
EFFECTS OF BIOREMEDIATION ON GENOTOXIC RESPONSES TO EXTRACTS OF SOIL 

FROM A FORMER MANUFACTURED GAS PLANT SITE 
 

 
by 

Megan Rosheen Knight 
 

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Master of Science in the 
Department Environmental Sciences and Engineering, Gillings School of Global Public 
Health.  

 
Chapel Hill 

  2009 
 

 

 

 Approved by 

 

Advisor:  Michael D. Aitken, Ph.D. 
 
Reader:  Jun Nakamura, D.V.M., Ph.D. 
 
Reader:  Louise M. Ball, Ph.D. 

 
 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210601592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

ii 
 

ABSTRACT 
 

Megan R. Knight: Effects of Bioremediation on Genotoxic Responses to Extracts of Soil 
from a Former Manufactured Gas Plant Site 

(Under the direction of Michael D. Aitken) 

Soil from former manufactured-gas plant sites is typically contaminated with a complex 

mixture of hazardous compounds, including polycyclic aromatic hydrocarbons, many of 

which are suspected carcinogens. However, biological treatment of these soils may result 

in the production of genotoxic metabolites. To determine whether bioremediation of an 

MGP soil increases the formation of products detrimental to DNA repair mechanisms, we 

tested the genotoxic profiles of solvent extracts of contaminated soil from Salisbury, NC 

both before and after treatment in a laboratory-scale column that simulated in situ 

biostimulation.  This study utilized a cell library containing a parent DT40 vertebrate cell 

line and a battery of isogenic mutants deficient in at least one DNA damage response 

pathway.  Overall genotoxic responses from this study suggest biostimulation of 

contaminated soil is an effective tool for the reduction of parent compounds but that 

metabolites from aerobic microbial activity are more genotoxic than the original 

untreated soil. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

 
1.1 INTRODUCTION 

 
Former manufactured gas plant (MGP) sites contain a multitude of chemicals of 

concern to environmental and human health.   Polycyclic aromatic hydrocarbons (PAH) 

comprise a major class of compounds pervasive to MGP byproducts, such as coal tar, 

which at one time were of great abundance and economic value to MGP 1.  On-site 

disposal and underground storage of organic residual materials contaminated MGP soils 

and surrounding surface and groundwater.  Since PAH are well-established carcinogens 

and mutagens, which can be persistent organic pollutants (POP) and biomagnify, 2-9 

decontamination of MGP sites is important to protect public health. 

Utilization of microorganisms with extensive PAH biotransformation capacities 

has long been considered an acceptable means of PAH removal at polluted sites 10, 11.  

Frequently, though, PAH metabolism is incomplete and the more recalcitrant, higher 

molecular weight PAH or oxidized PAH metabolites persist 12.  In higher organisms 

exposed to PAH, the metabolic products, such as o-quinones, are the ultimate 

carcinogenic forms of PAH 13, 14.  The reactive oxygen species (ROS) produced during 

PAH o-quinone formation exacerbate genotoxicity through oxidative stress 15.  Oxidized 

PAH metabolites also have increased polarity relative to the parent compounds and can 

migrate into water supplies 16. 
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Appropriate definition of acceptable end-points in bioremediation of specific 

MGP sites must incorporate thorough hazard characterizations 17.   Current understanding 

of how partially oxidized PAH metabolites interact with organic and inorganic 

 constituents of complex mixtures and contribute to genotoxicity is underdeveloped.    

Reports of specific deoxyribonucleic acid (DNA) damage responses to individual PAH or 

simple PAH mixtures are available 13, 15, 18-23; however, to date, established methods are 

insufficient to characterize the genotoxicity signatures of complex mixtures known to 

contain PAH. 

 
1.2 OBJECTIVES 
 

This study was motivated by the need to address potential adverse effects of 

exposures to contaminated soil from a former MGP, and whether bioremediation could 

mitigate these effects.  The primary objective of this work was to ascertain whether the 

genotoxic potential of soil treated with nutrient amendments and oxygen to stimulate 

biodegradation is altered from the original untreated soil.  Biostimulation was simulated 

in a laboratory soil column that was operated in parallel with a control column to which 

no amendments were added.  The second objective was to determine the type (s) of DNA 

damage, if any, incurred after DT40 cells and isogenic mutants were exposed to extracts 

of contaminated soil. 

To discover potential genotoxicity, chemical mixtures from the untreated soil and 

the biostimulated and control column samples were extracted and utilized in the DT40 

bioassay.  This assay, which employs a reverse genetics approach with DNA repair and 

cell cycle checkpoint genes in isogenic chicken B-lymphocytes, was used to examine if 
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genotoxic products formed as the metabolism of aerobic microbial communities was 

enhanced by biostimulation. 

  The existence of possible genotoxic PAH metabolites were of special interest in 

this project.  While all DNA damage repair pathways were inspected with the DT40 

bioassay, homologous recombination, non-homologous end joining, and nucleotide 

excision repair pathways were emphasized because these are established mechanisms 

which restore the integrity of DNA following exposures to PAH. 



 

 

CHAPTER 2 

LITERATURE REVIEW 

 
2.1  PAH CONTAMINATION IN THE ENVIRONMENT 
 

2.1.1  STRUCTURE AND PHYSICO-CHEMICAL PROPERTIES 
 

PAH, a major class of organic compounds, are composed of at least two fused 

benzene rings in various structural configurations, such as linear, angular, and cluster 

arrangements 24.  These compounds may also contain other rings that, unlike benzene, are 

not six-sided.  Solid states of PAH can be crystals, prisms, leaflets, and needles.  Most 

PAH and their derivatives fluoresce, and they readily undergo photo-oxidization.  PAH 

solubility properties vary, but most are poorly soluble in water and slightly soluble in 

non-polar solvents, such as acetic acid, benzene, and acetone 2.  These annulated 

compounds persist in ecosystems and bioaccumulate in organisms due to their 

hydrophobic nature and stability conferred by delocalized electron clouds, also known as 

resonance energy 2, 25, 26 

2.1.2 ORIGINS OF POLYCYCLIC AROMATIC HYDROCARBONS 
 

PAH enter the atmosphere, aquatic and terrestrial ecosystems from biosynthetic, 

geochemical and anthropogenic sources 27.  The ubiquity of PAH in the environment is 

predominantly attributed to incomplete combustion of coal and petroleum products.   

Other anthropogenic sources of PAH include exhaust from transportation and 
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shipping processes, as well as asphalt, creosote, and wood-preserving plants 3.  Natural 

means, like volcanic eruptions and forest fires, also generate and release substantial 

quantities of PAH into the environment.  Biogenic sources, such as plants, algae and 

microorganisms, and incomplete combustion of organic materials, such as cigarettes and 

charbroiled foods, present lesser contributions 28.  While the production and discharge of 

PAH and other persistent organic pollutants from industry and incomplete combustion 

are classified as unintentional contamination 9, the ultimate environmental fate of most 

PAH is influenced by sorption to hydrophobic domains in soils and sediments.   

 Sub-surface soils at MGP sites are often contaminated with tars from poor 

practices during operation, leaky underground holding tanks, and substandard 

decommissioning of plants 29.   Coal tar constituents can include PAH, monocyclic 

aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene, and other 

organic compounds of toxicological concern 1.   

   
2.1.3 OUTCOMES OF ENVIRONMENTAL PAH CONTAMINATION 

 
2.1.3.1  MICROBIAL BIODEGRADATION 

The principle of “biological infallibility” proposes that for every organic 

compound there exists a microbe suited with the appropriate biochemical pathway 

necessary for biodegradation 30.  Degradation rates of specific compounds, however, are 

well established to be site-specific as a result of variations in system conditions and 

constituents of microbial biodegrading communities 31.  A correlation seems to exist 

between PAH concentration and PAH-degrader populations; highly contaminated soils 

have been shown to contain more degraders than soils with less PAH concentrations 

using most probable number enumeration 32, 33.  While bacterial or fungal metabolism is 
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common for the more readily degradable PAH, such as naphthalene or phenanthrene, 

high molecular weight PAH generally require the co-metabolism of a consortium of 

microorganisms34.  

A cascade of biochemical reactions is necessary for PAH biodegradation; the 

initiating events of aerobic metabolism generally include oxidation of aromatic rings by 

dioxygenases, followed by a dehydrogenase reaction.  Numerous bacteria, particularly 

within the genera Sphingomonas, Burkholderia, Pseudomonas and Mycobacterium 35-40, 

are identified to metabolize and co-metabolize PAH with multi-step cascade initiated by a 

dioxygenase and subsequent formation of cis-dihydrodiols 10, 34, 41.  Dehydrogenases can 

then generate catechols from the cis-dihydodiols; water and carbon dioxide are ultimate 

metabolic end-products 42.  Also, a few bacteria in the Mycobacterium sp. can produce 

trans-dihydrodiols with a methane monooxygenase, a cytochrome P450-monooxygenase 

10.   

It has been postulated that oligotrophic microorganisms, such as sphingomonads, 

have developed adaptations for catabolizing complex mixtures containing PAH.   

Bacteria produce bio-films containing extracellular polymeric substances with which 

PAH associate, possibly through interactions of the hydrophobic chemicals with 

hydrophobic moieties of the extracellular matrix 43-45.  Similarly, sphingan, an 

exopolysacchride matrix, is suggested to be the basis of a mechanism that Sphingomonas 

spp. use to compete with other microorganisms during periods of famine since PAH 

remain readily bioavailable while associated with the matrix 46.   

Fungi effectively catabolize PAH in soils, via the cytochrome P-450 system, and 

for wood-rotting fungi, soluble extracellular enzymes associated with lignin degradation 
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11, 47, 48.  Phanerochaete chrysosporium, a species of white rot fungus, has been hailed as 

an omnipotent microorganism due to its capability to co-metabolize a wide range of 

organic compounds in both aerobic and anaerobic environments with non-ligninolytic 

and ligninolytic enzymes 49.  

Environments such as soils, sediments and groundwater aquifers can develop 

anaerobic zones over time 50, 51.  In municipal sewage sludges 52, 53and some sediments, 

anaerobic microbial communities hydrogenate PAH aromatic rings to initiate metabolism 

and then cleave rings in denitrifying and sulfate-reducing conditions 10.   

As mentioned previously, soils and sediments are excellent repositories for PAH.  

Decontamination of PAH-contaminated soils by biological treatment can be a more 

efficient, economically realistic, and case-specific approach than traditional 

physicochemical treatment methods 34.  

 
2.1.3.2. BIOAVAILABILITY 

 

Soils are dynamic systems that include gas, liquid, and solid phases.  

Heterogeneous solid phases can be unique within and between samples as a result of 

varying spatial arrangements, particularly on the micro-scale 30.  These differences are 

also attributed to variances in physicochemical properties of inorganic and organic 

components.  Binding coefficients of chemicals to soil colloids can be directed by 

electrostatic interactions, non/specific partitioning, surface reactions, and hydrophobic 

interactions 54.  Surface reactions have been suggested to guide the sorption of 

hydrophobic organic compounds to organo-mineral complexes 55, 56.  Likewise, the 

intrinsically low aqueous solubility of PAH promotes their tendency to tightly associate 
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with soil particle surfaces, which decreases volatilization, photolysis, and even microbial 

biodegradation.  PAH bioavailability diminishes almost logarithmically as PAH 

molecular weights increase 11, 57.  Weathering processes of aging soils also result in the 

decline of PAH bioavailability over time 58, 59.  Because the dissolution of chemicals in 

aqueous solutions is believed to facilitate microbial degradation, dissociation of PAH 

from soil particles is believed to be important for the elimination of PAH from 

environmental samples 60, 61.  Enhancement of PAH bioavailability to microorganisms 

can be achieved through the addition of synthetic surfactants or biosurfactants 26, 26, 62-64.  

