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ABSTRACT 
 

MELISSA VILLANUEVA: Electrochemical Detection of Modulation of Exocytosis 
from Chromaffin Cells Monitored with Amperometry 

(Under the direction of Dr. R. Mark Wightman) 
 
 Biological intercellular communication necessitates rapid and efficient processes.  

Cells must be able to relay and receive messages rapidly and this is accomplished readily 

through exocytosis.  Chemical messengers are packaged into membrane-bound organelles 

known as vesicles or granules, which fuse with the outer plasma membrane upon an increase 

in intracellular [Ca2+] caused by influx from the extracellular space or from intracellular 

stores.  Ca2+ increases can be effected through membrane depolarization or through receptor 

activation.  The chemical messengers are then extruded into the extracellular space where 

they can bind to target cells and initiate a response.  Because of the timescale of vesicular 

release and Ca2+ influx, it is necessary to utilize detection techniques that have sufficient 

temporal resolution.  Additionally, the minute amounts that are secreted from these vesicles, 

whose dimensions are characteristically at the nanometer level, require a technique that 

possesses sensitivity sufficient to detect them.  The electrochemical technique, constant 

potential amperometry, used in conjunction with carbon-fiber microelectrodes, offers 

excellent temporal and spatial resolution as well as sensitivity for electroactive chemical 

messengers.  Moreover, the use of a fluorescent dye, fura-2 allows study of the Ca2+ 

dynamics occurring during exocytosis.  Both amperometry and fluorescence measurements 

via fura-2 allow for the characterization of exocytosis in bovine and murine chromaffin cells. 
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Amperometry has been advantageous in studies involving chromaffin cells.  Using 

this technique, an autoreceptor effect that causes facilitation in bovine chromaffin cells was 

revealed.  Since this autoreceptor effect appears to occur on very rapid timescales, the 

exquisite temporal resolution of amperometry has permitted the observation and 

manipulation of this effect with minimal perturbation of the cells under study.  In 

experiments involving genetically altered mice, amperometry revealed aspects of the 

exocytotic process that may be affected by specific proteins.  In studies conducted on R6/2 

mice that serve as models for Huntington’s Disease, it was noted that vesicular quanta was 

significantly diminished.  Also, in other experiments conducted in mice that lack the 

intracellular phosphoprotein, synapsin, vesicular release frequency was significantly 

enhanced.  The studies mentioned demonstrate that amperometry with carbon-fiber 

microelectrodes is a powerful tool in studying exocytotic processes. 
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INTRODUCTION 
 

Exocytosis as a means of intercellular communication is active in many cell  

types such as neurons of the central and peripheral nervous systems, neuroendocrine cells, 

and mast cells.  Tight regulation of exocytosis permits a highly efficient process.  

Neurotransmitters and other chemical messengers are packaged in membrane-bound 

organelles called secretory vesicles, which prevent inactivation of the chemical messengers 

and sustain a sufficient amount for rapid extrusion to the cell exterior.  Chromaffin cells are 

often used as a model for studying exocytosis because of their robust nature; their shared 

precursors with neurons also allow for elucidation of some of the shared basic exocytotic 

mechanisms between the two cell types.  Various techniques have been used to determine 

catecholamine content in chromaffin cells such as radioligand assays, liquid chromatography, 

patch clamp electrophysiology, and electrochemical techniques.  A brief overview of these 

techniques will follow along with a brief description of some intracellular proteins that have 

been implicated in vesicle mobilization, which is one aspect of exocytotic regulation. 

 

TECHNIQUES TO DETECT NEUROTRANSMITTERS AND EXOCYTOSIS 

Radioligand assays 

Various techniques have been employed to monitor vesicular release in secretory 

cells, particularly chromaffin cells of the adrenal medulla.   Release assays utilizing isotopes 
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are also used to monitor exocytosis from a collection of cells.  Such a release assay typically 

involves labeling cells with the tritiated analyte, e.g., [3H]norepinephrine, treatment to induce 

exocytosis, and collection of samples to quantify using a scintillation counter (Trifaro and 

Lee, 1980).  This method is useful to detect exocytosis over a population of cells. 

 

Liquid chromatography 

Separations methods such as HPLC can also detect species released from populations 

of lysed cells.  HPLC provides good selectivity with the ability to detect multiple analytes 

and can be used to identify different analytes at one time from a particular population of cells 

depending on the nature of the detector.  Electrochemical detectors rely on the redox 

properties of the analytes while UV and fluorescence detectors depend on their optical 

properties.  Liquid chromatography has not only been useful in monitoring exocytosis from 

populations of cells, but it has been used to make measurements at single cells.  With this 

method, an individual cell is generally lysed, an internal standard is introduced, and the 

supernatant is injected onto a column.  Open tubular liquid chromatography (OTLC) has 

been used to analyze single neurons in the land snail, Helix aspersa (Kennedy and Jorgenson, 

1989).  The electrochemical detector used demonstrated a lower limit of 0.1 fmol in the 

voltammetric mode and 1 amol in the amperometric mode, exhibiting excellent sensitivity.  

To analyze chromaffin cells, the use of OTLC is not optimal as polar compounds such as 

norepinephrine are not sufficiently retained on the column.  Instead, reversed-phase 

microcolumn chromatography coupled with electrochemical detection has been used to 

detect an average of 150 fmol catecholamine content from an individual chromaffin cell 

(Cooper et al., 1992).  This technique demonstrates sufficient sensitivity and selectivity to 
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detect the epinephrine and norepinephrine molecules that are contained within chromaffin 

cells. 

 

Patch clamp electrophysiology 

Other techniques have been utilized to investigate more closely what occurs at an 

individual cell during exocytosis, such as patch clamp electrophysiology, fast-scan cyclic 

voltammetry (FSCV), and constant potential amperometry.  The first technique, patch clamp 

electrophysiology, provides information about exocytosis occurring across the entirety of the 

cell.  This technique detects exocytotic events as increases in the total capacitance arising 

from the plasma membrane.  The cell is voltage clamped, and the capacitance value is 

extracted from current responses to voltage stimuli.  Typically, the capacitance rises in a 

step-wise fashion, indicating the fusion of individual vesicles to the plasma membrane.  A 

chromaffin cell has a typical resting capacitance of 5 pF (Neher and Marty, 1982); a dense 

core vesicle approximately 250-300 nm in diameter contributes an estimated 2.5 fF after 

fusion with the plasma membrane (Gillis, 1995).  In the same vein, endocytosis of vesicular 

membrane can be detected as step-wise decreases in total capacitance.  The ability to detect 

endocytosis leads to a potential problem in underestimating the amount of exocytosis that has 

occurred since endocytosis can convolute exocytotic information.   

 

Fast-scan cyclic voltammetry, FSCV 

 FSCV used with carbon-fiber microelectrodes is a technique that can be used to 

monitor exocytosis from individual cells or from intact tissue.  During FSCV, the potential 

range is scanned as a triangle waveform.  Catecholamines can be detected by this technique 
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as they are oxidized and reduced during the potential scan.  A plot of current versus potential, 

the cyclic voltammogram, can display the characteristic oxidation and reduction peaks of the 

analyte and can provide some selectivity in detection.  For catecholamines detected at 

carbon-fiber microelectrodes, the oxidation peak is typically at +0.6 V and the reduction peak 

appears at -0.2 V (vs. a Ag/AgCl reference).  FSCV is useful in identifying different analytes, 

but due to its limitations in selectivity, it is necessary to have knowledge of the tissue being 

tested to corroborate FSCV results.  Additionally, different parameters such as treatment of 

the electrode surface, frequency of the waveform application to the electrode, and range of 

the potentials scanned can modify the sensitivity and the selectivity of FSCV.  FSCV is also 

limited in its temporal resolution; when the identity of the analyte is of secondary importance 

and improved temporal resolution is sought, amperometry is used to monitor vesicular 

release.        

The following text will concentrate on amperometry, an electrochemical technique 

used to monitor vesicular release, and fluorescent detection of intracellular Ca2+ dynamics 

that occur during exocytosis.  There will also be a brief overview of vesicle mobilization: a 

few proteins implicated in reserve pool maintenance will be addressed along with facilitation 

of vesicular release achieved through a possible autoreceptor effect.    

 

Constant potential amperometry 

Exocytotic cellular signaling has been studied with the electrochemical technique, 

constant potential amperometry, at various cell types such as adrenal medullary chromaffin 

cells, beta cells of the pancreas, peritoneal mast cells, and retinal neurons.  Because 

amperometry exhibits poor selectivity, general knowledge of anatomy and cell morphology is 
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necessary to reasonably identify the analyte of interest.  If the tissue displays a high degree of 

heterogeneity, fluorescent labeling of proteins uniquely associated with the cells under study 

can be useful.   

In spite of its poor selectivity, amperometry offers the advantage of excellent 

temporal resolution, which permits kinetic studies of vesicular content extrusion.  Because 

the electrode sensor used in amperometry is held at a constant potential that is sufficient to 

oxidize the analyte molecule, the oxidation of a vesicle’s contents is shown to correspond to 

an amperometric current spike (Figure 1.1).  The area, Q, of such an amperometric spike is 

proportional to the number of molecules oxidized as defined by Faraday’s law, Q = nFm, 

where Q is the charge in coulombs, n is the number of electrons involved in the redox 

reaction per molecule, F is Faraday’s constant, and m is the number of moles of analyte.  

Chromaffin cells typically contain approximately 0.5 M catecholamine within a single 

vesicle, which corresponds to an estimated 3 x 106 molecules.  Another spike parameter that 

provides information about extrusion time is the halfwidth or t1/2.  The characteristic 

halfwidth for an amperometric spike obtained from an exocytosing chromaffin cell 

demonstrates an extrusion time on the order of milliseconds.  Amperometry not only 

demonstrates the ability to probe current spike parameters that are related to vesicular content 

extrusion characteristics such as Q and t1/2, but amperometry can also be employed to study 

vesicle mobilization through spike frequency.  The total number of events elicited from a 

particular stimulus or the frequency of an exocytotic burst can reveal aspects of the interplay 

between vesicle pools. 
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Figure 1.1.  Amperometric recording of vesicular release.  (A) An amperometric 
recording of vesicular release events at a bovine chromaffin cell.  Each current spike 
corresponds to a vesicle release event.  (B)  A larger view of an individual amperometric 
spike. 
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Amperometric spike characteristics 

 As described earlier, amperometry is able to detect vesicle extrusion events with 

superior temporal resolution.  Upon stimulation with high K+ to depolarize the membrane 

and open voltage-gated channels, Ca2+ enters the cell and triggers exocytosis.  Vesicular 

release events are stochastic.  The distribution of the integrated areas of amperometric spikes 

that signal the extrusion of vesicular contents is not Gaussian.  Instead, the integrated spike 

area, Q, and the width at half maximum, t1/2, follow a skewed distribution (Figure 1.2), 

skewing the distribution toward smaller Q and t1/2 values.  Because Q can be related to the 

number of molecules in a discrete volume, Q1/3 can be correlated to the radius of the vesicle.  

Plotting a histogram of Q1/3 can then yield a Gaussian distribution (Wightman et al., 1995a).  

Moreover, plotting the cube root of t1/2 can also yield a Gaussian distribution.  Using both the 

cube roots of both Q and t1/2 allows for the calculation of mean values that can be compared 

across experimental groups. 

 

Instrumentation 

 Because amperometry is being used to probe vesicular release at the single cell level, 

excellent instrumentation and data collection techniques are sought.  It is necessary that the 

experimental setup is maintained in a Faraday cage with proper grounding to further reduce 

noise.  A low-noise potentiostat is also crucial for these measurements.  As signals at 

individual chromaffin cells are recorded in the range of pA to hundreds of pA, a high signal-

to-noise ratio is vital.  The potentiostat used (Axopatch 200B, Axon Instruments, Union City,  
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Figure 1.2. Distribution of Q and Q1/3. (A) Distribution of Q from current spikes; note the 
skew in the distribution (B) Distribution of Q1/3 displays a more Gaussian shape. 
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CA) must generate minimal noise.  In the experiments presented, the resistive mode of 

feedback is used in the amplifier.  The potentiostat generates minimal noise such that it is 

limited mainly to thermal noise and the noise arising from individual components such as the 

electrode itself.  Additionally, filtering prior to digitization is necessary to prevent noise that 

arises from aliasing.  Digital filters cannot remove aliasing effects once they are introduced 

into the signal.  Frequencies equal to or greater than one half the sampling rate, fs, must be 

eliminated.   Thus, the analog signal is filtered with a low-pass Bessel filter at 5 kHz and 

digitized at a sufficiently high collection rate (fs = 10 kHz).     

Analog data that has been filtered and digitized is filtered again using a digital 

Gaussian low-pass filter.  Data obtained for the experiments listed in this document using 

chromaffin cells have been filtered at 400 Hz.  Filtering is desired to increase the signal-to-

noise ratio and increase the number of events detected, but overfiltering can distort the 

resulting signal: the amplitude of the amperometric spike is decreased and the halfwidth is 

increased (Figure 1.3) (Hochstetler et al., 2000).  Therefore, a balance is sought between 

enhancement of the signal and reduction of signal distortion.  Lower cutoff frequencies are 

typically used with amperometric recordings obtained with neurons in order to maximize the 

detection of individual current spikes as the signals are lower than those obtained from 

chromaffin cells. 

  

Electrode fabrication 

 Since spatial resolution is also vital to making measurements at single cells, 

fabrication of electrodes of micron dimensions is desired.  Traditionally, carbon-fiber disk 

electrodes were fabricated with T-650 fibers and beveled to create a 45º angled surface,  
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Figure 1.3.  Effects of low pass filtering on current spikes.  A trace collected from a 
dopamine cell filtered at (A) 10 kHz (analog 4-pole Bessel) (B) 1 kHz (digital 8-pole Bessel) 
(C) 200 Hz (digital 8-pole Bessel) (D) 40 Hz (digital 8-pole Bessel) (Hochstetler et al., 2000)  
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Figure 1.4. A scanning electron micrograph a disk electrode.  A T-650 carbon-fiber 
microelectrode disk with an insulating layer of glass.  Its diameter is ~ 6 microns. 
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which is ideal for placing in direct apposition to a cell.  These microelectrodes are 6 µm in 

diameter and sample approximately 6% of the cellular surface (Figure 1.4).  Other  

techniques to reduce the dimensions of the disk electrode have been investigated.  In place of 

the glass insulation proximal to the sensing surface, another insulating coating, such as 

electropaint, may be used to provide thinner insulation.  The insulating layer of electropaint 

is applied to the electrode by electrodeposition (Schulte and Chow, 1996).  Anodic 

electrophoretic paint (PPG, ZQ84-3225) is used to coat the electrode.  The paint is composed 

of polyacrylamide (PAAH) and excess base in order to render it soluble in water.  In order to 

deposit the polyacrylamide onto the electrode surface, a positive DC potential is applied to 

the carbon-fiber electrode, which will oxidize water in the immediate vicinity (Eqn 1).   

2H2O ↔ O2 + 4H+ + 4e-     Eqn 1.1. 
 

The result is a shift in the pH to a more acidic value, which subsequently shifts the 

polyacrylamide equilibrium such that the insoluble form of polyacrylamide is favored (Eqn 

2) (Conyers and White, 2000).   

PAA- + H+ ↔ PAAH      Eqn. 1.2. 
 

In addition to a thinner insulating layer, the carbon fiber itself may be etched, either by flame 

or by electrochemical means (Schulte and Chow, 1998), to decrease its dimensions.  

Combining both an etched carbon fiber with a slim layer of insulation allows for sensing at 

specific regions of the cell and can identify exocytotic “hotspots” (Schroeder et al., 1994).  

Though etched electrodes may provide greater spatial resolution, the sensitivity of the 

electrode is also compromised and must be taken into account.  Etched and electropainted 

disk electrodes may potentially allow for measurements with greater spatial resolution to be 
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taken at nerve terminals in perfused brain tissue in conjunction with fluorescent labeling to 

clearly identify the nerve terminals of interest. 

 

Fluorescent detection of intracellular Ca2+ dynamics  

Use of the fluorescent dye, fura-2 

 Because exocytosis is Ca2+ dependent, a fluorescent Ca2+ dye has proven useful in 

monitoring Ca2+ dynamics that accompany vesicular release (Grynkiewicz et al., 1985).  

Fura-2 has been used to study changes in intracellular [Ca2+] during exocytosis (Figure 1.5; 

(Grynkiewicz et al., 1985).  Typically, this dye is used to obtain ratiometric measurements in 

order to correct for cell-to-cell differences.  Excitation of the Ca2+-bound fura-2 is 

accomplished at 340 nm while free and unbound fura-2 is excited at 380 nm; emission is 

measured at 510 nm.  Use of these two excitation wavelengths gives the maximal dynamic 

range for Ca2+ measurements within the cell.  Ratiometric measurements also allow for 

detection of [Ca2+] within the cell independent of cell thickness, dye concentration, intensity 

of the excitation source, and sensitivity of the camera used (Moore et al., 1990).  Fura-2 also 

has a dissociation constant, Kd, of 0.15 µM, which makes this dye appropriate for studying 

Ca2+ dynamics within the cell.  Intracellular [Ca2+] from resting levels (~100 nM) to 

exocytotic levels (approximating 1 µM) can be detected with confidence; concentrations 

much greater than 1 µM cannot be monitored as measurements with fura-2 depart from the 

linear relationship.  Because of this departure from linearity, global cellular changes in [Ca2+] 

are monitored using fura-2 as opposed to the isolated sites proximal to the plasma membrane 

as local [Ca2+] may approach much higher values (Neher and Zucker, 1993; Aharon et al., 

1994). 
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 Fura-2 binds to Ca2+ in a 1:1 ratio, which simplifies calibration.  The equation listed 

below is used to convert ratiometric measurements to [Ca2+].  

min380

max380

max

min2 *
)(
)(][

F
F

RR
RRKCa d −

−
=+     Eqn. 1.3 

The variables crucial to this calibration are Kd, which is the dissociation constant of fura-2; 

R, which is the ratio value obtained from the raw data; Rmin, which is the ratio measured with 

no free Ca2+ present in the solution; Rmax, which is the ratio measured in a solution of 

saturating [Ca2+]; F380max, which is the fluorescence observed with 380 nm excitation with no 

free Ca2+ present in solution; and F380min, which is the fluorescence observed with 380 nm 

excitation in a solution containing saturating [Ca2+]. This calculation, however, includes 

several assumptions.  First, it is assumed that the fura-2 molecules that have entered the cell 

are completely de-esterified.  Second, fura-2 is assumed to remain in the cytosol and not 

become compartmentalized in the organelles.  The third assumption is that the fluorescent 

properties of the molecule remain the same in the cytosol of the cell as in the calibrating 

solution; the Kd value is also unaffected by intracellular factors such as viscosity.  The fourth 

assumption is that any observed fluorescence originates solely from de-esterified fura-2 

molecules. 

