 

temperature and time delay was observed in cases where supernormal conduction occurred, 

but a relationship was not observed in cases where post-ablation block occurred. 
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CHAPTER 1 

 
INTRODUCTION AND BACKGROUND MATERIAL 

 
 
 Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States, 

currently affecting over 2.2 million of its citizens1. At the age of 40 years, the lifetime risk of 

developing AF is approximately 24.5%2. Once thought to be a benign consequence of aging, 

AF is now widely regarded as a dangerous arrhythmia which carries significant risks in 

addition to its direct effect upon cardiac output, where the atria account for approximately 

25% of ventricular filling3. Some of the risks associated with AF include stroke4 and other 

embolic phenomena, increases in morbidity and mortality, and increased risk of congestive 

heart failure. Data from the Framingham study shows that the incidence of stroke increases 

approximately five-fold for patients who have AF5, and that the risk of death increases by a 

factor of 1.4-1.9 even after adjustment for preexisting cardiovascular conditions related to 

AF6. Atrial fibrillation has also been shown to be a progressive disease. If left untreated, AF 

leads to electrical and mechanical remodeling within the myocarium7-12 which leads to 

greater inducibility and higher stability of AF. Following electrical remodeling during AF, 

subsequent episodes of AF are easier to induce, and occur for a longer time period9. 

 Several different methods of treatment for AF have emerged, including anti-

arrhythmic drug therapy, anti-arrhythmic pacing, and surgical ablation. Currently, surgical 

treatment of atrial fibrillation suffers from several weaknesses. The gold standard for surgical 

ablation, known as the Cox-Maze III lesion set, has a high success rate (~90%) but is highly 



invasive and requires a thoracotomy and cardiopulmonary bypass. For the Maze III 

procedure, lesions are formed by making surgical incisions into the myocardium, electrically 

disconnecting adjacent tissue, and isolating certain regions of the atria. Also known as the 

“cut and sew” method, the Cox-Maze III lesion set eliminates AF by isolating ectopic foci 

which trigger fibrillatory activity, and by breaking up reentrant circuits which sustain this 

activity. 

Alternatively, catheter ablation is minimally invasive but is associated with relatively 

poor success rates, particularly among those with structural heart disease. Also, catheter 

procedures require that hyperthermia be applied to the myocardium while the device is 

within a major vessel or within the atria, exposing blood to hyperthermic environments and 

increasing the risk of clotting and subsequent thromboembolic complications13-15. Another 

weakness of catheter ablation is its inability to consistently create continuous transmural 

lesions which emulate those of the Cox-Maze III lesion set. Specifically, it is technically 

challenging to create the linear transmural (i.e., complete) lesions which are prescribed by the 

Cox-Maze III procedure. Nonetheless, complete linear lesions are a key building block for 

the creation of the Maze lesion set, and the quality of these lesions directly impacts upon the 

success and recurrence rates of AF ablation surgery16. 

 The objective of this work is to develop a metric which is capable of rapidly 

examining the efficacy of linear lesions, and to examine factors which may complicate or 

compromise the reliability of this metric. In the sections that follow, the effects of 

radiofrequency ablation upon the myocardium are reviewed. Since the metric which is the 

focus of this work is critically dependent upon tracking activation of myocytes, methods used 

to map activation are also examined in the context of radiofrequency ablation. Finally, 
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normal and abnormal conduction are examined, as well as changes in the myocardium due to 

ischemia, since radiofrequency ablation is known to decrease blood flow in the region of 

lesion creation17.   
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A. Cellular Effects of Hyperthermia and Radiofrequency Energy 

Hyperthermia causes cellular damage by a number of different mechanisms, and has 

significant effects upon the sarcolemmal membrane, the cytoskeleton, cellular organelles, 

cellular metabolism, and specific types of protein production (heat shock proteins). This 

discussion will attempt to detail the effects of hyperthermia upon cardiac myocytes and 

indicate the relative importance of each effect. 

Hyperthermia induced by radiofrequency ablation produces structural damage to 

sarcolemmal membranes which results in profound electrophysiological changes in cardiac 

myocytes. Nath et al reported that hyperthermia caused depolarization of the transmembrane 

potential (Vm), changes in dV/dtmax (early increase followed by a late decrease), slight 

changes in action potential amplitude (APA), significant changes in action potential duration 

(APD), as well as reversible and irreversible losses of excitability18. Most 

electrophysiological effects are thought to be a consequence of damage to the plasma 

membrane, since the plasma membrane plays a critical role in ion transport and is the first 

cellular component to be affected by hyperthermia19. Hyperthermia is thought to affect the 

plasma membrane by increasing membrane fluidity, thereby increasing vulnerability to 

electric fields produced by the ablation electrode. Also, hyperthermia is thought to affect ion 

transport directly by impairment of receptor function and thermal inactivation of ion 

channels19. Also, inactivation of some voltage-dependent ion channels may be a consequence 

of a decrease in resting membrane potential due to extracellular increases in potassium and a 

subsequent inability of the transmembrane potential to return to normal resting values. 

The effects of damage to mitochondria in myocytes due to hyperthermic conditions 

have recently been reported by Quian et al20, who proposed a possible mechanism for cell 
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death by calcium overload. In addition to their role in ATP production, mitochondria also 

play an important role in the regulation of calcium. Damage to the mitochondria results in a 

reduction in Ca-ATPase activity within the mitochondria, which leads to an inability to 

remove calcium from the intracellular space. This condition may then lead to calcium 

overload and possibly death by irreversible contracture of the myocyte. Although the 

hyperthermia exposure time of Quian et al was of a longer duration (40 minutes) than what is 

typical during RF ablation (~1-5 minutes), similar types of mitochondrial damage were 

observed by both Quian20 and Nath et al21, who performed RF ablation. These effects include 

degradation of the mitochondrial membrane and cristae, as well as mitochondrial swelling. It 

is possible that this damage contributes to non-acute cell death (4-6 hours) that may account 

for late conduction block which has been reported after RF ablation surgery. The 

mitochondria have also been shown to play a key role in programmed cell death, as 

deactivation of certain anti-apoptotic molecules within the mitochondrial membrane may 

lead to apoptosis22. Mitochondrial membrane permeabilization has been shown to play a key 

role in apoptosis for both the extrinsic death receptor and the intrinsic mitochondrial 

pathways23. The mitochondria have also been implicated in the acidification of the 

intracellular environment24,25. Intracellular acidification leads to the mitochondrial release of 

caspase activators24. The caspases are a class of proteases central to perhaps all types of 

apoptosis26,27. 

The sarcoplasmic reticulum (SR) plays a critical role in intracellular calcium 

handling, which is important for normal excitation-contraction coupling in myocytes. 

Alterations to the SR that occur during hyperthermia may lead to imbalances in intracellular 

calcium concentrations which may cause reduced contractility or myocyte contracture. 
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Everett et al have proposed that irreversible contracture by intracellular calcium increase may 

be important in causing hyperthermia-induced injury to myocytes28. They reported that 

during moderately hyperthermic conditions (45-50 ºC), intracellular calcium concentrations 

were elevated but could be returned to normal levels by the calcium uptake into the SR. For 

temperatures above 50 ºC, however, myocytes were overwhelmed by increased calcium 

permeability due to hyperthermia-induced injury. It is possible that impaired function of the 

SR also contributes to cell death in the 50 ºC range, as studies suggest that hyperthermia 

exposure results in reductions in Ca2+-ATPase activity in the SR29. 

Cytoskeletal damage in myocytes due to short-term hyperthermic exposure has not 

been investigated in depth. However some reports suggest that membrane bleb formation due 

to hyperthermia may be the result of cytoskeletal injury. It has been shown that bleb 

formation correlates well with cellular death30. Specifically, damage to microtubules, 

microfilaments, and intermediate filaments has been shown to occur during hyperthermia, 

although the specific mechanisms of such damage are unknown31. Although effects to the 

cytoskeleton are thought to play a minor role in post-ablation cell death in the region of acute 

necrosis, it is possible that cytoskeletal damage in the border zone may lead to cytoskeletal 

alterations which may affect activation patterns in the myocardium. The importance of actin 

cytoskeletal stability is illustrated in a report by Gabia et al, which showed that actin stability 

in tumor cells determined cellular resistance to both hyperthermia and certain forms of 

energy deprivation32, and that membrane blebbing which precedes cell death occurred 

following increases in denatured actin. Changes in the conformation of actin have previously 

been measured using fluorescent labeling of actin molecules, which may be injected into 

living cells and subsequently monitored directly33. In another study by Schuler et al, the 
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authors use the fact that denatured (i.e. unfolded) actin molecules show a decrease in their 

DNase I-inhibiting activiy, and thus use the DNase I-inhibiting assay as a means of 

quantifying actin denaturation34.  

It is possible that diseases such as hypertrophy which result in damage to the 

cytoskeleton may play a role in predisposing cardiac myocytes to damage caused by heat or 

ischemia-reperfusion injury. Defects causing weaknesses in the myocyte cytoskeleton have 

been implicated in cardiomyopathy, a disease which results in ventricular dilation and 

typically causes valvular disorders35. 

Actin is the most abundant protein in myocytes, and comprises approximately 20% of 

total cell protein36. Actin exists as a globular monomer (G-actin) and as a filamentous 

polymer (F-actin) which is comprised of repeating units of G-actin. F-actin can form bundles 

of closely packed parallel filaments, and may also form loosely packed networks of filaments 

which may cross each other at any given angle37. Both bundles and networks are held 

together with actin cross-linking proteins, and may be attached to the cell membrane by 

membrane-microfilament binding proteins. Actin bundles are critical to the contractile 

function of the cardiac myocyte as well as its structural integrity. Actin has also been shown 

to play important roles in cell signaling38,39 and ion channel regulation40-44, which are critical 

to cardiac action potential conduction.  

Effects of hyperthermia upon the actin cytoskeleton have been investigated by Huang 

et al, who reported that heat-induced disruption of the actin cytoskeleton occurred as a result 

of focal adhesion complex disassembly. In addition to actin binding to the cell membrane via 

focal adhesion complexes, it has also been suggested that actin may bind to the cell 
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membrane directly45,46, thus hyperthermic conditions which affect membrane fluidity may 

affect the stability of the actin cytoskeleton.  

In addition to causing cytoskeletal detachment from the cell membrane, hyperthermic 

conditions may also result in damage directly to actin filaments. While mild hyperthermia 

(41-43 ºC) typically does not induce damage to the actin filament network, higher 

temperatures (> 45 ºC) have been shown to destroy actin-containing contractile rings and 

cause damage to stress fibers47.  

Protein denaturation is strongly associated with hyperthermic damage, and cell 

survival rates and protein denaturation rates have been shown to obey similar kinetics (i.e., 

decaying exponentials in time)48. Since actin is the most abundant cellular protein, and is 

even more abundant in myocytes, it is likely that actin denaturation plays a significant role in 

cell death due to hyperthermia.  

A recent report by Gicquaud et al provides evidence for a three-step mechanism for 

the thermal unfolding of F-actin. In this study, investigators determined the reversibility of 

each “calorimetric event” (i.e., step) during thermal denaturation, and determined that the 

first step is reversible, while each of the final two steps is irreversible. The third step is 

thought to correspond to the unfolding of F-actin, while the first and second events were 

shown not to correspond with the thermal unfolding of F-actin subdomains as previously 

thought49, but rather an alteration to cys 374 (a cysteine residue) and a modification at the 

nucleotide binding site of actin50. Differential scanning calorimetry has shown that myosin 

also undergoes multiple steps in the denaturation process. However the number of steps 

observed depends on factors such as pH, scanning rate, and heating rate51. The thermal 

stability of myosin also varies widely by muscle types, as demonstrated by Vega-Warner et 

 8



al51. The degree to which cells recover will thus depend critically on the energy delivered to 

the actin and myosin fragments of the cytoskeleton, and whether or not sufficient energy is 

delivered to cause irreversible denaturation steps to occur.  

The presence of ATP has been shown to have a protective effect upon F-actin52 as 

well as myosin53,54, while decreases in pH have sensitizing effects upon the thermal stability 

of actin54 and myosin55. Thus ischemic conditions and low ATP levels which occur following 

damage to microvasculature may affect the stability of actin and myosin bundles, 

predisposing them to thermal denaturation.  

The type of myosin (myosin II) which powers muscular contraction is a 

mechanochemical dimer which functions as an enzyme for ATP hydrolysis. Myosin 

molecules consist of head and tail regions, and myosin present in myocytes has head regions 

on both ends of the dimer molecule which may be used to bring together actin filaments from 

opposing ends of the cell membrane. In the presence of actin with exposed myosin binding 

sites (i.e., actin in the presence of calcium), the myosin head rapidly hydrolyzes ATP in order 

to generate mechanical forces which result in contraction. A single myosin molecule moves 

along an actin filament in discrete steps of 11-15 nm, and each step generates approximately 

3-4 picoNewtons of force37. The myosin tail acts to regulate binding to cell membranes and 

assembly of thick filaments which are present in myocytes. Examination of head (S-1 

subfragment) and tail (rod) regions of carp myofibrils following heating revealed that the tail 

portion of myocytes denatures more quickly than the head portion56, suggesting that 

hyperthermia may be more likely to initially cause aggregation of myosin rather than an 

inability of the myosin head to hydrolyze ATP. However, there is evidence that the initial 

denaturation stage of the rod portion is readily reversible57, and that the ATPase activity of 
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the myosin head is greatly reduced during hyperthermia58-60. Thus the contractility of cardiac 

myocytes near the border zone will likely be affected by hyperthermic exposure, and damage 

to the myosin head may result in permanent contractile dysfunction. 

The extracellular matrix has been shown to undergo significant changes after even 

mild hyperthermia (~41 °C), such as that associated with the inflammatory response. 

Wagrowski et al have shown, in multiple cell lines, that the composition of the extracellular 

matrix is affected by hyperthermia61. Specifically, the production of the extracellular matrix 

component glucosaminoglycan (GAG) is inhibited, while the production of hyaluronan 

increases. Hyaluronan is typically present during inflammatory reactions, and acts to inhibit 

cell-to-cell adhesion and allow cell migration37. Proper myocardial conduction is dependent 

upon regular intercellular coupling, thus the restructuring of the extracellular matrix 

following hyperthermia may have significant effects upon cardiac excitation propagation, 

including wavebreak and slow conduction.  

Although damage to the nuclear membrane has been reported for both endothelial 

cells in the microvasculature17 as well as cardiac myocytes21, the effects of this damage are 

thought to be of secondary importance in myocyte tissue death and recovery following RF 

ablation. While damage to DNA may be of critical importance in tumor cells where cell 

replication is accelerated, typically adult cardiac myocytes do not actively divide and thus 

DNA damage is thought to be of only minor importance. Also, damage to DNA and 

structured RNA are also thought to be unlikely to occur during RF ablation, since they 

typically do not undergo conformational changes below 85-90º C62. 

