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ABSTRACT 
 

Reactive gliosis is the central nervous system’s consistent response to injury.  

Activated astrocytes migrate to the wound periphery where they hypertrophy and 

deposit a dense extracellular matrix.  Commonly, the glial scar that forms after 

physical trauma presents a barrier to neurite outgrowth and the functional recovery 

of severed axonal circuits.  Previous reports from our lab demonstrated that 

immunoreactivity of the actin-associated phosphoprotein palladin rapidly increased 

in activated astrocytes both in vitro and in vivo, but further questions on the method 

of up-regulation and the functional significance of this change remained.  In this work, 

we demonstrate that both 90 kDa and 140 kDa palladin are transcriptionally 

regulated after endothelin treatment in a cell culture model of gliosis.  The 

consequence of this up-regulation in glial scar formation remains to be elucidated, 

but palladin appears to be critical for some types of three-dimensional motility, 

including dynamic actin-based ruffles and podosomes.  Formation of these invasive 

structures is inhibited in paladin knockdown cells.  On the molecular level, palladin 

may exert its influence on actin organization directly, as it was shown to bind and 

bundle actin filaments via its immunoglobulin-like domains.  Taken together, palladin 

is shown to be an early marker of reactive astrocytes where it may play a role in cell 

migration and actin organization. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1  Astrocyte form and function 

 For many years, scientists studying the central nervous system (CNS) 

focused almost exclusively on understanding the function of neurons, while 

astrocytes – the star shaped cells that outnumber neurons in the human CNS – were 

considered merely supporting players.  Recently, however, new roles for astrocytes 

are being uncovered, including important contributions to the maintenance and 

modification of neuronal function. (Newman, 2003; Fields and Stevens-Graham, 

2002) 

Astrocytes have a round cell body and extend many thin processes that 

interact with neurons, endothelial cells, and other astrocytes (Vise et al., 1975; 

Ventura and Harris, 1999; Schikorski and Stevens, 1999).  Their large numbers, 

physical structure, and repertoire of cell-surface receptor proteins make astrocytes 

uniquely suited to sense and respond to changes in the CNS environment (Hertz et 

al., 1984; Murphy and Pearce, 1987; Koehler et al., 2006).  In order to function 

properly, neurons must be maintained within a narrow range of ion, oxygen, and 

glucose concentrations while avoiding the buildup of metabolic waste and released 

neurotransmitters.  One function of astrocytes is to detect environmental changes 



and maintain homeostasis for proper neural function (Hertz, 1978; Schousboe and 

Hertz, 1981; Sykova et al., 1992; Schousboe et al., 1992; Simard and Nedergaard, 

2004) 

Structurally, astrocytes act as scaffolds during CNS development and allow 

for neuronal migration (Levitt and Rakic, 1980).  They interact with endothelial cells 

in the formation and function of the blood-brain barrier that separates the 

cerebrospinal fluid from compounds carried by the blood (Vise et al., 1975; Abbott, 

2002; Banerjee and Bhat, 2007).  Astrocytes also play a role in establishing the 

extra-cellular matrix – a network of proteins with direct effects on neuronal migration 

and the extension of axons (Liesi et al., 1983; Wujek and Akeson, 1987; Ard and 

Bunge, 1988). 

Metabolically, astrocytes condition the cerebrospinal fluid for optimal neuronal 

efficiency.  They are the one of the few cell types in the brain that are able to store 

glycogen, which they break down into glucose and release to support the high-

energy requirements of neighboring cells (Wender et al, 2000).  Astrocytes also 

remove harmful substances such as the neurotransmitter glutamate, which at high 

concentrations can cause excitotoxicity and neuronal death (Hertz et al., 1978; Choi, 

1988; Erecinska and Silver, 1990). 

Beyond their role in conditioning the neuronal environment, glia are being 

studied for their participation in synaptic transmission.  In the cortex, synapses are 

often ensheathed by perisynaptic astrocytes that were once thought to act merely as 

structural or metabolic support (Ventura and Harris, 1999; Shikorski and Stevens, 

1999).  More recent studies have demonstrated that these astrocytes can respond to 
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synaptic transmission through calcium signaling, and also modulate synaptic 

transmission through the release of their own “gliotransmitters” (Bezzi and Volterra, 

2001; Finkbeiner, 1993; Porter and McCarthy, 1997; Newman, 2003). 

In addition to these support roles, astrocytes are being examined as a source 

of stem cells in the adult CNS.  After a long debate over the possibility of 

neurogenesis in the adult brain, several groundbreaking studies demonstrated that, 

in fact, stem cells are present in the mature brain that can give rise to both neurons 

and astrocytes in culture (Reynolds and Weiss, 1992; Richards et al., 1992).  Follow-

up work revealed that glia, including astrocytes, could act as neuronal precursors as 

well (Doetsch et al., 1999; Laywell et al., 2000; Seri et al., 2001).  Thus, while 

astrocytes support and modulate neuronal function in the CNS they may also play a 

role in neuronal regeneration or brain remodeling. 

 

1.2  The role of astrocytes in CNS injury 

Almost any insult that upsets the delicate balance in the central nervous 

system will elicit a response from astrocytes, which function to maintain 

homeostasis.  Upon injury, astrocytes are said to “activate” or become “reactive” – 

terms meant to describe a rapid change in gene expression and morphology that 

characterize this phenotype.  Because of their myriad cell surface receptors and 

their close proximity to both neurons and the vasculature, astrocytes respond to a 

wide array of injuries including physical trauma, toxic chemicals, viral infection, 

hypoxia due to stroke, disruption by tumors, prion associated spongiform 
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encephalopathies, and certain neurodegenerative diseases including Alzheimer’s 

disease (Norton et al., 1992; Zlotnik, 1968; Beach et al., 1989). 

The stereotypical characteristics of a reactive astrocyte are increased 

proliferation (Koguchi et al, 2002; Kato et al. 2003) and expression of intermediate 

filament proteins glial fibrillary acidic protein (GFAP) and vimentin (Bignami and 

Dahl, 1976; Schnitzer et al., 1981; Fedoroff et al., 1983). Morphologically, reactive 

astrocytes hypertrophy, thickening their processes and becoming migratory.  

Because many proteins are up or down-regulated, a variety of other markers for 

reactive astrocytes have been identified (Ridet et al. 1997). 

The bulk of changes occurring in a reactive astrocyte are adaptive and 

prevent further damage to surrounding brain tissue.  For example, astrocytes 

increase their expression of glutamate transporters and the enzyme glutamine 

synthetase, effectively improving their ability to clear this neurotransmitter from the 

CSF where it might cause additional damage (Hardin et al., 1994).  Reactive 

astrocytes also protect neurons by releasing a variety of trophic factors including 

nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), among 

others (Liberto et al., 2004).  These factors work to improve neuronal survival and 

encourage axon regeneration – a critical effect particularly where physical trauma 

has severed axon fibers. 

In many types of non-traumatic injury, or in areas spatially separate from 

direct trauma, the activated astrocytes revert to their previous “resting” state once 

the environment is controlled.  Because they do not structurally alter their 

environment, this response is referred to as isomorphic gliosis.  In contrast, physical 
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trauma leads to anisomorphic gliosis, where the astrocytes profoundly modify the 

lesion site in their efforts at wound healing. 

Anisomorphic gliosis is characterized by astrocytes that migrate and 

interdigitate their processes in an attempt to seal off the area of injury.  The reactive 

astrocytes deposit large amounts of collagen and other ECM proteins to form a 

basal membrane (Bernstein et al. 1985), which helps to restore the blood-brain 

barrier (Janzer and Raff, 1987) and contracts to bring the wound edges together.  

Together, this mass of astrocytes and extracellular matrix is known as the glial scar. 

 

1.3  Controversial effects of the gial scar 

This scarring response is another adaptive strategy developed to prevent 

further damage to areas surrounding the lesion.  Scarring restores the integrity of the 

injury site and fills the space left by dead or dying cells (Faulkner et al., 2004; Myer 

et al., 2006).  The problem arises when axons severed by the trauma attempt to 

migrate along their previous track to reform the synapses maintained prior to the 

injury.  As observed by Ramon y Cajal as early as 1928, axonal growth cones 

encountering the glial scar become rounded or club shaped and stall their forward 

progression.  They can remain in this state for years after the injury.  Much attention 

has been given to these “dystrophic end-bulbs” and to the factors that contribute to 

their formation (Reviewed by Stichel and Muller 1998).  Contrary to Cajal’s belief that 

these end-bulbs were static and quiescent, recent live-cell imaging studies of 

neurons in vitro and in vivo revealed that, while stalled in their directed migration, 

dystrophic growth cones are actually highly dynamic (Tom et al., 2004).  When these 
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growth cones encountered the boundaries of the scar, their forward motion stopped, 

but the leading edge continually extended membrane veils and retracted them, 

taking in vacuoles by endocytosis.  These results suggest that neurons maintain 

their ability to extend even dystrophic growth cones, but that the glial scar presents a 

barrier to extension. 

Functional recovery after axotomy requires that the neurons re-extend along 

a previous pathway to recover their damaged connections, and in this regard, they 

have proved to be surprisingly resiliant.  In the peripheral nervous system where no 

astrocytes are present to form scar tissue, axons are able to regenerate along 

previous pathways and form functional synapses (David and Aguayo, 1981; Nguyen 

et al. 2002).  Neurons in the central nervous system transplanted away from the 

injury site also show a robust ability to extend axons (Davies et al., 1997).  It is only 

when these neurons encounter the perimeter of the glial scar that their growth cones 

become dystrophic and extension stops (Davies et al. 1999).  Axons near the scar 

may either extend short sprouts into the area where they arrest (Frisen et al. 1993; 

Li and Raisman 1995), or they turn and migrate by another route, following spans of 

undamaged tissue or blood vessels (Clemente 1955; Guth et al. 1983; Kruger et al. 

1986). 

 

1.4  Inhibitory components of the glial scar 

The precise mechanism by which the scar inhibits axon regeneration is 

unclear, though two general mechanisms appear to play collaborating roles.  First, 

the scar might present a physical barrier that is impenetrable to the growing axons.  
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The physical blockage may be a result of the thick web of astrocyte processes, the 

deposition of a dense ECM, or a combination of both.  The second factor is that 

astrocytes and other cell types in the injured area release molecules that are non-

permissive for axonal extension.  Proposed inhibitory molecules include cytokines, 

products of metabolism, or extra-cellular matrix proteins that lead to growth cone 

arrest or turning. 

Identification of the cellular components and signaling molecules that cause 

growth cone arrest has largely been accomplished using in vitro assays.  Because 

the majority of these assays utilize embryonic neuronal populations, the results may 

not represent the effects of inhibitory molecules in the adult central nervous system.  

In some cases, pharmacological inhibitors are available for in vivo studies to 

measure the effects of pathway activation in injury models. 

Some of the factors shown to inhibit axon outgrowth, including components of 

CNS myelin (Yiu and He, 2006), are present in the uninjured nervous system, and 

likely serve as guidance cues during development.  During injury, these proteins, 

including Nogo (Prinjha et al., 2000) and myelin associated glycoprotein (MAG) 

(Mukhopadhyay et al., 1994), may be released from the disrupted myelin and 

prevent axon extension through the injury site (Tang et al., 2001.) 

Reactive astrocytes present another barrier to neurite outgrowth by increasing 

their production of chondroitin sulphate proteoglycans (CSPGs) (McKeon et al, 

1991).  CSPGs, including aggrecan, brevican, neurocan and versican, are 

comprised of sulphated glycosaminoglycan chains attached to a protein core. 

(Morgenstern et al, 2002).  In several studies, these side chains, and in some cases 
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the protein core itself, presented a non-permissive substrate for axon extension 

(Snow et al, 1990; Carulli et al, 2005; Ughrin et al, 2003). 

 

1.5  Experimental treatment strategies 

 Treatment of reactive gliosis is necessarily complicated, and attempts have 

been made to remove scar tissue through surgical procedures, enzymatic break 

down, and X-irradiation (Puchala and Windle 1977; Kalderon and Fuks 1996). Few 

have been successful.  Current treatement strategies focus on preventing scar 

formation so that axons are allowed to extend over their previous tracks to produce 

active synapses and functional recovery in the shortest time possible.  Simple 

ablation of the reactive astrocytes is not beneficial, as this leads to further damage 

including long-term failure of the blood-brain barrier, tissue death, severe 

demyelination of local axons, and poor functional recovery (Faulkner et al. 2004).  

This study underscores a major trade-off facing the clinical treatment of brain and 

spinal cord injury:  after trauma, reactive astrocytes play a protective role, while their 

continued presence in the glial scar prevents functional recovery.  Clearly, then, 

effective treatment strategies must support adaptive astrocytic responses while 

eliminating those that inhibit neural regeneration. 

 To that end, most current research has focused on either preventing the 

physical blockade presented by the scar or on identifying and inactivating the 

chemorepulsive factors present in the injury site.  Stichel and colleagues (1999) 

used injections of collagen synthesis inhibitors to prevent the formation of the basal 

membrane in a post-commissural fornix injury model.  They observed increased 
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axonal migration through the lesion area when collagen aggregation was inhibited, 

though these results do not seem to translate well throughout the CNS (Joosten et 

al. 2000, Hermann et al. 2001).   Chondroitin sulfate proteoglycans – the potent 

inhibitors of axonal extension (Tom et al. 2004) -- are also under investigation 

because they have been identified in the glial scar in vitro and may be the repulsive 

component adhering to the collagen matrix (Fitch and Silver, 1997; Grimpe and 

Silver, 2004).  

 Some of the most promising strategies for preventing reactive gliosis target 

the signaling molecules that induce the reactive phenotype in the first place.  

Epidermal growth factor receptor (EGFR), when stimulated by its ligands, has an 

inhibitory effect on neurite outgrowth by a mechanism that is not well understood. 

(Koprivica et al., 2005; Schwab et al., 2006).  This observation stems from studies 

showing that the use of EGFR inhibitors improves axon regeneration after optic 

nerve injury (Koprivica et al., 2005) and a chronic glaucoma model (Liu et al., 2006).  

In a spinal cord injury model, rats receiving the EGFR inhibitor achieved significant 

improvement over controls in overall locomoter function, sensation, and coordination 

(Erschbamer et al., 2007).  Histologically, the rats receiving treatment had more 

spared tissue, and less scar tissue, than controls.  Because the expression of EGFR 

is much higher in astrocytes than in neurons, and because EGFR activation triggers 

a change to the reactive phenotype, an astrocyte-mediated mechanism for these 

observations has been proposed (Liu et al., 2006). 

 One proposed mechanism for EGFR activity in reactive astrocytes is to 

stimulate proliferation (Levison et al., 2000).  Whether through EGFR activation or 
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other mechanisms, astrocyte proliferation is a commonly described feature of 

reactive gliosis (Koguchi et al., 2002; Kato et al., 2003; Di Giovanni et al., 2005).  

Pharmacological inhibition of cell cycle progression after hypoxia decreased 

astrocyte proliferation in vitro and decreased lesion volume in an in vivo model of 

cerebral ischemia (Zhu et al., 2006).  These studies also revealed a decrease in 

neuronal apoptosis, probably as a result of cell cycle inhibition in these post-mitotic 

cells. 

 Another strategy to prevent glial scar formation has been to disrupt the 

intermediate filament cytoskeleton, a direct reversal of the astrocytes’ natural 

tendency to up-regulate GFAP and vimentin in response to injury.  Knockout mice 

which are null for both GFAP and vimentin showed functional motor recovery sooner 

after spinal cord injury than wild-type animals (Menet et al. 2003).  These mice 

showed a decrease in astroglial reactivity and a greater incidence of axonal 

sprouting.  GFAP-/- vim-/- astrocytes were previously shown to exhibit reduced 

migratory ability (Lepekhin et al., 2001), which correlates well with the in vivo 

observation of a reduced reactive phenotype and scar formation.  Other experiments 

using GFAP-/- vim-/- mice revealed that the lack of intermediate filaments provided a 

permissive environment for neuronal migration and extension after retinal transplant 

(Kinouchi et al., 2003). 

 Taken together, these data suggest that astrocytes are important in wound 

healing and minimizing inflammation of a lesion site, but that their migration leads to 

a physical barrier to neurite extension.  Preventing scar formation has been shown 

to create a permissive environment for axon regeneration.  Complete ablation of 

 10



reactive astrocytes is harmful, but reducing other aspects of their reactive phenotype 

may prove to be beneficial in treating injury. 

 

1.6  The actin cytoskeleton regulates cell motility and morphology associated 

with gliosis 

 While previous studies have examined the role of intermediate filaments in 

the pathway to reactive astrocytosis, other targets exist.  Data from the studies cited 

above suggest that it is a change in morphology or cell migration that lead to scar 

formation and inhibition of axonal extension.  Following this line of reasoning leads 

us to hypothesize that prevention of anisomorphic gliosis would permit axon 

regeneration and functional recovery. 

 Though cell morphology and motility are modulated by the intermediate 

filaments and the microtubule cytoskeleton, the actin cytoskeleton seems to play a 

much more central role.  Rearrangements of the actin cytoskeleton are responsible 

for many cellular processes including migration, contractility, and cytokinesis. 

 Understanding the component proteins that make up the actin cytoskeleton is 

central to asking broader questions about cell morphology or migration.  Briefly, actin 

proteins exist as monomers in the cytosol of all eukaryotic cells.  Under certain 

conditions, these monomers polymerize into long, polarized filaments called F-actin.  

Individual filaments may be arranged into higher order arrays by proteins that either 

bind to the growing end or along the length of the filament.  For example, α-actinin 

dimers cross-link actin filaments into thick bundles (Condeelis and Vahey, 1982) 

while a complex of proteins known as Arp2/3 binds to the side of existing filaments 
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and produces a branching filament at a fixed angle (Svitkina and Borisy, 1999).  

These structurally different arrangements give rise to functionally different actin 

arrays.   

 A host of other proteins affect the rate of assembly and disassembly of actin 

filaments.  Of note, profilin binds to actin monomers in the cytosol and “charges” 

them by replacing their spent ADP with ATP, allowing them to be added to the end 

of a growing chain (Mockrin and Korn, 1980).  Capping proteins work just as their 

name implies, blocking the end of a filament and preventing further addition.  A 

family of proteins including VASP is thought to increase the rate of polymerization by 

competing with capping proteins and thereby pushing equilibrium toward extension 

(Barzik et al. 2005).  Finally, proteins such as cofilin or gelsolin act to sever filaments 

and speed their depolymerization (Yin and Stossel, 1979; Nishida et al., 1984).  With 

these basic tools for assembly, organization, and disassembly, a cell can assume 

complex shapes and move in surprisingly dynamic ways. 

 In vivo studies have revealed that in addition to increases in intermediate 

filament proteins, reactive astrocytes exhibit an increase in their F-actin content 

(Abd-El-Basset and Federoff, 1997).  F-actin is all but absent in differentiated, 

stellate astrocytes of the adult brain, but upon injury, F-actin cables are assembled 

corresponding with an increase in α-actinin expression.  The functional consequence 

of this actin assembly is unclear, but it supports the hypothesis that a dynamic 

rearrangement of the actin cytoskeleton contributes to reactive gliosis and the 

formation of a glial scar. 
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1.7  Palladin – an actin associated protein that is up-regulated in reactive 

astrocytes 

In 2003, Boukhelifa and colleagues published their observation that a recently 

discovered actin-associated protein called palladin was undetectable in the 

astrocytes of adult rat brain, but was rapidly up-regulated in astrocytes after a stab 

wound was made to lesion the cortex.  Palladin was discovered and initially 

characterized just a few years earlier in the lab of Dr. Carol Otey (Parast and Otey, 

2000) where they observed that palladin, a protein related to myotilin and 

myopalladin (Fig. 1.1 A), is expressed widely in embryonic tissue but is down-

regulated in select adult tissues.  Immunostaining of cultured cells revealed that 

palladin decorates actin stress fibers in a punctate pattern and co-localizes closely 

with α-actinin.   

 The palladin gene contains a series of nested promoters, and is differentially 

spliced, giving rise to three major isoforms (Fig. 1.1 B).  The most abundant isoform 

runs as a doublet with an apparent molecular weight of 90-92 kDa.  This isoform was 

the first to be cloned and is the most thoroughly characterized.  An examination of 

the protein structure revealed a canonical binding motif for the actin associated 

protein VASP in a proline rich region of the N-terminus.  This interaction was later 

confirmed biochemically (Boukhelifa et al. 2004) (Fig 1.2).   This same short poly-

proline region has also been identified as a binding site for actin associated proteins 

profilin, Eps8, Spin90, and Src (Boukhelifa et al., 2006; Goicoechea et al., 2006; 

Ronty et al., 2007)  
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Because of palladin’s close apposition to α-actinin as observed by 

immunostaining, a binding interaction was sought and mapped to a region near the 

center of the protein (Ronty et al. 2004).  The C-terminal half of palladin is composed 

of three immunoglobulin-like repeats which are similar to those described for 

myotilin, the striated muscle protein titin, and others (Fig. 1.1 A).  The function of 

these domains had not previously been elucidated, though homologous regions in 

other proteins had been shown to bind α-actinin or myosin II (Sorimachi et al. 1997).   

Other studies, including one on palladin’s family member myotilin, showed that 

regions containing Ig-like domains are able to bind directly to F-actin (Salmikangas 

et al., 2003; von Nandelstadh et al., 2005). 

More recent studies in our lab have shown that astrocytes express another 

palladin isoform with an apparent molecular weight of 140 kDa.  Expressed under 

the control of an upstream promoter (Fig 1.1 B), this isoform is identical to the 92 

kDa protein except for an extended N-terminal region containing two additional 

VASP binding domains, a region capable of binding to the actin-associated protein 

Lasp-1 (Rachlin and Otey, 2006) and another Ig-like domain (Fig 1.2).   