 Measurements using fura-2 do have limitations.  Fura-2 molecules can become 

compartmentalized in extracytosolic space such as in mitochondria (Moore et al., 1990).  Use 

of high concentrations of fura-2 (> 100 µM) can also affect calcium buffering within the cell.  

Leakage of the dye from the cell can also lead to higher background fluorescence.   
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Figure 1.5.  Excitation spectra and molecular structure of fura-2.  (A) Excitation spectra 
of fura-2 over different [Ca2+] Emission is measured at 510 nm (B)  Molecular structure of 
esterified fura-2 and its de-esterified form (Grynkiewicz et al., 1985). 
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Inevitably, it will be impossible to completely prevent these problems, but if the appropriate 

concentration of fura-2 is used, they can be minimized. 

 

 Instrumentation 

 Ratiometric fura-2 measurements are obtained on an epifluorescence system mounted 

on an inverted microscope.  Dual excitation is achieved by software control of a 

galvanometer, which directs the light from a xenon arc lamp source via two mirrors 

alternately through the 340 nm and 380 nm filters.  Emission is measured at 510 nm using a 

CCD digital camera, which provides high quantum efficiency, high signal-to-noise, and high 

dynamic range.     

 

Conclusion 

 Techniques have been developed to examine processes that occur during exocytosis 

in order to better understand this process of intercellular communication.  Improvements in 

sensitivity have permitted progress from measurements of exocytosis at cell populations to 

observations at single cells and allowed for greater understanding of individual components 

of the exocytotic process.  Such aspects such as how the vesicle pools are mobilized and 

regulated can be studied in greater detail.  

    

VESICLE POOL REGULATION 

Vesicle mobilization is regulated by the maintenance of different vesicle pools.  

Vesicle pools have been studied in neurons and chromaffin cells.  The total number of 

vesicles contained in the typical chromaffin cell is approximately 10,000 (Figure 1.6A) 
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(Ungar and Phillips, 1983).  There have been three vesicle pools defined (Figure 1-6B) 

(Voets et al., 1999; Rizzoli and Betz, 2005). Roughly 1% of the vesicles is located at the 

plasmalemma and constitutes the readily releasable pool.  This pool contains vesicles that 

fuse immediately upon the exocytotic trigger of sufficient Ca2+ influx.  The second vesicle 

pool is the recycling pool.  This pool contains vesicles that have been retrieved from the 

plasmalemma by fast endocytosis and constitutes up to 10% of the total number of vesicles.  

The recycling pool incorporates vesicles into the cell membrane after exocytosis and 

retrieves them through fast endocytosis as opposed to the slow clathrin-coated endocytosis 

that also recovers vesicular membranes from the plasmalemma.  The third vesicle pool is the 

reserve pool, which contains an estimated 90% of the vesicles contained within the cell.  

These vesicles are presumed to be at a distance of 150-200 nm from the plasmalemma and 

replenish the readily releasable and recycling pools as they are depleted.  It is interesting to 

note that the reserve pool is believed to contain the older vesicles while newer vesicles 

constitute the readily releasable pool  (Wiegand et al., 2003).  It would be reasonable to 

assume that the principal means of controlling vesicle mobilization is through the reserve 

pool.  By selectively permitting vesicles to replenish the readily releasable and recycling 

pools, overall regulation of exocytosis is readily achieved.  

 

Proteins implicated in reserve pool maintenance  

F-actin and scinderin 

 In chromaffin cells, the cell cortex, which contains F-actin filaments, forms a barrier 

that precludes granules from reaching exocytotic sites (Burgoyne and Cheek, 1987).  The F-  
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Figure 1.6.  Vesicle pools.  (A) Electron micrograph of a chromaffin cell, which contains 
approximately 10,000 vesicles (Image by Wolfgang Schmidt of the University of Innsbruck). 
(B) Diagram of synaptic vesicle pools.  The readily releasable pool (RRP) constitutes ~1% of 
total vesicles and is located at the plasma membrane.  The recycling pool contains ~10% of 
vesicles and is quickly recycled back into the RRP. The reserve pool contains the vast 
majority of vesicles, which are sequestered by the actin cytoskeleton (Rizzoli and Betz, 
2005). 
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actin network is believed to be the principal means of sequestering the reserve pool of 

vesicles.  Disruption of this network would allow vesicles to be mobilized to the 

plasmalemma to dock, prime, and fuse with the plasmalemma upon the exocytotic trigger.   

Scinderin is a protein that has been implicated in severing actin filaments (Rodriguez 

et al. 1990).  It is believed to be a Ca2+-dependent molecular switch in the machinery of 

vesicle mobilization because it possesses three actin binding sites, two of which are 

implicated in actin disassembly (Marcu et al., 1994), and the third of which promotes 

association of actin (Marcu et al., 1998).  In experiments where full length recombinant 

scinderin was introduced to chromaffin cells, F-actin disassembly was augmented; peptides 

derived from these two actin binding sites were then introduced and inhibited release (Zhang 

et al., 1996).   Experiments in which full length recombinant scinderin or the peptide only 

containing the third F-actin binding site were introduced to cells, actin nucleation accelerated 

significantly compared to experiments lacking these peptides (Marcu et al., 1998).  

Moreover, experiments in which cells were incubated with recombinant scinderin, which was 

truncated to lack the first two actin-binding sites, showed no increase in catecholamine 

release in digitonin-permeabilized cells (Zhang et al. 1996).  The severing activity of 

scinderin is also Ca2+-dependent as it increases with Ca2+ concentration (Vitale et al., 1991).  

The nucleation activity of scinderin, conversely, is Ca2+-independent (Marcu et al., 1998).  

This interplay between Ca2+ dependence and independence may serve as the mechanism by 

which scinderin acts as a molecular switch.  During the influx of Ca2+ that occurs during 

exocytosis, the Ca2+-dependent severing activity of scinderin may be dominant.  As the Ca2+ 

levels are buffered and returned to near resting level, the Ca2+-independent nucleation 

activity becomes the prevailing action of scinderin. 
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Vesicular tethers in chromaffin cells: α-actinin and α-fodrin 

There have been several proteins believed to be involved in maintaining the reserve 

pool in chromaffin cells.  Other proteins, which have been considered to be candidates as 

vesicular tethers between secretory vesicles and the actin network in chromaffin cells, are α-

actinin (Jockusch et al., 1977; Aunis et al., 1980) and α-fodrin (Perrin and Aunis, 1985; 

Perrin et al., 1987).  Introduction of antibodies against α-fodrin into permeabilized bovine 

chromaffin cells partially inhibited Ca2+-dependent catecholamine vesicular release 

suggesting a role played by α-fodrin in maintaining vesicles to the actin cytoskeleton and 

presumably sequestering vesicles in the reserve pool compartment (Perrin et al., 1987).    

 

Synapsin 

In neurons, the protein implicated in sequestering vesicles in the reserve pool is 

synapsin, which has a putative role in tethering vesicles to the actin cytoskeleton.  This 

protein associates with the cytoplasmic surface of synaptic vesicles (De Camilli et al., 1983).  

There are three isoforms of synapsin: I, II, and III.  Increased phosphorylation of synapsin 

accompanies Ca2+-dependent vesicular release.  Synapsin I and II are physiological substrates 

for cyclic AMP-dependent protein kinase (PKA) and calcium calmodulin-dependent kinase I 

(CaMKI) while only synapsin I is a physiological substrate for calcium calmodulin-

dependent kinase II (CaMKII) (Greengard et al., 1993).  The PKA and CaMKI 

phosphorylation site is also present in synapsin III (Hosaka et al., 1999); this isoform also 

possesses similar sites that may be phosphorylated by CaMKII, but accessibility for 

phosphorylation is uncertain (Hilfiker et al., 1999).  Synapsin phosphorylation at the 

PKA/CaMKI site, which is conserved among all of the known synapsins (Hilfiker et al., 
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1999), may dissociate synapsin from synaptic vesicles (Hosaka et al., 1999).  A role for this 

site is not clearly known as other work has shown that introduction of a peptide that derived 

from the domain containing this site, inhibited release in a phosphorylation-dependent 

manner while having no effect on synapsin-actin and synapsin-vesicle interactions (Hilfiker 

et al., 2005). 

 Recent in vivo studies done on mice in which all three isoforms had been deleted 

(TKO) have shown that cocaine, in addition to its traditional function as a dopamine 

transporter (DAT) inhibitor, is able to increase dopamine release by mobilizing the synapsin-

dependent reserve pool (Venton et al., 2006).  In order to isolate cocaine-induced release 

from the readily releasable pool, long depolarizing trains were applied following 

administration of α-methyl-p-tyrosine (αMPT) to inhibit dopamine synthesis that would 

maintain the readily releasable pool.  The readily releasable pool was reduced to 25% of the 

pre-cocaine value.  Shorter depolarizing trains were then applied to probe the effect of 

cocaine on release from the reserve pool.  WT mice showed enhanced release with cocaine.  

Conversely, TKO mice showed an inability to recover release upon the shorter depolarizing 

trains.   

Most of the studies on synapsin have been done with the isoform synapsin I and its 

role in vesicular release.  Experiments in the squid giant axon showed that introduction of 

dephosphorylated synapsin I decreased transmitter release while introduction of CaMKII 

increased release (Llinas et al., 1991).  CaMKII promotes the phosphorylation of synapsin I, 

which allows the protein to release the vesicles to move freely to the plasma membrane for 

fusion upon exocytotic stimuli.  Additionally, introduction of a peptide derived from domain 

E of squid synapsin I into a squid giant axon exhibits disruption of synapsin I function 
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(Hilfiker et al., 1998).  This treatment reduces the number of synaptic vesicles available in 

the cytoplasm presumably because synapsin I that is bound to vesicles is unable to associate 

with the actin cytoskeleton (Hilfiker et al., 2005).  Interestingly, domain E is conserved 

among the “a”-type isoforms (Hilfiker et al., 1999), and may have an important role in 

vesicle mobilization as well.  Synapsin I has also been found in the rat adrenal medulla, but 

only in acetylcholine (ACh) nerve terminals that form synapses with chromaffin cells (Senda 

et al., 1991).  Synapsin I, therefore, appears only to associate with synaptic vesicles.   

Synapsin III is the most recently identified isoform and is believed to be found solely 

in nerve terminals as well.  This isoform is assumed to have a unique function from the 

synapsin I and II isoforms.  Feng et al. showed that synapsin III appears to modify release by 

limiting the size of the recycling pool while leaving priming unperturbed (Feng et al., 2002).  

The only isoform that has been found in chromaffin cells, synapsin II (previously 

named protein III) (Browning et al., 1987), has also been implicated in vesicle mobilization.  

Synapsin II is the only member of the synapsin family that appears to associate with dense-

core granules.  In response to depolarizing secretagogues such as acetylcholine, potassium, 

veratridine, and barium, bovine chromafffin cells exhibited increased phosphorylation of 

synapsin II (Haycock et al., 1988).  Studies conducted by Firestone and Browning also 

showed that nicotinic and histaminergic stimulation of bovine chromaffin cells increased 

synapsin II phosphorylation along with catecholamine release (Firestone and Browning, 

1992).   
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Facilitation of vesicular release via an autoreceptor 

 Work has also been done addressing a natural facilitation of vesicular release that 

occurs at short intervals in bovine chromaffin cells.  This may be the result of D1-like 

autoreceptor activation.  Artalejo et al. demonstrated the facilitation of Ca2+ current in bovine 

chromaffin cells as a result of D1 receptor activation (Artalejo et al., 1990).  It was then 

postulated that facilitation induced in Ca2+ current could also cause facilitation in vesicular 

release.  Data showing D1 agonist-induced facilitation in bovine chromaffin cells, as well as 

inhibition of this effect using a D1 antagonist, is shown in chapter two.  Catecholamine 

binding to the D1 receptor is able to act on short timescales, effecting facilitation. 

 

Conclusion 

 Exocytosis is a complex process which requires many proteins and other components 

to mediate regulation.  One aspect of exocytotic regulation, vesicle pool mobilization, is 

regulated by various proteins.  The intricate interplay between these components promotes 

the efficiency of exocytosis.  Methods to monitor vesicular release and Ca2+ dynamics allow 

us to probe further into the exocytotic process in order to gain a clearer understanding of 

intercellular communication. 

 

THESIS OVERVIEW 

 Chapter 2 will address the autoreceptor effects observed in bovine adrenal medullary 

chromaffin cells.  There is also an extensive comparison of temperature and chemical 

stimulation conditions in order to determine the optimal experimental conditions for use in 

the subsequent autoreceptor studies.  Traditionally, room temperature (25ºC) and longer 
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stimuli (3-5 s) were used in experiments on chromaffin cells.  Paired pulse stimuli were 

applied to the cells and compared at 25ºC and at 37ºC.  Effects of chemical stimuli with 

durations shorter than those used previously were also studied.  The subsequent autoreceptor 

studies have been conducted in order to determine whether the D1 receptor-mediated 

facilitation of Ca2+ influx seen in earlier work by Artalejo et al. also mediates facilitation in 

catecholamine release (Artalejo et al., 1990).  The use of physiological temperature and 

shorter chemical stimuli revealed a naturally occurring facilitation present in bovine 

chromaffin cells, which was then used to explore the effects of D1 agonists and antagonists 

on effecting or inhibiting facilitation. 

 Chapter 3 will focus on the studying the release characteristics in chromaffin cells of 

a transgenic mouse model for Huntington’s disease.  In brain slices of R6/2 mice, it had been 

demonstrated that dopaminergic release was diminished as compared to their wildtype 

littermates (Johnson et al. 2006).  The work presented in chapter 3 examined 

catecholaminergic release in chromaffin cells of both R6/2 and wildtype mice.  The vesicular 

release characteristics were studied using constant potential amperometry.  In chromaffin 

cells obtained from R6/2 mice, vesicular content appeared diminished whereas release 

frequency was not compared to their WT littermates.  In order to elucidate a mechanism for 

the decrease in exocytotic release, a mitochondrial toxin, 3-nitropropionic acid (3-NP), was 

also applied to R6/2 and WT chromaffin cells in order to probe the hypothesis that 

impairment of ATP production was the principal mechanism behind the diminished release. 

 Chapter 4 will examine the role of the intracellular phosphoprotein, synapsin, in 

vesicular release.  Synapsin is believed to be a vesicular tether to the actin cytoskeleton.  For 

these studies, genetically altered mice were used in which the three known isoforms of 
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synapsin had been knocked out (TKO).  These experiments also utilized chromaffin cells, 

which are known to express only synapsin II.  The work presented here showed no difference 

in vesicular extrusion characteristics as revealed by amperometry.  However, upon 

stimulation with high K+, chromaffin cells from TKO mice released a significantly higher 

number of vesicles compared to chromaffin cells of their WT littermates.  Since synapsin is 

believed to have a role in regulating vesicle mobilization by controlling sequestration of the 

reserve pool, it is reasonable to assume that the absence of this protein would not interfere 

with vesicular release characteristics but would instead increase the number of vesicles that 

are free to move to the plasma membrane of the cell. 
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CHARACTERIZATION OF FACILITATION OF QUANTAL RELEASE INDUCED 

BY A D1-LIKE RECEPTOR ON BOVINE CHROMAFFIN CELLS 
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INTRODUCTION 

Exocytotic release of chemical messengers is a common mechanism for 

communication between biological cells.  This process is tightly regulated and several 

controlling mechanisms have been identified including the influx of Ca2+ from the 

extracellular space, the normal trigger for exocytosis, and the regulation of the number of 

vesicles in the readily releasable pool.  At many cells that undergo exocytosis, autoreceptors 

play an important regulatory role.  For example, most neurons, including those that release 

dopamine, norepinephrine, and serotonin, autoreceptor activation inhibits further release.  

Activation of serotonin somatodendritic autoreceptors inhibit subsequent synthesis and 

release (Blier et al., 1998).  Autoreceptors on dopaminergic neurons are D2-like (the D2 

receptor class is comprised of the D2, D3, and D4 dopaminergic receptors), and their actions 

are absent in mice with a genetic deletion of the D2 receptor (Benoit-Marand et al., 2001).  

Similar autoreceptor control has been shown for norepinephrine  (Starke, 2001).  An 

exception to the general inhibitory nature of neuronal autoreceptors appears to be 

glutamatergic synapses in the entorhinal cortex of juvenile rats that contain NMDA 

autoreceptors that enhance release (Yang et al., 2006).   

Nonneuronal cells that secrete by exocytosis also have autoreceptors.  Aspinwall et al. 

demonstrated that insulin-stimulated pancreatic β-cells secrete insulin (Aspinwall et al., 

1999). Additionally, pancreatic β-cells have recently been shown to have insulin receptors on 

their surface that, when deleted, result in a dramatically lowered level of insulin secretion 

(Ueki et al., 2006).  Thus, in contrast to neurons, these autoreceptors appear to promote 
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increased release.  Inhibitory autoreceptor regulation has been reported at bovine chromaffin 

cells from the adrenal gland.  Early investigations, prompted by the phylogenetic relationship 

between chromaffin cells and sympathetic neurons that are well established to have 

autoreceptors, determined that autoreceptors on bovine chromaffin cells had properties that 

pharmacologically resemble dopaminergic receptors (Artalejo et al., 1985; Gonzalez et al., 

1986), and their activation inhibited release.  Subsequent research showed that D2 dopamine 

receptors are located on bovine chromaffin cells and their activation inhibited release 

(Bigornia et al., 1990).  A D1-like receptor (the D1 receptor class is comprised of the D1 and 

D5 dopaminergic receptors) has also been identified on bovine chromaffin cells (Artalejo et 

al., 1990).  Activation of this receptor facilitates an inward Ca2+ current that could promote 

exocytosis (Artalejo et al., 1990).  Surprisingly, it was experimentally shown that D1 

receptor activation was found to inhibit catecholamine secretion (Dahmer and Senogles, 

1996a).   