High concentrations of the compounds, which can serve as substrates in microbial 

metabolism, can also become inhibitors to biodegrading microorganisms 65, therefore 

biodegradation and other fate processes which lower PAH content, viz. volatilization and 

photolysis, generally occur at greater rates in areas peripheral to those with highest PAH 

concentration 35.   

2.1.3.3  BIOREMEDIATION 
 

  Remediation technologies designed to reclaim terrestrial systems affected by 

chemical contaminants include ex situ and in situ methods.  Traditional ex situ strategies 

employ excavation of impacted soils and treatment.  Although such methods are effective 

for removal of pollutants, they are expensive 34.  In situ methods, however, present 

difficulties with control of toxic metabolites or the generation of treatment by-products 

and mitigation of contaminant mobility into groundwater and surrounding areas 66-68.  

Despite significant financial investments associated with ex situ options, environmentally 

acceptable end-points can be achieved more effectively through greater control of the 
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process as a whole; this can translate into shorter treatment periods 69.  In recent decades, 

bioremediation has been investigated extensively for the feasibility of PAH removal from 

former MGP soil.  Bioremediation encourages microbial metabolism of contaminants 

through biostimulation with nutrient amendments and/or bioaugmentation with microbe 

populations known to possess degradative capacities 10.  The efficacy of bioremediation is 

defined by: (i) measurements of parent compound removal and (ii) determination of the 

indigenous microbes’ metabolic potentials to transform the parent compounds 70.  

Utilization of analytical chemistry techniques and bioassays address the biological 

treatability of contaminated soils.  Regardless of the remediation method applied, 

thorough characterization of contaminated sites and a well-developed knowledge of the 

site topology and geochemical signature is necessary for successful decontamination.   

 
2.2 TOXICITY OF COMPLEX MIXTURES 
   

2.2.1 RISK ASSESSMENT APPROACHES 
  
 Toxicity characterization of single compounds received great attention throughout 

the 20th century 71-73.  Humans and ecological systems are, however, concurrently or 

sequentially exposed to complex mixtures through occupational settings, air particulate 

matter, surface and groundwater, wastewater effluent, soils and sediments.  Hazard 

characterizations and risk assessments of complex mixtures is far more challenging than 

that of individual substances.  However, many approaches and models have been 

designed to effectively assess the adverse effects of complex mixtures.  Three primary 

factors contribute to the complexity risk assessment for mixtures: the difficulty in 

identifying every chemical component in a mixture 74, scant a priori toxicity data 
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available on all compounds present, and sparse knowledge of the mechanisms by which 

constituents are genotoxic or toxic 75.   

The establishment of a systematic methodology to determine the toxicity and 

genotoxicity of complex mixtures is of great concern to the United States Environmental 

Protection Agency (US EPA).  The most definitive law in the US regarding the necessity 

for thorough risk assessments of complex mixtures was the Comprehensive 

Environmental Response, Compensation and Liability Act and the Resource 

Conservation and Recovery Act 76, 77.   This Act deems a single-chemical risk assessment 

approach insufficient for characterizing hazardous wastes. 

Surmountable challenges exist for risk characterization of complex mixtures.  

Poor correlation between chemical analysis of complex mixtures and toxicity in 

biological systems is well documented 78-81.  This is especially true for the environmental 

complex mixture whose composition can be dynamic as a result of transformation by 

environmental conditions, including microbial metabolism.  In 2000 the US EPA 

responded to these difficulties with a supplemental guidance report to facilitate future risk 

assessment of complex mixtures 82.  The report includes recommendation of three 

approaches for complex mixture risk assessment, which are summarized below.  They 

embody both biological and chemical analysis to better assess the risks associated with 

complex mixtures, particularly after their release into the environment.  These approaches 

were again promoted in a 2002, US EPA Peer Review Workshop 82. 

The US EPA promulgated strategies for determining the potential adverse effects 

of complex mixtures which include the surrogate approach, the comparative potency 

approach, and the relative potency factor approach 82, 83.  With the surrogate approach, 
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one chemical that is considered the best representative for a mixture is tested; often the 

target chemical is a designated priority pollutant.  For example, often benzo(a)pyrene 

(BAP) is utilized as the single indicator compound for mixtures known to contain PAH.  

This approach incorporates a well-characterized surrogate mixture with established 

concentrations of the representative chemical.  Then synthesis of a second mixture, which 

is a dilution based on the representative chemical concentration, should yield a product 

sufficiently similar to the surrogate mixture.   Risks associated with the second mixture 

are anticipated to vary proportionately with the surrogate mixture.  There are, however, 

great limitations to this approach because constituents of complex mixtures can belong to 

numerous classes of inorganic and organic compounds, so that one indicator chemical 

cannot adequately represent an entire mixture. Additionally, the concentrations of priority 

pollutants may not reflect those of other components in a mixture; consequently, the 

toxicity of the mixture is defined incorrectly 84, 85.   

The comparative potency approach utilizes human and animal toxicity data from 

epidemiological and biological studies for groups of mixtures deemed sufficiently similar 

by chemical analysis.  Often this approach is less powerful, though, because many data 

sets are unavailable or fragmented.  Generally complete toxicological data sets for 

complex mixtures are not realistic due to economic and ethical impracticalities 86.   

The final strategy suggested by the US EPA, the relative potency factor approach, 

ranks chemicals of a mixture by their toxic equivalency factors to determine the relative 

risk of a mixture.  The major drawback of this approach is the assumption that the 

toxicity of mixtures is produced by the additive effects of chemicals while other potential 

chemical interactions are neglected.   
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Yet, another established method for effective risk assessments of complex 

mixtures exists which is the effect-directed analysis approach.  Here a combination of 

physicochemical fractionation, biotesting or biological effect screening, and subsequent 

chemical analyses are employed to analyze public health risks associated with complex 

mixtures 87, 88.  This approach furthered the EPA toxicity evaluation of aqueous samples 

by making the total available quantity of organic and inorganic toxicants focal points, 

rather than the bio-available quantities 88.    Although cost and time intensive 81, this 

approach allows for individual toxicants of a complex mixture after fractionation and 

purification of samples, thereby yielding more meaningful analysis of specific complex 

mixtures.    

2.2.2 INTERACTIONS OF COMPLEX MIXTURES 

As early as 1939 three categories of joint chemical interactions were defined 

which are still germane to the field of toxicology: independent joint action, similar joint 

action, and synergistic action 89.  Independent joint action describes chemicals that 

operate by different modes of action in organisms such that the presence of one chemical 

will not affect another compound’s toxicity.  Similar joint action depicts chemicals that 

cause similar effects in organisms.  Toxicities of chemicals with similar joint actions are 

dependent on the presence and concentrations each chemical.  Combined toxicity of 

chemicals from such classes is assumed to be predicted by knowledge of the independent 

effects of the chemicals.  Synergistic action (chemical interaction) addresses mixtures 

where components synergize, potentiate, or antagonize each other.  Toxicity of a mixture 

containing such compounds requires knowledge of the combined toxicity with respect to 

varying proportions 89, 90.  Plackett and Hewlett 90 further developed the concept of 
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chemical interactions and provided basis for the two standard models for toxic modes of 

action (TMoA):  the concentration addition model of simple similar actions of chemicals 

with the same TMoA and the response action model of the independent joint action of 

chemicals with dissimilar TMoA 91.  These models are now regularly employed to predict 

the toxicity of complex environmental mixtures 92-95. 

Numerous studies regarding chemical interactions have since concentrated on 

solitary chemicals, sequential exposures, and binary mixtures 73, 96.  In an effort to further 

understanding of complex mixtures on public health and the environment, others’ 

research honed in on environmentally relevant concentrations of complex mixtures at the 

lowest observable adverse effect level or no observable effect level (NOEL) 97-99.  

Analysis of high-dose concentrations is often meaningless with consideration to realistic 

environmental concentrations of toxicants 100-102.  In addition to dose-response 

relationships and low-dose extrapolations, the mechanisms of toxicokinetic and 

toxicodynamic interactions are popular focal points in risk assessments of complex 

mixtures today 86. 

   
2.2.3 INTERACTIONS OF PAH IN COMPLEX MIXTURES 

 
 Current debate regarding the interactions of PAH in complex mixtures includes a 

traditional perspective where PAH produce an additive effect 82, 103, 104 and that based on 

more recent research which debunks the assumption that additivity is the sole interaction 

of chemicals in complex mixtures containing PAH.  Work by Park and colleagues 

revealed that constituents of environmental samples containing PAH can interact by the 

standard additivity fashion as well as via antagonism 105-107.  Previous reports also 

indicated antagonist effects from soil-derived coal-tar creosote, which is 80-85% PAH, 
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and synthetic mixtures 108, 109.  It appears the chemical interactions of parent PAH 

compounds and subsequent derivatives or metabolites can be confounded by the relative 

concentrations of constituents in a complex mixture.  One study focused on the toxicity 

of retene (7-isopropyl-1-methyl phenanthrene) and its hydroxylated derivatives and 

revealed a unique pattern in which the toxicity of the parent compound was potentiated 

by low concentrations of the derivatives and antagonized by high concentrations 110.  

 

2.3 TOXICITY OF PAH AND DEGRADATION PRODUCTS 

 
 Complex mixtures containing PAH are categorized as strong carcinogens and 

mutagens, as evidenced by increased cancer rates after exposures 2-6.  The potency of 

PAH is established to be greater as the number of rings which comprise a compound 

increases 111.  The EPA classifies PAH as priority pollutants in environmental complex 

mixtures 112.   

As with other procarcinogens, parent PAH compounds require metabolic 

activation to exert their full carcinogenic or mutagenic capacity as electrophilic 

metabolites 3, 21, 113-115.  Three main pathways are well established for the 

biotransfomation of PAH parent compounds to deleterious active metabolites:  (i) 

dihydrodiol epoxide pathway, (ii) radical cation pathway, and (iii) o-quinone pathway 3, 21.  

In mammalian systems, these enzymatic reactions are achieved by monoxygenases 

located within nuclei, thereby making DNA damage possible.  The initial postulation of 

carcinogenicity derived from monooxygenases was doubted since these enzymes were 

thought to reside only in the endoplasmic reticulum 116, 117. 
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 The dihydrodiol epoxide pathway requires three enzymatic reactions that include 

P-450 oxidation to form unstable arene epoxides, hydrolysis of arene oxides to form 

trans-dihydrodiol intermediates, and another P-450 catalyzed oxidation to yield vicinal 

dihydrodiol-epoxides as the final metabolic products 3, 21.  Epoxides form due to the 

addition of oxygen atoms across double bonds by enzymatic action or uncatalyzed 

oxidation processes 118.   Electrophilic dihydrodiol epoxides can be causative agents in 

DNA damage-induced carcinogenicity by two mechanisms.  Contrary to the initial 

findings of Baird et al. 119
, DNA adduct formation can occur in spite of the steric 

hindrance caused by bay or fjord regions in PAH.  However, greater carcinogenicity and 

tumorgenicity is associated with fjord-region PAH than bay-region class 20, 120.   

 

Figure 1.  Fjord (left) and bay regions depicted.  Fjord regions are non-planar and more 
reactive with DNA than planar bay region PAH. 
 

Additionally, because most aromatic bonds are prochiral stereoisomers of 

dihydrodiol, epoxides can form; some are known ultimate carcinogens such as anti-diol-

epoxides 121.  Benzo[a]pyrene, the hallmark compound for numerous PAH toxicology 

studies, is known to form (+)- 7/3,8a-dihydroxy-9a, 10a-epoxy-7,8,9, 10- 

tetrahydrobenzo[a]pyrene (BPDE).  The extreme potency of BPDE as a carcinogen and 

mutagen in mammalian systems results from covalent bonds formed with nuclear DNA, 

mitochondrial DNA and cytosolic RNA 122, 123.  A reaction of DNA and BPDE forms 
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adducts which may either be stable or depurinating 19, 124.  Stable anti-BPDE-DNA 

adducts can be mutagenic via G to T transversions and proto-oncogenic ras activations 

125-127.     

