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ABSTRACT 

 

Bosny J Pierre-Louis: APPLICATION OF NOVEL STATISTICAL METHODS 

FOR BIOMARKER SELECTION TO HIV INFECTION DATA 

(Under the Direction of Drs. C.M. Suchindran and Pai-Lien Chen) 

 

The past decade has seen an explosion in the availability and use of biomarker data 

as a result of innovative discoveries and recent development of new biological and 

molecular techniques.  Biomarkers are essential for at least four key purposes in 

biomedical research and public health practice: they are used for disease detection, 

diagnosis, prognosis, to identify patients who are most likely to benefit from selected 

therapies, and to guide clinical decision making.  Determining the predictive and 

diagnostic value of these biomarkers, singly or in combination, is essential to their 

being used effectively, and this has spurred the development of new statistical 

methodologies to assess the relationship between biomarkers and clinical outcomes.  

One active area of research is the development of variable importance measures, a 

class of estimators that could reliably capture the effect of a specific biomarker on a 

clinical outcome.  The central question addressed in this dissertation is the 

following: Given a large set of biomarkers that potentially predict a clinical outcome, 

how can one make a determination as to which ones are the most important?  In the 

first paper, we estimate a targeted variable importance measure through Van der 
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Laan’s theory of targeted maximum likelihood estimation in the point treatment 

setting and use the same objective function to compute an alternative measure of 

marginal variable importance based on weights from a flexible propensity score 

model. Covariate-adjusted targeted variable importance measures are compared to 

estimates from this alternative methodology and to incremental value estimates 

from partial ROC curves.  In the second paper, we extend the applicability of the 

TMLE methodology to analyze longitudinal repeated measures data.  It addresses 

the gap caused by the absence of a generally accepted approach for generating a 

longitudinal variable importance index by proposing an estimator involving both 

TMLE and computation of the area under or above the LOESS curve.  A graphical 

method is proposed for visual assessment of the longevity of a biomarker in terms of 

its predictive power, information that could be used to determine when repeated 

measures of a biomarker should be taken.   Finally, in the third paper we take right 

censoring in the outcome variable into consideration and achieve biomarker 

selection in the presence of confounding and potential informative censoring 

through the use of stabilized weights in a time-dependent Cox proportional hazards 

model.  A dataset from the Hormonal Contraception and HIV Genital Shedding and 

Disease Progression Study that includes longitudinal HIV infection data on a sample 

of 306 HIV-infected adult women from Uganda and Zimbabwe was used to develop 

and evaluate the methods discussed in the three papers.  This study collected 

information on a number of biomarkers related to HIV infection, including plasma 

viral load, HIV subtype, CD4 and CD8 lymphocyte counts, hemoglobin level, and 

herpes simplex virus 2 (HSV-2).  The relationships of these biomarkers with changes 

in CD4 cell counts were considered in three different contexts: cross-sectional, 
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longitudinal and survival.  In short, baseline CD4 cell counts, HIV subtype, and 

HSV-2 were found to be important biomarkers for the outcome variable studied. 
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CHAPTER I 

1. Introduction/Background 

Fueled by recent advances in modern biology and technology, biomarkers have 

become a popular research topic in clinical investigations.  As biological tools that 

can be used to monitor the presence or absence of disease, disease progression, the 

effect of a treatment, and the toxicity of a drug, biomarkers are important to the 

pharmaceutical industry, to federal regulatory agencies such as the Food and Drug 

Administration (FDA), and to public health researchers. In the pharmaceutical 

industry, the growing need for biomarker data collection stems from, among many 

benefits, their usefulness in driving decision-making, particularly at early phases of 

clinical trials.  By facilitating the identification of positive responders and non-

responders to therapeutics, biomarkers have provided an impetus for the 

development of targeted therapies and personalized medicines.  By the same token, 

they have the potential to improve the late phase trial success rate through better 

decision making earlier in the process of drug development.  This targeted strategy 

has the potential to improve efficiency in the drug development process while at the 

same time maximizing patient safety and efficacy.   

Another practical advantage of biomarkers is that they have the ability to reduce 

the need for hard clinical endpoints.  Overall, biomarkers lend themselves to earlier 

and easier measurements than clinical outcomes, are less subject to competing risks, 
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and can reduce clinical trials sample size requirements.  In pharmaceutical research, 

this could translate into more cost-effective trials, shorter study duration, improved 

compliance, and the opportunity to bring new therapies to the market more quickly. 

In the public health arena, biomarker data can be used to measure the prevalence of 

certain health conditions, to identify disease risk factors, and to evaluate the impact 

of interventions.  They could play a pivotal role in disease prevention efforts by 

providing ways to detect diseases in the preclinical stage when it may be possible to 

achieve a positive reversal in the outcome.  In vaccine trials, biomarkers reduce 

reliance on costly and lengthy efficacy studies by facilitating identification of 

serologic tests that predict protection from given conditions or by making possible 

earlier assessment of the safety and efficacy of candidate vaccines (Hogrefe, 2005).  

The numerous benefits of biomarkers in clinical research explain why the watershed 

FDA–National Institutes of Health (NIH) consensus conference biomarkers held in 

1999, the 2006 FDA Critical Path Initiative, the European Medicines Agency 

(EMEA) Road Map to 2010, and various stakeholders from the pharmaceutical 

industry and from patient advocacy groups, have all called for a key role of 

biomarkers in the drug development process.  Collaborative efforts to advance 

biomarkers research are exemplified by the work of the Biomarkers Consortium 

(http://www.biomarkersconsortium.org), a public-private partnership, launched in 

2006 with the goal to "identify and qualify new biological markers to speed the 

detection, diagnosis, and treatment of disease‖ and by the innovative approach to 

cancer biomarker development taken by the National Cancer Institute’s Early 

Detection Research Network (http://edrn.nci.nih.gov/). 
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In spite of the popularity of biomarkers, their vast spectrum of uses and 

utility, and the ever-increasing availability of biomarker data, there are still concerns 

about either a lack of progress in biomarker discovery or a gap between the pace of 

biomarker discovery and the development of novel statistical methods to evaluate 

their different performance characteristics.  Such factors could serve as an 

impediment to effective treatment/cure for diseases such as diabetes, obesity, 

endocrine, digestive, and metabolic conditions, among others.  The prerequisite for 

clinical use of biomarkers in the diagnosis, treatment, and prognosis of these 

conditions is an adequate biomarker discovery process.  Key statistical questions 

asked during this process are whether the candidate biomarkers reliably predict the 

outcome of interest, whether the observed association between candidates and 

outcome is not confounded by extraneous factors, and which candidates display the 

best performance characteristics.  Answers to these questions require the 

development and application of novel statistical methods for biomarker selection 

and validation.  

In this dissertation, the research question is how to quantify the impact of a 

biomarker on a given outcome (e.g. CD4 cell count) and use this measure of impact 

as a tool for ranking biomarkers.  Answers to this question are of great practical 

importance to public health.  By allowing researchers to take a pool of biomarkers 

and make a reliable determination of which ones are the most important, such 

measures could lead to faster decision making in epidemiologic studies and clinical 

trials.  For instance, an effective and efficient selection of the best subset of 

biomarker amongst a set could help direct further biological research in early phases 
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of clinical trials by limiting the focus to the pool of most promising ones only.  From 

a scientific standpoint, this could guide statistical research in the area of biomarker 

validation by making available a list of good candidates for surrogacy status 

determination.  Such a list could also be useful in the quest for the best combinations 

of biomarkers. 

1.1. Critical Evaluation of Existing Knowledge 

1.1.1. Biomarker and HIV Review 

According to the Biomarkers Definition Working Group, a task force convened by 

the National Institutes of Health (NIH), a biomarker is defined as a characteristic 

that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention (Clinical Pharmacology and Therapeutics 2001, 69: 89–95).  This broad 

definition encompasses all diagnostic tests, imaging technologies, and any other 

objective measures of a person’s health status (Desai et al, 2006).  Despite the fact 

that over the past decade biomarkers have been a driving force behind medical 

practice innovation,  concerns over the availability of sound and effective statistical 

methods necessary to evaluate  their characteristics have impeded their efficient 

application (Lasserre et al, 2007).  Given that biomarker data can be used for disease 

detection, diagnosis, prognosis, or for identification of patients who are most likely 

to benefit from selected therapies (Alaiya et al, 2005), advances in biomarker 

discovery could pave the way towards a predictive, preventative, and personalized 

approach to medicine (Weston and Hood, 2004).  Thus, it is imperative to develop 
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improved statistical methods that can help harness the vast potential of biomarkers 

in clinical practice.  

A biomarker that is intended to substitute for a clinical endpoint is a surrogate 

endpoint. Temple (1995) defines a surrogate endpoint as a laboratory measurement 

or a physical sign used as a substitute for a clinically meaningful endpoint that 

measures directly how a patient feels, functions or survives.  Changes induced by a 

therapy on a surrogate endpoint are expected to reflect changes in a clinically 

meaningful endpoint.   

The process of conferring surrogacy status to a biomarker entails a rigorous 

qualification process.  One element of this process is statistical validation. The goal, 

in validating surrogate markers, is to establish that they can reliably predict clinical 

benefit, harm, or futility of a new therapy. A qualification process map for the 

purpose of classifying biomarkers as exploratory, probable valid, or known valid has 

been established by the FDA (Goodsaid and Frueh, 2007). 

Prentice (1989) was the first to provide a statistical definition of surrogacy.  

According to this operational definition, a surrogate marker is a response variable 

for which the conditional distribution of the outcome given the surrogate marker 

alone is the same as the conditional distribution of the clinical outcome given the 

surrogate marker and the treatment.  Borrowing notation from Molenberghs and 

colleagues (2009), let T and S be random variables denoting true and surrogate 

endpoints respectively, and let Z be an indicator variable for treatment. To establish 

Prentice’s criterion, the following conditions are necessary (Molenberghs et al., 

2009): 
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1. Treatment Z has a significant impact on the surrogate endpoint S. 

2. Treatment Z has a significant impact on the true endpoint T. 

3. The surrogate endpoint S has a significant impact on the true endpoint T. 

4. The surrogate endpoint S captures the entire effect of the treatment Z upon 

the true endpoint T. 

The current consensus in statistical literature is that Prentice’s criteria are neither 

sufficient nor necessary and are difficult to achieve (Molenberghs et al., 2004, 2009; 

Qu and Case, 2006).  Also, a serious drawback of Prentice’s criterion, identified by 

Frangakis and Rubin (2002) is its lack of causal interpretation.  Prentice’s criterion 

reflects net effects, a combination of the causal effect of a treatment and systematic 

differences between compared groups arising from possible selection bias.  

Frangakis and Rubin (2002) proposed instead a surrogate validation model based on 

counterfactuals.  They introduced a new definition of surrogate endpoint, the 

―principal surrogate‖ based on principal stratification and principal effects.  In this 

framework, principal effects with respect to a post-treatment variable (e.g. 

biomarker) are evaluated within principal strata defined as ―cross-classification of 

subjects defined by the joint potential values of that post-treatment variable under 

each of the treatments being compared‖ (Frangakis and Rubin, 2002).  Principal 

strata are not affected by treatment and, therefore, play a role akin to baseline 

covariates.  Comparisons within principal strata yield causal interpretations as these 

comparisons are made between comparable groups of subjects. 

Using the principal stratification proposed by Frangakis and Rubin, Gilbert and 

Hudgens (2008) introduced an estimand for evaluating a principal surrogate, the 
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―causal effect predictiveness surface‖. This quantity measures how well causal 

treatment effects of the biomarker predict causal treatment effects of the clinical 

endpoint (Gilbert and Hudgens, 2008).  

For an exhaustive review of statistical approaches to biomarker validation, see 

Weir and Walley (2006), Lasserre (2007), Buyse et al (1998, 2000), Molenberghs et 

al. (2009), Frangakis and Rubin (2002). Biomarker validation is beyond the scope of 

this research. 

In spite of their advantages, biomarkers do have limitations that warrant a 

cautionary note.  They can be prone to measurement errors, storage problems, high 

costs of measurements, and can be fraught with ethical issues (Mayeux, 2004).  

Extreme caution should be exercised when biomarkers are used to replace true 

clinical endpoints.  According to existing literature, earlier attempts to use 

biomarkers as surrogates have led to some flawed and sometimes harmful 

conclusions (Fleming and Demets, 1996).  A well publicized failed attempt to use 

surrogate endpoints has been the FDA approval of the drugs encainide, flecainide, 

and moricizine, predicated on the notion that arrhythmia suppression by these drugs 

would lead to overall survival.  The use of electrocardiographic findings as surrogates 

for sudden death was subsequently undercut by the Cardiac Arrhythmia Suppression 

Trial (CAST) that found higher mortality and non fatal cardiac arrest events in 

patients taking these drugs as compared to placebo (NEJM, 1989, 321:406-12; Echt 

et al., 1991). 

Notwithstanding these concerns, biomarkers continue to play an increasingly 

important role in drug development.  As a driving force for pharmaceutical 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Weir%20CJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Weir%20CJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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innovation and personalized medicine (pharmacogenomics), biomarkers have the 

potential to lead to faster decision making since they can lend themselves to earlier 

and easier measurements than related clinical outcomes and could be less subject to 

competing risks.  This could translate into more cost-effective trials, shorter drug 

study duration, improved compliance, and the opportunity to bring new therapies to 

the market more quickly, as evidenced by the benefits to the whole drug life cycle 

brought by the accelerated approval of the drug Herceptin (trastuzumab) by the FDA 

in 1998.  Manufactured by Genentech/Roche, this drug targets the 25-30% of breast 

cancer patients who have the genetic alteration of the human epidermal growth 

factor receptor2 protein HER2.  As a result of accelerated approval for this molecular 

targeted therapy, Roche saved an estimated $35 million in clinical trial costs, 

collected $2.5 billion of income, while 120,000 patients gained access to the drug 

earlier than they would normally do (Thomson Scientific White Paper, March 2008).  

Note that this drug has been approved together with a molecular diagnostic that 

could determine (based on the expression of genetic biomarker HER-2) whether a 

patient might benefit from the drug. 

An area of research where the use of biomarkers can foster innovative advances is 

HIV/AIDS - the focus for the application of statistical methods used in this research.  

In fact, based on existing regulation known as the subpart H Approval that allows the 

use of surrogate endpoints for serious or life-threatening illnesses, the FDA has used 

scientific evidence from biomarkers to grant approval for several anti-HIV drugs, 

including Didanosine, Nevirapine, Lopinavir, and Efavirenz (Desai et al, 2006).  

Over time, with the increasing complexity of HIV infection research and the quest for 
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a safe and effective treatment, the use of biomarkers related to HIV infection 

remains an active area of research.  In an article published in April 2009 in the 

Journal of Acquired Human deficiency Syndrome (JAIDS), MacLachlan et al. touted 

the multiple beneficial roles that biomarkers could play in HIV vaccines.  This paper 

emphasized how biomarkers such as the BED enzyme immunoassay (BED-EIA) and 

the nucleic acid amplification testing (NAAT) could be used to estimate prevalence 

and incidence of HIV, information that could then be used for the determination of 

sample size and study populations for HIV efficacy trials.  It also demonstrated how 

sexually transmitted infection (STI) biomarkers could be used to generate valuable 

information on HIV infectiousness, transmissibility, and disease progression 

(MacLachlan et al., 2009). 

  In HIV infection studies, HIV RNA copies and CD4 cell counts are biomarkers 

routinely used to assess response to treatment or to monitor the progression of 

disease (Ellenberg, 1991; Lagakos and Hoth, 1992; Machado et al., 1990; Fleming, 

1994; Chen et al., 2007; Brown et al., 2009).  As a measure of a patient’s immune 

capacity, CD4 cell count is considered as a standard method for determining 

eligibility for highly active antiretroviral therapy (HAART) and HIV disease 

progression. Using a cohort of 489 Kenyan pregnant women, Brown et al (2009) 

found that CD4 could be a useful predictor of mortality.  This is in line with prior 

conclusions from both individual studies (Kawado et al, 2006; Planella et al. 1998; 

Liotta et al. 2004) and meta-analysis (Cross Continents Collaboration for Kids 

(3Cs4kids) Analysis and Writing Committee, 2008).   However, it is not always 

possible to measure CD4 cell count, especially in resources-deprived settings.  Both 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cross%20Continents%20Collaboration%20for%20Kids%20(3Cs4kids)%20Analysis%20and%20Writing%20Committee%22%5BCorporate%20Author%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cross%20Continents%20Collaboration%20for%20Kids%20(3Cs4kids)%20Analysis%20and%20Writing%20Committee%22%5BCorporate%20Author%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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viral load and CD4 cell count measurements require highly skilled personnel and 

costly maintenance of sophisticated pieces of equipment.   These costs can be 

prohibitive in resource-poor countries, thereby limiting access to these tests for 

those who need them the most.  A literature search reveals a few studies that 

examined the usefulness of less expensive biomarkers as potential surrogates for a 

CD4 cell count.  The results, however, have not always been conclusive.  Some 

studies have found HIV-1 RNA to be the best predictor of long term CD4 cell count 

responses and disease progression (Mellors et al., 1997; Fiscus et al., 1998).  Others 

have suggested that total lymphocyte count (TLC) is a good predictor of low CD4 cell 

counts (Montaner et al, 1992; Blatt et al. 1993; Martin et al, 1995; Shapiro et al., 

1998).  At least one study concludes that TLC is not a good predictor of CD4 cell 

count and, therefore, should not be used in the clinical care of HIV/AIDS patients 

(Van der Ryst et al., 1998). For a more complete list of references covering the 

relationship between TLC and CD4 cell count, see Chen et al (2007).  Overall, no 

studies have attempted to provide a single scalar measure of the marginal 

importance of biomarkers on CD4 cell count, to the best of our knowledge.  The 

closest attempt was made in Brown et al. (2009) who provided screening 

performance measures for several biomarkers separately.  However, the clinical 

outcome considered was mortality, and no attempt was made to generate and 

compare results from different statistical methodologies.  What is lacking is a unified 

list of biomarkers that can predict of CD4 cell counts based on sound statistical 

methodologies. This dissertation is intended to fill these gaps. 
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1.1.2. Review of statistical methods for biomarker selection 

A survey of statistical methods used for biomarker selection reveals that both 

standard and novel statistical methods have been employed to address the 

challenges of biomarker selection.  A non-exhaustive list of methods used to this end 

include univariate testing;  classical multivariable regression techniques such as 

ordinary least squares and logistic regression; the Receiver-Operating Characteristic 

(ROC) curve; non-linear models and machine learning techniques  such as 

classification and regression tree, Bagging, Boosting, random forest, and pattern 

recognition techniques; and marginal structural models for causal inference. We 

present a summary of some of these methods below. 

1.1.2.1. Univariable Screening 

In the univariate setting, a series of separate tests of the null hypothesis of no 

difference in the distribution of each biomarker across groups (e.g. diseased and no 

diseased) are performed, and screening is made based on the p-values associated 

with those tests.  For comparison of biomarkers measured on a continuous scale, t-

tests or variants thereof (Wilcoxon test, Welch test) are used (Dudoit el al., 2002; 

Guoan et al., 2002; Tusher et al., 2001; Cui and Churchill, 2003).  For binary 

biomarker variables, chi-square tests of Fischer exact tests are often conducted. 

From a modeling standpoint, simple linear regression is often used to model the 

relationship between the outcome and each biomarker separately.  In this setting, 

parameter estimation is done via the method of least squares.  Simple logistic 

regression is a common choice for binary outcomes.  The coefficient for each 

biomarker of interest is interpreted as its importance measure.  P-values, based on 
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univariate analysis of group mean differences for each biomarker are often adjusted 

for multiplicity (Tuglus, 2008).   

1.1.2.2. Multivariable Screening 

Multivariable screening, linear or non-linear, provides an analytical framework 

where all biomarkers can be evaluated simultaneously with or without covariate 

adjustment. Classical multivariable regression techniques such as ordinary least 

squares and logistic regression are two widely used linear models. An example of 

widely popular methods based on ordinary least squares estimation is the analysis of 

covariance (ANCOVA) where potential confounders are also included as predictors 

in a regression model (Cook and Campbell, 1979).  

In more recent developments, focus has been placed on non-linear models and 

machine learning techniques to improve biomarker prediction, classification and 

selection.  Among those, classification and regression tree (Breiman et al., 1984), 

Bagging (Breiman, 1996), Boosting (Freund and Schapire, 1997), random forest 

(Breiman, 2001 ), and pattern recognition techniques (such as support vector 

machines, neural networks and Markov models) (Vapnik, 1998; Burges ,1998)   have 

been successfully applied to high dimensional genomic and proteomic data (Wu et 

al., 2003; Qu et al., 2002).  In their 2003 paper, Wu et al. reviewed and compared 

the performance of several multivariate methods used for classification and selection 

of biomarkers.  These include both classical discriminant methods such as linear 

discriminant analysis, quadratic discriminant analysis, k-nearest neighbor classifier, 

as well as machine learning techniques like bagging and boosting classification trees, 

support vector machine and random forest.  Wu’s application of these techniques to 
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an ovarian cancer Mass spectrometry dataset has shown that, among all these 

methods, random forest has had better performance in terms of feature selection and 

sample classification. One remarkable advantage of random forest classifier is the 

fact that it reports an importance measure for each variable (VIM).  These VIM 

represent internal estimates of the decrease in the classifier’s overall accuracy if that 

particular variable was not used in building the classifier. In this regard, variables 

with larger importance measures can be deemed to have more classification power 

(Datta and Depadilla, 2006).  Tuglus et al (2008), however, outlines the following 

pitfalls associated with prediction algorithms such as random forest:  there is no 

guarantee that all biomarkers from a set will receive a measure of importance, there 

is no formal inference, and therefore, no p-values. Finally, variable importance 

measures obtained through such prediction algorithms tend to lack interpretability 

(Tuglus et al, 2008).  

1.1.2.3. Causal Inference Framework 

To facilitate the discussion, we let the observed data be represented by O= (A, W, 

Y) where A represents a set of binary biomarker variables, W a vector of covariates, 

and Y the clinical outcome of interest.  Thus, we define the observed data as   

     ,  the counterfactual outcomes of interest as   , and the full data as       

   , a   A), where a   {0,1}.  Under the general assumption of no unmeasured 

confounders, known as ignorability of the treatment assignment mechanism (Rubin, 

1978), the causal inference framework seeks to answer the following question: what 

is the causal effect of a given biomarker A on the clinical outcome Y? 
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   One possible measure of impact of a biomarker on the outcome, in the causal 

inference framework, is the marginal effect at the population level, known also as the 

average treatment effect.  It is estimated as:  E(  ) –E(  ), where    is the outcome 

the subject would have had if s/he received treatment, and    is the outcome the 

subject would have had if s/he received control.  However, in the observed data, 

instead of (  ,   ), only one outcome is possible for each subject such that Y=  A +    

(1-A),where   =1 and   =    if subject i was exposed to treatment; and   =0 and 

  =    if the subject was  not exposed (control).  The use of counterfactuals allows 

one to cast the problem as a missing data issue and thus opens the way to finding an 

approximation for the potential outcome.  Popularized by Rubin (1978, 2004, 2005), 

the counterfactual paradigm relies on one key assumption: Each subject in the 

sample has potential outcomes in two states, the one in which the subject is observed 

and the one in which the subject is not observed. Thus, each subject has in theory 

two counterfactuals     and    (Winship and Morgan, 1999).  This potential outcomes 

framework allows one to estimate the unobservable difference for each subject 

between outcomes under both conditions.  For more detailed technical discussions 

and applications of counterfactuals, see Robins et al (2000), Greenland and 

Brumback (2002), Petersen et al. (2006), Gelman and Meng (2004), Holland (1986), 

Rosenbaum (2002), Rubin (2005), D'Agostino (1998), Sobel (1995), Morgan and 

Winship (2007), West, Biesanz, and Pitts (2000), Winship and Morgan (1999); and 

Winship and Sobel (2004). 

In randomized studies, treatment assignment is independent of a subject’s 

potential outcomes.         Therefore, the difference of the sample averages E {  |A=1}- 
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E {  |A=0} equals E {Y|A=1}- E {Y|A=0} and  is an unbiased estimate of the 

population average casual effect , E(  ) – E(  ). In observational studies, exposure is 

not controlled, thus treatment received may not be independent of potential 

outcomes.  In this case, E {  |A=1}- E {  |A=0} may not be an unbiased estimate of 

the average treatment causal effect.  One way to account for this dependency is to 

find all important covariates (W) related to both potential outcome and treatment 

exposure and use them in the estimation of the population average causal effect.  The 

covariates W are chosen such that the potential outcomes     and    are independent 

of A|W. In other words, if W contains all confounders, then among subjects sharing 

the same W, the potential outcomes (  ,   ) and A are independent conditional on W 

( As would be the case in a blocked experiment where the treatment or biomarker A 

would be randomized within the levels of W).  In this case, E{E(Y|A=1, W)}= 

E{E(  |1, W)}= E{E(  |W)}=E(  ) and similarly, E{E(Y|A=0, W)}= E(  ), and E(  ) 

– E(  ) would be an unbiased estimator of the average causal effect.  For a deeper 

insight into how to choose W, refer to Cole and Hernán (2008), Schafer and Kang 

(2008), Robins (2001), Hernán et al (2002), Brookhart et al (2006). 

Robins has developed a class of models known as marginal structural models 

(MSM) whose aim is to ―replicate the findings of a randomized controlled trial using 

observational data‖. (Petersen et al., 2006).  These models allow one to estimate the 

average effect of a treatment or biomarker.  Below, we will list the assumptions 

behind MSMs and we will review three MSM estimators: G-computation, inverse 

probability of treatment weighting (IPTW), and double robust (DR) estimator 

(Robins et al., 1998, 2000; Hernán et al., 2001).  We will also provide an overview of 
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a new double robust method known as targeted maximum likelihood estimation. For 

simplicity, we assume a point-treatment study. 

The causal inference methods lie on the following assumptions: 

a. Consistency: The data for a subject is simply one of the counterfactual 

outcomes from the full data.  The observed data is        ). 

b.  Randomization: A    | w,   A. In other words, there are no unmeasured 

confounders for A, which means within strata of W, A is randomized. 

c.  Experimental Treatment Assignment Assumption (ETA):               

for all W.  

Of the three above assumptions, only the ETA is verifiable. For a more complete 

description of these assumptions and their practical applications, we refer to Cole 

and Hernán (2008) and Cole and Frangakis (2009).  Based on these assumptions, 

the likelihood of the data can be written as                    , where p could 

be a logistic function.  While some of the methods described below make 

assumptions only about       , others use         , and some  make assumptions 

about both conditional distributions (i.e. both        and         ). 

1.1.2.3.1. G-computation 

The G-computation (Robins, 1986, 2000) is a method used to estimate 

counterfactuals means.  It assumes that          is correctly estimated.  It relies on 

the following general formula: Pr (  =1) =                      .   
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For a dichotomous outcome Y, Pr (  =1) = E(  ) =                     , 

(E denotes Expectation).  The G-Computation estimate of the counterfactual mean in 

the simple context of point-treatment is then   [  ]=  
 

 

 
   [Y|A=a, W=  ].  This 

estimate can then be used to derive causal parameters such as risk difference, 

relative risk, and odds ratio.  To estimate the causal risk difference, for instance, one 

has to first postulate a model for the outcome regression E (Y|A,W), fit the model, 

and then average the resulting estimates E(Y|A=1, W)- E(Y|A=0, W) over all 

observed W.  Assuming a logistic function, Log 
          

          
       , the risk 

difference is    = E (Y|A=1, W) - E (Y|A=0,W)= 
        

           - 
      

         .  Then, the 

parameter of interest for the average causal effect   is estimated by plugging the 

maximum likelihood for the parameters    and   into the above equation and then 

averaging over all observed   : 

    =
 

 
   

   
   

        

      
        

- 
        

           
}. 

1.1.2.3.2. Inverse Probability Weighting 

The inverse probability treatment weighting (IPTW) approach relies on the 

correct specification of postulated propensity score model for a good performance.  

We will first present a brief review of the propensity score method followed by a 

summary of the IPTW methodology. 

