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Abstract

STEVEN W. ENCK: Latent Class Linear Mixed Models -
A General Approach Implemented via SAS R© Macro

with a Tutorial for Clinical Researchers
(Under the direction of Paul Stewart)

Linear mixed models provide a flexible, intuitive method for analyzing repeated-measures data

when the population being studied can be thought of as either a single population or as a set of known

subpopulations. However, in many cases, the underlying subpopulations are not known. Furthermore,

the factors that determine the subpopulations can be extremely complex or unmeasurable. In such

cases, a different approach is required in order to more accurately analyze the data. The Latent

Class Linear Mixed Model (LCLMM) combines the features of the linear mixed model (LMM) with

an additional component, which partitions the population into subpopulations or latent classes. This

model has usually been specified with relatively simple, restrictive assumptions.

In this dissertation, the methods related to the LCLMM are extended to provide a more general

model specification. Fixed-effects may be specified as a combination of class-specific effects and across-

class effects. Variances may be specified as being class-specific or equal across classes, a general

correlation structure for the random effects is permitted, and multiple residual error variances may be

fit. The bound proposed by Hathaway [1985] on the variances to ensure consistency is examined in the

context of mixtures of linear mixed models. Class membership probabilities may be specified in one

of two ways - via a logistic regression model or using our proposed method in which class membership

is estimated based on the relative fit of the underlying linear mixed models. These methods are

implemented in a new SAS R© macro which offers several options for estimation. In addition to an EM

algorithm, gradient-based methods, including quasi-Newton, as well as Hessian-based methods, such as

Newton-Raphson, are available to the user. Parameter standard errors are estimated, and predictions

of the random effects are derived and calculated. Practical issues, including choosing the number of

latent classes and estimation method, are discussed and guidelines are provided based on simulation

studies. The stability and advantage of the proposed methods are also examined via simulation study.

Finally, our methods are applied to several simple simulated datasets as well as to three real-world
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applications to illustrate their usefulness for practical applications.
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Chapter 1

Latent Class Linear Mixed Models - A

General Approach

1.1 Introduction

Linear mixed models provide a flexible, intuitive method for analyzing repeated-measures data when

the population being studied can be thought of as either a single population or as a set of known

subpopulations. However, in many cases, the underlying subpopulations are not known. Furthermore,

the factors that determine the subpopulations can be extremely complex or unmeasurable. In such

cases, a different approach is required in order to more accurately analyze the data. The Latent

Class Linear Mixed Model (LCLMM) combines the features of the linear mixed model (LMM) with

an additional component which partitions the population into subpopulations or latent classes. In the

existing literature, this model has usually been specified with relatively simple, restrictive assumptions.

A single residual error variance and either a diagonal or unstructured variance-covariance matrix of the

random effects is typical, with variances usually assumed to be equal across latent classes. In addition,

the population is typically assumed to comprise a simple mixture of latent classes. Some models have

allowed a structure for class membership represented by a logistic regression model. Subject-specific

predictions, a valuable feature of linear mixed models, have not been examined in the context of the

LCLMM. Finally, computations have for the most part focused on the use of an EM algorithm, which

is known to be relatively slow to converge, and software is not currently available for statisticians to

apply the methods.

In this chapter, the methods related to the LCLMM are extended to provide a more general model

specification. Fixed-effects may be specified as a combination of class-specific effects and across-class

effects. Variances may be specified as being class-specific or equal across classes, a general correlation



structure for the random effects is permitted, and multiple residual error variances may be fit. The

bound proposed by Hathaway [1985] on the variances to ensure consistency is examined in the context

of mixtures of linear mixed models. Class membership probabilities may be specified in one of two ways

- via a logistic regression model or using our proposed method in which class membership is estimated

based on the relative fit of the underlying linear mixed models. First- and second-derivatives are

presented for use in gradient and Hessian-based algorithms. Predictions of the random effects for

the LCLMM are derived and calculated. Finally, these methods are applied to lipid data from the

Atherosclerosis Risk in Communities (ARIC) study (see ARIC Investigators [1989]).

1.2 Defining the Latent Class Linear Mixed Model

Before examining the literature, it is helpful to first define the model which will be examined throughout

this chapter. As noted earlier, the LMM allows for a logical specification of both the means and

variances. It is a LMM that provides the basis for the LCLMM. Searle et al [1992] provides a detailed

presentation of linear mixed models. A brief review is provided here. For subject i, we assume

yi = Xiβ + Zibi + ei (1.1)

where:

yi is an ni × 1 vector of observations

Xi is an ni × p1 design matrix for the fixed effects

β is a p1 × 1 unknown vector of fixed effects

Zi is an ni × q design matrix for the random effects

bi is a q × 1 unknown vector of random effects

ei is an ni × 1 unknown vector of random error terms

Further, ei and bi are assumed to be mutually independent of one another and to have the following

properties:
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E (bi) = 0

Var (bi) = D

Cov (bi,b′h) = 0 for i 6= h

E (ei) = 0

Var (ei) = Ri

Cov (bi, ei) = 0

(1.2)

And finally, the following distributional properties are assumed to apply to the random effects, bi,

and residuals, yi −Xiβ:

 bi

yi −Xiβ

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (1.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture

of K LMMs, one for each of the K latent classes. Note that the value K is specified by the statistician

a priori. Details related to selecting K are discussed in Section 2.8. Following the notation in Lin et

al [2002a], define for subject i:

cik =

 1 if subject i is a member of class k

0 if subject i is NOT a member of class k

ci1, . . . , ciK ∼ Multinomial (1, πi1, . . . , πiK)

For simplicity in later derivations, also define ci =
[
ci1 ci2 · · · ciK

]′
.

The πik, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

πik = P (cik = 1 | ti) =
exp (t′iαk)∑K

j=1 exp (t′iαj)
(1.4)

where:

ti is the design vector related to class membership for subject i

αk is an unknown vector of class-membership parameters for class k with α1 = 0
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Further, given that subject i is in class k, define the LMM for subject i as follows:

yi = Xiβ + Wiλk + Zibi + ei (1.5)

where the following additional definitions are provided:

Wi is an ni × p2 design matrix for the class-specific fixed effects

λk is a p2 × 1 unknown vector of class-specific fixed effects for class k

It is useful to note that the parameters in β will apply to all subjects through the values of the

corresponding column in Xi. The class-specific parameters, λk, however, are different for each latent

class.

The error terms and random effects are assumed to have the same properties as in Equation 1.2.

Finally, similar to the LMM, the following distributional properties are assumed to apply to the random

effects, bi, and residuals, yi −Xiβ −Wiλk:

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (1.6)

Lin et al [2002a] creates a further construct which defines a matrix M as

M =


...

...
...

λ1 λ2 · · · λK

...
...

...


Recalling the definition of ci, the yi could be written succinctly as:

yi = Xiβ + Wi (Mci) + Zibi + ei

where the subject’s class membership and corresponding λk are accounted for in the term (Mci).

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that
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both of the following are true:

[
t1 t2 · · · tn

]
is full rank, and



X1 W1 . . . Z1 . . .

X2 . W2 . . . Z2 . .

... . .
. . . . . .

. . . .

Xn . . . Wn . . . Zn


is full rank.

For notational convenience, denote Θ as the combined parameter vector comprised of α2 . . .αK ,

β, λ1 . . .λK , and θ, where θ contains the unique variance components which determine D and Ri.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values Xi, Wi, Zi, and ti. In short,

log L (Θ)LMM =
n∑

i=1

log f (yi) (1.7)

log L (Θ)LCLMM =
n∑

i=1

log
K∑

k=1

πikf (yi | cik = 1) (1.8)

with f (·) being the density defined by

(yi) ∼ N (Xiβ,ZiDZ′i + Ri)

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)

Several points are of note. First, note the difference between Equations 1.7 and 1.8 - the likelihood

for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore πi1 = 1, the

LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has

one πik = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects

assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of

the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.
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1.3 Literature Review

With an understanding of the LCLMM in hand, attention turns toward previous research related to

these models as well as comparable models in the statistical literature.

For a detailed historical account of maximum likelihood estimation methods used for mixture

models, the reader is referred to Redner and Walker [1984]. This article gives particular attention to

the EM algorithm and its application to mixtures of densities from exponential families. In addition,

Bohning and Seidel [2003] provided a review of more recent developments in mixture models.

A variety of articles have been published which examine latent class models in the context of the

LMM. Most have utilized an EM algorithm in calculations, and many have also included a second

endpoint, either categorical or time-to-event, which was modeled simultaneously with the repeated

measures. Lin et al [2000] proposed a latent class model to jointly model longitudinal data and a

categorical event outcome. The longitudinal submodel was a LMM which included random effects

with an unstructured variance-covariance matrix. In addition, a single residual error variance was

fit. Calculations were performed using a generalized EM algorithm. This model is somewhat similar

to that presented in Lin et al [2002a]. However, the second endpoint in the latter article was a

survival endpoint which was modeled using a frailty model. In both articles, the mixed model had

variances which were modeled as being equal across classes, and class membership was modeled via

a logit model, with subjects having unique class-membership probabilities based on their covariates.

Lin et al [2004] replaced the survival submodel in the previous article with a multiplicative intensity

model to describe a visit process. Lin et al [2002b] proposed a joint analysis of time-to-event data

with multiple longitudinal variables via a mixture model. The longitudinal submodel was based on

the LMM and allowed for different residual error variances for each longitudinal variable, as well as

the inclusion of random effects with an unstructured variance-covariance matrix. However, variances

were assumed to be equal across classes. Finally, McCulloch [2003] proposed to jointly model three

endpoints simultaneously using a latent class model - a survival endpoint, longitudinal endpoint, and a

repeated multivariate binary endpoint. The longitudinal portion of the model included random effects,

with one random effect variance and one residual error variance computed across latent classes. The

EM algorithm was once again utilized to obtain parameter estimates.

While the articles mentioned above included a second or third endpoint, the next set of articles

focused exclusively on generalizing the LMM to simultaneously estimate group membership. Roy
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[2003] used a pattern mixture model to model longitudinal data with nonignorable dropouts. Class

membership was modeled via an ordinal logistic regression model with length of time in the study

as the only covariate. Estimates were calculated using a modified Newton-Raphson algorithm with

a multiplier applied to the change in estimates at each iteration. Second derivatives were calculated

numerically rather than analytically, and class-specific variances were not considered. The model did

include random effects. Celeux et al. [2005] proposed to use a mixture of LMMs to model the

clustering of gene expression data. Three simple variance-covariance structures were specified, and

each model was described as having either

• variances equal across classes,

• only the random effect variance as class-specific, or

• both random effect and residual error variances class-specific.

The EM algorithm was used to fit the structurally simple models, and the variances were not bounded

to ensure a finite likelihood. Class membership was fit as being the same for all subjects.

Research has also focused on models which generalize the random effects distribution of the usual

LMM to be a mixture of normal distributions with different means, but with variances equal across

classes. This is in contrast to the methods proposed in this dissertation where the random effects

distribution is modeled as a mixture of normal distributions with zero mean and class-specific vari-

ances. Verbeke and Lesaffre [1996] investigated the impact of heterogeneity in the random effects

distribution. The authors proposed a mixture of LMMs in which the random effects distribution

was modeled as described above. The authors showed that if normality was assumed in situations

where the distribution of the random effects was a finite mixture of normal distributions, then the

random effects may be badly estimated. Verbeke and Molenberghs [2000] provided further details

related to this model and referred to the model as the ’Heterogeneity Model’. In the proposed model,

class-specific fixed-effects were not fit, nor was detail presented regarding possible variance-covariance

structures. Spiessens et al [2002] implemented the version of the Heterogeneity Model described in

Verbeke and Lesaffre [1996] in a SAS R© macro using PROC NLMIXED. The fitted model assumed

that the weights for each latent class were the same for all subjects. Xu and Hedeker [2001] proposed

a model similar to Verbeke and Molenberghs [2000] and Spiessens et al [2002], in which the authors

provided details related to both EM and Fisher scoring algorithms. Proust and Jacqmin-Gadda [2005]

proposed a slightly more general model than Verbeke and Lesaffre [1996]. In their revised model,
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some random effects were modeled by a single multivariate Normal distribution, while others were

modeled by a mixture of multivariate Normal distributions, each with a class-specific mean but the

same variance-covariance matrix. The group membership probabilities were once again modeled as

being the same for all subjects. The authors used a modified Marquardt optimization algorithm, sim-

ilar to Newton-Raphson, to solve for the parameters. Gusnanto et al [2005] applied a similar model

to an application in gene expression data.

Related models have been proposed which have somewhat different model specifications but which

share many of the same features of the LCLMM discussed in this research. Muthen et al [2002]

proposed a finite mixture model with random effects. While many of the components are similar to

the model proposed in this dissertation, the model specification is somewhat different and acts through

a continuous latent variable, ηi. The model is written as follows:

yi = Λkηi + εi

ηi = αk + Γkxi + ςi

where: yi denotes a vector of continuous outcome variables

xi denotes a vector of covariates

ηi denotes a vector of continuous variables (latent)

Λk denotes the parameters related to ηi for the kth class

αk denotes the intercept parameters for the kth class

Γk denotes the parameters associated with xi for the kth class

εi ∼ N(0,Θk)

ςi ∼ N(0,Ψk)

In words, the continuous latent variable ηi is modeled as a function of covariates xi with class-specific

parameters Γk and random effects ςi. This latent variable is then modeled as a covariate with class-

specific parameters Λk and error terms εi. This model can more readily be understood by examining

the resulting multivariate Normal distributions, given class membership (ci), which are shown below.

For comparison purposes, the corresponding values for the LCLMM are also provided.
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yi | ci,xi ∼ N (µk,Σk)

with:

Muthen et al [2002]: LCLMM:

µk = Λk (αk + Γkxi) µk = Xiβ + Wiλk

Σk = ΛkΦkΛ′k + Θk Σk = ZiDZ′i + Ri

Note the differences in the models. Most notable is the fact that while the variance covariance matrix

of the random effects is pre- and post-mulitplied by Zi in the case of the LCLMM and Λk in the case

of the Muthen model, the Zi matrix does not appear in the mean vector for the LCLMM.

Roy and Lin [2000] proposed a latent variable model in which multiple continuous outcomes were

observed over time. At each timepoint, various covariates were assumed to be related to an underlying

continuous latent variable. The latent variables for each subject were then assumed to be correlated

by including random effects in the model. Estimates were obtained via the EM algorithm. Note that

this model is somewhat different than the model examined in this dissertation since there is only one

class. The continuous latent variables are instead used to provide a summary measure of all of the

covariates at each timepoint. Muthen [2002] provided an overview of methods of statistical analysis

which make use of latent variables, presenting four modeling frameworks. Framework C is most similar

to the models being considered in this research, with finite mixture modeling included as a particular

case. A brief example was provided but detail regarding variance-covariance structures, class-specific

variances, etc. was not provided. Yau et al [2003] proposed a two-component mixture regression

model in which random effects were included in both a logistic model of the mixture probabilities and

the underlying linear models. Computations were performed via an EM algorithm. A single variance

was fit for the random effect in the mixture probability portion of the model, and a variance for each

group was fit in the linear model portion of the model.

Since the proposed LCLMM combines the traditional LMM with classification into groups, research

in the area of model-based cluster analysis provides an additional perspective on these models. These

models do not typically include random effects in their model specification and therefore are not as

straightforward to use in model specifications where repeated measures are involved. Banfield and

Raftery [1993] proposed a clustering algorithm which parameterizes the variance-covariance matrix
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Σk in terms of its eigenvalue decomposition Σk = DkΛkD′k = DkλkAkD′k, where Dk is the matrix

of eigenvectors and Λk is a diagonal matrix with the eigenvalues of Σk on the diagonal. Note that

Λk = λkAk. Effectively, in their notation, Dk determines the orientation of the kth cluster, λk its

size, and Ak its shape. The authors also discussed the different models that result when different sets

of components are allowed to vary by cluster. Details were not provided related to how the models

were fit, and necessary conditions to ensure a finite likelihood were not discussed. Fraley and Raftery

[2002] provided a review of several clustering methods. One of the two main models which were

reviewed maximized the multivariate normal likelihood using an EM algorithm, although few details

were provided. The second was described as model-based agglomerative hierarchical clustering, which

operates by successively merging pairs of clusters that result in the greatest increase in the classification

likelihood. Fraley et al. [2003] proposed a model-based clustering algorithm which incrementally adds

clusters as needed until the model fit is no longer improved. In this algorithm, a preliminary mixture

model is fit with fewer classes than would be expected. Then the set of observations which are fit worst

are reclassified as being in a new cluster, and the model is re-fit. The algorithm continues until adding

a cluster results in a decrease to the BIC. Peel and McLachlan [2000] proposed a mixture model based

on the multivariate t-distribution. In the model, variances were assumed to be equal across classes,

and the same class membership probabilities were assumed to apply to all subjects. The authors used

an EM/ECM algorithm to solve for estimates. The variance-covariance matrix was unstructured in

this model. Arcidiacono and Jones [2003] applied the ECM algorithm described in Meng and Rubin

[1993] to the problem of estimation in finite mixture models. Particular focus was given to likelihoods

which can be factored into two quantities, one containing a function related to one set of parameters,

and a second which includes potentially all of the parameters. Li [2005] proposed using a multilayer

mixture model for applications in clustering. Each individual cluster was modeled by a mixture of

normal distributions. In this model, clusters do not share component distributions - each cluster is a

mixture of its own set of normal distributions. The proposed model was simple in structure, consisting

of means and variances. Random effects, application to repeated-measures data, and the specification

of a structure for class membership were not included as part of the proposed model. Celeux and

Govaert [1992] proposed a classification EM algorithm to estimate parameters in mixture models.

In the approach, the usual E-step was followed, in which an estimate of the probability of being in

each class was updated. In a classification step, each subject was assigned to be in the class with the

highest probability, and the usual M-step was calculated. A further proposal called for stochastically

determining the class assignment based on the probabilities of being in each latent class.
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And finally, no literature review would be complete without a review of the capabilities of existing

software packages. Several packages are available which provide estimates of the parameters in finite

mixture models. Most notably of these are MIXMOD, Mplus, MCLUST, and FlexMix. While all

provide for the computation of parameters in specific versions of these models or related models, none

focuses on the mixture of LMMs and allows for the general model specification which is the focus of

this dissertation. Biernacki et al [2005] provided a review of the features of the software package

MIXMOD. This package fits mixture models of multivariate Gaussian distributions. The variance-

covariance structure is modeled according to Banfield and Raftery [1993] and various quantities are

allowed to be estimated across classes or to be class-specific. A more detailed review of the underlying

model described in Banfield and Raftery [1993] was provided earlier in this section. Random effects

are not included in this model. Fraley and Raftery [2006] described the models fit in the software

package MCLUST. Gaussian mixture models are fit with class-specific means and a variety of variance-

covariance structures. The variance-covariance structures ranged from constant variance across latent

classes to unconstrained variances to structured variances where some components are allowed to vary

across latent classes. The variance-covariance matrix is also structured as in Banfield and Raftery

[1993]. The models do not use a random effects specification of the variance-covariance structure, and

the mixture probabilities apply to all subjects rather than allowing for different underlying distributions

for each subject. Grun and Leisch [2007] described the capabilities of the software package FlexMix.

The authors indicate that the package provides the E-step for the EM algorithm for mixture models

and the user can select a driver to run the M-step for mixtures of multivariate Gaussian distributions.

However, only diagonal or unstructured variance-covariance matrices can be fit with the package. In

addition, it is not obvious how mixture probabilities are modeled - i.e. via a logit model, overall, or

for each subject, etc. The software includes an option to force each class to have a minimum number

of subjects. The Mplus Technical Appendices [1998-2004] provided a review of the technical details

of the software package Mplus. The model described earlier in Muthen and Shedden [1999] is one of

the models fit in the package. This model shares many of the features discussed in this dissertation,

but has a somewhat different model specification.
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1.4 New Methods

1.4.1 LCLMM: Structured Variance Components,

Equal for All Latent Classes

Motivation and Known Results

The LMM provides a straightforward, intuitive way for statisticians to specify a statistical model, and

the LCLMM provides the additional component of determining class membership. However, the litera-

ture thus far has not addressed how to fit these models when the variance components are structured.

In many applications, it is reasonable to expect that several different repeated measurements may

be modeled simultaneously - for example systolic blood pressure, diastolic blood pressure, and heart

rate or test scores on math, reading, science, and social studies exams. Each of these measurements

would potentially require a different residual error variance, and the random intercepts and slopes for

these measurements may be modeled best by fitting a particular correlation structure. The statistical

literature has not yet addressed how to allow for such a general model specification. However, these

scenarios are addressed in the model proposed in this section.

In Lin et al [2002a], the authors used the EM algorithm to solve a joint latent-class survival/mixed

model. The results were maximum likelihood estimates for the parameters with subjects optimally

divided among a prespecified number of latent classes. In this model, an unstructured variance-

covariance matrix of the random effects was specified, a single residual error variance, σ2, was fit, and

the variances were assumed to be equal across classes. Lin et al [2002b] proposed a joint analysis

of time-to-event data with multiple longitudinal variables via a mixture model. The longitudinal

submodel allowed for different variances for each longitudinal variable, as well as the inclusion of

random effects with an unstructured variance-covariance matrix. Variances were assumed to be equal

across classes. The goal in this section is to expand the longitudinal portion of the Lin et al [2002a]

and Lin et al [2002b] models to allow for structured variance-covariance matrices, while continuing to

model class membership via the logistic regression model.

Two articles provide the basis for the changes proposed in this section. In work by Jennrich

and Schluchter [1986], the authors proposed a general method for computing variance components

in a maximum likelihood algorithm. In this method, the statistician can specify a general variance

structure, and computations proceed through the Newton-Raphson or Fisher scoring algorithms. Rai

and Matthews [1993] proposed a modification to the M-step of the EM algorithm. In cases where the
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M-step cannot be calculated in closed form, the authors proposed replacing the M-step with a single

iteration of a Newton-Raphson maximization of the complete-data likelihood. The authors showed

that by using a variable step length, a step can be specified which either increases the likelihood or at

worst allows it to remain the same, thus satisfying the criteria for being a Generalized EM algorithm.

The following sections expand upon previous research in several ways. First, building on Rai and

Matthews [1993] and Jennrich and Schluchter [1986], the M-step in the EM algorithm is revised

to consist of a single iteration of Newton-Raphson based on the expected complete-data likelihood.

Second, the first and second derivatives of the unconditional log likelihood of the observed data are

derived, and gradient- and Hessian-based algorithms are proposed and implemented. Both of these

methods allow the statistician to specify a structure for the variance components that determine D

and R.

Background

The first question that arises relates to determining which likelihood should be maximized in the

proposed problem. If we knew each subject’s class membership, it would be possible to maximize

the likelihood of the observed data given the class membership (yi | ci). However, since the class

membership of each subject is an unobservable value, this is not possible. Other choices of likelihoods

include the unconditional likelihood of the observed data (yi), as well as the joint likelihoods (yi, ci,bi)

and (yi, ci). The unconditional likelihood of the observed data is considered below with respect to

the gradient and Hessian-based algorithms. The joint likelihood including the random effects is quite

complicated - therefore the focus for the EM algorithm will be to maximize the joint likelihood of

the responses and group membership (yi, ci), with the group membership of each subject taken to be

missing data.

Two separate approaches are considered in this section. First, since the LCLMM represents an

instance where the data can be considered to be incomplete (i.e., class membership) and the complete-

data model is straightforward, the EM algorithm of Dempster et al [1977] represents a logical choice,

and is used most often in practice. In the case of complete data, the likelihood corresponding to the

joint distribution of the observed data and group classifications (yi, ci) can be written as:

log LC (Θ) =
n∑

i=1

K∑
k=1

cik log [πikf (yi | cik = 1)] (1.9)
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with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)

However, since the class membership of each subject is unobservable, the complete data likelihood is

replaced during each E-step with its conditional expectation given the observed data yi, using the

current estimates of the parameters, Θ∗. In Dempster et al [1977], the authors refer to this as

Q (Θ; Θ∗) = EΘ∗ {log LC (Θ) | y}

The goal of each M-step is then to maximize Q (Θ; Θ∗). Since the cik are treated as missing data

in the above likelihood specification, the only change that is required in going from log LC (Θ) to

Q (Θ; Θ∗) is that the value of cik is replaced by its expected value c̃ik. It follows that:

Q(Θ; Θ∗) =
n∑

i=1

K∑
k=1

c̃ik log [πikf (yi | cik = 1)] (1.10)

In full,

Q(Θ; Θ∗) =
n∑

i=1

K∑
k=1

c̃ik

 log πik − ni

2 log2π − 1
2 log |ZiDZ′i + Ri|

− 1
2 (yi −Xiβ −Wiλk)′ (ZiDZ′i + Ri)

−1 (yi −Xiβ −Wiλk)

 (1.11)

In the second approach, which requires computation of one or both of the gradient and Hessian,

the goal will be to maximize the unconditional likelihood of the observed data, which can be written

as follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

πikf (yi | cik = 1) (1.12)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)

Although straightforward in that only the first and second derivatives of the likelihood are needed,

finding the maximum of log L (Θ) is not an easy task with each subject’s contribution to the likeli-

hood involving the log of the sum of the distribution under each of the K models. However, given
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the quadratic convergence properties of the Newton-Raphson algorithm and possible computational

advantages of gradient-based algorithms such as quasi-Newton, these methods may offer the most

efficient method of finding solutions.

EM Approach

In order to allow for structured variance components which are equal across classes, I propose building

on the Lin et al [2002a] and Lin et al [2002b] articles by incorporating a single iteration of Newton-

Raphson within each M-step to compute the updated estimates of the variance components. Since

the estimates of the parameters αk that determine the class probabilities πik also are not available in

closed form, this technique will be used to update these parameters as well.

As mentioned previously, in each E-step of the EM algorothm, the expected complete-data likeli-

hood, Q (Θ; Θ∗), is calculated as in Equation 1.11, where the expected value of c̃ik can be written as

follows:

E (cik | yi) = c̃ik = P (cik = 1 | yi)

=
P (cik = 1)× P (yi | cik = 1)∑K

j=1 [P (cij = 1)× P (yi | cij = 1)]

=
πikf (yi | cik = 1)∑K

j=1 {πijf (yi | cij = 1)}

with (yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)

The goal of each M-step is to then maximize Q (Θ; Θ∗) with respect to the parameters.

In order to maximize Q (Θ; Θ∗) with respect to β, first calculate:

∂Q(Θ;Θ∗
)

∂β
=

n∑
i=1

K∑
k=1

c̃ik
(
X′iΣ

−1
i yi −X′iΣ

−1
i Xiβ −X′iΣ

−1
i Wiλk

)
(1.13)

with Σi = ZiDZ′i + Ri

Upon setting this to zero and solving for β, it follows that:
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β̂ =

(
n∑

i=1

X′iΣ
−1
i Xi

)−1 n∑
i=1

X′iΣ
−1
i

(
yi −

K∑
k=1

c̃ikWiλk

)
(1.14)

Similarly, for λk, where k = 1, . . . ,K:

∂Q(Θ;Θ∗
)

∂λk
=

n∑
i=1

c̃ik
(
W′

iΣ
−1
i yi −W′

iΣ
−1
i Xiβ −W′

iΣ
−1
i Wiλk

)
(1.15)

λ̂k =

(
n∑

i=1

c̃ikW′
iΣ
−1
i Wi

)−1 n∑
i=1

c̃ikW′
iΣ
−1
i (yi −Xiβ) (1.16)

The expected complete-data likelihood Q(Θ; Θ∗), evaluated at the revised set of parameters which

reflect the updated β̂ and λ̂k, can then be used in a single Newton-Raphson step to calculate structured

variance components which are the same for all latent classes. Following the notation in Jennrich and

Schluchter [1986], the rth element of the score vector and r − sth element of the Hessian can be

computed as follows:

[
sθ
]
r

= 1
2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

i (eike′ik −Σi) Σ−1
i Σ̇ir

]
(1.17)

[
Hθθ

]
rs

= − 1
2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

i Σ̇irΣ−1
i (2eike′ik −Σi) Σ−1

i Σ̇is

]
+ 1

2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

i (eike′ik −Σi) Σ−1
i Σ̈i,rs

] (1.18)

where:

eik = yi −Xiβ −Wiλk

Σ̇ir = ∂Σi/∂θr

Σ̈i,rs = ∂2Σi/∂θr∂θs

Similarly, since closed-form solutions for the αk are not available, a scoring procedure is also used

for calculating estimates of the parameters related to class membership. The score vector and Hessian

can be computed as follows:

sαk =
n∑

i=1

K∑
j=1

c̃ijti ×

 (1− πik) if j = k

(−πik) if j 6= k
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Hαkαm =
n∑

i=1

K∑
j=1

c̃ijtit′i ×

 −πik (1− πim) if k = m

πikπim if k 6= m

The updated estimates of the variance components and parameters related to class membership

can be computed by the following steps:

θ = θ − j ×H−1

θθ
sθ (1.19)


α2

...

αK

 =


α2

...

αK

− j ×


Hα2α2 · · · Hα2αK

...
. . .

...

HαKα2 · · · HαKαK


−1 

sα2

...

sαK

 (1.20)

where j is chosen separately for each set of parameters such that the expected complete data likelihood

is increased. By ensuring that the expected complete data likelihood increases at each step, the algo-

rithm represents a generalized EM algorithm, as described in Dempster et al [1977]. Although Rai and

Matthews [1993] note that a single iteration of a Newton-Raphson maximization of the complete-data

likelihood can be substituted in the M-step in cases where the M-step cannot be calculated in closed

form, one modification is necessary in practice for these models. In running test cases of the algo-

rithms, I found it necessary to run the update step for the class-membership parameters several times

within each M-step in order to minimize the overall number of iterations needed. Since each update

of the class-membership parameters is much less time-consuming than a full iteration, the result was

typically a faster overall runtime.

We repeat the iterations until the maximum percent change in parameter estimates from one

iteration to the next is less than a prespecified tolerance.

Gradient- and Hessian-Based Approaches

Gradient-based algorithms rely on the calculation of both the unconditional log likelihood of the

observed data and the first derivatives of this likelihood with respect to the unknown parameters.

Hessian-based methods require the additional calculation of the second derivatives of this likelihood.
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As noted earlier, the unconditional log likelihood of the observed data is as follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

πikf (yi | cik = 1) (1.21)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)

In full,

log L (Θ) =

n∑
i=1

log
K∑

k=1


[

exp (t′iαk)∑K
j=1 exp (t′iαj)

]
︸ ︷︷ ︸

Q2ik

[
exp

[
− 1

2 (yi −Xiβ −Wiλk)′Σ−1
i (yi −Xiβ −Wiλk)

]
(2π)ni/2 |Σi|1/2

]
︸ ︷︷ ︸

Q3ik

︸ ︷︷ ︸
Q1i

(1.22)

with Σi = ZiDZ′i + Ri

The score vector s, containing the first derivatives of log L (Θ) with respect to the parameters,

and Hessian matrix H, containing the second derivatives of log L (Θ) with respect to the parameters,

are written as follows:

s =



sβ

sλ1

...

sλK

sθ

sα2

...

sαK



(1.23)

and
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H =



Hββ Hβλ1
· · · HβλK

Hβθ Hβα2
· · · HβαK

Hλ1β Hλ1λ1
· · · Hλ1λK

Hλ1θ Hλ1α2
· · · Hλ1αK

...
...

. . .
...

...
...

...
...

HλKβ HλKλ1
· · · HλKλK

HλKθ HλKα2
· · · HλKαK

Hθβ Hθλ1
· · · HθλK

Hθθ Hθα2
· · · HθαK

Hα2β Hα2λ1
· · · Hα2λK

Hα2θ Hα2α2 · · · Hα2αK

...
... · · ·

...
...

...
. . .

...