In this work we describe a reinvestigation of the action of the D1 receptor on 

exocytosis from bovine chromaffin cells.  All of the prior secretion experiments that 

investigated autoreceptors on bovine chromaffin cells exposed them to secretagogues for 

multiple minutes.  In contrast, the D1 mediated facilitation Ca2+ currents were measured on a 

subsecond time scale.  In this work we evaluated release from bovine chromaffin cells using 

similar subsecond stimuli.  This was accomplished by first optimizing the temperature and 

timing for K+-based depolarization of individual chromaffin cells, while monitoring in real 

time release via amperometry and internal Ca2+ with fura-2.  With release evoked by brief 

stimuli at 37ºC we found clear evidence for facilitation of exocytotic release mediated by a 

D1-like receptor on the surface of bovine chromaffin cells. 
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EXPERIMENTAL PROCEDURES 

  Cultured Chromaffin Cells   

Bovine chromaffin cells were prepared from adrenal glands obtained from a local 

abattoir as previously described (Leszczyszyn et al., 1990).  Chromaffin cells were obtained 

from the adrenal medulla via digestion with collagenase (Worthington Biochemical 

Corporation, Lakewood, NJ).  Density gradient centrifugation using Renografin was used to 

obtain a culture solution epinephrine-enriched fraction of cells.  Cells were plated at a density 

of 3 x 105 cells/35-mm diameter plate (Becton Dickinson, Franklin Lakes, NJ) containing a 

25-mm glass coverslip (Carolina Biological, Burlington, NC).  Cell culture plates were kept 

at 37ºC in a 5% CO2-supplemented incubator (Fisher Scientific, Hampton, NH).  Cells were 

used days 3-7 postplating.    

 

Electrodes and Electrochemistry  

Carbon-fiber disk microelectrodes were prepared from T-650 fibers as previously 

described (Kawagoe et al., 1993).  Carbon fibers were aspirated into glass capillaries.  A 

pipette puller (Narishige, Long Island, NY) was used to seal the glass around the carbon 

fiber.  The carbon fibers were cut at the glass seal, and the seal was reinforced with epoxy 

(15% m-phenylenediamine mixed with Epon 828 resin (Miller-Stephenson, Danbury, CT)) 

heated to 80oC.  The electrodes were cooled at room temperature for 12 h, cured at 100oC for 

12 h, followed by curing at 150oC for 12 h.  Before use, electrodes were beveled at 45º on a 

diamond polishing wheel (Sutter Instruments, Novato, CA) using impedance monitoring and 

soaked in isopropyl alcohol for a minimum of 20 min (Bath et al., 2000).  Constant potential 

amperometry was used to monitor exocytotic events and was measured using an Axopatch 
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200B (Axon Instruments, Molecular Devices, Union City, CA).  The microelectrode was 

held at 0.650 V vs. an Ag/AgCl reference (Bioanalytical Systems, West Lafayette, IN); 

individual release events were detected as current spikes.  The resulting signal was filtered at 

5 kHz with a low-pass Bessel filter and collected at 10 kHz.  Amperometric recordings were 

then filtered at 400 Hz using a Gaussian filter.   

 

  Release Measurements   

Culture plates containing cells in buffer (in mM) 145 NaCl, 5 KCl, 1 MgCl2, 11.2 

glucose, 10 HEPES, and 2 CaCl2) were placed on the stage of a Zeiss 35 inverted microscope 

(Zeiss, Thornwood, NY).  The position of the carbon-fiber microelectrode and stimulating 

pipette was controlled with piezoelectric micromanipulators (Burleigh Instruments, Exfo, 

Plano, TX).  Exocytosis was evoked with 60 mM K+ delivered by pressure ejection from the 

stimulating pipettes that were constructed with a horizontal puller (Sutter Instruments, 

Novato, CA).  The diameter of the pipette tip was adjusted to 10 µm using a microforge 

(Narishige, Long Island, NY).  Ejection of the high K+ solution was accomplished with a 

Picospritzer set at 7 psi (General Valve Corporation, Parker Hannifin, Fairfield, NJ) using 

either a 0.5 or 2-s bolus.  The stage holding the cell plate was either kept at room 

temperature, 25ºC, or heated with a water bath (Fisher Scientific, Hampton, NH) to 37ºC. 

 

Ca2+ Measurements   

Ca2+-imaging employed the fluorescent dye, fura-2, and an imaging system (Empix, 

Inc., Mississauga, ON, Canada) attached to a microscope (Nikon, Lewisville, TX).  An initial 

fura-2 solution was diluted with 40 µL DMSO and 10 µL of 10% pluronic.  This fura-2 
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solution was diluted to 1 µM in experimental buffer containing 0.10 % BSA (Molecular 

Probes, Invitrogen, Carlsbad, CA).  Cells were incubated in this solution for 20 min at 25ºC, 

followed by a rinse for 20 min at 25ºC in the experimental buffer.  Ca2+-imaging experiments 

were conducted either simultaneously with amperometry or alone.  Intracellular fura-2 bound 

to Ca2+ was excited at 340 nm while free fura-2 was excited at 380 nm.  Emission was 

monitored at 510 nm using a digital CCD camera and software (Empix Imaging, Inc, 

Mississauga, ON, Canada).  The ratio of the emission with 340 nm excitation and 380 nm 

excitation was determined.  The ratiometric measurements were then converted to [Ca2+]i as 

previously described (Grynkiewicz et al., 1985; Finnegan and Wightman, 1995). 

 

Autoreceptor experiments  

Experiments were conducted at 37ºC using an S2/S1 protocol.  The number of 

exocytotic events following an initial delivery (S1) of 60 mM K+ for 0.5-s was compared to a 

second delivery 60 mM K+ (S2) 10 or 30 s later.  To evaluate D1 receptors, the D1 

antagonist, SCH-23390 (1 µM, 10 µM, 100 µM Sigma-Aldrich, St. Louis, MO), was present 

in the buffer.  To evaluate D2 receptors, the D2 antagonist, raclopride (1 µM, 10 µM, 100 

µM Sigma-Aldrich, St. Louis, MO), was present in the buffer.  To evaluate D1 receptors via 

a D1 agonist, SKF-38393 was introduced to the buffer.  Paired 0.5-s boluses spaced 30 s 

apart were used to deliver the 60 mM K+ secretagogue to cells.  At 10 s after the initial 

stimulus, 100 uM SKF-38393 (Sigma-Aldrich, St. Louis, MO), a D1 agonist, was delivered 

to the buffer and remained present during the second stimulus.   



 37

To evaluate the endogenous ligand, a 3-s bolus of 50 µM epinephrine was applied to 

the cell 22 s after S1 and S2 was applied 5 s later.  As a control, the experiment was repeated 

at separate cells with ejection of experimental buffer substituted for epinephrine. 

 

Data analysis and statistics 

Spike analysis was performed using MiniAnalysis (Synaptosoft, Decatur, GA).  For 

selection as spikes, the amplitude had to exceed the root-mean-square current noise by a 

factor of 5.  Student’s t-test and one-way ANOVA were used to determine significance 

among data sets.  A value of p < 0.05 was taken to indicate a significant difference. 

 

RESULTS 

Vesicular release and Ca2+ dynamics evoked by 0.5-s and 2-s stimuli at 25ºC  

At 25ºC, 0.5-s pressure ejection of 60 mM K+ onto a chromaffin cell was sufficient to 

cause Ca2+ influx into the cell, measured by fura-2 fluorescence, and this was accompanied 

by exocytotic spikes measured by amperometry (example traces in left panel of Figure 2.1).  

Intracellular [Ca2+] reached a maximum after the 60 mM K+ ejection was terminated and then 

slowly returned to baseline.  The decay of the [Ca2+]i was sufficiently slow that it failed to 

reach the original level within 10 s of the initial K+ exposure.  A second, 0.5-s pressure 

ejection of 60 mM K+, 10 s after the first, caused a smaller increase in [Ca2+]i that returned to 

baseline.  Again, exocytosis was observed during the time [Ca2+]i was elevated.   

To quantify the effects of consecutive 0.5-s stimuli on the occurrence of exocytotic 

events at 25ºC, we examined the ratio of the number of spikes evoked on a second K+  
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Figure 2.1.  Comparison of 0.5-s and 2-s exposures to 60 mM K+ at 25ºC.  Stimulations 
were paired with a 10-s interstimulus interval.  Uppermost traces show bolus of 10 µM 
dopamine applied to electrode to show ejection profile.  Middle traces show [Ca2+]i collected 
with fura-2; bottom traces show amperometric traces of release.  Right and left panels show 
0.5-s and 2-s stimulations, respectively. 
 

25ºC 
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exposure (S2) to those evoked on the first (S1).  If preceding stimuli do not affect subsequent 

exocytotic events, this spike number ratio should be unity. The ratios were examined with 

different intervals between the stimuli to allow increasing recovery times (Table 2.1).  With a 

10-s or 20-s interval between 0.5-s, 60 mM K+ exposures, the spike number ratios were 

approximately unity, but they exceeded unity with 30 or 40 s between stimuli.  The ratio of 

the areas under the [Ca2+]i curves was also calculated as an S2/S1 ratio.  With a 10-s interval 

between stimuli, the S2/S1 [Ca2+]i area ratio was 0.45 ± 0.06, but increased to a value 

between 0.7 and 0.8 with longer intervals between stimuli (Table 2.2).  The average [Ca2+]i 

area ratio measured across the four intervals was 0.71 ± 0.04 and was significantly depressed 

from unity (p < 0.05).  

Similar experiments were done at 25ºC with 2-s pressure ejections of 60 mM K+.  

With the longer stimulus, the [Ca2+]i reached a maximum during the stimulus, evoking 

exocytosis, but again was slow to return to prestimulus values (see right panel of Figure 2.1).   

A second exposure 10 s later did not evoke much of a change in [Ca2+]i, but did evoke further 

exocytosis.  Surprisingly, the number of spikes evoked on the first exposure with 2-s 

exposure to 60 mM K+ (21.5 ± 1.8) was not significantly different from that evoked with a 

0.5-s pulse (15.1 ± 2.5; p ≥ 0.05; Figure 2.2A).  However, the [Ca2+]i area with the 2-s 

pressure ejection (44.95 ± 6.29 arbitrary units) was significantly greater than with a 0.5-s 

exposure (25.08 ± 1.54 arbitrary units; p < 0.05; Figure 2.2B). 

The spike number ratios for consecutive stimuli using the 2-s stimulus were also 

found to be variable and near unity, but no consistent trend with interval between the stimuli 

was seen (Table 2.1).  The [Ca2+]i area ratio was very low with a 10-s interval between 2-s 

exposures to 60 mM K+, and it increased for longer intervals (Table 2.2).  The average  
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Table 2.1. Spike number ratios, S2/S1.  Values are shown at 25ºC for 0.5-s at 10-, 20-, 30-, 
and 40-s intervals (n = 5, 7, 13, 12, respectively) and 2-s stimuli for 10-, 20-, 30-, and 40-s 
intervals (n = 5, 22, 23, 13, respectively).  Spike number ratios are also shown at 37ºC for 
0.5-s at 10-, 20-, 30-, and 40-s intervals (n = 10, 9, 16, 10, respectively) and 2-s stimuli for 
10-, 20-, 30-, and 40-s intervals (n = 13, 11, 17, 10, respectively).  
 

 

Interstimulus 
interval (s) 

25ºC 37ºC 

 0.5-s stimulus 2-s stimulus 0.5-s stimulus 2-s stimulus 
10 1.1 ± 0.3 1.0 ± 0.1 2.0 ± 0.1 1.2 ± 0.2 
20 1.0 ± 0.2 0.69 ± 0.10 1.6 ± 0.4 1.7 ± 0.2 
30 1.8 ± 0.3 1.2 ± 0.1 1.6 ± 0.1 1.3 ± 0.2 
40 1.3 ± 0.2 0.76 ± 0.10 1.7 ± 0.4 1.5 ± 0.2 
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Table 2.2. [Ca2+]i area ratios, S2/S1. Values are shown at 25ºC for 0.5-s at 10-, 20-, 30-, 
and 40-s intervals (n = 5, 7, 9, 12, respectively) and 2-s stimuli for 10-, 20-, 30-, and 40-s 
intervals (n = 5, 13, 17, 14, respectively).  [Ca2+]i area ratios are also shown at 37ºC for 0.5-s 
at 10-, 20-, 30-, and 40-s intervals (n = 6, 6, 6, 7, respectively) and 2-s stimuli for 10-, 20-, 
30-, and 40-s intervals (n = 5 for all intervals).   
 
 

 

Interstimulus 
interval (s) 

25ºC 37ºC 

 0.5-s stimulus 2-s stimulus 0.5-s stimulus 2-s stimulus 
10 0.45 ± 0.06 0.18 ± 0.05 1.2 ± 0.1 0.82 ± 0.04 
20 0.88 ± 0.03 0.57 ± 0.10 1.2 ± 0.1 0.65 ± 0.06 
30 0.79 ± 0.07 0.51 ± 0.05 1.1 ± 0.1 0.61 ± 0.04 
40 0.71 ± 0.08 0.47 ± 0.05 0.87 ± 0.05 0.52 ± 0.06 
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measured over the four intervals being 0.43 ± 0.05, which was significantly lower than unity 

(p < 0.05), again indicating insufficient time for recovery on the second stimulus.  Clearly, 

the 2-s stimulus at 25ºC sufficiently perturbs the mechanisms that regulate [Ca2+]i such that 

the responses on the second exposure differ considerably from those on the first exposure.   

 

  Vesicular release and Ca2+ dynamics evoked by 0.5-s and 2-s stimuli at 37ºC  

Identical experiments were repeated at 37ºC.  At this temperature, the Ca2+ responses 

were more rapid (Figure 2.3).  With a 0.5-s delivery of 60 mM K+, [Ca2+]i was maximal soon 

after the stimulus, and returned to near baseline within 10 s, and multiple exocytotic spikes 

were observed.  With a 10-s interval between stimuli, the spike number ratio approached 2, 

and it was above 1.5 with longer intervals between stimuli (Table 2.1).  These S2/S1 spike 

number ratios evoked during 0.5 s exposures were significantly higher than unity (p < 0.05) 

indicating facilitation of release at 37ºC.  The [Ca2+]i area ratios were above unity with a 10-s 

interval between stimuli, and remained high until the stimuli were separated by 40 s (Table 

2.2).   

At physiological temperature, a 2-s stimulus of 60 mM K+ caused Ca2+ influx that 

was maximal during the ejection, and which decayed to base line within 10 s.  At 37ºC, there 

were significantly more spikes evoked with a 2-s bolus (25.5 ± 2.5) than with a 0.5-s pulse 

(14.2 ± 1.7; p < 0.05, Figure 2.2).   

The spike number ratio was 1.2 with 10 s between 2-s ejections of 60 mM K+ at 37ºC 

(Table 2.1).  With longer intervals between stimuli, the spike number ratio hovered between 

1.3 and 1.7; these spike number ratios were significantly higher than unity, also indicating  
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Figure 2.2.  Effects of stimulus time and temperature on vesicular release and Ca2+  
influx. A, Number of spikes elicited using 0.5-s (n = 53) and 2-s stimuli (n = 42) at 25ºC  
were not statistically significant.  There was a significant difference between the number of  
spikes elicited at the two stimuli at 37ºC (p < 0.05).  Temperature did not show an effect on  
number of evoked spikes at a particular stimulus duration.  B, Ca2+ dynamics in response to  
temperature and stimulus conditions.  Ca2+ area during evoked Ca2+ influx using 0.5-s (n = 5)  
and 2-s stims (n = 7) at 25ºC was statistically significant (p < 0.05); 0.5-s stimuli (n = 25) and  
2-s stimuli (n = 20) at 37ºC also evoked average Ca2+ areas that were significantly different  
(p < 0.05) Ca2+ dynamics are more sensitive to temperature and stimulus duration. 
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Figure 2.3. Comparison of 0.5-s and 2-s exposures to 60 mM K+ at 37ºC.  Stimulations 
were paired with a 10-s interstimulus interval.  Uppermost traces show bolus of 10 µM 
dopamine applied to electrode to show ejection profile.  Middle traces show [Ca2+]i collected 
with fura-2; bottom traces show amperometric traces of release.  Right and left panels show 
0.5-s and 2-s stimulations, respectively. 
 

37ºC 
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the presence of facilitation (p < 0.05).  With all time intervals, the average [Ca2+]i area ratio 

with 2-s pressure ejections was less than unity (Table 2.2).  The average ratio over the 10-, 

20-, 30-, and 40-s intervals was 0.65 ± 0.01, which is significantly different from unity (p < 

0.05).  Thus, even at 37ºC, 2-s exposures to 60 mM K+ perturbed the cell sufficiently that 

[Ca2+]i could not achieve the initial evoked value on subsequent stimuli, at least with the 

inter-stimulus times investigated.  Note that while there was little change in the number of 

spikes evoked at the two different temperatures, the [Ca2+]i area ratios were significantly 

smaller at 37ºC with both ejection durations (Figure 2.2).  This is because [Ca2+]i is more 

rapidly restored to low levels at the higher temperature.  

   

Facilitation and depression of vesicular release via the D1 receptor  

To investigate whether the elevated number of spikes seen following a second 

exposure to 0.5-s exposure to 60 mM K+ at 37ºC was due to specific receptor interactions, we 

examined the effects of selective pharmacological agents.  In the first experiment, the effect 

of different concentrations of the D1-receptor antagonist, SCH-23390, on spike number ratio 

was examined with 0.5 s K+ pressure ejections that were 10 s apart.  The average control 

S2/S1 spike number ratio (without drug) for the 10-s interval yielded a mean of 2.2 ± 0.2.  

The amount of facilitation decreased with increasing concentrations of SCH-23390 (Figure 

2.4).  Only treatment with 10 and 100 µM SCH-23390 showed a significant depression as 

compared to control (p < 0.05). 