During RF ablation, coagulation necrosis typically takes place at the level of the 

microvasculature, resulting in eventual death to the surrounding tissue due to ischemia. In 
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addition, cells adjacent to the ischemic zone may die due to apoptosis63, which may be 

indicated morphologically by cell shrinkage rather than cell swelling typically found 

following ischemic necrosis. Other indicators of apoptosis include fragmented DNA (which 

may be detected by terminal UTP nick end labeling, or TUNEL), condensation/clumping of 

nuclear chromatin, membrane blebbing, loss of cell-cell contact, phagocytosis of the 

apoptotic body by adjacent cells, little inflammatory reaction in the region of apoptotic cells, 

intracellular acidification, and the maintenance of organelle structure and function until late 

in the apoptotic process22. Although the appearance of a “ladder” pattern in gel 

electrophoresis assay has been regarded as the most characteristic feature of apoptotic cells, 

investigators have shown that DNA fragmentation is neither necessary nor sufficient for 

events leading to apoptosis64. And while the TUNEL assay provides evidence for apoptosis, 

the gold standard for apoptosis is still the identification of morphological indicators using 

light and electron microscopy22. 

Recently, apoptosis has been implicated as a possible cause of the progression of 

hypertensive heart disease into congestive heart failure65, and increased apoptosis has been 

demonstrated in rats with hypertrophied left ventricles66. Cheng et al have demonstrated that 

increased apoptosis occurs due to mechanical stress on papillary muscles. Electron 

microscopy of RF ablation lesions has revealed significant mechanical damage to cardiac gap 

junctions, sarcomeres, and the plasma membrane. Also, adjacent myocytes were often found 

in to be in varying stages of contractility21, suggesting the presence of significant mechanical 

stresses upon cardiac tissue adjacent to ablation lesions which may accelerate apoptosis. 

Heat shock proteins (Hsps) serve to protect cellular proteins by aiding in the correct 

folding of partially denatured proteins and by degrading proteins which have been 
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irrevocably damaged, thus preventing aggregation. The Hsps probably play a minor role in 

regions of acute necrosis where cells are heated to temperatures above 60º C, however they 

may play a significant role in the recovery of tissue in the border region where heat exposure 

is less severe and ischemia plays a significant secondary role67. Heat shock proteins are 

synthesized in response not only to heat but also to ischemia and many other stresses, and 

therefore will be induced both by ablation-induced hyperthermia as well as late ischemia 

produced by damage to the microvasculature. Compelling evidence has been presented by 

Currie et al and others68-72 which details the protective effects of Hsps in the myocardium 

following exposure to heat-shock, showing that both metabolic and contractile indicators of 

protection following secondary exposures to stress are correlated well with the presence of 

Hsps. Thus Hsps may be a possible cause of late recovery of myocardial tissue following 

thermal exposure during ablation surgery. Ilangovan et al73 concluded one way in which 

Hsps increase survival rates of heat-treated cells is related to the regulation of nitric oxide. 

Specifically, some Hsps binding leads to the production of NO, which in turn reduces oxygen 

consumption in order to conserve energy during ischemic conditions. Actin depolymerization 

is thought to be inhibited by Hsp27, which may act as a cap-binding protein to stabilize actin 

filaments following hyperthermic exposure74. However a more recent report showed that 

while thermal denaturation of F-actin is not directly affected by Hsps, some Hsps (Hsp24 and 

Hsp27) will interact with denatured actin to prevent aggregation75, indicating that Hsps may 

act on actin filaments at different stages of the denaturation process. 

A number of interesting clinical uses for Hsps have been proposed, including their 

inhibition to enhance ablation of tumors76 and drug-induced heat shock in order to improve 

post-ischemic ventricular recovery following cardiopulmonary bypass77. Drug-induced Hsps 
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inhibition may be useful in ablation therapy, as a means of achieving conduction block at 

lower temperature in order to prevent unwanted effects such as charring or popping which 

may result in thromboembolic complications (e.g., stroke). 

Metabolic changes due to hyperthermia are thought to have profound effects upon the 

survival of the cardiac myocyte. Energy metabolism generally increases during hyperthermia, 

including glucose metabolism, ATP usage, and ATP synthesis78. Studies conducted in tumor 

cells reflect greatly increased demands for energy during heat exposure. Increases in energy 

metabolism may lead to a depletion of energy reservoirs, possibly contributing to late cell 

death following RF ablation. The synthesis of DNA, RNA, and proteins has been shown to 

be inhibited by hyperthermia in tumor cells. However adult myocytes do not actively 

replicate, thus the effects of DNA synthesis inhibition are not expected to play a large role in 

the physiology of post-ablation lesion healing. The degree to which protein synthesis affects 

the cell is highly dependent upon the type of synthesis that has been inhibited. An obvious 

class of proteins that may affect the survival of the cell are the heat shock proteins described 

above. Heat shock protein production is thought to be accelerated during mild hyperthermia, 

but may be inhibited during higher temperatures.  

Hyperthermia also affects cells by sensitizing them to other stresses (by increasing 

cell membrane permeability, for example). In the case of RF ablation, this stress comes in the 

form of radiofrequency waves, and it is possible that electrical injury plays a significant role 

in lesion creation. Although it is generally agreed upon that the thermal effects account for 

the vast majority of tissue damage, the relative contributions of thermal and electrical injury 

are not precisely known, and it has been suggested that the combination of thermal and 
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electrical energy produce a synergistic effect greater than that produced by pure electrical or 

thermal energy alone19,62. 

Myocytes adjacent to acutely necrotic tissue are affected by a number of different 

mechanisms, some of which may act to increase lesion size while others may contribute to 

recovery of cardiac tissue. Radiofrequency ablation surgery in the clinical setting has shown 

that both cases occur frequently, with recovery of conduction leading to late failure of 

conduction block79,80, while expansion of the lesion may result in complete atrioventricular 

block81-83. Improvements in success rates for the ablation of arrhythmias will depend upon 

our understanding of these factors and our ability to regulate the balance between those 

factors which lead to lesion expansion and those which lead to tissue recovery. A block 

model on the following two pages summarizes the aforementioned effects of hyperthermia 

upon cardiac myocytes. The rightmost block is acted upon by hyperthermia. 
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Figure 1.1  Myocardial model for cell damage following exposure to hyperthermia (first half) 
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 Figure 1.2  Myocardial model for cell damage following exposure to hyperthermia (second half) 
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B. Effects of Ablation upon the Microvasculature 

During radiofrequency (RF) ablation, the tissue is heated through two distinct 

mechanisms (Joule and thermal). Joule heating occurs primarily due to the flow of 

radiofrequency current through the high-resistance electrode-tissue interface near the ablation 

electrode tip. Thermal heating is a result of passive heat conduction occurring from the site of 

Joule heating to the surrounding tissue. Thermal heating produces the majority of the tissue 

damage, and Joule heating produces acute coagulation necrosis near the ablation electrode, 

with tissue damage gradually decreasing with increasing distance from the ablation electrode 

contact site. Studies by Nath et al17,21 indicate that damage to the myocytes as well as to the 

microvasculature extends outside the region of acute necrosis, and  that dynamic changes in 

these regions may be responsible for late success or failure of ablation surgeries aimed at 

blocking conduction. Although studies of the effects of RF ablation on cardiac 

microvasculature are somewhat scarce, there are numerous studies involving cancerous tissue 

(mostly liver) which describe the effects of the microvasculature upon RF ablation lesion size 

and cellular necrosis84-89, as well as changes in the microvasculature due to ablation90,91. 

Studies conducted on tumors have shown that blood flow in the microvasculature increases 

with mild heating, but then begins to decrease as temperatures reach approximately 46º C92, 

eventually resulting in stasis93. Following ablation, reductions in myocardial blood flow have 

been shown for regions up to 6 mm away from RF ablation lesions. More specifically, 

regions 0-3 mm away from the region of acute necrosis showed a reduction of 52% with 

respect to normal flow, while regions 3-6 mm away showed a reduction of 18%17. These 

values indicate that regions outside the zone of acute coagulation necrosis suffer from 

hypoxia.  
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The endothelial cells are thought to play an important role in the thermal injury of the 

microvasculature94. Gross structural alterations to microcirculatory endothelium have been 

reported both within and adjacent to the region of acute necrosis, including degeneration of 

vascular walls, irregular endothelial wall surfaces, and the presence of fibrin93. Damage to 

endothelial cell plasma membranes, nuclear membranes, nuclear chromatin, transport 

vesicles, endoplasmic reticula, and gap junctions has also been reported17. Structural damage 

to endothelial cells contributes to a variety of metabolic and inflammatory processes which 

affect the surrounding tissue. Damage to the endothelial wall may also alter the 

hemodynamics within the damaged vessels due to changes in vessel geometry and decreases 

in the diameter of the vessel lumen. 

Damage to the vascular endothelium is often the result of ischemia in the border 

adjacent to the zone of acute coagulation necrosis. In regions near the ablation site where 

mild to moderate hyperthermia occurs, the microvasculature and surrounding tissue may be 

subject to ischemia-reperfusion injury. Due to increased vascular permeability that occurs 

during hyperthermia and as a result of inflammatory reaction to endothelial damage, 

neutrophil accumulation occurs following ischemia and reperfusion, and has been shown to 

play a significant role in microvascular endothelial injury95-98. The accumulation of 

neutrophils in the microvasculature ultimately results in the production and release of 

reactive oxygen species (ROS) of which the vascular endothelium is a sensitive target. The 

group of ROS formed following neutrophil invasion are highly diversified, and affect a wide 

range of components vital to cardiac function, including membrane lipids and membrane 

ionic channels98. Although neutrophil accumulation is thought to account for the majority of 

deleterious effects on the vascular endothelium, there is also recent evidence that other types 
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of blood cells play an important role in post-ischemic endothelial injury, and may act to 

promote neutrophil-induced injury99-103. Thus in addition to the affects of hyperthermia, 

vessel damage and subsequent ischemia, the immune response is also though to result in 

significant damage to the walls of the microvasculature. These later effects following RF 

ablation surgery may be responsible for long-term complications associated with increasing 

lesion size, such as complete AV block following the correction of atrioventricular nodal 

reentrant tachycardia104. 

Partial blockage of microvessels, coupled with decreased compliance caused by 

fibrosis, may lead to large decreases in blood flow and an inability to properly regulate blood 

flow in tissue adjacent to RF ablation lesions. Accumulation of neutrophils following 

inflammatory reaction105 may further act to reduce effective diameter within the 

microvasculature. In order to appreciate the impact of such changes, it is instructive to 

consider the physics of flow through a cylindrical pipe. Poiseuille’s law dictates that small 

changes in the diameter of a vessel lead to large changes in the blood flow rate, since the rate 

of flow is proportional to the radius of the vessel raised to the fourth power106. This may lead 

to ischemic conditions in tissue near RF ablation lesions, particularly during periods of 

increased stress, where blood flow and energy demands are elevated. The heart may respond 

by increasing its beat rate and therefore increasing intravascular pressure, but since the 

structural integrity of the vasculature has been compromised as described above, this 

pressure increase may lead to hemorrhaging and subsequent extravasation of red blood cells, 

as reported by Nath et al21. Studies of progressive microvascular injury in the liver reveal that 

peak microvascular and tissue injury occurs approximately 72 hours following treatment via 

hyperthermia, and that microvasular injury often precedes tissue injury107. This highlights the 
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importance of microvascular injury in the eventual healing or death of tissue located within 

the border zone (~0-6 mm of the region of acute necrosis). 

The larger vessels of the heart are typically avoided during the production of RF 

ablation lesions, and thus do not play a direct role in lesion production and late tissue death. 

However, damage to the larger coronary vessels may result in massive damage to the 

myocardium. A number of dangerous (although somewhat rare) complications are associated 

with damage to the larger coronary arteries which supply blood to the heart, including severe 

intimal hyperplasia (a result of the inflammatory response as described above for the 

microvasculature) and intravascular thrombus108. Both of these complications may lead to 

vessel blockages and subsequent myocardial infarction.  

Experimental findings have helped to improve the safety of ablation near coronary 

vessels, but vessel damage still remains a concern. Several guidelines have been proposed by 

investigators that have helped to reduce the incidence of complications involving coronary 

vessels. Based on empirical observations and experimental studies, Sosa et al reported that 

ablation lesions should be created at least 12 mm from a major coronary artery109. D’Avila et 

al found that susceptibility to damage by RF pulses varied inversely with the coronary vessel 

size110, suggesting that larger vessels are protected by the convective heat sink effect 

provided by greater blood flow in larger vessels. They reported that vessels with diameters 

greater than 0.51 mm had no significant endothelial lesions, while all vessels with diameters 

less than 0.24 mm showed signs of significant injury. While in the case of larger arteries it is 

certainly detrimental to damage the endothelium and endanger the surrounding myocardium, 

it is likely that in the case of smaller vessels vascular damage may be desirable in order to 

increase eventual ablation lesion size. Thus it is likely that there exists a “danger zone” of 

 20



vessel diameters which must be carefully avoided, below which the vessels are nearly 

terminal and their destruction acts to aid in increasing lesion size and ensure uniform 

deactivation of myocytes, and above which the vessels are likely to be protected by the heat 

sink effect of convective cooling by blood flow.  

A recent report by Thyer et al suggests that coronary vessels may be protected by 

irrigating the vessels with chilled saline111, however questions still remain regarding the 

clinical viability of this technique108, and ischemia-reperfusion injury following infusion with 

a hypothermic saline solution is a concern105,112 that must be addressed. The protective 

effects offered by the saline technique must be weighed against the relatively low incidence 

of vessel damage reported in the literature (Sosa et al reported only one instance of coronary 

artery occlusion in 215 procedures113). Further, over-cooling of vessels may leave viable 

myocytes in tissue surrounding vessels, which may allow arrhythmic conduction or act as an 

arrhythmogenic substrate.   

Aside from the more obvious structural damage that may occur in the coronary 

vessels, such as coagulation necrosis and thromboembolism, endothelial tissue is also subject 

to the effects of inflammatory reactions that occur in response to hyperthermia and ischemia-

reperfusion injury in the microvasculature. Thus in addition to avoiding direct contact with 

the vessels, care must also be taken to avoid heating the vessels beyond temperatures which 

may precipitate a potentially damaging inflammatory response. 

Both the vasculature and the microvasculature play a critical role in the acute and 

long-term phases of RF ablation lesion formation. Acute structural damage to the 

microvasculature results in local ischemia in the lesion border zone, and subsequent 

inflammatory responses may help to further increase lesion size, although this may result in 
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the block of conduction necessary for normal cardiac function. While the larger vessels of the 

heart are typically not as susceptible to acute damage, they may suffer more subtle long-term 

damage due to the effects of hyperthermia upon the endothelial cells which line the vessels. 

