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ABSTRACT

JOHN A. KAIRALLA.  An Internal Pilot Study with Interim Analysis
for Gaussian Linear Models.

(Under the direction of Keith E. Muller and Christopher S. Coffey)

Misspecification of a nuisance parameter can lead to study power far from the desired

level.  Internal pilots for Gaussian data protect study power by allowing sample size re-

estimation based on an interim power analysis using a revised estimate of the variance

parameter, but without any data analysis.  In order to reduce study time and cost, researchers

and sponsors of studies often desire early decision possibilities that the internal pilot design

lacks but that group sequential methods allow.  Combining early stopping rules with internal

pilot methods would increase study flexibility, scope, and efficiency for general linear

models.

An internal pilot with an interim analysis (IPIA) design for Gaussian linear models is

introduced and defined.  The design allows for early stopping for efficacy and futility while

also re-estimating sample size needs based on an interim variance estimate.  In order for

accurate study planning in small samples, exact theory is derived for both the one or two

group  test setting, as well as more complex multiple degree of freedom hypothesis tests>

within the general linear univariate model framework.  Exact and computable forms of

distributions allow accurate calculations of power, type I error rate, and expected sample

size.

In general, the IPIA design maintains and controls power to the desired level and also

provides sample size savings.  However, it can also inflate type I error rate, especially in

smaller studies.  By utilizing the exact theory, planning procedures associated with the

design are examined and refined to create a working method for planning sound studies.  A
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bounding method successfully controls the type I error rate while maintaining the benefits of

the design.  Explicit recommendations are detailed that achieve the combined goals of an

internal pilot and a two-stage group sequential design.  The results can be used during

planning to create an efficient two-stage study with early stopping rules and predictable

power properties, even in small samples.
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CHAPTER 1.  INTRODUCTION AND LITERATURE
REVIEW

1.1 INTRODUCTION

An important aspect to consider during study planning is an appropriate sample size to

detect an effect of interest for given type I error rate and power.  Power in studies often

depends on one or more unknown nuisance parameters.  For example, in a one group -test,>

let , ,  be independent Gaussian observations with mean  and unknown error\ \ á" # )

variance .  The goal is to test  versus  with type I error rate  and5 ) ) α#
! " >L À œ ! L À Á !

power  at .  The required sample size for the test with given , , and  dependsT œ T> " > > ") ) α )

on .  In practice, sample size needs are usually calculated using an estimated value, ,5 5# #
!

taken from similar studies or earlier trials.  This value, however, is often not appropriate due

to characteristics such as differing populations or inadequate sample size of test trials.  Study

power for a Gaussian linear model is very sensitive to misspecification of the variance

parameter, .5#

In general, sample size re-estimation techniques have been developed as tools for

adjusting the size of a study to meet its planned objectives.  To ensure a correctly planned

study, very few interim analyses are conducted.  In fact, two-stage designs have become

popular due to their practicality, effectiveness, and lack of administrative burden (Shih,

2006).  Specifically,  (IP) designs are two-stage designs that allow sample sizeinternal pilot

modification based on revised estimates of nuisance parameters without interim data

analysis.  For continuous data, the IP design introduced by Wittes and Brittain (1990) used

the ordinary (unadjusted) test statistic and critical value for testing.  This procedure is

straightforward to implement, but may introduce type I error rate inflation in small samples.

For a general linear univariate model (GLUM) with fixed effects and Gaussian errors, Coffey
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and Muller (1999) derived the exact distribution of the IP test statistic in a computable form.

The theory includes -tests as special cases and allows for flexibility of hypotheses.  The>

exact theory also made study planning possible for small sample designs.

   Researchers and sponsors of clinical trials and other studies would also like the ability

to reach early decisions when hypothesis outcomes are clear.  Early decisions to stop a trials

may allow more effective treatments to reach a target population quickly and can protect

patients from ineffective, inefficient, or harmful treatments.  Stopping early can also allow

resources to be diverted to other promising research, boosting overall research efficiency.  To

address the need for early stopping capability in study design, study monitoring procedures

such as group sequential and stochastic curtailment methods have been developed.

Combining IP designs with early stopping rules would increase study flexibility, scope,

and efficiency for general linear models.  In this dissertation, the exact distributions

necessary for small sample internal pilots with an interim analysis at the IP stage for GLUMs

with fixed effects and Gaussian errors are derived.  The study design is hence referred to as

the internal pilot with interim analysis (IPIA) design.  In Chapter 2 of this dissertation, the

model is introduced, the procedure is explained, and the necessary distributions for the IPIA

design for single degree of freedom tests are derived.  These study designs consist of one and

two group comparisons with unknown, common variances for -tests as well as other study>

designs.  The necessary distributions include a computable form of the exact joint

distribution of the first and second stage test statistics conditional on a final sample size.

Knowledge of these forms then allow for derivation of exact forms for unconditional study

power, type I error rate, and expected sample size.  Examples will portray the characteristics

of the IPIA design and compare them with some other common designs.

The procedure introduced in Chapter 2 has various general design factors including the

methods for selection of critical values, sample size allocation and re-estimation, and

selection of an interim sample size.  In order to calculate power, type I error rate, and
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expected sample size for a design, these factors must be pre-specified.  In Chapter 3 of this

dissertation, I discuss and evaluate procedures for planning the studies described in Chapter

2.  The goal is to achieve sound study design strategies that control the type I error rate while

best maintaining the power and sample size advantages of the IPIA designs.

In Chapter 4, the results necessary for the IPIA design for multiple degree of freedom

tests in the GLUM framework are derived.  These tests consist of more complex hypotheses

such as multiple group comparisons.  The key new result is the exact conditional joint

distribution of the first and second stage test statistics.  The new exact distributions may be

used to solve for power, type I error rate, and expected sample size in these study designs.

An example will demonstrate the characteristics of the IPIA design in this more complex

setting.

1.2 LITERATURE REVIEW

1.2.1 Introduction

Interim analysis (or interim monitoring) often takes place during the course of clinical

trials to acquire knowledge to make decisions such as design modification or early stopping.

Jennison and Turnbull (2000, Chapter 1) categorized reasons for conducting interim analyses

into three loosely defined classes: , and .  One ethicalethical economic,  administrative

consideration includes ensuring that patients are not exposed to unsafe, inferior, or

ineffective treatments.  Another ethical consideration is the need to reallocate resources to

other promising treatments when a current study is unlikely to show a benefit.  Economic

reasons for conducting interim analyses also exist from the ability to stop a trial early.  If a

trial stops early with a positive result, a treatment can reach the public more quickly, saving

time and resources as well as generating an expedited revenue source for sponsors.

Conversely, an early stopping event can also be triggered by an ineffective treatment or

faulty study design.  In this case, resources may be saved by stopping a study unlikely to

result in a positive outcome under reasonable conditions if carried to completion.
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Administrative reasons for conducting interim analyses include determining if the

experiment is following both the designed protocol and planned assumptions.  Assumptions

made during sample size planning often include values for outcome variability in quantitative

data or incidence rate values for binary data.

Three main types of interim analysis are group sequential methods, stochastic

curtailment, and sample size re-estimation.  Group sequential methods are analyses in which

groups of subjects are enrolled and analyzed sequentially.  They are designed to shorten the

expected length of a study by allowing early hypothesis decisions to be reached if true effect

sizes are larger or smaller than anticipated.  Stochastic curtailment is another method of

shortening a study based on calculating probabilities of achieving hypothesis decisions

conditional on accumulated observed data.  Sample size re-estimation procedures cover a

wide range of possible study designs.  All include possible adjustment to the planned sample

size of a study (increases and/or decreases) in light of new information concerning aspects of

the study.

Specific to sample size re-estimation, methods vary based on what information may be

used, when the information is used, and the decisions made as a result.  Flexible designs

allow the most freedom with few restrictions if the type I error rate is controlled.  Adaptive

designs restrict the study to pre-planned design modifications based only on information

internal to the study.  Internal pilot designs allow for modification of a study based only on

re-estimation of nuisance parameters, such as the error variance for Gaussian outcomes.  The

sample size re-estimation methods also vary based on if rules are included for early stopping

at interim stages.

1.2.2 Group Sequential Methods

Group sequential methods (GSMs) allow for interim analyses in ongoing studies with

the possibility of early stopping with sequentially enrolled subject groups.  Although these

methods may be applied to any study of sufficient duration that is completed in stages,
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research focus has been the use of GSMs in clinical trials.  An important reason for this focus

is to stop randomization of patients to a potentially inferior treatment when a significant

treatment difference can be proven with high probability.

An early influence in sequential analysis was Wald's (1947) sequential probability ratio

test (SPRT).  The SPRT tests between two simple hypotheses by sampling observations

while the likelihood ratio remains in an interval  for constants ,  chosen toÐ+ß ,Ñ + ,

approximately control type I and type II error rates.  Armitage (1975) developed methods for

fully sequential analysis in medical studies.  In these methods, data must be enrolled in

matched pairs and accumulating data monitored continuously.  However, this was not proven

to conform well and did not achieve widespread use.  GSMs worked better within clinical

trials settings and became a popular alternative with the release of papers by Pocock (1977)

and by O'Brien and Fleming (1979).  For normally distributed data with known variance,

these papers presented clear approaches for two-sided group sequential testing that controls

the type I error rate while maintaining power.  In a basic group sequential design for a

comparison of two treatments, a maximum number of stages ( ), group-size ( ), and critical5 7

values for each stage (  for ) are pre-determined.  Subjects are randomized to- 3 − "ßá ß 53 e f
treatment with the constraint that for each stage,  subjects are assigned to each treatment.7

For stage  a standardized statistic, , is computed using data from the first  groups and the3 ^ 33

study stops with rejection of the null hypothesis, , if , and continues otherwise.L ^   -0 k k3 3

At stage   is accepted if .5ß L ^  -! 5 5k k
Critical values are chosen to preserve the overall type I error rate ( ), i.e.,α

Prš ›k k e f¹^   - 3 − "ßá ß 5 L œ3 3 ! for .  To preserve type I error rate, Pocock uses anα

adjusted, constant nominal significance level for each test and O'Brien and Fleming describe

a procedure for the nominal significance level to increase as the study progresses.  Other

techniques exist varying in degrees of complexities and efficacy.  One very simple method is

the Haybittle-Peto test (Haybittle, 1971; Peto et al., 1976), which stops a trial at stage 3
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( ) if  and then uses the ordinary stopping bound at the final stage.  The final3  5 ^   $k k3
stage could also be slightly modified to accurately control type I error rate.  This method has

gained traction when trial planners need a simple rule to stop a study only when a clear and

strong effect is observed while paying little penalty in the final critical value.  Due to

multiple testing possibilities, the maximum sample size of  is determined by a#57

procedure-specific inflation factor multiplied by the sample size from a corresponding fixed

sample test.

Wang and Tsiatis (1987) described a family of two-sided test designs, indexed by a

parameter  ( ),  for use in the general GSM framework.  The family generalizes? ?! Ÿ Ÿ !Þ&

the Pocock and O'Brien-Fleming methods with  giving the O'Brien-Fleming test and? œ !

? α ?œ 50.5 giving the Pocock test.  The adjusted critical values depend on , , and ; the

maximum sample size inflation factors depend on , ,  and  where  represents the5 α " ? ",

target type II error rate.  Lan and DeMets (1983) introduced a flexible way to construct

boundaries in group sequential methods using an -spending function.  The idea is to defineα

a monotonely increasing function for the information fraction  :  with> Ð! Ÿ > Ÿ "Ñ >α� �
α α α� � � �! œ ! " œ and , the desired type I error rate.  This function characterizes the rate at

which the error level  is spent.  This method can approximately emulate the Pocock andα

O'Brien-Fleming boundaries, but allows for other methods, for variable timing, and number

of analyses.  A number of possible error spending functions have been proposed in the

literature (Lan and DeMets, 1983; Hwang et al., 1990; Kim and DeMets, 1987; Jennison and

Turnbull, 1989).

While classical group sequential designs allow for reductions in sample size by stopping

early for large effect sizes, they offer no reduction in sample size (in fact a small increase

occurs) under the null hypothesis (e.g.,  ).  Stopping a study early for futility,L À œ !! )

while not as ethically important as stopping when a significant difference is proven, can be

important for financial considerations and resource allocation when the chance of a
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significant study is low.  Gould (1983) proposed methods for early stopping only to accept

the null if a test has a -value greater than a fixed critical value.  Pampallona and Tsiatis:

(1994) described a one parameter ( ) class of boundaries for group sequential methods?

based on the family introduced by Wang and Tsiatis (1987) that can be used for any type I

and type II error rate choices.  Whitehead and Straton (1983) and Whitehead (1997)

described an alternate method known as the  based on combining two one-triangular test

sided tests.  Jennison and Turnbull (2000, Chapter 5) compared these methods as well as

providing some tables of constants.  Since allowing the study to stop to accept  for smallL!

effect sizes may have significant savings in time and cost, Jennison and Turnbull (2000,

Chapter 5) recommend that the stopping bounds be considered in all group sequential two-

sided tests.  Lachin (2005) explored the use of futility monitoring plans based on conditional

power within group sequential testing.  The method has a single futility analysis at a

specified information fraction (such as ) amidst the other interim tests before, at, andX œ !Þ&

after the futility analysis.  Using O'Brien-Fleming bounds, the plan approximately controls

the type I error rate and maintains power while adding sample size benefits under the null.

Spurrier (1982) presented two-stage tests of hypothesis in the general linear univariate

model with normally distributed and independent errors, a special case of group sequential

methods.  He proposes an ad hoc sample size selection method with each stage being of size

!Þ' 8 8*  where  is the sample size of a fixed sample test.  In the method, the first sample! !

leads only to decisions to stop for efficacy (if , reject  or futility (if ,J   - L Ñ J Ÿ -" ? ! " 6

accept ), or to take the final sample (if .  The null hypothesis is then eitherL -  J  - Ñ! 6 " ?

accepted or rejected if the final test statistic, , is below or above critical value ,J - +

respectively.  Proposed strategies for selecting critical values , , and  are given with a- - -6 ? +

primary concerns of controlling the type I error rate and secondary concerns of maximizing

power and minimizing expected sample size.  Hewett and Spurrier (1983) described with

detail two-stage tests in a variety of settings.  They promoted two-stage tests as a
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compromise between fixed sample and sequential methods with more stages, offering well

defined theory with a reduction in expected sample size while minimizing uncertainty of

sample size and duration of study.

While most group sequential methods rely on large sample critical values or known

variances, some alternative critical value selection methods have been proposed and

reviewed.  One simple approach suggested by Pocock (1977) shown to work quite well when

variance is unknown is to take the significance level of Gaussian derived critical values and

use them along with sample size to calculate corresponding  distributed critical values.>

Since the  distribution takes into account the sample size used for estimation in the form of>

degrees of freedom, it better relates to the uncertainty of the variance estimate used in the test

statistic.  Although the statistics are sequences and hence have a joint relationship, this

simple method approximately controls the type I error rate for group sequential designs.

Additionally, Shao and Feng (2007) described a Monte Carlo method for calculation of

critical values in a small sample group sequential studies.  Through simulation they showed

that their method works well at controlling the type I error rate and maintaining power with

an expected increase in expected sample size.

Group sequential methods have also been further generalized in various ways.  Jennison

and Turnbull (1991, 1997) described distributional theory for group sequential , , and > J;#

tests.  Methods have also been described to allow for flexibility in the number, timings, and

sizes of looks (Jennison and Turnbull, 2001).

1.2.3 Stochastic Curtailment

Study curtailment describes the idea that an experiment can be stopped once the

outcome is inevitable; that is, further data collected within the study can not affect the final

decision.  In certain studies such as ones with normally distributed outcomes, there cannot be

absolute certainty in an outcome as long as more sample size can be taken.  A study may be
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stopped, however, if the outcome while not inevitable, is highly probable.  This can increase

the efficiency of a study by decreasing expected sample size.

One approach to stochastic curtailment is the conditional power (CP) approach.  CP is

defined here as the probability of a statistically significant result (rejecting ) at the end ofL!

a study given a true value of the effect size and conditional on data already observed.  Let

T 33� �) ) be the CP at some stage  for effect .  A method described by Lan et al. (1982) defines

a formal stopping rule where  is rejected if  for a constant  such as  or .L T   -ß - !Þ) !Þ*0 3 !� �)

The logic behind this method is that the test will not likely accept the null at this point even if

it is true.  Alternatively, a test could be stopped for futility (accept ) if L "  T   -! 3
w� �)"

where  is an alternative of interest.  Proschan et al. (2006, Chapter 3) noted that, under a)"

futility scenario, as estimate of nuisance parameters such as the sample variance could be

used to recalculate  power of the study.  A low value implies an uninformativeunconditional

acceptance of  and is further evidence to curtail the study.  Under the scenario of a low CPL!

and a high unconditional power, continuing the study may be useful to clearly differentiate

between the hypotheses.  A criticism of the CP stopping methods (Jennison and Turnbull,

2000, Chapter 10; Dmitrienko and Wang, 2006) is that they are based on calculations under

only specific values of  and ignore information about the effect size from current data.  For)

example, an overly optimistic value of  would make a study difficult to stop for futility)"

despite unpromising results.

Another form of stochastic curtailment known as the predictive power (PP) method

utilizes a mixture of Bayesian and frequentist ideas.  Jennison and Turnbull (2000, Chapter

10) described the approach, which averages conditional power over values of effect  with)

weighting corresponding to current belief: a posterior distribution given the prior distribution

and the observed data.  This method gives an informative probability of success or failure in

a study and, like the CP method, formal rules can be developed for early stopping for

efficacy or futility.  The method is described by Choi et al. (1985) and Spiegelhalter et al.
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(1986) for binary endpoints.  Choi and Pepple (1989) applied the Bayesian-frequentist

approach to normally distributed data.  Jennison and Turnbull (2000, Chapter 10) and

Bernardo and Ibrahim (2000) also discussed the mixture approach in general settings.

Criticisms of the method include the lack of a clear frequentist interpretation and that it is

inconsistent with Bayesian principles (Jennison and Turnbull, 1990, Chapter 10).

A third method, described by Dmitrienko and Wang (2006), introduces a family of

Bayesian stopping bounds by extending a  method proposed by GeisserBayesian predictive

(1992).  The paper reviews and compares the methods for stochastic curtailment.  Dmitrienko

et al. shows that the Bayesian and Bayesian-frequentist methods typically allow higher

probability of early stopping with the pure Bayesian method being more sensitive to the

choice of prior distribution.  Dmitrienko et al. (2005, Chapter 4) provided SAS macros for

the computation of stochastic curtailment stopping bounds for the three methods.

1.2.4 Sample Size Re-Estimation

1.2.4.1 Introduction

Sample size re-estimation (SSR) procedures differ from traditional and classical group

sequential methods.  This difference occurs as at least some of the information accrued

during a study (possibly external to the study) is used to determine the size of future

sampling.  Historically, SSR proposals go back over 60 years.  Some of the first research was

proposed by Stein (1945), who introduced a two-stage procedure for normally distributed

data where sample size is computed based on variance information contained in a first stage

of the analysis.  Later, Anscombe (1953), described a fully sequential procedure with sample

size re-calculated repeatedly based on updated variance estimates.  More recently, increased

interest in the topic for application in clinical trials has led to many variations on the theme

to make the design of a clinical trial more flexible and/or adaptive.  Uncertainties about

factors affecting power such as patient variation, treatment effect size, recruitment rates, or
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event rates have led to researchers desiring the ability to make midcourse adjustments to the

sample size of the study.

SSR methods vary by the number of stages used, the allowance for early stopping for

efficacy and/or futility, the information used for re-estimation, if the adaptation protocol

must be pre-specified, and if sample sizes are allowed to decrease.  The great volume of

recent research and sometimes lack of clear definitions and delineations has led to a

confusion in terminology for similar methods.  Different types of SSR methods will be

introduced in this section with a focus of clarifying the similarities and differences that exist

between them.

1.2.4.2 Flexible Designs

Flexible designs are study designs that permit mid-trial modifications with very little

restriction.  Information for study modifications can come from information internal or

external to the trial.  Also, adaptation does not need pre-specification.  However, a major

design consideration for flexible designs is to maintain the type I error rate in order to better

maintain study validity.  Flexible designs specifically will not be covered here; instead a

meaningful subset will be discussed:  designs.adaptive

1.2.4.3 Adaptive Designs

Recently, there has been great interest in the development of adaptive design (AD)

methodology.  ADs for clinical trials offer researchers flexibility to redesign trial procedures

and analysis at interim stages.  Current research, however, has created a confusion in

terminology as many types of study modification are referred to as .  In Spring 2005,adaptive

a PhRMA working group on ADs in clinical drug development was formed to investigate

and facilitate the acceptance and usage of these design methods.  An Executive Summary of

the group's findings (Gallo et al., 2006) defined an  as "a clinical study designadaptive design

that uses accumulating data to decide how to modify aspects of the study as it continues,

without undermining the validity and integrity of the trial."  This definition will be used
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when referring to ADs here.  Under this definition, the adaptations only use information from

accumulating data internal to the trial as opposed to flexible designs which can also

incorporate external information.  The PhRMA working group also stresses that the changes

should be made "by design" and not undertaken on an ad hoc basis.  The definition makes it

clear that adaptive designs are not meant to be a remedy for poor planning.  Rather, ADs are

meant to be designed study enhancements aimed at maintaining study validity and integrity

while increasing efficiency of drug development and utilization of resources.

Bauer and Köhne (1994) and Proschan and Hunsberger (1995) were two of the early

papers describing AD methods for adapting studies while maintaining type I error rate

controls.  Bauer and Köhne used a weighted Fisher's combination test for a two-stage one-

sided test with possible early stopping and SSR based on effect size.  Alternatively, Proschan

and Hunsberger based their test on a conditional error approach: overall type I error rate is

controlled as long as a second stage test conditional on the first stage results maintains the

type I error rate.  Wassmer (1998) showed that for two stages and one sided hypotheses, the

methods of Bauer and Köhne (1994) and Proschan and Hunsberger (1995) are extremely

similar in power and expected sample size.  Other related adaptive methods include the

methods described by Lehmacher and Wassmer (1999) and Cui et al. (1999).  Both

approaches use classical group sequential stopping boundaries with updating of sample size

based on data observed in a first study and use fixed, predetermined weights to combine

stage-wise results.  The Lehmacher and Wassmer approach combines -values using the:

inverse normal approach with fixed, predetermined weights (usually equal across stages).

All of the methods above assume the variance is known for the study.

A number of issues have been raised concerning the use of adaptive designs.  An

obvious concern is the use of the observed treatment effect to re-estimate needed sample size.

This issue will be discussed in section 1.2.4.4.  Another issue is the potential abuse of

weighting schemes in extreme samples that could potentially result in a significant test result
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of a positive effect for a negative estimate (Proschan and Hunsberger, 1995; Burman and

Sonesson, 2006).  The weighting schemes used to protect type I error rate also violate basic

sufficiency principles since observations from different stages are given different weightings

(Jennison and Turnbull, 2003).  Tsiatis and Mehta (2003) and Jennison and Turnbull (2006)

argued that while adaptive designs have a place for preserving a study if unplanned analyses

are conducted, group sequential methods offer more efficiency under reasonable conditions.

1.2.4.4 Sample Size Re-Estimation Based on Conditional Power

Conditional power (CP) has been proposed as a tool for the recalculation of sample size

in clinical trials for adjusting study power (Proschan and Hunsberger, 1995).  Two ways exist

using interim data to calculate a probability of rejection in the trial given the results observed

thus far.  The first type of probability calculation assumes the true effect size, , is equal to)

the value the study was originally powered to detect, .  The other type assumes the true)"

effect size is the observed estimate , for an interim stage .ß 3s)3

The logic supporting the SSR is the adjustment of the sample size to that needed to

maintain study power at the target rate.  Often, this kind of calculation includes the revised

estimates of nuisance parameters for SSR purposes (Denne, 2001).  In this sense, the SSR is

similar to an internal pilot technique.  The difference lies in that regardless if  or  is) )"
s
3

assumed to be the true effect in the calculations, the calculations depend on the observed

value of the test statistic at the interim stage.  While different conceptually, both kinds of CP

calculations raise questions in this context.

The less controversial use would be to adjust the sample size of the study to maintain

target power at  (Denne, 2001)   For this method, due to conditioning on the interim) )œ Þ"

test statistic, the study is resized to allow for room to 'catch up' if observed effects are lower

that desired.  On the other hand, if the effects are higher that anticipated, this practice can

save resources if the planned sample size is decreased in order to maintain target power.
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However, many researchers and even sponsors might prefer to keep the positive interim stage

data and increase their overall probability of success in the trial.

If instead the study is re-powered to achieve target power at  (Cui et al., 1999),) )œs
3

more issues are raised.  In this case, the study is repowered at a new hypothesis of .  If) )œs
3

the sample size is increased, then statistically, the effect of interest is decreased.  Uses for the

procedure such as flexibility to external factors and cases where an effect of interest is

unclear have been described by various researchers.  In the case where sample size is

decreased due to interim analysis,  the test could be underpowered to detect the originally

planned effect size if it is in fact true.