1.1.2.3.2.1. Propensity Score 
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Assuming a logistic regression model, A|W~ bin (1, p
A|W

),       
           

           
     + 

    , the propensity score is defined as e(W) = P(A = 1|W)= 
           

              . In short, it 

is the conditional probability of assignment to exposure A given a vector of observed 

covariates (Rosenbaum and Rubin, 1983; Mansson et al., 2007). As can be seen from 

this equation, it is dependent on the random variables W and has its own probability 

distribution. 

Because observed differences in observational data may reflect underlying 

differences between groups, it is critical to mitigate bias resulting from the 

imbalance in covariate distributions. The use of propensity score does improve 

comparability of exposure groups with regards to measured covariates, and thus 

decreases bias.  Given e(W), W and A are conditionally independent, which balances 

measured covariates across exposure groups (Rosenbaum and Rubin, 1983;Mansson 

et al., 2007). In other words, groups with similar distributions of e(W)  should have 

similar distributions of W .  Other properties of the propensity scores are as follows: 

a) If it is sufficient to adjust for covariates W, then it is sufficient to adjust for 

their propensity scores e(W) (Joffe and Rosenbaum, 1999);  

b) Estimated propensity scores do a better job at removing bias than true 

propensity scores , because the estimated propensity scores remove both 

systematic and chance imbalances, while the true propensity score removes 

only systematic imbalances (Joffe and Rosenbaum, 1999; Cepeda et al., 

2003). 

http://aje.oxfordjournals.org/cgi/content/full/kwm069v1#BIB6
http://aje.oxfordjournals.org/cgi/content/full/kwm069v1#BIB6
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Propensity scores have gained in popularity and have been widely used in 

statistical literature to control for baseline differences.   These adjustment methods 

range from matching (Rosenbaum and Rubin, 1985; Rubin and Thomas, 1996) to 

regression adjustment (D’Agostino, 1998; Rubin and Thomas, 2000) to weighting 

(Robins,1997;Robins et al., 2000; Hirano and Imbens, 2001; Sato and Matsuyama, 

2003).    

The selection of the propensity score model is often achieved through logistic 

regression.  The logistic model      
           

           
     +       does assume a linear 

relationship between the response and the covariates.  This assumption, however, is 

not always tenable, especially when some of the covariates are continuous. 

Moreover, Kang and Schaffer (2007) have shown that logistic regression might not 

always be a good way to estimate response propensities, and have advocated for the 

use of more robust procedures, especially in the presence of outliers.  One alternative 

approach to logistic regression has been a modeling framework that estimates a 

flexible function of the covariates while relaxing the linearity assumption.  One such 

model is the generalized additive model (GAM) for binary dependent variable.  

Pioneered by Hastie and Tibshirani (1990), the GAM assumes that the mean of the 

dependent variable depends on an additive predictor through a nonlinear link 

function, and allows the response probability distribution to be any member of the 

exponential family of distributions, including logistic model for binary data.  It 

allows for a more flexible relationship between continuous covariates and response 

by using smoothing techniques (Hastie and Tibshirani, 1990). 
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While the logistic regression models the logit of the response probability with the 

linear form      
         

         
     +       

 
   , the logistic additive model replaces this 

linear predictor with an additive one of the form:      
         

         
     +    

 
       , 

where    (.),   (.),…,  (.), are smooth functions that define the additive component.  

In this setting, the predicted probabilities, or propensity scores, are given by 

           
 
         

 
   

     

    
         

 
   

     
  and 

                       
 

    
         

 
   

     
 .     

The benefits of using GAM over logistic regression in estimating propensity 

scores have been demonstrated by Woo and colleagues (2008).  Using both 

simulated and genuine data, they showed how GAMs outperformed logistic 

regression in improving covariance balance, particularly for higher moments of the 

covariate distributions.  

In the case of continuous A, a flexible parametric approach, proposed by Irano 

and Imbens (2004) can be used to compute a generalized propensity score.  First, 

one postulates a normal  distribution of the continuous biomarker A given the 

covariates, i.e.                
 
     

  .  Then the parameters   ,   ,    are 

estimated by the least squares regression or by maximum likelihood estimation 

(MLE).  The generalized propensity scores are estimated by plugging in these 

parameter estimates into the normal density:   
   

 

      
       

              

       . 

1.1.2.3.2.2. IPTW Methodology 
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From the likelihood of the data                    ,  the inverse weighting 

method uses the treatment assignment distribution        to create a pseudo-

population in which the treatment assignment is no longer confounded ( Robins, 

1998).  Rather than using the difference of simple averages E(  ) – E(  ), this 

method estimates   , the average causal effect, by the difference of inverse 

propensity score weighted averages, i.e.         =
 

 
 

     

         
 
     

 

 
 

        

           
 
    , 

where e(W,   ) is the postulated propensity score model for the true propensity 

score.   

The first step in the implementation of the IPTW approach is to fit a multivariate 

regression of the probability of the biomarker A given the covariates W.  This model, 

referred to as the treatment mechanism (Petersen et al., 2006), is used to compute 

propensity scores. Then, each subject in the sample is assigned a weight SW equal to 

the inverse probability of being in a certain group    given their observed covariates 

W.  The higher the probability of a subject being in   , the lower the weight assigned 

to this subject; and vice versa. The end result is a pseudo dataset where the 

treatment is randomized.  Finally, a regression model of the outcome Y on the 

biomarker     with observations weighted by SW is fitted to estimate the IPTW 

parameter.  For an in-depth look at the IPTW methodology, see Robins (1986, 1998), 

Robins et al. (2000), Greenland and Brownback (2002).  

This method of weight estimation may suffer from a shortcoming whenever W is 

strongly associated with A, especially in non-saturated models.  In such occurrences, 

the weights might have large variability.  Studies by Kang and Schaffer (2007) have 
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shown how unstable propensity score weights could result in a poor performance of 

the IPTW estimator.   A solution proposed by Robins has been to use stabilized 

weights instead.  Instead of using 1 as the numerator in the weight computation, it is 

recommended to use the sample proportion of subjects having      (where a={0,1} 

is the set of all potential values of a given biomarker   ).  Denote the stabilized 

weights by   
       , where   

         
       

           
 . In practice, stabilized weights 

can be computed following the same basic steps taken by Cole and Hernán (2004).  

These steps are: 

1. Estimate the propensity score model with covariates and obtain the predicted 

values. 

2. Estimate the propensity score model without covariates by fitting an 

intercept-only model and generate the predicted values. 

3. Obtain the ratio of the estimates obtained in (a) and (b).  This gives the 

stabilized weights for each subject: estimates in (b) over estimates in a. 

For continuous A, the estimated stabilized weights are computed as a ratio of 

densities (i.e,       
   

      
) as proposed in Robins et al (2000).      is the marginal 

density of the continuous biomarker A, and        is the conditional density of the 

biomarker A given the set of covariates W. One way to estimate the numerator     is 

to specify a normal distribution (i.e.            
   , and then plug  the mean     and 

the empirical variance      of the biomarker A values  into the normal density. The 

denominator is estimated based on the generalized propensity score method of 

Hirano and Imbens (2004) described in the propensity score sub-section above.  
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1.1.2.3.3. Doubly Robust (DR) Estimator 

The DR estimation method combines both the G-computation and the IPTW 

approaches, by incorporating both          and       .  Under this method, the 

average causal effect is estimated as:  

     =
 

 
  

     

        
 
    

             

        
          ] -  

 

 
  

        

          
 
    

             

          
          ]      

 
=                                                                                                         

In the above equation, e(W,ß) is the postulated model for the true propensity score 

(from logistic regression);   (W,   ) and   (W,   ) are the postulated regression 

models for the true relationship between the vector of covariates and the outcome 

within each level of treatment A ( i.e. E(Y|A=0, W) and E(Y|A=1, W) ).  

While the G-Computation relies on the consistent estimation of P(Y|A,W) and  

the IPTW assumes that P( A|W) is correctly specified, the DR method produces 

consistent estimates as long as either one of the two models (propensity score or 

outcome regression model) is correctly specified (Robins and Rotnizky, 2005).  

Because of this property, referred to as double robustness, this approach presents a 

notable advantage, especially in situations where it might be easier to correctly 

specify the relationship of the biomarker with covariates or in situations where it 

might be easier to model the relationship between the clinical outcome and the 

biomarker and covariates.  Moreover, this approach presents a clear alternative 

whenever concerns linger about the correct specification of either the IPTW model 

(P( A|W)) or the G-computation model (P(Y|A,W)).  For an extensive review of the 

DR estimator, the reader is directed  to Robins and Rotnitzki (1995, 2001), Van der 

Laan and Robins (2003), Lunceford and Davidian (2004), Carpenter et al. (2006), 
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Davidian et al. (2005), and to Kang and Schafer (2007).  A SAS macro for doubly 

robust estimation and a companion book chapter by Funk et al. (2010) are available 

at http://www.unc.edu/~mfunk/dr/. 

1.1.2.3.4. Targeted Maximum Likelihood Estimation 

In a seminal paper published in 2006, Mark Van der Laan pioneered a new way 

to establish a ranking of biomarkers.  Considered as free from standard model 

assumptions, this method known as targeted maximum likelihood is employed, 

among other purpose, to generate a marginal variable importance measure that 

captures the impact of each biomarker on an outcome (Van der Laan and Rubin, 

2006). For a formal and theoretical discussion, refer to Van der Laan and Rubin 

(2006), Van der Laan, (2005); for empirical examples or applications in biomarker 

selection, see Bembom et al. (2006, 2008), Tuglus and Van der Laan (2008).  It has 

been shown through simulations studies that this method has good statistical 

properties (adequate bias-variance tradeoff, efficiency, consistency, robustness) and 

that that the variable importance measure obtained under the TMLE can be, under 

certain conditions, a doubly efficient and robust measure that accommodates both 

low and high dimensional data (Van der Laan and Rubin, 2006; Bembom et al, 

2008; Tuglus and Van der Laan, 2008).  

The TMLE methodology achieves double robustness by applying both the G-

computation and the IPTW models simultaneously.  The parameter of interest, 

which measures the true marginal importance of each biomarker A with regards to 

the outcome Y, is  =   [E(Y=1|   =1, W) - E(Y=1|   =0, W)] (for each biomarker, 
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indexed by j).  In practice, implementation of the targeted maximum likelihood 

estimation (TMLE) to generate a targeted measure of variable importance (TVIM) 

involves adding a covariate h(A,W) (stretching function) to an initial regression 

model denoted by   (A,W), and then averaging the regression over the covariates for 

fixed value of A (Van der Laan and Rubin, 2006).  In the repeated measures setting, 

targeted maximum likelihood estimation of the variable importance measure takes 

time into account.   More specifically, for a time-varying outcome Y(t), the parameter 

of interest is given by:  (t) ≡ Ew [ E (Y(t)/Aj =1, Wj) - E (Y(t)/A j=0, Wj) for discrete 

A.  Incorporating time in the objective function allows one to estimate the impact of 

each biomarker on the time trajectory (Bembon et al., 2006). 

Simulation studies and application of the TMLE to real data have generated 

promising results.   Analyses performed by Tuglus et al. (2008) have shown TMLE 

has generated a list of differentially expressed genes in patients with acute 

lymphoblastic leukemia and acute myeloid leukemia, that shows greater biological 

plausibility than results obtained from univariate least squares regression, penalized 

least squares regression (Least Absolute Shrinkage and Selection Operator (LASSO) 

regression), and random forest.  Likewise, Bembon et al. (2008) applied the TMLE 

methodology to data from the Stanford Drug Resistance Database to generate 

measures of impact for a set of candidate genetic mutations with regards to their 

importance in conferring resistance to the protease inhibitor drug Lopinavir.  In this 

analysis, the ranking of genetic mutations based on the TMLE methodology was in 

best agreement with current medical knowledge, as compared to results from 

univariate least squares regression and G-computation. 
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1.1.2.3.5. Classifier Performance Assessed by ROC Curve 

As a tool for assessing diagnostic accuracy, the Receiver-Operating Characteristic 

(ROC) curve has received a great deal of attention in the statistics literature (Begg, 

1991; Hanley, 1989; Faraggi and Reier, 2002).  Originally used in the signal detection 

theory developed in the 1950s (Green et al., 1996), this technique has been, over the 

years, extended to a variety of research fields including radiology (Obuchowski, 

2005; Hanley, 1998; laboratory testing (Obuchowski et al.,2004; Zweig and 

Campbell, 1993), epidemiology (Pepe, 2000, 2003; Pepe and Janes, 2008; Baker, 

2003; Pencina and D’Agostino, 2004), bioinformatics and machine learning (Li and 

Fine,2008; Provost and Faucett, 2001; Lasko et al., 2005, Kjetil, 2009), and 

countless other clinical disciplines (Zheng et al., 2006;  Zou et al.,2007; Musial et al., 

2003, Cheun et al.,2001). 

Let X be a binary test result and D the outcome (disease or not).  Condition on 

disease status, two basic measures of performance for a binary test are sensitivity 

and specificity (Pepe, 1983).  Sensitivity is defined the fraction of subjects with 

disease that a diagnostic test correctly identifies as positive (true positive fraction 

(TPF), i.e. P[Y = 1|D = 1]) while specificity is the fraction of subjects without the 

disease that the test correctly identifies as negative (true negative faction, i.e. P[Y = 

0|D = 0]). The quantity 1 – specificity is called false positive fraction (FPF) and 

represents the probability of a positive test given that disease is not present (i.e. P[Y 

= 1|D = 0]). 

The ROC curve generalizes the notions of FPF and TPF to continuous tests X.  

Assuming that a test is classified as positive if Y is above a threshold c , then TPF(c) = 
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P[Y  c| D = 1] and FPF(c) = P[Y  c| D = 0], and ROC(.) = {(FPF(c), TPF(c)), c 

ϵ       } (Pepe, 2000).  The ROC curve is a plot of the test sensitivity (TPF) along 

the y axis versus its 1-specificity (FPF) along the x axis, for all possible threshold 

values c (Heagerty at al., 2000). In mathematical terms, it can be written as      = 

       
         t   (0,1) where   and     are survivor functions for the test result  in 

the diseased (cases) and non-diseased (controls) populations.  It is a monotone 

increasing function in (0,1) that can be estimated both parametrically and non-

parametrically (Hanley et al., 1982a & 1982b; Zou et al., 1996; Hanley, 1988; Metz, 

1978).  More complete assessments of the performance, advantages or disadvantages 

of either parametric or non parametric estimation methods of the ROC curve are 

available in Hajian-Tilaki  et al. (1997), Goddard (1989), and in Faraggi and Reiser 

(2000). 

1.1.2.3.5.1. Area Under the ROC Curve and Partial Area Under the 

ROC Curve  

The most commonly used summary ROC Index is the area under the ROC curve 

(AUC).  In general, AUC=         
 

 
, AUC   [0,1]. It is interpreted as the 

probability that the test result from a randomly chosen diseased individual is more 

indicative of disease than that from a randomly chosen non diseased individual 

(Pepe, 2000).  As a rule of thumb, a more convex ROC translates in a better 

classifier, and so does a higher AUC.  At AUC=1, the discrimination /accuracy of the 

classifier is deemed perfect.  An AUC=0.5 reflects pure noise conditions, thus an 

uninformative test (Kjetil, 2009; Pepe , 2003).  Both parametric estimation through 
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the binormal model (Swets and Pickett, 1982) and nonparametric estimation 

through the Wilcoxon Mann-Whitney U-statistic (Bamber, 1975; Hanley and McNeil, 

1982a & 1982b) are available for the AUC statistic. 

One notable pitfall often attributed to the AUC measure is its lack of clinical 

relevancy (Dodd and Pepe, 2003). As Obuchowski (2005) points out, the ROC curve 

extends well beyond the clinically relevant area of potential clinical interpretation.  

More often than not, the interest lies in only a fraction of the ROC space that 

corresponds to clinically relevant values of test specificity and sensitivity.  For 

instance, in using CD4 cell count level as a determining factor for starting HAART 

therapy, a low false positive rate may be desirable, thereby making the lower tail of 

the ROC curve the region of interest.  This is one of the cases where it may not make 

sense clinically to look at the whole ROC curve.  In response to situations like this, a 

measure with greater clinical appeal, that considers only regions of interest in the 

ROC space, has been developed.  It is called partial AUC (McClish, 1989; Thompson 

and Zucchini, 1989) and it focuses on a limited range of false positive rates. The 

partial AUC does also provide notable benefits when two ROC curves cross.  Analyses 

by Zhang et al. (2002) and by Fawcett (2006) show that partial ROC analysis tends 

to provide more information and helps better with clinical decision making in cases 

of two crossed ROC curves.  For false positive rates (FPR) Є (0, t) for some t < 1, the 

partial area under the curve is defined as pAUC=         
 

 
 and can be estimated 

both parametrically and non-parametrically. For partial AUC estimation methods, 

inference, and statistical properties of the estimator, see   McClish (1989), Wieand et 
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al. (1989), Zhang et al. (2002), Pepe (2003), Dodd and Pepe (2003), Janes et al. 

(2005), Cai and Dodd (2008).   

1.1.2.3.5.2. Incorporation of Covariates Information in ROC 

Curves  

While the ROC curve and the AUC have been extensively studied in statistical 

literature and are widely used to assess classifier performance, there has been until 

relatively recently a gap in the search for standards methods of incorporating 

covariate information in ROC curves.  This topic has now received increased 

attention, and for practical reasons: Covariate adjustment can help eliminate 

potential confounding (Huang and Pepe, 2009).  Janes and colleagues (2006, 2007, 

2008) argue that without covariate adjustment, ROC curves can be differentially 

biased, which can lead to faulty marker comparisons.   

A discussion of different uses of covariates in ROC analysis can be found in Janes 

and Pepe (2007, 2008a, 2008b, 2008c) and in Janes, Longton, and Pepe (2008).  

These authors have made a clear distinction between covariate adjustment and other 

related uses of covariates. Adjustment is recommended when the covariate W affects 

the distribution of the marker among controls.   A relevant measure of classification 

accuracy in this case would be the covariate-adjusted ROC Curve (AROC), a stratified 

measure of ROC performance (Janes and Pepe, 2006; Janes and pepe, 2007; Janes, 

Longton, and Pepe, 2008).  Procedures for deriving the AROC and other related 

metrics of biomarker comparison such as the area under the adjusted ROC curve 

(AAUC) are provided in Janes, Longton, and Pepe (2008). 
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In situations where the covariates W affect the separation between case and control 

distributions (i.e. affect discrimination), Janes and colleagues recommend ROC 

regression as a way to dealing with covariates.  Two examples of covariates that fall 

in this category are disease severity and specimen storage time. In the ROC 

regression setting, the end result is an estimate of the ROC curve as a function of 

covariates (covariate-specific ROC curve).    

The third approach to incorporating covariate information in ROC analysis is the 

incremental value estimation.  This approach takes hold when the covariates W are a 

set of risk factors or other baseline predictors (Janes, Longton, and Pepe, 2008).  For 

these factors that contribute to discrimination, Janes et al. (2008) recommend 

combining the biomarker and covariate information and determining the 

incremental value of the biomarker beyond and above the covariates.  Typically, two 

models containing both the covariates, but with and without the biomarker are 

fitted.  ROC curves comparison is then made for the linear predictions from the two 

models.  A similar approach has been implemented in the analysis of the 

Atherosclerosis Risk in Communities Study to determine, among a panel of 19 novel 

biomarkers, those with the biggest increase in AUC for CHD prediction above and 

beyond a set of covariates (Folsom and Chambless, 2006). Additional examples of 

implementation of this method to assess discrimination of biomarkers above and 

beyond that of classic cardiovascular disease risk factors can be found in Danesh et al 

(2004), Koenig et al (2004), Pepe et al (2004), Ricker et al (2002), Rutter et al 

(2004), Shlipak et al (2005), Van der Meer et al (2003), and Wilson et al (2005). 
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1.1.3. Remaining Statistical Challenges 

The methods summarized above do have their merits, but they are not are not 

exempt from shortcomings.  Despite all the advances in the statistical analysis of 

biomarker data, some critical challenges remain.   

a. The t-test does not control for confounding and tends to lack robustness, 

especially in high throughput data (Tuglus et al., 2008; Yu et al., 2006).  

While classical multivariable regression methods provide an analytical 

framework where all biomarkers can be evaluated simultaneously with or 

without covariate adjustment, they tend to be unstable when multicollinearity 

exists.  Furthermore, they are prone to model misspecification, may not even 

be feasible when the data are high dimensional, and ultimately, may lead to 

biased estimates of the variable importance measures (Tuglus, 2008).  As for 

the most commonly used summary Index of the ROC curve, the Area Under 

the ROC curve (AUC), it can lack clinical relevancy (Dodd and Pepe, 2003; 

Obuchowski, 2005).  Finally, non-linear models and machine learning 

techniques, while considered as valuable tools for biomarker selection and 

classification in high throughput datasets, tend to be complex to non 

sophisticated users and are generally computationally intensive (Levy et al., 

2005). 

b. There is no unifying framework for biomarker selection.  Different ranking 

features applied to the same data often generate different rankings of 

biomarkers.  For instance, Dutkowski and Gambi (2007) used a proteomic 

mass spectrometry dataset to evaluate several feature selection methods and 
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ended up with different feature lists.  This confirms earlier findings by Levy et 

al. (2005).  In all methods, the goal and expectation should be to generate a 

reliable list of the top-ranked candidates that are significantly associated with 

the outcome of interest.  Having different lists can be counterproductive and 

constitutes an impediment to the efficient use of biomarkers.  Thus, the 

question of creating, through methods with good statistical properties, unified 

biomarker lists for further biologic examination or for subsequent statistical 

assessment of surrogacy, remains an open one.   To increase the use and 

utility of biomarkers in drug development and public health research, these 

statistical issues need to be addressed. 

c. Methods based on the causal inference framework, and more specifically the 

targeted maximum likelihood estimation for variable importance measure, 

are promising approaches that are worth exploring.  However, the TMLE, as a 

novel method, has not been widely applied in public health and 

pharmaceutical research. To our knowledge, there has been no systematic 

comparison between this method and other statistical approaches in their 

ability to select and rank biomarkers in different settings: cross-sectional, 

longitudinal, and time to events.  Furthermore, there have been no 

established guidelines for data collection and assessment based on this 

method.  

This dissertation aims at filling these research gaps by addressing the core issue 

of biomarker selection in the presence of covariates. It is worth noting that most of 

the methods mentioned above are used for biomarker screening where the goal may 
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be to find all biomarkers that are statistically significant.  This research does go one 

step further by applying methodologies aimed at identifying, from a set of candidate 

biomarkers, the ones that are the most important in terms of their contributions to a 

clinical outcome.  In short, the aims here are beyond biomarker screening and 

encompass variable importance assessment and ranking. 

1.1.4. Multiplicity Considerations in Biomarker Research 

In biomarker studies, large number of hypothesis tests are often conducted to 

identify candidates associated with an outcome.  This gives rise to a multiple 

hypothesis testing problem.  Suppose that m independent tests are conducted, the 

probability of at least one false positive result is 1 -        and converges to 1 as m 

increases.  For instance, this probability jumps from 0.226 to 0.994 if the number of 

tests m increases from 5 to 100.  In microarray gene expression experiments, for 

instance, thousands of genes are often examined.  With this high number of 

simultaneous hypotheses tests (one for each gene), the probability of obtaining at 

least one false positive result is near certainty.  In such cases, one needs to adjust for 

multiple testing.  

The goal of multiple testing is to minimize the type I error while maximizing power.  

Traditional multiple comparison procedures such as the Bonferroni correction 

impose a penalty for multiple testing.  This penalty can, however, be too stringent 

(Devlin et al., 2003).  As the number of test increases, traditional adjustment 

methods such as the Bonferroni procedure become powerless.  A competing 

approach to multiple testing, that is more powerful, more liberal, and that is now 

widely used, is based instead on controlling the false discovery rate (FDR).  With this 
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new approach that allows a reasonable number of false discoveries, the goal shifts 

from controlling the family-wise error rate to keeping in check the expected 

proportion of false discoveries (Benjamini and Hochberg, 1995, 2000).  

  Suppose that m is the total number of null hypothesis tested (   , 

   ,…,     . Furthermore, let   ,   ,…,    be the p-values obtained from those tests. 

Denote by F the number of false positives (i.e. type I error), by T the number of true 

positives, and by S the total number of rejections (i.e. F + T) and define Q= 

 
 

 
         

           

 .  The false discovery rate (FDR) is E( Q), or expectation of proportion 

of type I errors among all rejections.  The Benjamini and Hochberg method controls 

the FDR at level  
  

 
q   q and works as follows: 

a. Order the m p-values     ,     ,…,     from smallest to largest, and order the 

corresponding hypotheses:      ,      ,…,      . 

b. Set a threshold value for rejection by finding the largest integer i such that 

       , i.e.  k= max{ i:      
 

 
 }.  If no such integer i exists, then no 

hypothesis is rejected. 

c. Reject any hypothesis with a p-value       

The Benjamini and Hochberg FDR-controlling step-up procedure works on the 

assumption of independence. It further assumes that the true null hypotheses p-

values are uniform (0,1) random variables under the null hypotheses.  It has been, 

however, demonstrated in literature that the Benjamini and Hochberg procedure 

does control the FDR under some dependency structures (namely positive 

http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib2
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib3
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dependency) and covers  many problems of general interest (Benjamini and 

Yuketieli, 2001).  For a greater range of dependency problems, a simple modification 

of the Benjamini and Hochberg procedure has been proposed by Benjamini and 

Yekutieli (2001) to control the FDR. Known as the Benjamini and Yekutieli FDR 

controlling procedure, this method sets the threshold for rejection at: k= max{ i: 

     
 

 
  }, where      

 

 
 

 
 
   

.  It always controls the FDR at level less than or equal 

to 
  

 
q (Benjamini and Yekutieli, 2001). 

For in-depth discussions and comparisons of multiple comparison procedures, 

including FDR, see Benjamini and Hochberg (1995, 2000), Yekutieli and Benjamini 

(1999), Benjamini and Yekutieli (2001), Genovese and Wasserman (2002, 2003),  

Storey ( 2002, 2003), Storey and Tibshirani (2001, 2003), Finner and Roters 

(2002), Dmitrienko et al. (2005), Dudoit, Shaffer, and Boldrick (2003), Westfall 

et al. (1999), Brown and Russell (1997), and Pollard, Dudoit, and Van der Laan 

(2004).  

1.1.5. Specific Aims of the Research 

The past decade has seen an explosion in the availability and use of biomarkers 

data as a result of innovative discoveries in areas such as combinatorial chemistry, 

mass spectrometry, high throughput screening, DNA microarrays, and proteomics.  

This has been accompanied by a growing emergence of biomarkers as a topic of 

clinical research. Publications identified by the keyword ―biomarker‖ in Pub Med  

from 1999 through 2008 have increased dramatically and reached a peak of 37,000 

in 2007 (Wagner, 2009).  With that explosion of data come new challenges.  A good 

http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib2
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib3
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib18
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib18
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib4
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib7
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib7
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib9
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib14
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib13
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib15
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib16
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib6
http://www.nature.com/hdy/journal/v91/n6/full/6800370a.html#bib6
http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/statug_multtest_sect028.htm#dmit_a_2005
http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/statug_multtest_sect028.htm#dudo_s_2003
http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/statug_multtest_sect028.htm#west_p_99
http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/statug_multtest_sect028.htm#brow_b_97
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fraction of biomarkers data are high-dimensional and do not lend themselves to 

standard statistical methods.  Also, due to the large number of candidate biomarkers 

for a given condition, selection of the ones with maximal impact has become a 

critical issue.   An effective biomarker discovery streamlining process could help save 

time and previous resources by directing researchers’ focus on the best candidates.  

On the other hand, choosing the wrong candidates could lead to incorrect decision-

making about potentially effective agents.  Major advances in biomarker discovery 

underscore the need for novel statistical methods, especially in the area of biomarker 

selection.  Even though several statistical methods have been proposed as solutions 

to the biomarker selection problem, there are still some major hurdles. So far, there 

is no unified approach for biomarker selection.  Different methods tend to generate 

different results.   Some of the newest methods, although promising, have had 

limited use in clinical research and lack clearly-established guidelines for sample size 

calculation and power analysis in studies involving biomarker selection.  To increase 

the use and utility of biomarkers in drug development and public health research, it 

is imperative that these statistical issues be addressed. 