Also, the larger vessels play an important role in early ablation lesion size, since larger 

vessels will remove heat from the ablation site by convective cooling. The production of a 

complete lesion set will depend on the careful consideration of the factors which affect both 

short-term and long-term effects upon the vasculature and microvasculature of the 

myocardium. 
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C. Heat Transfer in Perfused Living Tissue 
 

The Bioheat equation is a modification of the heat equation. The heat equation is 

based on Fourier’s law of heat conduction, which states the following: 

 

1)          ( ) Tt,q ∇−= κrv   

 

where  is the heat flux vector and corresponds to the direction of heat flow at a position r at 

time t, κ is the thermal conductivity of the medium (and may depend on both temperature and 

position within the medium), and T is the temperature of the bulk medium. Under certain 

conditions, κ may be considered a constant, but in general it depends on both temperature and 

position.  

qv

By considering a volume V enclosed by a surface S containing heat sources 

represented by a function ( t,rg )v , and then applying the divergence theorem, the standard 

heat equation may be derived114: 

 

2)          ( )t,gT
t
Tc r+∇⋅∇=
∂
∂ κρ  

 

where ρ and c are the density and heat capacity of the medium (tissue, in the case of cardiac 

ablation). The Bioheat equation, originally described by Pennes115 in 1948, added two source 

terms to the heat equation: 
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3)          bm hhT
t
Tc ++∇⋅∇=
∂
∂ κρ  

4)           ( )vabb TTcVh −⋅=

 

The additional terms account for heat delivery to the tissue by way of blood 

circulating through the tissue (hb), and heat production within the tissue (hm) due to increases 

in metabolism, contraction, and other sources. Equation 4 gives an expression for the rate of 

heat transfer from the blood to the tissue, where V is the volume of blood flow per unit 

volume of tissue, cb is the specific heat of blood, and Ta and Tv are the arterial and venous 

blood temperatures, respectively115. 

In 1980, Chen and Holmes modified the bioheat equation and provided a firm 

theoretical basis for the importance of the microvasculature when analyzing small-scale (~10 

mm) heat distributions116 in perfused tissue. The work by Chen suggests that tissue-vessel 

temperature equilibrium takes place at a higher level of the vasculature than previously 

assumed, and occurs in the precapillary arterioles rather than the capillaries. Also, he states 

that larger vessels present in the region should be accounted for individually rather than be 

lumped together in a continuum, and gives the following expression for the blood perfusion 

term (hb): 

 

5)           ( )iii
i

bibbb AuTch θρ sin∑=

 

where ρb and cb are the density and specific heat of blood, Tbi is the “flow-weighted” average 

temperature of the ith vessel, ui is the mean velocity of blood in the ith vessel, Ai is the flow 
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area of the ith vessel, and θi is the angle between the vessel and the exiting or entering surface 

of the tissue volume.  

Chen and Holmes also stressed the importance of the characteristics of the blood flow 

in each individual vessel of the microvasculature (velocity as well as thermal conductivity in 

the microvessels). He describes the governing equations as follows: 

 

6)          bis
bi

ei TT
dx

dT
x +=  

7)          
ii

ibbi
ei PU

ucA
x

ρ
≡  

 

Equation 6) defines how individual vessels equilibrate with the solid tissue. Ts is the 

temperature of the solid tissue, not including the vasculature. The tissue temperature of the 

bulk medium (solid tissue and vasculature), T, may be significantly different than Ts. xei 

represents the length over which the temperature difference between the blood and the solid 

temperature will be reduced by a factor of 1/e. Ui and Pi are the heat transfer coefficients and 

circumference of the ith vessels. 

The Weinbaum-Jiji equation was later developed to study heat transfer in a 3-layer 

model, consisting of a skin layer, intermediate layer, and a deep layer117,118. Weinbaum et al. 

subsequently developed a simplified version of their bioheat equation, which described 

thermal effects of countercurrent convection in artery-vein pairs in terms of the effective 

conductivity (keff). The details of this model are complex, and the validity of the simplified 

Weinbaum-Jiji model119 as a general solution to problems in bioheat transfer is a subject of 

debate120-122. However, it may certainly be said that the work by Weinbaum et al. precipitated 

 25



work which led to significant improvements to the existing framework (i.e., Pennes’ bioheat 

equation).  

These models set the stage for further development of heat transfer in perfused 

tissues; however they were mainly developed to address problems in arising in hyperthermic 

therapy of cancerous tissue. Panescu et al. used finite element analysis and in vitro specimens 

to specifically address heat distributions occurring during RF ablation of cardiac tissue123. 

Their formulation is a modified version of the Pennes equation, with an additional term to 

address the delivery of energy by a RF current.  

 

7)          elb Q- −⋅+∇⋅∇=
∂
∂ hT

t
Tc EJκρ   

 

The current density and electric field generated by the ablation probe are given by J and E, 

respectively. Heat contributions due to metabolic heating were neglected in this study. The 

term Qel is the heat contribution due to conductive transfer between the ablation electrode 

and the tissue. Although not important for non-irrigated ablation electrodes, this term is 

significant for liquid-cooled electrodes. Liquid-cooled electrodes were designed to allow heat 

diffusion throughout the tissue without charring the tissue surface, and have been shown to 

create larger lesion sizes124.  

 
 
 
 

 
 
 
 
 

 26



 
 
 

 

 27



D. Optical Mapping of Cardiac Ablation Lesions 
 

Optical mapping techniques with transmembrane voltage-sensitive dyes have been used 

successfully to study electrical phenomena in hearts, including the influence of defibrillation shocks, 

the spatio-temporal distribution of transmembrane potentials, effects of tissue heterogeneity on 

conduction, and the role of electroporation in defibrillation125-131. Optical techniques have advantages 

over electrical measurements for the study of the electrical behavior of excitable tissues, such as the 

ability to take simultaneous action potential recordings from many sites without requiring cellular 

impalements. Also, optical recordings of activation are not subject to the effects of far-field 

activations or polarization. However optical mapping also has limitations for studies of 

transmembrane potentials, including the lack of a direct voltage calibration, the inability to map three-

dimensionally, the presence of artifacts produced by heart movement, and averaging effects which 

affect upstroke velocities of cardiac action potentials132.  

In cardiac optical mapping studies, a transmembrane voltage-sensitive dye such as di-4-

ANEPPS is typically used to map electrical activity on the surface of the epicardium. When cells in 

the tissue undergo an action potential, which may be due to external pacing or sinus rhythm, 

transmembrane voltage changes due to depolarization shift the emission spectrum of the dye toward 

shorter wavelengths133. This causes an increase in the fluorescence intensity at short wavelengths and 

a simultaneous decrease at long wavelengths. 

Each of these wavelength bands is also sensitive to movement of the tissue, as is evident from 

the movement artifacts that have been found during the heartbeat. Movement will cause a similar 

change, either an increase or decrease, in both wavelength bands. We have found that the ratio of 

these two, computed as the short wavelength fluorescence intensity divided by the long wavelength 

intensity, is mainly sensitive to the transmembrane potential133,134. 
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E. Electrogram Recordings of Ablation Lesions 
 
 

Extracellular potential recordings occur due to the flow of ionic currents between the 

intracellular and extracellular domains that occur during activation of cardiac myocytes135,136. 

There are numerous issues which arise while recording extracellular potentials to determine 

activation times, some of which are common to both unipolar and bipolar electrodes, while 

others are unique to only one of the two recording methods. Since our method for evaluation 

of conduction latency does not currently necessitate electrode mapping of the myocardium, 

this discussion will be limited to electrode configurations which map activation at a single 

tissue region. 

In contrast to intracellular transmembrane voltage recordings, such as microelectrode 

recordings, extracellular recordings may be significantly affected by activation of cells at 

sites distant from the recording electrodes. Durrer and others136-141 report that unipolar 

recordings are particularly vulnerable to far-field activation, and that in some cases these 

components may interfere with detection of a local activation. For example, large far-field 

activations may obscure the exact timing of a depressed local activation, such as those that 

occur following a healed myocardial infarct or RF ablation. Since extracellular electrograms 

report electrical activity of a tissue region rather than individual cells, amplitudes of such 

waveforms may be significantly diminished if there is damaged tissue in the recording 

region, leaving only a fraction of the original viable tissue. A simulation study by 

Steinhaus142, which examined unipolar and bipolar electrograms in thin strips of tissue, 

revealed extracellular waveforms with amplitudes of less than 10 μV, illustrating the 

importance of viable tissue dimensions during collection of extracellular electrograms. This 

is important for both unipolar and bipolar recordings, as low amplitude waveforms found in 
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severely damaged tissue may be hidden beneath electrical noise levels found in typical 

laboratory settings. Studies performed during normal propagation in non-damaged tissue 

suggest that timing of the negative deflection is not significantly affected by distant 

activations, although minima and maxima of activation waveforms may be altered137.  

Unipolar electrode recordings are particularly vulnerable to effects of polarization, 

which may cause the baseline signal to rise outside of the range of the recording amplifier. 

This phenomenon is due to changes in the half-cell potential which occur as a result of 

current flow through the electrode-electrolyte interface. These changes are due to ohmic, 

concentration and activation overpotentials, and all act to produce changes in the half-cell 

potential from its equilibrium value. Ohmic overpotentials are a result of voltage drops from 

the recording electrode to the reference electrode across the electrolyte bath. Concentration 

overpotentials result from changes in ionic concentration in the vicinity of the electrode-

electrolyte interface. Activation overpotentials occur as a result of differences in activation 

energy barriers between oxidation and reduction of metal cations, one of which predominates 

during a given direction of current flow143. Effects of polarization during unipolar electrode 

recordings may be minimized by the use of a nonpolarizable metal/anion electrode, such as 

the AgCl electrode143. The procedure for optimal chloriding of the AgCl electrode has been 

described by Geddes et al144. Also, baseline drift due to polarization or other factors may be 

reduced by high-pass filtering (>0.5 Hz), which may also help reduce effects of low-

frequency motion due to variable electrode contact and/or cardiac contraction141. Higher 

cutoff high-pass and band pass filters may further reduce system noise and AC line noise, 

however high-pass filtering at higher cutoffs (>30 Hz) also tends to alter waveform 

morphology141. When identifying the main local activation this filtering may be desirable, 
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since distant activations which may obscure local activations tend to produce peaks with 

lower maxima and longer durations145, however lower frequency peaks may also be 

important indicators of local tissue damage. 

Bipolar recordings may be susceptible to effects of activation at non-local sites, 

however these effects will be lessened due to the fact both the recording and the reference 

electrode are positioned adjacent to each other, hence their difference will reject far-field 

signals. The degree to which far-field effects will be lessened is a function of both the 

interelectrode distance as well as the distance between the activation and the recording 

site136,141. As the interelectrode distance in a bipolar electrode configuration increases, the 

effects of distant activity increase. This is logical, since increasing interelectrode distances 

will eventually approximate the unipolar electrode configuration.  

Bipolar recordings are typically more difficult to interpret than unipolar recordings, 

due to the fact that the bipolar waveform is often more complex and generally have higher 

morphological variability. While there is a general consensus that the negative deflection in 

the unipolar electrogram represents activation, there is some disagreement as to which 

parameter (dV/dtmax, maximum amplitude, waveform onset, etc.) best indicates activation in 

a bipolar electrode configuration. A study by Paul et al146 found that the maximum amplitude 

best indicates activation as determined by unipolar maximum slope (typically the negative 

deflection), however this study had no gold standard (i.e. microelectrode recordings) with 

which to definitively measure activation times. The study also examined maximum slope and 

the onset of activity in the bipolar electrogram as possible activation indicators, however 

neither of these parameters correlated with the negative deflection as well as the maximum 

amplitude.  
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The term “fractionated activity” has been used to describe peaks with small 

deflections (<1 mV) and long durations (>100 ms), which are typically found during acute 

ischemia and in healed myocardial infarcts145. Ischemia may occur following ablation 

therapy due to coagulation and subsequent blockage in the microvasculature21, which may 

lead to infarcts and subsequent fractionated electrograms. Fractionation of electrical 

activation is thought to be due to highly discontinuous conduction147, which may occur due 

to fibrosis or other events which lead to tissue discontinuities and/or structural deformities in 

adjacent myocyte strands. Additional peaks found in electrograms showing fractionated 

activity may complicate the identification of the “true” activation during non-ideal conditions 

in the heart. Although most investigators now believe that fractionated activity represents 

true abnormalities in conduction of activation, and may help to indicate the presence of 

reentrant circuits or a predisposition to ventricular tachycardia145, others have proposed that 

the additional peaks may simply be recording artifacts such as motion148 and/or effects of 

filtering149. Motion artifacts described by Ideker et al were small (100-200 μV) in magnitude, 

but did resemble fractionated activity. They were eliminated by ensuring secure contact 

between epicardial surface and the recording electrode148. Errors due to filtering may be 

minimized by filtering minimally while taking recordings, so that the effects of filtering may 

be seen during post-processing of data. The extent to which electrograms should be filtered 

depends on what type of data the investigator wishes to observe, and there are tradeoffs 

involved in increasing the amount of filtering. For instance, high-pass filtering at a lower 

cutoff frequency in the unipolar electrogram may allow observation of the site of earliest 

activation; however far-field activations will also be present in the recording. Raising the 
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cutoff reduces far-field effects, but does not allow reliable identification of wavefront 

propagation direction141.    

Another factor which may affect extracellular recordings is the direction of wavefront 

propagation with respect to the recording electrode(s). Unipolar electrodes used to record 

extracellular potentials will show a steep negative deflection regardless of the angle of 

approach of an activation wavefront. The morphology of the unipolar electrode may be 

significantly altered if the recording electrode is near the origin or termination of an 

activation wavefront, but the negative deflection will still be found150. Bipolar electrodes, 

however, will record a waveform with amplitudes which vary according to the angle of 

approach of the propagating wavefront. A wavefront which propagates in the same direction 

as a line connecting the bipolar electrodes (parallel or anti-parallel) will show the maximum 

bipolar signal for a particular wavefront, while a wavefront which propagates at some other 

angle will show a reduction in amplitude. Thus in contrast to unipolar recordings, bipolar 

electrograms in damaged tissue cannot reliably give information regarding wavefront 

propagation direction with respect to the electrode(s). Theoretically, a symmetric (plane, 

spherical, etc.) wavefront which approaches from a direction perpendicular to the electrode 

axis should produce no electrical waveform since both electrodes will record the same 

voltage and give a difference of zero. However, this is rarely reported in practice. A study by 

Blanchard et al151 showed significant reductions in amplitude for near-perpendicular 

propagation of bipolar waveforms, and also revealed that these smaller amplitude waveforms 

were more likely to contain multiple peaks. However the incidence of zero amplitude 

electrograms in this study seemed low, since for peak-to-peak amplitude waveforms the 

baseline voltage was approximately two standard deviations from the mean. 
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While extracellular recordings have significant advantages over intracellular 

recordings, such as being non-invasive to cells, having the ability to more easily record 

activations from a large number of closely spaced sites, and being much simpler to position, 

they tend to be more susceptible to activity occurring outside the local recording region and 

also tend to show effects related to wavefront orientation. The additional effects found in 

extracellular recordings may complicate identification local activation in some cases, 

however these effects may also serve as important indicators of tissue health and as a guide 

for ablation of accessory pathways152 and other surgical techniques which require rapid 

localization of reentrant153 and focal sources (i.e. drivers)154 of activation. 
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F. Conduction Velocity and Changes in Normal Propagation 

Reports by Sano et al. and others demonstrated that the speed of an activation 

wavefront may vary considerably, according to factors such as fiber orientation130,155-158, 

temperature156,159, wavefront curvature130,160, ischemia155, and depth156,161 within the 

myocardial wall. When predicting whether conduction block will occur across an incomplete 

lesion, these factors must be carefully considered.  