To test if D2 receptors were participating in this effect on release, the D2 antagonist, 

raclopride, was used in an analogous study.  The average control spike number ratio, S2/S1,  
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Figure 2.4. Dose response curve of D1 and D2 antagonists.  Data was obtained using 0.5-s 
K+ stimuli at 37ºC with 10-s intervals.  To investigate the presence of a D2-receptor mediated 
effect on facilitation, raclopride, a D2 antagonist, was incubated with cells at 1, 10, and 100 
µM (n = 5, 10, 7, respectively).  The S2/S1 responses were compared to control values 
measured at the same cell.  Various concentrations of SCH-23390 (0.1, 1, 10, 100 µM; n = 8, 
7, 7, 8, respectively) were also used to examine its effect on facilitation.  Spike number ratios 
obtained at 10 and 100 µM SCH-23390 were significantly different from control values (p < 
0.05). 
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(without drug) across the three concentrations used was 2.2 ± 0.3 with 0.5-s exposures 10 s 

apart.  Three concentrations of raclopride were used: 1 µM, 10 µM, and 100 µM (Figure 2.4).  

No changes in spike number ratios were observed.   

Next, the effect of a D1-receptor agonist was evaluated.  In these experiments, the K+ 

stimuli were 30 s apart because, under control conditions (Table 2.1), facilitation was not as 

pronounced as with the shorter intervals.  SKF-38393 (100 µM), a D1-receptor agonist, was 

introduced into the buffer 10 s after the first 0.5 s K+ pressure ejection.  The spike number 

ratio was 2.5 ± 0.4 following the agonist compared to 1.2 ± 0.2 (p < 0.05) in the absence of 

the agonist (Figure 2.5).  The facilitation caused by SKF-38393 was blocked when 10 µM of 

the D1-receptor antagonist, SCH-23390, was included in the buffer (p < 0.05; Figure 2.5).   

 

Epinephrine-induced facilitation  

To test whether the physiological ligand that is secreted by chromaffin cells would 

elicit facilitation, the experiment was repeated with a transient application of 50 µM 

epinephrine.  Epinephrine was applied as a 3-s bolus 22 s after the first 0.5-s bolus of K+; 5 s 

after completion of the epinephrine application, the second 0.5-s bolus of K+ was applied to 

the cell.  Epinephrine evoked facilitation in release as was seen with the D1 agonist, SKF-

38393 (Figure 2.6).  Transient application of 50 µM epinephrine to chromaffin cells yielded a 

spike number ratio of 2.7 ± 0.4 (Figure 2.6, inset) which was 265.4 ± 43.9% of the control 

ratio, which was obtained by pressure ejecting experimental buffer instead of epinephrine 

(1.1 ± 0.1; p < 0.05; Figure 2.6).     

   To test whether the effect of epinephrine was D1 receptor-mediated, two consecutive 

S2/S1 protocols were used.  In the first, epinephrine was introduced 5 s before S2.  Then, the  
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Figure 2.5.  D1 receptor-mediated facilitation.  Experiments were conducted with a 30-s 
interstimulus interval. Spike number ratios showed recovery in control cells (n = 9) and 
facilitation in cells incubated with 100 µM SKF-38393, a D1 agonist (n = 9).   Co-incubation 
of 100 µM SKF-38393 and 10 µM SCH-23390 showed inhibition of the facilitation effect (n 
= 5).   Incubation with SKF-38393 alone was significantly different from control value and 
co-incubation of SKF-38393 and SCH-23390 (p < 0.05). 
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Figure 2.6.  Epinephrine-induced facilitation.  Experiments were conducted with a 30-s 
interstimulus interval.  A, Control trace where experimental buffer was applied to the cell for 
3-s records recovery of release upon the second stimulus, S2.  B, Release was recorded with 
3-s application of 50 µM epinephrine.  S2 in these cells showed a greater number of elicited 
spikes.  Note the baseline change due to detection of the pressure ejection of epinephrine.  
Inset shows average S2/S1 values for control cells and cells that received brief applications 
of epinephrine (n = 12).  The values were shown to be significantly different (p < 0.05).  
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Figure 2.7. Epinephrine-induced facilitation is D1-modulated.  Experiments were 
conducted with 30-s interstimulus interval.  To investigate if the epinephrine-induced 
facilitation was mediated by a D1-like receptor, SCH-23390 was used to attempt to block the 
effect.  A pair of S2/S1 stimuli were evaluated at each cell with 50 µM epinephrine applied 
during S2; after 5 min, a second set of identical paired stimuli was used with transient 
application with (n = 5) or without 10 µM SCH-23390 (n = 7).  Values are shown as the 
percent of the initial S2/S1 spike number ratios. 
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experiment was repeated 5 min later, with or without a D1-receptor antagonist.  The second 

epinephrine application in the absence of drug showed facilitation, but its S2/S1 spike 

number ratio was 79.2 ± 16.5% of the first (Figure 2.7).  This may indicate desensitization 

that is occurring at the receptor.  However, in the presence of SCH-23390 (10 µM) the 

facilitation effect was blocked.  The ratio of S2/S1 spike number ratios was 37.4 ± 8.7%, 

which was significantly different than the response in the absence of drug (p < 0.05; Figure 

2.7).   

 

DISCUSSION 

 The results described here demonstrate that there is an autoreceptor on bovine 

chromaffin cells that facilitates release of epinephrine.  Previous work has demonstrated the 

presence of dopaminergic D1 (Artalejo et al., 1985; Artalejo et al., 1990) and D2 (Bigornia et 

al., 1990) receptors on bovine chromaffin cells.  Consistent with those findings, chromaffin 

cells have been shown to express RNA for the D4 and D5 dopaminergic receptors (Dahmer 

and Senogles, 1996a).  Additionally, it has been shown that D1 receptor activation 

(presumably through activation of the D5 receptor) causes facilitation of Ca2+ currents 

(Artalejo et al., 1990).  Since it was postulated that the Ca2+ influx linked to the D1 receptor 

was sufficient to evoke further release (Artalejo et al., 1991), we tested for this effect.  Clear 

evidence for facilitation of release was found at physiological temperature and with 

subsecond exposure to small amounts of K+.  This facilitation was blocked by a D1 receptor 

antagonist in a dose-dependent manner.  The facilitation could be mimicked by a D1 agonist 

as well as the endogenous secreted species, epinephrine.  Thus, we have established a 

functional role for the previously identified D1 receptor on bovine chromaffin cells. 
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Crucial to our observation of facilitated autoreceptor-dependent release was the 

optimization of the stimulus conditions.  Rapid application of secretagogues was enabled by 

the fabrication of ejection pipettes that permit delivery of a relatively sharp concentration 

profile even on a 0.5-s timescale (Hochstetler et al., 2000).  The pipette tips have a diameter 

of 10 µm or less, which minimizes leakage of the secretagogue from the tip.  The paired 

stimuli approach that employed a 0.5-s or 2-s exposure to 60 mM K+ was sufficient to 

promote release of multiple vesicles with each exposure.  Since the electrode samples 

approximately 6% of the cellular surface, each 0.5-s exposure can be estimated from the data 

in Figure 2.2 to release approximately 250 vesicles.  Because one estimate of the readily 

releasable pool is approximately 175 (Voets et al., 1999) of the total 10,000 vesicles in the 

cell (Ungar and Phillips, 1983), the majority of our release is believed to come from this 

compartment.   

The spike number ratio was always unity or greater with the 0.5-s stimuli.  In 

contrast, with 2-s stimuli, the spike number ratio was often lower than unity at 25ºC 

suggesting that the cell (or the vesicle pools and their associated release mechanisms) on the 

second stimulus is still recovering from the first stimulus (Dinkelacker et al., 2000).  

Consistent with prior work, the number of spikes initially evoked by the same stimulus 

duration was similar at both temperatures (Pihel et al., 1996; Walker et al., 1996).  The 

strongest evidence that the cell is dramatically perturbed with the 2-s stimuli comes from the 

[Ca2+]i area ratios.  Only with 0.5-s stimuli at 37ºC were [Ca2+] area ratios near unity 

achieved consistently.  Indeed, with short times between pulses, the [Ca2+] area ratios 

exceeded unity.  This finding is entirely consistent with the facilitated Ca2+ currents 

measured by Artalejo and coworkers (Artalejo et al., 1992).  The cells were able to recover 
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more effectively at 37ºC as the [Ca2+]i relaxed back to near resting levels within even a 10-s 

interstimulus interval.  Ca2+ uptake, primarily into mitochondria, reestablishes [Ca2+] resting 

levels in chromaffin cells (Yang and Kao, 2001; Haynes et al., 2006) and the return to resting 

[Ca2+] levels was more rapid at physiological temperature.  Thus, we elected to use a 0.5-s 

stimulus and a 10-s interval to investigate receptor-mediated facilitation. 

 To test the hypothesis that facilitation of exocytosis is mediated by interaction of a 

released substance with a D1 dopamine receptor (Artalejo et al., 1991), the conditions that 

showed facilitation were repeated in the presence of SCH-23390, a D1 antagonist.  While this 

agent blocked facilitated release in a dose-dependent manner, facilitated release was 

unaffected by the D2 antagonist, raclopride.  The doses of SCH-23390 needed to inhibit 

facilitation are quite high.  Two possibilities may contribute to this finding.  First, the binding 

of SCH-23390 to sites on chromaffin cell is considerably weaker than to other tissues that 

have D1 receptor sites (Dahmer and Senogles, 2000).  Because of this, we are probably more 

correct to refer to this receptor as a “D1-like receptor.”  Second, the assay used involves the 

competition between released epinephrine and the antagonist.  Further evidence that a D1-

like receptor is involved in facilitation was obtained with the D1 agonist, SKF-38393.  This 

agent induced exocytotic facilitation in a 30-s paired pulse interval, a paradigm that normally 

shows limited facilitation.   

 Consistent with the concept that the facilitation is an autoreceptor effect, epinephrine 

induced robust facilitation of the number of vesicular release events at a modest 

concentration compared to the surface concentration upon its release (Finnegan et al., 1996).  

Desensitization appears to occur because the epinephrine-induced facilitation was somewhat 

diminished upon repeating the application (Figure 2.7).  However, the facilitation induced by 
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epinephrine appears receptor mediated because it was inhibited by the D1-receptor 

antagonist, SCH-23390.  Previously, it was proposed that intracellular or plasma dopamine 

was the primary species responsible for activating dopaminergic receptors on bovine 

chromaffin cells (Artalejo et al., 1990; Bigornia et al., 1990).  This work shows that released 

epinephrine could be the catecholamine activating the D1-like receptor.  Indeed, epinephrine 

is well known to have a high affinity for the D1 receptor (IC50 = 68 nM) (Seeman, 1980).  

Epinephrine is in abundance in this preparation since the majority of chromaffin cells 

package and release epinephrine; the ratio of epinephrine- to norepinephrine-containing cells 

is approximately 70%:30% (Moro et al., 1990).  Moreover, the experiments performed in this 

work were conducted on the epinephrine-enriched fraction of cells obtained from the cell 

culture preparation.  Therefore, the observed facilitation originates by binding of epinephrine 

to a functional D1-like autoreceptor.    

Several earlier studies demonstrated a D2 receptor-mediated inhibition of 

catecholamine release (Artalejo et al., 1985; Gonzalez et al., 1986; Bigornia et al., 1990).  

Furthermore, a previous reports of D1 receptor-mediated secretion at chromaffin cells 

suggested a decrease in release (Dahmer and Senogles, 1996a).  However, many of these 

were done at room temperature, a condition not explored here.  Both D1 and D2 mediated-

effects were attributed to inhibition of sodium uptake that would cause an attenuated 

membrane depolarization (Dahmer and Senogles, 1996b).  We attribute the difference in 

responses obtained here to differences in the time scale of secretagogue application.  Prior 

studies of catecholamine release from bovine chromaffin cells used incubation times of 

minutes.  In this work each secretagogue exposure was transient and attempted to mimic 

physiological conditions of a brief burst of action potentials.  D1 receptor activation may 
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have predominantly short-term effects, as indicated by our results, while the effect of D2 

receptor activation may become predominant over longer time periods.   

The D1 receptor-mediated facilitation that occurs in chromaffin cells points to a 

positive feedback cycle that operates with paired stimuli that are spaced closely together.  

Previously, using a paired stimuli approach, an overfilling of the releasable pool of vesicles 

was noted at relatively short interstimulus intervals (approximately 2-10 s) in bovine 

chromaffin cells (Dinkelacker et al., 2000).  The autoreceptor that we have functionally 

characterized in this work may be the origin of this apparent overfilling.  By activating 

facilitating Ca2+ currents, more Ca2+ is available to stimulate greater release.  Autoreceptor-

mediated positive feedback occurs in other systems as well.  In addition to the positive 

feedback observed with application of insulin to β-pancreatic cells (Aspinwall et al., 1999), 

another positive feedback regulator is gonadotropin-releasing hormone (GnRH).   GnRH 

potentiates the pulsatile secretion of GnRH neurons in vitro (Khadra and Li, 2006).  GnRH 

agonists were also shown to potentiate the pulsatile neuronal response while GnRH 

antagonists had an inhibitory effect.  Moreover, oxytocin (OT) and its agonist enhance 

bursting activity in OT neurons while the OT antagonist inhibits this same response (Jourdain 

et al., 1998).  In the chromaffin cell, which is part of the “fight-or-flight” mechanism, a 

positive feedback system is desirable.  In this way, the body is flooded with adrenaline in 

order to be prepared for high stress situations.  Closely spaced stimuli would signal to these 

cells the urgent need for the rapid release of large amounts of catecholamine into the 

bloodstream and initiate the positive feedback cycle necessary for an immediate response to 

the presented threat or stress. 
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INTRODUCTION 

Huntington’s disease (HD) is a neurodegenerative disorder that is caused by an 

unstable CAG expansion on the gene encoding the protein huntingtin.  This expansion results 

in the formation of excessive polyglutamine repeats (>40) at the N-terminus (The 

Huntington's Disease Collaborative Research Group 1993).  R6/2 transgenic mice are a 

model for HD and express exon 1 of the mutated human HD gene with a CAG repeat length 

of 141-157 (Mangiarini et al., 1996).  These mice display progressive neuronal abnormalities 

and develop evident symptoms at 9-11 weeks of age.   

 One of the neuronal systems that becomes dysfunctional in Huntington’s disease is 

the dopaminergic system (Reynolds et al., 1999; Jakel and Maragos, 2000).  Hickey et al. 

(2002) showed that R6/2 mice were behaviorally less responsive to cocaine and 

methamphetamine (METH) than wild-type (WT) littermates.  In previous work from this 

laboratory, the blunted responses to the psychostimulants were replicated and the processes 

of dopamine uptake and release were evaluated in brain slices from R6/2 mice of different 

ages (Johnson et al., 2006).  The dopamine uptake system in the striatum in the mutant mice 

was identical to that in WT mice, and cocaine and methamphetamine inhibited dopamine 

uptake to a similar extent in both types of mice.  In contrast, the concentration of dopamine 

released by local electrical stimulation was found to be impaired in animals as young as six 

weeks of age, and this deficit progressed with age.  The diminished dopamine release in these 

studies corresponds with the decreased basal dopamine levels measured with microdialysis in
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the R6/1 model (Petersen et al., 2002), which exhibits a less severe phenotype than the R6/2 

model.  These findings correlate with resultsfrom microdialysis studies in which basal 

extracellular levels of dopamine were found to be lower in R6/2 mice than in age-matched 

WT mice (Abercrombie and Russo, 2002). 

 The lowered release could have several origins.  Release would be reduced if 

mechanisms associated with exocytosis were impaired.  Then release observed at the single 

vesicle level would occur at a lower frequency than with tissue from WT mice.  Another 

origin could be a diminished amount of catecholamine packaged into vesicles.  In this case, 

release observed at the single vesicle level would occur with the same frequency as from 

tissue from WT mice but the amount released per exocytotic release would be diminished.  

To investigate these alternatives we examined release from adrenal chromaffin cells isolated 

from R6/2 mice and compared the results with both types of cells isolated from WT mice.  In 

chromaffin cells, the frequency of evoked release was the same from both types of mice.  

However, both the amount released per vesicle and the time for extrusion of the vesicle 

contents was diminished in R6/2 mice, suggesting reduced vesicular packaging, an ATP 

dependent process, in the mutant mice.  Because diminished ATP production has been 

implicated in Huntington’s disease (Brennan et al., 1985), we investigated whether the 

diminished release was due to a compromised state of ATP-dependent packaging 

mechanisms.  Indeed, following overnight incubations with 3-nitroproprionic acid, a 

respiratory chain uncoupler, the amounts released per exocytotic event and the accompanying 

extrusion times were diminished in chromaffin cells from WT mice but not in R6/2 mice.   

Thus, impaired exocytosis through reduced vesicular storage can be found in secretory cells 

from mutant mice expressing huntingtin.   
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EXPERIMENTAL PROCEDURE 

Animals 

Mice were handled in accordance with protocols approved by the Institutional Animal 

Care and Use Committee.  The R6/2 line of transgenic mice and wild-type (WT) littermates 

were obtained from the Jackson Laboratory (Bar Harbor, Maine).  Twelve- to fourteen-week-

old mice were deeply anesthetized by ether inhalation and decapitated.   

 

Adrenal medullary chromaffin cells  

The adrenal glands were immediately removed and the medullae were decapsulated 

from the cortex and placed in Ca2+- and Mg2+-free Locke’s buffer, which consisted of (in 

mM): NaCl, 154; KCl, 3.6; NaHCO3, 5.6; D-glucose, 5.6; and HEPES, 10.  The pH was 

adjusted to 7.2 using NaOH.  Following dissection, the medullae were placed in 400 µL of 

papain (Sigma-Aldrich, St. Louis, MO) solution (25 U/mL) and incubated at 37ºC for 30 

min.  The papain solution was then removed, and the medullae were rinsed twice with 200-

µL aliquots of Ca2+- and Mg2+-free Locke’s buffer.  The medullae were transferred to 500 µL 

of D-MEM/F-12 containing penicillin/streptomycin, nystatin, and gentamicin along with 

10% fetal bovine serum and 2% horse serum.  The tissue was triturated and the resulting 

solution was plated onto plastic cell culture plates (Falcon 3001, Becton Dickinson, Lincoln 

Park, NJ) containing 25 mm glass coverslips (size 0, Carolina Biological, Burlington, NC).  