The proposed dissertation project seeks to fill this gap by addressing the core 

issue of biomarker selection in the presence of covariates. Its primary aim is to 

examine the effectiveness of three novel statistical methods in identifying 

biomarkers with good performance characteristics. It also seeks to provide 

guidelines for data collection and assessment, such as sample size computation and 

power analysis, in studies involving biomarker selection where these methods are 
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employed.  It uses real and simulated data to apply these innovative statistical 

methods to the concrete issue of biomarker selection in the context of HIV infection.   

The specific objectives of this research are: 

1. To estimate a marginal variable importance measure (VIM) separately for 

each biomarker that determines the clinical outcome CD4 cell count using 

the following estimation methods: Targeted Maximum Likelihood, Binary 

Regression based on flexible propensity score estimation, Incremental Value 

Estimation based on partial Receiver Operating Characteristic (ROC) Curve 

methodology, and weighted Cox proportional hazards model.  

2. To use variable importance measures computed in (1) to make inference 

about the importance of each biomarker.  This would help determine 

whether there exist, among all the biomarkers considered, more affordable 

alternatives that can accurately predict CD4 cell count. 

3. To develop an index that represents a longitudinal measure of the 

importance of each biomarker over time. 

4. To establish guidelines for future data collection and assessment, based on 

results from simulations. 

These specific aims have been addressed in three separate papers.  The content 

of each paper is presented in the next three (3) chapters. 

 



 

 

 
 
 

 

CHAPTER 2 

 
 Comparison of the effectiveness of three novel statistical methods for 

biomarker selection with application to an HIV infection dataset. 

2.1. Introduction 

The importance of biomarkers both in the drug development process and in 

public health practice is well established.  Fueled by recent advances in modern 

biology and technology, biomarkers have become a popular research topic in clinical 

investigations.   Publications identified by the keyword ―biomarker‖ in PubMed  from 

1999 through 2008 have increased dramatically and reached a peak of 37,000 in 

2007 (Wagner, 2009).  With that explosion of data come new challenges.  An 

overarching aim is to find ways to use this wealth of biomarker information to help 

guide clinical decision making.  Therefore, the development of improved statistical 

methods that can adequately explain the relationship between biomarkers and an 

outcome, is of great interest.  One domain that is evolving in this regard concerns the 

quest for variable importance measures, a class of estimators that could reliably 

capture the effect of a specific biomarker on a clinical outcome.  Such estimators are 

used in the identification, among many candidate biomarkers, of the best subset that 

is significantly associated with an outcome of interest.  This could help reduce waste 

and time by directing biologists’ focus to top performing biomarkers, or by allowing 

practitioners to direct resources towards the most promising candidate biomarkers.   
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This paper addresses the core issue of biomarker selection in the presence of 

covariates, especially when the goal is to identify biomarkers with good performance 

characteristics from among a large number of candidates.  This research is the first 

of its kind to compare the performance of three novel statistical methods of 

biomarker selection and then use these estimators to address a major public health 

issue: the relationship of CD4 cell counts with other biomarkers in HIV-infected 

patients.  The contribution of this paper is enhanced by the fact that it evaluates the 

impact of finite sample size on the performance of these estimators.  

The outline of the paper is as follows. Section 2.2 provides an appraisal of current 

statistical methods for biomarker selection.  Section 2.3 discusses three novel 

methods for biomarker selection, while section 2.4 applies these methods to an HIV 

infection dataset.   Section 2.5 presents a Monte Carlo simulation to examine the 

behavior of the three methods under different sample sizes. Section 2.6 concludes 

and provides suggestions for further research. 

2.2. Current Statistical Methods for Biomarker Selection  

A survey of statistical methods used for biomarker selection reveals that both 

standard and novel statistical methods have been employed to address the 

challenges of biomarker selection.  The panoply of methods used in this regard 

includes the t-test (Dudoit el al., 2002);  classical multivariable regression 

techniques such as ordinary least squares and logistic regression; the Receiver-

Operating Characteristic (ROC) curve (Pepe, 2000, 2003); and non-linear models 

and machine learning techniques  such as classification and regression trees 

(Breiman et al., 1984), bagging (Breiman, 1996), boosting (Freund and Schapire, 
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1997), random forest (Breiman, 2001), and pattern recognition techniques (Vapnik, 

1998; Burges ,1998).  

All these methods suffer from shortcomings.  The t-test does not control for 

confounding and tends to lack robustness, especially in high throughput data 

(Tuglus et al., 2008; Yu et al., 2006).  While they provide an analytical framework 

where multiple biomarkers can be evaluated simultaneously, classical multivariable 

regression methods tend to be unstable when multicollinearity exists, are prone to 

model misspecification,  and may not even be feasible when the data are high 

dimensional.  The most commonly used summary index of the ROC curve, the Area 

Under the ROC curve (AUC) lacks clinical relevancy (Dodd and Pepe, 2003; 

Obuchowski, 2005).  Finally, non-linear models and machine learning techniques, 

while considered as valuable tools for biomarker selection and classification in high 

dimensional data, tend to be complex to non-sophisticated users and are generally 

computationally intensive (Levy et al., 2005).  Furthermore, there seems to be no 

unifying framework for biomarker selection.  Different ranking features applied to 

the same data often generate contrasting rankings of biomarkers.  For instance, 

Dutkowski and Gambi (2007) used a proteomic mass spectrometry dataset to 

evaluate several feature selection methods and ended up with different feature lists.  

This confirms earlier findings by Levy et al. (2005).  In all methods, the goal and 

expectation should be to generate a reliable list of the top-ranked candidates that are 

associated with the outcome of interest.  Having different lists can be 

counterproductive and constitutes an impediment to the efficient use of biomarkers.  

Thus, the question of creating, through methods with good statistical properties, 
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unified biomarker lists for further biologic examination or for subsequent statistical 

assessment of surrogacy, remains an open one.   To increase the use and utility of 

biomarkers in drug development and public health research, these statistical issues 

need to be addressed. 

An additional framework under which biomarkers are often evaluated is the 

causal inference paradigm. Under the assumptions of consistency, randomization, 

and experimental treatment assignment (Cole and Hernán, 2008; Cole and 

Frangakis, 2009), causal models enable researchers to estimate, among other 

measures, an average effect of a biomarker, which under certain conditions could 

carry a causal interpretation. Three of the most commonly used estimation 

techniques under causal inference approaches are G-computation (Robins, 1986, 

2000), inverse probability of treatment weighting (IPTW) (Robins et al., 2000; Cole 

and Hernan, 2008) and the double robust estimator (Van der Laan and Robins, 

2003).  Two of the methods used in this paper originate from this framework. 

2.3. Materials and Methods 

2.3.1. Study sample 

The dataset used for application in this paper came from the Hormonal 

Contraception and HIV Genital Shedding and Disease Progression or GS Study.  The 

GS Study is a prospective multicenter study of 306 HIV infected women aged 18 to 

45 years old from Uganda and Zimbabwe.  This study started in 2001 as an add-on to 

the HC-HIV study (Morrison et al., 2007) and was completed in the field in 

December 2009.  Women who seroconverted during the course of the HC-HIV study 

were recruited for the GS study, based on procedures outlined in Morrison et al. 
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(2010). The study specific objectives are described in details elsewhere (Morrison et 

al., 2007, 2010), but one key research question is the effect of hormonal 

contraception on the biological parameters of the infectivity of women with primary 

and chronic HIV infection to their sex partners. 

The GS consisted of a baseline visit and follow-up visits at 2, 4, 8 and 12 weeks 

following HIV seroconversion, and then every 12 weeks for up to 9 years.  Women 

who developed severe HIV infection or who had successive CD4 cell counts at or 

below 200 cells per mm3 were offered highly active antiretroviral therapy (HAART) 

and were seen twice a month for the first month, then monthly thereafter.  In 

addition to baseline demographic characteristics, at each time point, information on 

various laboratory parameters, reproductive variables, contraceptive exposure, and 

recent sexual behavior was collected.  Gathered laboratory data included HIV plasma 

viral load, HIV sub-type, CD4, CD8 and total lymphocyte counts, serum chemistries, 

lipid profiles, specimens for the detection of chlamydial, gonococcal, syphilis, herpes 

simplex virus 2 (HSV-2), and human papillomavirus (HPV) infections.  The study 

also collected information on hormonal contraceptive use, HIV disease progression 

parameters, as well as virologic, immunologic, and clinical responses to HAART 

among hormonal and non-hormonal contraceptive method users. For a detailed 

description of the study population and procedures, the reader is directed to 

Morrison et al. (2010).                                                                                

2.3.2. Data structure  

 
To facilitate the discussion of the methods, we let the observed data be 

represented by O= (A, W, Y) where A represents a set of either binary or continuous 
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biomarker variables, W a vector of covariates, and Y the clinical outcome of interest 

(Y=1 for diseased and Y=0 for non-diseased).  Define the observed data as   

     ,  the counterfactual outcomes of interest as   , and the full data as       

   , a   A), where a=(0,1) (binary case) or a    ={            (continuous case). 

The set of covariates (W) used in this analysis consist mainly of behavioral, 

reproductive, and demographic factors reported in the literature to be predictive of 

incident HIV infection or clinically associated with HIV disease progression (Van 

Der Pol et al., 2008).  These covariates included age, country, commercial sex work 

status, number of coital acts in previous 3 months, condom use consistency, study 

subject’s partner’s sexual behavior and risk, frequency of  nights away from home by 

study subject’s partner, history of sexually transmitted infections (STI), presence of 

STI symptoms at enrollment, having more than one sex partner, and breastfeeding.  

The vector of biomarkers A contained measures such as plasma viral load, HIV sub-

type, HIV RNA load, hemoglobin level, CD4, CD8  and lymphocyte counts, CD4/CD8 

T cell ratio, CD4 percentage, and HSV-2 status. The latest biomarkers and covariates 

measurements available at 6 months from estimated date of HIV infection were used 

in this analysis. While HIV sub-type and HSV-2 status were binary variables, all 

other biomarkers used in this analysis were measured on a continuous scale. 

In this analysis, we defined baseline as the latest biomarker measurement or 

covariate value available 6 months after estimated infection date.  The estimated 

infection date refers to the mid-point between the last visit where a subject was HIV-

uninfected in the HC-HIV study and the first visit where this subject was confirmed 

infected. Based on the timing implied by this definition of baseline, a number of 
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subjects might not have baseline data because of the length of time elapsed between 

the date they were notified of their HIV infection and their first GS-enrollment visit 

(where specimens for plasma and cervical viral loads were collected).  For these 

subjects, the GS enrollment visit might have occurred more than 6 months after the 

estimated infection date.  Thus, subjects with missing baseline biomarker 

information because of the timing of their first GS visit did not contribute data to the 

analysis. 

The clinical outcome (Y) was a binary variable representing two successive 

drops of CD4 cell count at or below 350 cells/mm3 in the first two years following the 

viral set point (i.e. 121 days following the estimated infection date).  The choice of the 

threshold of 350 cells per mm3 for the clinical outcome of CD4 was based on current 

guidelines for the use of antiretroviral agents in adults and adolescents infected with 

HIV-1 in the absence of an AIDS-defining illness (Panel on Antiretroviral Guidelines 

for Adults and Adolescents, 2008). Also, evidence from the literature suggests that 

initiation of antiretroviral therapy before the CD4 cell count has fallen below 350 

cells per mm3 significantly improves survival, as compared to deferred therapy (Sax 

and Baden, 2009; Kitahata et al., 2009; When to Start Consortium, 2009). 

2.3.3. Measures of Effect 

 
We implemented three methods to derive a marginal variable importance 

measure for each biomarker used from the GS Study.  These methods were: targeted 

maximum likelihood estimation (TMLE), propensity score weighting (PSW), and 

incremental value estimation for partial area under the ROC curve. 
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Under the TMLE and the PSW methodologies, the measure of effect for each 

binary biomarker was the difference in probabilities between those with and without 

the biomarker exposure of interest (A=1 vs A=0), averaged over the entire 

population:   

 =   [E(Y=1|   =1, W) - E(Y=1|   =0, W)].  

In the continuous case, the parameter of interest was:  

  =   [E(Y=1|   =a, W) - E(Y=1|   =  , W)], where    is the empirical mean of the 

biomarker     

Under the incremental value scheme, the measure of variable importance was 

the incremental value, i.e. the amount of discriminatory accuracy of the biomarker 

   over and above the covariates (W).  Essentially, we estimated the optimal 

difference in partial AUC between a model with only covariates and a model with 

both the biomarker    and covariates, based on the following non-parametric 

estimator proposed by Dodd and Pepe (2003):  

            =
 

  
             

 
 

 
          ), (where          are sample quantiles; m 

and n represent the sample sizes from non-diseased sample    and from diseased 

sample   ). 

To generate standard errors for the estimates of the VIM measures obtained 

under each method, bootstrapping (Efron and Tibshirani, 1994) was implemented.  

We applied the following algorithm for bootstrap selection and for assessing multiple 

comparison: 

http://en.wikipedia.org/w/index.php?title=Robert_Tibshirani&action=edit&redlink=1
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1. From the original sample S, we drew B independent bootstrap samples 

            , each of size n, assuming simple random sampling with 

replacement. 

2.  For each bootstrap sample, we then computed the sample quantity of interest 

    This resulted into B values of the statistic    .   

3. The bootstrap estimator of the parameter   was given as the mean of the 

bootstrap estimates    
   =

 

 
    

 
   , with variance   (      

 

 
         

      
   .  

The standard deviation of the distribution of the statistic     was then:          

=  
 

 
         

      
       

4. We subsequently assessed the strength of the evidence for a non-zero effect by 

conducting the following test of hypothesis:          versus               , for 

each j (j=1,…, k).   

5. We repeated these steps k times, that is once for each biomarker       

1,……k to generate k estimates of    and k p-values denoted as P1, P2,…, Pk. 

6. Finally, we adjusted the p-values for multiplicity testing to control the false 

discovery rate.  The Benjamini and Yekutieli (2001) False Discovery Rate 

(FDR) controlling procedure was used to account for the dependence of the 

test statistics. Significance for each biomarker was assessed by comparing 

related adjusted p-value to the 0.05 alpha level.  A lower the p-value denoted 

a better measure of importance. 

Below, we present an overview of the three procedures. 
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2.3.4. Targeted Maximum Likelihood for Variable Importance 

Measure 

Developed by Van der Laan (2006), the targeted maximum likelihood 

estimation methodology is employed, among other purposes, to generate a marginal 

variable importance measure that captures the impact of a given biomarker on an 

outcome. For a formal and theoretical discussion, refer to Van der Laan and Rubin 

(2006), Van der Laan (2005); for empirical examples or applications in biomarker 

selection, see Bembom et al. (2008), Tuglus and Van der Laan (2008).  Under 

certain conditions, the variable importance measure obtained under the TMLE can 

be a doubly efficient and robust measure (Van der Laan and Rubin, 2006).   

We followed a three-step approach to implement this methodology.  First, we 

modeled the conditional distribution of Y given A and W using the following logistic 

mean model:                                     
 
    , where    represents the 

target biomarker variable, and     the vector of covariates listed in section IV.  From 

this outcome model, we generated fitted values denoted as   
  (A,W).   

Next, we estimated the conditional distribution of the biomarker given the 

covariates.  The predictors were the same set of covariates used in the outcome 

model.  For binary biomarkers (A), the estimates of the probabilities  (  =1| W) and 

 (  =0| W), denoted by   
  (A, W), A=0 or 1, were computed and then used to 

calculate a covariate h(A,W) as follows:          
      

  
        

  
      

  
        

 ), (where I 

denotes an indicator function).  For continuous biomarker (A), we followed Tuglus et 

al. (2008) and defined the covariate h(A, W) as:                  
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The next stage in applying the TMLE entailed updating the initial estimate 

  
 (A,W) with the covariate h(A,W) by regressing the binary outcome Y on the 

covariate h(A,W) in an intercept-only model where the initial estimates   
  (A,W) 

were held fixed. Specifically, the updated estimate   (A,W) is given by 

  (A,W)=(A,W)=   (A,W) + (         .  The regression coefficient   is obtained 

through maximum likelihood estimation (MLE) using   
  (A,W) as offset. From this 

regression, we obtained the maximum likelihood estimate    for the covariate h(A,W) 

and used    to update the  initial estimate of   (A,W) such that    
 (A,W)=   

  (A,W) + 

(              Finally, we computed the targeted estimate of the marginal variable 

importance measure of interest, for each binary biomarker, by evaluating   
 (A,W) at 

both   =1 and   =0 for  each individual i, and then averaging over all i.  For 

continuous biomarkers,   
 (A,W) was evaluated at both   =a and   =   . These steps 

were repeated for each biomarker.   

2.3.5. Propensity Score Weighting for Variable Importance 

Measure 

As in the TMLE, this method uses a counterfactual structure and the same two 

nuisance parameters: P(Y|A,W) and P(A|W).  The difference, however, lies in the 

algorithm we executed to update the initial estimates of P(Y|A,W).  While Van der 

Laan et al. (2006) add a covariate created from P(A|W) to the initial regression 

model, we used weights constructed from estimated propensity scores P(A|W) to 

incorporate the relationship between A and W in the estimation of P(Y|A,W).   
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 The generation of variable importance measures through the Propensity Score 

Weighting method was performed in three steps, as described below.  In the first 

stage, we estimated the propensity scores.  For binary biomarkers, we modeled 

P(A|W) using the generalized additive framework (Hastie and Tibshirani, 1990) for a 

more flexible relationship between continuous covariates and response (Woo et al., 

2008).  Assuming a logistic additive model of the form      
         

         
     + 

   
 
       , where    (.),   (.),…,  (.), are smooth functions that defined the additive 

component, we computed the following expressions of probability: 

            
 
         

 
   

     

    
         

 
   

     
 and           

 

    
         

 
   

     
 .     

For continuous A, a flexible parametric approach, proposed by Irano and Imbens 

(2004) was used to compute a generalized propensity score.  First, we postulated a 

normal distribution of the continuous biomarker (A) given the covariates, i.e. 

               
 
     

  .  Then the parameters   ,   ,    were estimated by least 

squares regression.  Following Hirano and Imbens (2004), we estimated the 

generalized propensity scores by inserting the estimates of these parameters into the 

normal density:    
   

 

      
       

              

       .  

In the second stage of this approach, we created the weights. Stabilized weights 

for binary biomarkers A were computed as   
         

       

           
. For continuous 

biomarker variables, the estimated stabilized weights were constructed as a ratio of 

densities (i.e,       
   

      
) as proposed in Robins et al. (2000);     is the marginal 

density of the continuous biomarker (A), and        is the conditional density of the 
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biomarker (A) given the set of covariates (W). To estimate the numerator     we 

specified a normal distribution (i.e.            
   , and then substituted the mean 

    and the empirical variance      of the biomarker (A) values  into the normal 

density. The denominator was estimated based on the generalized propensity score 

method of Hirano and Imbens (2004) described above.  

Finally, the weights were incorporated into a logistic regression model to 

generate adjusted estimates. Separate estimates were created for each biomarker, 

and each logistic model contained binary CD4 as a dependent variable and the 

biomarker of interest and covariates as predictors.  All covariates used in the model 

were believed to be related to the outcome. 

2.3.6. Incremental Value Estimation for Partial Area Under the 

ROC Curve (pAUC)  

This method used the partial Area under the Receiver Characteristic Operating 

(ROC) Curve (AUC) methodology (McClish, 1989) while incorporating covariates in 

the analysis.  The goal was to assess the ability of each biomarker to discriminate 

above and beyond the set of covariates.   

Briefly, this method compared ROC curves for each combination of a given 

biomarker    and the covariates (W) to the ROC curve for the covariates (W) alone 

(McIntosh and Pepe, 2002; Janes and Pepe 2008; Janes, Longton and  Pepe, 2008).  

Each comparison assessed the amount of improvement in classification accuracy 

(incremental AUC) generated by adding the biomarker    to the covariates (W). The 
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basic assumption was that the covariates (W) contribute as well to discrimination 

between those with and without the outcome.  

Because the full AUC measure tends to lack clinical relevancy (Dodd and Pepe, 

2003; Obuchowski, 2005), we conducted this analysis at a false positive rate of 5% 

based on reports that the most common false positive rates of viral loads 

measurements often vary from 3% to 10% (Mendoza et al., 1998).  In terms of 

implementation, this procedure was accomplished in two steps: First, for each 

biomarker   , we estimated p(Y=1|A, W) and p(Y=1|W).  Using the predicted 

probabilities from the two fitted logistic models, we computed estimates of 

sensitivity and specificity over the restricted false positive range of 5%, and 

generated an index summary for the partial ROC Curve, referred to as pAUC. Finally, 

the measure of interest, the difference between the pAUC for the two models at 

hand, was computed. 

2.4. Data Analysis 

In the GS Study, the median age at enrollment was 27 years.  Women from 

Zimbabwe accounted for 58.5% of the population while those from Uganda made up 

the remaining 41.5%.  About 8% of all study subjects had at least two sex partners 

while 14% had a STI history, 8% were breastfeeding, and 45% displayed STI 

symptoms.  These women averaged 11.2 (Standard Deviation [SD] = 15.5) sex acts 

per month, but only 35% of them reported consistent condom use.  On average, the 

partners of these women spent 10 (SD=15.2) nights away from home, and 75% of 

those partners had been reported to have had sex with another woman in the three 
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months prior to enrollment in the study. Finally, 59% of the subjects’ partners met 

the study definition for primary partner risk, a composite variable that included 

having a partner with HIV, urethral discharge, weight loss, nights spent away from 

home, or a history of sex with female sex workers. 

The proportion of subjects with biomarker data available anytime from 

enrollment to 6 months after estimated infection date was as follows: 59% of the 306 

women had baseline CD4, CD8, and CD4/CD8 T cell ratio. The distribution of 

baseline CD4 cell counts was different in the two study countries.  On average, 

patients in Uganda had a higher level of baseline CD4 cell counts (650.72 

[SD=237.35]) than those in Zimbabwe (532.97 [SD=207.97]).  In addition, 79% of 

the study population had plasma viral load measurements while 56% had 

lymphocyte counts data. Finally, 58% of the 306 women had hemoglobin 

information, 98% had HSV data, and 97% had HIV sub-type information.  This 

proportion included 57 Zimbabweans imputed as subtype C based on the fact that all 

Zimbabweans with available subtype information were subtype C.  Overall, the 

majority of subjects were subtype C (59%), followed by subtype A (27%), and subtype 

D (11%).  Covariate information was available for all 306 subjects.  Subjects with 

missing baseline data for any biomarker were excluded from the analysis for that 

particular biomarker.  In addition, 23 subjects were removed from the analysis 

sample because their baseline CD4 cell counts were below 350 cells/ mm3. 

For each biomarker and under each method, we computed a variable 

importance measure and used bootstrapping for inference.  We conducted a separate 

hypothesis test of no effect for each biomarker.  In each case, the resulting p-value 
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was adjusted for multiplicity based on the Benjamini & Yekutieli dependent false 

discovery rate. Results under both the TMLE and the PSW did not support this 

hypothesis, as a number of biomarkers were deemed to have had a significant impact 

on the outcome (Table 1).  Based on the magnitude of the p-values, the most 

important biomarkers under the TMLE methodology, among the 11 biomarkers 

considered, were baseline CD4 cell count and CD4/CD8 T cell ratio.  Under the PSW 

approach, the biomarkers selected as the most important ones were: HSV-2 status, 

CD4/CD8 T cell ratio, baseline CD4 cell count, and Plasma Viral Load.  No 

biomarker was selected as important by the incremental value method. 

2.5. Simulation Studies 

 
We conducted simulation studies to evaluate the finite sample performance of the 

three proposed estimators.  The goal was to test the ability of each of these 

estimators to identify ―true‖ biomarker variables significantly related to an outcome.  

The simulated dataset consisted of a binary outcome Y, a 3-dimensional vector of 

continuous baseline covariates W=(W1, W2, W3), and a 5-dimensional vector of 

biomarkers A=(A1, A2, A3, A4, A5).  These variables were generated based on the 

following setup: 

a. The biomarkers were randomly assigned as: Pr(A1)=0.2, Pr(A2)=0.45, 

Pr(A3)=0.35, Pr(A4)=0.4, and Pr(A5)=0.5.  

b. Each baseline covariates followed a normal distribution: W1 ~(5,2), W2 

~(6,1.5), W3~N(0,1). 

c. The following model was postulated for the outcome:  
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                  , With        the inverse logit function, Aj the jth 

biomarker, and Wk the kth baseline covariate.  A larger coefficient for Aj did 

correspond to a larger effect on the outcome Y.  In this context, A2 and A3 

exerted a larger effect, while A1 had a moderate effect. 

Predicted probabilities generated from this model were compared against a 

uniform (0,1) random variable to create a binary outcome variable. For any 

record where the random variate was less than the predicted probability, a 

value of 1 was assigned to the outcome variable; else the outcome was 0.  

d. For each biomarker (A) and under each method, the simulation was run 5000 

times on increasing sample sizes of N=100, 150, 200, 250, and 1000. 

2.5.1. Simulation Results 

 
The simulation results (Tables 2-4) showed that all three estimators 

performed better with increasing sample sizes.  At N < 200, both the TMLE and the 

Propensity Score Weighting method picked up a single biomarker (A2) as significant.  

These two methods, although lacking power at that sample size level, did outperform 

the incremental value approach, which failed to detect any significant result.  At N ≥ 

200, all three methods correctly picked up biomarkers A2 and A3 as significant.  

This improvement in performance over increasing sample sizes is in accordance with 

previous simulation studies that assessed the finite sample properties of causal 

inference estimators such as G-Computation, IPTW, and Double robust estimators 

(Neugebauer and Van der Laan, 2005).  As for the ROC methodology, simulations by 
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Janes and Pepe (2006) did show a trend towards an increasing power of both full 

and partial of ROC curves in the presence of covariates as the sample size increases. 

Finally, it is worth noting that at N ≥ 1000 (results not shown), the weighted logistic 

method displayed slightly increased power as the proportion of rejected tests was 

higher than that of the other methods (three significant biomarkers detected by this 

approach as opposed to two biomarkers picked up by the other methods).  Based on 

its coefficient, the biomarker A3 could be considered to be moderately associated 

with the outcome Y, and the PSW method was powerful enough to detect this 

meaningful association.  

2.6. Discussion and Conclusion 

 
We compared three methods for estimating biomarker variable importance 

measures.  Our simulation results suggest that PSW works well in small sample sizes 

(say N> 100), but may be anticonservative when sample size is large (say, N> 1000).  

These results further indicate that TMLE could be a robust method that performs 

reasonably well in moderate to large sample size (say N≥150).  Finally, the 

incremental value approach displays an unsatisfactory ability in detecting significant 

biomarkers when the sample size is less than 200, but works satisfactorily with 

sample sizes exceeding 200. 

From a public health perspective, this research is relevant for the following 

reasons. It enabled us to identify from the GS study potentially useful candidate 

biomarkers based on their true importance with regards to the clinical outcome of 

CD4 cell count.  As a measure of a patient’s immune capacity, CD4 cell count has 

been considered as a standard method for determining eligibility for HAART and 
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HIV disease progression (Ellenberg, 1991; Fleming, 1994).  However, CD4 count 

measurements are expensive and could be prohibitive in resource-poor countries.  If, 

as our results indicate, baseline CD4 cell counts are highly predictive of future CD4 

cell count level, one strategy to both contain costs and save lives might be to obtain 

one initial  CD4 measure when infection is discovered, rather than having to do it 

repeatedly over time.  Furthermore, the list of biomarkers identified as important 

predictors of CD4 cell counts in this research, while in line with current medical 

knowledge, could also pave the way for the use of simpler and relatively less 

expensive biomarkers (e.g. CD4/CD8 T cell ratio) that are highly predictive of CD4 

cell decline and disease progression. This could support decision-making with 

regards to HAART initiation or could help monitor patients’ immune status during 

therapy without having to make additional expensive CD4 measurements.   