Cabo et al. have examined the effects of various factors upon the minimum width of 

viable tissue necessary to support conduction (“critical gap width”)160. They showed, using 

both models and experiments, that increases in pacing frequency increase the critical gap 

width, while parallel arrangement of cardiac fibers with respect to the tissue isthmus 

decreases the critical gap width. 

The safety factor, originally described by Rushton162, may be qualitatively described 

as the ratio of the current source (e.g., depolarized cells) over the current sink (downstream 

resting cells  which have not been activated). Most factors which alter the critical gap width 

are ultimately the result of a change in the safety factor, and block within excitable tissue 

typically occurs due to an insufficient excitatory current from adjacent cells. For instance, if 

fibers are oriented perpendicular to an activation path through a gap, the critical gap width 

will be larger than the case where fibers are oriented along the path through a gap. This is 

due to a decrease in source current because of higher resistance connections across fibers. 

When the frequency of the stimulus is increased, the duration between stimuli may be 

insufficient for sodium channels to fully recover. Thus fast sodium currents may be reduced, 

resulting in a decrease in the safety factor.  
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G. Changes in Conduction Velocity Due to Ischemia 

Occlusion of coronary vessels and subsequent hypoxia results in immediate changes 

in cellular and tissue properties. Myocytes have little reserve capacity of high-energy 

phosphate compounds (ATP), and these are exhausted within approximately 30 seconds of 

normal cellular metabolism. Exhaustion of high-energy compounds leads to altered 

metabolic pathways, which result in ionic imbalances, acidosis, and changes in gap 

junctional conductance163. Using computer simulations, Jongsma and Wilders showed that 

halving gap junctional conductance results in a longitudinal conduction velocity decrease of 

only 13%, but decreases the transverse conduction velocity by 36%164. Experimental studies 

by Gutstein et al show that knockout mice with decreases in Cx43 (connexin 43) expression 

of 95% have marked reductions in both longitudinal and transverse conduction velocities. In 

these experiments, conduction velocity was reduced by 55% for the transverse direction and 

42% in the longitudinal direction165. Others, such as Eloff et al166 and Lerner et al167, have 

demonstrated that significant changes in conduction velocity occur with less severe 

reductions in Cx43 expression (~50%). Further, Eloff also reported no change in the 

anisotropic ratio of longitudinal to transverse conduction velocity reduction. Although it has 

been recognized that gap junctions play a crucial role in the conduction of activation, the 

precise quantitative effect of gap junction reductions upon conduction velocity is still a 

subject of debate. 

Following 2-3 minutes of ischemia, a slight depolarization of the resting 

transmembrane potential occurs, and the resting potential decreases from -80 to 

approximately -65 mV. During early ischemia, the APD is prolonged, but this is followed by 

a shortening of the APD. Although the APD is shortened, the atrial effective refractory 
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period (AERP) is lengthened during ischemia. In addition, the APA and dVm/dt are 

significantly reduced. Reductions in APA lead to a reduction of the safety factor, which 

causes reductions in conduction velocity and may lead to conduction block. Reductions in 

dVm/dt (presumably due to damage to sodium and other fast ion channels) also lead to 

reductions in conduction velocity.  

Conduction velocity is affected by both active and passive changes in the 

myocardium. Since ischemia has effects upon both, the extent of ischemic injury following 

cardiac ablation must be carefully considered when using a metric which depends upon either 

conduction properties or passive electrical properties. 
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CHAPTER 2 

 
TRANSLESION STIMULUS-EXCITATION DELAY AS A METRIC FOR 
RADIOFREQUENCY ABLATION LESIONS IN HEARTS 
 
 
A. INTRODUCTION 

Since Dr. Melvin Scheinman performed the first catheter ablation to halt a 

supraventricular cardiac arrhythmia in 1981, various methods have been developed to block 

conduction in cardiac tissue168-176.  Radiofrequency (RF) has emerged as the preferred energy 

source for both endocardial and epicardial tissue ablation169,177-181. Epicardial RF ablation for 

the treatment of atrial fibrillation (AF) has several advantages over catheter-directed 

endocardial RF ablation. The risk of a thromboembolic event is less with epicardial 

techniques182 and more complete and continuous ablation lines are obtained with surgical 

ablation than with catheter-directed approaches183. 

Radiofrequency ablation for AF is frequently performed during cardiac surgery while 

the heart is arrested179,184,185.  However, confirmation of complete conduction block on an 

arrested heart is not currently available. Advancements in minimally invasive surgical 

techniques have allowed the application of RF ablation to the epicardium of the beating 

heart186,187.   While the heart is beating, it may be possible to verify that lines of ablation are 

indeed transmural and produce complete and continuous block of electrical conduction. The 

immediate evaluation of epicardial ablation lesions can confirm success and eliminate the 

need for repeat or additional procedures. 
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Delay in the time required to conduct an electrical impulse around an ablation lesion 

may be measured before removing the RF electrode probe to determine if the ablation is 

sufficient. This can be accomplished by placing stimulation and recording electrodes directly 

on the ablation probe on opposite sides of the lesion, eliminating the need for an additional 

mapping catheter. Alternatively, a separate diagnostic device containing four electrodes (two 

on each side of the lesion separated by a fixed distance) may be used to measure the 

activation time delay across the lesion. The creation of a significant time delay may 

unambiguously demonstrate trans-lesion conduction block, and therefore lesion 

completeness. Marked increase in time delay may also provide a quantitative indication that 

the lesion ends have extended to anatomical barriers. The relationship between time delay 

and path length of viable tissue post-ablation may be predictable, based on the conduction 

velocity of an action potential in the cardiac tissue. This may allow establishment of a target 

increase in time delay that indicates a sufficient increase in pathway length resulting from 

continuous, transmural lesions. This topic is examined in chapter 3. 
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B. METHODS 

Rabbit Heart Preparation 

Fresh hearts isolated from New Zealand rabbits (N = 11) of either gender were 

perfused through the aorta with Tyrode’s solution (129 mM, NaCl, 5.4 mM KCl, 1.8 mM 

CaCl2, 1.1 mM MgCl2, 26 mM NaHCO3, 1 mM Na2HPO4, 11 mM Dextrose, and 0.6 μM 

bovine serum albumin). The solution was bubbled with 95% O2 and 5% CO2, and maintained 

at 37 ± 0.2ºC. Hearts were stained with 50 μl injections of a 0.0021 M solution of di-4-

ANEPPS, a transmembrane voltage-sensitive fluorescent dye used in detecting the action 

potential across membranes of nerve and cardiac muscle cells. The dye was dissolved in 

ethanol, and injected into the arterial perfusion tube. 

Lesions (N = 29 total) were produced on the heart by RF ablation (100-1200 J/cm²). 

Two to three lesions were made on each heart, and approximately 60 minutes passed between 

the creation of each lesion. The animal was sacrificed approximately 30 minutes before the 

creation of the first lesion. 

Before and after each ablation, a glass plate was gently held on the region to facilitate 

optical mapping. During each ablation procedure, the plate was removed and a prototype RF 

ablation probe was positioned in the middle of the region (Fig. 2.1). The effects of ablation 

were studied in regions of the left ventricular free wall epicardium, or in the anterior or 

posterior epicardium near the ventricular septum, were studied. Ventricular regions were 

studied instead of atrial regions because the wall thickness of rabbit ventricles is more 

comparable to that of human atria.  
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Electrical Pacing and Recording 

One pair of electrodes (electrodes 1-anode, and 2-cathode, Fig. 2.1) was used to 

deliver bipolar pacing stimuli from an isolated stimulator (Isostim A320, World Precision 

Instruments, Sarasota, FL). The pacing amplitude was set at twice the pacing threshold or at 

10 mA if the threshold was ≥ 5 mA; pacing pulse width was 3 msec; pacing interval was 

chosen just above the resting heart rate and ranged from 340 to 660 msec. The other 

electrode pair (electrodes 3-negative and 4-positive) was used to record a bipolar 

electrogram. All signals (stimulus and electrogram) were conditioned with an isolation 

amplifier (AD210AN, Analog Devices, gain 100, low pass <16 kHz), and digitized at 10 kHz 

using Labview and a DAQPad 6070E data acquisition board (National Instruments, Austin 

TX). Inter-electrode spacing for each pair was 1-2 mm and spacing between the pairs was 10 

mm. During optical mapping, stimulation and electrogram recording electrodes were Ag-

AgCl (diameter 0.25 mm, length 2 mm).  When electrograms were recorded without optical 

mapping, the pacing and recording electrodes were stainless steel (contact area with heart ~1 

mm2 per electrode), and were attached to the RF probe and positioned in a line at 90 degrees 

from the ablation probe (Fig. 2.1). 
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Figure 2.1  Diagram showing the arrangement of the ablation probe and electrogram recordings on the heart. 
Ablation probe for continuous lesion is indicated in cross-hatched area. The open rectangle indicates the area 
mapped optically. Electrodes 1 and 2 were used for bipolar pacing; 3 and 4 were used for bipolar electrogram 
recording. 
 

Fluorescence Recording 

An argon ion laser with a wavelength of 488 nm was used to scan a 9x19 mm grid of 

128 laser spots. Average light power on the heart surface was 20 mW. Red and green 
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fluorescence (wavelengths >590 nm and 510-570 nm, respectively) were collected 

simultaneously with two photomultiplier tubes located in front of the heart. Each 

fluorescence signal was digitized at a rate of 1 kHz at each spot. Laser scanning and 

recording were controlled by a microprocessor system (M67, Innovative Integration, Simi 

Valley, CA) within a PC. To diminish effects of cardiac motion on the recordings, the green 

fluorescence signal was divided by the red signal133. The ratiometric signal was used to 

measure activation times in tissue at the laser spots.  

 

Ablation Procedures 

Electrogram and optical measurements were taken before ablation on each heart 

(baseline). A prototype ablation device (nContact Surgical, Inc.) was used to create a lesion 

through the middle of the optical grid and between the stimulation and recording electrodes. 

RF energy was applied for 20-60 seconds at a power of 10-20 Watts using a 480 kHz 

generator. Lesions were created by application of RF energy using a 2-cm ablation electrode. 

Lesions extended from the apex to the atrioventricular annulus. Incomplete lesions were 

created by discrete applications of the ablation probe separated 1-7 mm apart to produce a 

gap, or by using a lower power level to produce non-transmural lesions. Before and after 

each ablation, recordings were taken to examine the effects of ablation on the stimulus-

excitation time delay. 
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Analysis of Stimulus-Excitation Time Delay 

The activation time for optical recordings was defined as the time of the maximum 

upstroke velocity (dVm/dtmax). The activation time for electrogram recordings was defined as 

the time at which the magnitude of the bipolar electrogram was greatest.  

The stimulus-excitation time delay across the lesion was measured in two ways.  For 

optical mapping, it was the difference between activation times at a spot near the pacing 

electrode and a spot near the recording electrode at the opposite side of the lesion. For 

electrogram recordings, the stimulus-excitation time delay was measured from the stimulus 

pulse to the activation time in the electrogram recorded on the opposite side of the lesion. 

This time delay included the time from the application of the stimulus pulse to excitation of 

cells near the stimulation electrode, which was measured to be 6-7 msec. 

 

Viable Tissue Staining 

After completion of all recordings, hearts were perfusion stained with 2,3,5-

triphenyltetrazolium chloride (TTC, Sigma-Aldrich, Inc.; 2.1 g of TTC in 150 ml of 0.9% 

NaCl) to determine histologically the location and completeness of each lesion.  After 

staining with TTC, viable tissue appeared red and non-viable tissue appeared grey (Fig. 2.2). 

Lesions were bisected to obtain digital photographs and to measure lesion width, depth, and 

length.  
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Statistical Analysis 

Significance of differences in time delay was determined using Student’s t-test. For 

complete lesions, time delay was compared with pre-ablation baseline measurements using a 

one-tailed test to determine if the delay increased significantly. For incomplete lesions, a 

two-tailed test was used to determine if a time delay change occurred. Paired t-tests were 

used to compare delays for the same region measured pre and post-lesion. Non-paired t-tests 

were used to compare delays for incomplete lesions vs. complete lesions. All results are 

given as the mean ± standard error of the mean (SEM). 
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C. Results 

Examination of TTC-stained Hearts 

Photographs were taken of representative incomplete and complete lesions, and 

stained immediately post-procedure with TTC (Fig. 2.2). The incomplete lesions contained a 

gap between two discrete, transmural segments, or were not transmural. The complete lesions 

were continuous and transmural. The average length for complete lesions was 26.17 ± 1.37 

mm.  For all lesions, the average width was 7.1 ± 0.20 mm; depth was 3.1 ± 0.2 mm. Of 15 

incomplete lesions, 12 were non-continuous, and 3 were non-transmural. Individual gap 

widths were 1.0, 1.5, 1.5, 1.0, 5.5, 4.0, 3.0, 7.0, 3.0, 2.0, 4.0, 3.0 mm, and had a mean of 3.0 

± 0.5 mm. 

 

Figure 2.2  Photographs of incomplete and complete lesions. The two photographs on the left show an 
epicardial view and a transmural section of an incomplete lesion in the posterior ventricular septal region. The 
two photographs on the right show these views for a complete lesion in the left ventricular free wall. Viable 
tissue is stained red; ablated tissue appears as a lighter color. Divisions on rulers at the bottom of the 
photographs indicate mm. 
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Electrograms 

Electrograms were obtained before ablation and after production of complete and 

incomplete lesions (Fig. 2.3). For incomplete lesions, time delay did not change (21 msec 

pre-lesion and 21 msec post-lesion). After the formation of a complete lesion, time delay 

increased from 28 msec pre-lesion to 89 msec post-lesion. 

  

 

A B 

C D 

Figure 2.3  Electrograms for incomplete and complete lesions. The electrograms in Row I were recorded 
before (A) and after (B) an incomplete ablation. Electrograms in Row II show recordings before (C) and 
after (D) a complete lesion. The mean conduction delay reported for each plot is an average time delay 
from 27 individual recordings (beats). The length of the colored horizontal bar at the bottom indicates 
the time delay from the stimulus on one side of the lesion to excitation on the opposite side (expressed as 
the mean +/- SEM for 27 beats).  
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Optical Maps 

Representative isochronal maps and associated action potentials are shown before 

ablation (baseline; Fig. 2.4), after the production of an incomplete lesion (Fig. 2.5), and after 

a complete lesion (Fig. 2.6). Upper plots in each figure show activation isochrones produced 

by pacing on the left side of the mapped region. The numbers represent the time, in 

milliseconds, of excitation relative to the stimulation pulse. The map in Fig. 2.4 demonstrates 

uniform conduction of the impulse from left to right across the epicardium, traversing the 

grid in 30 msec. The lower portions of the figures show the optical signals from all laser 

spots in 150 msec segments that begin at the onset of stimulation. In the incomplete lesion, 

the impulse traveled across the epicardium from left to right in the center of the gap but 

conduction was restricted to the gap by the ablated regions on either side of the wavefront. 

