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Abstract

STEVEN W. ENCK: Latent Class Linear Mixed Models -
A General Approach Implemented via SAS® Macro

with a Tutorial for Clinical Researchers
(Under the direction of Paul Stewart)

Linear mixed models provide a flexible, intuitive method for analyzing repeated-measures data
when the population being studied can be thought of as either a single population or as a set of known
subpopulations. However, in many cases, the underlying subpopulations are not known. Furthermore,
the factors that determine the subpopulations can be extremely complex or unmeasurable. In such
cases, a different approach is required in order to more accurately analyze the data. The Latent
Class Linear Mixed Model (LCLMM) combines the features of the linear mixed model (LMM) with
an additional component, which partitions the population into subpopulations or latent classes. This
model has usually been specified with relatively simple, restrictive assumptions.

In this dissertation, the methods related to the LCLMM are extended to provide a more general
model specification. Fixed-effects may be specified as a combination of class-specific effects and across-
class effects. Variances may be specified as being class-specific or equal across classes, a general
correlation structure for the random effects is permitted, and multiple residual error variances may be
fit. The bound proposed by Hathaway [1985] on the variances to ensure consistency is examined in the
context of mixtures of linear mixed models. Class membership probabilities may be specified in one
of two ways - via a logistic regression model or using our proposed method in which class membership
is estimated based on the relative fit of the underlying linear mixed models. These methods are
implemented in a new SAS® macro which offers several options for estimation. In addition to an EM
algorithm, gradient-based methods, including quasi-Newton, as well as Hessian-based methods, such as
Newton-Raphson, are available to the user. Parameter standard errors are estimated, and predictions
of the random effects are derived and calculated. Practical issues, including choosing the number of
latent classes and estimation method, are discussed and guidelines are provided based on simulation
studies. The stability and advantage of the proposed methods are also examined via simulation study.

Finally, our methods are applied to several simple simulated datasets as well as to three real-world
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applications to illustrate their usefulness for practical applications.
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Chapter 1

Latent Class Linear Mixed Models - A
General Approach

1.1 Introduction

Linear mixed models provide a flexible, intuitive method for analyzing repeated-measures data when
the population being studied can be thought of as either a single population or as a set of known
subpopulations. However, in many cases, the underlying subpopulations are not known. Furthermore,
the factors that determine the subpopulations can be extremely complex or unmeasurable. In such
cases, a different approach is required in order to more accurately analyze the data. The Latent
Class Linear Mixed Model (LCLMM) combines the features of the linear mixed model (LMM) with
an additional component which partitions the population into subpopulations or latent classes. In the
existing literature, this model has usually been specified with relatively simple, restrictive assumptions.
A single residual error variance and either a diagonal or unstructured variance-covariance matrix of the
random effects is typical, with variances usually assumed to be equal across latent classes. In addition,
the population is typically assumed to comprise a simple mixture of latent classes. Some models have
allowed a structure for class membership represented by a logistic regression model. Subject-specific
predictions, a valuable feature of linear mixed models, have not been examined in the context of the
LCLMM. Finally, computations have for the most part focused on the use of an EM algorithm, which
is known to be relatively slow to converge, and software is not currently available for statisticians to
apply the methods.

In this chapter, the methods related to the LCLMM are extended to provide a more general model
specification. Fixed-effects may be specified as a combination of class-specific effects and across-class

effects. Variances may be specified as being class-specific or equal across classes, a general correlation



structure for the random effects is permitted, and multiple residual error variances may be fit. The
bound proposed by Hathaway [1985] on the variances to ensure consistency is examined in the context
of mixtures of linear mixed models. Class membership probabilities may be specified in one of two ways
- via a logistic regression model or using our proposed method in which class membership is estimated
based on the relative fit of the underlying linear mixed models. First- and second-derivatives are
presented for use in gradient and Hessian-based algorithms. Predictions of the random effects for
the LCLMM are derived and calculated. Finally, these methods are applied to lipid data from the

Atherosclerosis Risk in Communities (ARIC) study (see ARIC Investigators [1989]).

1.2 Defining the Latent Class Linear Mixed Model

Before examining the literature, it is helpful to first define the model which will be examined throughout
this chapter. As noted earlier, the LMM allows for a logical specification of both the means and
variances. It is a LMM that provides the basis for the LCLMM. Searle et al [1992] provides a detailed

presentation of linear mixed models. A brief review is provided here. For subject 7, we assume

yi = Xi,@ + Zibi +e; (11)

where:

y; is an n; X 1 vector of observations

X; is an n; X p; design matrix for the fixed effects
B is a p; X 1 unknown vector of fixed effects

Z; is an n; X q design matrix for the random effects
b; is a ¢ X 1 unknown vector of random effects

e; is an n; x 1 unknown vector of random error terms

Further, e; and b; are assumed to be mutually independent of one another and to have the following

properties:



E(;) = 0
Var(b;) = D
Cov (b;,b)) = O0fori#h (1.2)
E(e) = 0
Var (e;) = Ry
Cov (b;,e;)) = 0

And finally, the following distributional properties are assumed to apply to the random effects, by,
and residuals, y; — X,;3:
b; 0 D DZ;

~ N , (1.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture
of K LMMSs, one for each of the K latent classes. Note that the value K is specified by the statistician
a priori. Details related to selecting K are discussed in Section 2.8. Following the notation in Lin et

al [2002a], define for subject i:

1 if subject 7 is a member of class k

Cik =
0 if subject 7 is NOT a member of class k
Cily- -+, Cig ~ Multinomial (1,7;1,...,Tik)
/
For simplicity in later derivations, also define ¢; = | ¢;; ¢;9 -+ ¢k

The m;;, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

exp (tiay,)
K
Zj:l exp (tja;)

mi = P(cik=1]¢;) =
where:
t; is the design vector related to class membership for subject i

;. is an unknown vector of class-membership parameters for class k with a;y = 0



Further, given that subject ¢ is in class k, define the LMM for subject ¢ as follows:

vi = X8+ W; A +Z;b; + ¢ (1.5)

where the following additional definitions are provided:

W, is an n; X py design matrix for the class-specific fixed effects

Ak is a po x 1 unknown vector of class-specific fixed effects for class k

It is useful to note that the parameters in 8 will apply to all subjects through the values of the
corresponding column in X,;. The class-specific parameters, A, however, are different for each latent
class.

The error terms and random effects are assumed to have the same properties as in Equation 1.2.
Finally, similar to the LMM, the following distributional properties are assumed to apply to the random
effects, b;, and residuals, y; — X;8 — W; Ag:

b; 0 D DZ
~ N , (1.6)
yi — X8 — W\ 0 Z;D Zing + R;

Lin et al [2002a] creates a further construct which defines a matrix M as

M = Al AQ AK

Recalling the definition of c;, the y; could be written succinctly as:

yi = XiB+ W; (Mc;) + Z;b; + e;

where the subject’s class membership and corresponding Ay are accounted for in the term (Mc;).

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that



both of the following are true:

t; to --- t, | isfull rank, and

X, |w, . .7

X5 . Wy . . . 2y
is full rank.

X, . . . W.|. . . Z

For notational convenience, denote ® as the combined parameter vector comprised of as ... agk,

B, A1... Ak, and 0, where 6 contains the unique variance components which determine D and R,;.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values X;, W, Z;, and t;. In short,

log L(®) 0 = > _log f(yi) (1.7)
= n K

10g L(®) e = D108 > minf (vi | cow =1) (1.8)
i=1 k=1

with f(-) being the density defined by

(yi) ~ N(XiB,Z,DZ;+R;)
(vilcw=1) ~ N(XiB+W;\,Z,DZ; +R;)
Several points are of note. First, note the difference between Equations 1.7 and 1.8 - the likelihood
for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore m;; = 1, the
LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has
one m;; = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects
assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of
the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.



1.3 Literature Review

With an understanding of the LCLMM in hand, attention turns toward previous research related to

these models as well as comparable models in the statistical literature.

For a detailed historical account of maximum likelihood estimation methods used for mixture
models, the reader is referred to Redner and Walker [1984]. This article gives particular attention to
the EM algorithm and its application to mixtures of densities from exponential families. In addition,
Bohning and Seidel [2003] provided a review of more recent developments in mixture models.

A variety of articles have been published which examine latent class models in the context of the
LMM. Most have utilized an EM algorithm in calculations, and many have also included a second
endpoint, either categorical or time-to-event, which was modeled simultaneously with the repeated
measures. Lin et al [2000] proposed a latent class model to jointly model longitudinal data and a
categorical event outcome. The longitudinal submodel was a LMM which included random effects
with an unstructured variance-covariance matrix. In addition, a single residual error variance was
fit. Calculations were performed using a generalized EM algorithm. This model is somewhat similar
to that presented in Lin et al [2002a]. However, the second endpoint in the latter article was a
survival endpoint which was modeled using a frailty model. In both articles, the mixed model had
variances which were modeled as being equal across classes, and class membership was modeled via
a logit model, with subjects having unique class-membership probabilities based on their covariates.
Lin et al [2004] replaced the survival submodel in the previous article with a multiplicative intensity
model to describe a visit process. Lin et al [2002b] proposed a joint analysis of time-to-event data
with multiple longitudinal variables via a mixture model. The longitudinal submodel was based on
the LMM and allowed for different residual error variances for each longitudinal variable, as well as
the inclusion of random effects with an unstructured variance-covariance matrix. However, variances
were assumed to be equal across classes. Finally, McCulloch [2003] proposed to jointly model three
endpoints simultaneously using a latent class model - a survival endpoint, longitudinal endpoint, and a
repeated multivariate binary endpoint. The longitudinal portion of the model included random effects,
with one random effect variance and one residual error variance computed across latent classes. The
EM algorithm was once again utilized to obtain parameter estimates.

While the articles mentioned above included a second or third endpoint, the next set of articles

focused exclusively on generalizing the LMM to simultaneously estimate group membership. Roy



[2003] used a pattern mixture model to model longitudinal data with nonignorable dropouts. Class
membership was modeled via an ordinal logistic regression model with length of time in the study
as the only covariate. Estimates were calculated using a modified Newton-Raphson algorithm with
a multiplier applied to the change in estimates at each iteration. Second derivatives were calculated
numerically rather than analytically, and class-specific variances were not considered. The model did
include random effects. Celeux et al.  [2005] proposed to use a mixture of LMMs to model the
clustering of gene expression data. Three simple variance-covariance structures were specified, and

each model was described as having either
e variances equal across classes,
e only the random effect variance as class-specific, or
e both random effect and residual error variances class-specific.

The EM algorithm was used to fit the structurally simple models, and the variances were not bounded
to ensure a finite likelihood. Class membership was fit as being the same for all subjects.

Research has also focused on models which generalize the random effects distribution of the usual
LMM to be a mixture of normal distributions with different means, but with variances equal across
classes. This is in contrast to the methods proposed in this dissertation where the random effects
distribution is modeled as a mixture of normal distributions with zero mean and class-specific vari-
ances. Verbeke and Lesaffre [1996] investigated the impact of heterogeneity in the random effects
distribution. The authors proposed a mixture of LMMs in which the random effects distribution
was modeled as described above. The authors showed that if normality was assumed in situations
where the distribution of the random effects was a finite mixture of normal distributions, then the
random effects may be badly estimated. Verbeke and Molenberghs [2000] provided further details
related to this model and referred to the model as the "Heterogeneity Model’. In the proposed model,
class-specific fixed-effects were not fit, nor was detail presented regarding possible variance-covariance
structures. Spiessens et al [2002] implemented the version of the Heterogeneity Model described in
Verbeke and Lesaffre [1996] in a SAS® macro using PROC NLMIXED. The fitted model assumed
that the weights for each latent class were the same for all subjects. Xu and Hedeker [2001] proposed
a model similar to Verbeke and Molenberghs [2000] and Spiessens et al [2002], in which the authors
provided details related to both EM and Fisher scoring algorithms. Proust and Jacqmin-Gadda [2005]

proposed a slightly more general model than Verbeke and Lesaffre [1996]. In their revised model,



some random effects were modeled by a single multivariate Normal distribution, while others were
modeled by a mixture of multivariate Normal distributions, each with a class-specific mean but the
same variance-covariance matrix. The group membership probabilities were once again modeled as
being the same for all subjects. The authors used a modified Marquardt optimization algorithm, sim-
ilar to Newton-Raphson, to solve for the parameters. Gusnanto et al [2005] applied a similar model
to an application in gene expression data.

Related models have been proposed which have somewhat different model specifications but which
share many of the same features of the LCLMM discussed in this research. Muthen et al [2002]
proposed a finite mixture model with random effects. While many of the components are similar to
the model proposed in this dissertation, the model specification is somewhat different and acts through

a continuous latent variable, n,. The model is written as follows:

Vi Agm; + €

N, = op+Iex;+6;

where: y; denotes a vector of continuous outcome variables
X; denotes a vector of covariates
1, denotes a vector of continuous variables (latent)
A}, denotes the parameters related to 7, for the k" class
o, denotes the intercept parameters for the k' class
I';; denotes the parameters associated with x; for the k" class
€~ N(0,0)

Si ™~ N(Oa ‘Ilk)

In words, the continuous latent variable 7, is modeled as a function of covariates x; with class-specific
parameters I'y, and random effects ¢;. This latent variable is then modeled as a covariate with class-
specific parameters Ay and error terms €;. This model can more readily be understood by examining
the resulting multivariate Normal distributions, given class membership (c;), which are shown below.

For comparison purposes, the corresponding values for the LCLMM are also provided.



yil i xi ~ N (py, Xi)

with:
Muthen et al [2002]: LCLMM:
= A (o +Thx;) p = XiB+ WA
X = A‘k¢]€A;g + O X = ZiDZ; + R;

Note the differences in the models. Most notable is the fact that while the variance covariance matrix
of the random effects is pre- and post-mulitplied by Z; in the case of the LCLMM and Ay, in the case
of the Muthen model, the Z; matrix does not appear in the mean vector for the LCLMM.

Roy and Lin [2000] proposed a latent variable model in which multiple continuous outcomes were
observed over time. At each timepoint, various covariates were assumed to be related to an underlying
continuous latent variable. The latent variables for each subject were then assumed to be correlated
by including random effects in the model. Estimates were obtained via the EM algorithm. Note that
this model is somewhat different than the model examined in this dissertation since there is only one
class. The continuous latent variables are instead used to provide a summary measure of all of the
covariates at each timepoint. Muthen [2002] provided an overview of methods of statistical analysis
which make use of latent variables, presenting four modeling frameworks. Framework C is most similar
to the models being considered in this research, with finite mixture modeling included as a particular
case. A brief example was provided but detail regarding variance-covariance structures, class-specific
variances, etc. was not provided. Yau et al [2003] proposed a two-component mixture regression
model in which random effects were included in both a logistic model of the mixture probabilities and
the underlying linear models. Computations were performed via an EM algorithm. A single variance
was fit for the random effect in the mixture probability portion of the model, and a variance for each
group was fit in the linear model portion of the model.

Since the proposed LCLMM combines the traditional LMM with classification into groups, research
in the area of model-based cluster analysis provides an additional perspective on these models. These
models do not typically include random effects in their model specification and therefore are not as
straightforward to use in model specifications where repeated measures are involved. Banfield and

Raftery [1993] proposed a clustering algorithm which parameterizes the variance-covariance matrix



Y in terms of its eigenvalue decomposition Xy, = Dy AxDj = Dy A AgD), where Dy, is the matrix
of eigenvectors and Ay is a diagonal matrix with the eigenvalues of 3 on the diagonal. Note that
A, = M.Ay. Effectively, in their notation, Dj, determines the orientation of the k' cluster, A\, its
size, and Ay its shape. The authors also discussed the different models that result when different sets
of components are allowed to vary by cluster. Details were not provided related to how the models
were fit, and necessary conditions to ensure a finite likelihood were not discussed. Fraley and Raftery
[2002] provided a review of several clustering methods. One of the two main models which were
reviewed maximized the multivariate normal likelihood using an EM algorithm, although few details
were provided. The second was described as model-based agglomerative hierarchical clustering, which
operates by successively merging pairs of clusters that result in the greatest increase in the classification
likelihood. Fraley et al. [2003] proposed a model-based clustering algorithm which incrementally adds
clusters as needed until the model fit is no longer improved. In this algorithm, a preliminary mixture
model is fit with fewer classes than would be expected. Then the set of observations which are fit worst
are reclassified as being in a new cluster, and the model is re-fit. The algorithm continues until adding
a cluster results in a decrease to the BIC. Peel and McLachlan [2000] proposed a mixture model based
on the multivariate t-distribution. In the model, variances were assumed to be equal across classes,
and the same class membership probabilities were assumed to apply to all subjects. The authors used
an EM/ECM algorithm to solve for estimates. The variance-covariance matrix was unstructured in
this model. Arcidiacono and Jones [2003] applied the ECM algorithm described in Meng and Rubin
[1993] to the problem of estimation in finite mixture models. Particular focus was given to likelihoods
which can be factored into two quantities, one containing a function related to one set of parameters,
and a second which includes potentially all of the parameters. Li [2005] proposed using a multilayer
mixture model for applications in clustering. Each individual cluster was modeled by a mixture of
normal distributions. In this model, clusters do not share component distributions - each cluster is a
mixture of its own set of normal distributions. The proposed model was simple in structure, consisting
of means and variances. Random effects, application to repeated-measures data, and the specification
of a structure for class membership were not included as part of the proposed model. Celeux and
Govaert [1992] proposed a classification EM algorithm to estimate parameters in mixture models.
In the approach, the usual E-step was followed, in which an estimate of the probability of being in
each class was updated. In a classification step, each subject was assigned to be in the class with the
highest probability, and the usual M-step was calculated. A further proposal called for stochastically

determining the class assignment based on the probabilities of being in each latent class.
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And finally, no literature review would be complete without a review of the capabilities of existing
software packages. Several packages are available which provide estimates of the parameters in finite
mixture models. Most notably of these are MIXMOD, Mplus, MCLUST, and FlexMix. While all
provide for the computation of parameters in specific versions of these models or related models, none
focuses on the mixture of LMMs and allows for the general model specification which is the focus of
this dissertation. Biernacki et al [2005] provided a review of the features of the software package
MIXMOD. This package fits mixture models of multivariate Gaussian distributions. The variance-
covariance structure is modeled according to Banfield and Raftery [1993] and various quantities are
allowed to be estimated across classes or to be class-specific. A more detailed review of the underlying
model described in Banfield and Raftery [1993] was provided earlier in this section. Random effects
are not included in this model. Fraley and Raftery [2006] described the models fit in the software
package MCLUST. Gaussian mixture models are fit with class-specific means and a variety of variance-
covariance structures. The variance-covariance structures ranged from constant variance across latent
classes to unconstrained variances to structured variances where some components are allowed to vary
across latent classes. The variance-covariance matrix is also structured as in Banfield and Raftery
[1993]. The models do not use a random effects specification of the variance-covariance structure, and
the mixture probabilities apply to all subjects rather than allowing for different underlying distributions
for each subject. Grun and Leisch [2007] described the capabilities of the software package FlexMix.
The authors indicate that the package provides the E-step for the EM algorithm for mixture models
and the user can select a driver to run the M-step for mixtures of multivariate Gaussian distributions.
However, only diagonal or unstructured variance-covariance matrices can be fit with the package. In
addition, it is not obvious how mixture probabilities are modeled - i.e. via a logit model, overall, or
for each subject, etc. The software includes an option to force each class to have a minimum number
of subjects. The Mplus Technical Appendices [1998-2004] provided a review of the technical details
of the software package Mplus. The model described earlier in Muthen and Shedden [1999] is one of
the models fit in the package. This model shares many of the features discussed in this dissertation,

but has a somewhat different model specification.
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1.4 New Methods

1.4.1 LCLMM: Structured Variance Components,
Equal for All Latent Classes

Motivation and Known Results

The LMM provides a straightforward, intuitive way for statisticians to specify a statistical model, and
the LCLMM provides the additional component of determining class membership. However, the litera-
ture thus far has not addressed how to fit these models when the variance components are structured.
In many applications, it is reasonable to expect that several different repeated measurements may
be modeled simultaneously - for example systolic blood pressure, diastolic blood pressure, and heart
rate or test scores on math, reading, science, and social studies exams. Each of these measurements
would potentially require a different residual error variance, and the random intercepts and slopes for
these measurements may be modeled best by fitting a particular correlation structure. The statistical
literature has not yet addressed how to allow for such a general model specification. However, these
scenarios are addressed in the model proposed in this section.

In Lin et al [2002a], the authors used the EM algorithm to solve a joint latent-class survival /mixed
model. The results were maximum likelihood estimates for the parameters with subjects optimally
divided among a prespecified number of latent classes. In this model, an unstructured variance-
covariance matrix of the random effects was specified, a single residual error variance, o2, was fit, and
the variances were assumed to be equal across classes. Lin et al [2002b] proposed a joint analysis
of time-to-event data with multiple longitudinal variables via a mixture model. The longitudinal
submodel allowed for different variances for each longitudinal variable, as well as the inclusion of
random effects with an unstructured variance-covariance matrix. Variances were assumed to be equal
across classes. The goal in this section is to expand the longitudinal portion of the Lin et al [2002a]
and Lin et al [2002b] models to allow for structured variance-covariance matrices, while continuing to
model class membership via the logistic regression model.

Two articles provide the basis for the changes proposed in this section. In work by Jennrich
and Schluchter [1986], the authors proposed a general method for computing variance components
in a maximum likelihood algorithm. In this method, the statistician can specify a general variance
structure, and computations proceed through the Newton-Raphson or Fisher scoring algorithms. Rai

and Matthews [1993] proposed a modification to the M-step of the EM algorithm. In cases where the
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M-step cannot be calculated in closed form, the authors proposed replacing the M-step with a single
iteration of a Newton-Raphson maximization of the complete-data likelihood. The authors showed
that by using a variable step length, a step can be specified which either increases the likelihood or at
worst allows it to remain the same, thus satisfying the criteria for being a Generalized EM algorithm.

The following sections expand upon previous research in several ways. First, building on Rai and
Matthews [1993] and Jennrich and Schluchter [1986], the M-step in the EM algorithm is revised
to consist of a single iteration of Newton-Raphson based on the expected complete-data likelihood.
Second, the first and second derivatives of the unconditional log likelihood of the observed data are
derived, and gradient- and Hessian-based algorithms are proposed and implemented. Both of these
methods allow the statistician to specify a structure for the variance components that determine D

and R.

Background

The first question that arises relates to determining which likelihood should be maximized in the
proposed problem. If we knew each subject’s class membership, it would be possible to maximize
the likelihood of the observed data given the class membership (y; | ¢;). However, since the class
membership of each subject is an unobservable value, this is not possible. Other choices of likelihoods
include the unconditional likelihood of the observed data (y;), as well as the joint likelihoods (y;, c;, b;)
and (y;,c;). The unconditional likelihood of the observed data is considered below with respect to
the gradient and Hessian-based algorithms. The joint likelihood including the random effects is quite
complicated - therefore the focus for the EM algorithm will be to maximize the joint likelihood of
the responses and group membership (y;, ¢;), with the group membership of each subject taken to be
missing data.

Two separate approaches are considered in this section. First, since the LCLMM represents an
instance where the data can be considered to be incomplete (i.e., class membership) and the complete-
data model is straightforward, the EM algorithm of Dempster et al [1977] represents a logical choice,
and is used most often in practice. In the case of complete data, the likelihood corresponding to the

joint distribution of the observed data and group classifications (y;, ¢;) can be written as:

n K
log Lo (© ZZC”“ log [muf (yi| ci = 1)) (1.9)

i=1 k=1



with f (y; | ¢ix = 1) being the density defined by

(yi | cik =1) ~ N(X;8+ WA, Z,DZ; + R;)

However, since the class membership of each subject is unobservable, the complete data likelihood is
replaced during each E-step with its conditional expectation given the observed data y,;, using the

current estimates of the parameters, ®*. In Dempster et al [1977], the authors refer to this as

Q(©;0") =Eg- {log Lc (©) |y}

The goal of each M-step is then to maximize @ (©;©"). Since the ¢;; are treated as missing data
in the above likelihood specification, the only change that is required in going from log L¢ (®) to

Q (©; ®%) is that the value of ¢;; is replaced by its expected value ¢;;. It follows that:

n K
Q(O;0%) ZZC g log [minf (vi | ik = 1)) (1.10)
i=1 k=1
In full,
n Ko log mi, — % log2r — % log |Z;DZ] + R;|
Q(O;0%) => > Gy (1.11)

k=1 —3(yi = XiB = WiA) (Z:DZ + Ri) ™ (yi — XiB — Wiky)

i

In the second approach, which requires computation of one or both of the gradient and Hessian,
the goal will be to maximize the unconditional likelihood of the observed data, which can be written

as follows:

log L(© Zlog kaf (yi|cr=1) (1.12)
=1
with f (y; | cir = 1) being the density defined by
(vi lcir = 1) ~ N(XiB + WAy, Z;DZ; + R;)

Although straightforward in that only the first and second derivatives of the likelihood are needed,
finding the maximum of log L (®) is not an easy task with each subject’s contribution to the likeli-

hood involving the log of the sum of the distribution under each of the K models. However, given
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the quadratic convergence properties of the Newton-Raphson algorithm and possible computational
advantages of gradient-based algorithms such as quasi-Newton, these methods may offer the most

efficient method of finding solutions.

EM Approach

In order to allow for structured variance components which are equal across classes, I propose building
on the Lin et al [2002a] and Lin et al [2002b] articles by incorporating a single iteration of Newton-
Raphson within each M-step to compute the updated estimates of the variance components. Since
the estimates of the parameters o, that determine the class probabilities m;; also are not available in
closed form, this technique will be used to update these parameters as well.

As mentioned previously, in each E-step of the EM algorothm, the expected complete-data likeli-
hood, @ (©; @), is calculated as in Equation 1.11, where the expected value of ¢;; can be written as

follows:

E(cik |yi) = cn=Plea=1]ys)
Pcr=1)x P(y;|cir =1)
Yy [P(eij = 1) x P(yi | ei = 1)
mirf (yi | i = 1)
S {mii f (vi ey = 1)}

with (y; | cir =1) ~ N(X;8+ WA, Z,DZ; + R;)

The goal of each M-step is to then maximize @Q (©; ©®*) with respect to the parameters.

In order to maximize @Q (©®; ©®*) with respect to 3, first calculate:

n K
22ODBT) _ 33 e (X v — XIB X8 - X(STWo) (113)

Upon setting this to zero and solving for 3, it follows that:
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n -1, K
= (Z X2251Xi> > Xz <Yi - Zgikwi)\k:> (1.14)
=1 =1 k=1

Similarly, for Ag, where k =1,..., K:

90(©:0%) N~ _ ~ -
Q(Tk) = zcik (Wix; lyi - Wi X8 - Wi, 1Wz‘)\k) (1.15)
n -1,
A = (Z EikWQE;1Wi> Zakwgzi—l (yi — XiP3) (1.16)
=1 i=1

The expected complete-data likelihood Q(®; ©*), evaluated at the revised set of parameters which
reflect the updated B and //\\k, can then be used in a single Newton-Raphson step to calculate structured
variance components which are the same for all latent classes. Following the notation in Jennrich and
Schluchter [1986], the r*" element of the score vector and r — s'* element of the Hessian can be

computed as follows:

3

<

5

N |—=
M =

czktr[ 1 (enely — 2)2124 (1.17)

i=1

>
Il
—

n K
[Hogl,. = %ZZCUJT{ S35, 57 (2emely, — 30) B 1218]
221 klz(l (118)
13 Y e { (emel, — i) 57 12”5}
i=1 k=1
where:
eir = yi— XiB— WX
¥, = 0%;/00,
S = 0°%,/00,00,

Similarly, since closed-form solutions for the ay are not available, a scoring procedure is also used
for calculating estimates of the parameters related to class membership. The score vector and Hessian

can be computed as follows:

n K _ . . . —
Sy — Zzajti y (1—my) ifj=k

i=1 j=1 (=mir) i j#k
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K
~ ~ Tk (1 — Tim)
Hakam = Z Zcijtit; X

i=1 j=1 TikTim L k#m

ifk=m

The updated estimates of the variance components and parameters related to class membership

can be computed by the following steps:

6=06—jxHgpsg (1.19)
-1
(8 %)) (85)] Ha2a2 e Hazak Sa2
= 1 | —=jx : : : (1.20)
(e 7% [07% Hora, -+ Hagox Sauy

where j is chosen separately for each set of parameters such that the expected complete data likelihood
is increased. By ensuring that the expected complete data likelihood increases at each step, the algo-
rithm represents a generalized EM algorithm, as described in Dempster et al [1977]. Although Rai and
Matthews [1993] note that a single iteration of a Newton-Raphson maximization of the complete-data
likelihood can be substituted in the M-step in cases where the M-step cannot be calculated in closed
form, one modification is necessary in practice for these models. In running test cases of the algo-
rithms, I found it necessary to run the update step for the class-membership parameters several times
within each M-step in order to minimize the overall number of iterations needed. Since each update
of the class-membership parameters is much less time-consuming than a full iteration, the result was

typically a faster overall runtime.

We repeat the iterations until the maximum percent change in parameter estimates from one
iteration to the next is less than a prespecified tolerance.
Gradient- and Hessian-Based Approaches

Gradient-based algorithms rely on the calculation of both the unconditional log likelihood of the
observed data and the first derivatives of this likelihood with respect to the unknown parameters.