Peroxidases act on PAH by the removal of one π electron from aromatic rings, 

resulting in radical cations that are considered major contributors to the carcinogenicity 

of PAH 128.  The one-electron oxidation intermediates can covalently bind PAH to DNA 

129-131, as was demonstrated with BAP 128.  Unlike adducts generated from dihydrodiol 

epoxide/DNA interactions, radical cations generally react at the N7 position of guanine 

and adenine, the C8 position of guanine, and N3 position of adenine (Figure 2) 132.  

  

Figure 2.  Arrows indicate locations of DNA bases, guanine and adenine, where 
dihydrodiol epoxides are most reactive to form adducts. 
 

Subsequent hydrolysis of glycosidic bonds thereby produces spontaneous 

depurinations or apurinic (AP) sites 133, 134.  Investigation of metabolic activation of BAP 

by rat liver microsomes revealed production of 84% unstable adducts 135.  The transiency 

of AP sites generated from radical cations is the basis of current debate as to whether 

radical cations are sources of mutagenicity 136.  The white rot fungus Phanerochaete 

chrysosporium employs extracellular peroxidases to catalyze radical cation formation in 

PAH metabolism 137. 
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 A third group of activated PAH electrophiles, the o-quinones, form via action of 

dihydrodiol dehydrogenases on either cis- or trans-dihydrodiols.  These enzymes, which 

belong to the family aldo-keto reductases, suppress the dihydrodiol epoxide formation 

and instead produce catechols which are auto-oxidized to o-quinones 138, 139.  O-quinones 

have potential to be reactive Michael-acceptors and form stable and depurinating DNA 

adducts.   

Additionally, PAH o-quinones can enter redox cycles and produce reactive ROS, 

such as semi-quinione radicals, hydroxyl radicals, hydrogen peroxide, and superoxide 

anion radicals.  Severe oxidative stress can originate from ROS and effectively produce 

many oxidized cellular macromolecules, such as 8-oxodeoxyguanosine which is 

commonly associated with PAH carcinogenicity 13, 14.  In the presence of Cu (II), 

nanomolar concentrations of o-quinones are established to produce significant quantities 

of 8-oxo-dGuo by a singlet oxygen molecule 105.  DNA damage differs between Cu (II)- 

and Fe (III)-mediated o-quinone redox cycling, with the latter generating hydroxyl 

radicals.  Abasic sites and oxidized pyrimidines have been linked with benzo[a]pyrene-

7,8-dione, benz[a]anthracene-3,4-dione, and 7,12-dimethylbenz[a]anthracene-3,4-dione 

exposures 107.  

 
2.4 GENOTOXICITY ASSAYS 

 
 
2.4.1 PROKARYOTIC ASSAYS 

 

Microbial assays have figured significantly into genetic toxicology due to speedy 

results, low cost, and ease of discovering low-frequency DNA insults, such as mutations. 

Microbial assays are historically relied upon for mutagenicity determination by 
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phenotypic modifications.  These assays are designed to detect stable heritable changes in 

DNA with either reverse or forward mutations strains.  Most mutagens produce numerous 

defects in DNA as a result of varying exposure concentrations, initial DNA damage, and 

subsequent responses of organisms to the primary DNA alteration 140. 

 The mutagenic potential of an individual chemical or mixture of chemicals can 

be determined by the Ames assay.  This bacterial reverse mutation assay employs 

auxotrophic Salmonella typhimurium and Escherichia coli strains that are incapable of 

synthesizing an essential component for their survival as a result of base-pair substitution 

or frame-shift mutation in the responsible gene 141-145.  Should a chemical induce genetic 

damage by mutation of the preexisting mutation site, the bacteria will regain viability, 

which allows this test to provide quantitative genotoxicity data 146.    Development of 

numerous tester strains with varying mutations makes the Ames assay a useful diagnostic 

tool for mutagens which can operate by different mechanisms 147, 148.  Frequently the 

Ames assay is denoted as the Salmonella/microsome test, since this organism requires 

addition of an S9 metabolic activation system to mirror biotransformation comparable to 

that of higher eukaryotes. One advantage of this test is the possibility to evaluate singular 

types of DNA damaging sources.  For instance, oxidative stress from PAH metabolism 

can be analyzed specifically by this bioassay with strains designed for unique sensitivity 

to oxidative mutagens 149.  This inexpensive, short-term test is accepted world-wide as a 

screening tool for genotoxicants and utilized by regulatory agencies to classify chemicals 

and determine acceptance of new compounds 150.   
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2.4.2  NON-MAMMALIAN EUKARYOTIC ASSAYS 
 
Non-mammalian eukaryotic mutagenicity assays are today largely replaced by 

mammalian cell studies 151.  Numerous forward mutation assays, however, utilize 

Sacchraomyces cerevisiae, other fungi, plants, and insects (e.g. Drosophila 

melanogaster) to determine the mutagenicity of chemicals.  Assays with non-mammalian 

eukaryotes to detect responsible agents for mitotic cross-overs and mitotic gene 

conversions have determined the genotoxic potential of hundreds of chemicals 152.  

Genotoxic investigations with fruit flies can reveal recessive lethal mutations at 

approximately 800 loci on the X chromosome; gene mutations and smaller deletions are 

also detectable.  This species uniquely provides information regarding chromosomal 

aberrations in germ cell lines, such as heritable translocations, and sex chromosome loss 

153.  Varying NOELs, metabolic processes, and gametogenesis for both yeast and 

Drosophila melanogaster limit the extrapolation of these genotoxic assays to mammalian 

toxicity 151, 154.  Plant genetic toxicology methods are also largely supplanted by those 

which use mammalian eukaryotes, but if environments are well characterized and contain 

appropriate control measures, plants can still be effective in situ tools for monitoring 

toxicants.  For example, Klekowski 155, 156 demonstrated a correlation exists between 

internal PAH concentrations of red mangroves through sediment exposures.  Despite the 

low cost of these systems and ease with which reproducibility can be achieved, these 

model organisms lack homology to higher eukaryotes, constraining the relevance of the 

results 157. 
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2.4.3 MAMMALIAN  ASSAYS 

2.4.3.1  OVERVIEW  

Mammalian in vivo and in vitro studies provide results more meaningful to 

translations to humans than assays that utilize microbial species or lower eukaryotes.  

Complex multicellular assays can require elaborate study designs to account for the 

numerous variables in these biological systems, and they generally involve longer, more 

costly experiments.  In spite of the greater quantities of time and resources associated 

with these tests, mammalian genotoxic studies undoubtedly generate the most relevant 

information to enhance human risk assessments 151.   

2.4.3.2   HPRT ASSAY 

The hypoxanthine-guanine phosphoribosyl-transferase (HPRT) assay detects 

forward mutations which confer resistance to the pure purine analogues, i.e. 6-

thioguanine and 8-azaguanine 158.  Cells possessing this X-linked gene die after exposure 

to cytotoxic agents unless the HPRT locus contains a mutation which renders the gene 

non-functional or permits only minimal expression. Historically, HPRT assays in cultured 

cells have been conducted with Chinese hamster ovary (CHO) or human pulmonary 

(V79) cells.  Generally these assays require the inclusion of S9 enzymes, because these 

cell lines are deficient in Phase I microsomal monooxygenases.  In vivo HPRT assays are 

most commonly performed using mice, rats, and monkeys 158, 159.  Results from such 

animal studies are particularly significant for human mutational monitoring since 

measurements yield reliable comparisons 160, 161.   
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One drawback of this assay is its duration; CHO cells double their number every 

12 to 16 hours.  It is important to note that a confounding factor of this assay is the 

possible decrease of reactive intermediates by Phase II detoxifying enzymes 140.   

  
2.4.3.3 MICRONUCLEUS ASSAY 
 

 Formation of micronuclei indicates chromosomal damage or aneuploidy.  

Micronuclei represent fragmented chromosomes or even entire chromosomes which 

ineffectively separated into daughter cell nuclei during mitosis.  This assay can utilize 

primary cultures of human lymphocytes 162, 163 and other mammalian cell lines 164, 165.  

This assay is also conducted in vivo with mammalian species 166-168 by counting 

micronuclei in immature erythrocytes in bone marrow of mice exposed to potential 

chromosome-damaging agents 166-168.  This cytogenetic assay is simpler and less time-

consuming than metaphase analyses, which also detect chromosome aberrations.  The 

swiftness and ease with which chromosome aberrations are detected with the micronuclei 

assay is a major advantage over other cytogenetic tests.  This test only detects 

chromosome breaks, unlike other chromosome aberration tests which measure 

chromosome breaks, exchanges and translocations 169.  While this assay is powerful for 

mechanistic studies, it is less commonly utilized in research studies related to 

genotoxicity 167.    

 
2.4.3.4 CYTOGENETIC ASSAYS 

 Conventionally, chromosome aberrations can be directly observed with 

microscopy analysis of cells undergoing metaphase.  Cells with unchanging, well-defined 

karyotypes, short doubling periods, low chromosome numbers, and sizable chromosomes 
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allow for detection of chromosome abnormalities 170-173.  Chinese hamster cells are often 

employed.  This technique can identify specific classes of unstable chromosomes and 

chromatid aberrations that include: chromatid deletion, triadial or chromatid exchange, 

interstitial deletions from chromosome breakage, insertions, and translocations 151.  In 

vivo testing for chromosome aberrations often involves analysis of cells which rapidly 

divide, such as those from the bone marrow of rats, mice, or Chinese hamsters 170, 171, 174.  

Experimental design and implementation of experimental conditions are especially 

important for cytogenetic assays, given the need for detailed data to distinguish between 

chemical-induced damage and naturally occurring achromatic gaps in chromosomes.  

Provided these considerations metaphase analysis is time-consuming and requires a high 

degree of technical skill.    Recent incorporation of fluorescence in-situ hybridization 

(FISH) into cytogenetic assays has proven this is a valuable research tool for the 

detection of chromosome aberrations, particularly translocations 175.  This technique 

employs nucleic acid probes which fluoresce when bound to a complementary region of a 

chromosome.  This process is commonly called “chromosome painting”.  Development 

of a battery of probes specific to human chromosomes has allowed for translation of 

chromosome aberration data to meaningful extrapolations to human health, yet this 

technique is expensive and time-consuming as well. 

 

2.4.3.5 COMET ASSAY 
 
Severing of DNA strands can be identified by this single-cell gel electrophoresis 

assay.  Originally carried out with human lymphocytes 176 and later with other 

mammalian cells 177-179, the Comet assay is also employed with other species such as 
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plants, worms, mollusks, fish, and amphibians 180.  This rapid, sensitive and relatively 

simple technique 181 can also determine sequence- or gene-specific damage and repair 

when combined with the FISH technique 182, 183.  The primary advantage of the Comet 

assay is the differential detection of double strand breaks from non-specific DNA breaks 

through utilization of neutral and alkaline conditions, respectively 176, 184, 185.  As with the 

previously mentioned genetic toxicological approaches, the Comet assay is limited to a 

small range of detectable DNA injuries. 

 
2.5 DT40 BIOASSAY 
 
Another strategy for determining the genotoxic potential of chemical agents is the 

DT40 assay.  The foundation of this system is a reverse genetics approach which 

incorporates cells from chicken B-lymphocytes deficient in genes related to DNA repair 

and replication 186.  In comparison to other higher eukaryotes, these white blood cells 

allow relatively facile manipulation of their genome because of unusually high 

occurrences of homologous recombination, which encourages the random integration of 

transfect DNA into their genomes 182, 187.  Uniquely, the parent DT40 cell line and its 

mutants, which have at least one gene “knocked out”, have a non-functional p53 gene 188.  

This feature permits mutant cells to by-pass apoptosis, so that the absence of the DNA 

repair and replication gene(s) of interest can be concluded to be the driving force behind 

cell death.  The DNA repair pathways in this system can include nucleotide excision, 

base pair excision, homologous recombination, non-homologous end joining, translesion 

synthesis, and mis-match repair.  Other categories indirectly related to DNA damage 

repair in the DT40 system are the cell cycle check point and RecQ helicase pathways.   
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A major advantage of the DT40 bioassay is the possibility to detect diverse DNA 

damage responses.  Beyond the elucidation of numerous means in which a genome might 

be compromised, this system reveals the mechanisms by which damage is repaired.  