With the incomplete lesion, the total time to activate the mapped region was slightly greater 

than that of the pre-lesion (35 vs. 30 msec). In the areas of transmural ablation, the optical 

signal waveforms showed no amplitude deflection indicating no activations in these areas. 

For the complete lesion (Fig. 2.6), the stimulus began on the left, but was blocked by the 

ablation lesion. The optical signal waveforms in this area of ablation did not show a 

detectable activation. The right part of the mapped region showed activation much later 

(average 75 msec) than that of the pre-lesion recordings. 
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Figure 2.4  Activation contour map and action potential recordings before RF ablation. Upper plot shows 
activation isochrones produced by pacing on the left side of the mapped region. Times shown in msec are 
relative to the onset of the stimulation pulse. Lower portion of the figure shows optical signals from all laser 
spots. For each spot, a 100 msec segment is plotted that begins at the onset of stimulation. The vertical scale is 
the same for all spots to illustrate differences in the relative amplitudes of deflections among spots. Activation 
times are indicated with vertical lines. Activation times for optical signals were averaged from 27 beats. 
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Figure 2.5  Activation contour map and action potential recordings after production of an incomplete lesion.  
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Figure 2.6  Activation contour map and action potential recordings after production of a complete lesion.  
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Time Delay 

The time delays for complete and incomplete lesions as measured by electrogram and 

optical recordings are shown in Tables 2.1 and 2.2, and graphically in figure 2.7.   

For incomplete lesions, post-lesion time delay did not differ significantly from the 

pre-lesion delay. The difference in post-lesion and pre-lesion mean time delay was 3 msec 

for electrogram measurements and 23 msec for optical recordings.  

For complete lesions, the mean post-lesion time delay was significantly greater than 

the mean pre-lesion delay, for both electrogram (70 msec) and optical (65 msec) recordings 

(p<0.05). In addition, the post-lesion time delays were significantly longer for the complete 

lesions than they were for the incomplete lesions (p<0.05).  

Electrogram measurements of the time delays produced lower SEM for incomplete 

lesions and a larger disparity in time delay measurements between complete and incomplete 

lesions than optical recordings.  

In three experiments, time delay was measured at two time points after ablation to 

assess recovery over time. In one lesion with a small epicardial gap of 1 mm, the conduction 

delay doubled when measured within 10 minutes post ablation, but recovered to near baseline 

after one hour. For experiments in which complete lesions were assessed, conduction time 

delay increased 3- to 4-fold after ablation. In contrast to the pattern observed with the 

incomplete lesion, neither of the continuous, transmural lesions exhibited marked recovery 

when measured more than two hours after ablation. The effects of recovery on post-lesion 

time delay are examined more thoroughly in chapters 4 and 5. 
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Table 2.1 - Time Delay Measured by Electrogram Recordings 
 
ELECTROGRAM Pre-lesion (msec) Post-lesion (msec) n 

Incomplete 45 ± 12.20 48 ± 10.45 12

Complete 33 ± 3.97 103 ± 10.59a,b 14

 
Table 2.2 - Time Delay Measured by Optical Recordings 
 
OPTICAL Pre-lesion (msec) Post-lesion (msec) n

Incomplete 33 ± 10.11 56 ± 16.44 9

Complete 28 ± 8.59 93 ± 10.51a,b 9

 
a p<0.05 for post-lesion vs. pre-lesion  

b p<0.05 for incomplete lesion vs. complete lesion 
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Figure 2.7  Electrical and optical time delays measured before lesion creation, and for incomplete and complete 
lesions. Mean values are shown, with standard errors of each mean indicated by error bars. 
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D. DISCUSSION 

Methods used to determine presence of conduction block after RF ablation include P 

wave changes after ablation of the cavotricuspid isthmus for atrial flutter188, detailed 

electrogram mapping with or without electrical stimulation189,190, changes in electrogram 

amplitude191, and double potentials192. Many of these methods use intravascular catheter 

approaches and require several catheters for pacing and electrogram recordings, usually with 

continuous repositioning of the probe.  

Endocardial ablation techniques for creating linear lesions for the treatment of atrial 

fibrillation using intravascular catheters have reported success rates of 20-60% despite 

established techniques for evaluating conduction block within the pulmonary veins193.  Both 

surgical and catheter approaches for the treatment of atrial fibrillation have been hampered 

by the inability to create continuous and transmural lesions.  Incomplete lesions have been 

associated with the recurrence of atrial fibrillation or the development of reentrant atrial 

tachyarrhythmias194. 

 

Epicardial Approach 

The epicardial techniques described here introduce a new and promising method of 

myocardial ablation and intraoperative confirmation of lesion completeness.  Epicardial 

ablation with new ablation devices may obviate the need for cardiopulmonary bypass support 

therefore allowing the procedure to be performed while the heart is beating.  As such, 

electrical signals throughout the heart are active and lesion completeness can be evaluated 

during the ablation procedure.   
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A diagnostic device incorporating bipolar pacing and recording electrodes capable of 

measuring time delay as described here should accurately assess ablation line continuity and 

transmurality, provide a metric for determining lesion completeness intraoperatively, and 

improve outcomes after atrial fibrillation treatment.  Alternatively, diagnostic electrodes 

could be incorporated in the ablation device to simultaneously create the lesion and evaluate 

its completeness. 

 

Time Delay 

The results demonstrated recovery of time delay for lesions with gaps, whereas 

complete lesions had a low extent of recovery. This recovery may be due to revival of 

stunned tissue at the perimeter of ablated tissue188,189,192,196,197. For complete lesions, recovery 

may produce only a small decrease in the post-lesion path length (e.g., at the lesion ends), 

whereas recovery of tissue in an epicardial gap region may produce a large decrease in path 

length since conduction may again occur directly across the lesion. Increases in time delay 

were significantly larger for complete lesions and the magnitude of increase may predict 

stability of time delay. Complete lesions showed a greater than two-fold increase in time 

delay, and did not recover, indicating that the delay must exceed a threshold to avoid 

recovery of conduction post-ablation. A greater than two-fold increase in delay may indicate 

production of a complete lesion that was incapable of recovery. 

Strategies to incorporate measurement of time delay into ablation systems may be 

advantageous. Ablation lines that appear acutely transmural can reveal gaps during follow-

up198. Even so, metrics that predict outcomes either by confirming conduction block of 
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anatomic structures or demonstrating the inability to induce an arrhythmia with known 

pacing techniques have been shown to predict long term success199. 

The value of lesion completeness is a current topic of debate. It has been suggested 

that ablation lesions of myocardium may not need to be complete (continuous and 

transmural) and that over time lesions grow and outcomes improve.  Results presented here 

suggest that incomplete lesions maintain trans-lesion conduction, which may account for the 

acknowledged high recurrence rates reported for catheter and surgical ablation of atrial 

fibrillation. This is further evidenced by Melby et al200, where electrical propagation persisted 

through narrow gaps in lesions created on isolated canine atria, even when conduction 

velocities were significantly slowed.  Although atrial fibrillation required larger gaps for 1:1 

propagation, their data suggest that even narrow gaps may conduct AF, and that to ensure 

total block, complete lines of ablation must be created. Alternatively, studies performed by 

Cabo et al. show that increasing pacing frequency increases the critical gap width size160, 

suggesting that small lesion gaps may not conduct activation of high-frequency activation 

which occurs during atrial fibrillation. However, lower frequency components may also be 

present during atrial fibrillation which may conduct through small gaps. 

The increase in time delay from pre- to post-lesion formation is a critical factor for 

immediate assessment of lesion completeness.  The demonstrated difference in time delay 

increase from baseline provides a clear distinction between complete and incomplete lesions. 

Results showed a greater than two-fold increase in trans-lesion time delay post-ablation 

compared to pre-ablation, which confirms conduction block across linear lesions. 
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CHAPTER 3 

 
ABILITY OF MINIMUM ACTIVATION PATH LENGTH TO PREDICT    
TRANSLESION TIME DELAY 
 
 
A. INTRODUCTION 

In typical lesion sets used to block and/or isolate arrhythmic conduction, activation 

path length is difficult to determine. However activation paths around simple linear lesions 

may be approximated and compared with pre-lesion pathways. These linear lesions may 

serve as building blocks for more complex lesion sets. 

Estimation of conduction pathways around linear lesions would give an expected 

value of time delay based on pre-lesion conduction velocity, and may give additional 

confidence in time delay as an accurate predictor of lesion completeness. 

Heterogeneities within the myocardium are known to affect conduction velocity147,155-

158,161,201-206, and may cause substantial deviations from expected time delays according to the 

nature and severity of the heterogeneity.  

The aim of this report is to determine the reliability of minimum activation path 

length (APL) in predicting expected time delays, and thus provide additional evidence that a 

complete lesion has been formed. Also, identification of the path length as a cause of 

increases in time delay decreases the likelihood that the increases are caused by slow 

conduction through the ablation lesions. 
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B. METHODS 
 
Rabbit Heart Preparation 

Fresh hearts isolated from New Zealand rabbits (N = 11) of either gender were 

perfused through the aorta with Tyrode’s solution (129 mM, NaCl, 5.4 mM KCl, 1.8 mM 

CaCl2, 1.1 mM MgCl2, 26 mM NaHCO3, 1 mM Na2HPO4, 11 mM Dextrose, and 0.6 μM 

bovine serum albumin). The solution was bubbled with 95% O2 and 5% CO2, and maintained 

at 37 ± 0.2ºC.  

Lesions (N = 11) were produced on the hearts by RF ablation (100-1200 J/cm²). Two 

to three lesions were made on each heart, and approximately 60 minutes passed between the 

creation of each lesion. The animal was sacrificed approximately 30 minutes before the 

creation of the first lesion. Following perfusion with Tetrazolium Chloride (TTC), lesions 

were identified by their light gray appearance while viable tissue appeared dark red.  

 

Electrical Pacing and Recording 

One pair of electrodes (electrodes 1-anode, and 2-cathode, Fig. 2.1) was used to 

deliver bipolar pacing stimuli from an isolated  stimulator (Isostim A320, World Precision 

Instruments, Sarasota, FL). The pacing amplitude was set at twice the pacing threshold or at 

10 mA if the threshold was ≥ 5 mA; pacing pulse width was 3 msec; pacing interval was 

chosen just above the resting heart rate and ranged from 340 to 660 msec. The other 

electrode pair (electrodes 3-negative and 4-positive) was used to record a bipolar 

electrogram. All signals (stimulus and electrogram) were conditioned with an isolation 

amplifier (AD210AN, Analog Devices, gain 100, low pass <16 kHz), and digitized at 10 kHz 

using Labview and a DAQPad 6070E data acquisition board (National Instruments, Austin 
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TX). Inter-electrode spacing for each pair was 1-2 mm and spacing between the pairs was 

approximately 10 mm.  

 

Ablation Procedures 

Electrograms were taken before ablation on each heart (baseline). A prototype 

ablation device (nContact Surgical, Inc.) was used to create a lesion through the middle of 

the optical grid and between the stimulation and recording electrodes. RF energy was applied 

for 20-60 seconds at a power of 10-20 Watts using a 480 kHz generator. Complete lesions 

were created discrete and overlapping applications of RF energy using a 2-cm ablation 

electrode. Lesions extended from the apex to the atrioventricular annulus. Incomplete lesions 

were created by discrete applications of the ablation probe separated 1-7 mm apart to produce 

a gap, or by using a substantially lower power level to produce non-transmural lesions. 

Before and after each ablation, recordings were taken to examine the effects of ablation on 

the stimulus-excitation time delay. 

 

Analysis of Stimulus-Excitation Time Delay 

The activation time for optical recordings was defined as the time of the maximum 

upstroke velocity (dVm/dtmax). The activation time for electrogram recordings was defined as 

the time at which the magnitude of the bipolar electrogram was greatest.  

The stimulus-excitation time delay across the lesion was measured in two ways.  For 

optical mapping, it was the difference between activation times at a spot near the pacing 

electrode and a spot near the recording electrode at the opposite side of the lesion. For 

electrogram recordings, the stimulus-excitation time delay was measured from the stimulus 
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pulse to the activation time in the electrogram recorded on the opposite side of the lesion. 

This time delay included the time from the application of the stimulus pulse to excitation of 

cells near the stimulation electrode, which was measured between 6-7 msec. 

 

Viable Tissue Staining 

After completion of all recordings, hearts were perfusion stained with 2,3,5-

triphenyltetrazolium chloride (TTC, Sigma-Aldrich, Inc.; 2.1 g of TTC in 150 ml of 0.9% 

NaCl) to determine histologically the location and completeness of each lesion.  After 

staining with TTC, viable tissue appeared red and non-viable tissue appeared grey (Fig. 3.1). 

Lesions were bisected to obtain photographs and to measure lesion width, depth, and length, 

and the minimum path length of viable tissue from the stimulation site to the recording site 

on the opposite side of the lesion. 

 

Minimum Activation Path Length Determination 

The minimum path length for conduction was measured along viable tissue 

highlighted after TTC staining from the stimulation site to the recording site on the opposite 

side of the lesion. For all pre-lesion recordings, the minimum path length between the two 

spots on the optical grid or between the stimulus and electrogram electrodes was defined as 

the straight-line distance between the spots or between the electrodes. For incomplete lesions, 

the minimum path length was measured as the total distance from the stimulus electrode to 

the lesion gap center, and from the lesion gap center to the recording electrode. For complete 

lesions, the minimum path length was the total distance from the stimulus electrode to the 

end of the lesion nearer the apex (conduction was blocked on the basal end of the lesion by 
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the annulus) and from there to the recording electrode position. Activation path length for an 

incomplete lesion is shown in figure 3.1. Optical time delays along with their respective 

activation path lengths were used to determine conduction velocities. If the optical time delay 

was not available for a particular lesion, the electrical time delay was used. An alternate 

method for predicting time delay which incorporates fiber direction is presented in an 

appendix following chapter 5. 

 

 

Figure 3.1  Photograph showing the minimum activation path length. Bipolar pacing and recording electrodes 
are shown as white circles, while white dotted line indicates the activation path length. 
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C. RESULTS 

A direct relationship was demonstrated between conduction time delay and the 

activation path length (Fig. 3.2) across linear lesions. The complete lesions produced longer 

time delays, which correlated with longer minimum path lengths. The longer the length of 

minimum path length of viable tissue around the lesion, the longer the stimulus-excitation 

time delay. Linear regression of the results produced a slope of 2.29 msec/mm, an intercept 

near 0 (1.63 mm) and a correlation coefficient (R) value of 0.89, showing high correlation of 

time delay and minimum path length. In contrast, there was no difference in APL or in 

stimulation-excitation time delay between the non-treated cardiac tissue and incomplete 

lesions (Fig. 3.2). 
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Figure 3.2  Stimulus to excitation time delays as a function of minimum activation path length. Pre-lesion 
values are shown as plus signs, incomplete lesion values are shown as solid circles, and complete lesion values 
are shown as solid squares. The dotted line indicates the best-fit curve as determined by linear regression. 
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D. DISCUSSION 
 

Activation path length may not predict delays in diseased atria, or in tissue containing 

anti-arrhythmic drugs that alter propagation velocity anisotropy. Variations in factors such as 

fiber direction and complexity of the conduction path, which may have greater chance to 

affect conduction for complete lesions due to longer minimum path length, may produce 

deviations from the linear relationship observed in this study. However, the high ratios of 

post-ablation to baseline values of activation path length observed for complete lesions may 

be predictive even in complex cases. An attempt has been made to account for the effect of 

fiber direction in the appendix following chapter 5. 
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CHAPTER 4 

 
RECOVERY OF TISSUE WITHIN SMALL GAPS OF LINEAR 
RADIOFREQUENCY CARDIAC ABLATION LESIONS 
 
 
A. INTRODUCTION 
 

Trans-venous catheter ablation procedures have been shown to halt various forms of 

atrial fibrillation and atrial tachycardias. However these procedures are technically 

challenging to perform, and success rates vary widely according to operator experience, the 

specific nature of the arrhythmia present, and the type of procedure being attempted.  