Hessian-based methods require the additional calculation of the second derivatives of this likelihood.
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As noted earlier, the unconditional log likelihood of the observed data is as follows:

n K
log L (O®) = Zlog kaf (vilecir=1) (1.21)
i=1 k=1
with f (y; | ¢ix = 1) being the density defined by
(vi | cie = 1) ~ N(XiB + WAy, Z;DZ; + R;)
In full,
log L(©®) =
znjlog XK: [ oxp (b0 ] [eXp [ (yi = XiB— W) 7 (yi — XiB — Widy)]
= a2 e (tay) (2m)"/? 3]"/?
Q2ik Qsik
Qli
(1.22)

The score vector s, containing the first derivatives of log L (®) with respect to the parameters,

and Hessian matrix H, containing the second derivatives of log L (®) with respect to the parameters,

are written as follows:

5B
SA]

S)\K
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S,

SaK

and
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Expressions for the elements of s and H are:
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Note that further details regarding the first and second derivatives are presented in the appendix. For

a Newton-Raphson step, the updated estimates of the parameters are computed as follows:

s s Hgg  Hgx, - Hgx, Hge Hga, - Hga, e
A1 A1 Hxp Hxx, - Hxx, Hxo Hxa, ~ Hxo SX,
I I —jx Hxos Hxon 0 Hxoa Hxio Hxop, 0 Hxie Ak (1.40)
o o Hgs Hgx, -~ Hgx, Hgg Hoa, -+ Hpo, s
Q2 2 Ho,p Ha,x,  Ho,a, Ha,e Hosza, - Hazey Sap
L @r | L ox | L Ha,p Hoyx, -+ Hox, Hae Hogar, -+ Hagoy L Sy,

where j is chosen such that the unconditional likelihood of the observed data is increased.

We repeat the iterations until the maximum percent change in parameter estimates from one iter-

ation to the next is less than a prespecified tolerance.

The above derivations describe a step of the Newton-Raphson algorithm. With the analytical
gradient and Hessian available for computations, various approaches are possible. Chapter 2 discusses

a new SAS® macro which fits LCLMMs using the EM and several gradient- and Hessian-based

algorithms.
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1.4.2 LCLMM: Structured Class-Specific Variance Components, Diagonal
D and R

Motivation and Known Results

In many applications, it is unreasonable to expect that the variances would be equal across classes. For
example, in studies of diabetic patients, a great deal of information regarding patient health may be
contained in the variability of blood sugar measurements. Current methods typically fit the variances
as being equal across classes. In Basford and McLachlan [1985], the authors presented an example
to illustrate that fitting a normal mixture model with homoscedastic variances in a situation where
the classes are in fact heteroscedastic can have a significant influence on the resulting estimates. In
particular, they found that the mixing proportions can be greatly affected, resulting in potentially
different results in multivariate clustering analyses. As such, the goal of this section is to expand upon
the method proposed in the previous section to allow for variances which differ by latent class. This
section examines the case where the matrices D and R are defined to be diagonal - the next section
will further generalize this approach to allow for a correlation structure for the D matrix. Similar
to the previous section, several different residual error variances may be fit for multiple longitudinal
variables.

Key questions arise when generalizing to allow for class-specific variances. For example, if the
variances are allowed to vary by latent class, do the estimators still possess statistical properties
such as identifiability and consistency? In Yakowitz and Spragins [1968], the authors showed that
finite mixtures of multivariate normal distributions with variable mean vectors and variance-covariance
matrices are identifiable. However, since it is possible in this model specification to provide a scenario
in which a particular class would have a single member with the class-specific variance-component
going to zero, the likelihood function is unbounded and therefore the maximum likelihood estimate
does not exist. For mixtures of univariate normal models, Hathaway [1985] proposed applying simple
constraints in which the smallest variance could become no smaller than a prespecified multiple of
the corresponding variances from other classes, with the result shown to be a strongly consistent
estimator. He described that the corresponding condition for mixtures of multivariate normal models
is to constrain all characteristic roots of Engl to be greater than or equal to some minimum value
¢ > 0, where X; represents the variance-covariance matrix for class j and X represents the variance-
covariance matrix for class k. Assuming diagonal D and R, the above constraint for multivariate

normal data reduces to a set of comparisons similar to the univariate case, with constraints applied
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to the variances in both D and R. These constraints are discussed in detail later in this section. The
appendices include a proof which shows that Hathaway’s condition is met using the proposed method
of bounding both the random effect variances and residual error variances for linear variance-covariance
structures.

Ingrassia [2004] provided two algorithms related to the multivariate requirement proposed by
Hathaway [1985]. As part of the algorithms, the statistician was required to specify a range of
possible eigenvalues of X 2,;1. The first of the proposed algorithms either multiplied one of the two
variance-covariance matrices by a fraction < 1 or added a multiple of the identity matrix to ensure that
the eigenvalues of EjE,Zl fell in the specified range. The other proposed algorithm used the spectral
decomposition of the variance-covariance matrix and adjusted the individual eigenvalues such that
the eigenvalues fell in the specified range. There are several drawbacks to these methods in practice.
First, in both methods, the statistician must specify an acceptable range of eigenvalues which must
both include the true value to be estimated and be sufficiently narrow not to allow one variance to
stray too far from the others. It is not apparent how to specify these bounds in practice. Second,
in the algorithm which adjusts the entire variance-covariance matrix, all variances are adjusted in
order to force some parameters to satisfy the constraint. Therefore some of the variances will likely
be inaccurate. Third, while the second proposed algorithm allows for each eigenvalue to be adjusted
independently, this will result in a variance-covariance matrix which does not have the same correlation
structure as specified prior to constraining the eigenvalues. For example, if the variance-covariance
structure is diagonal, the result of constraining one eigenvalue but not another causes the resulting
correlation matrix to have non-zero elements on the off-diagonal.

I will again make use of the result from Rai and Matthews [1993] to allow for a revised M-step
in which a single step of Newton-Raphson is performed during each iteration. As in the previous
section, this will be used to obtain updated estimates of the structured variance-covariance matrices
as well as the parameters related to class membership. In addition, the results from Jennrich and
Schluchter [1986] will be utilized for the Newton-Raphson calculations in the M-step of the EM
algorithm. Gradient- and Hessian-based approaches will similarly be generalized to allow for class-

specific variances.

EM Approach

The previous section assumed that the variances were equal across classes. However, if the variances

are allowed to differ for each latent class, then the proposed method requires several modifications.
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First, most derivations must be revised to account for the fact that different classes have different
underlying variances. Second, without a restriction on the class-specific variances, the likelihood for
the mixture of multivariate normal distributions is unbounded. Therefore, the class-specific variances
must be constrained. Finally, when the residual error variances are fit as being class-specific, the
calculation of B itself requires maximization over a mixture of multivariate normal distributions. For
completeness, I will present the entire method and note how the method differs from the equal across
classes variance case.

In the case of complete data, the likelihood corresponding to the joint distribution of the observed

data and group classifications (y;, c;), rewritten to reflect class-specific variances, is as follows:

n K
log L (© ZZCM log [mirf (yi | cir = 1)] (1.41)

i=1 k=1

with f (y; | cik = 1) being the density defined by

(yi | Cikk = 1) ~ N(XZ,B =+ Wz’)‘lm ZkaZQ + Rzk)

Note that in the revised specification, D is replaced with Dy, and R is replaced by R to reflect the
fact that the variances are class-specific.

Once again, since the class membership of each subject is unobservable, the complete data likelihood
is replaced during each E-step with its conditional expectation given the observed data y;, using the
current estimates of the parameters ®*. As noted earlier, this function is referred to in Dempster
et al [1977] as Q (©®;©") = Eg- {log Lc (®) | y}. The only change that is required in going from

log Le (©) to Q (©; ©F) is that the value of ¢;;, is replaced by its expected value ¢;. It follows that:

log T, — % log 27 — 1 log |Z;DiZ! + Rix|

n K
QO;0%)=>"Y"¢ 2 2 B (1.42)

=1 k=1 L (yi = XiB— WA\ (Z,DyZ; + Rip,) ™ (v — XiB — Widy)

where the expected value of ¢;; can be written as follows:

E(cir |y:)) = CGr=Plcix=1]y;)
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Pleixk=1)x P(yi|cik =1)
S P (e =1) x P(yi | cij =1)]
mikf (yi | ci = 1)
Z?:l {mij f(yi|cij =1)}

with f (y; | ¢i; = 1) being the density defined by

(yilcij=1)~ NX;B+W;A\;,Z,D,Z; + Riy)

The goal of each M step is then to maximize Q (®; ©®*) with respect to the parameters.

Since the variances are different for each latent class, maximization of @ (®;©®") with respect
to B requires maximization over a mixture of multivariate normal distributions, each with different
variances. Therefore, it is not possible to find a closed-form solution for B Fortunately, this is a
relatively straightforward problem using SAS® PROC NLP. The inputs for this SAS® procedure are

Q (0;0%), as well as its first and second derivatives with respect to 3.

n K
2] @,9* ~ — — _
% =3 e (X3l - X X8 - XD W) (1.43)
=1 k=1
was ——iiﬁ (X2 X) (1.44)
0pOp St |

with X, = ZkaZQ + Rk

Since calculations for A utilize class-specific variance-covariance matrices, closed-form solutions exist:

n
%;k@) = G (WiByly: - WIS 'X,8 - WX 'WiA;) (1.45)
=1
n -1 n
A = (Z amm;m) > G WiEy! (vi — Xip) (1.46)
=1 1=1

The expected complete-data likelihood Q(®; ®*), evaluated at the revised B and X;, can then be
used in a single Newton-Raphson step to calculate structured, class-specific variances. Following the
notation in Jennrich and Schluchter [1986], the rt" element of the score vector and r — st element of

the Hessian can be computed as follows:
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K
[sl, = 3D cutr |5 (enels — Tir) 5! Sur | (1.47)
i=1 k=1
n K ) .
[Fggl,, = -3 Z ZEHJ?‘ [Ei_klzik,rzi_kl (2e;€l, — Zik) 25612ik,5}
e (1.48)
+% Z ZEH@W [Ei_kl (eike;k —Xik) E;,;Eik’rs}
i=1 k=1
where:
er = yi— XiB—- WX
Sihe = 0%4/00,
Sikrs = 0°%i4/00,00,

Note that @ now contains separate variances for each latent class. Since Z-]i;w, and f)ik,rs are non-zero
only for components of class k, the summation over k is not necessary. However, since it may be
desirable to consider the variances in either D or R as being equal across classes, I have chosen to
keep the double-summation to allow for this possibility.

As in the previous section, since closed-form solutions for the ay are not available, a scoring
procedure is also used for calculating estimates of the parameters related to class membership. The
same procedure used in the previous section can be used here as well. The updated estimates of the
variance components and parameters related to class membership can once again be computed using
Equations 1.19 and 1.20.

Recall that Hathaway [1985] set forth a condition for the existence of a consistent maximum
likelihood estimator for mixtures of multivariate normal distributions. The condition was that the
eigenvalues of [2 J 2,;1] must be > ¢ V; , where 3; represents the variance-covariance matrix for class
7 and Xy represents the variance-covariance matrix for class k. In this algorithm, ¢ is prespecified as
a small number such as 1—10 in order to restrict any variance in one class from becoming much smaller
than the corresponding variance in another class. In this section, only diagonal specifications of the
Dj and R;; matrices are considered. Since the eigenvalues of a diagonal matrix are the elements on

the diagonal, this constraint on the variances amounts to the following procedure.

For the D matrices:
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e Examine element (1,1) of each of the matrices Dy,

Define the maximum of these values to be VMax

If any of the (1,1) elements is less than ¢ x VMax then set that element equal to ¢ x VMax

Repeat this procedure for each of the diagonal elements of Dy

For the R matrices:
e Examine the value of the first unique variance in the R;; matrices for each of the &k classes
e Define the maximum of these values to be VMax

o If the estimate of this variance in any of the latent classes is less than ¢ x VMax then set that

element equal to ¢ x VMax
e Repeat this procedure for each of the unique variance in the Ry

We repeat the iterations until the maximum percent change in parameter estimates from one
iteration to the next is less than a prespecified tolerance. A proof is presented in the appendices which
shows that applying Hathaway’s constraint separately to both the variances in D and R will result in
variance-covariance matrices that satisfy Hathaway’s constraint, leading the resulting estimates to be

strongly consistent.

Gradient- and Hessian-Based Approaches

Gradient-based algorithms rely on the calculation of both the unconditional log likelihood of the
observed data and the first derivatives of this likelihood with respect to the unknown parameters.
Hessian-based methods require the additional calculation of the second derivatives of this likelihood.
The unconditional log likelihood of the observed data, assuming class-specific diagonal D and R, is as

follows:

K
log L(©) = log > [mf (yi|cir =1)] (1.49)

i=1 k=1

with f (y; | cik = 1) being the density defined by

(yi | Cikk = 1) ~ N(X“@ =+ Wz’)‘lm ZkaZQ =+ Rik)
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In full,

n K / 1 I s —1
! exp (tjouy) exp [—35 (yi — XiB— WAp) B (yi — XiB — Widp)]

Q2ik Qsik
Qi

(1.50)

with X, = ZkaZQ + Rk

The score vector s, containing the first derivatives of log L (®) with respect to the parameters,
and Hessian matrix H, containing the second derivatives of log L (®) with respect to the parameters,
have the same form as in the previous section. However, note that now @ consists of variances which
may be class-specific. Further details regarding the first and second derivatives are presented in the
appendix. Once again, for a Newton-Raphson step, the updated estimates of the parameters are
computed according to Equation 1.40.

As in the EM approach, a constraint is applied to each of the variances in D and R to ensure that
for each variance, the estimated value for one class is at least a pre-specified multiple of that variance

in other classes.

1.4.3 LCLMDM: Structured Class-Specific Variance Components, Structured
D and Diagonal R

Motivation and Known Results

While the diagonal specification of the Dy should allow for a fairly general model specification, it would
be advantageous to allow correlation among the random effects and allow the statistician to specify the
applicable correlation structure. However, allowing both the correlations and variances in Dy to vary
by latent class results in instances where the variance components could be adjusted in many possible
ways to satisfy the constraints proposed by Hathaway [1985]. Therefore, I propose to parameterize the
variance-covariance matrices of the random effects, Dy, as follows. First, the correlation structure for

the random effects is assumed to be the same across all latent classes. Second, class-specific variances
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are permitted. Given this structure, I propose to follow a similar approach to that used to constrain
the diagonal variance-covariance matrices in the previous chapter. Each individual variance estimate
is compared from class to class to ensure that no variance estimate becomes too small when compared

to the corresponding variance estimates in other classes.

Required Modifications

Only one change is required to fit the revised model with a structured, non-diagonal, class-specific
D. The parameters that determine the variance-covariance matrices, contained in 6, now consist of
both correlations, which are calculated across latent classes, and variances, which are calculated as
being specific to each latent class. As such, the computations for the scoring vector s and Hessian H
will include a summation over classes for the correlations, but will require summations only for the

relevant class for the variances.

Note Related to More General Correlation Structures

The previous sections generalized existing methods by first allowing for the specification of a structured
variance-covariance matrix with variances equal across classes. Variances were then permitted to vary
by latent class but correlation was not permitted between random effects. And finally, variances were
permitted to vary by latent class, and a correlation matrix for the random effects was fit across classes.

While these models provide for a fairly general specification of the underlying LMMs, they can
easily be modified to allow for particular forms of the variance-covariance structure. For example,
the random effects portion could be dropped, and the variance-covariance matrix of the error terms
could be specified according to another linear specification. Another alternative would be to keep
the structured variance-covariance matrix of the random effects and allow correlation in the variance-
covariance matrix of the error terms. Only a few of the various possibilities have been examined in

this research, but many more could be easily implemented in future research.

1.4.4 LCLMM: The Relative-Fit Class Membership Model

In previous sections, the LCLMM has been generalized to allow for class-specific, structured, variance-
covariance matrices. In these descriptions, class membership has been assumed to be determined based
on an underlying logistic regression model. In many cases, the statistician may not know exactly
which factors should be included in the model describing class membership, these factors may not be

measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K classes.
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However, this model, in which each subject can have its own set of mixture probabilities, would result
in many parameters related to class membership - specifically, for n subjects and K classes, the model
would require n x (K — 1) parameters. Therefore, I propose in this section a new model which builds
upon the generalizations already implemented but replaces the logistic regression model with a model
in which class membership is determined by the relative fit of the underlying LMMs. This is much
less costly in terms of computational time than fitting a separate set of class membership parameters
for each subject, but offers a logical approach with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:

K
=1

log L(©) = log > [mf (yi|cir=1)] (1.51)
i=1 k
with f (y; | cik = 1) being the density defined by
(vi | cie = 1) ~ N(X;B + WiAy, Z;DiZ; + Ryp,)

In the revised model, the ;) are determined solely by the relative fit of the underlying LMMs according

to the following equation:

(1.52)

For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the
subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the
subject would be included in each class 50%/50%. If the likelihood for Class 1 was nine times higher
than for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

The gradient for this likelihood has a similar, slightly more complicated, form to that described in

the previous sections:

- 1 0Qsir 5Q3m
sg = ZixZQXQ;Mx -y Z (1.53)
p i=1 ZkK:l ngk k=1 op i=1 Zk 1Q31k k=1
- 1 Qs 1 OQsik
s = ——— X 2 X Qs X - X (1.54)
& ; Zk 1 Qi Oy, ; Zszl Qsir. Ok
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" 1 0Qsik 1 o~ OQuin
D P — xZZng,ka D x> (1.55)
i=1 Zk:l ngk k=1 06 i=1 Zk:l Q3ik k=1 00

The Hessian for this likelihood also has a similar, though somewhat more complicated, form to that
described in the previous sections. The equation for the second derivative with respect to 3 and 0 is

provided as an example. The other second derivatives have a similar form.

" u ) 0?Qaix  0Qik 0Qsi
Hﬂg = §2X<§Q§ik> (ZQszx 8,8(‘;; 8zk 8;;

+ 2(74) x (Z Q;‘k) (Z Q3ik X 8Q31k> (Z Q3ik X 8Q3lk>

+ Z(*l)x (ZQBik) (Z lek)
TE 0Qsix 0Qsik
Cx(me) (%) (%)

1.4.5 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of
this specification lies in the random effects which are thought of as being sampled from an underlying
distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The
LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the
data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute
predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM
are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following
distributional properties are assumed to apply to the random effects, b;, and residuals, y; — X;3 —

WiAk.

b; 0 Dy D, Z!
~ N , cik =1 (1.56)
- X8 - W\, 0 Z,D, Z,DyZ.+R;

The computation of the LCLMM random effects requires maximizing the joint density of the data y
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and the random effects b; with respect to the terms b;. The likelihood can be written as follows:

log L (y,b) =
i . i”' exp [~ 3 {(yi — XiB — Widi — Zib;)' R;}! (yi — XiB — WiAi — Z;b;) + /D, 'b; }|
g ik (2ﬂ)<ni+q)/2 |Rik|1/2 |Dk|1/2

Psip,

Py

However, given that a subject is in class k implies that the best set of predictions of the random
effects are the predictions based on the k** LMM. Therefore, the random effects for a subject can
be computed as the weighted average of the random effects computed as if that subject were in each

latent class:
~ K ~
bi = eBLUP[b;] = E{bi\(-),yi] = 3 x b

The resulting random effects are available in the SAS® macro discussed in Chapter 2.

For purposes of calculating standard errors, the second derivative of the above likelihood was
derived using the following equations. Note that since the solutions for the random effects themselves
can be calculated in closed-form, the gradients used in the second derivative are zero and therefore the

form of the Hessian is relatively simple. First and second derivatives are provided in the appendix.

n K
1 OPs;p,
b, = D P D Tk gy (1.57)

} (1.58)

Written in a slightly different way, note that the Hessian is effectively a weighted average of the second

Hyp. b,

i

G

derivatives for each underlying LMM, with the weights based on a combination of the fitted class

probabilities and the relative fit of the underlying LMMs.

K [-ZiR3'Z: - D] +
- 7Tsz3zk B »
Z Z o P, [Z/R;, (yi — XiB — WA, — Z;b;) — D 'b;]
i=1 k= 1 ij 4 3ij
[Z;Ri_kl (yi — XiB — Wi — Z;b;) — D;lbi]

I

It is interesting to note that the calculations for the Hessian and therefore the standard errors of the

random effects will include information related to likely class membership, even in situations where all
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subjects are fit with the same mixture. Random effect standard errors based on the computed Hessian

are calculated in the SAS®) macro discussed in Chapter 2.

1.4.6 Computational Methods

The EM and Newton-Raphson approaches have been examined in detail in previous sections. As noted
earlier, since the analytical first and second derivatives are available, several computational algorithms
can easily be applied in the estimation process. In the SAS® macro presented in Chapter 2, IML
modules have been programmed which calculate the first and second derivatives of the likelihood. The
engines in SAS®’ PROC NLP are then used to provide for a varied set of methods. In the sections
below, a brief literature review is presented related to computational methods which have been used in
previous research. Details related to SAS®PROC NLP are available in Chapter 4 of the SAS®/OR
9.2 User’s Guide [2008].

Literature Review

Most previous research related to LCLMMs has utilized the EM algorithm described in Dempster
et al [1977] to arrive at parameter estimates. Since the LCLMM represents an instance where the
data can be considered to be incomplete (i.e., class membership) and the complete-data model is
straightforward, the EM algorithm is an obvious candidate. As noted in Section 1.3, Lin et al [2000],
Lin et al [2002a], Lin et al [2004], Lin et al [2002b], McCulloch [2003], and Celeux et al. [2005]
all used the EM algorithm for calculations. Roy [2003] computed estimates via a modified Newton-
Raphson algorithm in which second derivatives were calculated numerically. Spiessens et al [2002]
implemented the version of the Heterogeneity Model described in Verbeke and Lesaffre [1996] in
a SAS® macro using PROC NLMIXED, which uses a quasi-Newton algorithm as the default. Xu
and Hedeker [2001] proposed a model similar to Verbeke and Molenberghs [2000] and Spiessens et al
[2002], in which the authors provided details related to both EM and Fisher scoring algorithms. Proust
and Jacqmin-Gadda [2005] used a modified Marquardt optimization algorithm, similar to Newton-
Raphson, to solve for the parameters in a slightly more general model than Verbeke and Lesaffre
[1996]. Note that those articles which discuss estimation algorithms other than EM are simpler than
the model proposed in this research. The first set of articles which utilize the EM algorithm are
reasonably similar in complexity but do not offer the general model specification presented in previous
sections.

Since the EM algorithm has been observed to converge slowly in practice, many researchers have
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explored methods to accelerate convergence. These methods have been applied to a variety of prob-
lems, not necessarily related to mixture models. The methods range from simple methods which
multiply changes in parameter estimates to quasi-Newton methods which update an estimate of the
second derivatives of the likelihood function, thereby gradually resembling a Newton-Raphson algo-
rithm. Laird et al. [1987] used univariate and multivariate Aitken acceleration to improve the speed
of convergence of the EM algorithm. This method multiplies the changes in estimates at each EM
iteration by a constant (univariate approach) or a matrix (multivariate approach). The authors con-
structed the matrices for the multivariate approach from the successive changes in the parameters over
preceding iterations. Jamshidian and Jennrich [1993] proposed a method to accelerate the EM algo-
rithm based on conjugate gradients. The authors showed how the change in estimates from one EM
iteration to the next can be viewed as a generalized gradient of log L (®), therefore lending itself to
the application of generalized conjugate gradient methods. Jamshidian and Jennrich [1997] proposed
several methods for accelerating the EM algorithm, divided into three groups: pure EM accelerators,
EM-type accelerators, and hybrid accelerators. Method QN1 examines the changes in parameter es-
timates from iteration to iteration which would result from running the next EM step. These are
used at each step to update an approximate Jacobian matrix, with the resulting matrix applied to
the EM-step in a simple quasi-Newton method. Method QN2 is similar to QN1. However, it also has
as its inputs the gradient and Hessian of the complete-data likelihood. Lange [1995b] proposed to
replace each M-step with a single iteration of Newton-Raphson, using the first and second derivatives
of Q(©®;O®"). This algorithm is typically referred to as the EM gradient algorithm. Lange [1995a]
proposed to use Lange [1995b] as the basis for a quasi-Newton method. In addition to working with
the first and second derivatives of Q(©®; ©™), the algorithm updates an estimate of the Hessian at each
iteration.

Everitt [1984] compared several different computational algorithms for estimation of the param-
eters in a mixture of two univariate normal distributions. The author found that Newton’s method
using exact values of the first and second derivatives converged most rapidly and was generally very
stable. The EM algorithm was also very stable, but had occasions where convergence was very slow.
Aitkin and Aitkin [1996] proposed a hybrid EM/Gauss-Newton algorithm to compute maximum like-
lihood estimates for mixture models. The proposed algorithm began with five EM iterations and then
switched to Gauss-Newton until either convergence was achieved or the log likelihood decreased. If the
log likelihood decreased, then the step size was halved up to five times to try to find a step which would

increase the likelihood. If the likelihood still decreased after five step-halves, then the EM algorithm

33



was run for five additional iterations from the most recent estimates. A switch to EM was also used if
the Hessian was not positive definite in any Gauss-Newton iteration. The authors found 30-40 percent
faster time to convergence in the hybrid algorithm. They also found that the initial Gauss-Newton
steps almost always decreased the log-likelihood. In some instances, many steps were needed before a

Gauss-Newton step increased the likelihood.

Gradient- and Hessian-Based Algorithms Available in SAS® PROC NLP

In Chapter 2, a SAS®) macro is presented which implements the EM algorithm presented earlier as well
as several gradient and Hessian-based methods. These gradient- and Hessian-based methods use the
analytical gradient and/or Hessian along with the engines in SAS®’ PROC NLP to obtain estimates.
The available methods include conjugate gradient, quasi-Newton, and Newton-Raphson. Additional

details and references can be found in Chapter 4 of the SAS®/OR 9.2 User’s Guide [2008].

1.4.7 Calculation of Parameter Standard Errors

One advantage to using the Newton-Raphson algorithm for likelihood maximization is that standard
errors of the estimates are produced as part of the estimation procedure. Several techniques are
available to obtain estimates of parameter standard errors when the EM or gradient-based algorithms
are used, although some have had mixed reviews in practice. Meng and Rubin [1991] presented a
method for calculating standard errors called the Supplemented EM Algorithm. This method operates
by numerically differentiating the EM operator M (®). However, several authors who have applied
the Supplemented EM algorithm have run into difficulties in practice. For instance, in McCulloch
[1998], the author pointed out that ’for many problems, the Meng and Rubin [1991] method of
obtaining standard errors can be numerically unstable.” Jamshidian and Jennrich [2000] examined
three methods of obtaining parameter standard errors, one which numerically differentiates the score
function, and two which numerically differentiate the M-function, as in Meng and Rubin [1991]. The
authors concluded that the method which operates by numerically differentiating the score function
was preferred. The quasi-Newton methods described in the previous section also can produce estimates
of parameter standard errors as a part of the estimation procedure, similar to Newton-Raphson. In the
QN2 method proposed in Jamshidian and Jennrich [1997], an estimate of the Hessian was updated
during each iteration. At convergence, the authors proposed to use this approximate Hessian to
estimate the standard errors of the parameters. Similarly, a quasi-Newton method proposed in Lange

[1995a], which is based on Lange [1995b], also updated an approximate Hessian as part of each
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iteration.

Building on the methods presented in earlier sections, two practical approaches to estimating
parameter standard errors exist which are not too computationally demanding. Since the first and
second derivatives of the log likelihood have now been programmed into a publicly available SAS®)
macro (see Chapter 2), the Hessian is available for use in obtaining estimates of the parameter standard
errors. If the computational demands are too great to compute the Hessian, a second option is available.
Based on Jamshidian and Jennrich [2000], the Hessian approximated by numerically differentiating
the gradient vector appears to provide a viable alternative. Since calculating the gradient is relatively
cheap in terms of computational time, this should work for most, if not all, scenarios. Note that both
of these methods are available in the SAS® macro discussed in Chapter 2. Since the approximate
Hessian updated in the quasi-Newton method is not currently available using SAS®’ IML link to
PROC NLP, this method was not investigated.

Note that the estimated variance-covariance matrix of the parameters, V, is equal to —H ™!, where

H is the Hessian, or the second derivative of the log likelihood.

1.5 Application: Atherosclerosis Risk in Communities (ARIC)

1.5.1 Background

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective epidemiologic study designed
to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic
diseases, and the variation in cardiovascular risk factors, medical care and disease by race, gender,
location, and date. The study was conducted in four communities in the United States - Forsyth
County, NC, Jackson, MS, the northwestern suburbs of Minneapolis, MN, and Washington County,
MD. Each ARIC field center randomly selected and recruited a cohort sample of approximately 4,000
individuals aged 45-64 from a defined population in their community. A total of 15,792 individuals
participated. Study participants received an extensive examination, including medical, social, and de-
mographic data. These participants were reexamined every three years with the first screen (baseline)
occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and final exam in
1996-98. Follow-up occurs yearly by telephone to maintain contact with participants and to assess the
health status of the cohort.

A subset of 2,066 members of the ARIC study cohort participated in the Carotid MRI Substudy
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in 2004-2005. The goal was to recruit 1,200 participants with high values of maximum carotid artery
wall thickness at their last ultrasound examination, and 800 individuals randomly sampled from the
remainder of the carotid artery wall thickness distribution. Participants had a maximum of the four
ARIC cohort examinations, plus one Carotid MRI Substudy examination. Measurement protocols
were identical at all five visits.

Fasting blood samples were collected at each examination and assayed for total cholesterol, HDL
cholesterol, and triglycerides. LDL cholesterol was calculated according to the Friedewald formula.
LDL cholesterol, HDL cholesterol, and triglycerides are commonly considered risk factors for coronary
artery disease (CAD) and other related diseases or events and are also routinely measured at annual
physicals in the general population. Ballantyne [1998] notes that ”clinical trials with statins and
other lipid-regulating therapies have conclusively shown that lowering LDL cholesterol decreases both
morbidity and mortality from CAD and other vascular diseases.” Kwiterovich [1998] notes that ”the
Framingham Heart Study produced compelling epidemiologic evidence indicating that a low level of
HDL cholesterol was an independent predictor of coronary artery disease.” And Gotto [1998] points
out that "the current evidence argues compellingly for including triglycerides in the evaluation of
patient risk for CAD. ... The revived attention to hypertriglyceridemia with respect to increased CAD
risk represents an important step in assessing a patient’s global risk for developing CAD.”