HαKβ HαKλ1
· · · HαKλK

HαKθ HαKα2 · · · HαKαK



(1.24)

where:

sx = ∂L
∂x and Hxy = ∂2L

∂x∂y
(1.25)

Expressions for the elements of s and H are:

sβ =
n∑

i=1

1
Q1i

K∑
k=1

πik
∂Q3ik

∂β
(1.26)

sλk
=

n∑
i=1

1
Q1i

πik
∂Q3ik

∂λk
(1.27)

sαk
=

n∑
i=1

1
Q1i

K∑
j=1

Q3ij
∂Q2ij

∂αk
(1.28)

sθ =
n∑

i=1

1
Q1i

K∑
k=1

πik
∂Q3ik

∂θ
(1.29)

Hββ =
n∑

i=1

{[
1
Q1i

K∑
k=1

πik
∂2Q3ik

∂β∂β

]
+

[(
− 1
Q2

1i

∂Q1i

∂β

)( K∑
k=1

πik
∂Q3ik

∂β

)]}
(1.30)

Hλkλj
=

n∑
i=1

{[
1
Q1i

πik
∂2Q3ik

∂λk∂λj

]
+
[(
− 1
Q2

1i

∂Q1i

∂λj

)(
πik

∂Q3ik

∂λk

)]}
(1.31)

Hλkβ =
n∑

i=1

{[
1
Q1i

πik
∂2Q3ik

∂λk∂β

]
+
[(
− 1
Q2

1i

∂Q1i

∂β

)(
πik

∂Q3ik

∂λk

)]}
(1.32)

Hαkαm
=

n∑
i=1


 1
Q1i

K∑
j=1

Q3ij
∂2Q2ij

∂αk∂αm

+

(− 1
Q2

1i

∂Q1i

∂αm

) K∑
j=1

Q3ij
∂Q2ij

∂αk

 (1.33)

Hαkβ =
n∑

i=1


 1
Q1i

K∑
j=1

∂Q2ij

∂αk

∂Q3ij

∂β

+

(− 1
Q2

1i

∂Q1i

∂αk

) K∑
j=1

Q2ij
∂Q3ij

∂β

 (1.34)

Hαmλk
=

n∑
i=1

{[
1
Q1i

∂Q2ik

∂αm

∂Q3ik

∂λk

]
+
[
− 1
Q2

1i

∂Q1i

∂αm

(
Q2ik

∂Q3ik

∂λk

)]}
(1.35)
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Hθθ =
n∑

i=1

{[
1
Q1i

K∑
k=1

πik
∂2Q3ik

∂θ∂θ

]
+

[(
− 1
Q2

1i

∂Q1i

∂θ

)( K∑
k=1

πik
∂Q3ik

∂θ

)]}
(1.36)

Hβθ =
n∑

i=1

{[
1
Q1i

K∑
k=1

πik
∂2Q3ik

∂β∂θ

]
+

[(
− 1
Q2

1i

∂Q1i

∂θ

)( K∑
k=1

πik
∂Q3ik

∂β

)]}
(1.37)

Hλkθ =
n∑

i=1

{[
1
Q1i

πik
∂2Q3ik

∂λk∂θ

]
+
[(
− 1
Q2

1i

∂Q1i

∂θ

)(
πik

∂Q3ik

∂λk

)]}
(1.38)

Hαkθ =
n∑

i=1


 1
Q1i

K∑
j=1

∂Q3ij

∂θ

∂Q2ij

∂αk

+

(− 1
Q2

1i

∂Q1i

∂θ

) K∑
j=1

Q3ij
∂Q2ij

∂αk

 (1.39)

Note that further details regarding the first and second derivatives are presented in the appendix. For

a Newton-Raphson step, the updated estimates of the parameters are computed as follows:



β

λ1

.

.

.

λk

θ

α2

.

.

.

αk


=



β

λ1

.

.

.

λk

θ

α2

.

.

.

αk


−j×



Hββ Hβλ1
· · · Hβλk

Hβθ Hβα2
· · · Hβαk

Hλ1β
Hλ1λ1

· · · Hλ1λk
Hλ1θ

Hλ1α2
· · · Hλ1αk

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Hλkβ
Hλkλ1

· · · Hλkλk
Hλkθ

Hλkα2
· · · Hλkαk

Hθβ Hθλ1
· · · Hθλk

Hθθ Hθα2
· · · Hθαk

Hα2β
Hα2λ1

· · · Hα2λk
Hα2θ

Hα2α2 · · · Hα2αk

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Hαkβ
Hαkλ1

· · · Hαkλk
Hαkθ

Hαkα2 · · · Hαkαk



−1

sβ

sλ1
.
.
.

sλk

sθ

sα2

.

.

.

sαk


(1.40)

where j is chosen such that the unconditional likelihood of the observed data is increased.

We repeat the iterations until the maximum percent change in parameter estimates from one iter-

ation to the next is less than a prespecified tolerance.

The above derivations describe a step of the Newton-Raphson algorithm. With the analytical

gradient and Hessian available for computations, various approaches are possible. Chapter 2 discusses

a new SAS R© macro which fits LCLMMs using the EM and several gradient- and Hessian-based

algorithms.
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1.4.2 LCLMM: Structured Class-Specific Variance Components, Diagonal

D and R

Motivation and Known Results

In many applications, it is unreasonable to expect that the variances would be equal across classes. For

example, in studies of diabetic patients, a great deal of information regarding patient health may be

contained in the variability of blood sugar measurements. Current methods typically fit the variances

as being equal across classes. In Basford and McLachlan [1985], the authors presented an example

to illustrate that fitting a normal mixture model with homoscedastic variances in a situation where

the classes are in fact heteroscedastic can have a significant influence on the resulting estimates. In

particular, they found that the mixing proportions can be greatly affected, resulting in potentially

different results in multivariate clustering analyses. As such, the goal of this section is to expand upon

the method proposed in the previous section to allow for variances which differ by latent class. This

section examines the case where the matrices D and R are defined to be diagonal - the next section

will further generalize this approach to allow for a correlation structure for the D matrix. Similar

to the previous section, several different residual error variances may be fit for multiple longitudinal

variables.

Key questions arise when generalizing to allow for class-specific variances. For example, if the

variances are allowed to vary by latent class, do the estimators still possess statistical properties

such as identifiability and consistency? In Yakowitz and Spragins [1968], the authors showed that

finite mixtures of multivariate normal distributions with variable mean vectors and variance-covariance

matrices are identifiable. However, since it is possible in this model specification to provide a scenario

in which a particular class would have a single member with the class-specific variance-component

going to zero, the likelihood function is unbounded and therefore the maximum likelihood estimate

does not exist. For mixtures of univariate normal models, Hathaway [1985] proposed applying simple

constraints in which the smallest variance could become no smaller than a prespecified multiple of

the corresponding variances from other classes, with the result shown to be a strongly consistent

estimator. He described that the corresponding condition for mixtures of multivariate normal models

is to constrain all characteristic roots of ΣjΣ−1
k to be greater than or equal to some minimum value

c > 0, where Σj represents the variance-covariance matrix for class j and Σk represents the variance-

covariance matrix for class k. Assuming diagonal D and R, the above constraint for multivariate

normal data reduces to a set of comparisons similar to the univariate case, with constraints applied
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to the variances in both D and R. These constraints are discussed in detail later in this section. The

appendices include a proof which shows that Hathaway’s condition is met using the proposed method

of bounding both the random effect variances and residual error variances for linear variance-covariance

structures.

Ingrassia [2004] provided two algorithms related to the multivariate requirement proposed by

Hathaway [1985]. As part of the algorithms, the statistician was required to specify a range of

possible eigenvalues of ΣjΣ−1
k . The first of the proposed algorithms either multiplied one of the two

variance-covariance matrices by a fraction < 1 or added a multiple of the identity matrix to ensure that

the eigenvalues of ΣjΣ−1
k fell in the specified range. The other proposed algorithm used the spectral

decomposition of the variance-covariance matrix and adjusted the individual eigenvalues such that

the eigenvalues fell in the specified range. There are several drawbacks to these methods in practice.

First, in both methods, the statistician must specify an acceptable range of eigenvalues which must

both include the true value to be estimated and be sufficiently narrow not to allow one variance to

stray too far from the others. It is not apparent how to specify these bounds in practice. Second,

in the algorithm which adjusts the entire variance-covariance matrix, all variances are adjusted in

order to force some parameters to satisfy the constraint. Therefore some of the variances will likely

be inaccurate. Third, while the second proposed algorithm allows for each eigenvalue to be adjusted

independently, this will result in a variance-covariance matrix which does not have the same correlation

structure as specified prior to constraining the eigenvalues. For example, if the variance-covariance

structure is diagonal, the result of constraining one eigenvalue but not another causes the resulting

correlation matrix to have non-zero elements on the off-diagonal.

I will again make use of the result from Rai and Matthews [1993] to allow for a revised M-step

in which a single step of Newton-Raphson is performed during each iteration. As in the previous

section, this will be used to obtain updated estimates of the structured variance-covariance matrices

as well as the parameters related to class membership. In addition, the results from Jennrich and

Schluchter [1986] will be utilized for the Newton-Raphson calculations in the M-step of the EM

algorithm. Gradient- and Hessian-based approaches will similarly be generalized to allow for class-

specific variances.

EM Approach

The previous section assumed that the variances were equal across classes. However, if the variances

are allowed to differ for each latent class, then the proposed method requires several modifications.
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First, most derivations must be revised to account for the fact that different classes have different

underlying variances. Second, without a restriction on the class-specific variances, the likelihood for

the mixture of multivariate normal distributions is unbounded. Therefore, the class-specific variances

must be constrained. Finally, when the residual error variances are fit as being class-specific, the

calculation of β̂ itself requires maximization over a mixture of multivariate normal distributions. For

completeness, I will present the entire method and note how the method differs from the equal across

classes variance case.

In the case of complete data, the likelihood corresponding to the joint distribution of the observed

data and group classifications (yi, ci), rewritten to reflect class-specific variances, is as follows:

log LC (Θ) =
n∑

i=1

K∑
k=1

cik log [πikf (yi | cik = 1)] (1.41)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)

Note that in the revised specification, D is replaced with Dk, and Ri is replaced by Rik to reflect the

fact that the variances are class-specific.

Once again, since the class membership of each subject is unobservable, the complete data likelihood

is replaced during each E-step with its conditional expectation given the observed data yi, using the

current estimates of the parameters Θ∗. As noted earlier, this function is referred to in Dempster

et al [1977] as Q (Θ; Θ∗) = EΘ∗ {log LC (Θ) | y}. The only change that is required in going from

log LC (Θ) to Q (Θ; Θ∗) is that the value of cik is replaced by its expected value c̃ik. It follows that:

Q(Θ; Θ∗) =
n∑

i=1

K∑
k=1

c̃ik

 log πik − ni

2 log 2π − 1
2 log |ZiDkZ′i + Rik|

− 1
2 (yi −Xiβ −Wiλk)′ (ZiDkZ′i + Rik)−1 (yi −Xiβ −Wiλk)

 (1.42)

where the expected value of c̃ik can be written as follows:

E (cik | yi) = c̃ik = P (cik = 1 | yi)
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=
P (cik = 1)× P (yi | cik = 1)∑K

j=1 [P (cij = 1)× P (yi | cij = 1)]

=
πikf (yi | cik = 1)∑K

j=1 {πijf (yi | cij = 1)}

with f (yi | cij = 1) being the density defined by

(yi | cij = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)

The goal of each M step is then to maximize Q (Θ; Θ∗) with respect to the parameters.

Since the variances are different for each latent class, maximization of Q (Θ; Θ∗) with respect

to β requires maximization over a mixture of multivariate normal distributions, each with different

variances. Therefore, it is not possible to find a closed-form solution for β̂. Fortunately, this is a

relatively straightforward problem using SAS R© PROC NLP. The inputs for this SAS R© procedure are

Q (Θ; Θ∗), as well as its first and second derivatives with respect to β.

∂Q(Θ;Θ∗
)

∂β
=

n∑
i=1

K∑
k=1

c̃ik
(
X′iΣ

−1
ik yi −X′iΣ

−1
ik Xiβ −X′iΣ

−1
ik Wiλk

)
(1.43)

∂2Q(Θ; Θ∗)
∂β∂β

= −
n∑

i=1

K∑
k=1

c̃ik
(
X′iΣ

−1
ik Xi

)
(1.44)

with Σik = ZiDkZ′i + Rik

Since calculations for λ̂k utilize class-specific variance-covariance matrices, closed-form solutions exist:

∂Q(Θ;Θ∗
)

∂λk
=

n∑
i=1

c̃ik
(
W′

iΣ
−1
ik yi −W′

iΣ
−1
ik Xiβ −W′

iΣ
−1
ik Wiλk

)
(1.45)

λ̂k =

(
n∑

i=1

c̃ikW′
iΣ
−1
ik Wi

)−1 n∑
i=1

c̃ikW′
iΣ
−1
ik (yi −Xiβ) (1.46)

The expected complete-data likelihood Q(Θ; Θ∗), evaluated at the revised β̂ and λ̂k, can then be

used in a single Newton-Raphson step to calculate structured, class-specific variances. Following the

notation in Jennrich and Schluchter [1986], the rth element of the score vector and r− sth element of

the Hessian can be computed as follows:
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[
sθ
]
r

= 1
2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

ik (eike′ik −Σik) Σ−1
ik Σ̇ik,r

]
(1.47)

[
Hθθ

]
rs

= − 1
2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

ik Σ̇ik,rΣ−1
ik (2eike′ik −Σik) Σ−1

ik Σ̇ik,s

]
+ 1

2

n∑
i=1

K∑
k=1

c̃iktr
[
Σ−1

ik (eike′ik −Σik) Σ−1
ik Σ̈ik,rs

] (1.48)

where:

eik = yi −Xiβ −Wiλk

Σ̇ik,r = ∂Σik/∂θr

Σ̈ik,rs = ∂2Σik/∂θr∂θs

Note that θ now contains separate variances for each latent class. Since Σ̇ik,r and Σ̈ik,rs are non-zero

only for components of class k, the summation over k is not necessary. However, since it may be

desirable to consider the variances in either D or R as being equal across classes, I have chosen to

keep the double-summation to allow for this possibility.

As in the previous section, since closed-form solutions for the αk are not available, a scoring

procedure is also used for calculating estimates of the parameters related to class membership. The

same procedure used in the previous section can be used here as well. The updated estimates of the

variance components and parameters related to class membership can once again be computed using

Equations 1.19 and 1.20.

Recall that Hathaway [1985] set forth a condition for the existence of a consistent maximum

likelihood estimator for mixtures of multivariate normal distributions. The condition was that the

eigenvalues of
[
ΣjΣ−1

k

]
must be > c ∀j,k, where Σj represents the variance-covariance matrix for class

j and Σk represents the variance-covariance matrix for class k. In this algorithm, c is prespecified as

a small number such as 1
10 in order to restrict any variance in one class from becoming much smaller

than the corresponding variance in another class. In this section, only diagonal specifications of the

Dk and Rik matrices are considered. Since the eigenvalues of a diagonal matrix are the elements on

the diagonal, this constraint on the variances amounts to the following procedure.

For the D matrices:
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• Examine element (1,1) of each of the matrices Dk

• Define the maximum of these values to be VMax

• If any of the (1,1) elements is less than c × VMax then set that element equal to c × VMax

• Repeat this procedure for each of the diagonal elements of Dk

For the R matrices:

• Examine the value of the first unique variance in the Rik matrices for each of the k classes

• Define the maximum of these values to be VMax

• If the estimate of this variance in any of the latent classes is less than c × VMax then set that

element equal to c × VMax

• Repeat this procedure for each of the unique variance in the Rik

We repeat the iterations until the maximum percent change in parameter estimates from one

iteration to the next is less than a prespecified tolerance. A proof is presented in the appendices which

shows that applying Hathaway’s constraint separately to both the variances in D and R will result in

variance-covariance matrices that satisfy Hathaway’s constraint, leading the resulting estimates to be

strongly consistent.

Gradient- and Hessian-Based Approaches

Gradient-based algorithms rely on the calculation of both the unconditional log likelihood of the

observed data and the first derivatives of this likelihood with respect to the unknown parameters.

Hessian-based methods require the additional calculation of the second derivatives of this likelihood.

The unconditional log likelihood of the observed data, assuming class-specific diagonal D and R, is as

follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

[πikf (yi | cik = 1)] (1.49)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)
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In full,

log L (Θ) =

n∑
i=1

log
K∑

k=1


[

exp (t′iαk)∑K
j=1 exp (t′iαj)

]
︸ ︷︷ ︸

Q2ik

[
exp

[
− 1

2 (yi −Xiβ −Wiλk)′Σ−1
ik (yi −Xiβ −Wiλk)

]
(2π)ni/2 |Σik|1/2

]
︸ ︷︷ ︸

Q3ik

︸ ︷︷ ︸
Q1i

(1.50)

with Σik = ZiDkZ′i + Rik

The score vector s, containing the first derivatives of log L (Θ) with respect to the parameters,

and Hessian matrix H, containing the second derivatives of log L (Θ) with respect to the parameters,

have the same form as in the previous section. However, note that now θ consists of variances which

may be class-specific. Further details regarding the first and second derivatives are presented in the

appendix. Once again, for a Newton-Raphson step, the updated estimates of the parameters are

computed according to Equation 1.40.

As in the EM approach, a constraint is applied to each of the variances in D and R to ensure that

for each variance, the estimated value for one class is at least a pre-specified multiple of that variance

in other classes.

1.4.3 LCLMM: Structured Class-Specific Variance Components, Structured

D and Diagonal R

Motivation and Known Results

While the diagonal specification of the Dk should allow for a fairly general model specification, it would

be advantageous to allow correlation among the random effects and allow the statistician to specify the

applicable correlation structure. However, allowing both the correlations and variances in Dk to vary

by latent class results in instances where the variance components could be adjusted in many possible

ways to satisfy the constraints proposed by Hathaway [1985]. Therefore, I propose to parameterize the

variance-covariance matrices of the random effects, Dk, as follows. First, the correlation structure for

the random effects is assumed to be the same across all latent classes. Second, class-specific variances
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are permitted. Given this structure, I propose to follow a similar approach to that used to constrain

the diagonal variance-covariance matrices in the previous chapter. Each individual variance estimate

is compared from class to class to ensure that no variance estimate becomes too small when compared

to the corresponding variance estimates in other classes.

Required Modifications

Only one change is required to fit the revised model with a structured, non-diagonal, class-specific

D. The parameters that determine the variance-covariance matrices, contained in θ, now consist of

both correlations, which are calculated across latent classes, and variances, which are calculated as

being specific to each latent class. As such, the computations for the scoring vector s and Hessian H

will include a summation over classes for the correlations, but will require summations only for the

relevant class for the variances.

Note Related to More General Correlation Structures

The previous sections generalized existing methods by first allowing for the specification of a structured

variance-covariance matrix with variances equal across classes. Variances were then permitted to vary

by latent class but correlation was not permitted between random effects. And finally, variances were

permitted to vary by latent class, and a correlation matrix for the random effects was fit across classes.

While these models provide for a fairly general specification of the underlying LMMs, they can

easily be modified to allow for particular forms of the variance-covariance structure. For example,

the random effects portion could be dropped, and the variance-covariance matrix of the error terms

could be specified according to another linear specification. Another alternative would be to keep

the structured variance-covariance matrix of the random effects and allow correlation in the variance-

covariance matrix of the error terms. Only a few of the various possibilities have been examined in

this research, but many more could be easily implemented in future research.

1.4.4 LCLMM: The Relative-Fit Class Membership Model

In previous sections, the LCLMM has been generalized to allow for class-specific, structured, variance-

covariance matrices. In these descriptions, class membership has been assumed to be determined based

on an underlying logistic regression model. In many cases, the statistician may not know exactly

which factors should be included in the model describing class membership, these factors may not be

measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K classes.
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However, this model, in which each subject can have its own set of mixture probabilities, would result

in many parameters related to class membership - specifically, for n subjects and K classes, the model

would require n× (K − 1) parameters. Therefore, I propose in this section a new model which builds

upon the generalizations already implemented but replaces the logistic regression model with a model

in which class membership is determined by the relative fit of the underlying LMMs. This is much

less costly in terms of computational time than fitting a separate set of class membership parameters

for each subject, but offers a logical approach with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

[πikf (yi | cik = 1)] (1.51)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)

In the revised model, the πik are determined solely by the relative fit of the underlying LMMs according

to the following equation:

π̂ik =
f
(
yi | cik = 1; Θ̂

)
K∑

j=1

f
(
yi | cij = 1; Θ̂

) (1.52)

For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the

subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the

subject would be included in each class 50%/50%. If the likelihood for Class 1 was nine times higher

than for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

The gradient for this likelihood has a similar, slightly more complicated, form to that described in

the previous sections:

sβ =
n∑

i=1

1∑K
k=1Q

2
3ik

×
K∑

k=1

2×Q3ik ×
∂Q3ik

∂β
−

n∑
i=1

1∑K
k=1Q3ik

×
K∑

k=1

∂Q3ik

∂β
(1.53)

sλk
=

n∑
i=1

1∑K
k=1Q

2
3ik

× 2×Q3ik ×
∂Q3ik

∂λk
−

n∑
i=1

1∑K
k=1Q3ik

× ∂Q3ik

∂λk
(1.54)
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sθ =
n∑

i=1

1∑K
k=1Q

2
3ik

×
K∑

k=1

2×Q3ik ×
∂Q3ik

∂θ
−

n∑
i=1

1∑K
k=1Q3ik

×
K∑

k=1

∂Q3ik

∂θ
(1.55)

The Hessian for this likelihood also has a similar, though somewhat more complicated, form to that

described in the previous sections. The equation for the second derivative with respect to β and θ is

provided as an example. The other second derivatives have a similar form.

Hβθ =
n∑

i=1

2×

(
K∑

k=1

Q2
3ik

)−1( K∑
k=1

Q3ik ×
∂2Q3ik

∂β∂θ
+
∂Q3ik

∂θ

∂Q3ik

∂β

)

+
n∑

i=1

(−4)×

(
K∑

k=1

Q2
3ik

)−2( K∑
k=1

Q3ik ×
∂Q3ik

∂θ

)(
K∑

k=1

Q3ik ×
∂Q3ik

∂β

)

+
n∑

i=1

(−1)×

(
K∑

k=1

Q3ik

)−1( K∑
k=1

∂2Q3ik

∂β∂θ

)

+
n∑

i=1

(
K∑

k=1

Q3ik

)−2( K∑
k=1

∂Q3ik

∂θ

)(
K∑

k=1

∂Q3ik

∂β

)

1.4.5 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of

this specification lies in the random effects which are thought of as being sampled from an underlying

distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The

LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the

data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute

predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM

are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following

distributional properties are assumed to apply to the random effects, bi, and residuals, yi −Xiβ −

Wiλk.

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 Dk DkZ′i

ZiDk ZiDkZ′i + Ri




∣∣∣∣∣∣∣ cik = 1 (1.56)

The computation of the LCLMM random effects requires maximizing the joint density of the data y
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and the random effects bi with respect to the terms bi. The likelihood can be written as follows:

log L (y,b) =
n∑

i=1

log

K∑
k=1

πik

[
exp
[
− 1

2

{
(yi −Xiβ −Wiλk − Zibi)

′R−1
ik (yi −Xiβ −Wiλk − Zibi) + b′iD

−1
k bi

}]
(2π)(ni+q)/2 |Rik|1/2 |Dk|1/2

]
︸ ︷︷ ︸

P3ik︸ ︷︷ ︸
P1i

However, given that a subject is in class k implies that the best set of predictions of the random

effects are the predictions based on the kth LMM. Therefore, the random effects for a subject can

be computed as the weighted average of the random effects computed as if that subject were in each

latent class:

b̃i = eBLUP [bi] = E
[
bi | Θ̂,yi

]
=

K∑
i=1

πik × b̃i|k

The resulting random effects are available in the SAS R© macro discussed in Chapter 2.

For purposes of calculating standard errors, the second derivative of the above likelihood was

derived using the following equations. Note that since the solutions for the random effects themselves

can be calculated in closed-form, the gradients used in the second derivative are zero and therefore the

form of the Hessian is relatively simple. First and second derivatives are provided in the appendix.

sbi
=

n∑
i=1

1
P1i

K∑
k=1

πik
∂P3ik

∂bi
(1.57)

Hbibi =
n∑

i=1

{[
1
P1i

K∑
k=1

πik
∂2P3ik

∂bi∂bi

]}
(1.58)

Written in a slightly different way, note that the Hessian is effectively a weighted average of the second

derivatives for each underlying LMM, with the weights based on a combination of the fitted class

probabilities and the relative fit of the underlying LMMs.

Hbibi
=

n∑
i=1

K∑
k=1

πikP3ik∑K
j=1 πijP3ij


[
−Z′iR

−1
ik Zi −D−1

k

]
+[

Z′iR
−1
ik (yi −Xiβ −Wiλk − Zibi)−D−1

k bi

]
[
Z′iR

−1
ik (yi −Xiβ −Wiλk − Zibi)−D−1

k bi

]′


It is interesting to note that the calculations for the Hessian and therefore the standard errors of the

random effects will include information related to likely class membership, even in situations where all
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subjects are fit with the same mixture. Random effect standard errors based on the computed Hessian

are calculated in the SAS R© macro discussed in Chapter 2.

1.4.6 Computational Methods

The EM and Newton-Raphson approaches have been examined in detail in previous sections. As noted

earlier, since the analytical first and second derivatives are available, several computational algorithms

can easily be applied in the estimation process. In the SAS R© macro presented in Chapter 2, IML

modules have been programmed which calculate the first and second derivatives of the likelihood. The

engines in SAS R©’ PROC NLP are then used to provide for a varied set of methods. In the sections

below, a brief literature review is presented related to computational methods which have been used in

previous research. Details related to SAS R©PROC NLP are available in Chapter 4 of the SAS R©/OR

9.2 User’s Guide [2008].

Literature Review

Most previous research related to LCLMMs has utilized the EM algorithm described in Dempster

et al [1977] to arrive at parameter estimates. Since the LCLMM represents an instance where the

data can be considered to be incomplete (i.e., class membership) and the complete-data model is

straightforward, the EM algorithm is an obvious candidate. As noted in Section 1.3, Lin et al [2000],

Lin et al [2002a], Lin et al [2004], Lin et al [2002b], McCulloch [2003], and Celeux et al. [2005]

all used the EM algorithm for calculations. Roy [2003] computed estimates via a modified Newton-

Raphson algorithm in which second derivatives were calculated numerically. Spiessens et al [2002]

implemented the version of the Heterogeneity Model described in Verbeke and Lesaffre [1996] in

a SAS R© macro using PROC NLMIXED, which uses a quasi-Newton algorithm as the default. Xu

and Hedeker [2001] proposed a model similar to Verbeke and Molenberghs [2000] and Spiessens et al

[2002], in which the authors provided details related to both EM and Fisher scoring algorithms. Proust

and Jacqmin-Gadda [2005] used a modified Marquardt optimization algorithm, similar to Newton-

Raphson, to solve for the parameters in a slightly more general model than Verbeke and Lesaffre

[1996]. Note that those articles which discuss estimation algorithms other than EM are simpler than

the model proposed in this research. The first set of articles which utilize the EM algorithm are

reasonably similar in complexity but do not offer the general model specification presented in previous

sections.

Since the EM algorithm has been observed to converge slowly in practice, many researchers have
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explored methods to accelerate convergence. These methods have been applied to a variety of prob-

lems, not necessarily related to mixture models. The methods range from simple methods which

multiply changes in parameter estimates to quasi-Newton methods which update an estimate of the

second derivatives of the likelihood function, thereby gradually resembling a Newton-Raphson algo-

rithm. Laird et al. [1987] used univariate and multivariate Aitken acceleration to improve the speed

of convergence of the EM algorithm. This method multiplies the changes in estimates at each EM

iteration by a constant (univariate approach) or a matrix (multivariate approach). The authors con-

structed the matrices for the multivariate approach from the successive changes in the parameters over

preceding iterations. Jamshidian and Jennrich [1993] proposed a method to accelerate the EM algo-

rithm based on conjugate gradients. The authors showed how the change in estimates from one EM

iteration to the next can be viewed as a generalized gradient of log L (Θ), therefore lending itself to

the application of generalized conjugate gradient methods. Jamshidian and Jennrich [1997] proposed

several methods for accelerating the EM algorithm, divided into three groups: pure EM accelerators,

EM-type accelerators, and hybrid accelerators. Method QN1 examines the changes in parameter es-

timates from iteration to iteration which would result from running the next EM step. These are

used at each step to update an approximate Jacobian matrix, with the resulting matrix applied to

the EM-step in a simple quasi-Newton method. Method QN2 is similar to QN1. However, it also has

as its inputs the gradient and Hessian of the complete-data likelihood. Lange [1995b] proposed to

replace each M-step with a single iteration of Newton-Raphson, using the first and second derivatives

of Q(Θ; Θ∗). This algorithm is typically referred to as the EM gradient algorithm. Lange [1995a]

proposed to use Lange [1995b] as the basis for a quasi-Newton method. In addition to working with

the first and second derivatives of Q(Θ; Θ∗), the algorithm updates an estimate of the Hessian at each

iteration.

Everitt [1984] compared several different computational algorithms for estimation of the param-

eters in a mixture of two univariate normal distributions. The author found that Newton’s method

using exact values of the first and second derivatives converged most rapidly and was generally very

stable. The EM algorithm was also very stable, but had occasions where convergence was very slow.

Aitkin and Aitkin [1996] proposed a hybrid EM/Gauss-Newton algorithm to compute maximum like-

lihood estimates for mixture models. The proposed algorithm began with five EM iterations and then

switched to Gauss-Newton until either convergence was achieved or the log likelihood decreased. If the

log likelihood decreased, then the step size was halved up to five times to try to find a step which would

increase the likelihood. If the likelihood still decreased after five step-halves, then the EM algorithm
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was run for five additional iterations from the most recent estimates. A switch to EM was also used if

the Hessian was not positive definite in any Gauss-Newton iteration. The authors found 30-40 percent

faster time to convergence in the hybrid algorithm. They also found that the initial Gauss-Newton

steps almost always decreased the log-likelihood. In some instances, many steps were needed before a

Gauss-Newton step increased the likelihood.

Gradient- and Hessian-Based Algorithms Available in SAS R© PROC NLP

In Chapter 2, a SAS R© macro is presented which implements the EM algorithm presented earlier as well

as several gradient and Hessian-based methods. These gradient- and Hessian-based methods use the

analytical gradient and/or Hessian along with the engines in SAS R©’ PROC NLP to obtain estimates.

The available methods include conjugate gradient, quasi-Newton, and Newton-Raphson. Additional

details and references can be found in Chapter 4 of the SAS R©/OR 9.2 User’s Guide [2008].

1.4.7 Calculation of Parameter Standard Errors

One advantage to using the Newton-Raphson algorithm for likelihood maximization is that standard

errors of the estimates are produced as part of the estimation procedure. Several techniques are

available to obtain estimates of parameter standard errors when the EM or gradient-based algorithms

are used, although some have had mixed reviews in practice. Meng and Rubin [1991] presented a

method for calculating standard errors called the Supplemented EM Algorithm. This method operates

by numerically differentiating the EM operator M (Θ). However, several authors who have applied

the Supplemented EM algorithm have run into difficulties in practice. For instance, in McCulloch

[1998], the author pointed out that ’for many problems, the Meng and Rubin [1991] method of

obtaining standard errors can be numerically unstable.’ Jamshidian and Jennrich [2000] examined

three methods of obtaining parameter standard errors, one which numerically differentiates the score

function, and two which numerically differentiate the M-function, as in Meng and Rubin [1991]. The

authors concluded that the method which operates by numerically differentiating the score function

was preferred. The quasi-Newton methods described in the previous section also can produce estimates

of parameter standard errors as a part of the estimation procedure, similar to Newton-Raphson. In the

QN2 method proposed in Jamshidian and Jennrich [1997], an estimate of the Hessian was updated

during each iteration. At convergence, the authors proposed to use this approximate Hessian to

estimate the standard errors of the parameters. Similarly, a quasi-Newton method proposed in Lange

[1995a], which is based on Lange [1995b], also updated an approximate Hessian as part of each
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iteration.

Building on the methods presented in earlier sections, two practical approaches to estimating

parameter standard errors exist which are not too computationally demanding. Since the first and

second derivatives of the log likelihood have now been programmed into a publicly available SAS R©

macro (see Chapter 2), the Hessian is available for use in obtaining estimates of the parameter standard

errors. If the computational demands are too great to compute the Hessian, a second option is available.

Based on Jamshidian and Jennrich [2000], the Hessian approximated by numerically differentiating

the gradient vector appears to provide a viable alternative. Since calculating the gradient is relatively

cheap in terms of computational time, this should work for most, if not all, scenarios. Note that both

of these methods are available in the SAS R© macro discussed in Chapter 2. Since the approximate

Hessian updated in the quasi-Newton method is not currently available using SAS R©’ IML link to

PROC NLP, this method was not investigated.

Note that the estimated variance-covariance matrix of the parameters, V, is equal to −H−1, where

H is the Hessian, or the second derivative of the log likelihood.

1.5 Application: Atherosclerosis Risk in Communities (ARIC)

1.5.1 Background

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective epidemiologic study designed

to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic

diseases, and the variation in cardiovascular risk factors, medical care and disease by race, gender,

location, and date. The study was conducted in four communities in the United States - Forsyth

County, NC, Jackson, MS, the northwestern suburbs of Minneapolis, MN, and Washington County,

MD. Each ARIC field center randomly selected and recruited a cohort sample of approximately 4,000

individuals aged 45-64 from a defined population in their community. A total of 15,792 individuals

participated. Study participants received an extensive examination, including medical, social, and de-

mographic data. These participants were reexamined every three years with the first screen (baseline)

occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and final exam in

1996-98. Follow-up occurs yearly by telephone to maintain contact with participants and to assess the

health status of the cohort.

A subset of 2,066 members of the ARIC study cohort participated in the Carotid MRI Substudy
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in 2004-2005. The goal was to recruit 1,200 participants with high values of maximum carotid artery

wall thickness at their last ultrasound examination, and 800 individuals randomly sampled from the

remainder of the carotid artery wall thickness distribution. Participants had a maximum of the four

ARIC cohort examinations, plus one Carotid MRI Substudy examination. Measurement protocols

were identical at all five visits.