If is worth pointing out that the use of baseline CD4 to predict future levels of 

CD4 cell counts could raise the issue of circularity.  However, from a clinical 

standpoint, this could be a reasonable exercise because evaluation of baseline CD4 

cell counts could help identify patients at risk for CD4 cells depletion so that they 

could be monitored more closely and started on HAART, when necessary.  This could 

potentially help save lives, time, and money, especially in resources-deprived 

countries where the costs to measure CD4 are often prohibitive.  

This study does have limitations.  The two best performing methods (TMLE, 

PSW) rely on the assumption of no unmeasured confounders, i.e. within strata of 

covariates (W), the target biomarker (A) is randomized.  The thinking is that if the 

vector of covariates (W) contains all confounders, then among subjects sharing the 
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same W, the potential outcomes (  ,   ) and the biomarker (A) would be 

independent conditional on W (as would be the case in a blocked experiment where 

the treatment or biomarker (A) would be randomized within the levels of W) (Cole 

and Hernán, 2008; Schafer and Kang, 2008).  Given that the GS Study was 

observational in nature, exposure was not controlled, thus ―treatment‖ (i.e. 

biomarker) received might not be independent of potential outcomes.  In this case, 

the difference E {  |A=a} - E {  |A=0} might not be an unbiased estimate of the 

average treatment effect, as would be the case in a randomized study.  To account for 

this dependency, we tried to find all important covariates (W) believed to be related 

to both potential outcomes and exposure (A) based on the literature or expert 

knowledge, and included them in the estimation of the population average effect.  

There is no direct way to verify whether there remained any putative confounders 

that were not part of the vector of covariates (W) used in this study.  

Sample size could be another limitation of this study.  Over half of the biomarkers 

under consideration had 200 or fewer non-missing observations, with the minimum 

being 138.  As shown in our simulation studies, sample size does affect the ability of 

all three methods to detect ―true‖ significant biomarkers; all three showed a 

decreased ability in pinpointing significant biomarkers at smaller sample sizes (e.g. 

N=100).  Hence, sample size constraints may have hindered us from detecting 

additional significant biomarkers in the GS dataset.  The implication for applications 

is that, with small sample sizes, these methods may not achieve adequate power to 

detect the effect of a given biomarker.  Thus, strong consideration should be given to 

sample size and power issues when designing biomarker studies using these analytic 
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methods.  The sample size cut-points we identified through our simulations could 

serve as a starting point towards establishing sample size requirement guidelines for 

future data collection and assessment in biomarker studies where these selection 

methods are used. 

In summary, this study shows a promising practical application of both targeted 

maximum likelihood estimation and propensity score weighting to biomarker 

selection from observational studies.  Nonetheless, the list of significant biomarkers 

obtained varies with sample sizes, as demonstrated by our simulations.  For more 

conclusive results, future investigations, especially those involving the incremental 

value approach, should employ a much larger sample size.  Furthermore, we 

recommend that repeated measures analysis of longitudinal data be conducted to 

capture the trends and various dimensions of the CD4 count clinical outcome in its 

relationships with other HIV infection biomarkers. 

 



 

 

 

 

CHAPTER 3 

 
Application of Longitudinal Targeted Variable Importance Measures 

(LTVIM) to Biomarker Selection from an HIV Infection Dataset 

3.1. Introduction 
 

The past decade has seen an explosion in the availability and use of 

biomarkers data as a result of innovative discoveries and recent development of new 

biological and molecular techniques.  Biomarkers are essential for at least four key 

purposes in biomedical research and public health practice: They are used for 

disease detection, diagnosis, prognosis, to identify patients who are most likely to 

benefit from selected therapies, and to guide clinical decision making.  Determining 

the predictive and diagnostic value of these biomarkers, singly and in combination, 

is essential to their being used effectively, and this has spurred the development of 

new statistical methodology to assess the relationship between biomarkers and 

clinical outcomes. One such method aims at identifying biomarkers with good 

performance characteristics by computing a marginal variable importance measure 

(VIM) for each biomarker from a set, using the theory of targeted maximum 

likelihood estimation (TMLE) (Van der Laan, 2006). 

Much of the application of the targeted variable importance measure (TVIM) 

in literature deals with the simple case of point-treatment.  There is currently no 

unified approach to addressing VIM in the context of repeated measures data, even 
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though numerous studies dealing with biomarkers collect longitudinal data.  In this 

paper, we propose a novel approach to computing longitudinal VIM, when the 

interest lies in obtaining an estimate of the impact of a biomarker on the time course 

of a given clinical outcome.  This method extends the VIM computation based on the 

TMLE methodology to repeated measures longitudinal data, while taking advantage 

of the flexibility of a nonparametric smoothing technique.   The end result is an index 

that represents the strength of evidence for the importance of a biomarker with 

regards to a clinical outcome measured over time.  Inference for this estimator is 

readily available through bootstrapping. 

3.2. Statement of the problem 

Often in biomarker studies, researchers are faced with the task of evaluating 

the impact of multiple biomarkers on a given outcome.  Given a large set of 

biomarkers that potentially predict a clinical outcome, how can one make a 

determination as to which ones are the most important?  Answers to this question 

are of great practical importance to public health practice and pharmaceutical 

research.  Statistical methodologies that allow  researchers to take a pool of 

biomarkers and make a reliable appraisal as to which ones are the most important, 

could lead to faster decision making in epidemiologic studies and clinical trials.  For 

instance, an effective and efficient selection of the best subset of biomarkers amongst 

a set could help direct further biological research in early phases of clinical trials by 

limiting the focus to the pool of most promising ones.  From a scientific standpoint, 

this could guide statistical research in the area of biomarker validation by making 
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available a list of good candidates for surrogacy status determination.  Such a list 

could also be useful in the quest for the best combinations of biomarkers. 

In this study, we address the issue of biomarker selection in the context of 

longitudinal repeated measures data.  The outline of the paper is as follows.  Sections 

3.3 and 3.4 review the theory of targeted maximum likelihood estimation and 

provide the implementation steps for two estimators of interest.  Section 3.5 

describes an HIV infection dataset used to illustrate these estimators while section 

3.6 reports on the analysis and results.   Section 3.7 covers a Monte Carlo simulation 

to study the behavior of these two estimators under different numbers of repeated 

measures.  Finally, section 3.8 provides a discussion of the results and ideas for 

further research. 

3.3. Targeted Maximum Likelihood for Variable Importance 
Measure 
 

To facilitate the discussion of the methods, we let the observed data be 

represented by O= (A, W, Y(t)) where A represents a set of either binary or 

continuous biomarker variables, W a vector of covariates, and Y(t), a time-varying 

clinical outcome.  Define the observed data as              ,  the counterfactual 

outcomes of interest as   , and the full data as          , a   A), where a=(0,1) 

(binary case) or A    ={               (continuous case).  For simplicity, we assume 

that both A and W are static. 

In order to select the most important biomarkers (A) affecting the outcome 

(Y(t)),  we used a tool named targeted maximum likelihood estimation (Van der Laan 
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and Rubin, 2006). The TMLE is a versatile method suitable for parameter estimation 

in semi-parametric and nonparametric models from either randomized or 

observational studies.  It could be used in a variety of settings: cross-sectional, 

repeated measures longitudinal, and time-to-events.  In this study, we applied this 

technique to generate a marginal variable importance measure that captures the 

impact of each biomarker on the clinical outcome. 

Our choice of this estimation method is motivated by its attractive statistical 

properties: adequate bias-variance tradeoff, efficiency, consistency, robustness.    

Theoretical and simulation studies have shown that the TMLE provides higher 

precision and reliability than other methods such as random forests, neural 

networks, least angle regression, univariate regression (Tuglus et al., 2008).  

Furthermore, the TMLE estimator could be, under certain conditions, a doubly 

robust measure that could also be free from standard regression model assumptions.  

By using information from two conditional distributions, namely the outcome model 

(e.g. E[Y(t)|A,W]), E denotes expectation), and the treatment mechanism ( e.g 

(E[A|W]), the TMLE produces consistent estimates as long as one of these two 

nuisance parameters is correctly estimated (Bembom et al, 2008; Rosenblum and 

van der Laan, 2010).   Because of this property, referred to as double robustness, the 

TMLE presents a notable advantage, especially in situations where it might be easier 

to correctly specify the relationship of the biomarker with covariates or in situations 

where it may be easier to model the relationship between the clinical outcome and 

the biomarker and covariates.  Overall, this approach presents a clear advantage over 
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conventional estimation methods whenever concerns linger about the correct 

specification of either E[Y(t)|A,W]) or E[A|W]. 

For a formal and theoretical discussion of the TMLE, the interested reader is 

directed to Van der Laan and Rubin (2006), Van der Laan et al. (2009).  Empirical 

examples or applications of the TMLE in biomarker selection are given in Bembom 

et al. (2008), Tuglus and Van der Laan (2008), Moore and Van der Laan (2007), and 

in Rosenblaum and Van der Laan (2010).  

3.3.1. Measure of Effect 
 

In this study, we pick as a meaningful measure of effect, for each biomarker, 

the targeted marginal mean.  It is defined as the difference in probabilities between 

those with and without the biomarker exposure of interest (A=1 vs A=0), averaged 

over the entire population, at time t, i.e   (t)=   [E(Y(t)|   =1, W) - E(Y(t)|   =0, 

W)]. In the continuous case, the parameter of interest was given by  (t)=   [E(Y(t)| 

  =a, W) - E(Y(t)|   =  , W)], (   refers to the empirical means of the biomarker 

measurements). 

The TMLE is done in the context of potential outcomes or counterfactual 

framework.  Essentially, each subject in the sample is assumed to have potential 

outcomes in two states, the one in which the subject is observed and the one in which 

the subject is not observed (Winship and Morgan, 1999).  This potential outcomes 

framework allows one to estimate the unobservable difference for each subject 

between outcomes under both conditions.  For more detailed technical discussions 
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and applications of counterfactuals, see Robins et al (2000), Winship and Morgan 

(1999); Winship and Sobel (2004). 

3.3.2. TMLE Implementation 

We followed a three-step approach to implement the TMLE methodology.  First, 

we applied the generalized estimating equations (GEE) framework (Liang and 

Zieger, 1986; Zeger and Liang, 1986) to model the conditional distribution of Y(t) 

given A and W, i.e.             . Note that, in this first step, the risk of model 

misspecification could be mitigated by using a variety or combination of techniques, 

including data adaptive procedures, to arrive at a suitable functional form.  For 

example, when Y(t) is binary, we fit the model g[E(Y(t)|W, A)] =          

      
 
 , where g [.] is a logistic function.  Predicted probabilities from this outcome 

model were denoted by   
  (A,W).   Next, we estimated the conditional distribution of 

the biomarker given the covariates,       .  For binary biomarkers A, the estimates 

of the probabilities  (  =1| W) and  (  =0| W), denoted by   
  (A, W), were used to 

calculate a specific covariate h(A,W) as follows:          
      

  
        

  
      

  
        

 ).  For 

continuous biomarker (A), we followed Tuglus et al. (2008) and defined the 

covariate h(A, W) as:                  

 The next stage in applying the TMLE entailed updating the initial estimate 

  
 (A,W) with the covariate h(A,W) by regressing the binary outcome Y on the 

covariate h(A,W) in an intercept-only model where the initial estimates   
  (A,W) 

were held fixed. Specifically, the updated estimate   (A,W) is given by 
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  (A,W)=(A,W)=   (A,W) + (         .  The regression coefficient   is obtained 

through maximum likelihood estimation (MLE) using   
  (A,W) as offset. From this 

regression, we obtained the maximum likelihood estimate    for the covariate h(A,W) 

and used    to update the  initial estimate of   (A,W) such that    
 (A,W)=   

  (A,W) + 

(              Finally, we computed the targeted estimate of the marginal variable 

importance measure of interest, for each binary biomarker, by evaluating   
 (A,W) at 

both   =1 and   =0 for  each individual i, and then averaging over all i.  For 

continuous biomarkers,   
 (A,W) was evaluated at both   =a and   =   . These steps 

were repeated for each biomarker, and the end result was an estimate of the variable 

importance of each biomarker at each time point, i.e.   (t) at time t=0, 1, 2,…n. 

3.4. Longitudinal Summary Index Measures 
 

 Our goal is to provide a summary measure over time instead of a visit by visit 

analysis.  In the next section, we consider two estimators for computing a scalar 

value denoting the importance of a given biomarker over time.  We refer to this index 

as longitudinal  targeted variable importance measure (LTVIM).    

3.4.1. Time Slope from Regression through the Origin 
 

 Assuming that the targeted variable importance measure (TVIM), as applied 

above, is close to 0 at time 0, this approach consists in fitting a no-intercept 

regression model with the TVIM as dependent variable and time as independent 

variable (Bembom et al, 2006).  Since the data are made of a sequence of VIM data 

points at successive times, the regression errors may not be independent of each 
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other through time.  To account for autocorrelation in the residual series, we fit a 

model where the errors are assumed to follow the first order autoregressive process.  

This model postulates an autocorrelation that diminishes rapidly as the distance 

between the times points increases.  It takes the form:               
, where the 

random residual      -      ,            ), and       .  In this model,    (a 

residual called white noise) is assumed to be uncorrelated with other residual 

components, and    determines the sign and strength of the autocorrelation.  The 

use of the subscript t emphasizes the fact that the data are taken over time. 

 Estimation of the parameters of the model (   and     is performed through 

maximum likelihood, and the measure of impact for each biomarker is given by     .  

A biomarker with a positive impact over time would have a positive coefficient     

while a negative sign of the coefficient would translate a negative effect.  Inference 

can be made by using bootstrapping to construct standard error for the test of the 

null hypothesis:      for each biomarker.  

 3.4.2. Area under the LOESS Curve. 
 

 Consistent estimate of the slope parameter in the auto-regressive model above 

relies on proper specification of the deterministic component (i.e. E(      , E 

denotes expectation), and of the residual component   .  Furthermore the white 

noise residual    is assumed to satisfy all the classical assumptions (normality, 

independence, homoscedasticity).  Those assumptions may not always be tenable.  

For instance, the true relationship between TVIM and time may be curvilinear. In 



67 

 

such case, having a straight line forced through the origin may not always provide a 

good approximation to the mean response E(TVIM). 

 One way to relax the assumptions about how the TVIM changes as a function of 

time would be to implement data-adaptive techniques.  One such approach proposed 

in Bembom et al (2006) for fitting the regression is the 

Deletion/Substitution/Addition (D/S/A) algorithm (Sinisi, 2004).  In this paper, we 

propose an alternative approach based on nonparametric regression.  It consists in 

plotting the estimated variable importance,  (t), as a function of time, using the 

locally weighted scatterplot smoothing technique (LOESS) (Cleveland, 1979; 

Cleveland and Devlin, 1988).  In short, this method works by moving a window along 

the time-axis, computes a fitted value at each position in the window and then 

connects the predicted values to generate the LOESS curve. This method is highly 

flexible as it requires no specification of a parametric model.  The only inputs needed 

are a smoothing parameter (usually between 0 and 1) and the degree of the local 

polynomial (usually 1 or 2) to be fitted to the data. 

 Using the predicted values from the LOESS function, we compute, as our 

longitudinal summary measure of variable importance, the area enclosed by the 

LOESS curve and the time axis.  Based on the composite Simpson’s rule for 

numerical integration, the index measure of interest is given by:  

           
 

 
 

 

 
              

  

 
         

  

 
         

 
   

   
     where the 

time interval [a, b] is subdivided into 2m subintervals                  
   of equal 

width    
   

  
 . Because the TVIM could be negative, we take as the final measure of 
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impact the absolute value of the area under the LOESS curve, which means that a 

TVIM of -0.5 is equivalent to a TVIM of 0.5.   What matters here is the magnitude of 

the effect, not its direction. 

3.4.3. Bootstrapping Algorithm and Multiple Comparison 

To generate standard errors for the estimates of the LTVIM measures 

obtained under each method, bootstrapping (Efron and Tibshirani, 1994) was 

implemented.  We applied the following algorithm for bootstrap selection and for 

assessing multiple comparison: 

1. From the original sample S, we drew B independent bootstrap samples 

            , each of size n, assuming simple random sampling with 

replacement. 

2. For each bootstrap sample, we then computed the sample quantity of 

interest     (Under the Regression through the origin method,     refers 

to the estimated time slope; in the LOESS method,     is the estimated 

area under the LOESS curve).  This resulted into B values of the 

statistic    . 

3. The bootstrap estimator of the parameter   was given as the mean of 

the bootstrap estimates    
   =

 

 
    

 
   , with variance   (     

 
 

 
         

      
   .  The standard deviation of the distribution of the 

statistic     was then:          =  
 

 
         

      
       

http://en.wikipedia.org/w/index.php?title=Robert_Tibshirani&action=edit&redlink=1
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4. We subsequently assessed the strength of the evidence for a non-zero effect 

by conducting the following test of hypothesis:          versus         

      , for each j (j=1,…, k).  In the LOESS-based method, we conducted a one-

tailed test of hypothesis:          versus           

5. We repeated these steps k times, that is once for each biomarker       

1,……k to generate k estimates of    and k p-values denoted as P1, P2,…, Pk. 

6. Finally, we adjusted the p-values for multiplicity testing to control the false 

discovery rate.  The Benjamini and Yekutieli (2001) False Discovery Rate 

(FDR) controlling procedure was used to account for the dependence of the 

test statistics.  Significance for each biomarker was assessed by comparing 

related adjusted p-value to the 0.05 alpha level. 

3.5. Genital Shedding and HIV Infection (GS ) Data Description 
 

The dataset used for application in this paper came from the Hormonal 

Contraception and HIV Genital Shedding and Disease Progression or GS Study.  The 

GS Study is a prospective multicenter study of 306 HIV infected women aged 18 to 

45 years old from Uganda and Zimbabwe.  This study started in 2001 as an add-on to 

the HC-HIV study (Morrison et al., 2007) and was completed in the field in 

December 2009.  Women who seroconverted during the course of the HC-HIV study 

were recruited for the GS study, based on procedures outlined in Morrison et al. 

(2010). The study specific objectives are described in details elsewhere (Morrison et 

al., 2007, 2010), but one key research question is the effect of hormonal 
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contraception on the biological parameters of the infectivity of women with primary 

and chronic HIV infection to their sex partners. 

The GS Study consisted of a baseline visit and follow-up visits at 2, 4, 8 and 12 

following HIV seroconversion, and then every 12 weeks for up to 9 years.  Women 

who developed severe HIV infection or who had successive CD4 cell counts at or 

below 200 cells per mm3 were offered highly active antiretroviral therapy (HAART) 

and were seen twice a month for the first month, then monthly thereafter.  In 

addition to baseline demographic characteristics, information on various laboratory 

parameters, reproductive variables, contraceptive exposure, and recent sexual 

behavior was collected at each study visit.  Gathered laboratory data included HIV 

plasma viral load, HIV sub-type, CD4, CD8 and total lymphocyte counts, serum 

chemistries, lipid profile,  and specimens for the detection of chlamydial, gonococcal, 

syphilis, herpes simplex virus 2 (HSV-2), and Human papillomavirus (HPV) 

infections.  The study also collected information on hormonal contraceptive use, HIV 

disease progression parameters, as well as virologic, immunologic, and clinical 

response to HAART among hormonal and non-hormonal contraceptive method 

users. For a detailed description of the study population and procedures, the reader 

is directed to Morrison et al. (2010).        

3.5.1.  Outcome Definition 
 

In this analysis, the binary clinical outcome, Y(t),  was defined as a drop in 

CD4 cell counts below 350 cells/mm3 at time t.  The choice of the threshold of 350 

cells per mm3 for the clinical outcome of CD4 was based on current guidelines for the 

use of antiretroviral agents in adults and adolescents infected with HIV-1 in the 
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absence of an AIDS-defining illness (Panel on Antiretroviral Guidelines for Adults 

and Adolescents, 2008; Hammer et al., 2008). Also, evidence from the literature 

suggests that initiation of antiretroviral therapy before the CD4 cell counts falls 

below 350 cells per mm3 significantly improves survival, as compared to deferred 

therapy (Sax and Baden, 2009; Kitahata et al., 2009; When to Start Consortium, 

2009).  

3.5.2.  Biomarker Variables and Covariates   

                                                                                        
The set of covariates (W) used in this analysis consist mainly of behavioral, 

reproductive, and demographic factors reported in the literature to be predictive of 

incident HIV infection or clinically associated with HIV disease progression (Van 

Der Pol et al., 2008).  These covariates included age, country, number of coital acts 

in previous 3 months, condom use consistency, study subject’s partner’s sexual 

behavior and risk, frequency of  nights away from home by study subject’s partner, 

history of sexually transmitted infections (STI), presence of STI symptoms at 

enrollment, having more than one sex partner, and breastfeeding.  The vector of 

biomarkers A contained measures such as plasma viral load, HIV sub-type, 

hemoglobin level, CD4, CD8  and lymphocyte counts, CD4/CD8 T cell ratio, CD4 

percentage, HSV-2 status. While HIV sub-type and HSV-2 status were binary 

variables, all other biomarkers used in this analysis were measured on a continuous 

scale. 

3.6. Data Analysis 
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We carried out a set of separate analyses to estimate the effect of each 

biomarker on the mean outcome over time, adjusting for covariates.  First, we 

implemented the TMLE methodology to produce a TVIM at each time point. As 

described above, we generated two nuisance parameters, namely E[Y(t)|A,W] and 

E(A|W).  To model E(Y(t)|A,W), we specified the following logistic mean model: 

                                                              
  
    , where 

   represents the target biomarker variable,         the measurement occasion for 

subject i  at time j,  and    , the vector of covariates listed in section 4. We further 

specified the variance as Var(   )=V(                , where     and      

 
          

             
.  Finally, we assumed that the correlation between measurements     and 

    taken on subject i at times     and    had an exchangeable structure.  

From this model, we extracted the predicted values, which were subsequently 

updated  with a covariate constructed from another nuisance parameter, E(A|W).  In 

our application, the systematic component (    that described the effect of the 

covariates (W) on the expected value of the biomarker (A) was given by:    

        
 
             

 
   , where g(.) was assumed to be a logit link for binary 

biomarkers (0 <  <1), and an identity link for continuous biomarkers.  The     s are 

all listed in section 4. 

Once the TVIM was obtained, it was regressed over time to obtain the 

longitudinal measure of importance based on the regression through the origin 

method.  We also took a second approach to analyzing the data by using smoothing 
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to highlight trends and patterns in the data.  For each biomarker, we fit a smooth 

curve to the pair (TVIM, TIME) to produce a smooth estimate of the function, which 

is then used to compute the area under the LOESS curve based on a smoothing 

parameter of 2/3 and a local polynomial of degree 1.  To mitigate the influence of 

outliers, we used the ―symmetric‖ family option of the LOESS function from the 

STATS package in R (version 2.7.2).  This option combines the local fitting with a 

robustness step that downweights the relatively large residuals from the fitted curve.  

This robust smoothing allows for a better extraction of signal from noise.   

3.6.1. Results 
 

The GS study sample included 306 subjects followed up to 9 years.  Of those, 

23 subjects were excluded from the analysis because their baseline CD4 cell counts 

were below 350 cells/mm3. Any subject who was given HAART therapy was censored 

at the time of HAART initiation and contributed data to the analysis up to the most 

recent date preceding HAART initiation. 

For each biomarker and under each method, we computed a variable 

importance measure and used bootstrapping for inference.  We conducted a separate 

hypothesis test of no effect for each biomarker.  In each case, the resulting p-value 

was adjusted for multiplicity based on the Benjamini & Yekutieli dependent false 

discovery rate.  Results obtained under the two methods under consideration are 

reported in Table 5.  Among the 11 biomarkers, the ones selected as the most 

important based on the magnitude of the p-values, are baseline CD4 cell counts, HIV 
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subtype, and HSV-2 status. This list was consistent across the two analytic methods 

highlighted in this paper.  

A useful piece of information that could be extracted from a visual inspection 

of the LOESS plots in Figures 2 & 3 is an assessment of the longevity of the 

biomarkers in terms of their predictive power.  For instance the predictive power of 

baseline CD4 cell counts reached its peak around visit 15 and then the LOESS curve 

displayed a steady decline, suggesting a slowing of the impact of this biomarker on 

the clinical outcome over time.  For a number of biomarkers (i.e. subtype A and D, 

CD4 percent, CD4/CD8 T-cell ratio, HSV-2), the downward pattern started early and 

continued over the entire study period.  Finally, there was no detectable relationship 

between VIM and time for CD8 cell counts, hemoglobin, HIV RNA, lymphocyte 

counts, and Hemoglobin level.. For these biomarkers, the LOESS smoother relating 

VIM trend to time was mostly a flat line aroud 0 (figure 2).   

3.7. Simulation 
 

We conducted a simulation to assess the performance of the two proposed 

estimators.  The ultimate goal was to test the ability of each of the two estimators to 

identify ―true‖ biomarker variables significantly related to a given outcome, based on 

different scenarios for the number of data points (i.e. number of repeated measures 

in the study design). Because we were primarily interested in evaluating how the two 

methods performed in selecting biomarkers based on the relationship between  a 

continuous TVIM variable  and time, we created a simulated dataset that contained 
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only these two variables.   Thus, the scope of this simulation was limited in testing 

and quantifying the effect of the independent variable time on VIM. 

We postulated the following regression model to describe the relationship 

between time and VIM:                         , Where                

We assigned the following values to the regression coefficients:   =4.17,   =0.06, 

and   =-0.002. The rationale for the choice of a model with curvature was two-fold.  

First, most real-life applications do not involve a straight line going through the 

origin, and may entail some degree of curvature.  Second, such a model would allow 

us to assess the robustness of the first order autoregressive model with respect to 

violation of the linearity assumption. 

 Simulated data points were generated according to the number of measurements 

taken over the span of the study, and there was one VIM observation per 

measurement.  Thus, if 10 measurements were taken on each subject, then the 

number of observations used in the regression model would be 10, regardless of the 

number of subjects, because the VIM, as defined above, is a summary measure of the 

importance of a given biomarker at each time point.  We then evaluated the impact 

of time on VIM based on the following scenarios for the number of measurements: 5, 

10, 20, and 25.  In each case, we computed the two estimators, based on 5000 

bootstrapped estimates.   The results are presented in Table 6. 

3.7.1. Simulation Results 
 

At n=5, both methods failed to detect a significant relationship between time 

and TVIM. The LOESS-based method performs satisfactorily for sample sizes >=10, 
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while the autoregressive model detects significant relationship between time and 

VIM only when n >=20. These results indicate that the intensity of the effect of the 

biomarker, as measured by decreasing p-values, is better captured with increasing 

number of repeated measurements. 

3.8. Discussion and Conclusion 
 

In this paper, we highlighted two methods to generate an index measure that 

captures the impact of a biomarker on a clinical outcome, in the longitudinal 

repeated measures setting.   Both approaches constitute an extension of the theory of 

targeted maximum likelihood estimation.  While the time slope method is simple 

and easy to implement, it is not free from standard regression models assumptions.   

Simulation results show that its performance could be constrained when the number 

of repeated measures is less than 20. 

    In the LOESS method, no strong global assumptions are needed about the 

conditional mean of the VIM, and no specific functional form is assumed.   Results of 

the analysis of the GS data as well as the simulation reported in this paper confirm 

that this method produces results that are at least as good as those from the time 

slope method.  One improvement over the time slope approach is that the LOESS 

method provides insight into the longevity of the predictive power of a given 

biomarker.  From the LOESS plots, one can readily assess which biomarkers predict 

the outcome early or late in the process, how far ahead in time a biomarker measure 

could predict a clinical outcome, and whether and when the effects of a given 

exposure start to wane.  This could have practical implications: study investigators 
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could use this kind of information to decide when the optimal time to take repeated 

measurements of a biomarker would be.  This could help reduce waste and improve 

compliance issues as repeated measurements would be taken only when they are 

needed. 

From a public health perspective, this research is relevant for several reasons. 

It enabled us to identify from the GS  study potentially useful candidate biomarkers 

based on their true importance with regards to the clinical outcome of CD4 cell 

count.  Our results indicate that useful predictors of CD4 cell counts are:  HIV 

subtype, HSV-2 status, and baseline CD4 cell counts. This list seems to be in line 

with current medical knowledge.  For instance, studies by Kanki et al. (1999) and by 

Kaleebu et al (2000, 2002) have shown that the HIV-1 subtype an individual 

becomes infected with can be an important factor in the rate of disease progression.  