Plates were stored at 37ºC in a 5% CO2-supplemented incubator.  Experiments were 

performed postplating days 0-2. 
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Electrodes and electrochemistry  

Carbon-fiber disk microelectrodes were prepared as previously described using T-650 

carbon fibers (Amoco, Greenville, SC) (Kawagoe et al., 1991a).  Carbon fibers were 

aspirated into glass capillaries (A-M Systems, Inc, Carlsborg, WA) and the capillaries were 

subsequently heated and pulled (Narishige, Long Island, NY).  The extending carbon fiber 

was cut flush with the end of the glass tip, and the carbon fiber was sealed in place with 

epoxy (EPON resin 828, Miller-Stephenson, Danbury, CT; m-phenylenediamine, DuPont, 

Wilmington, DE).  Electrodes were cured at 100oC for 12 h followed by 12 h at 150oC.  

Before use, electrodes were polished on a diamond polishing wheel at 45º (Sutter 

Instruments, Novato, CA) and soaked for 10 min. in 2-propanol purified with activated 

carbon (Bath et al., 2000).   

 

Release measurements  

Chromaffin cells were placed in buffer containing (in mM): NaCl, 145; KCl, 5; 

MgCl2, 1; CaCl2, 2; D-glucose, 11.2; and HEPES, 10.  The pH was adjusted to 7.4 using 

NaOH.  The culture plates were placed on the stage of an inverted microscope (Zeiss, 

Thornwood, NY).  Cells were maintained at 37ºC with a heated stage connected to a constant 

temperature, circulating, water bath (Fisher Scientific, Hampton, NH).  Glass-pressure 

ejection pipettes used to introduce secretagogues onto cells had a tip diameter of ~10 µm and 

were connected to a gas valve (Picospritzer, General Valve Corporation, Parker Hannifin, 

Fairfield, NJ) operated at 7 psi .  The pipettes were prepared with a micropipette puller 

(Sutter Instruments, Novato, CA) and fire-polished in a microforge (Narishige, Long Island, 



 64

NY).  The tips of ejection pipettes were placed ~20 µm from the cell to evoke release.  A 

carbon-fiber electrode was placed in firm contact with the cell surface.   

Amperometric currents were recorded with an Axopatch 200B (Axon Instruments, 

Molecular Devices, Union City, CA).  The electrodes were held at +0.65 V vs. a Ag/AgCl 

reference electrode for measurements at chromaffin cells.  The current was filtered at 5 kHz 

with a low-pass Bessel filter and digitized at 10 kHz.   

Release from chromaffin cells was evoked by pressure ejection of a 60-mM KCl 

solution with the NaCl concentration adjusted to maintain isoosmolarity with the buffer.   

 

3-nitropropionic acid (3-NP) 

In some experiments with chromaffin cells, the effects of incubation with 3-NP was 

examined.  A stock solution of 1.68 M 3-NP (Sigma-Aldrich, St. Louis, MO) was prepared in 

ethanol.  Two hours after plating, 1 mM 3-NP or vehicle (0.06% v/v) was added to the plates.  

Cells were then incubated for approximately 20 h in these solutions.  Subsequently, 

amperometric measurements during release evoked by 60 mM K+ were made as described 

above.   

 

Data analysis 

Spike analysis was performed using MiniAnalysis (Synaptosoft, Decatur, GA).  For 

inclusion in the analysis, spikes had to be at least five times larger than the root-mean-square 

current noise.  The average spike area (Q), average spike width at half height (t1/2) and 

average spike frequency were recorded for each amperometric trace (Colliver et al., 2000).  

The spike area, obtained by integrating the measured current with respect to time, reveals the 
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total charge for each exocytotic event.  By Faraday’s law, Q = nFm where Q is the charge, n 

is the number of electrons lost during the oxidation of each molecule, and F is Faraday’s 

constant, the number of oxidized molecules released, m, can be calculated.  For these data, a 

two-electron process was assumed.  The distribution of spike areas does not follow a 

Gaussian shape; however, the cube roots of spike area fall into a Gaussian distribution 

(Wightman et al., 1995b).  Therefore, for each cell, a mean of the cubed root of the spike 

area, Q1/3, was calculated.  From this value, a mean Q value was calculated for each cell and 

included in the cumulative mean for a particular experimental group.  The t1/2 value is a 

measure of the time for extrusion of the vesicle contents.  The t1/2 values also do not follow a 

Gaussian distribution; for each cell, a mean of the cubed root of the t1/2 was also calculated.  

The cumulative mean for a particular experimental group was also determined using the 

mean t1/2 value calculated for each cell.  Spike frequency (f) in chromaffin cells was 

determined by dividing the number spikes counted by the time period over which they 

occurred.  Spikes with an interspike interval greater than 1 s were excluded.   

To analyze for pre-spike features, which are also termed feet, all the spikes in each 

trace that were preceded by a pre-spike feature were selected manually. Foot analysis was 

performed in a MiniAnalysis sub-routine by marking the apex of the spike, the baseline of 

the spike, and the inflection point between the foot and the full fusion spike. The integrated 

area was divided into foot area and full fusion spike area based on the inflection point.  

 

Statistics 

Statistical analyses in comparisons of spike frequency, average Q, and average t1/2 

were performed using a Student’s t-test.  For foot analysis, an average ratio of the foot and 
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the spike was recorded for each trace. Linear regression or t-test analysis was performed on 

these trace-averaged characteristics to test statistical significance (p < 0.05). Statistical tests 

conducted in studies involving 3-NP were done using single factor ANOVA.  Values are 

shown as mean ± SEM. 

 

RESULTS 

Amperometric spike characteristics at adrenal medullary chromaffin cells 

Chromaffin cells isolated from the medulla of adrenal glands release epinephrine and 

norepinephrine.  Release evoked in cells with 3-s applications of 60 mM K+ revealed 

differences in amperometric spike characteristics between cells from WT (n = 30 cells) and 

R6/2 (n = 21 cells) mice (representative traces shown in Figures 3.1A and 3.1B).  When 

spike Q values were averaged, a significant difference (p < 0.05) was observed between WT 

(Q = 0.42 ± 0.02 pC) and R6/2 (Q = 0.24 ± 0.02 pC) cells (Figure 3.1C).  On average, 5.6 × 

105 more molecules were released from vesicles from WT mice than from R6/2 mice.  A 

significant difference in t1/2 (p < 0.05) was also measured between WT (7.39 ± 0.41 msec) 

and R6/2 (5.84 ± 0.48 msec) cells (Figure 3.1D).  The smaller average t1/2 from the R6/2 cells 

indicates the time course of extrusion of epinephrine and norepinephrine is faster than in WT 

cells.  The spike frequency of WT (7.36 ± 0.51 Hz) and R6/2 (6.63 ± 0.74 Hz) cells were not 

significantly different (p > 0.05) (Figure 3.1E).   

To compare the process of vesicle mobilization in adrenal medullary chromaffin cells, 

dual-pulse experiments were performed.  Cells were stimulated twice with 1-s applications of 

60 mM K+ at 10-s intervals; data were analyzed as a ratio (S2/S1) of the number of spikes in 

the second stimulation, S2, versus the number of spikes in the first stimulation, S1.  No 
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significant difference in spike number ratios was calculated (p > 0.05) between wild-type 

(0.65 ± 0.10) and R6/2 (0.83 ± 0.10) cells (Figure 3.2A).  The number of spikes evoked on 

the first stimulus, S1, was also compared between WT and R6/2 mice.  There was no 

significant difference between the number of evoked spikes from naïve cells (p > 0.05); WT 

mice showed an average of 25.7 ± 3.5 spikes (N = 19 cells) while R6/2 mice showed an 

average of 34.2 ± 4.1 elicited spikes (N = 19 cells). 

In approximately 10% of amperometric spikes, a pre-spike feature occurs that 

indicates the presence of a nanometer-scale fusion pore.  These pre-spike features, also 

known as feet, were analyzed to contrast fusion efficiency in the two mouse models.  In 

chromaffin cells, there was no significant difference in the average number of feet per trace 

(4.27 ± 0.55 WT; 3.72 ± 0.54 R6/2), the average foot-to-spike area ratio (0.21 ± 0.03 WT; 

0.19 ± 0.04 R6/2), or the percentage of cells that exhibit feet (90% WT; 96% R6/2).  

 

Application of 3-nitropropionic acid (3-NP)   

To test the hypothesis that ATP depletion may be a contributing cause of the 

diminished efficiency of vesicle packaging, chromaffin cells from WT and R6/2 mice were 

treated with the mitochondrial toxin, 3-nitropropionic acid (3-NP).  Vehicle-treated WT 

chromaffin cells showed a mean spike area of 0.50 ± 0.07 pC while 3-NP-treated WT 

chromaffin cells had a mean area of 0.26 ± 0.04 pC.  Vehicle-treated R6/2 chromaffin cells 

had an average spike area of 0.23 ± 0.02 pC, and whereas for 3-NP-treated R6/2 chromaffin  
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Figure 3.1.  Vesicular release characteristics are different in adrenal chromaffin cells 
from R6/2 mice than from WT mice.  (A)  Amperometric trace (Eapp = +0.650 V) of 
individual exocytotic events evoked by 60 mM K+ from a chromaffin cell isolated from an 
R6/2 mouse.  (B) Release events measured under identical conditions from a chromaffin cell 
isolated from a WT mouse.  The bar graphs compare (C) average spike area, (D) average 
spike half-width, and (E) average spike frequency for release events at WT and R6/2 mice.  
Values are the mean ± SEM obtained at 30 WT cells and 21 R6/2 cells (*** and **** signify 
p < 0.05). 
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Figure 3.2.  Vesicular mobilization monitored at WT and R6/2 chromaffin cells.  Cells 
were stimulated in an S2/S1 protocol in which paired stimuli were applied to the cells with a 
10-s interstimulus interval.  The number of spikes in the second stimulus, S2, were compared 
to those from the first stimulus, S1.  Cells were stimulated with 1-s applications of 60 mM 
K+.  Both groups show slight depression in release (N = 19 WT cells; N = 19 R6/2 cells).  
There was no significant difference between WT and R6/2 cells (p > 0.05). 
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cells the average spike area was 0.18 ± 0.03 pC.  The average of vehicle-treated WT 

chromaffin cells is significantly different from those of the 3-NP-treated WT cells, vehicle-

treated R6/2 cells, and 3-NP-treated R6/2 cells (Figure 3.3A; p<0.05, ANOVA).  On average, 

there was a difference of 7.3 x 107 molecules released per vesicle between the vehicle-treated 

and 3-NP-treated WT cells. 

 Because vesicle priming is also an ATP-dependent process, the frequency of an 

amperometric spike burst was also evaluated.  The average spike frequency for vehicle-

treated WT cells was 4.79 ± 0.56 Hz ; 3-NP-treated WT cells yielded a mean spike frequency 

of 3.63 ± 0.50 Hz.  For vehicle-treated R6/2 cells, the mean frequency was 3.43 ± 0.35 Hz.  

The average frequency for 3-NP-treated R6/2 cells was 4.63 ± 0.91 Hz.  There was no 

significant difference among the experimental groups (Figure 3.3B; p > 0.05). 

 

DISCUSSION 

 Prior work established that release of dopamine from striatal neurons in mice 

expressing human huntingtin is impaired (Johnson et al., 2006).  Consistent with this, 

exocytosis from adrenal chromaffin cells isolated from R6/2 mice is impaired when 

examined at the single vesicle level.  Chromaffin cells, which are phylogenetically related to 

neurons of the central nervous system (Anderson and Axel, 1986; Anderson, 1989, 1993) 

exhibit responses pointing to compromised vesicular stores in R6/2 mice compared to WT 

controls.  While the frequency of exocytotic events evoked by transient depolarization is not 

statistically different at cells from the two types of mice, the amounts released are lower and 

the extrusion time is diminished in chromaffin cells from R6/2 mice.  The results following 

overnight incubation with the mitochondrial toxin, 3-NP, suggest that the diminished storage 
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Figure 3.3.  Vesicular release characteristics are altered by the mitochondrial toxin, 3-
nitropropionic acid (3-NP).  (A) Comparison of Q across the four experimental groups.  
WT adrenal chromaffin cells treated with vehicle (N = 13) show significant difference in Q 
from WT adrenal chromaffin cells treated with 3-NP (N = 8), R6/2 adrenal chromaffin cells 
treated with vehicle (N = 12), and R6/2 adrenal chromaffin cells treated with 3-NP (N = 6) (* 
signifies p < 0.05). (B) Comparison of t1/2 across the four experimental groups.  WT adrenal 
chromaffin cells treated with vehicle show significant difference in vesicle extrusion time as 
indicated by t1/2 from WT adrenal chromaffin cells treated with 3-NP, R6/2 adrenal 
chromaffin cells treated with vehicle, and R6/2 adrenal chromaffin cells treated with 3-NP (* 
signifies p < 0.05). (C) WT adrenal chromaffin cells treated with vehicle show no significant 
difference in spike frequency (p > 0.05) across the four experimental groups.  
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is a consequence of an ATP-dependent process.  The average Q, which indicates the average 

catecholamine amount extruded by the vesicles, is lower in WT mice than in previously 

published results.  Finnegan et al. demonstrated that the average Q observed at bovine 

chromaffin cells was approximately twice the amount that was observed in the present 

studies (Finnegan et al., 1996).  Grabner et al. also showed that murine chromaffin cells 

exhibit a lower Q than bovine chromaffin cells (Grabner et al., 2005).  The value obtained in 

the studies conducted by Grabner et al. show closer agreement to our data than that of the 

bovine chromaffin cells indicating a difference in quantal size between the two species. 

Because the huntingtin protein is expressed in adrenal medullary chromaffin cells 

(Mangiarini et al., 1996), we searched for a similar decrease in exocytotic release that had 

been seen previously in striatal neurons (Johnson et al., 2006).  While exocytotic release 

frequency and number of evoked spikes were unchanged in the chromaffin cells of R6/2 

mice, the vesicular amounts released and the durations of vesicle content extrusion were 

diminished, suggesting that reduced amounts of catecholamines were packaged in the 

vesicles.  This may be one mechanism that accounts for the reduced dopamine release 

Johnson et al. (2006) demonstrated in striatal neurons. 

Impaired ATP production may be responsible for this reduction in exocytotic release.  

It has been shown that subacute treatment of 3-NP is another viable model for Huntington’s 

disease (Brouillet et al., 2005).  3-NP is an inhibitor of mitochondrial function and lowers 

production of ATP.  Indeed, ATP production has been demonstrated to be aberrant in the 

brains of Huntington’s disease patients (Brennan et al., 1985).  ATP plays two important 

roles in packaging of catecholamines into vesicles within chromaffin cells.  First, the 

electrochemical gradient created by the ATP-driven H+ pump drives vesicle loading by the 
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monoamine-proton antiporter, VMAT1 found on chromaffin cell vesicles (Henry et al., 1994; 

Eiden et al., 2004)  Second, ATP is packaged within chromaffin cell vesicles with a 1:4 

stoichiometry with catecholamines (Kopell and Westhead, 1982).  Association of negatively 

charged ATP with the protonated amine side chain of catecholamines is thought to promote 

storage of the vesicle contents (Kopell and Westhead, 1982).  Impairment of either or both of 

these mechanisms could compromise vesicular catecholamine storage: catecholamine 

molecules would either be unable to enter the vesicles effectively or would not remain 

packaged at normal levels within the vesicles. 

To test whether impaired ATP production affects vesicle secretion from chromaffin 

cells, cells from R6/2 and WT mice were incubated overnight with 3-NP.  While release 

characteristics were unchanged in cells from R6/2 mice, release from treated chromaffin cells 

from WT mice showed characteristics similar to release from untreated R6/2 chromaffin 

cells: amounts released per vesicular event were reduced and extrusion times were 

diminished.  These data indicate that secretory stores in cells from WT mice are sensitive to 

diminished production of ATP, whereas they are not in R6/2 mice.  The lack of an effect of 

3-NP in R6/2 mice may indicate that a compromised ATP-dependent mechanism is a major 

cause of deleterious effects in vesicular release.  ATP is also important in priming vesicles 

for exocytosis (Holz et al., 1989).  Our experiments did not reveal deficits in that aspect of 

exocytosis in either mouse type as spike frequency was not significantly different.  Although 

there is no evidence for costorage of ATP and dopamine in dopaminergic neurons, the 

neuronal-vesicular transporter, VMAT2, is similarly dependent on the ATP-dependent H+ 

pump for loading of dopamine.  Thus, this may be an underlying mechanism for the 

diminished release seen in striatal slices.   
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Expression of mutant huntingtin in PC12 cells causes a depletion of complexin II, a 

protein that binds to the SNARE complex that is central to the membrane fusion apparatus.  

This is accompanied by an inhibition of the frequency of evoked exocytotic events that can 

be rescued by overexpression of complexin II (Edwardson et al., 2003).  However, it has 

been shown that overexpression of complexin II in bovine chromaffin cells decreases the 

time course of vesicle extrusion while also diminishing amperometric area (Archer et al., 

2002).  This discrepancy in the results obtained from chromaffin cells and PC12 cells may 

indicate an optimal cytosolic concentration above which inhibition of exocytosis occurs as 

overexpression of complexin II in chromaffin cells abolished function and overexpression of 

complexin II in PC12 cells  rescued function (Archer et al., 2002).  Our results show that the 

decrease in quantal size does not appear to be directly related to complexin II as we were 

able to replicate the results seen in R6/2 cells in cells of WT mice following overnight 

incubation of 3-NP.  Use of 3-NP to reproduce the R6/2 phenotype of vesicular release 

indicates that our observations may be linked to an ATP-dependent mechanism instead of 

complexin II. 
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INTRODUCTION 

 Exocytosis is a highly efficient process that is tightly regulated.  One form of 

regulation is achieved through vesicle mobilization from different vesicle pools.  Three 

vesicle pools have been defined: the readily releasable pool, the recycling pool, and the 

reserve pool (Voets et al., 1999; Rizzoli and Betz, 2005).  The readily releasable pool 

contains vesicles that are docked and/or primed at the cell membrane and prepared for release 

upon stimulation.  The recycling pool contains vesicles that have been newly retrieved from 

the plasma membrane after fusion and which are ready to replenish the readily releasable 

pool.  The reserve pool contains the majority of the vesicles within the cell, is located away 

from the plasma membrane, and is believed to be regulated by association to the actin 

cytoskeleton.  Because the reserve pool contains the vast majority of vesicles, regulation of 

vesicle mobilization may rely heavily upon availability of vesicles from this pool.   