Approximately 90% of patients with paroxysmal atrial fibrillation can be cured by 

pulmonary vein isolation, however only a small percentage of patients with chronic atrial 

fibrillation may be treated with this technique183. For patients with chronic atrial fibrillation, 

more extensive lesion sets are desired, such as those required for the Maze III procedure. For 

the Maze III, a series of linear lesions are required in order to break up arrhythmic 

conduction in the left atrium, isolate the pulmonary veins, isolate or remove both atrial 

appendages, and form a corridor (“Maze”) which directs sinus activation toward the 

atrioventricular node170, and breaks up wavelets which sustain fibrillation. 

The linear lesion is an important building block for the formation of a Maze III lesion 

set. Thus the ability to form complete (i.e., continuous and transmural) linear lesions is 

critical to achieving success during ablation procedures. Due to the complexity of 

temperature distributions in the heart during ablation, difficulty in maintaining consistent 

contact and position on the myocardial wall, and variability in atrial anatomy, gaps in 
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catheter ablation lesions are not uncommon. Such gaps may recover over time following 

ablation, and may allow arrhythmic conduction to propagate across a lesion and sustain atrial 

fibrillation. Further, lesions which are incomplete may form new arrhythmic substrates for 

anatomically based macroreentrant circuits. 

Cabo et al. performed experiments and simulations in order to characterize the 

minimum width of cardiac tissue slices necessary to support conduction160. They reported 

considerable variability in this “critical isthmus width”, which depended on pacing frequency 

and fiber direction. Cabo’s study addressed the importance of viable tissue width, however 

radiofrequency ablation lesions are complicated by the fact that partial damage to both 

endothelial cells within the microvasculature as well as to the myocytes may occur at 

distances up to 6 mm from the site of coagulation necrosis17,21. Further, a recent report by 

Perez et al. demonstrates the importance of gap geometry in discontinuous lesions209, and 

reveals that “angled gaps” (i.e., gaps which contain an approximately 90º turn in the path of 

conduction) are more likely to block conduction than either bifurcated gaps (~45º turn, but in 

two directions) or straight gaps. These factors suggest that additional complexity is present 

due to hyperthermic injury following radiofrequency ablation which may cause deviations 

from previous studies.   

In addition to the above factors, it is likely that transient conduction block in injured 

myocardial cells may lead to early block followed by later recovery. Simmers et al have 

reported that both heating and RF ablation may cause transient (<5 minutes) and permanent 

block in superfused sections of myocardium204,205, however it is likely that the response of 

whole-heart preparations is more complex. We hypothesized that ablation lesions containing 

 70



a small gap may acutely recover within one hour following ablation, and that after this time 

period has passed, acute recover is highly improbable. 

Characterization of recovery over time in lesion gaps may lead to a better 

understanding of acute changes in conduction through incomplete linear lesions, which are 

important in the formation of the Maze lesion set as well as other ablation procedures. This 

would provide clinicians with an estimate of the time involved to ensure stable conduction 

block in individual linear lesions. 
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B. METHODS 
 
Rabbit Heart Preparation 

Fresh hearts isolated from New Zealand rabbits (N = 7) of either gender were 

retrograded perfused through the aorta with Tyrode’s solution (129 mM, NaCl, 5.4 mM KCl, 

1.8 mM CaCl2, 1.1 mM MgCl2, 26 mM NaHCO3, 1 mM Na2HPO4, 11 mM Dextrose, and 0.6 

μM bovine serum albumin). The solution was bubbled with 95% O2 and 5% CO2, and 

maintained at 37 ± 0.2º C. 

Lesions (N = 9) were produced on the heart by RF ablation (300-600 J/cm², 30 

seconds). Two to three lesions were made on each heart, and approximately 60 minutes 

passed between the creation of each lesion. The animal was sacrificed approximately 30 

minutes before the creation of the first lesion. The effects of ablation in epicardial regions of 

the anterior or posterior ventricular septum were studied. Also, control recordings were made 

on non-ablated epicardium to examine the stability of control recordings over time. 

 

Electrical Pacing and Recording 

One pair of electrodes (electrodes 1 and 2, anode and cathode, Fig. 4.1) was used to 

deliver bipolar pacing stimuli from an isolated stimulator (Isostim A320, World Precision 

Instruments, Sarasota, FL). The pacing amplitude was set at twice the pacing threshold or at 

10 mA if the heart captured at > 5 mA; pacing pulse width was 3 msec; pacing interval was 

chosen just above the resting heart rate and ranged from 340 to 660 msec. The other 

electrode pair (electrodes 3 and 4, negative and positive, Fig. 4.1) was used to record a 

bipolar electrogram. All signals (stimulus and electrogram) were conditioned with an 

isolation amplifier (AD210AN, Analog Devices, gain 100, low pass <16 kHz), and digitized 
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at 10 kHz or 1kHz using Labview and a DAQPad 6070E data acquisition board (National 

Instruments, Austin TX). Inter-electrode spacing for each pair was 1-2 mm and spacing 

between the pairs was 10 mm. Pacing and recording electrodes were stainless steel rings 

(contact area with heart ~1 mm2 per electrode), and were attached to the RF probe and 

positioned in a line 90 degrees from the ablation probe (Fig. 4.1). 

 

 

Figure 4.1  Five cm ablation probe with silicone gap. Helical stainless steel coil was used for ablation, while 
stainless steel ring electrodes were used to deliver bipolar pacing and record bipolar electrograms. 
 

Ablation Procedure 

A prototype ablation device (nContact Surgical, Inc., Fig. 4.1) was used to create a 

lesion through the middle of the optical grid and between the stimulation and recording 

electrodes. RF energy was applied for 30 seconds at a power of 30-40 Watts using a 480 kHz 

generator. Lesions were created with a single application of RF energy using a 2-cm or a 5-

cm ablation electrode. Lesions extended from the apex to the atrioventricular groove. 
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Incomplete lesions were created by discrete applications of the 2-cm ablation probe separated 

approximately 5 mm apart to produce a gap, or by the 5-cm ablation probe as shown in figure 

4.1 which contained a gap in the ablation electrode. Control recordings were taken prior to 

ablation, and then post-ablation recordings were taken to examine the effects of ablation on 

the stimulus-excitation time delay over a 60-minute period. 

 

Selection of Activations in Fractionated Electrograms 

Following injury to the myocardium, heterogeneities within the tissue lead to 

discontinuous propagation resulting in fractionated electrograms with multiple peaks of 

varying amplitudes. Since early activations indicate propagation through an incomplete 

lesion which may allow arrhythmic conduction, the first discernable activation was chosen as 

the activation with which to determine time delay measurements. The first deflection greater 

than 1 mV from the baseline was labeled as the activation. The peak of this deflection was 

chosen as the activation time146. Since it was possible that this new criterion for selection of 

activations may affect previous results, the new method was also used to analyze results from 

chapter 2. Results using the new method showed that it does not change any of the 

conclusions found in chapter 2. Specifically, time delays for control recordings were not 

different from time delays following incomplete lesions, time delays for control recordings 

were different from time delays for complete lesions, and time delays for incomplete lesions 

were different from time delays for complete lesions. Also, time delays calculated using 

electrical recordings were not different from those calculated using optical recordings. 
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Indication of Recovery 

Slight shifts in electrode position may result in beat-to-beat variability, as well as 

small changes in the magnitude of time delay. However large increases or decreases in time 

delay were not observed due to the small shift in electrode position with our apparatus (< 

1mm), and are likely due to significant changes in the activation path length. Results from 

chapters 2 and 3 of this work suggest that a doubling of time delay indicates that the path 

length has been significantly increased. 

 

Classification of Recovery 

Several distinct features were present in post-lesion electrograms which indicated 

recovery within the myocardium. Full recovery, partial recovery, and recovery of the 

activation complex were observed in post-lesion electrograms. A late increase in time delay 

was also observed. 

Full recovery was defined as a greater than 2-fold increase in time delay followed by 

a decrease to within 5 percent of the control value. The time of 50% or 90% recovery was 

identified as the time at which time delay fell below 50% or 90% of the difference between 

its maximum and the final recording taken at 60 minutes.  

Partial recovery was defined as a greater than 2-fold initial increase in time delay 

followed by a >10 percent decrease from the maximum time delay. The time of 50% or 90% 

recovery was defined as the time at which time delay fell below 50% or 90% of the 

difference between the maximum and the final recording taken at 60 minutes. 

Recovery of the activation complex in post-lesion electrograms was defined by the 

late appearance of an activation peak(s) in the electrogram following lesion production, 
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which precluded the identification of the original post-ablation peak in subsequent 

recordings. Recovery of the activation complex was defined as the time at which the first 

morphological change precluded identification of the first peak chosen following ablation. 

 

Rate of Change in Time Delay 

The time rate of change for those lesions showing partial recovery and late 

conduction decrease was determined in the following manner. For each set of consecutive 

time delays, the difference in time delay was divided by the difference in time that elapsed 

between the two recordings. Rates of change for each lesion were compared against rates of 

change found during the control recordings to examine the significance of the rates of 

change. 

 

Data Processing 

All electrograms were filtered using a 4 ms boxcar filter. Electrograms were signal 

averaged by aligning consecutive stimulation pulses over a 10 second period. Time delay was 

determined using these signal-averaged electrograms by locating the first post-stimulation 

peak which exceeded 1 mV. 

 

Statistical Analysis 

All values were presented as the mean ± SEM (standard error of the mean). In order 

to determine whether the rate of change in time delay during partial recovery and/or a late 

conduction decrease were significant, the unpaired one-sided Student’s t-test was used. A p-
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value less than 0.05 was considered significant. The binomial sign test was used to determine 

if the probability of observation of various types of recovery was different than 50%.  
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C. RESULTS 
 
Control Recording 

In order to ensure that changes in time delay were due to effects of RF ablation, a 

control recording was taken over a 1-hour period (Fig. 4.2). Although small variations were 

observed in the control recording (~5 ms), there was no trend seen in the control 

measurements which indicated that influences of the measurement system or animal model 

resulted in significant changes in time delay over a 60-minute post-ablation period. The mean 

value of the time derivative of time delay was 0.10 ± 0.19. 
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Figure 4.2  Control recording of time delay over a 1-hour period. Filled circles represent individual recorded 
values for time delay. A time of zero indicates the time of the first control recording. 
 

Recovery of the Activation Complex 

In 4 of 9 lesions, electrograms showed cases where changes in morphology precluded 

the identification of a distinct peak throughout the full duration of the time recording (figures 

4.3 and 4.4). Since activation peaks were not present during all measurements, the time 

course of activation for these lesions was not tracked, and attention was given to the timing 

of the first morphological change that took place. Figure 4.3 shows an example of tissue 

recovery indicated by morphological changes. Early after ablation (<20 mins.), recordings 
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show an electrogram of long duration (>100 ms) with high beat-to-beat variability as 

demonstrated by high standard error on signal-averaged beats (> 0.5 ms). After 30 minutes, 

the emergence of a small peak may be seen, and then by 40 minutes 2 small peaks have 

appeared. After 50 minutes, only a single peak is seen. The remaining peak has a short 

duration (10 ms) and a large reduction in the standard error (approximately 5-fold reduction). 

In summary, changes in morphology were found at 23.7 ± 7.9 (N=4) minutes following RF 

ablation. Individual values for all 4 cases are listed in table 4.2. 
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Figure 4.3  Example of activation complex recovery following an RF ablation lesion, over a period of 61 
minutes. Red bar indicates the duration of time delay. Means and standard error are given for each recording. 
Time of recording following ablation is given in minutes. 
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Figure 4.4  Three-dimensional view of morphological changes following ablation indicating recovery of 
activation complex, for the electrograms shown in figure 4.3. Colors of adjacent electrograms are alternated in 
black and blue so that they may be distinguished. In cases where the stimulation signal was greater than 5 mV, 
the stimulation signal was truncated to 5 mV for plotting purposes.  
 

Complete Recovery of Conduction 

Complete recovery was observed in 1 of 9 lesions which showed post-lesion block. 

The time at which both 50% and 90% recovery occurred was 5.4 minutes.  
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Figure 4.5  Complete recovery following an ablation lesion. Dotted vertical line marks the end of the RF 
ablation.  
 

Immediately following ablation, an early (0.4 minutes) electrogram taken during 

complete recovery (Fig. 4.5) shows an increase in time delay by 147% and an inversion of 

the activation peak. The peak is inverted again at 1.5 and 2.2 minutes, and then inverted 

again 3.3 and 3.6 minutes. At 7.1 minutes, the peak is again upright, and the time delay has 

returned to within 3 ms of the control value. 
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Figure 4.6  Electrograms taken during complete conduction recovery. Mean and standard error of time delay 
are shown for each electrogram, along with the number of beats used to generate the signal-averaged 
electrogram shown. Red horizontal bar indicates the duration of the time delay. 
 

Partial Recovery of Conduction 

Partial conduction recovery was observed in 3 of 9 lesions. The point of 50% 

recovery for these lesions was 14.4 ± 1.0 minutes, and the point of 90% recovery was 23.7 ± 

4.3 minutes. For the lesion shown in figure 4.7, 50% and 90% recovery were 16.3 and 30.3 

minutes, respectively. Times for the example in figure 4.7 were measured from the end of the 

second ablation, indicated by the rightmost vertical dotted line.  
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Figure 4.7  Partial conduction recovery in a complete lesion. Vertical dotted lines indicate the end of an RF 
ablation.  
 

Electrograms shown in figure 4.8 indicate block, as demonstrated by a greater than 2-

fold increase in conduction delay and an inversion of the activation peak with respect to the 

control recording. Maximum time delay is seen at approximately 10 minutes after the first 

ablation, followed by a slow decline in time delay over the next 50 minutes. 
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Figure 4.8  Electrograms for partial conduction recovery in an incomplete lesion. 
 

Late Worsening of Conduction 

In 1 of 9 lesions, a late increase in time delay was observed, as illustrated in figure 

4.9. For this lesion, time delay rose to 50% of the difference between its post-ablation and 

final value at 41.1 minutes, and 90% of the difference at 49.6 minutes. The results for 

recovery for all lesion types are summarized in tables 4.1 and 4.2. 
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Figure 4.9  Late conduction worsening following RF ablation. Vertical dotted line indicates end of RF ablation. 
 