 Over-expression of exogenous 90 kDa isoform in fibroblasts leads to the 

hyper-bundling of stress fibers (Parast and Otey, 2000), implying that palladin is a 

bundling protein or an activator of other bundling proteins.  The number and diversity 

of palladin’s binding partners identified thus far suggest that it may act as a scaffold 

– a protein responsible for organizing a cohort of other molecules spatially and 

temporally.  The cell may use scaffolding molecules to ensure that the complex job 
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of actin assembly, bundling, and breakdown occur in the proper place and order for 

cell motility to occur. 

 Palladin’s role in other cell types and tissues indicate that it plays an 

important role in cell migration – a critical process in glial scar formation.  During 

development, palladin is expressed in every embryonic tissue that was tested at a 

stage when cell migration is most pronounced, though it is down-regulated in many 

adult tissues (Parast and Otey, 2000).   Palladin has been specifically implicated in 

the migratory potential of neural crest cells that move out of the neural folds during 

development.  In their pre-migratory state, these cells up-regulate the expression of 

intermediate filament proteins.   A sub-population of neural crest cells go on to up-

regulate a small subset of actin cytoskeleton components, including palladin, just 

before they begin to migrate out of the neural fold. (Gamill and Bronner-Fraser, 

2002).  Indeed, a striking feature of the palladin-null mouse is embryonic lethality at 

embryonic day 15.5 with neural tube closure defects.  This mouse also exhibits facial 

clefting and herniation of the liver, indicative of a migration defect. (Luo et al, 2004).  

Fibroblasts cultured from these mice showed aberrant cytoskeletal architecture and 

a reduced migration rate. 

 Aside from its role in the neural crest, palladin appears to be critical at other 

stages of brain development.  In the brain of adult rats, a unique 85 kDa isoform was 

detected by Western blot that is smaller than the more common 90-92 kDa isoform 

(Hwang et al., 2001).  Immunohistochemistry was used to demonstrate that palladin 

is preferentially localized to excitatory nerve terminals, and has a non-uniform 

distribution across brain regions. Immunostaining also revealed that the palladin was 
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preferentially localized to the developing axons, but not to dendrites (Boukhelifa et 

al., 2001).  Using an antisense knockdown approach in cultured cells left them 

unable to extend neurites after the loss of palladin.  These data suggest that palladin 

has a role in axonal extension and may also contribute to maintenance of the mature 

synapse.  

 In studies of cancer metastasis, palladin also appears to play a role in cell 

migration rates.  Observations in our lab indicate that an increase in palladin 

expression correlates with increased metastatic potential among a group of breast 

cancer cell lines (unpublished data).  A mutated form of palladin was also recently 

identified as a contributing factor in the development of a highly invasive familial 

pancreatic cancer (Pogue-Geile et al., 2006).  Because the mechanisms for cell 

migration and actin cytoskeleton dynamics are so conserved over evolution, it is 

likely that these observations from other cell types will inform current and future 

studies of astrocyte migration during glial scar formation. 

 

1.8  Astrocyte cell culture for the study of actin dynamics 

 Since 1980 when McCarthy and deVellis published their landmark paper 

describing a method for purifying astrocytes from the cortex of neonatal rodents, 

primary cell culture has been the preferred system for the study of actin dynamics in 

astrocytes.  The goal has long been to create a cell culture model for reactive gliosis 

and the gial scar, and a wealth of research exists on this subject (reviewed by Wu 

and Schwartz, 1998).  To date, no model perfectly mirrors the phenotype observed 

in animals, but close approximations exist.   
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 Primary astrocyte cultures are derived from dissociated neonatal cortex and 

are purified from less adherent cell types by shaking (McCarthy and de Vellis, 1980).  

At this stage, they have a polygonal, fibroblast-like appearance when grown in 

plastic dishes.  Because they are embryonic astrocytes, they do not possess the 

morphology or expression profile of the differentiated cells found in an adult.  One 

method for differentiation is the addition of a non-hydrolyzable cAMP analogue that 

causes the cells to exhibit some of the characteristics of adult astrocytes.  The 

addition of dibutyril cAMP (dBcAMP) leads to disassembly of the actin cytoskeleton 

and a retraction of the cytoplasm, giving the cells the stellate appearance of adult 

astrocytes with a small cell body and many thin processes (Safavi-Abbasi et al., 

2001).  This treatment also converts the embryonic astrocytes to a non-motile 

phenotype as assessed by migration after implantation in the brain (Chu et al. 1999; 

Hatton and Hoi, 1993).  Other important markers such as GFAP are normally high in 

the embryonic astrocyte and the addition of dBcAMP does not alter this significantly.  

Interestingly, differentiation in dBcAMP leads to a down regulation of palladin protein 

(Boukhelifa et al. 2003). 

 With these “differentiated” stellate astrocytes, one can begin to ask questions 

about hypertrophy and migration associated with the reactive phenotype in vitro.  

Several methods exist for inducing gliosis in culture.  A popular method is to create a 

physical scratch wound using a sterile needle or pipette and allowing the astrocytes 

to migrate into the empty space (Seniuk et al. 1994; Yu et al. 1993).  This method 

leads to astrocyte hypertrophy at the wound edge, an increase in mitosis, and a 70-

80% increase in GFAP content, validating it as a model of gliosis.  This approach is 
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suitable for asking questions of migration, but another method is required to perform 

biochemical studies or semi-quantitative expression analysis. 

 In order to obtain large numbers of reactive astrocytes for biochemical 

analysis, it is necessary to mimic injury of a large area.  This can be accomplished 

by supplementing the growing media with one or more cytokines or peptide signals 

known to activate astrocytes in vivo.  Factors that have been proposed to mediate a 

reactive response include IL1-β (Herx et al. 2000; Herx and Yong 2001), IL-6 

(Woiciechowsky et al. 2004) and endothelin (Koyama et al., 1999).  In primary 

culture, the addition of inflammatory cytokines leads to the flattening and 

hypertrophy of astrocyte processes, further supporting the validity of an in vitro 

model. 

 

1.9  Current Study 

 In summary, astrocytes in the glial scar contribute to the blockade of neuronal 

regeneration and functional recovery after brain and spinal cord injury.  In this study, 

we seek to deepen our understanding of palladin’s role in the reactive phenotype.   

 In Chapter 2, we utilize a primary astrocyte cell culture models and a 

traumatic injury model to understand the expression pattern of two palladin isoforms 

in vitro and in vivo.  We then work to determine the cellular effects of palladin 

expression on astrocyte migration and adhesion. 

 In Chapter 3, we work to understand the cellular mechanisms that underlie 

migration through a complex tissue environment as we explore palladin’s role in 

dynamic actin arrays.  We examine the localization and function of palladin in the 
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highly-dynamic dorsal circular ruffles and podosomes that form after growth factor 

stimulation.  These processes have been implicated in the invasion and migration of 

cancer cells and fibroblasts, and may be a conserved feature of cells that must 

migrate through tissue, including reactive astrocytes. 

 In Chapter 4, we examine palladin’s biochemical role in binding and bundling 

filamentous actin using purified proteins.  We identify a novel actin-binding domain in 

palladin’s C-terminus, and describe evidence for a fragment that can both bind and 

bundle actin filaments.  
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Figure 1.1.  The palladin gene.  A) Palladin is a member of the same family as 
striated muscle proteins Myotilin and Myopalladin.  All three family members share 
a similar domain structure containing variable numbers of immunoglobulin-like 
domains. B)  Three common palladin isoforms arise from nested promoters within 
the same gene.
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CHAPTER 2 

PALLADIN EXPRESSION AND FUNCTION IN REACTIVE ASTROCYTES 

 

2.1  INTRODUCTION 

After brain and spinal cord injury, astrocytes of the central nervous system 

undergo a series of well-defined changes including proliferation, hypertrophy, and 

increased expression of the intermediate filament protein GFAP (Davies et al., 1999).  

Persistent glial activation results in a dense meshwork of astrocytes and 

extracellular matrix known as the glial scar.  This scar tissue has been shown to 

inhibit axon outgrowth, thereby preventing functional reconnection of severed axons. 

The exact mechanism of glial scar formation is not yet known, but it is assumed that 

activation and migration of astrocytes are involved. The origin of activated astrocytes 

that contribute to the formation of the glial scar is unclear. One possibility is that 

activated astrocytes differentiate from multipotential progenitor cells and migrate to 

the injury site (Moon et al., 2004; Wang et al., 2004). One source for the progenitor 

cells that has been identified is the area of the gray matter surrounding the central 

canal of the spinal cord, but whether other periventricular zones of the brain play a 

similar role is unknown. Alternatively, the existing astrocytes in the area surrounding 

the injury site may be activated and proliferate (Fawcett and Asher, 1999; Mothe and 

Tator, 2005). 



One of the most distinct morphologic changes in the process of glial scar 

formation is the increased expression of glial fibrillary acidic protein (GFAP) in cells 

around the injury site. GFAP is a specific cellular marker for differentiated astrocytes 

and is the main component of the glial scar. However, it is also present in quiescent, 

non-reactive astrocytes, and can not be used as a marker for activation of astrocytes. 

Contemporary markers for glial cells that undergo activation and migration in 

several clinical paradigms and experimental models of injury to the CNS and glial 

scar formation are the embryonic intermediate filaments nestin and vimentin (Calvo 

et al., 1991; Baldwin and Scheff, 1996; Sahin Kaya et al., 1999). Nestin is a protein 

transiently expressed in multipotential stem cells and in proliferating progenitor cells 

in early embryogenesis. In the adult CNS, it is re-expressed in reactive astrocytes 

surrounding sites of injury. Presumably, this process represents a reversal of the 

process of differentiation to an immature state that facilitates remodeling after injury 

(Douen et al., 2004). Vimentin is an embryonic protein that is expressed in cells of 

mesenchymal derivation with negligible expression in the adult brain. However, it 

may be significantly re-expressed around the site of injury, and can contribute to the 

formation of the glial scar (Wang et al., 2004; Alonso, 2005). 

Another marker for activated glia that can be detected with 

immunocytochemistry is A2B5. It is cell surface ganglioside, which was initially 

detected in neurons, but was later shown to be expressed also in non-neural cells, 

including glial precursor cells and reactive astrocytes (Drago et al., 1989): the 

proliferating oligodendrocyte progenitor cells can differentiate into oligodendrocytes 

or reactive astrocytes, and both of these cell types express A2B5 during 
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differentiation. The utility of A2B5 as a marker is supported by the fact that it is 

selective for differentiating glia and is not expressed in non-reactive astrocytes 

(Scolding et al., 1999). 

Palladin is an intracellular protein expressed by neurons throughout the CNS. 

It is most ubiquitous in the olfactory bulb, cerebral and cerebellar cortex, 

hippocampus, amygdla, superior colliculus, and the spinal cord (Hwang et al., 2001). 

Functionally, palladin has been shown to play an essential role in controlling cell 

shape and cytoskeletal architecture in cell culture models through its association 

with stress fibers (Parast and Otey, 2000).  In the developing CNS, palladin is up-

regulated in a population of neural crest cells that migrate out of the neural fold 

(Gamill and Bronner-Fraser, 2002). 

The palladin gene contains a series of nested promoters that give rise to at 

least three distinct isoforms in rodents.  The 90 kDa isoform contains three 

immunoglobulin-like domains in its C-terminus, whose function we examine in 

Chapter 4.  At its N-terminus, a proline-rich region has been previously shown to 

bind members of the Ena/Vasp family, Profilin, Eps8, and other proteins (Boukhelifa 

et al., 2004; Boukhelifa et al., 2006; Goicoechea et al, 2006).  Finally, an interaction 

with the actin bundling protein α-actinin is located near the center of the 90 kDa 

protein (Ronty et al, 2004).  To date, all of palladin’s known binding partners are 

actin-modifying proteins.  This suggests that palladin may act as a unique molecular 

scaffold with the ability to coordinate the interactions and activities of a cohort of 

proteins that regulate cytoskeletal remodeling. 
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An additional isoform, with an apparent molecular weight of 140 kDa, is 

transcribed from an upstream promoter on the palladin gene.  This nested pattern of 

transcription results in a translated protein that contains the entire 90 kDa isoform as 

its C-terminus.  Thus, the 140 kDa isoform likely shares all of the binding interactions 

described for the 90 kDa isoform.  At its N-terminus, the 140 kDa isoform exhibits an 

extended region which contains an additional Ig-like domain and a large proline-rich 

region.  Binding sites for the actin-binding protein Lasp-1, and additional binding 

sites for Ena/Vasp proteins have been mapped to this domain (Rachlin and Otey, 

2006).  Though the 140 kDa isoform is widely expressed in embryonic tissues, it is 

selectively down-regulated in many adult tissues.  In this study, we utilize reagents 

that uniquely identify the 140 kDa isoform to further understand the expression 

pattern of palladin isoforms in reactive astrocytes both in vitro and in vivo.. 

Previously, we have utilized a primary astrocyte cell culture model and a rat 

model of brain injury to demonstrate that palladin immunoreactivity is rapidly 

increased in reactive astrocytes surrounding the wound, suggesting that palladin 

may function as a critical inducible scaffold in glial scar formation (Boukhelifa et al., 

2003). We here extend this work by describing the expression patterns of two 

palladin isoforms and by testing whether palladin expression is increased in the 

astrocytes that also express intermediate filaments in response to injury. By studying 

the time course and co-expression pattern of palladin and several markers of cell 

migration, proliferation, and differentiation following injury to the brain, we show that 

palladin is involved in the process of activation and migration of astrocytes that 

contribute to glial scar formation. 
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2.2 MATERIALS AND METHODS 

Primary astrocyte cell culture 

Brains from E18 rat embryos were removed and transferred to a culture dish 

containing calcium/magnesium-free (CMF)-Hanks’ balanced salt solution (HBSS): 

The cortex was dissected from each brain, minced, and placed in a 15-ml tube 

containing 5 ml of CMF-HBSS. Dispase II was added to a final concentration of 2.5 

U/ml, the tube was sealed and the tissue was incubated for 15–20 min at 36°C. The 

tube was transferred to a sterile hood and the tissue pieces were gently triturated 

with a 10-ml pipette. The tissue pieces were allowed to settle for 2 min and the cells 

in suspension (three to four ml) were transferred to a sterile culture tube containing 

25 ml of complete culture medium (MEM + 10% fetal bovine serum + 20 μg/ml 

gentamycin). An equivalent volume of CMF-HBSS was added back to the tube and 

the procedure repeated until most of the tissue was dissociated (five to six cycles). 

Dissociated cells were diluted in 40–50 ml of complete medium at a concentration of 

1–2 × 106 cells/ml. Cells were seeded into poly-lysine-treated Falcon 75 flask at a 

final density of 20,000 cells/cm2.  When cell density reached confluence (~2 weeks), 

media was replaced with Dulbecco’s MEM and placed in a shaking incubator at 225 

RPM overnight.  The following day, cells were trypsinized and plated on laminin 

coated coverslips at densities between 20,000 and 50,000 cells/cm2.  For scratch 

wound assays, the cells were grown on a 12-mm coverslip coated with poly-lysine. 

Cells were fed on the following day by a complete medium exchange to eliminate 

debris, followed by a 50% exchange every 2–3 days thereafter.  
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Western blot 

Astrocytes were sub-cultured in 60 mm dishes and allowed to grow to confluence.  

Cultures were treated with 500 mM dBcAMP for 48 hours, then supplemented with 

200 nM endothelin over the indicated time course.  Cells were lysed in Laemmli 

buffer, boiled, and spun at 150,000 x g to pellet the insoluble fraction, then resolved 

by SDS-PAGE.  Western blot was performed with a palladin polyclonal antibody.  

Secondary antibodies tagged for infra-red detection were used in combination with 

the Licor Odyssey imaging system.  Tubulin expression was used as a control. 

 

RT-PCR 

Astrocyte cultures were differentiated in 500 mM DB cAMP for 48 hours then 

treated with 200 nM endothelin for 1, 6, 12, or 24 hours.  Cells were harvested by 

scraping in RNALater (Ambion), spun, and frozen at -80° C until further processing.  

RNA was extracted using the RNEasy mini kit (Qiagen) following the manufacturer’s 

protocol.  For each sample, 5 μg of RNA were DNase treated following the 

manufacturer’s protocol (Ambion).  A no-template control sample using only water 

was prepared in parallel.  After DNase treatment, the samples were divided in half 

for the generation of cDNA by reverse-transcription PCR.  Half of the sample (2.5 μg) 

was prepared in buffer with Reverse Transcriptase (RT), while the other half was 

prepared as a no-RT control. 

The cDNA samples were prepared for semi-quantitative Real-Time PCR 

using the JumpStart SYBR Green ready mix system.  Samples were run in triplicate 

on a RotorGene RG-3000 (Corbett) with no-template and no-RT samples as controls.  
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The 90 kDa and 140 kDa isoforms were distinguished by designing primers that 

amplified unique exons.  For the 90 kDa isoform, primers were (Forward) 5’-

CCTCTTGCTTCGCTGAGAC and (Reverse) 5’-CAGGCGCACTTGGTTCTG.  For 

the 140 kDa isoform, primers were (Forward) 5’-ACCGGGACCCACGTC and 

(Reverse) 5’-CCTTCCCCTCCAGAACCA. 

 

Adhesion assay and immunofluorescence 

Four coverslips were spotted with 2 μL drops of 50 μg/mL Type-1 rat tail 

collagen (Sigma), mouse laminin (Gibco), and bovine serum fibronectin (Calbiochem) 

in a 3 X 3 grid and allowed to dry at room temperature.  Coverslips were then 

blocked in 10 mg/mL bovine serum albumin (Sigma) for 30 minutes to prevent non-

specific adhesion.  Wild-type and palladin knockout cells obtained from E13 mouse 

embryos were trypsinized, resuspended, and counted with the addition of soybean 

trypsin inihibitor (Gibco) to obtain equal numbers.  Cells were then washed in serum 

free DMEM and plated on the blocked coverslips for 2 hours at 37°.   

After incubation, coverslips were washed thoroughly with 3 X 5 mL of PBS, fixed 

for 10 minutes in 4% paraformaldehyde, and permeablized in 0.2% Triton.  Cells 

were stained with rhodamine phalloidin (Molecular Probes) and DAPI and visualized 

by epifluorescence using a Nikon TE200-U microscope with 60x objective lens and a 

Hamamatsu Orca-ER camera.   

DAPI stained nuclei in three random fields per spot were counted and averaged 

to generate the adhesion rate measured as cells per field. 
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Migration Assay 

Primary astrocytes were grown to confluence, purified by shaking, and split onto 

laminin coated, photo-etched coverslips at a density of 40,000 cells/cm2.  At the time 

of plating, cells were transfected with control or palladin knockdown siRNA 

(Dharmacon) using the Transit siQUEST transfection reagent (Mirus) and following 

the manufacturer’s protocol. 

Cells were incubated for 48 hours to allow for palladin knockdown, and media 

was replaced.  Seventy-two hours after transfection, the cell monolayer was 

wounded with a sterile pipette tip, debris was washed away with fresh media, and 

the cells were allowed to recover for one hour before imaging.  Six regions were 

imaged per coverslip over the course of 36 hours.  After the timecourse was 

complete, the coverslips were lysed in Laemmli buffer and subjected to SDS-PAGE 

and Western blot analysis to determine the effectiveness of palladin knockdown. 

Using the ImageJ software package, the distance across the denuded area of 

the coverslip was measured.  Two measurements were made along the photoetched 

grid per image, giving a total of 20-30 measurements per timepoint per culture 

condition.  Migration is plotted as the average wound width over time, plus or minus 

standard error. 

Cortical stab wound and immunohistochemistry  

All procedures involving animals were according to the guidelines of the 

Institutional Animal Care and Use Committee at the University of North Carolina. 

Twenty five male Sprague-Dawley rats (180-250 g) were used in this study, 

including 23 rats with cortical cuts and two controls. For surgery, rats were 
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anesthetized with ketamine (50 mg/kg) and xylazine (8 mg/kg) and placed in prone 

position in a stereotaxic frame. The body temperature was monitored and 

maintained with a heating pad. Scalp was incised along the midline and the skull 

was drilled on both sides 2 mm posterior to bregma and 5 mm lateral to midline. 

After opening the dura, a 3-4 mm long and 2.5 mm deep cortical cut was made with 

a steel micro blade with an effort to spare the cortical blood vessels. The scalp was 

sutured with 4.0 silk and the rats were allowed to survive for 12 hours, 1, 3, 7, or 14 

days. 

For fixation, rats were anesthetized with sodium pentobarbital (60 mg/kg) and 

perfused intracardially with 100 ml of normal saline containing 500 units of heparin 

sodium, followed by 700 ml of freshly depolymerized 4% paraformaldehyde in 

phosphate buffer (PB, 0.05M, pH 7.2). Brains were removed, post-fixed in the 

fixative used for perfusion for 3 hours, and stored in cold PB. Blocks containing the 

sites of cortical cuts were cut on a Vibratome at 50 µm and stored in PB at 4ºC.  

For immunohistochemistry, the sections were pretreated with 50% ethanol in 

phosphate-buffered saline (PBS, 0.05M, pH 7.2) for 30 minutes, to improve antibody 

penetration, pretreated with 10% normal donkey serum (NDS) in PBS, to mask 

nonspecific secondary antibody binding sites, and incubated in a mixture of two 

primary antibodies. We combined our rabbit anti-palladin antibody (1:150) with either 

of the mouse anti-GFAP (1:1,500, Sigma), anti-nestin (1:200, Chemicon), anti-

vimentin (1:200, Sigma) or anti-A2B5 (1:100, Chemicon) antibodies in PBS overnight 

at room temperature. After several rinses and incubation in 2% NDS for 10 minutes, 

the sections were incubated for 3 hours with a mixture of fluorescent secondary 
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antibodies (Cy3-conjugated donkey anti-rabbit and FITC-conjugated donkey anti-

mouse; 1:200; Vector). After several rinses, sections were mounted on subbed 

slides, coverslipped with Vectashield (Vector), and examined on a confocal 

microscope (Leica TCS; Leica). Confocal images were collected in TIFF format, and 

contrast and brightness were adjusted with Photoshop (Adobe). 