Additionally, the homology of the chicken genome is reported to be almost equivalent to 

murine cells in DNA recombination and repair genes 187.  The translation to human 

exposures to genotoxicants is therefore much greater than assays which employ 

microorganisms and lower eukaryotes.  Cell lines require approximately seven days for 

re-equilibration to a functional state after culturing from a frozen stock supply.  In 

contrast to mammalian cells, which can require weeks, this is a major step towards 

greater efficiency.  Another benefit of this system is the temperature at which these cells 

are kept.  At 39.5°C, most ambient bacteria are incapable of survival, thus parent DT40 

and mutants rarely are contaminated with microorganisms. 

 
2.6 TYPICAL DNA INJURIES FROM PAH EXPOSURES 

 
2.6.1     BULKY DNA ADDUCTS 

 
 After biotransformation, PAH metabolites stimulate formation of bulky adducts 

that are covalently bonded to nucleophilic DNA 3, 122.  Reactive PAH metabolites have a 

flat, hydrophobic structure that facilitates the intercalation into the DNA duplex and 

distortion of the helix 189.  Characteristic patterns of DNA adducts have been 

demonstrated with dihydrodiol epoxides.  For instance, generally bulky adducts easily 

form at the N-2 position of guanine by interactions with the lone pair of electrons 118, 190.  

In vitro incubation of 4,5- , 7,8-, and 9,10-dihydrodiol metabolites of BAP with DNA and 

hepatic microsomes demonstrated that the 7,8-isomer was ten times more reactive than 
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the parent compound or other metabolites 191.  Later Grover and Sims 192 identified the 

BPDE as the most reactive metabolite of BAP.   

Preferential binding of bay-region dihydrodiol expoxides, like BPDE, occurs with 

purines as well as cytosine 193.  Greater reactivity of bay region dihydrodiol epoxides 

with DNA than that of K-region arene epoxides might be attributed to the stable benzylic 

cation intermediates formed from acid-catalyzed ring openings at the bay region 194.  

Steric inaccessibility of the bay region may result in the relative resistance of these 

epoxides to enzymatic hydrolysis or conjugation 195.   Bay region theory has been 

extended to other PAH metabolites such as 5-methylchrysesne 196, 7,12-

dimethylbenz[a]anthracene 197, benzo[c]phenanthrene 198, dibenz[a,j]acridine 22, and 

others 199, 200. 

 PAH activation through the o-quinone pathway can also produce metabolites 

which covalently bind to DNA.  Because PAH-o-quinones behave as reactive 1,4-

Michael addition acceptors, these metabolites are capable of hydrolyzing to 

oligodeoxyribonucleotides.  Deoxyguanosine adducts have been generated from 

incubation of calf thymus and benzo[a]pyrene-7,8-dione 19.  Other o-quinone-induced 

stable adducts are known 8-N1,9-N2-deoxyguanosyl-8,10-dihydroxy-9,10-dihydroBaP-

7(8H)-one, two diastereomers of 10-(N2-deoxyguanosyl)-9,10 dihydro-9-hydroxyBaP-

7,8-dione, and another diastereomeric pair of 8-N6,10-N1-deoxyadenosyl-8,9-dihydroxy-

9,10-dihydroBaP-7(8H)-one 18. 

 Nucleotide excision repair (NER) is an important cellular defense against insults 

in the form of DNA bulky adducts.  NER enzymes catalyze the removal of a short single-

stranded DNA segment.  The eradicated section includes the adduct or lesion, leaving 
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behind a single-strand gap in the DNA.  Next a DNA polymerase exploits the undamaged 

strand so that it acts as a template as in typical DNA replication 201.  Without this 

reconstruction mechanism, cell death may occur from halted DNA replication and 

transcription or mutations may arise from bypass of bulky DNA adducts with translesion 

synthesis enzymes 202.   

Interactions of PAH metabolites with the DNA structure, which affects the DNA 

replication machinery, have been identified by nuclear magnetic resonance and X-ray 

crystallography techniques 202, 203.  Adduction of PAH metabolites interferes with DNA 

polymerases by several means, including the local context of the adduct 204 on the major 

or minor groove 205; the structural conformation of DNA adducts is of great importance 

for the efficacy of the multi-subunit NER repair system.   

 
2.6.2 OXIDATIVE STRESS  

 
Imbalances of exogenous oxidants within cells and intracellular antioxidant 

defense levels elevate intracellular levels of ROS and ultimately result in injury of 

cellular macromolecules, including DNA, from reactions with molecular oxygen or its 

derivatives. Eventual formation of o-quinones by CYP1A1/epoxide hydrolases and 

dihydrodiol dehydrogenases from PAH by mammalian enzymes or by incomplete 

bacterial metabolism results in concomitant production of ROS, which encourage 

oxidative stress conditions 13, 21-23.  Hydrogen peroxide forms as catechols autoxidize with 

one-electron transfers to o-semiquinone anion radicals and from the dismutation of 

superoxide anion radicals, either enzymatically or spontaneously. Additionally, 

superoxide radicals are generated from nonenzymatic redox cycling of the o-semiquinone 

anion radicals to fully oxidized PAH o-quionones when molecular oxygen is reduced.  
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Hydroxyl radicals can form from reactions of hydrogen peroxide with Cu (II) or Fe (III) 

by the ‘Fenton reaction’; this ROS is a formidable oxidizing agent that may be to blame 

for the majority of harm inflicted on cellular macromolecules 14, 206.   

ROS production has several deleterious cellular implications.  Possible 

consequences of ROS in biological systems are DNA strand scission from attacks on the 

sugar-phosphodiester backbone and subsequent incorrect recombination of disconnected 

strands.  As a general rule, both purines and pyrimidines can be substrates for ROS 

oxidation 207.  8-Hydroxy 2’-deoxyguanosine has been extensively studied as a model for 

base alteration by ROS activity, 208 since these lesions are strongly correlated with point 

mutations, more specifically G to T transversions 13, 209.  Additional consequences of 

ROS insults on DNA can be manifested with crosslinks between DNA–DNA and DNA–

protein and with sister chromatid exchanges 210.  Correlations between PAH exposures 

and increased 8-Hydroxy 2’-deoxyguanosine and thymine glycol levels have been 

demonstrated 3, 15.  Factors which influence the extent of DNA damage inflicted by ROS 

from PAH metabolism include the presence of Cu (II) and Fe (III) and expression of 

ROS-detoxifying enzymes, such as superoxide dismutase 211.   

 
 

 

 
 
 
 
 
 
 
 
 



 

 
 

CHAPTER 3 

EXPERIMENTAL METHODOLOGY 

 
 3.1 EXPERIMENTAL DESIGN 
 
 This study sought to determine whether bioremediation at a former MGP site 

affects genotoxicity.  The genotoxic profiles of solvent extracts of soil obtained from an 

MGP site in Salisbury, NC, both before and after treatment in a laboratory-scale column 

that simulated in situ biostimulation, were characterized with an in vitro method.  This 

method utilizes a cell library containing a parent DT40 vertebrate cell line and 35 

isogenic mutants deficient in at least one DNA damage repair pathway.  After exposure 

to the soil extracts, differences in viabilities between parent DT40 cells and each mutant 

cell line indicated the genotoxic response.  Three sources of soil were analyzed with this 

procedure: the untreated soil, soil from the biostimulated column, and soil from the 

control column; a total of five extracts was analyzed.  Two extractions were performed in 

July 2008 (three months after initiating biostimulation conditions in that column): one 

from the untreated soil and the other from the top (aerobic zone) of the biostimulated 

column.  Three extracts resulted from an October 2008 (six months after initiating 

biostimulation conditions) sampling event and included extracts from the top (aerobic 

zone) and bottom (anoxic zone) of the biostimulated column and the top (aerobic zone) of 

the control column.  DT40 bioassay cell viability data were analyzed with a modified 

student’s t-test to account for the multiple group comparison.
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3.2 EXPERIMENTAL PROCEDURES 
 
Note: All of the procedures regarding solvent extraction of the soil samples were 
performed by others (primarily Stephen Richardson). 
 
 3.2.1. SOIL COLLECTION  
 

The chemicals utilized in this study were purchased from Fisher Scientific 

(Hampton, NH, USA) or Sigma Aldrich (St. Louis, MO, USA) and were all of analytical 

grade or better.    Soil was collected from a former MGP site in Salisbury, NC that was 

undergoing excavation at the time of collection.  Active remediation at the site involved 

the excavation, transport, and disposal of contaminated soil to a licensed disposal facility.  

Samples were collected in July 2006 at an approximate depth of 1.2 m below ground 

surface.  The soil processing involved removal of rocks and debris from contaminated 

soil and subsequent sieving through10-mm wire mesh.  Following soil processing, 

samples were stored in 20-L containers at 4°C in the dark until column construction or 

extractions were conducted.   

3.2.2 GROUNDWATER PREPARATION  

Components of the simulated groundwater were based on ionic concentrations 

from groundwater wells found in the area surrounding Salisbury, NC.  To curtail 

microbial growth in the autoclaved polypropylene carboys in which simulated 

groundwater was prepared and stored, new solutions were made weekly.  Preparation of 

groundwater required autoclaved polypropylene carboys, CaCl2H2O, MgSO4·7H2O, 

NaHCO3, KCL solution, 1 N H2SO4, reagent-grade water, and 0.1 µm flow-through 

hollow-fiber membrane water filter (Sawyer Products, Safety Harbor, FL) created a 

sterile final product.  Biostimulated conditions were achieved by supplementing the 
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simulated groundwater with 1.0 mL of a nutrient stock solution comprised of NH4NO3 

and K2HPO4 (final nitrogen and phosphorus concentrations were 1.0 mg/L and 0.3 mg/L, 

respectively) that was saturated with pure oxygen before being pumped into the column.   

3.2.3 COLUMN SYSTEM 

The columns utilized in this study were packed with a 50:50 ratio (w:w) mixture 

of the contaminated soil and sterile 40/50 grade silica sand (Unimin Corporation, Le 

Sueur, MN, USA).  This mixture was implemented to encourage low-pressure 

groundwater flow through the columns.  In September 2007, control conditions were 

imposed on the biostimulated and control columns to establish uniform initial conditions 

between the columns and to optimize the groundwater flow rate and pressure.  These 

conditions were imposed for eight months prior to the advent of experimental 

biostimulated conditions in April 2008.  The control conditions consisted of continual 

supply of simulated groundwater for each column.  After the eight-month startup period 

of operation, in April 2008, the biostimulated conditions were applied to the 

biostimulated column.   

3.2.4 SOIL EXTRACTION 
 

The following chemicals were used for the soil extraction component of this 

study: anhydrous sodium sulfate, high performance liquid chromatography (HPLC) grade 

acetone, dichloromethane (DCM), and acetonitrile (ACN).   

Extractions from soil samples utilized 5.0 g [wet wt.] of untreated soil material 

and 3.0 g [wet wt.] of each column sample.  Two-step solvent extractions were carried 

out with soil slurries in 35-ml glass centrifuge vials.  Slurries were centrifuged for 15 min 

at 3,500 rpm.  Supernatant was discarded since aqueous-phase PAH concentrations were 
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negligible after centrifugation (S. Richardson, personal communication).  To absorb the 

remaining water and improve mixing, 5.0 g sodium sulfate and 5-mm glass beads were 

added to each vial.  Vials were placed on a wrist-action shaker for 24 h after addition of 

10.0 ml each DCM and acetone. Further centrifugation was performed as described above.  