For purposes of analysis, lipid data for the 2,066 individuals in the ARIC Carotid MRI substudy,
as well as information related to medication use for controlling cholesterol levels were utilized in the
models discussed below. Since the distribution of triglycerides is non-normal, a log transformation for

this lab value was used in the analyses.

1.5.2 Methods

The goal of this application is to demonstrate the usefulness of the LCLMM for modeling the data
for LDL cholesterol, HDL cholesterol, and triglycerides simultaneously. Since this data represents
an example in which each individual has repeated measurements on each lab parameter, the LMM
represents one possible method which could be used for analysis. However, this model assumes that
the population being studied does not actually consist of several subpopulations, or that those sub-
populations are known a priori. However, this assumption may not be a reasonable one. Factors such
as cultural background, dietary habits, exercise, etc. all contribute to changes in these lab parame-

ters, and there are likely many additional factors. If the statistician attempted to include all of the
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associated variables in the model, the resulting model would become too complex for practical use. In
addition, questions would arise as to whether these additional variables truly describe the population’s
behavior or whether they are simply acting as markers or surrogates, attempting to identify a finite
number of underlying subpopulations that exist in the data. The LCLMM will be used to simulta-
neously divide the population into a series of subpopulations while also fitting the best LMM to the
data for each of the underlying subpopulations. The resulting estimates will be compared with those
from the LMM, and the underlying latent classes will be examined.

The LMM was described in Section 1.2. In this example, the LMM is fit with an intercept and linear
and quadratic terms for age for each of the three lipid parameters. Two indicator variables - one for
LDL cholesterol and one for HDL cholesterol - are also included to account for the effect of cholesterol
medication on these measures. Random intercepts are included for all three lipid parameters, and a
random slope is fit for LDL (the variances for the random slopes for HDL and triglycerides were close
to 0). The random effects are fit as being correlated via an unstructured variance-covariance matrix,
and the error terms are assumed to be uncorrelated, with separate variances for each lipid parameter.
Note that age is centered at 59 for purposes of the analysis for both the LMM and LCLMM.

The LCLMM was described in Section 1.2 and expanded in Section 1.4. For the LCLMM, the
intercept and linear and quadratic age terms for HDL, LDL, and triglycerides are allowed to vary for
each latent class or subpopulation. However, the effect of the cholesterol-lowering medication on HDL
and LDL is fit as being the same for each latent class. Random intercepts for all three lipids and a
random slope variable for LDL cholesterol are fit in the LCLMM as in the LMM, with correlation
permitted between random effects. As noted earlier, the LCLMM requires that the user specify the
number of latent classes to fit. Therefore, the LMM (1 class) as well as the LCLMM with 2-10 classes
were fit. For the LCLMM runs, two separate runs were actually made - one which required that
all underlying latent classes have equal variances and another which allowed the variances to differ
by latent class. Note that while the variances are allowed to differ by latent class, the correlation

parameters were fit as being the same for each latent class.

1.5.3 Results

Class Trajectories and Class Membership

The fitted class trajectories for LDL cholesterol, HDL cholesterol, and triglycerides for the LMM as

well as the 2-10 class LCLMMs assuming class-specific variances are displayed in Figures 1.1-1.24. For
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these plots, the percent of subjects in each class who received cholesterol-lowering medications was
used in place of the medication use indicator variables in order to provide an average picture for each
latent class. For the 2-5 class models, an additional set of plots is presented in order to provide a
more detailed look at the makeup of each latent class. These plots display the observed trajectories
for subjects identified in each latent class, along with the fitted class trajectory. For purposes of these
plots, a subject is assumed to be in a given class if its highest class probability is at least two times
its second-highest class probability.

The LMM, as expected, fits curves through the middle of the data for each lab parameter. The
2-class LCLMM fits two very different patterns. One group, labeled as ’Optimal’, has much higher
HDL cholesterol, lower triglycerides, and lower LDL cholesterol than the second group, which is
labeled as ’At-Risk’. Notice that LDL cholesterol appears to be decreasing in the "At-Risk’ group
- this is associated with the fact that while both groups tended to be on cholesterol-lowering meds
at baseline in equal percentages (20-25 percent), a greater percentage of the ’At-Risk’ group tended
to be on cholesterol-lowering meds by visit 5 (56 percent versus 36 percent). The 3-class model
appears to add a class which is between the ’Optimal’ and ’At-Risk’ classes, labeled here as ’Average’.
Similar to the other models, the 4-class model appears to define an ’Optimal’ group and an ’At-Risk’
group, while fitting two intermediate groups. The two intermediate groups have very similar HDL
cholesterol which is roughly midway between the ’Optimal’ and ’At-Risk’ groups. These two groups
have different patterns for the other two lab parameters. One of the intermediate groups, labeled
"AvgHDL-HighOther’, has noticeably higher LDL and triglycerides than the group labeled ’AvgHDL-
LowOther’. The 5-class model has an ’Optimal’ class, two low HDL classes, which are distinguished by
their triglyceride values, and two average HDL classes, distinguished by their LDL values. The 6-class
through 10-class models are not described in detail here, but the plots are included with latent classes

labeled. As more classes are added, note that there tends to be more overlap between the models.
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Figure 1.10: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - At-Risk Class
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Figure 1.11: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - AvgHDL-HighOther
Class
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Figure 1.12: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - AvgHDL-LowOther
Class
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Figure 1.13: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - Optimal Class
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Figure 1.15: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Avg HDL - Lower
LDL Class
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Figure 1.16: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Low HDL - Lower
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Figure 1.17: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Avg HDL - Higher
LDL Class
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Figure 1.18: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Low HDL - Higher
Triglycerides Class
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Figure 1.19: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Optimal Class

o7



LDL Cholesterol (mg/dL)

300
200
100

0

40 50 60 70 80 40 50 60 70

Age Age
(a) LDL Cholesterol (b) HDL Cholesterol
7

Log Triglycerides (mg/dL)
al

40 50 60 70 80

(c) Triglycerides

Figure 1.20: ARIC Application: Fitted Lipid Trajectories - LCLMM (6 Classes)
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Figure 1.23: ARIC Application: Fitted Lipid Trajectories - LCLMM (9 Classes)

Red (Solid) = Near-Optimal - Good HDL
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Figure 1.24: ARIC Application: Fitted Lipid Trajectories - LCLMM (10 Classes)
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The numbers of subjects in each of the classes described above is presented in Tables 1.1 and 1.2.
Since each individual is actually given a probability of being in each latent class as part of the model
fit, as opposed to a definitive group, the numbers in these tables classify a subject into a group if
that subject has at least twice the probability of being in its most likely class as being in its second-
most likely class. It is interesting to note a few things regarding these counts. First, as mentioned
earlier, the ARIC Carotid MRI substudy enrolled about 1,200 subjects because they had high values
of maximum carotid artery wall thickness at their last ultrasound examination and 800 subjects from
the remainder of the distribution. For the 2-class model, the Optimal class was identified as having
715 individuals, while the At-Risk class was identified as having 1,202 subjects. Second, the number
of unknown subjects is relatively small - even in models in which many groups are fit, more than 85
percent of subjects are still fairly certain regarding class assignment. This percent of unknown subjects

tends to increase slightly as classes are added.

Choosing a Model

Given that the number of latent classes is unknown a priori and that there are two possible models to
fit - one with variances equal across class and one with class-specific variances - which model should
be selected? This is a topic of great consideration and is examined more generally in a simulation
study in Chapter 2. However, for purposes of evaluating the various models fit, selected information
criteria are presented in Table 1.3 for the LMM and the LCLMM for 2-10 classes. These measures are
based on work summarized or presented in Biernacki and Govaert [1999], Biernacki et al [2000], and

Bozdogan [1987], and are discussed in more detail in Chapter 2. Briefly, the criteria are as follows.

AIC = —2logL +2v e Akaike Information Criterion
CAIC = —2logL +v (logn+ 1) eConsistent Akaike Information Criterion
BIC = —2logL +vlogn eBayesian Information Criterion
C = —2logL +2E eFuzzy Classification Likelihood
ICL = —2logL +vlogn+2E elntegrated Completed Likelihood

where:

K n
E (Entropy) = — Z Zak log ¢ix >0

=11=1

~_ mf(yilew=1)
Eﬁil {mijf (yileiy =1)}

Cik =
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Table 1.1: Percent of Subjects Fit in Each Latent Class (1-6 Classes)

Model  Class N  Percent
2-Class  Optimal 715 34.6
At-Risk 1202 58.2
Unknown 149 7.2
3-Class Average 678 32.8
At-Risk 643 31.1
Optimal 511 24.7
Unknown 234 11.3
4-Class  At-Risk 399 19.3
AvgHDL-HighOther 482 23.3
AvgHDL-LowOther 532 25.8
Optimal 414 20.0
Unknown 239 11.6
5-Class Avg HDL - Lower LDL 386 18.7
Low HDL - Lower Triglycerides 391 18.9
Avg HDL - Higher LDL 365 17.7
Low HDL - Higher Triglycerides 307 14.9
Optimal 340 16.5
Unknown 277 13.4
6-Class Optimal - Best HDL and Good Triglycerides 291 14.1
Bad Trends 336 16.3
Highest LDL 284 13.8
At-Risk 336 16.3
Optimal - Best Triglycerides and Good HDL 237 11.5
At-Risk - But Signs of Improvement 282 13.7
Unknown 300 14.5
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Table 1.2: Percent of Subjects Fit in Each Latent Class (7-10 Classes)

Model Class N  Percent
7-Class ~ High LDL Only 221 10.7
Low HDL Only 304 14.7
Optimal-Good HDL 281 13.6
Average 211 10.2
Bad Trends 210 10.2
Optimal-Best HDL 271 13.1
At-Risk 259 12.5
Unknown 309 15.0
8-Class  Bad Trends 217 10.5
At-Risk 259 12.5
High LDL Only 234 11.3
Optimal 160 7.7
Low Triglycerides Only 234 11.3
Average 238 11.5
Elevated Triglycerides Only 231 11.2
Near-Optimal 192 9.3
Unknown 301 14.6
9-Class  Near Optimal - Good HDL 223 10.8
At-Risk 201 9.7
High LDL Only 238 11.5
Low HDL Only 205 9.9
High HDL Only 163 7.9
Near-At-Risk 183 8.9
Optimal 160 7.7
Bad Trends 216 10.5
High Triglycerides Only 190 9.2
Unknown 287 13.9
10-Class  At-Risk 139 6.7
Optimal 179 8.7
Near-At-Risk 166 8.0
Low LDL/Triglycerides 196 9.5
Low HDL 222 10.8
Bad Trends 149 7.2
Average-1 206 10.0
High HDL 126 6.1
High LDL 198 9.6
Average-11 179 8.7
Unknown 306 14.8
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Note that v represents the number of parameters fit in the model, n represents the number of subjects,
and E is an entropy measure. For consistency with the other measures, C has been multiplied by —2.

Notice that all of the traditional information-based criteria choose the most complicated 10-class
model. This is consistent with results from the simulation study presented in Section 2.8, which found
that these criteria tend to overestimate the number of latent classes.

Based on my work with the models, I propose a series of additional information criteria along
the lines of BIC. The BIC penalizes the likelihood for each additional parameter fit in the models.
However, the model that is the main focus of this research is a model in which class membership is
determined by the relative likelihood of an individual’s data under each of the underlying LMMs -
therefore, no additional parameters are fit for class membership. If the latent classes are so obviously
separated that the classes can be easily determined, then this seems appropriate. However, if class
membership for an individual is not obvious, it seems as if a penalty needs to be assessed for that
individual to account for fitting that individual’s mixing proportion. If the individual is fit such that
their class membership probability is split between two classes, then it seems the penalty should be
the equivalent of fitting one additional parameter in the model. If the individual’s probability is split
between three classes, then the penalty should be two additional parameters, and so on. Since the
point at which an individual can be attributed to one class with certainty or near-certainty is not
obvious, several criteria were proposed. The first, BICMod23, looks at the highest probability for
each subject - if the second-highest probability is more than half of the highest, then a single penalty
parameter is charged. If the third-highest probability is more than half of the highest, then a second
penalty parameter is charged and so on. The label '23’ is meant to call attention to the fact that a
subject with probabilities % and % would be at the border of having a penalty assessed. A second
criteria, BICMod34, would have the border at 2 / 2. BICMod45 has its border at 80 percent / 20
percent and BICMod910 has its border at 90 percent / 10 percent. These criteria are presented for
the LMM and LCLMM with 2-10 classes in Table 1.4.

The newly proposed criteria also tend to choose the 10-class model, although the BICMod45 criteria
chooses the 7-class model for the equal across classes variance model. The BICMod910 criteria chooses
the LMM as the best model, as the penalty is so great that even the 2-class model does not show
an improvement. In many respects, these criteria also do not offer a great deal of help in terms of
choosing a particular model to use - most do not penalize enough to result in a parsimonious model.
Therefore, the next focus in the search for the 'best’ model leads to an analysis of the residuals to

determine which of the models tends to fit better.
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Table 1.4: Linear Mixed Model and LCLMM - Proposed Modified Bayes Criteria

Variances # of Classes BICMod23 BICMod34 BICMod45 BICMod910
Equal-Across-Classes 1 (LMM) 164646.8 164646.8 164646.8 164646.8
2 163882.4 164912.9 165569.4 167485.4

3 162759.1 163812.5 164469.0 166537.7

4 162699.7 164371.4 165646.2 169470.5

b) 162539.3 164478.2 166035.4 171271.9

6 161749.7 163986.3 165635.1 170780.0

7 161030.9 162679.7 164069.0 168213.9

8 160917.4 163169.2 165039.4 170482.0

9 160600.3 162859.8 164905.5 170851.9

10 159879.2 162268.4 164077.5 169909.4

Class-Specific 1 (LMM) 164646.8 164646.8 164646.8 164646.8
2 162185.5 163101.5 163620.6 165269.4

3 160634.8 162077.5 163062.2 166031.6

4 159658.5 161284.4 162414.2 165895.0

5 159133.5 160896.9 162370.1 166713.5

6 158706.0 160492.2 161850.9 166186.7

7 158223.4 160246.2 161566.8 166444.5

8 157873.9 159667.7 161224.9 166095.0

9 157206.4 159091.8 160458.2 165786.3

10 157026.4 159011.1 160354.5 165705.5
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Summary measures of the within-subject and total residuals were examined to see if any of the
models tended to have a smaller MSE of the residuals (see Table 1.5). These quantities are defined as

follows for subject i:

K

Titotal = Yi— D Tik <X’LB + Wz’j\k)
k=1
K ~
i within = Yi — [Z ik (Xiﬁ + Wi)\k> —Z;b;
k=1
S
MSE = L

Total # of Observations

Since the model fits each subject using a mixture determined by the relative fit of the underlying
models, it is expected that the residuals should show a noticeable improvement as classes are added.
However, keep in mind that if a subject has a great deal of data consistent with one class, but then
has a parameter which is inconsistent with that class, then the LCLMM may actually have a worse fit
for that parameter.

Notice that all of the models are an improvement over the LMM in terms of decreasing the mean
square error of the total residuals. The biggest decrease was about 49 percent for LDL cholesterol,
77 percent for HDL cholesterol, and 53 percent for triglycerides. However, there is not a single model
which fits best for all of the lab parameters. Note that while the likelihood is always much better
for the class-specific variance model, the models which assume variances are equal across classes have
comparable residual measures. Using the within-subject residuals as a guide of overall model fit, I
chose to focus on one model with class-specific variances and another with variances equal-across-
classes. Note that in the simulation study presented in Section 2.8, the within-subject MSE is found
to be the most effective measure in terms of choosing from competing models. For equal-across-classes
variances, the 4-class model has the best fit for LDL and is reasonably close to the best fit for HDL
and triglycerides. For class-specific variances, the 5-class model also has the best fit for LDL and is
reasonably close to the best fit for HDL and triglycerides. This leads to the next question... should

the model be fit assuming class-specific variances or variances equal-across-classes?

Variances - Class-Specific or Equal-Across-Classes?

Many previously proposed models have fit the variances as being equal across classes. As noted earlier,

Basford and McLachlan [1985] presented an example to illustrate that fitting a normal mixture model
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with homoscedastic variances in a situation where the classes are in fact heteroscedastic can have a
significant influence on the resulting estimates. In particular, they found that the mixing proportions
can be greatly affected, resulting in potentially different results in multivariate clustering analyses.
Logically, incorporating the different degrees of variation present in each latent class should allow for
an improved and more realistic model. For illustration, the 3-class models with class-specific variances
and variances equal-across-classes are examined using the ARIC data.

First, spaghetti-plots for subjects identified in each of the three classes are presented in Figures
1.25, 1.26, and 1.27 for both the class-specific variance model and equal-across-classes variance model.
It is apparent that the groups have remarkably different degrees of variation, both for the model which
accounts for that variation and the model which assumes that the variation is equal for all classes. Note
the increased variation present for HDL in the Optimal group in both the equal-across-classes variance
model and class-specific variance model. The fitted variances for each class based on the class-specific
variance model are presented in Table 1.6 and confirm the sometimes dramatic differences. Note that
the residual error variances for HDL range from 22 for the Average class to 138 for the Optimal class.
Similar degrees of difference between classes are found for the other lipids as well.

The question arises, ”Can these differences in variances affect the choice of groups and/or the
underlying models?” Of 2,066 subjects, about 460 were not classified into a particular class (did not
have their most likely class twice as likely as their second most likely class) in one or both models.
Of the remaining 1,600, about 1,025 were selected to be in the same class in both models. That
leaves about 575 who were fit in different classes depending on whether variances were fit as being
class-specific or equal-across-classes. Of these, 245 were considered to be in the ’At-Risk’ class in the
equal-across-classes variance model but not in the class-specific variance model and 186 subjects were
considered to be in the ’At-Risk’ class for the class-specific variance model but not the equal-across-
classes variance model. The remainder were at the border of ’Average’ and ’Optimal’. In order to
investigate the differences, the random intercepts for each subject for LDL, HDL, and triglycerides
from the usual LMM were categorized into quartiles for each of the three lab parameters. Then, the
percent of subjects in each of the quartiles who were classified into the ’At-Risk’ group in the 3-class
LCLMMs was calculated and is presented in Figures 1.28, 1.29, and 1.30. Each figure compares the
class membership resulting from the class-specific variance model with the class membership resulting
from the equal-across-classes variance model.

When looking at the LDL/HDL quartiles, the equal-across-classes variance model appears to rely

primarily on HDL to make class determinations, as the levels of the bars are very similar across LDL
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Table 1.6: Fitted Variances - LCLMM Class-Specific Variance Model (3-Class)

Variance Class Estimate SE

LDL - Random Intercept Average 355.66  28.79
At-Risk 906.42 70.27
Optimal 643.48 48.95

LDL - Random Slope Average 1.70  0.24
At-Risk 1.47  0.65
Optimal 1.18 0.39
LDL - Residual Error Average 191.25 7.61

At-Risk 809.41 28.41
Optimal ~ 453.72 18.57

HDL - Random Intercept Average 78.60  5.19
At-Risk 48.95  3.39
Optimal 161.58 13.98

HDL - Residual Error Average 22.38 0.87
At-Risk 41.51 2.06
Optimal 138.42  5.46

Triglycerides - Random Intercept Average 0.10 0.01
At-Risk 0.12 0.01
Optimal 0.12 0.01
Triglycerides - Residual Error Average 0.06 0.002
At-Risk 0.13 0.005
Optimal 0.08 0.004
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levels. As HDL decreases, subjects for the most part become more likely to be classified into the ’At-
Risk’ class. In the model with class-specific variances, the pattern appears to be more of a step function
where an increase in either LDL or HDL will tend to move subjects to the ’At-Risk’ group. The chart
for HDL vs. triglycerides is very similar in that the class-specific variance model seems to have a more
noticeable step function. The LDL vs. triglycerides chart shows the same step pattern for the class-
specific variance model, but in the equal-across-classes variance model, it appears that triglycerides
is used primarily to determine latent classes, while LDL does not have a noticeable impact on class
assignments. Given the dramatic differences between results using the equal-across-classes and class-
specific variance models, it seems that if possible, it would be advantageous to utilize information
with respect to variation in fitting the model. For completeness, therefore, the parameters for the
final 5-class class-specific variance model are presented in Table 1.7. Note that the effect of taking
cholesterol medications is a decrease of 15.06 for LDL, but that HDL stays almost unchanged. Also,
note that the correlations for the random effects are relatively small after the latent classes have been
accounted for. Two correlations are higher than the others. The correlation of the random intercept
and slope for LDL have a correlation of -0.37 (SE = 0.049), which indicates that subjects with a higher
random intercept tend to have a lower random slope. The correlation of the random intercepts for
HDL and triglycerides have a correlation of -0.49 (SE = 0.030), which indicates that subjects with
a high random intercept for HDL tend to have a low random intercept for HDL. Interestingly, the

correlations between the other random intercepts are not nearly as high.

1.5.4 Identifying the Carotid Artery Thickness Groups

Previous research has examined the relationship between LDL / HDL / triglycerides and carotid artery
thickness. Grebe et al [2007] showed that there was a statistically significant negative correlation
between HDL and the intima-media thickness (IMT) of the carotid arteries. In addition, the authors
found that there was a statistically significant positive correlation between both LDL and IMT and
triglycerides and IMT. They found correlations of -0.187 for HDL (p-value=0.022), 0.271 for LDL (p-
value=0.001), and 0.185 for triglycerides (p-value=0.023). Therefore, a comparison seemed appropriate
in terms of comparing the actual IMT values in each of the identified latent classes.

First, a comparative histogram is presented in Figure 1.31 which shows the distribution of the
IMT values in each latent class. Note that the IMT values for the Low HDL-Higher Triglycerides,

Low HDL-Lower Triglycerides, and Average HDL-Higher LDL classes tend to be higher than for the
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Optimal and Average HDL-Lower LDL classes. The mean IMT values for the former set of classes are
above 0.9, while the mean values for the latter are around 0.82.

In a second examination of the data, the 2,066 individuals were classified into quartiles based on
their IMT values. Figure 1.32 then displays the percent of subjects in each quartile who were classified
in the Low HDL-Higher Triglycerides, Low HDL-Lower Triglycerides, and Average HDL-Higher LDL
classes. This percentage increases from about 39 percent to 62 percent as you move from the lowest
IMT quartile to the highest.

This analysis appears to support the results of Grebe et al [2007]. However, like that study,
in which the correlations between the lipid parameters and IMT were between 0.18 and 0.28, the
relationships seen in the latent class analysis still leave questions as to other important factors which

act upon IMT.

1.5.5 Differential Effect of Obesity

As a further examination of the flexibility of the LCLMM, the effect of obesity was examined as
it pertains to the three lipid parameters. Previous sections have already discussed the relationship
between the lab parameters and IMT of the carotid arteries. A further question worth examining
is 'Does obesity have an effect on an individual’s lipid profile after taking into account latent class
membership?’ In other words, if a subject is identified as being in an at-risk lipid class, does that
subject tend to have an even worse profile if they are obese, or does the latent class already reflect
this?

To examine this question, the final 5-class LCLMM presented in Table 1.7 was run with one
modification. An indicator for the effect of obesity (Yes/No) on LDL cholesterol was included in the
model and was allowed to vary by latent class. Similar indictors were included for HDL cholesterol and
triglycerides. Obesity in the model is defined as a body mass index of 30 or greater. These parameters
would be interpreted as the effect of being obese above and beyond being classified in the given latent
class. The estimates and standard errors for these parameters are presented in Table 1.8. In addition,
p-values based on a z-test are provided to test whether the effect of obesity is significantly different
from zero.

It appears that even after the latent classes are accounted for, there is still an effect of obesity
on HDL cholesterol and triglycerides. In all groups, subjects classified as obese had a lower average

HDL cholesterol value and a higher average triglyceride value than those not classified as obese, with

81



| AvgHDL-Lower LDL | AvgHDL-Higher LDL | LowHDL-Lower Trig | LowHDL-Higher Trig

Optimal

Percent

Percent

Percent

Percent

N 306
25 7| Mean 0.911511
_|| Minimum  0.499411
20 Maximum 2.25
15 7
10 7
5 -
0
N 391
25 7| Mean 0.925942
20 Minimum  0.467915
Maximum 2.164014
15 7
10 7
N I -
0
N 364
25 7| | Mean 0.942352
_|| Minimum  0.442553
2 Maximum 225
15 7
10 7
5 |
0
N 386
25 7| | Mean 0.829684
_|| Minimum  0.458768
2 Maximum 2.06
15 7
10
5 -
0
N 340
25 7| | Mean 0.822635
20 | Minimum  0.442452
0 Maximum  2.01849
15 7
10 7
5
0

I

N

N

N

N

N

N

N

o rrrrr Tt T T T T

0 01 02 03 04 05 06 07 08 09 10 1.1 12 13 14 15 16 1.7 18 19 20 21 22 23 24 25

Mean Intima-Media Thickness (mm)

Figure 1.31: Distribution of Mean Intima-Media Thickness by Latent Class

82




N © I 0 o)) ~
© © © e © e

—
e

% of Subjects Included in Low HDL or Avg HDL-Higher LDL Classes

©

Lowest 2nd Lowest ~ 2nd Highest Highest
Mean IMT Quartile

Figure 1.32: Percent of Subjects Classified in the Low HDL or Average HDL-Higher LDL Latent
Classes by Mean IMT Quartile

83



Table 1.8: Effect of Obesity Within Identified Latent Classes

Effect of Obesity

Parameter Class On Lab Measure Std Error P-Value
LDL Cholesterol Low HDL - Higher Triglycerides -5.84 3.00 0.0516
Low HDL - Lower Triglycerides -0.85 1.60 0.5952
Avg HDL - Higher LDL 6.68 2.47 0.0068
Avg HDL - Lower LDL 2.99 1.73 0.0839
Optimal 3.7 2.77 0.1805
HDL Cholesterol Low HDL - Higher Triglycerides -2.34 0.83 0.0048
Low HDL - Lower Triglycerides -1.30 0.38 0.0006
Avg HDL - Higher LDL -1.28 0.72 0.0754
Avg HDL - Lower LDL -5.03 0.77  <0.0001
Optimal -6.36 1.32  <0.0001
Triglycerides Low HDL - Higher Triglycerides 0.1419 0.0342 <0.0001
Low HDL - Lower Triglycerides 0.1115 0.0237 <0.0001
Avg HDL - Higher LDL 0.1525 0.0249 <0.0001
Avg HDL - Lower LDL 0.2042 0.0289 <0.0001
Optimal 0.1075 0.0316 0.0007

most values being statistically significant. While obesity is associated with a decreased HDL value
of 1.28-2.34 in the less optimal classes, it is associated with a much larger 5.03-6.36 decrease in the
Optimal and Avg HDL-Lower LDL classes. In other words, although individuals in the ’Optimal’ class
tend to have healthy lab measures - low LDL, low triglycerides and high HDL - obese individuals in
the ’Optimal’ class will likely have noticeably lower HDL than individuals in the same class who are
not obese. Indeed, this is consistent with what you might expect. HDL tends to increase with aerobic
exercise, weight loss, and cutting trans-fats from the diet. These are all activities that are more likely
a part of the standard routine of someone who is not considered obese. And, while HDL is not likely
to show large increases solely due to medication use, LDL can often be lowered by taking appropriate
medications. This may help to explain why the association of obesity and LDL cholesterol is not as
clear.

Finally, it is worth noting that including the obesity indicators in the LCLMM has the potential to
result in the creation of different latent classes since now an additional parameter has been included
in the model. However, approximately 93% of the subjects remained in the same latent class in the

new model as compared with the old and the fitted class trajectories are very similar.
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1.6 Conclusions and Further Research

The Latent Class Linear Mixed Model represents an important tool which researchers can use to
understand complex longitudinal data. By solving simultaneously for subpopulation membership as
well as the linear mixed models for those subpopulations, the statistician is given a powerful method
for understanding the data. This chapter has provided advances in several main areas. First, methods
have been extended to allow for structured variance components which can differ by latent class.
Second, a new relative-fit model has been proposed which allows the statistician to fit each subject
in the class or classes that are most appropriate. And finally, subject-specific predictions have been
expanded such that each subject can receive a prediction which reflects the attributes of the class or
classes that most represent that subject.

While a great deal has been done to make this model practical and general enough for the com-
plexity of everyday problems, there are several topics which should be examined in future research.
First and foremost, it would be advantageous to have a likelihood-based measure which would be
useful in choosing the ideal model. There are practical considerations which argue for smaller, more
parsimonious models, and other considerations which would argue for more complex models. Balanc-
ing these concerns is of great importance. With regard to variance-covariance structures, this chapter
has focused on a linear structure. In order to continue to expand the options for statisticians, other
correlation structures should be examined, and the bound recommended by Hathaway revisited for
these other structures. Finally, this model provides a powerful way to explore complex data and there

are likely many applications which could benefit from the application of these models.
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Chapter 2

SAS® Macro for Latent Class Linear
Mixed Models

2.1 Introduction

Chapter 1 discussed a flexible modeling approach for Latent Class Linear Mixed Models (LCLMM),
in which the statistician can tailor the model in several ways to more accurately describe the data
being analyzed. Among these choices are selecting fixed and random effects, which fixed effects are
fit across-classes and which are fit separately for each class, whether the variances are allowed to vary
by class, and how the latent classes themselves are determined. While the LCLMM has been applied
in several research settings, it has not been adopted extensively for several reasons. Until now, two of
the main drawbacks of the LCLMM have been slow computational speed and the lack of availability
of software to run the models. Both of these are addressed in this chapter via the presentation of a
new SAS® macro. This macro will allow researchers a way to easily specify models for the means,
variances, and class membership, and in turn obtain parameter estimates for the underlying linear
mixed models (LMMs), likely class assignments, standard errors of the parameters, and predictions
of the random effects. Several computational algorithms can be chosen for estimation, including EM,
gradient-based methods such as quasi-Newton, and Hessian-based methods such as Newton-Raphson.
Short examples using small simulated datasets are presented to illustrate possible uses of the new
macro as well as how to specify a model. In addition, simulation studies are presented to demonstrate

the stability and advantage of the LCLMM.