1.2.4.5 Internal Pilot Designs

A poor variance value used in sample size calculations can greatly impact the power of

a clinical trial.  A value that is too low leads to an underpowered study with a small chance

of success regardless of the treatment's efficacy.  Alternatively, a value that is too large leads

to a waste of money and other resources in an overpowered trial.  Stein (1945) introduced a

two-stage -test design with power independent from the variance.  This technique updates>

the sample size at an interim stage using only the observed sample variance.  The final test

statistic uses information from all subjects for treatment effect, but only the variance estimate

from the first sample.  For a two group comparison, the final test statistic under the null

hypothesis follows a  distribution with  degrees of freedom where  is the total> 8  # 8" "

sample size at the interim stage.  A criticism of the method is that it throws away information

about the variance from the second sample.  Proschan and Wittes (2000) noted that the

technique is not robust to possible changes in variance during the course of the trial.  Also,

Coffey and Muller (1999) showed Stein's method does not perform well when the second

sample is large compared to the first.

Building on Stein's two-stage test, Wittes and Brittain (1990) introduced internal pilot

(IP) designs for two groups with normally distributed outcomes.  The researchers modified
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Stein's method by using the pooled variance from all subjects in the final test statistic and

treating the final sample size as if it were fixed.  Simulation was used to show power and

type I error rate for this test for an example using a preplanned sample size of  and an)'

internal pilot using half of the preplanned sample.  For large samples and an upward-

restricted sample size adjustment design, they concluded that the type I error rate and power

were well preserved.

Birkett and Day (1994) explored the use of different sizes for the interim stage rather

than half of the initial fixed sample estimate.  This design also allowed for decreases in the

final sample size.  The conclusion was reached that as long as there are enough degrees of

freedom ( ) in the IP stage, the type I error rate and power are close to target levels.µ #!

Coffey and Muller (1999) showed by counterexample that significant type I error rate

inflation (up to 14% in their example) can still occur in test studies under this scenario.

Coffey and Muller determined that the choice of internal pilot size and other design

parameters can strongly affect results and should be inspected during planning for specific

studies.  Despite the potential benefits in power properties or sample size savings, the risk of

type I error rate inflation, caused by a downward biased variance estimate (Proschan and

Wittes, 2000; Miller, 2005) offsets the benefits in the minds of many researchers (Kieser and

Friede, 2000) and regulatory agencies (ICH Topic E9 Guideline, Section 4.4).  This risk has

led many researchers to propose methods to control the type I error rate.  These methods can

be separated by if blinding is maintained on treatment allocation at the interim analysis, and

by if the test statistic or critical value is modified to preserve the type I error rate.

From a regulatory standpoint, methods that keep the treatment group allocation blinded

may be preferred to those that require unblinding (ICH Topic E9 Guideline, Section 4.4).

For blinded sample size re-estimation, Gould and Shih (1992) and Zucker et al. (1999)

suggested using the one-sample variance estimator with a simple adjustment based on the

planned treatment effect of interest.  Kieser and Friede (2003) showed that this approach
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approximately controls the type I error rate when the true treatment difference is close to the

prespecified difference.  A disadvantage of the blinded methods is that the one-sample

variance changes in relation to the treatment effect, which could cause inflation of sample

sizes if the treatment effect is larger than thought.  Friede and Kieser (2001) note that the

sample size inflation is small when the true effect is close to the prespecified effect.

Many methods to control the type I error rate with unblinding have been proposed.

Miller (2005) points out that the decision on whether or not to use blinded procedures should

be made on a case-by-case basis and notes that careful control of information and the use of

an independent statistician can mitigate potential biases.  Stein's method controls the type I

error rate by only using information from the first sample for the variance estimate.  Zucker

et al. (1999) proposed an alternate method where only the information about the variance

independent from the IP stage is used in the final test statistic.  This method controls the type

I error rate both conditionally and unconditionally.  Denne and Jennison (1999) proposed a

method based on Stein's test that uses all information about the variance, but includes a

degree of freedom adjustment to the final test statistic that does not guarantee bounding of

type I error rate, but appears to work well in general.  Proschan and Wittes (2000) introduced

a method that uses an unbiased variance estimate by fixing weights between the IP stage and

the second stage portions of the final variance estimate.  Coffey and Muller (2001)

introduced a  which alters the critical value so that the maximum type Ibounding method

error rate inflation is equal to the target rate.  The method by Miller (2005) adjusts the

normal variance estimate to control the type I error rate.

Recent review papers by Proschan (2005) and Friede and Kieser (2006) review internal

pilot designs for continuous and dichotomous outcomes.  It the continuous case in which

most research addresses the independent groups -test setting.  In order to accommodate>

more complex designs, Coffey and Muller (1999, 2000, 2001) have extended the idea of

internal pilots into any univariate linear model with fixed predictors and Gaussian errors.
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The researchers also derived computable forms for the exact distribution for the test statistic,

which includes -tests as special cases.  Kairalla et al. (2007) released a free software>

package based in SAS/IML SAS Institute 4  for exact power, type I error rate, and® Ð ß #!! Ñ

expected sample size calculations for a wide range of internal plot designs.  For binary

outcomes, Proschan (2005) describes the possibility of an underpowered study if the control

event rate is overestimated.  The paper describes two methods for re-estimating the sample

size, both with asymptotic validity.  In an unblinded method, the control event rate can be re-

estimated and used for SSR.  Alternatively, Gould (1992) described a blinded SSR procedure

for binary data based on the overall event proportion.  Internal pilot methods have also been

extended into other settings of interest including ordinal data (Bolland et al., 1998), time-to-

event data (Whitehead et al, 2001), and repeated measures (Shih and Gould, 1995; Lake et

al., 2002; Zucker and Denne, 2002; Coffey and Muller, 2003).

1.2.4.6 Review of Related Topics

For clinical trials with Gaussian outcomes, IP designs allow for an update to sample size

based on an error variance estimate taken at an internal stage.  While studies may be

lengthened or shortened by this estimate, the main objective is to ensure that the study is

sufficiently powered to detect an effect size of interest.  Group sequential methods, on the

other hand, are designed to allow for a reduction in sample size if effect sizes deviate

substantially from anticipated sizes.  A successful combination of GSMs with IP based

sample size re-estimation would allow for early stopping due to effect size differences and

also help assure correctly powered studies for an effect of interest with respect to the true

variance, a nuisance parameter.  There have been a number of papers considering procedures

for combining GSM and IP studies to obtain their respective benefits.

Stein's (1945) two-stage design was a strong early influence to SSR in sequential

procedures.  Baker (1950) and Hall (1962) introduced similar sequential tests based on the

sequential probability ratio test (SPRT; Wald, 1947) incorporating information about the
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variance using a single sample estimate.  Arghami and Billard (1992) defined a partial

sequential procedure also based on the SPRT and a Stein-like variance estimate.  Hochberg

and Marcus (1983) described a three-stage test for a one-sided, two-group comparison.  This

comparison uses variance information from a first sample to determine sample sizes for two

testing stages.  All of these procedures share the disadvantage of only incorporating early

stage variance information into the test statistics.

  Facey (1992) described a Phase 2 trial design using the triangular test stopping bounds.

She compared the use of powering to absolute or standardized treatment differences.  Type I

error rate inflation was high for the absolute differences and more reasonable for the

standardized differences in the cases considered (max type I error rate of  for target!Þ!&*

!Þ!&).  Gould and Shih (1998) used a blinded variance estimate from the initial stage to fix

future sample sizes.  The procedure only allows for sample size increases to the group

sequential procedure if the variance estimate is at least a constant factor larger than the

planning value (increase sample size if  with , for example).  A few5 -5 -s   œ "Þ$$"
# #

!

methods are explored, such as redistributing the sample sizes to match the originally planned

information times, or allowing the sample sizes to vary in pre-planned or unplanned manners.

They concluded through simulation, with a small fraction of error dedicated to the first

testing stage, that the procedure works adequately with two testing stages.  Whitehead et al.

(2001) explored through simulation a method similar to Gould (1998) for comparing effects

from two groups by updating estimates of the standardized difference, , where  is the$ 5 $" "
#Î

effect of interest and  the common variance.  The study is first planned to detect5#

) $ 5 ) $ 5" " " "!
#

"
#œ Î œ Îs, which can then be revised by repowering to detect  using an estimate

of  from an interim stage.  The paper asserts that decision making will be flexible and up to5#

a Steering Committee, but for simulation purposes created one possible strict study protocol.

The use of both unblinded and blinded variance estimators were examined and similar results

were concluded.  The results were generally of a large sample nature (smallest average
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sample scenario was ).  Despite the large samples, type I error rate inflation occurred8 œ *#

in simulations they ran with or without SSR (up to  for target of ).  The authors!Þ!$# !Þ!#&

noted that a large problem is that asymptotic results underlying sequential theory only

become accurate for very large samples.

Denne and Jennison (2000) proposed a group sequential -test with sample size update.>

This was based on the variance for a two-sided single group test of mean with early stopping

to reject the null.  A test based only on a Stein-like first variance estimate was first described.

This method was used as a stepping stone to define a test procedure where the maximum

sample size is recalculated at each stage with updated variance estimates.  The remaining

sample is then split based on the number pre-planned number of testing stages.  Testing is

not done at the first stage if the originally planned first stage testing fraction is not met.

Thus, a two testing stage procedure could have three or more stages in total.  In the

calculations for critical values and sample size adjustments, both a type I error rate spending

function and a degree of freedom correction are used to reflect the uncertainty of the variance

estimates.  The "effective" number of degrees of freedom at stage  is defined to be3

8  8  8  " ! Ÿ Ÿ " 8" 3 " "% %� �  for  and  the first stage sample size.  Based on calculations

for several examples,  is recommended to approximately achieve target error rates.% œ "Î%

For tests with two and five stages, Denne and Jennison showed by a combination of

simulation and numerical integration that the procedure works reasonably well, especially

when  is large (for example, ).  For the two-stage test with low first stage sample8   #!"

(  type I error rate inflation in this example can occur with a worst case considered of8 œ &Ñ"

!Þ!'# !Þ!& for a target rate of .  Morgan (2003) considered sample size re-estimation in group

sequential trials with the goal of extending the idea for use in group-sequential response-

adaptive designs for Gaussian data.  Morgan compared the performance of techniques similar

to the ones described by Denne and Jennison (2000) to conclude through simulation that a
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design using updated variance estimates at each stage has better power and sample size

properties.

Another approach to clinical trial monitoring with nuisance parameter based sample size

adjustment is the information based approach described by Mehta and Tsiatis (2001) or

Tsiatis (2006).  Since statistical precision is determined by the amount of statistical

information, a study should continue until the needed statistical information level is reached.

At this point the study will closely achieve the desired statistical power.  Mehta and Tsiatis

described the method for use within group sequential designs that allow for early stopping

while updating the estimated maximum sample size at each analysis stage as nuisance

parameter estimates are updated.  Group sequential stopping bounds along with an inflation

factor on needed information (and hence needed sample size) due to multiple testing were

advocated.  They used standardized test statistics with critical boundary determination based

on the error spending technique used.  Large samples are needed for this design in order to

avoid type I error rate inflation caused by asymptotic properties in the distribution of the test

statistics and boundary point calculations as well as from the of a downwardly biased

variance estimate in study stages following the first.  This is the same cause of type I error

rate inflation found in unadjusted internal pilot studies; see Proschan and Wittes (2000) or

Miller (2005) .for details

Most work has dealt only with the one or two group -test scenario.  This work>

represents an intersection with the topics of this dissertation.  Many of the results promote

general techniques for group sequential designs and are typically based on underlying large

sample assumptions to account for designs adjustments made in the trials.  Group sequential

designs typically have a primary goal of reducing average sample size by frequently

monitoring studies in order to stop if effect sizes are larger or smaller than planned.  Internal

pilots, typically only needing one interim analysis, attempt to check and correct for possible

misspecification of nuisance parameters in order to secure power levels for a study.  Possible
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sample size reductions are a secondary benefit.  The primary focus of this dissertation is

maintaining power by updating sample size needs, while incorporating the benefits of group

sequential theory by allowing the possibility of early stopping at the interim stage.

1.3 SUMMARY

Many prospective research studies and even clinical trials are not large enough for

asymptotic properties to hold.  Researchers in small sample continuous outcome settings

need the ability to control type I error rate and maintain power over possible values of the

error variance, a nuisance parameter, while minimizing sample size needs.  These small

sample settings can be one or two group studies ( -tests), multiple group comparisons, or>

other designs.  Distributional knowledge and effective protocols in these settings would be

valuable to study designers.

Currently methods do not exist for exact theory calculations of power, type I error rate,

and expected sample size in small samples for an internal pilot design with interim analysis

for early stopping.  These calculations could greatly increase the efficiency of study planning

through fast direct calculation.  Useful and accurate sample size re-estimation and critical

value selection criteria that can control the type I error rate while maintaining power and

minimizing expected sample size are also unclear in the small sample settings, with most

methods being asymptotic results.

For the two-stage IPIA method, exact theory in the GLUM setting with Gaussian errors

and fixed predictors are derived.  The theory may be applied accurately in small sample

settings and a wide range of study designs within the GLUM framework.  Logically and

computationally, this method collapses to the unadjusted IP design detailed in Coffey and

Muller (1999) for early stopping regions set to the null space as well as to a two-stage group

sequential test when sample size re-estimation not allowed.



CHAPTER 2.  INTERNAL PILOT WITH INTERIM
ANALYSIS FOR SINGLE DEGREE OF FREEDOM

HYPOTHESIS TESTS

SUMMARY

In this chapter, I introduce the proposed model of an internal pilot with interim analysis

(IPIA) design, discuss sample size re-estimation technique, and derive the exact

distributional theory needed for planning studies with single degree of freedom tests.  The

exact distributional theory allows computation of power, type I error rate, and expected

sample size for one and two group comparisons with unknown, common variances and other

single degree of freedom hypothesis study designs univariate linear model with fixed

predictors and Gaussian errors.  Examples compare study characteristics with a fixed sample

design as well as with the internal pilot and two-stage group sequential designs, all of which

can be seen as special cases within the IPIA framework.

2.1 INTRODUCTION

2.1.1 Motivation

When planning clinical trials and other studies, researchers would like to ensure they

have an appropriate sample size to detect an effect of interest for a given target type I error

rate and power.  Researchers and sponsors would also like to have the ability to reach early

decisions when hypothesis outcomes are clear.  Often times studies consist of one or two

group effect size comparisons.  Much of the current results promote general techniques for

group sequential type designs and are typically based on underlying large sample

assumptions to account for design adjustments made during the trials.
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Group sequential designs have a primary goal of reducing average sample size by

frequently monitoring studies in order to stop early if effect sizes are larger or smaller than

planned.  Internal pilots, typically only needing one interim power analysis, have the

alternative goal of checking and correcting for possible misspecification of nuisance

parameters in order to secure power levels for a study.  Possible sample size reductions are a

secondary benefit.  By developing procedures and theory for two-stage designs with interim

analyses, I focus primarily on the goal of maintaining power by updating sample size needs,

while also incorporating the benefits early stopping procedures.  Exact distributional results

with computable formulae for power and sample size would allow researchers to accurately

explore properties for such designs, even in small samples, before undertaking a study.  The

exact theory would allow for efficient study planning without the need for simulations, even

in small sample studies.

The importance of small sample theory is explicitly highlighted within the NIH

Roadmap (Clinical and Translational Science Awards, RFA-RM-07-002 U54).  Also, while

large sample clinical trials get a lot of attention, they are often based on numerous small

sample studies.  The results of this chapter can be used to examine exact properties for many

study designs in a two-stage framework, including the information based approach.  The use

of the exact theory can facilitate studying and comparing properties of new methods in order

to ascertain ones with the most desirable features for a particular study.  For example, a new

method for determining boundary points could lead to a more unbiased testing procedure in

small sample studies.  The use of the exact theory for procedure comparison will be explored

in Chapter 3.

2.1.2 Literature Review

For a prospective study with Gaussian outcomes, an internal pilot (IP) design allows for

an update to sample size based on an error variance estimate taken at an interim stage.  While

studies may be lengthened or shortened from their pre-planned size by this estimate, the main
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objective of an internal pilot design is to ensure that the study is sufficiently powered to

detect an effect size of interest.  Group sequential (GS) methods, on the other hand, are

designed to allow for a possible reduction in pre-planned sample size due to early stopping

for efficacy or futility if effect sizes deviate substantially from anticipated magnitudes.

Current research is looking at ways to simultaneously obtain the benefits of both approaches,

i.e., combine the early stopping benefits of GS methods with sample size re-estimation

methods (such as IPs) protecting against misspecification of nuisance parameters.  There

have been a number of papers considering procedures for combining GS and IP studies to

simultaneously obtain their respective benefits.

Stein's (1945) two-stage design, which used variance information only from the first

stage, was a strong early influence to sample size re-estimation in sequential procedures.

Baker (1950) and Hall (1962) introduced similar sequential tests based on the sequential

probability ratio test (SPRT; Wald, 1947) incorporating information about the variance using

a single sample estimate.  Arghami and Billard (1992) define a partial sequential procedure

also based on the SPRT and a Stein-like variance estimate.  Hochberg and Marcus (1983)

describe a three-stage test for a one-sided, two-group comparison using variance information

from a first sample to determine sample sizes for two testing stages.  All of these procedure

have in common the disadvantage of only incorporating early stage variance information into

the test statistics.

  Facey (1992) described a Phase 2 trial design using the triangular test stopping bounds

(Whitehead and Straton 1983).  She compared the use of powering to absolute orß

standardized treatment differences.  Type I error rate inflation was high for the absolute

differences and more reasonable for the standardized differences in the cases considered

(maximum type I error rate of  for target ).  Gould and Shih (1998) used a blinded!Þ!&* !Þ!&

variance estimate from the initial stage to fix future sample sizes.  The procedure only allows

for sample size increases to the group sequential procedure if the variance estimate is at least
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a constant factor larger than the planning value (increase sample size if  with5 -5s  "
# #

!

- œ "Þ$$, for example).  In this case, they explore a few methods such as redistributing the

sample sizes to match the originally planned information times, or allowing them to vary in

pre-planned or unplanned manners.  They concluded through simulation, with a small

fraction of error dedicated to the first testing stage, that the procedure works adequately with

two testing stages.  Whitehead et al. (2001) explored through simulation a method similar to

the one described by Gould and Shih (1998) for comparing effects from two groups by

updating estimates of the standardized difference, , where  is the effect of interest and$ 5 $" "
#Î

5 ) $ 5# #
" " ! the common variance.  The study is first planned to detect , which can then beœ Î

revised by repowering to detect  using an estimate of  from an interim stage.  In) $ 5 5" " "
# #œ Îs

the paper, the authors assert that decision making will be generally flexible and up to a

Steering Committee, but for simulation purposes they created a possible strict study protocol.

They examined the use of both unblinded and blinded variance estimators and concluded

similar results.  The results were generally of a large sample nature (smallest average sample

scenario was ).  Despite the larger samples, type I error rate inflation occurred in8 œ *#

simulations  ran with or without sample size re-estimation (up to  for target ofthey !Þ!$#

!Þ!#&).  The authors noted that asymptotic results underlying sequential theory only become

accurate for very large samples.

Denne and Jennison (2000) proposed a group sequential -test with sample size update>

based on the variance for a two-sided single group test of mean with early stopping to reject

the null.  They first described a test based only on a Stein-like first variance estimate.  They

used this method as a stepping stone to define a test procedure where the maximum sample

size is recalculated at each stage with updated variance estimates and remaining sample split

based on the pre-planned number of testing stages.  For the procedure, testing is not done at

the first stage if the originally planned first stage testing fraction is not met.  Thus, a two

testing stage procedure could have three (or more) stages in total.  In the calculations for
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critical values and sample size adjustments, they used a type I error rate spending function

and an ad hoc degree of freedom correction to reflect the uncertainty of the variance

estimates used.  The "effective" number of degrees of freedom at stage  is defined as3

8  8  8  " ! Ÿ Ÿ " 8" 3 " "% %� �  for  and  the first stage sample size.  Based on calculations

for several examples,  is recommended to approximately achieve target error rates.% œ "Î%

For tests with two and five stages, Denne and Jennison showed by a combination of

simulation and numerical integration that the procedure works reasonably well, especially

when  is large (say ).  For the two-stage test with low first stage sample (8   #! 8 œ &Ñ" "

type I error rate inflation in their example can occur with a worst case considered of !Þ!'#

for a target rate of .!Þ!&

Morgan (2003) considered sample size re-estimation in group sequential trials with the

goal of extending the idea for use in group-sequential response-adaptive designs for Gaussian

data.  Morgan compared the performance of similar techniques to those described by Denne

and Jennison (2000) and concluded through simulation that the use of updated variance

estimates at each stage had beneficial power and sample size properties.

Another approach to clinical trial monitoring with nuisance parameter based sample size

adjustment is the information based approach described by Mehta and Tsiatis (2001) or

Tsiatis (2006).  Since statistical precision is determined by the amount of statistical

information, a study should continue until the needed statistical information level is reached.

At this point the study will closely achieve the desired statistical power.  Mehta and Tsiatis

described the method for use within group sequential designs that allow for early stopping

while updating the estimated maximum sample size at each analysis stage as nuisance

parameter estimates are updated.  Group sequential stopping bounds along with an inflation

factor on needed information (and hence needed sample size) due to multiple testing were

advocated.  They used standardized test statistics with critical boundary determination based

on the error spending technique used.
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Large samples are needed for this design in order to avoid type I error rate inflation

caused by asymptotic properties in the distribution of the test statistics and boundary point

calculations.  Another cause of type I error rate inflation in small samples for this design

comes from the use of a downwardly biased variance estimate in study stages following the

first.  This is the same cause of type I error rate inflation found in unadjusted internal pilot

studies; see Proschan and Wittes (2000) or Miller (2005) .for details

2.2 THE IPIA MODEL AND PROPERTIES

2.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,

Chapter 1).  An  vector (always a column) is written , and an  matrix is written< ‚ " < ‚ -+

E E Eœ +e f4ß5
w, with transpose .  For full rank matrix , the inverse of the transpose equals

the transpose of the inverse and I will use .   always represents anE E E "> w "" w
<œ œ� � � �

< ‚ " " B vector of 's and Dg  represents a diagonal matrix with  element .� �B � �4ß 4 4

Furthermore, define  as the  identity matrix with Dg .  The directM M "< < << ‚ < œ � �
(Kronecker) product is defined as .E F FŒ œ +e f4ß5

Detailed information about all random variables discussed in this paper can be found in

Johnson et al. (1994, 1995).  The vector  indicates that random vector B Bµ ßa8� �. D

( ) has a vector (multivariate) Gaussian distribution with mean vector  and covariance8 ‚ " .

matrix .  For  less than full rank,  has singular vector Gaussian distribution, written asD D B

B µ W ß \ µ ß \a ; / =8
#� � � �. D .  Writing  indicates that  follows a non-central chi-square

distribution, with  degrees of freedom and noncentrality .  Likewise, writing/ =

\ \µ J ß ß J� �/ / =" #  indicates that  follows a noncentral  distribution with numerator

degrees of freedom , denominator degrees of freedom , and noncentrality .  Writing/ / =" #

; / / / = ; /# #
" # P YX� � � � � � or  implies .  More generally, writing  indicates thatJ ß œ ! \ µ à > ß >

\ follows a doubly-truncated central chi-square distribution with  degrees of freedom,/

truncated to the interval  (Coffey and Muller, 2000).  For random variable  withc d> ß > YP Y
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parameters , indicate the cumulative distribution function (CDF) taken at  as# #" 5á ?

J ?à á Þ DY " 5� � � � � �# # F  As a special case, let  indicate the CDF for the Gaussian 0,1

distribution, taken at .  Also  indicates the  quantile of a random variableD J à áY
"

" 5� �α # # α

Y á with parameters .# #" 5

2.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) models discussed in this paper can be

viewed as generalizations of the two-stage internal pilot model in the GLUM framework as

introduced in Coffey and Muller (1999), which includes the one and two sample -tests as>

special cases.  However, due to the possibility of early stopping, notational adaptations are

necessary.  In an IP design,  ( is the random final sample size thatR 8 Ÿ R Ÿ 8  ,min ,max) 

is calculated using , the variance estimate from the interim sample.  For the IPIA model,5s"
#

R ( is also a random variable based on8 Ÿ R Ÿ 8 s"   "
#

,max)   and fully determines the5

variable  .  However, due to the possibility of early stopping, it is notR œ R  8#  "

necessarily the final sample size for the study.  Let random variable  be the final sampleRA

size used for the study.  Then continue  with  an event indicator equal toR œ 8 R †A " # \ \� �
" if a study is continued at the first stage.  So

R œ
8
R ÞA
"


œ  if study stopped after first stage

 otherwise (2.1)

The design leads to interest in different but intimately connected models.  The combined

model for the final analysis may be written as

C \ /  

  R ‚ " R ‚ ; ‚ " R ‚ "
œ               ," (2.2)

or

Ô × Ô ×Ö Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

C

C /

\

\

/"

" "

# #

#

"
"

#

#

"

#

8 ‚ " 8 ‚ "

R ‚ "

œ 
8 ‚ ;

R ‚ ; R ‚ "

"  , (2.3)
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with partitioning corresponding to the fixed  and random  observations in the first and8 R" #

second samples, respectively.  The second sample of size  shown above isR œ R  8#  "

only taken if study continuation is determined from the first sample.  Also, the special case of

R œ 8 " will cause the full model to collapse to the interim model.  Model components

include random observed  ( ) independent sampling units as rows), design matrixC R ‚ " Ð

of fixed form , and unobserved  such that .  \ ! M
#/ /  R Rµ ßa 5

 
� � For computational

convenience,  values of sample size, , increase only in multiples of a random R œ 8 R " #

replication factor, .  For example, a balanced 2-group study design would have .  For7 7 œ #

some \ \ " \ \ " \! " 5 ! # O ! " ( ), assume  and , with fixed  and random7‚ ; œ Œ œ Œ 5
" #

O# the number of replications in the first and second samples, respectively.  Consequently,

the columns of \ \" # # and  span the same space (when ) and hence defineO  !