Fasting blood samples were collected at each examination and assayed for total cholesterol, HDL

cholesterol, and triglycerides. LDL cholesterol was calculated according to the Friedewald formula.

LDL cholesterol, HDL cholesterol, and triglycerides are commonly considered risk factors for coronary

artery disease (CAD) and other related diseases or events and are also routinely measured at annual

physicals in the general population. Ballantyne [1998] notes that ”clinical trials with statins and

other lipid-regulating therapies have conclusively shown that lowering LDL cholesterol decreases both

morbidity and mortality from CAD and other vascular diseases.” Kwiterovich [1998] notes that ”the

Framingham Heart Study produced compelling epidemiologic evidence indicating that a low level of

HDL cholesterol was an independent predictor of coronary artery disease.” And Gotto [1998] points

out that ”the current evidence argues compellingly for including triglycerides in the evaluation of

patient risk for CAD. ... The revived attention to hypertriglyceridemia with respect to increased CAD

risk represents an important step in assessing a patient’s global risk for developing CAD.”

For purposes of analysis, lipid data for the 2,066 individuals in the ARIC Carotid MRI substudy,

as well as information related to medication use for controlling cholesterol levels were utilized in the

models discussed below. Since the distribution of triglycerides is non-normal, a log transformation for

this lab value was used in the analyses.

1.5.2 Methods

The goal of this application is to demonstrate the usefulness of the LCLMM for modeling the data

for LDL cholesterol, HDL cholesterol, and triglycerides simultaneously. Since this data represents

an example in which each individual has repeated measurements on each lab parameter, the LMM

represents one possible method which could be used for analysis. However, this model assumes that

the population being studied does not actually consist of several subpopulations, or that those sub-

populations are known a priori. However, this assumption may not be a reasonable one. Factors such

as cultural background, dietary habits, exercise, etc. all contribute to changes in these lab parame-

ters, and there are likely many additional factors. If the statistician attempted to include all of the

36



associated variables in the model, the resulting model would become too complex for practical use. In

addition, questions would arise as to whether these additional variables truly describe the population’s

behavior or whether they are simply acting as markers or surrogates, attempting to identify a finite

number of underlying subpopulations that exist in the data. The LCLMM will be used to simulta-

neously divide the population into a series of subpopulations while also fitting the best LMM to the

data for each of the underlying subpopulations. The resulting estimates will be compared with those

from the LMM, and the underlying latent classes will be examined.

The LMM was described in Section 1.2. In this example, the LMM is fit with an intercept and linear

and quadratic terms for age for each of the three lipid parameters. Two indicator variables - one for

LDL cholesterol and one for HDL cholesterol - are also included to account for the effect of cholesterol

medication on these measures. Random intercepts are included for all three lipid parameters, and a

random slope is fit for LDL (the variances for the random slopes for HDL and triglycerides were close

to 0). The random effects are fit as being correlated via an unstructured variance-covariance matrix,

and the error terms are assumed to be uncorrelated, with separate variances for each lipid parameter.

Note that age is centered at 59 for purposes of the analysis for both the LMM and LCLMM.

The LCLMM was described in Section 1.2 and expanded in Section 1.4. For the LCLMM, the

intercept and linear and quadratic age terms for HDL, LDL, and triglycerides are allowed to vary for

each latent class or subpopulation. However, the effect of the cholesterol-lowering medication on HDL

and LDL is fit as being the same for each latent class. Random intercepts for all three lipids and a

random slope variable for LDL cholesterol are fit in the LCLMM as in the LMM, with correlation

permitted between random effects. As noted earlier, the LCLMM requires that the user specify the

number of latent classes to fit. Therefore, the LMM (1 class) as well as the LCLMM with 2-10 classes

were fit. For the LCLMM runs, two separate runs were actually made - one which required that

all underlying latent classes have equal variances and another which allowed the variances to differ

by latent class. Note that while the variances are allowed to differ by latent class, the correlation

parameters were fit as being the same for each latent class.

1.5.3 Results

Class Trajectories and Class Membership

The fitted class trajectories for LDL cholesterol, HDL cholesterol, and triglycerides for the LMM as

well as the 2-10 class LCLMMs assuming class-specific variances are displayed in Figures 1.1-1.24. For
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these plots, the percent of subjects in each class who received cholesterol-lowering medications was

used in place of the medication use indicator variables in order to provide an average picture for each

latent class. For the 2-5 class models, an additional set of plots is presented in order to provide a

more detailed look at the makeup of each latent class. These plots display the observed trajectories

for subjects identified in each latent class, along with the fitted class trajectory. For purposes of these

plots, a subject is assumed to be in a given class if its highest class probability is at least two times

its second-highest class probability.

The LMM, as expected, fits curves through the middle of the data for each lab parameter. The

2-class LCLMM fits two very different patterns. One group, labeled as ’Optimal’, has much higher

HDL cholesterol, lower triglycerides, and lower LDL cholesterol than the second group, which is

labeled as ’At-Risk’. Notice that LDL cholesterol appears to be decreasing in the ’At-Risk’ group

- this is associated with the fact that while both groups tended to be on cholesterol-lowering meds

at baseline in equal percentages (20-25 percent), a greater percentage of the ’At-Risk’ group tended

to be on cholesterol-lowering meds by visit 5 (56 percent versus 36 percent). The 3-class model

appears to add a class which is between the ’Optimal’ and ’At-Risk’ classes, labeled here as ’Average’.

Similar to the other models, the 4-class model appears to define an ’Optimal’ group and an ’At-Risk’

group, while fitting two intermediate groups. The two intermediate groups have very similar HDL

cholesterol which is roughly midway between the ’Optimal’ and ’At-Risk’ groups. These two groups

have different patterns for the other two lab parameters. One of the intermediate groups, labeled

’AvgHDL-HighOther’, has noticeably higher LDL and triglycerides than the group labeled ’AvgHDL-

LowOther’. The 5-class model has an ’Optimal’ class, two low HDL classes, which are distinguished by

their triglyceride values, and two average HDL classes, distinguished by their LDL values. The 6-class

through 10-class models are not described in detail here, but the plots are included with latent classes

labeled. As more classes are added, note that there tends to be more overlap between the models.
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Figure 1.1: ARIC Application: Fitted Lipid Trajectories - Linear Mixed Model

Red = All Subjects
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Figure 1.2: ARIC Application: Fitted Lipid Trajectories - LCLMM (2 Classes)

Red = Optimal
Orange = At-Risk
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Figure 1.3: ARIC Application: Fitted Lipid Trajectories - LCLMM (2 Classes) - Optimal Class
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Figure 1.4: ARIC Application: Fitted Lipid Trajectories - LCLMM (2 Classes) - At-Risk Class
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Figure 1.5: ARIC Application: Fitted Lipid Trajectories - LCLMM (3 Classes)

Red = Average
Orange = At-Risk
Green = Optimal
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Figure 1.6: ARIC Application: Fitted Lipid Trajectories - LCLMM (3 Classes) - Average Class
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Figure 1.7: ARIC Application: Fitted Lipid Trajectories - LCLMM (3 Classes) - At-Risk Class
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Figure 1.8: ARIC Application: Fitted Lipid Trajectories - LCLMM (3 Classes) - Optimal Class
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Figure 1.9: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes)

Red = At-Risk
Orange = AvgHDL-HighOther
Green = AvgHDL-LowOther

Blue = Optimal
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Figure 1.10: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - At-Risk Class
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Figure 1.11: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - AvgHDL-HighOther
Class
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Figure 1.12: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - AvgHDL-LowOther
Class

50



LD
L 

C
ho

le
st

er
ol

 (
m

g/
dL

)

0

50

100

150

200

250

300

Age
40 50 60 70 80

(a) LDL Cholesterol

H
D

L 
C

ho
le

st
er

ol
 (

m
g/

dL
)

0

30

60

90

120

150

Age
40 50 60 70 80

(b) HDL Cholesterol

Lo
g 

T
rig

ly
ce

rid
es

 (
m

g/
dL

)

3

4

5

6

7

Age
40 50 60 70 80

(c) Triglycerides

Figure 1.13: ARIC Application: Fitted Lipid Trajectories - LCLMM (4 Classes) - Optimal Class
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Figure 1.14: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes)

Red = Avg HDL - Lower LDL
Orange = Low HDL - Lower Triglycerides
Green = Avg HDL - Higher LDL

Blue = Low HDL - Higher Triglycerides
Purple = Optimal
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Figure 1.15: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Avg HDL - Lower
LDL Class
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Figure 1.16: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Low HDL - Lower
Triglycerides Class
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Figure 1.17: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Avg HDL - Higher
LDL Class
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Figure 1.18: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Low HDL - Higher
Triglycerides Class
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Figure 1.19: ARIC Application: Fitted Lipid Trajectories - LCLMM (5 Classes) - Optimal Class
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Figure 1.20: ARIC Application: Fitted Lipid Trajectories - LCLMM (6 Classes)

Red (Solid) = Optimal - Best HDL and Good Triglycerides
Orange = Bad Trends
Green = Highest LDL

Blue = At-Risk
Purple = Optimal - Best Triglycerides and Good HDL

Red (Dotted) = At-Risk - But Signs of Improvement
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Figure 1.21: ARIC Application: Fitted Lipid Trajectories - LCLMM (7 Classes)

Red (Solid) = High LDL Only
Orange (Solid) = Low HDL Only

Green = Optimal-Good HDL
Blue = Average

Purple = Bad Trends
Red (Dotted) = Optimal-Best HDL

Orange (Dotted) = At-Risk
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Figure 1.22: ARIC Application: Fitted Lipid Trajectories - LCLMM (8 Classes)

Red (Solid) = Bad Trends
Orange (Solid) = At-Risk
Green (Solid) = High LDL Only

Blue = Optimal
Purple = Low Triglycerides Only

Red (Dotted) = Average
Orange (Dotted) = Elevated Triglycerides Only
Green (Dotted) = Near-Optimal
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Figure 1.23: ARIC Application: Fitted Lipid Trajectories - LCLMM (9 Classes)

Red (Solid) = Near-Optimal - Good HDL
Orange (Solid) = At-Risk
Green (Solid) = High LDL Only

Blue (Solid) = Low HDL Only
Purple = High HDL Only

Red (Dotted) = Near-At-Risk
Orange (Dotted) = Optimal
Green (Dotted) = Bad Trends

Blue (Dotted) = High Triglycerides Only
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Figure 1.24: ARIC Application: Fitted Lipid Trajectories - LCLMM (10 Classes)

Red (Solid) = At-Risk
Orange (Solid) = Optimal
Green (Solid) = Near-At-Risk

Blue (Solid) = Low LDL/Triglycerides
Purple (Solid) = Low HDL
Red (Dotted) = Bad Trends

Orange (Dotted) = Average-I
Green (Dotted) = High HDL

Blue (Dotted) = High LDL
Purple (Dotted) = Average-II
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The numbers of subjects in each of the classes described above is presented in Tables 1.1 and 1.2.

Since each individual is actually given a probability of being in each latent class as part of the model

fit, as opposed to a definitive group, the numbers in these tables classify a subject into a group if

that subject has at least twice the probability of being in its most likely class as being in its second-

most likely class. It is interesting to note a few things regarding these counts. First, as mentioned

earlier, the ARIC Carotid MRI substudy enrolled about 1,200 subjects because they had high values

of maximum carotid artery wall thickness at their last ultrasound examination and 800 subjects from

the remainder of the distribution. For the 2-class model, the Optimal class was identified as having

715 individuals, while the At-Risk class was identified as having 1,202 subjects. Second, the number

of unknown subjects is relatively small - even in models in which many groups are fit, more than 85

percent of subjects are still fairly certain regarding class assignment. This percent of unknown subjects

tends to increase slightly as classes are added.

Choosing a Model

Given that the number of latent classes is unknown a priori and that there are two possible models to

fit - one with variances equal across class and one with class-specific variances - which model should

be selected? This is a topic of great consideration and is examined more generally in a simulation

study in Chapter 2. However, for purposes of evaluating the various models fit, selected information

criteria are presented in Table 1.3 for the LMM and the LCLMM for 2-10 classes. These measures are

based on work summarized or presented in Biernacki and Govaert [1999], Biernacki et al [2000], and

Bozdogan [1987], and are discussed in more detail in Chapter 2. Briefly, the criteria are as follows.

AIC = −2 log L + 2v •Akaike Information Criterion

CAIC = −2 log L + v (log n + 1) •Consistent Akaike Information Criterion

BIC = −2 log L + v log n •Bayesian Information Criterion

C = −2 log L + 2E •Fuzzy Classification Likelihood

ICL = −2 log L + v log n + 2E •Integrated Completed Likelihood

where:

E (Entropy) = −
K∑

k=1

n∑
i=1

c̃ik log c̃ik ≥ 0

c̃ik =
πikf (yi | cik = 1)∑K

j=1 {πijf (yi | cij = 1)}
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Table 1.1: Percent of Subjects Fit in Each Latent Class (1-6 Classes)

Model Class N Percent

2-Class Optimal 715 34.6
At-Risk 1202 58.2
Unknown 149 7.2

3-Class Average 678 32.8
At-Risk 643 31.1
Optimal 511 24.7
Unknown 234 11.3

4-Class At-Risk 399 19.3
AvgHDL-HighOther 482 23.3
AvgHDL-LowOther 532 25.8
Optimal 414 20.0
Unknown 239 11.6

5-Class Avg HDL - Lower LDL 386 18.7
Low HDL - Lower Triglycerides 391 18.9
Avg HDL - Higher LDL 365 17.7
Low HDL - Higher Triglycerides 307 14.9
Optimal 340 16.5
Unknown 277 13.4

6-Class Optimal - Best HDL and Good Triglycerides 291 14.1
Bad Trends 336 16.3
Highest LDL 284 13.8
At-Risk 336 16.3
Optimal - Best Triglycerides and Good HDL 237 11.5
At-Risk - But Signs of Improvement 282 13.7
Unknown 300 14.5
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Table 1.2: Percent of Subjects Fit in Each Latent Class (7-10 Classes)

Model Class N Percent

7-Class High LDL Only 221 10.7
Low HDL Only 304 14.7
Optimal-Good HDL 281 13.6
Average 211 10.2
Bad Trends 210 10.2
Optimal-Best HDL 271 13.1
At-Risk 259 12.5
Unknown 309 15.0

8-Class Bad Trends 217 10.5
At-Risk 259 12.5
High LDL Only 234 11.3
Optimal 160 7.7
Low Triglycerides Only 234 11.3
Average 238 11.5
Elevated Triglycerides Only 231 11.2
Near-Optimal 192 9.3
Unknown 301 14.6

9-Class Near Optimal - Good HDL 223 10.8
At-Risk 201 9.7
High LDL Only 238 11.5
Low HDL Only 205 9.9
High HDL Only 163 7.9
Near-At-Risk 183 8.9
Optimal 160 7.7
Bad Trends 216 10.5
High Triglycerides Only 190 9.2
Unknown 287 13.9

10-Class At-Risk 139 6.7
Optimal 179 8.7
Near-At-Risk 166 8.0
Low LDL/Triglycerides 196 9.5
Low HDL 222 10.8
Bad Trends 149 7.2
Average-I 206 10.0
High HDL 126 6.1
High LDL 198 9.6
Average-II 179 8.7
Unknown 306 14.8
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Note that v represents the number of parameters fit in the model, n represents the number of subjects,

and E is an entropy measure. For consistency with the other measures, C has been multiplied by −2.

Notice that all of the traditional information-based criteria choose the most complicated 10-class

model. This is consistent with results from the simulation study presented in Section 2.8, which found

that these criteria tend to overestimate the number of latent classes.

Based on my work with the models, I propose a series of additional information criteria along

the lines of BIC. The BIC penalizes the likelihood for each additional parameter fit in the models.

However, the model that is the main focus of this research is a model in which class membership is

determined by the relative likelihood of an individual’s data under each of the underlying LMMs -

therefore, no additional parameters are fit for class membership. If the latent classes are so obviously

separated that the classes can be easily determined, then this seems appropriate. However, if class

membership for an individual is not obvious, it seems as if a penalty needs to be assessed for that

individual to account for fitting that individual’s mixing proportion. If the individual is fit such that

their class membership probability is split between two classes, then it seems the penalty should be

the equivalent of fitting one additional parameter in the model. If the individual’s probability is split

between three classes, then the penalty should be two additional parameters, and so on. Since the

point at which an individual can be attributed to one class with certainty or near-certainty is not

obvious, several criteria were proposed. The first, BICMod23, looks at the highest probability for

each subject - if the second-highest probability is more than half of the highest, then a single penalty

parameter is charged. If the third-highest probability is more than half of the highest, then a second

penalty parameter is charged and so on. The label ’23’ is meant to call attention to the fact that a

subject with probabilities 2
3 and 1

3 would be at the border of having a penalty assessed. A second

criteria, BICMod34, would have the border at 3
4 / 1

4 . BICMod45 has its border at 80 percent / 20

percent and BICMod910 has its border at 90 percent / 10 percent. These criteria are presented for

the LMM and LCLMM with 2-10 classes in Table 1.4.

The newly proposed criteria also tend to choose the 10-class model, although the BICMod45 criteria

chooses the 7-class model for the equal across classes variance model. The BICMod910 criteria chooses

the LMM as the best model, as the penalty is so great that even the 2-class model does not show

an improvement. In many respects, these criteria also do not offer a great deal of help in terms of

choosing a particular model to use - most do not penalize enough to result in a parsimonious model.

Therefore, the next focus in the search for the ’best’ model leads to an analysis of the residuals to

determine which of the models tends to fit better.
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Table 1.4: Linear Mixed Model and LCLMM - Proposed Modified Bayes Criteria

Variances # of Classes BICMod23 BICMod34 BICMod45 BICMod910

Equal-Across-Classes 1 (LMM) 164646.8 164646.8 164646.8 164646.8
2 163882.4 164912.9 165569.4 167485.4
3 162759.1 163812.5 164469.0 166537.7
4 162699.7 164371.4 165646.2 169470.5
5 162539.3 164478.2 166035.4 171271.9
6 161749.7 163986.3 165635.1 170780.0
7 161030.9 162679.7 164069.0 168213.9
8 160917.4 163169.2 165039.4 170482.0
9 160600.3 162859.8 164905.5 170851.9
10 159879.2 162268.4 164077.5 169909.4

Class-Specific 1 (LMM) 164646.8 164646.8 164646.8 164646.8
2 162185.5 163101.5 163620.6 165269.4
3 160634.8 162077.5 163062.2 166031.6
4 159658.5 161284.4 162414.2 165895.0
5 159133.5 160896.9 162370.1 166713.5
6 158706.0 160492.2 161850.9 166186.7
7 158223.4 160246.2 161566.8 166444.5
8 157873.9 159667.7 161224.9 166095.0
9 157206.4 159091.8 160458.2 165786.3
10 157026.4 159011.1 160354.5 165705.5
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Summary measures of the within-subject and total residuals were examined to see if any of the

models tended to have a smaller MSE of the residuals (see Table 1.5). These quantities are defined as

follows for subject i:

ri,total = yi −
K∑

k=1

πik

(
Xiβ̂ + Wiλ̂k

)
ri,within = yi −

[
K∑

k=1

πik

(
Xiβ̂ + Wiλ̂k

)]
− Zib̃i

MSE =

n∑
i=1

r′iri

Total # of Observations

Since the model fits each subject using a mixture determined by the relative fit of the underlying

models, it is expected that the residuals should show a noticeable improvement as classes are added.

However, keep in mind that if a subject has a great deal of data consistent with one class, but then

has a parameter which is inconsistent with that class, then the LCLMM may actually have a worse fit

for that parameter.

Notice that all of the models are an improvement over the LMM in terms of decreasing the mean

square error of the total residuals. The biggest decrease was about 49 percent for LDL cholesterol,

77 percent for HDL cholesterol, and 53 percent for triglycerides. However, there is not a single model

which fits best for all of the lab parameters. Note that while the likelihood is always much better

for the class-specific variance model, the models which assume variances are equal across classes have

comparable residual measures. Using the within-subject residuals as a guide of overall model fit, I

chose to focus on one model with class-specific variances and another with variances equal-across-

classes. Note that in the simulation study presented in Section 2.8, the within-subject MSE is found

to be the most effective measure in terms of choosing from competing models. For equal-across-classes

variances, the 4-class model has the best fit for LDL and is reasonably close to the best fit for HDL

and triglycerides. For class-specific variances, the 5-class model also has the best fit for LDL and is

reasonably close to the best fit for HDL and triglycerides. This leads to the next question... should

the model be fit assuming class-specific variances or variances equal-across-classes?

Variances - Class-Specific or Equal-Across-Classes?

Many previously proposed models have fit the variances as being equal across classes. As noted earlier,

Basford and McLachlan [1985] presented an example to illustrate that fitting a normal mixture model
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with homoscedastic variances in a situation where the classes are in fact heteroscedastic can have a

significant influence on the resulting estimates. In particular, they found that the mixing proportions

can be greatly affected, resulting in potentially different results in multivariate clustering analyses.

Logically, incorporating the different degrees of variation present in each latent class should allow for

an improved and more realistic model. For illustration, the 3-class models with class-specific variances

and variances equal-across-classes are examined using the ARIC data.

First, spaghetti-plots for subjects identified in each of the three classes are presented in Figures

1.25, 1.26, and 1.27 for both the class-specific variance model and equal-across-classes variance model.

It is apparent that the groups have remarkably different degrees of variation, both for the model which

accounts for that variation and the model which assumes that the variation is equal for all classes. Note

the increased variation present for HDL in the Optimal group in both the equal-across-classes variance

model and class-specific variance model. The fitted variances for each class based on the class-specific

variance model are presented in Table 1.6 and confirm the sometimes dramatic differences. Note that

the residual error variances for HDL range from 22 for the Average class to 138 for the Optimal class.

Similar degrees of difference between classes are found for the other lipids as well.

The question arises, ”Can these differences in variances affect the choice of groups and/or the

underlying models?” Of 2,066 subjects, about 460 were not classified into a particular class (did not

have their most likely class twice as likely as their second most likely class) in one or both models.

Of the remaining 1,600, about 1,025 were selected to be in the same class in both models. That

leaves about 575 who were fit in different classes depending on whether variances were fit as being

class-specific or equal-across-classes. Of these, 245 were considered to be in the ’At-Risk’ class in the

equal-across-classes variance model but not in the class-specific variance model and 186 subjects were

considered to be in the ’At-Risk’ class for the class-specific variance model but not the equal-across-

classes variance model. The remainder were at the border of ’Average’ and ’Optimal’. In order to

investigate the differences, the random intercepts for each subject for LDL, HDL, and triglycerides

from the usual LMM were categorized into quartiles for each of the three lab parameters. Then, the

percent of subjects in each of the quartiles who were classified into the ’At-Risk’ group in the 3-class

LCLMMs was calculated and is presented in Figures 1.28, 1.29, and 1.30. Each figure compares the

class membership resulting from the class-specific variance model with the class membership resulting

from the equal-across-classes variance model.

When looking at the LDL/HDL quartiles, the equal-across-classes variance model appears to rely

primarily on HDL to make class determinations, as the levels of the bars are very similar across LDL
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Figure 1.25: Plot of LDL Cholesterol for Subjects Identified in Each Latent Class
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Figure 1.26: Plot of HDL Cholesterol for Subjects Identified in Each Latent Class
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Figure 1.27: Plot of Triglycerides for Subjects Identified in Each Latent Class
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Table 1.6: Fitted Variances - LCLMM Class-Specific Variance Model (3-Class)

Variance Class Estimate SE

LDL - Random Intercept Average 355.66 28.79
At-Risk 906.42 70.27
Optimal 643.48 48.95

LDL - Random Slope Average 1.70 0.24
At-Risk 1.47 0.65
Optimal 1.18 0.39

LDL - Residual Error Average 191.25 7.61
At-Risk 809.41 28.41
Optimal 453.72 18.57

HDL - Random Intercept Average 78.60 5.19
At-Risk 48.95 3.39
Optimal 161.58 13.98

HDL - Residual Error Average 22.38 0.87
At-Risk 41.51 2.06
Optimal 138.42 5.46

Triglycerides - Random Intercept Average 0.10 0.01
At-Risk 0.12 0.01
Optimal 0.12 0.01

Triglycerides - Residual Error Average 0.06 0.002
At-Risk 0.13 0.005
Optimal 0.08 0.004
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(a) Equal-Across-Classes Variances

(b) Class-Specific Variances

Figure 1.28: Comparison of Latent Class Membership by LDL/HDL Quartiles
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(a) Equal-Across-Classes Variances

(b) Class-Specific Variances

Figure 1.29: Comparison of Latent Class Membership by HDL/Triglycerides Quartiles

77



(a) Equal-Across-Classes Variances

(b) Class-Specific Variances

Figure 1.30: Comparison of Latent Class Membership by LDL/Triglycerides Quartiles
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levels. As HDL decreases, subjects for the most part become more likely to be classified into the ’At-

Risk’ class. In the model with class-specific variances, the pattern appears to be more of a step function

where an increase in either LDL or HDL will tend to move subjects to the ’At-Risk’ group. The chart

for HDL vs. triglycerides is very similar in that the class-specific variance model seems to have a more

noticeable step function. The LDL vs. triglycerides chart shows the same step pattern for the class-

specific variance model, but in the equal-across-classes variance model, it appears that triglycerides

is used primarily to determine latent classes, while LDL does not have a noticeable impact on class

assignments. Given the dramatic differences between results using the equal-across-classes and class-

specific variance models, it seems that if possible, it would be advantageous to utilize information

with respect to variation in fitting the model. For completeness, therefore, the parameters for the

final 5-class class-specific variance model are presented in Table 1.7. Note that the effect of taking

cholesterol medications is a decrease of 15.06 for LDL, but that HDL stays almost unchanged. Also,

note that the correlations for the random effects are relatively small after the latent classes have been

accounted for. Two correlations are higher than the others. The correlation of the random intercept

and slope for LDL have a correlation of -0.37 (SE = 0.049), which indicates that subjects with a higher

random intercept tend to have a lower random slope. The correlation of the random intercepts for

HDL and triglycerides have a correlation of -0.49 (SE = 0.030), which indicates that subjects with

a high random intercept for HDL tend to have a low random intercept for HDL. Interestingly, the

correlations between the other random intercepts are not nearly as high.

1.5.4 Identifying the Carotid Artery Thickness Groups

Previous research has examined the relationship between LDL / HDL / triglycerides and carotid artery

thickness. Grebe et al [2007] showed that there was a statistically significant negative correlation

between HDL and the intima-media thickness (IMT) of the carotid arteries. In addition, the authors

found that there was a statistically significant positive correlation between both LDL and IMT and

triglycerides and IMT. They found correlations of -0.187 for HDL (p-value=0.022), 0.271 for LDL (p-

value=0.001), and 0.185 for triglycerides (p-value=0.023). Therefore, a comparison seemed appropriate

in terms of comparing the actual IMT values in each of the identified latent classes.

First, a comparative histogram is presented in Figure 1.31 which shows the distribution of the

IMT values in each latent class. Note that the IMT values for the Low HDL-Higher Triglycerides,

Low HDL-Lower Triglycerides, and Average HDL-Higher LDL classes tend to be higher than for the

79



T
ab

le
1.

7:
F

in
al

P
ar

am
et

er
s

-
L

C
L

M
M

C
la

ss
-S

pe
ci

fic
V

ar
ia

nc
e

M
od

el
(5

-C
la

ss
)

A
vg

H
D

L
-

L
ow

H
D

L
-

A
vg

H
D

L
-

L
ow

H
D

L
-

L
ow

er
L

D
L

L
ow

er
T

ri
g

H
ig

he
r

L
D

L
H

ig
he

r
T

ri
g

O
pt

im
al

P
ar

am
et

er
E

st
.

SE
E

st
.

SE
E

st
.

SE
E

st
.

SE
E

st
.

SE

E
ffe

ct
of

C
ho

l.
M

ed
s

on
L

D
L

-1
5.

06
0.

64
8

−→
−→

−→
−→

E
ffe

ct
of

C
ho

l.
M

ed
s

on
H

D
L

-0
.1

3
0.

20
0

−→
−→

−→
−→

L
D

L
-

In
te

rc
ep

t
12

0.
02

1.
28

9
12

9.
20

1.
24

6
17

5.
03

1.
70

8
12

6.
29

1.
82

0
12

6.
32

1.
66

7
L

D
L

-
L

in
ea

r
(A

ge
)

0.
05

0.
09

5
-1

.8
0

0.
12

4
-1

.4
9

0.
24

6
-2

.0
1

0.
21

5
0.

38
0.

14
3

L
D

L
-

Q
ua

dr
at

ic
(A

ge
)

0.
02

0.
00

8
-0

.0
1

0.
01

1
-0

.1
9

0.
02

0
0.

01
0.

01
9

-0
.0

3
0.

01
3

H
D

L
-

In
te

rc
ep

t
56

.1
0

0.
50

4
37

.5
4

0.
38

1
48

.6
7

0.
53

9
42

.1
0

0.
69

5
76

.6
3

0.
79

8
H

D
L

-
L

in
ea

r
(A

ge
)

-0
.4

4
0.

04
0

-0
.0

3
0.

02
4

-0
.3

4
0.

05
2

0.
17

0.
05

2
-0

.4
8

0.
06

9
H

D
L

-
Q

ua
dr

at
ic

(A
ge

)
-0

.0
1

0.
00

4
0.

01
0.

00
2

0.
01

0.
00

4
0.

00
0.

00
5

-0
.0

2
0.

00
7

T
ri

g
-

In
te

rc
ep

t
4.

55
0.

02
2

4.
89

0.
02

3
4.

84
0.

02
3

5.
19

0.
03

5
4.

56
0.

02
1

T
ri

g
-

L
in

ea
r

(A
ge

)
0.

02
0.

00
2

0.
01

0.
00

1
0.

02
0.

00
2

-0
.0

1
0.

00
3

0.
02

0.
00

2
T

ri
g

-
Q

ua
dr

at
ic

(A
ge

)
0.

00
0.

00
0

-0
.0

0
0.

00
0

-0
.0

0
0.

00
0

-0
.0

0
0.

00
0

-0
.0

0
0.

00
0

V
ar

ia
nc

e
(R

an
do

m
In

t
-

L
D

L
)

41
5.

74
34

.8
87

33
6.

27
39

.5
21

37
6.

49
55

.9
14

39
7.

39
59

.7
58

55
2.

93
52

.9
37

V
ar

ia
nc

e
(R

an
do

m
Sl

op
e

-
L

D
L

)
1.

00
0.

21
7

2.
07

0.
34

5
4.

07
0.

84
1

2.
32

0.
75

6
1.

12
0.

50
1

V
ar

ia
nc

e
(R

an
do

m
In

t
-

H
D

L
)

38
.6

6
4.

27
8

26
.2

0
2.

64
9

34
.2

0
5.

29
7

57
.0

0
6.

03
0

10
4.

05
11

.4
41

V
ar

ia
nc

e
(R

an
do

m
In

t
-

T
ri

g)
0.

11
0.

01
0

0.
10

0.
00

9
0.

07
0.

00
8

0.
15

0.
01

8
0.

10
0.

00
9

V
ar

ia
nc

e
(E

rr
or

-
L

D
L

)
16

4.
92

9.
42

3
23

6.
53

11
.9

39
75

4.
79

40
.0

88
72

5.
99

39
.0

30
51

6.
68

24
.6

40
V

ar
ia

nc
e

(E
rr

or
-

H
D

L
)

41
.6

6
2.

12
1

14
.0

6
0.

76
6

42
.2

9
2.

07
5

54
.1

0
2.

90
0

17
3.

18
8.

21
2

V
ar

ia
nc

e
(E

rr
or

-
T

ri
g)

0.
06

0.
00

3
0.

06
0.

00
3

0.
07

0.
00

3
0.

18
0.

00
8

0.
08

0.
00

3
C

or
r

(R
nd

In
t

L
D

L
/S

lo
pe

L
D

L
)

-0
.3

7
0.

04
9

−→
−→

−→
−→

C
or

r
(R

nd
In

t
L

D
L

/I
nt

H
D

L
)

-0
.0

5
0.

03
9

−→
−→

−→
−→

C
or

r
(R

nd
Sl

op
e

L
D

L
/I

nt
H

D
L

)
0.

12
0.

05
3

−→
−→

−→
−→

C
or

r
(R

nd
In

t
L

D
L

/I
nt

T
ri

g)
0.

10
0.

03
5

−→
−→

−→
−→

C
or

r
(R

nd
Sl

op
e

L
D

L
/I

nt
T

ri
g)

-0
.1

9
0.

04
5

−→
−→

−→
−→

C
or

r
(R

nd
In

t
H

D
L

/I
nt

T
ri

g)
-0

.4
9

0.
03

0
−→

−→
−→

−→

80



Optimal and Average HDL-Lower LDL classes. The mean IMT values for the former set of classes are

above 0.9, while the mean values for the latter are around 0.82.

In a second examination of the data, the 2,066 individuals were classified into quartiles based on

their IMT values. Figure 1.32 then displays the percent of subjects in each quartile who were classified

in the Low HDL-Higher Triglycerides, Low HDL-Lower Triglycerides, and Average HDL-Higher LDL

classes. This percentage increases from about 39 percent to 62 percent as you move from the lowest

IMT quartile to the highest.