 Synapsin is an intracellular phosphoprotein that has been implicated in maintaining 

vesicles in the reserve pool.  Synapsin is believed to serve as a link between vesicles and the 

actin cytoskeleton, and upon phosphorylation, dissociates from the actin cytoskeleton to 

mobilize vesicles (Hilfiker et al., 1998).  There are three isoforms of synapsin that have been 

discovered: I, II, and III.  Synapsins I, II, and III are found in neurons where they associate 

with synaptic vesicles; however, synapsin II is the only isoform to have been located in 

chromaffin cells of the adrenal medulla (Browning et al., 1987).   

 Previous work has shown that depolarizing secretagogues such as acetylcholine 

(Ach), potassium, veratridine, and barium induced an increase in the phosphorylation of
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synapsin II in bovine chromafffin cells (Haycock et al., 1988).  Further studies indicate that 

nicotinic and K+ stimulation, but not muscarinic stimulation, augment catecholamine release 

and synapsin II phosphorylation (Firestone and Browning, 1992).  Since disruption of 

synapsin I function in synapses has been shown to increase total vesicular release by 

promoting dissociation of vesicle-bound synapsin from the actin cytoskeleton (Hilfiker et al., 

1998), prior studies where synapsin II phosphorylation also increased exocytotic release 

appear to point to a similar role in vesicle mobilization.   

This work aims to characterize catecholaminergic vesicular release in chromaffin 

cells lacking synapsin II using amperometry and to characterize the accompanying Ca2+ 

dynamics using the fluorescent complexing agent, fura-2.  We have found that amperometric 

spike characteristics between WT mice and mice lacking synapsin II (TKO) show no 

significant differences in spike area or halfwidth, indicating that quantal size is unaffected.  

Consistent with a role in vesicle mobilization, we have observed an enhanced number of 

vesicles released from TKO cells upon depolarizing stimulation with K+
 

 

EXPERIMENTAL PROCEDURE 

Acutely dissociated chromaffin cell culture   

Animals were handled in accordance with protocols approved by the Institutional 

Animal Care and Use Committee.  The line of transgenic mice lacking the three isoforms of 

synapsin (I, II, and III), mixed from C57/BL6 and s129 strains, and wild-type littermates

were obtained from the Augustine laboratory at Duke University.  Two- to four-month old 

mice were anesthetized deeply by ether inhalation and subsequently decapitated.  The adrenal 

glands were separated and the medullae were isolated from the cortical tissue.  The dissection 
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was performed using Ca2+- and Mg2+-free Locke’s buffer, which contained (in mM): NaCl, 

154; KCl, 3.6; NaHCO3, 5.6; D-glucose, 5.6; and HEPES, 10.  The pH was adjusted to 7.2 

using NaOH.  Following dissection, the medullae were placed in 400 µL of papain solution 

(25 U/mL) and incubated at 37ºC for 30 min.  The papain solution was then decanted, and the 

medullae were rinsed twice with 200-µL aliquots of Ca++- and Mg++-free Locke’s buffer.  

The medullae were then placed in 500 µL of DMEM/F-12 containing 

penicillin/streptomycin, nystatin, and gentamicin along with 10% fetal bovine serum and 2% 

horse serum.  The tissue was triturated and the resulting solution was plated.  Experiments 

were performed 0-2 days postplating. 

 

Ca2+ measurements using fura-2  

Fluorescent monitoring of Ca2+ dynamics was accomplished using the fluorescent tag, 

fura-2, as described previously (Finnegan and Wightman, 1995).  An imaging system 

(Empix) with excitation filters alternated between 340 and 380 nm while emission was 

measured at 510 nm.  An initial fura-2 solution was diluted with 40 µL DMSO and 10 µL of 

10% pluronic.  This fura-2 solution was diluted to 1 µM in experimental buffer containing 

0.10 % BSA (Molecular Probes, Invitrogen, Carlsbad, CA).  Cells were incubated in this 

final solution for 20 min at 25ºC, followed by a rinse for 20 min at 25ºC in the experimental 

buffer.  Ca2+-imaging experiments were conducted after the incubation period.  Cells were 

visualized using an inverted microscope (Nikon, Lewisville, TX) and imaging software 

(Empix Imaging, Inc, Mississauga, ON, CANADA.  The ratiometric measurements were 

then converted to [Ca2+]i as previously described (Grynkiewicz et al., 1985; Finnegan and 

Wightman, 1995). 
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Electrodes and electrochemistry 

Carbon-fiber disk microelectrodes were prepared as previously described using T-650 

carbon fibers (Amoco, Greenville, SC) (Kawagoe et al., 1991b).  Carbon fibers were 

aspirated into glass capillaries (A-M Systems, Inc, Carlsborg, WA) and the capillaries were 

subsequently heated and pulled to create a glass seal (Narishige, Long Island, NY).  The 

extending carbon fiber was cut level with the glass seal; the seal was insulated further with 

epoxy (EPON resin 828, Miller-Stephenson, Danbury, CT; m-phenylenediamine, DuPont, 

Wilmington, DE).  Electrodes were cured at 100oC for 12h and then cured at 150oC for 12 h.  

Before use, electrodes were polished on diamond polishing wheels at 45º (Sutter Instruments, 

Novato, CA) and soaked for at least 10 min in 2-propanol purified with activated carbon 

(Bath et al., 2000).  During experiments, electrodes were held at a constant potential of +650 

mV vs. a Ag/AgCl reference electrode.   

 

Release experiments   

The experimental buffer consisted of (in mM): NaCl, 145; KCl, 5; MgCl2, 1; CaCl2, 

2; D-glucose, 11.2; and HEPES, 10.  The pH was adjusted to 7.4 using NaOH.  The high 

potassium solution used to stimulate cells contained 60 mM KCl and was adjusted to 

maintain isoosmolarity with the experimental buffer.  Cells were maintained at 37ºC with a 

heated stage on the microscope and circulating water bath (Fisher Scientific, Pittsburgh, PA).  

Exocytosis was elicited from cells by delivering a 0.5-s or 1-s bolus of 60 mM K+ from a 

glass pipette with a tip diameter of ~10 µm via pressure ejection (Picospritzer, General Valve 

Corporation, Parker Hannifin, Fairfield, NJ).  The pipettes were manufactured using a 
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horizontal micropipette puller (Sutter Instruments, Novato, CA) and fire-polished in a 

microforge to attain an opening diameter of 6-10 µm (Narishige, Long Island, NY).  The 

stimulating pipette was then placed ~20 µm from the cell during experiments.  Amperometric 

measurements were recorded using an Axopatch 200B (Axon Instruments, Union City, CA); 

vesicular release events were detected as current spikes.  The resulting signal was filtered at 5 

Hz with a low-pass Bessel filter and collected at 10 kHz.   

 

Transfection of synapsin IIa and EGFP-only vector. 

In some experiments, chromaffin cells were transfected with plasmid containing 

synapsin IIa and EGFP plasmid or the EGFP-only plasmid via lipid delivery.  EGFP was 

present in both plasmids to verify expression in cells.  After allowing plates to incubate at 

37ºC in 5% CO2 overnight, the original plating media was replaced with Opti-MEM media 

with reduced serum (Invitrogen, Carlsbad, CA).  Next, 0.4 µg of plasmid along with 0.2 µL 

of the lipid complexing agent Lipofectamine (Invitrogen, Carlsbad, CA) was added to each 

plate that was to be transfected.  Plates were allowed to incubate for 4-6 h after which time, 

the media was replaced with the DMEM/F-12 (Gibco/Invitrogen, Carlsbad, CA) and the 

plates were incubated for approximately 24 h.  Exocytosis was examined after the 24-h 

incubation period using 0.5-s applications of high K+
 solution at 37ºC.  

 

 

Data analysis   

Amperometric traces were filtered at 400 Hz using a digital Gaussian filter.  Spike 

analysis was then performed using MiniAnalysis (Synaptosoft, Decatur, GA).  Spikes 
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analyzed were at least five times the root-mean-square current noise.  Average spike area 

(Q), average spike width (t1/2) and average spike frequency were recorded for each 

amperometric trace (Colliver et al., 2000). The distribution of spike areas does not follow a 

Gaussian shape; however, the cube roots of the spike areas fall into a Gaussian distribution 

(Wightman et al., 1995b).  For each cell, a mean of the cubed root of the spike area, Q1/3, was 

calculated.  From this value, the mean Q was calculated for each cell and included in the 

cumulative mean for a particular experimental group.  The t1/2 value is a measure of the time 

for extrusion of the vesicle contents.  The t1/2 values also do not follow a Gaussian 

distribution; for each cell, a mean of the cubed root of the t1/2 was also calculated.  The 

cumulative mean for a particular experimental group was also determined using the mean t1/2 

value calculated for each cell.    

 

Statistics   

Statistical analyses in comparisons of spike frequency, average Q, which was derived 

from the mean value of Q1/3, and average t1/2, which was also derived from the mean value of 

the cube root of t1/2, were performed using a Student’s t-test.   

 

RESULTS 

Vesicular release evoked by K+ and Ba2+ 

 Release from chromaffin cells obtained from triple knockout mice (TKO) showed 

enhanced release compared to that evoked from cells obtained from wild-type littermates 

(WT) using identical stimuli (for example traces, see Figure 4.1).  The increase in release 

observed in TKO cells was quantified by counting the number of spikes elicited by the K+ 
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stimulus.  Using a 0.5-s 60 mM K+ stimulus, the average number of spikes elicited in 10 s 

from naïve WT cells was 19 ± 3 while the average from naïve TKO cells was 36 ± 5 (p < 

0.05).  A 1-s stimulus evoked a mean number of spikes from WT cells of 30 ± 5; the mean 

number of spikes from TKO cells was 57 ± 7 (p < 0.05; Figure 4.2).   

  

Vesicular release characteristics and Ca2+ dynamics 

Comparison of the amperometric spike characteristics of the adrenal cells from TKO 

mice and the WT mice showed no significant difference between the amount released per 

vesicle (Q) or the average time for each extrusion event (t1/2) (p > 0.05) (Figure 4.3A, B).  

The average t1/2 value for the WT cells was 10.7 ± 1.9 ms; the average t1/2 value for the TKO 

cells was 12.2 ± 1.4 ms.  The WT cells yielded a mean Q value of 0.45 ± 0.03 pC while the 

TKO cells yielded a mean Q value of 0.47 ± 0.04 pC.  The distribution of Q for WT and 

TKO cells is shown in Figure 4.2C and E while the distribution of Q1/3 is shown in Figure 4.3 

D and F.   

 The intracellular Ca2+ influx during high potassium application between cells from 

the two mouse types exhibited no significant difference (Figure 4.2B).  The average area 

under the [Ca2+] peak in WT cells was 3.4 ± 0.9 arbitrary units compared to 3.6 ± 1.0 in TKO 

cells indicating that the difference seen in vesicular release is not linked to differences in 

Ca2+ influx.  
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Figure 4.1.  Comparison of K+-stimulated release at 37ºC  between WT and TKO cells. 
(A) Representative amperometric trace recorded from a (A) WT cell and a (B) TKO cell 
using a 0.5-s stimulus.   
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Figure 4.2.  Comparison of the number of evoked spikes and Ca2+ dynamics between  
WT and TKO cells. (A) Exocytosis was evoked high K+.  The 0.5-s stimulus (p < 0.05) and 
the 1-s stimulus (p < 0.05) elicited an increased number in spikes from the TKO cells .   (B) 
Comparison of Ca2+dynamicsbetween WT and TKO cells.  Ca2+ area shows no significant 
difference between WT cells (n = 7) and TKO cells (n = 5) (p > 0.05) indicating that the 
difference in K+-stimulated release is not due to differences in Ca2+ influx.  
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Rescue experiments via transfection of synapsin IIa 
 

Experiments were conducted in which cells of both types were transfected with 

synapsin IIa and EGFP to verify expression via lipid delivery (for example traces, see Figure 

4.4).  Three different conditions were imposed on WT cells and TKO cells.  In the first 

condition, termed control, the cells were not transfected but were kept in the same media as 

the transfected cells.  In the second condition, WT and TKO cells were exposed to EGFP-

only plasmid as a control for the transfection process.  In the third condition, WT and TKO 

cells were incubated with plasmid containing synapsin IIa and EGFP.  The mean number of 

spikes elicited in 10 s from naïve cells was compared across groups (Figure 4.5).  TKO 

control released significantly more vesicles than WT control upon a 0.5- s K+ stimulus as 

seen in previous experiments; on average the TKO control group released 24 ± 3 vesicles 

while the WT control released 12 ± 2 vesicles (p < 0.05).  TKO cells transfected with EGFP-

only plasmid yielded 26 ± 2 spikes while corresponding transfected WT cells exhibited 13 ± 

2 spikes (p < 0.05).  These values demonstrate that the transfection process is not interfering 

with the amount of release seen from both WT and TKO cells.  Introduction of synapsin IIa 

to TKO cells appeared to recover the function of the protein as the number of vesicles 

released by the TKO plasmid cells (13 ± 2) was very similar to that of the WT control group.  

The number of spikes evoked in the TKO control cells and TKO plasmid cells is also 

significantly different (p < 0.05).  Additionally, introduction of synapsin IIa to WT cells 

revealed reduced release in that these cells only exhibited a mean of 5.9 ± 1.6 spikes over a 

10-s period.   
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Figure 4.3.  Comparison of amperometric spike characteristics between WT and TKO 
cells.  Measurements were made in 7 WT cells and 6 TKO cells.  (A)  Mean Q observed in 
WT and TKO cells (NSD, p > 0.05). (B) Mean t1/2 measured in WT and TKO cells (NSD, p > 
0.05).  Distribution of Q is shown for (C) WT cells and (E) TKO cells.  Distribution of Q1/3 is 
shown for (D) WT cells and (E) TKO cells 
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Figure 4.4.  Release from control cells and cells transfected with synapsin IIa.  
Representative traces show release evoked with 60 mM K+ from a (A)  WT control cell (B) 
WT cell transfected with synapsin IIa (C) TKO control cell (E) and TKO cell transfected 
with synapsin IIa.   
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Figure 4.5.  Rescue experiments with synapsin IIa in chromaffin cells.  (A) Brightfield 
image of TKO cell transfected with synapsin IIa-EGFP.  Fluorescence image is shown in (B).  
(C) Brightfield image of TKO cell transfected with EGFP-only plasmid.  Fluorescence image 
is shown in (D).  Scale bars indicate 25 µm.  (E)Control results show release measurements 
taken in plates incubated only in experimental media (n = 13 WT cells; n = 19 TKO cells).  
EGFP-only plasmid data show measurements that were taken in plates incubated for ~ 6 h 
with plasmid containing only EGFP (n = 8 WT cells; n = 14 TKO cells).  The last set of data 
show measurements taken at cells incubated for ~ 6 h with plasmid containing synapsin IIa 
(n = 11 WT cells; n = 15 TKO cells).  Release from WT cells transfected with synaspin IIa is 
significantly diminished from control and EGFP-only plasmid (p < 0.05).  Similarly, release 
from TKO cells transfected with synapsin IIa is decreased significantly from control and 
EGFP-only plasmid as well (p < 0.05).  As seen previously, release from TKO cells is always 
significantly higher than release from WT cells in the same experimental group. 
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DISCUSSION 

 The data presented here demonstrate that the only known synapsin isoform found in 

chromaffin cells, synapsin II, has an important function in vesicle mobilization.  

Amperometric detection of exocytosis revealed a greater amount of vesicular release in TKO 

cells than in WT cells at both 0.5- and 1-s high K+ stimuli.  Additionally, transfection of 

synapsin IIa into both TKO and WT cells diminished release indicating that the presence of 

synapsin restricts the number of available vesicles and increases the vesicles in the reserve 

pool.  The Ca2+ data from the two mouse models was not statistically different suggesting 

that the difference in release is not due to impaired Ca2+ influx.  Though synapsin appears to 

affect vesicle mobilization, there were no significant differences in the amount of release per 

vesicle or the rate of extrusion of their contents between TKO and WT mice.  The use of 

amperometry allows examination of individual release events, which permits the study of 

vesicular event characteristics.  Thus, the absence of synapsin permits more vesicles to 

available for release through vesicle mobilization, but does not affect vesicle packaging.   

Early work provided evidence of synapsin II activity during exocytosis in bovine 

chromaffin cells (Haycock et al., 1988; Firestone and Browning, 1992).  Synapsin II 

phosphorylation increased in response to depolarizing stimuli such as high K+, barium, 

veratridine, and acetylcholine.  Firestone and Browning also showed that histaminergic 

stimulation, which releases Ca2+ from internal stores via the inositol triphosphate (IP3)-

mediated pathway, increased synapsin II phosphorylation (Firestone and Browning, 1992).  

Additionally, they demonstrated that although both subforms of synapsin II, IIa and IIb, 

displayed increased levels of phosphorylation upon stimulation, synapsin IIa exhibited a 

significantly higher level of phosphorylation than that of IIb.   
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Since synapsin IIa was phosphorylated to a greater extent than IIb, we introduced a 

plasmid containing synapsin IIa into both WT and TKO cells to examine how subsequent 

release would be affected.  We postulated that the TKO cells transfected with synapsin IIa 

would recover the phenotype expressed by the WT cells; that is, the TKO cells with rescued 

synapsin IIa function would release a similar number of vesicles to the WT cells as compared 

to the excessive release seen previously in TKO cells.  Indeed, transfection of the synapsin 

IIa isoform into TKO cells replicated the phenotype displayed in WT cells.  Furthermore, 

transfection of synapsin IIa into WT cells evidently produced overexpression of synapsin IIa 

and reduced release to a greater extent. The ability to rescue the function of synapsin IIa 

further confirmed the importance of synapsin in sequestering vesicles in the reserve pool in 

chromaffin cells. 