< œ œ œrank rank rank .  In order to simplify computations and some� � � � � �\ \ \" # 

discussions, attention will usually be restricted to a full rank design, that is rank .� �\ œ ;!

The principles of linearly equivalent models allow the restriction without meaningful loss of

generality.

The test of interest is , with  a fixed  contrast matrix and .L À œ + ‚ ; œ! !) ) ) "G G

Without loss of generality I assume  (see .  )! œ ! Lemma A.1) For a ‘scientifically

important’ effect of interest , I seek a design that ensures a target type I error rate� �) )œ "

� � � �α> > with sample size appropriate to achieve target power .T

Throughout, subscript  indicates a value for either the model based on the= − "ße f
internal pilot (first) sample or the total combined sample (conditioned on ).  ErrorR œ 8 

degrees of freedom are .  I use functional notation in many places to emphasize/= =œ 8  <

the dependence on .  For example, with the 'hat' matrix  defined as8= =L

L \ \ \ \= = == =
w w"

œ � �   , (2.4)

then,
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)s 8 œ� � � �= = == =
w w"

G \ \ \ C (2.5)

and

5 /s 8 œ  Î#
= 8 = = ==

w� � � �C M L C
=

(2.6)

represent the unadjusted estimates of  and  for the model based on sample .  Similarly,) 5# =

define 'middle' matrix  asQ=

Q G \ \ G= =
w w
=

"
œ � �  (2.7)

and noncentrality  as$=

$=
w "

=œ ) )Q    . (2.8)

Then

$s s s8 œ 8 8� � � � � �= = =
w

=
") )Q (2.9)

is the observed hypothesis sum of squares for the model based on sample .  Hence, the=

unadjusted test statistics for the two stages are defined as

J 8 œ 8 Î+ Î 8s s� � � � � �’ “= = =
#$ 5   . (2.10)

When there is no confusion, the functional aspects of the estimators will be implied with a

subscript, e.g.,  is written  and  is written .  I consider only) )s s s8 J 8 J œ Î+ Îs� � � � Š ‹= = = " "
#
"$ 5

testable hypotheses, which require full rank as well as .  TableG G \ \ \ \ G � � � �= =
w w

= =
 œ

2.1 summarizes relevant dimensions, Table 2.2 summarizes parameters and constants, and
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Table 2.3 summarizes design factors for the study.

Table 2.1  :
Symbol Definition

Sample size, first stage
Total random sample size if study continued at first stage
Ran

Dimensions

8
R
R

"



# dom second stage sample size, 
Total random sample size used in study
Number of predictors and columns in 
Replication f

R  8
R
;
7

 "

A

!\
actor, number of rows in 

rank , rank , rank , and rank  when 
Error df , 
Number of rows in , hy

\
\ \ \ \

G

!

!  # #

= =

< R  !
œ 8  < = − "ß

+

� � � � � � � �e f"

/
pothesis df for test statistics

Number of replications in first stage, 
Number of replications in second stage, random, 

5 8 Î7
O R
" "

# #Î7

Table 2.2  :
Symbol Size Definition and Properties

Fixed, known, base design matrix
Fixed, known, f

Parameters and constants

\
\

!

" "

7 ‚ ;
8 ‚ ; irst stage design matrix

Final design matrix
Stage 2 design matrix
Primary parameters
Between-subject contrast m

\
\

G

 

# #

R ‚ ;
R ‚ ;
; ‚ "
+ ‚ ;

"
atrix

Secondary parameters
Null hypothesis values (can set to  WOLOG) 
'Middle' matrix for stage 

) "
)
œ + ‚ "

+ ‚ "

œ + ‚ + =

G

Q G \ \ G

L

!

= ==
w w"

"

0� �
œ 8 ‚ 8

œ R ‚R

" ‚ "

œ "

\ \ \ \

L \ \ \ \

Q

" " " "" "
w w"

     
w w"

#

=
w "

=

� �� � 'Hat' matrix for first stage
'Hat' matrix for second stage
True variance5

$ ) ) ‚ " =

œ Î " ‚ " =

Unscaled noncentrality for stage  
scaled noncentrality for stage - $ 5= =

#



32

Table 2.3: 
Symbol Definition

Design Parameters Target type I error rate
Target powe

Internal pilot with interim analysis notation

α>

>T r
'Scientifically Important' value of 
Variance value used for planning
Planned sample size for 

, 

) )

)

"

#
!

! > > "
#
!

6  ? 

5

α 58 ß T ß ß

0 8 0 8 ß� � � � 0 8 R

8

8 œ 8

  

!

" !

� � Critical values determined by 
Sample Size Proportion of  used in internal pilot
  Allocation Internal pilot sampl

1

1 e size
Maximum size of final sample

Unknown Parameter Ratio of true to planning variances
8

œ Î

ß

# #
!

max

# 5 5

2.2.3 IPIA Properties

This section presents model properties needed for future proofs and consideration.

Lemma 2.1  For the model in equation 2.3 interpreted as a fixed  design, the following8

holds.

The following  matrices are symmetric and idempotent, for any testable8 ‚ 8 

hypothesis, and have ranks of , ,  and :+ 8  < Ð8  <Ñ 8� � " #

E \ \ \ G \ \ G \ \ \

E M \ \ \ \

E
M \ \ \ \ !

! !

E E E

2       
> " ""

/ 8   
"

/"
8 " "" "

"

8 ‚8

/: / /"

œ

œ 

œ


œ 

� � � � � �
� �

” •� �
w w w w w w

w w

w w

Ò ÓG G



"

# #

 .

( 11)

( 12)

(

2.

2.

2.13)

( 14)2.

Furthermore

E E E E E E !2 / 2 /" 2 /"œ œ œ œE E/: /: . (2.15)

See  for details.Coffey and Muller (1999)
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Extending the notation gives

E
\ \ \ G G \ \ G G \ \ \ !

! !
2"

" " " "" " " "
w w w w w w> " "

"

8 ‚8

œ
Ô ×
Õ Ø� � � � � �’ “

 

. (2.16)

Or, equivalently, let  which gives\
\ " \
!"‡

" 5 !

8 ‚;
œ œ

Œ” •
#

"” •!8 ‚;#

E \ \ \ G G \ \ G G \ \ \2" "‡ " " "" " " "‡
w w w w w w" " ""

œ � � � � � �’ “  . (2.17)

In turn, , for , is idempotent, symmetric, and rank  (testable hypothesis).E2= = − "ß  +e f
Hence one can define  of dimension  withZ2= 8 ‚ +

E Z Z2= 2= 2=œ w (2.18)

and

Z Zw +2= 2= œ M    . (2.19)

Also, since  is idempotent, symmetric, and rank , one can define  ofE E E Z/: / /" # /:œ  8

dimension  with8 ‚ 8 #

E Z Z/: /: /:œ w (2.20)

and

Z Zw/: /: 8œ M
#
   . (2.21)

Since it is symmetric and rank , the matrix+

Q G \ \ G!
" œ � �w w

0 0 (2.22)

can be written as  for  J J J! !!
w of dimension  and rank .  This in turn implies that+ ‚ + +

Q J J" > "
! ! !œ    . (2.23)

For  the number of replications at stage , the fact that  implies that5 œ 8 Î7 = œ 5= = =
"
=Q Q0

Q J J" > "
= ! !=œ 5   . (2.24)
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Also \= œ " \5 !=
Œ  implies that

\ \ \ \w w
== != !œ 5   . (2.25)

From equation 2.18, E Z Z Z Z Z2= 2= 2=  2=2= 2=œ 8 ‚ + œw w
+, with  of dimension  and .M

The matrices Z Z2 2" and  can now be derived as follows:

E \ \ \ G G \ \ \

\ \ \ G G \ \ \

\ \ \ G G \ \ \

\ \ \ G

2     
> ""

 ! !! ! 
> ""

 ! !! ! 
> "

 !!
"

œ � � � �
� � � �

� � � �
� �

w w w w


 
w w w w




w w w w

w w

Q

Qœ 5 5

œ 5

œ

5

5

# > "
 ! !

"


J J

J J

J J

> "
! !

" > "
 ! !

G \ \ \

\ \ \ G G \ \ \

� �
� � � �

w w

w w w w

! !
"

 ! !! ! 
" "

œ 5 ’ “’ “ (2.26)

implies that

Z \ \ \ G2  !!
"

œ 5
"Î#
 !

>� �w wJ   , (2.27)

and

E \ \ G \ \ G \ \

\ \ G G \ \

\ \ G G \ \

2 " " "" " "
> " ""

! !! !
" "

! !! !
"

1 œ \ \

\ J J \

\ J J

"‡
w w w w w w

"‡

"‡
w w w w

"‡

"‡
w w w

� � � �’ “
� � � �
� � � �

G G

œ

œ

5

5

" > "
" ! !

" > "
" ! !’ “’ “"

\w
"‡ (2.28)

implies that

Z \ \ G2" !!
"

œ 5

"

>"Î#
"‡

w w\ J� �   . (2.29)

Using the result

\ \ \w w w
"‡ " "

w w
" #

"
" ! !\ \ \\ \

\
!

œ c d” • œ œ 5   , (2.30)

the following is shown true:
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Z Z

G \ G

G G

G

2 2"

" "


" "

w

"Î# w w w w
! !! "‡ !

"Î# w w w w
! ! !! ! !

"Î#

     œ

œ

œ

� �
� �
� �
5 5

5 Î5

8 Î8

 "


! !
" >

"  ! !
" >

"  !
"

’ “’ “J \ \ \ \ \ J

J \ \ \ \ \ \ J

J \

� � � �
� � � �� �
� �w w

! !

"Î#

"Î# w

"Î#

\ J

J Q J

J J J J

"
G

M

!
>

"  !! !
" >

"  !! ! !
" >

"  +

œ

œ

œ

� �
� �
� �
8 Î8

8 Î8

8 Î8 (2.31)

Also, directly from symmetry,

Z Z Z Z M2" 22 2"
w w "Î#œ œ � �8 Î8"  +   . (2.32)

Since , the following are true:E !2
w wE Z Z Z Z/: 2 /:2 /:œ œ

Z Z2 /:
w œ !  , (2.33)

and

Z Z Z Z2 /:/: 2
w wœ œ! ! and   . (2.34)

Similarly, since , the following are true:E !/:
w wE Z Z Z Z/" /: /"/: /"œ œ

Z Z2 /:
w œ ! (2.35)

and

Z Z/: 2
w œ !  . (2.36)

Also,

Z Z

Z E E

Z E Z E

Z E

w w
/:

w

w w

w

/: /:

/: / /"

/: /:/ /"

/: /

œ





E

œ

œ

œ

� �
(2.37)

which implies that
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Z Z E

Z

Z

Z

w w
 

w
  

w
  

w

/: /: /

/:

/:

/:

. .

"

"

"

œ

œ 

œ 

œ

� �� �M L \

\ L \

!

œ !  .
(2.38)

Also,

� �c d� �c dc d� �� �

M  Z

M  Z

M  Z

M  M L Z

L Z

L Z Z

8 /: 2 2"

8 / /" 2 2"

8 / 2 2"

8 8  2 2"

 2 2"

 2" 2 2"

w







 

E E

E E E

E E

E

E

E

\ \ \ \



œ  

œ 

œ 

œ 

œ 

œ

        

5"
  !!

"� � w
2" 2

"Î#

"Î# "Î#w w w w



 !  !! !
" "

Z Z

J J

!



œ

œ

� �5 Î5

5 5  5 5

" 

" > " >
 !  !" "\ \ \ G \ \ \ G� � � �
   . (2.39)

Define the following:

C Z C

C Z C

C Z C

2"  2"
w

/:  # /:
w

2  2
w

œ ‚ "

œ ‚ "

œ ‚ "

+ ‚ 8

8 ‚ 8

+ ‚ 8   .

2.

2.

2.

( 40)

( 41)

( 42)

With

Ô ×
Õ Ø c dZ
Z

Z
M Z Z Z

M Z Z Z Z
Z Z M Z Z

Z Z Z Z M

M Z Z M
Z Z M

2"
w

/:
w

2
w

2" /: 28

+ /: 22" 2"
w w

/: /:
w w

2" 8 2

2 2
w w

2" /: +

+ /: "  +2"
w "Î#

/:
w

2"



#        œ

œ

8 Î8

Ô ×
Õ Ø
Ô ×Ö Ù
Õ Ø

� �
8

"  + +
"Î#

#+8

#

#

!

M ! M� �8 Î8 � � (2.43)

and
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Ô × Ô ×
Õ Ø Õ Ø
Z
Z

Z

2"
w



/:
w



2
w



2"

2 #+8 ‚"

.

.

.

.

.
œ 0

� �#
  , (2.44)

the following vector can be defined:

C C

Z
Z

Z

C
C
C

2 œ œ
Ô × Ô ×
Õ Ø Õ Ø

2"
w

/:
w

2
w



2"

/:

2

  . (2.45)

This is then distributed as

C

M Z Z M
Z Z M !
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using the properties in equation 2  one can write the relation: .39
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with equation 2C C/: 2 independent of  and both distributed as described in .  That is, the .46

relation in   holds for independent  and  andequation 2.48 C C/: 2

C ! M/: 8µ a
#
ˆ ‰ß5#

8#
(2.49)

C M2 +µ a ˆ ‰.2 +
#ß5   . (2.50)



38

Additionally,
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These then imply the useful relation
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Of course for  this result becomes   + œ "ß œ@ E @w
# 2" /: 2" 8 Î8 . Using the results from

equations 2 2 , the distribution of .49 and .54 Z Z C2"
w

/: /: can then be stated:

Z Z C ! M2"
w

/: /: +µ a  ‘� �ß 8 Î8#  +
#5   . (2.55)

Or, for ,+ œ "

@ Z C2"
w

/: /: µ a  ‘� �!ß 8 Î8# 
#5   . (2.56)
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A useful result is the distribution of C Z Z C/: /: /:2"
w conditional on  for the  case.+ œ "
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Conditional Gaussian theory (see Muller and Stewart, 2006; Chapter 8) then implies for

+ œ " œ 8 Î8 >  8 Î8, . D/Þ2  # ! /Þ2 8  #� � � �Z @ œ M Z E Z/: /:
w # w
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of C @ Z C/: /: /:2"
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. D   . (2.58)

For the distribution of I œ I: :
wC C/: /:

#Î5 , I can now state in a corollary  conditional on

Z Z C2"
w

/: /: for the special case of .+ œ "

Corollary 2.1  For  and , the distribution of  conditional on+ œ " I œ I: :
wC C/: /:

#Î5

@ Z C2"
w

/: /: œ >! is

I l >: !� �@ Z C2"
w

/: /: œ œ \ : � �� �8 Î8 > Î # !
#5 (2.59)

where \ 8  ": #
# is a central  distributed variable with  degrees of freedom.;

A proof of Corollary 2.1 is in Appendix A.
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2.3 THE IPIA PROCEDURE AND PROPERTIES

Table 2.4
Step a

 1b
Step 2

: 
Specify , , , hypotheses, , and 
Solve for first stage sample size ( ) 

General procedure
" \À T

À 8

α 5> > ! " !
#

"

)

À 8

À R œ 8 ß 0 8 ß 0 8 ß 0 8 J

À

J  0

 Collect first  observations
Solve for  critical values   and , and 
Decide:

If  

"

  6  ?    "

" 6

Step 3
Step 4

� � � � � �
then STOP, ACCEPT 

If  then STOP, REJECT 
If  then take  additional observations

Solve for 

L

J   0 L

0 Ÿ J  0 8 œ 8  8

À J

!

" ? !

6 " ? #  "

Step 5
Step 6 À

J  0 L

J   0 L

Decide:
If  then ACCEPT 
If  then REJECT 

  !

  !

Table 2.4 outlines the general procedure for the IPIA model.  The order of the steps

matters in specifying the distributions.  The above sequence seems the most sensible.

The value of the internal pilot sample size, , should be made at the design stage of the8"

study.  The choice is important since lower values give more uncertain estimates of  while5#

higher values reduce possible savings in sample size.  For traditional internal pilot designs,

Birkett and Day (1994) recommended at least 20 degrees of freedom in the first stage

sample; however, Coffey and Muller (1999) showed that this scenario can still produce type I

error rate inflation depending on the design and noted the importance of examining

properties of specific study designs.  A default in literature seems to be taking a designated

fraction of the sample size from fixed sample equations using the best guess for the variance

at the planning stage, i.e.,  for  and  determined from .  A default choice1 1 5† 8 !  Ÿ " 8! ! !
#

for  seems to be ; that is, the size of the first sample is half of the fixed sample study1 "Î#

sample size based on .  For this chapter, a choice of  as close to  as possible will be5 1!
# "Î#

chosen.  The effect of the initial sample size choice in the IPIA design will be considered as a

factor in examples in Chapter 3.
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Calculation of the three critical values for the study, , and , must0 8 0 8 ß 0 86  ?   � � � � � �
be done following rules pre-specified in the study protocol.  The critical values may depend

on , the realized value of ; however, when it is clear, they will be referred to as ,8 R 0  6

0 ß 0? and .  Ideally, they should be chosen in a way that controls the type I error rate while

having good power and expected sample size properties.  The theory developed here

optionally allows for stopping under the null at the interim analysis if , where  isJ  0 0" 6 6

the first stage lower critical value.  This can cause a great reduction in expected sample size

when the effect size is near the null value by allowing the study to stop for a "lost cause".  If

no early stopping ability under the null is desired, then  for all .  In all cases0 œ ! 8 Á 86  "

0 œ 0 8 œ 86 ?  " when , which guarantees stopping for acceptance or rejection of the null.

More detailed exploration and comparison of selection methods will be undertaken in

Chapter 3 of this dissertation.

The sample size re-estimation rule will determine the distribution of .  It is anR

important consideration in the design affecting type I error rate, power, and expected sample

size.  Like internal pilot designs, the sample size for IPIA designs is determined by using the

updated variance estimate at the interim stage to recalculate the estimated sample size need

to achieve target power in the final test.  The procedure takes advantage of the monotone

relationship between continuous  and discrete .  In order to determine the distribution5s R"
#



of sample size, one solves the cumulative distribution function for possible values of ,R

that is , by determining cut-off points based on the first stage variance estimate.Pre fR Ÿ 8

For a particular value  of random , one solves for scaled noncentrality  that8 R 8  -� �
satisfies

T œ "  J 0 à +ß 8> ;# c d� �crit - (2.60)

or

T œ "  J 0 à +ß ß 8> J  c d� �crit / - (2.61)

where 0 œcrit J "  à + J "  à +ß;#
" "

> >J� � � �α α or  depending on whether or not large/
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sample distributional assumptions are used.  The noncentrality scaled  here represents -� �8

the minimum value that would lead to a final sample size of .  Since the effect of interest,8

) ) )"  "" 
w ", is used at the planning stage, for  the following hold:$� �8 œ Q

- $ 5� � � � � �8 œ 8 Î 8  
# (2.62)

or

5 $ -#
  � � � � � �8 œ 8 Î 8 Þ (2.63)

Here,  designates the largest value of  that would produce .  Therefore,5 5#
  "

#� �8 R œ 8s

since  for ,/ 5 5 ; /" ""
# # #s µ [ [ µ � �

Pr Pr
Pr
Pr

e f � �˜ ™
˜ ™� �˜ ™� � � � ‘

R Ÿ 8 œ Ÿ 8s

œ [ Ÿ 8 Î

œ [ Ÿ 8 Î 8

  "
# #

" 
# #

"  
#

5 5

/ 5 5

/ $ 5 - . (2.64)

The discreteness of sample size implies

Pr Pr Pre f e f e fR œ 8 œ R Ÿ 8  R Ÿ 8 7      . (2.65)

When restrictions are given for minimum or maximum sample size, the tail probabilities are

collapsed into the smallest or largest allowable values, respectively.

A key result of this process is the determination of cut-off points that determine a range

into which continuous  must have fallen in order for a given final sample size to occur.5s"
#

Define  and  to be the values such that; 8 ; 8"  � � � �#

R œ 8 Í ; 8  Î Ÿ ; 8 ßs  "  " # "
# #  (2.66)� � � �/ 5 5

which in turn implies that

Pre f � � � �R œ 8 œ 8 à 8 à   J ;  J ;; ;# #c d c d# "/ /" " . (2.67)

The cut off points determine the probabilities for discrete values of  and hence describeR

the variable's distribution.  When it is unambiguous,  and  are used for  and; ; ; 8" " # � �
; 8#� � .
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One small difference between this technique and that used for sample size calculations

in group sequential methods is the lack of the sample size inflation factor used to account for

the drop in power from multiple looks.  While it's use could be integrated into the method

without much difficulty, it would have very little effect on this two-stage design.  For

example, using O'Brien-Fleming bounds for  and  calls for a sample sizeT œ !Þ* œ !Þ!&> >α

inflation factor of 1.007 (Jennison and Turnbull, 2000; Chapter 2).  Additionally, changing

the  and  does not change this factor much.  Due to its lack of significance, I decided toT> >α

simplify the method by leaving it out for now; it can always be added if deemed important.

2.4 KEY ANALYTIC RESULTS FOR PROCEDURE

The results in this paper are developed to test 0 with for the caseL À œ œ! ) ) G" 

where contrast matrix has only one row, namely, .  Model designs falling under thisG  + œ "

restriction include one and two group mean comparisons, tests for interaction, and other

designs of interest.  Key results in this section will be specific to this design restriction.

In order to compute power (and hence, type I error rate) for the study design, a joint

distribution of the two stage test statistics if necessary.  Since critical values and denominator

degrees of freedom depend on sample sizes, I derive the joint CDF conditional on an R

value, or .  By using the law of total probability and summing over possibleJ 0 ß 0J ßJ lR " "  
� �

values, this result leads to calculation of unconditional power.

Conditional on ,  (Coffey & Muller, 1999).R I œ Î µ à ; 8 ß ; 8s " " " "  # "
# # #

X/ 5 5 ; /c d� � � �
The following theorem gives a convenient expression for the conditional joint CDF of the test

statistics for the  case.+ œ "

Theorem 2.1  Related results and definitions can be found in section 2.2.3.  Define

, > ß > œ > Î -  > . > œ > Î 2 > ß > œ 8 Î8 >� � � � � � � � � � � � � �/ 2  / : / 2 "  2
# # # #
2 :

"Î#5 5 5, , ,8 8 - >  # " /
"Î#
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6 > ß > œ  8 Î8 > : œ J Ð; à Ñ  J Ð; à Ñ + œ "� � � � � �/ 2 "  2 8 " "
"Î#5 / /- > " /

"Î# , and .  For ,

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J 0 ß 0
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8 2 2 : # 
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
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/ 2
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( ( (ˆ ‰  ‘
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;

;

> à 0 0/ a a. 5 5� �
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‚ e f�> >: 2à 8  "# .> . .>: / (2.68)

A proof of Theorem 2.1 is in Appendix A.

A needed result when early futility stopping is allowed follows directly from Theorem

2.1 as follows

Pre f0 0 J6   Ÿ Ÿ ß Ÿ 0 lR œ 8 œ J J 0 ß 0 J 0 ß 0" ?  J ßJ lR J ßJ lR?  6 "   "  
� � � �.

(2.69)

A special case distribution is the condition joint distribution of the test statistics when

8 œ "# .  This result would be needed for single group hypothesis tests and is a simplification

of Theorem 2.1.

Theorem .2.   2 Related results and definitions can be found in section 2.2.3.  For + œ "

and , define  and , then8 œ " , > œ 8 - > : œ J Ð; à Ñ  J Ð; à Ñ# /  " / " "
"
8� �


# #; ;# "/ /

J

œ

‚  ß - >  ß "ß

J ßJ lR
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� �
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         min - (2.70)

A proof of Theorem 2.2 is in Appendix A.

Another distribution important to power and expected size calculations is the CDF of

the first test statistic, conditional on , i.e., .  This result is not new and can beR J 0J l" R "
� �

found in Coffey and Muller (1999) who considered it for use in internal pilots for the case of

R œ 8 ".  In the context of the IPIA model it has greater importance due to early stopping

possibilities and is presented here to use in the forthcoming equations for power and

expected sample size.
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Theorem 2.3  The conditional CDF of the first test statistic can be written

J 0 œ .>
J - > à +ß 0 > à

J lR " "
;

;
" " " " "

" 

"

#
# #� � ( � � � �; ;- /

J ; à  J ; à; ;# #� � � �# "/ /" "
  . (2.71)

A proof of Theorem 2.3 is in Appendix A.

The following corollary adapts Theorem 2.3 to solve for the probability of the test

continuing to the second stage conditional on when futility stopping is possible.R œ 8  

Corollary 2.2

Prš ›¹
( c d� � � �

0 Ÿ J  0 R œ 8

œ .>
J - > à +ß  J - > à +ß 0 Ð> à Ñ

J Ð; à Ñ  J Ð; à Ñ

6 " ?  

;

;
? " " 6 " " " "

# " " "
"     (2.72)

"

#
# # #

# #

; ; ;

; ;

- - /

/ /

The proof is similar to proof of Theorem 2.3, in Appendix A.

The above results can then be used to calculate exact expressions for the power, type I

error rate (power under the null hypothesis), and expected sample size in the study.  The

values change with design parameters and are valuable knowledge in study planning.  The

following theorem gives the formula for unconditional power.

Theorem 2.4  An expression for unconditional power, , can be writtenTA

T "  J Ð; à Ñ  J Ð; à Ñ J Ð0 8 Ñ 

0 8 Ÿ J  0 8 ß J  0 8 R œ 8

A # " " " 6 

R œ8

J lR

6  " ?      