For quantification, the degree of expression of all five markers in cells of gray and 

white matter within 500 µm of the edges of the wound was scored on a 4-point scale 

(from “-“ to “+++”) in 3-5 confocal images per double staining per time point. To 

eliminate observer bias, sets of images were scored independently by two or three 

investigators blind to the source image; the variation between scores assigned by 

different investigators was analyzed by ANOVA (Microsoft Excel). 

  

2.3 RESULTS 

  In our previous work, we showed that palladin immunoreactivity is 

undetectable in the astrocytes of adult mice, but that after stab injury, palladin is 

rapidly and robustly up-regulated in the reactive astrocytes (Boukhelifa et al., 2003).  

To confirm this response in reactive astrocytes in vitro, and to better understand the 

functional significance of palladin up-regulation, we turned to a primary cell culture 

model of injury.  Using immunofluorescence and western blotting, we showed that 

palladin protein is down regulated when embryonic astrocytes are treated with 

dibutyril cAMP, corresponding to a decrease in filamentous actin (F-actin) and a 

stellate cell morphology.  With immunofluorescence, we showed qualitatively that 
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palladin is up-regulated along the edge of a scratched astrocyte monolayer, 

mimicking the response we observe in injured animals.   

 Since that time, our lab and others have advanced in our understanding of 

palladin’s gene structure, defined additional protein binding interactions, and 

described functional roles for palladin in a variety of cell types (Rachlin and Otey, 

2006; Liu et al, 2006; Ronty et al, 2006) .  With these advances, and the availability 

of new reagents and techniques, we sought to describe the expression pattern of 

palladin isoforms in embryonic, adult, and reactive astrocytes and to probe the 

functional significance of these changes. 

 

90 kDa and 140 kDa palladin are up-regulated in reactive astrocytes in vitro 

 In previous attempts to show the increase in palladin expression in reactive 

astrocytes in vitro, it was difficult to obtain a large population of reactive cells simply 

by wounding a monolayer.  In addition, immunological reagents had not been 

developed to detect the 140 kDa isoform efficiently.  To overcome these technical 

difficulties,  we experimented with the use of endothelin, a small peptide with the 

ability to activate astrocytes in vivo (Koyama et al., 1999), to create a uniform 

population of reactive astrocytes. In addiiton, we developed a new key reagent: a 

polyclonal antibody that specifically detects the extended N-terminal region 

contained in the 140 kDa isoform, but not the 90 kDa isoform (Characterized by 

Rachlin and Otey, 2006).  

 Primary embryonic astrocytes exhibit a flattened, polygonal morphology 

reminiscent  of fibroblasts when grown in culture (Fig. 2.1).  The addition of DBcAMP 
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causes a depolymerization of F-actin and leads to the stellate morphology with a 

small cell body and complex foot processes.  When treated with 200 nM endothelin, 

the cell processes thicken and become hypertrophic, much like the description of 

reactive astrocytes in vivo. 

 In addition to these changes in morphology, palladin protein also increases 

rapidly, as measured by western-blot (Figure 2.2 A).  Levels of 90 kDa palladin are 

low in the presence of DBcAMP, and the 140 kDa isoform is undetectable.  By 1 

hour after treatment with endothelin, a slight increase is apparent in the levels of the 

90 kDa isoform.  By six hours, the increase is robust and was sustained over a 48 

hour time period.  The 140 kDa isoform remains undetectable until about 24 hours 

after treatment with endothelin, and continues to increase to the 48 hour timepoint.  

 Though both palladin isoforms appear to be up-regulated in the presence of 

endothelin, this may be a non-specific response in which all actin-modifying proteins 

are up-regulated in the reactive astrocyte.  To determine the specificity of palladin 

up-regulation, endothelin-treated astroctyes were prepared for SDS-PAGE and 

western blotting with antibodies against α-actinin, Mena, and the Arp2/3 sub-unit p-

34 Arc (Figure 2.2 B).  No change was seen in the expression levels for any of the 

proteins tested, suggesting that palladin is unique in its response to endothelin 

treatment. 

 We next decided to test whether endothelin treatment caused a change in 

gene transcription using Real Time RT-PCR.  Because the coding sequence of the 

90 kDa isoform of palladin is contained entirely within the coding sequencing of the 
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140 kDa isoform, RT-PCR primers were designed to amplify from the 5’ untranslated 

region of the 90 kDa palladin mRNA, making the two isoforms distinguishable.   

 In the presence of dBcAMP, the mRNA levels of both palladin isoforms are 

relatively low and were used to establish the baseline to measure the fold-change 

after treatment.  (Figure 2.3)  After one hour of endothelin treatment, the level of 140 

kDa palladin mRNA remains at baseline levels, while the 90 kDa isoform increases 

almost 20-fold.  After 1 hour, the levels of 90 kDa message decreases, but remains 

between 5- and 10-fold greater than baseline.  140 kDa palladin message increases 

approximately 5-fold  over dBcAMP treated cells at the 6 hour timepoint and remains 

at this higher level over the 24 hour timecourse. 

Using an isoform-specific antibody (characterized by Rachlin and Otey, 2006), 

the localization of 140 kDa palladin was explored in cultures of primary rat astrocytes.  

Astrocytes were differentiated by treatment with 1mM dBcAMP for 48 hours and 

then scratched with a sterile needle.  Immunofluoresence using the 140 kDa specific 

polyclonal antibody reveals that this isoform is undetectable at the wound edge one 

hour after injury (Fig. 2.4). By 6 hours, this isoform shows robust expression and 

localization to actin filaments.  This increased expression was maintained over the 

48 hour timecourse, mimicking the expression pattern obtained by RT-PCR. 

 

Palladin knock-out cells show reduced adhesion to collagen, but not laminin 

 Mouse embryo fibroblasts cultured from a palladin knockout mouse were 

shown to exhibit reduced adhesion to collagen and fibronectin (Luo et al., 2005).  

Because collagen makes up a significant part of the extracellular matrix of the glial 
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scar, we sought to determine whether cortical cells from embryonic day 13 knockout 

mice also exhibit this adhesion defect. 

 Wild-type and knockout cells were subjected to an adhesion assay using 

coverslips spotted with collagen, fibronectin, and laminin.  While both cell groups 

adhered equally well to laminin spots, palladin knockout cells showed a dramatic 

inability to bind the collagen matrix (Fig. 2.5).  Fibronectin binding does not appear to 

be significantly reduced.  This indicates that knockout cells are specifically inhibited 

in their ability to bind collagen, which may be due to an increase in B1 integrin 

degradation found in knockout MEFs (Liu et al., 2006). 

 

Palladin expression does not alter migration rates in scratch wound assay 

We next sought to understand the role of palladin up-regulation in the reactive 

phenotype.  Reactive astrocytes become hypertrophic, migratory, and, with collagen, 

form a dense network of scar tissue.  Our previous results showed that knocking 

down palladin in astrocytes leads to a reduction in stress fibers (Boukhelifa et al., 

2003).  In this study, we asked whether a change in palladin expression also affects 

the migration rate of astrocytes in culture. 

Control and palladin knockdown astrocytes were plated on photoetched 

coverslips to form a monolayer.  The monolayer was scratched with a sterile plastic 

pipette tip to create a single vertical wound and the width of the wound was tracked 

over 36 hours.  There was no significant change in wound closure rate between 

control and knockdown cells, and closure was complete by about 24 hours after 

wounding (Fig. 2.6 A).  Western blots confirmed that palladin knockdown was 
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successful (Fig 2.6 B).  Morphologically, control and knockdown cells also looked 

similar throughout the timecourse, extending as a sheet to fill the denuded area (Fig. 

2.7). 

We hypothesized that this lack of change may be due to the fact that 

embryonic astrocytes express a host of actin-associated proteins, some of which 

may functionally overlap with palladin.  To test this, control and knockdown 

astrocytes were differentiated in dBcAMP for 48 hours prior to wounding to convert 

them to a stellate morphology.   

When these cells were wounded and tracked over 54 hours, the rate of 

wound closure was much slower when compared to embryonic astrocytes (Fig. 2.8).  

It is also possible to detect a short “lag” period before the cells begin to close the 

space in earnest.  In dBcAMP treated astrocytes, the wound was still visible at the 

end of the time course, and cell processes were more elongated as they moved to 

close the space (Fig. 2.9).  Measuring the rate of wound closure again revealed that 

there was no significant difference between control and knockdown cells (Fig 2.8). 

 

Palladin is a marker for reactive astrocytes in vivo 

A previous study demonstrated that palladin is up-regulated in vivo after brain 

stab injury to rat cortex (Boukhelifa et al., 2003).  That study utilized a mouse 

monoclonal antibody that preferentially recognizes the 90 kDa isoform of palladin.  

Immunohistochemistry detected palladin expression in as little as 6 hours after injury, 

and this expression was persistent over the 7 day timecourse.  In the current study, 

we asked whether 140 kDa palladin is also up-regulated in vivo and whether this 
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corresponds with the expression of other established markers of reactive 

astrocytosis.   

In control rats, 140 kDa palladin was expressed in cells throughout the cerebral 

cortex, including neurons in the gray matter and sparse astrocytes in the white 

matter (Not shown). After injury, more astrocytes stained for palladin around the 

lesion, especially in the white matter; the number of 140 kDa palladin-positive cells 

reached a peak at the 3rd day post-injury, and then decreased (Fig. 2.10). The 

expression of markers for intermediate filaments GFAP, nestin, and vimentin, and 

the marker for glial precursor cells A2B5 followed a similar evolution in time (Table 

2.1). 

We further studied the pattern of co-localization of glial markers around the 

wound and the glial scar at different time points post-injury. The majority of 140 kDa 

palladin-positive astrocytes in the vicinity of the lesion expressed all other markers 

for activated astrocytes (Fig. 2.11). At 12 hours post-injury, palladin was expressed 

in numerous GFAP-positive astrocytes around the lesion (Fig. 2.11 A). When 

necrosis around the wound was pronounced, palladin immunoreactivity was 

detected along the edge of the wound, where immunoreactivity for GFAP was very 

weak. At one day post-injury, the expression of 140 kDa palladin, GFAP, vimentin, 

and A2B5 was increased, and nestin was detected for the first time in the area 

surrounding the wound (Fig. 2.11 B-D). At 3 days post-injury, 140 kDa palladin 

expression was increased along the edge of the wound, and was expressed not only 

in the area adjacent to the lesion, but also within the cortical gray matter up to 

several millimeters away from it. At 7 days, the glial scar at the edge of the wound 
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had strong stain for nestin, vimentin, and A2B5 and weaker stain for palladin. At 14 

days, the staining for all markers subsided, and in most animals, the cortical wound 

was entirely replaced by a glial scar (Table 2.1). 

Even though the wound was confined to the gray matter, proliferation and activation 

of astrocytes occurred also in the white matter underlying the lesion, frequently 

causing the glial scar to appear more pronounced in the white matter than in the 

gray matter. Palladin-positive cells in the white matter in the vicinity of the cortical 

lesion progressively increased 1-7 days post-injury and co-expressed GFAP, nestin, 

vimentin, and A2B5 (Fig. 2.12). 

  

2.4 DISCUSSION  

 Palladin is an actin-associated phosphoprotein that exhibits dramatic effects 

on cytoskeletal architecture.  Its ability to bind to a cohort of actin-modifying proteins 

suggests that palladin acts as a molecular scaffold by arranging and modulating the 

activities of its binding partners. 

Palladin expression is developmentally regulated in astrocytes, showing 

robust expression in the highly plastic embryonic brain and down-regulation at 

maturity.  After injury this pattern is reversed, as reactive astrocytes were shown to 

rapidly up-regulate palladin near the wound edge both in vitro and in vivo (Boukhelifa 

et al., 2003).  This suggested that palladin expression is a conserved feature in the 

reactive phenotype.  The observation that other actin modifying proteins are not 

specifically regulated in the reactive cell (Safavi-Abbasi et al., 2001; Kalman and 

Szabo, 2001; Fig 2.2 B, present study) suggests that the resting cell contains all the 
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necessary components for rapid cytoskeletal rearrangement, but that specific 

scaffolding or signaling molecules may be necessary for the assembly and 

coordination that result in migration or stress fiber formation. 

In the present study, we have extended our previous understanding of 

palladin expression by demonstrating that palladin is transcriptionally regulated in a 

cell culture model of reactive gliosis.  Message level of the 90 kDa isoform increases 

almost 20-fold within an hour after endothelin treatment, underlining not only the 

magnitude, but the speed with which the cell alters its expression.  The observed 

increase is not sustained, though, and expression levels drop to approximately 5- 

times baseline.  This expression pattern, if correlated in vivo, would support the use 

of palladin as a very early marker of reactive astrocytes after brain and spinal cord 

injury.  That palladin expression is so rapidly increased after injury suggests that it 

has a critical role in the astrocytes’ response to injury.   

Our observations indicate not only that individual palladin isoforms exhibit 

temporally regulated expression, but also that each isoform appears to be 

independently regulated.  Consistent with this observation, previous efforts to 

characterize palladin’s developmental regulation demonstrated that palladin isoforms 

are differentially expressed during development (Parast and Otey, 2000), and that 

the larger isoforms exhibit a tissue-specific expression pattern. This suggests both 

that palladin’s internal promoters are regulated by separate transcription factors and 

that individual isoforms may have unique functions within the cell. 

In order to understand the basis of palladin’s transcriptional regulation, 

computer analysis of palladin’s promoter regions may be used to identify candidate 
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transcription factors.  This analysis is necessarily complex due to the nested 

structure of palladin’s promoters and the relative abundance of transcription factor 

binding sites.  Efforts to identify conserved sequences among vertebrate species 

should help narrow a genome based search, but understanding the signaling 

pathways that lead to palladin up-regulation may provide more informed targeting.  

For example, a recent study by Jin et. al (2007) showed that palladin expression is 

decreased in cells when actin is pharmacologically depolymerized, and that its low 

expression in focal adhesion kinase null cells can be rescued by the expression of 

paired-related homeobox gene-1 protein.  These observations place palladin within 

well-characterized transcriptional regulation pathways and narrow the number of 

candidate transcription factors that must be screened. 

Another compelling question raised by the observation that palladin isoforms 

are differentially regulated concerns the functional consequence of the individual 

isoform expression patterns.  As the 90 kDa isoform is contained entirely within the 

140 kDa isoform, there is likely some functional overlap between the two.  Both 

contain binding sites for α-actinin, Ena/Vasp family proteins, profilin, ezrin, etc.  The 

extended N-terminal region of the 140 kDa isoform contains additional binding sites 

for the Ena/Vasp family of proteins, as well as a binding site for Lasp-1.  Lasp-1 is a 

membrane associated protein that contains two copies of an actin binding domain 

and a C-terminal SH3 domain that facilitates its binding to palladin, as well as zyxin, 

lipoma preferred partner (LPP), and VASP (Keicher et al, 2004; Li et al, 2004; 

Rachlin and Otey, 2006).  Though some of Lasp-1’s cellular functions remain to be 

elucidated, recent reports indicate that Lasp-1 expression is critical for cancer cell 
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proliferation and migration (Grunewald et al, 2006).  As reactive gliosis is also 

characterized by a change in proliferation and migration, it may be informative to 

examine the role of the 140 kDa palladin/Lasp-1 interaction in reactive astrocytes. 

That mouse embryo fibroblasts (Luo et al., 2005) and cortical cells from 

knockout mice (present study, Fig. 2.5) have shown a reduced ability to bind 

collagen suggests a functional role for palladin up-regulation in the glial scar.  Scar 

tissue, both in skin and CNS injuries, is characterized by dense deposits of collagen 

in the extracellular matrix.  Likewise, in both tissues, cells near the injury site up-

regulate palladin.  Taken together, these results suggest that palladin expression 

may be necessary for adhesion to the collagen matrix, possibly through the 

stabilization of β1 integrin (Luo et al., 2005).  Functionally, this may aid migration or 

contribute to the cell’s ability to contract and draw together the wound edges.  

Attempts to measure astrocyte contractility were unsuccessful, as the astrocytes 

were unable to dimensionally distort collagen gels (data not shown). Further 

experiments in a tissue-specific, inducible palladin null mouse would help to 

elucidate some of these mechanisms.  Inducing brain injury in this mouse would 

allow us to measure the in vivo migration rate of reactive astrocytes and determine 

the effects of palladin on wound occlusion and scarring. 

We also show that knocking down palladin in embryonic and stellate 

astrocytes does not significantly alter their migration rates in vitro. This result was 

surprising, as Luo et al. (2005) showed that palladin knockout fibroblasts exhibit 

reduced migration rates.  While astrocytes and fibroblasts are clearly different, this 

discrepancy is more likely due to the extremely long time-course required to 
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measure astrocyte migration.  Scratch wound assays of astrocytes are a measure 

not only of migration, but also of proliferation (Zhu et al., 2006), and the long 

intervals used in our experiments likely amplify the effects of cell division.  Indeed, 

there are some who suggest that the wound closing response is primarily a result of 

proliferation of astrocytes along the wound edge as a result of the loss of contact 

inhibition (Lanosa and Columbo, 2007).  These studies showed that BrdU 

incorporation is high along the wound edge in the presence of serum, but is 

negligible in serum deprived cells, and is not affected in vitro by the age of the 

culture or the extent of wounding.  This lack of proliferation by serum starved cells 

may explain the results we obtained in our wound closure experiments using cells 

grown in serum containing, or serum free plus dBcAMP containing media.  In the 

serum starved, differentiated astrocytes, wound closure rate was reduced and the 

wound closure was marked by increased membrane protrusion without obvious cell-

body translocation or “wound filling.”  These observations are consistent with the 

published observations that serum starved cells do not proliferate as rapidly as those 

in the presence of serum.  In the future, single cell tracking models will therefore be 

more helpful in determining the effect of palladin expression on astrocyte migration 

in a two-dimensional culture.  Perhaps more instructive would be the measure 

astrocyte migration through a three-dimensional matrix or transwell chamber. 

In naive rats, 140 kDa palladin was expressed in neurons throughout the 

cerebral cortex, and in a few astrocytes in the subcortical white matter. In a previous 

study, using a different anti-palladin antibody, we reported that palladin expression in 

the mature brain is limited to a subpopulation of nerve terminals, and is not detected 
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in astrocytes (Hwang et al., 2001). The anti-palladin antibody used here (4IgNT) was 

raised against an epitope common for two larger forms of palladin (140 kDa and 200 

kDa). 

In rats with cortical wounds, 140 kDa palladin was significantly upregulated in 

astrocytes surrounding the lesion, particularly in the white matter, at the early stages 

of glial scar formation. In an earlier study, using a model of wounding a glial cell 

monolayer in vitro, we reported that palladin concentrates at the leading edge of the 

wound in the early stage, followed by a decline at later stages, while the staining for 

GFAP does not reach the edge of the wound (Boukhelifa et al., 2003). In the present 

study, following a similar spatial and temporal pattern of expression in vivo, 140 kDa 

palladin immunoreactivity increased along the edge of the wound 12 hours post-

injury, and began to decrease after 7 days. The change in palladin expression was 

followed by a similar change in GFAP expression, suggesting that this palladin 

isoform is upregulated during an earlier, presumably more active, phase in the 

process of glial scar formation, and thus may have an important role in its initiation. 

Palladin immunoreactivity was increased in astrocytes that expressed the 

intermediate filaments nestin and vimentin in the early phase of glial scar formation. 

Nestin and vimentin are expressed in multipotential stem cells during embryonic 

development and are normally undetectable in mature brain (Schnitzer et al., 1981; 

Wislet-Gendebien et al., 2005). However, they can be upregulated in glial cells 

following injury to the CNS and are thought to play a major role in the formation of 

glial scar through promoting activation and migration of astrocytes (Baldwin and 

Scheff, 1996; Douen et al., 2004; Moon et al., 2004). Although the origin of reactive 
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astrocytes is not unequivocally established, it is clear that these cells proliferate, 

migrate into the injury site, and contribute to the formation of glial scar. Since 

palladin has been associated with the control of migration of various cell types, its 

expression in reactive astrocytes supports its role in cellular proliferation and 

migration during the formation of glial scar.  

While both nestin and vimentin were expressed in the gray matter 

surrounding the injury, vimentin was also expressed in the underlying white matter. 

The role of vimentin-positive astrocytes in the white matter is unclear, but recently it 

has been shown that vimentin can serve as a source of cytokines or as a physical 

conduit for migrating cells from remote sites, and can thus be associated with 

astrocytes migration (Wang et al., 2004). Since palladin was expressed by vimentin-

positive astrocytes in white matter underlying the site of cortical injury, we suggest 

that it may be associated with migration of astrocytes from white matter into injury 

site during the process of glial scar formation. 

A2B5 is expressed in glial precursor cells and reactive astrocytes (Rao et al., 

1998). We observed increased immunoreactivity for palladin in astrocytes that 

expressed A2B5 following injury. Since palladin has been shown to control the cell 

shape following injury, and the process of differentiation inevitably includes changes 

in cell morphology, the observation that palladin is significantly upregulated in A2B5-

positive astrocytes suggests that palladin is involved in the process of differentiation 

of glial precursor cells or reactive astrocytes in response to injury. 

Even though in our model, the injury was confined to the gray matter, 140 

kDa palladin expression was increased significantly more in the whiter matter than in 
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gray matter, coinciding with the apparently larger size of the glial scar in the white 

matter underlying the wound. Palladin expression was also increased throughout the 

injured cortex, at a considerable distance from the lesion. Similarly, nestin 

expression was detected around the lesion but also throughout the cortex in a model 

of cortical ablation (Douen et al., 2004). The mechanism of upregulation of proteins 

like palladin and nestin in cells far from a site of injury to the CNS is unknown.  