The supernatant was filtered through a 0.2 µm pore-size nylon filter and collected in a 

50.0 mL volumetric flask.  An additional 10.0 mL each of DCM and acetone was added 

to the soil pellet in each vial, which was then shaken for an additional 24 h. Second-day 

extracts were centrifuged, filtered, and combined with the initial filtered extracts.  ACN 

was utilized to bring combined extracts to volume.  Samples were then transferred to 

amber serum vials and stored in the dark at 4°C prior to analysis.  

 3.2.5 STORING EXTRACTS 
 
 The solvent extracts were placed in a pre-weighed glass culture tube, and then 

evaporated to dryness with nitrogen.  After evaporation, the masses of the culture tubes 

were measured again to obtain the mass of the extract residue.  The extract residues were 

then re-suspended with DMSO, 1 mL/culture tube.  The re-suspended extracts were then 

separated into 100 µL aliquots and stored in liquid nitrogen. 

 3.2.6 DT40 BIOASSAY 
 

The following materials were utilized in the DT40 assay of this study: fetal 

bovine serum (FBS), 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) 

carbonyl]-2H-tetrazolium hydroxide inner salt (XTT), and dimethyl sulphoxide (DMSO) 

Hybri-Max ®, all of which were obtained from Sigma Aldrich (St. Louis, MO, USA).  

Additionally, RPMI 1640 culture medium, chicken serum, penicillin/streptomycin, and 

Dulbecco’s phosphate buffered saline (PBS) were obtained from Invitrogen (Carlsbad, 
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CA, USA). The following materials were also necessary for this bioassay:  Tecan Safire 

plate reader and Magellan 6 software, shaking apparatus, CO2 incubators, Costar ® 24-

well plates, and standard cell culture materials.  All DT40 mutants were derived from 

isogenic DT40 parent cell lines and are summarized in Table 1 216.   
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Table 1.  DNA repair pathways and the corresponding mutants of the DT40 bioassay.  
DNA Repair Pathway Type of DNA Damage Repaired Mutant 
 Homologous Recombination  Double Strand Breaks RAD52 
    RAD54 
    RAD51c 
    RAD51d 
    XRCC2 
    XRCC3 
    BRCA1 
    BRCA2 
    FANCD2 

    
 Non-Homologous End-Joining  Double Strand Breaks KU70 
    LIGIV 
    DNA PKCs 

    
 Nucleotide Excision Repair  Bulky DNA Adducts XPA 
    XPG 

    
 Mis-Match Repair  Mis-matched Bases MSH2 
    MSH3 
    MSH6 

    
 Base Excision Repair  Small Base Adducts POLB 
    FEN1 
    PARP1 

    
 Translesion Synthesis  By-pass DNA lesions POLQ 
    REV1 
    POLK 
    POLN 
    RAD18 

    
 Cell Cycle Check-Point  G1/S, G2/M, Intra-S ATM 

    
 DNA Damage Sensors  Recruit Downstream Repair 

Proteins 
RAD9 
RAD17 

 

 

The DT40 cells and their mutants were cultured as previously reported 212, 213.  

This cell library was cultured in a humidified 5% CO2 atmosphere at 37°C. The medium 

consisted of RPMI 1640 cell culture medium containing 10% FBS, 100 mg/mL, 

penicillin, and 100 mg/mL streptomycin. 
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The parent DT40 cell line and the isogenic mutants were cultured in RPMI 

medium supplemented with 55.5 mL heat-inactivated FBS, 5.5 mL 

penicillin/streptomycin antibiotic cocktail, and 5.5 mL chicken serum.  Cell counts and 

shapes were evaluated with a 1:1 mixture of 10.0 µL aliquots of Trypan Blue dye and cell 

cultures under compound light microscope.  Once the cell shape was consistently round 

with high nucleus-to-cytoplasm ratio and cell counts were from 0.7 million to 1.5 million 

cells/mL, it was possible to utilize those cell lines in experiments to test the DNA damage 

responses.  Irregular shapes and cell counts that fell outside the designated range 

generally provided non-reproducible results, therefore results from such cell counts were 

considered with caution.   

The cells were seeded onto 24-well plates at a concentration of 23,000cells/5.5 

mL completed RPMI medium.  The fragility of DT40 cells required certain 

considerations unnecessary for most other cell types.  This unique feature of DT40 cells 

was accommodated with the employment of pipette tips with larger than normal orifices, 

deliberate gentle mixing of culture mixtures, and careful monitoring to expose cells to 

room temperature for short periods of time (generally about three minutes).  A technique 

to prevent the formation of air bubbles in the seeded cell mixture was utilized.  This 

involved pipetting more than 250 µL of the cell mixture into the tip and ending the 

pipetting release at the first resistance point. Then cells on seeded plates were allowed to 

re-equilibrate in a 39.5°C incubator for at least thirty minutes.   

DMSO solutions of soil extracts were retrieved from liquid nitrogen storage, 

warmed to room temperature, and vortexed before use.  The soil extracts that were re-

suspended in DMSO were diluted with PBS such that the DMSO percentage in the 
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maximum concentration did not exceed 0.33% (v:v); a higher DMSO concentration 

resulted in cell death that confounded results for the extracts.  To conserve resources, 

preliminary experiments included a series of exposures of only the parent DT40 cells to 

identify an appropriate maximum concentration of the soil extract for each mixture 

analyzed.  The desired dilution series yielded minimal cell viability values for the 

maximum concentration.  The DMSO solution in PBS was serially diluted by a factor of 

1.414 to promote a gradual change of cell viability values over the entire dilution series. 

The seven dilutions of this series included the blank sample, which consisted of only PBS.  

The extracts in DMSO were in liquid nitrogen during experiments to prevent degradation 

until immediately before the serial dilution was to be carried out, and the dilution series 

remained on ice for the duration of chemical exposures.  Each well, aside from the two 

negative controls, was exposed to 27.8 µL of the prepared extract dilutions.  The controls 

which were exposed to the blank sample were incubated in quadruplicates, while all other 

extract dilutions were exposed in triplicates.  Chemical exposures were simultaneously 

performed on sets of five 24-well plates.  Exposures with multiple plates were especially 

important for experiments which tested the entire cell library to minimize degradation of 

chemicals or cells that might have occurred over long periods if the exposures had been 

done one plate at a time.   

After applying extract dilutions to the wells, plates were immediately transferred 

to a 39.5°C incubator and the cells were allowed to undergo approximately eight 

replication cycles.  Daily evaluation using a light microscope of cell growth of the control 

wells revealed if the cells had reached their maximal growth potential before becoming 

overgrown.  Because parent DT40 cells and isogenic mutants have unique doubling rates 
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due to their various genomic modifications, evaluation of growth rates for all cells lines 

was crucial for reliable results.   

All 24 wells of the plates were dyed with 200.0 µL XTT solution and cells were 

incubated at 39.5°C for approximately four hours or until a quantifiable amount of 

formazan developed.  The XTT solution was prepared using 22.0 µL XTT/ 12.0 mL 

RPMI; both components were warmed before preparation.  After the four-hour incubation 

period, cell viabilities were determined by quantifying the amount of formazan produced, 

using a TECAN SAFIRE plate reading device and software.  Formazan is a water-soluble 

dye produced upon the bioreduction of XTT in the presence of an electron carrier.     

Raw cell viability data were imported into Microsoft Excel and converted into 

normalized values as percentages of the controls.  The results were represented 

graphically in a semi-log format with cell viabilities vs. total residue mass per well (in 

µg.)   

3.2.7 STATISTICAL ANALYSIS 
 

Cell survival data were log-transformed giving an approximately normal 

distribution (not shown).  Genotoxic responses were determined for individual mixtures 

by comparing the viability of the DT40 mutant cell line to that of the parent cell line at 

the highest test does.   For all pairwise comparisons, a standard two-tailed student’s t-test 

was performed with the built-in function of R-statistical software (R Development Core 

Team, University of Auckland, New Zealand).  A significance level of 0.05 was decided 

upon for these analyses; any response with a p-value less than the chosen significance 

level was considered to be a significant response.   
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Mean intercepts of the slopes of linear dose-response curves for each cell line 

were utilized to determine doses necessary to produce 50% cell death (LC50).   

Comparisons of general and specific genotoxic responses between LC50 values 

produced by the extracts of two different soil samples were determined by a modified 

two-tailed student’s t-test.  The multiple group comparison, which analyzed the genotoxic 

responses of different extracts by comparing the cell viability data of DT40 cells and 

mutants, was accounted for by modification of the degrees of freedom in the student’s t-

test.  The approach followed Welch’s classical method 214.  The t-statistic was calculated 

by dividing the difference (mean (x1) – mean (y1)) - (mean (x2) – mean (y2)) by its 

standard deviation.  Multiple group comparisons also utilized a significance level of 0.05. 

 

 

 

 

 

 

 

 



 

 
 

CHAPTER 4 

RESULTS AND DISCUSSION 

 
4.1 INTRODUCTION 

 
Results from this study include the total extractable organic (TEO) material (mg/g 

dry soil) of each sample, the concentration of PAH in each soil extract, the mass of 

extract residue after nitrogen evaporation, mixture (residue) toxicities, overall genotoxic 

signatures, genotoxic responses of mutant cell lines belonging to pathways known to 

repair resultant DNA damage from PAH exposures for each mixture, the most sensitive 

mutant cell lines, and genotoxic responses for each DNA repair pathway analyzed.  

Because oxidative stress is an expected source of DNA damage, comparison to the 

hallmark genotoxic responses of hydrogen peroxide (H2O2) was employed in an effort to 

understand the mechanism of genotoxicity of the extracts analyzed.  TEO and PAH 

measurements were performed by Stephen Richardson. 
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Table 2.  Characteristics of soil samples and their extracts for which genotoxicity assays 
were performed. The untreated soil and July 2008 sample had initial volumes of 100 mL 
and the October 2008 samples has initial volumes of 150 mL, from which an aliquot was 
subjected to evaporation to obtain residue for genotoxicity testing. Data represent means 
and standard deviations of triplicate samples. Corresponding PAH concentrations for 
each sample are shown in Table 3.  
 

Sample Source 

Dry Mass 
of 

Extracted 
Sample (g) 

Volume of 
Extract 

Evaporated 
(mL) 

Extract 
Residue 

(mg) 
Residue/Soil 

(mg/g) 

Untreated Soil 3.92 + 0.19 15.0 45.9 + 0.15 1.95 + 0.02 

July 2008 Top of 
Biostimulated Column 4.00 + 0.01 15.0 59.0 + 2.81 2.46 + 0.35 

October 2008 Top of 
Biostimulated Column 2.35 + 0.02 15.0 23.7  + 4.76 0.66 + 0.05 

October 2008 Top of 
Control Column 2.43 + 0.01 15.0 15.0  + 0.4 1.12 + 0.67 
October 2008 Bottom 
of Biostimulated 
Column 2.52 + 0.01 15.0 14.0 + 1.3 0.64 + 0.18 

 

4.2 TOTAL EXTRACTABLE ORGANIC MATERIAL 

TEO material of each extract is represented in Table 2.  This analysis was 

performed in triplicate.  Total extractable organic material comprises many constituents 

derived both from decaying organisms and chemical contamination 30.  TEO content was 

highest in extracts from soil at the top of the biostimulated column, which would have 

undergone the most extensive aerobic treatment.  Soil without any treatment yielded the 

lowest TEO values. Because TEO can include the extractable organics in the original soil 

and material from microbial biomass formed during aerobic treatment, it is likely that the 

difference between TEO values for the untreated soil and the treated soil from the top of 

the biostimulated column was due to microbial growth in the column. 
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4.3 PAH CONCENTRATIONS 

PAH concentrations in the soil samples evaluated in this study are summarized in 

Table 3.  Soil subjected to aerobic conditions (from the tops of the biostimulated and 

control columns) reflected lowered total PAH concentrations relative to the untreated soil 

and the sample that was anoxic (from the bottom of the biostimulated column), in 

contrast to the TEO data.  In the top of the biostimulated column, concentrations of 

several PAHs in the October 2008 sample (six months after initiating biostimulation 

conditions) were lower than in the July 2008 sample (three months after initiating 

biostimulation conditions), reflecting the longer time under which the top of the column 

was exposed to aerobic conditions. Concentrations of other PAHs, such as pyrene and 

BAP, in samples from the top of the biostimulated column did not decrease relative to the 

untreated soil for either sampling event.  
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Table 3.  Individual and total PAH concentrations (mg/kg dry soil) in samples for which 
genotoxicity testing was conducted.  Data represent means and standard deviations. 
 