2.2 The Model

A detailed review of the LCLMMs which can be fit in the SAS®) macro is provided in Chapter 1. For

convenience, a brief review is presented here.

2.2.1 Defining the Latent Class Linear Mixed Model

The LCLMM is effectively a mixture model where the underlying mixture distributions are specified
as LMMs. Therefore, a brief introduction of the LMM will lead directly into the specification of the
LCLMM. Note that Searle et al [1992] provides a more detailed presentation of the LMM. For subject

1, We assume

yi=XiB+Zb;+e; (2.1)

where:

y; is an n; X 1 vector of observations

X; is an n; X p; design matrix for the fixed effects
B is a p; x 1 unknown vector of fixed effects

Z; is an n; X q design matrix for the random effects
b; is a ¢ X 1 unknown vector of random effects

e; is an n; x 1 unknown vector of random error terms

Further, e; and b; are assumed to be mutually independent of one another and to have the following

properties:

E(M;) = 0
Var(b;) = D
Cov (b;,b),) = Ofori#h (2.9)
E(e) = 0
Var(e;) = R;
Cov (b;,e;)) = 0

And finally, the following distributional properties are assumed to apply to the random effects, b;,
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and residuals, y; — X,;3:

b; 0 D DZ,
~N , (2.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture
of K LMMs, one for each of the K latent classes. Note that the value K is specified by the statistician
a priori. Details related to selecting K are discussed later in this chapter. Following the notation in

Lin et al [2002a], define for subject i:

1 if subject ¢ is a member of class k
Cik =
0 if subject 7 is NOT a member of class k

Ci1y -+, Cix ~ Multinomial (1,7;1,...,7ix)

The m;;, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

exp (tiay)

ik =Pcix=1|t)= g (2.4)
Zj:l exp (tja;)
where:
t; is the design vector related to class membership for subject i
;. is an unknown vector of class-membership parameters for class k with a;y = 0
Further, given that subject i is in class k, define the LMM for subject ¢ as follows:
yi =X+ WA +Z;b; +e; (2.5)

where the following additional definitions are provided:

W, is an n; X py design matrix for the class-specific fixed effects

Ak is a po x 1 unknown vector of class-specific fixed effects for class k

It is useful to note that the parameters in B will apply to all subjects through the values of the cor-
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responding column in X;. The class-specific parameters, Ay, however, are different for each latent class.

The error terms and random effects are assumed to have the same properties as in Equation 2.2.
Finally, similar to the LMM, the following distributional properties are assumed to apply to the random

effects, b;, and residuals, y; — X;8 — W; Ag:

b; 0 D DZ,
~N : (2.6)

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that

both of the following are true:

t; ty --- t, | isfull rank, and

X1 | Wy . . . Z,

X . Wy . . . 7y
is full rank.

X, | . . . W.l|. . . Z

For notational convenience, denote ® as the combined parameter vector comprised of as ... agk,

B, A1 ... Ak, and 8, where @ contains the unique variance components which determine D and R,;.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values X;, W, Z;, and t;. In short,

log L (©) 5 = D log f (v1) (2.7)
i=1
n K
log L(®)pcpnm = Zlog Zﬂz‘kf (vil e =1) (2.8)
i=1 k=1

with f (-) being the density defined by

(yi) ~ N(X;8,Z,DZ;+R;)
(yilcie=1) ~ N(XiB+ WA\, Z,DZ; +R;)

89



Several points are of note. First, note the difference between Equations 2.7 and 2.8 - the likelihood
for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore m;; = 1, the
LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has
one ;x = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects
assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of
the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.

2.2.2 LCLMM: The Relative-Fit Class Membership Model

In the model described in the previous section, class membership was assumed to be determined based
on an underlying logistic regression model. However, in many cases, the statistician may not know
exactly which factors should be included in the model describing class membership, these factors may
not be measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K
classes. However, this model, in which each subject can have its own set of mixture probabilities, would
result in many parameters related to class membership - specifically, for n subjects and K classes, the
model would require n x (K — 1) parameters. Therefore, a second approach was proposed in Chapter 1
which replaces the logistic regression model with a model in which class membership is determined by
the relative fit of the underlying LMMs. This is much less costly in terms of computational time than
fitting a separate set of class membership parameters for each subject, but offers a logical approach
with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:

n

K
log L(©) = Zlog Z [Tirf (yi | ciw = 1)] (2.9)

i=1 k=1

with f (y; | cik = 1) being the density defined by

(yi | cik =1) ~ N(XiB+ WA, Z;DyZ, + Ryy,)

In the revised model, the 7;; are determined solely by the relative fit of the underlying LMMSs according
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to the following equation:

. f(Yi|Cik:1§é) (2.10)
" Zf:1f(yZ'|Cij :1;(:)> '

For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the
subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the
subject would be included in each class 50%/50%. If the likelihood for Class 1 was nine times higher
than for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

Further details are presented in Section 1.4.4.

2.2.3 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of
this specification lies in the random effects which are thought of as being sampled from an underlying
distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The
LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the
data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute
predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM
are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following
distributional properties are assumed to apply to the random effects, b;, and residuals, y; — X;3 —

WiAk.

b, 0 Dy D,.Z!
~N , i =1 (2.11)
yi — X8 — Wi 0 Z,D, Z,D.Z.+R;

The computation of the LCLMM random effects requires maximizing the joint density of the data y

and the random effects b;, with respect to the terms b;. The likelihood can be written as follows:

log L(y,b) =

i log iﬂ' exp [*% {(yl - X8 — Wi — Z;b;)' Ri_kl (yi — XiB — Wiki — Zib;) + bQD,ZlbiH
ik —

— — (Qﬂ.)( i+49)/2 |Rik|1/2 |Dk|1/2

Psik

Py
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However, given that a subject is in class k implies that the best set of predictions of the random
effects are the predictions based on the k** LMM. Therefore, the random effects for a subject can
be computed as the weighted average of the random effects computed as if that subject were in each

latent class:
~ ~ K ~
b; = eBLUP[b;] = E[bi\Q,yi] = 3 7 x buge
=1

The resulting random effects are available in the SAS® macro discussed in the next section. Additional

details related to predictions of the random effects are presented in Section 1.4.5.

2.3 A New SAS® Macro

A new SAS® macro has been developed which allows the user to fit LCLMMs. This macro is publicly
available via the following link: http://www.mysitehere.com. This section reviews the input files
required to run the SAS®) macro, presents some specifics related to how the macro works, and describes

the resulting output files.

2.3.1 Directory Structure

In the macro’s calling program, a BasePath is specified by the user - for example c¢:\LatentClass. The
directory named as BasePath should contain the program and macros. Two subdirectories should be
created underneath the BasePath - these should be named ’in’ and out’ - for example c:\LatentClass\in
and c:\LatentClass\out. Input files, described in the next section, will be stored in the ’in’ subdirectory,

and the macro will output the results to the ’out’ subdirectory.

2.3.2 Input Files
Overview

For purposes of describing how to specify the files required by the macro, the below sections assume
the researcher is starting with a SAS® dataset which contains one record for each response, with the
many responses for a subject stacked so they are on separate records - this is similar to how one would
prepare the data to run in SAS® PROC MIXED. As with the LMM, it is not required that all subjects

have complete data. Instead, each record being modeled must be complete. Therefore, it is necessary
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to first delete records for which there are missing responses or predictors. In terms of preparing to run
the data in the SAS® macro, rename/create variables in your SAS® dataset (stacked as described
above) so that the following variables are present. Note that all variables except ’subject’ must be
numeric. In addition, indicator variables must be specified as 1/0, and indicators must be created for

each possible value for class variables. In other words, the matrices X, W, and Z must be specified

in full.
subject — a unique subject identifier
y — the continuous responses
x1l---x? — across-class fixed effect numbers 1-7
— the parameters related to these WILL NOT vary by latent class
wl---w? — class-specific fixed effect numbers 1-?7
— separate parameters for these variables will be estimated for each latent class
zl---z7 — random effect numbers 1-?

All data for a particular subject should be stored consecutively. In many cases, the z-variables will
be a subset of the x-variables, since it is common to have random effects which are also fit as fixed

effects. After you've set your data up in this way, the remaining steps are relatively simple.

Continuous Responses

Create a dataset named 'y’ which will contain only the variable y’ from the dataset described above.
Create a second dataset named ’info’ which will contain only the variable ’subject’ from the dataset
described above. These datasets will provide information related to the responses and which responses

came from which subjects.

Fixed Effects

First, create the dataset of fixed effects which will apply to all latent classes. Create a dataset named
'x” which will contain only the variables x1-x? from the dataset described above. It is important that

the variables be present in the dataset in the order X1, X2, X3, etc. since they will be read in from the
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'x’ dataset in the same column order as they exist in the dataset, regardless of the variable naming. If
you would like all fixed effects to vary by latent class, then do NOT create an x’ dataset at all - this
will indicate to the macro that all fixed effects vary by class.

Second, create the dataset of class-specific fixed effects. Create a dataset named 'w’ which will
contain only the variables wl-w? from the dataset described above. Once again, it is important that
the variables be present in the dataset in the order W1, W2, W3, etc. since they will be read in
from the 'w’ dataset in the same column order as they exist in the dataset. If you do not want to
fit any class-specific fixed effects (i.e. the usual LMM with a mixture distribution for the error or
random-effects distribution) - then do not create a 'w’ dataset at all - this will indicate to the macro

that all fixed effects are across-class.

Random Effects

Create a dataset named 'z’ which will contain only the variables z1-z?7 from the dataset described
above. Once again, it is important that the variables be present in the dataset in the order Z1, Z2,
73, etc. since they will be read in from the 'z’ dataset in the same column order as they exist in the

dataset.

Variance-Covariance Structure

In this SAS® macro, the variance-covariance structure is determined by the specification of random
effects, which are assumed to have a linear correlation structure, as well as a diagonal structure for
the error terms, with different residual error variances permitted for different measures.

First, with regard to the residual error variance, create a dataset named ’r_structure’ with a single
variable named ’r_structure’ and with the same number of records as ’y’. The variable ’r_structure’
will contain the number of the residual error variance which applies to each record in ’y’. For example,
if all records had the same residual error variance, the variable would always contain the value 1. If
each subject had five records with one variance followed by five records with a different variance, the
variable would contain five 1’s followed by five 2’s for each subject. Note that if this file does not exist,
the macro assumes that all records have the same residual error variance.

Second, with regard to the variances of the random effects, create a dataset named ’d_structure’
with a single variable named ’d_structure’ and with the number of records equal to the number of
random effects (number of z* variables). The variable will contain the number of the variance which

applies. For example, if all random effects had the same variance, the variable would always contain

94



the value 1. If each random effect had a different variance and there were 4 random effects, the file
would have 4 records with values for 'd_structure’ of 1, 2, 3, and 4. Note that if this file does not exist,
the macro assumes that all random effects have a different variance.

Finally, with regard to the correlation structure for the random effects, recall that the correlation
between random effects is fit across classes, even if the variances are allowed to differ between classes.
Create a dataset named ’'d_corr’ with the number of records and number of variables equal to the
number of random effects (number of z* variables). Name the variables d_corr_1 to d_corr_?. It is
easiest to think of this file as the matrix of correlations of the random effects - then it is possible
to discuss cell(x,y) of the file. The cells of this file will contain the number of the correlation which
applies. For example, if there are four random effects and only the first two are correlated, then the
(1,2) cell and (2,1) cell of the file should contain the value 1 and all other cells should be set to 0. If
there are 4 random effects and the first two random effects are correlated and the last two random
effects are correlated but the first/second are not correlated with the third/fourth, then the (1,2) cell
and (2,1) cell of the file should contain the value 1, the (3,4) cell and (4,3) cell of the file should contain
the value 2, and all other cells should be set to 0. Note that if this file is not created and the macro
is run with the option specified that there should be correlation between the random effects, then the

macro assumes that the variance-covariance matrix of the random effects, D, is unstructured.

Class Membership

The remaining file to be specified is the file of variables which determine class membership. These are
used in the logistic model related to class membership. Create the file 'v’ with variables named v1,
v2, ... v? in that order. The file should have one record per subject. If all subjects are to have the
same mixture, which can be useful when running the usual LMM with mixtures for the error and/or
random effect distributions, then a single variable would be present, v1, which would contain 1 for all
subjects. If several variables are thought to impact class membership, say age and baseline/change
from baseline for some measure, each subject would have 4 variables, named v1 v2 v3 v4, which for
each subject would contain the intercept (1) and these three measures. If each subject were permitted
to be fit by that’s subject’s best-fitting model, then there would be a v* variable for each subject -
effectively, the v’ file would be an identity matrix.

Note that this last scenario, in which each subject can be fit in that subject’s best-fitting class,
results in many parameters and relatively long runtimes. Therefore, the relative-fit model was proposed

earlier. If the dataset 'v’ is not created and a gradient-based or Hessian-based computational method
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is selected, then the m;; for each subject is estimated based on the relative fit of the underlying LMMs
for that subject’s data. For example, if there are two classes and the LMM for Class 1 results in a
likelihood for the subject’s data equal to the likelihood of that subject’s data under the model for
Class 2, then the subject would be included in each class 50/50. If the likelihood for Class 1 was nine
times higher than for Class 2, then the subject would be included in Class 1 90 percent and Class 2
only 10 percent. This model runs much more quickly and will produce similar results when the classes
are somewhat distinct. If the EM method is selected and ’v’ is not specified, then a v’ file is created
automatically which is an identity matrix and computations proceed. The relative-fit model is not fit
in this case because the unknown-data portion of the EM algorithm, which has been class membership,

is now a deterministic function of the likelihoods for each underlying LMM.

2.3.3 Additional Inputs

In addition to the input files, the user must specify additional information prior to running the macro.
This includes the following choices: number of latent classes, computational method, whether or not
to fit correlation between the random effects, whether variances in D and/or R are permitted to vary
by class, how to model class membership, and whether to calculate standard errors (and which method
to use) or predictions of the random effects. Comments related to these choices are provided in the

following sections.

Number of Latent Classes

For each run of the SAS® macro, the user is required to specify the number of latent classes to fit -
this is entered in the macro variable 'NumClasses’. In some cases, the user may have a pretty good
idea of how many unique classes they are interested in. In other cases, the user may not be sure how
many classes exist and would be served best by running the macro several times, each with a different
number of classes. Along with the final estimates, the macro computes several information criteria for
each model. By comparing information criteria for a range of classes, it may be apparent which number
of classes appears to fit best. Section 2.8 presents the results of a simulation study which compares
the performance of various information- and residual-based criteria with respect to determining the
appropriate number of latent classes. As noted in that study, the user may also wish to compare a
more practical measure such as mean square error for each parameter fit. Since this comparison must

be made for each unique parameter being modeled, this measure is not automatically output.
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Computational Methods

In previous research, LCLMMs have almost exclusively been fit using the EM algorithm. However,
with its slow convergence properties and the complexity of the LCLMMSs, computation can be too
slow for practical use. The new SAS® macro presented here allows the user to select from several
gradient-based methods and Hessian-based methods, in addition to running the EM algorithm. A
simulation study is presented in Section 2.9 which provides the basis for recommendations as to which
algorithm works best for various size models.

The user must choose from the following options - note that the computational method is specified

in the macro variable 'Method’:

EM — EM Algorithm

CG — Conjugate Gradient Algorithm

QN — Quasi-Newton Algorithm
NRA — Newton-Raphson Algorithm (without ridging)
NRR — Newton-Raphson Algorithm (with ridging)

The EM and Newton-Raphson algorithms are discussed in detail in Chapter 1. Additional de-
tails related to the other algorithms can be found in Chapter 4 of the SAS®/OR 9.2 User’s Guide
[2008]. Note that when fitting only one latent class (generalizing the LMM), the user cannot specify
"Method’="EM’.

Is there non-zero correlation between random effects?

As in the LMM, the user must determine whether to model a correlation structure for the random ef-
fects. If this is desired, then the associated macro variable in the latent class program, 'D_HasCorr_YN’,
must be set to "Y’. The structure of the file containing the linear correlation structure was discussed

earlier.

Should variances be permitted to vary by latent class?

In many situations, the variances for one class may be very different than another class. If there is rea-
son to believe this may be true, then the model should be run allowing variances to differ by latent class.
This is controlled by setting the macro variables 'D_VarDiffByClass_YN’ and 'R_VarDiffByClass_ YN’

to either 7Y’ or 'N’. In Chapter 1, it was observed that such a decision can have a noticeable effect on
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the determination of latent classes and the underlying LMMs.

Class Membership - Structured on Unstructured?

Class membership may be specified in several ways. In some cases, the statistician may simply want
to generalize the distributional assumptions of the usual LMM to allow the underlying normal distri-
butions to instead be mixtures of normal distributions. This would be specified by defining the file v’
to be a single column of 1’s and setting the macro variable 'PieMethod’ equal to 'STRUCTURED’.
In more general situations where interest focuses on discovering unique groups in the data and fitting
appropriate LMMSs to these groups, class membership may be specified in two very different ways.
When the statistician is interested in simply fitting the best K LMMs or is not sure of which factors
may be most important in determining class membership, running the analysis with class member-
ship determined solely by the relative fit of the underlying LMMs would be recommended - specify
"PieMethod’="UNSTRUCTURED’. Alternatively, the statistician may already have a set of risk fac-
tors which are of interest, and one of the goals of the analysis might be to determine the relationship
between the risk factors and latent class membership. In this situation, the file 'v’ would be specified
with factors relevant to class membership, and "PieMethod’ would be set to 'STRUCTURED’. Note

that when fitting only one class (LMM), the user must specify 'PieMethod’="UNSTRUCTURED’.

Standard Errors and Predictions

The main algorithm does not, by default, compute standard errors for the parameters. If you would like
to obtain parameter standard errors, set ’CalcParmStdErr’="Y’ and specify a computational method
for standard errors in the variable 'SEMethod’. For Hessian-based methods, the most efficient method
is to compute the standard errors by making use of the computed Hessian - specify "SEMethod’="HES’.
This is probably a good choice even when other methods are used for the main algorithm. The standard
errors can also be computed by taking finite differences of the gradient (choose ’SEMethod’="GRD’),
or by taking finite differences of the likelihood itself (choose 'SEMethod’=’LIK’). Note that this last

choice is extremely slow and not recommended.

Miscellaneous

Two additional features are worth note in terms of user options. First, in order to increase the
chances of arriving at a global likelihood maximum rather than a local maximum, the user is provided

the option of running several preliminary runs from different starting points and using the best of
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these starting values to initiate the model. This number of base runs is specified in a macro variable
"HowManyBaseRuns’, and the seeds used to randomly assign latent classes to initiate those base runs
are stored in the macro variables 'SeedForClasses_x’. These preliminary runs iterate for ten iterations
with the random effect variances set to zero.

Second, since the derivations for the first and second derivatives are complex, a self-check has been
programmed which allows the user to confirm that the method’s computations are working properly.
If the macro variable 'PerformSelfCheck’ is set to "Y’, then at several points in the algorithm, the
algorithm will compute quantities using finite differences and print these as well as the values computed
using the derived first and second derivatives. This will add to the runtime but can be helpful in that

it can confirm that the model is working as it is supposed to.

2.3.4 How the Macro Works

Computation of Starting Values

Several authors have explored methods of choosing the best starting values. While some have examined
models which are mixtures of multivariate Normal distributions, none have examined this in the context
of the LCLMM. Coleman and Woodruff [2000] proposed to choose a random sample of the data and
classify these subjects into groups. This initial clustering would then provide the basis for the starting
point of the full algorithm. Karlis and Xekalaki [2003] concluded that the best method is to start
from several different initial values, making a small number of iterations from each. The authors then
recommended choosing the set of starting values with the largest likelihood after the initial iterations.
The authors pointed out that this approach helps to reduce the amount of time spent in areas of
a flat likelihood away from the global maximum. Biernacki et al [2003] also examined the issue of
choosing starting values for the EM algorithm in multivariate Gaussian mixture models. The authors
found that, like Karlis and Xekalaki [2003], running short runs of EM and choosing the one with the
highest likelihood tended to work well. The authors further recommended compounding this method
by running batches of short runs, choosing the best run from each batch, and then using the best
runs as the starting points for another search. However, this method may require a great deal of
computational effort and time.

In order to ensure a reasonable set of starting values for the full model fit, a preliminary set of
steps is followed at the beginning of the SAS® macro. These methods appear to provide a stable

algorithm which will work in most scenarios. The stability of this method and the computations as a

99



whole are examined in Sections 2.5 and 2.6. The steps for computing starting values are as follows:

e FEach subject is randomly assigned to a latent class

e Ordinary Least Squares estimates of the fixed effects are calculated using these random class

assignments

e 10 preliminary iterations are run without random effects using only the structured R matrix.
These iterations do not permit variances to differ by latent class. As noted earlier, the user can
specify to repeat this process as many times as they would like and choose the best likelihood

from all of the various runs - the default is 5.

e The random effect variances are set to le-5. Correlations between random effects are set to
le-10. Preliminary estimates of the variances of the random effects and revised residual error
variances are calculated by running one step of Fisher scoring (using the actual second derivative
via Newton-Raphson appeared to be less stable here when compared to using its expected value).

Variances are still not allowed to differ by latent class.

e 5 EM iterations are run. Variances are still not allowed to differ by latent class, and variances

continue to be updated via Fisher scoring.

o If the user chose to allow variances to differ by latent class, then 5 additional EM iterations are
run. In these, variances are finally allowed to differ by latent class. Once again, variances are

updated using Fisher scoring.

e One additonal EM iteration is run. Variances are updated using Newton-Raphson in this step as
well as any future EM steps. Note that if there are no class-specific fixed effects, it was assumed
for all prior iterations that the across-class effects were actually class-specific. This allows for
some logical separation of the groups. These class-specific effects are dropped in this iteration

such that the only parameters that differ by class are the variances.

e The resulting estimates are used as starting values for the main algorithm.

Description of Model Fit

Once starting values are obtained, one of three different routines is run, depending on the choice of

algorithm.
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The first is the EM algorithm which was also used as part of the process for generating stable
starting values. The steps required in the EM algorithm are detailed in Chapter 1. The main change
with regard to computation is that variances for the starting values were updated at each step using
Fisher scoring while the main algorithm uses Newton-Raphson.

The second routine uses gradient-based methods. An IML module has been programmed to com-
pute the gradient of the likelihood for various scenarios (i.e. fixed effects across-class/class-specific,
variances across-class/class-specific, class membership structured/unstructured, etc.). With this in
place, the macro utilizes SAS®)’ built-in engines to compute estimates using the selected algorithm.
Methods include conjugate gradient and quasi-Newton.

The third routine uses Hessian-based methods. IML modules have been programmed to compute
the gradient and Hessian of the likelihood for various scenarios. Once again, the macro utilizes SAS®)’
built-in engines to compute estimates using the selected algorithm. Methods include Newton Raphson,

with or without ridging.

Screenshot During Model Fit

Since a fair amount of information is available at each iteration regarding progress, estimates, class
membership, etc., the macro updates information on the screen after each iteration. A sample screen-
shot is displayed in Figure 2.1.

The top left window displays the current status. This window displays whether the algorithm
is obtaining initial estimates or running the full model, and it updates with additional details (i.e.
‘calculating betahat’) as it moves through the various calculations.

The middle left window displays the observed likelihood (also complete-data likelihood for EM
iterations) as well as the convergence criteria. The convergence criteria for the estimates is simply the
maximum percent change in estimates from one iteration to the next. The convergence criteria for the
gradient is the maximum absolute value of the elements of the gradient at that iteration.

The bottom left window displays the number of subjects being modeled as well as a summary
of class membership. For each class, the number of subjects who have greater than a 50 percent
probability of being in the class, greater than 75 percent chance, and greater than 90 percent chance
are displayed. This allows the user to see how much the classes are changing, how sure the algorithm
is about its class assignments, whether a particular class appears to contain just one subject, etc.

Finally, the right window displays the current parameter estimates as well as the changes in those

estimates since the last iteration.
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SAS [_[Z]x]

File View Tools Solutions Window Help

| -1 Hosmlan)2ac Bz 08
] Ervares AEE
@ Results Command === Command ===
*¥*% Full Model - Gradient - QN ** Current Estimates:
Type Class Number Estimate Change
BetaHat All 1 -15.712 -0.014
BetaHat All 2 -0.205 0.002
Lambda 001 1 105.440 0.018
B Lambda 001 2 0.724 0.000
— — s = — Lambda 001 3 0.006 =-0.000
Lanbda 001 4 59.398 0008
Command ===> Lambda 001 5 -0.521 -0.000
Iteration Lik=0Obsrvd Lik-Cmplt Lambda 001 6 -0.003 =0.000
2334 -76787.279 . Lambda 001 7 4.487 0.000
Lambda 001 8 0.019 0.000
Convergence | Estimates: Gradient: Lambda 001 9 =0.000 0.000
Criteria | 11.2987 110.7286 Lambda 002 1 129.630 -0.026
Lambda 002 2 -3.035 -0.004
Lambda 002 3 -0.049 =0.000
Lambda 002 4 35.317 0.003
1B Lambda 002 5 0.022 0.000
Lambda 002 6 -0.009 -0.000
Lanbda 002 7 5.362 0.000
Command ===> Lanmbda 002 8 0.002 -0.000
Total Number of Subjects: 2066 Lambda 002 9 =-0.000 =-0.000
Lambda 003 1 182.287 0.026
Lambda 003 2 -2.539 0.003
Number Likely in Class: Lambda 003 3 =-0.158 0.000
Lambda 003 4 46.681 =0.000
Class >50Pct >75Pct >90Pct Lambda 003 5 0.014 0.001
----- Lambda 003 6 -0.006 0.000
1 239 178 113 Lambda 003 7 4.809 =0.000
2 214 179 119 Lambda 003 8 0.009 0.000
3 259 191 121 Lambda 003 9 -0.001 0.000
4 223 168 109 Lambda 004 1 127.111 =0.011
5 186 138 81 Lambda 004 2 -1.127 -0.003
6 210 133 71 Lambda 004 3 -0.006 0.000
7 165 152 135 Lambda 004 4 39.960 0.004
8 240 148 81 Lambda 004 5 -0.158 -0.000
9 203 153 115 Lambda 004 6
Lambda 004 7
Lambda 004 8
Lambda 004 9
Lambda 005 1
Lambda 2
&P Resuls [ Editor - Untitled: [ Latent Class Linear Mixed...

—J C:\Documents and Settingsistenck
tl;‘start| |2 @ | 5 out | Z sas & sas

Figure 2.1: Screenshot of SAS® Macro While Running
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2.3.5 Output Files

The following output datasets are produced in the estimation process. These are stored in the ’out’

subdirectory.

Final Estimates
Final_Pie
Final_Pie_RelFit
Final Random_Effects

Fitted_Values

ParmCorr
AllParms
Gradient
Lik

Conv_Criteria

Final model information, estimates, and standard errors
Final probability of being in each latent class (logistic)
Final probability of being in each latent class (relative fit)
Final random effect estimates and standard errors

Fitted values, including and excluding random effects

Correlation matrix of parameter estimates

All parameter estimates by iteration

Gradient values for each parameter by iteration
Likelihood (complete-data and observed) by iteration

Convergence criteria by iteration

RunTime — Runtime in seconds by iteration
BetaHat — Estimates of the across-class fixed-effects by iteration
Lambda — Estimates of the class-specific fixed-effects by iteration
Vars — Estimates of the variances/correlations by iteration
C — (EM only) Bayes class probabilities by iteration
Pie — Probability of being in each latent class by iteration (logistic)
PieParms — Estimates of class-membership parameters by iteration (logistic)

In additon, the estimates at each iteration are saved in a PDF document. This file is named Iteration-

Summary.pdf and is stored in the ’out’ subdirectory.

2.4 Description/Specification of Sample Applications

LCLMDMs are particularly useful for several modeling scenarios. In order to illustrate the various uses

of the model as well as provide examples for the user regarding how to specify the models to run in
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the new SAS® macro, a small simulated data example is presented for three modeling approaches in

the following sections.

2.4.1 Linear Mixed Model with Random Effect Distribution as a Mixture

In the LMM, the error terms and random effects are assumed to be normally distributed. However,
in many applications, this may not be accurate. A mixture of two or more normal distributions may
more accurately describe the distributions of one or both of these terms. By specifying a mean model
in which none of the fixed effects differ by latent class, that all subjects be fit with the same mixture,
and that the random effect and/or error variances be permitted to vary by latent class, the LCLMM
allows this extension of the LMM to be fit efficiently.

As an example, consider a model in which there are 1,000 subjects. Each subject is measured for

some continuous trait ten times. A possible LMM to describe this is as follows:

Yij = U+ o + €

where:

45 is the value of the trait for subject i at observation j
1 is the mean value for the trait

«; is the random intercept for subject i

€;; is the error term associated with subject i at observation j

a; ~ Normal (0,07)

€;; ~ Normal (0,02)

In words, a subject’s mean value for the trait is random about the global mean, p. These random
intercepts are distributed according to a normal distribution with mean 0 and variance o2. The error

terms are distributed according to a normal distribution with mean 0 and variance o2. Now suppose
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that the distribution of the random intercepts is instead a mixture of two normal distributions.

a; ~ 50 percent Normal (0, Ufn) + 50 percent Normal (O, afo)

For purposes of illustration, the following values were used to generate data:

po= 100
ofn = 20
o2 = 200

o2 = 40

In order to run the model through the SAS® macro, the user would specify the files in the format
presented in Figures 2.2 and 2.3. Note that it is not necessary to specify D_Corr, D_Structure, and
R_Structure since there is only one random effect (no correlation and default for D_Structure is to have
a separate variance for each random effect) and since all observations are assumed to have the same
residual error variance (also the default). Also, since class membership is determined based on the
logistic model, having the same intercept-only specification for each subject in the class-membership
model assures that all subjects will be fit with the same mixture.