Palladin up-regulation after injury is not confined to astrocytes of the CNS, 

as palladin expression has also been identified as a consistent feature in other cell 

types after tissue injury.  These cells are often more plastic and migratory as a 

function of the wound-healing response.  Similar to the astrocyte response, palladin 

was shown to be rapidly up-regulated as fibroblasts were differentiated into the 

highly-contractile myofibroblasts after TGF-β1 treatment (Ronty et al, 2006).  TGF-β1 

increased the expression of the 90 kDa palladin isoform, and led to the de novo 

expression of the 140 kDa form.  The investigators were able to observe the same 

response using in vivo models of rat dermal wounds and human tissue samples.  In 

each case, palladin was observed in myofibroblasts near the wound site, often 

before the expression of the classic myofibroblast marker α-Smooth Muscle Actin 

(SMA).  

Palladin was also found to be up-regulated downstream of angiotensin II 

treatment in vascular smooth muscle cells (SMCs).  SMCs become highly migratory 

after vascular injury, inducing the vessel remodeling that occurs throughout chronic 

hypertension.  Not only was palladin detected in SMCs of the tunica media and 
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neointima of injured rat aorta, its expression was also shown to increase migration 

rate of SMCs in vitro. (Jin et al, 2007). 

Based on these observations, palladin expression appears to be a highly 

conserved response to injury in a variety of tissues.  Its role in these systems 

remains to be identified, but on the cellular level, palladin has been shown to 

modulate the higher-order structures of the actin cytoskeleton.  How this modulation 

contributes to the cell’s ability to migrate through a complex matrix or to increase the 

contractility of the wound edges will be the subject of future studies. 
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Figure 2.1 Endothelin treated astrocytes undergo a morphological change. 
Primary embryonic astrocytes are maintained in culture in the presence of 
serum, and exhibit a flattened, polygonal morphology.  dBcAMP treatment 
causes the cell periphery to retract, inducing a stellate morphology reminiscent of 
mature astrocytes in the adult CNS.  The addition of 200 nM endothelin to 
stellate astrocytes causes them to thicken their processes and hypertrophy, 
morphologically resembling the reactive phenotype.
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Figure 2.2  Endothelin increases astrocyte expression of two palladin isoforms.  
(A.) Primary rat astrocytes were differentiated in dBcAMP containing medium 
and then treated with 200 nM endothelin over 48 hours.  After 1 hour, protein 
levels for 90 kDa palladin increase noticeably, and continue to rise over 24 
hours, where they plateau.  140 kDa palladin levels remain below the detection 
limit until 24 hours. (B.) Western blots reveal that the expression levels other 
actin binding proteins do not change in the presence of either dBcAMP or 
endothelin.
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Palladin expression in cultured astrocytes with 200 nM Endothelin
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Figure 2.3 Transcriptional regulation of palladin after endothelin treatment.  
Primary rat astrocytes were differentiated in dBcAMP containing medium and 
then treated with 200 nM endothelin over 24 hours.  After 1 hour, mRNA levels 
for 90 kDa palladin spike to almost 20 times the level of quiescent astrocytes.  
140 kDa palladin levels increase over 5-fold at six hours and remain at this level 
over the timecourse.
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Figure 2.4 Immunoreactivity timecourse of 140 kDa palladin in scratch wound 
model.  Primary astrocyte cultures were differentiated in dBcAMP for 48 hours 
and scratched with a sterile pipette tip.  Cells were fixed over a 48 hour 
timecourse and stained with a polyclonal antibody that recognizes the N-terminal 
domain of 140 kDa palladin, but not the 90 kDa form.  Palladin is undetectable 
after 1 hour, but shows robust expression after 6 hours and throughout the 
timecourse.
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Figure 2.5 Palladin null cells show decreased adhesion to collagen.  Cells 
cultured from the cortex of day E13 wild-type and palladin null mice were allowed 
to adhere to coverslips dotted with collagen, fibronectin, and laminin.  Palladin 
null cells show a dramatic reduction in their ability to bind collagen, while 
fibronectin and laminin binding do not appear to be affected.
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Figure 2.6 Palladin knockdown does not affect wound closure rate of embryonic 
astrocytes.  (A.) A monolayer of control or palladin siRNA treated cells were 
scratched with a sterile pipette tip and tracked over time.  Cells quickly begin to 
fill the denuded area, and complete wound closure can be observed at 
approximately 24 hours.  Palladin knockdown does not seem to affect closure 
rate. (B.) Western blot confirms that siRNA treated cells show nearly complete 
knockdown of both palladin isoforms.
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Figure 2.7 Morphology of migrating embryonic astrocytes.  A monolayer of 
control and palladin siRNA treated embryonic astrocytes were scratched with a 
sterile pipette tip and tracked over time.  The cells extend as a sheet and migrate 
to fill the denuded area over 24 hours.  No difference could be observed between 
palladin knockdown cells and control cells.
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Figure 2.8 Palladin knockdown does not affect wound closure of stellate 
astrocytes.  Control and palladin siRNA treated cells were differentiated in 
dBcAMP for 48 hours and subject to a scratch wound assay.  After a brief lag 
period, cells begin to fill the denuded area, though at a slower rate than cells 
grown in serum.  Palladin knockdown does not seem to affect closure rate.
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Figure 2.9 Morphology of migrating differentiated astrocytes.  Control and 
palladin siRNA treated cells were differentiated in dBcAMP for 48 hours and 
subject to a scratch wound assay.  Morphologically, the cells extend thinner 
processes and migrate more slowly than cells grown in serum.  No difference 
could be observed between palladin knockdown cells and control cells.
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Figure 2.10 Timecourse of 140 kDa palladin immunoreactivity in vivo.  140 kDa Palladin 
immunoreactivity is increased along the edge of the wound at 12 hours post-injury, reaches 
maximum at 3 days, and then decreases. At 7 days, in cortex, the glial scar along the the 
edge of the wound has weaker  stain  for palladin (arrow). Scale bar = 100μm.
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3 days                            7 days                        14 days
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Table 2.1  Upregulation of glial markers in response to cortical injury
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Figure 2.11 (A.) At 12 hours post-surgery, the immunoreactivty of 140 kDa palladin begins to 
increased at the wound edge prior to that of GFAP.  (B-D)  Immunoreactivity of Nestin, 
Vimentin, and A2B5 were observed 24 hours after injury.  .Scale bar = 100 μm.
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Figure 2.12 140 kDa Palladin co-localizes with markers of reactive astrocytosis.  High 
magnification images show that 140 kDa palladin is colocalized with GFAP(A), nestin(B), 
vimentin(C), and A2B5(D) in reactive astrocytes. Scale bar = 50 μm.
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CHAPTER 3 

THE ROLE OF PALLADIN IN INVASIVE CELLULAR PROTRUSIONS 

 

 

3.1 INTRODUCTION   

Reactive astrocytes in the central nervous system must migrate through a 

complex three-dimensional environment near the injury site, and this cell motility is 

dependent on the dynamic remodeling of the actin cytoskeleton.  Inside the cell, 

actin-binding proteins promote filament growth and organize actin filaments into 

functionally specialized arrays that support the well-studied surface specializations 

including lamellipodia, filopodia and the phagocytic cup.  While most of these studies 

examine cells attached to a two-dimensional, rigid substrate, cells in vivo encounter 

a very different environment.   

Of recent interest, many motile cells frequently form membrane surface 

structures such as highly dynamic ruffles on the dorsal surface, and podosomes on 

the ventral surface.  Essential for the motility and invasion of both normal, highly 

differentiated cells and neoplastic cells, these structures also use an actin-based 

machinery to distort the plasma membrane.  Dorsal ruffles and podosomes share 

common architectural features and functions but, depending on the cell types, vary 



in their molecular components and regulation (Buccione et al., 2004; Linder and 

Aepfelbacher, 2003).  

It is now well established that activation of receptor tyrosine kinases (RTKs) 

by growth factors often results in the formation of peripheral membrane ruffles or 

circular dorsal ruffles (Buccione et al., 2004).  Circular dorsal ruffles (also called 

waves or ring ruffles) are highly dynamic, and form transiently on the dorsal plasma 

membrane.  Although the precise function of dorsal ruffles is a matter of debate, 

these structures are believed to be important in cytoplasmic remodeling, the 

establishment of polarity in motile cells, and cell surface receptor down-regulation 

(Dowrick et al., 1993; Krueger et al., 2003; Orth and McNiven, 2003; Swanson and 

Watts, 1995; Warn et al., 1993).  Active RTKs induce the formation of dorsal ruffles 

through the activation of the small GTPases Ras and Rac; however, the detailed 

molecular events leading to the formation of circular ruffles are not clear (Eriksson et 

al., 1992; Hall, 1998).  

Podosomes are also highly dynamic actin-based protrusive structures first 

described for Rous sarcoma virus-transformed fibroblasts (Gavazzi et al., 1989). 

Podosomes are adhesive structures that form transiently in the ventral surface of the 

membrane in response to Src and phorbol ester stimulation (Fultz et al., 2000; 

Gimona et al., 2003; Hai et al., 2002; Moreau et al., 2003; Osiak et al., 2005).  A 

core of actin filaments and actin-associated proteins is surrounded by a ring of 

vinculin, talin, and paxillin (Gavazzi et al., 1989), together with proteins associated 

with the actin polymerization machinery such as gelsolin, cortactin, dynamin, 

WASP/NWASP and Arp2/3 (Buccione et al., 2004; Linder and Aepfelbacher, 2003). 
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Podosomes also contain metalloproteases (Sato et al., 1997), supporting the 

concept that podosomes may serve to spatially restrict sites of matrix degradation.  

Palladin appears to be a unique molecular scaffold that interacts with a 

subset of proteins involved in actin polymerization and crosslinking.  Palladin 

localizes to many actin-containing structures, including stress fibers, focal 

adhesions, cell-cell junctions, and embryonic Z-lines (Mykkanen et al., 2001; Parast 

and Otey, 2000).  Analysis of the palladin sequence revealed a number of 

consensus motifs that function as binding sites for known actin-regulating proteins.  

The N-terminal half of palladin contains polyproline stretches that bind to members 

of the Ena/Mena/VASP family of proteins (Boukhelifa et al., 2004).  Within its N-

terminal half, palladin also contains a binding site for the filament crosslinking 

protein, α-actinin (Ronty et al., 2004).  It has recently been shown that palladin also 

binds via its N-terminal polyproline sequences to ArgBP2 and profilin, two proteins 

that are involved in the regulation of cytoskeletal dynamics (Ronty et al., 2005; 

Boukhelifa et al., 2006).  Palladin is required for normal actin organization, as 

demonstrated by knockdown studies in cultured cells (Parast and Otey, 2000) and in 

cells cultured from a palladin-knockout mouse, both of which displayed reduced 

actin organization (Luo et al., 2005).   

Another molecule that plays a role in generating both dorsal ruffles and 

podosmes is Eps8.  Eps8 is a signaling molecule that was originally identified as a 

substrate for the epidermal growth factor receptor (EGFR) (Fazioli et al., 1993; 

Provenzano et al., 1998).  Eps8 belongs to a family of proteins that link growth factor 

stimulation to actin dynamics, participating in the transduction of signals from Ras to 
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Rac (Offenhauser et al., 2004).  It has been reported that Eps8 binds directly to 

several proteins, including F-actin, EGFR, IRSp53, RN-tre and Dvl1 (Castagnino et 

al., 1995; Funato et al., 2004; Inobe et al., 1999; Matoskova et al., 1996).  Eps8 

participates in the formation of a trimeric complex that also includes the scaffold 

protein Abi-1 and the guanine nucleotide exchange factor (GEF) Sos-1.  This 

macromolecular complex is one of the signaling pathways that activates the small 

GTPase Rac, which regulates actin assembly and promotes lamellipodia and dorsal 

ruffle formation (Innocenti et al., 2003; Scita et al., 1999; Scita et al., 2001).  Eps8 

participation in this complex is essential, as demonstrated by the lack of Sos-1- 

dependent Rac–GEF activity, Rac activation and remodeling of actin cytoskeleton 

that occurs in Eps8-null fibroblasts (Scita et al., 1999).  

In the present study, we show that palladin localizes not only to the highly 

dynamic dorsal ruffles that form transiently in response to growth factor stimulation, 

but also to podosomes.  Palladin expression enhances the formation of both the 

dorsal ruffles and podosomes and co-localizes in these structures with its recently 

identified binding partner, Eps8.  

 

 

3.2 MATERIALS AND METHODS 

 Materials  

The following antibodies were used: Eps8 (BD Biosciences); Rac 

(Transduction Laboratories) and palladin (polyclonal antibody and monoclonal 1E6 

antibody previously characterized by Parast and Otey (Parast and Otey, 2000). 
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Human recombinant platelet-derived growth factor BB (PDGF-BB) and protease 

inhibitor cocktail for mammalian tissues were from Sigma. MATCHMAKER GAL4 

Two- Hybrid System 3 and MATCHMAKER mouse embryonic pACT2 cDNA library 

were from BD Biosciences. Secondary antibodies conjugated to either IRdye700 or 

IRdye 800 were from Rockland Immunochemicals. TransIT siQuest transfection 

reagent was from Mirus, and the Fugene6 transfection reagent was from Roche. 

Alexafluor-488- and Alexafluor-568 anti-mouse IgG and anti-rabbit IgG-conjugated 

secondary antibodies were from Molecular Probes.  

 

Stimulation and immunofluorescence staining  

Rat vascular smooth muscle cells A7r5 cells were grown in DMEM, containing 

10% fetal bovine serum (FBS) and supplemented with 1% penicillin/streptomycin (all 

from Gibco BRL). Cells were grown on glass coverslips and fixed in 4% 

paraformaldehyde in PBS, then permeabilized in 0.2% Triton X-100 and incubated 

with the specific primary antibodies for 1 h. Primary antibodies were detected with 

Alexafluor-488 and Alexafluor-568 anti-mouse IgG and anti-rabbit IgG conjugates. 

Coverslips were examined with a Nikon TE200-U microscope with 20X phase (NA 

0.7) and 60X phase (NA 1.4) objective lenses, an optional 1.5 X tube lens and a 

Hamamatsu Orca-ER camera. Images were processed using Adobe Photoshop 7.0 

(Adobe Systems). Where indicated, cells were treated with PDGF (20 ng/ml) for 3 

minutes. Podosome formation was induced by the addition of 1 μM phorbol-12,13-

dibutyrate (PDBu; Sigma-Aldrich), as previously described (Gimona et al., 2003; Hai 

et al., 2002).  
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For live-cell imaging, A7r5 cells were plated on 22 mm square coverslips and 

transfected with GFP-90 kDa palladin using Transit-LT1 transfection reagent and 

following the manufacturer’s protocol.  After 24 hours, cells were serum starved for 2 

hours and then the coverslips were assembled into a live-cell imaging chamber.  

During imaging, cells were maintained at 37° C in a heated tent and imaged for 5 

minutes before infusing the chamber with media containing PDGF to induce ruffle 

formation. 

 

siRNA experiments 

To knock down the expression of the 90-92 kDa palladin isoform by RNA 

interference, two 21-base oligonucleotides were purchased from Dharmacon 

Research. The RNA sequences were as follows: sense, 5’-

CUACUCCGCUGUCACAUUAUU- 3’ and antisense, 5’-

UAAUGUGACAGCGGAGUAGUU- 3’). As a control we used siCONTROL Non-

Targeting siRNA #1 from Dharmacon. HeLa cells were transfected using the TransIT 

siQuest transfection reagent following manufacture’s instructions. Cells were 

assayed 86 hours after transfection. In some experiments, the pSuper RNAi system 

(Oligoengine) was used to knockdown expression of palladin in A7r5 cells. 

Generation of the RNAi vector followed manufacturer’s protocols. Forward and 

reverse oligos containing the anti-palladin short hairpin RNAi sequence were 

generated, and were the following: forward, 

GATCCCCCAAACGTCTTCAACATCCATTCAAGAGATGGATGTTGAAGACGTTTG

TTTTTA; reverse, AGCTTAAAAACAAACGTC 
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TTCAACATCCATCTCTTGAATGGATGTTGAAGACGTTTGGGG. A7r5 cells were 

passaged the day before the experiment. Cells were transfected using Fugene6 

transfection reagent following manufacturer’s instructions. Cells were assayed 72 

hours after transfection.  

 

3.3 RESULTS 

Dorsal ruffle formation in A7r5 cells after PDGF stimulation 

To date, palladin has been detected in many actin-containing structures, such 

as stress fibers, cell-cell junctions and focal adhesions (Parast and Otey, 2000). In 

recent years, much attention has been paid to another type of dynamic structure 

implicated in cell motility: dorsal membrane ruffles.  Growth factor stimulation of 

quiescent cells typically results in a transient increase in membrane ruffling that 

precedes motility and mitogenic effects. The vascular smooth muscle cell line A7r5 

has been used previously in the study of membrane ruffles and podosomes after 

PKC stimulation (Brandt et al, 2002; Zhou et al, 2005).  Platelet derived growth 

factor (PDGF) and other growth factors are often used to generate membrane ruffles 

in serum starved fibroblasts (Hedberg et al, 1993; Wyman and Acaro, 1994; Anton et 

al, 2003).  For our studies, we decided to stimulate A7r5 cells with PDGF in order to 

induce cytoskeletal rearrangement including dorsal circular ruffles. 

To determine the time-course of ruffle formation after PDGF treatment, we 

used live-cell microscopy.  Serum starved A7r5 cells were assembled in a live-cell 

imaging chamber and imaged on a heated stage by phase contrast.  Media 

containing PDGF was infused, and Supplemental Movie 3.1 shows that ruffling 

 68



begins approximately 5-10 minutes after treatment.  Ruffling continues for 20-30 

minutes after growth factor stimulation, and the dynamic membrane protrusions can 

be seen taking up large vacuoles of media by macropinocytosis (See Fig. 3.1 and 

Supplemental Movie 3.2 for higher magnification.)  To further characterize these 

membrane protrusions, ruffles were imaged by scanning electron microscopy.  The 

micrographs reveal the ultrastructure of membrane protrustions on the dorsal 

surface of the cells, some of which have a circular arrangement, consistent with our 

observations by phase contrast imaging (Fig. 3.2). 

 

Palladin localizes to membrane ruffles after PDGF stimulation  

Because dorsal ruffles are also actin-rich structures, we asked whether 

palladin is a component of these structures. To determine whether palladin is 

recruited to these dynamic actin-based protrusions, immunostaining was used to 

visualize endogenous palladin in A7r5 cells after stimulation with PDGF. 

Interestingly, although some palladin is still detected in its characteristic punctuate 

pattern along actin stress fibers in PDGF-stimulated cells, endogenous palladin is 

also recruited to circular membrane protrusions or ruffles along with filamentous 

actin (Fig. 3.3). It is worthwhile to note that palladin localizes to dorsal ruffles with a 

variety of shapes, ranging from small circular to larger elongated ruffles.  

To analyze the dynamics of palladin recruitment to dorsal ruffles, GFP-tagged 

palladin was transiently transfected into A7r5 cells, which were then serum-starved 

for 2 hours prior to imaging. The addition of PDGF induced the extension of dynamic 

ruffles (Figure 3.4 and supplementary movies 3 and 4) and revealed that GFP-
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palladin is rapidly recruited to these structures on a similar time scale to that 

reported for other proteins (Anton et al., 2003; Dharmawardhane et al., 1997; 

Hedberg et al., 1993)  

 

Palladin knockdown decreases ruffle formation induced by PDGF 

To determine the role of palladin in PDGF induction of ruffles, we examined 

the effect of downregulation of palladin expression on the cellular response to 

PDGF. Short hairpin RNAi (shRNAi) constructs were used to knockdown the 

expression of palladin. Fig. 3.5 shows that palladin expression was suppressed in 

shRNAi-transfected cells. When transfected cells were treated with PDGF, dorsal 

ruffle formation was found to be inhibited in the palladin-knockdown cells (Fig. 3.6 

A). Quantification of these results showed that palladin knockdown reduces the 

percentage of cells with ruffles from 50% to 10% (Fig. 3.6 B). These results suggest 

that palladin plays an important role increasing the efficiency of dorsal ruffle 

formation induced by PDGF.  

 

Palladin localizes to PDBu-induced podosomes and enhances 

podosome formation after phorbol ester stimulation  

Treatment of the rat vascular smooth muscle A7r5 cells with the phorbol ester 

phorbol-12,13-dibutyrate (PDBu) induces podosome formation (Hai et al., 2002). 

When cultured in serum, A7r5 cells displayed a robust actin cytoskeleton, 

highlighted by contractile actin stress fibers. Upon stimulation with the phorbol ester 

PDBu, the actin cytoskeleton of A7r5 cells undergoes the dissolution of stress fiber 
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and focal adhesions, with the concomitant formation of dynamic podosomes (Hai et 

al., 2002). To determine whether palladin is recruited to these actin-based 

structures, immunostaining was used to visualize endogenous palladin in A7r5 cells 

after stimulation with PDBu. Fig. 3.7 shows that palladin was clearly enriched in the 

podosomes and co-localized with actin in cells doubly stained with anti-palladin 

antibodies and phalloidin. To determine the role of palladin in PDBu induction of 

podosomes, we examined the effect of palladin-knockdown on the cellular response 

to PDBu. Short hairpin RNAi (shRNAi) constructs were used to knockdown the 

expression of palladin. Fig. 3.8 A shows that when palladin shRNAi transfected cells 

were treated with PDBu, a significant percentage of the siRNA transfected cells were 

unable to form podosomes. The number of cells that formed podosomes after 

phorbol ester stimulation was determined, showing that palladin knockdown reduces 

the percentage of cells that form podosomes from 42% to 20% (Fig. 3.8 B). These 

results suggest that, similarly to what we observed for dorsal ruffles, palladin plays 

an important role increasing the efficiency of podosome formation induced by PDBu.  