 

Type of Recovery t50 (mins.) t90 (mins.) Lesion 
Number 

Gap Size 
(mm) 

Complete Recovery 5.4 5.4 2 1.0 
Partial Recovery 13.0 19.5 3 2.5 
Partial Recovery 13.8 19.4 1 0.5 
Partial Recovery 16.3 32.3 2 0.5 

Conduction Decrease 38.1 47.9 2 1.0 
 

Table 4.1 – Summary of recovery times (50% and 90%) for all lesion types except those showing 
morphological changes post-ablation. 
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Type of Recovery tR (mins.) Lesion 
Number 

Gap Size 
(mm) 

Recovery of Activation Complex 19.7 1 1.0 
Recovery of Activation Complex 46.9 3 4.0 
Recovery of Activation Complex 16.8 1 3.0 
Recovery of Activation Complex 11.2 2 1.5 

 

Table 4.2 - Times of activation complex recovery occurring post ablation. 
 

Rate of Change During Partial Recovery and Conduction Worsening  

In order to determine whether time delay decreases were different from deviations 

found during control, rates of change during partial recovery and conduction decrease were 

compared to those of control. For all three cases of partial recovery, the rate of decrease in 

time delay was significantly greater than that of the control recording. For the one lesion 

where a late conduction worsening was observed, the rate of increase in time delay was not 

statistically different than that of the control recording. Means and p-values for slopes of time 

delay during partial recovery and late conduction decrease are given in table 4.3. 

 

Type of Recovery Average Slope of Time 
Delay (ms/min.) 

p-value (vs. 
control) 

Partial Recovery Lesion -0.55 ± 0.18 0.0172 (n=8) 
Partial Recovery Lesion -0.17 ± 0.10 0.0205 (n=61) 
Partial Recovery Lesion -0.32 ± 0.06 0.0002 (n=50) 

Late Conduction Decrease 0.20 ± 0.14 0.2673 (n=38) 
Control Recording 0.10 ± 0.19 0.5000 (n=65) 

  

Table 4.3 - Averaged slopes of time delay for lesions showing partial recovery and late conduction worsening.  
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Probability of Observing Different Lesion Types 

To test the probability of observing various types of recovery while recording 

electrograms adjacent to incomplete lesions, the binomial sign test was used. For complete 

recovery and worsening of conduction, p < 0.05, indicating that the probability of observing 

either of these phenomena was significantly less than 50%. For partial recovery and recovery 

of the activation complex, p values were less than 0.05, indicating that the occurrences of 

these two phenomena were not significantly different from 50%. 
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D. DISCUSSION 

This study demonstrates that the time course of conduction recovery following RF 

ablation is highly variable in the whole heart Langendorff rabbit model. Acute complete 

recovery of RF ablation lesions was observed in only 1 of 9 lesions, suggesting that it is a 

relatively rare phenomenon following the confirmation of initial block by an increase in time 

delay. Partial recovery was more common, occurring in 3 of 9 lesions, however lesions 

which showed partial recovery never recovered below 2x the initial value of time delay, 

indicating that conduction block remained despite partial recovery. Data for partial recovery 

suggests that cells located on the periphery of the lesion may recover and lead to a slight 

decrease in the path length of activation. In one case, a late decrease in time delay occurred 

following conduction block, suggesting that injury to cells around the lesion periphery may 

also lead to progressive cell death and subsequent conduction path length increases. 

Apoptosis is one mechanism which may result in progressive cell death. 

Both partial and complete recovery may be explained by temporary inexcitability of 

cells near the lesion perimeter. Increases in temperature have been shown to result in 

temporary as well as permanent loss of excitability, both in the context of standard 

hyperthermia204 as well as RF-induced hyperthermia205. For partial recovery, the amount of 

cells which recovered within the lesion gap was not sufficient to allow trans-gap conduction 

of the activation wavefront. In this scenario, time delay was only affected by those cells 

which recovered near the lesion perimeter, resulting in a slight decrease in time delay. For 

complete recovery, recovery of cells within the lesion gap led to a gap widening which was 

sufficient to support trans-gap conduction of the activation wavefront. 

 90



From a cellular perspective, it is likely that damage to connexins has a significant 

impact upon conduction following RF-induced hyperthermia. Ultrastructural observations by 

Nath et al have shown that the most extensive damage to cardiac myocytes occurs at the 

plasma membrane and the region of the gap junctions21. It is likely that the temperature 

dependence of sodium channels also plays a significant role in the time-dependent behavior 

of time delay. Rosen has shown that sodium channel activation kinetics exhibit highly 

nonlinear behavior with changes in temperature. He also states that increases in membrane 

fluidity at higher temperatures may play an indirect role in sodium current modulation by 

altering interactions between membrane lipids and channel proteins210. 

Significant changes in electrogram morphology were observed in 4 of 9 lesions which 

indicated recovery of the activation complex. In all 4 cases, these morphological changes 

were accompanied by the presence of a peak or trough of long duration (>100 ms), 

suggesting the presence of injury as described by Deleze211. Cardiac myocytes which have 

sustained severe membrane damage by RF ablation may be electrically coupled to the 

extracellular space. This results in an intracellular current flowing away from injured cells 

during diastole, and an intracellular current flowing toward the injured cells during systole. 

This current my produce the peaks of long duration observed in cases of activation complex 

recovery. After healing, the myocytes are no longer coupled to the extracellular space, and 

electrograms in the vicinity of the recording electrodes may no longer be dominated by injury 

current. Thus a typical bipolar activation may then be seen (<20 ms), indicating recovery of 

tissue near the recording electrode. 

Examination of the recording electrode configuration with respect to the lesion 

location also suggests that injury and subsequent healing may play a significant role in 
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phenomenon we have described as recovery of the activation complex following RF ablation. 

First, we examine figure 4.1 and find that the negative recording electrode is near the 

ablation electrode while the positive recording electrode is further away (~2 mm further). If 

injury occurs in the region near the ablation electrode resulting in intracellular/extracellular 

electrical coupling and a transmembrane potential of zero, intracellular current due to injury 

will flow from cells in the region of electrode 3 toward those in the region of electrode 4. In 

other words, intracellular current will flow toward downstream cells which are able to 

maintain their normal diastolic transmembrane potential of -80 mV. This in turn implies that 

extracellular current during diastole will flow from electrode 4 to electrode 3, resulting in an 

increase in the baseline extracellular potential with respect to control values. During systole, 

when the transmembrane potential becomes positive (+20 mV), the direction of the injury 

current is reversed throughout the entire duration of the action potential plateau phase. Thus 

during activation, a prolonged negative deflection (> 100 ms) would be expected to follow 

the initial rapid signal rise caused by the fast sodium current, which may be smoothed by 

downstream injured cells. Figures 4.3 and 4.4 show this behavior in early recordings (< 40 

minutes), and then show the return of a single rapid signal (< 20 ms), presumably due to the 

electrical sealing of the damaged cells by the process known as “healing over”.     
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CHAPTER 5 

 
TIME COURSE OF TEMPERATURE WITHIN STUNNED MYOCARDIUM 
ADJACENT TO LINEAR RADIOFREQUENCY ABLATION LESIONS 
 
 
A. INTRODUCTION 

It is well-known that cardiac tissue subjected to temperatures greater than ~50º C will 

be irrevocably damaged and no longer capable of normal conduction18,28,204,205, while 

temperatures in the 37-45 ºC range typically show metabolic increases and increases in 

conduction velocity. However, previous studies using superfused sections of myocardium 

underestimate the anatomical and thermal complexity of lesion formation, which may be 

important in a more realistic clinical setting.  

We hypothesized that acute recovery within a lesion gap is dependent upon the 

epicardial gap temperature. Assuming that the temperature within the lesion gap does not 

exceed a critical temperature (~50 ºC), recovery of the gap tissue may depend upon the 

maximum epicardial gap temperature and/or the rate of temperature decrease following 

ablation. Since the detection of lesion incompleteness depends on intra-gap conduction, it is 

important to characterize those parameters which may affect tissue recovery and allow tissue 

to conduct. In this study we examine the time course of epicardial gap temperature 

immediately following the formation of incomplete lesions, and attempt to determine the 

relationship between epicardial gap temperature and tissue recovery following RF ablation. 
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B. METHODS 

Rabbit Heart Preparation 

Fresh hearts isolated from New Zealand rabbits (N = 6) of either gender were 

perfused through the aorta with Tyrode’s solution (129 mM, NaCl, 5.4 mM KCl, 1.8 mM 

CaCl2, 1.1 mM MgCl2, 26 mM NaHCO3, 1 mM Na2HPO4, 11 mM Dextrose, and 0.6 μM 

bovine serum albumin). The solution was bubbled with 95% O2 and 5% CO2, and maintained 

at 37 ± 0.2º C. 

Lesions (N = 8) were produced on the heart by RF ablation (300-600 J/cm², 30 

seconds). Two to three lesions were made on each heart, and approximately 60 minutes 

passed between the creation of each lesion. The animal was sacrificed approximately 30 

minutes before the creation of the first lesion. In cases where initial conduction block was not 

observed, multiple applications of RF energy were applied to achieve block. The effects of 

ablation in regions of the anterior or posterior epicardium near the ventricular septum were 

studied.  

 

Electrical Pacing and Recording 

One pair of electrodes (electrodes 1 and 2, Fig. 4.1) was used to deliver bipolar 

pacing stimuli from an isolated stimulator (Isostim A320, World Precision Instruments, 

Sarasota, FL). The pacing amplitude was set at twice the pacing threshold or at 10 mA if the 

heart captured at ≥ 5 mA; pacing pulse width was 3 msec; pacing interval was chosen just 

above the resting heart rate and ranged from 340 to 660 msec. The other electrode pair 

(electrodes 3 and 4, Fig. 4.1) was used to record a bipolar electrogram. All signals (stimulus 

and electrogram) were conditioned with an isolation amplifier (AD210AN, Analog Devices, 
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gain 100, low pass <16 kHz), and digitized at 10 kHz or 1 kHz using Labview and a 

DAQPad 6070E data acquisition board (National Instruments, Austin TX). Inter-electrode 

spacing for each pair was 1-2 mm and spacing between the pairs was 10 mm. The pacing and 

recording electrodes were stainless steel (contact area with heart ~1 mm2 per electrode), 

which were attached to the RF probe and positioned in a line 90 degrees from the ablation 

probe (Fig. 5.1). 

 

Temperature Measurements 

The mid-lesion gap temperature was measure immediately following ablation by a 

thermocouple probe (Thermalert TH-5, Physiotemp, Clifton, NJ) on the surface of a silicone 

wedge which was placed within the ablation probe to cause a lesion gap. The thermocouple 

probe was held securely against the epicardium by the silicone wedge, which was pressed 

against the epicardium by vacuum suction on either side of the wedge. The probe, which 

contained the ablation electrode, pacing and recording electrodes, and the thermocouple 

probe, is shown in figure 5.1. 

Temperature was measured immediately following the end of ablation for 100 

seconds, and was digitized at a sampling rate of 1 kHz. Typically, the gap temperature 

returned to its equilibrium value within 100 seconds (11 of 12 temperature time constants 

measured were below 70 seconds). 
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Figure 5.1  Photograph of ablation probe with temperature probe attached near gap region. 
 

Temperature Time Constant 

The time constant of temperature following ablation was measured by determining 

the amount of time which must pass following ablation in order for the temperature to rise 

one time constant above its original equilibrium value (the “1/e” point). The time constant τ 

was calculated using the following expression: 

 

1)  ( ) ( )( ) minminmax /1 TeTTT +−=τ   

 

where Tmax is the maximum temperature, Tmin is the minimum temperature, τ is the time 

constant, and e is Euler’s number. After T(τ) was determined, the first time t1 for which T(t1) 

≤ T(τ) was recorded as the time constant τ.  
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Time Response of Temperature Probe 

The time response of the probe was measured by immersing approximately 1 inch of 

the thermocouple into 1 L of water of a constant temperature. To generate the data shown in 

figure 5.2, the probe was first moved abruptly (<0.1 s) from the cold water container (room 

temperature, 23.0° C) to the hot water container (50.4° C), where it remained for 5 seconds. 

The probe was then moved back to the cold water container, which caused the temperature 

decline at approximately 6 seconds (Fig. 5.2). The time constant of the probe was determined 

using equation 1, and was found to be 0.35 seconds. 

 

Figure 5.2  Time response of temperature probe. 
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Classification of Recovery 

Several distinct features were present in post-lesion electrograms which indicated 

recovery within the myocardium. Full recovery, partial recovery, and recovery of the 

activation complex were observed in post-lesion electrograms. 

Full recovery was defined as a greater than 2-fold increase in time delay followed by 

a decrease to within 5 percent of the control value. The time of 50% or 90% recovery was 

identified as the time at which time delay fell below 50% or 90% of the difference between 

its maximum and the final recording taken at 60 minutes.  

Partial recovery was defined as a greater than 2-fold initial increase in time delay 

followed by a >10 percent decrease from the maximum time delay. The time of 50% or 90% 

recovery was defined as the time at which time delay fell below 50% or 90% of the 

difference between the maximum and the final recordings taken at 60 minutes. 

Recovery of the activation complex in post-lesion electrograms was defined by the 

appearance or disappearance of peaks in the electrogram following lesion production, which 

precluded the identification of the peak in subsequent recordings. The time of recovery as 

indicated by morphological changes was defined as the time at which the first morphological 

change precluded identification of the first activation peak chosen following ablation. 

 

Supernormal Conduction 

In some lesions, post-ablation measurements of time delay revealed that conduction 

block did not occur. Rather, heating due to RF ablation caused a transient decrease in time 

delay immediately following the completion of the ablation. The extent of supernormal 

conduction was quantified by the maximum percent decrease from control in time delay 

following ablation, and the time of the minimum time delay was also determined. The 
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maximum temperature and time constant for ablations was also calculated. Also, the 

correlation between temperature and post-minimum time delays was examined using linear 

regression. 

 

Data Processing 

All electrograms were filtered using a 4 ms boxcar filter. Electrograms were signal 

averaged by aligning consecutive stimulation pulses over a 10 second interval. Since the 

pacing rate was not constant for all experiments, the number of beats for a given signal-

averaged electrogram varied. On average, approximately 30 beats were used to create a 

signal-averaged electrogram. Time delay was determined using these signal-averaged 

electrograms by locating the first post-stimulation peak which exceeded 1 mV. Temperature 

recordings were filtered using a 3 ms boxcar filter. 

 

Statistical Analysis 

All values were presented as the mean ± SEM (standard error of the mean). Linear 

regression was used to determine the relationship between post-minimum time delays and 

temperature in the 35-41 degree range, following RF ablation that did not produce initial 

block. 
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C. RESULTS 

Summary of Temperature Results 

The maximum temperature within the lesion gap showing initial block followed by 

complete recovery was 63.4° C, with a time constant of 22.2 seconds. For lesions which 

showed block followed by partial recovery, the maximum temperature within the lesion gap 

was 58.9 ± 4.2° C (N=3), with a time constant of 29.0 ± 11.8 seconds. For lesions showing 

supernormal conduction, the maximum temperature within the lesion gap was 59.5 ± 2.5° C 

(N=5), with a time constant of 44.1 ± 12.2 seconds. An example of the post-ablation gap 

temperature is shown in figure 5.3. 
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Figure 5.3  Gap temperature following RF ablation. The peak of the curve represents the peak ablation 
temperature within the epicardial gap. 
 