The usual LMM was run as well as the LCLMM assuming that all subjects have the same mixture.
Figure 2.4 displays the options that need to be set to run each of the models. Note that when only one
class is run (LMM), the macro variable "PieMethod’ must be set to 'UNSTRUCTURED’ and "Method’
cannot be set to ’TEM’. The parameter estimates from each model are shown in Table 2.1. Since the

LMM effectively fits a combined variance to reflect 02, and o2,, the variable 2, is populated in the

o)
table only for the LCLMM. It is interesting to note that the random effect variance estimate from the
LMM is very close to the weighted average of the random effect variance estimates from the two latent
classes in the structured model.

As seen in Figure 2.5, the predictions of the random effects from the LCLMM are very similar
to those from the LMM. However, note that the distribution of these random effects is NOT in fact

normal. The histograms of the actual random effects generated in creating the data as well as the

predicted random effects from each of the models are presented in Figure 2.6. Notice that, while the
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%, 5AS [_[F]x]

File Edit View Tools Data Solutions Window Help

|~ DS SRR DD - X it i[O GERNEe
subject ﬂ v ;] il :_j 21 ﬂ
1 1 _] 1 107.0058217 _l 1 1 J 1 1 _]
2 1 2 100.8836914 2 1 2 1
3 1 3 92.77435201 3 1 3 1
4 1 4 107.7693942 4 1 4 1
5 1 5 105.4558078 5 1 5 1
] 1 ] 104.0835398 B 1 [ 1
7 1 7 99.70934747 7 1 7 1
8 1 g 100.56405 8 1 8 1
g 1 g 95.25557644 9 1 g 1
10 1 10 104.1965446 10 1 10 1
11 2 1 96.56877464 1 1 11 1
12 2 12 83.61045054 12 1 12 1
13 2 13 74.19472939 13 1 13 1
14 2 14 89.52185157 14 1 14 1
15 2 15 93.71212799 15 1 15 1
16 2 16 78.96807923 16 1 16 1
17 2 17 88.57167934 17 1 17 1
18 2 18 83.45717051 18 1 18 1
19 2 19 77.80213734 19 1 19 1
20 2 20 93.4655654 20 1 20 1
21 3 21 100.8072739 21 1 21 1
22 3 22 104.7451664 22 1 22 1
23 3 23 8978338323 23 1 23 1
24 3 24 87.97322732 24 1 24 1
25 3 25 106.4339512 25 1 25 1
26 3 26 94.59322681 26 1 26 1
27 3 27 93.66931108 27 1 27 1
28 3 28 103.944078 28 1 28 1
29 3 29 115.140317 29 1 29 1
30 3 30 115.9380749 30 1 30 1
il 4 il 97.10257802 il 1 il 1
32 4 7 32 100.0846726 .t 32 1 ¥ 32 1 7
il ;l“ il ;l‘l Kl ;FI il _>l“

E VIEWTABLE: TMP1.info I E VIEWTABLE: TMP2.y | E VIEWTABLE: TMP3.x I E YIEWTABLE: TMP4.z ‘

Figure 2.2: Screenshot of SAS®) Datasets Needed to Run Example 1

Table 2.1: Random Effect Distribution as a Mixture - Fitted Values

LMM LCLMM Class
Parameter Actual Value Estimate Estimate Probabilities
1 100 100.12 99.86
a2, 20 114.83 20.26 52.6%
a2, 200 n/a 219.95 47.4%
o? 40 40.15 40.15
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IE VIEWTABLE: TMPS.v

Figure 2.3: Screenshot of Class-Membership SAS® Dataset for Example 1

107



A e ———————————_—_—_——_—_E—————_E——————————————

* Provide specifics regarding your desired analysis;
e { ___________________________________________

% let NumClasses =1;
%let Method =QN;
%let D_HasCorr_ YN =N:

3let D_WVarDiffByClass_ YN=N;
5let R VarDiffByClass_YN=N:

%1let PieMethod =UNSTRUCTURED;
3 let CalcParnmStdErr =Y
3 let SEMethod =GRD;

%let CalcRandonmEffects =Y

(a) Linear Mixed Model

% let NumClasses =2;
%let Method =QN;
5let D_HasCorr_ ¥N =N:

5let D _VarDiffByClass YN=Y:
$let R VarDiffByClass_ YN=N:

%31let PieMethod =3TRUCTURED;
%let CalcParmStdErr =Y:
3let SEMethod =GRD;

%let CalcRandonmEffects =Y;

(b) Same Mixture LCLMM

Figure 2.4: Options for Running Select Models - Example 1
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LMM assumes that the random effects are distributed normally, the predictions of the random effects
need not be normally distributed. Each of the models has a similar distribution of random effects and

all have a greater percentage of area in the center and heavier tails than a normal distribution.

50

40

30

20

Random Intercepts - LCLMM
o

'50\‘Hw‘H‘\HH\HH\HH\HH\HH\HH\HH
-50 -40 -30 -20 -10 O 10 20 30 4
Random Intercepts - LMM

0 50

Figure 2.5: Comparison of Random Intercepts - LCLMM vs. Linear Mixed Model

Given the above, where do the models differ? The answer relates mainly to standard errors. The
standard errors of the random effects for the LMM are determined based on the assumption that the
random effects are normally distributed. In this example, the random intercepts from the LMM had a
variance of 3.86. As noted in Section 1.4.5, the standard errors of the random effects for the LCLMM
reflect information about each subject’s structured class probabilities as well as the relative fit of the
underlying LMMs. For the LCLMM, the standard errors of the random effects for each subject are
graphed in Figure 2.7 versus the bayesian subject probabilities of being in each latent class (defined
in the vector ¢ in Section 1.4.1). A horizontal line is included at 3.86 to indicate the random effect
standard error computed by the LMM. Note that since the standard error calculation for the LCLMM

incorporates information as to which of the underlying distributions is most appropriate, each subject’s
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Figure 2.6: Histograms of Actual and Fitted Random Effects
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random intercept could potentially have a different standard error. In Figure 2.7, subjects at the left
side (with low probability of being in the higher-standard-error class) are those that are in the very
center of the random intercept distribution, while those at the right side are in the tails. Since there
is a much greater percentage of random intercepts clumped in the middle of the mixture distribution,
the standard errors of the random intercepts for these subjects would be expected to be smaller than
under the LMM. However, since the tails in the mixture distribution are more spread out than under
the LMM, the standard errors of the random intercepts out in the tails have a higher standard error

than under the LMM.
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Figure 2.7: Plot of Random Effect Standard Errors from the LCLMM

2.4.2 Relative-Fit Model

LMMs are useful for modeling data when the data being analyzed is made up of a single population
or when the subpopulations are known. However, in many cases, the data being analyzed may consist
of several subpopulations which are not known a priori. The LCLMM can be very useful in this case.
As an example, consider a model in which there are 300 subjects, 50 from each of six groups. Each
subject is measured for some trait at ten consecutive time periods, ranging from -4.5 to 4.5. A possible

LMM to describe this is as follows:
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yit = B1 + B2 X time + B3 x time? + B4 X time® + y1; + v2; X time + €4

where:

y;+ is the observed value of the trait for subject i at time t
(1 is the fitted intercept

(o is the fitted slope for time

(3 is the fitted quadratic term for time

(4 is the fitted cubic term for time

~14 is the random intercept for subject i

2 is the random slope for time for subject i

€;¢ is the error term associated with subject i at time t

Yii ~ Normal (Oa O—'L'Qnt)
72; ~ Normal (0, o glope)
€;+ ~ Normal (07 O—grror)

p = corr (’Ylia'YZi)

In words, the fitted mean trajectory for all subjects is a cubic curve with respect to time. Each
individual is fit with a subject-specific intercept and slope, which are assumed to be distributed about
the mean value according to Normal (0,0%,,) and Normal (0, aflope). Further, the random intercepts
and slopes are correlated with correlation coefficient p. The error terms are distributed according to
Normal (O, agmr). The LCLMM adds an additional component in that the population is divided into
subpopulations, each with its own cubic curve. In this example, class membership probabilities are
estimated based on the relative fit of a subject’s data under each of the possible underlying models
(see Section 2.2.2).

The following variance and correlation values were used to illustrate the LCLMM. Data for six
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latent classes were generated based on the fixed-effects parameters shown in Table 2.2.

U,?nt = 40
Uzlope = 15
O-ST’TO'I’ = 125

p = 025

Table 2.2: Relative-Fit Model - Fixed Effects Parameters Used to Generate Data

Parameter Class1 Class2 Class3 Class4 Class5 Class 6

5 40 190 125 80 170 130
o 2 6 20 18 18 0
Bs 0 0 0 2.5 2 0
B4 0 0 0 0 0 1

In order to run the model through the SAS® macro, the user would specify the files in the format
presented in Figures 2.8 and 2.9. Note that it is not necessary to specify D_Corr, D_Structure, and
R_Structure since all records have the same residual error variance and the random effects are fit with
an unstructured D matrix. However, these files are also included in order to illustrate how they would
be specified (see Figure 2.10). Also, since class membership is determined based on the relative fit of
each underlying LMM, no class-membership file is required for this example. Similarly, since all fixed
effects are being allowed to differ by latent class, the file 'x’ does not need to be specified.

This model was fit using the usual LMM (1 class) as well as the LCLMM using 2-8 latent classes.
Figure 2.11 displays the options that need to be set to run the LMM as well as the LCLMM. The
parameter estimates for the 6-class LCLMM are shown in Table 2.3. Note that the LCLMM estimates
are very close to the values used to generate the data.

While it is encouraging to see that the model is able to reproduce the parameter values used to
generate the data, it is interesting to examine the models fit with other numbers of latent classes.
Figures 2.12 and 2.13 present the fitted models for each number of latent classes. Note that a fitted
line for each latent class in included as a thick dotted line, while each individual’s actual values are

plotted using a narrow line. Subjects that have their highest class probability at least twice that of
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File Edit View Tools Data Solutions Window Help

|~ JDsmERaE oo x it 0= GERNES

subject ;I v ;] wl | w2 | w3 | wé ;J

1 1 = 1| 12090451684 = 1 1 45 2025 911251
2 1 2 | 33126245629 2 1 35 12.25 42,675
3 1 3 3478815039 3 1 25 6.25 15,625
4 1 4| 68.414332904 4 1 15 225 3.375
5 1 5 | 33867063036 5 1 05 0.25 0125
5 1 6 | 45049823041 5 1 05 0.25 0125
7 1 7 | 30687713337 7 1 15 225 3375
8 1 8 | 56047533874 8 1 25 6.25 15,625
3 1 9 | 57148521915 3 1 35 12.25 42875
10 1 10| 42283075916 10 1 45 2025 91.125
1 2 11| 43262182633 1 1 45 2025 91.125
12 2 12| 45861413733 12 1 35 12.25 42,675
13 2 13| 402031108 13 1 25 6.25 15,625
14 2 14| 34763264379 14 1 15 225 3.375
15 2 15 | 56574688177 15 1 05 0.25 0125
16 2 16| 21112268449 16 1 05 0.25 0125
17 2 17| 3164514022 17 1 15 225 3375
18 2 18| 2374116741 18 1 25 6.25 15,625
13 2 19| 0445315854 13 1 35 12.25 42875
20 2 20| 30641287604 20 1 45 2025 91.125
21 3 21| 82774122321 21 1 45 2025 91.125
2 3 22| 69668316054 2 1 35 12.25 42,675
23 3 23 | 53633883417 23 1 25 6.25 15,625
24 3 24| 41666854662 24 1 15 225 3375
% 3 25 | 25350733731 25 1 05 0.25 0125
% 3 26 | 26142617076 % 1 05 0.25 0125
7 3 27| 13567785547 2 1 15 225 3375
28 3 28| 12196349467 2 1 25 6.25 15,625
3 3 23 | 24373145109 2 1 35 12.25 42875
30 3 30 | 1467032163 a0 1 45 2025 91.125
31 4 31| 66648871701 3 1 45 2025 91125

o 2 4 32 | 61.422948849 _[_I 2 1 35 1225 »4z.s§;|
4 » »

E VIEWTABLE: TMPL.info | E VIEWTABLE: TMP2.y ”E YIEWTABLE: TMP3.w E VIEWTABLE: TMP4.2 I ‘

Figure 2.8: Screenshot of SAS® Datasets Needed to Run Example 2
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File Edit View Tools Data Solutions Window Help
[ dnsmEsprrno-sx i s BRES
¥ VIEWTABLE: TMP4.z H[=] B3
2l | 22 | ;I
1 1 -45 [l
2 1 35
& 1 25
4 1 15
] 1 05
] 1 05
7 1 15
8 1 25
9 1 35
10 1 45
1 1 -45
12 1 35
13 1 25
14 1 15
15 1 -0.5
16 1 05
17 1 15
18 1 25
19 1 35
20 1 45
21 1 -45
22 1 35
23 1 25
24 1 15
25 1 -0.5
26 1 05
27 1 15
28 1 25
23 1 35
30 1 45
A 1 -45
32 1 -

[7]
[igh VIEWTABLE: TMP4.2

Figure 2.9: Screenshot of SAS®) Datasets Needed to Run Example 2 (Continued)
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File Edit Yiew Tools Data Solutions Window Help

v dbesmEasaaREE > X 18 E[E=

YIEWTABLE: Work.R_structure
1_structure

11D

I® YIEWTABLE: Wo ructure YIEWTABLE: Work.D_corr

d_structure - d_corm_1 | -
1 0 1
2 2 1 0

E VIEWTABLE: Work.D_corr IE YIEWTABLE: Work.D_s... E VIEWTABLE: Work.R_str... |

Figure 2.10: Screenshot of SAS® Datasets Needed to Run Example 2 (Additional Files)
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M U —

* Provide specifics regarding your desired analysis;
L ——

%2 let NumClasses =1;
%let Method =QN;
5let D_HasCorr_ YN =Y.

5let D _VarDiffByClass_ YN=N:
5let R_VarDiffByClass_ YN=N:

%21let PieMethod =UNSTRUCTURED;
%let CalcParnmStdErr =Y:
3 let SEMethod =GRD;

%let CalcRandomEffects =Y

(a) Linear Mixed Model

%let NumClasses =2;
%2let Method =QN;
5let D_HasCorr_ YN =Y

5let D _VarDiffByClass_YN=N;
3let R_VarDiffByClass_ YN=N;

%let PieMethod =UNSTRUCTURED;
tlet CalcParm3tdErr =Y:
3let SEMethod =GRD;

%let CalcRandomEffects =Y
(b) LCLMM (2 Classes)

Figure 2.11: Options for Running Select Models - Example 2
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Table 2.3: Relative-Fit 6-Class LCLMM - Actual vs. Fitted

LCLMM - 6 Classes

Class Parameter Actual Value Estimate SE
1 061 40.00 39.6 1.15
62 -2.00 -1.59 0.70

03 0.00 -0.03 0.07

B4 0.00 -0.04 0.03

2 061 190.00 188.78 1.15
62 6.00 6.35 0.70

03 0.00 0.04 0.07

B4 0.00 0.02 0.03

3 061 125.00 123.27 1.15
62 20.00 20.82 0.70

03 0.00 0.02 0.07

B4 0.00 -0.02 0.03

4 061 80.00 78.49 1.15
B 18.00 17.76 0.70

33 2.50 2.56 0.07

B4 0.00 -0.03 0.03

5 01 170.00 169.10 1.15
0o 18.00 17.66 0.70

03 -2.00 -2.00 0.07

B4 0.00 -0.03 0.03

6 01 130.00 131.07 1.15
0o 0.00 0.30 0.70

03 0.00 0.05 0.07

B4 1.00 1.00 0.03

o?, 40.00 38.71 4.15

Uflope 15.00 14.99 1.34

2 or 125.00 119.71 3.45

p 0.25 0.1648 0.0676
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their second-highest class probability are plotted in the color of their selected latent class. From the
model fits, several models appear that they could be justified in addition to the 6-class model. The
4-class and 5-class models appear to offer reasonable model fits. It is interesting to note that the 7-
class and 8-class models add classes that are almost immediately adjacent to classes that existed in the
6-class model - this is one indication that the 7- and 8-class models may not be the most appropriate.

One way to evaluate model fit is to compare various likelihood measures for the models. Several
likelihood measures are provided as part of the macro’s output, including AIC, BIC, and ICL. These
measures are described in more detail in Section 2.8. For this example, these measures are presented
in Table 2.4. Note that the number of estimated parameters for each model, v, is also presented in
this table. Each of these measures chooses either seven or eight classes, with the exception of entropy,
which chooses either two or six classes.

Table 2.4: Relative-Fit Model - Likelihood Measures

Likelihood Measures

# of Classes ObsLik AIC CAIC BIC E C ICL v
LMM (1) -13854.8  27725.7  27737.5  27755.3 mn/a  27709.7  27755.3 8
2 -13543.0  27110.0  27127.7 271544 0.0 27085.9 271544 12

3 -13118.9  26269.9  26293.5  26329.1 7.0 26251.9 26343.1 16

4 -12761.7  25563.4  25592.9  25637.5 1.1  25525.6  25639.7 20

5 -12344.8 24737.6 24773.1 24826.5 0.3 24690.3 24827.2 24

6 -12012.6 24081.2 24122.5 24184.9 0.1 24025.4 24185.1 28

7 -11989.8  24043.5  24090.8  24162.0 6.8  23993.2 24175.7 32

8 -11973.8 24019.7 24072.8 24153.0 16.7 23981.1 24186.4 36

Another way to evaluate the models is to compare a practical measure, such as the mean square
error of the residuals. This measure is presented in Table 2.5 for both the total residuals and within-

subject residuals. The MSE, as well as the residual measures for subject ¢, are defined as follows:

K
Titotal = Yi— ) Tik (Xzﬁ + Wij\k) (2.12)
k=1

K
i within = Yi— [Z Tik (Xz‘ﬁ + Wij\k) —Z;b; (2.13)

k=1
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For this example, these measures decrease quickly until the 6-class model and then continue to decrease
by a very small amount for the 7- and 8-class models. Choosing a parsimonious model would lead one

to choose the 6-class model, or potentially the 4- or 5-class models, which also fit reasonably good.

Table 2.5: Relative-Fit Model - Residual Measures

MSE MSE
# of Classes (Total) (Within-Subject)
LMM (1) 3064.88 234.51
2 1325.38 235.64
3 676.17 185.65
4 428.16 161.50
5 333.90 127.75
6 281.56 99.65
7 275.88 98.33
8 272.24 96.39

2.4.3 Model with Known Class-Membership Factors

The first example discussed the situation where the user either is modeling a single population or
knows the subpopulations and simply wants to generalize the distributional assumptions of the usual
LMM. The second example is applicable when the user is unsure which variables may act to determine
the underlying latent classes and is looking for the best way of simultaneously dividing the population
into groups and fitting a LMM to each group. However, in some cases, the user may have interest in
particular factors as they relate to class membership. For example, what is the best way to model the
longitudinal data given that a particular set of factors can act to divide the population into groups?
Or, does a particular risk factor act to drive an individual toward one class or another? The LCLMM
allows the user to specify a logistic regression model for class membership in which the user can enter
factors as appropriate.

As an example, consider two of the latent classes from the dataset from the previous example.

Classes 4 and 5, the light red and green thick dotted lines in Figure 2.13b, do not overlap except for
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at the very beginning and end of the plots. This is intentional since the focus of this example is to
examine the effect of a variable on class membership via the logistic class membership model. For
illustration, % of the subjects in Class 4 have a particular characteristic, while % of the subjects in
Class 5 have that characteristic. The goal here is to fit the best set of LMMs, while simultaneously
examining how the trait impacts class membership. Note that while only 50 subjects were fit for each
class in the previous example, 100 were fit for each class in this example.

The only change to the model from Section 2.4.2 is the addition of a class-membership file, a
portion of which is shown in Figure 2.14. Note that this file has an intercept (v1) and an indicator
variable associated with the trait on interest (v2). Roughly % of the subjects in Class 4 have a 1 for

this variable, while roughly % of the subjects in Class 5 have a 1 for this variable.

File Edit View Tools Data Solutions Window Help
[ v HnsEsgrreoox A= ERERES
v | v | Al
1 1 1]
2 1 1
3 1 1
4 1 0
5 1 1
6 1 0
7 1 0
8 1 1
9 1 0
10 1 0
11 1 1
12 1 0
13 1 1
14 1 0
15 1 1
16 1 1
17 1 1
18 1 1]
19 1 0
20 1 1
21 1 0
22 1 0
23 1 1
24 1 0
25 1 1
26 1 1
27 1 0
28 1 0
29 1 0
30 1 0
31 1 0
32 1 0
v
o] 7 1 n ;[J

[k VIEWTABLE: TMP1.y

Figure 2.14: Screenshot of Class-Membership File Needed to Run Example 3

This model was fit using the LCLMM with two classes to determine whether the model would be
able to identify the classes and whether it could determine that having the trait of interest would result
in an individual having roughly twice the probability of being classified in Class 5. The parameter

estimates are shown in Table 2.6.
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Table 2.6: Class Membership Model - Actual vs. Fitted

LCLMM - 2 Classes

Class Parameter Actual Value Estimate SE
4 01 80.00 79.19 0.79
0o 18.00 18.38 0.51

03 2.50 2.51 0.05

B4 0.00 -0.01 0.02

5 01 170.00 168.37 0.79
0o 18.00 18.30 0.51

03 -2.00 -1.96 0.05

B4 0.00 -0.02 0.02

a?, 40.00 35.66 4.76

TSlope 15.00 15.95 1.74

02 ror 125.00 117.75 4.16

p 0.25 0.2043 0.0822
ax-intercept n/a -0.5965 0.2020
ao—trait n/a 1.2897 0.2987
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Note that these estimates are acceptably close to the actual values used to generate the data.
Plugging the s variables into Equation 2.4, and recalling that a; = 0, the fitted probability of being
in Class 4 if an individual had the specified trait is 33.3%, while the fitted probability of being in
Class 5 if an individual had the specified trait is 66.7%. This closely matches the probabilities one
would expect based on the creation of the data. The important thing to note here is that since the
classes are separated with very little overlap, each subject is fit with nearly 100% probability of being
in the appropriate latent class - therefore, the logistic regression portion of the LCLMM effectively
reduces to a simple logistic regression model where subjects are yes/no for a particular class. However,
the logistic regression portion of the latent class model does NOT require that subjects be 100% in a
particular class. A similar class-membership result would have occurred if there was greater overlap
between classes but subjects with the trait tended to have twice the probability of being fit in the Class
5 model as in the Class 4 model. In other words, in this example, two out of every three individuals
who had the trait were in Class 5 and therefore the logistic model found that there was twice the
probability of being in Class 5 if you have the trait. However, if all individuals with the trait had a
66% / 33% mixture and all individuals without the trait had a 33% / 66% mixture, a similar result

would have been observed.

2.5 Simulation Study - Stability - Comparison of Quasi-Newton
and Newton-Raphson

In order to establish that the proposed algorithm is stable and results in the same final estimates for
one estimation method versus another, a simulation study was conducted. The fitted parameters for
triglycerides and HDL cholesterol for the Optimal and At-Risk classes from the 4-class class-specific
variance model in the ARIC application of Chapter 1 were used to generate data. Recall that this
application fit class membership based on the relative fit of each underlying LMM. This approach for
fitting class membership was also used in all simulation studies.

Simulations were run to explore the stability of the methods with respect to the following choices:

e 3 different size models were run - 60 subjects, 180 subjects, or 300 subjects - this allowed an

examination as to whether the stability of the model is dependent on sample size.

e The number of subjects in each of the two classes was split in three different possible ways -

50/50 between the two classes, 75/25, or 90/10 - this allowed an examinations as to whether
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the model is as stable when identifying a smaller percentage of outlier subjects as it is when

identifying two similarly sized subpopulations.

e The groups were separated in varying degrees - 0% dilution (uses parameter estimates for each
class based on the ARIC application), 33% dilution, and 67% dilution. For the dilution models,
the parameters used to generate the data were a weighted average of the original model and the
average of the parameters from the two classes. This was examined to see whether the algorithm

is stable when the groups are not as easily identifiable.

For each of the 27 combinations above (3 x 3 x 3), the LCLMM was run 100 times and was set
to look for two latent classes. For each run, both the QN and NRA methods were run from the same
starting point (a total of 5,400 simulations). The goal of these runs was to determine whether the
quasi-Newton and Newton-Raphson methods would arrive at the same final solution if initiated from
the same starting values. For purposes of the simulations, the quasi-Newton and Newton-Raphson
runs were assumed to arrive at the same solution if the resulting likelihoods were within 0.01% of one
another. The results are shown in Figure 2.15. Note that while there are slight drops in stability when
90% of the subjects are in the Optimal class and when the dilution percentage is 67%, these are very
small. In general the model is able to find the same solution, regardless of whether Newton-Raphson
or quasi-Newton are run. Further, the total number of subjects does not appear to affect the stability
of the algorithm. The actual percentages associated with the barcharts are shown in Tables 2.7 to 2.9.
It is interesting to note that of the 117 simulations where the Newton-Raphson and quasi-Newton
methods arrived at different solutions, the quasi-Newton result had a better likelihood in 88 of the
cases, while the Newton-Raphson method had the better result in only 29 of the runs.

In order to test that the stability of the model is not dependent on the size of the model, separation
of the data, and percentage of subjects in one class, a logistic regression model was fit. The indicator
for the 2,700 simulations as to whether the models found the same solution was modeled in a saturated
model including each of the 3-level choices (dilution, size, percent in one class) as well as all 2-way
interactions and the 3-way interaction. A backward-selection method was then used to pare down
the model to only the necessary components. The final model is shown in Table 2.10 and the odds
ratios are presented in Table 2.11. Consistent with the observation above, sample size was removed
from the model as not being related to stability. From the odds ratios, it is apparent that only tests
of the extremes are found to be statistically significant - tests of the dilution ratio 33% vs 0% and %

Optimal 50% vs 75% are not found to be significant. The interaction of the dilution ratio and the
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Table 2.7: Stability of Model Fit - Same Starting Values - Dilution Ratio by Total # of Subjects

% of Simulations

Dilution Ratio Total # of Subjects Finding Same Solution
0% 60 96.67%
180 96.67%
300 96.67%
33% 60 96.64%
180 97.67%
300 98.33%
67% 60 92.28%
180 93.00%
300 93.00%

Note: The SE for the percentage ranged from 0.74% for 33%/300 to 1.5% for 67%/60.

Table 2.8: Stability of Model Fit - Same Starting Values - Total # of Subjects by % in Optimal Class

% of Simulations

Total # of Subjects % in Optimal Class Finding Same Solution
60 50% 96.99%
75% 96.32%
90% 92.28%
180 50% 97.67%
75% 98.00%
90% 91.67%
300 50% 98.33%
75% 97.00%
90% 92.67%

Note: The SE for the percentage ranged from 0.74% for 300/50% to 1.6% for 180/90%.
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Table 2.9: Stability of Model Fit - Same Starting Values - Dilution Ratio by % in Optimal Class

% of Simulations

Dilution Ratio % in Optimal Class Finding Same Solution
0% 50% 100.00%
5% 100.00%
90% 90.00%
33% 50% 100.00%
5% 98.33%
90% 94.30%
67% 50% 92.98%
75% 92.98%
90% 92.33%

Note: The SE for the percentage ranged from 0% for several categories to 1.7% for 0%/90%.

% in the Optimal class was also found not to be statistically significant. It can be concluded from
the final model that the methods are slightly less stable for datasets which have very little separation
between classes and for models which have a relatively small number of subjects in a particular latent
class. It would be recommended, therefore, to run several runs from different starting values in these
situations and choose the result with the highest likelihood. However, it must be noted that for all
of the combinations of dilution/size/%Optimal, the Newton-Raphson and quasi-Newton models found
the same solution in 90+% of simulations.

Table 2.10: Stability of Model Fit - Same Starting Values - Logistic Regression Model

Standard Wald
Parameter Level DF Estimate Error Chi-Square P-Value

Intercept 1 3.3499 0.1163 828.9934 <0.0001
Dilution Ratio  33% 1 0.4888 0.1633 8.9642 0.0028
Dilution Ratio  67% 1 -0.6593 0.1291 26.0938 <0.0001
% in Optimal 75% 1 0.2778 0.1579 3.0957 0.0785
% in Optimal 90% 1 -0.7764 0.1300 35.6526  <0.0001
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Table 2.11: Stability of Model Fit - Same Starting Values - Odds Ratios

Point 95% Wald
Parameter Levels Estimate Confidence Limits
Dilution Ratio  33% vs 0% 1.375 0.785 - 2.409
Dilution Ratio  67% vs 0% 0.436 0.279 - 0.682
% in Optimal  75% vs 50% 0.802 0.447 - 1.439
% in Optimal  90% vs 50% 0.279 0.170 - 0.460

2.6 Simulation Study - Stability - Repeated Runs From Dif-
ferent Starting Values

The previous simulation study showed that, for most scenarios, the quasi-Newton and Newton-Raphson
algorithms consistently find the same final solution when started from the same starting values. The
question that follows is, do the methods find the same solution, regardless of the starting values used?
As before, the fitted parameters for triglycerides and HDL cholesterol for the Optimal and At-Risk
classes from the 4-class class-specific variance model in the ARIC application of Chapter 1 were used to
generate data. Class membership, one again, was modeled based on the relative fit of each underlying
LMM. The same 27 combinations of choices (3x3x3) described in the previous section were used for
this set of simulations. For each of these combinations, the LCLMM was run ten times (five using
quasi-Newton and five using Newton-Raphson), with each of the ten runs initiated at different starting
values. The LCLMM was again set to look for two latent classes. An ideal result would be that all ten
of the runs from different starting values result in the same final solution. The number out of these
ten runs which resulted in the solution with the best likelihood was recorded. Similarly, the number
for each method was also recorded (max 5). This was repeated with 20 unique datasets for each of
the 27 combinations and the mean number of runs which achieved the best likelihood were recorded.
For purposes of summarizing the simulations, a run is assumed to arrive at the best solution if the
likelihood is within 0.01% of the run with the highest likelihood. As in the first simulation study,
this results in a total of 5,400 runs - 27 combinations x 20 different datasets x 10 runs from different
starting values. The results are shown in Figure 2.16. Note that, once again, while there are slight
drops in the stability of the solutions when 90% of the subjects are in the Optimal class and when the

dilution percentage is 67%, these are very small. In general the model is able to repeatedly find the
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"best’ solution, even when initiated from different starting values. The actual means associated with
the barcharts are shown in Tables 2.12 to 2.14.