 These data complement the data obtained by Firestone et al., which showed that 

synapsin IIa phosphorylation increased in conjunction with catecholamine release in bovine 

chromaffin cells (Firestone and Browning, 1992).  Inhibiting phosphorylation of synapsin II 

subsequently blocked catecholamine release.  Our data show that in mice lacking the gene for 

synapsin II, vesicular release is enhanced, presumably because the absence of synapsin II 

permits the free movement of a greater number of vesicles.  Thus, the reserve pool may not 

be as tightly regulated in knockout mice as in their WT counterparts.  Moreover, the data 

obtained from the transfection experiments underline the role that synapsin II may play in 

reserve pool sequestration.  In “recovering” the function of synapsin II, TKO mice showed 

diminished release that was comparable to the amount of vesicular release observed in WT 

mice.  This points to a possible role that synapsin II may play as a vesicular tether in 

chromaffin cells.   
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To gain a better understanding of total release in these WT and TKO cells, we used 

Ba2+ stimuli.  Stimulation with Ba2+ not only recruits vesicles from the readily releasable and 

recycling pools but presumably recruits vesicles from the reserve pool as well (Duncan et al., 

2003).  Ba2+ stimuli induce slower and prolonged release compared to K+ (Heldman et al., 

1989; von Ruden et al., 1993).  Application of Ba2+ to the chromaffin cells of TKO and WT 

mice showed similar amounts of total release.  Contrasted with high K+ stimuli evoking 

significantly more release in TKO mice, Ba2+ stimuli appeared to equalize the amount of 

release observed between the two groups.  Stimulating with Ba2+ may recruit vesicles 

indiscriminately from the readily releasable and recycling pools and the reserve pool, thus 

showing similar amounts of release between TKO and WT chromaffin cells.  Because the 

high K+ stimulus recruits vesicles mainly from the readily releasable and recycling pools 

(Duncan et al., 2003), the larger amount released from the TKO chromaffin cells indicate an 

increased amount of vesicles located in the readily releasable pool that may otherwise be 

sequestered in the reserve pool.  Stimulation with Ba2+ appears to suggest that the total 

number of vesicles in the TKO cells is not necessarily affected; rather, the fraction available 

in the reserve pool is altered.    

 The results shown in this manuscript demonstrate a function of synapsin in 

chromaffin cells analogous to its demonstrated role in neurons.  Synapsin is thought to be 

associated with vesicles in its dephosphorylated form; when phosphorylated, it is believed 

that synapsin is able to dissociate from the actin cytoskeleton and allow vesicles greater 

mobility in the cytosol.  All isoforms of synapsin contain a phosphorylation site that serves as 

a substrate for cyclic AMP-dependent protein kinase (PKA) and calcium calmodulin 

dependent kinase I (CaMKI).   Studies involving neurons have shown greater release when 
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the function of synapsin I has been inhibited.  Llinas et al. demonstrated that introduction of 

dephosphorylated synapsin I into the squid giant axon reduced exocytotic release (Llinas et 

al., 1991).  Another study provided evidence of synapsin as a vesicular tether as introduction 

of synapsin I antibodies into lamprey reticulospinal axons seemingly eliminated the 

synapsin-dependent pool that was located distally from the plasma membrane (Pieribone et 

al., 1995). 

 The three isoforms of synapsin may have subtly different and complementary roles in 

vesicle mobilization.  Previous work studied CA1 pyramidal cells in hippocampal slices from 

synapsin I/II knockouts as well as mice that had synapsin I or II knocked out individually.  

This work showed that synapsin I and II may have subtly different functions in vesicle 

mobilization, but that each isoform is important in vesicle mobilization during repetitive 

stimuli (Rosahl et al., 1995).  The synapsin I knockout exhibited increased paired-pulse 

facilitation (PPF) and normal post tetanic potentiation (PTP) while the synapsin II knockout 

showed normal PPF and decreased PTP.  The double knockout mouse model, however, 

showed a more pronounced depression in PTP with an inconsistent change in PPF; this data 

shows that synapsin I and II may play a role in the ability of vesicle mobilization to sustain 

with responses to repetitive stimuli.  Synapsin III knockout mice also exhibited an increase in 

the number of vesicles available in the recycling pool providing further evidence for the role 

of synapsin in vesicle mobilization (Feng et al., 2002).  However, in studies conducted on 

mice lacking all three synapsins (TKO), inhibitory postsynaptic potentials were diminished in 

neurons from TKO mice, indicating a differing role of the synapsins at inhibitory synapses 

(Gitler et al., 2004).  Additionally, recent work has shown that cocaine augments release 

presumably by mobilizing the synapsin-dependent reserve pool (Venton et al., 2006).  This 
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ability of cocaine to enhance release is observed in WT mice but is greatly reduced in TKO 

mice. 

 Because chromaffin cells and neurons derive from similar embryonic precursors 

(Anderson, 1993), a similar function of synapsin in both cell types may be expected.  

Synapsin appears to operate as a tether between vesicles and the actin cytoskeleton and 

sequester a subpopulation of vesicles in the reserve pool.  Regulation of vesicle mobilization 

by limiting the vesicles which are immediately available for release may provide a means for 

the cell to respond effectively to rapid and repetitive stimuli. 



 96

REFERENCES 
 

Anderson DJ (1993) Molecular control of cell fate in the neural crest: The sympathoadrenal 
lineage. Annual Reviews in Neuroscience 16:129-158. 

 
Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Subsecond 

adsorption and desorption of dopamine at carbon-fiber microelectrodes. Analytical 
Chemistry 72:5994-6002. 

 
Browning MD, Huang C-K, Greengard P (1987) Similarities between Protein IIIa and 

Protein IIIb, two prominent synaptic vesicle-associated phosphoproteins. Journal of 
Neuroscience 7:847-856. 

 
Duncan RR, Greaves J, Wiegand UK, Matskevich I, Bodammer G, Apps DK, Shipston MJ, 

Chow RH (2003) Functional and spatial segregation of secretory vesicle pools 
according to vesicle age. Nature 422:176-180. 

 
Feng J, Chi P, Blanpied TA, Xu Y, Magarinos AM, Ferreira A, Takahashi RH, Kao H-T, 

McEwen BS, Ryan TA, Augustine GJ, Greengard P (2002) Regulation of 
neurotransmitter release by synapsin III. Journal of Neuroscience 22:4372-4380. 

 
Finnegan JM, Wightman RM (1995) Correlation of real-time catecholamine release and 

cytosolic Ca2+ at single bovine chromaffin cells. Journal of Biological Chemistry 
270:5353-5359. 

 
Firestone J, Browning M (1992) Synapsin II phosphorylation and catecholamine release in 

bovine adrenal chromaffin cells: additive effects of histamine and nicotine. Journal of 
Neurochemistry 58:441-447. 

 
Gitler D, Xu Y, Kao H-T, Lin D, Lim S, Feng J, Greengard P, Augustine GJ (2004a) 

Molecular determinants of synapsin targeting to presynaptic terminals. Journal of 
Neuroscience 24:3711-3720. 

 
Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine 

GJ (2004b) Different presynaptic roles of synapsins at excitatory and inhibitory 
synapses. Journal of Neuroscience 24:11368-11380. 

 
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with 

greatly improved fluorescence properties. Journal of Biological Chemistry 260:3440-
3450. 

 
Haycock JW, Greengard P, Browning MD (1988) Cholinergic regulation of protein III 

phosphorylation in bovine adrenal chromaffin cells. Journal of Neuroscience 8:3233-
3239. 



 97

Heldman E, Levine M, Raveh L, Pollard HB (1989) Barium ions enter chromaffin cells via 
voltage-dependent calcium channels and induce secretion by a mechanism 
independent of calcium. Journal of Biological Chemistry 264:7914-7920. 

 
Hilfiker S, Schweizer FE, Kao H-T, Czernik AJ, Greengard P, Augustine GJ (1998) Two 

sites of action for synapsin domain E in regulating neurotransmitter release. Nature 
Neuroscience 1:29-35. 

 
Kawagoe KT, Jankowski JA, Wightman RM (1991) Etched carbon-fiber electrodes as 

amperometric detectors of catecholamine secretion from isolated biological cells. 
Analytical Chemistry 63:1589-1594. 

 
Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by 

synapsin I and Ca2+-calmodulin-dependent protein kinase II of transmitter release in 
squid giant synapse. Journal of Physiology 436:257-282. 

 
Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P 

(1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 
375:493-497. 

 
Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nature Reviews Neuroscience 6:57-69. 
 
Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, 

Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle 
regulation. Nature 375:488-493. 

 
Venton BJ, Seipel AT, Phillips PEM, Westel WC, Gitler D, Greengard P, Augustine GJ, 

Wightman RM (2006) Cocaine increases dopamine release by mobilization of a 
synapsin-dependent reserve pool. Journal of Neuroscience 26:3206-3209. 

 
Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained secretion in 

chromaffin cells from mouse adrenal slices. Neuron 23:607-615. 
 
von Ruden L, Garcia AG, Lopez MG (1993) The mechanism of Ba2+-induced exocytosis 

from single chromaffin cells. Federation of European Biochemical Societies Letters 
336:48-52. 

 
Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K (1995) Time course of 

release of catecholamines from individual vesicles during exocytosis at adrenal 
medullary cells. Biophysical Journal 68:383-390. 

 

  



 

APPENDIX I 

 

ELECTRODE FABRICATION TOWARD SMALLER SENSORS 



 99

INTRODUCTION 

During exocytosis from chromaffin cells, different species such as peptides, 

catecholamines, ATP, and Ca2+ are released from individual vesicles (Holz, 1986).  This 

release is triggered by depolarization of the cell membrane and the resulting influx of 

calcium through voltage-gated calcium channels.  The increase in intracellular calcium 

causes docked vesicles to fuse with the plasma membrane and extrude their contents into the 

extracellular space (Figure AI.1A).  Partial release can be seen during the formation of a 

fusion pore or complete release of vesicular contents can result from full fusion with the 

plasma membrane.  Catecholamines are oxidizable molecules that permit electrochemical 

detection of vesicular release.   

Electrochemical techniques have proven valuable in the detection of vesicular release 

via oxidation of catecholamines.  In chromaffin cells, the secreted catecholamines are 

primarily epinephrine, and to a lesser extent, norepinephrine (Holz, 1986; Moro et al., 1990).  

Vesicular release can be identified as individual current spikes in amperometry or fast-scan 

cyclic voltammetry (FSCV).  FSCV can provide an identifier for electroactive molecules; 

voltammograms may provide characteristic features that can be helpful in identifying the 

analyte of interest.  Constant potential amperometry provides superior temporal resolution for 

studying vesicular release; the electrode instantaneously electrolyzes the analyte molecules in 

the immediate vicinity due to the steep concentration gradient thus resulting in very sharp 

current spikes.  The positioning of the electrode directly on the cell surface also precludes 

radial diffusion of exocytosed contents from other regions of the cell to the electrode
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Figure AI.1. Vesicle fusion and experimental setup.  (A) Vesicle fusion to the plasma 
membrane can extrude into the extracellular space electroactive molecules that can be 
oxidized and detected by constant potential amperometry.  (B) Diagram of experimental 
setup used to detect vesicular release via amperometry.  The carbon-fiber microelectrode 
apposes the cell surface; a stimulating pipette placed adjacent to the cell contains 
secretagogue that is delivered via pressure ejection. 
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diffusion of exocytosed contents from other regions of the cell to the electrode (Figure 

AI.1B).  Both FSCV and amperometry have been used in conjunction with carbon-fiber 

microelectrodes to detect neurotransmitter release in intact tissue and isolated biological 

cells.  For the subsequent discussion, amperometry will be the central technique to provide 

information on quantized release from chromaffin cells and will also be used in the 

characterization of electrodes being developed for the analysis of exocytosis at single 

neurons. 

Moreover, carbon-fiber microelectrodes have proven valuable in monitoring release 

from single cells.  These sensors provide the ability to probe physically small places and 

permit detection of the exocytotic response of an individual cell.  Instead of obtaining the 

response of an entire population, these electrodes allow the analysis of individual cells and 

provide the capability to observe variability within a population. 

 

MICROELECTRODE CONSTRUCTION FOR IN VITRO CELL STUDIES 

The traditional disk microelectrodes that are used to probe individual cells are glass-

encased and typically have an electroactive area with a diameter of 5-7 µm (Figure AI.2).  

An electrode with a smaller electroactive area will be required to analyze murine neurons due 

to their smaller dimensions.  In order to achieve such a size, it will be necessary to flame-etch 

the electrode in order to create a tip of smaller diameter and to use a thinner insulating 

material that would introduce minimal noise.   

To develop a protocol to produce these electrodes, electrodes must be characterized at 

each step of the construction process in order to optimize conditions.  By using a carbon fiber 

that has a smaller inherent diameter, it will be easier to work toward electrodes of smaller  
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Figure AI.2.  Scanning electron micrographs (EMs) of T-650 carbon-fiber 
microelectrodes.  Left: a cylinder electrode approximately 25 µm in length. Right: a disk 
electrode approximately 6 µm in diameter. 
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electroactive area.  T-650 carbon fibers are used preferentially to P-55 carbon fibers because 

T-650 fibers are typically 6 µm in diameter while P-55 fibers are approximately 10 µm. 

Carbon-fiber disk microelectrodes were prepared as previously described using T-650 carbon 

fibers (Amoco, Greenville, SC) (Kawagoe et al., 1991b; Kawagoe et al., 1993).  Carbon 

fibers were aspirated into glass capillaries.  A pipette puller (Narishige, Long Island, NY) 

was used to seal the glass around the carbon fiber.  The carbon fibers were cut at the glass 

seal, and the seal was reinforced with epoxy (15% m-phenylenediamine mixed with Epon 

828 resin (Miller-Stephenson, Danbury, CT)) heated to 80oC.  Electrodes were cured at 

100oC for 12h and then cured at 150oC for 12 h.  Before use, electrodes were polished on 

diamond polishing wheels at 45º (Sutter Instruments, Novato, CA) and soaked for at least 10 

min in 2-propanol purified with activated carbon (Bath et al., 2000). During experiments, 

electrodes were held at a constant potential of +650 mV vs. a Ag/AgCl reference electrode.  

A cylinder electrode was constructed similarly to a disk electrode; the carbon fiber was cut 

approximately 50-100 µm from the glass seal for EP electrodes and 500 µm for FEEP 

electrodes to avoid destroying the glass seal during flame-etching (Figure AI.2, left).  A 

suitable seal was reinforced with epoxy, and acetone was applied briefly to remove epoxy 

from the electroactive area of the cylinder while avoiding disintegration of the seal.  

Electrodes were cured at 100oC for 4h and then cured at 150oC for 12 h.   

An insulating material, electropaint (polyacrylamide), was then deposited on the 

exposed carbon fiber by immersing the electrode in 10 mL of a 1:1 solution of electropaint 

(BASF, Germany) to double distilled water while +2 V was applied to the electrode for 2 

min.  Polyacrylamide is stored in excess base to maintain it in its soluble, deprotonated form,  
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Figure AI.3.  Quasi-steady state current obtained from bare cylinder electrode using 
stop-flow method. 
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PAA-.  Applying a positive DC potential to the electrode oxidizes water in the immediate 

vicinity of the electrode, and shifts polyacrylamide to its insoluble form, PAAH, which can 

then adsorb to the electrode surface (Schulte and Chow, 1996; Conyers and White, 2000).  

Afterwards, the electrode was cured at 200˚C for 5 min.  Heating the polymer renders it 

chemically inert and capable of insulating the carbon-fiber (Schulte and Chow, 1996).  

Finally, the electrode was polished briefly at a 45˚ angle using impedance monitoring.  

Electrodes at each step of construction (exposed cylinder, electropainted cylinder, flame-

etched electropainted cylinder), along with disk electrodes, were characterized using 

amperometry. 

 

Electrode characterization using amperometry and stop-flow 

Experiments were carried out in buffer containing in (mM): 150 NaCl, 5 KCl, 1.2 

MgCl2, 10 TRIS, and 2 CaCl2. Electrodes were characterized using a brief delivery of 10 µM 

dopamine as a bolus in flow injection analysis analyzed with amperometry.  Using a flow  

cell, the analyte was introduced to the electrode.  After a steady current value was obtained, 

the flow of buffer was halted in order to record the current that resulted from the diffusion of 

analyte molecules to the electrode.  This current is said to be under diffusion control (Figure 

AI.3).  Additionally, because there was no flow of buffer, the bulk concentration would be 

the concentration of analyte introduced into the flow cell.  The stop-flow method permits the 

determination of the electroactive area of the electrode.  During the delivery of analyte, the 

dopamine is consumed at the electrode such that the surface concentration of dopamine at the 

electrode becomes zero.  This is described by the Cottrell equation and holds true when the 

diffusion layer (√Dt) is smaller than the electrode radius.  The kinetics of charge transfer are  



 106

 

 
 
Figure AI.4.  EP electrodes.  EMs of two carbon-fiber microelectrodes insulated with 
electropaint and beveled at 45º. 

 

Exposed carbon

Electropaint

Glass insulation

Electropaint

Exposed carbon 



 107

 

 

 

Figure AI.5.  FEEP electrodes.  EMs of three flame-etched carbon-fiber microelectrodes 
insulated with electropaint and beveled briefly on a diamond polishing wheel. 
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so rapid that the reaction is limited only by the rate at which the molecules diffuse to the 

electrode.  At longer times, when the diffusion layer (√Dt) is much greater than the electrode 

radius, the current decays to the bulk concentration, C*
o.  This illustrates the corrosion of the 

sharp concentration gradient that was present during the pulse.  This long-term phenomenon 

can be described by the following equations:  

Equations for cylinder and disk:  

τln
2

0

*

r
CnFAD

i OO
qss =  quasi-steady state at cylinder Eqn. AI.1. 

    where 
2

0

4
r

tDo=τ  

0
*4 rCnFDi OOss =  steady state at disk  Eqn. AI.2. 

The current obtained after the pulse is the steady-state current, due to the fact that the 

diffusion layer at this point is relatively large compared to the electrode radius, which can be 

used to calculate the electroactive area of the corresponding electrode.  For the exposed 

cylinders, Equation AI.1 was used; for polished electropainted cylinders and polished flame-

etched electropainted cylinders, Equation AI.2 was employed. 