This analysis appears to support the results of Grebe et al [2007]. However, like that study,

in which the correlations between the lipid parameters and IMT were between 0.18 and 0.28, the

relationships seen in the latent class analysis still leave questions as to other important factors which

act upon IMT.

1.5.5 Differential Effect of Obesity

As a further examination of the flexibility of the LCLMM, the effect of obesity was examined as

it pertains to the three lipid parameters. Previous sections have already discussed the relationship

between the lab parameters and IMT of the carotid arteries. A further question worth examining

is ’Does obesity have an effect on an individual’s lipid profile after taking into account latent class

membership?’ In other words, if a subject is identified as being in an at-risk lipid class, does that

subject tend to have an even worse profile if they are obese, or does the latent class already reflect

this?

To examine this question, the final 5-class LCLMM presented in Table 1.7 was run with one

modification. An indicator for the effect of obesity (Yes/No) on LDL cholesterol was included in the

model and was allowed to vary by latent class. Similar indictors were included for HDL cholesterol and

triglycerides. Obesity in the model is defined as a body mass index of 30 or greater. These parameters

would be interpreted as the effect of being obese above and beyond being classified in the given latent

class. The estimates and standard errors for these parameters are presented in Table 1.8. In addition,

p-values based on a z-test are provided to test whether the effect of obesity is significantly different

from zero.

It appears that even after the latent classes are accounted for, there is still an effect of obesity

on HDL cholesterol and triglycerides. In all groups, subjects classified as obese had a lower average

HDL cholesterol value and a higher average triglyceride value than those not classified as obese, with

81



0

5

10

15

20

25

P
er

ce
nt

N 306

Mean 0.911511

Minimum 0.499411

Maximum 2.25

L
ow

H
D

L
-H

ig
he

r 
T

rig

0

5

10

15

20

25

P
er

ce
nt

N 391

Mean 0.925942

Minimum 0.467915

Maximum 2.164014

L
ow

H
D

L
-L

ow
er

 T
rig

0

5

10

15

20

25

P
er

ce
nt

N 364

Mean 0.942352

Minimum 0.442553

Maximum 2.25

A
vg

H
D

L
-H

ig
he

r 
L

D
L

0

5

10

15

20

25

P
er

ce
nt

N 386

Mean 0.829684

Minimum 0.458768

Maximum 2.06

A
vg

H
D

L
-L

ow
er

 L
D

L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

0

5

10

15

20

25

P
er

ce
nt

N 340

Mean 0.822635

Minimum 0.442452

Maximum 2.01849

O
pt

im
al

Mean Intima-Media Thickness (mm)

Figure 1.31: Distribution of Mean Intima-Media Thickness by Latent Class

82



%
 o

f 
S

u
b

je
c
ts

 I
n

c
lu

d
e

d
 i
n

 L
o

w
 H

D
L

 o
r 

A
v
g

 H
D

L
-H

ig
h

e
r 

L
D

L
 C

la
s
s
e

s

0

10

20

30

40

50

60

70

Mean IMT Quartile

Lowest 2nd Lowest 2nd Highest Highest

Figure 1.32: Percent of Subjects Classified in the Low HDL or Average HDL-Higher LDL Latent
Classes by Mean IMT Quartile

83



Table 1.8: Effect of Obesity Within Identified Latent Classes

Effect of Obesity
Parameter Class On Lab Measure Std Error P-Value

LDL Cholesterol Low HDL - Higher Triglycerides -5.84 3.00 0.0516
Low HDL - Lower Triglycerides -0.85 1.60 0.5952
Avg HDL - Higher LDL 6.68 2.47 0.0068
Avg HDL - Lower LDL 2.99 1.73 0.0839
Optimal 3.71 2.77 0.1805

HDL Cholesterol Low HDL - Higher Triglycerides -2.34 0.83 0.0048
Low HDL - Lower Triglycerides -1.30 0.38 0.0006
Avg HDL - Higher LDL -1.28 0.72 0.0754
Avg HDL - Lower LDL -5.03 0.77 <0.0001
Optimal -6.36 1.32 <0.0001

Triglycerides Low HDL - Higher Triglycerides 0.1419 0.0342 <0.0001
Low HDL - Lower Triglycerides 0.1115 0.0237 <0.0001
Avg HDL - Higher LDL 0.1525 0.0249 <0.0001
Avg HDL - Lower LDL 0.2042 0.0289 <0.0001
Optimal 0.1075 0.0316 0.0007

most values being statistically significant. While obesity is associated with a decreased HDL value

of 1.28-2.34 in the less optimal classes, it is associated with a much larger 5.03-6.36 decrease in the

Optimal and Avg HDL-Lower LDL classes. In other words, although individuals in the ’Optimal’ class

tend to have healthy lab measures - low LDL, low triglycerides and high HDL - obese individuals in

the ’Optimal’ class will likely have noticeably lower HDL than individuals in the same class who are

not obese. Indeed, this is consistent with what you might expect. HDL tends to increase with aerobic

exercise, weight loss, and cutting trans-fats from the diet. These are all activities that are more likely

a part of the standard routine of someone who is not considered obese. And, while HDL is not likely

to show large increases solely due to medication use, LDL can often be lowered by taking appropriate

medications. This may help to explain why the association of obesity and LDL cholesterol is not as

clear.

Finally, it is worth noting that including the obesity indicators in the LCLMM has the potential to

result in the creation of different latent classes since now an additional parameter has been included

in the model. However, approximately 93% of the subjects remained in the same latent class in the

new model as compared with the old and the fitted class trajectories are very similar.
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1.6 Conclusions and Further Research

The Latent Class Linear Mixed Model represents an important tool which researchers can use to

understand complex longitudinal data. By solving simultaneously for subpopulation membership as

well as the linear mixed models for those subpopulations, the statistician is given a powerful method

for understanding the data. This chapter has provided advances in several main areas. First, methods

have been extended to allow for structured variance components which can differ by latent class.

Second, a new relative-fit model has been proposed which allows the statistician to fit each subject

in the class or classes that are most appropriate. And finally, subject-specific predictions have been

expanded such that each subject can receive a prediction which reflects the attributes of the class or

classes that most represent that subject.

While a great deal has been done to make this model practical and general enough for the com-

plexity of everyday problems, there are several topics which should be examined in future research.

First and foremost, it would be advantageous to have a likelihood-based measure which would be

useful in choosing the ideal model. There are practical considerations which argue for smaller, more

parsimonious models, and other considerations which would argue for more complex models. Balanc-

ing these concerns is of great importance. With regard to variance-covariance structures, this chapter

has focused on a linear structure. In order to continue to expand the options for statisticians, other

correlation structures should be examined, and the bound recommended by Hathaway revisited for

these other structures. Finally, this model provides a powerful way to explore complex data and there

are likely many applications which could benefit from the application of these models.
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Chapter 2

SAS R© Macro for Latent Class Linear

Mixed Models

2.1 Introduction

Chapter 1 discussed a flexible modeling approach for Latent Class Linear Mixed Models (LCLMM),

in which the statistician can tailor the model in several ways to more accurately describe the data

being analyzed. Among these choices are selecting fixed and random effects, which fixed effects are

fit across-classes and which are fit separately for each class, whether the variances are allowed to vary

by class, and how the latent classes themselves are determined. While the LCLMM has been applied

in several research settings, it has not been adopted extensively for several reasons. Until now, two of

the main drawbacks of the LCLMM have been slow computational speed and the lack of availability

of software to run the models. Both of these are addressed in this chapter via the presentation of a

new SAS R© macro. This macro will allow researchers a way to easily specify models for the means,

variances, and class membership, and in turn obtain parameter estimates for the underlying linear

mixed models (LMMs), likely class assignments, standard errors of the parameters, and predictions

of the random effects. Several computational algorithms can be chosen for estimation, including EM,

gradient-based methods such as quasi-Newton, and Hessian-based methods such as Newton-Raphson.

Short examples using small simulated datasets are presented to illustrate possible uses of the new

macro as well as how to specify a model. In addition, simulation studies are presented to demonstrate

the stability and advantage of the LCLMM.



2.2 The Model

A detailed review of the LCLMMs which can be fit in the SAS R© macro is provided in Chapter 1. For

convenience, a brief review is presented here.

2.2.1 Defining the Latent Class Linear Mixed Model

The LCLMM is effectively a mixture model where the underlying mixture distributions are specified

as LMMs. Therefore, a brief introduction of the LMM will lead directly into the specification of the

LCLMM. Note that Searle et al [1992] provides a more detailed presentation of the LMM. For subject

i, we assume

yi = Xiβ + Zibi + ei (2.1)

where:

yi is an ni × 1 vector of observations

Xi is an ni × p1 design matrix for the fixed effects

β is a p1 × 1 unknown vector of fixed effects

Zi is an ni × q design matrix for the random effects

bi is a q × 1 unknown vector of random effects

ei is an ni × 1 unknown vector of random error terms

Further, ei and bi are assumed to be mutually independent of one another and to have the following

properties:

E (bi) = 0

Var (bi) = D

Cov (bi,b′h) = 0 for i 6= h

E (ei) = 0

Var (ei) = Ri

Cov (bi, ei) = 0

(2.2)

And finally, the following distributional properties are assumed to apply to the random effects, bi,
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and residuals, yi −Xiβ:

 bi

yi −Xiβ

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (2.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture

of K LMMs, one for each of the K latent classes. Note that the value K is specified by the statistician

a priori. Details related to selecting K are discussed later in this chapter. Following the notation in

Lin et al [2002a], define for subject i:

cik =

 1 if subject i is a member of class k

0 if subject i is NOT a member of class k

ci1, . . . , ciK ∼ Multinomial (1, πi1, . . . , πiK)

The πik, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

πik = P (cik = 1 | ti) =
exp (t′iαk)∑K

j=1 exp (t′iαj)
(2.4)

where:

ti is the design vector related to class membership for subject i

αk is an unknown vector of class-membership parameters for class k with α1 = 0

Further, given that subject i is in class k, define the LMM for subject i as follows:

yi = Xiβ + Wiλk + Zibi + ei (2.5)

where the following additional definitions are provided:

Wi is an ni × p2 design matrix for the class-specific fixed effects

λk is a p2 × 1 unknown vector of class-specific fixed effects for class k

It is useful to note that the parameters in β will apply to all subjects through the values of the cor-
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responding column in Xi. The class-specific parameters, λk, however, are different for each latent class.

The error terms and random effects are assumed to have the same properties as in Equation 2.2.

Finally, similar to the LMM, the following distributional properties are assumed to apply to the random

effects, bi, and residuals, yi −Xiβ −Wiλk:

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (2.6)

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that

both of the following are true:

[
t1 t2 · · · tn

]
is full rank, and



X1 W1 . . . Z1 . . .

X2 . W2 . . . Z2 . .

... . .
. . . . . .

. . . .

Xn . . . Wn . . . Zn


is full rank.

For notational convenience, denote Θ as the combined parameter vector comprised of α2 . . .αK ,

β, λ1 . . .λk, and θ, where θ contains the unique variance components which determine D and Ri.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values Xi, Wi, Zi, and ti. In short,

log L (Θ)LMM =
n∑

i=1

log f (yi) (2.7)

log L (Θ)LCLMM =
n∑

i=1

log
K∑

k=1

πikf (yi | cik = 1) (2.8)

with f (·) being the density defined by

(yi) ∼ N (Xiβ,ZiDZ′i + Ri)

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)
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Several points are of note. First, note the difference between Equations 2.7 and 2.8 - the likelihood

for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore πi1 = 1, the

LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has

one πik = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects

assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of

the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.

2.2.2 LCLMM: The Relative-Fit Class Membership Model

In the model described in the previous section, class membership was assumed to be determined based

on an underlying logistic regression model. However, in many cases, the statistician may not know

exactly which factors should be included in the model describing class membership, these factors may

not be measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K

classes. However, this model, in which each subject can have its own set of mixture probabilities, would

result in many parameters related to class membership - specifically, for n subjects and K classes, the

model would require n×(K − 1) parameters. Therefore, a second approach was proposed in Chapter 1

which replaces the logistic regression model with a model in which class membership is determined by

the relative fit of the underlying LMMs. This is much less costly in terms of computational time than

fitting a separate set of class membership parameters for each subject, but offers a logical approach

with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

[πikf (yi | cik = 1)] (2.9)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)

In the revised model, the πik are determined solely by the relative fit of the underlying LMMs according
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to the following equation:

π̂ik =
f
(
yi | cik = 1; Θ̂

)
∑K

j=1 f
(
yi | cij = 1; Θ̂

) (2.10)

For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the

subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the

subject would be included in each class 50%/50%. If the likelihood for Class 1 was nine times higher

than for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

Further details are presented in Section 1.4.4.

2.2.3 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of

this specification lies in the random effects which are thought of as being sampled from an underlying

distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The

LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the

data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute

predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM

are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following

distributional properties are assumed to apply to the random effects, bi, and residuals, yi −Xiβ −

Wiλk.

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 Dk DkZ′i

ZiDk ZiDkZ′i + Ri




∣∣∣∣∣∣∣ cik = 1 (2.11)

The computation of the LCLMM random effects requires maximizing the joint density of the data y

and the random effects bi, with respect to the terms bi. The likelihood can be written as follows:

log L (y,b) =
n∑

i=1

log

K∑
k=1

πik

[
exp
[
− 1

2

{
(yi −Xiβ −Wiλk − Zibi)

′R−1
ik (yi −Xiβ −Wiλk − Zibi) + b′iD

−1
k bi

}]
(2π)(ni+q)/2 |Rik|1/2 |Dk|1/2

]
︸ ︷︷ ︸

P3ik︸ ︷︷ ︸
P1i
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However, given that a subject is in class k implies that the best set of predictions of the random

effects are the predictions based on the kth LMM. Therefore, the random effects for a subject can

be computed as the weighted average of the random effects computed as if that subject were in each

latent class:

b̃i = eBLUP [bi] = E
[
bi | Θ̂,yi

]
=

K∑
i=1

πik × b̃i|k

The resulting random effects are available in the SAS R© macro discussed in the next section. Additional

details related to predictions of the random effects are presented in Section 1.4.5.

2.3 A New SAS R© Macro

A new SAS R© macro has been developed which allows the user to fit LCLMMs. This macro is publicly

available via the following link: http://www.mysitehere.com. This section reviews the input files

required to run the SAS R© macro, presents some specifics related to how the macro works, and describes

the resulting output files.

2.3.1 Directory Structure

In the macro’s calling program, a BasePath is specified by the user - for example c:\LatentClass. The

directory named as BasePath should contain the program and macros. Two subdirectories should be

created underneath the BasePath - these should be named ’in’ and ’out’ - for example c:\LatentClass\in

and c:\LatentClass\out. Input files, described in the next section, will be stored in the ’in’ subdirectory,

and the macro will output the results to the ’out’ subdirectory.

2.3.2 Input Files

Overview

For purposes of describing how to specify the files required by the macro, the below sections assume

the researcher is starting with a SAS R© dataset which contains one record for each response, with the

many responses for a subject stacked so they are on separate records - this is similar to how one would

prepare the data to run in SAS R© PROC MIXED. As with the LMM, it is not required that all subjects

have complete data. Instead, each record being modeled must be complete. Therefore, it is necessary
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to first delete records for which there are missing responses or predictors. In terms of preparing to run

the data in the SAS R© macro, rename/create variables in your SAS R© dataset (stacked as described

above) so that the following variables are present. Note that all variables except ’subject’ must be

numeric. In addition, indicator variables must be specified as 1/0, and indicators must be created for

each possible value for class variables. In other words, the matrices X, W, and Z must be specified

in full.

subject − a unique subject identifier

y − the continuous responses

x1 · · · x? − across-class fixed effect numbers 1-?

− the parameters related to these WILL NOT vary by latent class

w1 · · ·w? − class-specific fixed effect numbers 1-?

− separate parameters for these variables will be estimated for each latent class

z1 · · · z? − random effect numbers 1-?

All data for a particular subject should be stored consecutively. In many cases, the z-variables will

be a subset of the x-variables, since it is common to have random effects which are also fit as fixed

effects. After you’ve set your data up in this way, the remaining steps are relatively simple.

Continuous Responses

Create a dataset named ’y’ which will contain only the variable ’y’ from the dataset described above.

Create a second dataset named ’info’ which will contain only the variable ’subject’ from the dataset

described above. These datasets will provide information related to the responses and which responses

came from which subjects.

Fixed Effects

First, create the dataset of fixed effects which will apply to all latent classes. Create a dataset named

’x’ which will contain only the variables x1-x? from the dataset described above. It is important that

the variables be present in the dataset in the order X1, X2, X3, etc. since they will be read in from the
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’x’ dataset in the same column order as they exist in the dataset, regardless of the variable naming. If

you would like all fixed effects to vary by latent class, then do NOT create an ’x’ dataset at all - this

will indicate to the macro that all fixed effects vary by class.

Second, create the dataset of class-specific fixed effects. Create a dataset named ’w’ which will

contain only the variables w1-w? from the dataset described above. Once again, it is important that

the variables be present in the dataset in the order W1, W2, W3, etc. since they will be read in

from the ’w’ dataset in the same column order as they exist in the dataset. If you do not want to

fit any class-specific fixed effects (i.e. the usual LMM with a mixture distribution for the error or

random-effects distribution) - then do not create a ’w’ dataset at all - this will indicate to the macro

that all fixed effects are across-class.

Random Effects

Create a dataset named ’z’ which will contain only the variables z1-z? from the dataset described

above. Once again, it is important that the variables be present in the dataset in the order Z1, Z2,

Z3, etc. since they will be read in from the ’z’ dataset in the same column order as they exist in the

dataset.

Variance-Covariance Structure

In this SAS R© macro, the variance-covariance structure is determined by the specification of random

effects, which are assumed to have a linear correlation structure, as well as a diagonal structure for

the error terms, with different residual error variances permitted for different measures.

First, with regard to the residual error variance, create a dataset named ’r structure’ with a single

variable named ’r structure’ and with the same number of records as ’y’. The variable ’r structure’

will contain the number of the residual error variance which applies to each record in ’y’. For example,

if all records had the same residual error variance, the variable would always contain the value 1. If

each subject had five records with one variance followed by five records with a different variance, the

variable would contain five 1’s followed by five 2’s for each subject. Note that if this file does not exist,

the macro assumes that all records have the same residual error variance.

Second, with regard to the variances of the random effects, create a dataset named ’d structure’

with a single variable named ’d structure’ and with the number of records equal to the number of

random effects (number of z* variables). The variable will contain the number of the variance which

applies. For example, if all random effects had the same variance, the variable would always contain
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the value 1. If each random effect had a different variance and there were 4 random effects, the file

would have 4 records with values for ’d structure’ of 1, 2, 3, and 4. Note that if this file does not exist,

the macro assumes that all random effects have a different variance.

Finally, with regard to the correlation structure for the random effects, recall that the correlation

between random effects is fit across classes, even if the variances are allowed to differ between classes.

Create a dataset named ’d corr’ with the number of records and number of variables equal to the

number of random effects (number of z* variables). Name the variables d corr 1 to d corr ?. It is

easiest to think of this file as the matrix of correlations of the random effects - then it is possible

to discuss cell(x,y) of the file. The cells of this file will contain the number of the correlation which

applies. For example, if there are four random effects and only the first two are correlated, then the

(1,2) cell and (2,1) cell of the file should contain the value 1 and all other cells should be set to 0. If

there are 4 random effects and the first two random effects are correlated and the last two random

effects are correlated but the first/second are not correlated with the third/fourth, then the (1,2) cell

and (2,1) cell of the file should contain the value 1, the (3,4) cell and (4,3) cell of the file should contain

the value 2, and all other cells should be set to 0. Note that if this file is not created and the macro

is run with the option specified that there should be correlation between the random effects, then the

macro assumes that the variance-covariance matrix of the random effects, D, is unstructured.

Class Membership

The remaining file to be specified is the file of variables which determine class membership. These are

used in the logistic model related to class membership. Create the file ’v’ with variables named v1,

v2, ... v? in that order. The file should have one record per subject. If all subjects are to have the

same mixture, which can be useful when running the usual LMM with mixtures for the error and/or

random effect distributions, then a single variable would be present, v1, which would contain 1 for all

subjects. If several variables are thought to impact class membership, say age and baseline/change

from baseline for some measure, each subject would have 4 variables, named v1 v2 v3 v4, which for

each subject would contain the intercept (1) and these three measures. If each subject were permitted

to be fit by that’s subject’s best-fitting model, then there would be a v* variable for each subject -

effectively, the ’v’ file would be an identity matrix.

Note that this last scenario, in which each subject can be fit in that subject’s best-fitting class,

results in many parameters and relatively long runtimes. Therefore, the relative-fit model was proposed

earlier. If the dataset ’v’ is not created and a gradient-based or Hessian-based computational method
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is selected, then the πik for each subject is estimated based on the relative fit of the underlying LMMs

for that subject’s data. For example, if there are two classes and the LMM for Class 1 results in a

likelihood for the subject’s data equal to the likelihood of that subject’s data under the model for

Class 2, then the subject would be included in each class 50/50. If the likelihood for Class 1 was nine

times higher than for Class 2, then the subject would be included in Class 1 90 percent and Class 2

only 10 percent. This model runs much more quickly and will produce similar results when the classes

are somewhat distinct. If the EM method is selected and ’v’ is not specified, then a ’v’ file is created

automatically which is an identity matrix and computations proceed. The relative-fit model is not fit

in this case because the unknown-data portion of the EM algorithm, which has been class membership,

is now a deterministic function of the likelihoods for each underlying LMM.

2.3.3 Additional Inputs

In addition to the input files, the user must specify additional information prior to running the macro.

This includes the following choices: number of latent classes, computational method, whether or not

to fit correlation between the random effects, whether variances in D and/or R are permitted to vary

by class, how to model class membership, and whether to calculate standard errors (and which method

to use) or predictions of the random effects. Comments related to these choices are provided in the

following sections.

Number of Latent Classes

For each run of the SAS R© macro, the user is required to specify the number of latent classes to fit -

this is entered in the macro variable ’NumClasses’. In some cases, the user may have a pretty good

idea of how many unique classes they are interested in. In other cases, the user may not be sure how

many classes exist and would be served best by running the macro several times, each with a different

number of classes. Along with the final estimates, the macro computes several information criteria for

each model. By comparing information criteria for a range of classes, it may be apparent which number

of classes appears to fit best. Section 2.8 presents the results of a simulation study which compares

the performance of various information- and residual-based criteria with respect to determining the

appropriate number of latent classes. As noted in that study, the user may also wish to compare a

more practical measure such as mean square error for each parameter fit. Since this comparison must

be made for each unique parameter being modeled, this measure is not automatically output.
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Computational Methods

In previous research, LCLMMs have almost exclusively been fit using the EM algorithm. However,

with its slow convergence properties and the complexity of the LCLMMs, computation can be too

slow for practical use. The new SAS R© macro presented here allows the user to select from several

gradient-based methods and Hessian-based methods, in addition to running the EM algorithm. A

simulation study is presented in Section 2.9 which provides the basis for recommendations as to which

algorithm works best for various size models.

The user must choose from the following options - note that the computational method is specified

in the macro variable ’Method’:

EM − EM Algorithm

CG − Conjugate Gradient Algorithm

QN − Quasi-Newton Algorithm

NRA − Newton-Raphson Algorithm (without ridging)

NRR − Newton-Raphson Algorithm (with ridging)

The EM and Newton-Raphson algorithms are discussed in detail in Chapter 1. Additional de-

tails related to the other algorithms can be found in Chapter 4 of the SAS R©/OR 9.2 User’s Guide

[2008]. Note that when fitting only one latent class (generalizing the LMM), the user cannot specify

’Method’=’EM’.

Is there non-zero correlation between random effects?

As in the LMM, the user must determine whether to model a correlation structure for the random ef-

fects. If this is desired, then the associated macro variable in the latent class program, ’D HasCorr YN’,

must be set to ’Y’. The structure of the file containing the linear correlation structure was discussed

earlier.

Should variances be permitted to vary by latent class?

In many situations, the variances for one class may be very different than another class. If there is rea-

son to believe this may be true, then the model should be run allowing variances to differ by latent class.

This is controlled by setting the macro variables ’D VarDiffByClass YN’ and ’R VarDiffByClass YN’

to either ’Y’ or ’N’. In Chapter 1, it was observed that such a decision can have a noticeable effect on
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the determination of latent classes and the underlying LMMs.

Class Membership - Structured on Unstructured?

Class membership may be specified in several ways. In some cases, the statistician may simply want

to generalize the distributional assumptions of the usual LMM to allow the underlying normal distri-

butions to instead be mixtures of normal distributions. This would be specified by defining the file ’v’

to be a single column of 1’s and setting the macro variable ’PieMethod’ equal to ’STRUCTURED’.

In more general situations where interest focuses on discovering unique groups in the data and fitting

appropriate LMMs to these groups, class membership may be specified in two very different ways.

When the statistician is interested in simply fitting the best K LMMs or is not sure of which factors

may be most important in determining class membership, running the analysis with class member-

ship determined solely by the relative fit of the underlying LMMs would be recommended - specify

’PieMethod’=’UNSTRUCTURED’. Alternatively, the statistician may already have a set of risk fac-

tors which are of interest, and one of the goals of the analysis might be to determine the relationship

between the risk factors and latent class membership. In this situation, the file ’v’ would be specified

with factors relevant to class membership, and ’PieMethod’ would be set to ’STRUCTURED’. Note

that when fitting only one class (LMM), the user must specify ’PieMethod’=’UNSTRUCTURED’.

Standard Errors and Predictions

The main algorithm does not, by default, compute standard errors for the parameters. If you would like

to obtain parameter standard errors, set ’CalcParmStdErr’=’Y’ and specify a computational method

for standard errors in the variable ’SEMethod’. For Hessian-based methods, the most efficient method

is to compute the standard errors by making use of the computed Hessian - specify ’SEMethod’=’HES’.

This is probably a good choice even when other methods are used for the main algorithm. The standard

errors can also be computed by taking finite differences of the gradient (choose ’SEMethod’=’GRD’),

or by taking finite differences of the likelihood itself (choose ’SEMethod’=’LIK’). Note that this last

choice is extremely slow and not recommended.

Miscellaneous

Two additional features are worth note in terms of user options. First, in order to increase the

chances of arriving at a global likelihood maximum rather than a local maximum, the user is provided

the option of running several preliminary runs from different starting points and using the best of
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these starting values to initiate the model. This number of base runs is specified in a macro variable

’HowManyBaseRuns’, and the seeds used to randomly assign latent classes to initiate those base runs

are stored in the macro variables ’SeedForClasses x’. These preliminary runs iterate for ten iterations

with the random effect variances set to zero.

Second, since the derivations for the first and second derivatives are complex, a self-check has been

programmed which allows the user to confirm that the method’s computations are working properly.

If the macro variable ’PerformSelfCheck’ is set to ’Y’, then at several points in the algorithm, the

algorithm will compute quantities using finite differences and print these as well as the values computed

using the derived first and second derivatives. This will add to the runtime but can be helpful in that

it can confirm that the model is working as it is supposed to.

2.3.4 How the Macro Works

Computation of Starting Values

Several authors have explored methods of choosing the best starting values. While some have examined

models which are mixtures of multivariate Normal distributions, none have examined this in the context

of the LCLMM. Coleman and Woodruff [2000] proposed to choose a random sample of the data and

classify these subjects into groups. This initial clustering would then provide the basis for the starting

point of the full algorithm. Karlis and Xekalaki [2003] concluded that the best method is to start

from several different initial values, making a small number of iterations from each. The authors then

recommended choosing the set of starting values with the largest likelihood after the initial iterations.

The authors pointed out that this approach helps to reduce the amount of time spent in areas of

a flat likelihood away from the global maximum. Biernacki et al [2003] also examined the issue of

choosing starting values for the EM algorithm in multivariate Gaussian mixture models. The authors

found that, like Karlis and Xekalaki [2003], running short runs of EM and choosing the one with the

highest likelihood tended to work well. The authors further recommended compounding this method

by running batches of short runs, choosing the best run from each batch, and then using the best

runs as the starting points for another search. However, this method may require a great deal of

computational effort and time.

In order to ensure a reasonable set of starting values for the full model fit, a preliminary set of

steps is followed at the beginning of the SAS R© macro. These methods appear to provide a stable

algorithm which will work in most scenarios. The stability of this method and the computations as a
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whole are examined in Sections 2.5 and 2.6. The steps for computing starting values are as follows:

• Each subject is randomly assigned to a latent class

• Ordinary Least Squares estimates of the fixed effects are calculated using these random class

assignments

• 10 preliminary iterations are run without random effects using only the structured R matrix.

These iterations do not permit variances to differ by latent class. As noted earlier, the user can

specify to repeat this process as many times as they would like and choose the best likelihood

from all of the various runs - the default is 5.

• The random effect variances are set to 1e-5. Correlations between random effects are set to

1e-10. Preliminary estimates of the variances of the random effects and revised residual error

variances are calculated by running one step of Fisher scoring (using the actual second derivative

via Newton-Raphson appeared to be less stable here when compared to using its expected value).

Variances are still not allowed to differ by latent class.

• 5 EM iterations are run. Variances are still not allowed to differ by latent class, and variances

continue to be updated via Fisher scoring.

• If the user chose to allow variances to differ by latent class, then 5 additional EM iterations are

run. In these, variances are finally allowed to differ by latent class. Once again, variances are

updated using Fisher scoring.

• One additonal EM iteration is run. Variances are updated using Newton-Raphson in this step as

well as any future EM steps. Note that if there are no class-specific fixed effects, it was assumed

for all prior iterations that the across-class effects were actually class-specific. This allows for

some logical separation of the groups. These class-specific effects are dropped in this iteration

such that the only parameters that differ by class are the variances.

• The resulting estimates are used as starting values for the main algorithm.

Description of Model Fit

Once starting values are obtained, one of three different routines is run, depending on the choice of

algorithm.
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The first is the EM algorithm which was also used as part of the process for generating stable

starting values. The steps required in the EM algorithm are detailed in Chapter 1. The main change

with regard to computation is that variances for the starting values were updated at each step using

Fisher scoring while the main algorithm uses Newton-Raphson.

The second routine uses gradient-based methods. An IML module has been programmed to com-

pute the gradient of the likelihood for various scenarios (i.e. fixed effects across-class/class-specific,

variances across-class/class-specific, class membership structured/unstructured, etc.). With this in

place, the macro utilizes SAS R©’ built-in engines to compute estimates using the selected algorithm.

Methods include conjugate gradient and quasi-Newton.

The third routine uses Hessian-based methods. IML modules have been programmed to compute

the gradient and Hessian of the likelihood for various scenarios. Once again, the macro utilizes SAS R©’

built-in engines to compute estimates using the selected algorithm. Methods include Newton Raphson,

with or without ridging.

Screenshot During Model Fit

Since a fair amount of information is available at each iteration regarding progress, estimates, class

membership, etc., the macro updates information on the screen after each iteration. A sample screen-

shot is displayed in Figure 2.1.

The top left window displays the current status. This window displays whether the algorithm

is obtaining initial estimates or running the full model, and it updates with additional details (i.e.

’calculating betahat’) as it moves through the various calculations.

The middle left window displays the observed likelihood (also complete-data likelihood for EM

iterations) as well as the convergence criteria. The convergence criteria for the estimates is simply the

maximum percent change in estimates from one iteration to the next. The convergence criteria for the

gradient is the maximum absolute value of the elements of the gradient at that iteration.

The bottom left window displays the number of subjects being modeled as well as a summary

of class membership. For each class, the number of subjects who have greater than a 50 percent

probability of being in the class, greater than 75 percent chance, and greater than 90 percent chance

are displayed. This allows the user to see how much the classes are changing, how sure the algorithm

is about its class assignments, whether a particular class appears to contain just one subject, etc.

Finally, the right window displays the current parameter estimates as well as the changes in those

estimates since the last iteration.
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Figure 2.1: Screenshot of SAS R© Macro While Running
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2.3.5 Output Files

The following output datasets are produced in the estimation process. These are stored in the ’out’

subdirectory.

Final Estimates − Final model information, estimates, and standard errors

Final Pie − Final probability of being in each latent class (logistic)

Final Pie RelFit − Final probability of being in each latent class (relative fit)

Final Random Effects − Final random effect estimates and standard errors

Fitted Values − Fitted values, including and excluding random effects

ParmCorr − Correlation matrix of parameter estimates

AllParms − All parameter estimates by iteration

Gradient − Gradient values for each parameter by iteration

Lik − Likelihood (complete-data and observed) by iteration

Conv Criteria − Convergence criteria by iteration

RunTime − Runtime in seconds by iteration

BetaHat − Estimates of the across-class fixed-effects by iteration

Lambda − Estimates of the class-specific fixed-effects by iteration

Vars − Estimates of the variances/correlations by iteration

C − (EM only) Bayes class probabilities by iteration

Pie − Probability of being in each latent class by iteration (logistic)

PieParms − Estimates of class-membership parameters by iteration (logistic)

In additon, the estimates at each iteration are saved in a PDF document. This file is named Iteration-

Summary.pdf and is stored in the ’out’ subdirectory.