With respect to subtype, the results of this analysis should be interpreted in the 

African context, where the subtypes under study are the most prevalent.  These 

results may not be applicable to Western developed countries where subtype B is 

largely dominant. 

As a measure of a patient’s immune capacity, CD4 cell count has been 

considered as a standard method for determining eligibility for HAART and HIV 

disease progression (Ellenberg, 1991; Fleming, 1994).  However, CD4 count 

measurements are expensive and could be prohibitive in resource-poor countries.  If, 

as our results indicate, baseline CD4 cell counts are highly predictive of future CD4 

cell count level, one strategy to both contain costs and save lives might be to obtain 

one initial  CD4 measure when infection is discovered, rather than having to do it 
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repeatedly over time.  In the event that other repeated measures of CD4 cell counts 

are needed, one might be able to limit the frequency of these measurements by using 

the LOESS method outlined in this paper. 

This study does have limitations.  The TMLE method relies on the assumption 

of no unmeasured confounders, i.e. within strata of covariates (W), the target 

biomarker (A) is randomized.  The thinking is that if the vector of covariates (W) 

contains all confounders, then among subjects sharing the same W, the potential 

outcomes    and the biomarker (A) would be independent conditional on W ( As 

would be the case in a blocked experiment where the treatment or biomarker (A) 

would be randomized within the levels of W) (Cole and Hernán, 2008; Schafer and 

Kang, 2008).  Given that the GS  study was observational, exposure was not 

controlled, thus ―treatment‖ (i.e. biomarker) received might not be independent of 

potential outcomes.  In this case, the difference E {  |A=a} - E {  |A=0} might not be 

an unbiased estimate of the average treatment effect, as would be the case in a 

randomized study.  To account for this, we tried to find all important covariates (W), 

believed to be related to both potential outcomes and exposure (A) based on the 

literature or expert knowledge, and we included them in the estimation of the 

population average effect.  There is no way to verify whether there remained any 

putative confounders that were not part of the vector of covariates (W) used in this 

study.  

Another limitation is inherent to the LOESS procedure.  If the data do not 

have a monotonic progression, the LOESS curve may not be an effective tool in 

differentiating signal from noise.  If there are too many peaks and valleys, or up and 
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down patterns, the LOESS method may display inability to tease out true biomarker 

effects from noise.  Moreover, LOESS works better on large and densely sample 

datasets, which could hinder its usefulness in studies where the number of 

measurements is relatively small.  Our simulation study has shown that the two 

estimators have poor performance when the number of repeated measures is 5 or 

less.  Because of this shortcoming, there may  be little value in using these methods 

when the number of data points ( i.e. repeated measures) is fewer than 10.   They 

could be more suitable to longitudinal studies with extensive data collection over 

many time points.  One extreme example could be the reported trial of a topical 

treatment for HIV-related peripheral neuropathy where patients were required to 

record pain four times a day for four weeks at baseline and at follow-up, for a total of 

224 data points (Paice et al, 2000). 

In summary, this study shows a promising practical application of the 

targeted maximum likelihood estimation to generate a longitudinal variable 

importance measure for each biomarker from a set.  In this research, both 

biomarkers and covariates were chosen at 6 months from estimated infection date.  

One future area of research could be the inclusion of time-varying biomarkers and 

covariates. It is possible that some biomarkers would exhibit a significant effect on 

CD4 cell count only when they are allowed to vary over time.  In such situations, the 

measure taken at baseline (in this application, at viral load set point) may not be a 

good predictor of the outcome over the long term.  As a future direction, we would 

also recommend taking censoring into consideration, by applying the TMLE 

methodology in a time to events setting.



 

 

 

 

CHAPTER 4 
Inverse Probability Weighting to Estimate Biomarker Variable 

Importance Measures from an Observational HIV Infection Dataset 

4.1. Introduction 

Biomarker identification related to many clinical and health outcomes is a 

focus of tremendous research activity on many levels, from basic laboratory studies 

through epidemiological investigations and late phases of clinical trials.  Biomarker 

data are often used for disease detection, diagnosis, prognosis, to identify patients 

who are most likely to benefit from selected therapies, and to guide clinical decision 

making.  Due to major advances in technology and in modern biology, a large 

number of biomarkers have been identified, and selection of the ones with maximal 

impact on clinical outcomes has become a critical issue.  This has given rise to a 

quest for novel statistical methods that could adequately explain the relationship 

between biomarkers and outcomes of interest.  This paper applies an innovative 

methodology, the inverse probability weighting, to the issue of biomarker 

identification in the presence of fixed covariates, in the time to events setting. 

In biomarker studies involving longitudinal time to event analysis, a 

reasonable goal could be to estimate the importance of each biomarker from a set 

with respect to the time it takes for a clinical event to occur.  A standard analytical 

approach to estimating biomarker variable importance in relation to survival 
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consists in fitting a Cox proportional hazards model with all measured covariates 

and then computing the measure of effect of interest.  This approach, however, may 

produce biased estimates of the exposure effect if the censoring mechanisms are 

non-random (i.e. informative) (Robins, 1995).  For instance, in the analysis of the 

effect of HIV infection biomarkers on CD4 cell counts, both loss to follow-up 

(depending on the reason) and death could lead to informative censoring, as they 

might be associated with the CD4 cell  value at the time of the event.  An example of 

such occurrence can be found in Touloumi et al (1999).  In their comparison of  CD4 

cell count trends between subjects with low (L) and high (H) doses of didanosine 

(ddI) in patients with symptomatic HIV disease intolerant to zidovudine (AZT), 

using data from the Alpha Trial, Touloumi and his colleagues found that drop-outs 

due to death occurred more frequently in subjects with low CD4 cell counts.  In this 

case, because the probability of drop-out was associated with the value of the 

previous CD4 cell count, the censoring mechanism was informative; for this reason, 

the use of standard analytic methods could lead to overestimation of exposure effects 

because subjects with worse CD4 count evolutions would have shorter follow-up 

times and hence would be weighted less in the estimations of the group rate of the 

average CD4 cell counts decline (Duvignac  and Thiébaut, 2006).   

One strategy for dealing with the bias arising from either confounding or 

informative censoring is through the use of inverse probability weighting, whereby a 

weight is attributed to the contribution of each subject i to the risk set at time t.   This 

estimator exploits available auxiliary information to control for confounding through 

an exposure assignment process and adjusts for differential drop-out and 
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informative censoring via a censoring mechanism. The idea of weighting originates 

from the survey sampling field where subjects from a given sample are weighted by 

the inverse of their probability selection to ensure adequate representation of the 

population in which samples were drawn (Kish, 1965, 1990).  In observational 

studies, there is no random allocation of exposure, and thus, subjects with certain 

baseline prognostic factors may be either over-represented or under-represented in 

certain exposure groups. Because observed differences in observational data may 

reflect underlying differences between groups, it is critical to mitigate bias resulting 

from the imbalance in covariate distributions.  Similar situation occurs in event 

history data with differential attrition and censoring.  To deal with this bias, Robins 

(1999, 2000) proposed a weighting scheme referred to as inverse probability of 

treatment weighting (IPTW). 

The basic idea in using the IPTW estimator is to create a re-weighted dataset 

in which a balance is achieved in the distribution of covariates between exposure 

groups, as would be the case in a randomized intervention.  Implementation of this 

approach involves fitting a multivariate regression of the probability of the exposure 

given covariates.  This model, referred to as the treatment mechanism, is used to 

compute propensity scores or the conditional probability of receiving one’s own 

exposure given a vector of observed covariates (Rosenbaum and Rubin, 1983).  

Letting    be the probability of a subject receiving the exposure actually received 

conditional on observed covariates (i.e. propensity scores), unstabilized weights 

(denoted by   ) are given by  
 

  
 for exposed subjects, and by 

 

    
 for unexposed 

subjects.  Thus, subjects with low probability of exposure are assigned relatively 
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larger weights while those with common exposure status given covariates are 

attributed lower weights.  According to Robins and colleagues (2000), weighting 

creates a pseudo-population made of    copies of each subject i.  For instance, a 

subject with       would contribute 10 copies of himself to the pseudo-population 

to make up for subjects with similar characteristics that have not been observed.   In 

this pseudo-population, exposure is no longer confounded by covariates because 

outcome and exposure are conditionally independent given the covariates.  

Therefore, analysis performed on this re-weighted population could generate 

unbiased estimates of the exposure effect (Robins et al, 2000). 

Unstabilized weights may suffer from a shortcoming whenever the set of covariates 

used are strongly associated with the exposure, especially in non-saturated models.  

In such occurrences, the weights might have large variability, which could result, 

according to Robins (2000), in a few subjects having extremely large values of the 

weights   ; these subjects could  dominate the weighted analysis because of the large 

number of copies of themselves they contribute to the pseudo-population relative to 

the contribution of other subjects.  Studies by Kang and Schaffer (2007) have shown 

how unstable weights could result in a poor performance of the IPTW estimator.   A 

solution proposed by Robins (2000) has been to use stabilized weights (designated 

by       instead, where some function of the exposure is used as the numerator of the 

weights instead of 1 (Robins et al, 2000).  A common practice has been to use the 

sample proportion of subjects with the exposure (A) of interest (i.e.  p(A=a)) to 

stabilize the weights, as was done in Cole and Hernán (2004). Thus, if an exposure 

(A) and a set of covariates (W) were unconfounded, the numerator and the 
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denominator of the stabilized weights would be the same (i.e.  p(A=a) =P(A=a|W)), 

resulting in a     of 1.  All subjects with       would then contribute the same 

weight to the risk set.  

An indication of well-behaved weights is a mean of 1 (or in the neighborhood 

of 1) with a relatively small variability.  A mean of 1 for the weights is often viewed as 

a necessary condition for correct model specification (Hernán and Robins, 2006; 

Cole and Hernán, 2008); however, near-perfect weights (with mean of 1 and a small 

range) may have no effect on the parameters of the Cox regression model, as they fail 

to control for confounding (Cole and Hernán, 2008). Conversely, weights with mean 

far from 1 or with extreme values may be symptomatic of violation of the 

assumptions used in the estimation of the weights.  

The concept of weighting has been extended to studies involving censoring 

(Robins et al, 2000; Hernan et al, 2000) through the inverse probability of 

treatment and censoring (IPTC) estimator.  The basic idea remains the same: exploit 

available auxiliary information through a weighting scheme to control for selection 

bias arising from differential drop-out and informative censoring. The censoring 

weights are estimated in an analogous way to the exposure weights except that a 

censoring indicator is now used as the dependent variable while exposure is an 

added as an additional regressor in the multivariate regression model.  The 

censoring weight is the inverse of the probability of a patient i remaining uncensored 

up to time t.  As in the case of the exposure weights, it is a good practice to stabilize 

the censoring weights as well.  Finally, each subject’s contribution to the risk set at 

time t is weighted by the product of the exposure and censoring weights (Robins et 
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al, 2000; Hernan et al, 2000).  Application of a Cox proportional hazards model - or 

the equivalent pooled logistic regression model - to this weighted population 

generates consistent estimates of the exposure effect (Robins et al, 2000; Hernán et 

al., 2000, 2001) because the weights adjust for all measured confounders, which 

allows one to fit an association model on a dataset where selection bias has been 

removed.   

The outline of the paper is as follows.  Sections 4.2 reviews a weighted Cox 

proportional hazards model proposed for biomarker selection.  Section 4.3 describes 

an HIV infection dataset used to illustrate the appropriateness of this modeling 

framework to the problem of biomarker selection using survival data.  Section 4.4 

reports on the analysis and results.   Section 4.5 discusses the results while Section 

4.6 concludes and provides ideas for future research. 

4.2. Materials and Methods 

4.2.1.  Statistical Model 
 

The goal of the analysis was to estimate a variable importance measure that 

reliably captures the marginal effect of  a set of HIV infection biomarkers on the time 

to the clinical event of interest (as defined in section 4.3).  To fix notation, let     

denote the failure time of interest and     the censoring time for the ith subject in the 

sample.  Furthermore, let                 be the observed time response variable, 

and               the censoring indicator such that   =1 if the response was 

censored, and 0 otherwise.  Finally, let’s assume there are p exogenous covariates 

  = (   ,    , . . . ,    ) , and j biomarkers   = (   ,    , . . . ,    ), recorded for each 
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subject i at baseline.  The right censoring data structure is thus given by O =(       , 

  ,    .   

In the traditional framework of the Cox proportional hazards model (Cox, 1972), the 

regression model for the hazard as a function of a biomarker (A) and p exogenous 

covariates can be specified as the product of a baseline hazard and an exponential of  

the linear function of A and the W’s.  More specifically, the log hazard is given by log 

λ (t |A, W) = log                  
 
   , whereas the hazard is  defined as λ (t |A, 

W) =                    
 
     , where       is the baseline hazard.  The 

conditional survival function is then S(t; A,W) =             
 

 
        

      
 
           Typically, the measure of variable importance is the regression 

coefficient   . 

As stated earlier, conventional estimate of   based on partial likelihood is 

biased. Therefore, to generate an estimate of the importance of each biomarker with 

regards to the failure time while taking into account the dependency between 

censoring process and survival and between covariates and exposure, we fitted a 

weighted Cox proportional hazards model .  For this purpose, a 2-stage process was 

implemented: For each subject at each visit, we estimated a weight as a cumulative 

product of a treatment mechanism weight and a censoring weight.  The process of 

weights creation is specified in section 3 below.  These weights were then used in a 

time-dependent Cox proportional hazards model to generate adjusted estimates.  

Under certain assumptions, the inverse probability weighting estimator provides a 

valid test of the null hypothesis of no exposure effect while addressing the issues of 
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confounding and informative censoring (Robins et al, 2000; Robins, 1999; Robins, 

2000).  These assumptions are: 

a. Coarsening at random: We assumed that the covariates used in this 

analysis were sufficient to adjust for both confounding and informative 

censoring.  This implies that within strata of W, A is randomized, and that the 

probability of censoring is independent of the outcome a subject would have 

experienced in the absence of censoring. 

b. Experimental Treatment Assignment (ETA):                that 

is, within all possible levels of the covariates (W), there are both exposed and 

unexposed subjects.   

In addition to the above assumptions, consistency of inverse probability 

weighting estimators relies on correct estimation of the weights models.  In this 

analysis, logistic regression was used to estimate the weights.  However, if there are 

doubts about appropriate functional forms for the biomarker exposure model and 

the censoring model, data-adaptive techniques and cross-validation such as 

Deletion\Substitution \Addition (D\S\A) algorithm (Sinisi and van der Laan , 2004) 

or super learner (van der Laan et al., 2007; Polley and Van der Laan, 2010) could be 

considered.  More detailed discussions on how to select the variables to be included 

in the exposure model can be found in Brookhart et al. (2006). 

Of the three above assumptions, only the ETA is verifiable. For a more 

complete description of these assumptions and their practical applications, the 

interested reader is referred to Cole and Hernán (2008).   
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4.2.2. Measure of Effect and Parameter Estimation 
 

Our goal was to estimate the effect of each biomarker (A) on survival T, while 

using covariate information to adjust for possible confounding, and informative 

drop-out. The parameter of interest was the log hazard ratio from the Weighted Cox 

proportional hazards model associated with each biomarker of interest. 

Suppose A is a binary biomarker with values 1 and 0 denoting the presence of 

absence of a certain biological characteristic.  Using a Cox regression model, we can 

estimate the importance of A with respect to T by taking the difference between the 

two following expressions: 

                                     
 
      

And  

                                     
 
   . 

The difference in log hazards is simply   , the quantity of interest.  It is estimated 

through the method of  partial likelihood (Cox, 1972).  Suppose there were m event 

times, and let the survival times (times to failure) be:  t1 < t2 < ... < tk  with 

corresponding  ―risk sets‖ Rt1, Rt2, ..., Rtk ( The risk set represents the set of subjects 

available for the event at time       Furthermore, let Rj be the list of subjects at risk 

just before tj.  In the standard procedure, parameter estimates are obtained using the 

unweighted ―partial likelihood‖ for  :          
      

     

       
             

 
      

where,  the vector     contains both the biomarker (A) and the covariates (W).  

Taking the log yields: 

 Log             
 
        

          
            

  . 
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We then computed the derivative of this function with regards to   and set the 

ensuing score function to 0.  The MLE of            was obtained as a solution to the 

system of the equations: 

     

  
      

 
   

   
      

 
            

       
            

 
    =0         

In the  weighted Cox regression setting, the above Cox partial likelihood score for the 

parameter   should be  modified to incorporate the weight for each subject in the 

risk set at time      Suppose     is the product of the censoring weights and the 

exposure weights for each subject, the above score equation would become: 

     

  
         

 
   

     
 
 
      

             

        
 
            

 
     = 0. 

4.2.3. Inverse Probability Weighting Implementation 
 

Two models were used in the estimation of the weights: the biomarker 

exposure model and the censoring model.  While weights from the biomarker 

exposure model allowed one to adjust for confounding, those from the censoring 

model adjusted for possible informative censoring. In the weighted Cox regression 

model, a cumulative product of those two weights for each subject at each time point 

was used.   

4.2.3.1. Biomarker Exposure Model 
 

The first task in creating the weights consisted in estimating the biomarker 

exposure model, P(A|W).  For binary biomarkers, the selection of this model was 

achieved through logistic regression.  Assuming a model of the form 
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     +     , we computed the following expressions of 

probability:               
            

                and              
 

               .     

For continuous biomarkers, a flexible parametric approach, proposed by 

Hirano and Imbens (2004) was implemented to compute a generalized propensity 

score required to create the weights.  First, we postulated a normal distribution of 

the continuous biomarker (A) given the covariates, i.e.                
 
     

  .  

Then the parameters   ,   ,    were estimated by least squares regression.  

Following Hirano and Imbens (2004), we estimated the generalized propensity 

scores by inserting the estimates of these parameters into the normal density:  

  
   

 

      
       

              

       .  

In the second stage of this approach, we created the weights. Stabilized 

weights for binary biomarkers A were:      
       

           
. For continuous biomarker 

variables, the estimated stabilized weights were constructed as a ratio of densities 

(i.e,       
   

      
) as proposed in Robins et al. (2000);     is the marginal density of 

the continuous biomarker (A), and        is the conditional density of the biomarker 

(A) given the set of covariates (W). To estimate the numerator     we specified a 

normal distribution (i.e.            
   , and then plugged the mean     and the 

empirical variance      of the biomarker (A) values  into the normal density. The 

denominator was estimated based on the generalized propensity score method of 

Hirano and Imbens (2004) described above.  
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4.2.3.2. Censoring mechanism 
 

To correct for informative censoring, a process similar to the one followed for 

binary exposure variables was implemented.   For this purpose, we derived a 

censoring indicator variable that took the value of 1 if the subject was censored and 0 

otherwise.  For each subject i at each time point j, we estimated through a pooled 

logistic regression model the probability of being uncensored conditionally on 

baseline covariates and biomarkers, and the predicted probability from this model 

was used to generate weights for each participants at all time points.  Only non-

administrative censoring was corrected for.  Administrative censorings were treated 

differently in the censoring model than earlier drop-out: while earlier drop-outs were 

assigned a 1 for the censoring indicator at their last visit, subjects administratively 

censored had a 0 if they never had the event and were in the study at least 6 months 

preceding the analysis cutoff date.  The censoring weights, in the presence of non 

time-varying covariates, were defined as: 

   *(t)= 
            

               

 
   , where C(t)=1 if a subject was right censored by time t, 

and 0 otherwise. 

4.2.4. Weighted Cox Proportional Hazards Model 
 

In order to generate final adjusted estimates of the overall effect of each 

biomarker, each subject’s observation was weighted by     x    *(t).  Based on a 

number of applications available in literature, the conventional approach to fitting 

such models  has been to use the time-varying, subject-specific stabilized weights in 

a weighted pooled logistic regression model in order to approximate the parameters 
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of a time-dependent Cox model.  Relevant examples can be found in Hernán et al. 

(2000), Choi et al. (2002); Cole et al. (2003, 2008), Westreich et al. (2010).  This 

approximation of the Cox regression based on pooled logistic regression works well 

when events are rare, but tends to produce biased estimates of the exposure effect in 

the case of frequent events (Young at al, 2009).  Xiao et al. (2010) argued that an 

alternative approach might be to fit a directly weighted time-dependent Cox 

proportional hazards model and used evidence from simulations to demonstrate that 

this approach always yields unbiased estimates whether or not the outcome under 

study is rare.   

Based on the work of Young at al. (2009) and of Xiao et al. (2010), in this analysis we 

used the counting process style of input to fit a weighted time-dependent Cox 

regression using the PHREG procedure in SAS software ( version 9.2, SAS Institute, 

Cary, NC). We defined an indicator of failure (Dj) at time j within each subject-visit 

[start, stop].  Biomarker exposure served as the lone regressor in the Cox model. We 

accounted for any within-subject correlation induced by the individual weights by 

computing robust estimates of the standard errors based on the sandwich estimator 

(Lin and Wei, 1989).  An additional advantage of this approach is the fact that 

survival estimates were readily available, thus could be used to generate weighted 

survival curves for each biomarker of interest. 

4.3. Application 

4.3.1. Study Population 
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The dataset used for application in this paper came from the Hormonal 

Contraception and HIV Genital Shedding and Disease Progession Study (thereafter 

referred to as GS study), a prospective multicenter study of 306 HIV infected women 

aged 18 to 45 years old from Uganda and Zimbabwe.  This study started in 2001 as 

an add-on to the HC-HIV study (Morrison et al., 2007) and was completed in the 

field in  December 2009.  Women who seroconverted during the course of the HC-

HIV study were recruited for the GS study, based on procedures outlined in 

Morrison et al. (2010). The study specific objectives are described in details 

elsewhere (Morrison et al., 2007, 2010), but one key research question is the effect of 

hormonal contraception on the biological parameters of the infectivity of women 

with primary and chronic HIV infection to their sex partners. 

The GS Study consisted of a baseline visit and follow-up visits at 2, 4, 8 and 12 

weeks following HIV seroconversion, and then every 12 weeks for up to 9 years.  

Women who developed severe HIV infection or who had successive CD4 cell counts 

at or below 200 cells per mm3 were offered highly active antiretroviral therapy 

(HAART) and were seen twice a month initially, then monthly thereafter.  In 

addition to baseline demographic characteristics, at each time point, information on 

various laboratory parameters, reproductive variables, contraceptive exposure, and 

recent sexual behavior was collected.  Laboratory data that was collected included 

HIV plasma viral load, HIV sub-type, CD4, CD8 and total lymphocyte counts, serum 

chemistries, lipid profile,  specimens for the detection of chlamydial, gonococcal, 

syphilis, herpes simplex virus 2 (HSV-2), and Human papillomavirus (HPV) 

infections.  The study also collected information on hormonal contraceptive use, 
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diisease progression parameters, as well as virologic, immunologic, and clinical 

response to HAART among hormonal and non-hormonal contraceptive method 

users. For a detailed description of the study population and procedures, the reader 

is directed to Morrison et al. (2010).        

4.3.2. Outcome Definition and Censoring 
 

In this analysis, the time variable was defined as the time from estimated HIV 

infection date to either the second of two successive CD4 cell counts below 350 

cells/mm3 or the second CD4 cell count of 350 cells/mm3  or below within a six 

month period.    In both cases, we considered two CD4 counts below 350 cells/mm3 

instead of a single count below 350 cells/mm3 because CD4 cell count measurements 

tend to be highly variable both from person to person and within an individual 

patient.  Taking more than one measurement helps mitigate the effect of large 

individual variability in CD4 cell counts values.   

The choice of the threshold of 350 cells/ mm3 for CD4 cell counts was based 

on current guidelines for the use of antiretroviral agents in adults and adolescents 

infected with HIV-1 in the absence of an AIDS-defining illness (Panel on 

Antiretroviral Guidelines for Adults and Adolescents, 2008; Hammer et al., 2008). 

Also, evidence from the literature suggests that early initiation of antiretroviral 

therapy before the CD4 cell count falls below 350 cells per mm3 significantly 

improves survival, as compared to deferred therapy (Sax and Baden, 2009; Kitahata 

et al., 2009; When to Start Consortium, 2009).  
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In this study, censoring occurred either by death, loss to follow-up, or by end 

of study observation.  In this analysis, any subject who was still alive, did not 

experience the outcome and was still in the study at the end of 2009 was censored at 

their last recorded visit.  This kind of censoring, referred to as administrative 

censoring, was treated differently in the censoring mechanism model, than drop outs 

that occurred 1 year or more prior to the data cutoff for this analysis.  As mentioned 

in section 2, drop-outs as a result of death or loss to follow-up (depending on the 

type of loss to follow-up) could be non-random.  Thus, the need to control for both 

confounding and informative censoring motivates the application of inverse 

probability of treatment and censoring weighting to this data set. 

4.3.3. Biomarker Exposure Variables and Covariates   

                                                                                      
In the analysis, we controlled for a host of risk factors reported in the 

literature to be predictive of incident HIV infection or clinically associated with HIV 

disease progression (Van Der Pol et al., 2008).  These covariates include age, 

country, primary partner risk, STI history, having more than one sex partner, 

number of coital acts in previous 3 months, frequency of nights away from home by 

study subject’s partner, condom use consistency, study subject’s partner’s sexual 

behavior and risk, and breastfeeding. 

The biomarkers for which we estimated a measure of variable importance 

included plasma viral load, HIV sub-type (A, C, D), hemoglobin level, CD4 cell 

counts at baseline, CD8cell counts, total lymphocyte counts, HSV-2 status, CD4/CD8 

ratio, and CD4 percentage.  
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Finally, baseline in this analysis was defined as the latest available biomarker 

and covariate measurements at 6 months after the estimated HIV infection date.  A 

number of participants, however, were missing baseline data related to a few 

biomarkers.  For these subjects, baseline was redefined as the first GS visit with 

available biomarker data.  

4.4. Data Analysis 
 

Because the censoring process was time-dependent, we used the counting 

process formulation to create the dataset required for the analysis. Following the 

work of Anderson and Gill (1982) who developed the notion of the counting process 

style of input, we allowed each individual in the sample to have multiple records, one 

per measurement occasion, containing a time interval (start, stop), a censoring 

indicator showing the status of the interval, and  a vector of explanatory variables, 

including the biomarker of interest.  This analysis was restricted to biomarkers and 

covariates selected 6 months after estimated date of infection. They remained fixed 

at all follow-up visits.  No time-varying exposure or covariates were involved. 

In the raw data, the continuous biomarker variables were measured on vastly 

different scales.  The fact that the regression coefficients in the weighted Cox 

proportional hazards model depended on the units of measure made it difficult to do 

meaningful comparison based on metric regression coefficients alone.  To 

circumvent this problem, we incorporated standardized continuous biomarker 

variables (created by subtracting the mean and dividing by the standard deviation) 

rather than the raw continuous variables in the different regression models.  
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Essentially, a Z-score was computed for each continuous variable: CD4 cell counts at 

baseline, CD8 cell counts, HIV RNA, Hemoglobin level, CD4/CD8 ratio, CD4 

percent, and lymphocyte counts.  The standardization resulted in a mean of 0 and a 

variance of 1 for each standardized variable, making the regression coefficients for 

the affected variables directly comparable to one another.  No change was made to 

the binary biomarker variables. The standardized coefficients should then be 

interpreted in terms of change in the clinical response variable resulting from a 

change of one standard deviation in the continuous biomarker variable of interest.  

The p-value for the test of the hypothesis of no exposure effect stays the same 

whether or not one uses raw or standardized variables. 

4.4.1. Weights Estimation 
 

To estimate the weights, we fitted four different pooled logistic regression 

models.  From the first two models, we generated the predicted probabilities 

required to compute the stabilized weights associated with the biomarker exposure.  