 

Palladin co-localizes with Eps8  

Eps8 is a signaling molecule that was originally identified as a substrate for 

the epidermal growth factor receptor (EGFR) (Fazioli et al., 1993; Provenzano et al., 

1998). Eps8 belongs to a family of proteins that link growth factor stimulation to actin 

dynamics, participating in the transduction of signals from Ras to Rac (Offenhauser 

et al., 2004). It has been reported that Eps8 binds directly to several proteins, 

including F-actin, EGFR, IRSp53, RN-tre and Dvl1 (Castagnino et al., 1995; Funato 
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et al., 2004; Inobe et al., 1999; Matoskova et al., 1996). Eps8 participates in the 

formation of a trimeric complex that also includes the scaffold protein Abi-1 and the 

guanine nucleotide exchange factor (GEF) Sos-1. This macromolecular complex is 

one of the signaling pathways that activates the small GTPase Rac, which regulates 

actin assembly and promotes lamellipodia and dorsal ruffle formation (Innocenti et 

al., 2003; Scita et al., 1999; Scita et al., 2001). Eps8 participation in this complex is 

essential, as demonstrated by the lack of Sos-1- dependent Rac–GEF activity, Rac 

activation and remodeling of actin cytoskeleton that occurs in Eps8-null fibroblasts 

(Scita et al., 1999).  Recently, Eps8 was identified by yeast-two hybrid screen as a 

binding partner for palladin’s N-terminal proline-rich region. (Goicoechea et al., 

2006).  

In previous reports, palladin has been localized to regularly-spaced puncta 

along the stress fibers of well-spread fibroblasts and in cell-cell junctions (Parast and 

Otey, 2000).  The observations described above demonstrate that antibodies to 

palladin also label dorsal ruffles in cultured A7r5 cells (Fig. 3.3).  In addition to its 

localization in phagocytic cups, comet tails and cell-cell contacts, Eps8 has been 

detected in circular, dorsal ruffles (Disanza et al., 2004; Provenzano et al., 1998), 

and so we next investigated the degree of co-localization of palladin and Eps8 in 

ruffles.  A7r5 vascular smooth muscle cells were serum-starved for 2 hours and then 

treated with PDGF for 5 minutes.  Immunofluorescence staining shows a high 

degree of overlap of palladin and Eps8 staining in PDGF-induced dorsal ruffles (Fig. 

3.9 A). These results demonstrate that both palladin and Eps8 are recruited to 

circular ruffles in response to PDGF stimulation. Eps8 has also been detected in 
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podosomes (Provenzano et al., 1998), and so we also explored whether palladin 

and Eps8 co-localized to these actin-based structures. A7r5 vascular smooth muscle 

cells were treated with 1 μM PDBu for 30 minutes. Immunofluorescence staining 

shows a high degree of overlap of palladin and Eps8 staining in PDBu-induced 

podosomes (Fig. 3.9 B). 

  

3.4 DISCUSSION 

Previously, it was shown that palladin is required for the maintenance of 

normal stress fibers and focal adhesions in cultured fibroblasts and trophoblasts 

(Parast and Otey, 2000). More recently, palladin was shown to play a critical role in 

embryonic development, as the palladin-knockout mouse had an embryonic lethal 

phenotype and exhibited defects in body wall closure (Luo et al., 2005). Fibroblasts 

cultured from the palladin null embryos showed impaired stress fiber formation, 

reduced adhesion to fibronectin, and reduced cell migration (Luo et al., 2005). These 

results are consistent with the hypothesis that palladin functions as a key regulator 

of actin organization in a wide variety of cell types. In the current study, we identified 

two additional actin-based structures that contain palladin: podosomes formed on 

the ventral surface of the cell after exposure to phorbol esters and the highly 

dynamic dorsal membrane ruffles that form in response to PDGF. Membrane ruffling 

is significantly decreased in palladin knockdown cells, which suggests an important 

role for palladin in the life cycle of these transient structures.  

These observations led us to hypothesize that palladin may be directly or 

indirectly involved in any of the following stages of ruffle formation: (1) intracellular 
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signaling pathways after growth factor stimulation; (2) actin filament nucleation or 

stability at sites of protrusion; or (3) structural organization of actin filaments leading 

to the formation of higher-order actin arrays that support membrane protrusion. In 

support of hypotheses 2 and 3, palladin has been shown to bind to a host of actin-

associated proteins that may alter nucleation rates, stability and bundling. Notably, 

binding interactions have been described between palladin and α-actinin, ezrin, 

ENA/VASP proteins, LPP and ArgBP2, each of which plays a role in actin 

organization (Boukhelifa et al., 2004; Mykkanen et al., 2001; Ronty et al., 2005; 

Ronty et al., 2004, Jin et al, 2006).  

In our published report, we provide the first evidence that palladin may also 

play a role in the signaling pathways leading to ruffling through its interaction with a 

novel binding partner, Eps8 (Goicoechea et al., 2006). It is interesting to note that 

Eps8, like all the other binding partners for palladin identified to date, is a protein that 

regulates the actin cytoskeleton; thus, these results place palladin within a known 

biochemical pathway that links growth factor stimulation to dynamic actin changes 

that are involved in cell motility and morphological plasticity. Moreover, these and 

previous results support the hypothesis that palladin might function as a highly 

potent scaffolding molecule, with the potential to influence both actin polymerization 

and the assembly of existing actin filaments into bundles and other higher-order 

arrays involved in adhesion and migration. 

The mechanism by which palladin alters Rac activity (Goicoechea et al. 2006) 

and ruffling will require further study, but interaction with Eps8 may prove to be an 

essential link. Eps8 integrates different signaling pathways by participating in: (1) 
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actin remodeling through Rac, forming a complex with Abi-1 and Sos-1; (2) receptor 

endocytosis modulating Rab5 activity, forming a complex with RN-tre; and (3) actin-

based motility processes by capping the barbed ends of actin filaments (Disanza et 

al., 2004; Innocenti et al., 2003; Lanzetti et al., 2000). Our results showed that 

neither the over-expression of palladin nor the knockdown interfere with the ability of 

Abi-1 to bind to Eps8 or Sos-1, which suggests that palladin binding to Eps8 does 

not trigger a ligand-dependent association with Abi-1 and Sos-1 (Goicoechea et al., 

2006). It remains to be determined whether palladin forms part of the Eps8/Abi-

1/Sos-1 complex; however, our results suggest that palladin might be stabilizing the 

Eps8/Abi-1/Sos-1 complex, thus promoting Rac activation and actin reorganization. 

Alternatively, palladin could be involved in regulating the actin capping activity of 

Eps8. It has been recently reported that full length Eps8 is auto-inhibited and does 

not cap barbed ends, while the binding of Abi-1 alters the conformation of Eps8 and 

releases its barbed-end actin capping activity (Disanza et al., 2004). The binding of 

palladin to Eps8 could be involved in a similar mechanism, modulating Eps8 barbed-

end capping activity. These possibilities will be explored in future studies.  

Our results suggest that palladin and Eps8 participate together in a pathway 

that leads to the formation of dorsal ruffles. Thus, our future efforts will focus on 

exploring how the interactions of these two proteins are regulated by cellular 

signaling pathways. In our published study we investigated whether palladin/Eps8 

interaction is regulated by growth factors (Goicoechea et al. 2006). We performed 

coimmunoprecipitation analysis with lysates from growth factor-stimulated or non-

stimulated cells; however, we did not see any significant difference in the amount of 
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immunoprecipitated proteins. If the palladin/Eps8 interaction is being regulated 

dynamically in vivo, it is possible that an intact cytoskeleton may be necessary to 

maintain the interaction. Additional experiments will be needed to address this 

possibility.  

Eps8 is tyrosine-phosphorylated by a variety of tyrosine kinases, of both the 

receptor (RTKs) and non-receptor type (Fazioli et al., 1993). Palladin is also a 

phosphoprotein and it contains clusters of serine-rich sequences next to the Eps8-

binding site, which suggests that serine phosphorylation could play a role in 

regulating palladin’s binding to Eps8. It remains to determined whether palladin and 

Eps8 are phosphorylated downstream of the same kinase pathways, and whether 

their binding interactions are regulated by their phosphorylation state.  

Our observation of palladin in membrane ruffles led us to examine another 

actin-based structure involved in motility, the podosome. These structures have 

been described in several human cancer cell lines, particularly invasive breast 

carcinomas and melanomas, and their presence has been correlated with 

invasiveness in vitro (Bowden et al., 1999; Kelly et al., 1998; Monsky et al., 1994). It 

has been reported that palladin levels are increased in cancer cell lines, including 

invasive breast carcinomas and an agressive form of familial pancreatic cancer 

(Wang et al., 2004; Pogue-Geile et al., 2006). Localization of palladin to structures 

resembling podosomes in immature dendritic cells was reported earlier by Carpen 

and collaborators (Mykkanen et al., 2001). In this report, we show not only that 

palladin localizes to podosomes in A7r5 cells but also that palladin expression 

enhances the formation of podosomes after phorbol ester stimulation.  
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One possible role for palladin in podosome formation may be that it functions 

as a scaffolding molecule to recruit proteins known to be required for podosome 

formation. For example, palladin binds to α-actinin, which is localized to podosomes 

(Fultz et al., 2000; Linder and Aepfelbacher, 2003). Here, we show that palladin 

associates with Eps8, which has also been reported to localize to podosomes 

(Provenzano et al., 1998). Future studies will examine the role of palladin in the 

signaling pathways leading to podosome formation, and will address palladin’s role 

in invasive motility. 
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Figure 3.1.  A7r5 cells form dorsal ruffles in response to PDGF. A7r5 cells were 
plated on fibronectin overnight and serum-starved for 2 hours prior to growth 
factor treatment.  The addition of PDGF at time 6:00 led to the induction of 
dynamic, actin-based membrane protrusions (indicated by arrows). Ruffles also 
induce the uptake of vacuoles (arrowheads)  Time is given in Minutes:Seconds.  
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Figure 3.2 Dorsal ruffles imaged by scanning electron microscopy.  A7r5 cells were 
serum starved and treated with PDGF for 5 minutes before fixation and preparation 
for scanning EM.  (A.) Micrographs reveal the ultrastructure of dorsal membrane 
ruffles. (B.) Magnification of highlighted region from (A.).  
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Figure 3.3.  Palladin localizes to PDGF-induced membrane ruffles. A7r5 cells 
were plated on fibronectin overnight and serum-starved for 2 hours prior to growth 
factor treatment.  The addition of PDGF led to the induction of dynamic, actin-
based membrane protrusions (indicated by arrows).  After fixation, endogenous 
palladin was detected in these structures by immunofluorescence. Co-labeling 
with TRITC-phalloidin and polyclonal anti-palladin antibody reveals that palladin 
co-localizes with filamentous actin in ruffles and along stress fibers.  Top: Low 
magnification image.  Bottom:  High magnification image to show detail. Scale Bar 
= 10µm 
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Figure 3.4.  Live-cell imaging of palladin recruitment to dorsal ruffles. A7r5 cells 
were transfected with GFP-90 kDa palladin and prepared for live cell imaging of 
dorsal ruffles.  PDGF treatment was administered before the start of the movie.  
At T=0, palladin can be seen decorating the stress fibers and in the thickened 
perinuclear region.  At 1:25, palladin localization diffuses before coalescing into 
membrane ruffles at 3:00.  Ruffles continue throughout the timecourse, continually 
growing narrower.  Time given in Minutes:Seconds.  
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palladin mergeGFP/ shRNAi

Figure 3.5.  Palladin staining of shRNAi-transfected cells. A7r5 cells transfected with 
pSuper RNAi targeting palladin were fixed after 48 hours, permeabilized and stained with 
polyclonal anti-palladin antibody.  Transfected cells (green fluorescence), exhibited 
undetectable palladin staining.
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Figure 3.6.  Palladin knockdown decreases PDGF-induced ruffle formation. A) A7r5 cells 
transfected with control pSuper RNAi and pSuper RNAi targeting palladin were plated on 
fibronectin overnight and serum-starved for 2 hours prior to PDGF treatment.  Cells were 
fixed, permeabilized and stained with TRITC-phalloidin.  Transfected cells (green 
fluorescence) were detected by the presence of GFP encoded in the pSuper vector. B) 
The proportion of cells developing ruffles after PDGF stimulation is shown for cells 
transfected with palladin siRNA (KD, 10 ± 2 %) and transfected with control siRNA (C, 50 
± 5 %).  Results are representative of three independent experiments in which at least 
100 transfected cells were counted. Scale Bar = 10µm
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Figure 3.7. Palladin localizes to PDBu-induced podosomes.  A7r5 cells were plated on 
fibronectin and treated with the phorbol ester PDBu.  After fixation, endogenous palladin 
was detected by immunofluorescence. Co-labeling with TRITC-phalloidin and polyclonal 
anti-palladin antibody reveals that palladin co-localizes with actin.  Top: Low 
magnification image.  Bottom:  High magnification image to show detail.
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Figure 3.8. Palladin knockdown decreases PDBu-induced podosome formation. A) A7r5 
cells transfected with control pSuper RNAi and pSuper RNAi targeting palladin were 
plated on fibronectin overnight and treated with PDBu.  Cells were fixed, permeabilized
and stained with TRITC-phalloidin.  Transfected cells (green fluorescence) were detected 
by the presence of GFP encoded in pSuper. Top: Low magnification image.  Bottom:  
High magnification image to show detail. B) The proportion of cells developing 
podosomes after PDBu stimulation is shown for cells transfected with control siRNA (C, 
36 ± 3 %) and transfected with palladin siRNA (KD, 19 ± 5 %).  Results are 
representative of three independent experiments in which at least 300 transfected cells 
were counted. 
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Figure 3.9.  Palladin co-localizes with Eps8. A7r5 cells were plated on fibronectin-coated 
coverslips and were either incubated for 2 hours in serum-free media prior to treatment 
with PDGF (A) or treated with the phorbol ester PDBu (B).  Cells were fixed and 
immunolabeled with polyclonal anti-palladin antibody and monoclonal anti-Eps8 antibody. 
The two images were merged (overlay) to show the relative localization of palladin 
(green) and Eps8 (red).  Top: Low magnification image.  Bottom: High magnification 
image to show detail. 
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CHAPTER 4 

PALLADIN IS AN ACTIN CROSSLINKING PROTEIN THAT USES 
IMMUNOGLOBULIN-LIKE DOMAINS TO BIND FILAMENTOUS ACTIN 

 

4.1 INTRODUCTION 

The actin cytoskeleton is a dynamic assembly that provides the cell with 

mechanical support and elasticity (Heidemann et al., 1999; Heidemann et al., 2004), 

participates in cell locomotion through the formation and disassembly of protrusions 

(Welch et al., 1997), and provides a scaffold for the trafficking of cellular components 

(Langford, 1995; Bassel and Singer, 1997) and organization of signaling complexes 

(Mahoney et al, 1997).  The organization of actin networks within the cell is tightly 

controlled by a variety of regulatory proteins that either crosslink actin filaments into 

robust bundles or regulate the assembly and disassembly of actin filaments by 1) 

capping/uncapping or severing the filament ends or 2) promoting the polymerization 

of actin at specific sites (dos Remedios et al., 2003).  To date, more than twenty-

three classes of proteins have been shown to crosslink actin filaments into tight 

parallel bundles, loosely spaced bundles, or flexible networks (Kreis and Veil, 1999).  

Actin-crosslinking proteins such as filamin (Popowicz et al., 2006; van der Flier and 

Sonnenberg, 2001), α-actinin (Blanchard et al., 1989), and fascin (Edwards and 

Bryan, 1995) play important roles in maintaining cell shape and allowing cells to 

move and to adhere to a substrate.  In addition, in differentiated cells in vivo, actin-



crosslinking proteins have a critical function in generating specialized actin-based 

structures such as sarcomeres, microvilli and stereocilia (reviewed in (Adams, 2004; 

Bartles, 2000).  Thus, the extraordinary diversity of actin-binding proteins provides 

cells with a wide variety of molecular tools for constructing both dynamic and stable 

arrays of actin filaments. 

 Palladin is a phosphoprotein that is widely expressed in vertebrate cells and 

tissues (Parast and Otey, 2000; Rachlin and Otey, 2006; Mykkanen et al., 2001).  

Palladin exists as three major isoforms, which display apparent molecular weights of 

90, 140 and 200 kDa by SDS-PAGE (Parast and Otey, 2000; Rachlin and Otey, 

2006).  Palladin is the most widely expressed member of a novel subfamily of actin-

associated proteins (Otey et al., 2005).  The two other members of this family of 

proteins, myotilin and myopalladin, are primarily expressed in striated muscle 

(Salmikangas et al., 1999; Bang et al., 2001).  Palladin has been detected in 

structures that contain contractile bundles of actin filaments, such as stress fibers 

and sarcomeres (Parast and Otey, 2000; Mykkanen et al., 2001).  Palladin also 

localizes to anchoring structures such as focal adhesions and podosomes, and 

motile structures such as neuronal growth cones and dorsal ruffles (Parast and 

Otey, 2000; Rachlin and Otey, 2006; Boukhelifa et al., 2001; Goicoechea et al., 

2006).  Palladin is ubiquitously expressed in embryonic organs but is down-

regulated in some adult tissues (Parast and Otey, 2000).  Within smooth muscle and 

non-muscle cells, palladin localizes to actin filaments in regularly spaced puncta that 

have also been found to contain α-actinin (Ronty et al., 2004) and vasodilator-

stimulated phosphoprotein (VASP) (Boukhelifa et al., 2004).  Palladin possesses a 
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large  number of molecular partners, including a cohort of proteins that bind directly 

to actin:  α-actinin (Ronty et al., 2005), VASP (Boukhelifa et al., 2004), profilin 

(Boukhelifa et al., 2006), ezrin (Mykkanen et al., 2001), and Eps8 (Goicoechea et al, 

2006).  Palladin also binds to a second cohort of proteins that indirectly influence 

actin organization: ArgBP2 (Ronty et al., 2005), LPP (Jin et al., 2007), and SPIN90 

(Ronty et al., 2007).  The larger isoforms of palladin also bind to the actin-binding 

protein Lasp-1 (Rachlin and Otey, 2006).  The observation that palladin binds to an 

unusually large number of actin-binding proteins suggests that it may function as an 

actin-associated scaffolding molecule. 

Although palladin’s precise cellular function and mode of sub-cellular 

localization is still under investigation, results to date indicate that palladin plays an 

important role in organizing the actin arrays needed for normal cell adhesion, 

motility, and changes in morphology during cell development.   Palladin expression 

has been explored in a variety cell types and a mouse model organism.  With 

antisense and siRNA knockdown approaches, loss of palladin expression is 

associated with a failure of cells to assemble stress fibers, focal adhesions, dorsal 

ruffles and podosomes (Parast and Otey, 2000; Goicoechea et al., 2006).   Up-

regulation of palladin correlates with changes in cell morphology and the formation 

of the actin cytoskeleton in maturing peripheral blood monocytes (Mykkanen et al., 

2001).  Decreased palladin expression correlates with the loss of filamentous actin 

as polygonal astrocytes become stellate (Boukhelifa et al., 2003).  However, up-

regulation of palladin and increased stress fibers are both seen in stellate astrocytes 

in response to injury.   
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Palladin’s function has also been explored in a knockout mouse model.  The 

palladin null mice die at about embryonic day 15, demonstrating that palladin is 

essential for normal mammalian embryonic development (Luo et al., 2005).  Palladin 

null embryos exhibit striking defects in body wall closure, both dorsally and ventrally, 

which supports the view that cell motility is impaired in the absence of palladin 

expression.  In addition, palladin null mouse embryo fibroblasts are defective in their 

ability to move, adhere and assemble stress fibers (Luo et al., 2005; Liu et al., 2006). 

Together, these results suggest that palladin is required for normal assembly and 

remodeling of the actin cytoskeleton. 

   A common feature of the palladin family of proteins is the presence of 

multiple immunoglobulin-like (Ig) domains.  The three isoforms of palladin are 

transcribed from a series of nested promoters within a single gene; consequently, 

the three C-terminal Ig-like domains (Ig3, Ig4, and Ig5) are present in all three 

isoforms (Rachlin and Otey, 2006).  The 140 kDa and 200 kDa isoforms contain an 

additional fourth Ig domain (Ig2) near the N-terminus, while the 200 kDa isoform 

contains a total of 5 Ig domains (Ig1-Ig5).  Myotilin has two Ig domains that are 

homologous to the Ig4 and Ig5 domains of palladin (Bang et al., 2001), while 

myopalladin has five Ig domains that are in the same relative positions and 

homologous to the five Ig domains of the 200 kDa isoform of palladin (Rachlin and 

Otey, 2006; Bang et al., 2001).   

The Ig fold is a modular domain that appears in both extracellular and 

intracellular proteins and is often involved in protein-protein interactions (Barclay, 

2003; Williams and Barclay, 1988).  Ig domains typically contain about 100 amino 
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acids and consist of seven to nine beta strands that adopt a sandwiched beta sheet 

fold (Bork et al., 1994).  In addition to being a signature domain of this protein family, 

Ig domains have been described in a small number of other intracellular proteins that 

are associated with actin and myosin in vertebrates, including myosin light chain 

kinase (MLCK), myomesin, titin, MyBP-C and MyBP-H (Linke, 2000; Okagaki et al., 

1993; Vaughan et al., 1993; Holden et al., 1992).  The majority of these Ig-containing 

proteins are specifically expressed in striated muscle, suggesting that this particular 

type of Ig domain may play a special role in creating the highly ordered cytoskeleton 

of the sarcomere (Vaughan et al., 1993; Gilbert et al., 1999).  It is interesting to note 

that inherited forms of heart disease are associated with mutations affecting the Ig 

domains of either titin or MyBP-C, suggesting that the Ig domains have a key role in 

maintaining sarcomere integrity (Gerull et al., 2006; Gerull et al., 2002; Oakley et al., 

2004; Watkins et al., 1995).     