œ � c d � �š
’ “›� � � � � �¹

e f 

# #
" ; ;/ /

                       . (2.73)Pr

A proof of Theorem 2.4 is in Appendix A.

The results in this section can also be applied to calculate an expected sample size

formula for a study design in the following form.

Theorem 2.5  Let total sample size taken in study, that is,R œA

R œ
8
RA
"


œ  if study stopped after first stage

 otherwise
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then

E Pr� � c d� ’ “¹R œ 8  8 J Ð; à Ñ  J Ð; à Ñ 0 Ÿ J  0 R œ 8A " # # " " " 6 " ?  

R œ8e f 

# #; ;/ /

(2.74)

A proof of Theorem 2.5 is in Appendix A.

2.5 EXAMPLES

2.5.1 Motivation for Examples

Two example study designs are considered in this chapter and revisited in Chapter 3,

where design strategies are evaluated.  The designs are both two group comparisons, but

have different sample size needs.  There are three main purposes of the examples in this

chapter.  First, to compare the numeric results using exact theory to simulations in order to

justify the computational algorithms utilized in calculations and as an additional check on the

accuracy of the theory.  Second, to examine the properties of the proposed internal pilot with

interim analysis (IPIA) procedure and how they compare to properties of special cases such

as fixed sample, internal pilot (IP), or two-stage group sequential (GS) procedures.  To

facilitate this purpose, I use a naive, but common approach to critical value selection and

study design.  Properties to be examined include type I error rate, power, and expected

sample sizes under various scenarios.  Finally, a comparison of the two examples will allow

for an illustration of properties and designs that are sensitive to study sample size.

The fixed sample, IP and two-stage GS designs considered for the examples in this

chapter are all special cases within the general IPIA framework introduced.  The IP design

does not allow for early stopping at the interim power analysis (special case of IPIA: ,0 œ !6

0 œ ∞? ) and in the design used here, it is assumed that sample size can be reduced from the

pre-planned level ( ).  The two-stage GS design, on the other hand, allows for8 œ 8 ",min

early stopping at the interim analysis, but does not allow for a change to the preplanned

maximum sample size, or:   The fixed sample approach can be seen as aPre fR œ 8 œ "Þ !
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special case combining the restrictions of the IP and GS designs ( , , and0 œ ! 0 œ ∞6 ?

Pre fR œ 8 œ " ! ).  The IPIA design combines the features of the IP and two-stage GS

designs by allowing for stopping at the interim stage as well as allowing for a change in

maximum sample size used when a study is to be continued.

Table 2.5
Early Stopping

SSR

: 

Yes No
Yes IPIA Int Pilot
No Grp Seq Fixed Sample

Two-stage designs

In addition to stopping at the interim stage for efficacy, both the GS and the IPIA

procedures can have possible early stopping at the interim stage for futility.  Hence, they will

be considered here under both scenarios.  No futility stopping implies that the lower first

stage critical value, , is .  For futility stopping in this chapter, I will use a simple p-value0 !6

cut point of .  In other words, if the p-value for the first stage hypothesis test is greater!Þ)&

than  then the study will stop and conclude that the alternative hypothesis is not!Þ)&

supported.  In reality, this is not an ideal approach since the first stage may contain only a

small fraction of the needed information of the study (especially for high true variance

values) and so may not be very informative in some cases.  It is used here for simplicity in

order to portray the characteristics of the procedures.

Critical values used in the examples will be calculated as follows.  Critical values for

the fixed sample, group sequential, and IPIA designs will be based on the standard Gaussian

distribution.  This is to show the consequences of not accounting for the use of variance

estimates in the test statistics for the small and moderate studies examined.  The fixed sample

result using the  distribution will also be included since it will exactly achieve the target>

type I error rate.  The critical values for the internal pilot design will only be solved with the

unadjusted  distribution since it is the method described by literature.  O'Brien-Fleming>

stopping rule bounds determined by the design and information fraction at the interim



48

analysis will be used for the group sequential and IPIA (early stopping) designs.  These

bounds are designed to allow for conservative early stopping while adjusting the final critical

value for type I error rate inflation due to multiple testing.

Due to misalignment of test statistic and critical value distributions and a biased

variance value used in sample size re-estimation designs, the unadjusted selection for a final

critical values will likely cause type I error rate inflation for most designs considered.  They

are used here in order to best compare the procedures and also to notice the magnitudes of

such inflations.  Strategies that better control the type I error rate and maintain power while

minimizing expected sample size will be considered in Chapter 3 when these examples are

revisited.  The importance here is to illustrate design characteristics and comparisons.

In total seven design procedures will be considered: fixed sample (  and ), IP, two-^ >

stage GS with and without futility stopping, and IPIA with and without futility stopping.

Type I error rate, power, and expected sample size will be calculated for each of these

procedures for true variance values determined by , , , ,  where# − !Þ& !Þ(& " "Þ& #e f
# 5 5 1œ Î œ !Þ& 8 œ ∞# #

! .  I will use the sampling fraction  and .  Since the expected, max

sample size of procedures with early stopping (GS and IPIA with and without futility

stopping) depends on the true effect size , I will calculate values under three conditions:)

under the null ( ), under the alternative of interest ( ), and under a true effect twice) ) )œ ! œ "

that of the effect size of interest ( ).) )œ # "

2.5.2 Computational Methods

All programs for the examples were written in SAS/IML (SAS Institute, 2004). Most of 

the computation for the examples utilizes the exact theory developed in this chapter.  The

exceptions are the fixed sample and internal pilot designs.  The fixed results could be directly

calculated using standard distribution functions.  The internal pilot calculations were easily

obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla 
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et al.  2007) software package.  All other results came from use of the exact theory,ß

including the two-stage group sequential designs, which are a special case.

Stopping bound computation utilized the SEQSCALE function and the numeric

integrations utilized the QUAD function within SAS/IML.  To avoid numerical instability of

the calculated integrals, computation was performed using quantile transformations (Glueck

and Muller, 2001) of the distributions derived in Section 2.4.  For illustration, let

: œ J >à > œ J :à .: œ 0 >à .>; ;;# ##� � � � � �/ / /.  Then the integral transformation using  and "

allows for integration using finite bounds with better behaved integrands.

Simulations were conducted for a limited set of cases in order to check the accuracy of

the programming and numerical algorithms, provide an additional check on the analytical

derivations, and to compare the speed of calculation using the two methods.  Using a subset

of a dozen cases from both examples over a range of conditions, I conducted simulation with

1,000,000 replications per case.  All programs were run using an Intel Xeon 3.2 GHz

processor.  For each of the cases considered, the analytically calculated values were within

two standard deviations of the simulated values.

The comparison programs were each run in groups of three cases corresponding to

variance values of  , ,  with .  Runs were made under the null# # 5 5− !Þ& " # œ Îe f # #
!

hypothesis ( ) and assuming the effect of interest ( ) for the IPIA design without) ) )œ ! œ "

futility for both the moderate (Example 2.1, Section 2.5.3) and small sample examples

(Example 2.2, Section 2.5.4) considered in this chapter.  Timing results are detailed in Table

2.6 below.

Table 2.6: 
 (null)  (alt)

Sim Calc Sim Calc
Ex. 2.1 176.3 4.6 171.9 7.1
Ex. 2.2 124.2 1.8 124

Simulation and calculation times (minutes)
) ) )œ ! œ "

.5 2.8
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Clearly from the results above, the analytic calculations using the exact theory are much

faster than the simulations for all cases.  While little effort has been made thus far to improve

the computational speed of the programs, the simulations took between 24-70 times more

computation time depending on the case.  It is of note that the alternative case results took

longer for the analytical calculations but made little difference in the simulations.  This is

most likely due to the various noncentralities that come into play in such circumstances.

Also, for both methods, the timing is larger for the larger design (Example 2.1).  The

proportional increase is greater for the analytical results due to the increase in conditional

cases that must be considered and calculated.  The timing benefits remain clear however with

the worse case still being over 20 times more efficient.

2.5.3 Example 2.1 Results

  The design parameters for Example 2.1 are summarized in Table 2.7.

Table 2.7: 

0.05 0.9 1 2 86 44

Design parameters for Example 2.1
α ) 5> > " !!

#T 8 8"

Example 2.1, a study design of moderate size, was considered by Wittes and Brittain (1990)

and Coffey and Muller (1999) in an internal pilot framework.  Values are calculated

analytically for type I error rate, power, and expected sample size under the design

conditions described in Table 2.7 for Example 2.1.

Table 2.8: 
Fixed     Group Sequential IPIA
 IP w/o Futility w/ Futility w/o Futility w/ Futili

Type I error rates 100 for Example 2.1‚

# ^ > ty
5.3 5.0 5.2 5.5 5.4 5.8 5.8
5.3 5.0 5.4 5.5 5.4 6.0 6.0
5.3 5.0 5.3 5.5 5.4 5.9 5.9
5.3 5.0 5.2 5.5 5.4 5.6 5.4
5.3 5.0 5.2 5.5 5.4 5.4 5.1

!Þ&!
!Þ(&
"Þ!!
"Þ&!
#Þ!!

Table 2.8 displays the values for type I error rate for each of the seven designs described

in Section 2.5.1: Fixed sample (  and ), IP, two-stage GS with and without futility stopping,^ >
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and IPIA with and without futility stopping.  In order to see results as a function of variance,

values are calculated for true variances corresponding to values of  with# 5 5œ Î# #
!

# − !Þ& !Þ(& " "Þ& #e f, , , , .

For the fixed sample design, type I error rate is somewhat inflated by a constant amount

across  when the standard Gaussian distribution is used for critical value determination and#

is controlled at the target level when the  distribution is used.  In the IP design, mild type I>

error rate inflation occurs due to downward bias in variance estimate used.  The magnitude of

inflation is shown to depend on true variance value.  Due to the use of Gaussian critical

values, the GS designs also have type I error rate inflation.  The inflation for the GS designs

is constant across  since no sample size re-estimation occurs and noncentrality is zero under#

the null.  The IPIA designs, which combine early stopping ability with sample size re-

estimation, have moderate type I error rate inflation caused by both variance estimate bias

and the use of Gaussian critical values.  For both GS and IPIA, allowing for early stopping

for futility causes a small reduction in the type I error rate.  For this example, the magnitude

of type I error rate is comparable between the Fixed, IP, and GS methods and the IPIA

method has an somewhat increased level of inflation.

Table 2.9: 
Fixed      Group Sequential IPIA

IP w/o Futility w/ Futility w/o Futility w/ Futility
99.6 99.

Power 100 for Example 2.1‚

# ^ >
!Þ&! 6 92.9 99.6 99.5 93.0 93.0

96.5 96.3 90.6 96.4 96.2 90.3 90.2
90.5 90.0 90.0 90.3 90.0 89.8 89.5
76.3 75.4 89.4 76.1 75.7 89.4 88.0
64.1 63.

!Þ(&
"Þ!!
"Þ&!
#Þ!! 0 89.2 63.9 63.4 89.1 86.5

Table 2.9 displays the values for unconditional power for the seven designs.  Power for

both fixed sample designs is sensitive to the true variance value.  With a target level of 90%,

a fixed sample study can be significantly over or under powered depending on the true

variance regardless of the critical value determination method employed.  Power for the

considered GS designs is also highly dependent on the true variance value, with power levels
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very similar to those for the fixed sample design.  In the IP design, power is greatly stabilized

due to the variance estimate based sample size re-estimation at first stage.  The IPIA designs

also have very stable power similar to the IP design due to the sample size re-estimation

analysis at the first stage.  The GS and IPIA designs with first stage futility stopping have

power at slightly lower levels than their counterparts without futility stopping.  For power in

this example, the IP and IPIA designs greatly achieve the target rate while the two-stage GS

and fixed sample designs are shown to be vulnerable to misspecification of the variance, a

nuisance parameter, at the planning stage.

Table 2.10: 
 GS (no futility) GS (futility)

Fixed IP
86 48.1 85.6

E� �RA  for Example 2.1: fixed, IP, and GS

# ) ) ) ) ) ) ) ) ) )œ ! œ œ # œ ! œ œ #
!Þ&!

" " " "

56.3 44.0 79.4 56.3 44.0
86 66.2 85.6 65.7 44.2 79.4 65.7 44.2
86 87.0 85.6 71.3 45.3 79.4 70.9 45.3
86 129.0 85.6 77.1 50.3 79.4 76.1 50.3
8

!Þ(&
"Þ!!
"Þ&!
#Þ!! 6 171.0 85.6 79.8 56.3 79.4 78.2 56.3

Table 2.10 displays the values for expected sample size for the fixed sample, IP, and GS with

and without futility stopping designs.  For the GS designs, expected sample sizes are

calculated assuming the null hypothesis () ) )œ ! œ), the alternative of interest ( ), and"

assuming a true effect size twice the effect of interest ( ).) )œ # "

Under controlled conditions, the sample size for the fixed sample design is always the

preplanned sample size, 86.  As would be expected, the expected sample size for the IP

design is dependent on the true variance due to sample estimate based sample size re-

estimation at the first stage.  It achieves an expected savings in sample size for variance

values lower than the value assumed at the planning stage and rises above that of the fixed

sample design as it accounts for larger true variance values by increasing the estimated

sample size need at the internal pilot stage.  Under the null hypothesis, the expected sample

size for the GS designs are constant over  values.  This is because no variance value based#

sample size re-estimation takes place at first stage and true noncentrality is zero.  The small
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departure from the fixed design sample size in the GS design without futility stopping is due

to the small chance of falsely stopping for efficacy at the first stage.  The GS designs

allowing futility stopping at the first stage causes an across the board drop in expected

sample size under the null due the probability of correctly stopping early for futility.  Under

the alternative of interest the expected sample sizes for the GS designs are( ), ) )œ "

noticeable lower than the fixed design sample sizes due to possible early stopping for

efficacy at first stage.  This demonstrates the clear sample size benefits of the GS designs

compared to single analysis, fixed sample designs.  The effect diminishes as variance

increases due to the lowered power of the first test with decreasing noncentrality of the test

statistic.  When futility stopping is allowed, the expected sample size for the GS design

decreases slightly as the probability of false futility stopping at the first stage analysis is

introduced.  For an effect of twice the alternative of interest ( ), the GS designs offer) )œ # "

significant expected sample size reduction at all  considered.  The effect diminishes#

somewhat as first stage power decreases for increasing variance.  There is very little

difference in the two GS designs considered under this condition as the chance of first stage

futility stopping is very small for .) )œ # "

Table 2.11: 
IPIA (no futility) IPIA (futility)

47.2 44.8 44.0 46.6 44.8 44.0

E� �RA  for Example 2.1: IPIA

# ) ) ) ) ) ) ) ) ) )œ ! œ œ # œ ! œ œ #
!Þ&!
!Þ(

" " " "

&
"Þ!!
"Þ&!
#Þ!!

64.0 54.3 44.2 60.8 54.3 44.2
84.7 73.4 47.1 78.3 73.0 47.1
126.8 119.8 78.3 114.0 117.7 78.3
169.0 165.5 133.8 149.7 160.6 134.0

Table 2.11 displays the values for expected sample size for the IPIA designs with and

without futility stopping.  Similar to the IP design, IPIA expected samples sizes are lower

than the fixed design sample size for low true variance and increase with the true variance as

the first stage sample size re-estimation requires larger second stage samples on average.

Under the null hypothesis  the IPIA design without futility stopping has very similar( ),) œ !
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sample size values to the IP design since stopping at the first stage for efficacy is rare here.

The null case IPIA design with possible futility stopping causes a drop in expected sample

size for all variance values when compared the design without futility stopping due to the

chance of a correct decision to accept the null and stop at the first stage analysis.  Under the

alternative of interest, the expected sample sizes for the IPIA designs are noticeably( ), ) )œ "

lower than the fixed sample design for variance values at the preplanned value or lower.  The

expected sample sizes rise with  due to the increased sample size needs detected at the first#

stage analyses to protect study power.  In this case, early stopping (GS-like) sample size

benefits are offset by the sample size recalculation procedure (power protecting IP

characteristic).  Expected sample size under the alternative of interest is slightly lower in the

IPIA design allowing futility stopping due to the possibility of false futility stops at first

stage.  This chance increases with  due to the  naive p-value based futility stopping rules#

used to calculate the first stage futility critical value.  For an effect of twice the alternative of

interest ( ), the IPIA designs offer significant expected sample size reduction due the) )œ # "

large chance of early efficacy stopping in the first stage.  The effect diminishes as increasing

variance calls for more sample size in the second stage and decreases first stage power.

There is very little difference in the two IPIA designs considered under  as the) )œ # "

chance of futility stopping is very small for the large effect size.

2.5.4 Example 2.2 Results

The design parameters for Example 2.2 are summarized in Table 2.12.

Table 2.12: 

0.05 0.9 1.6 1 20 10

Design parameters for Example 2.2
α ) 5> > " !!

#T 8 8"

Example 2.2 is a smaller study than Example 2.1 and was considered by Coffey and Muller

(1999) in order to explore small sample properties for internal pilots.  It will be useful to
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describe characteristics of the study designs that are sensitive to the planning stage sample

size estimate for the study.  Values are calculated analytically for type I error rate, power,

and expected sample size under the design conditions described in Table 2.13 for Example

2.2.

Table 2.13: 
Fixed     Group Sequential IPIA
 IP w/o Futility w/ Futility w/o Futility w/ Futil

Type I error rates 100 for Example 2.2‚

# ^ > ity
6.6 5.0 5.5 7.8 7.7 8.8 8.8
6.6 5.0 6.2 7.8 7.7 9.3 9.3
6.6 5.0 6.5 7.8 7.7 9.6 9.5
6.6 5.0 6.5 7.8 7.7 9.4 9.2
6.6 5.0 6.2 7.8 7.7 8.8 8.5

!Þ&!
!Þ(&
"Þ!!
"Þ&!
#Þ!!

Table 2.13 displays the values for type I error rate for the seven designs described in

Section 2.5.1.  Values are calculated for true variances corresponding to values of # 5 5œ Î# #
!

with , , , , .# − !Þ& !Þ(& " "Þ& #e f
The type I error rate for the standard Gaussian fixed sample design here is significantly

inflated.  This is due to using standard Gaussian critical values that do not take into account

the uncertainty of the variance estimate.  Like the previous example, using the correct  based>

distribution exactly achieves the target rate.   Like the Gaussian fixed design, the GS designs

also have type I error rate inflation due to large sample nature of the critical value selection

methods.  The inflation for the fixed and GS methods is constant over true variance values.

In the IP and IPIA designs, type I error rate inflation again occurs as a function of variance.

The IPIA method has the greatest amount of inflation due to both the biased variance

estimate being used as well as the Gaussian critical values.  For both GS and IPIA designs,

allowing for early stopping for futility causes a small reduction in the type I error rate.

For Example 2.2, type I error rates have similar trends to values calculated in Example

2.1, but with differing magnitudes.  All magnitudes of type I error rate inflation are

magnified here by the small nature of the study compared to the moderately larger study
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examined in Example 2.1.  Additionally, the magnitude difference for the IPIA designs is the

greatest due to being vulnerable to both sources of inflation.

Table 2.14: 
Fixed      Group Sequential IPIA

 IP w/o Futility w/ Futility w/o Futility w/ Futility
99.8 9

Power 100 for Example 2.2‚

# ^ >
!Þ&! 9.8 96.1 99.8 99.8 96.7 96.7

97.4 97.4 93.2 98.2 98.1 93.6 93.6
94.1 92.2 91.3 94.2 94.0 91.7 91.5
82.6 78.9 88.8 82.9 82.6 90.5 88.6
71.5 6

!Þ(&
"Þ!!
"Þ&!
#Þ!! 6.8 87.3 72.0 71.6 88.2 86.3

Table 2.14 displays the values for unconditional power for Example 2.2.  As in Example

2.1, power for fixed sample and GS designs is very sensitive to the true variance value.  With

a target level of 90%, these designs can be significantly over or under powered if the

variance is misspecified at planning.  In the IP and IPIA designs, power is again greatly

stabilized due to the sample size re-estimation at the first stage analysis based on the sample

variance estimate.  For power in this example, the IP and IPIA designs greatly achieve the

target rate while the two-stage GS and fixed sample designs are shown to be vulnerable to

misspecification of the variance, a nuisance parameter, at the study planning stage.

A comparison of power in Examples 2.1 and 2.2 shows that the size of a study does not

have a clear effect on the power functions for these study designs in general or as a function

of .   In other words, the planned size of the study can not appreciably relieve the# 5 5œ Î# #
!

dangers of over or under powering a study based on nuisance parameter misspecification at

the planning stage for the examined fixed sample and GS designs.  The results show that

sample size re-estimation procedures are effective ways to help stabilize study power so that
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important questions of interest can be explored accurately and dependably.

Table 2.15: 
 GS (no futility) GS (futility)

Fixed IP
20 12.3 19.8

E� �RA  for Example 2.2: fixed, IP, and GS

# ) ) ) ) ) ) ) ) ) )œ ! œ œ # œ ! œ œ #
!Þ&!

" " " "

12.4 10.0 12.418.3 10.0
20 15.9 19.8 14.3 10.1 18.3 14.3 10.1
20 19.7 19.8 15.6 10.3 18.3 15.5 10.3
20 27.8 19.8 17.0 11.2 18.3 16.8 11.2
20

!Þ(&
"Þ!!
"Þ&!
#Þ!! 35.9 19.8 17.8 12.4 18.3 17.5 12.4

Table 2.15 displays the values for expected sample size for the fixed sample, IP, and GS

with and without futility stopping designs.  For the GS designs, expected sample sizes are

calculated assuming the null hypothesis () ) )œ ! œ), the alternative of interest ( ), and"

assuming an effect of twice the alternative of interest ( ).) )œ # "

The results show similar trends in sample sizes as those found in Example .  The2.1

fixed sample design will always have the sample size of , in this case .  Expected8 8 œ #!! !

sample size for the GS designs is always less than the fixed sample size due to possible early

stopping and no possible increase in sample size.  When no early futility stopping is allowed,

the GS expected sample size values will be very close to the fixed study sample size when

) œ !.  Otherwise, it shows the biggest sample size benefits for lower variances and larger

effect sizes, which both increase the chance of early stopping.  Additionally, the GS with

futility stopping shows the added benefit of reduced expected sample size under the null

hypothesis.

Table 2.16: 
IPIA (no futility) IPIA (futility)

11.3 10.6 10.0 11.0 10.6

E� �RA  for Example 2.2: IPIA

# ) ) ) ) ) ) ) ) ) )œ ! œ œ # œ ! œ œ #
!Þ&!
!Þ(

" " " "

10.0
&

"Þ!!
"Þ&!
#Þ!!

14.2 12.8 10.3 13.4 12.8 10.3
17.8 16.1 11.7 16.4 16.1 11.7
25.7 24.1 17.9 22.9 23.7 17.9
33.8 32.5 26.6 29.7 31.6 26.6
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Table 2.16 displays the values for expected sample for the IPIA with and without

futility stopping designs.  The results show similar trends in sample sizes for the IPIA

designs as those found in Example .  The 2.1 IPIA expected samples sizes are lower than the

fixed sample design size for low true variance and increase with the true variance as the first

stage sample size re-estimation requires larger second stage sample sizes on average.

Although the expected sample size rises with  for the IPIA designs, it still has smaller#

sample sizes than the IP design (Table 2.15).  This is caused by the offsets of early decision

sample size benefits and the power protective sample size re-estimation procedure, both of

which are characteristics of the IPIA design.  Additionally, the IPIA design with futility

stopping once again shows the added benefit of reduced sample size under the null

hypothesis.  The sample size advantage of the IPIA design versus the IP design is extremely

evident for an effect of twice the alternative of interest, ( ).  The IPIA designs offer) )œ # "

significant expected sample size reduction for this case due the large chance of early efficacy

stopping in the first stage.  The effect diminishes as increasing variance calls for more

sample size in the second stage and hence decreases first stage power.

By comparing the expected sample sizes from Examples 2.1 and 2.2, one can examine

the possible effect of fixed sample study size on expected sample size for these designs.  In a

proportional sense, there does not seem to be a difference in sample size benefits between the

two studies.  However, if the cost per subject in the study designs was equal between the

larger and smaller studies, than the sample size reductions and increases would be more

significant in the larger study (Example 2.1).

2.6 DISCUSSION

In this chapter, I have presented a proposed framework for an internal pilot with interim

analysis model for univariate Gaussian linear model hypotheses with fixed predictors.  The

framework generalizes traditional internal pilots by allowing for early stopping rules at the

interim analysis to go along with variance estimate based sample size re-estimation.  I have
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derived the exact theory needed for the IPIA framework for single degree of freedom GLM

hypotheses, including one and two group -tests with unknown, common variances and other>

tests of interest.  The exact results allow for numerical calculation of type I error rate, power,

and expected sample size for various study designs without the need for time-consuming

simulations.  Many prospective research studies and even clinical trials are not large enough

for asymptotic properties to hold.  Since the theory in this chapter is not derived using

asymptotic results, it will be accurate and valuable for planning smaller studies.

Examples  and  highlight some of the different characteristics of the IPIA design2.1 2.2

while comparing them to results from fixed sample, IP, and two-stage GS designs, all of

which are special cases of the IPIA design and theory detailed in this chapter.  The size

difference between Example  and Example  displayed the sensitivity of study2.1 2.2

characteristics such as type I error rate to sample size.  The examples here use large sample

distributional assumptions for critical value calculation in order to illuminate features of the

designs examined.  Each design considered has its advantages and disadvantages.