2.4 Description/Specification of Sample Applications

LCLMMs are particularly useful for several modeling scenarios. In order to illustrate the various uses

of the model as well as provide examples for the user regarding how to specify the models to run in
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the new SAS R© macro, a small simulated data example is presented for three modeling approaches in

the following sections.

2.4.1 Linear Mixed Model with Random Effect Distribution as a Mixture

In the LMM, the error terms and random effects are assumed to be normally distributed. However,

in many applications, this may not be accurate. A mixture of two or more normal distributions may

more accurately describe the distributions of one or both of these terms. By specifying a mean model

in which none of the fixed effects differ by latent class, that all subjects be fit with the same mixture,

and that the random effect and/or error variances be permitted to vary by latent class, the LCLMM

allows this extension of the LMM to be fit efficiently.

As an example, consider a model in which there are 1,000 subjects. Each subject is measured for

some continuous trait ten times. A possible LMM to describe this is as follows:

yij = µ+ αi + εij

where:

yij is the value of the trait for subject i at observation j

µ is the mean value for the trait

αi is the random intercept for subject i

εij is the error term associated with subject i at observation j

αi ∼ Normal
(
0, σ2

r

)
εij ∼ Normal

(
0, σ2

e

)

In words, a subject’s mean value for the trait is random about the global mean, µ. These random

intercepts are distributed according to a normal distribution with mean 0 and variance σ2
r . The error

terms are distributed according to a normal distribution with mean 0 and variance σ2
e . Now suppose
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that the distribution of the random intercepts is instead a mixture of two normal distributions.

αi ∼ 50 percent Normal
(
0, σ2

rn

)
+ 50 percent Normal

(
0, σ2

ro

)

For purposes of illustration, the following values were used to generate data:

µ = 100

σ2
rn = 20

σ2
ro = 200

σ2
e = 40

In order to run the model through the SAS R© macro, the user would specify the files in the format

presented in Figures 2.2 and 2.3. Note that it is not necessary to specify D Corr, D Structure, and

R Structure since there is only one random effect (no correlation and default for D Structure is to have

a separate variance for each random effect) and since all observations are assumed to have the same

residual error variance (also the default). Also, since class membership is determined based on the

logistic model, having the same intercept-only specification for each subject in the class-membership

model assures that all subjects will be fit with the same mixture.

The usual LMM was run as well as the LCLMM assuming that all subjects have the same mixture.

Figure 2.4 displays the options that need to be set to run each of the models. Note that when only one

class is run (LMM), the macro variable ’PieMethod’ must be set to ’UNSTRUCTURED’ and ’Method’

cannot be set to ’EM’. The parameter estimates from each model are shown in Table 2.1. Since the

LMM effectively fits a combined variance to reflect σ2
rn and σ2

ro, the variable σ2
ro is populated in the

table only for the LCLMM. It is interesting to note that the random effect variance estimate from the

LMM is very close to the weighted average of the random effect variance estimates from the two latent

classes in the structured model.

As seen in Figure 2.5, the predictions of the random effects from the LCLMM are very similar

to those from the LMM. However, note that the distribution of these random effects is NOT in fact

normal. The histograms of the actual random effects generated in creating the data as well as the

predicted random effects from each of the models are presented in Figure 2.6. Notice that, while the
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Figure 2.2: Screenshot of SAS R© Datasets Needed to Run Example 1

Table 2.1: Random Effect Distribution as a Mixture - Fitted Values

LMM LCLMM Class
Parameter Actual Value Estimate Estimate Probabilities

µ 100 100.12 99.86

σ2
rn 20 114.83 20.26 52.6%
σ2

ro 200 n/a 219.95 47.4%

σ2
e 40 40.15 40.15
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Figure 2.3: Screenshot of Class-Membership SAS R© Dataset for Example 1
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(a) Linear Mixed Model

(b) Same Mixture LCLMM

Figure 2.4: Options for Running Select Models - Example 1
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LMM assumes that the random effects are distributed normally, the predictions of the random effects

need not be normally distributed. Each of the models has a similar distribution of random effects and

all have a greater percentage of area in the center and heavier tails than a normal distribution.
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Figure 2.5: Comparison of Random Intercepts - LCLMM vs. Linear Mixed Model

Given the above, where do the models differ? The answer relates mainly to standard errors. The

standard errors of the random effects for the LMM are determined based on the assumption that the

random effects are normally distributed. In this example, the random intercepts from the LMM had a

variance of 3.86. As noted in Section 1.4.5, the standard errors of the random effects for the LCLMM

reflect information about each subject’s structured class probabilities as well as the relative fit of the

underlying LMMs. For the LCLMM, the standard errors of the random effects for each subject are

graphed in Figure 2.7 versus the bayesian subject probabilities of being in each latent class (defined

in the vector c in Section 1.4.1). A horizontal line is included at 3.86 to indicate the random effect

standard error computed by the LMM. Note that since the standard error calculation for the LCLMM

incorporates information as to which of the underlying distributions is most appropriate, each subject’s
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Figure 2.6: Histograms of Actual and Fitted Random Effects
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random intercept could potentially have a different standard error. In Figure 2.7, subjects at the left

side (with low probability of being in the higher-standard-error class) are those that are in the very

center of the random intercept distribution, while those at the right side are in the tails. Since there

is a much greater percentage of random intercepts clumped in the middle of the mixture distribution,

the standard errors of the random intercepts for these subjects would be expected to be smaller than

under the LMM. However, since the tails in the mixture distribution are more spread out than under

the LMM, the standard errors of the random intercepts out in the tails have a higher standard error

than under the LMM.
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Figure 2.7: Plot of Random Effect Standard Errors from the LCLMM

2.4.2 Relative-Fit Model

LMMs are useful for modeling data when the data being analyzed is made up of a single population

or when the subpopulations are known. However, in many cases, the data being analyzed may consist

of several subpopulations which are not known a priori. The LCLMM can be very useful in this case.

As an example, consider a model in which there are 300 subjects, 50 from each of six groups. Each

subject is measured for some trait at ten consecutive time periods, ranging from -4.5 to 4.5. A possible

LMM to describe this is as follows:
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yit = β1 + β2 × time + β3 × time2 + β4 × time3 + γ1i + γ2i × time + εit

where:

yit is the observed value of the trait for subject i at time t

β1 is the fitted intercept

β2 is the fitted slope for time

β3 is the fitted quadratic term for time

β4 is the fitted cubic term for time

γ1i is the random intercept for subject i

γ2i is the random slope for time for subject i

εit is the error term associated with subject i at time t

γ1i ∼ Normal
(
0, σ2

int

)
γ2i ∼ Normal

(
0, σ2

slope

)
εit ∼ Normal

(
0, σ2

error

)
ρ = corr (γ1i, γ2i)

In words, the fitted mean trajectory for all subjects is a cubic curve with respect to time. Each

individual is fit with a subject-specific intercept and slope, which are assumed to be distributed about

the mean value according to Normal
(
0, σ2

int

)
and Normal

(
0, σ2

slope

)
. Further, the random intercepts

and slopes are correlated with correlation coefficient ρ. The error terms are distributed according to

Normal
(
0, σ2

error

)
. The LCLMM adds an additional component in that the population is divided into

subpopulations, each with its own cubic curve. In this example, class membership probabilities are

estimated based on the relative fit of a subject’s data under each of the possible underlying models

(see Section 2.2.2).

The following variance and correlation values were used to illustrate the LCLMM. Data for six
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latent classes were generated based on the fixed-effects parameters shown in Table 2.2.

σ2
int = 40

σ2
slope = 15

σ2
error = 125

ρ = 0.25

Table 2.2: Relative-Fit Model - Fixed Effects Parameters Used to Generate Data

Parameter Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

β1 40 190 125 80 170 130
β2 -2 6 20 18 18 0
β3 0 0 0 2.5 -2 0
β4 0 0 0 0 0 1

In order to run the model through the SAS R© macro, the user would specify the files in the format

presented in Figures 2.8 and 2.9. Note that it is not necessary to specify D Corr, D Structure, and

R Structure since all records have the same residual error variance and the random effects are fit with

an unstructured D matrix. However, these files are also included in order to illustrate how they would

be specified (see Figure 2.10). Also, since class membership is determined based on the relative fit of

each underlying LMM, no class-membership file is required for this example. Similarly, since all fixed

effects are being allowed to differ by latent class, the file ’x’ does not need to be specified.

This model was fit using the usual LMM (1 class) as well as the LCLMM using 2-8 latent classes.

Figure 2.11 displays the options that need to be set to run the LMM as well as the LCLMM. The

parameter estimates for the 6-class LCLMM are shown in Table 2.3. Note that the LCLMM estimates

are very close to the values used to generate the data.

While it is encouraging to see that the model is able to reproduce the parameter values used to

generate the data, it is interesting to examine the models fit with other numbers of latent classes.

Figures 2.12 and 2.13 present the fitted models for each number of latent classes. Note that a fitted

line for each latent class in included as a thick dotted line, while each individual’s actual values are

plotted using a narrow line. Subjects that have their highest class probability at least twice that of
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Figure 2.8: Screenshot of SAS R© Datasets Needed to Run Example 2
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Figure 2.9: Screenshot of SAS R© Datasets Needed to Run Example 2 (Continued)
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Figure 2.10: Screenshot of SAS R© Datasets Needed to Run Example 2 (Additional Files)
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(a) Linear Mixed Model

(b) LCLMM (2 Classes)

Figure 2.11: Options for Running Select Models - Example 2
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Table 2.3: Relative-Fit 6-Class LCLMM - Actual vs. Fitted

LCLMM - 6 Classes

Class Parameter Actual Value Estimate SE

1 β1 40.00 39.6 1.15
β2 -2.00 -1.59 0.70
β3 0.00 -0.03 0.07
β4 0.00 -0.04 0.03

2 β1 190.00 188.78 1.15
β2 6.00 6.35 0.70
β3 0.00 0.04 0.07
β4 0.00 0.02 0.03

3 β1 125.00 123.27 1.15
β2 20.00 20.82 0.70
β3 0.00 0.02 0.07
β4 0.00 -0.02 0.03

4 β1 80.00 78.49 1.15
β2 18.00 17.76 0.70
β3 2.50 2.56 0.07
β4 0.00 -0.03 0.03

5 β1 170.00 169.10 1.15
β2 18.00 17.66 0.70
β3 -2.00 -2.00 0.07
β4 0.00 -0.03 0.03

6 β1 130.00 131.07 1.15
β2 0.00 0.30 0.70
β3 0.00 0.05 0.07
β4 1.00 1.00 0.03

σ2
int 40.00 38.71 4.15

σ2
slope 15.00 14.99 1.34
σ2

error 125.00 119.71 3.45
ρ 0.25 0.1648 0.0676
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their second-highest class probability are plotted in the color of their selected latent class. From the

model fits, several models appear that they could be justified in addition to the 6-class model. The

4-class and 5-class models appear to offer reasonable model fits. It is interesting to note that the 7-

class and 8-class models add classes that are almost immediately adjacent to classes that existed in the

6-class model - this is one indication that the 7- and 8-class models may not be the most appropriate.

One way to evaluate model fit is to compare various likelihood measures for the models. Several

likelihood measures are provided as part of the macro’s output, including AIC, BIC, and ICL. These

measures are described in more detail in Section 2.8. For this example, these measures are presented

in Table 2.4. Note that the number of estimated parameters for each model, v, is also presented in

this table. Each of these measures chooses either seven or eight classes, with the exception of entropy,

which chooses either two or six classes.

Table 2.4: Relative-Fit Model - Likelihood Measures

Likelihood Measures

# of Classes ObsLik AIC CAIC BIC E C ICL v

LMM (1) -13854.8 27725.7 27737.5 27755.3 n/a 27709.7 27755.3 8
2 -13543.0 27110.0 27127.7 27154.4 0.0 27085.9 27154.4 12
3 -13118.9 26269.9 26293.5 26329.1 7.0 26251.9 26343.1 16
4 -12761.7 25563.4 25592.9 25637.5 1.1 25525.6 25639.7 20
5 -12344.8 24737.6 24773.1 24826.5 0.3 24690.3 24827.2 24
6 -12012.6 24081.2 24122.5 24184.9 0.1 24025.4 24185.1 28
7 -11989.8 24043.5 24090.8 24162.0 6.8 23993.2 24175.7 32
8 -11973.8 24019.7 24072.8 24153.0 16.7 23981.1 24186.4 36

Another way to evaluate the models is to compare a practical measure, such as the mean square

error of the residuals. This measure is presented in Table 2.5 for both the total residuals and within-

subject residuals. The MSE, as well as the residual measures for subject i, are defined as follows:

ri,total = yi −
K∑

k=1

πik

(
Xiβ̂ + Wiλ̂k

)
(2.12)

ri,within = yi −

[
K∑

k=1

πik

(
Xiβ̂ + Wiλ̂k

)]
− Zib̃i (2.13)
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MSE =

n∑
i=1

r′iri

Total # of Observations
(2.14)

For this example, these measures decrease quickly until the 6-class model and then continue to decrease

by a very small amount for the 7- and 8-class models. Choosing a parsimonious model would lead one

to choose the 6-class model, or potentially the 4- or 5-class models, which also fit reasonably good.

Table 2.5: Relative-Fit Model - Residual Measures

MSE MSE
# of Classes (Total) (Within-Subject)

LMM (1) 3064.88 234.51
2 1325.38 235.64
3 676.17 185.65
4 428.16 161.50
5 333.90 127.75
6 281.56 99.65
7 275.88 98.33
8 272.24 96.39

2.4.3 Model with Known Class-Membership Factors

The first example discussed the situation where the user either is modeling a single population or

knows the subpopulations and simply wants to generalize the distributional assumptions of the usual

LMM. The second example is applicable when the user is unsure which variables may act to determine

the underlying latent classes and is looking for the best way of simultaneously dividing the population

into groups and fitting a LMM to each group. However, in some cases, the user may have interest in

particular factors as they relate to class membership. For example, what is the best way to model the

longitudinal data given that a particular set of factors can act to divide the population into groups?

Or, does a particular risk factor act to drive an individual toward one class or another? The LCLMM

allows the user to specify a logistic regression model for class membership in which the user can enter

factors as appropriate.

As an example, consider two of the latent classes from the dataset from the previous example.

Classes 4 and 5, the light red and green thick dotted lines in Figure 2.13b, do not overlap except for
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at the very beginning and end of the plots. This is intentional since the focus of this example is to

examine the effect of a variable on class membership via the logistic class membership model. For

illustration, 1
3 of the subjects in Class 4 have a particular characteristic, while 2

3 of the subjects in

Class 5 have that characteristic. The goal here is to fit the best set of LMMs, while simultaneously

examining how the trait impacts class membership. Note that while only 50 subjects were fit for each

class in the previous example, 100 were fit for each class in this example.

The only change to the model from Section 2.4.2 is the addition of a class-membership file, a

portion of which is shown in Figure 2.14. Note that this file has an intercept (v1) and an indicator

variable associated with the trait on interest (v2). Roughly 1
3 of the subjects in Class 4 have a 1 for

this variable, while roughly 2
3 of the subjects in Class 5 have a 1 for this variable.

Figure 2.14: Screenshot of Class-Membership File Needed to Run Example 3

This model was fit using the LCLMM with two classes to determine whether the model would be

able to identify the classes and whether it could determine that having the trait of interest would result

in an individual having roughly twice the probability of being classified in Class 5. The parameter

estimates are shown in Table 2.6.
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Table 2.6: Class Membership Model - Actual vs. Fitted

LCLMM - 2 Classes

Class Parameter Actual Value Estimate SE

4 β1 80.00 79.19 0.79
β2 18.00 18.38 0.51
β3 2.50 2.51 0.05
β4 0.00 -0.01 0.02

5 β1 170.00 168.37 0.79
β2 18.00 18.30 0.51
β3 -2.00 -1.96 0.05
β4 0.00 -0.02 0.02

σ2
int 40.00 35.66 4.76

σ2
slope 15.00 15.95 1.74
σ2

error 125.00 117.75 4.16
ρ 0.25 0.2043 0.0822

α2–intercept n/a -0.5965 0.2020
α2–trait n/a 1.2897 0.2987
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Note that these estimates are acceptably close to the actual values used to generate the data.

Plugging the α2 variables into Equation 2.4, and recalling that α1 = 0, the fitted probability of being

in Class 4 if an individual had the specified trait is 33.3%, while the fitted probability of being in

Class 5 if an individual had the specified trait is 66.7%. This closely matches the probabilities one

would expect based on the creation of the data. The important thing to note here is that since the

classes are separated with very little overlap, each subject is fit with nearly 100% probability of being

in the appropriate latent class - therefore, the logistic regression portion of the LCLMM effectively

reduces to a simple logistic regression model where subjects are yes/no for a particular class. However,

the logistic regression portion of the latent class model does NOT require that subjects be 100% in a

particular class. A similar class-membership result would have occurred if there was greater overlap

between classes but subjects with the trait tended to have twice the probability of being fit in the Class

5 model as in the Class 4 model. In other words, in this example, two out of every three individuals

who had the trait were in Class 5 and therefore the logistic model found that there was twice the

probability of being in Class 5 if you have the trait. However, if all individuals with the trait had a

66% / 33% mixture and all individuals without the trait had a 33% / 66% mixture, a similar result

would have been observed.

2.5 Simulation Study - Stability - Comparison of Quasi-Newton

and Newton-Raphson

In order to establish that the proposed algorithm is stable and results in the same final estimates for

one estimation method versus another, a simulation study was conducted. The fitted parameters for

triglycerides and HDL cholesterol for the Optimal and At-Risk classes from the 4-class class-specific

variance model in the ARIC application of Chapter 1 were used to generate data. Recall that this

application fit class membership based on the relative fit of each underlying LMM. This approach for

fitting class membership was also used in all simulation studies.

Simulations were run to explore the stability of the methods with respect to the following choices:

• 3 different size models were run - 60 subjects, 180 subjects, or 300 subjects - this allowed an

examination as to whether the stability of the model is dependent on sample size.

• The number of subjects in each of the two classes was split in three different possible ways -

50/50 between the two classes, 75/25, or 90/10 - this allowed an examinations as to whether
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the model is as stable when identifying a smaller percentage of outlier subjects as it is when

identifying two similarly sized subpopulations.

• The groups were separated in varying degrees - 0% dilution (uses parameter estimates for each

class based on the ARIC application), 33% dilution, and 67% dilution. For the dilution models,

the parameters used to generate the data were a weighted average of the original model and the

average of the parameters from the two classes. This was examined to see whether the algorithm

is stable when the groups are not as easily identifiable.

For each of the 27 combinations above (3 x 3 x 3), the LCLMM was run 100 times and was set

to look for two latent classes. For each run, both the QN and NRA methods were run from the same

starting point (a total of 5,400 simulations). The goal of these runs was to determine whether the

quasi-Newton and Newton-Raphson methods would arrive at the same final solution if initiated from

the same starting values. For purposes of the simulations, the quasi-Newton and Newton-Raphson

runs were assumed to arrive at the same solution if the resulting likelihoods were within 0.01% of one

another. The results are shown in Figure 2.15. Note that while there are slight drops in stability when

90% of the subjects are in the Optimal class and when the dilution percentage is 67%, these are very

small. In general the model is able to find the same solution, regardless of whether Newton-Raphson

or quasi-Newton are run. Further, the total number of subjects does not appear to affect the stability

of the algorithm. The actual percentages associated with the barcharts are shown in Tables 2.7 to 2.9.

It is interesting to note that of the 117 simulations where the Newton-Raphson and quasi-Newton

methods arrived at different solutions, the quasi-Newton result had a better likelihood in 88 of the

cases, while the Newton-Raphson method had the better result in only 29 of the runs.

In order to test that the stability of the model is not dependent on the size of the model, separation

of the data, and percentage of subjects in one class, a logistic regression model was fit. The indicator

for the 2,700 simulations as to whether the models found the same solution was modeled in a saturated

model including each of the 3-level choices (dilution, size, percent in one class) as well as all 2-way

interactions and the 3-way interaction. A backward-selection method was then used to pare down

the model to only the necessary components. The final model is shown in Table 2.10 and the odds

ratios are presented in Table 2.11. Consistent with the observation above, sample size was removed

from the model as not being related to stability. From the odds ratios, it is apparent that only tests

of the extremes are found to be statistically significant - tests of the dilution ratio 33% vs 0% and %

Optimal 50% vs 75% are not found to be significant. The interaction of the dilution ratio and the
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Table 2.7: Stability of Model Fit - Same Starting Values - Dilution Ratio by Total # of Subjects

% of Simulations
Dilution Ratio Total # of Subjects Finding Same Solution

0% 60 96.67%
180 96.67%
300 96.67%

33% 60 96.64%
180 97.67%
300 98.33%

67% 60 92.28%
180 93.00%
300 93.00%

Note: The SE for the percentage ranged from 0.74% for 33%/300 to 1.5% for 67%/60.

Table 2.8: Stability of Model Fit - Same Starting Values - Total # of Subjects by % in Optimal Class

% of Simulations
Total # of Subjects % in Optimal Class Finding Same Solution

60 50% 96.99%
75% 96.32%
90% 92.28%

180 50% 97.67%
75% 98.00%
90% 91.67%

300 50% 98.33%
75% 97.00%
90% 92.67%

Note: The SE for the percentage ranged from 0.74% for 300/50% to 1.6% for 180/90%.
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Table 2.9: Stability of Model Fit - Same Starting Values - Dilution Ratio by % in Optimal Class

% of Simulations
Dilution Ratio % in Optimal Class Finding Same Solution

0% 50% 100.00%
75% 100.00%
90% 90.00%

33% 50% 100.00%
75% 98.33%
90% 94.30%

67% 50% 92.98%
75% 92.98%
90% 92.33%

Note: The SE for the percentage ranged from 0% for several categories to 1.7% for 0%/90%.

% in the Optimal class was also found not to be statistically significant. It can be concluded from

the final model that the methods are slightly less stable for datasets which have very little separation

between classes and for models which have a relatively small number of subjects in a particular latent

class. It would be recommended, therefore, to run several runs from different starting values in these

situations and choose the result with the highest likelihood. However, it must be noted that for all

of the combinations of dilution/size/%Optimal, the Newton-Raphson and quasi-Newton models found

the same solution in 90+% of simulations.

Table 2.10: Stability of Model Fit - Same Starting Values - Logistic Regression Model

Standard Wald
Parameter Level DF Estimate Error Chi-Square P-Value

Intercept 1 3.3499 0.1163 828.9934 <0.0001
Dilution Ratio 33% 1 0.4888 0.1633 8.9642 0.0028
Dilution Ratio 67% 1 -0.6593 0.1291 26.0938 <0.0001
% in Optimal 75% 1 0.2778 0.1579 3.0957 0.0785
% in Optimal 90% 1 -0.7764 0.1300 35.6526 <0.0001
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Table 2.11: Stability of Model Fit - Same Starting Values - Odds Ratios

Point 95% Wald
Parameter Levels Estimate Confidence Limits

Dilution Ratio 33% vs 0% 1.375 0.785 - 2.409
Dilution Ratio 67% vs 0% 0.436 0.279 - 0.682
% in Optimal 75% vs 50% 0.802 0.447 - 1.439
% in Optimal 90% vs 50% 0.279 0.170 - 0.460

2.6 Simulation Study - Stability - Repeated Runs From Dif-

ferent Starting Values

The previous simulation study showed that, for most scenarios, the quasi-Newton and Newton-Raphson

algorithms consistently find the same final solution when started from the same starting values. The

question that follows is, do the methods find the same solution, regardless of the starting values used?

As before, the fitted parameters for triglycerides and HDL cholesterol for the Optimal and At-Risk

classes from the 4-class class-specific variance model in the ARIC application of Chapter 1 were used to

generate data. Class membership, one again, was modeled based on the relative fit of each underlying

LMM. The same 27 combinations of choices (3x3x3) described in the previous section were used for

this set of simulations. For each of these combinations, the LCLMM was run ten times (five using

quasi-Newton and five using Newton-Raphson), with each of the ten runs initiated at different starting

values. The LCLMM was again set to look for two latent classes. An ideal result would be that all ten

of the runs from different starting values result in the same final solution. The number out of these

ten runs which resulted in the solution with the best likelihood was recorded. Similarly, the number

for each method was also recorded (max 5). This was repeated with 20 unique datasets for each of

the 27 combinations and the mean number of runs which achieved the best likelihood were recorded.

For purposes of summarizing the simulations, a run is assumed to arrive at the best solution if the

likelihood is within 0.01% of the run with the highest likelihood. As in the first simulation study,

this results in a total of 5,400 runs - 27 combinations x 20 different datasets x 10 runs from different

starting values. The results are shown in Figure 2.16. Note that, once again, while there are slight

drops in the stability of the solutions when 90% of the subjects are in the Optimal class and when the

dilution percentage is 67%, these are very small. In general the model is able to repeatedly find the
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’best’ solution, even when initiated from different starting values. The actual means associated with

the barcharts are shown in Tables 2.12 to 2.14.

Table 2.12: Stability of Model Fit - Different Starting Values - Dilution Ratio by Total # of Subjects

Mean Number of Simulations Achieving Best Solution

Quasi-Newton Newton-Raphson Total
Dilution Ratio Total # of Subjects (of 5) (of 5) (of 10)

0% 60 4.80 4.58 9.38
180 4.70 4.78 9.48
300 4.90 4.88 9.78

33% 60 4.66 4.68 9.34
180 4.75 4.70 9.45
300 4.80 4.62 9.42

67% 60 4.47 4.32 8.80
180 4.92 4.70 9.62
300 4.85 4.57 9.42

Note: The SE for the Total column ranged from 0.16 for 0%/300 subjects to 0.34
for 67%/60 subjects.

It is interesting to note that as you look at Tables 2.12 to 2.14 and compare the mean number of

simulations that achieve the ’best’ likelihood between quasi-Newton and Newton-Raphson, the quasi-

Newton mean is almost always higher than the Newton-Raphson mean. This is consistent with a result

from the previous section, where the quasi-Newton method tended to find the better solution when

the methods chose different results.

In order to test that the stability of the model is not dependent on the size of the model, separation

of the data, percentage of subjects in one class, and estimation method, a logistic regression model

was fit. The focus of this model is to examine which combinations of these factors lead to situations in

which less than five runs (the maximum) achieve the ’best’ likelihood. For each of the 27 combinations

x 20 datasets x 2 methods, an indicator as to whether all five of the runs achieved the ’best’ value

was defined. This indicator was modeled in a saturated logistic regression model including each of the

3-level choices (dilution, size, percent in one class), estimation method, as well as all 2-way, 3-way, and
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Table 2.13: Stability of Model Fit - Different Starting Values - Total # of Subjects by % in Optimal
Class

Mean Number of Simulations Achieving Best Solution

Total # Quasi-Newton Newton-Raphson Total
of Subjects % in Optimal Class (of 5) (of 5) (of 10)

60 50% 4.80 4.76 9.56
75% 4.85 4.76 9.61
90% 4.30 4.07 8.37

180 50% 4.93 4.88 9.82
75% 5.00 4.90 9.90
90% 4.43 4.40 8.83

300 50% 5.00 5.00 10.00
75% 4.95 4.66 9.62
90% 4.60 4.40 9.00

Note: The SE for the Total column ranged from 0.00 for 300/50% to 0.36 for 60/90%.
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Table 2.14: Stability of Model Fit - Different Starting Values - Dilution Ratio by % in Optimal Class

Mean Number of Simulations Achieving Best Solution

Quasi-Newton Newton-Raphson Total
Dilution Ratio % in Optimal Class (of 5) (of 5) (of 10)

0% 50% 5.00 5.00 10.00
75% 5.00 5.00 10.00
90% 4.40 4.25 8.65

33% 50% 5.00 5.00 10.00
75% 4.90 4.87 9.77
90% 4.32 4.13 8.45

67% 50% 4.73 4.65 9.38
75% 4.90 4.46 9.36
90% 4.62 4.48 9.10

Note: The SE for the Total column ranged from 0.00 for several categories to 0.38 for 33/90%.

the 4-way interactions. A backward-selection method was then used to pare down the model to only

the necessary components. The final model is shown in Table 2.15 and the odds ratios are presented

in Table 2.16. It is interesting to note that dilution ratio and estimation method were removed from

the model as not being related to stability. From the odds ratios, it is apparent that only tests of

the extremes for the other parameters are found to be statistically significant - tests of the number

of subjects 300 vs 180 and % Optimal 50% vs 75% are not found to be significant. The interaction

of the total number of subjects and the % in the Optimal class was also found not to be statistically

significant. It can be concluded from the final model that the methods are slightly less stable for

datasets which have a relatively small number of subjects in a particular latent class and for very

small sample sizes. It would be recommended, therefore, to make repeated runs from different starting

values, especially in situations where there are small counts or the potential for a class to have a small

number of subjects. However, it must be noted once again that for all of the combinations of dilution,

size, %Optimal, and estimation method, the mean number of runs which found the ’best’ solution was

at least 4 out of 5 and in many cases was 4.50-5.00.
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Table 2.15: Stability of Model Fit - Different Starting Values - Logistic Regression Model

Standard Wald
Parameter Level DF Estimate Error Chi-Square P-Value

Intercept 1 2.7813 0.1516 336.7364 <0.0001
% in Optimal 75% 1 0.4840 0.2162 5.0097 0.0252
% in Optimal 90% 1 -1.3178 0.1672 62.1090 <0.0001
# of Subjects 60 1 -0.5240 0.1516 11.9411 0.0005
# of Subjects 180 1 0.2620 0.1716 2.3324 0.1267

Table 2.16: Stability of Model Fit - Different Starting Values - Odds Ratios

Point 95% Wald
Parameter Levels Estimate Confidence Limits

% in Optimal 75% vs 50% 0.705 0.308 - 1.612
% in Optimal 90% vs 50% 0.116 0.059 - 0.230
# of Subjects 60 vs 300 0.456 0.266 - 0.781
# of Subjects 180 vs 300 1.000 0.547 - 1.828
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2.7 Simulation Study - Accuracy and Advantage of the LCLMM

The previous simulation studies have shown that the method is reasonably stable. The questions that

arise next are

• Is the algorithm able to find the values used to generate the data?

• Does the model fit as good or better than the usual LMM?

To address these questions, an additional simulation study was run. The fitted parameters for

triglycerides, LDL cholesterol, and HDL cholesterol from the Chapter 1 example for the 4-class class-

specific variance model were used to generate data. For each run, 260 subjects were generated, 50

from each of the four latent classes and ten that were intermediate between the six pairs of two classes.

These last 60 subjects were included to provide a more typical scenario in which there are some subjects

for whom two models fit equally well. Recall from the form of the likelihood that if the underlying

latent classes were separated such that they do not overlap (each subject is fit noticeably better in

one particular class), then the LCLMM will effectively be maximizing the likelihood of a LMM with

the classes known. The proposed set of simulations should provide a more practical example of how

close the model could come to identifying the underlying classes and models in a real-world scenario.

Class membership, once again, was modeled based on the relative fit of each underlying LMM. Having

demonstrated in earlier simulations that the quasi-Newton and Newton-Raphson methods produce

nearly identical parameter estimates, only the quasi-Newton method was run. The LCLMM was run

for four classes, and the LMM was also run for comparison purposes. 250 unique datasets were run

using each model for a total of 500 runs.

Of the 250 simulations, only six (2.4%) resulted in latent class membership which did not obviously

match that of the generated data. This left 244 simulations left to examine. The mean fitted parameter

estimates for the 244 runs of the LCLMM (4 class) model are presented alongside the actual parameter

values used to generate the data in Tables 2.17-2.19. Note that even though 60 of the 260 subjects

included in the model were created as being intermediate between the various classes, the fitted

parameters are remarkably close to the actual parameter values. P-values which test that fitted

parameter means match the actual values used to generate the data are included for each parameter

based on a z-test. While several of the parameters have a significant p-value, the percentage difference

between the actual values and fitted means is typically small.
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In addition, out of 200 subjects from one of the four classes, note that an average of 174 subjects

were classified into the group from which the subject was created. The interquartile range for this

measure is extremely small at 171-179 and 80 percent of the simulations had between 168 and 182

subjects classified correctly. The minimum and maximum for the number of subjects classified correctly

were 114 and 190, respectively.