            Currently, the precise molecular function of palladin family Ig domains is a 

matter of debate.  The binding site of ezrin has been mapped to a region containing 

the Ig4 and Ig5 domains of palladin (Mykkanen et al., 2001).  However, a number of 

recent reports suggest the interesting possibility that certain Ig domains can function 

as actin or myosin-binding modules.  Isolated protein fragments containing Ig 

domains and flanking sequence derived from the palladin relative myotilin have been 

shown to bind directly to F-actin (Salmikangas et al., 2003; von Nandelstadh et al., 

2005).  Myotilin even appears to function as an actin-bundling protein in vitro, as 

purified myotilin promotes the formation of large, multi-filament aggregates that have 

been imaged by electron microscopy and also detected in differential sedimentation 
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assays (Salmikangas et al., 2003).  In certain invertebrate species, skeletal muscle 

also contains a protein called kettin, which has 31 copies of a similar Ig-like domain 

(Hakeda et al., 2000).  Recently, a fragment containing four of kettin’s Ig domains 

were shown to bind directly to F-actin (Ono et al., 2006).  This suggests, first, that 

binding of actin by Ig domains may be a highly conserved molecular mechanism 

shared by both vertebrate and invertebrate proteins, and second, that Ig domains 

within the same molecule may be specialized for different functions.  Yet, although 

these results strongly suggest that certain Ig domains could function as F-actin 

binding sites, no previous study has shown this conclusively using isolated Ig 

domains. 

The high degree of homology between palladin and myotilin in their Ig 

domains raises the possibility that palladin may also function as a direct binding 

partner for F-actin, and we undertook to test this idea using a combination of 

biochemical and microscopy-based assays.  In this report, we show that purified 90 

kDa palladin generates actin bundles directly in vitro and that one of its Ig domains 

possesses actin-binding activity.  These results support the view that Ig domains can 

function as conserved actin-binding modules, and add further support to 

accumulating evidence that multiple Ig domains within the same protein can have 

specialized functions. 

 

4.2 MATERIALS AND METHODS 
 
Identification and cloning of palladin immunoglobulin domains. 

 The three tandem Ig domains of the 90 kDa palladin isoform were identified 

using a BLAST search and were initially characterized as C2-type Ig domains.  
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However, secondary structure prediction using PSIPredict (Bryson et al., 2005; 

McGuffin et al., 2000) and ClustalX (Thompson et al., 1997) alignment with telokin 

(1TLK), titin I1 (1G1C), and twitchin (1WIT) indicated that the three Ig domains of the 

palladin 90 kDa isoform are members of the I-type immunoglobulin-like domains 

(Harpaz and Chothia, 1994).  Domain boundaries of the palladin Ig domains were 

determined from the secondary structure prediction using PSiPredict.  The DNA 

sequences and the translated protein sequences for the palladin Ig domains are 

included in the Supplemental section. 

 

Expression and purification of palladin fragments. 

Full-length 90 kDa palladin was expressed as 6xHis fusion protein in Sf9 

insect cells using a commercially-generated baculovirus (BD Biosciences), and 

purified using a commercial affinity purification kit (BD Biosciences) (Boukhelifa et 

al., 2006).   

 DNA sequences encoding 1) the individual Ig3, Ig4, and Ig5 domains, 2) a 

fragment containing the linker sequence between the Ig3 and Ig4 domain, and 3) the 

tandem Ig3-Ig4, and Ig4-Ig5 domains of palladin were inserted into a modified 

pMAL-c2x (New England Biolabs) expression vector with the sequence ENLYFQG 

encoding a TEV protease cleavage site inserted between the maltose-binding 

protein (MBP) affinity tag and the palladin inserts.  The plasmids were transformed 

into BL21(DE3) CodonPlus-RIPL E.coli (Stratagene) and colonies were selected 

from agar plates containing 75 mg/mL ampicillin.  Cell cultures were grown in Luria 

broth supplemented with 10 g/L glucose at 37° C to OD600 = 0.6-0.8 and induced 
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with 0.5 mM IPTG.  Following induction, cells were grown at 30° C for four hours, 

then harvested by centrifugation for 20 minutes at 3000 RPM.  Cells were 

resuspended in lysis buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 

mM DTT, 1 mM PMSF, and 1X BAL (1000X BAL = 10 mg/mL benzamidine, 2 

mg/mL antipain, and 1mg/mL leupeptin)) and the cell membranes were lysed by 

sonication using a Fisher Scientific Model 550 Sonic Dismembrator.  The cell lysate 

was centrifuged at 17,000 RPM for one hour to pellet any insoluble contents.  The 

soluble contents of the cell lysate were loaded at ~2 mL/min on a column of 

amylose-functionalized agarose resin (New England Biolabs).  The column was 

washed with 50 mL of column buffer (50 mM Tris pH 7.4, 200 mM NaCl, 2 mM DTT, 

1 mM EDTA) after which the fusion protein was eluted with an elution buffer (column 

buffer + 10 mM maltose) and collected in 3 mL fractions.  Fractions containing 

protein were identified by Bradford assay (BioRad) and checked by SDS-PAGE.  

The fractions containing the fusion protein were combined, the affinity tag was 

cleaved overnight at room temperature in the elution buffer with 1X BAL, and 0.6 mg 

tobacco etch virus (TEV) protease (pRK793, Addgene, Inc) added.  The following 

day, the cleaved protein was diluted three-fold with a dilution buffer (25 mM KH2PO4 

(pH = 5.5), 2 mM DTT, and 0.1% NaN3) in order to lower the pH and salt 

concentration.  The diluted protein sample was purified by ion-exchange on an 

ÄKTAFPLC (GE Healthcare) with a HiPrep™ SP XL column. The protein was loaded 

on the column with Buffer A (25 mM KH2PO4 (pH = 5.5), 25 mM NaCl, 2 mM DTT, 

and 0.1% NaN3) with a flow rate of 0.5 mL/min.  The column was washed with two 

column volumes and then the protein was eluted using a gradient with a target 
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concentration of 100% Buffer B (25 mM KH2PO4 (pH = 5.5), 1 M NaCl, 2 mM DTT, 

and 0.1% NaN3) over 10 column volumes.  Fractions containing protein were 

determined by UV absorbance at 280 nm and confirmed by SDS-PAGE.  Reagents 

were purchased from Sigma, unless otherwise indicated. 

 

Actin co-sedimentation assay. 

  A solution of 6.4 mg/ml actin purified from rabbit muscle acetone powder was 

diluted two-fold with an equal volume of 2x F-actin buffer (20 mM Tris pH 8.0, 200 

mM KCl,  5 mM MgCl2, and 4mM DTT) and allowed to polymerize at room 

temperature for thirty minutes.  Purified palladin was centrifuged at 150,000 x g for 

twenty minutes to pellet any insoluble protein immediately before the co-

sedimentation samples were prepared.  Samples were prepared that contained 10 

µM of the polymerized actin and 10 µM of the palladin proteins in a total volume of 

200 µL.  A control sample was prepared substituting the palladin protein solution 

with an equal volume of buffer.  The samples were incubated for one hour at room 

temperature and centrifuged at 150,000 x g for thirty minutes.  Supernatants were 

collected and boiled in Laemmli sample buffer.  The pellets were washed quickly 

with 1x F-actin buffer and re-suspended in 200 µL of water, which was also boiled in 

Laemmli sample buffer.  Twenty-five microliters of each sample was loaded onto a 

Bis-Tris 4-12% gradient polyacrylamide gel and separated by electrophoresis in 

MES running buffer.  The gels were stained with SimplyBlue SafeStain (Invitrogen) 

and destained with water.  Gel images were acquired by scanning the gels with 

Licor’s Odyssey infrared scanner, which allows for quantitative measurements.         
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For the differential sedimentation assay of actin bundle formation, one 

additional centrifugation step was added.  The samples were first centrifuged at 

5,000 x g for ten minutes.  The 5,000 x g pellets were washed quickly with 1x M 

buffer and re-suspended in 100 µL of water before being boiled with Laemmli buffer.  

The supernatants were collected and centrifuged at 150,000  x g for thirty minutes 

and treated as described above. 

 

Electron microscopy of actin filaments. 

   A solution of 6.4 mg/ml actin purified from rabbit muscle acetone powder 

was polymerized at 74 µM concentration by adding an equal volume of 2x F-actin 

buffer (20 mM Tris pH 8.0, 200 mM KCl and 5 mM MgCl2). After polymerizing for one 

hour, the F-actin gel was diluted to 10 µM actin in 1x F-actin buffer.  Baculovirus-

purified palladin was added to 1 µM in the actin gel. Palladin buffer was added to the 

control.  The samples were allowed to incubate for 30 minutes before being diluted, 

first to 1 µM actin with 2.0 µM Alexafluor-488 phalloidin (Molecular Probes) and then 

to 100 nM actin.  Samples were pipetted onto a carbon-coated, copper-mesh grid 

and stained with 1% uranyl acetate for thirty seconds, blotted and then allowed to 

dry.  Negative stain images were acquired using an FEI-Philips Tecnai 12 (FEI 

Company, Hillsboro, OR) transmission electron microscope.  Images were collected 

at 80 kV with a 1k x 1k CCD camera (Gatan, Pleasanton, CA). 

 

Fluorescence microscopy of actin filament bundles. 
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 A solution of 6.4 mg/ml actin purified from rabbit muscle acetone powder was 

polymerized at 74 µM concentration by adding an equal volume of 2x F-actin buffer 

(20 mM Tris pH 8.0, 100 mM KCl and 5 mM MgCl2).  After polymerizing for thirty 

minutes, the F-actin gel was diluted to 10 µM actin in 1x F-actin buffer.  Baculovirus-

purified palladin was added to 1 µM in the actin gel.  Palladin buffer was added to 

the control.  The samples were allowed to incubate for 30 minutes before being 

diluted first to 1 µM actin with 1.5 µM Alexafluor-488 phalloidin, and then to 100 nM.  

Five microliters of each sample was placed in between a coverslip and glass slide 

and visualized by epifluorescence using a Nikon TE2000-U microscope with 60x 

objective lens, an optional 1.5x tube lens and a Hamamatsu Orca-ER camera. 

 

Size exclusion chromatography – multiple angle light scattering (SEC-MALS). 

The purified 90 kDa palladin isoform and Ig3-Ig4 fragment were buffer-

exchanged into a solution of 20 mM Tris (pH 7.4),  150 mM NaCl, 2 mM DTT and 

0.01% NaN3.  Samples were also repeated in a similar buffer containing 100 KCl in 

place of the 150 mM NaCl.  The samples were loaded onto a Superdex 200 column 

(GE Healthcare) with a flow rate of 0.5 mL/s and the elution was sampled every 0.5 

s.  The laser wavelength was set at 690 nm and data were analyzed using ASTRA 

4.90.08 (Wyatt Technology). 

 

Homology modeling of the palladin Ig3 domain. 

           Suitable templates for the homology modeling of the palladin Ig3 domain 

were chosen using a BLAST search (Altschul et al., 1997) and the Inub server at the 
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University of Buffalo Center of Excellence in Bioinformatics (Fischer, 2003).  Both 

search queries identified Ig domains of titin and the C-terminal domain of myosin 

light chain kinase, also called telokin, as good candidates.  After examining a 

sequence alignment with the palladin Ig3 domain using Clustal X (Thompson et al., 

1997), X-ray structures of the titin I1 domain (pdb 1G1C) and telokin (1F1G) were 

chosen as templates for homology modeling of the palladin Ig3 domain.  The 

homology model was built for the Ig3 construct that we have been able to express 

and purify, namely residues 277-381 of the murine 90 kDa palladin sequence.  The 

protein sequence for the 90 kDa isoform of mouse palladin is given in Supplemental 

Section 1 of Rachlin, et al. (Rachlin and Otey, 2006).  Both templates required the 

addition of a residue at the position occupied by P323 of the palladin sequence.  

Insight II (Accelrys) was used to build the homology model using the Biopolymer 

module to add the additional residue to the templates and the Homology module to 

construct the homology model.  Both templates produced excellent homology 

models, however the homology model based on the titin I1 domain produced a 

higher sequence-structure self consistency score (0.74) and was therefore selected 

as the better template to generate the homology model. 

 

4.3 RESULTS 

Purification of the palladin 90 kDa isoform. 

After previous unsuccessful attempts to generate purified palladin from 

bacterial hosts, we cloned the 90 kDa palladin isoform into baculovirus and 

expressed the protein in insect cells in high yield (Boukhelifa et al., 2004).  The 
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ability to over-express and purify palladin provided us with the opportunity to 

investigate the molecular mechanisms of palladin in vitro, without the complication of 

other actin-associated proteins that may co-purify with palladin.  Palladin is known to 

co-localize with α-actinin and VASP to dense regions along actin stress fibers (Ronty 

et al., 2004); however, whether palladin is able to interact with F-actin directly has 

not been previously determined.  Palladin over-expression in Cos-7 cells is 

correlated with the rearrangement of actin into super-robust bundles (Rachlin and 

Otey, 2006; Ronty et al., 2004), but whether palladin can bundle actin directly or is 

able to regulate other proteins which bundle actin is not clear.  Palladin in mouse 

embryonic fibroblast (MEF) lysate has been shown to co-sediment with F-actin when 

centrifuged at 14,000 rpm (Parast and Otey, 2000); we now have the opportunity to 

investigate whether purified palladin co-sediments with F-actin in the absence of 

other binding partners. 

 

Palladin binds directly to F-actin and crosslinks filaments into bundles. 

 Palladin’s recruitment to stress fibers and other filamentous actin arrays may 

be achieved in one of two ways: (1) palladin may bind directly to actin filaments or 

(2) palladin may be associating with actin indirectly through one of its binding 

partners (e.g. α-actinin or VASP).  To determine if palladin binds to F-actin directly, 

we performed an actin co-sedimentation assay using purified actin and purified 90 

kDa palladin.  After incubating palladin with filamentous actin, the samples were 

spun at high speed to pellet the insoluble actin fraction.  Approximately 40% of the 

palladin co-sedimented with the F-actin fraction, indicating that palladin can bind 
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directly to actin (Figure 4.1 A).  In a control sample containing palladin alone, the 

protein remained soluble and did not sediment by itself (data not shown). 

Previous studies have shown that modifying palladin expression in Cos-7 

cells results in dramatic changes in cytoskeletal architecture (Rachlin and Otey, 

2006; Ronty et al., 2004).  We reasoned that if palladin is binding to actin directly, it 

could also be acting as a filament crosslinking protein, which could give rise to the 

observed hyper-bundling phenotype when palladin is over-expressed.  To test this, 

we repeated the co-sedimentation assay, this time adding an initial low speed (5000 

x g) spin to pellet the actin bundles before using a high-speed spin (150,000 x g) to 

pellet the remaining actin filaments.  Only a small fraction of the actin filaments 

sedimented at low speed in the absence of palladin, while about half of the actin 

pelleted in the presence of palladin (Figure 4.1 B).  This indicates that palladin is 

crosslinking individual filaments into actin bundles. 

To confirm these results, actin bundles were visualized using electron 

microscopy.  When actin is incubated with full-length palladin, robust multi-filament 

bundles were seen (Figure 4.1 C).  The bundles were closely-spaced and often 

slightly curved, suggestive of flexible crosslinking. 

 

Palladin’s Ig3 domain binds to actin.  

 We next sought to identify the specific region(s) of palladin that is responsible 

for actin binding.  Analysis of palladin’s sequence did not reveal any of the canonical 

actin binding domains described for other actin-modifying proteins (dos Remedios et 

al., 2003).  However, palladin’s C-terminal half contains three immunoglobulin-like 
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domains, similar to those that have been implicated in F-actin binding in palladin’s 

relatives myotilin and kettin (von Nandelstadh et al., 2005; Ono et al., 2006), so we 

undertook to test the ability of isolated Ig domains derived from palladin to bind 

directly to F-actin.  As shown in Figure 4.2 B, the Ig3 domain was the minimum 

fragment necessary for binding to filamentous actin.  This is a novel result, because 

in no previous case has a single Ig domain been shown to be sufficient for actin 

binding.  The Ig4 and Ig5 domains showed no actin-binding activity, demonstrating 

that although the domains appear to be structurally similar on the basis of secondary 

structure prediction and sequence alignments, the actin-binding ability of palladin’s 

Ig3 domain is unique.  The tandem Ig4-Ig5 fragment also did not bind to F-actin.  

Although the isolated Ig4 domain did not bind to F-actin in this assay, a palladin 

fragment containing both Ig3 and Ig4 exhibited much greater affinity for actin than 

the Ig3 domain alone.  The residues in the Ig3/Ig4 linker region that are near the C-

terminus of Ig3 contain a high incidence of basic residues (eight of the first eighteen 

residues are basic).  Since basic residues have been implicated in a number of 

actin-binding interfaces (Amann et al., 1998; de Arruda et al., 1992; Huttelmaier et 

al., Janssen et al., 2006; Lee et al., 2004; Li et al., 1998; Tang et al., 1997; Yarmola 

et al., 2001), it is reasonable that the linker region may enhance an electrostatic 

interaction between the Ig3 domain and F-actin.   However, neither the Ig4 domain 

nor the Ig3/Ig4 linker region alone is able to bind to actin. 

While both the 90 kDa and 140 kDa palladin isoforms share the three C-

terminal Ig domains tested in this assay, the 140 kDa isoform contains an additional 

Ig domain (Ig2) at its N-terminus.  In Cos-7 cells, expression of this larger isoform 
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increases the density of stress fibers, leading us to hypothesize that Ig2 may also 

bind to actin, thereby promoting bundle formation.  This is not the case, however, as 

Ig2 showed no binding to actin filaments in these assays (Fig. 4.3). 

 

Determination of the binding affinity of the 90 kDa isoform and palladin 

fragments with F-actin.  

The concentration of F-actin was held constant and increasing amounts of 

palladin protein were used in co-sedimentation assays to determine the binding 

affinity for the Ig3 and Ig3-4 fragments as well as the full-length 90 kDa isoform.  We 

could not determine a value for the Ig3 fragment, as the binding did not completely 

saturate within the concentration range we could achieve with the purified fragment.  

We estimate that the Kd is between 60-80 μM, based on repeated attempts to 

determine this binding affinity.  The data were fit to a hyperbolic curve, assuming a 

1:1 stoichiometry and specific binding only.  We determined Kd values to be 2.1 ± 0.5 

μM for the full-length 90 kDa isoform (Figure 4.2 C) and 8.7 ± 1.5 μM for the Ig3-4 

fragment (Figure 4.2 D).   

 

Identification of the binding interface between Ig3 and F-actin 

We sought to determine the dependence of  F-actin binding to palladin Ig 

fragments as a function of salt concentration, as a number of other actin-binding 

proteins have been shown to bind actin in a salt-dependent manner (Amann et al., 

1998; Huttelmaier et al., 1999; Lee et al., 2004; Li et al., 1998; Tang et al., 1997).  

An increase in the ability to bind actin as the salt concentration is lowered is usually 
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an indication that the binding is driven by electrostatic interactions.  To test this idea, 

we performed F-actin co-sedimentation assays at KCl concentrations of 25, 50, 100, 

and 200 mM.  We found that the interaction between F-actin and the palladin Ig3 

domain was strongly salt-dependent and that binding greatly increased as the salt 

concentration was lowered (Fig. 4.4).  Additionally, we confirmed that the Ig4 domain 

of palladin exhibited no interaction with actin at lower salt concentrations (data not 

shown). 

Since basic residues have been implicated in a number of actin-binding 

interfaces (Harpaz and Chothia, 1994; Altschul et al., 1997; Fisher, 2003; Amann et 

al., 1998; de Arruda et al., 1992; Huttelmaier et al., 1999; Janssen et al., 2006; Lee 

et al., 2004), we hypothesized that these regions may confer an electrostatic 

interaction between the Ig3 domain and F-actin.  To further elucidate the binding 

interface a homology model of the Ig3 domain based on titin’s I1 domain was used 

to reveal two basic patches (Fig. 4.5).  One is on the surface of the folded domain, 

and the other lies in the Ig3/Ig4 linker region near the C-terminus of Ig3.  We 

identified the basic residues in each patch were that were not likely to be involved in 

salt-bridges, and therefore were not necessary for domain folding to occur.  These 

residues were changed to alanine, and cosedimentation assays were performed on 

each mutant.   

Compared with wild-type Ig3, the K15A,H16A,K18A mutant showed a 

dramatic reduction in its ability to bind F-actin (Fig. 4.6). Mutations in the other basic 

patch (K36A, K38A) caused no change the ability of Ig3L (a fragment comprising Ig3 
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plus the Ig3-Ig4 linker region) to bind F-actin.  Ig4 was used as a negative control for 

binding.  

Next, sequential mutations in Basic Patch 1 were used to assess the relative 

contribution of each residue to actin binding.  Compared with wild-type Ig3, the K15A 

showed a slight decrease in actin binding, which was not changed in the K15A-H16A 

mutant (Fig 4.7).  The triple mutant, K15A-H16A-K18A, shows the greatest decrease 

in its affinity for F-actin.   This suggests that the basic patch comprised of K15, H16, 

and K18 is responsible for actin binding.  NMR analysis of the mutated fragments 

reveals that the domain structure is still folded and that these mutations affect only 

one face of the protein (Fig. 4.8). 

 

The tandem Ig3 and Ig4 domains of palladin are required to bundle actin.   

The palladin fragments were then used in a differential sedimentation assay 

to identify the smallest fragment of palladin that is capable of bundling actin 

filaments.  While Ig3 continued to sediment with actin in the high-speed 

centrifugation, we did not detect a significant amount of actin bundle formation when 

F-actin was incubated with the Ig3 domain (Fig. 4.9 A).  The previous co-

sedimentation experiments indicated that the fragments Ig4, Ig5, Ig4-5, and the 

Ig3/Ig4 linker sequence do not bind F-actin so it is not unexpected that they also fail 

to bundle F-actin.  We did, however, detect actin bundles when F-actin was 

incubated with a fragment containing both Ig3 and Ig4 (Figure 4.9 A, B).   

Because the concentration of Ig3-Ig4 used in the differential sedimentation 

assay was enough to completely bundle the F-actin present in the sample, we 

 104



sought to determine the critical concentration at which Ig3-Ig4 can maximally bundle 

actin.  Increasing concentrations of Ig3-Ig4 were added to 10 μM actin, and 

densitometry of the coomassie stained gel revealed that between 2 and 5 μM Ig3-Ig4 

was sufficient to pellet all of the F-actin in a low speed spin (Fig. 4.10).  This implies 

that the fragment is a highly efficient actin bundling domain.   