The fixed sample design has the advantages of a known sample size and a controlled

type I error rate, but has an unstable power function affected by the unknown true variance, a

nuisance parameter.  The goal of the GS design is to allow a study to stop early if effect size

differs from the preplanned magnitude, and hence, decrease expected sample size from the

fixed sample level.  It has been shown in the tables above to achieve this goal under all

conditions when futility stopping is allowed, and under situations of high effect size when

futility stopping is not included.  Using standard Gaussian critical values, the GS designs

have an inflation in type I error rate due the critical values not accounting for uncertainty of

the variance estimate.  Finally, GS power is vulnerable to misspecification of variance at

planning stage as shown in Table 2.9.  This sensitivity is similar to that found in the fixed

sample design and is due to the lack of sample size re-estimation for the final stage sample

size.  The primary goal of the IP design is to protect study power by re-estimating sample
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size through interim power analysis without interim data analysis.  As Table  shows, this2.9

goal is greatly achieved by the design.  The IP design can also have sample size benefits due

to possible sample size reduction at the interim stage if the planning variance value was

specified higher than the true parameter value.  For high true variance values, the design has

higher expected sample sizes than the GS and fixed sample designs.  The IP design also has

inherent type I error rate inflation dependent on the true variance value.  This is typically

accounted for in smaller sample studies by adjusting the test statistic or critical value.

Adjustment is not made here for comparative purposes.

The IPIA designs seek to incorporate the sample size advantage of the GS by allowing

for early stopping and the power protective properties of internal pilots through variance

estimate based sample size re-estimation at the interim analysis.  2.11Table  shows that the

sample size benefits of the GS design are incorporated into the design as the expected sample

sizes for many conditions are significantly lower than for the IP design.  The sample size

benefits are attained by allowing possible early stopping for efficacy and/or futility at the

interim analysis.  2.9Also, Table  shows that the IPIA design does, in fact, greatly achieve

the power protective properties of the IP design.  This characteristic creates a power function

robust to variance misspecification at the planning stage, unlike fixed sample and GS

designs.

In addition to the advantages of the IP and GS designs, the IPIA design was shown to

inherit some of the elements of concern from the designs.  The internal pilot design has type I

error rate inflation caused by an unbiased variance estimate used in the final test statistic,

with more magnitude of inflation found in small studies where exact theory has the most

value.  The group sequential designs examined also have type I error rate inflation due to the

inappropriate use of large sample critical values.  Since the IPIA designs examined in this

chapter combine characteristics of these two designs, it has elements of both sources of type I

error rate inflation: distributional alignment vulnerability as well as potentially biased
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variance estimates used in the second stage test statistic.  Because of this, careful adjustments

that can control the type I error rate while maintaining the design's benefits must be achieved

in order for the IPIA procedure to be useful in practice.

The IPIA procedure as outlined in this chapter is purposefully kept general in many

regards.  For example, it does not specify mandatory methods for selecting critical values,

updating sample size, or selecting the interim stage sample size.  The theory developed in

this chapter as well as the development of software to assist in calculation would allow for

the exploration of many different design possible designs.  This would not only be valuable

for the development of general study guidelines with positive characteristics, but since

studies are not alike, extensive exploration for a specific study during planning stages can

allow investigators to customize the procedure for their specific needs.  Through comparison

to simulation, that analytical calculations were shown in Section 2.5.2 to be highly efficient.

Thus, using the exact theory would allow for far more efficient study planning such as

graphing power and type I error rate functions over various conditions.  Also, the efficiency

facilitates new research methods using the exact forms as a component.  Procedural strategies

for the IPIA model utilizing the exact theory introduced in this chapter here is the major

theme of Chapter 3 in this dissertation.  Examples from this chapter are revisited with

implementation of differing possible design strategies with results examined.



CHAPTER 3.  PLANNING PROCEDURES FOR AN
INTERNAL PILOT WITH INTERIM ANALYSIS DESIGN

 SUMMARY

In Chapter 2 of this dissertation, I introduced exact theory to help plan single degree of

freedom internal pilot with interim analysis (IPIA) designs for Gaussian linear models.  Here,

I discuss and evaluate procedures for planning the studies described in Chapter 2.  The goal

is to achieve sound study design strategies that control the type I error rate while best

maintaining the power and sample size advantages of the IPIA designs.  The exact theory

allows for simple procedure comparisons and facilitates the development of new procedures.

3.1 INTRODUCTION

3.1.1 Motivation

In Chapter 2, I examined the properties of the proposed two-stage internal pilot with

interim analysis (IPIA) procedure and how it compare to properties of special cases such as

fixed sample, internal pilot (IP), or two-stage group sequential (GS) procedures.  I

determined that the IPIA design had sample size advantages compared to the IP design and

power advantages compared to the two-stage GS and fixed sample designs.  Also, using

naive, but common approaches to critical value selection, sample size re-estimation method,

and interim sample size calculation showed that, especially in small samples, the IPIA design

has the potential for type I error rate inflation.  Unless controlled, this can offset the IPIA

sample size and power advantages.  Smart design procedures and strategies are needed to

attain the benefits of the exact IPIA theory derived in Chapter 2.

Pre-specification of critical value selection procedures as well as sample size allocation

and re-estimation methods are needed in order to calculate power, type I error rate, and
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expected sample size during study planning.  Critical values for first stage and second stage

must be selected to accurately and strategically allocate the type I error rate while

minimizing expected sample size and maintaining power.  Sample size determination

methods also affect study power and expected sample size.  I consider methods that allow

implementation of an IPIA design while preserving the type I error rate.

3.1.2 Literature Review

The relevant literature review is largely covered in Chapters 1 and 2 of this dissertation.

Some additional background specific to this chapter is included in this section.

A large portion of this chapter is devoted to the problem of potential type I error rate

inflation in small sample IPIA studies.  I focus on two known sources of inflation.  The first

source is the use of large sample distributional assumptions in standard Gaussian based

sample size re-estimation and critical value techniques.  The second source of inflation

occurs due to a biased variance estimate the is characteristic of internal pilot based sample

size re-estimation designs.

The information based approach to clinical trial monitoring with nuisance parameter

based sample size adjustment described by Mehta and Tsiatis (2001) or Tsiatis (2006) was

reviewed in Chapter 2.  Mehta and Tsiatis described the method for use within group

sequential designs that allow for early stopping while updating the estimated maximum

sample size at each analysis stage as nuisance parameter estimates are updated.  Group

sequential stopping bounds along with an inflation factor on needed information (and hence

needed sample size) due to multiple testing were advocated.  They used standardized test

statistics with critical boundary determination based on the error spending technique used.

The effects on type I error rate of large sample distributional assumptions are portrayed in

the examples of Chapter 2 in this dissertation.  For the small and moderate sample size

designs considered, clear type I error rate inflation was present.
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Within group sequential designs for two group comparisons, some alternative critical

value selection methods have been proposed and reviewed.  One simple approach suggested

by Pocock (1977) shown to work quite well is to take the significance level of Gaussian

derived critical values and use them along with sample size to calculate corresponding >

distributed critical values.  Since the  distribution takes into account the sample size used for>

estimation in the form of degrees of freedom, it better relates to the uncertainty of the

variance estimate used in the test statistic.  Although the statistics are sequences and hence

have a joint relationship, this simple method approximately controls the type I error rate for

group sequential designs.

Shao and Feng (2007) described a Monte Carlo method for calculation of critical values

in a small sample group sequential studies.  Through simulation they show that their method

works well at controlling the type I error rate and maintaining power with an expected

increase in expected sample size.

The second source of type I error rate inflation present in IPIA designs is from the use

of a downwardly biased variance estimate in study stages following the first.  This is the

same cause of type I error rate inflation found in unadjusted internal pilot studies; see

Proschan and Wittes (2000) or Miller (2005) .  Various methods for controlling thefor details

type I error rate within internal pilots have been considered.  Some have the downside of

only considering a fraction of the available information in order to create an unbiased

variance estimate (Stein, 1945; Zucker et al., 1999).  Denne and Jennison (1999) proposed a

method based on Stein's test that uses all information about the variance, but includes a

degree of freedom adjustment to the final test statistic that does not guarantee bounding of

type I error rate, but appears to work well on average.  Proschan and Wittes (2000)

introduced a method that uses an unbiased variance estimate by fixing weights between the

IP stage and the second stage portions of the final variance estimate.  Coffey and Muller

(2001) introduced a  which alters the critical value through an alpha-bounding method
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adjustment so that the maximum type I error rate inflation across true variance is equal to the

target rate.  Due to its importance to this chapter, further details on this last method are

included below.

For internal pilots, the goal of the bounding method described by Coffey and Muller

(2001) is to find the nominal  used in critical value determination with maximum type Iα,

error rate over possible true variances equal to .  α> Although a definitive proof is not

available, Coffey and Muller (2001) provided substantial evidence in support of the

hypothesis that there is a single maximum type I error rate as a function of the true variance.

The  value is calculated by using a doubly iterative algorithm that uses exact internal pilotα,

theory for calculations.  The outer loop searches over possible  values for the desired .α α,

The inner loop takes advantage of the unimodal characteristic of internal pilot type I error

rate over true variance to determine the location and magnitude of the maximum type I error

rate for a given  (fixed critical value).  The procedure is conservative in that the type I errorα

rate for some true variance values may be less that the target rate, but power properties for

the method are quite stable and very near to the unadjusted method.  Of note is that the

published version of the bounding method uses the originally planned target type I error rate,

α>, for sample size re-estimation.  An alternative method currently being considered would

use the adjusted level for sample size re-estimation as well as for critical value calculation to

better align the assumed distributions.  Interim results show that this alternative would

greatly close the power gap between the bounding method and an unadjusted method, but

would use more sample size.

3.2 THE IPIA MODEL AND PROCEDURE

3.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,

Chapter 1).  An  vector (always a column) is written , and an  matrix is written< ‚ " < ‚ -+

E E " Bœ + < ‚ " "e f � �4ß5 <
w, with transpose .  Let  represents an  vector of 's and Dg
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represents a diagonal matrix with  element .  Furthermore, define  as the � �4ß 4 B < ‚ <4 <M

identity matrix with Dg .  The direct (Kronecker) product is defined asM "< <œ � �
E F FŒ œ +e f4ß5 .

Detailed information about all random variables discussed in this paper can be found in

Johnson et al. (1994, 1995).  Let  indicate that random vector  ( ) has aB Bµ ß 8 ‚ "a8� �. D

vector (multivariate) Gaussian distribution with mean vector  and covariance matrix .. D

For  less than full rank,  has singular vector Gaussian distribution, written asD B

B µ W ß \ µ ß \a ; / =8
#� � � �. D .  Writing  indicates that  follows a non-central chi-square

distribution, with  degrees of freedom and noncentrality .  Likewise, writing/ =

\ \µ J ß ß J� �/ / =" #  indicates that  follows a noncentral  distribution with numerator

degrees of freedom , denominator degrees of freedom , and noncentrality .  Writing/ / =" #

; / / / = ; /# #
" # P YX� � � � � � or  implies .  More generally, writing  indicates thatJ ß œ ! \ µ à > ß >

\ follows a doubly-truncated central chi-square distribution with  degrees of freedom,/

truncated to the interval  (Coffey and Muller, 2000).  For random variable  withc d> ß > YP Y

parameters , indicate the cumulative distribution function (CDF) taken at  as# #" 5á ?

J ?à á Þ DY " 5� � � � � �# # F  As a special case, let  indicate the CDF for the Gaussian 0,1

distribution, taken at .  Also let  indicate the  quantile of a randomD J à áY
"

" 5� �α # # α

variable  with parameters .Y á# #" 5

3.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) model discussed in this paper is

introduced in Chapter 2 of this dissertation.  It can be viewed as a generalization of the two-

stage internal pilot model in the GLUM framework as introduced by Coffey and Muller

(1999), which includes the -test as a special case.  > Let random variable  be the finalRA

sample size used for the study.  Then continue  with  an event indicatorR œ 8 R †A " # \ \� �
equal to  if a study is continued at the first stage.  So"
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R œ
8
R ÞA
"


œ  if study stopped after first stage

 otherwise (3.75)

The design leads to interest in two different but intimately connected models.  The combined

model for the final analysis may be written as

C \ /  

  R ‚ " R ‚ ; ‚ " R ‚ "
œ               ," (3.76)

or

Ô × Ô ×Ö Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

C

C /

\

\

/"

" "

# #

#

"
"

#

#

"

#

8 ‚ " 8 ‚ "

R ‚ "

œ 
8 ‚ ;

R ‚ ; R ‚ "

"  , (3.77)

with partitioning corresponding to the  and, random,  observations in the first and8 R" #

second samples, respectively.  The second sample of size  shown above isR œ R  8#  "

only taken if study continuation is determined from the first sample.  Also, the special case of

R œ 8 " will cause the full model to collapse to the interim model.  Model components

include random observed  ( ) independent sampling units as rows), design matrixC R ‚ " Ð

of fixed form , and unobserved  such that .  \ ! M
#/ /  R Rµ ßa 5

 
� � For computational

convenience,  values of total sample size, , increase only in multiples random R œ 8 R " #

of a replication factor, .  For example, a balanced 2-group study design would have .7 7 œ #

For some \ \ " \ \ " \! " 5 ! # O ! " # ( ), I assume  and , with  and  the7‚ ; œ Œ œ Œ 5 O
" #

number of replications in the first and second samples, respectively.  Consequently, the

columns of \ \" # # and  span the same space (when ) and hence defineO  !

< œ œ œrank rank rank . In order to simplify computations and some� � � � � �\ \ \" # 

discussions, attention will usually be restricted to a full rank design, that is rank .� �\ œ ;!

The principles of linearly equivalent models allow the restriction without meaningful loss of

generality.

The test of interest is , with  a fixed  contrast matrix and .L À œ + ‚ ; œ! !) ) ) "G G

Without loss of generality one can assume  (see .  )! œ ! Lemma A.1) For a ‘scientifically
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important’ effect of interest , a desirable design ensures a target type I error rate� �) )œ "

� � � �α> > with sample size appropriate to achieve target power .T

Section 2.2.2 of this dissertation includes tables containing definitions and descriptions

of model elements and can be referenced for additional IPIA model details.

3.2.3 The General Procedure

Table 3.1
Step a

 1b
Step 2

: 
Specify , , , hypotheses, , and 
Solve for first stage sample size ( ) 

General procedure
" \À T

À 8

α 5> > ! " !
#

"

)

À 8

À R œ 8 ß 0 8 ß 0 8 ß 0 8 J

À

J  0

 Collect first  observations
Solve for  critical values   and , and 
Decide:

If  

"

  6  ?    "

" 6

Step 3
Step 4

� � � � � �
then STOP, ACCEPT 

If  then STOP, REJECT 
If  then take  additional observations

Solve for 

L

J   0 L

0 Ÿ J  0 8 œ 8  8

À J

!

" ? !

6 " ? #  "

Step 5
Step 6 À

J  0 L

J   0 L

Decide:
If  then ACCEPT 
If  then REJECT 

  !

  !

Table 3.1 gives the general procedure for the IPIA model.  General steps include

selection of  (Step 1b),  (Step 3), and critical values (Step 3).  These design factors will8 8" 

be examined in the sections to follow.

3.3 CRITICAL VALUE SELECTION

3.3.1 Overview

Calculation of the three critical values for the study, , and , must0 8 0 8 ß 0 86  ?   � � � � � �
be done following rules pre-specified in the study protocol.  The general IPIA procedure

described in Section 3.2.3 does not specify a method for determining critical values.  Hence,

there are countless possible methods from which they can be determined.  Ideally, they

should be chosen in a way that controls the type I error rate while having good power and

expected sample size properties.  The critical values may depend on , the realized value of8
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R 0 0 ß 0 6 ? ; however, when it is clear, they will be referred to as , and .  In this chapter, I

focus on the selection of efficacy values (  and ) and leave discussion for selection of0 0? 

futility bounds to future research.

Efficacy bounds for both stages could be calculated in many ways.  The simplest and

most naive method would be to assume a large sample distribution (such as  or ) and^ ;#

ignore the multiple testing issue by using a nominal type I error rate of  at each stage.α>

Smarter methods would account for the uncertainty in the variance estimate and/or adjust the

nominal type I error rates used for critical value calculation to create more sound designs.

The goal is to choose a limited number of sensible and/or common methods that can be

easily employed in practice and compare their study characteristics by way of examples.  I

plan to adapt the examined methods from the common error rate spending methods of group

sequential designs.  Once  is determined at the interim stage, one can determine the firstR

stage sample fraction  ( ).  Based on a specified error-spendingX œ 8 ÎR !  X Ÿ "" 

method, the value of  can be used to determine what nominal type I error rate to use at theX

interim and final stages in order to maintain an unbiased hypothesis test.  The chosen

nominal rates are used to determine the critical values for the two stages   For example, if theÞ

error rate spending function specifies that  and  where  and  are theα α α α"  " œ !Þ!" œ !Þ!%

nominal type I error rates for the interim and final stages, then the large sample critical

values could be calculated as For greater values0 œ 0 œ? J ! **à " J 'à "; ;# #
" "� � � �.  and 0.9 .  

of  (more information), more study error will typically be spent at the first stage.X

3.3.2 Distributional Assumptions

For large sample study designs, the uncertainty in the variance estimates used in test

statistics becomes minimal.  Because of this, variance estimates are often be treated as

known quantities during analysis and asymptotically correct distributions (such as  or )^ ;#

are commonly used for critical value calculation.
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For smaller studies, however, these distributions become increasingly inaccurate and

can cause a decrease in study integrity due to type I error rate inflation.  A simple adjustment

with beneficial results is the use of more accurate distributions that account for the

uncertainty of variance estimation with degree of freedom adjustments for sample size (such

as  or .  To do this, you take the significance level of Gaussian derived critical values and> J Ñ  

use them along with sample size to calculate corresponding small sample critical values.  For

example, if the error rate spending function specifies that  and  whereα α" œ !Þ!" œ !Þ!%

α α"  and  are the nominal type I error rates for the interim and final stages, then the critical

values could be calculated as .  and 0.9 .  In0 œ J ! **à "ß 8  # 0 œ J 'à "ß 8  #? "  J J
" "� � � �

group sequential designs, these distributions have been shown as useful for helping to control

the type I error rate of a study (Pocock, 1977).  This method could be valuable in smaller

IPIA studies by controlling the type I error rate and maintaining the benefits of the IPIA

design.  In the examples in this chapter, I will compare results using both the large sample

and small sample methods of critical value calculation for the IPIA model.

3.3.3 The IPIA Bounding Method

An important characteristic of internal pilot based sample size re-estimation is the

potential type I error rate inflation caused by a downward biased variance estimate used in

the test statistic calculations (Proschan and Wittes, 2000; Miller, 2005).  The effect is more

pronounced for smaller studies and should be accounted for during critical value calculation

planning.  Group sequential based error spending functions, even when more exact theory

such as the  distribution are used, do not take this sample size re-estimation based bias into>

account and hence, may alone be inadequate for the IPIA design.

A proposed critical value selection method for the IPIA design is the  IPIA bounding

method.  The method is an adaptation of the design introduced for use in internal pilots by

Coffey and Muller (2001) and discussed in Section 3.1.2.  The IPIA bounding method

employs a similar approach as the IP bounding method.  The goal is to predetermine a
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nominal target type I error rate,  ( ), that when used during the study in place of ,α α α, > >Ÿ

controls the true type I error rate to at or below the target level.

Since the IPIA design employs an internal pilot based sample size re-estimation

technique, the type I error rate as a function of true variance behaves similarly.  That is,

holding other study characteristics constant, the type I error rate as a function of true

variance is a unimodal curve.  Although this is not proven conclusively, I strongly believe it

to be true based on all examples considered to date. This characteristic allows for a doubly  

iterative search algorithm to locate the desired value for nominal target type I error rate, ,α,

that can then be used in place of the true target type I error rate, , during study analysis.α>

The outer procedure searches for  that bounds the maximum unconditional type I error rateα,

at the target level while the inner procedure determines the location and magnitude of the

maximum type I error over variance values.  The  is then used instead of  within theα α, >

error spending functions that determine the nominal  used for critical value determination.α

Additionally, for the IPIA bounding method, I will use the new  value as the target type Iα,

error rate for sample size re-estimation.  I have found that this best maintains the power of

the IPIA design with only a small cost in sample size.

3.4 SAMPLE SIZE SELECTION METHODS

3.4.1 Sample Size Re-estimation

The sample size re-estimation rule will determine the distribution of  and so is anR

important consideration in the design affecting power and expected sample size.  Section 2.3

describes a procedure for determining the distribution of the total sample size for the IPIA

design by taking advantage of the monotone relationship between discrete  andR

continuous .  By calculating the scaled noncentrality parameters needed to achieve a given5s"
#

power, the procedure calculates cut off points into which  must fall in order for a specific5s"
#

value of  to occur.  Since the distribution of  is known, the cut-off points give usR s "
#5
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Pre fR œ 8 8   for all possible  allowed in the study design. Some flexibility is allowed

within this framework as described below.

In order to determine the needed noncentrality for a given sample size, a critical value

must be specified.  One common way to do this is to assume an uncorrected  level for theα

final statistic for sample size estimation purposes.  This is common practice in group

sequential planning.  The resulting sample size is then sometimes multiplied by a design

dependent sample size inflation factor in order to take into account the multiple testing

element of the study.  More complicated ways to determine the  levels are possible, such asα

adapting it dependent on the information fraction at the interim stage by an  spendingα

function.  This would better align the sample size needs to correctly power the study and

could do away with the need for the sample size inflation factor.  While promising, this

creates complications with critical values dependent on sample size and sample size

dependent on critical values.  More research should be done in this area to better align the

sample size re-estimation rules with the distributional realities of the test statistics employed.

Another flexibility in the sample size re-estimation procedure is with the distributional

assumptions used.  For example, sample size can be calculated assuming either large sample

distributions (  or ) or small sample distributions (  or ) for the distribution of the final^ > J;#

test statistic.  This affects the noncentrality parameter and hence the sample size distribution.

A disconnect between the distributional assumption used in sample size re-estimation

and that employed for critical value determination could cause undesired study properties.

For example, using a  distribution during sample size re-estimation would call for sample>

sizes greater than if a Gaussian distribution is used and creates an over powered study if

Gaussian based critical values are employed during analysis.  Alternatively, using Gaussian

bases sample size re-estimation with  distribution based critical values calls for too little>

sample size creating an underpowered study.  The logical method here is to align the

distribution type used in sample size re-estimation with that used to calculate critical values
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during analysis.  Since this kind of alignment was found to work best, it is the process

followed for the examples in section 3.5.

3.4.2 Interim Sample Size Selection

The value of the internal pilot sample size, , should be made at the design stage of the8"

study.  The choice is important since lower values give more uncertain estimates of  while5#

higher values may have better power properties, but can lose sample size benefits.  For the

IPIA design, the choice of  is completely general and the theory holds for any selection8"

method employed.

For traditional internal pilot designs, Birkett and Day (1994) recommended at least 20

degrees of freedom in the first stage sample; however, Coffey and Muller (1999) showed that

this scenario can still produce type I error rate inflation depending on the design and noted

the importance of examining properties of specific study designs.  A default in literature

seems to be taking a designated fraction of the sample size from fixed sample equations

using the best guess for the variance at the planning stage, i.e.,  for  and 1 1† 8 !  Ÿ " 8! !

determined from .  A default choice for  seems to be ; that is, the size of the first5 1!
# "Î#

sample is half of the fixed sample study sample size based on .5!
#

With the added element of early stopping, the choice of  for the IPIA model is a more8"

complex matter than in the IP design.  Depending on the critical value method employed and

true effect size and variance values, a high value of  could possibly have sample size8"

savings due to the changing power at the first stage test statistic.  Because of the complex and

interactive nature of this factor, I stress that it should always be examined as a study design

element keeping in mind the goals of a particular study.

In Section 3.5.6, I numerically examine an example employing three methods for

selecting the internal pilot sample size.  In Chapter 2, the examples used  for the8 œ 8" !1

value 0.5.  The examples in this chapter also use 0.5 and compare its use to the1 1œ œ

results using 0.25 and 0.75.  The resulting complications will be discussed.1 œ
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3.5 EXAMPLES

3.5.1 Example Motivation

The results of the examples in this chapter are calculated using the exact theory

developed in Chapter 2.  The goal is to compare possible study designs within the IPIA

framework and find an easy to employ design method that controls the type I error rate while

maintaining the power and sample size benefits of the IPIA design.  Futility bounds will not

be used in this chapter.  Their clear benefits were shown in Chapter 2, and refinement of their

use is saved for future research.

3.5.2 Example Methods

All numeric calculations in this chapter are done for , , , ,  where# − !Þ& !Þ(& " "Þ& #e f
# 5 5œ Î# #

! .  Each example begins by comparing the type I error rates of nine possible

designs.  Then, selecting study types with superior control of type I error rates, power

properties are examined.  Finally, expected sample sizes for the designs with both attractive

type I error rate and power properties are calculates and described.  Since the expected

sample sizes of procedures with early stopping depend on the true effect size , they will be)

calculated under three conditions: under the null ( ), under the alternative of interest) œ !