PAH 
Untreated    

Soil  

July 2008 
Sample from  

Top of 
Biostimulated 

Column 

October 2008 
Sample from 

Top of 
Biostimulated 

Column 

October 2008 
Sample from 

Bottom of 
Biostimulated 

Column 

October 
2008 

Sample 
from Top 
of Control 

Column  

Naphthalene 11.8 +  0.2 13.5 +  4.2 16.1 +  2.3 15.2 +  3.8 13.1 +  1.6 

Acenaphthylene 10.5 +  0.1 3.5 +  3.3 2.8 +  0.8 8.3 +  2.6 2.7 +  0.9 

Fluorene 8.6 +  0.5 5.3+  3.2 2.5 +  0.8 9.8 +  3.0 3.0 +  1.3 

Phenanthrene 123 +  15.8 114 +  78.0 59.6 +  16.2 166 +  55.1 56.1 +  30.7 

Anthracene 9.6 +  0.1 6.1 +  2.0 4.5 +  1.0 11.9 +  3.9 5.2 +  2.1 

Flouranthene 33.3 +  0.4 25.1 +  7.6 20.7 +  7.8 28.3 +  8.0 18.8 +  5.1 

Pyrene 45.8 +  1.6 42.7 +  12.4 41.0 +  10.8 50.5 +  15.2 35.2 +  7.6 

Benzo (a) anthracene 18.1 +  0.7 15.9 +  3.3 13.5 +  2.8 15.8 +  4.9 12.9 +  4.7 

Chrysene 27.6 +  1.4 29.6 +  7.7 15.9 +  3.9 17.2 +  5.7 13.3 +  4.6 
Benzo (a) 
flouranthene 8.6 +  0.01 9.4 +  0.8 9.7 +  1.5 8.8 +  2.1 10.1 +  4.6 
Benzo (k) 
fluroanthene 4.6 +  0.2 4.9 +  0.5 6.2 +  1.4 5.5 +  1.5 6.5 +  3.2 

Benzo (a) pyrene 16.2 +  0.2 19.2 +  0.9 19.3 +  2.2 16.3 +  3.9 18.6 +  8.0 
Dibenz (a,h) 
anthracene 0.6 +  0.01 1.0 +  0.01 1.7 +  0.1 1.4 +  0.3 1.5 +  0.4 
Benzo (g,h,i) 
perylene 10.0 +  0.7 13.3 +  1.3 11.7 +  0.9 8.5 +  1.9 11.5 +  4.2 
Total PAH 
Concentration 329 + 22.0 303 + 125 225 + 52.8 362 + 112 209 + 79.3 

 

4.4 EXTRACT RESIDUES 

Residues of the extracts from both sampling events after evaporation are 

expressed in Table 2.  Because more soil was extracted for the untreated soil and soil 

from the top of the biostimulated column for the July 2008 sampling event, more residue 

was produced from these samples than from each sample of the second (October 2008) 

sampling event.  Doses used in the DT40 assay were based on residue mass, so that 

equivalent doses between samples correspond to different amounts of soil from which 

that dose would have been extracted. The maximum concentration of residue 

corresponding to the cell viability range required for informative toxicity responses was 
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different for different samples (not shown). The maximum residue concentration was 10 

µg/mL for the extracts from the untreated soil and the July 2008 sample from the top of 

the biostimulated column, and was 30 µg/mL for the October 2008 column samples. 

4.5 GENOTOXIC RESPONSES TO JULY 2008 SAMPLES 

Analysis of mixtures from the untreated soil and the top of the biostimulated 

column from the July 2008 sampling event show that both mixtures have a toxic effect, as 

evidenced by decreased viability of DT40 parent cells (Figure 3).  The extract from the 

top of the biostimulated column from the July 2008 sampling event was more toxic to the 

parent DT40 cells at a maximum concentration of 10.0 µg/mL. 
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Figure 3.  DT40 cell lines exposed to the untreated soil extract and the extract from the 
top of the biostimulated column for the July 2008 sampling event. 
  

 Comparison of the overall genotoxic response using all mutant cell lines 

revealed that exposures to the extract from the top of the biostimulated column for the 

July 2008 sampling event showed a significantly more severe genotoxic response 

(p=0.04) than the DNA damage responses from exposures of the untreated soil extract to 

the mutant cell lines.  Data for selected representative cell lines are shown in Figures 4 

through 8.  The p-values for comparisons of the genotoxic responses of the tested mutant 

cell lines to the two extracts are summarized in Table 4.  Concentrations of each soil 
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extract which were lethal to 50% of selected mutant cell lines (LC50 values) are 

summarized in Figure 9.  Appendices 1 and 2 contain the LC50 values and comparable 

soil masses necessary to achieve the LC50 values for the untreated soil and top of the 

biostimulated column sample extracts. 
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Table 4.  P-values from a comparison of the two extracts’ genotoxicities of the extracts 
from untreated soil and the soil from the top of the biostimulated column (July 2008 
sampling event) for each mutant.  The comparison is for the highest dose only.   
Significant differences in genotoxicities (P < 0.05) are italicized.  All significant 
differences represent greater genotoxicity of the extract from the biostimulated column.     
DNA Repair Pathway Type of Damage Repaired Mutant p-value 
Homologous Recombination Double Strand Breaks RAD54 0.554 
    RAD51c 0.797 
    RAD51d 0.193 
    XRCC2 0.572 
    XRCC3 0.441 
    BRCA1 0.832 
    BRCA2 0.542 
    FANCD2 0.634 
        
        
Non-Homologous End-Joining Double Strand Breaks KU70 0.188 
    LIGIV 0.012 
    DNA PKCs 0.089 
        
        
Nucleotide Excision Repair Bulky DNA Adducts XPA 0.473 
    XPG 0.911 
        
        
Mismatch Repair Mismatched Bases MSH3 0.364 
    MSH6 0.153 
        
        
Base Excision Repair Small Base Adducts POLB 0.335 
    FEN1 0.042 
    PARP1 0.042 
        
        
Translesion Synthesis By-pass DNA lesions POLQ 0.13 
    REV1 0.103 
    POLK 0.104 
    POLN 0.012 
    RAD18 0.045 
        
        
Cell Cycle Check-Point G1/S, G2/M, Intra-S ATM 0.95 
        
        
DNA Damage Sensors Recruit Downstream Repair Proteins RAD9 0.431 
    RAD17 0.456 
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Extracts from the untreated soil and the top of the biostimulated column for the 

July 2008 sampling event produced greatest cell death in RAD54 (Figure 4) and RAD 9 

(Figure 5). LIGIV (Figure 6) was also noticeably sensitive to the extract from the top of 

the biostimulated column.  Cells deficient in XPA (Figure 7) exposed to either extract 

from the July 2008 sampling event showed minimal reduction in cell viability.  Cells 

deficient in FEN1 (Figure 8) showed no genotoxic response to exposures of either extract. 
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Figure 4.  Resultant cell viabilities of DT40 cells and cells deficient in RAD54 after 
exposure to the untreated soil extract and the extract from the top of the biostimulated 
column for the July 2008 sampling event. 
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Figure 5.  Resultant cell viabilities of DT40 cells and cells deficient in RAD9 after 
exposure to the untreated soil extract and the extract from the top of the biostimulated 
column for the July 2008 sampling event. 
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Figure 6.  Resultant cell viabilities of DT40 cells and cells deficient in LIGIV after 
exposure to the untreated soil extract and the extract from the top of the biostimulated 
column for the July 2008 sampling event. 
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Figure 7.  Resultant cell viabilities of DT40 cells and cells deficient in XPA after 
exposure to the untreated soil extract and the extract from the top of the biostimulated 
column for the July 2008 sampling event. 
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Figure 8.  Resultant cell viabilities of DT40 cells and cells deficient in FEN1 after 
exposure to the untreated soil extract and the extract from the top of the biostimulated 
column for the July 2008 sampling event. 
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Analysis of separate DNA damage repair pathways revealed that homologous 

recombination (RAD54) is important to rectifying damage incurred from exposures to 

both the untreated soil extract and the extract from the top of the biostimulated column 

from the July 2008 sampling event.  The DNA damage sensor, RAD9, showed a 

noticeable DNA damage response after exposure to the extract from the top of the 

biostimulated column as well as the extract from the untreated soil (Figure 5).  Non-

homologous end joining (LIGIV) appeared necessary for cells exposed to the extract 

from the top of the biostimulated column during the July 2008 sampling event (Figure 6).  

Mutants from the base excision repair (BER), nucleotide excision repair (NER), and 

translesion synthesis (TLS) pathways revealed minimal genotoxic responses to both 

extracts.   

4.6 GENOTOXIC RESPONSES TO OCTOBER 2008 SAMPLES 

Results from exposures of the three extracts from the October 2008 sampling 

event to the parent DT40 cell line indicated each extract produced a toxic effect (Figure 

10).  The reduction in parent DT40 cell viability was greater for extracts from the top of 

the biostimulated and control columns than that for extracts from the bottom of the 

biostimulated column.  The maximum concentration for the October 2008 extracts was 

30.0 µg/mL to produce observable and informative toxic responses. 
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Figure 10.  DT40 cell lines exposed to the three extracts for the October 2008 sampling 
event. 
  

 Extracts from the October 2008 sampling event generated a genotoxic response 

pattern similar to the toxic responses (Figure 10); the overall genotoxic profiles for the 

extracts from the control column and top of the biostimulated column were significantly 

more genotoxic than the extract from the bottom of the biostimulated column (p=0.04 and 

p=0.04, respectively).  The general genotoxic responses or overall comparison of DNA 

damage produced in all tested mutants from exposures to extracts from the control 

column and top of the biostimulated column revealed no significant (p=0.05). These 
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findings were evidenced with LC50 values (Figure 16) for exposures to each extract and 

p-values for comparisons of the genotoxic responses for each mutant cell line to the 

extracts from October 2008 sampling event with the modified two-tailed student’s t-test 

(Tables 5, 6, and 7).  Appendices 3, 4, and 5 show the LC50 values and soil masses 

necessary to achieve the LC50 values for the extracts from the October 2008 sampling 

event. 
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Table 5. P-values represent a comparison of the genotoxic responses from the analyzed 
mutant cell lines to the extracts of the top of the control column and the top of the 
biostimulated column for the October 2008 sampling event.  The comparison is for the 
highest dose only.   Significant differences in genotoxicities (P < 0.05) are italicized.  No 
significant differences in genotoxicities of the two the extracts were detected. 
DNA Repair Pathway Type of Damage Repaired Mutant p-value 
Homologous Recombination Double Strand Breaks RAD52 0.11 
    RAD54 0.533 
    RAD51c 0.612 
    RAD51d 0.722 
    XRCC2 0.053 
    XRCC3 0.357 
    BRCA1 0.106 
    BRCA2 0.358 
    FANCD2 0.716 
        
        
Non-Homologous End-Joining Double Strand Breaks KU70 0.257 
    LIGIV 0.452 
    DNA PKCs 0.371 
        
        
Nucleotide Excision Repair Bulky DNA Adducts XPA 0.864 
    XPG 0.384 
        
        
Mismatch Repair Mismatched Bases MSH2 0.846 
    MSH3 0.866 
        
        
Base Excision Repair Small Base Adducts POLB 0.224 
    FEN1 0.330 
    PARP1 0.562 
        
        
Translesion Synthesis By-pass DNA lesions POLQ 0.929 
    REV1 0.566 
    POLK 0.807 
    POLN 0.911 
    RAD18 0.719 
        