We used fluorescence microscopy to visualize the bundles formed by 90 kDa 

palladin and the Ig3-Ig4 construct (Fig. 4.11).  As expected, bundles were not 

observed when F-actin was incubated with Ig3 or the tandem Ig4-Ig5 fragment.  

Bundles formed by α-actinin served as a control.  Actin bundles generated by Ig3-

Ig4 were also imaged at high-resolution by electron microscopy, as shown in Fig. 

4.12. 

In order to bundle actin filaments, palladin must either bind two filaments 

simultaneously, or bind single filaments and dimerize.  To test the second 

hypothesis, we subjected full-length palladin and the Ig3-Ig4 fragment to size-

exclusion chromatography, coupled with multi-angle light scattering to determine the 

molecular weight of palladin in solution.  These analyses detected only monomers at 

physiological salt, indicating that neither the full-length protein, nor the Ig3-Ig4 

fragment dimerize in this assay (Fig. 4.13). 

 

Palladin Ig3 mutant localizes to stress fibers 

To determine whether palladin’s sub-cellular localization to actin arrays is 

dependent on Ig3’s ability to directly bind actin, a GFP tagged 90 kDa palladin 

construct was prepared with the introduction of the K15A and K18A mutations that 
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resulted in the greatest reduction in actin binding.  In Cos-7 cells, which lack robust 

stress fibers and express undetectable levels of palladin, GFP-palladin over-

expression leads to the formation of dense actin bundles (Rachlin and Otey, 2006).  

Over time, these stress fibers detach from their focal contacts and contract, leaving 

large and small aggregates of actin, GFP-palladin, and other stress-fiber associated 

proteins (Fig.  4.14 A, Supplementary movie 4.1).   

To determine whether the Ig3-Actin binding region participates in this 

phenotype, we expressed a GFP-tagged wild-type 90 kDa palladin or K15A,K18A 

Ig3 palladin in Cos-7 cells.  After 24 hours, wild-type palladin appears to decorate 

stress-fibers, and actin bundles are denser than in untransfected cells (Fig. 4.14 A).  

The GFP tagged mutant still localizes to stress fibers, and is also capable of 

inducing the formation of robust actin bundles in Cos-7 cells (Fig. 4.14 B).  This 

implies either that actin binding is not completely eliminated in the mutant or that 

palladin is capable of targeting actin stress fibers by some other means.  It may do 

so by an additional cryptic actin-binding domain, or through its interaction with other 

described actin-binding proteins. 

 

Disruption of Ig4 domain alters palladin localization in Cos-7 cells 

 Genetic comparisons between a non-migratory cancer cell line and derivative 

cell line that had become highly metastatic revealed that the metastatic cells 

contained a single amino acid mutation in palladin’s Ig4 domain (Fig. 4.15 A) (Terri 

Brentnall, personal communication).  This mutation, named Patu2 after the cell line 

in which it was discovered, changes a highly-conserved, packed tryptophan in the 
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core of Ig4 to cysteine (Fig. 4.15 B,C).  Because this tryptophan is a consistent 

feature of palladin’s Ig domains, it is likely necessary for proper domain folding. 

 When the Patu2 GFP-palladin mutant is introduced into Cos-7 cells, the 

phenotype is noticeably different from wild-type palladin expression (Fig 4.16).  At 

low levels, Patu2 palladin may be observed in puncta along the Cos-7 cell’s typically 

weak actin filaments, but the dense bundles observed with wild-type palladin are 

absent.  Furthermore, while wild-type palladin ultimately leads to the contraction and 

aggregation of stress fibers, Patu2 palladin forms aggregates that are smaller and 

lack filamentous actin.  Thus, an intact Ig4 domain is necessary for palladin’s ability 

to form dense bundles in Cos-7 cells, but not for its association with actin filaments. 

 

4.4 DISCUSSION 

          Our results show that the widely-expressed, actin-associated protein palladin 

functions as an actin-crosslinking protein in vitro, and that the Ig3 domain of palladin 

is involved in F-actin binding.  These results indicate that palladin occupies an 

unusual functional niche: since the proline-rich domains in palladin’s N-terminal half 

have been shown previously to be docking sites for multiple actin-binding proteins, it 

appears that palladin is essentially a cytoskeletal-scaffolding protein fused to an 

actin-crosslinking protein. This distinctive molecular function is likely to underlie the 

dramatic effects on actin organization that result from palladin over-expression 

(Rachlin and Otey, 2006; Ronty et al., 2004).  It is interesting to note that palladin 

binds to three other proteins that have been shown to crosslink actin filaments in 

vitro: α-actinin, VASP and Eps8 (Goicoechea et al., 2006; Ronty et al., 2004; 
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Boukhelifa et al., 2004).  This observation raises some interesting questions about 

the evolution of actin-bundling proteins in vertebrate cells: do these multiple actin-

crosslinking proteins function synergistically or redundantly, or do they possess 

subtle functional differences in their ability to generate multi-filament arrays?  In the 

case of Drosophila proteins forked and fascin, both crosslinkers are required for the 

formation of robust, mature actin bundles, and their functions seem to be temporally 

regulated (Tilney et al., 1998).  Fascin and α-actinin in mammalian cells can 

individually crosslink actin, though together they function synergistically to enhance 

cell stiffness and elasticity and alter the geometry of actin filament bundles (Tseng et 

al., 2005).  Recently, Disanza et al. describe their work on the actin crosslinking pair 

Eps8 and IRS-p53, which, when bound to one another, releases auto-inhibition of 

IRS-p53 and unmasks its actin binding domain (Disanza et al., 2006).  Similar to 

these examples, palladin and α-actinin may co-regulate their activities, crosslink 

synergistically, or contribute to different phases of stress fiber formation. 

 While it is not clear whether palladin and α-actinin may be functioning 

cooperatively as actin-bundling proteins, there is evidence to suggest that the region 

of palladin that is responsible for its binding interaction with α-actinin is particularly 

important for palladin’s cellular function.  A recent report has linked a point mutation 

in palladin to a form of familial pancreatic cancer, and has also shown that palladin 

RNA levels are increased in familial and sporadic precancerous and cancerous 

pancreatic tissues (Pogue-Geile et al., 2006).  The disease-causing mutation occurs 

in the α-actinin binding region of palladin, and HeLa cells transfected with the 

mutated form of palladin showed cytoskeletal abnormalities, altered localization of 
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palladin, and increased motility (Pogue-Geile et al., 2006). In addition to pancreatic 

cancer, other human  diseases and conditions in which palladin has been implicated 

include pre-eclampsia (Gultice et al., 2006; Jarvenpaa et al., 2007) invasive breast 

cancer (Wang et al., 2004), and increased risk of heart attack (Shiffman et al., 2005).  

Clearly, additional studies will be necessary to determine the relative importance of 

palladin’s bundling activity, actinin-binding activity, and other molecular activities, to 

its cellular function and its precise role in these diverse pathologies.  

The results of the F-actin differential centrifugation experiments (Fig. 4.9 A) 

indicate that the Ig3 domain is an actin-binding domain that is not capable of 

bundling actin.  The isolated Ig3 domain’s binding affinity constant for actin is outside 

of the physiological range (Kd > 60 μM), suggesting that additional palladin 

sequences may contribute to create a stable binding interaction when the intact 

palladin protein binds to F-actin.  The Ig3-Ig4 fragment binds to F-actin almost as 

well as the full-length protein (see Figs. 4.2 C and 4.2 D) and is also capable of 

bundling actin filaments (see Figs. 4.9 A, 4.10, and 4.11).  For palladin to crosslink 

actin, it must bind two actin filaments simultaneously (Puius et al., 1998).  This can 

be achieved if palladin has one actin binding site and forms dimers, or if palladin 

contains two actin-binding sites per monomer.  We have not been able to find a 

second actin-binding site within the Ig3-Ig4 construct; neither the Ig4 domain nor the 

region linking the two Ig-like domains appears to bind actin in the co-sedimentation 

assays (see Fig. 4.2 B).  We have also been unable to detect the presence of a 

dimer in either the full-length molecule or the Ig3-Ig4 fragment using size exclusion 

chromatography combined with multiple-angle light scattering (SEC-MALS) (Fig. 
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4.13).  One possibility is that filament cross-linking by palladin is a two-step process, 

similar to the mechanism that has been demonstrated previously for vinculin in 

which F-actin binding activates a cryptic dimerization site within the vinculin tail 

domain (Janssen et al., 2006; Johnson and Craig, 2000). Our data are consistent 

with a model in which binding of F-actin induces a conformational change in palladin 

that promotes or stabilizes dimer formation.  Future work will focus on the structural 

basis for Ig3’s interaction with F-actin and elucidation of mechanisms by which 

paladin promotes F-actin bundling through its Ig domains. 

 Our results agree with a general pattern that has been reported previously: Ig 

domains often occur as multiple copies within one protein and different Ig domains 

often have specialized functions within the same molecule.  For example, MyBP-C 

possesses three fibronectin type III (Fn3) domains and seven or eight Ig domains, 

depending on the isoform (Bennett et al., 1999).  Only four of the Ig domains bind to 

myosin, two at the C-terminus (Okagaki et al., 1993; Welikson et al., 2002) and two 

near the N-terminus (Ababou et al., 2007).  Additionally, interactions between 

domains of  MyBP-C have been found for two of the Ig domains and one Ig domain 

with a Fn3 domain (Moolman-Smook et al., 2002), while the functions of three of the 

Ig domains have not been clearly defined.  Similarly, the functions of the N-terminal 

Ig domains found in the 140 and 200 kDa isoforms of palladin remain to be 

determined, and these could turn out to be the same or different from the C-terminal 

domains. Based on our results and others, the Ig domains found within cytoskeleton-

associated proteins may fall into the following functional groups: actin-binding (von 

Nandelstadh et al., 2005; Ono et al., 2006), myosin-binding (Okagaki et al., 1993; 
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Welikson et al., 2002), ezrin-binding (Mykkanen et al., 2001), dimer-forming (Fucini 

et al., 1997), or regulators of molecular spacing (Fucini et al., 1997) and elasticity 

(Bullard et al., 2006; Bullard et al., 2005; Improta et al., 1996; Politou et al., 1996).  

As more structural information on different Ig domains becomes available, it may be 

possible to determine structural specializations that correspond to each of these 

functional categories.     

 To begin structural analysis of the palladin Ig domains, we have constructed a 

homology model of the Ig3 domain based on the I1 domain of titin (1G1C) (Fig. 4.17 

A).  We predict that the Ig domains of palladin are I-type immunoglobulin-like 

domains and will have the common features of the I-frame (Fig. 4.17 B).  We expect 

that the actin-binding ability of the Ig3 domain is due to the interaction surface 

created by the amino acid sequence, rather than a large-scale difference in the 

protein fold compared to other I-set Ig-like domains.  We are in the process of 

determining the solution structure of Ig3 by NMR spectroscopy.  The homology 

model will aid in both structure determination efforts and in guiding further 

mutagenesis efforts to identify the site of F-actin binding.  Although Ig domains are 

present in a number of actin/myosin-associated proteins and have been suggested 

to be involved in actin-binding, the palladin Ig3 domain is the first isolated Ig domain 

shown to bind F-actin.  It will be interesting to determine the structural basis for how, 

in palladin, the Ig fold has been adapted for actin-binding and other functions, e.g.: 

dimer formation and interaction with ezrin. These questions will be the focus of 

additional future experimental efforts.    
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Figure 4.1. Palladin binds and crosslinks F-actin.  A, 90 kDa palladin binds F-actin.  
Purified F-actin and palladin were incubated separately or together and then subjected to 
a high speed centrifugation (150,000 x g).  After spinning, supernatants and pellets were 
separated and resolved by SDS-PAGE.  F-actin alone sediments at high speed (left 
lanes), while palladin does not (not shown).  When incubated together, ~40% of palladin 
co-sediments with the actin filaments (right lanes).  B, 90 kDa palladin crosslinks F-actin.  
An actin co-sedimentation assay was performed as in A, with one added step.  
Crosslinked actin was first pelleted in a low-speed spin by centrifuging the samples at 
5,000 x g for ten minutes.  Pellets from this spin were collected and prepared for SDS-
PAGE, while the supernatants were collected and centrifuged at 150,000 x g for thirty 
minutes, to pellet the remaining F-actin.  The samples were resolved by SDS-PAGE, 
stained and analyzed by scanning densitometry.  Palladin crosslinked approximately 50% 
of the filamentous actin, causing it to sediment in the low speed spin.  C, Actin bundles 
visible by EM.  Purified 90 kDa palladin was added to F-actin and prepared for imaging by 
negative stain transmission electron microscopy.  Micrographs show thick actin bundles in 
the presence of palladin, while only individual filaments appear in control samples (not 
shown).
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Figure 4.2  Characterization of actin binding within the palladin Ig domains.  A, Schematic 
of c-terminal constructs.  B, Ig3 binds F-actin.  Fragments of palladin’s C-terminus were 
purified and assayed for actin binding by co-sedimentation.  Ig3 binds filamentous actin, 
while Ig4 and Ig5 do not.  The addition of the linker region and Ig4 in conjunction with Ig3, 
seem to enhance F-actin binding. C, The co-sedimentation assay was performed with 
variable amounts of 90 kDa palladin and 1 μM F-actin.  The fraction of palladin that co-
sediments with F-actin was monitored by densitometry of the SDS-PAGE gel.  A 
hyperbolic curve was used to fit the data, assuming a 1:1 stoichiometry and specific 
binding only, which gives a dissociation constant for full-length palladin with F-actin of 2.1 
± 0.5 μM.  D, The same assay described in C was performed on the Ig3-4 fragment with 5 
μM F-actin.  A similar fitting of the data gives a dissociation constant for the Ig3-4 
fragment and F-actin of 8.7 ± 1.5 μM. 
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Actin
Alone Ig2
S    P     S     P

Figure 4.3  Ig2 does not bind actin filaments.  Purified Ig2, cloned from the N-terminus of 
140 kDa palladin, shows no ability to bind actin filaments, as it segregates with the 
supernatant (S), and not the pellet (P).
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Figure 4.4.  A. Salt dependence of Ig3-actin interaction.  20 mM Ig3 was incubated with 5 
mM actin in buffer containing increasing concentrations of KCl at 25 mM, 50 mM, 100 
mM, or 200 mM.  The samples were then subjected to centrifugation at 150,000 x g to 
pellet F-actin.  The affinity of Ig3 for actin varies inversely with salt concentration.  B.
Parallel samples without actin were prepared to demonstrate that the protein remains 
soluble at low salt concentrations.
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Basic patch 1: Residues 
Lys15, His16, Lys18

Basic patch 2: Residues 
Lys36, Lys38

Figure 4.5.  Ig3 domain contains two basic patches.  Homology modeling of the Ig3 
domain revealed two basic patches on the face of the domain that could participate in 
actin binding.  Patch 1 consists of Lys15, His16, and Lys18, while Patch 2 consists of 
Lys36 and Lys38.  Residues are counted from the N-terminus of the Ig3 domain.  Color 
code: blue – basic residues; red – acidic residues; green – polar residues; grey – other.
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Figure 4.6.  Basic Patch 1 is necessary for actin binding.  Wild-type and mutant Ig
domains were subjected to an actin co-sedimentation assay.  Wild-type Ig3 and Ig3L bind 
F-actin while Ig4 does not.  Mutation of Basic Patch 1 (K15A, H16A, K18A) drastically 
reduces the ability of Ig3 to bind F-actin, while mutation of Patch 2 (K36A, K38A) has no 
obvious effect on the binding of Ig3L.
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Figure 4.7.  Sequential mutation of Basic Patch 1 reduces actin binding.  Wild-type and 
mutant Ig3 domains were subjected to an actin co-sedimentation assay.  Wild-type Ig3  
binds F-actin while Ig4 does not.  Sequential mutation of Basic Patch 1 (K15A, H16A, 
K18A) gradually reduces the ability of Ig3 to bind F-actin, with the K15A and K18A 
mutations playing the largest apparent role in binding.

Fragment
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Figure 4.8.  Backbone structure of Ig3 is conserved in the triple mutant.  Overlay of the 
15N-1H HSQC spectrum of K15A/H16A/K18A Ig3 (Red) over Wild type Ig3 (Black). Over 
75% of the backbone amide peaks are unchanged. Peaks corresponding to mutated 
residues 15, 16 and 18 shift completely, and spatially close residues of 17, 19, 20, 80, 94, 
98 and 100 also shift completely. The overlay shows that the overall fold and the 
backbone structure of the Ig3 domain remains largely unperturbed by the mutations.
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Figure 4.9  Identification of an actin bundling fragment.  A, Ig3-Ig4 is a fragment capable 
of bundling actin.  Fragments of palladin’s c-terminus were used in a differential 
centrifugation assay to assess their ability to crosslink actin. Samples were subjected to a 
low speed spin, and actin bundles (B) in the pellet were collected before sedimenting the 
remaining F-actin by ultra-centrifugation and resolving the supernatant (S) and pellet (P) 
from these spins by SDS-PAGE. B, Quantification of actin bundling.  Actin bands from A.
were analyzed by densitometry to estimate the ability of each construct to bundle actin. 
Individually, Ig3, Ig4, Ig5, and the linker domain showed no ability to bundle actin, bringing 
down < 2% of the F-actin in the low speed spin.  Ig3-Ig4 exhibited robust actin bundling 
activity, pulling down 95% of the actin filaments. 
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Figure 4.10  Ig3-Ig4 bundles actin in a dose-dependant manner.  Increasing 
concentrations of Ig3-Ig4 fragment were combined with 10 μM F-actin to determine the 
effective concentration at which maximum bundling occurs.  Densitometry of the 
coomassie stained bands from a differential sedimentation assay revealed that between 2 
and 5 μM Ig3-Ig4 fragment is capable of completely bundling 10 μM F-actin.
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Figure 4.11.  Bundling of F-actin by α-actinin, palladin and palladin fragments by 
fluorescence microscopy.  Actin filaments were incubated either alone or with a-actinin, 90 
kDa palladin, or Ig-domain containing fragments.  Phalloidin-488 was added to visualize 
the F-actin by epifluorescence.  Actin filaments in the absence of a cross-linking protein 
appear as thin fragments dispersed uniformly across the field.  In the presence of α-
actinin, the actin filaments are cross-linked, forming robust, stable bundles.   Full length 
90 kDa palladin is also able to generate similar F-actin bundles.  Addition of a fragment 
containing Ig3 did not generate bundles, while a fragment representing Ig3-Ig4 (including 
the linker sequence between the Ig domains) did.  The fragment containing Ig4-Ig5 did not 
generate bundles, suggesting that Ig3 plays an essential role in this function.
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Figure 4.12.  Full length palladin and palladin fragments containing Ig3-Ig4 bundle actin, 
as observed by electron microscopy (EM).  F-actin was incubated with either 90 kDa
palladin or Ig domain containing fragments.  The addition of 90 kDa palladin consistently 
results in the close association of actin filaments while Ig3 samples contain only individual 
filaments.  Bundles are also visible in Ig3-Ig4 containing samples.
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Figure 4.13.  Size exclusion chromatography - multiple angle light scattering (SEC-MALS) 
analysis of the 90 kDa isoform of palladin and the Ig3-4 fragment.  Light scattering at the 
90º detector (top, red) and the differential refractive index (DRI) monitored by the forward 
detector (bottom, blue) were used to measure the molecular weights (MW) and 
hydrodynamic radius moments (Rh(w)) of the proteins and the polydispersities of the 
peaks.  For the full-length 90 kDa palladin isoform, SEC-MALS analysis gave a molecular 
weight of 77.6 kDa (actual MW = 73.6 kDa), a Rh(w) of 4.7 nm, and a polydispersity for 
the peak of 1.007±0.003.  These results indicate that the 90 kDa palladin isoform is 
monomeric and extended in solution.  Likewise, SEC-MALS analysis of the Ig3-4 fragment 
determined a molecular weight of 31.5 kDa (actual MW = 26.6 kDa), a Rh(w) of 3.2 nm, 
and a polydispersity of the peak of 1.11±0.02, suggesting that the Ig3-4 fragment is also 
monomeric and not compact.  Note: artifacts are commonly seen at elution volumes of 
~7.5 mL and ~22 mL, associated with the V0 and Vmax of the Superdex 200 column; the 
antiphase peak in the 90 kDa palladin DRI trace at ~22 mL is due to the sample buffer. 
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GFP-Palladin MergeActin

Actin GFP-Palladin(K15A,K18A) Merge

Figure 4.14.  K15A,K18A palladin mutation does not alter actin bundling in Cos-7 cells.  
Cos-7 cells were transfected with either wild-type GFP-90 kDa palladin (A), or the 
K15A,K18A mutant form (B).  In both cases, robust stress fibers are observed 24 hours 
after transfection, and stress fiber collapse leads to actin/palladin aggregates in the cell 
(Arrows)
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Figure 4.15.  Patu2 mutation disrupts palladin’s Ig4 domain.  A single nucleotide mutation 
(A) identified in a highly migratory cancer cell line named “Patu2” leads to the substitution 
of a packed tryptophan in Ig4 for cysteine (B).  (C) shows a homology model of Ig4 with 
the conserved tryptophan indicated in red. 
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Actin GFP-Palladin Merge

Figure 4.16.  Patu2 palladin mutation prevents actin bundling in Cos-7 cells.  Cos-7 cells 
were transfected with GFP-palladin containing a packed tryptophan to cysteine mutation 
in the Ig4 domain.  This mutant fails to induce the formation of robust stress fibers, though 
it can still be seen decorating thin actin filaments (arrowheads).  Interestingly, the mutant 
palladin aggregates do not appear to contain F-actin as observed in wild-type (arrows).
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Figure 4.17  A, Homology model of palladin’s Ig3 domain.  The homology model of the Ig3 
domain of palladin was constructed using the Homology module of Insight II (Accelrys) 
and the I1 domain of titin (1G1C) as a template.  B, The I-set Ig frame.  The Ig3 domain is 
a member of the I-set of immunoglobulin-like domains.  The characteristic features of the 
I-frame are present: the domain contains eight beta strands (by convention labeled A, B, 
C, C’, D, E, F, and G), the A strand is split and hydrogen bonds to both the B strand and 
the G strand, and the domain has both a C’ and D strand. 
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CHAPTER 5 

CONCLUSIONS AND DISCUSSION 

 

 

5.1 SUMMARY 

Reactive astrocytosis is the central nervous system’s consistent response to 

injury.  Activated astrocytes migrate to the wound periphery where they hypertrophy 

and deposit a dense extracellular matrix.  Commonly, the glial scar that forms after 

physical trauma presents a barrier to neurite outgrowth and the functional recovery 

of severed axonal circuits.  Previous reports from our lab demonstrated that palladin 

immunoreactivity rapidly increased in activated astrocytes both in vitro and in vivo, 

but further questions on the method of up-regulation and the functional significance 

of this change remained. 