Table 2.17: Simulation Study Results - Accuracy of the Parameter Estimates - Part 1 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr PValue %Diff

AtRisk LDL Intercept 130.069 130.367 0.297 0.3150 0.23
LDL Linear Term -2.391 -2.330 0.017 0.0003 2.55
LDL Quadratic Term -0.016 -0.020 0.001 0.0003 25.00
HDL Intercept 34.615 35.195 0.055 <0.0001 1.68
HDL Linear Term 0.053 0.038 0.002 <0.0001 28.30
HDL Quadratic Term 0.004 0.004 0.000 0.1279 0.00
Trig Intercept 5.167 5.150 0.004 <0.0001 0.33
Trig Linear Term 0.002 0.003 0.000 <0.0001 50.00
Trig Quadratic Term -0.001 -0.001 0.000 0.0609 0.00
Variance (LDL Random Int) 552.841 525.436 8.865 0.0020 4.96
Variance (LDL Random Slope) 1.283 1.261 0.032 0.4972 1.71
Variance (HDL Random Int) 13.408 14.246 0.320 0.0089 6.25
Variance (Trig Random Int) 0.105 0.102 0.002 0.0338 2.86
Variance (LDL Error) 403.483 416.861 3.453 0.0001 3.32
Variance (HDL Error) 17.461 18.657 0.188 <0.0001 6.85
Variance (Trig Error) 0.106 0.104 0.001 0.0018 1.89

AvgHDL- LDL Intercept 161.536 160.895 0.458 0.1614 0.40
HighOther LDL Linear Term -2.023 -2.026 0.025 0.9213 0.15

LDL Quadratic Term -0.110 -0.104 0.002 0.0002 5.45
HDL Intercept 48.543 49.049 0.105 <0.0001 1.04
HDL Linear Term -0.165 -0.179 0.004 0.0002 8.48
HDL Quadratic Term -0.008 -0.008 0.000 0.9198 0.00
Trig Intercept 4.965 4.966 0.004 0.8718 0.02
Trig Linear Term 0.012 0.012 0.000 0.0051 0.00
Trig Quadratic Term -0.001 -0.001 0.000 0.2980 0.00
Variance (LDL Random Int) 778.488 670.036 14.775 <0.0001 13.93
Variance (LDL Random Slope) 2.825 2.305 0.065 <0.0001 18.41
Variance (HDL Random Int) 27.108 25.454 0.790 0.0362 6.10
Variance (Trig Random Int) 0.093 0.086 0.002 0.0001 7.53
Variance (LDL Error) 877.219 838.221 6.977 <0.0001 4.45
Variance (HDL Error) 62.208 63.693 0.557 0.0076 2.39
Variance (Trig Error) 0.124 0.121 0.001 0.0119 2.42
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Table 2.18: Simulation Study Results - Accuracy of the Parameter Estimates - Part 2 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr PValue %Diff

AvgHDL- LDL Intercept 129.278 128.865 0.246 0.0931 0.32
LowOther LDL Linear Term -0.294 -0.343 0.015 0.0010 16.67

LDL Quadratic Term -0.028 -0.030 0.001 0.0211 7.14
HDL Intercept 49.879 49.862 0.107 0.8757 0.03
HDL Linear Term -0.343 -0.326 0.003 <0.0001 4.96
HDL Quadratic Term 0.003 0.003 0.000 0.9224 0.00
Trig Intercept 4.604 4.619 0.004 <0.0001 0.33
Trig Linear Term 0.020 0.019 0.000 <0.0001 5.00
Trig Quadratic Term -0.000 -0.000 0.000 0.0073 -
Variance (LDL Random Int) 336.792 348.362 6.491 0.0746 3.44
Variance (LDL Random Slope) 1.151 1.123 0.031 0.3759 2.43
Variance (HDL Random Int) 44.312 37.554 0.811 <0.0001 15.25
Variance (Trig Random Int) 0.071 0.072 0.002 0.5918 1.41
Variance (LDL Error) 201.024 225.971 3.084 <0.0001 12.41
Variance (HDL Error) 28.009 30.582 0.455 <0.0001 9.19
Variance (Trig Error) 0.054 0.056 0.001 0.0042 3.70

Optimal LDL Intercept 121.532 122.380 0.311 0.0065 0.70
LDL Linear Term 0.330 0.220 0.015 <0.0001 33.33
LDL Quadratic Term -0.016 -0.018 0.001 0.0087 12.50
HDL Intercept 74.254 72.995 0.155 <0.0001 1.70
HDL Linear Term -0.512 -0.490 0.005 <0.0001 4.30
HDL Quadratic Term -0.015 -0.015 0.000 0.7526 0.00
Trig Intercept 4.504 4.519 0.004 <0.0001 0.33
Trig Linear Term 0.018 0.017 0.000 0.0007 5.56
Trig Quadratic Term -0.000 -0.000 0.000 0.7205 -
Variance (LDL Random Int) 654.825 646.843 10.016 0.4255 1.22
Variance (LDL Random Slope) 1.016 1.121 0.031 0.0006 10.33
Variance (HDL Random Int) 114.058 93.650 2.017 <0.0001 17.89
Variance (Trig Random Int) 0.101 0.096 0.001 0.0018 4.95
Variance (LDL Error) 436.181 440.892 3.634 0.1949 1.08
Variance (HDL Error) 151.026 143.163 0.918 <0.0001 5.21
Variance (Trig Error) 0.072 0.073 0.000 0.0183 1.39
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Table 2.19: Simulation Study Results - Accuracy of the Parameter Estimates - Part 3 of 3

Parameter Estimates

Class Parameter Actual Mean StdErr PValue %Diff

Overall Correlation (LDL Int/Slope) -0.342 -0.347 0.007 0.4777 1.46
Correlation (HDL/LDL Int) 0.058 0.062 0.009 0.6621 6.90
Correlation (HDL Int/LDL Slope) 0.090 0.068 0.006 0.0007 24.44
Correlation (Trig/LDL Int) -0.017 -0.030 0.010 0.2157 76.47
Correlation (Trig Int/LDL Slope) -0.022 0.008 0.009 0.0008 136.36
Correlation (Trig/HDL Int) -0.269 -0.253 0.008 0.0487 5.95

Based on the above, it appears that the LCLMM was able to accurately recreate the data used

to generate the simulations. Nearly 90% of subjects were classified appropriately on average, and the

parameter estimates are remarkably close to the estimates used to create the data. This is despite the

fact that an additional 60 subjects were included in the model which were intermediate between the

classes in order to provide a more practical situation. The question that follows is ’does the LCLMM

offer a better model fit than the LMM?’

In order to examine this question, the 250 unique datasets which were run using both the LCLMM

and LMM were examined with respect to model fit, and selected summary information is presented in

Table 2.20. The mean and mean square error of the within-subject residuals were summarized across

all observations. In addition, in order to examine whether certain latent classes tended to show greater

improvement than others, these measures were also summarized according to the actual latent classes

used to generate the data. The 60 unknown subjects are included in this summary as the ’Unknown’

class. For each measure, the means based on both models, the difference between those means, and

the standard error of the differences are displayed, as well as the p-value based on a paired z-test of

the hypothesis that the results from each model are equal.

Overall, the LCLMM and LMM have reasonably similar average MSEs. The LCLMM tends to

have a slightly improved model fit, but not dramatically so. In the At-Risk and Optimal classes,

the LCLMM has a somewhat smaller MSE for HDL. Turning attention to the means of the within-

subject residuals, note that the overall mean for each lab parameter for the LCLMM is very close

to zero. The means for the LMM are zero by definition. When the means are examined for each

latent class, another advantage of the LCLMM is apparent. Namely, each subject-specific prediction

139



Table 2.20: Simulation Study Results - Comparison of Means and MSEs of the Within-Subject Resid-
uals

Mean Mean
Class Statistic Parameter (LCLMM) (LMM) Difference StdErr PValue

Overall MSE HDL Cholesterol 54.1492 56.9008 -2.7517 0.0951 <0.0001
LDL Cholesterol 349.1519 349.5864 -0.4345 0.7830 0.5789
Triglycerides 0.0738 0.0781 -0.0043 0.0001 <0.0001

Mean HDL Cholesterol -0.0628 0.0000 0.0628 0.0018 <0.0001
LDL Cholesterol -0.0557 0.0000 0.0557 0.0034 <0.0001
Triglycerides -0.0004 -0.0000 0.0004 0.0000 <0.0001

AtRisk MSE HDL Cholesterol 14.7230 24.0205 -9.2975 0.1293 <0.0001
LDL Cholesterol 294.5671 295.2093 -0.6422 1.3614 0.6372
Triglycerides 0.0877 0.0993 -0.0116 0.0003 <0.0001

Mean HDL Cholesterol -0.2935 -0.7739 -0.4804 0.0087 <0.0001
LDL Cholesterol -0.1902 -1.3433 -1.1531 0.0238 <0.0001
Triglycerides 0.0029 0.0165 -0.0136 0.0004 <0.0001

AvgHDL- MSE HDL Cholesterol 52.7573 51.0448 1.7125 0.1363 <0.0001
HighOther LDL Cholesterol 640.8770 644.8648 -3.9878 2.8868 0.1672

Triglycerides 0.1034 0.1024 0.0009 0.0002 <0.0001
Mean HDL Cholesterol -0.1632 0.0100 0.1532 0.0152 <0.0001

LDL Cholesterol 0.7133 2.0592 -1.3460 0.0333 <0.0001
Triglycerides 0.0038 0.0081 -0.0042 0.0004 <0.0001

AvgHDL- MSE HDL Cholesterol 23.0832 24.5630 -1.4798 0.0852 <0.0001
LowOther LDL Cholesterol 146.1023 158.3765 -12.2742 0.7670 <0.0001

Triglycerides 0.0441 0.0502 -0.0060 0.0002 <0.0001
Mean HDL Cholesterol -0.1566 -0.5476 -0.3911 0.0104 <0.0001

LDL Cholesterol -0.0340 0.0766 -0.0426 0.0235 0.0696
Triglycerides -0.0068 -0.0279 -0.0211 0.0004 <0.0001

Optimal MSE HDL Cholesterol 126.5151 131.1604 -4.6453 0.3062 <0.0001
LDL Cholesterol 317.2034 312.3669 4.8365 1.3054 0.0002
Triglycerides 0.0595 0.0630 -0.0036 0.0001 <0.0001

Mean HDL Cholesterol 0.6265 1.3244 -0.6978 0.0113 <0.0001
LDL Cholesterol -0.1728 -0.7917 -0.6188 0.0186 <0.0001
Triglycerides -0.0023 0.0036 -0.0014 0.0003 <0.0001

Unknown MSE HDL Cholesterol 53.7475 54.2464 -0.4989 0.1317 0.0002
LDL Cholesterol 347.3665 339.1931 8.1734 0.8841 <0.0001
Triglycerides 0.0742 0.0760 -0.0018 0.0001 <0.0001

Mean HDL Cholesterol -0.2834 -0.0107 0.2727 0.0116 <0.0001
LDL Cholesterol -0.5047 -0.0007 0.5041 0.0176 <0.0001
Triglycerides 0.0002 -0.0002 -0.0000 0.0002 0.9778
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is based on that subject’s most appropriate class or combination of classes. In other words, the totality

of a subject’s information provides valuable input as to which class or classes are most relevant and

then predictions reflect the characteristics of those classes. This is in contrast to the LMM, where

subject-specific predictions will be adjusted from a population trajectory. In most classes/parameters,

the mean of the within-subject residuals is closer to 0 for the LCLMM than for the LMM. The

exception appears to be for the ’Unknown’ class, although the differences observed for this class are

still reasonable. In conclusion, the LCLMM appears to fit slightly better than the LMM overall,

with the At-Risk and Optimal classes showing the most improvement. In addition, the means of the

residuals for each latent class tend to be closer to 0 under the LCLMM than under the LMM.

2.8 Simulation Study - Comparison of Likelihood Measures

2.8.1 Overview

As noted earlier, the LCLMM requires that the statistician prespecify the number of latent classes.

How is this done? What information goes into determining how many classes to fit? These questions

have been the subject of a great deal of research, of which just a brief review is provided here. Fraley

and Raftery [2002] provided a review of several clustering methods. One of the methods, described as

model-based agglomerative hierarchical clustering, operates by successively merging pairs of clusters

that result in the greatest increase in the classification likelihood. Similarly, many clustering algo-

rithms use a nearest-neighbor approach to determine which records are similar to others, gradually

fine tuning the numbers of clusters. Fraley et al. [2003] proposed a model-based clustering algorithm

which incrementally adds clusters as needed until the model fit is no longer improved. In this algo-

rithm, a preliminary mixture model is fit with fewer classes than would be expected. Then the set of

observations which are fit worst are reclassified as being in a new cluster, and the model is re-fit. The

algorithm continues until adding a cluster results in a decrease to the BIC.

It is not immediately obvious why these methods would necessarily result in the ’correct’ number of

clusters, nor would they offer the most appropriate model fit once the clusters have been determined.

Those methods that operate ad-hoc by grouping similar records may produce different results based

on different arrangements of the data. And in cases where longitudinal data is present which may

have been recorded at different time points, these methods do not appear to be able to fully account

for the available information.
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In situations where the statistician wishes to determine the most informative clustering of the data,

and the underlying data would be best fit by a LMM (i.e. longitudinal, continuous data), the LCLMM

seems to provide the most sound approach. In the final model, the records for each latent class would

be appropriately modeled via a class-specific LMM. The question, however, still remains - how many

classes should be fit? The answer rests in which criteria best account for the tradeoff between the

added parameters needed to fit another class and the improvement in the resulting model fit.

2.8.2 Information Criteria

Biernacki and Govaert [1999] examined the performance of several information and classification

criteria to determine which were more useful in terms of selecting the best model. Among these were

the following measures. Note that v represents the number of parameters fit in the model, n represents

the number of subjects, and E/EC represent two different entropy measures, one of which examines

all class probabilities while the other examines only the highest class probability.

AIC = −2 log L + 2v •Akaike Information Criterion

AIC3 = −2 log L + 3v •Modified AIC Criterion

BIC = −2 log L + v log n •Bayesian Information Criterion

C = −2 log L + 2E •Fuzzy Classification Likelihood

CLM = −2 log L + 2EC •Classification Likelihood

where:

E = −
K∑

k=1

n∑
i=1

c̃ik log c̃ik ≥ 0

EC = −
K∑

k=1

n∑
i=1

zik log c̃ik ≥ 0

c̃ik =
πikf (yi | cik = 1)∑K

j=1 {πijf (yi | cij = 1)}

zik is 1 if the kth class has the highest value of c̃ik, or 0 otherwise

For consistency with the other measures, C and CLM have been multiplied by −2. Note that for

repeated measures studies, the choice of n is not obvious. While the number of subjects is typically

used, the extremes are the total number of observations and the total number of subjects. The authors

found that AIC and BIC outperformed other criteria in a clustering context.
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Biernacki et al [2000] proposed an additional criteria, referred to as the Integrated Classification

Likelihood, which is defined as follows:

ICL = −2 log L + v log n + 2E

The authors found that ICL performs well in determining the relevant number of clusters.

And finally, the last criteria to be considered is the Consistent Akaike Information Criterion (CAIC)

proposed by Bozdogan [1987]. This criteria provides a greater penalty than the usual AIC, and is

defined as follows:

CAIC = −2 log L + v (log n + 1)

Based on my work with the models, I propose a series of additional information criteria along

the lines of BIC. The BIC penalizes the likelihood for each additional parameter fit in the models.

However, the model that is the main focus of this research is a model in which class membership is

determined by the relative likelihood of an individual’s data under each of the underlying LMMs -

therefore, no additional parameters are fit for class membership. If the latent classes are so obviously

separated that the classes can be easily determined, then this seems appropriate. However, if class

membership for an individual is not obvious, it seems as if a penalty needs to be assessed for that

individual to account for fitting that individual’s mixing proportion. If the individual is fit such that

their class membership probability is split between two classes, then it seems the penalty should be

the equivalent of fitting one additional parameter in the model. If the individual’s probability is split

between three classes, then the penalty should be two additional parameters, and so on. Since the

point at which an individual can be attributed to one class with certainty or near-certainty is not

obvious, four criteria were proposed. The first, BICMod23, looks at the highest probability for each

subject and compares it to the other class probabilities - if the second-highest probability is more than

half of the highest, then a single penalty parameter is charged. If the third-highest probability is more

than half of the highest, then a second penalty parameter is charged and so on. The label ’23’ is meant

to call attention to the fact that a subject with probabilities 2/3 and 1/3 would be at the border of

having a penalty assessed. A second criteria, BICMod34, would have the border at 75 percent/25

percent. BICMod45 has its border at 80 percent/20 percent and BICMod910 has its border at 90

percent/10 percent.
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2.8.3 Simulation Study

To investigate the usefulness of these information criteria for choosing the most appropriate LCLMM,

a simulation study was run. The fitted parameters for triglycerides, LDL cholesterol, and HDL choles-

terol from the Chapter 1 example for the 4-class class-specific variance model were used to generate

data. For each run, 260 subjects were generated, 50 from each of the four latent classes and ten that

were intermediate between the six pairs of two classes. These last 60 subjects were included to provide

a more typical scenario in which there are some subjects for whom two models fit equally well. Having

demonstrated that the quasi-Newton and Newton-Raphson methods are reasonably consistent, only

the quasi-Newton method was run. The LMM and LCLMM for 2-8 classes were run. 250 unique

datasets were run for a total of 2,000 runs. Class membership, once again, was modeled based on the

relative fit of the underlying LMMs.

In this simulation study, the goal is to determine whether the existing and newly proposed infor-

mation criteria can effectively determine the appropriate number of latent classes for the model being

fit - in this case four classes. In addition to the information criteria, mean square error measures

for both the within and total residuals were also examined. These residual measures were defined in

Equations 2.12 and 2.13. Based on the eight runs for each unique dataset (for 1-8 classes), a ’best’

model was selected based on each likelihood measure. The number of runs (out of 250) which selected

each possible number of classes is shown in Table 2.21. Figure 2.17 shows charts of the percentage of

runs for which each measure chose the correct number of classes (4) or were within one of this number.

The traditional likelihood measures tended to choose more than four classes. The AIC/C/CLM

measures chose the maximum number of classes (8) for nearly all of the 250 unique datasets. The

BIC/ICL measures also tended to choose a higher number of classes. Many runs chose seven or eight

classes, while a fair number of runs chose five or six classes. The measures which performed best

were the entropy (E and EC), MSE (Within), and CAIC measures, with just under 10% choosing

four classes for the entropy measures, about 15% choosing four classes for CAIC, and roughly 15-25%

choosing four classes for the MSE measures. As in this example, since multiple parameters can be

run through the model, it may be possible that some parameters may be fit fine with just two classes,

while others are only fit well when additional classes are fit. From the counts for MSE (Within) in

Table 2.21, it appears that HDL could be fit reasonably well by just two classes, while LDL appears

to be fit best by either one or four classes and triglycerides by four or five classes. This provides a

general indication that four or five classes may be appropriate.
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Table 2.21: Simulation Study Results - Choosing the # of Latent Classes

# of Runs Choosing This
Number of Latent Classes

Likelihood/Residual Measure 1 2 3 4 5 6 7 8

AIC . . . . . . 13 237
AIC3 . . . . . . 24 226
CAIC . . . 36 96 65 39 14

BIC . . . . 26 47 92 85
BIC-Mod23 . . . . 27 34 79 110
BIC-Mod34 . . . 3 30 29 79 109
BIC-Mod45 . . . 2 31 33 70 114
BIC-Mod910 . . 1 35 42 36 52 84

E . 53 79 20 17 14 19 48
EC . 12 35 21 23 18 45 96

C . . . . . . 3 247
CLM . . . . . . 3 247

ICL . . . . 27 40 93 90

MSE (Total Residuals) - HDL . . 2 2 25 35 67 119
MSE (Total Residuals) - LDL . . . . 6 16 52 176
MSE (Total Residuals) - Triglycerides . . 1 . 4 26 63 156

MSE (Within-Subject Residuals) - HDL . 121 30 32 21 17 16 13
MSE (Within-Subject Residuals) - LDL 73 9 25 63 37 23 15 5
MSE (Within-Subject Residuals) - Triglycerides . 6 30 55 60 33 42 24
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(a) Chose Correct # of Classes

(b) Within 1 Class

Figure 2.17: Simulation Study Results - Choosing the # of Latent Classes
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In conclusion, the usual likelihood-based measures tend to choose too many latent classes. The

within-subject MSE tended to choose the correct number of latent classes more often than the other

measures and should be considered for use until better measures can be proposed and tested.

2.9 Simulation Study - Model Speed

Finally, with the stability and accuracy of the algorithm established, and the advantage of the proposed

methods apparent, which method should the user choose for various size models? While there are many

variables which can affect runtime, a few are examined in the following simulation study. First, how is

runtime impacted when additional subjects are added? Second, what is the effect of fitting additional

latent classes? And third, how much time does it add to fit different variances for each latent class?

These questions were examined by running simulations based on subjects created from the same

4-class model that has been used in the previous simulation studies. Thirty simulations were run for

each possible combination of the below choices, for a total of 2,400 runs.

• A total of 130 subjects, 260 subjects, 390, and 520 subjects were generated

• The LCLMM was run for 1-5 classes

• The model was run in two different ways - once assuming class-specific variances and once

assuming variances equal across classes

• Both the QN and NRA methods methods were run

The median CPU runtimes (minutes) are presented in Table 2.22 and in Figure 2.18. The quasi-

newton and Newton-Raphson methods have similar runtimes for the equal-across-classes variance

models. However, for the class-specific variance approach, in which there can be a much larger number

of parameters, the Newton-Raphson method tends to take a noticeably longer period of time to run.

For example, for the 5-class class-specific variance model with 520 subjects, the Newton-Raphson

method took a median time of 332.6 minutes to run versus only 57.6 minutes for the quasi-Newton

method. It is also worth noting that the runtime for the quasi-Newton method does not appear to

increase dramatically with increases in sample size or latent classes and has only a modest increase

when fitting class-specific variances. These results lead to the conclusion that the quasi-Newton method

should be used in general for these rather complex models.
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Table 2.22: Simulation Study Results - Median RunTimes (Minutes)

Equal-Across-Classes Class-Specific

# of Subjects # of Classes QN NRA QN NRA

130 1 0.8 1.1 0.8 1.1
130 2 1.9 2.5 2.1 3.1
130 3 3.3 3.1 5.9 10.8
130 4 4.7 5.6 10.1 30.9
130 5 6.9 7.8 18.0 70.7

260 1 1.4 2.3 1.4 2.3
260 2 3.7 3.8 3.8 5.5
260 3 6.1 6.8 9.1 21.4
260 4 9.0 9.2 17.2 56.4
260 5 13.7 14.9 30.9 178.1

390 1 2.5 3.9 2.5 3.9
390 2 5.3 5.9 5.7 7.2
390 3 9.6 9.6 13.7 33.7
390 4 13.7 13.8 25.6 91.9
390 5 20.8 22.4 43.5 256.0

520 1 3.1 5.0 3.1 5.0
520 2 6.9 6.9 7.4 9.5
520 3 12.5 10.6 18.5 43.6
520 4 18.5 18.5 34.0 83.0
520 5 26.3 25.1 57.6 332.6
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2.10 Conclusions and Further Research

This chapter has presented a new macro, which will allow users to fit mixtures of linear mixed models

for a wide variety of problems. In addition to being able to easily generalize the distributional assump-

tions of the usual linear mixed model, users can explore complex multi-parameter datasets to determine

underlying subpopulations and the appropriate linear mixed model for each. Class membership can

further be explored by specifying variables to be used in a logistic model for class probabilities. These

methods were examined in a series of simulation studies and found to be stable and to provide a real

benefit in terms of providing a better model fit than the usual linear mixed model.

Future research should focus first and foremost on developing a dependable measure for selecting

the appropriate number of latent classes. While the within-subject MSE appears to perform reasonably

well, it would be advantageous to have a better method for making this selection. Ideally, such an

approach would allow some sort of tuning parameter to allow the user to specify their sensitivity to the

addition of latent classes. For example, in some cases, the user may wish to have a more broad look

at class membership, while in others, small clusters of individuals may be of interest. An additional

focus of research should examine a hybrid of the relative-fit and structured class membership models.

Since there may be instances in which the class membership model fits a subject as being in one class

while the subject may be better-fit in another, a model which fits each subject’s class probabilities

based on a combination of the two would offer an intermediate and perhaps more reliable result.
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Chapter 3

Tutorial in Latent Class Linear Mixed

Models for Clinical Researchers

3.1 Introduction

Chapter 1 presented an expanded methodology related to Latent Class Linear Mixed Models (LCLMM),

including an example using lipid data from the ARIC study. Chapter 2 discussed a new SAS R© macro

which will allow statisticians and researchers to apply these models easily in practice. In the latter,

examples were presented to illustrate how to specify models in the new macro. However, given the

complexity of the models and the many questions that arise in specifying a model, it is important

to provide statisticians and researchers alike with a more detailed look at the decisions that need to

be made when fitting the LCLMM. This is accomplished in this chapter in three sections. The first

section presents a brief review of the LCLMM methodology. The second section discusses the decisions

that a statistician or researcher must make when fitting a LCLMM. The third section walks through

three separate real-world modeling examples step-by-step to illustrate how the models can be used in

practice. These should provide a reference as users explore the models more fully.

3.2 The Model

A detailed review of the LCLMM is provided in Chapter 1. For convenience, a brief review is presented

here.



3.2.1 Defining the Latent Class Linear Mixed Model

The LCLMM is effectively a mixture model where the underlying mixture distributions are specified

as linear mixed models (LMMs). Therefore, a brief introduction of the LMM will lead directly into

the specification of the LCLMM. Note that Searle et al [1992] provides a more detailed presentation

of the LMM. For subject i, we assume

yi = Xiβ + Zibi + ei (3.1)

where:

yi is an ni × 1 vector of observations

Xi is an ni × p1 design matrix for the fixed effects

β is a p1 × 1 unknown vector of fixed effects

Zi is an ni × q design matrix for the random effects

bi is a q × 1 unknown vector of random effects

ei is an ni × 1 unknown vector of random error terms

Further, ei and bi are assumed to be mutually independent of one another and to have the following

properties:

E (bi) = 0

Var (bi) = D

Cov (bi,b′h) = 0 for i 6= h

E (ei) = 0

Var (ei) = Ri

Cov (bi, ei) = 0

(3.2)

And finally, the following distributional properties are assumed to apply to the random effects, bi,

and residuals, yi −Xiβ:
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 bi

yi −Xiβ

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (3.3)

The latent class model adds a further dimension in that each subject’s data is modeled as a mixture

of K LMMs, one for each of the K latent classes. Note that the value K is specified by the statistician

a priori. Guidelines related to selecting K are discussed later in this chapter. In addition, a simulation

study is presented in Section 2.8, in which the usefulness of various likelihood-based and residual-based

criteria is examined with regard to making this selection. Following the notation in Lin et al [2002a],

define for subject i:

cik =

 1 if subject i is a member of class k

0 if subject i is NOT a member of class k

ci1, . . . , ciK ∼ Multinomial (1, πi1, . . . , πiK)

The πik, the multinomial probabilities of being in each latent class, are modeled via a logit model

as follows:

πik = P (cik = 1 | ti) =
exp (t′iαk)∑K

j=1 exp (t′iαj)
(3.4)

where:

ti is the design vector related to class membership for subject i

αk is an unknown vector of class-membership parameters for class k with α1 = 0

Further, given that subject i is in class k, define the LMM for subject i as follows:

yi = Xiβ + Wiλk + Zibi + ei (3.5)

where the following additional definitions are provided:

Wi is an ni × p2 design matrix for the class-specific fixed effects

λk is a p2 × 1 unknown vector of class-specific fixed effects for class k
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It is useful to note that the parameters in β will apply to all subjects through the values of the cor-

responding column in Xi. The class-specific parameters, λk, however, are different for each latent class.

The error terms and random effects are assumed to have the same properties as in Equation 3.2.

Finally, similar to the LMM, the following distributional properties are assumed to apply to the random

effects, bi, and residuals, yi −Xiβ −Wiλk:

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 D DZ′i

ZiD ZiDZ′i + Ri


 (3.6)

It is assumed, without loss of generality, that the model is full-rank. This assumption requires that

both of the following are true:

[
t1 t2 · · · tn

]
is full rank, and



X1 W1 . . . Z1 . . .

X2 . W2 . . . Z2 . .

... . .
. . . . . .

. . . .

Xn . . . Wn . . . Zn


is full rank.

For notational convenience, denote Θ as the combined parameter vector comprised of α2 . . .αK ,

β, λ1 . . .λk, and θ, where θ contains the unique variance components which determine D and Ri.

It is useful to compare the observed-data likelihoods of the usual LMM with the LCLMM. These

likelihoods are conditional on having observed the values Xi, Wi, Zi, and ti. In short,

log L (Θ)LMM =
n∑

i=1

log f (yi) (3.7)

log L (Θ)LCLMM =
n∑

i=1

log
K∑

k=1

πikf (yi | cik = 1) (3.8)

with f (·) being the density defined by

(yi) ∼ N (Xiβ,ZiDZ′i + Ri)

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDZ′i + Ri)
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Several points are of note. First, note the difference between Equations 3.7 and 3.8 - the likelihood

for the LCLMM is a weighted average of K LMMs. Second, with K=1, and therefore πi1 = 1, the

LCLMM reduces to the usual LMM. Third, if the groups are so well separated that each subject has

one πik = 1 and the others equal to 0, then the likelihood reduces to that of a LMM with subjects

assigned to these groups. Finally, note that the log likelihood for the LCLMM contains the log of

the sum over latent classes, making the computations of the first and second derivatives of the log

likelihood more complicated.

3.2.2 The Relative-Fit Class Membership Model

In the model described in the previous section, class membership was assumed to be determined based

on an underlying logistic regression model. However, in many cases, the statistician may not know

exactly which factors should be included in the model describing class membership, these factors may

not be measurable, or the statistician may prefer to simply identify the best-fitting LCLMM with K

classes. However, this model, in which each subject can have its own mixture, would result in many

parameters related to class membership - specifically, for n subjects and K classes, the model would

require n × (K − 1) parameters. Therefore, a second approach was proposed in Chapter 1 which

replaces the logistic regression model with a model in which class membership is determined by the

relative fit of the underlying LMMs. This is much less costly in terms of computational time than

fitting a separate set of class membership parameters for each subject, but offers a logical approach

with a similar goal in mind.

Recall that the unconditional log likelihood of the observed data, assuming class-specific D and R,

is as follows:

log L (Θ) =
n∑

i=1

log
K∑

k=1

[πikf (yi | cik = 1)] (3.9)

with f (yi | cik = 1) being the density defined by

(yi | cik = 1) ∼ N (Xiβ + Wiλk,ZiDkZ′i + Rik)

In the revised model, the πik are determined solely by the relative fit of the underlying LMMs according

to the following equation:
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π̂ik =
f
(
yi | cik = 1; Θ̂

)
∑K

j=1 f
(
yi | cij = 1; Θ̂

) (3.10)

For example, if two latent classes are fit and the LMM for Class 1 results in a likelihood for the

subject’s data equal to the likelihood of that subject’s data under the model for Class 2, then the

subject would be included in each class 50/50. If the likelihood for Class 1 was nine times higher than

for Class 2, then the subject would be included in Class 1 90 percent and Class 2 only 10 percent.

Further details are presented in Section 1.4.4.

3.2.3 Prediction of the Random Effects

One of the many advantages to using LMMs is the logical specification of the model, and a big part of

this specification lies in the random effects which are thought of as being sampled from an underlying

distribution. For the LMM, the underlying distribution is the multivariate normal distribution. The

LCLMM, in essence, divides the population into subpopulations and then fits the best LMMs to the

data in each subpopulation. Therefore, it is important that the LCLMM approach be able to compute

predictions of the random effects. In fact, upon closer examination, the random effects for the LCLMM

are actually a weighted average of the random effects from each underlying LMM.

From the derivation of the LCLMM, recall that given a subject is a member of class k, the following

distributional properties are assumed to apply to the random effects, bi, and residuals, yi −Xiβ −

Wiλk.

 bi

yi −Xiβ −Wiλk

 ∼ N


 0

0

 ,
 Dk DkZ′i

ZiDk ZiDkZ′i + Ri




∣∣∣∣∣∣∣ cik = 1 (3.11)

The computation of the LCLMM random effects requires maximizing the joint density of the data y

and the random effects bi, with respect to the terms bi. The likelihood can be written as follows:

log L (y,b) =∑n

i=1
log

K∑
k=1

πik

[
exp
[
− 1

2

{
(yi −Xiβ −Wiλk − Zibi)

′R−1
ik (yi −Xiβ −Wiλk − Zibi) + b′iD

−1
k bi

}]
(2π)(ni+q)/2 |Rik|1/2 |Dk|1/2

]
︸ ︷︷ ︸

P3ik︸ ︷︷ ︸
P1i
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However, given that a subject is in class k implies that the best set of predictions of the random

effects are the predictions based on the kth LMM. Therefore, the random effects for a subject can

be computed as the weighted average of the random effects computed as if that subject were in each

latent class:

b̃i = eBLUP [bi] = E
[
bi | Θ̂,yi

]
=

K∑
i=1

πik × b̃i|k

Further details are presented in Section 1.4.5.

3.3 Statistical Questions Related to Specifying a Model

In the LMM, several decisions need to be made by the statistician in order to specify a parsimonious

model which addresses the research question. These decisions include deciding which factors are fixed

and which are random, as well as deciding upon the structure of the underlying variance-covariance

matrices of the random effects and error terms. The LCLMM adds to this list the decision of how

many classes to fit, which of the fixed effects, if any, are allowed to vary by latent class, how class

membership should be structured, and whether each of the underlying latent classes should have its

own estimated variances. Below are commentaries related to each decision.