The numerator of the weights was obtained from an-intercept only regression model 

with biomarker (A) as the dependent variable, while estimates for the denominator 

came from a multivariate regression model with  the same covariates listed above 

plus  a smooth function of study duration represented by natural cubic splines with 4 

knots at the 5th, 35th, 65th, and 95th percentiles (Harrel, 2001).  The use of the cubic 

splines in lieu of a linear term relaxed the dependency on the strong linearity 

assumption with regards to duration of follow-up while allowing for time-varying 

hazards. 
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Two additional pooled logistic models were used for estimating the censoring 

weights.  All the covariates listed above, including the cubic splines, were used in the 

estimation of the numerator.  For the denominator, the biomarker exposure variable 

of interest was included as an additional regressor. 

For each subject i at each time point j, we subsequently computed an overall 

weight that was the product of stabilized weights obtained from the biomarker 

exposure model and the censoring mechanism.  These weights were then entered 

into the Cox model to generate the adjusted estimates of the variable importance 

measure for each biomarker.  This process was followed separately for each 

biomarker               There were then k estimates of    
    of variable 

importance measures and k p-values denoted as P1, P2,…, Pk.  We adjusted the p-

values for multiplicity testing to control the false discovery rate.  The Benjamini and 

Yekutieli (2001) False Discovery Rate (FDR) controlling procedure was used to 

account for the dependence of the test statistics.  Significance for each biomarker 

was assessed by comparing related adjusted p-value to the 0.05 alpha level.  A lower 

p-value denoted a better measure of importance. 

4.4.2. Results 
 

In the GS study, the median age at enrollment was 27 years.  Women from 

Zimbabwe accounted for 58.5% of the population while those from Uganda made up 

the remaining 41.5%.  About 8% of all study subjects had at least two sex partners 

while 14% had a STI history, 8% were breastfeeding, and 45% displayed STI 

symptoms.  These women averaged 11.2 (Standard Deviation [SD] = 15.5) sex acts 
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per month, but only 35% of them reported consistent condom use.  On average, the 

partners of these women spent 10 (SD=15.2) nights away from home, and 75% of 

those partners had been reported to have had sex with another woman in the three 

months prior to enrollment in the study. Finally, 59% of the subjects’ partners met 

the study definition for primary partner risk, a composite variable that included 

having a partner with HIV, urethral discharge, weight loss, nights spent away from 

home, or a history of sex with female sex workers. 

Table 7 presents the distribution of the stabilized weights.  Overall, the mean 

for the weights computed for each biomarker was clustered around 1, which is a 

desired result.  All biomarkers displayed small variability in the weights.   

For each biomarker, we derived estimates of 5-year cumulative probability of 

survival with corresponding 2-sided 95% confidence intervals, using the Kaplan 

Meier estimator (Kaplan and Meier, 1958).  In this context, survival was defined as 

the probability of not experiencing the event of interest in the first 5 years since 

estimated infection date.  For the purpose of survival curves estimation, all 

biomarkers measured on a continuous scale were dichotomized based on meaningful 

clinical values suggested in literature (Table 8).   In short, having the following 

biomarker characteristics was associated with a 5-year cumulative probability of 

survival   40%: CD4 at baseline   500 cells/mm3 (35% survival rate), Lymphocyte 

count < 1200 cells/mm3 (35%), and CD4 Percentage    20 % (30%).   

We computed both weighted and un-weighted estimates of the importance of 

each of the 11 biomarkers under consideration (Tables 9 and 10).  The un-weighted 

estimates were obtained from a standard Cox proportional hazards model with the 
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following covariates: age, country, primary partner risk, STI history, having more 

than one sex partner, number of coital acts in previous 3 months, frequency of nights 

away from home by study subject’s partner, condom use consistency, study subject’s 

partner’s sexual behavior and risk, and breastfeeding. The results in Table 9 suggest 

that, when the standard Cox model was used, the following biomarker variables had 

a significant impact on CD4 cell counts: Baseline CD4 Cell count, CD4/CD8 T-cell 

Ratio, Plasma Viral Load, and Lymphocyte Count.   

In the weighted analysis (Table 10), the same four biomarkers were found to 

exert a significant impact on the time to the second successive drop of CD4 cell 

counts below the threshold of 350 cells/mm3.  Based on the magnitude of the p-

values, the most important biomarkers were baseline CD4 Cell count, CD4 

Percentage, CD4/CD8 Ratio, Lymphocyte Count and HIV Subtype A.  Note that, in 

the pseudo-population created by the weights, HIV subtype A only reached 

borderline statistical significance.   

Evidence from both tables 10 and 11 suggests that a lower hazard (better survival) 

was associated with increases in Baseline CD4 Cell count, CD4 Percentage, CD4/CD8 

Ratio, Lymphocyte Count, hemoglobin levels, and with being of HIV Subtype A.  For 

these biomarkers, the log hazard ratio is negative.  Conversely, a higher hazard 

(lower survival) was linked to increases in Plasma Viral Load (Log10/mL), in CD8 

cell counts, and with being of HSV-2 positive or of HIV subtype C or D (positive log 

hazards ratio).   
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4.5. Discussion  
 

In this study, we applied a flexible tool for estimating biomarker exposure 

effects in observational data, taking into account covariates information.  The list of 

biomarkers deemed significant as well as the direction of the associations noted - as 

suggested by the sign of the log hazards ratio or by a visual inspection of the adjusted 

survival curves (not shown) - is consistent with current clinical and medical 

knowledge of HIV infection.  For instance, a negative log hazards ratio was expected 

- and found - for increases in lymphocytes counts.  It is known that total lymphocytes 

counts (TLC) tend to decrease as a result of HIV infection and disease progression.  

Also, the significant association found with the outcome is consistent with research 

findings of a relatively high positive correlation between absolute values of TLC and 

CD4 cell counts or between changes in TLC and CD4 cell counts (Badri and Wood, 

2003; Mwamburi  et al., 2005).  This finding could have practical applications for 

HIV medical care. As a measure of a patient’s immune capacity, CD4 cell count is 

considered as a standard method for determining eligibility for highly active 

antiretroviral therapy (HART) and HIV disease progression.  However, its 

measurements require highly skilled personnel and costly maintenance of 

sophisticated equipment, and these costs could be prohibitive in resource-deprived 

countries. Cheaper alternatives identified in this study (e.g. TLC), upon further 

evaluation, could potentially support decision-making with regards to the initiation 

of antiretroviral therapy or could help monitor patients’ immune status during 

therapy in the absence of expensive CD4 measurements.  Overall, the application of 

the weighted Cox proportional hazards model to the GS study data provides valuable 
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information for HIV medical care, and should be considered in the panoply of 

techniques used in biomarker assessment. 

In addition to its ability to produce a consistent estimate of the effect of a 

given exposure, the Weighted Cox proportional hazards model is appealing because 

it makes it easier to create adjusted survival curves, which can be viewed as a graphic 

summary of the data averaged over the covariates used in the weights models.  While 

adjusted estimates from the Cox proportional hazards model have been ubiquitously 

used in the reporting of results from survival analysis, survival curves have been 

used less frequently in observational studies (Hernán, 2010) due to the lack of a 

standard method for dealing with confounding.   There have been attempts in the 

literature to generate adjusted survival curves from the conventional Cox model, but 

these applications were fraught with problems (Nieto and Coresh, 1996).  One 

notable shortcoming identified in Nieto and Coresh’s paper was the inability to 

adjust for continuous covariates.  In their 2004 paper, Cole and Hernán proposed 

and demonstrated the idea of using survival estimates from the weighted Cox model 

to generate adjusted survival curves.  This method was simple, easily implemented 

using standard statistical software, did not involve stratification on any covariate, 

and accommodated both continuous and time-varying covariates.  Thus, even when 

results and conclusions from standard covariate adjustment through the 

conventional Cox proportional hazards model are identical to those from a Weighted 

Cox proportional hazards model performed on the same data, the latter method has 

the advantage of readily generating adjusted survival curves.  Certainly, the use of 

survival curves to report results from time to events analyses is encouraged (Hernán, 
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2010) because survival curves have served as effective tools for displaying 

informative and meaningful summary of study findings over the span of the entire 

study period.     

This study has limitations.  We applied the weighted Cox proportional hazards 

model under the assumption of no unmeasured confounders for biomarker exposure 

and censoring.  There is no direct way to verify whether there remained any putative 

confounders that were not part of the vector of covariates (W) used in this study. All 

measured confounders are controlled for in the weights, and bias could still exist if 

some important confounding variables were not measured and, therefore, were not 

included in the weighted models.  To guard against violation of this assumption, we 

included process a number of covariates believed to be related to the exposure of 

interest and the outcome (based on existing literature and expert knowledge) in the 

modeling process (Van Der Pol, 2008).  Another potential limitation could be the 

occurrence of practical violations of ETA.  Research by Wang et al (2006), 

Neugebauer and van der Laan (2005), and by Moore et al (2010) has demonstrated 

how ETA violations could result in significant bias in the inverse probability 

weighted estimator of causal effect models.  In real life applications, it is not 

uncommon for an exposure to occur with a small probability or even with 0 

probability within a given stratum of subjects.  Also there may just be practical 

violations of ETA, defined as the occurrence of random 0 or 1 probability by chance.  

In this study, we have used a number of biomarkers measured on continuous scales, 

and it is known that ETA violation tends to be frequently associated with the use of 

continuous exposure variables.  To reduce the impact of practical violations of ETA 
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on the stability of our estimator and to ensure an adequate bias-variance trade-off, 

we set all estimated probabilities from both the censoring and exposure models 

below 0.01 to 0.01, as suggested in Bembom et al. (2008).  Another technique 

implemented in this analysis to mitigate the effects of possible ETA violations was 

the use of stabilized weights, which allowed for a weaker form of the ETA 

assumption (Wang et al, 2006). 

4.6. Conclusion 
 

This paper has provided an overview of the inverse probability weighting 

estimator and its application to the problem of biomarker selection in a survival 

setting.  We used an example of observational HIV infection data to illustrate the 

appropriateness of this method as a tool for generating marginal variable importance 

measures for each biomarker of interest.  This example, however, involved only static 

exposures and covariates.  In actuality, biomarker data may involve time-varying 

covariates that could be both a risk factor for the outcome and a predictor of 

subsequent exposure.  Furthermore, in those data, past exposure history might 

predict the risk factor.  In such occurrences, the methods used in this paper should 

be extended to account for time-dependent covariates and exposure.  One suitable 

solution could be the use of Robin’s marginal structural models (Robins et al, 2000; 

Hernan et al, 2000), which have gained widespread use and acceptance in dealing 

with time-varying confounders.  Another possible alternative could be the 

collaborative targeted maximum likelihood estimation (van der Laan and Gruber, 

2009; Stitelman and Van der Laan, 2010), a methodology developed by Van der 
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Laan specifically with observational data in mind.  This extension of the theory of 

targeted maximum likelihood (Van der Laan and Rubin, 2006) estimation is 

believed to provide substantial gains in both robustness and efficiency over 

commonly used methods.



 

 

 

 

CHAPTER 5: CONCLUSION 
 

5.1. Overview of the study 
 

The objective of this research was to evaluate the use of biomarker data for 

disease detection, diagnosis, and prognosis.   Because of recent development of new 

biological and molecular techniques, a large number of new biomarkers have become 

available. Determining the predictive and diagnostic value of these biomarkers, 

singly or in combination, is essential to their being used effectively.  This has spurred 

the development of new statistical methodologies that can exploit this wealth of 

information to adequately explain the relationship between biomarkers and 

outcomes of interest.  This research used novel statistical methods to identify 

biomarkers with good performance characteristics while providing guidelines for 

biomarker data collection and assessment, such as sample size requirements.   

The central question addressed in this dissertation was the following: Given a 

large set of biomarkers that potentially predict a clinical outcome, how can one make 

a determination as to which ones are the most important?  To answer this question, 

we applied different estimation methods to generate a marginal variable importance 

measure (VIM) separately for each biomarker.  Then we used the estimated VIM to 

make inferences about the importance of each biomarker.  We performed biomarker 

evaluation in three different settings: Point treatment, longitudinal repeated 

measures, and time to event.  Methods applied at each setting were as follows: 
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5.1.1. Point Treatment  
 

Because CD4 cell count, as an indicator of disease progression, is frequently used 

to determine eligibility for HAART initiation, it is of interest to know as early as 

possible which subjects from a cohort are most at risk for CD4 cell count depletion.  

This information could then guide monitoring efforts or HAART initiation policies.  

The evaluation of biomarker selection methods that could provide such information 

in the short term is the crux of chapter 2.  In this analysis, the outcome was a binary 

variable representing 2 successive drops in CD4 count to below 350 cells per mm3 in 

the first two years following the viral set point (121 days from estimated infection 

date).   Methods discussed in this context included Targeted maximum likelihood 

estimation (TMLE), flexible propensity score weighting (PSW), and incremental 

value estimation based on partial area under the Receiver-Operating Characteristic 

(ROC) curve.  TMLE and PSW were both applied in a counterfactual framework and 

involved maximizing the following objective functions:  =   [E(Y=1|   =1, W) - 

E(Y=1|   =0, W)] (for binary A), and  =   [E(Y=1|   =a, W) - E(Y=1|   =  , W)] 

(for continuous A).  Both methods involved two nuisance parameters P(Y|A,W) and 

P(A|W).  In the estimation of  the variable importance measure, the TMLE  added a 

covariate created from P(A|W) to the initial regression model, while the PSW 

method used weights from estimated propensity scores to incorporate the 

relationship between A and W in the regression P(Y|A,W).    
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In the third method highlighted in chapter 2, called incremental value 

estimation for partial area under the ROC curve, we defined variable importance 

measure as the improvement in classification performance gained by adding each 

biomarker separately to the set of covariates.  More specifically, we generated an 

ROC curve for a combination of biomarker and covariates using the model  

P(Y=1|A,W) and  another ROC curve for the covariates alone based on P(Y=1|W).  

The VIM for each biomarker was given by the difference in pAUC between the two 

models.   

5.1.2. Longitudinal Repeated Measures 
 

In this analysis, we extended the TMLE methodology to longitudinal repeated 

measures to look at trends over a longer term.  We addressed the gap caused by the 

absence of a generally accepted approach for generating a scalar value representing a 

measure of variable importance over time.  We proposed and implemented a 

methodology integrating both TMLE and the computation of the area under/above 

the LOESS curve.  Computation of the index measure of interest is based on the 

composite Simpson’s rule for numerical integration and is given by: 

           
 

 
 

 

 
              

  

 
         

  

 
         

 
   

   
     where the 

time interval [a, b] is subdivided into 2m subintervals                  
   of equal 

width    
   

  
 , and f(.) are the predicted values from the LOESS model relating  the 

VIM,  , to time.  We then compared results from this approach to those obtained 

from an autoregressive model. 
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5.1.3. Time to Events 
 

In this analysis, we took right censoring into consideration.  The outcome was 

defined as the time from estimated HIV infection date to either the second of two 

successive CD4 cell counts below 350 cells/mm3 or the second CD4 cell count of 350 

cells/mm3  or below within a six month period.  Control for measured confounding 

and potential informative censoring was achieved through the use of stabilized 

weights in a time-dependent Cox proportional hazards model.  From the log hazard 

given by log λ (t |A, W) = log                  
 
   , the parameter     estimated 

through partial likelihood, captures the effect of the biomarker and represents the 

VIM of interest. 

5.1.4. General methodology  
 

Under each method, we carried out a separate analysis to estimate a marginal 

measure of importance of each biomarker, controlling for measured confounding 

variables. This measure of importance represents the effect of each biomarker on the 

outcome.  For inference, we applied a nonparametric bootstrap.  We determined the 

importance of each target biomarker based on the magnitude of the p-value from the 

hypothesis test of a non-zer0 mean bootstrapped estimate for each biomarker.  To 

take into account multiple testing and dependency of the different test statistics, we 

applied the Benjamini and Yekutieli procedure for controlling the False Discovery 

Rate (FDR).  Statistical significance was reached if the FDR-adjusted p-value was 

smaller than or equal to alpha=0.05, with smaller p-values indicative of greater 

importance.  A dataset from the Hormonal Contraception and HIV Genital Shedding 
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and Disease Progression Study (GS Study) that included longitudinal HIV infection 

data on a sample of 306 HIV-infected adult women from Uganda and Zimbabwe was 

used to develop and evaluate the methods discussed in this dissertation. 

5.2.  Summary of the Results and Discussions 
 

In the cross-sectional analysis, the most important biomarkers under the 

TMLE methodology, among the 11 biomarkers considered, were baseline CD4 cell 

count and CD4/CD8 T cell ratio.  Under the PSW approach, the biomarkers selected 

as most important were: HSV-2 status, CD4/CD8 T cell ratio, baseline CD4 cell 

count, and plasma viral load.  No biomarker was selected as important by the 

incremental value method. 

We made further statistical evaluation of these methods by performing 

simulations to assess their finite sample properties.  Our results suggest that the 

PSW tend to perform better than the other methods in small to moderate sample 

sizes (i.e.  0 <N   200).  The TMLE performed reasonably well in moderate to large 

sample sizes (i.e. N   100).  Finally, the incremental value approach displayed an 

unsatisfactory ability in detecting significant biomarkers when the sample size is less 

than 200, but worked well with sample sizes over 200. 

In the longitudinal repeated measures analysis, the two methods under 

consideration yielded the same conclusion: Among the 11 biomarkers, the most 

important ones, based on the magnitude of the p-values, were baseline CD4 cell 

counts, HIV subtype, and HSV-2 status.  Simulation studies assessing sample size 

issues indicate that performance of both methods again depends on sample size. 
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In the time to events analysis, the most important biomarkers were baseline CD4 

Cell count, CD4 percentage, CD4/CD8 ratio, lymphocyte count and HIV subtype. 

The above results appear to indicate that the list of biomarkers selected as 

important depends on the type of analysis performed.  It would be tempting to 

expect the list of biomarkers deemed important to be consistent across all three 

analyses (point treatment, longitudinal repeated measures, and time to events).  It 

should be noted however, that the three major kinds of analyses conducted on the GS 

data did not address the same research question, as the definition of the outcome in 

each analysis incorporated different durations of time.    In the point treatment 

analysis, for instance, only the first two years following viral set point was of interest.   

This analysis inherently used less information from the GS data than the time to 

event analysis or the longitudinal repeated measures analysis, and the 2-year time 

period may not have been sufficient to detect the effect of certain biomarkers.  

Another possible explanation for the lack of consistency in the results could be the 

behavior of the biomarkers over time.   

Insights gained from the LOESS curves in chapter 3 suggest that the longevity of the 

predictive effect of certain biomarkers may increase, decrease, or stay relatively 

constant over time.  Thus, it is quite possible that some biomarkers could have an 

effect only in the short term, while the impact of other biomarkers may have been 

more pronounced in the longer term. 

If we were to consider results from the longitudinal repeated measures as the 

gold standard in this dissertation, on the basis of the amount of information 

available in the data, we would conclude that the most important biomarkers that 
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predict CD4 cell counts are:  Baseline CD4 cell counts, HIV subtype, and HSV-2 

status.  Of those three biomarkers, two (baseline CD4 cell count, HIV subtype) were 

selected as important in the time to events analysis, the second method in terms of 

amount of information used. In all three analyses, baseline CD4 cell count appeared 

on the list of the most important biomarkers.  This is consistent with results from 

other studies that found a similarly strong association the baseline CD4 count and 

the subsequent CD4 response for patients on HAART therapy (Byakwaga et al., 

2009; Florence et al., 2003; Le Moing et al., 2007; Robbins et al., 2009). 

While none of the results of the three types of analysis done on the GS data 

seem to contradict current medical knowledge, we should approach them with 

caution.  The definition of all 3 types of outcomes in this research involved time since 

infection.  In the GS Study, investigators knew the last time point where a participant 

was HIV-uninfected, so they have been able to combine this information with the 

date of the first visit where that person was confirmed infected to generate their best 

estimate of infection date.  In standard public health settings, this information is 

generally not available; thus, one may not know at what point in time relative to the 

infection date the  biomarkers have been measured.  An additional cautionary note 

concerns the use of HIV subtype results from this research.  The HIV subtypes A, C, 

and D are prevalent in African but not in Europe or North America.  Therefore, the 

results reported here may not be applicable to Western developed countries where 

subtype B is largely dominant. 

5.3. Contributions of the Study 
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From a public health perspective, this research is relevant for several reasons. 

It enabled us to identify from the GS study potentially useful candidate biomarkers 

based on their importance with regards to the outcome of low CD4 cell count.  For 

instance, analyses of the GS data in cross-sectional, longitudinal repeated measures, 

and survival contexts each identified baseline CD4 cell counts as one of the most 

important biomarkers. Based on this finding, a potential action item in public health 

practice could be the identification of patients at risk for CD4 depletion so that they 

could be monitored more closely and started on HAART, when necessary.  To 

accomplish this, it might be necessary to obtain an initial CD4 measure when 

infection is discovered, followed by repeated CD4 but perhaps less frequently for 

those with a high initial CD4 (say > 500 cells/mm3).  Tools such as the LOESS curve 

used in this research could be used to determine exactly when additional 

measurements are needed.  This could potentially help save lives, time, and money, 

especially in resources-deprived countries where the costs to measure CD4 are often 

prohibitive. 

From a more global standpoint, research of this kind has the potential to 

contribute to the advancement of both clinical and public health practice.  

Application of analytic methods used in this research to generate a list of useful 

candidate biomarkers based on their true importance in predicting a given outcome, 

could potentially help reduce waste and time by directing biologists’ focus on the 

best biomarkers, and by allowing practitioners to direct resources towards the most 

promising candidate biomarkers.  From a statistical standpoint, such a list can 
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further direct research on establishing the level of surrogacy of the significant set of 

candidate biomarkers. 

5.4. Strengths of the study  
 

This research draws its strength from the significance of the subject matter 

and the comprehensiveness of the implemented research plan. 

5.4.1. Significance and timeliness of the subject matter 
 

Biomarker identification has recently been the focus of tremendous research 

activity, from basic laboratory research to clinical and epidemiological 

investigations.  The work accomplished in this dissertation contributes to the 

statistical literature by addressing the issue of biomarker selection in various 

contexts (cross-sectional, longitudinal, survival) and by proposing a novel procedure 

based on non parametric regression (LOESS) to compute a longitudinal variable 

importance measure for biomarker evaluation.  This research provides also valuable 

information for HIV medical care.   

As biomedical research is increasingly moving towards a new era of predictive, 

preventive, and personalized medicine, successful biomarker selection and 

validation through a combination of enhanced genomic research techniques and 

novel robust statistical methods could speed early detection, diagnosis, and 

treatment of disease.  For instance, if biomarker identification is improved, this 

could accelerate introduction of treatment early in the disease process potentially 

leading to reduction in disease severity, complications and mortality. The end result 
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will be a reduction in the burden of disease and enhancement in life expectancy.  

Thus, patients and the public at large stand to benefit from any new reliable 

statistical method for biomarker selection that contributes to an early disease 

diagnosis or to a rapid, efficient, and economical drug development process.  Even 

though an HIV infection dataset is used in this research, the methods implemented 

in this study can be applied to other areas of biomedical research and public health 

practice, including vaccine studies. 

5.4.2. Comprehensiveness of the plan 
 

This research encompasses the assessment of innovative new statistical 

methodologies for biomarker identification that incorporate covariate information.  

The use of these methods for not only cross-sectional data, but also in the 

longitudinal and time-to event settings, combined with their application to a unique 

and rich data set of HIV infection data, and the simulation studies to develop sample 

size guidelines, create a comprehensive plan.    

5.5. Limitations of the Study 
 

This study has limitations.  The methods implemented in this research 

(TMLE, PSW, Weighted Cox regression) rely on the assumption of no unmeasured 

confounders, i.e. that within strata of covariates (W), the target biomarker (A) is 

randomized.  In this analysis, we tried to identify all important covariates (W) 

believed to be related to both potential outcomes and exposure (A) based on the 

literature or expert knowledge, and include them in the estimation of the effect of 

each biomarker.  There is, however, no direct way to verify whether there remained 
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any putative confounders that were not part of the vector of covariates (W) used in 

this study.  

Another potential limitation could be the occurrence of practical violations of 

experimental treatment assignment (ETA) in the three methods that used 

information from the biomarker exposure assignment P(A|W).   In real life 

applications, it is not uncommon for an exposure to occur with a small probability or 

even with zero probabilities within a given stratum of subjects.  In this study, we 

have used a number of biomarkers measured on continuous scales, and it is known 

that ETA violation tends to frequently be associated with the use of continuous 

exposure variables.  Such violations could result in biased exposure effects.  In the 

propensity score-based methods, we aimed at reducing the impact of practical 

violations of ETA on the stability of our estimators by either truncation of estimated 

probabilities from the censoring and exposure models or by use of stabilized weights.   

Sample size is another limitation of this study, especially in the cross-sectional 

analysis.  Over half of the biomarkers under consideration in this analysis had 200 or 

fewer non-missing observations because women not seen for more than 6 months 

following estimated infection date have missing data for biomarker measures.  In the 

marginal analyses that we performed for each biomarker one at a time, all records 

with missing biomarker information were excluded from the models.  As shown in 

simulation assessing the finite sample properties of the methods outlined in chapter 

2 (TMLE, PSW, and incremental value estimation), sample size does affect the ability 

of all these methods to detect ―true‖ significant biomarkers; all three showed a 

decreased ability in pinpointing significant biomarkers at smaller sample sizes (e.g. 



117 

 

N=100).  Hence, sample size constraints may have hindered us from detecting 

additional significant biomarkers in the GS dataset.  The sample size cut-points we 

identified through our simulations in chapter 2 and chapter 3 should serve only as 

starting point towards establishing sample size requirement guidelines for future 

data collection and assessment in biomarker studies where these selection methods 

are used. 

Finally, in this research, both biomarkers and covariates were chosen at 6 

months from estimated infection date.   The inclusion of time-varying biomarkers 

and covariates in both the longitudinal repeated measures analysis and in the time to 

events analysis might be a more suitable strategy for capturing the various 

dimensions of the clinical outcome, as compared to single fixed measurements.  It is 

possible that some biomarkers would exhibit a significant effect on CD4 cell count 

only when they are allowed to vary over time along with covariates of interest.  In 

such situations, measures taken at baseline might not have been good enough 

predictors of the outcome over the long term. 

5.6. Recommendations for future Research 
 

In this research, both biomarkers and covariates were chosen at 6 months 

from estimated infection date and remained fixed.  One future area of research could 

be the inclusion of time-varying biomarkers and covariates. Biomarker data often 

include time-varying covariates that could be both risk factors for the outcome and 

predictors of subsequent exposure.  Furthermore, past exposure history might 

predict those risk factors.  One suitable framework for dealing appropriately with 
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time-dependent covariates and exposure could be Robin’s marginal structural 

models (Robins et al, 2000; Hernan et al, 2000).  Another possible alternative could 

be the collaborative targeted maximum likelihood estimation (van der Laan and 

Gruber, 2009; Stitelman and Van der Laan, 2010), a methodology developed by Van 

der Laan specifically with observational data in mind.  This extension of the theory of 

targeted maximum likelihood (Van der Laan and Rubin, 2006) estimation is 

believed to provide substantial gains in both robustness and efficiency over 

commonly used methods. 

 Another logical and intuitive step from this research could be the evaluation 

of the role of a multi-marker strategy in improving diagnostic accuracy and 

prediction.  Specifically, it would be of clinical significance to determine whether the 

use of a 2 or 3-marker combination (e.g. baseline cd4, HIV subtype, and HSV-2 

status) would be superior to a single marker (e.g. baseline CD4 cell count) in terms of 

risk prediction.  To this end, one can utilize expert knowledge to make appropriate 

combinations of all biomarkers selected as important in this research.  Once the 

biological plausibility of these marker combinations has been established, one can 

then embark on a rigorous statistical evaluation aimed at selecting the optimal 

biomarker combination.  Of course, a drawback is that several biomarkers would 

have to be measured, perhaps even more than once, thus possibly making this 

approach less feasible in resource-constrained settings. 

 

  



119 

 

REFERENCES 

 
Alaiya A, Al-Mohanna M, Linder S. (2005). Clinical cancer proteomics: promises and 
pitfalls. J Proteome Res;4(4):1213-22. 
 
Anderson and Gill (1982). Cox's Regression Model Counting Process: A Large 
Sample Study.  Annals of Statistics, vol. 10, pp. 1100-1120. 