( ), and under a true effect twice that of the effect size of interest ( ).) ) ) )œ œ #" "

Critical values will be calculated by either using the standard Gaussian distribution or

by using the  distribution.  For procedures with two testing stages, I will employ an O'Brien->

Fleming type alpha spending technique using the SAS SEQSCALE function (SAS Institute,

2004).  Sample size re-estimation will use  to calculate the sample size determining criticalα>

values for all values of .  The exception to this is for the bounding methods, which willR

use the pre-determined adjusted  values for sample size determination.  The assumedα,

distribution used in sample size re-estimation will mirror the distribution used for analysis

critical value determination. All of the designs considered in Sections 3.5.4 and 3.5.5 use
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8 œ 8 œ" !1 1 1 for 0.5.  The effects of different values for  will be examined in Section

3.5.6.
The nine methods to be compared in Sections 3.5.4 and 3.5.5 are as follows:
è Fixed sample design using standard Gaussian distribution for critical value

            calculation
è > Fixed sample design using  distribution for critical value calculation
è Two-stage group sequential using O'Brien-Fleming critical value calculation based on

             the standard Gaussian distribution
è Two-stage group sequential using O'Brien-Fleming critical value calculation based on

             the  distribution>

è 8 œ 8 Internal pilot allowing sample size to decrease from planning estimate ( ) ",max
             using  distribution for sample size re-estimation and critical value calculation>

è IPIA design using sample size re-estimation and O'Brien-Fleming critical value
             calculation based on the standard Gaussian distribution

è IPIA design using sample size re-estimation and O'Brien-Fleming critical value
             calculation based on the  distribution>

è IPIA bounding method  using sample size re-estimation and O'Brien-Fleming critical*

             value calculation based on the standard Gaussian distribution, both using α,

è IPIA bounding method  using sample size re-estimation and O'Brien-Fleming critical*

             value calculation based on the  distribution, both using > α,

* The bounding method employed is an approximation and does not perfectly bound the type
I error rate in all cases.  For computational convenience, the prototype software created and
used for this research to calculate the adjusted  levels is using a modified version of theα
bounding method that approximates the algorithm described in Section 3.3.  Instead of
recalculating the location of maximum type I error rate for each  considered, it does so onlyα
for  (say the location is ).  It then finds  such that the type I error rate at  isα α # α # #œ œ> > , >

equal to .  In reality the location of the peak can shift slightly with  values which causesα α>

the computationally expedient, but approximate IPIA bounding method.

  3.5.3 Computational Methods

All programs for the examples were written in SAS/IML (SAS Institute, 2004). Most of 

the computation for the examples utilizes the exact theory developed in this chapter.  The

exceptions are the fixed sample and internal pilot designs.  The fixed results could be directly

calculated using standard distribution functions.  The internal pilot calculations were easily

obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla 
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et al.  2007) software package.  All other results came from use of the exact theory,ß

including the two-stage group sequential designs, which are a special case.

To avoid numerical instability of the calculated integrals, computation was performed

using quantile transformations (Glueck and Muller, 2001) of the distributions derived in 

Section 2.4.  For illustration, let : œ àJ >;#� �/ .  Then the integral transformation using

> œ à àJ : .: œ 0 > .>"
; ;# #� � � �/ / and  allows for integration using finite bounds with better

behaved integrands.

3.5.4 Example 3.1 Results

The design parameters for Example 3.1 are summarized in Table 3.2.  The nominal

target type I error rates used in the bounding methods are  and  for the methods usingα α,^ ,>

the  and  distributions, respectively.^ >

Table 3.2  :

0.050 0.042 0.047 0.9 1 2 86 44

Design parameters for Example 3.1
α α α ) 5> ,^ ,> > " !!

#T 8 8"

Example 3.1, a study design of moderate size, was considered by Wittes and Brittain

(1990) and Coffey and Muller (1999) in an internal pilot framework and previously in

Chapter 2 for the IPIA.

Table 3.3  :
Fixed GS IP IPIA Bounding

0.50 5.3 5.0 5.5 5.0 5.2 5.7 5.1 4.9 4.8
0.75 5.3 5.0 5.5 5.0 5

Type I error rates 100 for Example 3.1‚

# ^ > ^ > > ^ > ^ >

.4 6.0 5.3 5.1 5.0
1.00 5.3 5.0 5.5 5.0 5.3 5.9 5.4 5.0 5.0
1.50 5.3 5.0 5.5 5.0 5.2 5.6 5.3 4.7 5.0
2.00 5.3 5.0 5.5 5.0 5.2 5.4 5.2 4.5 4.8

Table 3.3 displays the type I error rate values for each of the nine designs described in

Section 3.5.2.  To see results as a function of variance, values are calculated for true

variances corresponding to values of  with , , , , .# 5 5 #œ Î − !Þ& !Þ(& " "Þ& ## #
! e f
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It is clear from the table that for this moderately sized study design, type I error rate

inflation is a concern, especially for the designs using the standard Gaussian distribution for

sample size re-estimation and critical value calculation.  The effect of not accounting for the

uncertainly in the variance estimate becomes extremely clear in the fixed sample and GS

designs, which control the type I error rate when the  distribution is used.  Within the IPIA>

design, the use of the  distribution significantly decreases the type I error rate inflation,>

leaving the internal pilot based inflation caused by the biased variance estimate.  The IPIA

bounding methods control the type I error rate quite well in both cases, however, the type I

error rate is more stable across  for the  distribution based design.# >

From the results in Table 3.3, I claim that for moderately sized study designs, the use of

distributions taking into account the uncertainty of the variance estimate are preferred to the

use large sample calculations which ignore the uncertainty.  The focus of the examination of

power will be on the five designs using the  distribution for this example.>

Table 3.4  :
Fixed( ) GS( ) IP( ) IPIA( ) Bounding( )

0.50 99.6 99.3 92.9 92.6 92.4
0.75 96.3 96.0 90.6 90.1 90.1
1.00 90.

Power 100 for Example 3.1‚

# > > > > >

0 89.6 90.0 89.7 89.7
1.50 75.4 74.8 89.6 89.2 89.2
2.00 63.0 62.4 89.3 89.0 89.0

Table 3.4 displays the values for unconditional power for each of the five designs that

use the  distribution for sample size re-estimation and critical value calculation.>

The table makes a clear distinction between the designs with and without sample size

re-estimation abilities.  All of the designs basically achieve the target power when the

planning assumption for variance is true ( ).  However, if the true value of  varies# #œ "

either lower or higher, the fixed sample and group sequential methods become either over or

under powered.  All three of the methods with sample size re-estimation have very similar

and stable power properties over the true variance values considered.  Since this power
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protective behavior is desirable, I will continue by looking at sample size properties for the

sample size re-estimation procedures.

Table 3.5  :
IPIA( ) Bounding( )

0.50 48.1 48.1 45.2 44.0 48.6 45.4 44.0
0.75 66.2 66.0 56.4

E� �R

> >
œ ! œ œ # œ ! œ œ #

A

" " " "

 for Example 3.1

# ) ) ) ) ) ) ) ) ) )IP( )>

44.3 67.1 57.5 44.4
1.00 87.0 86.8 76.9 48.7 88.3 78.8 49.4
1.50 129.0 128.9 123.9 87.7 131.1 126.5 91.4
2.00 171.0 171.0 168.9 146. 173.9 172.1 151.5(

Table 3.5 displays the values for expected sample size for the IP, IPIA, and IPIA

Bounding designs.  For the IPIA and IPIA Bounding designs, expected sample sizes are

calculated assuming the null hypothesis () ) )œ ! œ), the alternative of interest ( ), and"

assuming a true effect size twice the effect of interest ( ).) )œ # "

Since the IPIA designs considered here do not include early futility stopping and there is

little chance for early stopping when the null is true, the expected sample sized at ) œ !

comes very close to the IP design.  The advantages of the IPIA methods become more

apparent here as  increases.  The early stopping capability makes the IPIA method more)

efficient than the IP by lowering expected sample size and saving resources.

The IPIA bounding method uses a little more sample size on average than its unadjusted

counterpart.  This is due to the use of the adjusted  level in the sample size re-estimationα

procedure and first stage critical value calculation.  The small increase in sample size,

however, is offset by the control of the type I error rate for the design.  For this example, the

IPIA bounding method is the only one of those considered to control the type I error rate,

maintain a stable power, and hold a sample size advantage over the IP design.
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3.5.5 Example 3.2 Results

The design parameters for Example 3.2 are summarized in Table 3.6.  The nominal

target type I error rates used in the bounding methods are  and  for the methods usingα α,^ ,>

the  and  distributions, respectively.^ >

Table 3.6  :

0.050 0.019 0.038 0.9 1.6 1 20 10

Design parameters for Example 3.2
α α α ) 5> ,^ ,> > " !!

#T 8 8"

Example 3.2 is a smaller study than Example 3.1 and was considered by Coffey and

Muller (1999) as well as in Chapter 2 in order to explore small sample study properties.

Values for type I error rate, power, and expected sample size are analytically calculated using

the exact theory developed in Chapter 2 under the design conditions described in Section

3.5.2.

Table 3.7: 
Fixed GS IP IPIA Bounding

0.50 6.6 5.0 7.8 5.1 5.5 8.8 5.4 4.9 4.2
0.75 6.6 5.0 7.8 5.1 6

Type I error rates 100 for Example 3.2‚

# ^ > ^ > > ^ > ^ >

.2 9.3 6.0 5.2 4.7
1.00 6.6 5.0 7.8 5.1 6.5 9.5 6.5 5.2 5.1
1.50 6.6 5.0 7.8 5.1 6.5 9.4 6.6 4.7 5.2
2.00 6.6 5.0 7.8 5.1 6.2 8.8 6.4 4.1 4.9

Table 3.7 displays the values for type I error rate for each of the nine designs described

in Section 3.5.2.  To see results as a function of variance, values are calculated for true

variances corresponding to values of  with , , , , .  The results# 5 5 #œ Î − !Þ& !Þ(& " "Þ& ## #
! e f

above show that the potential of type I error rate inflation becomes more dangerous and

extensive for small sample studies.  The cost of not accounting for the uncertainly in the

variance estimate is clear in the fixed sample, GS, and IPIA designs.  While the fixed sample

and group sequential designs largely control the type I error rate when the  distribution is>

used instead, the IPIA retains a much decreased, but significant inflation.  This is due to the
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internal pilot based inflation caused by the biased variance estimate.  All of the inflation

levels become magnified with the small sample study.  The IPIA bounding methods control

the type I error rate quite well in both cases, however, the extreme nature of the  correctionα

needed for the  based design makes it undesirable.^

From the results in Table 3.7, I claim that for small sample study designs, the use of

distributions taking into account the uncertainty of the variance estimate are greatly preferred

to the use large sample calculations, which ignore the uncertainty.  The examination of

power will focus on the five designs using the  distribution for this example.>

Table 3.8  :
Fixed( ) GS( ) IP( ) IPIA( ) Bounding( )

0.50 99.8 99.6 92.9 95.8 95.4
0.75 97.4 97.1 90.6 92.9 92.5
1.00 92.2

Power 100 for Example 3.2‚

> > > > >

91.9 90.0 91.0 90.6
1.50 78.9 78.3 89.6 88.7 88.2
2.00 66.8 66.2 89.3 87.3 86.8

Table 3.8 displays the values for unconditional power for each of the five designs that

use the  distribution for sample size re-estimation and critical value calculation.>

The results for power closely mirror the results obtained for Example 3.1.  The methods

with sample size re-estimation all have superior power properties over the true variance

values considered.  Since sample size re-estimation procedures in this example have

beneficial power protective behavior, I will examine their sample size properties.

Table 3.9: 3.2
IPIA( ) Bounding( )

IP( )
0.50 12.3 12.3 11.5 10.2 13.0 12.2 10.4
0.75 15.9 15.8 14.9

E� �R

> >
> œ ! œ œ # œ ! œ œ #

A

" " " "

 for Example 

# ) ) ) ) ) ) ) ) ) )

11.8 16.9 16.0 12.8
1.00 19.7 19.7 18.8 15.2 21.1 20.4 17.0
1.50 27.8 27.7 27.1 24.2 29.7 29.3 26.9
2.00 35.9 35.9 35.5 33.5 38.5 38.2 36.7
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Table 3.9 displays the values for expected sample size calculated for the IP, IPIA, and

IPIA Bounding designs.  The values are calculated for values of  with# 5 5œ Î# #
!

# − !Þ& !Þ(& " "Þ& #e f, , , , .  For the IPIA and IPIA Bounding designs, expected sample sizes

are calculated assuming the null hypothesis () ) )œ ! œ), the alternative of interest ( ), and"

assuming a true effect size twice the effect of interest ( ).) )œ # "

The sample size trends for this small sample study are similar to those found in Example

3.1.  For this small sample example, the IPIA bounding method is the only method of those

considered that controls the type I error rate, maintains a stable power function, and it largely

holds a sample size advantage over the IP design.  The IPIA bounding method thus shows it

largely achieves its goals even in the small sample design considered here.

3.5.6 Interim Sample Size Selection Results

Example 3.1 using the IPIA bounding method based on the  distribution is here further>

examined in order to describe the effects of the choice of interim sample size.  Study designs

using each case of 0.25, 0.5, 0.75  are used to determine the initial sample size.  The1 − e f
middle value ( 0.5) corresponds to the case described in Section 3.5.4.1 œ

Table 3.10: 

0.50 5.0 4.8 4.8
0.75 4.8 5.0 4.8
1.00

Type I error rates 100 for 0.25, 0.5, 0.75‚ −1 e f
α α α

#
, , ,

" " "

œ !Þ!%$ œ !Þ!%( œ !Þ!%)
8 œ ## 8 œ %% 8 œ ''

4.7 5.0 5.0
1.50 4.5 5.0 5.0
2.00 4.3 4.8 4.9

Table 3.10 displays the values for type I error rate calculated using the exact theory

described in Chapter 2 for the  distribution based IPIA bounding method described in>

Section 3.3.3.  Values are calculated for true variances corresponding to values of # 5 5œ Î# #
!

with , , , ,  as well as for 0.25, 0.5, 0.75 .  The values for  were# α− !Þ& !Þ(& " "Þ& #e f e f1 − ,

computed separately for each of the three designs.
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The results for the bounding method are shown to successfully control the type I error

rate at the target level for each of the designs.  Also, the location and magnitude of type I

error rate peak varies depending on the size of the interim stage.  The study design with

smaller interim sample size has a type I error peak at a lower variance and has a steeper type

I error rate curve over true variance than the other designs.  The type I error rate peak shifts

higher and the curve becomes flatter as the interim sample size increases.

Table 3.11: 
22 44 66

0.50 89.7 92.4 97.8
0.75 88.7 90.1 92.0
1.00 88.1 89.7 90.0
1.50 87.5 89.2 89.6
2.0

Power 100 for 0.25, 0.5, 0.75‚ −1 e f
# 8 œ 8 œ 8 œ" " "

0 87.2 89.0 89.5

Table 3.11 displays the values for power calculated using the exact theory described in

Chapter 2 for the  distribution based IPIA bounding method.>

The three design cases considered exhibit differences in power properties over true

variance values.  The larger interim sample size ( 66) causes the study to be over8 œ"

powered for small .  This is due to the study already having more than enough sample size#

without the ability to decrease.  Conversely, the study with small interim sample size

( 22) has trouble achieving the power of the other designs.  This is most likely due to8 œ"

the inaccuracy of the variance estimate used for sample size re-estimation purposes at the

interim stage.  The power properties for all designs considered here are very good compared

to non sample size re-estimation procedures, however, the larger and smaller studies seem to

tend to be more over and under powered over various conditions.
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Table 3.12: 
22 44 66

0.50 46.8 43.6 30.0 48.6 45.4 44.0 66.0 66.

E� �R

8 œ 8 œ 8 œ
œ ! œ œ # œ ! œ œ # œ ! œ œ #

A

" " "

" " " " " "

 for 0.25, 0.5, 0.751 − e f
# ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

0 66.0
0.75 68.6 67.1 55.8 67.1 57.5 44.4 76.8 67.2 66.0
1.00 90.5 89.8 83.6 88.3 78.8 49.4 88.1 75.5 66.0
1.50 134.2 134.1 132.5 131.1 126.5 91.4 130.3 114.2 71.1
2.00 178.0 177.9 177.5 173.9 172.1 151.5 173.0 162.7 100.9

Table 3.12 displays the values for expected sample size calculated using the exact

theory described in Chapter 2 for the  distribution based IPIA bounding method.  Expected>

sample sizes are calculated assuming the null hypothesis () œ !), the alternative of interest

( ), and assuming a true effect size twice the effect of interest ( ).) ) ) )œ œ #" "

The effect of interim sample size on expected sample size is fairly complex.  Under the

null ( , expected sample size is higher for low  in the  and similar for high .) œ !) # #1 œ !Þ(&

Under the alternative of interest ) saves sample size( ), the middle sized study () )œ " 1 œ !Þ&

for lower  and the larger study 7 ) saves sample size for high .  For a large true# #(1 œ !Þ &

effect size ( ), the small study saves sample size for low true variance ( , the) ) #œ œ !Þ&Ñ"

middle sized study works best for middle variances (like ), and the larger study# œ "Þ!

works best when variance is large.

The process behind the effects shown in the tables above is complicated since it

involves a combination of minimum sample size, precision of estimates, and power at interim

stage.  All of these factors are sensitive to the interim stage size, the true effect size, and the

true variance.

3.6 DISCUSSION

In order to conduct an IPIA study, design features such as critical value selection

procedures as well as sample size allocation and re-estimation methods must be pre-

specified.  In this chapter, I have examined the use of easy to employ study design

characteristics within the IPIA framework using the exact theory introduced in Chapter 2.
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The exact theory allowed for fast and accurate calculations to facilitate the comparison of

designs and also allowed us to develop new methods with the theory as a basis.  I proposed

simple design strategies as well as the new IPIA bounding method and compared their type I

error rate, power, and expected sample size characteristics under various conditions through

examples.  The results suggest that IPIA designs can be very useful in maintaining study

integrity while minimizing needed time and resources.  Additionally, the bounding method

has all of the desirable properties wanted in a two-stage IPIA design.

I compared the use of  distribution with the standard Gaussian distribution based>

methods of critical value determination.  Simply using the  distribution for sample size re->

estimation and critical value determination for small to moderate sample study designs can

go a long way towards controlling the type I error rate inflation inherent to the design.  This

works well since it takes into account the uncertainty of the variance estimate due to sample

size.  While this very simple method works in the examples considered for improving the

alignment of the critical values with the test statistics, it is not an exhaustive conclusion as

the best possible method since the final test statistic does not exactly follow a   distribution.>

Incorporating other group sequential critical value selection methods such as that described

by Shao and Feng (2007) with the IPIA design could increase study characteristics and

should be considered.

In addition to the distribution type assumed for critical value selection, sample size re-

estimation methods have another source of potential problems due to a downwardly biased

variance estimate.  The impact of this characteristic is most apparent in small sample studies,

such as those considered here.  In order to control for this source of type I error rate inflation,

I introduced the IPIA bounding method.  The method works within the group sequential

bound framework to achieve a test with maximum type I error at the target level.  In the

examples considered, the conservative test was shown to work quite well for achieving the
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goals of the IPIA design.  It achieves an unbiased error rate while maintaining the IPIA

power and having sample size benefits.

Finally, in this chapter I examined the effects of using different sample sizes for the

interim stage of an IPIA design.  Most of the examples considered in this chapter and in

Chapter 2 used a  for  technique.  However, I conclude that the choice is8 œ 8 † œ !Þ&" ! 1 1

important and far from clear cut.  The example showed that differing sizes have benefits

under different conditions.  Some of the sample principles apply here as in the internal pilot

case such as a larger interim size giving a better variance estimate.  However, the interplay

between re-estimation and testing at the interim stage causes the choice of interim size to be

more complex in the IPIA setting.  Because of the sensitivity of type I error, power, and

expected sample size to the interim sample size of the study, its effects should be explored in

more detail and in particular should be explored during study planning for a particular study.

With the study goals in mind, an educated decision can allow researchers to achieve the

benefits they most desire from the design.

In addition to the results described here, there are many areas where important future

methodological work is needed.  For example, the sample size re-estimation method

employed during a study affects the distribution of sample size and is thus an important

consideration for study design.  A common approach is to use the target type I error rate to

determine a critical value to base sample size needs on during the interim analysis.  This

approach makes matters simple, but could possibly be improved upon by considering the

amount of error spent during the interim analysis.  I believe that aligning the alpha levels

would better the alignment of the final test statistic with that assumed at the interim analysis

and thus create a more efficient study.  Another consideration related to sample size re-

estimation technique is the assumed distribution of the final test statistic during the interim

power analysis.  I conclude that power is best maintained at the target level by aligning the

distribution used in sample size calculation by that used for critical value calculation.
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Finally, in addition to the efficacy stopping bounds considered in this chapter, important

future work should include the incorporation of smart futility stopping bounds for the first

stage analysis of the IPIA design.  As shown in Chapter 2 of this dissertation, this can save

much time and resources when little or no effect is present in a study.  The resources saved

could then be allocated to other promising studies and thus further important scientific

research.



CHAPTER 4.  INTERNAL PILOT WITH INTERIM
ANALYSIS FOR MULTIPLE DEGREE OF FREEDOM

HYPOTHESIS TESTS

SUMMARY

In Chapter 2 of this dissertation, I introduced the procedure and theory for an internal 

pilot with interim analysis (IPIA) design for use with single degree of freedom hypothesis

tests.  In this chapter, I will again focus on the IPIA design for Gaussian linear models as

introduced in Chapter 2, but for use in more complex designs such as multi-group

comparisons.  In this case , the contrast matrix in the General Linear Univariate ModelG

(GLUM) framework, has more that one row ( ), creating multiple degree of freedom+  "

hypotheses.  I introduce exact theory that can be used in small sample situations to plan

studies with complex hypotheses.  The theory includes an exact computable form for the

conditional joint distribution of the first and second stage test statistics.  Together with the

results from Chapter 2, the new results allow calculation of power, type I error rate, and

expected sample size for any univariate linear model with fixed predictors and Gaussian

errors.  Examples compare study characteristics with a fixed sample design as well as with

internal pilot and two-stage group sequential designs, all of which are special cases within

the IPIA framework.

4.1 INTRODUCTION

4.1.1 Motivation

When planning clinical trials and other studies, researchers would like to ensure they

have an appropriate sample size to detect an effect of interest for a given target type I error

rate and power.  Researchers and sponsors would also like to have the ability to reach early
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decisions when hypothesis outcomes are clear.  In Chapter 2 of this dissertation, I focused on

single degree of freedom hypotheses, derived the needed exact theory, and laid out the

procedure for a two-stage internal pilot with interim analysis (IPIA).  The design maintains

power by re-estimating sample size needs and can save resources by allowing for early

stopping.  While most methodological research in internal pilot theory for continuous data

involves only the independent groups -test setting, not all study designs, or even all clinical>

trials involve only one or two groups.  For example, a recently published study by Totonchi

and Guyuron (2007) compared treatments suggested for reducing the postoperative edema

and bruising associated with rhinoplasty.  A total of 48 rhinoplasty patients were randomized

to one of two treatment plans or a control group and a three-group analysis of variance

(ANOVA) performed to evaluate results.  This is an example of a small sample 3-group

design that could benefit from the IPIA setting.

Generalizing the exact distributional theory to more complex hypotheses involving

multiple group comparisons with computable formulae for power and sample size would

allow researchers to accurately explore properties for such designs, even in small samples,

before undertaking a study.  The importance of small sample theory is explicitly highlighted

within the NIH Roadmap (Clinical and Translational Science Awards, RFA-RM-07-002

U54).  The exact theory would allow for efficient study planning without the need for

simulations.

4.1.2 Literature Review

The relevant literature review is largely covered in Chapters 1 and 2.  Some additional

background specific to this chapter is included in this section.

While most theory for continuous Gaussian data in internal pilot and group sequential

designs has been focused on one and two group  tests, some effort has been made to>

generalize the methods to more complex hypothesis tests.  Spurrier (1982) presented two-

stage group sequential tests of hypothesis in the general linear univariate model with
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normally distributed and independent errors.  Additionally, Jennison and Turnbull (1991,

1997) described distributional theory for multiple stage group sequential , , and  tests.> J;#

In order to accommodate more complex designs for internal pilots, Coffey and Muller

(1999, 2000, 2001) extended the idea into any univariate linear model with fixed predictors

and Gaussian errors.  They derived computable forms for the exact distribution of the test

statistic.  The exact theory allows for flexibility of hypotheses in combination with accurate

and efficient study planning for small sample internal pilot designs.

4.2 IPIA MODEL AND PROPERTIES

4.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,

Chapter 1).  An  vector (always a column) is written , and an  matrix is written< ‚ " < ‚ -+

E E Eœ +e f4ß5
w, with transpose .  For full rank matrix , the inverse of the transpose equals

the transpose of the inverse, so I use .  Throughout  represents anE E E "> w "" w
<œ œ� � � �

< ‚ " " B vector of 's and Dg  represents a diagonal matrix with  element .� �B � �4ß 4 4

Furthermore, define Dg  as the  identity matrix.  The direct (Kronecker)M "< <œ < ‚ <� �
product is defined as .E F FŒ œ +e f4ß5

Detailed information about all random variables discussed in this paper can be found in

Johnson et al. (1994, 1995) and Muller and Stewart (2006).  Writing  indicatesB µ ßa8� �. D

that random vector  ( ) has a vector (multivariate) Gaussian distribution with meanB 8 ‚ "

vector  and covariance matrix .  For  less than full rank,  has singular vector. D D B

(multivariate) Gaussian distribution, written as .  Writing B Bµ W ß µ W ßa a8 8� � � � � �. D . D

indicates the possibility of a singular distribution.  Furthermore, \ Qµ ß ßa8 :, � �B D

indicates that random matrix  follows a matrix Gaussian distribution, which implies that\

vec vec , .  If , then� � � � c d � �� �\ µ Q \ Q Mf a a8: 8 : 8D B DŒ µ ß ß,

\ \ Q Q \ \w w w
:µ [ 8 8� �, , indicates that a noncentral Wishart distribution with D   

degrees of freedom,  parameter , and  .shift noncentrality? H Dœ Q Q Q Qw wœ "
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Writing , implies .  Muller and Stewart (2006, Chapters 8 and 10) presented[ 8:� �D  Q œ !

more details about the matrix Gaussian and Wishart distributions.