Table 2.12: Stability of Model Fit - Different Starting Values - Dilution Ratio by Total # of Subjects

Mean Number of Simulations Achieving Best Solution

Quasi-Newton Newton-Raphson Total

Dilution Ratio Total # of Subjects (of 5) (of 5) (of 10)
0% 60 4.80 4.58 9.38
180 4.70 4.78 9.48

300 4.90 4.88 9.78

33% 60 4.66 4.68 9.34
180 4.75 4.70 9.45

300 4.80 4.62 9.42

67% 60 4.47 4.32 8.80
180 4.92 4.70 9.62

300 4.85 4.57 9.42

Note: The SE for the Total column ranged from 0.16 for 0%/300 subjects to 0.34
for 67%/60 subjects.

It is interesting to note that as you look at Tables 2.12 to 2.14 and compare the mean number of
simulations that achieve the 'best’ likelihood between quasi-Newton and Newton-Raphson, the quasi-
Newton mean is almost always higher than the Newton-Raphson mean. This is consistent with a result
from the previous section, where the quasi-Newton method tended to find the better solution when
the methods chose different results.

In order to test that the stability of the model is not dependent on the size of the model, separation
of the data, percentage of subjects in one class, and estimation method, a logistic regression model
was fit. The focus of this model is to examine which combinations of these factors lead to situations in
which less than five runs (the maximum) achieve the best’ likelihood. For each of the 27 combinations
x 20 datasets x 2 methods, an indicator as to whether all five of the runs achieved the 'best’ value
was defined. This indicator was modeled in a saturated logistic regression model including each of the

3-level choices (dilution, size, percent in one class), estimation method, as well as all 2-way, 3-way, and
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Table 2.13: Stability of Model Fit - Different Starting Values - Total # of Subjects by % in Optimal
Class

Mean Number of Simulations Achieving Best Solution

Total # Quasi-Newton Newton-Raphson Total
of Subjects % in Optimal Class (of 5) (of 5) (of 10)
60 50% 4.80 4.76 9.56
5% 4.85 4.76 9.61
90% 4.30 4.07 8.37
180 50% 4.93 4.88 9.82
5% 5.00 4.90 9.90
90% 4.43 4.40 8.83
300 50% 5.00 5.00 10.00
75% 4.95 4.66 9.62
90% 4.60 4.40 9.00

Note: The SE for the Total column ranged from 0.00 for 300/50% to 0.36 for 60/90%.
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Table 2.14: Stability of Model Fit - Different Starting Values - Dilution Ratio by % in Optimal Class

Mean Number of Simulations Achieving Best Solution

Quasi-Newton Newton-Raphson Total
Dilution Ratio % in Optimal Class (of 5) (of 5) (of 10)
0% 50% 5.00 5.00 10.00
5% 5.00 5.00 10.00
90% 4.40 4.25 8.65
33% 50% 5.00 5.00 10.00
5% 4.90 4.87 9.77
90% 4.32 4.13 8.45
67% 50% 4.73 4.65 9.38
5% 4.90 4.46 9.36
90% 4.62 4.48 9.10

Note: The SE for the Total column ranged from 0.00 for several categories to 0.38 for 33/90%.

the 4-way interactions. A backward-selection method was then used to pare down the model to only
the necessary components. The final model is shown in Table 2.15 and the odds ratios are presented
in Table 2.16. It is interesting to note that dilution ratio and estimation method were removed from
the model as not being related to stability. From the odds ratios, it is apparent that only tests of
the extremes for the other parameters are found to be statistically significant - tests of the number
of subjects 300 vs 180 and % Optimal 50% vs 75% are not found to be significant. The interaction
of the total number of subjects and the % in the Optimal class was also found not to be statistically
significant. It can be concluded from the final model that the methods are slightly less stable for
datasets which have a relatively small number of subjects in a particular latent class and for very
small sample sizes. It would be recommended, therefore, to make repeated runs from different starting
values, especially in situations where there are small counts or the potential for a class to have a small
number of subjects. However, it must be noted once again that for all of the combinations of dilution,
size, %Optimal, and estimation method, the mean number of runs which found the ’best’ solution was

at least 4 out of 5 and in many cases was 4.50-5.00.
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Table 2.15: Stability of Model Fit - Different Starting Values - Logistic Regression Model

Standard Wald
Parameter Level DF Estimate Error Chi-Square P-Value

Intercept 1 2.7813 0.1516 336.7364  <0.0001
% in Optimal  75% 1 0.4840 0.2162 5.0097 0.0252
% in Optimal ~ 90% 1 -1.3178 0.1672 62.1090 <0.0001
# of Subjects 60 1 -0.5240 0.1516 11.9411 0.0005
# of Subjects 180 1 0.2620 0.1716 2.3324 0.1267

Table 2.16: Stability of Model Fit - Different Starting Values - Odds Ratios

Point 95% Wald
Parameter Levels Estimate Confidence Limits
% in Optimal  75% vs 50% 0.705 0.308 - 1.612
% in Optimal  90% vs 50% 0.116 0.059 - 0.230
# of Subjects 60 vs 300 0.456 0.266 - 0.781
# of Subjects 180 vs 300 1.000 0.547 - 1.828

135



2.7 Simulation Study - Accuracy and Advantage of the LCLMM

The previous simulation studies have shown that the method is reasonably stable. The questions that

arise next are
e Is the algorithm able to find the values used to generate the data?
e Does the model fit as good or better than the usual LMM?

To address these questions, an additional simulation study was run. The fitted parameters for
triglycerides, LDL cholesterol, and HDL cholesterol from the Chapter 1 example for the 4-class class-
specific variance model were used to generate data. For each run, 260 subjects were generated, 50
from each of the four latent classes and ten that were intermediate between the six pairs of two classes.
These last 60 subjects were included to provide a more typical scenario in which there are some subjects
for whom two models fit equally well. Recall from the form of the likelihood that if the underlying
latent classes were separated such that they do not overlap (each subject is fit noticeably better in
one particular class), then the LCLMM will effectively be maximizing the likelihood of a LMM with
the classes known. The proposed set of simulations should provide a more practical example of how
close the model could come to identifying the underlying classes and models in a real-world scenario.
Class membership, once again, was modeled based on the relative fit of each underlying LMM. Having
demonstrated in earlier simulations that the quasi-Newton and Newton-Raphson methods produce
nearly identical parameter estimates, only the quasi-Newton method was run. The LCLMM was run
for four classes, and the LMM was also run for comparison purposes. 250 unique datasets were run
using each model for a total of 500 runs.

Of the 250 simulations, only six (2.4%) resulted in latent class membership which did not obviously
match that of the generated data. This left 244 simulations left to examine. The mean fitted parameter
estimates for the 244 runs of the LCLMM (4 class) model are presented alongside the actual parameter
values used to generate the data in Tables 2.17-2.19. Note that even though 60 of the 260 subjects
included in the model were created as being intermediate between the various classes, the fitted
parameters are remarkably close to the actual parameter values. P-values which test that fitted
parameter means match the actual values used to generate the data are included for each parameter
based on a z-test. While several of the parameters have a significant p-value, the percentage difference

between the actual values and fitted means is typically small.
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In addition, out of 200 subjects from one of the four classes, note that an average of 174 subjects
were classified into the group from which the subject was created. The interquartile range for this
measure is extremely small at 171-179 and 80 percent of the simulations had between 168 and 182
subjects classified correctly. The minimum and maximum for the number of subjects classified correctly

were 114 and 190, respectively.

Table 2.17: Simulation Study Results - Accuracy of the Parameter Estimates - Part 1 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr PValue %Diff
AtRisk LDL Intercept 130.069 130.367 0.297 0.3150 0.23
LDL Linear Term -2.391 -2.330 0.017 0.0003 2.55
LDL Quadratic Term -0.016 -0.020 0.001 0.0003  25.00
HDL Intercept 34.615  35.195 0.055 <0.0001 1.68
HDL Linear Term 0.053 0.038 0.002 <0.0001 28.30
HDL Quadratic Term 0.004 0.004 0.000 0.1279 0.00
Trig Intercept 5.167 5.150 0.004 <0.0001 0.33
Trig Linear Term 0.002 0.003 0.000 <0.0001 50.00
Trig Quadratic Term -0.001 -0.001 0.000 0.0609 0.00

Variance (LDL Random Int) 552.841 525.436  8.865 0.0020  4.96

Variance (LDL Random Slope) 1.283 1.261 0.032 0.4972 1.71
Variance (HDL Random Int) 13.408  14.246 0.320 0.0089 6.25
Variance (Trig Random Int) 0.105 0.102 0.002 0.0338 2.86
Variance (LDL Error) 403.483 416.861 3.453 0.0001 3.32
Variance (HDL Error) 17.461  18.657  0.188 <0.0001 6.85
Variance (Trig Error) 0.106 0.104  0.001 0.0018 1.89
AvgHDL-  LDL Intercept 161.536  160.895 0.458 0.1614  0.40
HighOther LDL Linear Term -2.023 -2.026 0.025 0.9213 0.15
LDL Quadratic Term -0.110  -0.104  0.002 0.0002 5.45
HDL Intercept 48.543  49.049 0.105 <0.0001 1.04
HDL Linear Term -0.165 -0.179 0.004 0.0002 8.48
HDL Quadratic Term -0.008  -0.008 0.000 0.9198  0.00
Trig Intercept 4.965 4.966 0.004 0.8718  0.02
Trig Linear Term 0.012 0.012 0.000 0.0051 0.00
Trig Quadratic Term -0.001 -0.001 0.000 0.2980 0.00

Variance (LDL Random Int) 778.488 670.036 14.775 <0.0001 13.93

Variance (LDL Random Slope) 2.825 2305  0.065 <0.0001 18.41
Variance (HDL Random Int) 27.108 25.454 0.790 0.0362 6.10
Variance (Trig Random Int) 0.093 0.086  0.002 0.0001  7.53
Variance (LDL Error) 877.219 838.221  6.977 <0.0001  4.45
Variance (HDL Error) 62.208  63.693  0.557 0.0076  2.39
Variance (Trig Error) 0.124 0.121 0.001 0.0119 242
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Table 2.18: Simulation Study Results - Accuracy of the Parameter Estimates - Part 2 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr  PValue %Diff
AvgHDL- LDL Intercept 129.278 128.865  0.246 0.0931 0.32
LowOther LDL Linear Term -0.294 -0.343 0.015 0.0010 16.67
LDL Quadratic Term -0.028 -0.030 0.001 0.0211 7.14
HDL Intercept 49.879  49.862  0.107 0.8757  0.03
HDL Linear Term -0.343  -0.326  0.003 <0.0001  4.96
HDL Quadratic Term 0.003 0.003 0.000 0.9224 0.00
Trig Intercept 4.604 4.619 0.004 <0.0001 0.33
Trig Linear Term 0.020 0.019 0.000 <0.0001 5.00
Trig Quadratic Term -0.000  -0.000  0.000 0.0073 -
Variance (LDL Random Int) 336.792  348.362 6.491 0.0746 3.44
Variance (LDL Random Slope) 1.151 1.123  0.031 0.3759  2.43
Variance (HDL Random Int) 44.312  37.554  0.811 <0.0001 15.25
Variance (Trig Random Int) 0.071 0.072  0.002 0.5918 141
Variance (LDL Error) 201.024 225.971 3.084 <0.0001 12.41
Variance (HDL Error) 28.009  30.582  0.455 <0.0001 9.19
Variance (Trig Error) 0.054 0.056  0.001 0.0042  3.70
Optimal LDL Intercept 121.532  122.380 0.311 0.0065 0.70
LDL Linear Term 0.330 0.220 0.015 <0.0001  33.33
LDL Quadratic Term -0.016  -0.018  0.001 0.0087  12.50
HDL Intercept 74.254 72,995  0.155 <0.0001 1.70
HDL Linear Term -0.512 -0.490 0.005 <0.0001 4.30
HDL Quadratic Term -0.015 -0.015 0.000 0.7526 0.00
Trig Intercept 4.504 4.519 0.004 <0.0001 0.33
Trig Linear Term 0.018 0.017 0.000 0.0007 5.56
Trig Quadratic Term -0.000  -0.000  0.000 0.7205 -
Variance (LDL Random Int) 654.825 646.843 10.016 0.4255 1.22
Variance (LDL Random Slope) 1.016 1.121 0.031 0.0006  10.33
Variance (HDL Random Int) 114.058  93.650 2.017 <0.0001 17.89
Variance (Trig Random Int) 0.101 0.096  0.001 0.0018  4.95
Variance (LDL Error) 436.181  440.892 3.634 0.1949 1.08
Variance (HDL Error) 151.026 143.163 0.918 <0.0001 5.21
Variance (Trig Error) 0.072 0.073  0.000 0.0183 1.39
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Table 2.19: Simulation Study Results - Accuracy of the Parameter Estimates - Part 3 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr PValue %Diff

Overall  Correlation (LDL Int/Slope) -0.342  -0.347  0.007 04777 1.46
Correlation (HDL/LDL Int) 0.058  0.062 0.009  0.6621 6.90
Correlation (HDL Int/LDL Slope) 0.090 0.068 0.006 0.0007 24.44
Correlation (Trig/LDL Int) -0.017 -0.030  0.010  0.2157  76.47
Correlation (Trig Int/LDL Slope) ~ -0.022  0.008  0.009 0.0008 136.36
Correlation (Trig/HDL Int) -0.269 -0.253  0.008  0.0487 5.95

Based on the above, it appears that the LCLMM was able to accurately recreate the data used
to generate the simulations. Nearly 90% of subjects were classified appropriately on average, and the
parameter estimates are remarkably close to the estimates used to create the data. This is despite the
fact that an additional 60 subjects were included in the model which were intermediate between the
classes in order to provide a more practical situation. The question that follows is ’"does the LCLMM
offer a better model fit than the LMM?’

In order to examine this question, the 250 unique datasets which were run using both the LCLMM
and LMM were examined with respect to model fit, and selected summary information is presented in
Table 2.20. The mean and mean square error of the within-subject residuals were summarized across
all observations. In addition, in order to examine whether certain latent classes tended to show greater
improvement than others, these measures were also summarized according to the actual latent classes
used to generate the data. The 60 unknown subjects are included in this summary as the "Unknown’
class. For each measure, the means based on both models, the difference between those means, and
the standard error of the differences are displayed, as well as the p-value based on a paired z-test of
the hypothesis that the results from each model are equal.

Overall, the LCLMM and LMM have reasonably similar average MSEs. The LCLMM tends to
have a slightly improved model fit, but not dramatically so. In the At-Risk and Optimal classes,
the LCLMM has a somewhat smaller MSE for HDL. Turning attention to the means of the within-
subject residuals, note that the overall mean for each lab parameter for the LCLMM is very close
to zero. The means for the LMM are zero by definition. When the means are examined for each

latent class, another advantage of the LCLMM is apparent. Namely, each subject-specific prediction
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Table 2.20: Simulation Study Results - Comparison of Means and MSEs of the Within-Subject Resid-
uals

Mean Mean

Class Statistic ~Parameter (LCLMM) (LMM) Difference StdErr  PValue
Overall MSE HDL Cholesterol 54.1492  56.9008 -2.7517  0.0951 <0.0001
LDL Cholesterol 349.1519  349.5864 -0.4345  0.7830 0.5789

Triglycerides 0.0738 0.0781 -0.0043  0.0001 <0.0001

Mean HDL Cholesterol -0.0628 0.0000 0.0628  0.0018 <0.0001

LDL Cholesterol -0.0557 0.0000 0.0557 0.0034 <0.0001

Triglycerides -0.0004 -0.0000 0.0004  0.0000 <0.0001

AtRisk MSE HDL Cholesterol 14.7230  24.0205 -9.2975 0.1293 <0.0001
LDL Cholesterol 294.5671  295.2093 -0.6422  1.3614 0.6372

Triglycerides 0.0877 0.0993 -0.0116  0.0003 <0.0001

Mean HDL Cholesterol -0.2935 -0.7739 -0.4804 0.0087 <0.0001

LDL Cholesterol -0.1902 -1.3433 -1.1531  0.0238 <0.0001

Triglycerides 0.0029 0.0165 -0.0136  0.0004 <0.0001

AvgHDL- MSE HDL Cholesterol 52.7573  51.0448 1.7125 0.1363 <0.0001
HighOther LDL Cholesterol 640.8770  644.8648 -3.9878  2.8868 0.1672
Triglycerides 0.1034 0.1024 0.0009 0.0002 <0.0001

Mean HDL Cholesterol -0.1632 0.0100 0.1532  0.0152 <0.0001

LDL Cholesterol 0.7133 2.0592 -1.3460 0.0333 <0.0001

Triglycerides 0.0038 0.0081 -0.0042  0.0004 <0.0001

AvgHDL- MSE HDL Cholesterol 23.0832  24.5630 -1.4798  0.0852 <0.0001
LowOther LDL Cholesterol 146.1023  158.3765 -12.2742  0.7670 <0.0001
Triglycerides 0.0441 0.0502 -0.0060 0.0002 <0.0001

Mean HDL Cholesterol -0.1566 -0.5476 -0.3911  0.0104 <0.0001

LDL Cholesterol -0.0340 0.0766 -0.0426  0.0235 0.0696

Triglycerides -0.0068 -0.0279 -0.0211  0.0004 <0.0001

Optimal MSE HDL Cholesterol 126.5151 131.1604 -4.6453  0.3062 <0.0001
LDL Cholesterol 317.2034  312.3669 4.8365  1.3054 0.0002

Triglycerides 0.0595 0.0630 -0.0036  0.0001 <0.0001

Mean HDL Cholesterol 0.6265 1.3244 -0.6978  0.0113 <0.0001

LDL Cholesterol -0.1728 -0.7917 -0.6188 0.0186 <0.0001

Triglycerides -0.0023 0.0036 -0.0014  0.0003 <0.0001

Unknown  MSE HDL Cholesterol 53.7475  54.2464 -0.4989  0.1317 0.0002
LDL Cholesterol 347.3665 339.1931 8.1734 0.8841 <0.0001

Triglycerides 0.0742 0.0760 -0.0018  0.0001 <0.0001

Mean HDL Cholesterol -0.2834 -0.0107 0.2727 0.0116 <0.0001

LDL Cholesterol -0.5047 -0.0007 0.5041 0.0176 <0.0001

Triglycerides 0.0002 -0.0002 -0.0000  0.0002 0.9778
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is based on that subject’s most appropriate class or combination of classes. In other words, the totality
of a subject’s information provides valuable input as to which class or classes are most relevant and
then predictions reflect the characteristics of those classes. This is in contrast to the LMM, where
subject-specific predictions will be adjusted from a population trajectory. In most classes/parameters,
the mean of the within-subject residuals is closer to 0 for the LCLMM than for the LMM. The
exception appears to be for the 'Unknown’ class, although the differences observed for this class are
still reasonable. In conclusion, the LCLMM appears to fit slightly better than the LMM overall,
with the At-Risk and Optimal classes showing the most improvement. In addition, the means of the

residuals for each latent class tend to be closer to 0 under the LCLMM than under the LMM.

2.8 Simulation Study - Comparison of Likelihood Measures

2.8.1 Overview

As noted earlier, the LCLMM requires that the statistician prespecify the number of latent classes.
How is this done? What information goes into determining how many classes to fit? These questions
have been the subject of a great deal of research, of which just a brief review is provided here. Fraley
and Raftery [2002] provided a review of several clustering methods. One of the methods, described as
model-based agglomerative hierarchical clustering, operates by successively merging pairs of clusters
that result in the greatest increase in the classification likelihood. Similarly, many clustering algo-
rithms use a nearest-neighbor approach to determine which records are similar to others, gradually
fine tuning the numbers of clusters. Fraley et al. [2003] proposed a model-based clustering algorithm
which incrementally adds clusters as needed until the model fit is no longer improved. In this algo-
rithm, a preliminary mixture model is fit with fewer classes than would be expected. Then the set of
observations which are fit worst are reclassified as being in a new cluster, and the model is re-fit. The
algorithm continues until adding a cluster results in a decrease to the BIC.

It is not immediately obvious why these methods would necessarily result in the 'correct’ number of
clusters, nor would they offer the most appropriate model fit once the clusters have been determined.
Those methods that operate ad-hoc by grouping similar records may produce different results based
on different arrangements of the data. And in cases where longitudinal data is present which may
have been recorded at different time points, these methods do not appear to be able to fully account

for the available information.
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In situations where the statistician wishes to determine the most informative clustering of the data,
and the underlying data would be best fit by a LMM (i.e. longitudinal, continuous data), the LCLMM
seems to provide the most sound approach. In the final model, the records for each latent class would
be appropriately modeled via a class-specific LMM. The question, however, still remains - how many
classes should be fit? The answer rests in which criteria best account for the tradeoff between the

added parameters needed to fit another class and the improvement in the resulting model fit.

2.8.2 Information Criteria

Biernacki and Govaert [1999] examined the performance of several information and classification
criteria to determine which were more useful in terms of selecting the best model. Among these were
the following measures. Note that v represents the number of parameters fit in the model, n represents
the number of subjects, and E/EC represent two different entropy measures, one of which examines

all class probabilities while the other examines only the highest class probability.

AIC = —2logL +2v e Akaike Information Criterion
AIC3 = —2logL +3v eModified AIC Criterion
BIC = —2logL +vlogn eBayesian Information Criterion
C = —2logL +2E eFuzzy Classification Likelihood
CLM = -2logL +2EC e(Classification Likelihood
where:
K n
E= —ZZEM log ¢ > 0
k=1i=1
K n
EC = *Zzzik log ¢ >0
k=1 i=1

Tirf (Vi | ciw = 1)
Z]K:l {miif (yilciy =1)}

Cik, =
zik is 1 if the k" class has the highest value of ¢;;, or 0 otherwise

For consistency with the other measures, C and CLM have been multiplied by —2. Note that for
repeated measures studies, the choice of n is not obvious. While the number of subjects is typically
used, the extremes are the total number of observations and the total number of subjects. The authors

found that AIC and BIC outperformed other criteria in a clustering context.
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Biernacki et al [2000] proposed an additional criteria, referred to as the Integrated Classification

Likelihood, which is defined as follows:

ICL=—-2logL 4+vlogn+2E

The authors found that ICL performs well in determining the relevant number of clusters.

And finally, the last criteria to be considered is the Consistent Akaike Information Criterion (CAIC)
proposed by Bozdogan [1987]. This criteria provides a greater penalty than the usual AIC, and is
defined as follows:

CAIC=—-21logL +v (logn + 1)

Based on my work with the models, I propose a series of additional information criteria along
the lines of BIC. The BIC penalizes the likelihood for each additional parameter fit in the models.
However, the model that is the main focus of this research is a model in which class membership is
determined by the relative likelihood of an individual’s data under each of the underlying LMMs -
therefore, no additional parameters are fit for class membership. If the latent classes are so obviously
separated that the classes can be easily determined, then this seems appropriate. However, if class
membership for an individual is not obvious, it seems as if a penalty needs to be assessed for that
individual to account for fitting that individual’s mixing proportion. If the individual is fit such that
their class membership probability is split between two classes, then it seems the penalty should be
the equivalent of fitting one additional parameter in the model. If the individual’s probability is split
between three classes, then the penalty should be two additional parameters, and so on. Since the
point at which an individual can be attributed to one class with certainty or near-certainty is not
obvious, four criteria were proposed. The first, BICMod23, looks at the highest probability for each
subject and compares it to the other class probabilities - if the second-highest probability is more than
half of the highest, then a single penalty parameter is charged. If the third-highest probability is more
than half of the highest, then a second penalty parameter is charged and so on. The label '23’ is meant
to call attention to the fact that a subject with probabilities 2/3 and 1/3 would be at the border of
having a penalty assessed. A second criteria, BICMod34, would have the border at 75 percent/25
percent. BICMod45 has its border at 80 percent/20 percent and BICMod910 has its border at 90

percent/10 percent.
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2.8.3 Simulation Study

To investigate the usefulness of these information criteria for choosing the most appropriate LCLMM,
a simulation study was run. The fitted parameters for triglycerides, LDL cholesterol, and HDL choles-
terol from the Chapter 1 example for the 4-class class-specific variance model were used to generate
data. For each run, 260 subjects were generated, 50 from each of the four latent classes and ten that
were intermediate between the six pairs of two classes. These last 60 subjects were included to provide
a more typical scenario in which there are some subjects for whom two models fit equally well. Having
demonstrated that the quasi-Newton and Newton-Raphson methods are reasonably consistent, only
the quasi-Newton method was run. The LMM and LCLMM for 2-8 classes were run. 250 unique
datasets were run for a total of 2,000 runs. Class membership, once again, was modeled based on the
relative fit of the underlying LMMs.

In this simulation study, the goal is to determine whether the existing and newly proposed infor-
mation criteria can effectively determine the appropriate number of latent classes for the model being
fit - in this case four classes. In addition to the information criteria, mean square error measures
for both the within and total residuals were also examined. These residual measures were defined in
Equations 2.12 and 2.13. Based on the eight runs for each unique dataset (for 1-8 classes), a ’best’
model was selected based on each likelihood measure. The number of runs (out of 250) which selected
each possible number of classes is shown in Table 2.21. Figure 2.17 shows charts of the percentage of
runs for which each measure chose the correct number of classes (4) or were within one of this number.

The traditional likelihood measures tended to choose more than four classes. The AIC/C/CLM
measures chose the maximum number of classes (8) for nearly all of the 250 unique datasets. The
BIC/ICL measures also tended to choose a higher number of classes. Many runs chose seven or eight
classes, while a fair number of runs chose five or six classes. The measures which performed best
were the entropy (E and EC), MSE (Within), and CAIC measures, with just under 10% choosing
four classes for the entropy measures, about 15% choosing four classes for CAIC, and roughly 15-25%
choosing four classes for the MSE measures. As in this example, since multiple parameters can be
run through the model, it may be possible that some parameters may be fit fine with just two classes,
while others are only fit well when additional classes are fit. From the counts for MSE (Within) in
Table 2.21, it appears that HDL could be fit reasonably well by just two classes, while LDL appears
to be fit best by either one or four classes and triglycerides by four or five classes. This provides a

general indication that four or five classes may be appropriate.
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Table 2.21: Simulation Study Results - Choosing the # of Latent Classes

# of Runs Choosing This
Number of Latent Classes

Likelihood/Residual Measure 2 3 4 5 6 7 8
AIC 13 237
AIC3 . . .24 226
CAIC 36 96 65 39 14
BIC 26 47 92 8
BIC-Mod23 .27 34 79 110
BIC-Mod34 3 30 29 79 109
BIC-Mod45 . 2 31 33 70 114
BIC-Mod910 1 35 42 36 52 &4
E 53 79 20 17 14 19 48
EC 12 35 21 23 18 45 96
C 3 247
CLM 3 247
ICL 27 40 93 90
MSE (Total Residuals) - HDL 2 2 25 35 67 119
MSE (Total Residuals) - LDL . 6 16 52 176
MSE (Total Residuals) - Triglycerides 1 4 26 63 156
MSE (Within-Subject Residuals) - HDL 121 30 32 21 17 16 13
MSE (Within-Subject Residuals) - LDL 9 25 63 37 23 15 5
MSE (Within-Subject Residuals) - Triglycerides 6 30 55 60 33 42 24
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In conclusion, the usual likelihood-based measures tend to choose too many latent classes. The
within-subject MSE tended to choose the correct number of latent classes more often than the other

measures and should be considered for use until better measures can be proposed and tested.

2.9 Simulation Study - Model Speed

Finally, with the stability and accuracy of the algorithm established, and the advantage of the proposed
methods apparent, which method should the user choose for various size models? While there are many
variables which can affect runtime, a few are examined in the following simulation study. First, how is
runtime impacted when additional subjects are added? Second, what is the effect of fitting additional
latent classes? And third, how much time does it add to fit different variances for each latent class?
These questions were examined by running simulations based on subjects created from the same
4-class model that has been used in the previous simulation studies. Thirty simulations were run for

each possible combination of the below choices, for a total of 2,400 runs.

e A total of 130 subjects, 260 subjects, 390, and 520 subjects were generated
e The LCLMM was run for 1-5 classes

e The model was run in two different ways - once assuming class-specific variances and once

assuming variances equal across classes

e Both the QN and NRA methods methods were run

The median CPU runtimes (minutes) are presented in Table 2.22 and in Figure 2.18. The quasi-
newton and Newton-Raphson methods have similar runtimes for the equal-across-classes variance
models. However, for the class-specific variance approach, in which there can be a much larger number
of parameters, the Newton-Raphson method tends to take a noticeably longer period of time to run.
For example, for the 5-class class-specific variance model with 520 subjects, the Newton-Raphson
method took a median time of 332.6 minutes to run versus only 57.6 minutes for the quasi-Newton
method. It is also worth noting that the runtime for the quasi-Newton method does not appear to
increase dramatically with increases in sample size or latent classes and has only a modest increase
when fitting class-specific variances. These results lead to the conclusion that the quasi-Newton method

should be used in general for these rather complex models.
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Table 2.22: Simulation Study Results - Median RunTimes (Minutes)

Equal-Across-Classes

Class-Specific

# of Subjects # of Classes QN NRA QN NRA
130 1 0.8 1.1 0.8 1.1
130 2 1.9 2.5 2.1 3.1
130 3 3.3 3.1 5.9 10.8
130 4 4.7 5.6 10.1 30.9
130 5 6.9 7.8 18.0 70.7
260 1 14 2.3 14 2.3
260 2 3.7 3.8 3.8 5.5
260 3 6.1 6.8 9.1 21.4
260 4 9.0 9.2 17.2 56.4
260 5 13.7 14.9 30.9 178.1
390 1 2.5 3.9 2.5 3.9
390 2 5.3 5.9 5.7 7.2
390 3 9.6 9.6 13.7 33.7
390 4 13.7 13.8 25.6 91.9
390 5 20.8 22.4 43.5 256.0
520 1 3.1 5.0 3.1 5.0
520 2 6.9 6.9 7.4 9.5
520 3 12.5 10.6 18.5 43.6
520 4 18.5 18.5 34.0 83.0
520 5 26.3 25.1 57.6 332.6
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2.10 Conclusions and Further Research

This chapter has presented a new macro, which will allow users to fit mixtures of linear mixed models
for a wide variety of problems. In addition to being able to easily generalize the distributional assump-
tions of the usual linear mixed model, users can explore complex multi-parameter datasets to determine
underlying subpopulations and the appropriate linear mixed model for each. Class membership can
further be explored by specifying variables to be used in a logistic model for class probabilities. These
methods were examined in a series of simulation studies and found to be stable and to provide a real
benefit in terms of providing a better model fit than the usual linear mixed model.