 In this work, we have analyzed the expression patterns of palladin 

isoforms in a cell culture model of reactive gliosis and extended the biochemical and 

functional characterization of palladin’s Ig domains, as described below: 

1. Using a cell culture model of reactive astrocytosis, we have 

demonstrated that both 90 kDa and 140 kDa palladin are up-regulated on the mRNA 

level after endothelin treatment, and that this corresponds to an increase in protein 

levels. 



2. The increases in 140 kDa isoform expression as detected by western 

blot were also observed by immunofluorescence in a scratch wound cell culture 

model and in vivo brain stab injury using a 140 kDa specific antibody. 

3. In order to understand palladin’s role in three-dimensional migration, 

we have described palladin’s recruitment to a dynamic actin-based structure, the 

dorsal ruffle, after growth factor stimulation and shown that palladin is a necessary 

component for ruffle formation.  We have also detected palladin in adhesive 

podosomes and shown that palladin is required for their formation or maintenance. 

4. We have demonstrated that both 90 kDa and 140 kDa palladin bind to 

and bundle F-actin, which gives us new insight into palladin’s molecular role in 

motility. 

5. We have performed a molecular dissection of palladin’s C-terminus 

and characterized the Ig3 domain as a novel F-actin binding domain, and the 

tandem Ig3-Ig4 as a fragment capable of bundling actin filaments in vitro.  We have 

also shown that Ig4 and Ig5 are unable to bind F-actin, indicating that individual Ig 

domains can have unique functional properties. 

6. We utilized mutational studies to identify the actin-binding residues of 

Ig3 and examined the effect on stress fiber bundling in cells. 

 

5.2  DISCUSSION 

Palladin’s role in motility: expression patterns 

 The impetus for this study was the observation that palladin is up-regulated in 

reactive astrocytes after injury (Boukhelifa et al., 2003).  Since those observations 
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were made, new results have shown that this response is not unique to astrocytes.  

Injured skin and aorta exhibit a similar wound healing response, with fibroblasts or 

smooth muscle cells near the injury displaying increased palladin expression (Ronty 

et al, 2006, Jin et al, 2007).  This suggests that palladin may be a necessary and 

conserved feature in cases of wound healing or tissue remodeling. 

Changes in palladin expression are not exclusive to pathological responses – 

the evidence for palladin’s role in cell migration during development is also gaining 

strength.  At the broadest level, palladin is required for normal mammalian 

embryogenesis, as demonstrated by the embryonic lethality of palladin knockout 

mice (Lou et al. 2005).  Knockout embryos die at approximately day 15 and exhibit 

developmental abnormalities including exencephaly due to failure of neural tube 

closure and facial clefting.  This phenotype may be partially explained by 

observations made in a microarray study showing that palladin is up-regulated in a 

subset of neural crest cells, and that palladin up-regulation correlates with 

subsequent cell migration (Gamill and Bronner-Fraser, 2002).  Further, palladin has 

been identified as a key component for neurite outgrowth, as knocking down palladin 

in neurons inhibits growth cone extension (Boukhelifa et al., 2001). 

 Microarray studies done by the Condeelis lab demonstrate that palladin may 

also be important in cancer metastasis.  Analysis of highly invasive breast cancer 

cells revealed that palladin is up-regulated ~3 fold compared to non-invasive tumor 

cells, suggesting that palladin plays a role in metastatic tumor progression (Wang et 

al., 2004).  Recent work to identify the causitive mutation in a deadly form of familial 

pancreatic cancer found a point mutation in the palladin gene that was present in 
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tumors and pre-cancerous lesions, but not in healthy individuals (Pogue-Geile et al., 

2006).  Overexpression of this mutant in cultured cells increases their migration rate 

compared to the overexpression of wild-type palladin.  Other reports from the 

Brentnall lab have identified a second mutation of the palladin gene in a highly 

migratory cancer cell line called “Patu2.”  This mutation also increases the migration 

rate of cultured cells when exogenously expressed (Terri Brentnall, personal 

communication). 

 In our own lab, studies of a group of breast cancer cell lines revealed that 

those exhibiting the greatest metastatic potential also express the highest levels of 

palladin (Silvia Goicoechea, personal communication.)  These cells are also able to 

invade through an extracellular matrix, a hallmark of the invasive motility that gives 

rise to metastatic tumor progression.  Knocking down palladin in these cells reduces 

the formation of podosomes, and correspondingly reduces their ability undergo 

invasive motility through an extracellular matrix.  Because both cancer cells and 

reactive astrocytes are highly plastic and demonstrate an ability to migrate through 

complex tissue, they may share common cellular machinery, including palladin, to 

achieve this end. 

 Taken together, these studies indicate that palladin is an important 

component of the cellular machinery responsible for migration, and specifically for 

invasive motility or movement through a complex extracellular environment.  While it 

is obvious that the cell requires a host of actin modifying proteins in order to perform 

the complicated cytoskeletal remodeling necessary for directed migration, palladin’s 

function may be defined by its ability to activate, scaffold, or coordinate the activity of 
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these proteins in a tightly regulated manner.  In this way, astrocytes and other cells 

may contain the necessary components for migration even at rest.  Then, in the 

presence of an activating signal, they may up-regulate a small subset of scaffolding 

or signaling molecules, including palladin, to induce directed migration. 

 To date, only few “activating signals” that regulate palladin expression have 

been identified.  In the injury models mentioned previously, palladin expression was 

regulated downstream of TGF-β1 stimulation in fibroblasts (Ronty et al., 2006) and 

angiotension II signaling in vascular smooth muscle cells (Jin et al, 2007).  In this 

study, we have identified endothelin as a potent activator of palladin expression in 

cultured astrocytes, and we have demonstrated that two palladin isoforms, though 

they arise from nested exons within the same gene, are differentially regulated 

(Chapter 2).  Another recent study examining the differentiation of human adipose-

derived stem cells during osteogenesis showed that palladin is up-regulated in stem 

cells grown in osteogenic media, and when cells are subjected to cyclic tensile strain 

(Wall et al., 2007).  This indicates that palladin expression is dependant not only to 

soluble growth factors and signaling molecules, but also on the physical properties 

of the extracellular environment. 

It is not clear whether TGF-β1, angiotensin II, endothelin, and tensile forces 

modulate separate signaling pathways within the cell leading to palladin up-

regulation, or whether these pathways converge into one common activator of gene 

transcription.  Based on the observation that pharmacological stabilization or 

disassembly of the actin cytoskeleton regulates palladin expression (Jin et al, 2007), 

it may be possible that these growth factors and cytokines exert their effect on 
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palladin expression through a common cytoskeletal remodeling pathway.  Because 

palladin isoforms appear to be differentially regulated in individual cells and tissues 

(Parast and Otey, 2000; this study, Chapter 2), it is likely that distinct transcriptional 

regulators exist. 

  

Palladin’s role in motility: the molecular basis of migration 

 While palladin up-regulation appears to correlate strongly with motility in a 

variety of cell types, palladin’s molecular functions in promoting or allowing cell 

migration are more complex.  First, palladin appears to play a critical role in cell-

matrix interactions.  Studies of cells cultured from knockout mice have shown that 

palladin null cells exhibit a reduced ability to bind to a deposited extracellular matrix, 

including fibronectin and collagen, in vitro. (Liu et al, 2006, current study, Chapter 2).  

This response alone may account for some of palladin’s effects on cell motility, as 

proper translocation requires the formation of adhesive contacts that may later be 

disassembled as the cell moves forward.  The ability to generate or stabilize 

adhesions may be particularly important in the cells surrounding skin and glial scar 

tissue, or for the ability of metastatic cells to migrate through the vascular basement 

membrane. 

 How does palladin achieve its effects on adhesion?  Liu et al. (2006) 

demonstrated that palladin null fibroblasts are deficient in the adhesion molecule β1 

integrin.  Using protease inhibitors, they discovered that in the absence of palladin, 

β1 is targeted for degradation by the proteasome, suggesting that palladin plays 
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some role in integrin stabilization.  The likely mechanism of action involves palladin’s 

role in stress fiber formation and structure.   

 Focal adhesions depend on the tension generated by stress fibers for their 

maintenance, as blocking stress fiber contractility with myosin inhibitors leads to the 

dissolution of focal adhesions and the dispersal of integrins (Chrzanowska-Wodnika 

and Burridge, 1996).  The opposite is also true – stimulation of contractility leads to 

integrin aggregation and the formation of focal adhesions. 

 In palladin knockdown cells and palladin null fibroblasts, focal adhesions near 

the center of the cell are dramatically reduced in number compared with control 

cells, while a few peripheral adhesions remain (Parast and Otey, 2000; Liu et al. 

2006).  This correlates with fewer and weaker stress fibers.  Palladin’s ability to 

modulate actin stress fibers has been investigated thoroughly, and the effects of 

palladin overexpression and knockdown have been examined in trophoblasts, 

astrocytes, fibroblasts, Cos-7 cells, and other cells (Parast and Otey, 2000; 

Boukhelifa et al., 2003; Liu et al. 2006; Ronty et al,, 2006; Rachlin and Otey 2006; 

Current study, Chapter 4).  It was previously believed that palladin exerted this 

influence through its actin-associated binding partners, including α-actinin and VASP 

that also localize to stress fibers, but we have demonstrated that palladin is capable 

of forming actin bundles in vitro (Current study, Chapter 4).  This may explain the 

observation that palladin is able to localize to stress fibers even when its N-terminus, 

including the α-actinin binding domain, is replaced in a differentially spliced isoform 

(Ronty et al. 2006).  With this altered N-terminus, palladin was found to localize 

along the entire length of the stress fiber, not just in the dense bodies, suggesting 
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that it is capable of binding to actin by some mechanism independent of α-actinin.  

The punctate pattern of normal palladin localization may rely on an interaction with 

α-actinin, though it is unclear which protein is responsible for the definition of dense 

body boundaries. 

 Stress fibers are thought to have two related roles – contractility and cell-body 

translocation.  Both rely on the interaction of bundled actin filaments with myosin II 

which generates the contractile force.  When stress fibers are disassembled in the 

absence of palladin, we would expect contractility of the cells to decrease, though 

this has been difficult to quantify.  We would also expect cell body translocation to be 

slower than in control cells.  In fact, palladin null fibroblasts and knockdown cancer 

cells exhibit reduced migration rates (Luo et al., 2005, Silvia Goicoechea, personal 

communication), which is consistent with our hypothesis. 

 In this study, we have also discovered palladin in dorsal ruffles and 

podosomes – two dynamic, actin-based structures believed to play a role in 

invasion.  Indeed, palladin seems to be a necessary component of these arrays, as 

palladin knockdown cells exhibit fewer ruffles and podosomes after stimulation with 

growth factors and phorbol esters, respectively (Chapter 3).  Palladin’s ability to bind 

and bundle filamentous actin (Chapter 4) suggests that it may play a structural role 

in stabilizing the actin arrays that give rise to dorsal ruffles and podosomes.  Palladin 

also appears to participate in the signaling pathways leading to ruffle formation via 

its ability to modulate Rac activation (Goicoechea et al., 2006) and its ability to bind 

Src (Ronty et al. 2007) after growth factor stimulation.  Knocking down palladin was 

shown to inhibit Src-induced ruffle formation, and it was determined that palladin is 
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tyrosine phosphorylated in cells expressing activated Src.  These results place 

palladin in a unique molecular niche, as it appears to participate both as a structural 

component of ruffles and also as an activator and substrate for the signaling proteins 

that lead to ruffle formation. 

 Palladin’s ability to modulate podosome formation may be critical during 

invasive motility.  In addition to their role as adhesive structures, podosomes have 

also been found to contain matrix metalloproteases (MMPs) (Sato et al, 1997) that 

contribute to the cell’s ability to modify and migrate through the extracellular matrix.  

This may be especially critical in the glial scar, as reactive astrocytes have been 

shown to increase their expression of MMP-1 and the membrane associated MT1-

MMP in injury models and are hypothesized to be the main source of MMPs in 

among neural cells (Buss et al., 2007; Rathke-Hartlieb et al., 2000; Rivera and 

Khrestchatisky, 1999).  MMP-2 was found to be critical for astrocyte migration in an 

agarose drop model of invasive motility (Ogier et al., 2006).  It was found to co-

localized with β1 integrin in peripheral membrane ruffles.  Further, endothelin-1 

treatment was shown to increase the activity of MMP-2 in human optic nerve head 

astrocytes (He et al, 2007).  Because palladin expression also increases after 

endothelin treatment (Chapter 2) and palladin plays a role in β1 integrin stabilization 

and membrane ruffling (Liu et al., 2006; Chapter 3), palladin expression could 

directly or indirectly modulate the activity or localization of MMP-2 in migrating 

astrocytes.  The interplay between palladin, podosomes, integrins, and MMPs in 

astrocytes is a subject worthy of further study. 
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 In conclusion, palladin’s roles in cytoskeletal remodeling and cell migration 

are multi-faceted, and exist in complex relationships requiring exquisite 

spatiotemporal regulation.  While purified palladin is capable of bundling actin 

filaments on its own, multiple transient associations with its binding partners α-

actinin, VASP, profilin, LPP, ArgBP2, Ezrin, Eps8, and others suggest that palladin’s 

functional role extends well beyond actin bundling.  Further study at all levels – 

biochemical, cellular, and physiological – will be required to understand palladin’s 

myriad roles in cytoskeletal remodeling. 

 

5.3 PRELIMINARY RESULTS AND FUTURE DIRECTIONS 

Palladin’s role in glial scar formation 

 To assess the importance of a particular gene product in glial scar formation, 

researchers have often relied on knockout animal models.  Excellent methods exist 

for mimicking many forms of CNS injury, including stroke, concussive trauma, and 

spinal cord transection in lab animals.  In our own lab, experiments were planned 

using a conditional palladin knockout mouse.  Unfortunately, gene targeting in these 

mice led to unintentional interruption of the palladin gene, even in the absence of the 

conditional signal.  Thus, the mice were not useful for experimental purposes. 

 In the future, it will be important to generate or obtain conditional palladin 

knockout mice for a variety of studies.  As the number of tissue specific Cre lines 

grows, a Cre-Lox palladin mouse line would allow us to address the role of palladin 

in not only brain and spinal cord injury, but also neural tube closure, CNS 

development, and axon migration and regeneration.  These experiments would 
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ultimately answer the question “Is palladin expression necessary for glial scar 

formation?” 

 A conditional knockout line would also allow us to develop a robust method 

for generating palladin null astrocytes.  Though we were able to culture cells from 

the cortex of day 13 mouse embryos, it is likely that these cells are at a different 

developmental stage than the more mature astrocytes cultured from 1 day old pups 

used by others in the field.  By using an astrocyte specific conditional line, palladin 

could be knocked out either in vivo at the timepoints of interest, or in vitro by the 

addition of a Cre expression vector.  In this way, we could assess the cells’ ability to 

migrate, contract, or adhere with a uniform population of truly palladin null cells, 

rather than knockdowns. 

 

Transcriptional regulation of palladin expression 

 As our understanding of palladin’s gene structure matures, new questions 

arise regarding the cell’s ability to regulate the expression of individual isoforms in a 

temporally controlled and tissue specific manner.  Though we recognize three 

common isoforms in rodents (90 kDa, 140 kDa, and 200 kDa), there is evidence for 

additional isoforms that arise from splice variants or alternative promoters both in 

rodents and other mammals.  Many of these variants have been discovered through 

the use of recently developed polyclonal antibodies. 

 By using the RT-PCR tools and methods developed in Chapter 2, we will be 

able to detect even small changes in gene expression of palladin isoforms both in 

cultured cells and in tissue preparations.  By pharmacologically or physically 
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modulating the cellular environment and measuring palladin expression, we will be 

able to place palladin within well established transcriptional regulation pathways.  

Further work may be done by identifying conserved promoter regions in the palladin 

gene and using in vitro and in silico analysis to identify transcription factors. 

 

Post-translational modification and regulation 

 Since its discovery, palladin was recognized as a phosphoprotein, and was 

found to be phosphorylated on serine and tyrosine residues (Parast and Otey, 2000; 

Ronty et al, 2007).  Initial attempts to identify the phosphorylated residues using 

mass spectrometry were unsuccessful.  One of the difficulties in identifying individual 

phosphorylation sites comes from the fact that the 90 kDa isoform contains almost 

120 serines, threonines, and tyrosines, and subpopulations of palladin may exist in 

multiple phosphorylation states within a single cell.  Separating and identifying these 

different pools which may have only miniscule differences in molecular weight has 

proved challenging.  So far, tyrosine phosphorylation has been identified 

downstream of Src activation in fibroblasts (Ronty et al. 2007) and palladin’s 

apparent molecular weight appears to shift as cells enter the mitosis, suggesting a 

shift in phosphorylation (Otey lab, unpublished results.)  Based on these 

observations, we hypothesize that other intracellular signaling pathways are able to 

regulate palladin’s phosphorylation state, and therefore its localization and binding 

interactions.  It will be particularly interesting to examine whether phosphorylation 

plays a role in the rapid relocalization of palladin to dorsal ruffles after growth factor 

stimulation (Chapter 3). 
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Reports to date have demonstrated that VASP, profilin, Eps8, SPIN90, Src 

and other binding interactions are mediated by the same short proline-rich region at 

palladin’s N-terminus (Boukhelifa et al., 2004; Boukhelifa et al., 2006; Goicoechea et 

al., 2006; Ronty et al., 2007).  Due to steric hindrances, it is unlikely that these 

proteins bind palladin simultaneously, suggesting that post-translational modification 

of palladin or its binding partners can regulate intermolecular binding affinities.  

Immunoprecipitation and mass spectrometry of palladin from resting and growth 

factor stimulated cells may help to identify phosphorylation sites and the kinases 

responsible for regulating palladin’s binding interactions. 

 

Palladin/Actin interaction 

 In Chapter 4, we identified Ig3 as a novel F-actin binding domain and Ig3-Ig4 

as an actin bundling region.  While our mutagenesis results have identified the actin 

binding site on Ig3, future studies will be needed to describe the mechanism of actin 

bundling by Ig3-Ig4.  Preliminary results using Size Exclusion Chromatography 

coupled with Multi-Angle Light Scattering (SEC-MALS) revealed that full length 

palladin and Ig3-Ig4 exist as monomers in solution at the salt concentrations we 

tested.  If palladin is not dimerizing, then two actin binding domains must exist in 

order to crosslink filaments.  As Ig3-Ig4 has only one confirmed actin binding 

domain, a more complicated bundling mechanism must be envisioned in which actin 

binding facilitates a conformational change that allows for either the binding of an 

additional filament, or domain dimerization. 
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 Because our studies focused on palladin’s C-terminus for actin binding, as 

suggested by studies of myotilin, there remains the possibility that palladin contains 

additional, non-canonical actin binding domains within its C-terminus.  Using 

bacterial or insect cell expression systems, we will be able to determine whether 

these sites exist using the already developed co-sedimentation assays.  Further 

study will be required to determine whether individual isoforms of palladin exhibit 

different binding affinities or bundling geometries that may contribute to their ability 

to organize actin within the cell. 

 Because palladin is an actin bundling protein that interacts with other actin 

bundling proteins (α-actinin, VASP, Eps8, etc.) it will be interesting to determine how 

their functions overlap or synergize.  Other studies have demonstrated that a 

combination of bundling proteins generates actin arrays that are functionally distinct 

from those produced by the individual bundlers (Rivero et al., 1999; Tseng et al., 

2005).  Assessing the arrays generated by palladin alone and in tandem with its 

binding partners may help elucidate the physiological importance of their interactions 

in vivo.    

 

Can palladin bind to myosin filaments? 

The Ig domains of proteins such as Myosin Light Chain Kinase, Myosin 

Binding Protein C (MyBP-C) and MyBP-H have all been shown to bind to the thick 

filaments of myosin II in the sarcomere (Welikson and Fischman, 2002; Okagaki et 

al., 1993; Miyamoto et al., 1999).  Because palladin overexpression results in the 

hyper-bundling of stress fibers, and ultimately stress fiber collapse in Cos-7 cells 
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(Supplemental movie 4.1), we decided to test whether palladin may also bind to 

myosin-II via its Ig domains. 

Myosin-II forms dense filaments at physiological salt concentrations that can 

be treated much like filamentous actin in co-sedimentation assays.   Neither Ig2 from 

140 kDa palladin, Ig3, nor Ig4 sediments with myosin at 100 or 50 mM KCl (not 

shown).  Full length 140 kDa palladin initially revealed a weak affinity for myosin 

filaments, but negative controls centrifuged without the presence of myosin also 

resulted in a small amount of palladin precipitation.  Whether palladin or its Ig 

domains are capable of binding to myosin II filaments will be the subject of further 

study.  In addition, palladin may be capable of binding other types of myosin, as a 

collaborator’s recent pull-down assay detected an interaction between palladin and 

myosin-9 (personal communication.)  Further experiments will be needed to confirm 

the preliminary results. 
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