Writing  indicates that  follows a non-central chi-square distribution,\ µ ß \; / =#� �
with  degrees of freedom and noncentrality .  Likewise, writing / = / / =\ µ J ß ß� �" #

indicates that  follows a noncentral  distribution with numerator degrees of freedom ,\ J /"

denominator degrees of freedom , and noncentrality .  Writing  or  implies/ = ; / / /# " #
#� � � �J ß

= ; /œ ! \ µ à > ß > \.  More generally, writing  indicates that  follows a doubly-X
#

P Y� �
truncated central chi-square distribution with  degrees of freedom, truncated to the interval/

c d> ß >P Y  (Coffey and Muller, 2000).

For random variable  with parameters , indicate the cumulative distributionY á# #" 5

function (CDF) taken at  as   As a special case,  indicates the CDF for? J ?à á Þ DY " 5� � � �# # F

the standard Gaussian distribution (mean zero, variance one), taken at .  Also D

J à á Y áY
"

" 5 " 5� �α # # α # # indicates the  quantile of a random variable  with parameters .

 4.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) models discussed in this paper can be

viewed as generalizations of the internal pilot model in the GLUM framework as introduced

by Coffey and Muller (1999).  However, due to the possibility of early stopping, notational

changes with   are necessary.  In an IP design,  is the random finalR  8 Ÿ R Ÿ 8  ,min ,max

sample size that is calculated using , the variance estimate from the interim sample.  For5s"
#

the IPIA model, )  .  However,R ( is also a random variable based on8 Ÿ R Ÿ 8 s"   "
#

,max 5

due to the possibility of early stopping, it is not necessarily the final sample size for the

study.  Hence for clarity  indicates the random final sample size used for the study.RA

Furthermore continue  with  an event indicator equal to  if a study isR œ 8 R † "A " # \ \� �
continued at the first stage.  Equivalently

R œ
8
R ÞA
"


œ  if study stopped after first stage

 otherwise (4.1)
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The design leads to interest in three different but intimately connected models.  The

combined model for the final analysis may be written as

C \ /  

  R ‚ " R ‚ ; ‚ " R ‚ "
œ               ,"    (4.2)

or

Ô × Ô ×Ö Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

C

C /

\

\

/"

" "

# #

#

"
"

#

#

"

#

8 ‚ " 8 ‚ "

R ‚ "

œ 
8 ‚ ;

R ‚ ; R ‚ "

"  , (4.3)

with partitioning corresponding to the fixed  and random  observations in the first and8 R" #

second samples, respectively.  Here the second sample of size  shown aboveR œ R  8#  "

is only taken if study continuation is determined from the first sample.  Also, the special case

of  will cause the full model to collapse to the interim model.  Model componentsR œ 8 "

include random observed  ( ) independent sampling units as rows), design matrixC R ‚ " Ð

of fixed form , and unobserved  such that .  \ ! M
#/ /  R Rµ ßa 5

 
� � For computational

convenience,  values of total sample size, , increase only in multiples random R œ 8 R " #

of a replication factor, .  For example, a balanced 3-group study design would have .7 7 œ $

For some \ \ " \ \ " \! " 5 ! # O ! " ( ), I assume  and , with fixed  and7‚ ; œ Œ œ Œ 5
" #

random  the number of replications in the first and second samples, respectively.O#

Consequently, the columns of \ \" # # and  span the same space (when ) and henceO  !

define rank rank rank .  In order to simplify computations and some< œ œ œ� � � � � �\ \ \" # 

discussions, attention will usually be restricted to a full rank design, that is rank .� �\! œ ;

The principles of linearly equivalent models allow the restriction without meaningful loss of

generality.

The test of interest is , with  and  a fixed  contrast matrix.L À œ œ + ‚ ;! !) ) ) "G G 

The results of this chapter will focus on hypotheses with .  Without loss of generality I+  "

assume  ( .  a)! œ ! Lemma A.1) For a ‘scientifically important’ effect of interest , � �) )œ "
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preferable design ensures a target type I error rate  with sample size appropriate to� �α>

achieve target power .� �T>

Throughout, subscript  indicates a value for either the model based on the= − "ß #ße f
internal pilot (first) sample, the second sample, or the total combined sample (conditioned on

R œ 8 œ 8  <  = =).  Error degrees of freedom are ./

Section 2.2.2 of this dissertation includes tables containing definitions and descriptions

of model elements and can be referenced for additional IPIA model details.

4.2.3 IPIA Properties

The IPIA model properties developed in Section 2.2.3 (equations 2.11-2.55) were

developed for the general case of  numerator degrees of freedom hypotheses and hence still+

hold for hypotheses considered in this chapter ( .  They are not all included here but+  "Ñ

will be cited when necessary.  Additional model properties are needed especially for +  "

case and are included in this section and in Appendix B for reference.

Defining the following 8 ‚ 8  matrices facilitates deriving the distributions needed to

calculate IPIA probabilities for the  case.+  "

                                 E \ \ \ G Q G \ \ \

E
\ \ \ G Q G \ \ \ !

! !

E
! !

! \

2      
w w " w w" "

2"
" "
w " w

"
" w "

"

2#

œ

œ

œ

� � � �
� � � �

"
w w

" "

#

(4.4)

(4.5)” •
” •� � � �
” •
” •

\ \ G Q G \ \ \

E M L

E
M L !

! !

E
! !
! M L

E E E E

E E

# #
w " w

# #
" "

/ 8 

/"
8 "

8 ‚8

/#
8 ‚8

8

/:

/,

w w
# #

#

2" 2# 2

 

   

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

œ 

œ


œ


œ

œ



"

# #

" "

#

 

/ /" /# /:  E E E (4.11)

Additionally,  define the following matricesI
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\
\
!"‡
"

8 ‚;

œ ” •


(4.12)

\
\#‡

# 8 ‚;

œ ” •0



(4.13)

F \ \ G Q G \ \
; ‚ ;

œ � � � �0 0
w " w" "w

! !0   . (4.14)

Lemma .1 defines a relation  that will be useful in subsequent results.4 ship

Lemma 4.1 For , the following holds.= − "ß #ße f
F\ \ F œ F=

w
= 5=  . (4.15)

A proof for Lemma 4  is in Appendix B..1

Lemma 4.2 For the model in equation 4.3 interpreted as  a fixed  design, the8

following hold for the matrices defined in equations 4.4-4.11.

a. The matrices are all symmetric.

b. E E E2 2" 2#, , and  can be re-written as

E \ F\
\ F\ \ F\
\ F\ \ F\

E \ F\
\ F\ !

! !

E \ F\
! !
! \ F\

2
" w "
   

2"
" "
" "

2#
" "
# #

œ 5 œ 5

œ 5 œ 5

œ 5 œ 5

” •
” •
” •

" "
w w
" #

# #
w w
" #

"‡
w
"‡

"
w
"

#‡
w
#‡

#
w
#

 .

(4.16)

(4.17)

(4.18)

c. The following relations are true.
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i.

ii.

iii.
iv.
v.

E E
\ F\ !
\ F\ !

E E
! \ F\
! \ F\

E E E E E

E E E E E E E

E E

2 2"
"


2 2#
"


2 2" 2 2# 2

2 2" 2" 2 2 " 2" # 2# 
" "

2 2#

œ 5

œ 5

 œ

 œ 

” •
” •

"
w
"

#
w
"

"
w
#

#
w
#

 5 5 5 5

 œ 

œ

œ

œ

E E E E E

E E E

E E E

E E E

2# 2 2 " 2" # 2# 
" "

/ /" /"

/ /# /#

/ /: /:

 5 5 5 5

vi.
vii.
viii.

d. E E E E E E E E E E E E E E2 2 2 2 2 2" 2"/ /" /# /: /, /# /"œ œ œ œ œ œœ

E E E E E E E E E E E E E E2" 2" 2# 2# 2# /" /"/# /, /" /# /, /# /:œ œ œ œ œ œ  œ

E E E E E E E E !/" /# /# /: 8 ‚8/, /: /, /,œ œœ œ
 

e. All of the matrices defined in equations 4.4-4.11 are idempotent.

f. ,  For  equal to the number of rows of contrast  and the matrices defined+ G \< the rank of !

in equations 4.4-4.11 have the following ranks.

    Matrix    Rank  
E

E

E

E

E

E

E

E

2

2"

2#

/ 

/" "

/# #

/:

/,

+

+

+

8  <

8  <

8  <

+

<  +

A proof for Lemma 4.2 is in Appendix B. 

Using the results from Lemma 4  and 4.2, I now derive a series of results necessary for.1

the key distributional results of this chapter.

For ,  is idempotent, symmetric, and rank  from Lemma 4.2.  Hence= − "ß #ß  +e f E2=

Z2=  of dimension  can be defined with8 ‚ +

E Z Z2= 2= 2=
wœ (4.19)
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and

Z Z Mw
2= 2= +œ    . (4.20)

From equation 2.32, it was shown that

Z Z Z Z M2" 2
w w

2 2" "  +
"Î#œ œ 8 Î8� �   . (4.21)

It can be similarly shown that

Z Z Z Z M2# 2
w w

2 2" #  +
"Î#œ œ 8 Î8� �   . (4.22)

Also, for

Z \ \ \ G J2# #‡ !
"Î#
#

w w >
! !

"
œ 5 � �   , (4.23)

the following holds:

  Z Z J G \ \ \ \ \ \ G J

J G \ \ \ \ G J! \
\
!

2# ! ! #‡ ! !
w " w w w w >

2" # " ! "‡ !
"Î# " "

# " ! !
"Î#

! ! ! !
" w w w >" "

;‚8
w
#

"

8 ‚;

# "
"

œ 5 5

œ 5 5

œ 5 5

� � � � � �’ “’ “
� � � � c d � �” •
� �

"
#

Î#
! ! ! !
" w w w >

! ;‚; !
" "

+‚+

J G \ \ ! \ \ G J

!

� � � �
œ  . (4.24)

With

Ô × Ô ×
Õ Ø Õ Øc d

Ô ×Ö Ù
Õ Ø

� �� �� �

Z M Z Z Z Z
Z Z Z M Z Z
Z Z Z Z Z M

Z Z Z

M ! M

! M M

M

2" 2" 2"
w w w

2# 2# 2#
w w w

2 2 2
w w w

2" 2# 2

+ 2# 2

2" + 2

2" 2# +

+ "  +
"Î#

+ #  +
"Î#

" 
"Î#

œ

œ

8 Î8

8 Î8

8 Î8 + #  + +
"Î#� �8 Î8 M M

(4.25)

and, using equation 2.53, 

Ô × Ô ×
Õ Ø Õ Ø

Ô ×Ö Ù
Õ Ø

� �� �Z
Z
Z

2"
w



2#
w



2
w



2" "  2

2#

2

"Î#

#  2
"Î#

2

.

.

.

. .

.

.
.

.

œ œ
8 Î8

8 Î8   . (4.26)

If
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C C
Z
Z
Z

C
C
C

2 œ œ
Ô × Ô ×
Õ Ø Õ Ø

2"
w

2#
w

2
w



2"

2#

2

 , (4.27)

then

C

M M

M M

M M M

2 $+

2"

2#

2

#
+ "  +

"Î#

+ #  +
"Î#

"  + #  + +
"Î# "Î#

µ ß

8 Î8

8 Î8

8 Î8 8 Î8

� � Î ÑÐ Ó
Ï Ò

Ô ×
Õ Ø

Ô ×Ö Ù
Õ Ø

� �� �� � � �
f a 5

.

.

.

0
0 . (4.28)

Another important relationship is

� � � �
c d c

8 Î8 8 Î8 œ

5 5 œ

5 5

"  # 
"Î# "Î#w w

 
"Î# "Î#

! ! "‡ ! ! #‡
w w w w

! !

 " 
"Î# "Î#

! ! ! !
w w

! !
w

;‚8

Z Z

G G

G G

2" 2#
" "

" "







J \ \ \ J \ \ \

J \ \ J \ \\ !

" "

" "

� � � �
� � � �# d

c d
! \

J \ \ \ \

;‚8
w
#


"Î#

! !
w w

!
w w
" #

" œ

5 œ"G Z� �"
2 (4.29)

which implies that

C2 œ � � � �8 Î8 8 Î8"  # 
"Î# "Î#C C2" 2#   . (4.30)

Since  is independent from , it follows for  matrix C C2" 2# + ‚ # X" defined as

X œ"  ‘� � � �8 Î8 8 Î8"  # 
"Î# "Î#C C2" 2# (4.31)

that

X" µ ß ß 8 ßa+ß# + "2 2˜ ™c d � �� � � � ˆ ‰8 Î8 8 Î8 Î8 8"  # 
#

 #. . M 5 Dg  . (4.32)

This in turn implies that the  matrix defined as can be expressed as# ‚ # W X X" ""
w  

W"
"" "#

"# ##

w

w

"  "
"Î#

"
"Î#

œ

8 Î8

8 Î8
8 Î8 8 Î8

8 Î8

8 Î8

” •
– —
– —� � � �

� �

W W
W W

œ

œ
8 Î8 8

8

� �� �  ‘� � � �" 

# 
"  # 

#
#


#
#


"Î#

"Î#
"Î# "Î#C

C
C C

C C C C

C

2"

2#
2" 2#

2" 2"
w w

2" 2#

2" 2#
w w

2# 2#

2"
w

2#

2"
w

2#

C C C

C C

C C

� �
– —� � � �

� � � �
8 Î8

œ
8 Î8 8s

8 8 Î8 s

# 

"  " "
"Î#

" #  #
"Î#

$

$

8 Î8

8 Î8

#
#


#
#


  . (4.33)
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Also,

$s œ " ##
w" W "  (4.34).

For  matrix  defined as# ‚ # QW"

QW"

w

w

w w

w w

w "

#
" #

œ

œ

œ
8
8

8 8

” •� �� � c d� � � �8 Î8

8 Î8
8 Î8 8 Î8

8
8 8 8

8 8 8

8

" 

# 
"  # 


#

#
" " #

" #
#
#


#

.

.
. .

. . . .

. . . .

. .

2

2
2 2

2 22 2

2 22 2

2 2

” •
” •c d� �Œ    , (4.35)

using the definition of a non-central Wishart variable from Chapter 10 of Muller and Stewart

(2006) it follows that

W" # "µ +ß 8 ß ßj  ‘ˆ ‰ � �5#
 #Î8 8Dg QW"  . (4.36)

If

X#
" # "

" #

œ
8 Î8

 8 Î8
5 – —� �� �"

"

"Î#

"Î#
 , (4.37)

then

X Xw #
#  #

# " " #

# "

" #

# #

# "

ˆ ‰
� � � � – —� �� �

� � � � – —� �

5 Î8

8 Î8 8 Î8

8 Î8

 8 Î8
œ

8 8

8 Î8

Dg

  

� �
” •” •

” •

8 8

"

"

"

" #ß

8
" "



8 !
! 8

8
8 8

8  8

œ

"


"

#

"


" #

" "

"Î# "Î#

"Î#

"Î#

"Î# "Î#

"Î#

"Î#

"Î# "Î#

"Î# "Î#

"  8 Î8
œ

8  8

8  8 8 
œ

œ

� �
� � � �� � � �

" #

# #

# # #

#

8
8  8 8 8

8 8 8

8
8 !
! 8

"


" # " "

" " "

"






– —
” • M   . (4.38)

Also, for ,- 5 22
#œ Î. .w
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X Xw
# W" #

w


# #

# " " #

#
" " #

" #
#
#

# "

" #
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
# #

#

Q œ

8 8 Î8 8 Î8

8 8 8

8 8 8

8 Î8
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2 2
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


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"Î#

"Î#
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"
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8

# #
" #" # " #
$Î# "Î# $Î# $Î# "Î# $Î# "Î#

"Î#

"Î#
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"Î#
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 

! !

8 8 8

8 Î8

 8 Î8
œ

8

8 Î8

 8 Î8
œ

# # #

# "

" #

w


# #

# "

" #

w

8 8 8

"

"

8  8 8 8  8 8 "

"

– —� �� �
– —� �� �

� �
� �

. .

.

2 2

2

5
” •

.

. .

2

2 2



8


œ

"
œ


# #

w

#

5

5

– —� � Š ‹ Š ‹
” •

8  8 8 8  8 8 8 8  8 8" #
#

" # # " # " " #
$Î# "Î# $Î# "Î# $Î# "Î# $Î# "Î#

! !

!
! !

ß !

� �
Dg� �-  . (4.39)

The inverse of  can be expressed asX#

X "
# œ 

œ

œ

5

5

5

Š ‹� � � � ” •� � � �
� � ” •� � � �
” •� � � �

8 Î8  8 Î8  8 Î8  8 Î8
" "

8 8 8 8 Î8 8 Î8
" "

8
8 8

8 8  8 8

" # # "

"
" # # "

"
 " #

" # # "

"


" #

" # " #

"Î# "Î#
"Î# "Î#

"Î#
"Î# "Î#

"Î# "Î#     . (4.40)

For independent random variables

\ µ +ß"
# #

; -� � , (4.41)

\ µ +  "#
# #; � � , (4.42)

^ µ !ß "a � � , (4.43)

due to the properties of a non-central WishartW X" # and  described in equations 4.36-4.39, 

theorem (Gupta and Nagar, 2000; Theorem 3.5.8, p.121) allows expressing the distribution of

W X W X# " #œ \ ß^ß\w
# " # in terms of .  In particular,e f
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W X W X#

" "

# #

"
#

"

"
# #

#

œ

œ
\ ! \ ^
^ \ ! \

\ \ ^

\ ^ ^ \

w
# " #

” •” •
” •œ  . (4.44)

This in turn implies that  can be expressed asW"

W X W X" #
> "
#œ

œ 8
8 8 8

8  8 8

\ \ ^

\ ^ ^ \

8 8

8 8  8 8
5# #


" " #

# " #

"
#

"

"
# #

#

" #

" # " #
– —� �� � ” •” •� � � �

"Î#

"Î# "Î# "Î#  . (4.45)

So, for W" "
"" "#

#" ##
œ ” •W W

W W
W, the components of  are

W œ 8 8

œ

"" " #5

5

# # # # # #
 " " #" " # "

# # #
 #" " #" #

#

8 8 \  #8 8 8 \ ^  ^ \

8 8 8 \  8 ^  8 \

’ “� � ˆ ‰
” •Š ‹

"Î#

"Î# "Î# (4.46)

               

(4.47)

W œ 8 8

œ

"# " #5

5

# # # # #
 " #" # # " " # "

# # # # #
 " #" # # " " # "

8 8 8 \  8  8 8 8 \ ^  ^ \

8 8 8 \  ^ \  8  8 8 8 \ ^

’ “
’ “

� �� � ˆ ‰
ˆ ‰ � �� �

"Î#

"Î#

              

(4.48)

W œ 8 8

œ

#" " #5

5

# # # # #
 " #" # # " " # "

# # # # #
 " #" # # " " # "

8 8 8 \  8  8 8 8 \ ^  ^ \

8 8 8 \  ^ \  8  8 8 8 \ ^

’ “� �� � ˆ ‰
ˆ ‰ � �� �

"Î#

"Î#’ “
W œ 8 8

œ

## " #5

5

# # # # # #
 # # ## " # "

# # #
 ## " "# "

#

8 8 \  #8 8 8 \ ^  ^ \

8 8 8 \  8 ^  8 \

’ “� � ˆ ‰
” •Š ‹

"Î#

"Î# "Î#   . (4.49)

Now, using the results above, I can get desired expressions for the conditional sums of

squares hypothesis for multiple degree of freedom hypotheses.

Lemma 4.3  For  and equation 4.41, the conditional+  " \ µ +ß"
# #

; -� � defined as in  

sum of squares hypothesis for the final test statistic can be written as
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$s œ 5# #
"\  . (4.50)

A proof for Lemma 4.3 is in Appendix B. 

Corollary 4.1 For  and equation 4.41, the+  " \ µ +ß"
# #

; -� � defined as in  

conditional sum of squares hypothesis for the final test statistic, scaled by , can be written5#

as

K œ Î œs
 

#$ 5 \"
# . (4.51)

Proof.  Follows directly from equation 4.50.

Lemma 4.4  For  and equation 4.41-4.43, the+  " \ \ ^" #
# #, , and  defined as in s 

conditional sum of squares hypothesis for the first test statistic can be written as

$s œ" 5# " #
 #" #" #

#

8 8 \  8 ^  8 \” •Š ‹"Î# "Î#  . (4.52)

A proof for Lemma 4.4 is in Appendix B. 

Corollary 4.2  For  and equation 4.41-4.43, the+  " \ \ ^" #
# #, , and  defined as in s 

conditional sum of squares hypothesis for the first test statistic, scaled by , can be written5#

as

K œ Î œs
" "

#$ 5 8 8 \  8 ^  8 \" #
 #" #" #

#” •Š ‹"Î# "Î#  . (4.53)

Proof.  Follows directly from equation 4.52.

Lemma 4.5  For  and equation 4.41-4.43, the+  " \ \ ^" #
# #, , and  defined as in s 

conditional sum of squares hypothesis from the second stage can be written as

$s œ# 5# " #
 ## "" "

#

8 8 \  8 ^  8 \” •Š ‹"Î# "Î#  . (4.54)

A proof for Lemma 4.5 is in Appendix B. 

Corollary 4.3  For  and equation 4.41-4.43, the+  " \ \ ^" #
# #, , and  defined as in s 

conditional sum of squares hypothesis from the second stage, scaled by , can be written as5#
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K œ Î œs
# #

#$ 5 8 8 \  8 ^  8 \" #
 ## "" "

#” •Š ‹"Î# "Î#  . (4.55)

Proof.  Follows directly from equation 4.54.

Corollary 4.4  For , equation 4.41-4.43, and  and+  " K\ \ ^" #
# #, , and  defined as in s "

K# defined in equations 4.53 and 4.55, the following holds true

K K œ  Î œs s
" # " #

#Š ‹$ $ 5 \ \  ^" #
# # # . (4.56)

Proof.  Follows directly from summing the results in equations 4.53 and 4.55.

4.3 THE IPIA PROCEDURE AND PROPERTIES

Table 4.1
Step a

 1b
Step 2

: 
Specify , , , hypotheses, , and 
Solve for first stage sample size ( ) 

General procedure
" \À T

À 8

α 5> > ! " !
#

"

)

À 8

À R œ 8 ß 0 8 ß 0 8 ß 0 8 J

À

J  0

 Collect first  observations
Solve for  critical values   and , and 
Decide:

If  

"

  6  ?    "

" 6

Step 3
Step 4

� � � � � �
then STOP, ACCEPT 

If  then STOP, REJECT 
If  then take  additional observations

Solve for 

L

J   0 L

0 Ÿ J  0 8 œ 8  8

À J

!

" ? !

6 " ? #  "

Step 5
Step 6 À

J  0 L

J   0 L

Decide:
If  then ACCEPT 
If  then REJECT 

  !

  !

Table 4.1 outlines the general procedure for the IPIA model.  The order of the steps

matters in specifying the distributions.

The value of the internal pilot sample size, , must be chosen at the design stage of the8"

study.  The choice is important since lower values give more uncertain estimates of  while5#

higher values reduce possible savings in sample size.  Most authors discussing internal pilot

designs take a designated fraction of the sample size from fixed sample equations such as

8 œ † 8 !  Ÿ " 8" ! ! !
#1 1 5 1 for  and  determined from .  A typical choice for  seems to be
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0.5; that is, the size of the first sample is half of the fixed sample study sample size based on

5!
#.  In Chapter 3, I showed that this choice is a complex decision and should be a design

factor during study planning with the goals of an individual study in mind.  In order to

clearly portray the usage and properties of the IPIA technique compared to other design types

for multiple degree of freedom hypotheses, I will not enumerate examples for various values

of  here.  This will be undertaken as part of additional research into design strategies for1

multiple degree of freedom hypothesis tests (Chapter 5).  For the examples considered in this

chapter, the value as close to possible to 0.5 with conforming sample size will be used1 œ Þ

Calculation of the three critical values for the study, , and , must0 8 0 8 ß 0 86  ?   � � � � � �
be done following rules pre-specified in the study protocol.  The critical values may depend

on , the realized value of ; however, when it is clear, they will be referred to as ,8 R 0  6

0 ß 0? and .  Ideally, they should be chosen in a way that controls the type I error rate while

having good power and expected sample size properties.  The theory developed here

optionally allows for stopping under the null at the interim analysis if , where  isJ  0 0" 6 6

the first stage lower critical value.  This can cause a great reduction in expected sample size

when the effect size is near the null value by allowing the study to stop for a "lost cause".  If

early stopping under the null is not allowed, then  for all .  In all cases 0 œ ! 8 Á 8 0 œ 06  " 6 ?

when , which guarantees stopping for acceptance or rejection of the null. Detailed8 œ 8 "   

exploration and comparison of sample size selection methods will be saved for future

research (Chapter 5).