Future research should focus first and foremost on developing a dependable measure for selecting
the appropriate number of latent classes. While the within-subject MSE appears to perform reasonably
well, it would be advantageous to have a better method for making this selection. Ideally, such an
approach would allow some sort of tuning parameter to allow the user to specify their sensitivity to the
addition of latent classes. For example, in some cases, the user may wish to have a more broad look
at class membership, while in others, small clusters of individuals may be of interest. An additional
focus of research should examine a hybrid of the relative-fit and structured class membership models.
Since there may be instances in which the class membership model fits a subject as being in one class
while the subject may be better-fit in another, a model which fits each subject’s class probabilities

based on a combination of the two would offer an intermediate and perhaps more reliable result.
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Chapter 3

Tutorial in Latent Class Linear Mixed

Models for Clinical Researchers

3.1 Introduction

Chapter 1 presented an expanded methodology related to Latent Class Linear Mixed Models (LCLMM),
including an example using lipid data from the ARIC study. Chapter 2 discussed a new SAS® macro
which will allow statisticians and researchers to apply these models easily in practice. In the latter,
examples were presented to illustrate how to specify models in the new macro. However, given the
complexity of the models and the many questions that arise in specifying a model, it is important
to provide statisticians and researchers alike with a more detailed look at the decisions that need to
be made when fitting the LCLMM. This is accomplished in this chapter in three sections. The first
section presents a brief review of the LCLMM methodology. The second section discusses the decisions
that a statistician or researcher must make when fitting a LCLMM. The third section walks through
three separate real-world modeling examples step-by-step to illustrate how the models can be used in

practice. These should provide a reference as users explore the models more fully.

3.2 The Model

A detailed review of the LCLMM is provided in Chapter 1. For convenience, a brief review is presented

here.



3.2.1 Defining the Latent Class Linear Mixed Model

The LCLMM is effectively a mixture model where the underlying mixture distributions are specified
as linear mixed models (LMMs). Therefore, a brief introduction of the LMM will lead directly into
the specification of the LCLMM. Note that Searle et al [1992] provides a more detailed presentation

of the LMM. For subject i, we assume

yi=XiB+Zb; +e (3.1)

where:

y; is an n; X 1 vector of observations

X; is an n; X p; design matrix for the fixed effects
B is a p; x 1 unknown vector of fixed effects

Z; is an n; X q design matrix for the random effects
b; is a ¢ X 1 unknown vector of random effects

e; is an n; x 1 unknown vector of random error terms

Further, e; and b; are assumed to be mutually independent of one another and to have the following

properties:

E(;) = 0
Var(b;) = D
Cov (b;,b)) = O0fori#h (3.2)
E(e) = 0
Var(e;) = R;
Cov (b;,e;) = 0

And finally, the following distributional properties are assumed to apply to the random effects, b;,

and residuals, y; — X,;3:
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b; 0 D DZ!
~ N , (3.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture
of K LMMSs, one for each of the K latent classes. Note that the value K is specified by the statistician
a priori. Guidelines related to selecting K are discussed later in this chapter. In addition, a simulation
study is presented in Section 2.8, in which the usefulness of various likelihood-based and residual-based
criteria is examined with regard to making this selection. Following the notation in Lin et al [2002a],

define for subject i:

1 if subject ¢ is a member of class k
Cik =
0 if subject 7 is NOT a member of class k

Cily - -+, Cix ~ Multinomial (1,7;1,...,Tik)

The m;1, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

exp (tiay)

ik =Pleix=1t)) = =g (3.4)
> j—1 exp (tiey))
where:
t; is the design vector related to class membership for subject 4
;. is an unknown vector of class-membership parameters for class k with a;y = 0
Further, given that subject ¢ is in class k, define the LMM for subject ¢ as follows:

where the following additional definitions are provided:

W, is an n; X py design matrix for the class-specific fixed effects

Ak is a po x 1 unknown vector of class-specific fixed effects for class k
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It is useful to note that the parameters in 8 will apply to all subjects through the values of the cor-

responding column in X;. The class-specific parameters, Ai, however, are different for each latent class.

The error terms and random effects are assumed to have the same properties as in Equation 3.2.
Finally, similar to the LMM, the following distributional properties are assumed to apply to the random
effects, b;, and residuals, y; — X;8 — W; Ag:

b, 0 D DZ!
~N 7 (3.6)

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that

both of the following are true:

t; ty --- t, | isfull rank, and
X | W . . A
X2 . W2 . . . 22
is full rank.
Xn | - . B A

For notational convenience, denote ® as the combined parameter vector comprised of as ... agk,

B, A1 ... A, and 8, where @ contains the unique variance components which determine D and R,;.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values X;, W, Z;, and t;. In short,

log L(®) 5 = ) log f (yi) (3.7)
i=1
n K
log L(®) o = Zlog Zﬂikf (vil e =1) (3.8)
i=1 k=1

with f (-) being the density defined by

(yi) ~ N(X;8,Z,DZ,+R;)
(yilcn=1) ~ N(X;B+W;\;,Z;DZ; +R;)
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Several points are of note. First, note the difference between Equations 3.7 and 3.8 - the likelihood
for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore m;; = 1, the
LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has
one ;x = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects
assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of
the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.

3.2.2 The Relative-Fit Class Membership Model

In the model described in the previous section, class membership was assumed to be determined based
on an underlying logistic regression model. However, in many cases, the statistician may not know
exactly which factors should be included in the model describing class membership, these factors may
not be measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K
classes. However, this model, in which each subject can have its own mixture, would result in many
parameters related to class membership - specifically, for n subjects and K classes, the model would
require n x (K — 1) parameters. Therefore, a second approach was proposed in Chapter 1 which
replaces the logistic regression model with a model in which class membership is determined by the
relative fit of the underlying LMMs. This is much less costly in terms of computational time than
fitting a separate set of class membership parameters for each subject, but offers a logical approach
with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:
n

K
log L(©) = Zlog Z [Tirf (yi | ciw = 1)] (3.9)

i=1 k=1

with f (y; | cit = 1) being the density defined by

(yi | cir =1) ~ N(XiB+ WA, Z;DyZ, + Ryy,)

In the revised model, the 7;; are determined solely by the relative fit of the underlying LMMs according

to the following equation:
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f (Yi | cir = 1;@)
S (viley = 1;0)

Tk — (310)
For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the
subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the
subject would be included in each class 50/50. If the likelihood for Class 1 was nine times higher than
for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

Further details are presented in Section 1.4.4.

3.2.3 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of
this specification lies in the random effects which are thought of as being sampled from an underlying
distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The
LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the
data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute
predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM
are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following
distributional properties are assumed to apply to the random effects, b;, and residuals, y; — X;3 —

WiAk.

b, 0 D, D,.Z!
~N , o =1 (3.11)
yvi — X8 — WA 0 Z,D, Z,D;Z;+R,;

The computation of the LCLMM random effects requires maximizing the joint density of the data y

and the random effects b;, with respect to the terms b;. The likelihood can be written as follows:

log L (y,b) =
K 1
n €xp [—5 {(
Zi: 1og Tik

yvi— XiB — Wik, — Z;b) R;,! (yi — XiB — Wil — Zib;) + b;D;lbi}]
(Qﬂ,)(niJrq)/? ‘Rik‘l/Q |Dk|1/2

Psii

Py
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However, given that a subject is in class k implies that the best set of predictions of the random
effects are the predictions based on the k** LMM. Therefore, the random effects for a subject can
be computed as the weighted average of the random effects computed as if that subject were in each

latent class:
~ ~ K ~
b; = eBLUP[b;] = E[bi\Q,yi] = 3 7 x buge
=1

Further details are presented in Section 1.4.5.

3.3 Statistical Questions Related to Specifying a Model

In the LMM, several decisions need to be made by the statistician in order to specify a parsimonious
model which addresses the research question. These decisions include deciding which factors are fixed
and which are random, as well as deciding upon the structure of the underlying variance-covariance
matrices of the random effects and error terms. The LCLMM adds to this list the decision of how
many classes to fit, which of the fixed effects, if any, are allowed to vary by latent class, how class
membership should be structured, and whether each of the underlying latent classes should have its

own estimated variances. Below are commentaries related to each decision.

3.3.1 Fixed Effects - Class-Specific or Equal Across Classes?

In the LMM, the fixed effects are specified such that they are applicable to all subjects or to known
subpopulations. In the LCLMM, the subpopulations are not known a priori. As such, it may not be
obvious which fixed effects should be permitted to differ by latent class. The main point to keep in
mind in making this decision is this... classes will be differentiated based solely on parameters which
are allowed to differ by class. Consider the example from Chapter 1 using the ARIC study data. The
primary interest in that example was on examining the trajectories of HDL, LDL and triglycerides
through time. However, some subjects were taking cholesterol-lowering medications, which would be
expected to result in a decrease to LDL cholesterol. This decrease is associated with the individuals
taking the medication and the expectation is that the medication should result in a comparable
decrease in LDL regardless of the underlying latent class. Therefore, the effect of medication use

on cholesterol was fit across-classes. However, the intercept, linear, and quadratic terms for HDL,
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LDL, and triglycerides were allowed to differ by latent class. In some cases, there may not be prior
information to guide this selection. In such cases, the statistician could fit the factor as being class-
specific and examine the differences in the estimate by latent class. If the factor is reasonably similar
in all classes, then the model could be refit with the factor fit as being equal across classes.

In addition, there may be instances where the statistician would prefer that all fixed effects be
the same for each class and allow only the variances to differ by class. The resulting model would
effectively be the usual LMM, with the error distribution and/or random effects distribution viewed

as being a mixture of multivariate normal distributions.

3.3.2 Variances - Class-Specific or Equal-Across Classes?

There are two main situations which should be considered separately for purposes of this discussion.
First, as noted above, the user may wish to fit the usual LMM, but allow the distributions of the
random effects and/or error terms to be modeled by a mixture of normal distributions. In this
scenario, the LCLMM can be specified such that all fixed effects are fit as being equal across classes,
while the variances of the error terms and/or random effects are allowed to differ by latent class.
Since the classes are distinguished only by variances and individuals at the center of the distribution
may reasonably have come from any of the underlying distributions, it makes sense in this model to
restrict each subject to have the same underlying mixture. In the univariate normal case, this would
be equivalent to fitting the error terms as being distributed according to a mixture of normals - for
example 90 percent distributed Normal(0,1) and 10 percent distributed Normal(0,10). However, the
appropriate mixture percentages as well as the variances themselves would be estimated as part of the
model. This model specification provides an easy way to generalize the LMM to better fit the data.
Note that since the correlation between random effects is held constant across classes, the correlation
in the resulting random effect mixture distribution is maintained, while allowing the distributions of
the random effects to be represented by a more general distribution.

In models which allow the fixed effects to differ by latent class, the LCLMM attempts to fit the best
LMMs to the subjects in each latent class, while determining the latent classes as part of the estimation
process. In situations where there are distinctly different variances for each latent class, fitting the
variances as class-specific can result in remarkably different class determinations (and therefore models)
when compared to results obtained when the variances are estimated as being equal across classes.

This is because the information contained in the variation of the data is utilized to distinguish the
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classes in the class-specific variance case, but not in the equal-across-classes case. In Chapter 1, it was
shown using ARIC study data that the determination of class membership was dramatically different
based on this important choice. If the statistician is unsure how the variances should be fit, it would
be recommended, if sample sizes allow, to fit the variances as being class-specific first to determine

the extent of the differences.

3.3.3 How Many Latent Classes Should Be Fit?

Once again, this choice should be considered in two separate contexts. First, in models in which
all fixed effects are fit as being equal across classes (generalizing the usual LMM), two classes would
be recommended in most cases since this should allow for a varied set of distributions but is still
reasonably straightforward.

In models in which the fixed effects are allowed to vary by latent class, the statistician should fit
a range for the number of latent classes and examine how the model fit changes as classes are added.
As was discussed in Section 2.8, the usual likelihood-based measures tend to select more classes than
is necessary. However, the statistician is encouraged to examine practical measures such as mean
square error and mean absolute deviation based on the within-subject residuals to compare model
fit. In the above-mentioned simulation study, MSE was found to be the most useful of the measures
examined, and mean absolute deviation would be expected to have similar results but be less impacted
by outlying observations. As is typical, the most parsimonious model should be sought. Therefore,
while the model fit may improve slightly as classes are added, a smaller model may be preferred for

its ease of interpretation.

3.3.4 Class Membership - Structured or Unstructured?

Class membership may be specified in several ways. As noted previously, in some cases, the statistician
may simply want to generalize the distributional assumptions of the usual LMM to allow the underlying
normal distributions to instead be mixtures of normal distributions. This is easily specified in the
LCLMM and provides a straightforward way to generalize one of the basic assumptions of the LMM.
As noted earlier, since individuals at the center of the distribution may reasonably have come from
any of the underlying distributions, it makes sense in this model to restrict each subject to have the
same underlying mixture. This situation was discussed in the example in Section 2.4.1.

In more general situations where interest focuses on discovering unique groups in the data and
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fitting appropriate LMMSs to these groups, class membership may be specified in two very different
ways. In situations where the statistician is interested in simply fitting the best K LMMs or is not
sure of which factors may be most important in determining class membership, running the analysis
with class membership determined solely by the relative fit of the underlying mixed models would
be recommended - this is referred to throughout this document as relative fit class membership or
unstructured class membership. The statistician could then examine what is different between the
classes and may, as a result, have a better idea which factors are acting to differentiate subjects. For
example, does Class 1 tend to have subjects with a particular disease or risk factor? Does Class 2 tend
to be older or younger than most of the population?

Alternatively, the statistician may already have a set of risk factors which are of interest, and one
of the goals of the analysis might therefore be to determine how the risk factors act to differentiate
the groups in terms of their longitudinal measures. By including appropriate risk factors in the class
membership model, it may be possible to understand both the risk factors which distinguish the
subpopulations as well as how those subpopulations differ in terms of trajectories for the data being
studied.

While the structured class membership model can be quite useful in certain situations, the statis-
tician should be cautioned regarding one potential pitfall. In situations where class membership is
modeled using too few predictors or predictors which simply do not adequately distinguish the under-
lying groups, it is likely that some subjects may have fitted class probabilities (based on the parameters
in the class membership model) that put an individual in one class, while those subjects would be
better fit by the underlying LMM from another class. This would result in a poor fit for selected indi-
viduals. In light of this, it is recommended that the statistician compare the fitted class membership
probabilities, 7, with the unstructured probabilities based on the fitted models. The latter set of
probabilities could be calculated after model fit according to Equation 3.10 and are indeed provided
as part of the output from the macro presented in Chapter 2. In situations where the probabilities are
not in agreement, the statistician should focus discussion primarily on the subpopulation trajectories

rather than individual subject trajectories.

3.3.5 A Note Related to the Question of Fixed vs. Random?

The choice of fixed effect or random effect has been discussed in the literature (see Searle et al [1992]).

However, it should be noted here that sometimes the variation accounted for by the random effects can
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primarily reflect variation associated with being in one of the underlying latent classes. In other words,
what was considered subject-to-subject variation in the LMM may actually be due to the presence of
a set of subpopulations. Therefore, as additional latent classes are fit, it is not uncommon to see the

variances associated with some of the random effects decrease, in some cases going to zero.

3.4 Example 1 - Cystic Fibrosis - Pulmonary Function Data

Cystic fibrosis (CF) is one of the most common genetic diseases, with about 1 in 3,300 caucasian
children born with it in 1997. The disease results in the body producing an unusually thick mucus
instead of the typical slippery, watery substance. As a result, the mucus can clog the lungs, block
airways, and lead to repeated infections of the respiratory system. In addition, the sticky mucus
can block the pancreas, causing the body to be unable to fully absorb nutrients from digested food.
In Edwards [2000], the author examines the percent predicted forced expired volume in 1 second
(FEV1) from 47 adult CF patients seen at the University of North Carolina pulmonary clinic. For
each individual, as few as 4 or as many as 97 measurements were documented, with the median
number of measurements being 27. Percent predicted FEV1 was modeled as a linear function of age,
and results based on using the LMM were compared with a cross-sectional approach, in which the
information contained in having repeated measurements on individuals was effectively ignored. The
author demonstrated the value of the LMM, as the cross-sectional model showed very little association
between FEV1 and age, while the LMM had a statistically significant age effect (p-value<0.0001).

The model from the referenced article can be written as follows:

%PredFEV1; = 1 4 B2 x AGEj; 4+ 713 + 72: X AGEy; + €5

where:

%PredFEV1;; is the % Predicted FEV1 for subject i at age t

B1 is the overall population intercept (with age centered at age 20)
(B2 is the overall population slope

714 is the random intercept for subject i

~2; is the random slope for subject i

€;¢ is the error term associated with subject i at age t
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Y1i ~ Normal (0,07,,)
7Y2i ~ Normal (0,07,,,.)
€;+ ~ Normal (Oa Uzrror)

p = COIT (’Y1i772i)

In words, percent predicted FEV1 is modeled as a function of an intercept and a linear term for age.
Individuals are modeled as having random intercepts and slopes about the population mean intercept
and slope, and the random intercepts and slopes are correlated. The error terms are assumed to be
independent with a single variance applicable to all observations.

The plot of the fitted population and subject-specific trajectories for percent predicted FEV1 based
on the LMM analysis is presented in Figure 3.1a. While the fitted trajectories do not on first glance
appear to indicate that there may be several underlying groups in the data, the LCLMM was applied to
the data to examine whether it offers a better model fit. In looking at the fitted individual trajectories,
one possible hypothesis is that the subpopulation with higher FEV1 values may be more variable in
terms of trajectories. Another possibility is that the random effects have a distribution which would be
better classified as a mixture of normals. For comparison purposes, the LCLMM was fit three separate
ways. First, the LCLMM was fit with two latent classes where only the variances were allowed to
differ by class. This effectively means that the LMM is generalized such that the error and random
effect distributions are fit as mixtures of two normal distributions. The mixture percentages for this
model were fit as being the same for each individual. This model is referred to below as the LCLMM-
Mixture model. A second LCLMM was fit with two latent classes, where each class was permitted to
have its own intercept and linear slope, but the variances were assumed to be equal for each latent
class. In this second model, each individual was fit as a mixture of the underlying models based on
how well the underlying models fit - see Section 3.2.2 for further details. For example, if a subject is
fit equally well by both underlying LMMs, then that subject would be modeled 50/50 by those two
models. If a subject was fit much better by one model than another, then that subject would have
class probabilities closer to 90/10 or 95/5. This model is referred to below as the LCLMM-Relative
Fit Equal-Across-Classes Variance model. Finally, the latter model was refit, allowing both the fixed
effects and variances to differ by latent class and is referred to below as the LCLMM-Relative Fit

Class-Specific Variance model.

162



The population and subject-specific trajectories for the LMM and the three versions of the LCLMM
are shown in Figure 3.1. Note that all four models produce very similar subject-specific trajectories.
This is an indication that the simpler LMM may adequately describe the data, but this question will
be addressed later. The parameter estimates for each model are shown in Table 3.1. The LMM and
LCLMM-Mixture models produce similar population intercepts and slopes. Note that the LCLMM-
Mixture model finds that the best-fitting error mixture is a 52% / 48% mixture of normal distributions
with variances of 41 and 155, while the LMM fits a single residual error variance of 109. For illustration,
Figure 3.2 displays a normal distribution with mean 0 and variance 109 next to a 52%/48% mixture
of two normals with mean 0, one with variance 41 and the other with variance 155. Note the more
compact error distribution which is fit in the LCLMM-Mixture model. The random effect mixture is
more comparable to the LMM. As you might expect, the LCLMM-Relative Fit models identify higher
and lower FEV1 groups. However, from the plots, it does not appear that these are necessarily unique
subpopulations - just the best way of dividing the population into two subpopulations. With regard to
the initial hypothesis that the subjects with higher FEV1 tend to be more variable, this is confirmed
in the LCLMM-Relative Fit Class-Specific Variance model. In this model, the class with higher FEV1
had a random intercept variance of 387 versus just 277 for the lower FEV1 group, a random slope
variance of 2.45 versus just 1.67 for the lower FEV1 group, and a residual error variance of 156 versus
just 41 for the lower FEV1 group.

Finally, in order to determine whether any of the LCLMMSs actually provide a better model fit
than the LMM, Table 3.2 presents a variety of likelihood-based criteria as well as the MSE of the
within-subject residuals for each of the proposed models. Further details related to these measures
are available in Section 2.8. Note that all likelihood-based criteria chose the most complicated of the
models, the 2-class LCLMM with class-specific variances, while the within-subject MSE found the
model fit to be best under the LMM and LCLMM-Mixture models. This result is consistent with
results found in the simulation study in Section 2.8. In that study, the usual likelihood-based criteria
tended to choose more classes than were necessary, while the within-subject MSE was most likely to
choose the appropriate number of classes. In this case, the models all provide a comparable model fit,
and it is encouraging to find that the MSE does not recommend a more complex model. Generalizing
the random effect and error distributions does improve the fit slightly, as seen in the slight decrease
in the MSE for the LCLMM-Mixture model. However, the overall conclusion here is that the LMM

appears to fit the data reasonably well and the more complex LCLMM is not necessary.
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Table 3.1: Example 1 - Parameter Estimates

Model Parameter Class Estimate SE
Linear Mixed Model 51 n/a 61.97 3.35
B2 n/a -1.88 0.30
o, n/a 397.78 102.31
T lope n/a 2.39 0.91
2 or n/a 109.58 4.26
P n/a -0.15 0.22
LCLMM-Mixture 51 n/a 60.98 3.28
- Classes 1 and 2 weighted 52% / 48% (32 n/a -1.77 0.28
o2, 1 315.91 124.76
o2, 2 401.83  142.39
ngope 1 1.70 0.75
0% 2 241  1.32
2 or 1 41.38 2.96
02 o 2 15552 8.15
p n/a -0.07 0.33
LCLMM-Relative Fit 01 Higher FEV1 77.90 3.14
Equal-Across-Classes Variances 01 Lower FEV1 44.20 2.70
B Higher FEV1 -1.60 0.38
B2 Lower FEV1 -2.25 0.34
o2, n/a 123.46  37.00
Jflope n/a 1.65 0.63
o2 n/a 11020  4.28
P n/a -0.68 0.12
LCLMM-Relative Fit 51 Higher FEV1 66.45 *
Class-Specific Variances 01 Lower FEV1 55.48 *
B2 Higher FEV1 -1.94 *
B Lower FEV1 -1.56 *
o2, Higher FEV1 387.36 *
o, Lower FEV1 277.23 *
2 ope Higher FEV1 2.45 *
O ope Lower FEV1 1.67 *
2 or Higher FEV1 156.59 *
2 or Lower FEV1 41.08 *
P n/a 0.04 *

* = SE calculations were unsuccessful for this model
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Figure 3.2: Comparison of Error Distributions - LMM vs. LCLMM Mixture

Table 3.2: Example 1 - Information Criteria and MSEs

Linear LCLMM LCLMM

Mixed LCLMM- Relative-Fit Relative-Fit
Criteria Model Mixture Equal Class-Specific
Observed Likelihood -5510.82 -5414.35 -5476.30 -5385.26
AIC 11033.63 10848.71 10968.60 10792.52
CAIC 11037.66 10855.43 10973.98 10799.91
BIC 11044.73 10867.21 10983.40 10812.87
Entropy 0.00 6.20 1.32 3.29
C 11021.64 10841.10 10955.24 10777.10
ICL 11044.73 10879.61 10986.04 10819.45
MSE (Within-Subject) 104.28 104.08 105.26 104.71
Number of Parameters (v) 6 10 8 11
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3.5 Example 2 - Premature Infant Sleep-Wake Data

Holditch-Davis [2004] examined the development of sleeping and waking states during the pre-term
and early post-term periods for 134 preterm infants. These infants were at high risk for developmental
problems due to low birthweight (less than 1500 g) or mechanical ventilation, and were recruited from
three tertiary hospitals (75 from a southeastern perinatal center, five from a northeastern perinatal
center, and 54 from a midwestern children’s hospital). Weekly behavioral observations were conducted
during a 2-hour inter-feeding time in the daytime from enrollment until 44 weeks post-conceptual age
or discharge. From one to eight measurements were conducted on each infant (mean=3.3). During
the weekly observation, the authors took measurements on several aspects of sleep-wake state - among
these were active and quiet sleep, active and quiet waking, as well as a period defined as sleep-wake
transition - the definitions of each of these states is provided in the article. The authors recorded the
percentage of time each infant spent in these five sleep-wake states during each 2-hour observation
period. For purposes of analysis, only subjects who had at least two separate measurements were
used. In addition, if a subject had only two measurements, but these measurements were in adjacent
weeks, then the data for the subject was dropped. These rules resulted in a total of 103 subjects being
analyzed.

In Holditch-Davis [2004], the longitudinal measurements for percentage time in each of the five
sleep-wake states were analyzed using the LMM. For each sleep-wake state, a LMM was fit in which
the percent of time in that sleep-wake state was modeled as a function of the following covariates:
intercept, linear and quadratic terms for postconceptional age, hospital, birthweight, gender, race, the
presence of methylxanthine treatment, length of mechanical ventilation, handling due to performing
an EEG, and interactions of these variables with postconceptional age. A random intercept and
slope for postconceptional age were also included in each model. Note that for modeling purposes,
postconceptional age was centered at 29 weeks. In addition, since one of the hospitals recruited only
five infants, the indicator for hospital treated the two smaller hospitals as a single entity. A backwards
elimination process resulted in models for each sleep-wake state which included the covariates presented
in Table 3.3.

The authors plotted the fitted trajectories for each sleep-wake state for the population, as well as
the individual fitted trajectories for each infant and found the following general patterns in the data.
Active sleep tended to decrease with age, while quiet waking, active waking, and quiet sleep increased

with age. Sleep-wake transition tended to increase until 40 weeks and then decreased after 43 weeks.
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Table 3.3: List of Covariates Used in the Mixed Model Analysis in Holditch-Davis [2004]

Sleep-Wake State Variables Included in Model

Quiet-Waking Intercept and Linear Term for PC-Age
- Random intercept

Active-Waking Intercept, Linear/Quadratic terms for PC-Age, Hospital,
- Random intercept EEG, and PC-Age x EEG
Sleep-Wake Transition Intercept, Linear/Quadratic terms for PC-Age, and EEG

- Random intercept

Active-Sleep Intercept, Linear/Quadratic terms for PC-Age, and
- Random intercept and slope Mechanical ventilation

Quiet Sleep Intercept and Linear term for PC-Age
- Random intercept and slope

The LMM was first run to confirm that the results from the article could be recreated. The fitted
model is presented in Figure 3.3 and shows close agreement with the referenced article.

Since this is an instance in which there are several related parameters, each of which has longitudinal
measurements, the LCLMM can potentially shed light on underlying subpopulations that may exist in
the premature infant data, as well as fit the best LMM to the data for each of those subpopulations.
The models proposed in Holditch-Davis [2004] for each sleep-wake were used as the basis for the
LCLMM. However, the intercept and linear/quadratic terms for age were permitted to vary by latent
class. Note that other covariates, such as hospital, EEG, and mechanical ventilation, were fit across
classes, so their effects are the same for each latent class. The LCLMM was fit for 2-6 classes. Class
membership probabilities were modeled based on the relative fit of each of the underlying LMMs.
Since the sample size was relatively small, the variances were fit as being equal across classes. As
noted in Section 3.3.5, as latent classes are added to the model, it is possible that certain random
effect variances may go to zero. This was the case in this analysis, and random effects were removed
from the model if the associated variance went to zero. The fitted models for the various numbers
of classes are presented in Figures 3.3-3.8. Note that the predicted sleep-wake percentages for each
infant are not constrained to sum to 100%.

Each of the models presented is the best-fitting model for that number of classes. However, which
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Figure 3.3: Fitted Sleep-Wake State Trajectories Based on the Linear Mixed Model
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Figure 3.6: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 4 Classes
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model is best? To examine this, several likelihood-based criteria as well as the MSE of the within-
subject residuals are presented in Table 3.4. A simulation study in Section 2.8 showed that the within-
subject MSE provided a useful measure by which to choose from competing LCLMMs, while the
likelihood-based measures tended to choose too many latent classes. In this case, while the likelihood-
based criteria all choose the most complex 6-class model, the within-subject MSE selects the 5-class
LCLMM. Based on the within-subject MSE, the 5-class model provides the best fit for several of
the sleep-wake states and is among the best-fitting models for the other parameters. In fact, when
comparing the MSEs for the 5- and 6-class models, the 5-class model has the same value or better for

all of the parameters.