Temperature During Control Recordings 

In one heart, time delay and temperature were monitored for 60 minutes before a 

lesion was formed. The purpose of this was to ensure that changes in time delay and 

temperature were due to RF ablation lesion formation, rather than to physiological changes 

which occur normally over the course of the experiment.  
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Figure 5.4  Control recording of time delay and temperature for a 60-minute period. 
 

Control time delay and temperature remained stable compared to post-ablation 

measurements (figures 5.5 and 5.6). Plot C of figure 5.4 shows that time delay and 

temperature measurements remain confined to a small area of the plotting surface. 

 

Temperature During Complete Recovery 

For the lesions which showed complete recovery, figure 5.5 shows that the initial rise 

in temperature is associated with conduction block. However, the temperature decreased to 

its resting value within 1 minute (time constant = 22.7 seconds) while conduction block 
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remained until approximately 5 minutes post-ablation. Hysteresis occurred and is shown in 

panel C, where time delay rises above 60 ms as temperature rises above 40 degrees, but then 

remains above 60 ms until approximately 4 minutes after the temperature has fallen to 35 

degrees. 

 

 

Figure 5.5  Graphs illustrating the relationship between time delay and temperature for a lesion showing 
complete recovery. 
 

Temperature During Partial Recovery 

During partial recovery, the initial rise in temperature was associated with a 

concurrent rise in time delay indicating conduction block. However partial recovery occurred 
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after the temperature had returned to its equilibrium value, and 50% and 90% recovery 

occurred at 14.4 ± 1.0 and 23.7 ± 4.3 minutes, respectively. For the example shown in figure 

5.6, 50% and 90% recovery occurred at 13.8 and 19.4 minutes. 

 

 

Figure 5.6  Graphs illustrating the relationship between time delay and temperature for a lesion showing partial 
recovery. 

 

Temperature During Changes in Activation Complex 

Morphological changes in the post-ablation electrogram occurred in 1 of 8 lesions. 

Immediately following ablation, the first activation peak greater than 1 mV was chosen for 
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time delay measurements as described previously. After 11.2 minutes, this peak is no longer 

present. 

 

Type of Recovery Tmax (°C) τ (sec) t50 
(mins.) 

Lesion 
Number 

Gap Size 
(mm) 

Complete Recovery 63.44 22.2 5.4 2 2.0 
Partial Recovery 1 50.97 16.87 13 3 2.5 
Partial Recovery 2 60.57 52.68 13.8 1 0.5 
Partial Recovery 3 65.29 17.51 16.3 2 0.5 

Recovery of Activation 
Complex (burn 2) 73.87 50.87 11.2* 2 1.5 

 
Table 5.1 - Summary of maximum temperatures (Tmax), time constants (τ), and times for 50% recovery (t50). 
 
*50% recovery for the morphological change indicates the amount of time that elapsed between the final 
ablation and the recovery of the activation complex. 
   

Temperature During Supernormal Conduction 

Supernormal conduction immediately following RF ablation was observed in 4 

lesions. For one lesion in which RF was applied twice, supernormal conduction was observed 

twice, for a total of 5 observations. Time delay for those lesions showing supernormal 

conduction decreased by 5.5 ± 1.3 ms (N=5) to their minima, which equated to a 17.8 ± 2.6% 

decrease from control. Minima for time delay occurred 28.0 ± 4.0 seconds after the end of 

ablation. Two examples of supernormal conduction are shown in figure 5.7. The results for 

supernormal conduction are summarized in table 5.2. 
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Figure 5.7  Supernormal conduction immediately following RF ablation (end of RF ablation indicated by the 
dotted vertical line). 
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TDmin (ms) ΔTDdecrease (%) tmin (sec) Tmax (°C) τ (sec) Lesion 
Number 

Gap Width 
(mm) 

20.81 10.88 17.4 50.97 16.87 3 2.5 
26.06 24.18 30 63.01 66.44 2 N/A*

26.37 23.28 35 57.59 76.35 3 0.5 
21.76 15.76 37.8 65.29 17.51 2 1.5 
25.43 14.9 20 60.9 43.32 2 1.5 

 

Table 5.2 - Parameters describing supernormal conduction. tmin indicates the time of the minimum time delay 
relative to the end of the ablation. 
 
*For this lesion, opposite sides of the lesion were bridged by a papillary muscle. 
 

After ablations which did not cause conduction block, a decrease in time delay was 

observed. For the example shown in figure 5.7, late decreases (>30 seconds) in temperature 

correspond to increases in time delay, however earlier decreases in temperature (<30 

seconds) correspond to a decrease in time delay, indicating the presence of a “phase lag” for 

the dependence of time delay upon temperature.   

 

Correlation between Time Delay and Temperature during Supernormal Conduction 

Immediately following the ablation burn, time delay changes in a biphasic manner 

(figure 5.7), and it is apparent that time delay is not linearly correlated with temperature over 

the entire post-ablation range. However, following the minimum value of time delay 

observed at approximately 30 seconds after ablation, a linear relationship was observed for 

data points within the 35-40 degree range. Figure 5.8 shows a strong correlation between 

temperature and time delay for this range of temperatures. 
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Figure 5.8  Relationship between temperature and time delay during supernormal conduction, shown for the 
same lesions as in figure 5.7. Filled circles represent experimental values. Dotted line represents the best-fit line 
as determined by linear regression. 
 

Summary of Temperature Dependence of Recovery 

Figure 5.9 illustrates the case of complete recovery. The diagram shows an initial 

increase in time delay concurrent with an increase in temperature (arrow 1), indicating block 

following ablation. As temperature decreases, time delay remains constant (arrow 2). As time 

passes, time delay eventually returns to its control value (arrow 3). 

Figure 5.10 gives a diagram for partial recovery. Initially, the same behavior is 

observed as for complete recovery (arrows 1 and 2). However, as time passes, time delay 
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does not return to control values, and only small decreases in time delay are observed over 

time (arrow 3). 

For supernormal conduction (figure 5.11), temperature increases were not sufficient 

to produce post-ablation block. Time delay decreased following ablation (arrow 1), and 

continued to increase for approximately 30 seconds after temperature began to decrease 

(arrow 2). With further temperature decreases, time delay began to return to control values 

(arrow 3). 

   

 

Figure 5.9  Diagram for complete recovery. Numbers indicate the time order of events, and the direction of 
arrows represents the flow of time. 
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Figure 5.10  Diagram for partial recovery. Numbers indicate the time order of events, and the direction of 
arrows represents the flow of time. 
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Figure 5.11  Diagram for supernormal conduction. Numbers indicate the time order of events, and the direction 
of arrows represents the flow of time. 
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D. DISCUSSION 

The main findings of this study are the following: 

1) Initial rises in temperature are temporally correlated with initial conduction block, as 

indicated by increases in trans-lesion conduction delay immediately following 

ablation. However, decreases in temperature are not necessarily correlated temporally 

with decreases in time delay. 

2) Complete recovery of time delay from a greater than 2-fold increase to pre-ablation 

values occurred within a five minute period, but did not temporally correspond to 

decreases in temperature. 

3) Incomplete recovery occurred tens of minutes following ablation, and did not 

correspond temporally with decreases in post-ablation temperature. 

4) Supernormal conduction may occur following ablations which do not produce block. 

An inverse relationship existed between temperature and time delay following the 

minimum value of time delay. However early decreases in time delay (<30 seconds) 

following ablation were not inversely related to temperature, and the response of the 

tissue to temperature decreases following ablation was associated with a phase lag of 

approximately 30 seconds. Following the phase lag, a linear inverse relationship 

existed between temperature and time delay. 

 

It is well-known that temperature increases will increase the rate of biochemical 

reactions, and that beyond critical temperatures protein denaturation leads to failure of 

critical biological processes. In this study, we have observed processes which occur in both 
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the mildly hyperthermic realm of temperatures (38 – 50° C) as well as those leading to 

irreversible protein denaturation ( > 50° C). 

The effect of temperature upon slices of superfused myocardium has been described 

previously by Simmers et al204. This study showed that temperatures in excess of 54° C are 

required in order to ensure complete block. However this study used thin (~2 mm) 

superfused slices of myocardium rather than a whole heart preparation, where conduction of 

activation and heat distributions are complicated by complex fiber orientation significantly 

greater anatomical complexity. Clinically, it is important to understand the response of tissue 

conduction to epicardial lesion temperature in the whole heart, as epicardial temperature is an 

accessible parameter during ablation procedures.  

Our study shows that the timing of temperature decline following the production of 

conduction block was not closely related to subsequent decreases in time delay. The time 

constant of temperature decay was on the order of tens of seconds, while complete and partial 

recovery occurred at 5 and 15-30 minutes, respectively. This suggests that the processes 

governing conduction react rapidly to initial temperature increases but react relatively slowly 

to temperature decreases.  

Time delay for lesions which do not produce initial block shows a strong temporal 

correlation to both increases and decreases in epicardial temperature. In the case of no initial 

block, time delay decreases following a temperature increase, and then increases linearly as 

temperature returns to its equilibrium value. However this change in the sign of the time 

delay derivative does not perfectly coincide with the change in the sign of the temperature 

derivative. Even after the temperature begins to decrease following ablation, time delay 

continues to decrease for approximately 30 seconds, and then time delay begins to rise back 
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to its control value. Although it is possible that this is merely an artifact of heat conduction 

patterns in the tissue following ablation, it is also possible that this 30-second “phase lag” 

truly represents the time response of the tissue to heat efflux. This phase lag may indicate a 

time-dependent recovery process of either sodium and/or connexin channels which modulate 

the speed of the activation wavefront.    

Considering the strong dependence of time delay upon temperature as demonstrated 

in figures 5.7 and 5.8, it is likely that hyperthermia is the most significant factor which 

contributes to supernormal conduction. However there are other possible causes which may 

decrease time delay. While the fast sodium current is primarily responsible for the early 

activation of myocytes, other currents may also modulate the action potential upstroke. 

Sugiura and Joyner showed that the introduction of a calcium channel blocker (nifedipine) 

caused an increase in cell-to-cell conduction delay. Further, this delay increased when the 

intercellular coupling resistance increased212. Also, the transient outward current (Ito) has 

been shown to modulate conduction velocity by altering early repolarization (phase 1) of the 

action potential. By rapidly reducing the transmembrane potential immediately following the 

action potential upstroke, Ito reduces the ability of upstream cells to act as a current source. 

Thus factors which reduce Ito will lead to supernormal conduction213. As is the case with 

calcium channel blockers, the effects of Ito block upon conduction delay will be markedly 

pronounced when the intercellular resistance (junctional resistance) is increased. In a coupled 

myocyte pair where the junctional resistance was increased by 33%, the conduction delay 

between the two cells increased by a factor of 3.6 (from 12 to 43 ms)213. While the L-type 

calcium current and the transient outward current may play a role in supernormal conduction 

following ablation, the significance of these currents is thought to be relatively minor, in light 
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of the fact that changes in junctional resistances due to ischemia take longer amounts of time 

to develop. There are reports which have shown that connexin 43 decreases in and around the 

site of ablation214, however the timing and cause of these decreases is not precisely known. 

Another factor which may modulate conduction velocity involves myocardial 

ischemia induced by damage to the microvasculature. Although acidosis, hypoxia, and 

extracellular potassium concentration ([K]o) levels all affect conduction velocity, it is the 

extracellular potassium levels which are thought to play the greatest role215. Rises in [K]o 

have been shown to be responsible for a biphasic change in conduction velocity, with early 

rises corresponding to an increase in conduction velocity and further rises corresponding to a 

decrease in conduction velocity, and eventually resulting in conduction block215. Thus 

ischemia may contribute to decreases in time delay, and may be responsible for the biphasic 

trend observed in time delay in figure 5.7, although confirmation would require precise 

knowledge of [K]o over the course of the experiment.    
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APPENDIX:  A Geometric Model for Predicting Time Delay around a Linear Ablation 
Lesion in a Two-Dimensional Sheet of Myofibers 

 
The following model is proposed as a “next step” for improving predictions of time 

delay based on activation path length. The model assumes that the myocardium is composed 

of a single sheet of myofibers which maintain a constant fiber direction throughout the region 

of the ablation lesion. The atria have previously been modeled as a two-dimensional sheet207, 

but this is thought to underestimate the complexity of conduction paths which may be altered 

by atrial pectinate muscles208. The model also assumes specific lesion geometry, and that 

propagation is confined to the perimeter of the 

lesion. 

In this model, r represents the radius of 

the semicircle formed by the end of the lesion, R 

represents the length of the lesion minus 2r, and θ 

represents the angle between the fiber direction 

and the direction of travel of the activation 

wavefront. The velocity of the wavefront will be 

modeled as a sinusoid with a constant term 

(based on figure 2 of Roberts et al158): 

 

1) ( )θθ 2cosfc vvv +=  

 

where vθ is the velocity of the wavefront as a 

function of θ, vc is the constant term of the 
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wavefront velocity, and vf is the additional component of velocity which is due to alignment 

of the direction of propagation with respect to the fiber direction.  

The time delay (TD) for a pre-lesion recording is given by the following expression: 

 

2) ( )θθv
rTDpre

2
=  

 

For the time delay while traveling around a complete lesion, the path will be broken 

up into two terms for illustrative purposes. The first term represents the time delay due to the 

wavefront traveling down the side of the lesion a distance R/2 and back up the lesion another 

distance R/2. For these two segments of the activation path, θ will be constant. Time delay 

for this segment of the path is given by the following expression: 

 

3) ( )o
post v

RTD
θθ

=1  

 

For the segment of the path which lies on the circular end of the lesion, θ will change 

at each consecutive point on the path, thus the velocity must be integrated over with respect 

to θ. The time delay for this segment of the path is given by the following expression: 
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where θo is a constant, and represents the angle between the fibers and the initial direction of 

propagation over the segment being integrated (the solid vertical arrow for the post-lesion 

case). 

Thus if the fiber direction and lesion dimensions are known, time delay can be 

approximated using this method. 

As an example, let r = 3.6 mm, R = 19.0 mm, vc = .35 mm/ms, and vf = .15 mm/ms. 

Values for r and R were taken from the results section of Chapter 2. The control and post-

lesion time delays are plotted below as a function of θo: 

 

 
 

While the straight region (TDpost1) of the conduction path around the ablation lesion 

has a sinusoidal dependence upon fiber angle (above), the time delay for the semicircular 

portion (TDpost2) of the path is independent of fiber angle.  

Substantial differences exist between the model assumptions and the experimental 

setup of chapter 2, such as the tissue depth and fiber rotation of the ventricles. However the 

values presented using this simple model are comparable to those in tables 2.1 and 2.2, with 

both pre and post-lesion (complete) time delay means falling within the ranges shown above.  
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