        
Cell Cycle Check-Point G1/S, G2/M, Intra-S Phase ATM 0.161 
        
        
DNA Damage Sensors Recruit Downstream Repair Proteins RAD9 0.705 
    RAD17 0.917 
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 Table 6. P-values from a comparison of the genotoxic responses of the analyzed mutant 
cell lines to the extracts of the top of the control column and the bottom of the 
biostimulated column for the October 2008 sampling event.  The comparison is for the 
highest dose only.   Significant differences in genotoxicities (P < 0.05) are italicized.  All 
significant differences represent greater genotoxicity of the extract from the top of the 
control column.     
DNA Repair Pathway Type of Damage Repaired Mutant p-value 
Homologous Recombination Double Strand Breaks RAD52 0.175 
    RAD54 0.080 
    RAD51c 0.110 
    RAD51d 0.997 
    XRCC2 0.786 
    XRCC3 0.508 
    BRCA1 0.037 
    BRCA2 0.228 
    FANCD2 0.219 
        
        
Non-Homologous End-Joining Double Strand Breaks KU70 0.209 
    LIGIV 0.046 
    DNA PKCs 0.096 
        
        
Nucleotide Excision Repair Bulky DNA Adducts XPA 0.607 
    XPG 0.927 
        
        
Mismatch Repair Mismatched Bases MSH2 0.505 
    MSH3 0.990 
        
        
Base Excision Repair Small Base Adducts POLB 0.255 
    FEN1 0.001 
    PARP1 0.288 
        
        
Translesion Synthesis By-pass DNA lesions POLQ 0.415 
    REV1 0.576 
    POLK 0.301 
    POLN 0.791 
    RAD18 0.820 
        
        
Cell Cycle Check-Point G1/S, G2/M, Intra-S Phase ATM 0.040 
        
        
DNA Damage Sensors Recruit Downstream Repair Proteins RAD9 0.961 
    RAD17 0.447 
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Table 7. P-values represent a comparison of the genotoxic responses from the analyzed 
mutant cell lines to the extracts of the top of the biostimulated column and the bottom of 
the biostimulated column for the October 2008 sampling event.  The comparison is for 
the highest dose only.   Significant differences in genotoxicities (P < 0.05) are italicized.  
All significant differences represent greater genotoxicity of the extract from the top of the 
biostimulated column.     
DNA Repair Pathway Type of Damage Repaired Mutant p-value 
Homologous Recombination Double Strand Breaks RAD52 0.518 
    RAD54 0.073 
    RAD51c 0.039 
    RAD51d 0.754 
    XRCC2 0.382 
    XRCC3 0.491 
    BRCA1 0.073 
    BRCA2 0.231 
    FANCD2 0.433 
        
        
Non-Homologous End-Joining Double Strand Breaks KU70 0.257 
    LIGIV 0.010 
    DNA PKCs 0.004 
        
        
Nucleotide Excision Repair Bulky DNA Adducts XPA 0.633 
    XPG 0.525 
        
        
Mismatch Repair Mismatched Bases MSH2 0.048 
    MSH3 0.026 
    MSH6   
        
        
Base Excision Repair Small Base Adducts POLB 0.004 
    FEN1 <0.0001 
    PARP1 0.057 
        
        
Translesion Synthesis By-pass DNA lesions POLQ 0.298 
    REV1 0.073 
    POLK 0.284 
    POLN 0.554 
    RAD18 0.430 
        
        
Cell Cycle Check-Point G1/S, G2/M, Intra-S ATM 0.004 
        
        
DNA Damage Sensors Recruit Downstream Repair Proteins RAD9 0.911 
    RAD17 0.223 
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Responses of selected cell lines are shown in Figures 11 through 14.  The 

reduction of cell viability in the RAD54 mutant cell line was greater than that of the 

parent DT40 cells after exposure to each extract for the October 2008 sampling event 

(Figure 11), indicating a genotoxic response after each treatment.  Extracts from the 

control column and the top of the biostimulated column showed great sensitivity in 

RAD9 mutants, whereas cells deficient in RAD9 (Figure 12) revealed slight sensitivity to 

the extract from the bottom of the biostimulated column.  The extract from the top of the 

control column showed a noticeable reduction of cell viability in LIGIV mutants (Figure 

13), and no extract appeared to generate a genotoxic response in cells deficient in XPA 

(Figure 14). 
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Figure 11.  DT40 cell lines and RAD54 mutants exposed to three extracts from samples 
obtained during the October 2008 sampling event. 
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Figure 12.  DT40 cell lines and RAD9 mutants exposed to three extracts for the October 
2008 sampling event. 
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Figure 13.  DT40 cell lines and LigIV mutants exposed to three extracts from samples 
obtained during the October 2008 sampling event. 
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Figure 14.  DT40 cell lines and XPA mutants exposed to three extracts from sample 
obtained during the October 2008 sampling event. 
  

 

 

 

 

 

 



63 
 

 

 

 

 

0102030405060

D
T

40
R

A
D

17
R

A
D

54
R

EV
1

P
O

L
K

P
O

L
Q

M
S

H
2

M
S

H
3

LC50 (µµµµg/mL)

Ex
tr

ac
t f

ro
m

 T
op

 o
f C

on
tr

ol
 C

ol
um

n
Ex

tr
ac

t f
ro

m
 T

op
 o

f B
io

st
im

ul
at

ed
 C

ol
um

n
Ex

tr
ac

t f
ro

m
 B

ot
to

m
 o

f B
io

st
im

ul
at

ed
 C

ol
um

n

D
D

S
H

R
T

L
S

M
M

R

0102030405060

D
T

40
R

A
D

17
R

A
D

54
R

EV
1

P
O

L
K

P
O

L
Q

M
S

H
2

M
S

H
3

LC50 (µµµµg/mL)

Ex
tr

ac
t f

ro
m

 T
op

 o
f C

on
tr

ol
 C

ol
um

n
Ex

tr
ac

t f
ro

m
 T

op
 o

f B
io

st
im

ul
at

ed
 C

ol
um

n
Ex

tr
ac

t f
ro

m
 B

ot
to

m
 o

f B
io

st
im

ul
at

ed
 C

ol
um

n

D
D

S
H

R
T

L
S

M
M

R

F
ig

ur
e 

15
.  

R
el

at
iv

e 
LC

50
 v

al
ue

s 
fo

r 
ce

ll 
lin

es
 e

xp
os

ed
 to

 e
xt

ra
ct

s 
fr

om
 th

e 
to

p 
of

 th
e 

co
nt

ro
l c

ol
u

m
n

 (
w

hi
te

),
 

to
p 

of
 th

e 
bi

os
tim

ul
at

ed
 c

ol
um

n 
(g

ra
y)

,a
nd

 b
ot

to
m

 o
f t

he
 b

io
st

im
ul

at
ed

 c
ol

um
n 

(b
la

ck
).

  L
C

50
 v

al
ue

s 
ca

lc
ul

at
ed

 f
or

 a
ll 

ce
ll 

lin
es

, a
nd

 th
e 

m
os

t r
el

ia
bl

e 
a

re
 p

re
se

nt
ed

 in
 th

is
 g

ra
ph

.  
A

bb
re

vi
at

io
ns

:  
D

D
S

 –
 D

N
A

 
da

m
ag

e 
se

ns
o

r,
 H

R
 –

 h
om

ol
og

ou
s 

re
co

m
bi

na
tio

n,
 T

LS
 –

 tr
an

sl
es

io
n 

sy
nt

he
si

s,
 M

M
R

 –
 m

is
m

at
ch

 r
e

pa
ir.

 
  



64 
 

4.7 MODEL OXIDATIVE STRESS: HYDROGEN PEROXIDE 

Although ROS (reactive oxygen species) are produced as normal parts of normal 

cellular metabolism, they are known to inflict injury on cellular macromolecules of 

aerobic organisms, such as DNA, via oxidative stress when the capacity for endogenous 

antioxidants to quench ROS is exceeded.  This imbalance creates two pronounced effects:  

breaking of DNA strands and topoisomerase-II inhibition.  The first type of damage is 

exemplified by H2O2 exposures.  Cells deficient in the homologous recombination DNA 

repair pathway (RAD54) and those mutants lacking the non-homologous end-joining 

pathway, LIGIV, both show marked sensitivity to H2O2 (Figure 17), suggesting this 

model oxidative stress agent generates double strand breaks.   This pattern is similar to 

that shown by each soil extract analyzed in this study.  Should these soil extracts exert a 

carcinogenic effect, strand breakage that introduces gross chromosomal aberrations could 

be the causative mechanism. 
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Figure 16.  Cell viabilities of DT40 cells and cells deficient in RAD54 and LIGIV after 
H2O2 exposure. 
. 

 

 

 

 

 

 
 
 



 

 
 

CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 
 To address whether bioremediation of contaminated soil from a former MGP site 

introduces DNA damage, this study utilized a DT40 bioassay.  This method sufficiently 

answered the preceding question, in addition to addressing the types of DNA damage that 

were generated.  Moreover, the DT40 bioassay provided informative results as to the 

necessary DNA repair and cell cycle checkpoint genes for cells to endure exposure to 

these extracts. 

 The hypothesis of this study, that biostimulation would intensify genotoxic 

responses, is proven by this work.  Analysis of the initial extract from the top (aerobic 

zone) of the biostimulated column indicates more types of DNA damage occurred than 

that from exposures with the untreated soil extract.  After three more months of aerobic 

biostimulation, however, the severity of genotoxic responses to extracts from the top of 

the biostimulated column lessened, but new responses were present.  The original 

increase in genotoxicity could be attributed to the synthesis of genotoxic metabolites 

from metabolic activity of indigenous microbial communities of the soil as evidenced by 

the decrease of parent PAH compounds.  However, from the currently available data it is 

not possible to ascribe increases in genotoxicity to specific metabolites of PAH or any 

other contaminants.  Subsequent reduction of genotoxicity may result from more polar 

metabolites eluting from the biostimulated column in downward-flowing groundwater.



 

67 
 

However, any trend in genotoxicity over time would have to be confirmed with more 

samples.  The results of this study do suggest that oxidative stress is the primary 

causative agent of the genotoxicity incurred by exposures to the analyzed soil extracts. 

The genotoxicity of extracts from the top (aerobic zone) of the control column 

was similar to the genotoxicity of extracts from the top (aerobic zone) of the 

biostimulated column for the October sampling event.  This finding suggests that aerobic 

activity per se, and not the specific conditions in the biostimulated column, led to the 

increase in genotoxicity relative to the untreated soil.  The low genotoxic response to 

exposures with extracts from the bottom (anoxic zone) of the biostimulated column 

further suggests that aerobic microbial activity was responsible for genotoxicity in the 

other two column samples.  Limited biological activity in the bottom of the biostimulated 

column is supported by total PAH concentrations that are similar to those in the untreated 

soil.   

Novel DNA damage responses from the extract for the October 2008 sampling 

event from the top of the biostimulated column, such as the translesion synthesis pathway, 

may be explained by ROS production.   ROS are known to introduce various types of 

DNA damage, including mutations and carcinogenicity.   Most constituents of these 

extracts, which comprise a complex mixture of chemicals, remain unaccounted for.  

Additionally, it is difficult to elucidate the potential interactions of complex mixtures, 

especially without chemical characterization.  The potential magnitude of (geno)toxicity 

generated by a complex mixture is now understood to appropriately be categorized as 

additive, antagonistic (less than additive), or synergistic (supra additive).  Beyond the 

extent of DNA damage incurred from complex mixtures, the types of DNA damage 
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responses could also be influenced by intricate interactions of a complex mixture 

whereby unique genotoxic signatures result.  This postulation may explain the unique 

genotoxic profiles of each analyzed soil extract. 

The second aspect of this study speaks to specific DNA damages incurred by 

untreated and biostimulated soil extracts.  Of the most pronounced DNA damage 

responses, those from cells deficient in RAD54 were sensitive to each extract, suggesting 

double-strand breaks occurred after these exposures.  The necessity of homologous 

recombination coupled with observable sensitivity of LIGIV mutants to each extract is 

analogous to most sensitive mutant cell lines that are most sensitive to H2O2 exposures.   