Table 3.4: Example 2 - Information Criteria and MSEs

Number of Classes Fit

Measure 1 2 3 4 ) 6
Observed Likelihood -7417.10  -7305.56  -7227.69 -7160.14 -7091.17 -7043.26
AIC 14898.20 14701.13 14559.37 14450.27 14338.34 14268.52
CAIC 14930.61 14746.71 14612.04 14516.11 14417.34 14360.69
BIC 14982.52 14819.69 14696.38 14621.53 14543.85 14508.28
Entropy 0.00 7.95 10.34 13.47 15.23 12.42
C 14834.2  14627.02 14476.06 14347.22  14212.8 14111.36
ICL 14982.52  14835.59 14717.06 14648.47 14574.31 14533.12
MSE (Within-Subject)

- Quiet Waking 37.17 31.56 27.01 26.13 25.07 25.01
- Active Waking 7.84 5.83 6.29 4.78 4.30 4.26
- Sleep-Wake Transition 16.04 15.89 16.03 16.32 16.02 16.92
- Quiet Sleep 100.35 100.04 114.15 117.46 102.16 108.06
- Active Sleep 96.55 98.62 109.52 106.60 96.42 97.43
Number of Parameters (v) 32 45 52 65 78 91

The final parameter estimates for the 5-class model are shown in Tables 3.5 and 3.6. Note that
for ease of review, each class has been identified by a unique feature in its trajectories - i.e. 'Level
Quiet Sleep, Level Active Sleep’. More extensive descriptions related to the trajectories exhibited by
each class are presented below. For each class, an approximate percent of the population is presented

based on the sum of the class probabilities attributed to each latent class.
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Green - ”Typical Patterns - More Active Sleep and Less Quiet Sleep”

e This class has fairly typical trajectories - slightly increasing quiet waking, slightly increasing
active waking (although the tips of the curve are impacted by data at the edges), increasing

quiet sleep, and decreasing active sleep.

e This class has among the lowest amounts of quiet sleep and among the highest amounts of active

sleep.

e This class represents about 32 percent of the population.

Red - ”Typical Patterns - More Quiet Sleep and Less Active Sleep”

e The class also has fairly typical trajectories - slightly increasing quiet waking, slightly increasing
active waking, increasing-then-decreasing transition, increasing quiet sleep, and decreasing active
sleep - but has a higher amount of quiet sleep than other classes and one of the lower amounts

of active sleep.

e This class represents about 28 percent of the population.

Blue - ”Level Quiet Sleep, Level Active Sleep”

e Unlike most other classes, this class did not have an increase in quiet sleep and did not have a

decrease in active sleep.

e This class represents about 23 percent of the population.

Orange - ”"High Quiet Waking”
e This class had dramatic increases in quiet waking, much more than any other class.

e This class represents about 11 percent of the population.

Purple - ”Increased Quiet Waking and Active Waking”

e This class had a dramatic increase in active waking and one of the largest increases in quiet

waking.

e This class represents about 10 percent of the population.
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It is useful to divide the population into groups based on their sleep-wake patterns because these
patterns have the potential to tell us something about the development of the infants. Previous
studies conducted by Halpern et al [1995] and Thoman [1982] found that sleeping and waking reflect
underlying functioning of the brain. In addition, Borghese et al [1995], Gertner et al. [2002],
Scher et al. [1994], and Whitney and Thoman [1993] found that sleep-wake patterns during the
preterm period are related to developmental outcomes. Therefore, the developmental measures from
subsequent testing of the premature infants are summarized in Table 3.7 for each class identified in the
final model. Note that since data for the developmental measures was not available for all subjects,
two N’s are presented for each class - the Class N is the number of subjects fit in the class, while
N is the number who also had the developmental measure being sumarized. As background, PLS 3,
which is short for Preschool Language Scale, is a test which evaluates language development. It can
be used to test receptive and expressive language skills with children from two weeks through six years
of age. The Fagan test is a test which evaluates infant intelligence by measuring the amount of time
the infant spends looking at a new object compared with the time spent looking at a familiar object.
The Bayley Scales of Infant Development is an individually administered psychometric assessment of
developmental functioning consisting of two scales - the Mental Development Index (MDI) and the
Psychomotor Development Index (PDI). Summaries for other relevant information about the mother
and infant are presented in Tables 3.8-3.9. Graphical summaries for two developmental measures, as
well as birthweight and gestational age are presented in Figures 3.9 and 3.10.

It is important to recognize that since each subject is not assigned 100 percent to be in a particular
latent class, but instead is given a probability based on the relative fit of the underlying LMMs,
the above-mentioned summaries are not simple statistics. The boxplot and associated table typically
display the min, max, 25th and 75th percentiles, as well as the mean and median. However, since every
subject is in every class with at least some small percentage, the min and max cannot be calculated as
they usually are - otherwise all classes would have the same min and max. For purposes of calculation
of the min and max, each subject was classified into a most likely class based on their class probabilities.
If a subject was at least twice as likely to be in their most likely class versus their second-most likely
class, then that subject was classified as being ’in’ their most likely class. Then, the min and max
based on subjects in the respective classes were used as each class’ min and max for the boxplot. The
median and 25th and 75th percentiles have a similar concern. For these, the easiest way to illustrate
calculation is by example. To calculate the median and 25th and 75th percentiles for birthweight for

Class 1, for example, the birthweight values for all subjects were lined up from smallest to highest, as

179



would normally done. The difference here is that alongside each subject’s birthweight, the probability
of being in Class 1 is also recorded. These class probabilities are summed and a CDF value is defined
for each subject as the cumulative sum of the Class 1 probabilities divided by the total of all of the
Class 1 probabilities. Then the birthweight value at the CDF values of 25, 50 and 75 percent were used
as the 25th percentile, median, and 75th percentile, respectively. For categorical yes/no responses, a

weighted percentage of ’yes’ responses is calculated based on each subject’s class probability.

Below are some observations related to how the classes compare both in their developmental mea-

sures and with respect to other miscellaneous covariates.

Green - ”Typical Patterns - More Active Sleep and Less Quiet Sleep”

e This class had the lowest average birthweight (1096.3 grams) - a fair bit lower than the next

closest class (1133.7 grams).
e This class also had the lowest gestational age (27.9 weeks).

e This class seemed to score in the middle on most of the developmental scales.

Red - ”Typical Patterns - More Quiet Sleep and Less Active Sleep”

e This class had the second-highest mean birth weight (1197 grams) and second-highest gestational

age (28.7 weeks).
e This class had the second-highest APGAR scores (5.7 at 1 minute and 7.3 at 5 minutes).

e This class had the highest mean of any class on the PLS-3 (101.2) and the highest or one of the

highest means for the other developmental measures.

Blue - ”Level Quiet Sleep, Level Active Sleep”
e This class was average in terms of birthweight (1149.9 grams) and gestational age (28.3 weeks).
e This class had the highest mean age of the mother (29.3 years).

e This class had among the lowest developmental scores by many measures.

Orange - "High Quiet Waking”
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Table 3.9: Example 2 - Summary of Infant/Mother Characteristics - Categorical

Percent of Infants with Associated Yes Response

Level Increased

Typical-More High Typical-More Quiet/Active Quiet/Active

Covariate Quiet Sleep  Quiet Waking  Active Sleep Sleep Waking
Firsttime Mother? 54.0 58.5 52.3 50.3 67.4
Multiple Birth? 26.3 28.5 29.1 19.8 19.1
Cesarean 60.6 63.0 59.0 62.0 45.5

e This class had the highest mean birth weight of any class by far (1354 grams) - the next highest

was 1197 grams.

e This class had the highest gestational age of any class by far (30.3 weeks) - the next highest was
28.7 weeks.

e This class had the lowest mean APGAR scores (5.1 at 1 minute, 7.0 at 5 minutes).

e While counts with developmental data were small for the development scores, the class scored

among the highest based on the few measures available.

Purple - ”Increased Quiet Waking and Active Waking”
e This class was average in terms of birthweight (1133.7 grams) and gestational age (28.2 weeks).
e This class had the highest APGAR scores (6.1 at 1 minute, 7.4 at 5 minutes).

e This class had the youngest mean age of the mother by far at 25.6 years - the next closest was

27.1.

e This class had the highest percent of first-time mothers (67.4 percent) and lowest percent of

cesarean sections (45.5 percent).

e This class had among the lowest developmental scores by many measures.

It is apparent from the class descriptions that developmental score is not a measure that simply

reflects the birthweight and/or gestational age of the infants. There is a more complex process at
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Figure 3.9: Summary of Characteristics of Identified Classes - Part 1

184



PLS 3

Mean Fagan

140
120 7

100

807 '
T

60

T T T T
High Quiet Waking Incr. Quiet/Active Waking  Level Quiet/Active Sleep Typical-More Active Sleep Typical-More Quiet Sleep

Class

(a) PLS 3

80

70 |

-

50
40 1
T T T T T
High Quiet Waking Incr. Quiet/Active Waking  Level Quiet/Active Sleep Typical-More Active Sleep Typical-More Quiet Sleep
Class
(b) Fagan

Figure 3.10: Summary of Characteristics of Identified Classes - Part 2

185



work, and analysis of the sleep-wake patterns of these infants may provide an earlier assessment of
their brain development. This example has demonstrated how the LCLMM allows the statistician to
both divide the population into subpopulations and simultaneously fit the best LMM for the data in
each group. In situations where there are several longitudinal measures, this can be a very complex

task, and the LCLMM provides a useful tool in this regard.

3.6 Example 3 - Atherosclerosis Risk in Communities Study

(ARIC) Revisited

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective epidemiologic study designed
to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic
diseases, and the variation in cardiovascular risk factors, medical care and disease by race, gender,
location, and date. The study was conducted in four communities in the United States - Forsyth
County, NC, Jackson, MS, the northwestern suburbs of Minneapolis, MN, and Washington County,
MD. Each ARIC field center randomly selected and recruited a cohort sample of approximately 4,000
individuals aged 45-64 from a defined population in their community. A total of 15,792 individuals
participated. Study participants received an extensive examination, including medical, social, and de-
mographic data. These participants were reexamined every three years with the first screen (baseline)
occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and final exam in
1996-98. Follow-up occurs yearly by telephone to maintain contact with participants and to assess
health status of the cohort.

A subset of 2,066 members of the ARIC study cohort participated in the Carotid MRI Substudy
in 2004-2005. The goal was to recruit 1,200 participants with high values of maximum carotid artery
wall thickness at their last ultrasound examination, and 800 individuals randomly sampled from the
remainder of the carotid artery wall thickness distribution. Participants had a maximum of the four
ARIC cohort examinations, plus one Carotid MRI Substudy examination. Measurement protocols
were identical at all five visits.

Fasting blood samples were collected at each examination and assayed for total cholesterol, HDL
cholesterol, and triglycerides. LDL cholesterol was calculated according to the Friedewald formula.
LDL cholesterol, HDL cholesterol, and triglycerides are commonly considered risk factors for coronary

artery disease (CAD) and other related diseases or events and are also routinely measured at annual
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physicals in the general population. Ballantyne [1998] notes that ”clinical trials with statins and
other lipid-regulating therapies have conclusively shown that lowering LDL cholesterol decreases both
morbidity and mortality from CAD and other vascular diseases.” Kwiterovich [1998] notes that ”the
Framingham Heart Study produced compelling epidemiologic evidence indicating that a low level of
HDL cholesterol was an independent predictor of coronary artery disease.” And Gotto [1998] points
out that ”"the current evidence argues compellingly for including triglycerides in the evaluation of
patient risk for CAD. ... The revived attention to hypertriglyceridemia with respect to increased CAD
risk represents an important step in assessing a patient’s global risk for developing CAD.”

For purposes of analysis, lab lipid data for the 2,066 individuals in the ARIC Carotid MRI substudy,
as well as information related to medication use for controlling cholesterol levels were utilized in the
models discussed below. Since the distribution of triglycerides is non-normal, a log transformation for
this lab value was used in the analyses. The goal of this application is to demonstrate the usefulness
of the LCLMM for modeling the data for LDL cholesterol, HDL cholesterol, and triglycerides simul-
taneously. Section 1.5 already discussed an analysis in which the class probabilities were determined
by the relative fit of the model from each underlying latent class. In order to illustrate another useful
way to specify a LCLMM, this data is analyzed a second time here. In this revised analysis, class
membership is instead structured such that individuals are classified into groups based on a limited
number of prespecified factors.

As in Section 1.5, the LMM is fit with an intercept and linear and quadratic terms for age for
each of the three lipid parameters. Two indicator variables - one for LDL cholesterol and one for HDL
cholesterol - are also included to account for the effect of cholesterol medication on these measures.
Random intercepts are included for all three lipid parameters, and a random slope is fit for LDL (the
variances for the random slopes for HDL and triglycerides were close to 0). The random intercept and
slope for LDL are fit as being correlated, and the error terms are assumed to be uncorrelated, with
separate variances for each lipid parameter. For the LCLMM, the intercept and linear and quadratic
age terms for HDL, LDL, and triglycerides are allowed to vary for each latent class or subpopulation.
However, the effect of the cholesterol-lowering medication on HDL and LDL is fit as being the same for
each latent class. Random intercepts for all three lipids and a random slope variable for LDL cholesterol
are fit in the LCLMM as in the LMM, with correlation permitted between the LDL intercept and slope.
The LMM (1 class) as well as the LCLMM with 2-5 classes were fit. In the LCLMM, the variances
were permitted to differ by latent class, while the correlation parameter was fit as being the same for

each latent class. The main difference in this application is that class membership is modeled via a
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logistic regression model with an intercept and the following covariates:

e Did the subject ever smoke cigarettes? (1=Yes/0=No)

e Does the subject exercise or play sports? (1=Yes/0=No)

e Has the subject ever been treated for high blood pressure? (1=Yes/0=No)
o Has the subject ever been treated for high cholesterol? (1=Yes/0=No)

e Baseline BMI

e Baseline HDL Cholesterol

e Baseline Glucose

e Baseline Triglycerides

e Baseline Heart Rate

e Number of glasses of wine consumed per week

Selected information-based criteria and the within-subject MSE from each of the models are shown
in Table 3.10. Note that the likelihood-based criteria all choose the highest number of classes. This
is consistent with a result found in the simulation study presented in Section 2.8, which found that
the usual likelihood-based criteria tend to overestimate the number of classes that should be fit. Note
that the ICL shows a big improvement in going from one class to two classes, then has a somewhat
smaller drop from two to three classes, and then decreases more slightly as classes four and five are
added. This is evidence that perhaps the 2- or 3-class models fit reasonably well and there is not a
substantial benefit of adding classes four and five. In addition, note that entropy jumps when the
fourth class is added, indicating more uncertainty in class assignments after three classes. Another
measure to examine is the within-subject MSE. The above-mentioned simulation study showed that
the within-subject MSE provided a useful measure by which to choose from competing LCLMMs. In
this case, the within-subject MSE shows an improvement in model fit for HDL when the second class
is added, a slight improvement for triglycerides, and a slightly worse fit for LDL. Adding the third and
subsequent classes does not appear to improve the model fit based on within-subject MSEs. Given
the above, the 2-class model was selected in this case. This is indeed consistent with the ARIC study

data. Recall that the 2,066 subjects were selected as two subsets - approximately 1,200 participants
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with high values of maximum carotid artery wall thickness at their last ultrasound examination and
800 individuals randomly sampled from the remainder of the carotid artery wall thickness distribution.

Table 3.10: Example 3 - Information Criteria and MSEs

Number of Classes Fit

Measure 1 2 3 4 )
Observed Likelihood -82670.94 -80649.81 -79882.32 -79393.77 -79016.73
AIC 165379.87 161391.63 159910.64 158987.54 158287.45
CAIC 165423.86 161498.12 160079.64 159219.05 158581.47
BIC 165486.91 161650.76  160321.87 159550.88 159002.89
Entropy 0.00  119.37 223.17 470.79 494.06
C 165341.88 161538.37 160210.99 159729.12 159021.58
ICL 165486.91 161889.51 160768.22 160492.46 159991.01
MSE (Within-Subject)

- HDL Cholesterol 47.669 45.393 46.204 46.204 46.481
- LDL Cholesterol 365.078 368.808 369.400 369.400 369.756
- Triglycerides 0.073 0.072 0.072 0.072 0.071
Number of Parameters (v) 19 46 73 100 127

The fitted population trajectories for each lab parameter are displayed in Figure 3.11. In addition,
the observed subject trajectories for subjects identified in each latent class are presented in Figures
3.12-3.13, along with the fitted population trajectories for each class. The final parameter estimates
are displayed in Table 3.11. Similar to the 2-class model fit from the example in Section 1.5, the
model detects a class with higher HDL and lower triglycerides than the other - this class is labeled
as 'Optimal’ for discussion here, while the class with lower HDL and higher triglycerides is labeled as
"At-Risk’. The ’Optimal’ class also tends to have LDL that is average and steady, while the ’At-Risk’
class has LDL that starts out higher but then decreases. This is associated with the fact that while
both groups tended to be on cholesterol-lowering meds at baseline in equal percentages, a greater
percentage of the At-Risk’ group tended to be on cholesterol-lowering meds by visit 5.

The main difference between this model and the model discussed in Section 1.5 is that an individ-
ual’s mixture probabilities are determined by a logistic regression model which has a limited number of
variables. This can be a very powerful feature since it allows the statistician to simultaneously divide

the population into classes based on a set of class membership parameters while also fitting the best
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Table 3.11: Example 3 - Parameter Estimates for 2-Class LCLMM with Class-Specific Variances

Optimal At-Risk

Parameter Estimate SE Estimate SE
Effect of Chol. Meds on LDL -17.03  0.6919 —

Effect of Chol. Meds on HDL -0.17  0.2172 —

LDL - Intercept 130.57  1.0473 141.45  0.9825
LDL - Linear (Age) -0.04  0.0858 -1.98  0.0890
LDL - Quadratic (Age) -0.03  0.0074 -0.03  0.0075
HDL - Intercept 64.49  0.5595 41.56  0.2700
HDL - Linear (Age) -0.57  0.0355 0.05  0.0193
HDL - Quadratic (Age) -0.01  0.0032 -0.00  0.0017
Triglyc. - Intercept 4.55  0.0127 4.99  0.0125
Triglyc. - Linear (Age) 0.02  0.0009 0.01  0.0009
Triglyc. - Quadratic (Age) -0.00  0.0001 -0.00  0.0001
Variance (Random Int - LDL) 675.90 40.1351 804.85 42.4745
Variance (Random Slope - LDL) 147 0.2945 2.53  0.3398
Variance (Random Int - HDL) 162.57  9.2756 44.37  2.3423
Variance (Random Int - Triglyc) 0.09  0.0056 0.12  0.0060
Variance (Error - LDL) 443.47 12.9086 502.510 12.9419
Variance (Error - HDL) 93.90  2.8177 33.059  0.8661
Variance (Error - Triglyc) 0.075  0.0019 0.097  0.0021
Corr (Rnd Int LDL/Slope LDL) -0.499  0.0406 —
Class-Membership Parameters:

- Intercept 0.0 - 26.439  4.7331
- Ever Smoked Cigarettes? 0.0 - 0.919  0.5215
- Exercise or Play Sports? 0.0 - -0.536  0.6093
- Ever Been Treated for High Blood Pressure? 0.0 - -0.549  0.5540
- Ever Been Treated for High Cholesterol? 0.0 - 2.608  0.6250
- Baseline BMI 0.0 - -0.073  0.0553
- Baseline HDL Cholesterol 0.0 - -0.672  0.0988
- Baseline Glucose 0.0 - -0.011  0.0125
- Baseline Triglycerides 0.0 - 0.062  0.0106
- Baseline Heart Rate 0.0 - 0.066  0.0285
- Number of Glasses of Wine Per Week 0.0 - -0.129  0.0791
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LMMs to the data for each of the classes. The fitted odds ratios of being classified in the At-Risk
class versus the Optimal class are shown in Table 3.12, including point estimates and 95% confidence
intervals. Note that baseline LDL was not included in this model since LDL cholesterol values can
be modified with medication use. Therefore, the indicator for whether a subject was treated for high

cholesterol was included instead.

Table 3.12: Example 3 - Odds Ratios

Odds Ratio of Being in At-Risk Class

Covariate Point Estimate 95% CI

Ever Been Treated for High Cholesterol? 13.57 3.99 - 46.20
Ever Smoked Cigarettes? 2.51 0.90 - 6.97
Baseline Heart Rate 1.07 1.01 - 1.13
Baseline Triglycerides 1.06 1.04 - 1.09
Baseline Glucose 0.99 0.97 - 1.01
Baseline BMI 0.93 0.83 - 1.04
Number of Glasses of Wine Per Week 0.88 0.75 - 1.03
Exercise or Play Sports? 0.59 0.18 - 1.93
Ever Been Treated for High Blood Pressure? 0.58 0.19 - 1.71
Baseline HDL Cholesterol 0.51 042 - 0.62

As you might expect, the indicator for whether a subject was treated for high cholesterol is the
most significant of the covariates, with subjects treated for high cholesterol found to have 13.57 times
the odds of being in the At-Risk class as subjects not treated for high cholesterol. Subjects who have
smoked were found to have 2.5 times the odds of being in the At-Risk class, although this was not quite
statistically significant. Increases by 1 unit in baseline heart rate and triglycerides were associated
with a 6-7% increase in the odds of being in the At-Risk class. Baseline glucose and BMI did not
have a statistically significant result. Exercising/playing sports and drinking wine were associated
with decreases in one’s odds of being in the At-Risk class (again not statistically significant). Finally,
the odds of being classified in the At-Risk class halved for each single-unit increase in baseline HDL
cholesterol level - a statistically significant and powerful association!

Lastly, a note of caution is warranted related to the use of the logistic model for determination of
class probabilities. When comparing the plots for the 2-class models from this section with those from
Chapter 1, it is apparent that they are nearly identical. When distinguishable patterns are present

in the longitudinal data (as there are here), and the class membership parameters are sufficiently
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informative so as to differentiate the subjects, then the resulting models would be expected to be
comparable. In such a case, the model from this section has the added benefit of simultaneously
obtaining estimates for the parameters in the class membership model. However, when the class
membership model is uninformative and there is little information upon which to differentiate subjects,
this model has the potential to fit the data for certain subjects poorly - in fact worse than had the
LMM been run. As an example, the LCLMM in the above example was refit with only an intercept
and baseline BMI in the class membership model. While the likelihood values do improve slightly when
compared with the LMM, the within-subject MSEs for this model worsen. The within-subject MSE
for this model was 49.9 for HDL cholesterol (vs. just 47.7 for the LMM), 381.1 for LDL cholesterol (vs.
just 365.1 for the LMM), and 0.074 for triglycerides (vs. 0.073 for the LMM). Given the simplicity
of the class membership model, the class probabilities for each individual will be fit solely based on
baseline BMI. However, given so little information, it is likely that some subjects will be misclassified.
For example, selected subjects may have a high BMI and are therefore classified into the At-Risk class
while all of their other characteristics may indicate a healthy lifestyle. In these cases, the subject will
receive a fitted value representative of the At-Risk class even though their longitudinal data may be
representative of the Optimal class. One way to examine whether this is the case is to compare the
fitted class probabilities based on the class membership model with the relative fit of each underlying
LMM (see Equation 3.10). Cross-tabulations of the two sets of class probabilities are shown in Tables
3.13 and 3.14 for the more informative and less informative class membership models, respectively. In
the more informative case, more than 1,700 of the 2,066 subjects have similar class probabilities based
on both sets of probabilities. This is not the case in the less informative case, where only about 600
subjects have similar class probabilities. In fact, in the less informative case, there are 165 subjects
who have a 70-100% probability of being in the At-Risk class based on the logistic model, but would
in fact be fit better under the Optimal class.

This example, in which the ARIC data was reanalyzed with a structured class-membership model,
demonstrates the utility as well as the potential pitfalls of the approach. While the model provides
the researcher with added insight into the factors which drive subjects to classes, it also may lead to a
poor model fit for selected subjects. In cases where the class probabilities based on the logistic model
and the relative fit of the underlying LMMs do not agree, the statistician should limit interpretation

to the subpopulation level and avoid commentary on individual trajectories.
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Table 3.13: Example 3 - Cross-Tabulation of Class Probabilities - More Informative Class Membership
Model

Prob(AtRisk) Based on Relative Fit

Frequency
Percent
Row Percent 0%-30% 30%-70% 70%-100% Total
Column Percent

0-30% 720 96 25 841
34.85 4.65 1.21 40.71
85.61 11.41 2.97
Prob(AtRisk) 91.49 39.67 2.41
Based on 30%-70% 28 38 49 115
1.36 1.84 2.37 5.57
Logistic 24.35 33.04 42.61
3.56 15.70 4.73
Model
70%-100% 39 108 963 1110
1.89 5.23 46.61 53.73
3.51 9.73 86.76
4.96 44.63 92.86
Total 787 242 1037 2066
38.09 11.71 50.19 100.00
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Table 3.14: Example 3 - Cross-Tabulation of Class Probabilities - Less-Informative Class Membership
Model

Prob(AtRisk) Based on Relative Fit

Frequency
Percent
Row Percent 0%-30%  30%-70% 70%-100% Total

Column Percent

0-30% 8 0 0 8
0.39 0.00 0.00 0.39
100.00 0.00 0.00
Prob(AtRisk) 1.15 0.00 0.00
Based on 30%-70% 522 151 695 1368
25.27 7.31 33.64 66.21
Logistic 38.16 11.04 50.80
75.11 66.23 60.80
Model
70%-100% 165 7 448 690
7.99 3.73 21.68 33.40
23.91 11.16 64.93
23.74 33.77 39.20
Total 695 228 1143 2066
33.64 11.04 55.32 100.00
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3.7 Conclusions and Further Research

The Latent Class Linear Mixed Model provides a flexible approach to more effectively model longitudi-
nal data in the presence of unknown subpopulations. In addition to the usual assumptions necessary to
run the linear mixed model, the statistician must make several additional ones. These include specify-
ing the number of latent classes, how class membership should be modeled, and which parameters are
permitted to vary by latent class. The resulting parameter estimates offer the statistician important
information related to the makeup of the subpopulations as well as their associated trajectories. The
examples presented in this chapter illustrate possible uses of the methods and can serve as a reference
for statisticians as they begin to utilize these methods in their every day research.

Future research should examine a hybrid of the relative-fit and structured class membership models.
Since there may be instances in which the class membership model fits a subject as being in one class
while the subject may have longitudinal data which would be better fit by another, a model which fits
each subject’s class probabilities based on a combination of the two would offer an intermediate and

perhaps more reliable result.
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Appendix A

Quantities Used in Derivative Calculations
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Appendix B

Derivatives for the Gradient and

Hessian-Based Algorithms

The derivatives of the quantities Q1;, Q2ik, and Qs (defined in Equation 1.22) with respect to
the parameters are presented below. Note that in cases where the variances are class-specific, some

first and second derivatives will be equal to 0.

First Derivatives:
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Second Derivatives:

tit; X (1 — 27Tij) (7Tij — 7Ti2j) ifj=r=p
tlt; X (]. — 27’(1‘]') (771'1']'71'1'1)) 1f] =r 7& P
PRy _ , ) , ‘
dayoa, | titix m (e —wh) —mem] ifp=r#
bt x (1= 2m) (~mymr) it =p
tit] X 27 mip ifjAr#£p
0%Qsi _ X'2-1x xX/3-1 X/ /
9808 Qzik X (=X[X'X5) + Qzie x (XX ear) (X(X, eir)
82Q3ik f =k _ W/E_lw W/E_l W/E_l /
OARON, [for j =k = Qaix X (— P24k l) + Qsik X ( i eik) ( 5 eik)
forj#k = 0
82Q3ik _ WwW's-Ix ws-! X/ ’
MNOB Qsik ¥ (~WiE' X)) + Qi x (WiX eir) (XX, eir)
9?Qsik OR i, 5
505,6 8,6 /( 2 k)
9?Qsi OR i, 5
OOON, Oy, /( 2 k)
9*Qsik —3 OMaix, OMay
= 2 M) (Ma;
9000 X exp (Myi) (Mair) 20 00
o 0% My,
— exp (M) (Moy) > 80829k
OMyp, _o OMajy,
GXp( 1 k) 760 (MQ k) 90
—1 OMy OMiir
+ (M22k) 80 exXp (th) aT
Mo 1 7 )
+ ( 21k) 9000 exp (M12k>
—o OMo, OMyp,
— (M) ~? —_— My;
( 2 k) 90 90 eXp( 1 k)

201



Appendix C

Derivatives for the Random Effects

Calculations

First Derivatives:
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Second Derivatives:
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Appendix D

Proof of Hathaway’s Condition with

Regard to Variance Constraints

Recall Hathaway’s Condition (HC) was: all eigenvalues of 33; E;*l must be > some ¢ > 0.

Theorem: Bounding the variances of the random effects in D; and the residual error variances in
R; where ¥; = ZD;Z + R, as proposed in Section 1.4.2, results in a variance-covariance matrix 3;

which satisfies Hathaway’s condition.

Proof:

3, is symmetric implies

3 = EJT
(=" = ;!
=z = G E)T = 5l

Being symmetric, EjZ};*l and E;*l 3, have the same spectral decomposition. Thus, if u and A are an

eigenvector and eigenvalue pair, then

;20 u = Au
-1
¥ ¥u = Au
Eju = )\Ej*u
Alternatively, one could write
uTEju _
uTEJ*u = A
DM N w33

ulu - - ulu
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It is known that

minimum { u?l 3u

-t ol -1
u#0 uTEj*u} = A, = the smallest eigenvalue of 37,3,

. o xT2,x
Thus, HC is R, ;. (x) = .

xsz*x

> cVx#0

If 33; is of the form ¥; = ZD,Z + R;, then 3; has a linear covariance structure and

H
2:j = Zh:l Gh"'jh;

in which Gy, is a known positive semidefinite (PSD) matrix and 7; = [71--- T,m| are the variance-

covariance parameters for class j.

H

Z (XTGhX) Tjh
T
Then R; j, (x) = ’fl = “";’T:’j* in which w;, = "i‘;’;x > 0 by the PSD property of Gy,.

> (xrGrx) Tjun

h=1

Thus HC is 5:17 > cVYw >0 (i.e. wp, > 0VYh) or equivalently 0 < w? (Tj — c74x) YW such that

wp, > 0Vh

Hathaway’s condition is satisfied by the proposed bounds on both the variances in D;

and the residual error variances in R;.
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