3.3.1 Fixed Effects - Class-Specific or Equal Across Classes?

In the LMM, the fixed effects are specified such that they are applicable to all subjects or to known

subpopulations. In the LCLMM, the subpopulations are not known a priori. As such, it may not be

obvious which fixed effects should be permitted to differ by latent class. The main point to keep in

mind in making this decision is this... classes will be differentiated based solely on parameters which

are allowed to differ by class. Consider the example from Chapter 1 using the ARIC study data. The

primary interest in that example was on examining the trajectories of HDL, LDL and triglycerides

through time. However, some subjects were taking cholesterol-lowering medications, which would be

expected to result in a decrease to LDL cholesterol. This decrease is associated with the individuals

taking the medication and the expectation is that the medication should result in a comparable

decrease in LDL regardless of the underlying latent class. Therefore, the effect of medication use

on cholesterol was fit across-classes. However, the intercept, linear, and quadratic terms for HDL,
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LDL, and triglycerides were allowed to differ by latent class. In some cases, there may not be prior

information to guide this selection. In such cases, the statistician could fit the factor as being class-

specific and examine the differences in the estimate by latent class. If the factor is reasonably similar

in all classes, then the model could be refit with the factor fit as being equal across classes.

In addition, there may be instances where the statistician would prefer that all fixed effects be

the same for each class and allow only the variances to differ by class. The resulting model would

effectively be the usual LMM, with the error distribution and/or random effects distribution viewed

as being a mixture of multivariate normal distributions.

3.3.2 Variances - Class-Specific or Equal-Across Classes?

There are two main situations which should be considered separately for purposes of this discussion.

First, as noted above, the user may wish to fit the usual LMM, but allow the distributions of the

random effects and/or error terms to be modeled by a mixture of normal distributions. In this

scenario, the LCLMM can be specified such that all fixed effects are fit as being equal across classes,

while the variances of the error terms and/or random effects are allowed to differ by latent class.

Since the classes are distinguished only by variances and individuals at the center of the distribution

may reasonably have come from any of the underlying distributions, it makes sense in this model to

restrict each subject to have the same underlying mixture. In the univariate normal case, this would

be equivalent to fitting the error terms as being distributed according to a mixture of normals - for

example 90 percent distributed Normal(0,1) and 10 percent distributed Normal(0,10). However, the

appropriate mixture percentages as well as the variances themselves would be estimated as part of the

model. This model specification provides an easy way to generalize the LMM to better fit the data.

Note that since the correlation between random effects is held constant across classes, the correlation

in the resulting random effect mixture distribution is maintained, while allowing the distributions of

the random effects to be represented by a more general distribution.

In models which allow the fixed effects to differ by latent class, the LCLMM attempts to fit the best

LMMs to the subjects in each latent class, while determining the latent classes as part of the estimation

process. In situations where there are distinctly different variances for each latent class, fitting the

variances as class-specific can result in remarkably different class determinations (and therefore models)

when compared to results obtained when the variances are estimated as being equal across classes.

This is because the information contained in the variation of the data is utilized to distinguish the
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classes in the class-specific variance case, but not in the equal-across-classes case. In Chapter 1, it was

shown using ARIC study data that the determination of class membership was dramatically different

based on this important choice. If the statistician is unsure how the variances should be fit, it would

be recommended, if sample sizes allow, to fit the variances as being class-specific first to determine

the extent of the differences.

3.3.3 How Many Latent Classes Should Be Fit?

Once again, this choice should be considered in two separate contexts. First, in models in which

all fixed effects are fit as being equal across classes (generalizing the usual LMM), two classes would

be recommended in most cases since this should allow for a varied set of distributions but is still

reasonably straightforward.

In models in which the fixed effects are allowed to vary by latent class, the statistician should fit

a range for the number of latent classes and examine how the model fit changes as classes are added.

As was discussed in Section 2.8, the usual likelihood-based measures tend to select more classes than

is necessary. However, the statistician is encouraged to examine practical measures such as mean

square error and mean absolute deviation based on the within-subject residuals to compare model

fit. In the above-mentioned simulation study, MSE was found to be the most useful of the measures

examined, and mean absolute deviation would be expected to have similar results but be less impacted

by outlying observations. As is typical, the most parsimonious model should be sought. Therefore,

while the model fit may improve slightly as classes are added, a smaller model may be preferred for

its ease of interpretation.

3.3.4 Class Membership - Structured or Unstructured?

Class membership may be specified in several ways. As noted previously, in some cases, the statistician

may simply want to generalize the distributional assumptions of the usual LMM to allow the underlying

normal distributions to instead be mixtures of normal distributions. This is easily specified in the

LCLMM and provides a straightforward way to generalize one of the basic assumptions of the LMM.

As noted earlier, since individuals at the center of the distribution may reasonably have come from

any of the underlying distributions, it makes sense in this model to restrict each subject to have the

same underlying mixture. This situation was discussed in the example in Section 2.4.1.

In more general situations where interest focuses on discovering unique groups in the data and
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fitting appropriate LMMs to these groups, class membership may be specified in two very different

ways. In situations where the statistician is interested in simply fitting the best K LMMs or is not

sure of which factors may be most important in determining class membership, running the analysis

with class membership determined solely by the relative fit of the underlying mixed models would

be recommended - this is referred to throughout this document as relative fit class membership or

unstructured class membership. The statistician could then examine what is different between the

classes and may, as a result, have a better idea which factors are acting to differentiate subjects. For

example, does Class 1 tend to have subjects with a particular disease or risk factor? Does Class 2 tend

to be older or younger than most of the population?

Alternatively, the statistician may already have a set of risk factors which are of interest, and one

of the goals of the analysis might therefore be to determine how the risk factors act to differentiate

the groups in terms of their longitudinal measures. By including appropriate risk factors in the class

membership model, it may be possible to understand both the risk factors which distinguish the

subpopulations as well as how those subpopulations differ in terms of trajectories for the data being

studied.

While the structured class membership model can be quite useful in certain situations, the statis-

tician should be cautioned regarding one potential pitfall. In situations where class membership is

modeled using too few predictors or predictors which simply do not adequately distinguish the under-

lying groups, it is likely that some subjects may have fitted class probabilities (based on the parameters

in the class membership model) that put an individual in one class, while those subjects would be

better fit by the underlying LMM from another class. This would result in a poor fit for selected indi-

viduals. In light of this, it is recommended that the statistician compare the fitted class membership

probabilities, πik, with the unstructured probabilities based on the fitted models. The latter set of

probabilities could be calculated after model fit according to Equation 3.10 and are indeed provided

as part of the output from the macro presented in Chapter 2. In situations where the probabilities are

not in agreement, the statistician should focus discussion primarily on the subpopulation trajectories

rather than individual subject trajectories.

3.3.5 A Note Related to the Question of Fixed vs. Random?

The choice of fixed effect or random effect has been discussed in the literature (see Searle et al [1992]).

However, it should be noted here that sometimes the variation accounted for by the random effects can
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primarily reflect variation associated with being in one of the underlying latent classes. In other words,

what was considered subject-to-subject variation in the LMM may actually be due to the presence of

a set of subpopulations. Therefore, as additional latent classes are fit, it is not uncommon to see the

variances associated with some of the random effects decrease, in some cases going to zero.

3.4 Example 1 - Cystic Fibrosis - Pulmonary Function Data

Cystic fibrosis (CF) is one of the most common genetic diseases, with about 1 in 3,300 caucasian

children born with it in 1997. The disease results in the body producing an unusually thick mucus

instead of the typical slippery, watery substance. As a result, the mucus can clog the lungs, block

airways, and lead to repeated infections of the respiratory system. In addition, the sticky mucus

can block the pancreas, causing the body to be unable to fully absorb nutrients from digested food.

In Edwards [2000], the author examines the percent predicted forced expired volume in 1 second

(FEV1) from 47 adult CF patients seen at the University of North Carolina pulmonary clinic. For

each individual, as few as 4 or as many as 97 measurements were documented, with the median

number of measurements being 27. Percent predicted FEV1 was modeled as a linear function of age,

and results based on using the LMM were compared with a cross-sectional approach, in which the

information contained in having repeated measurements on individuals was effectively ignored. The

author demonstrated the value of the LMM, as the cross-sectional model showed very little association

between FEV1 and age, while the LMM had a statistically significant age effect (p-value<0.0001).

The model from the referenced article can be written as follows:

%PredFEV1it = β1 + β2 ×AGEit + γ1i + γ2i ×AGEit + εit

where:

%PredFEV1it is the % Predicted FEV1 for subject i at age t

β1 is the overall population intercept (with age centered at age 20)

β2 is the overall population slope

γ1i is the random intercept for subject i

γ2i is the random slope for subject i

εit is the error term associated with subject i at age t
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γ1i ∼ Normal
(
0, σ2

int

)
γ2i ∼ Normal

(
0, σ2

slope

)
εit ∼ Normal

(
0, σ2

error

)
ρ = corr (γ1i, γ2i)

In words, percent predicted FEV1 is modeled as a function of an intercept and a linear term for age.

Individuals are modeled as having random intercepts and slopes about the population mean intercept

and slope, and the random intercepts and slopes are correlated. The error terms are assumed to be

independent with a single variance applicable to all observations.

The plot of the fitted population and subject-specific trajectories for percent predicted FEV1 based

on the LMM analysis is presented in Figure 3.1a. While the fitted trajectories do not on first glance

appear to indicate that there may be several underlying groups in the data, the LCLMM was applied to

the data to examine whether it offers a better model fit. In looking at the fitted individual trajectories,

one possible hypothesis is that the subpopulation with higher FEV1 values may be more variable in

terms of trajectories. Another possibility is that the random effects have a distribution which would be

better classified as a mixture of normals. For comparison purposes, the LCLMM was fit three separate

ways. First, the LCLMM was fit with two latent classes where only the variances were allowed to

differ by class. This effectively means that the LMM is generalized such that the error and random

effect distributions are fit as mixtures of two normal distributions. The mixture percentages for this

model were fit as being the same for each individual. This model is referred to below as the LCLMM-

Mixture model. A second LCLMM was fit with two latent classes, where each class was permitted to

have its own intercept and linear slope, but the variances were assumed to be equal for each latent

class. In this second model, each individual was fit as a mixture of the underlying models based on

how well the underlying models fit - see Section 3.2.2 for further details. For example, if a subject is

fit equally well by both underlying LMMs, then that subject would be modeled 50/50 by those two

models. If a subject was fit much better by one model than another, then that subject would have

class probabilities closer to 90/10 or 95/5. This model is referred to below as the LCLMM-Relative

Fit Equal-Across-Classes Variance model. Finally, the latter model was refit, allowing both the fixed

effects and variances to differ by latent class and is referred to below as the LCLMM-Relative Fit

Class-Specific Variance model.
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The population and subject-specific trajectories for the LMM and the three versions of the LCLMM

are shown in Figure 3.1. Note that all four models produce very similar subject-specific trajectories.

This is an indication that the simpler LMM may adequately describe the data, but this question will

be addressed later. The parameter estimates for each model are shown in Table 3.1. The LMM and

LCLMM-Mixture models produce similar population intercepts and slopes. Note that the LCLMM-

Mixture model finds that the best-fitting error mixture is a 52% / 48% mixture of normal distributions

with variances of 41 and 155, while the LMM fits a single residual error variance of 109. For illustration,

Figure 3.2 displays a normal distribution with mean 0 and variance 109 next to a 52%/48% mixture

of two normals with mean 0, one with variance 41 and the other with variance 155. Note the more

compact error distribution which is fit in the LCLMM-Mixture model. The random effect mixture is

more comparable to the LMM. As you might expect, the LCLMM-Relative Fit models identify higher

and lower FEV1 groups. However, from the plots, it does not appear that these are necessarily unique

subpopulations - just the best way of dividing the population into two subpopulations. With regard to

the initial hypothesis that the subjects with higher FEV1 tend to be more variable, this is confirmed

in the LCLMM-Relative Fit Class-Specific Variance model. In this model, the class with higher FEV1

had a random intercept variance of 387 versus just 277 for the lower FEV1 group, a random slope

variance of 2.45 versus just 1.67 for the lower FEV1 group, and a residual error variance of 156 versus

just 41 for the lower FEV1 group.

Finally, in order to determine whether any of the LCLMMs actually provide a better model fit

than the LMM, Table 3.2 presents a variety of likelihood-based criteria as well as the MSE of the

within-subject residuals for each of the proposed models. Further details related to these measures

are available in Section 2.8. Note that all likelihood-based criteria chose the most complicated of the

models, the 2-class LCLMM with class-specific variances, while the within-subject MSE found the

model fit to be best under the LMM and LCLMM-Mixture models. This result is consistent with

results found in the simulation study in Section 2.8. In that study, the usual likelihood-based criteria

tended to choose more classes than were necessary, while the within-subject MSE was most likely to

choose the appropriate number of classes. In this case, the models all provide a comparable model fit,

and it is encouraging to find that the MSE does not recommend a more complex model. Generalizing

the random effect and error distributions does improve the fit slightly, as seen in the slight decrease

in the MSE for the LCLMM-Mixture model. However, the overall conclusion here is that the LMM

appears to fit the data reasonably well and the more complex LCLMM is not necessary.
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Table 3.1: Example 1 - Parameter Estimates

Model Parameter Class Estimate SE

Linear Mixed Model β1 n/a 61.97 3.35
β2 n/a -1.88 0.30
σ2

int n/a 397.78 102.31
σ2

slope n/a 2.39 0.91
σ2

error n/a 109.58 4.26
ρ n/a -0.15 0.22

LCLMM-Mixture β1 n/a 60.98 3.28
- Classes 1 and 2 weighted 52% / 48% β2 n/a -1.77 0.28

σ2
int 1 315.91 124.76
σ2

int 2 401.83 142.39
σ2

slope 1 1.70 0.75
σ2

slope 2 2.41 1.32
σ2

error 1 41.38 2.96
σ2

error 2 155.52 8.15
ρ n/a -0.07 0.33

LCLMM-Relative Fit β1 Higher FEV1 77.90 3.14
Equal-Across-Classes Variances β1 Lower FEV1 44.20 2.70

β2 Higher FEV1 -1.60 0.38
β2 Lower FEV1 -2.25 0.34
σ2

int n/a 123.46 37.00
σ2

slope n/a 1.65 0.63
σ2

error n/a 110.20 4.28
ρ n/a -0.68 0.12

LCLMM-Relative Fit β1 Higher FEV1 66.45 *
Class-Specific Variances β1 Lower FEV1 55.48 *

β2 Higher FEV1 -1.94 *
β2 Lower FEV1 -1.56 *
σ2

int Higher FEV1 387.36 *
σ2

int Lower FEV1 277.23 *
σ2

slope Higher FEV1 2.45 *
σ2

slope Lower FEV1 1.67 *
σ2

error Higher FEV1 156.59 *
σ2

error Lower FEV1 41.08 *
ρ n/a 0.04 *

* = SE calculations were unsuccessful for this model
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Figure 3.2: Comparison of Error Distributions - LMM vs. LCLMM Mixture

Table 3.2: Example 1 - Information Criteria and MSEs

Linear LCLMM LCLMM
Mixed LCLMM- Relative-Fit Relative-Fit

Criteria Model Mixture Equal Class-Specific

Observed Likelihood -5510.82 -5414.35 -5476.30 -5385.26
AIC 11033.63 10848.71 10968.60 10792.52
CAIC 11037.66 10855.43 10973.98 10799.91
BIC 11044.73 10867.21 10983.40 10812.87
Entropy 0.00 6.20 1.32 3.29
C 11021.64 10841.10 10955.24 10777.10
ICL 11044.73 10879.61 10986.04 10819.45

MSE (Within-Subject) 104.28 104.08 105.26 104.71

Number of Parameters (v) 6 10 8 11
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3.5 Example 2 - Premature Infant Sleep-Wake Data

Holditch-Davis [2004] examined the development of sleeping and waking states during the pre-term

and early post-term periods for 134 preterm infants. These infants were at high risk for developmental

problems due to low birthweight (less than 1500 g) or mechanical ventilation, and were recruited from

three tertiary hospitals (75 from a southeastern perinatal center, five from a northeastern perinatal

center, and 54 from a midwestern children’s hospital). Weekly behavioral observations were conducted

during a 2-hour inter-feeding time in the daytime from enrollment until 44 weeks post-conceptual age

or discharge. From one to eight measurements were conducted on each infant (mean=3.3). During

the weekly observation, the authors took measurements on several aspects of sleep-wake state - among

these were active and quiet sleep, active and quiet waking, as well as a period defined as sleep-wake

transition - the definitions of each of these states is provided in the article. The authors recorded the

percentage of time each infant spent in these five sleep-wake states during each 2-hour observation

period. For purposes of analysis, only subjects who had at least two separate measurements were

used. In addition, if a subject had only two measurements, but these measurements were in adjacent

weeks, then the data for the subject was dropped. These rules resulted in a total of 103 subjects being

analyzed.

In Holditch-Davis [2004], the longitudinal measurements for percentage time in each of the five

sleep-wake states were analyzed using the LMM. For each sleep-wake state, a LMM was fit in which

the percent of time in that sleep-wake state was modeled as a function of the following covariates:

intercept, linear and quadratic terms for postconceptional age, hospital, birthweight, gender, race, the

presence of methylxanthine treatment, length of mechanical ventilation, handling due to performing

an EEG, and interactions of these variables with postconceptional age. A random intercept and

slope for postconceptional age were also included in each model. Note that for modeling purposes,

postconceptional age was centered at 29 weeks. In addition, since one of the hospitals recruited only

five infants, the indicator for hospital treated the two smaller hospitals as a single entity. A backwards

elimination process resulted in models for each sleep-wake state which included the covariates presented

in Table 3.3.

The authors plotted the fitted trajectories for each sleep-wake state for the population, as well as

the individual fitted trajectories for each infant and found the following general patterns in the data.

Active sleep tended to decrease with age, while quiet waking, active waking, and quiet sleep increased

with age. Sleep-wake transition tended to increase until 40 weeks and then decreased after 43 weeks.
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Table 3.3: List of Covariates Used in the Mixed Model Analysis in Holditch-Davis [2004]

Sleep-Wake State Variables Included in Model

Quiet-Waking Intercept and Linear Term for PC-Age
- Random intercept

Active-Waking Intercept, Linear/Quadratic terms for PC-Age, Hospital,
- Random intercept EEG, and PC-Age x EEG

Sleep-Wake Transition Intercept, Linear/Quadratic terms for PC-Age, and EEG
- Random intercept

Active-Sleep Intercept, Linear/Quadratic terms for PC-Age, and
- Random intercept and slope Mechanical ventilation

Quiet Sleep Intercept and Linear term for PC-Age
- Random intercept and slope

The LMM was first run to confirm that the results from the article could be recreated. The fitted

model is presented in Figure 3.3 and shows close agreement with the referenced article.

Since this is an instance in which there are several related parameters, each of which has longitudinal

measurements, the LCLMM can potentially shed light on underlying subpopulations that may exist in

the premature infant data, as well as fit the best LMM to the data for each of those subpopulations.

The models proposed in Holditch-Davis [2004] for each sleep-wake were used as the basis for the

LCLMM. However, the intercept and linear/quadratic terms for age were permitted to vary by latent

class. Note that other covariates, such as hospital, EEG, and mechanical ventilation, were fit across

classes, so their effects are the same for each latent class. The LCLMM was fit for 2-6 classes. Class

membership probabilities were modeled based on the relative fit of each of the underlying LMMs.

Since the sample size was relatively small, the variances were fit as being equal across classes. As

noted in Section 3.3.5, as latent classes are added to the model, it is possible that certain random

effect variances may go to zero. This was the case in this analysis, and random effects were removed

from the model if the associated variance went to zero. The fitted models for the various numbers

of classes are presented in Figures 3.3-3.8. Note that the predicted sleep-wake percentages for each

infant are not constrained to sum to 100%.

Each of the models presented is the best-fitting model for that number of classes. However, which
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Figure 3.3: Fitted Sleep-Wake State Trajectories Based on the Linear Mixed Model
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Figure 3.4: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 2 Classes
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Figure 3.5: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 3 Classes
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Figure 3.6: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 4 Classes

172



%
 T

im
e 

in
 Q

ui
et

 W
ak

in
g

0

10

20

30

40

50

Post-Conceptional Age (Weeks)
25 30 35 40 45 50 55 60

(a) Quiet Waking

%
 T

im
e 

in
 A

ct
iv

e 
W

ak
in

g

0

5

10

15

20

25

Post-Conceptional Age (Weeks)
25 30 35 40 45 50 55 60

(b) Active Waking

%
 T

im
e 

in
 S

le
ep

-W
ak

e 
T

ra
ns

iti
on

0

5

10

15

20

25

30

Post-Conceptional Age (Weeks)
25 30 35 40 45 50 55 60

(c) Sleep-Wake Transition

%
 T

im
e 

in
 Q

ui
et

 S
le

ep

0

10

20

30

40

50

60

70

Post-Conceptional Age (Weeks)
25 30 35 40 45 50 55 60

(d) Quiet Sleep

%
 T

im
e 

in
 A

ct
iv

e 
S

le
ep

0

20

40

60

80

100

Post-Conceptional Age (Weeks)
25 30 35 40 45 50 55 60

(e) Active Sleep

Figure 3.7: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 5 Classes
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Figure 3.8: Fitted Sleep-Wake State Trajectories Based on the LCLMM - 6 Classes
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model is best? To examine this, several likelihood-based criteria as well as the MSE of the within-

subject residuals are presented in Table 3.4. A simulation study in Section 2.8 showed that the within-

subject MSE provided a useful measure by which to choose from competing LCLMMs, while the

likelihood-based measures tended to choose too many latent classes. In this case, while the likelihood-

based criteria all choose the most complex 6-class model, the within-subject MSE selects the 5-class

LCLMM. Based on the within-subject MSE, the 5-class model provides the best fit for several of

the sleep-wake states and is among the best-fitting models for the other parameters. In fact, when

comparing the MSEs for the 5- and 6-class models, the 5-class model has the same value or better for

all of the parameters.

Table 3.4: Example 2 - Information Criteria and MSEs

Number of Classes Fit

Measure 1 2 3 4 5 6

Observed Likelihood -7417.10 -7305.56 -7227.69 -7160.14 -7091.17 -7043.26
AIC 14898.20 14701.13 14559.37 14450.27 14338.34 14268.52
CAIC 14930.61 14746.71 14612.04 14516.11 14417.34 14360.69
BIC 14982.52 14819.69 14696.38 14621.53 14543.85 14508.28
Entropy 0.00 7.95 10.34 13.47 15.23 12.42
C 14834.2 14627.02 14476.06 14347.22 14212.8 14111.36
ICL 14982.52 14835.59 14717.06 14648.47 14574.31 14533.12

MSE (Within-Subject)
- Quiet Waking 37.17 31.56 27.01 26.13 25.07 25.01
- Active Waking 7.84 5.83 6.29 4.78 4.30 4.26
- Sleep-Wake Transition 16.04 15.89 16.03 16.32 16.02 16.92
- Quiet Sleep 100.35 100.04 114.15 117.46 102.16 108.06
- Active Sleep 96.55 98.62 109.52 106.60 96.42 97.43

Number of Parameters (v) 32 45 52 65 78 91

The final parameter estimates for the 5-class model are shown in Tables 3.5 and 3.6. Note that

for ease of review, each class has been identified by a unique feature in its trajectories - i.e. ’Level

Quiet Sleep, Level Active Sleep’. More extensive descriptions related to the trajectories exhibited by

each class are presented below. For each class, an approximate percent of the population is presented

based on the sum of the class probabilities attributed to each latent class.
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Green - ”Typical Patterns - More Active Sleep and Less Quiet Sleep”

• This class has fairly typical trajectories - slightly increasing quiet waking, slightly increasing

active waking (although the tips of the curve are impacted by data at the edges), increasing

quiet sleep, and decreasing active sleep.

• This class has among the lowest amounts of quiet sleep and among the highest amounts of active

sleep.

• This class represents about 32 percent of the population.

Red - ”Typical Patterns - More Quiet Sleep and Less Active Sleep”

• The class also has fairly typical trajectories - slightly increasing quiet waking, slightly increasing

active waking, increasing-then-decreasing transition, increasing quiet sleep, and decreasing active

sleep - but has a higher amount of quiet sleep than other classes and one of the lower amounts

of active sleep.

• This class represents about 28 percent of the population.

Blue - ”Level Quiet Sleep, Level Active Sleep”

• Unlike most other classes, this class did not have an increase in quiet sleep and did not have a

decrease in active sleep.

• This class represents about 23 percent of the population.

Orange - ”High Quiet Waking”

• This class had dramatic increases in quiet waking, much more than any other class.

• This class represents about 11 percent of the population.

Purple - ”Increased Quiet Waking and Active Waking”

• This class had a dramatic increase in active waking and one of the largest increases in quiet

waking.

• This class represents about 10 percent of the population.
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It is useful to divide the population into groups based on their sleep-wake patterns because these

patterns have the potential to tell us something about the development of the infants. Previous

studies conducted by Halpern et al [1995] and Thoman [1982] found that sleeping and waking reflect

underlying functioning of the brain. In addition, Borghese et al [1995], Gertner et al. [2002],

Scher et al. [1994], and Whitney and Thoman [1993] found that sleep-wake patterns during the

preterm period are related to developmental outcomes. Therefore, the developmental measures from

subsequent testing of the premature infants are summarized in Table 3.7 for each class identified in the

final model. Note that since data for the developmental measures was not available for all subjects,

two N’s are presented for each class - the Class N is the number of subjects fit in the class, while

N is the number who also had the developmental measure being sumarized. As background, PLS 3,

which is short for Preschool Language Scale, is a test which evaluates language development. It can

be used to test receptive and expressive language skills with children from two weeks through six years

of age. The Fagan test is a test which evaluates infant intelligence by measuring the amount of time

the infant spends looking at a new object compared with the time spent looking at a familiar object.

The Bayley Scales of Infant Development is an individually administered psychometric assessment of

developmental functioning consisting of two scales - the Mental Development Index (MDI) and the

Psychomotor Development Index (PDI). Summaries for other relevant information about the mother

and infant are presented in Tables 3.8-3.9. Graphical summaries for two developmental measures, as

well as birthweight and gestational age are presented in Figures 3.9 and 3.10.

It is important to recognize that since each subject is not assigned 100 percent to be in a particular

latent class, but instead is given a probability based on the relative fit of the underlying LMMs,

the above-mentioned summaries are not simple statistics. The boxplot and associated table typically

display the min, max, 25th and 75th percentiles, as well as the mean and median. However, since every

subject is in every class with at least some small percentage, the min and max cannot be calculated as

they usually are - otherwise all classes would have the same min and max. For purposes of calculation

of the min and max, each subject was classified into a most likely class based on their class probabilities.

If a subject was at least twice as likely to be in their most likely class versus their second-most likely

class, then that subject was classified as being ’in’ their most likely class. Then, the min and max

based on subjects in the respective classes were used as each class’ min and max for the boxplot. The

median and 25th and 75th percentiles have a similar concern. For these, the easiest way to illustrate

calculation is by example. To calculate the median and 25th and 75th percentiles for birthweight for

Class 1, for example, the birthweight values for all subjects were lined up from smallest to highest, as
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would normally done. The difference here is that alongside each subject’s birthweight, the probability

of being in Class 1 is also recorded. These class probabilities are summed and a CDF value is defined

for each subject as the cumulative sum of the Class 1 probabilities divided by the total of all of the

Class 1 probabilities. Then the birthweight value at the CDF values of 25, 50 and 75 percent were used

as the 25th percentile, median, and 75th percentile, respectively. For categorical yes/no responses, a

weighted percentage of ’yes’ responses is calculated based on each subject’s class probability.

Below are some observations related to how the classes compare both in their developmental mea-

sures and with respect to other miscellaneous covariates.

Green - ”Typical Patterns - More Active Sleep and Less Quiet Sleep”

• This class had the lowest average birthweight (1096.3 grams) - a fair bit lower than the next

closest class (1133.7 grams).

• This class also had the lowest gestational age (27.9 weeks).

• This class seemed to score in the middle on most of the developmental scales.

Red - ”Typical Patterns - More Quiet Sleep and Less Active Sleep”

• This class had the second-highest mean birth weight (1197 grams) and second-highest gestational

age (28.7 weeks).

• This class had the second-highest APGAR scores (5.7 at 1 minute and 7.3 at 5 minutes).

• This class had the highest mean of any class on the PLS-3 (101.2) and the highest or one of the

highest means for the other developmental measures.

Blue - ”Level Quiet Sleep, Level Active Sleep”

• This class was average in terms of birthweight (1149.9 grams) and gestational age (28.3 weeks).

• This class had the highest mean age of the mother (29.3 years).

• This class had among the lowest developmental scores by many measures.

Orange - ”High Quiet Waking”
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Table 3.9: Example 2 - Summary of Infant/Mother Characteristics - Categorical

Percent of Infants with Associated Yes Response

Level Increased
Typical-More High Typical-More Quiet/Active Quiet/Active

Covariate Quiet Sleep Quiet Waking Active Sleep Sleep Waking

Firsttime Mother? 54.0 58.5 52.3 50.3 67.4
Multiple Birth? 26.3 28.5 29.1 19.8 19.1
Cesarean 60.6 63.0 59.0 62.0 45.5

• This class had the highest mean birth weight of any class by far (1354 grams) - the next highest

was 1197 grams.

• This class had the highest gestational age of any class by far (30.3 weeks) - the next highest was

28.7 weeks.

• This class had the lowest mean APGAR scores (5.1 at 1 minute, 7.0 at 5 minutes).

• While counts with developmental data were small for the development scores, the class scored

among the highest based on the few measures available.

Purple - ”Increased Quiet Waking and Active Waking”

• This class was average in terms of birthweight (1133.7 grams) and gestational age (28.2 weeks).

• This class had the highest APGAR scores (6.1 at 1 minute, 7.4 at 5 minutes).

• This class had the youngest mean age of the mother by far at 25.6 years - the next closest was

27.1.

• This class had the highest percent of first-time mothers (67.4 percent) and lowest percent of

cesarean sections (45.5 percent).

• This class had among the lowest developmental scores by many measures.

It is apparent from the class descriptions that developmental score is not a measure that simply

reflects the birthweight and/or gestational age of the infants. There is a more complex process at
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work, and analysis of the sleep-wake patterns of these infants may provide an earlier assessment of

their brain development. This example has demonstrated how the LCLMM allows the statistician to

both divide the population into subpopulations and simultaneously fit the best LMM for the data in

each group. In situations where there are several longitudinal measures, this can be a very complex

task, and the LCLMM provides a useful tool in this regard.

3.6 Example 3 - Atherosclerosis Risk in Communities Study

(ARIC) Revisited

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective epidemiologic study designed

to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic

diseases, and the variation in cardiovascular risk factors, medical care and disease by race, gender,

location, and date. The study was conducted in four communities in the United States - Forsyth

County, NC, Jackson, MS, the northwestern suburbs of Minneapolis, MN, and Washington County,

MD. Each ARIC field center randomly selected and recruited a cohort sample of approximately 4,000

individuals aged 45-64 from a defined population in their community. A total of 15,792 individuals

participated. Study participants received an extensive examination, including medical, social, and de-

mographic data. These participants were reexamined every three years with the first screen (baseline)

occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and final exam in

1996-98. Follow-up occurs yearly by telephone to maintain contact with participants and to assess

health status of the cohort.

A subset of 2,066 members of the ARIC study cohort participated in the Carotid MRI Substudy

in 2004-2005. The goal was to recruit 1,200 participants with high values of maximum carotid artery

wall thickness at their last ultrasound examination, and 800 individuals randomly sampled from the

remainder of the carotid artery wall thickness distribution. Participants had a maximum of the four

ARIC cohort examinations, plus one Carotid MRI Substudy examination. Measurement protocols

were identical at all five visits.

Fasting blood samples were collected at each examination and assayed for total cholesterol, HDL

cholesterol, and triglycerides. LDL cholesterol was calculated according to the Friedewald formula.

LDL cholesterol, HDL cholesterol, and triglycerides are commonly considered risk factors for coronary

artery disease (CAD) and other related diseases or events and are also routinely measured at annual
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physicals in the general population. Ballantyne [1998] notes that ”clinical trials with statins and

other lipid-regulating therapies have conclusively shown that lowering LDL cholesterol decreases both

morbidity and mortality from CAD and other vascular diseases.” Kwiterovich [1998] notes that ”the

Framingham Heart Study produced compelling epidemiologic evidence indicating that a low level of

HDL cholesterol was an independent predictor of coronary artery disease.” And Gotto [1998] points

out that ”the current evidence argues compellingly for including triglycerides in the evaluation of

patient risk for CAD. ... The revived attention to hypertriglyceridemia with respect to increased CAD

risk represents an important step in assessing a patient’s global risk for developing CAD.”