This correspondence implies that the mechanism by which DNA damage is arising might 

be through oxidative stress, given that H2O2 is an accepted model causative agent for 

oxidative stress 215.   

The sensitivity of RAD9 mutants after exposure to each mixture indicates that 

recruitment and coordination of necessary downstream DNA repair proteins or cell-cycle 

checkpoint proteins may be essential to tolerate DNA damage caused by extracts of 

biostimulated soil.  DNA lesions such as 8-oxoguanine are generated in conditions where 

endogenous levels of ROS are exceeded.  These lesions are known to inhibit 

topoisomerase-II, an enzyme located in the nucleus that is necessary to assist in the 

reduction of strand tension as DNA unwinds during replication.  Sensitivity of RAD9 to 

exposures of the analyzed soil extract also indicates the potential involvement of the 

topoisomerase cleavage complex 215. 

Negligible formation of DNA bulky adducts was implied, as evidenced by the 

marginal genotoxic responses observed from exposures of these soil extracts to cells 
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deficient in XPA.  As a surrogate for PAH o-quinones, the genotoxicity of 4-

ethylcatechol, which is oxidized in cells, was analyzed and determined also to have a 

minimal genotoxic response in XPA mutants, suggesting that even if o-quinones were 

present, they would have made a minor contribution to the DNA adducts formed from 

exposures to the extracts of the soils analyzed in this study.  Slight genotoxic responses of 

mutants deficient in the BER pathway, suggests minimal formation of depurinating 

adducts from exposures to the extracts of the soils analyzed in this study.   

Overall genotoxic responses from this study suggest biostimulation of 

contaminated soil from a former MGP site is an effective tool for the reduction of parent 

PAH but that metabolites from aerobic microbial activity are more genotoxic than the 

original untreated soil.  This works supports the DT40 bioassay as a powerful method for 

determining the genotoxic potential of complex mixtures.  Unlike other genotoxic assays, 

this system not only detects DNA damage but determines the DNA repair or cell-cycle 

checkpoint genes required for cell survival.   
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CHAPTER 6 

RECOMMENDATIONS FOR FUTURE STUDIES 

 
 Understanding the effects exerted by biostimulation on the genotoxic potential of 

soils from former MGP sites is important for protecting public health; therefore, studies 

are needed to elucidate the impact this bioremediation method may have on DNA 

damage.  This work pioneers utilization of the DT40 bioassay to characterize the 

genotoxicity of complex mixtures, and it also provides a foundation to guide future 

germane studies.   

 Although this work proved sufficient to address the questions of this study, 

modifications of the experimental design would permit more informative answers.  In 

future studies, beginning consistent sampling of soil columns or a bioreactor used to treat 

soil shortly after implementation of acclimation conditions, with short intervals between 

sampling events, is advisable for a more informative picture of the changes in 

genotoxicity of the soil mixtures.  Additionally, to better understand the effects of 

biostimulation, designated column zones of interest should be analyzed throughout the 

entire study.  The current evaluation does not permit inter-sample comparison of the 

control column or the bottom of the biostimulated column.  Finally, to minimize 

confounding factors, the maximum concentrations of exposures should be standardized 

for each mixture of every sampling event.   
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This preliminary work enlightens how such a study can be enhanced to strengthen 

translation of the results to public health.  Because many PAH are known pro-

carcinogens, inclusion of a metabolic activation system with the DT40 bioassay, such as 

the supernatant fraction of a mammalian liver homogenate such as S-9 microsomal 

fraction from Rattus norvegicus, may also offer more relevant results for the genotoxic 

effects of human exposures.  Also, an additional sample from the eluted material of the 

biostimulated and control columns would be useful to test if polar genotoxicants are 

indeed being removed from the columns, as opposed to their complete biotransformation 

into non-genotoxic compounds.  This final consideration is of special importance for 

MGP sites bordering surface and groundwater supplies. 

 A concluding reflection regards the profound impact that genotoxic profiles from 

the DT40 bioassay could have on environmental and public health.  Should this approach 

be expanded to a high-throughput screening system, numerous DNA damage responses 

of fractionated environmentally contaminated mixtures could be analyzed in a resource-

efficient manner.  Elucidation of the DNA repair and cell cycle-checkpoint enzymes 

important for counteracting DNA assaults incurred by exposures could be incorporated 

into definitions of NOEL of bioremediated sites and help identify exposed sub-

populations which are especially sensitive.
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Appendix 1: 

LC50 values (µg/mL) with confidence intervals and comparable soil masses (mg) for 
untreated soil extract.   P-values resulted from comparison of LC50 values for each 

mutant to DT40 LC50 value. 
 

Cell Line LC50 Value p-value 
Comparable 

Soil Mass 
DT40 11.3 + 7.53   0.066 + 0.04 
RAD51d 10.9 + 0.49 0.62 0.064 + 0.02 
BRCA2 12.5 + 4.62 0.22 0.073 + 0.003 
FANCD2 11.9 + 0.91 0.47 0.070 + 0.03 
BLM 11.0 + 4.31 0.73 0.065 + 0.02 
        
        
KU70 9.83 + 1.97 0.17 0.058 + 0.0 1 
LIGIV 11.6 + 1.97 0.82 0.068 + 0.01 
        
        
XPA 13.5 + 3.7 0.11 0.79 + 0.01 
        
        
ATM 11.9 + 1.57 0.43 0.070 + 0.01 
        
        
RAD17 8.08 + 1.63 0.05 0.047 + 0.01 
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Appendix 2: 

LC50 values (µg/mL) with confidence intervals and comparable soil masses (mg) for 
the extract of the top of the biostimulated column from the July 2008 sampling event.  

P-values resulted from comparison of LC50 values for each mutant to DT40 LC50 
value: 10.6 + 4.55. 

 

Cell Line LC50 Value p-value 
Comparable 

Soil Mass 
DT40 10.6 + 4.55   0.049 + 0.2 
RAD54 4.37 + 3.21 <0.01 0.020 + 0.01 
RAD51c 10.3 + 2.63  0.66 0.058 + 0.01 
RAD51d 12.5 + 1.62 0.04 0.042 + 0.01 
BRCA2 8.93 + 2.48 0.12 0.052 + 0.01 
FANCD2 11.1 + 4.83 0.75 0.048 + 0.02 
BLM 7.91 + 1.49 0.01 0.062 + 0.01 
        
        
KU70 10.4 + 4.13 0.85 0.056 + 0.02 
        
        
XPA 13.4 + 1.98 0.01 0.053 + 0.01 
        
        
PARP1 11.4 + 2.28 0,44 0.058 + 0.01 
        
        
RAD18 12.5 + 1.62 0.12 0.037 + 0.01 
        
        
ATM 11.5 + 0.69 0.2 0.054 + 0.003 
        
        
RAD9 6.48 + 2.34 <0.01 0.030 + 0.01 
RAD17 9.32 + 3.14 0.199 0.043 + 0.01 
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Appendix 3: 

LC50 values (µg/mL) with confidence intervals and comparable soil masses (mg) for 
extract of the top of the control column from the October 2008 sampling event.  P-

values resulted from comparison of LC50 values for each mutant to DT40 LC50 value. 
 

Cell Line LC50 Value p-value 
Comparable 

Soil Mass 
DT40 30.8 + 11.2   0.356 + 0.13 
RAD52 30.9 + 7.1 0.96 0.357 + 0.08 
RAD51c 33.2 + 3.87 0.85 0.383 + 0.04 
XRCC2 31.9 + 9.85 0.89 0.368 + 0.11 
XRCC3 32.0 + 4.01 0.7 0.370 + 0.05 
BRCA 2 30.2 + 5.28 0.85 0.349 + 0.06 
        
        
KU70 14.5 + 5.27 0.01 0.167 + 0.06 
LIGIV 18.7 + 6.73 0.02 0.216 + 0.08 
DNA PKCs 30.6 + 7.8 0.96 0.347 + 0.09 
        
        
XPA 31.0 + 11.15 0.95 0.358 + 0.13 
XPG 30.0 + 10.1 0.84 0.347 + 0.12 
        
        
FEN1 32.6 + 7.25 0.62 0.377 + 0.08 
PARP1 31.1 + 3.88 0.92 0.359 + 0.04 
        
        
POLQ 28.0 + 4.97 0.43 0.323 + 0.06 
REV1 21.1 + 3.49 0.04 0.244 + 0.04 
POLK 20.2 + 3.18 0.04 0.233 + 0.04 
POLN 21.7 + 8.79 0.05 0.251 + 0.10 
RAD18 26.5 + 6.39 0.28 0.306 + 0.07 
        
        
ATM 34.8 + 11.4 0.4 0.402 + 0.13 
        
        
RAD9 16.4 + 4.68 0.01 0.189 + 0.05 
RAD17 15.3 + 2.39 0.02 0.177 + 0.03 
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Appendix 4: 

LC50 values (µg/mL) with confidence intervals and comparable soil masses (mg) for 
extract of the top of the top of the biostimulated column from the October 2008 

sampling event.  P-values resulted from comparison of LC50 values for each mutant to 
DT40 LC50 value. 

 

Cell Line LC50 Value p-value 
Comparable Soil 

Mass 
DT40 33.0 + 4.87   0.225 + 0.03 
RAD54 15.9 + 2.62 <0.01 0.109 + 0.02 
RAD51c 22.6 + 4.23 <0.01 0.154 + 0.03 
XRCC2 31.1 + 4.63 0.28 0.212 + 0.03 
XRCC3 30.1 + 5.09 0.18 0.205 + 0.03 
BRCA2 30.1 + 2.68 0.1 0.205 + 0.02 
        
        
DNA PKCs 26.6 + 6.38 0.96 0.182 + 0.04 
        
        
XPA 33.6 + 6.74 0.77 0.229 + 0.05 
        
        
MSH2 18.5 + 6.41 <0.01 0.126 + 0.04 
MSH3 29.8 + 8.53 0.09 0.203 + 0.06 
        
        
POLB 33.2 + 13.9 0.16 0.227 + 0.09 
FEN1 30.0 + 7.87 0.33 0.205 + 0.05 
        
        
POLQ 30.6 + 3.99 0.16 0.209 + 0.03 
REV1 22.9 + 11.3 0.06 0.156 + 0.08 
POLN 21.4 + 3.62 <0.01 0.146 + 0.02 
RAD18 22.3 + 5.62 <0.01 0.152 + 0.04 
        
        
ATM 30.8 + 7.8 0.18 0.210 + 0.05 
        
        
RAD9 21.6 + 6.27 <0.01 0.147 + 0.04 
RAD17 15.6 + 3.98 <0.01 0.106 + 0.03 
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Appendix 5: 
 

LC50 values (µg/mL) with confidence intervals and comparable soil masses (mg) for 
extract of the bottom of the biostimulated column from the October 2008 sampling event. 
P-values resulted from comparison of LC50 values for each mutant to DT40 LC50 value. 
 

Cell Line LC50 Value p-value 
Comparable 

Soil Mass 
DT40 39.6 + 17.6   0.474 + 0.21 
RAD52 42.3 + 13.1 0.39 0.506 + 0.06 
        
        
KU70 30.5 + 14.3 0.1 0.365 + 0.17 
        
        
MSH2 31.6 + 12.6 0.12 0.378 + 0.02 
MSH3 29.8 + 8.53 0.09 0.357 + 0.04 
        
        
PARP1 38.7 + 20.6 0.79 0.463 + 0.15 
        
        
POLQ 33.1 + 5.33 0.14 0.396 + 0.10 
REV1 38.7 + 15.3 0.85 0.463 + 0.25 
POLN 32.1 + 1.58 0.16 0.384 + 0.06 
RAD18 37.9 + 3.62 0.58 0.454 + 0.18 
        
        
RAD17 26.0 + 10.2 0.02 0.311 + 0.12 
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