Badri M, Wood R. (2003). Usefulness of total lymphocyte count in monitoring highly 
active antiretroviral therapy in resource-limited settings. AIDS. 7;17(4):541-5. 

Baker  SG. (2003).  The central role of receiver operating  characteristic (ROC) 
curves in evaluating tests for the  early detection of cancer.  J. Natl Cancer 
Inst;95(7),511–515. 
 
Bamber D. (1975).  The Area Above the ordinal Dominance Graph and the Area 
Below the Receiver Operating Graph.  J Math Psych; 12: 387-415. 
 
Begg CB. (1991). Advances in statistical methodology for diagnostic medicine in the 
1980's. Statistics in Medicine; 10: 1887-1895.  
 
Bembom O, Fessel JW, Shafer RW, van der Laan MJ. (2008). "Data-adaptive 
Selection Of The Adjustment Set In Variable Importance Estimation". U.C. Berkeley 
Division of Biostatistics Working Paper Series.  Working Paper 231.  Available at: 
http://www.bepress.com/ucbbiostat/paper231 
 
Bembom O, Petersen M. L, Rhee S, Fessel J, Sinisi S. E, Shafer R. W, Van der Laan 
M. J. (2008). Biomarker discovery using targeted maximum-likelihood estimation: 
Application to the treatment of antiretroviral-resistant HIV infection. Statistics in 
Medicine 28, 152-172. 
 
Bembom o, Petersen ML, van der Laan MJ. (2006). Identifying important 
explanatory variables for time-varying outcomes. In W. Dubitzky, M. Granzow, and 
D.P. Berrar (eds.), Fundamentals of Data Mining in Genomics and Proteomics, 
Springer, Chapter 11, p.227-250. 
 
Benjamini Y. Hochberg Y. (1995).  Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 
B, 1995; 57: 289 -300. 
 
Benjamini Y, Hochberg Y. (2000). The adaptive control of the false discovery rate in 
multiple hypotheses testing. J. Behav. Educ. Statist; 25: 60-83. 
 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Badri%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wood%20R%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'AIDS.');


120 

 

Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate 
endpoints: preferred definitions and conceptual framework. Clinical Pharmacology 
and Therapeutics; 69: 89-95. 
 
Blatt SP, Lucey CR, Butzin CA, Hendrix CW, Lucey DR. (1993). Total lymphocyte 
count as a predictor of absolute CD4+ count and CD4+ percentage in HIV-infected 
persons. JAMA; 269(5):622-6. 
 
Benjamini Y, Yekutieli D. (2001). The Control of the False Discovery Rate Under 
Dependency. Ann Stat. 29,1165-1188. 
 
Breiman L. (1996). Bagging predictors. Machine Learning 24,123–140. 
 
Breiman L. Random forests. (2001). Machine Learning 45, 5-32. 
 
Breiman L, Friedman J. H, Olshen R. A, Stone C.J.  (1984). Classification and 
Regression Trees. Kluwer Academic Publishers.  
 
Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. (2006). 
Variable selection for propensity score models.  Am J Epidemiol;163(12):1149-56. 
 
Brown BW,  Russell K. (1997). Methods Correcting for Multiple Testing: Operating 
Characteristics. Statistics in Medicine;16: 2511–2528. 
 
Brown E. R, Otieno P, Mbori-Ngacha D. A, Farquhar C, et al.  (2009). Comparison of 
CD4 cell count, viral load, and other markers for the prediction of mortality among 
HIV-1-infected Kenyan pregnant women. J Infect Dis;199(9):1292-300. 
 
Burges C.J.C.  (1998). A tutorial on support vector machines for pattern recognition. 
Data Mining and Knowledge Discovery 2, 121 – 167. 
 
Buyse M,  Molenberghs G. (1998). The validation of surrogate endpoints in 
randomized experiments. Biometrics. 1998;54:1014-1029. 
 
Buyse M, Molenberghs G, Burzykowski T. Renard D, Geys, H. (2000).  The 
validation of surrogate endpoints in meta-analyses of randomized experiments. 
Biostatistics.2000;1: 49-68. 
 
Byakwaga H, Murray JM, Petoumenos K et al. (2009). Evolution of CD4+ T cell 
count in HIV-1-infected adults receiving antiretroviral therapy with sustained long-
term virological suppression. AIDS Res. Hum. Retroviruses; 25(6); 756–776. 
 
Carpenter J, Kenward M, Vansteelandt S. (2006).   A comparison of multiple 
imputation and inverse probability weighting for analyses with missing data. J.Roy. 
Statist. Soc. Ser. A. 2006;169:571–584. 
 



121 

 

Chen R. Y, Westfall A. O, Hardin J. M, Miller-Hardwick C, et al. (2007). Complete 
blood cell count as a surrogate CD4 cell marker for HIV monitoring in resource-
limited settings.  J Acquir Immune Defic Syndr;44(5):525-30. 
 
Cleveland, W.S. (1979). "Robust Locally Weighted Regression and Smoothing 
Scatterplots". Journal of the American Statistical Association 74 (368): 829–836.  
 
Cleveland, W.S.; Devlin, S.J. (1988). "Locally-Weighted Regression: An Approach to 
Regression Analysis by Local Fitting". Journal of the American Statistical 
Association 83 (403): 596–610.  
 
Cole SR, Frangakis CE. (2009). The consistency statement in causal inference: A 
definition or an assumption? Epidemiology, 20, 3-5. 

 Cole SR, Hernán MA. (2004).Adjusted survival curves with inverse probability 
weights. Computer Methods and Programs in Biomedicine 75: 45—49. 
 
Cole SR, Hernán MA. (2008). Constructing inverse probability weights for 
marginal structural models. American Journal of Epidemiology, 168(6): 
656-664. 
 
Cole SR, Hernán MA, Robins JM, Anastos K, Chmiel J, et al. (2003). Effect of highly 
active antiretroviral therapy on time to acquired immunodeficiency syndrome 
or death using marginal structural models. American Journal of Epidemiology, 
158(7):687-694. 
 
Cook, T. & Campbell, D. (1979). Quasi-experimentation: Design and analysis issues 
for field settings. Boston: Houghton-Mifflin. 
 
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical 
Scociety, Series B 34, 187-220. 
 
Cross Continents Collaboration for Kids (3Cs4kids) Analysis and Writing 
Committee. (2008). Markers for predicting mortality in untreated HIV-infected 
children in resource-limited settings: a meta-analysis. AIDS;22(1):97-105. 
 
Desai M, Stockbridge N, Temple R. (2006). Blood Pressure as an Example of a 
Biomarker That Functions as a Surrogate. AAPS Journal; 8(1): E146-E152. 
 
Devlin B, Roeder K, Wasserman L.(2003). Statistical Genetics: False discovery or 
missed discovery? Heredity, 2003; 91: 537-538. 
 
Dmitrienko A, Molenberghs G, Chuang-Stein C, Offen, W (2005). Analysis of Clinical 
Trials Using SAS: A Practical Guide, Cary, NC: SAS Institute Inc. 

http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association


122 

 

 
Dodd LE, Pepe MS. (2003). Partial AUC Estimation and Regression.  Biometrics 59, 
614-623. 
 
 Dudoit  S, Shaffer JP, Boldrick JC. (2003). Multiple Hypothesis Testing in 
Microarray Experiments. Statistical Science;18: 71–103. 
 
Dudoit S, Yang Y.H, Speed T.P, Callow M.J. (2002). Statistical methods for 
identifying differentially expressed genes in replicated cDNA microarray 
experiments. Statistica Sinica12, 111–139. 
 
Dutkowski  J,  Gambin A.  (2007). On consensus biomarker selection.  BMC 
Bioinformatics 2007,S5. 
 
Duvignac J, Thiébaut R (2006). CD4 Natural History and Informative Censoring in 
Sub-Saharan Africa.  Letter to the Editor.  JAIDS Journal of Acquired Immune 
Deficiency Syndromes.1; 43(3): 380-381. 
 
Easterbrook PJ, Smith M, Mullen J, O’Shea S, Chrystie I, Zuckerman M (2010). 
Impact of HIV-1 viral subtype on disease  progression and response to antiretroviral 
therapy. Journal of the International AIDS Society; 13:4. 

 Echt DS, Liebson PR, Mitchell LB, et al. (1991). Mortality and morbidity in patients 
receiving encainide, flecainide, or placebo. N Engl J Med; 324: 781–8. 
 
Efron B, Tibshirani R. (1994). An Introduction to the Bootstrap. Chapman & 
Hall/CRC. 
 
Ellenberg SS. (1991). Surrogate end points in clinical trials. British Medical Journal 
302, 63-4. 
 
Fiscus SA, Hughes MD, Lathey JL, Pi T, Jackson B, et al. Changes in virologic 
markers as predictors of CD4 cell decline and progression of disease in human 
immunodeficiency virus type 1-infected adults treated with nucleosides. AIDS 
Clinical Trials Group Protocol 175 Team.  (1998). J Infect Dis.;177(3):625-33. 
 
Fleming TR. (1994). Surrogate Markers in AIDS and Cancer Trials. Statistics in 
Medicine 13,1423-35. 
 
Fleming TR, DeMets  DL. (1996). Surrogate endpoints in clinical trials: are we being 
misled? Annals of Internal Med;125, 605-613. 
 
Florence E, Lundgren J, Dreezen C et al. (2003).  Factors associated with a reduced 
CD4 lymphocyte count response to HAART despite full viral suppression in the 
EuroSIDA study. HIV Med.; 4(3);255–262. 
 



123 

 

Folsom  AR, Chambless LE, Ballantyne CM et al. (2006).  An assessment of 
incremental coronary risk prediction using C-reactive protein and other novel risk 
markers: the atherosclerosis risk in communities study. Arch. Intern. Med; 166(13): 
1368–1373. 
 
Frangakis CE, Rubin DB. (2002). Principal stratification in causal inference. 
Biometrics; 8:21–29. 
 
Freund Y,  Schapire R.(1997).  A decision-theoretic generalization of online learning 
and an application to boosting. Journal of Computer and System Sciences;55(1):119–
139. 
 
Gelman  A, Meng XL. (2004). Applied Bayesian modeling and causal inference from 
incomplete-data perspectives. New York: Wiley. 
 
Genovese C, Wasserman L. (2004). A Stochastic Process Approach to False 
Discovery Control. The Annals of Statistics; 32 (3):1035-1061. 
 
Genovese CR, Wasserman L.(2002). Operating characteristics and extensions of the 
false discovery rate procedure. Journal Of The Royal Statistical Society Series B; 
64(3): 499–518.   
 
Gilbert PB, Hudgens MG.  (2008). Evaluating candidate principal surrogate 
endpoints.  Biometrics;64(4):1146-54. 
 
Goddard MJ, Hinberg I. (1989). Receiver operator characteristic (ROC) curves and 
non-normal data: An empirical study. Statistics in Medicine;9:325–337. 
 
Goodsaid F, Frueh F. (2007). Biomarker Qualification Pilot Process at the US Food 
and Drug Administration. AAPS Journal; 9(1): E105-E108. 
 
Green D.M, Sweets, JA (1996).  Signal Detection Theory and psychophysics, New 
York: Wiley. 
 
Guoan C, Tarek G, Chiang-Ching H, et al.(2002). Proteomic analysis of lung 
adenocarcinoma: identifcation of a highly expressed set of proteins in tumors. Clin. 
Cancer Res;8:2298-2305. 
 
Hajian-Tilaki KO, Hanley JA, Joseph L, Collet JP. (1997).  A Comparison of 
Parametric and Nonparametric Approaches to ROC Analysis of Quantitative 
Diagnostic Tests. Medical Decision Making;17:94–102. 
 
Hammer SM, Eron JJ, Reiss P, et al.(2008).  Antiretroviral treatment of adult HIV 
infection: 2008 recommendations of the International AIDS Society-USA panel. 
JAMA;300:555-570.  



124 

 

 
Hanley JA.(1988). The use of the binormal model for parametric ROC analysis of 
quantitative diagnostic tests. Medical Decision Making;8:197–203. 
 
Hanley JA.(1989). Receiver operating characteristic (ROC) methodology: The state 
of the art. Critical Reviews in Diagnostic Imaging; 29: 307-335. 
 
Hanley JA. (1998)  Receiver operating Characteristics (ROC) Curves.  Encyclopedia 
of Biostatistics; 5: 3738-3745. 
 
Hanley JA, McNeil BJ. (1982a). A Method of Comparing the Areas Under the 
Operating Characteristic Curves Derived from the Same Cases.  Radiology. 
1982;148:839-843. 
 
 Hanley JA, McNeil BJ. (1982b). The Meaning and Use of the Area Under the 
Operating Characteristic (ROC) Curve.  Radiology 1982;143:29-36. 
 
Hastie T. J, Tibshirani R.J. (1990). Generalized Additive Models, New York: 
Chapman and Hall. 
 
Heagerty PJ, Lumley T, Pepe MS. (2000) Time-dependent ROC curves for censored 
survival data and a diagnostic marker. Biometrics;56(2):337-44. 
 
Harrel Jr FE.  Regression Modeling Strategies.  Springer: New York 2001. 
 
Hirano K, Imbens GW (2004). The propensity score with continuous treatments. In 
―Applied Bayesian modeling and causal inference from incomplete data perspectives. 
An essential journey with Donald Rubin’s statistical family‖.  Wiley Series in 
Probability and Statistics, 73-84. 
Hernán, Miguel A. (2010).  The Hazards of Hazard Ratios.  Epidemiology; 21(1): 13-
15. 
 
Hernán MA, Brumback B, Robins JM. (2000). Marginal structural models to 
estimate the causal effect of zidovudine on the survival of HIV-positive men. 
Epidemiology, 11(5):561-570. 
 
Hernán MA, Brumback B, Robins JM.(2001). Marginal structural models to 
estimate the joint causal effect of nonrandomized treatments. Journal of the 
American Statistical Association, 96(454):440-448. 
 
Hernán MA, Hernandez-Diaz S, Werler MM, et al.(2002).  Causal knowledge as a 
prerequisite for confounding evaluation: an application to birth defects 
epidemiology. Am J Epidemiol;155 ( 2) : 176-184. 
 
Hernán MA, Robins JM. (2006).Estimating causal effects from epidemiological data. 
J Epidemiol Community Health;60;578-586. 



125 

 

 
Holland PW. (1986). Statistics and causal inference. Journal of the American 
Statistical Association; 81: 945–970. 
 
Huang Y, Pepe M, Feng Z. (2007). Evaluating the predictiveness of a continuous 
marker. Biometrics;63:1181-8. 
 
Janes H, Longton G. M, Pepe M. (2008). Accommodating Covariates in ROC 
Analysis. UW Biostatistics Working Paper Series. Working Paper 322.  
 
Janes H, Pepe M. Adjusting for covariate effects on classification accuracy using the 
covariate-adjusted ROC curve. Technical Report 283, UW Biostatistics Working 
Paper Series, 2006.  
 
Janes H, Pepe MS.(2008). Adjusting for covariates in studies of diagnostic, 
screening, or prognostic markers: An old concept in a new setting. Am J Epidemiol 
168, 89–97. 
 
Janes H, Pepe MS. (2008a). Adjusting for covariate effects on classification accuracy 
using the covariate-adjusted receiver operating characteristic curve. UW Biostatistics 
Working Paper Series. Working Paper 283.  
 
Janes H, Pepe MS. (2008b). Adjusting for covariates in studies of diagnostic, 
screening, or prognostic markers: an old concept in a new setting. American Journal 
of Epidemiology;168:89–97. 
 
Janes H, Pepe MS. (2008c).  Matching in studies of classification accuracy: 
implications for bias, efficiency, and assessment of incremental value. Biometrics; 
64:1–9. 
 
Kaleebu, P.; et al. (2000). "Molecular epidemiology of HIV type 1 in a rural 
community in southwest Uganda". AIDS Research and Human Retroviruses 16 (5): 
393–401.  
 
Kaleebu, P.; et al. (2002). Effect of human immunodeficiency virus (HIV) type 1 
envelope subtypes A and D on disease progression in a large cohort of HIV-1-positive 
persons in Uganda. Journal of Infectious Disease 185 (9): 1244–1250.  
 
Kanki, P.J.; et al. (1999). Human immunodeficiency virus type 1 subtypes differ in 
disease progression. Journal of Infectious Disease 179 (1): 68–73.  
 
Kang J, Schafer JL. Demystifying Double Robustness: A Comparison of Alternative 
Strategies for Estimating a Population Mean from Incomplete Data. Statistical 
Science, 2007: 22( 4): 523–539. 
 
Kaplan EL, Meier P.(1958). Non parametric estimation from incomplete 



126 

 

observations. J Am Stat Assoc 53:457–81. 
 
Kawado M, Hashimoto S, Yamaguchi T, Oka S, Yoshizaki K, Kimura S, Fukutake K, 
Higasa S, Shirasaka T. (2006). Difference of progression to AIDS according to CD4 
cell count, plasma HIV RNA level and the use of antiretroviral therapy among HIV 
patients infected through blood products in japan. J Epidemiol;16(3):101-6. 
 
Kjetil S.(2009).  Receiver-operating characteristic curve analysis in diagnostic, 
prognostic and predictive biomarker research. Journal of Clinical Pathology;62:1-5. 
 
Kish, L. (1965), Survey Sampling. John Wiley & Sons, New York. 
 
Kish, L. (1990). Why, When, and How? Proceedings of the Survey Research Methods 
Section.  American Statistical Association, PP. 121-130. 
 
Kitahata MM et al. (2009). Effect of early versus deferred antiretroviral therapy for 
HIV on survival. The New England Journal of Medicine 360,1815–26. 
 
Kiwanuka N, Robb M, Laeyendecker O, Kigozi G, Wabwire-Mangen F, Makumbi FE, 
Nalugoda F, Kagaayi J, Eller M, Eller LA, Serwadda D, Sewankambo NK, Reynolds 
SJ, Quinn TC, Gray RH, Wawer MJ, Whalen CC (2009). HIV-1 Viral Subtype 
Differences in the Rate of CD4+ T-Cell Decline Among HIV Seroincident 
Antiretroviral Naive Persons in Rakai District, Uganda. J  Acquir Immune Defic 
Syndr;00:000–000). 
 
Lagakos SW, Hoth DF. (1992). Surrogate markers in AIDS: where are we? Where are 
we going? Annals of Internal Medicine;116(7):599-601. 
 
Lassere MN.  (2007). The Biomarker-Surrogacy Evaluation Schema: a review of the 
biomarker –surrogate literature and a proposal for a criterion-based, quantitative, 
multidimensional hierarchical levels of evidence schema for evaluating the status of 
biomarkers as surrogate endpoints. Statistical Methods in Medical Research;17:303-
340. 
 
Lassere  MN, Johnson  KR, Boers  M, Tugwell  P, Brooks P, Buyse M, Altman  D, et 
al. (2007)Definitions and Validation Criteria for Biomarkers and Surrogate 
Endpoints: Development and Testing of a Quantitative Hierarchical Levels of 
Evidence Schema.  J Rheumatol; 34:607–15. 
 
Le Moing V, Thiebaut R, Chene G et al.(2007). Long-term evolution of CD4 count in 
patients with a plasma HIV RNA persistently <500 copies/ml during treatment with 
antiretroviral drugs. HIV Med.; 8(3);156–163. 
 
Levy S.E, Statnikov A, Aliferis C. (2005). Biomarker Selection from High-
Dimensionality Data. Microarray Technology. 



127 

 

Li J, Fine JP. (2008).  ROC analysis with multiple classes and multiple tests: 
methodology and its application in microarray studies. Biostatistics; 9: 566–76. 
 
Liang, K.-Y., and Zeger, S. L. (1986), .Longitudinal Data Analysis Using Generalized 
Linear Models,. Biometrika, 73, 13.22. 
 
Liotta G, Perno CF, Ceffa S, Gialloreti LE, Coehlo E, Erba F, Guidotti G, Marazzi MC, 
Narciso P, Palombi L. (2004). Is total lymphocyte count a reliable predictor of the 
CD4 lymphocyte cell count in resource-limited settings?  AIDS;18(7):1082-3. 
 
Lin, D.Y. and Wei, L.J. (1989), ―The Robust Inference for the Proportional Hazards  
Model,‖ Journal of the American Statistical Association, 84, 1074–1078. 
 
Lunceford JK, Davidian, M. (2004). Stratification and weighting via the propensity 
score in estimation of causal treatment effects: A comparative study. Statistics in 
Medicine; 23: 2937–2960. 
 
Machado SG, Gail MH, Ellenberg SS. (1990).  On the use of laboratory markers as 
surrogates for clinical endpoints in the evaluation of treatment for HIV infection.  J 
Acquir Immune Defic Syndr;3(11):1065-73. 
 
Maclachlan E, Mayer KH, Barnabas R, Sanchez J, Koblin B, Duerr A. (2009). The 
Potential Role of Biomarkers in HIV Preventive Vaccine Trials: A Critical Review. J 
Acquir Immune Defic Syndr; 51(5): 536-545. 
 
Martin DJ, Sim JG, Sole GJ, Rymer L, Shalekoff S, van Niekerk AB, Becker P, 
Weilbach CN, Iwanik J, Keddy K (1995).  CD4+ lymphocyte count in African patients 
co-infected with HIV and tuberculosis. J Acquir Immune Defic Syndr Hum 
Retrovirol.;8(4):386-91. 
 
Mayeux, R.(2004).  Biomarkers: potential uses and limitations. NeuroRx;1(2):182-8. 
 
Mellors JW, Muñoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, Kingsley LA, 
Todd JA, Saah AJ, Detels R, Phair JP, Rinaldo CR Jr. (1997).  Plasma viral load and 
CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern 
Med;126(12):983-5. 
 
McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 
9,190–195. 
 
McIntosh M, Pepe M. (2002). Combining several screening tests: Optimality of the 
risk score. Biometrics 58, 657-64. 
 
Mendoza C, Holguin A, Soriano V (1998). False positives for HIV using commercial 
viral load quantification assays. AIDS; 12(15); 2076-2077. 



128 

 

 
Metz CE. Basic Principles of ROC analysis. Semin nucl med. 1978;8:283–298. 
 
Molenberghs G, Burzykowski T, Alonso A, Buyse, M.  (2004). A perspective on 
surrogate endpoints in controlled clinical trials. Statistical Methods in Medical 
Research; 13:177-206. 
 
Molenbergh G, Burzykowski T, Alonso A,  Buyse M.  (2009).  A unified framework 
for the evaluation of surrogate endpoints in mental-health clinical trials.  Statistical 
Methods in Medical Research;00 ;1-32. 
 
Montaner JS, Le TN, Craib KJ, Schechter MT. (1992). Application of the World 
Health Organization system for HIV infection in a cohort of homosexual men in 
developing a prognostically meaningful staging system. AIDS;6(7):719-24. 
 
Moore K, Neugebauer R, Lurmann F, Hall J, Brajer V, Alcorn S, Tager I. (2010). . 
Ambient Ozone Concentrations and Cardiac Mortality in Southern California 1983-
2000: Application of a New Marginal Structural Model Approach.  Am J Epidemiol. 
(Advance Access published May 3, 2010). 
 
Moore KL, Van der Laan MJ.(2009).  Covariate Adjustment in Randomized Trials 
with Binary Outcomes: Targeted Maximum Likelihood Estimation. Statistics in 
medicine 28,39-64. 
 
Morrison CS, Demers K, Kwok C, Bulime S, Rinaldi A, Munjoma M, Dunbar M, 
Chipato T, Byamugisha J, Van Der Pol B, Arts E, Salata RA. (2010). Plasma and 
cervical viral loads among Ugandan and Zimbabwean women during acute and early 
HIV-1 infection. AIDS. 24(4):573-82. 

 Morrison CS, Richardson BA, Mmiro F, Chipato T, Celentano DD, Luoto J, Mugerwa 
R, Padian N, Rugpao S, Brown JM, Cornelisse P, Salata RA.  (2007). Hormonal 
contraception and the risk of HIV acquisition.  AIDS 21, 85-95.  

Mwamburi DM, Ghosh M, Fauntleroy J, Gorbach SL, Wanke CA. (2005). Predicting 
CD4 count using total lymphocyte count: a sustainable tool for clinical decisions 
during HAART use. Am J Trop Med Hyg. 73(1):58-62. 
 
Musial J, Swadzba J, Motyl A, et al. (2003). Clinical significance of antiphospholipid 
protein antibodies. Receiver operating characteristics plot analysis. J Rheumatol;30: 
723–30. 
 
Neugebauer R, Van der Laan MJ. (2005). Why Prefer Double Robust Estimators in 
Causal Inference? Journal of Statistical Planning and Inference 19, 405-426. 
 
No authors listed.  Preliminary report: effect of encainide and flecainide on mortality 
in a randomized trial of arrhythmia suppression after myocardial infarction. The 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moore%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Neugebauer%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lurmann%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hall%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brajer%20V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Alcorn%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tager%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morrison%20CS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Demers%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kwok%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bulime%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rinaldi%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Munjoma%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dunbar%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chipato%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Byamugisha%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Van%20Der%20Pol%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Arts%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Salata%20RA%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'AIDS.');
http://www.ncbi.nlm.nih.gov/pubmed/16014833
http://www.ncbi.nlm.nih.gov/pubmed/16014833
http://www.ncbi.nlm.nih.gov/pubmed/16014833


129 

 

Cardiac Arrhythmia Suppression Trial (CAST) Investigators.  N Engl J Med. 1989, 
Aug 10;321(6):406-12. 
 
Obuchowski NA. (2005). ROC Analysis. AJR Am J Roentgenol 184, 364-72. 
 
Obuchowski NA, Lieber ML, Wians FH Jr. (2004). ROC curves in clinical chemistry: 
uses, misuses, and possible solutions. Clin Chem;50:1118–25. 
 
Paice JA, Ferrans CE, Lashley FR, Shott S, Vizgirda V, Pitrak D (2000): Topical 
Capsaicin in the Management of HIV-Associated Peripheral Neuropathy. Journal of 
Pain and Symptom Management; 19:45-52. 
 
Panel on Antiretroviral Guidelines for Adults and Adolescents. (2008). Guidelines 
for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 
Washington, DC: Department of Health and Human Services,1-139.  
 
Pencina  MJ, D’Agostino RB. (2004). Overall C as a measure of discrimination in 
survival analysis: model specific population value and confidence interval 
estimation.  Stat. Med; 23 (13),2109–2123.   
 
Petersen ML, Wang Y, Van der Laan MJ, Bangsberg DR (2006). Assessing the 
Effectiveness of Antiretroviral Adherence Interventions: Using Marginal Structural 
Models to Replicate the Findings of Randomized Controlled Trials." JAIDS 
43.Supplement 1: S96-S103. 
 
Planella T, Cortés M, Martínez-Brú C, Barrio J, Sambeat MA, González-Sastre F. 
(1998).The predictive value of several markers in the progression to acquired 
immunodeficiency syndrome.  Clin Chem Lab Med;36(3):169-73. 
 
Polley EC,  van der Laan MJ (2010). "Super Learner In Prediction".  U.C. Berkeley 
Division of Biostatistics Working Paper Series. Working Paper 266. Available at 
http://www.bepress.com/ucbbiostat/paper266. 
 
Pepe, MS. (2000). Receiver Operating Characteristic Methodology.  Journal of the 
American Statistical Association 95, 308-311. 
 
Pepe, MS. (2003). The Statistical Evaluation of Medical Tests for Classification and 
Prediction. Oxford University Press. 
 
Pepe MS, Feng Z, Huang Y, Longton G, Prentice R, Thompson IM, et al. (2008).  
Integrating the predictiveness of a marker with its performance as a classifier. Am J 
Epidemiol;167:362-8. 
 
Pepe  MS, Janes H, Longton G, Leisenring W, Newcomb P. (2004).  Limitations of 
the odds ratio in gauging the performance of a diagnostic, prognostic, or screening 
marker. Am. J. Epidemiol, 2004; 159(9): 882–890. 

http://www.bepress.com/ucbbiostat/paper266


130 

 

 
Pepe MS, Janes HE. (2008). Gauging the performance of SNPs, biomarkers, and 
clinical factors for predicting risk of breast cancer  (Editorial). J Natl Cancer 
Inst.;100:978-9. 
 