Bare cylinders and polished electropainted cylinders were characterized and results 

were in reasonable agreement with theoretical values (Table A1.1).  Assuming that the bare 

cylinder is 100 µm in length with a radius of 2.55 µm, the calculated surface area would be 

1622 µm2.  The electrodes characterized in this set of experiments showed an exposed 

surface area that was reasonably close to the theoretical value.  Analysis of unpolished 

electropainted electrodes exhibited no current when dopamine was present in the flow cell 

indicating that the insulating material was effective.  For a typical glass-encased electrode, 

the radius is  
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Table A1.1. Calculated electrode parameters. Summary of results from electrode 
characterization.  Error shown is S.E.M. 

 
ELECTRODE 

TYPE 
Mean calculated 
electroactive area 

(µm2) 

Mean calculated radius 
(µm) 

N 

Bare cylinder 1605 ± 44 N/A 6 

100 µm length 
cylinder 

(theoretical) 

1622 2.55 N/A 

Polished EP disk 39 ± 14 3.05 ± 0.63  9 

Polished flame-
etched EP disk 

3.01 ± 1.35  0.86 ± 0.28  4 

Disk 35 ± 14  3.05 ± 0.79  4 

Disk  
(theoretical) 

27 major radius = 3.5 µm 
minor radius = 2.5 µm 

N/A 
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assumed to be that of the carbon fiber, 2.55 µm.  The radii of the glass-encased and 

electropainted electrodes are also in reasonable agreement with the theoretical value.  It is 

also important to note that although beveled electrodes have an elliptical area, the 

approximation of a circular area is a reasonable one.  An ellipse has major and minor radii, 

the average radius of the ellipse may be somewhat larger than the actual radius of the fiber; 

however, in this characterization, the difference between the elliptical and circular areas 

appears negligible. 

 

Imaging electrodes 

 Electrode images were obtained using scanning electron microscopy.  The images or 

micrographs (EMs) of bare cylinder and glass-encased disk, EP disk, and FEEP disk 

electrodes are shown in Figures AI.2, AI.4, and AI.5, respectively.  The bare cylinder 

illustrates the initial configuration of the electropaint-insulated electrodes.  The EM of the 

glass-encased disk displays the traditional disk electrode used in isolated cell studies and 

illustrates the beveled surface of exposed carbon fiber flush with the glass seal.  EP 

electrodes are shown in Figure AI.4; the smooth layer of electropaint is evident as well as the 

beveled surface that exposes the carbon fiber.  FEEP electrodes do not show a bevel as 

polishing was done by briefly touching the electrode to the polishing wheel to remove 

minimal amounts of electropaint (Figure AI.5).  Because of this polishing method, the 

electropaint can be seen to accumulate on the surface as the time of polishing was not 

sufficient to remove the excess electropaint.  It may be necessary to implement a technique 

that can detach excess electropaint such using a sonicating solution. 
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Use of glass-insulated and electropaint-insulated disks in detecting exocytosis 

 Glass-encased disks have been used extensively in electrochemical studies of isolated 

cells.  The cell surface area sampled depends on the size of the electroactive area of the 

electrode sensor.  A glass-encased T-650 carbon-fiber disk electrode can typically sample 6% 

of the surface area of a chromaffin cell approximately 15 µm in diameter.  For greater spatial  

resolution, insulated flame-etched disks have been used to probe exocytotic hotspots 

(Schroeder et al., 1994).  However, decreasing the electroactive area compromises 

sensitivity; the signal-to-noise ratio may be diminished because the signal is decreased, the 

noise is increased, or a combination of both.   

It is possible to measure vesicular release from chromaffin cells using electropaint-

insulated (EP) disks and flame-etched electropaint-insulated (FEEP) disks.  EP disks also 

provide slightly greater spatial resolution than glass-encased disks, presumably because 

beveling does not require as much pressure to polish down the insulating layer.  The mean 

radius of the electroactive area of glass-encased disks was measured as 3.05 ± 0.79 µm; EP 

disks had a mean radius of 3.05 ± 0.63 µm, which is identical to the measured mean radius of 

glass-encased disks.  FEEP disks exhibited a mean radius of 0.86 ± 0.28 µm.  Figure AI.6 

displays images taken of the experimental setup as visualized with an inverted microscope 

(Nikon, Lewisville, TX).   

FEEP disks may also be used to detect release in intact tissue, e.g. perfused brain 

slices.  FEEP disks may allow for measurement of release from dopamine terminals in the 

brain with the aid of fluorescent labeling.  For this purpose, mice genetically engineered to 

express human placental alkaline phosphatase (hPLAP) in cells that express tyrosine 

hydroxylase (TH) may provide specific labeling to aid in identification of catecholaminergic  
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Figure AI.6.  Vesicular release detected at a single bovine chromaffin cell with glass-
encased, EP, and FEEP electrodes.. Release was measured using a (A) glass-encased disk, 
(B) EP disk, (C) FEEP disk.  The decrease in release corresponds with the decrease in 
electroactive area.  Right panel shows experimental setup with glass pipette delivering 60 
mM K+ for 3-s via pressure ejection on the left and the carbon-fiber microelectrode on the 
right placed on a single bovine chromaffin cell.  Release was monitored at 25ºC. 
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cells (Puopolo et al., 2001).  Additionally, EP disks may be useful in monitoring release from 

individual cells in perfused adrenal slices.  Chromaffin cells are clustered in groups 

approximately 80 µm in diameter (Iijima et al., 1992).  With perfused tissue, another 

difficulty that may arise is more rapid fouling of the electrode surface.  This may be 

remedied by treating the electrode with a perfluorinated ion exchange resin, Nafion,  

(Kawagoe et al., 1993) which could protect the surface from fouling, but also provides 

increased selectivity against negatively charged species, such as ascorbate, that may be 

present at significant concentrations in intact tissue but does not appear to interfere in 

isolated cell culture. 
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INTRODUCTION 

 Isolated cell culture has been useful in studying exocytosis and its associated 

processes.  This type of cell preparation permits measurements to be made at individual cells 

and monitor the variability that can occur in a population of cells.  Perfused tissue is also a 

valuable in vitro preparation because it allows for study of an individual cell in an 

environment that mimics the in vivo conditions more closely than dissociated cell culture.  

Pharmacological studies can be performed on intact slices; however, cellular mechanisms are 

more easily investigated on individual cells.  Though isolated cell culture can provide 

information about cell mechanisms while minimizing other possible interferences, perfused 

tissue or slice preparations permit observations of cellular response in close proximity to 

other cells.  Neighboring cells will undoubtedly have an effect on the cell of study that is 

otherwise unseen in isolated cell culture.  The harsh conditions of digestion in cell culture 

preparations may also destroy or impair other proteins that may otherwise be functional in 

intact tissue.   

The tissue of interest is that of adrenal medulla in slice preparations of murine adrenal 

glands.  Chromaffin cells compose much of the adrenal medulla and are organized in clusters 

approximately 80 µm in diameter that contain an estimated 100 chromaffin cells (Iijima et 

al., 1992).  These clusters may function as units as they are innervated with approximately 

four nerve fibers assuming that each cell is innervated with one to four nerve terminals 

(Iijima et al., 1992; Kajiwara et al., 1997).  Studying chromaffin cells in adrenal slices may 
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also allow for the presence of the native stimulus: cholinergic stimulation from partially 

intact splanchic nerve terminals. 

 Studies of exocytosis have been performed with whole-cell capacitance 

measurements in adrenal slices.  Voets et al. studied vesicle pools in murine adrenal slices 

with photolytic uncaging of Ca2+ (Voets et al., 1999).  Quantal release was also studied by 

investigating EPSCs in rat adrenal glands (Barbara and Takeda, 1996).  The presence of a 

Ca2+ channel subtype, the R-type, was also discovered in adrenal slices that does not appear 

to be present in dissociated cells in culture (Albillos et al., 2000).  This Ca2+ channel may not 

be present in isolated cells because it does not survive intact during the digestion process.  

Furthermore, because cells are closely apposed in adrenal slices, intercellular communication 

occurs.  Yamagami et al. showed that spontaneous changes in [Ca2+]i that occur in one cell 

will transmit to neighboring cells, possibly via gap junctions (Yamagami et al., 2002).  

Amperometry in glands from the rat has also been performed and release was stimulated both 

by electrical stimulation and by pressure ejection of high K+ to an individual cell (Barbara et 

al., 1998).  Barbara et al. also suggested that close proximity to the cell was required for 

electrical stimulation to evoke exocytosis.  Recently, release in perfused murine adrenal 

slices has been compared to release from individual cells in culture using amperometry 

(Arroyo et al., 2006).  The following description uses fast-scan cyclic voltammetry, FSCV, to 

monitor vesicular release. 

 

MURINE ADRENAL SLICE PREPARATION 

Wildtype C57 mice were used for experiments. Mice were anesthetized deeply by 

ether inhalation and subsequently decapitated.  The adrenal glands were obtained and fatty 
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connective tissue was removed from the glands while in cooled artificial cerebral spinal fluid 

(aCSF) containing (in mM): NaCl, 126; KCl, 2.45; NaHCO3, 25; MgCl2, 1.2; HEPES, 20, 

NaH2PO4, 1.2; D-glucose, 11; CaCl2, 2.4. The pH was adjusted to 7.4 using NaOH.  Each 

gland was then placed in 3% low melting point agarose (Promega, Madison, WI) dissolved in 

aCSF without glucose and the agarose was allowed to congeal before slicing.  Slices were cut 

to 200 µm thickness in aCSF with glucose using a vibratome (World Precision Instruments, 

Sarasota, FL) and were subsequently kept on ice in oxygenated adrenal buffer.  The adrenal 

buffer contained (in mM): NaCl, 120; KCl, 2.7; NaHCO3, 20; HEPES, 10; glucose, 10; 

CaCl2, 5; the pH was also adjusted to 7.4 with NaOH. 

 

CONFOCAL IMAGING OF MURINE ADRENAL SLICES 

 Images of adrenal slices from genetically engineered mice expressing human 

placental alkaline phosphatase (hPLAP) on cells expressing tyrosine hydroxylase (TH) 

(Puopolo et al., 2001) were collected.  Confocal images of an adrenal slice are shown in 

Figure AII.1.  The images illustrate the two distinct types of tissue found in adrenal glands: 

the cortex and the medulla.  The cortex shows little labeling while the medulla is labeled by 

antibodies to TH and hPLAP (Figures AI.A and AI.B).  In Figures AI.C and AI.D, clusters of 

cells are also apparent.  Figures AI.E and AI.F also focus on one of these clusters.   The size 

of the cluster is in reasonable agreement with previous work that suggested that chromaffin 

cell clusters were approximately 80 µm (Iijima et al., 1992). Labeling TH and hPLAP also 

exhibits high correlation.  The co-localization of TH and hPLAP also demonstrate the 

potential utility of this mouse model in locating other catecholaminergic cells, such as 

dopamine neurons of the striatum.  Moreover, imaging suggests that medullary tissue 
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Figure AII.1.  Confocal images of a murine adrenal slice labeled catecholamine-
releasing cells.  Left panel shows TH labeling; right panel shows hPLAP labeling.  TH and 
hPLAP labeling exhibited high correlation.  (A) and (B) show larger view of labeling.  Note 
that cortex (to the left) shows very little labeling.  A closer view is offered in (C) and (D), 
where cell clusters are visible.  Images (E) and (F) show a closer view of an individual cell 
culture.  



 120

should be sampled closer to the edge of the medulla closer to the cortex as the middle of the 

slice appears to be damaged from the slice preparation. 

 

MONITORING RELEASE WITH FSCV IN ADRENAL SLICES 

Electrodes and electrochemistry 

Carbon-fiber cylinder microelectrodes were prepared as previously described using 

T-650 carbon fibers (Amoco, Greenville, SC) (Kawagoe et al., 1993).  Carbon fibers were  

aspirated into glass capillaries (A-M Systems, Inc, Carlsborg, WA), and the capillaries were 

subsequently heated and pulled to create a glass seal (Narishige, Long Island, NY).  The 

extending carbon fiber was cut to allow 25-50 µm to extend beyond the glass seal; the seal 

was insulated further with epoxy (EPON resin 828, Miller-Stephenson, Danbury, CT; m- 

phenylenediamine, DuPont, Wilmington, DE).  The electrodes were dipped in acetone briefly 

to eliminate epoxy on the surface of the protruding carbon fiber.  Electrodes were cured at 

100oC for 12h and then cured at 150oC for 2 h.  Before use, electrodes were soaked for at 

least 10 min in 2-propanol purified with activated carbon (Bath et al., 2000).  During 

experiments, fast scan cyclic voltammetry was used to monitor release events.  The potential 

was ramped from -0.4 V to 1.0 V and back to the resting potential of -0.4 V at 300 V/s. vs. a 

Ag/AgCl reference electrode.  The triangle waveform was scanned at 10 Hz.  Carbon fiber 

electrodes were calibrated for concentration measurements using 10 µM dopamine in a flow 

cell with adrenal buffer containing no glucose. 

Electrical stimulation via a biphasic waveform applied to a tungsten electrode was 

used to evoke exocyotic events in the adrenal tissue (Figure AII.2).  Both the stimulating  
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Figure AII.2.  Diagram of adrenal slice preparation.  Tissue is perfused with adrenal 
buffer and kept at 34oC.  Exocytosis is detected with carbon-fiber cylinder microelectrode 
(CFME).  The widest part of the gland is approximately 2 mm in diameter. 
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electrode and the working carbon fiber electrode were positioned using micromanipuators 

(Sutter Instruments, Novato, CA).  Adrenal buffer was flowed over the adrenal slices and 

maintained at 34oC with a heated stage (Sutter Instruments, Novato, CA). 

FSCV was used to detect exocytotic release.  During FSCV, the potential range, in 

this case -0.4 V to +1.0 V, is scanned as a triangle waveform.  Catecholamines can be 

detected by this technique as they are oxidized and reduced during the potential scan.  Cyclic 

voltammograms were collected at 10 Hz.  A plot of current versus potential, the cyclic 

voltammogram, can display the characteristic oxidation and reduction peaks of the analyte 

and can provide some selectivity in detection.  For catecholamines detected at carbon-fiber 

microelectrodes, the oxidation peak is typically at +0.6 V and the reduction peak appears at -

0.2 V (vs. a Ag/AgCl reference).  FSCV is useful in identifying different analytes, but due to 

its limitations in selectivity, it is necessary to have knowledge of the tissue being tested to 

corroborate FSCV results.  In this case, chromaffin cells are known to release epinephrine 

and/or norepineprhine (Moro et al., 1990).  In order to distinguish the two compounds, it 

would be necessary to extend the waveform to +1.4 V, but this will be unnecessary for this 

work. 

 

Catecholamine release in perfused adrenal slices  

 Release of catecholamine was detected in perfused adrenal slices.  Varying 

stimulating currents were applied to the slice via a biphasic stimulating electrode.  Typically, 

one 1.7-ms pulse was applied to the slice.  Catecholamine release was seen to increase with 

increasing stimulation current.  Interestingly, a group of slices showed an increase in 

catecholamine release with a slow decay over 60 s (Figure AII.3).  The current did not return  
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Figure AII.3.  Stimulated catecholamine release in adrenal slices.  One 1.7-ms 
stimulating pulse was applied to an adrenal slice at varying stimulating currents: 250, 300, 
and 350 µA.  Data were collected using FSCV (A) Color plot depicting voltage along the 
ordinate and time along the abscissa.  Current is shown as false color. (B) Cyclic 
voltammograms identifying catecholamine release due to epinephrine and/or norepinephrine.  
(C) Current (taken at the oxidation potential, +0.6 V) vs. time traces showing time course of 
catecholamine release.   



 124

to baseline in that time period.  There has also been observation of stimulated current that did 

not exhibit this prolonged decay (Figure AII.4).  The difference between these two responses 

may be a difference in sampling location and or differences in catecholamine uptake.  

Release that displayed the prolonged presence of catecholamine in the extracellular space 

may have been detected in a slice rich in cell clusters.  The stimulating electrode essentially 

stimulates the entire slice; therefore, stimulating a slice abundant in chromaffin cell clusters 

may cause asynchronous release of the multiple clusters, which may explain the larger 

magnitude of current seen as well as the protracted presence of extracellular catecholamine.  

It is possible that the transporters in this area are unable to handle the amount of extracellular 

catecholamine present, which would result in the slow decay seen in the oxidative current.  

This prolonged release was also measured in the rat adrenal gland by Barbara et al. using 

amperometry (Barbara et al., 1998).  On the other hand, the release exhibiting rapid decay 

may be due to measurement in an area in which only one cluster is located, thus showing 

synchronized release.  Moreover, uptake may be more efficient in this type of location 

because the number of transporters available is sufficient to clear catecholamine from the 

extracellular space.  The variability in cell cluster distribution may be attributed to 

heterogeneity in the medullary tissue or to disruption of the tissue during the slice 

preparation. 

 In Figure AII.5, an example of spontaneous release is shown.  This may be due to the 

synchronous and efficient stimulation of a few chromaffin cell clusters as the current is also 

shown to decay rapidly.  In some slices, this spontaneous release was noted with a frequency 

approximately every 5 min. 
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Figure AII.4.  Stimulated catecholamine release exhibiting faster decay.  One 1.7-ms 
stimulating pulse was applied to an adrenal slice at a stimulating current of 300 µA.  Data 
were collected using FSCV (A) Color plot depicting voltage along the ordinate and time 
along the abscissa.  Current is shown as false color. (B) Cyclic voltammogram identifying 
catecholamine release due to epinephrine and/or norepinephrine.  (C) Current (taken at the 
oxidation potential, +0.6 V) vs. time trace showing time course of catecholamine release. 
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Figure AII.5.  Spontaneous catecholamine release in adrenal slices.  (A) Color plot 
depicting voltage along the ordinate and time along the abscissa.  Current is shown as false 
color. (B) Cyclic voltammograms identifying catecholamine release due to epinephrine 
and/or norepinephrine.  (C) Current (taken at the oxidation potential, +0.6 V) vs. time traces 
showing time course of catecholamine release.  The nature of this release appears more 
synchronous that some of the previously measured stimulated release. 
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Murine adrenal slice preparations provide another avenue for studying exocytosis in 

chromaffin cells.  Studies performed on perfused adrenal slices may provide complementary 

information to studies conducted on isolated cells to impart a fuller understanding of 

exocytosis in chromaffin cells.  Knowledge of cellular mechanisms may contribute to a 

clearer insight to intercellular communication in chromaffin cells that may eventually be 

applied to exocytotic processes in neurons. 
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