For purposes of analysis, lab lipid data for the 2,066 individuals in the ARIC Carotid MRI substudy,

as well as information related to medication use for controlling cholesterol levels were utilized in the

models discussed below. Since the distribution of triglycerides is non-normal, a log transformation for

this lab value was used in the analyses. The goal of this application is to demonstrate the usefulness

of the LCLMM for modeling the data for LDL cholesterol, HDL cholesterol, and triglycerides simul-

taneously. Section 1.5 already discussed an analysis in which the class probabilities were determined

by the relative fit of the model from each underlying latent class. In order to illustrate another useful

way to specify a LCLMM, this data is analyzed a second time here. In this revised analysis, class

membership is instead structured such that individuals are classified into groups based on a limited

number of prespecified factors.

As in Section 1.5, the LMM is fit with an intercept and linear and quadratic terms for age for

each of the three lipid parameters. Two indicator variables - one for LDL cholesterol and one for HDL

cholesterol - are also included to account for the effect of cholesterol medication on these measures.

Random intercepts are included for all three lipid parameters, and a random slope is fit for LDL (the

variances for the random slopes for HDL and triglycerides were close to 0). The random intercept and

slope for LDL are fit as being correlated, and the error terms are assumed to be uncorrelated, with

separate variances for each lipid parameter. For the LCLMM, the intercept and linear and quadratic

age terms for HDL, LDL, and triglycerides are allowed to vary for each latent class or subpopulation.

However, the effect of the cholesterol-lowering medication on HDL and LDL is fit as being the same for

each latent class. Random intercepts for all three lipids and a random slope variable for LDL cholesterol

are fit in the LCLMM as in the LMM, with correlation permitted between the LDL intercept and slope.

The LMM (1 class) as well as the LCLMM with 2-5 classes were fit. In the LCLMM, the variances

were permitted to differ by latent class, while the correlation parameter was fit as being the same for

each latent class. The main difference in this application is that class membership is modeled via a
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logistic regression model with an intercept and the following covariates:

• Did the subject ever smoke cigarettes? (1=Yes/0=No)

• Does the subject exercise or play sports? (1=Yes/0=No)

• Has the subject ever been treated for high blood pressure? (1=Yes/0=No)

• Has the subject ever been treated for high cholesterol? (1=Yes/0=No)

• Baseline BMI

• Baseline HDL Cholesterol

• Baseline Glucose

• Baseline Triglycerides

• Baseline Heart Rate

• Number of glasses of wine consumed per week

Selected information-based criteria and the within-subject MSE from each of the models are shown

in Table 3.10. Note that the likelihood-based criteria all choose the highest number of classes. This

is consistent with a result found in the simulation study presented in Section 2.8, which found that

the usual likelihood-based criteria tend to overestimate the number of classes that should be fit. Note

that the ICL shows a big improvement in going from one class to two classes, then has a somewhat

smaller drop from two to three classes, and then decreases more slightly as classes four and five are

added. This is evidence that perhaps the 2- or 3-class models fit reasonably well and there is not a

substantial benefit of adding classes four and five. In addition, note that entropy jumps when the

fourth class is added, indicating more uncertainty in class assignments after three classes. Another

measure to examine is the within-subject MSE. The above-mentioned simulation study showed that

the within-subject MSE provided a useful measure by which to choose from competing LCLMMs. In

this case, the within-subject MSE shows an improvement in model fit for HDL when the second class

is added, a slight improvement for triglycerides, and a slightly worse fit for LDL. Adding the third and

subsequent classes does not appear to improve the model fit based on within-subject MSEs. Given

the above, the 2-class model was selected in this case. This is indeed consistent with the ARIC study

data. Recall that the 2,066 subjects were selected as two subsets - approximately 1,200 participants
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with high values of maximum carotid artery wall thickness at their last ultrasound examination and

800 individuals randomly sampled from the remainder of the carotid artery wall thickness distribution.

Table 3.10: Example 3 - Information Criteria and MSEs

Number of Classes Fit

Measure 1 2 3 4 5

Observed Likelihood -82670.94 -80649.81 -79882.32 -79393.77 -79016.73
AIC 165379.87 161391.63 159910.64 158987.54 158287.45
CAIC 165423.86 161498.12 160079.64 159219.05 158581.47
BIC 165486.91 161650.76 160321.87 159550.88 159002.89
Entropy 0.00 119.37 223.17 470.79 494.06
C 165341.88 161538.37 160210.99 159729.12 159021.58
ICL 165486.91 161889.51 160768.22 160492.46 159991.01

MSE (Within-Subject)
- HDL Cholesterol 47.669 45.393 46.204 46.204 46.481
- LDL Cholesterol 365.078 368.808 369.400 369.400 369.756
- Triglycerides 0.073 0.072 0.072 0.072 0.071

Number of Parameters (v) 19 46 73 100 127

The fitted population trajectories for each lab parameter are displayed in Figure 3.11. In addition,

the observed subject trajectories for subjects identified in each latent class are presented in Figures

3.12-3.13, along with the fitted population trajectories for each class. The final parameter estimates

are displayed in Table 3.11. Similar to the 2-class model fit from the example in Section 1.5, the

model detects a class with higher HDL and lower triglycerides than the other - this class is labeled

as ’Optimal’ for discussion here, while the class with lower HDL and higher triglycerides is labeled as

’At-Risk’. The ’Optimal’ class also tends to have LDL that is average and steady, while the ’At-Risk’

class has LDL that starts out higher but then decreases. This is associated with the fact that while

both groups tended to be on cholesterol-lowering meds at baseline in equal percentages, a greater

percentage of the ’At-Risk’ group tended to be on cholesterol-lowering meds by visit 5.

The main difference between this model and the model discussed in Section 1.5 is that an individ-

ual’s mixture probabilities are determined by a logistic regression model which has a limited number of

variables. This can be a very powerful feature since it allows the statistician to simultaneously divide

the population into classes based on a set of class membership parameters while also fitting the best

189



LD
L 

C
ho

le
st

er
ol

 (
m

g/
dL

)

0

100

200

300

Age
40 50 60 70 80

(a) LDL Cholesterol
H

D
L 

C
ho

le
st

er
ol

 (
m

g/
dL

)

0

20

40

60

80

100

120

140

Age
40 50 60 70 80

(b) HDL Cholesterol

Lo
g 

T
rig

ly
ce

rid
es

 (
m

g/
dL

)

3

4

5

6

7

Age
40 50 60 70 80

(c) Triglycerides

Figure 3.11: Example 3 - Fitted LCLMM (2 Classes)

Red = Optimal
Orange = At-Risk

190



LD
L 

C
ho

le
st

er
ol

 (
m

g/
dL

)

0

50

100

150

200

250

300

Age
40 50 60 70 80

(a) LDL Cholesterol

H
D

L 
C

ho
le

st
er

ol
 (

m
g/

dL
)

0

30

60

90

120

150

Age
40 50 60 70 80

(b) HDL Cholesterol

Lo
g 

T
rig

ly
ce

rid
es

 (
m

g/
dL

)

3

4

5

6

7

Age
40 50 60 70 80

(c) Triglycerides

Figure 3.12: Example 3 - Fitted LCLMM (2 Classes) - Optimal Class

191



LD
L 

C
ho

le
st

er
ol

 (
m

g/
dL

)

0

50

100

150

200

250

300

Age
40 50 60 70 80

(a) LDL Cholesterol

H
D

L 
C

ho
le

st
er

ol
 (

m
g/

dL
)

0

30

60

90

120

150

Age
40 50 60 70 80

(b) HDL Cholesterol

Lo
g 

T
rig

ly
ce

rid
es

 (
m

g/
dL

)

3

4

5

6

7

Age
40 50 60 70 80

(c) Triglycerides

Figure 3.13: Example 3 - Fitted LCLMM (2 Classes) - At-Risk Class

192



Table 3.11: Example 3 - Parameter Estimates for 2-Class LCLMM with Class-Specific Variances

Optimal At-Risk

Parameter Estimate SE Estimate SE

Effect of Chol. Meds on LDL -17.03 0.6919 −→
Effect of Chol. Meds on HDL -0.17 0.2172 −→

LDL - Intercept 130.57 1.0473 141.45 0.9825
LDL - Linear (Age) -0.04 0.0858 -1.98 0.0890
LDL - Quadratic (Age) -0.03 0.0074 -0.03 0.0075
HDL - Intercept 64.49 0.5595 41.56 0.2700
HDL - Linear (Age) -0.57 0.0355 0.05 0.0193
HDL - Quadratic (Age) -0.01 0.0032 -0.00 0.0017
Triglyc. - Intercept 4.55 0.0127 4.99 0.0125
Triglyc. - Linear (Age) 0.02 0.0009 0.01 0.0009
Triglyc. - Quadratic (Age) -0.00 0.0001 -0.00 0.0001

Variance (Random Int - LDL) 675.90 40.1351 804.85 42.4745
Variance (Random Slope - LDL) 1.47 0.2945 2.53 0.3398
Variance (Random Int - HDL) 162.57 9.2756 44.37 2.3423
Variance (Random Int - Triglyc) 0.09 0.0056 0.12 0.0060
Variance (Error - LDL) 443.47 12.9086 502.510 12.9419
Variance (Error - HDL) 93.90 2.8177 33.059 0.8661
Variance (Error - Triglyc) 0.075 0.0019 0.097 0.0021
Corr (Rnd Int LDL/Slope LDL) -0.499 0.0406 −→

Class-Membership Parameters:
- Intercept 0.0 - 26.439 4.7331
- Ever Smoked Cigarettes? 0.0 - 0.919 0.5215
- Exercise or Play Sports? 0.0 - -0.536 0.6093
- Ever Been Treated for High Blood Pressure? 0.0 - -0.549 0.5540
- Ever Been Treated for High Cholesterol? 0.0 - 2.608 0.6250
- Baseline BMI 0.0 - -0.073 0.0553
- Baseline HDL Cholesterol 0.0 - -0.672 0.0988
- Baseline Glucose 0.0 - -0.011 0.0125
- Baseline Triglycerides 0.0 - 0.062 0.0106
- Baseline Heart Rate 0.0 - 0.066 0.0285
- Number of Glasses of Wine Per Week 0.0 - -0.129 0.0791
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LMMs to the data for each of the classes. The fitted odds ratios of being classified in the At-Risk

class versus the Optimal class are shown in Table 3.12, including point estimates and 95% confidence

intervals. Note that baseline LDL was not included in this model since LDL cholesterol values can

be modified with medication use. Therefore, the indicator for whether a subject was treated for high

cholesterol was included instead.

Table 3.12: Example 3 - Odds Ratios

Odds Ratio of Being in At-Risk Class

Covariate Point Estimate 95% CI

Ever Been Treated for High Cholesterol? 13.57 3.99 - 46.20
Ever Smoked Cigarettes? 2.51 0.90 - 6.97
Baseline Heart Rate 1.07 1.01 - 1.13
Baseline Triglycerides 1.06 1.04 - 1.09
Baseline Glucose 0.99 0.97 - 1.01
Baseline BMI 0.93 0.83 - 1.04
Number of Glasses of Wine Per Week 0.88 0.75 - 1.03
Exercise or Play Sports? 0.59 0.18 - 1.93
Ever Been Treated for High Blood Pressure? 0.58 0.19 - 1.71
Baseline HDL Cholesterol 0.51 0.42 - 0.62

As you might expect, the indicator for whether a subject was treated for high cholesterol is the

most significant of the covariates, with subjects treated for high cholesterol found to have 13.57 times

the odds of being in the At-Risk class as subjects not treated for high cholesterol. Subjects who have

smoked were found to have 2.5 times the odds of being in the At-Risk class, although this was not quite

statistically significant. Increases by 1 unit in baseline heart rate and triglycerides were associated

with a 6-7% increase in the odds of being in the At-Risk class. Baseline glucose and BMI did not

have a statistically significant result. Exercising/playing sports and drinking wine were associated

with decreases in one’s odds of being in the At-Risk class (again not statistically significant). Finally,

the odds of being classified in the At-Risk class halved for each single-unit increase in baseline HDL

cholesterol level - a statistically significant and powerful association!

Lastly, a note of caution is warranted related to the use of the logistic model for determination of

class probabilities. When comparing the plots for the 2-class models from this section with those from

Chapter 1, it is apparent that they are nearly identical. When distinguishable patterns are present

in the longitudinal data (as there are here), and the class membership parameters are sufficiently
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informative so as to differentiate the subjects, then the resulting models would be expected to be

comparable. In such a case, the model from this section has the added benefit of simultaneously

obtaining estimates for the parameters in the class membership model. However, when the class

membership model is uninformative and there is little information upon which to differentiate subjects,

this model has the potential to fit the data for certain subjects poorly - in fact worse than had the

LMM been run. As an example, the LCLMM in the above example was refit with only an intercept

and baseline BMI in the class membership model. While the likelihood values do improve slightly when

compared with the LMM, the within-subject MSEs for this model worsen. The within-subject MSE

for this model was 49.9 for HDL cholesterol (vs. just 47.7 for the LMM), 381.1 for LDL cholesterol (vs.

just 365.1 for the LMM), and 0.074 for triglycerides (vs. 0.073 for the LMM). Given the simplicity

of the class membership model, the class probabilities for each individual will be fit solely based on

baseline BMI. However, given so little information, it is likely that some subjects will be misclassified.

For example, selected subjects may have a high BMI and are therefore classified into the At-Risk class

while all of their other characteristics may indicate a healthy lifestyle. In these cases, the subject will

receive a fitted value representative of the At-Risk class even though their longitudinal data may be

representative of the Optimal class. One way to examine whether this is the case is to compare the

fitted class probabilities based on the class membership model with the relative fit of each underlying

LMM (see Equation 3.10). Cross-tabulations of the two sets of class probabilities are shown in Tables

3.13 and 3.14 for the more informative and less informative class membership models, respectively. In

the more informative case, more than 1,700 of the 2,066 subjects have similar class probabilities based

on both sets of probabilities. This is not the case in the less informative case, where only about 600

subjects have similar class probabilities. In fact, in the less informative case, there are 165 subjects

who have a 70-100% probability of being in the At-Risk class based on the logistic model, but would

in fact be fit better under the Optimal class.

This example, in which the ARIC data was reanalyzed with a structured class-membership model,

demonstrates the utility as well as the potential pitfalls of the approach. While the model provides

the researcher with added insight into the factors which drive subjects to classes, it also may lead to a

poor model fit for selected subjects. In cases where the class probabilities based on the logistic model

and the relative fit of the underlying LMMs do not agree, the statistician should limit interpretation

to the subpopulation level and avoid commentary on individual trajectories.
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Table 3.13: Example 3 - Cross-Tabulation of Class Probabilities - More Informative Class Membership
Model

Prob(AtRisk) Based on Relative Fit

Frequency
Percent

Row Percent 0%-30% 30%-70% 70%-100% Total
Column Percent

0-30% 720 96 25 841
34.85 4.65 1.21 40.71
85.61 11.41 2.97

Prob(AtRisk) 91.49 39.67 2.41

Based on 30%-70% 28 38 49 115
1.36 1.84 2.37 5.57

Logistic 24.35 33.04 42.61
3.56 15.70 4.73

Model
70%-100% 39 108 963 1110

1.89 5.23 46.61 53.73
3.51 9.73 86.76
4.96 44.63 92.86

Total 787 242 1037 2066
38.09 11.71 50.19 100.00
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Table 3.14: Example 3 - Cross-Tabulation of Class Probabilities - Less-Informative Class Membership
Model

Prob(AtRisk) Based on Relative Fit

Frequency
Percent
Row Percent 0%-30% 30%-70% 70%-100% Total
Column Percent

0-30% 8 0 0 8
0.39 0.00 0.00 0.39

100.00 0.00 0.00
Prob(AtRisk) 1.15 0.00 0.00

Based on 30%-70% 522 151 695 1368
25.27 7.31 33.64 66.21

Logistic 38.16 11.04 50.80
75.11 66.23 60.80

Model
70%-100% 165 77 448 690

7.99 3.73 21.68 33.40
23.91 11.16 64.93
23.74 33.77 39.20

Total 695 228 1143 2066
33.64 11.04 55.32 100.00
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3.7 Conclusions and Further Research

The Latent Class Linear Mixed Model provides a flexible approach to more effectively model longitudi-

nal data in the presence of unknown subpopulations. In addition to the usual assumptions necessary to

run the linear mixed model, the statistician must make several additional ones. These include specify-

ing the number of latent classes, how class membership should be modeled, and which parameters are

permitted to vary by latent class. The resulting parameter estimates offer the statistician important

information related to the makeup of the subpopulations as well as their associated trajectories. The

examples presented in this chapter illustrate possible uses of the methods and can serve as a reference

for statisticians as they begin to utilize these methods in their every day research.

Future research should examine a hybrid of the relative-fit and structured class membership models.

Since there may be instances in which the class membership model fits a subject as being in one class

while the subject may have longitudinal data which would be better fit by another, a model which fits

each subject’s class probabilities based on a combination of the two would offer an intermediate and

perhaps more reliable result.
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Appendix A

Quantities Used in Derivative Calculations

xij = jth column of Xi

wij = jth column of Wi

eik = yi −Xiβ −Wiλk

Σik = ZiDkZ′i + Rik
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Appendix B

Derivatives for the Gradient and

Hessian-Based Algorithms

The derivatives of the quantities Q1i, Q2ik, and Q3ik (defined in Equation 1.22) with respect to

the parameters are presented below. Note that in cases where the variances are class-specific, some

first and second derivatives will be equal to 0.

First Derivatives:

∂Q1i

∂β
=

K∑
k=1

πik
∂Q3ik

∂β

∂Q1i

∂λk
= πik
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ik eik
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Second Derivatives:
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Appendix C

Derivatives for the Random Effects

Calculations

First Derivatives:

∂P3ik

∂bik
= P3ik ×

[
Z′iR

−1
ik (yi −Xiβ −Wiλk − Zibik)−D−1

k bik

]

Second Derivatives:
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]
[
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−1
ik (yi −Xiβ −Wiλk − Zibik)−D−1

k bik

]′ }
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Appendix D

Proof of Hathaway’s Condition with

Regard to Variance Constraints

Recall Hathaway’s Condition (HC) was: all eigenvalues of ΣjΣ−1
j∗ must be ≥ some c > 0.

Theorem: Bounding the variances of the random effects in Dj and the residual error variances in

Rj where Σj = ZDjZ + Rj , as proposed in Section 1.4.2, results in a variance-covariance matrix Σj

which satisfies Hathaway’s condition.

Proof:

Σj is symmetric implies

Σj = ΣT
j(

Σ−1
j

)T
= Σ−1

j(
ΣjΣ−1

j∗
)T

=
(
Σ−1

j∗
)T

(Σj)T = Σ−1
j∗ Σj .

Being symmetric, ΣjΣ−1
j∗ and Σ−1

j∗ Σj have the same spectral decomposition. Thus, if u and λ are an

eigenvector and eigenvalue pair, then

ΣjΣ−1
j∗ u = λu

Σ−1
j∗ Σju = λu

Σju = λΣj∗u

Alternatively, one could write

uT Σju

uT Σj∗u
= λ

uT Σ−1
j∗ Σju

uT u
= λ = uT ΣjΣ−1

j∗ u

uT u
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It is known that

minimum

u 6= 0

{
uT Σju
uT Σj∗u

}
= λn = the smallest eigenvalue of Σ−1

j∗ Σj

Thus, HC is Rj,j∗ (x) = xT Σjx

xT Σj∗x
≥ c ∀x 6= 0

If Σj is of the form Σj = ZDjZ + Rj , then Σj has a linear covariance structure and

Σj =
∑H

h=1 Ghτ jh,

in which Gh is a known positive semidefinite (PSD) matrix and τ j = [τ j1 · · · τ jH ] are the variance-

covariance parameters for class j.

Then Rj,j∗ (x) =

H∑
h=1

(xT Ghx) τ jh

H∑
h=1

(xT Ghx) τ j∗h

= wTτ j

wTτ j∗
in which wh = xT Ghx

xT x
≥ 0 by the PSD property of Gh.

Thus HC is wTτ j

wTτ j∗
≥ c ∀w ≥ 0 (i.e. wh ≥ 0 ∀h) or equivalently 0 ≤ wT (τ j − cτ j∗)∀w such that

wh ≥ 0 ∀h

Hathaway’s condition is satisfied by the proposed bounds on both the variances in Dj

and the residual error variances in Rj .

204



Bibliography

Aitkin, M. and Aitkin, I. (1996). A Hybrid EM/Gauss-Newton Algorithm for Maximum Likelihood in
Mixture Distributions. Statistics and Computing 6, 127-130.

ARIC Investigators (1989). The Atherosclerosis Risk in Communities (ARIC) Study: design and
objectives. Am J Epidemiol 129, 687-702.

Arcidiacono, P. and Jones, J. B. (2003). Finite Mixture Distributions, Sequential Likelihood and the
EM Algorithm. Econometrica 71, 933-946.

Ballantyne, C. M. (1998). Low-Density Lipoproteins and Risk for Coronary Artery Disease. American
Journal of Cardiology 82, 3Q-12Q.

Banfield, J. D. and Raftery, A. E. (1993). Model-Based Gaussian and Non-Gaussian Clustering. Bio-
metrics 49, 803-821.

Basford, K. E. and McLachlan, G. J. (1985). Likelihood Estimation with Normal Mixture Models.
Applied Statistics 34, 282-289.

Beale, E. M. L. (1972). A Derivation of Conjugate Gradients. In: Lootsma, F. A. (editor). Numerical
Methods for Nonlinear Optimization. London: Academic Press.

Biernacki, C., and Govaert, G. (1999). Choosing Models in Model-Based Clustering and Discriminant
Analysis. Journal of Statistical Computation and Simulation 64, 49-71.

Biernacki, C., Gilles, C., and Govaert, G. (2000). Assessing a Mixture Model for Clustering with the In-
tegrated Completed Likelihood. IEEE Transactionson Pattern Analysis and Machine Intelligence
22, 719-725.

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing Starting Values for the EM Algorithm
for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models. Computational
Statistics and Data Analysis 41, 561-575.

Biernacki, C., Gilles, C., Govaert, G., and Langrognet, F. (2005). Model-Based Cluster and Discrimi-
nant Analysis with the MIXMOD Software. Preprint submitted to Elsevier Science.

Bohning, D., and Seidel, W. (2003). Editorial: Recent Developments in Mixture Models. Computa-
tional Statistics and Data Analysis 41, 349-357.

Borghese, I. F., Minard, K. L., and Thoman, E. B. (1995). Sleep rhythmicity in premature infants:
implications for developmental status. Sleep 18, 523-530.

Bozdogan, H. (1987). Model Selection and Akaikes Information Criterion (AIC): The General Theory
and Its Analytical Extensions. Psychometrika 52, 345370.

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Math. Com-
putat. 19, 577-593.

205



Celeux, G. and Govaert, G. (1992). A Classification EM Algorithm for Clustering and Two Stochostic
Versions. Computational Statistics and Data Analysis 14, 315-332.

Celeux, G., Martin, O., and Lavergne, C. (2005). Mixture of Linear Mixed Models for Clustering Gene
Expression Profiles from Repeated Microarray Experiments. Statistical Modeling 5, 243-267.

Coleman, D. A. and Woodruff, D. L. (2000). Cluster Analysis for Large Datasets: An Effective Algo-
rithm for Maximizing the Mixture Likelihood. Journal of Computational and Graphical Statistics
9, 672-688.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39,
1-38.

Edwards, L. J. (2000). Modern Statistical Techniques for the Analysis of Longitudinal Data in Biomed-
ical Research. Pediatric Pulmonology 30, 330-344.

Everitt, B. S. (1984). Maximum Likelihood Estimation of the Parameters in a Mixture of Two Univari-
ate Normal Distributions: A Comparison of Different Algorithms. The Statistician 33, 205-215.

Fraley, C. and Raftery, A. E. (2002). Model-Based Clustering, Discriminant Analysis, and Density
Estimation. Journal of the American Statistical Association 97, 611-631.

Fraley, C., Raftery, A., and Wehrens, R. (2003). Incremental Model-Based Clustering for Large
Datasets With Small Clusters. Technical Report 439, Department of Statistics, University of
Washington.

Fraley, C. and Raftery, A. E. (2006). MCLUST Version 3: An R Package for Normal Mixture Mod-
eling and Model-Based Clustering. Technical Report 504, Department of Statistics, University of
Washington.

Gertner, S., Greenbaum, C. W., Sadeh, A., Dolfin, A., Sirota, L., and Ben-Nun, Y. (2002). Sleep-wake
patterns in preterm infants and 6 month’s home environment: implications for early cognitive
development. Early Hum Dev 68, 93-102.

Gotto, A. M., Jr. (1998). Triglyceride as a Risk Factor for Coronary Artery Disease. American Journal
of Cardiology 82, 22Q-25Q.

Grebe. M. T., Schoene, E., Schaefer, C. A., Boedeker, R. H., Kemkes-Matthes, B., Voss, R., and
Tillmanns, H. H. (2007). Elevated Lipoprotein(a) does not promote early atherosclerotic changes
of the carotid arteries in young, healthy adults. Atherosclerosis 190, 194-198.

Grun, B. and Leisch, F. (2007). FlexMix: An R Package for Finite Mixture Modelling. R News 7, 8-13.

Gusnanto, A., Ploner, A., and Pawitan, Y. (2005). Fold-Change Estimation of Differentially Expressed
Genes Using Mixture Mixed Model. Statistical Applications in Genetics and Molecular Biology
4, 1-22.

206



Halpern, L. F., MacLean W. E., and Baumeister, A. A. (1995). Infant sleep-wake characteristics:
relation to neurological status and the prediction of developmental outcome. Dev Rev 15, 255-
291.

Hathaway, R. J. (1985). A Constrained Formulation of Maximum-Likelihood Estimation for Normal
Mixture Distributions. The Annals of Statistics 13, 795-800.

Holditch-Davis, D., Scher, M., Schwartz, T., and Hudson-Barr, D. (2004). Sleeping and waking state
development in preterm infants. Early Human Development 80, 43-64.

Ingrassia, S. (2004). A likelihood-based constrained algorithm for multivariate normal mixture models.
Statistical Methods and Applications 13, 151-166.

Jamshidian, M. and Jennrich, R. I. (1993). Conjugate Gradient Acceleration of the EM Algorithm.
Journal of the American Statistical Association 88, 221-228.

Jamshidian, M. and Jennrich, R. I. (1997). Acceleration of the EM Algorithm by Using Quasi-Newton
Methods. Journal of the Royal Statistical Society, Series B 59, 569-587.

Jamshidian, M. and Jennrich, R. I. (2000). Standard Errors for EM Estimation. Journal of the Royal
Statistical Society Series B 62, 257-270.

Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced Repeated-Measures Models with Structured
Covariance Matrices. Biometrics 42, 805-820.

Karlis, D. and Xekalaki, E. (2003). Choosing Initial Values for the EM Algorithm for Finite Mixtures.
Computational Statistics and Data Analysis 41, 577-590.

Kwiterovich, P. O., Jr. (1998). The Antiatherogenic Role of High-Density Lipoprotein Cholesterol.
American Journal of Cardiology 82, 13Q-21Q.

Laird, N. M. and Ware, J. H. (1982). Random-Effects Models for Longitudinal Data. Biometrics 38,
963-974.

Laird, N., Lange, N., and Stram, D. (1987). Maximum Likelihood Computations with Repeated Mea-
sures: Application of the EM Algorithm. Journal of the American Statistical Association 82,
97-105.

Lange, K. (1995). A Quasi-Newton Acceleration of the EM Algorithm. Statistica Sinica 5, 1-18.

Lange, K. (1995). A Gradient Algorithm Locally Equivalent to the EM Algorithm. Journal of the
Royal Statistical Society, Series B 57, 425-437.

Li, J. (2005). Clustering Based on a Multilayer Mixture Model. Journal of Computational and Graph-
ical Statistics 14, 547-568.

Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A Latent Class Mixed
Model for Analyzing Biomarker Trajectories with Irregularly Scheduled Observations. Statistics
in Medicine 19, 1303-1318.

207



Lin, H., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent Class Models for Joint Anal-
ysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-
Specific Antigen Readings and Prostate Cancer. Journal of the American Statistical Association
97, 53-65.

Lin, H., McCulloch, C. E., and Mayne, S. T. (2002). Maximum likelihood estimation in the joint
analysis of time-to-event and multiple longitudinal variables. Statistics in Medicine 21, 2369-2382.

Lin, H., McCulloch, C. E., and Rosenheck, R. A. (2004). Latent Pattern Mixture Models for Informa-
tive Intermittent Missing Data in Longitudinal Studies. Biometrics 60, 295-305.

Louis, T. A. (1982). Finding the Observed Information Matrix when Using the EM Algorithm. Journal
of the Royal Statistical Society Series B 44, 226-233.

McCulloch, C. E. (1998). Review of the EM Algorithm and Its Extensions. Journal of the American
Statistical Association 93, 403-404.

McCulloch, C. E. (2003). Joint Models in the Analysis of Complex HIV Cohort Studies. Technical Re-
port 62, Department of Epidemiology and Biostatistics, University of California - San Francisco.

McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering.
New York: Marcel Dekker.

McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions. New York: John
Wiley.

Meng, X. and Rubin, D. B. (1991). Using EM to Obtain Asymptotic Variance-Covariance Matrices:
The SEM Algorithm. Journal of the American Statistical Association 86, 899-909.

Meng, X. and Rubin, D. B. (1993). Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework. Biometrika 80, 267-278.

Muthen, B. O. (1998-2004). Mplus Technical Appendices. Los Angeles: Muthen and Muthen.

Muthen, B. and Shedden, K. (1999). Finite Mixture Modeling with Mixture Outcomes Using the EM
Algorithm. Biometrics 55, 463-469.

Muthen, B. O. (2002). Beyond SEM: General Latent Variable Modeling. Behaviormetrika 29, 81-117.

Muthen, B., Brown, C. H., Masyn, K., Jo, B., Khoo, S., Yang, C., Wang, C., Kellam, S. G., Car-
lin, J. B., and Liao, J. (2002). General Growth Mixture Modeling for Randomized Preventive
Interventions. Biostatistics 3, 459-475.

Nityasuddhi, D. and Bohning, D. (2003). Asymptotic Properties of the EM Algorithm Estimate for
Normal Mixture Models with Component Specific Variances. Computational Statistics and Data
Analysis 41, 591-601.

Peel, D. and McLachlan, G.J. (2000). Robust mixture modeling using the t distribution. Statistics and
Computing 10, 339-348.

208



Powell, J. M. D. (1977). Restart Procedures for the Conjugate Gradient Method. Math. Prog. 12,
241-254.

Proust, C., and Jacqmin-Gadda, H. (2005). Estimation of Linear Mixed Models with a Mixture of
Distribution for the Random Effects. Computer Methods and Programs in Biomedicine 78, 165-
173.

Rai, S. N. and Matthews, D. E. (1993). Improving the EM Algorithm. Biometrics 49, 587-591.

Redner, R. A. and Walker, H. A. (1984). Mixture Densities, Maximum Likelihood, and the EM Algo-
rithm. SIAM Review 26, 195-239.

Roy, J. and Lin, X. (2000). Latent Variable Models for Longitudinal Data with Multiple Continuous
Outcomes. Biometrics 56, 1047-1054.

Roy, J. (2003). Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout
Class Model. Biometrics 59, 829-836.

SAS Institute Inc. (2008). SAS R©/OR 9.2 Users Guide: Mathematical Programming. Cary NC: SAS
Institute Inc.

Scher, M. S., Steppe, D. A., and Banks, D. L. (1994). Lower neurodevelopmental performance at 2
years in healthy preterm neonates. Pediatric Neurology 11, 121-122.

Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components. New York: John Wiley.

Spiessens, B., Verbeke, G., and Komarek, A. (2002). A SAS R© Macro for the Classification of Lon-
gitudinal Profiles Using Mixtures of Normal Distributions in Nonlinear and Generalised Linear
Mixed Models. Technical Report, Biostatistical Center, Catholic University of Leuven, Belgium.

Thoman, E. B. (1982). A biological perspective and a behavioral model for assessment of premature
infants. In: Bond L. A. and Joffee J. M., editors. Primary prevention of psychopathology: fa-
cilitating infant and early childhood development, Vol. 6. Hanover NH: University Press of New
England, 159-179.

Verbeke, G., and Lesaffre, E.. (1996). A Linear Mixed-Effects Model With Heterogeneity in the Ran-
dom Effects Population. Journal of the American Statistical Association 91, 217-221.

Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York:
Springer-Verlag.

Whitney, M. P. and Thoman, E. B. (1993). Early sleep patterns of premature infants are differentially
related to later developmental disabilities. J Dev Behav Pediatr 14, 71-80.

Xu, W. and Hedeker, D. (2001). A Random-Effects Mixture Model for Classifying Treatment Response
in Longitudinal Clinical Trials. Journal of Biopharmaceutical Statistics 11, 253-273.

Yakowitz, S. J. and Spragins, J. D. (1968). On the Identifiability of Finite Mixtures. The Annals of
Mathematical Statistics 39, 209-214.

209



Yau, K. K. W., Lee, A. H., and Ng, A. S. K. (2003). Finite Mixture Regression Model with Random
Effects: Application to Neonatal Hospital Length of Stay. Computational Statistics and Data
Analysis 41, 359-366.

210