 Pepe M, Longton GM, Janes H. Estimation and Comparison of Receiver Operating 
Characteristic Curves.  (2008). UW Biostatistics Working Paper Series.Working 
Paper 323.  Available at: http://www.bepress.com/uwbiostat/paper323. 
 
Pollard KS, Dudoit S, Van der Laan MJ. Multiple Testing Procedures. (2004).  R 
multtest Package and Applications to Genomics. U.C. Berkeley Division of 
Biostatistics Working Paper Series. Working Paper 164. Available at 
http://www.bepress.com/ucbbiostat/paper164. 
 
Prentice RL. (1989).   Surrogate endpoints in clinical trials: Definition and 
operational criteria. Stat Med; 8: 431–440. 
 
Qu Y, Adam B.L, Yasui Y, et al. (2002). Boosted Decision Tree Analysis of Surface-
enhanced Laser Desorption/Ionization Mass Spectral Serum Profiles Discriminates 
Prostate Cancer from Noncancer Patients. Clin Chem; 48(10):1835–1843. 
 
Qu Y, Case M. (2006). Quantifying the indirect treatment effect via surrogate 
markers. Statistics in Medicine; 25: 223-231. 
 
Robbins GK, Spritzler JG, Chan ES et al.(2009).  Incomplete reconstitution of T cell 
subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group 
protocol 384. Clin. Infect. Dis.;48(3); 350–361. 
 
Robins JM.  (1986). A new approach to causal inference in mortality studies with 
sustained exposure periods—application to control of the healthy survivor effect. 
Mathematical Modelling 7, 1393–1512. 
 
Robins JM (1995).  An analytic method for randomized trials with informative 
censoring: Part I.  Lifetime Data analysis 1: 241-254. 
 
Robins JM (1999). Robust estimation in sequentially ignorable missing data and 
causal inference models. In Proceedings of the American Statistical Association: 
Sectionon Bayesian Statistical Science, pages 6-10. 
 
Robins JM (2000). Marginal structural models versus structural nested models as 
tools for causal inference. In Statistical models in epidemiology, the environment, 
and clinical trials (Minneapolis, MN, 1997), pages 95-133. Springer, New York. 
 
Robins JM, Hernán MA, Brumback B. (2000). Marginal Structural Models and 
Causal Inference in Epidemiology. Epidemiology 11:550-560.  
 

http://www.bepress.com/uwbiostat/paper323
http://www.bepress.com/ucbbiostat/paper164


131 

 

Rosenbaum, PR. (2002). Observational studies (2nd ed.). New York: Springer. 
 
Rosenbaum P, Rubin, DB. The Central Role of the Propensity Score in Observational 
Studies for Causal Effects. Biometrika,. 1983;70: 41.55. 
 
Rosenblum M, van der Laan MJ (2010). Targeted Maximum Likelihood Estimation 
of the Parameter of a Marginal Structural Model. U.C. Berkeley Division of 
Biostatistics Working Paper Series. Working Paper 257.  
http://www.bepress.com/ucbbiostat/paper257. 
 
Rubin DB: Bayesian-inference for causal effects: the role of randomization. Ann Stat 
1978, 6:34-58. 
 
 
Rubin DB. (2004). Causal effects via potential outcomes. Scandinavian Journal of 
Statistics. 2004; 31, 161–170. 
 
Rubin DB. (2005). Causal inference using potential outcomes: Design, modeling, 
decisions. Journal of the American Statistical Association. 2005;100: 322–331. 
 
Rubin DB, Thomas N. (2000). Combining propensity score matching with additional 
adjustments for prognostic covariates. J Am Stat Assoc; 95: 573–85. 
 
Rubin DB, Thomas N. (1996).  Matching using estimated propensity scores: relating 
theory to practice. Biometrics;52:249–64.  
 
Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW. (2004). C-reactive 
protein, the metabolic syndrome, and prediction of cardiovascular events in the 
Framingham Offspring Study. Circulation; 110(4): 380–385.   
 
Sato T, Matsuyama Y.(2003).  Marginal structural models as a tool for 
standardization. Epidemiology;14:680–6.  
 
Sax PE, Baden LR. (2009). When to start antiretroviral therapy-ready when you are. 
The New England Journal of Medicine 360,1897–9. 
 
Schafer JL, Kang J. (2008). Average causal effects from nonrandomized studies: a 
practical guide and simulated example. Psychol Methods 13, 279-313. 
 
Shapiro NI, Karras DJ, Leech SH, Heilpern KL. (1998). Absolute lymphocyte count 
as a predictor of CD4 cell count. Ann Emerg Med;32(3 Pt 1):323-8. 
 
Shlipak MG, Fried LF, Cushman M et al. (2005). Cardiovascular mortality risk in 
chronic kidney disease: comparison of traditional and novel risk factors. JAMA; 
293(14): 1737–1745. 
 

http://www.bepress.com/ucbbiostat/paper257
http://www.bepress.com/ucbbiostat/paper257
http://www.bepress.com/ucbbiostat/paper257
http://www.bepress.com/ucbbiostat/paper257


132 

 

Sinisi SE,  van der Laan MJ. Deletion/Substitution/Addition algorithm in learning 
with applications in genomics. Statistical Applications in Genetics and Molecular 
Biology, 3(1):Article18. 
 
Stitelman OM, Van der Laan  MJ. (2010). "Collaborative Targeted Maximum 
Likelihood For Time To Event Data". U.C. Berkeley Division of Biostatistics 
Working Paper Series. Working Paper 260.  Available at 
http://www.bepress.com/ucbbiostat/paper260. 
 
Storey JD.  A direct approach to false discovery rates. (2002).  Journal of the Royal 
Statistical Society Series B; 64(3): 479-498. 
 
Storey, JD. The Positive False Discovery Rate. (2003).  A Bayesian Interpretation 
and the q-Value. The Annals of Statistics; 31(6): 2013-2035. 
 
Storey JD, Tibshirani R. (2001). Technical Report 2001-28. Department of Statistics, 
Stanford University, 2001.  
 
Storey JD, Tibshirani R. (2003). ―Statistical Significance for Genomewide Studies‖ in 
Proceedings of the National Academy of Sciences of the United States of America, 
volume, 2003;100: 9440–9445. 
 
Temple, RJ. (1995).  A regulatory authority’s opinion about surrogate endpoints.  
Clinical Measurement in Drug Evaluation.  W.S. Nimmo & G.T. Tucker eds, Wiley, 
New York. 
 
Thompson ML,  Zuccchini W. (1989). On the Statistical Analysis of ROC Curves.  
Statistics in Medicine; 8: 1277-1290. 
 
Thomson Scientific. Establishing the standards in biomarker research.  White Paper, 
March 2008. 
 
Touloumi G, Pocock SJ, Babiker AG, et al. (1999)Estimation and comparison of rates 
of change in longitudinal studies with informative drop-outs. Stat Med. 18:1215-
1233. 
 
Tuglus C, Van der Laan M. J. (2008).Targeted Methods for Biomarker Discovery, the 
Search for a Standard. U.C. Berkeley Division of Biostatistics Working Paper Series. 
Working Paper 233.   
 
Tusher V.G, Tibshirani R, Chu G. (2001). Significance analysis of microarrays 
applied to the ionizing radiation response. PNAS; 98(9):5116–5121. 
 
US Food and Drug Administration. Innovation/Stagnation: Critical Path 
Opportunities Report. March 2006.  Available at 
http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalP

http://www.bepress.com/ucbbiostat/paper260


133 

 

athOpportunitiesReports/default.htm. 
 
 Van der Laan, M J. (2006). Statistical Inference for Variable Importance. The 
International Journal of Biostatistics 2, Issue 1, Article 11. 
 
Van der Laan MJ, Polley EC, Hubbard AE. (2007).  Super learner. Statistical 
Applications in Genetics and Molecular Biology, 6(25):Article 25. 
 
Van der Laan MJ, Rubin D. (2006). Targeted maximum likelihood learning. The 
International Journal of Biostatistics 2, Issue 1, Article 11. 
 
Van der Laan MJ,  Rose S, Gruber S. (2009).  Readings in Targeted Maximum 
Likelihood Estimation. U.C. Berkeley Division of Biostatistics Working Paper Series. 
Working Paper 254. http://www.bepress.com/ucbbiostat/paper254. 
 
Van der Meer IM, De Maat MP, Kiliaan AJ, van der Kuip DA, Hofman A, Witteman 
JC.(2003).  The value of C-reactive protein in cardiovascular risk prediction: the 
Rotterdam Study. Arch. Intern. Med; 163(11):1323–1328.   
 
Van Der Pol B, Kwok C, Pierre-Louis B, Salata RA, Chen PL, Morrison CS. (2008). 
Trichomonas vaginalis infection and human immunodeficiency virus acquisition in 
African women.  J Infect Dis. 15,548-54. 
 
Van der Ryst E, Kotze M, Joubert G, Steyn M, Pieters H, et al.  Correlation among 
total lymphocyte count, absolute CD4+ count, and CD4+ percentage in a group of 
HIV-1-infected South African patients.(1998). J Acquir Immune Defic Syndr Hum 
Retrovirol;19(3):238-44. 
  
Vapnik V.N. (1998). Statistical Learning Theory. Wiley-Interscience. 
 
Wagner JA. (2009). Biomarkers: Principles, Policies, and Practice. Clinical 
Pharmacology & Therapeutics 86, 3–7. 
 
Wang Y, Petersen ML, Bangsberg D, van der Laan MJ (2006). Diagnosing bias in the 
inverse probability of treatment weighted estimator resulting from violation of 
experimental treatment assignment. UC Berkeley Division of Biostatistics working 
paper series, 2006. 
 
Wieand S, Gail MH, James BR, James KL. (1989).   A Family of Nonparametric 
Statistics for Comparing Diagnostic Markers With paired or Unpaired Data.  
Biometrika, 1989; 76:585-592. 
 
Weir CJ, Walley RJ. (2006). Statistical evaluation of biomarkers as surrogate 
endpoints: a literature review. Statistics in Medicine;25(2):183-203. 
 

http://www.bepress.com/ucbbiostat/paper254


134 

 

West SG, Biesanz JC,  Pitts SC. (2000). Causal inference and generalization in field 
settings: Experimental and quasi-experimental designs. In H. T.Reis & C. M.Judd 
(Eds.), Handbook of research methods in social and personality psychology (pp. 40–
84). New York: Cambridge University Press. 
 
Westfall PH, Tobias RD, Rom D, Wolfinger RD,Hochberg, Y. (1999), Multiple 
Comparisons and Multiple Tests Using the SAS System, Cary, NC: SAS Institute Inc. 
 
Weston AD, Hood L. (2004). Systems biology, proteomics, and the future of health 
care: toward predictive, preventative, and personalized medicine. J Proteome Res; 
3(2):179-96. 
 
Westreich D, Cole SR, Tien PC, Chmiel JS, Kingsley L, Funk MJ, Anastos K, 
Jacobson LP. (2010). Time scale and adjusted survival curves for marginal structural 
cox models. Am J Epidemiol. 2010 Mar 15;171(6):691-700. 5. 
 
When to Start Consortium. (2009). Timing of initiation of antiretroviral therapy in 
AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort 
studies. Lancet 373, 1352–63.  
 
Wilson  PW, Nam BH, Pencina M, D’Agostino RB Sr, Benjamin EJ, O’Donnell CJ. 
(2005). C-reactive protein and risk of cardiovascular disease in men and women 
from the Framingham Heart Study. Arch. Intern. Med; 165(21): 2473–2478. 
 
Winship, C., Morgan, S. L (1999). The estimation of causal effects from observational 
data. Annual Review of Sociology; 25: 650–707. 
 
Winship, C., Sobel, M. E. Causal inference in sociological studies. In M.Hardy (Ed.), 
Handbook of data analysis (pp. 481–504). Thousand Oaks, CA: Sage. 
 
Woo MJ, Reiter JP, Karr AF. 92008). Estimation of propensity scores using 
generalized additive models.  Stat Med; 27(19):3805-16. 
 
Wu B, Abbott T, Fishman D, et al. (2003). Comparison of statistical methods for 
classification of ovarian cancer using mass spectrometry data. Bioinformatics; 
19(13): 1636–1643. 
 
Xiao Y, Abrahamowicz M, Moodie EM. (2010). Accuracy of Conventional and 
Marginal Structural Cox Model Estimators: A Simulation Study. The International 
Journal of Biostatistics, Vol. 6, Iss. 2, Art. 13. 
 
Yekutieli D, Benjamini Y. Resampling-Based False Discovery Rate Controlling 
Multiple Test Procedures for Correlated Test Statistics. (1999). J Statist Planning 
Inference; 82: 171–196.  
 

Young JG, Hernán MA, Picciotto S, Robins JM. (2009). Relation between three 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Westreich%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cole%20SR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tien%20PC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chmiel%20JS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kingsley%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Funk%20MJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Anastos%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jacobson%20LP%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Am%20J%20Epidemiol.');


135 

 

classes of structural models for the effect of a time-varying exposure on survival. 
Lifetime Data Analysis, 16(1):71-84. 
 
Yu W, Wu B, Huang T, Li X, Williams K, Zhao H. (2006). ―Statistical Methods In 
Proteomics" in Springer Handbook of Engineering Statistics (editor: H. Pham), 
Springer-Verlag, London, UK, pp. 623-638. 
 
Zhang, DD, Zhou, XH, Freeman, JM, Freeman, DH.  (2002). A Non-parametric 
Method on the Comparison of Partial Areas Under ROC Curves and its Application 
on Large Data Sets. Statistics in Medicine; 21:5, 701-715. 
 
Zeger, S. L., and Liang, K.-Y. (1986) .Longitudinal Data Analysis for Discrete and 
Continuous Outcomes,. Biometrics, 42, 121.130. 
 
Zheng Y, Cai T, Feng Z. (2006). Application of the time dependent ROC curves for 
prognostic accuracy with multiple biomarkers. Biometrics;62:279–87. 
 
Zou KH, Hall WJ, Shapiro DE. (1996). Smooth non-parametric receiver operating 
characteristic (ROC) curves for continuous diagnostic tests. Statistics in Medicine. 
1996;16:2143–2156. 
 
Zou KH, O’Malley AJ, Mauri L. (2007). Receiver-operating characteristic analysis for 
evaluating diagnostic tests and predictive models. Circulation;115:654–7. 
 
Zweig MH, Campbell G. (1993). Receiver-operating characteristic (ROC) plots: a 
fundamental evaluation tool in clinical medicine. Clin Chem;39:561–77. 
 
 

 

  
 
 
 
 
 
 
 
 
 
  
 
 
 
 



136 

 

 
TABLES AND FIGURES 

 
Table 1: Estimates of Variable Importance Measures for Each Biomarker and Associated p-values 

 TMLE 

Weighted Logistic 

Regression 

Partial ROC (0.05) 

Biomarker VIM 

Unadjusted 

p-value 

p-

value
 a
  

VIM 

Unadjusted  

p-value 

p-

value
 a
 

 

Incremental 

partial 

AUC
b
 

Unadjusted 

p-value 

p-

value
 a
 

 

CD4 at 

baseline  

0.2064 0.0004 0.0070 0.2316 0.0007 0.0079 0.0082 0.3100 1.0000 

Plasma 

Viral Load 

0.0519 0.2784 1.0000 0.1537 0.0024 0.0200 0.0029 0.2400 1.0000 

CD8 Count  0.0535 0.2705 1.0000 0.1410 0.0920 0.5092 0.0013 0.7300 1.0000 

CD4/CD8 T 

cell Ratio  

0.1071 0.0003 0.0070 0.1113 0.0004 0.0059 0.0002 0.9100 1.0000 

Lymphocyte 

count  

0.1044 0.1714 1.0000 0.1843 0.2298 0.8720 0.0006 0.6100 1.0000 

CD4 

percent  

0.2779 0.0103 0.1138 0.3663 0.0514 0.3414 0.0091 0.2700 1.0000 

HIV 

subtype A 

0.1908 0.5362 1.0000 0.2318 0.3434 1.0000 0.0000 1.0000 1.0000 

HIV 

subtype C 

-

.06687 

0.8731 1.0000 0.1827 0.1809 0.8586 0.0000 0.8400 1.0000 

HIV 

subtype D 

0.2200 0.4789 1.0000 0.1295 0.4519 1.0000 0.0001 1.0000 1.0000 

Hemoglobin 0.0471 0.4225 1.0000 0.1261 0.2363 0.8720 0.0001 0.9700 1.0000 

HSV-2 

status 

0.0078 0.8667 1.0000 0.1088 <.0001 <.0001 0.0000 1.0000 1.0000 

Note: Results based on 5000 bootstrap samples. 
a Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR) procedure. 
b At a false positive rate of 0.05. 

 
 
 
 
 
 
 
 
 
 
 



137 

 

Table 2: Results from 5000 bootstrap samples for five simulated biomarkers                                                                                                                 

based on Targeted maximum Likelihood Estimation for Variable importance Measure 

 N=150 N=200 N=250 

Biomarker VIM 

Unadjusted 

 p-value 

p-

value* 

 VIM 

Unadjusted 

 p-value 

p-

value* 

 VIM 

Unadjusted  

p-value 

p-

value* 

 

A1 0.087 0.7040 1.0000 0.028 0.8923 1.0000 0.021 0.9103 1.0000 

A2 0.339 <.0001 <.0001 0.314 <.0001 <.0001 0.321 <0.0001 <.0001 

A3 0.218 0.0239 0.1367 0.211 0.0113 0.0643 0.218 0.0029 0.0166 

A4 -

0.036 

0.6873 1.0000 -0.057 0.3855 1.0000 -

0.056 

0.3379 1.0000 

A5 -

0.043 

0.4745 1.0000 -0.034 0.4958 1.0000 -

0.034 

0.4713 1.0000 

* Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR). 
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Table 3: Results from 5000 bootstrap samples for five simulated biomarkers                                                                                                                

based on Propensity Score Weighting for Variable importance Measure 

 N=150 N=200 N=250 

Biomarker VIM 

Unadjusted  

p-value 

p-

value* 

 VIM 

Unadjusted 

 p-value 

p-

value* 

 VIM 

Unadjusted  

p-value 

p-

value* 

 

A1 0.111 0.2173 0.6203 0.111 0.0666 0.2536 0.084 0.1693 0.4832 

A2 0.310 <.0001 <.0001 0.284 <.0001 <.0001 0.301 <.0001 <.0001 

A3 0.189 0.0088 0.0505 0.193 0.0001 0.0006 0.204 <.0001 <.0001 

A4 -0.044 0.6438 1.0000 -0.070 0.1533 0.4374 -0.056 0.0298 0.1134 

A5 -0.059 0.2027 0.6203 -0.042 0.2543 0.5806 -0.036 0.3678 0.8398 

* Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR). 
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Table 4: Results from 5000 bootstrap samples for five simulated biomarkers                                                                                                                

based on Incremental Value estimation for partial area under the curve 

 N=150 N=200 N=250 

Biomarker 

ΔpAUC 

(0.05) 

 

Unadjusted  

p-value 

p-

value* 

 

ΔpAUC 

(0.05) 

 

Unadjusted 

p-value 

p-

value* 

 

ΔpAUC 

(0.05) 

 

Unadjusted 

p-value 

p-

value* 

 

A1 .001 0.0660 0.3768 .001 0.0600 0.3425 .001 .1600 0.6089 

A2 .006 0.1400 0.5328 .004 0.1300 0.4947 .010 .0016 0.0091 

A3 .005 0.0200 0.2283 .005 0.0007 0.0081 .007 <.0001 <.0001 

A4 -.001 0.3800 1.0000 -.001   0.4800 1.0000 .000 .9800 1.0000 

A5 .001   0.5200 1.0000 .000 0.7400 1.0000 .001 .5100 1.0000 

* Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR). 
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Table 5: Longitudinal Targeted Variable Importance Estimates for HIV Infection Biomarkers 

 

 
Method 1: Regression with Autocorrelated 

Errors 

Method 2:Area Under LOESS Curve 

Estimation 

Biomarker 

EstimatedTime 

Slope Coefficient 

Unadjusted  

p-value 

p-value
 a
  Estimated 

Area under 

the LOESS 

Curve 

Unadjusted   

p-value 

p-value
 a
 

 

CD4 at baseline  0.0083 <.0001 <.0001 0.7817 <.0001 <.0001 

Plasma Viral Load 0.0001 0.9021 1.0000 0.0099 0.9490 1.0000 

CD8 Count  0.0042 0.1083 0.5994 0.3287 0.1381 0.7647 

CD4/CD8 T-cell 

Ratio  

0.0039 0.0811 0.5388 0.4362 0.0376 0.2497 

Lymphocyte count  0.0002 0.9126 1.0000 0.1213 0.5520 1.0000 

CD4 percent  -.0012 0.9144 1.0000 0.0731 0.9339 1.0000 

HIV subtype A -.0147 <.0001 <.0001 1.580 <.0001 <.0001 

HIV subtype C -.0133 0.1765 0.8374 1.139 0.3525 1.0000 

HIV subtype D 0.0109 <.0001 <.0001 0.9169 <.0001 <.0001 

Hemoglobin 0.0013 0.5066 1.0000 0.0053 0.9706 1.0000 

HSV-2 positive -.0092 <.0001 <.0001 0.8209 <.0001 <.0001 

Note: Results based on 5000 bootstrap samples. 
a Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR) procedure 
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Table 6: VIM as a Function of Time in Simulated Data 

 

 
Method 1: Regression with 

Autocorrelated Errors 

Method 2:Area Under LOESS Curve 

Estimation 

Number of time 

points 

p-value
 a
 p-value

 a
 

 

5 0.9448 0.3879 

10 0.2619 0.0042 

20 0.0003 <0.0001 

25 0.0002 <0.0001 

Note: Results based on 5000 bootstrap samples. 
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Table 7: Distribution of Stabilized Weights by Biomarker 

Biomarker  Mean (SD) Minimum - Maximum 

Baseline CD4 Cell count 1.000 (0.003) 0.966 - 1.029 

CD8 Cells Count 1.001 (0.060) 0.503 - 1.941 

CD4/CD8 T Cell Ratio 1.001 (0.026) 0.821 - 1.261 

CD4 Percentage 1.000 (0.008) 0.832 - 1.038 

Lymphocyte Count 0.997 (0.069) 0.493 - 1.929 

Plasma Viral Load  1.001 (0.032) 0.737 - 1.340 

Hemoglobin Level 1.003 (0.067) 0.521 - 2.236 

HSV-2 Status 1.006 (0.071) 0.696 - 1.535 

HIV Subtype A 1.040 (0.164) 0.329 - 3.372 

HIV Subtype C 1.015 (0.126) 0.409 - 3.179 

HIV Subtype D 1.028 (0.118) 0.425 - 2.781 

 Abbreviation: SD=Standard Deviation 
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Table 8: Overall survival Through 5 Years Post Estimated Infection Date 

 

Biomarker N n(%) 
5-year Cumulative probability of survival (%)  

and 2-sided 95% CI
 a
 

CD4 at baseline   500 cells/mm
3
 No 176 30(17.05) 84.86(79.11-90.62) 

Yes 126 82(65.08) 35.12(26.55-43.68) 

CD4 Percentage    20 % No 244 70(28.69) 72.05(66.08-78.03) 

Yes 58 42(72.41) 30.44(18.46-42.43) 

CD8 Count   1000 cells/mm
3
 No 210 75(35.71) 63.85(56.98-70.72) 

Yes 92 37(40.22) 64.09(54.07-74.11) 

Lymphocyte count < 1200  cells/mm
3
 No 250 79(31.60) 69.98(64.03-75.93) 

Yes 52 33(63.46) 34.83(21.25-48.40) 

CD4/CD8 Ratio   1 No 66 10(15.15) 87.71(79.08-96.34) 

Yes 236 102(43.22) 57.28(50.69-63.87) 

HIV RNA > 55000 copies/ml No 143 45(31.47) 69.37(61.59-77.15) 

Yes 79 37(46.84) 58.50(47.46-69.54) 

HIV Subtype A No 113 56(49.56) 53.18(43.73-62.63) 

Yes 76 20(26.32) 74.62(64.35-84.88) 

HIV Subtype C No 107 35(32.71) 67.26(57.71-76.80) 

Yes 82 41(50.00) 53.78(42.85-64.72) 

HIV Subtype D No 158 61(38.61) 63.62(55.89-71.35) 

Yes 31 15(48.39) 48.77(28.82-68.72) 

HSV-2 positive No 42 16(38.10) 60.12(44.78-75.47) 

Yes 96 49(51.04) 54.20(44.04-64.35) 

 

Hemoglobin Level < 11g/dl 

No 233 81(34.76) 66.21(59.88-72.54) 

Yes 69 31(44.93) 56.13(43.75-68.50) 

Abbreviations: N=number of subjects in category, n=number of subjects with event, CI=Confidence Intervals.                                                                                                               

ª Estimates based on the Kaplan-Meier method.                                                                                                                                                                                                               

Note: survival time for those with either two successive drops of <=350 cells/mm3 in CD4 cell counts or two drops of <=350 

cells/mm3 in CD4 cell counts within six months is defined as date of second drop minus estimated date of infection. 
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Table 9:  Estimates of Variable Importance Measures for Each Biomarker and Corresponding 95% 

Confidence Intervals from Standard Cox Proportional Hazards Model 

 

Biomarker 
Log Hazard Ratio 

Hazard Ratio 

(2-sided 95% CI) 

Unadjusted 

p-value 
p-value

 a
 

Baseline CD4 Cell count -0.763 0.466(0.379,0.573) <.0001 <.0001 

CD4/CD8 T cell Ratio -0.593 0.552(0.447,0.683) <.0001 <.0001 

Lymphocyte Count -0.351 0.704(0.586,0.846) 0.0002 0.0021 

Plasma Viral Load  0.349 1.417(1.171,1.715) 0.0003 0.0028 

Hemoglobin Level -0.156 0.855(0.736,0.994) 0.0408 0.2713 

HIV Subtype C 0.936 2.551(0.590,11.032) 0.2100 1.0000 

CD8 Cell Counts 0.072 1.075(0.909,1.272) 0.3998 1.0000 

HIV Subtype A -0.196 0.822(0.468,1.443) 0.4941 1.0000 

CD4 Percent -0.045 0.956(0.810,1.129) 0.5963 1.0000 

HIV Subtype D 0.102 1.107(0.620,1.979) 0.7303 1.0000 

HSV-2 Status -0.013 0.987(0.637,1.529) 0.9537 1.0000 

Abbreviation: CI=Confidence Intervals.                                                                                                                                                                                                                                                                                                            

a Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR) procedure. 
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Table 10:  Weighted Estimates of Variable Importance Measures for Each Biomarker and 

Corresponding 95% Confidence Intervals 

Biomarker 
Log Hazard Ratio 

Hazard Ratio  

(2-sided 95% CI) 

Unadjusted  

p-value 
p-value

 a
 

Baseline CD4 Cell count -0.674 0.510(0.418,0.621) <.0001 <.0001 

CD4/CD8 T- Cell Ratio -0.508 0.602(0.480,0.754) <.0001 0.0002 

Lymphocyte Count -0.297 0.743(0.640,0.862) <.0001 0.0010 

Plasma Viral Load  0.306 1.358(1.141,1.615) 0.0006 0.0046 

Hemoglobin Level -0.163 0.850(0.744,0.970) 0.0162 0.1073 

CD4 Percent -0.065 0.937(0.836,1.051) 0.2688 1.0000 

HIV Subtype D 0.184 1.202(0.720,2.006) 0.4815 1.0000 

CD8 Cell Counts 0.051 1.052(0.895,1.237) 0.5359 1.0000 

HIV Subtype A -0.111 0.895(0.608,1.317) 0.5739 1.0000 

HIV Subtype C 0.042 1.043(0.708,1.536) 0.8318 1.0000 

HSV-2 Status -0.013 0.987(0.638,1.527) 0.9542 1.0000 

Abbreviation: CI=Confidence Intervals.                                                                                                                                                                                                                                                                                                            

a Adjusted for multiplicity based on Benjamini & Yekutieli Dependent False Discovery Rate (FDR) procedure. 
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Figure 1: Plots of TVIM Data with Robust Smoother

For Biomarkers with a P-value <.05
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