The sample size re-estimation rule will determine the distribution of .  It is anR

important consideration in the design affecting type I error rate, power, and expected sample

size.  Like internal pilot designs, the sample size for IPIA designs is determined by using the

updated variance estimate at the interim stage to recalculate the estimated sample size need

to achieve target power in the final test.  The procedure takes advantage of the monotone

relationship between continuous  and discrete .5s R"
#


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Computing the distribution of sample size, the cumulative distribution function for

possible values of , that is , requires determining cut-off points based on theR R Ÿ 8 Pre f
first stage variance estimate.  For a particular value  of random , the first step is to8 R 

solve for scaled noncentrality  that satisfies what about notation - -� � � �8 8 min

T œ "  J 0 à +ß 8> ;# c d� �crit - (4.57)

or

T œ "  J 0 à +ß ß 8> J  c d� �crit / -  , (4.58)

with 0 œcrit J "  à + J "  à +ß;#
" "

> >J� � � �α α or  depending on whether or not large sample/

distributional assumptions are used.  The noncentrality scaled  here represents the -� �8

minimum value that would lead to a final sample size of .  Since the effect of interest, ,8 ")

is used at the planning stage, for  the following hold:$� �8 œ "" 
w ") )Q

- $ 5� � � � � �8 œ 8 Î 8  
# (4.59)

or

5 $ -#
  � � � � � �8 œ 8 Î 8 Þ (4.60)

Here,  designates the largest value of  that would produce .  Therefore,5 5#
  "

#� �8 R œ 8s

since  for ,/ 5 5 ; /" ""
# # #s µ [ [ µ � �

Pr Pr
Pr
Pr

e f � �˜ ™
˜ ™� �˜ ™� � � � ‘

R Ÿ 8 œ Ÿ 8s

œ [ Ÿ 8 Î

œ [ Ÿ 8 Î 8

  "
# #

" 
# #

"  
#

5 5

/ 5 5

/ $ 5 -  . (4.61)

The discreteness of sample size implies

Pr Pr Pre f e f e fR œ 8 œ R Ÿ 8  R Ÿ 8 7       . (4.62)

When restrictions are given for minimum or maximum sample size, the tail probabilities are

collapsed into the smallest or largest allowable values, respectively.

A key result of this process is the determination of cut-off points that determine a range

into which continuous  must have fallen in order for a given final sample size to occur.5s"
#
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Define  and  to be the values such that; 8 ; 8"  # � � � �
R œ 8 Í ; 8  Î Ÿ ; 8 ßs  "  " # "

# #  (4.63)� � � �/ 5 5

which in turn implies that

Pre f � � � �R œ 8 œ 8 à 8 à   J ;  J ;; ;# #c d c d# "/ /" "  . (4.64)

The cut off points determine the probabilities for discrete values of  and hence describeR

the variable's distribution.  When it is unambiguous,  and  are used for  and; ; ; 8" # " � �
; 8# � �.

4.4 KEY ANALYTIC RESULTS FOR PROCEDURE 

The results in this paper are developed to test  for a contrast matrix withL À œ! !) ) G  

more than one row, .  Without loss of generality I assume  (by +  " œ)! ! Lemma A.1).

In order to compute overall power and type I error rate for a study design, a joint

distribution of the two stage test statistics is necessary.  Since critical values and denominator

degrees of freedom depend on sample sizes, the joint CDF is derived conditional on an R

value, or  where  and  are the test statistics for the first and secondJ 0 ß 0 J JJ ßJ lR "  " "  
� �

(final) stage, respectively.  Using the law of total probability and summing over possible

values for sample size gives unconditional power.

Unconditional power requires computing each conditional result.  The conditional joint

CDF of the test statistics, , is derived in a computable form by decomposingJ 0 ß 0J ßJ lR " "  
� �

the parts into independent elements.  Lemma 4.6 gives a key form involving three 

independent variables defined in Section 4.2.3.

Lemma 4.6  Intermediate functions of interest include ,  ? œ - 1 ? œ"   #

- 1 Î8  1 ? : œ - :  1 ? œ 1 Î8 , 1 Î8  :  " #  $ " "  % " # " # #
"
� � � � È, , , � �: ß : œ" #

È È: 8 Î8 : 8 Î8" " # : : " " #,  0 œ 0 : 0 œ 0 : 1 Î8  : 
" \ \ " #

" #
# #� � � � È" # " # #, , 

#
. : ß : œ� � ,

2 : ß : œ� � È" # -  : 1 1 ß 1 ß - ß +  ""
 #  "  :  8 ß 8" " #.  For strictly positive , integer ,e f

^ µ !ß " +ß \ µ +  " ^ß \a ; - ;� � � � � � e f, ,  with  mutually independent,\ µ \ ß" "
# ## # # #

 # #
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the following holds.

Pr

max mi

š ›’ “  ‘
( ( e fc d c d
( ( ’ Š e f

ˆ ‰È È8 \  8 ^  8 \ \  ^" " # #
# # # #

# #

: :

: :

Ÿ 1 ∩ -  Ÿ 1 œ

0 0 ,   .: .: 

0 0

" 
"


! !

? ?

# "

? !

? ? :

\

: ß : . : ß :

"
#

" # " #

" %

"

# $ "

" #

" #

F F

F

� � � �
   

� �
n
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c d c d ‹
e fc d c d “

( ( e fc d c d

2 : ß : ß : ß : . : ß :

: ß : 2 : ß :

: ß : . : ß :

� � � � � �
� � � �

� � � �

" # " # " #

" # " #

" # " #

,   ß ! 

,  ß ! .: .: 

0 0 ,   .: .:

F

F F

F F

# "

? ? :

? ?

# 
"

#

$ "

%

� � : :" # "

? !

∞ ?

# "



0 0 ,   ß ! 
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  .
(4.65)

( ( ’ Š ‹e f c dc d
e fc d c d “#

%

: :" #
max min

max

F F

F F

2 : ß : ß : ß : . : ß :

: ß : 2 : ß :

� � � � � �
� � � �

" # " # " #

" # " #

A proof for Lemma 4.6 is in Appendix B. 

The result from Lemma 4.6 can be used in the following result in order to calculate the

conditional joint distribution of the test statistics.  From Coffey and Muller (1999),

conditional on , .  R I œ Î µ à ; ß ;s " " " " #"
# # #

X/ 5 5 ; /� � The following theorem provides an

explicit form for the desired conditional CDF.

Theorem 4.1 If ^ µ !ß " +ß \ µ +  " ^ß \a ; - ;� � � � � � e f, , and  with \ µ \ ß" "
# ## # # #

 # #

mutually independent.  Additionally, define I œ Î œ Îs  /"  
# # w #/ 5 5 5C E C ,

I œ Î œ Î I œ Î I œ Îs" " /"  # /# /,  $ /: "   
# # w # w # w #/ 5 5 5 5 5C E C C E E C C E C, , ,� �

K œ Î œ Î - œ +0 Î = − "ß #ß 0 > œs
= = 2=  = = = I "

# w #
$ 5 5 /C E C ,  for , e f � �

"

0 > à Î J Ð; à Ñ  J Ð; à Ñ 0 > œ 0 > à 8  + +  "; ; ; ;# # # #
#

� � c d � � � �" " # " " " I # # #/ / / , and  , , then for the

conditional joint distribution of the two stage test statistics can be written as

J 0 ß0 œ

0 > 0 > Ÿ 8 - >

∩ - Ÿ > > .> .>

J ßJ lR " 

; !

; ∞

I " I # R  " "

"
 " # # "

"  

"

#

" # 

� �
( ( � � � � š’ “

 ‘›‹
Pr ˆ ‰È È8 \  8 ^ 8 \

\ ^ 

" " # #
# #

#

# #
#\"

# (4.66)

A proof for Theorem 4.1 is in Appendix B. 
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A result needed if early futility stopping is allowed follows directly from Theorem 4.1:  

Pre f � � � �0 Ÿ Ÿ ß Ÿ 0 lR œ 8 œ ß  0 ß6    6R RJ" ?  ?  ß l ß l0 J J 0 0 J 0J J J J"  "  
 . (4.67)

The results from Theorems 4.1 and 4.2 can be used to explicitly solve for the

conditional joint distribution of the test statistics for multiple degree of freedom hypotheses

in the IPIA setting.  Taken together with results already derived in Chapter 2, explicit

calculations can be made for power, type I error, and expected sample size.  The following

results from Chapter 2 apply to the  setting by using the form for +  " J 0 ß 0J ßJ lR " "  
� �

derived in Theorem 4.1.

A distribution important to power and expected size calculations is the CDF of the first

test statistic, conditional on , i.e., .R J 0J l" R "
� �

Theorem 4.2  For he conditional CDF of the first test statistic can be- 5" 2"2"
#œ Î. .w , t

written

J 0 œ .>
J - > à +ß 0 > à

J lR " "
;

;
" " " " "

" 

"

#
# #� � ( � � � �; ;- /

J ; à  J ; à; ;# #� � � �# "/ /" "
  . (4.68)

A proof of Theorem 4.2 is in Appendix A.

The following corollary adapts Theorem 4.2 to solve for the probability of the test

continuing to the second stage conditional on when futility stopping is possible.R œ 8  

Corollary 4.5

Prš ›¹
( c d� � � �

0 ŸJ 0 R œ8 œ

J - > à +ß J - > à +ß 0 Ð> à Ñ

J Ð; à Ñ  J Ð; à Ñ
.>

6 " ?  

;

;
? " " 6 " " " "

# " " "
"

"

#
# # #

# #

; ; ;

; ;

- - /

/ /
 . (4.69)

The proof parallels the proof of Theorem 4.2, in Appendix A.

The above results can be used to calculate exact expressions for the power, type I error

rate (power under the null hypothesis), and expected sample size.  The values change with
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design parameters and are valuable knowledge in study planning.  The following theorem

gives the formula for unconditional power.

Theorem 4.3  An expression for unconditional power, , can be writtenTA

T "  J Ð; à Ñ  J Ð; à Ñ J Ð0 8 Ñ 

0 8 Ÿ J  0 8 ß J  0 8 R œ 8

A # " " " 6 

R œ8

J lR

6  " ?      

œ � c d � �š
’ “›� �� � � � � � ¹

e f 

# #
" ; ;/ /

                     . (4.70)Pr

A proof of Theorem 4.3 is in Appendix A.

The results in this section can also be applied to calculate an expected sample size

formula for a study design in the following form.

Theorem 4.4  If  equals the total sample size taken in study, that is,RA

R œ
8
RA
"


œ  if study stopped after first stage

 otherwise ,

then

E Pr� � c d� ’ “¹R œ 8  8 J Ð; à Ñ  J Ð; à Ñ 0 Ÿ J  0 R œ 8A " # # " " " 6 " ?  

R œ8e f 

# #; ;/ / (4.71)

A proof of Theorem 4.4 is in Appendix A.

4.5 AN EXAMPLE

4.5.1 Motivation for the Example

To illustrate usage of the exact theory in the application of internal pilot studies to more

complex designs, I consider Example 4.1, a three-group one-way analysis of variance

(ANOVA) described  Coffey and Muller (1999; Example C) for use in internal pilotby

designs.  There are two main purposes of the example in this chapter.  First, to compare the

numeric results using exact theory to simulations in order to justify the computational

algorithms utilized in calculations and as an additional check on the accuracy of the theory.

Second, to compare the properties of the internal pilot with interim analysis (IPIA) procedure
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with special cases, including a fixed sample, an internal pilot (IP), and a two-stage group

sequential (GS) procedure in a multiple degree of hypothesis setting.  To help simplify the

comparisons, I use a naive but common approach to critical value selection and study design.

Properties to be examined include type I error rate, power, and expected sample sizes under

various scenarios.

The fixed sample, IP and two-stage GS designs considered for Example 4.1 are all

special cases within the general IPIA framework.  An IP design does not allow early stopping

at the interim power analysis, except when .  An IP design may be described asR œ !#

special case of IPIA with , .  In the IPIA design used here, it is assumed that0 œ ! 0 œ ∞6 ?

sample size can be reduced from the pre-planned level ( ).  The two-stage GS8 œ 8 ",min

design, on the other hand, allows for early stopping at the interim analysis, but does not

allow for a change to the preplanned maximum sample size, i.e.,   ThePre fR œ 8 œ "Þ !

fixed sample approach can be seen as a special case combining the restrictions of the IP and

GS designs ( , , and ).  The IPIA design combines the0 œ ! 0 œ ∞ R œ 8 œ "6 ?  !Pre f
features of the IP and two-stage GS designs by allowing for stopping at the interim stage as

well as allowing for a change in maximum sample size used when a study is to be continued.

Table 4.2
Early Stopping

SSR

: 

Yes No
Yes IPIA Int Pilot
No Grp Seq Fixed Sample

Two-stage designs

In addition to stopping at the interim stage for efficacy, both the GS and the IPIA

procedures can allow early stopping at the interim stage for futility.  Hence both scenarios

will be considered here.  No futility stopping implies that the lower first stage critical value,

0 ! !Þ)&6, is .  For futility stopping in this chapter, I will use a simple p-value cut point of .

Therefore if the p-value for the first stage hypothesis test is greater than , the study will!Þ)&

stop and conclude that the alternative hypothesis is not supported.  In reality, this is not an
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ideal approach since the first stage may contain only a small fraction of the needed

information of the study (especially for high true variance values) and so may not be very

informative in some cases.  It is used here for simplicity in order to portray the characteristics

of the procedures.  Chapter 5 has some additional discussion about the use of futility

stopping within the IPIA framework.

Critical values used in the example will be determined as follows.  For the fixed sample,

group sequential, and IPIA designs critical values will be based on the chi-square distribution

with  degrees of freedom.  For example, if a particular stage's nominal alpha level is+

determined to be , then the efficacy critical value for that stage would beα œ !Þ!%

J "  !Þ!%à + Î+;#
"� � .  The large sample method is used to show the consequences of not

accounting for the use of variance estimates in the test statistics for the small and moderate

studies examined.  The fixed sample results will also be determined using the  distributionJ

since it will exactly achieve the target type I error rate.  For the internal pilot design, critical

values will only be solved with the unadjusted  distribution since it is the method describedJ

by literature.  For these methods, a particular stage nominal alpha level of  wouldα œ !Þ!%

cause the efficacy critical value for that stage (say stage ) to be .  = J "  !Þ!%à +ßJ
"

=� �/ For

the group sequential and IPIA designs (early stopping designs), I will use O'Brien-Fleming

stopping rules to solve for the nominal type I error rates used in critical value calculation.

These bounds are designed to allow for conservative early stopping while adjusting the final

critical value for type I error rate inflation due to multiple testing.

Due to misalignment of test statistic and critical value distributions and a biased

variance value used in sample size re-estimation designs, the selection of final critical values

will likely cause type I error rate inflation for most designs considered.  They are used here

in order to best compare the procedures and also to assess the magnitudes of such inflations.

Strategies that better control the type I error rate and maintain power while minimizing
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expected sample size for these designs are saved for future research and will be briefly

discussed in Chapter 5.

In total seven design procedures will be considered: fixed sample (  and ), IP, two-;# J

stage GS with and without futility stopping, and IPIA with and without futility stopping.

Type I error rate, power, and expected sample size will be calculated for each of these

procedures over a range of true variances.  I will use the sampling fraction  and1 œ !Þ&

8 œ ∞, max .

4.5.2 Computational Methods

All programs for the example were written in SAS/IML (SAS Institute, 2004).  Most of

the computation for the examples utilizes the exact theory developed in this chapter.  The

exceptions are the fixed sample and internal pilot designs.  The fixed results could be directly

calculated using standard distribution functions.  The internal pilot calculations were easily

obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla 

et al. 2007) software package.  All other results came from use of the exact theory, including

the two-stage group sequential designs, which are a special case.

Stopping bound computation utilized the SEQSCALE function and the numeric

integrations utilized the QUAD function, both within SAS/IML.  To avoid numerical

instability of the calculated integrals, computation was performed using quantile

transformations (Glueck and Muller, 2001) of the distributions derived in Section 4.4.  For 

illustration, transforming variable of integration  to give  implies> : œ J >à;#� �/
> œ J :à .: œ 0 >à .>"

; ;# #� � � �/ / and .  The approach always gives finite bounds and often

radically improves computational accuracy and speed.

Simulations were conducted for a limited set of cases in order to check the accuracy of

the programming and numerical algorithms, provide an additional check on the analytical

derivations, and to compare the speed of calculation using the two methods.  Using a subset

of a half dozen cases from over a range of conditions, simulation was conducted with
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1,000,000 replications per case.  All programs were run using an Intel Xeon 3.2 GHz

processor.  For each of the cases considered, the analytically calculated values were within

two standard deviations of the simulated values.

The comparison programs were each run in groups of three cases corresponding to

variance values of  , ,  with .  Runs were made under the null# # 5 5− !Þ& " # œ Îe f # #
!

hypothesis ( ) and assuming the effect of interest ( ) for the IPIA design without) ) )œ œ! "

futility for Example 4.1.  Timing results are detailed in Table 4.3 below.

Table 4.3: 
                

Simulation Calculation
2.9 16.2
2.8 17.3

Simulation and calculation
 times (hours) for Ex. 4.1

)
) )

œ
œ

!

"

For the examples considered, the analytic calculations using the exact theory were

slower than the simulations (about 5x).  This is not surprising considering the program

calculates four dimensional integrals as nested univariate integrations using the QUAD

functions in SAS/IML and no effort has been made thus far to improve the computational

efficiency of the program. Given the speed improvements seen in the very similar + œ "

case, even these complex results should be more efficient that simulations.

4.5.3 Example 4.1 Results

Example 4.1 is a three-group one-way analysis of variance (ANOVA) example

previously described  Coffey and Muller (1999; Example C) in an internal pilotby

framework.  For the two degree of freedom test of differences among groups with ,α> œ !Þ!&

T œ !Þ*! œ œ "!Þ& "Þ!> "
w

!
#, , and , a fixed sample size power calculation suggests 27) c d 5

observations per group .  For the early stopping procedures, I consider a design� �8 œ )"!

with 13 observations per group  in the interim sample and .  The� �8 œ $* 8 œ ∞" ßmax

design parameters for Example 4.1 are summarized in Table 4.4.
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Table 4.4: 

0.05 0.9 1 81 39

Design parameters for Example 4.1
α 5> > " ! " ß!

#

w

T 8 8 8

!Þ& "Þ! ∞

) maxc d
I analytically calculated values for type I error rate, power, and expected sample size

under the design conditions described in Table 4.4.

Table 4.5: 
Fixed Sample Group Sequential IPIA
  IP w/o Futility w/ Futility w/o Futility w/ F

Type I error rates 100 for Example 4.1‚

# ;# J utility
0.50 5.6 5.0 5.3 5.9 5.8 6.4 6.4
0.75 5.6 5.0 5.6 5.9 5.8 6.8 6.8
1.00 5.6 5.0 5.5 5.9 5.8 6.6 6.6
1.50 5.6 5.0 5.3 5.9 5.8 6.1 5.9
2.00 5.6 5.0 5.2 5.9 5.8 5.7 5.4

Table 4.5 displays the values for type I error rate for each of the seven designs described

in Section 4.5.1: Fixed sample (  and ), IP, two-stage GS with and without futility;# J

stopping, and IPIA with and without futility stopping.

For the fixed sample design, type I error rate is somewhat inflated by a constant amount

across  when the large sample chi-square distribution is used for critical value#

determination and is controlled at the target level when the  distribution is used.  In the IPJ

design, some type I error rate inflation occurs due to downward bias in variance estimate

used.  The magnitude of inflation is shown to depend on true variance value with a peak at 

around 0.75.  Due to the use of chi-square based critical values, the GS designs also# œ

have moderate type I error rate inflation.  The inflation for the GS designs is constant across

# since no sample size re-estimation occurs and noncentrality is zero under the null.  The

IPIA designs, which combine early stopping ability with sample size re-estimation, have type

I error rate inflation caused by both variance estimate bias and the use of large sample critical

values.  For both GS and IPIA, allowing for early stopping for futility causes a small

reduction in the type I error rate.  For this example, the magnitude of type I error rate is
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moderate and comparable for the Fixed ( ), IP, and GS methods.  The IPIA method has an;#

increased level of inflation.

Table 4.6: 
Fixed Sample Group Sequential IPIA

 IP w/o Futility w/ Futility w/o Futility w/ Futility
0.50 99.

Power 100 for Example 4.1‚

# ;# J
8 99.7 93.3 99.8 99.7 93.3 93.3

0.75 97.3 96.9 91.2 97.2 97.1 90.9 90.8
1.00 91.6 90.8 90.4 91.5 91.2 90.2 90.0
1.50 76.9 75.4 89.6 76.8 76.4 89.5 88.3
2.00 63.9 62.1 89.1 63.9 63.5 89.1 86.8

Table 4.5 displays the values of unconditional power for the seven designs.  Power for

both fixed sample designs is sensitive to the true variance value.  The fixed sample study

considered can be significantly over or under powered depending on the true variance

regardless of the critical value determination method employed.  Power for the considered

GS designs is also highly dependent on the true variance value, with power levels very

similar to those for the fixed sample design.  In the IP design, power is greatly stabilized due

to the variance estimate based sample size re-estimation at first stage.  The IPIA designs also

have very stable power similar to the IP design due to the sample size re-estimation analysis

at the first stage.  The GS and IPIA designs with first stage futility stopping have power at

slightly lower levels than their counterparts without futility stopping.  For power in this

example, the IP and IPIA designs greatly achieve the target rate while the two-stage GS and

fixed sample designs are shown to be vulnerable to misspecification of the variance, a

nuisance parameter, at the planning stage.

Table 4.7: 
 GS (no futility) GS (futility)

Fixed Sample IP
0.50 81 44

E� �R

œ œ œ # œ œ œ #

A  for Example 4.1: fixed, IP, and GS

# ) ) ) ) ) ) ) ) ) )! !" " " "

.5 80.6 52.7 39.0 74.4 52.7 39.0
0.75 81 61.6 80.6 62.5 39.2 74.4 62.4 39.2
1.00 81 80.5 80.6 68.1 40.5 74.4 67.8 40.5
1.50 81 118.4 80.6 73.5 46.1 74.4 72.6 46.1
2.00 81 156.4 80.6 75.9 52.7 74.4 74.5 52.7
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Table 4.7 displays the values for expected sample size for the fixed sample, IP, and GS

with and without futility stopping designs.  For the GS designs, expected sample sizes are

calculated assuming the null hypothesis () ) )œ œ!), the alternative of interest ( ), and"

assuming a true effect size twice the effect of interest ( ).) )œ # "

Under controlled conditions, the sample size for the fixed sample design is always the

preplanned sample size, 81.  As would be expected, the expected sample size for the IP

design is dependent on the true variance due to sample estimate based sample size re-

estimation at the first stage.  It achieves an expected savings in sample size for variance

values lower than the value assumed at the planning stage (44.5 at 0.5) and rises above# œ

that of the fixed sample design as it accounts for larger true variance values by increasing the

estimated sample size need at the internal pilot stage (156.4 at ).# œ #Þ!

Under the null hypothesis, the expected sample size for the GS designs are constant

over  values.  This happens because no variance-value based sample size re-estimation#

takes place at the first stage and true noncentrality is zero.  The small departure from the

fixed design sample size in the GS design without futility stopping is due to the small chance

of falsely stopping for efficacy at the first stage.  The GS designs allowing futility stopping at

the first stage causes an across the board drop in expected sample size (to 74.4 from 80.6)

under the null due the probability of correctly stopping early for futility.

Under the alternative of interest the expected sample sizes for the GS designs( ), ) )œ "

are noticeable lower than the fixed design sample sizes due to possible early stopping for

efficacy at first stage.  This demonstrates the clear sample size benefits of the GS designs

compared to single analysis, fixed sample designs.  The effect diminishes as variance

increases due to the lowered power of the first test with decreasing noncentrality of the test

statistic.  When futility stopping is allowed, the expected sample size for the GS design

decreases slightly as the probability of false futility stopping at the first stage analysis is

introduced.
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For an effect of twice the alternative of interest ( ), the GS designs offer) )œ # "

significant expected sample size reduction from the fixed design at all  considered.  The#

effect diminishes somewhat as first stage power decreases for increasing variance.  There is

virtually no difference in the two GS designs considered under this condition as the chance

of first stage futility stopping is very small for .) )œ # "

Table 4.8: 
IPIA (no futility) IPIA (futility)

0.50 42.7 40.2 39.0 42.0 40.1 39.0
0.75

E� �R

œ œ œ # œ œ œ #

A

" " " "

 for Example 4.1: IPIA

# ) ) ) ) ) ) ) ) ) )! !

58.4 50.0 39.2 55.1 50.0 39.2
1.00 77.1 67.8 42.3 70.8 67.5 42.3
1.50 115.1 109.4 71.9 102.8 107.7 71.9
2.00 153.2 150.2 122.1 134.9 146.1 122.0

Table 4.8 displays the values for expected sample size for the IPIA designs with and

without futility stopping.  Similar to the IP design, IPIA expected samples sizes are lower

than the fixed design sample size for low true variance and increase with the true variance as

the first stage sample size re-estimation requires larger second stage samples on average.

Under the null hypothesis  the IPIA design without futility stopping has similar( ),) œ !

sample size values to the IP design since stopping at the first stage for efficacy is rare here.

The difference comes from the use of different distributions for sample size re-estimation (IP

uses , IPIA uses  here).  The null case IPIA design with possible futility stopping causesJ ;#

a drop in expected sample size for all variance values when compared the design without

futility stopping due to the chance of a correct decision to accept the null and stop at the first

stage analysis.

Under the alternative of interest, the expected sample sizes for the IPIA( ), ) )œ "

designs are noticeably lower than the fixed sample design for variance values at the

preplanned value or lower.  The expected sample sizes rise with  due to the need for#

increased sample size detected at the first stage to protect study power.  In this case, early
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stopping (GS-like) sample size benefits are offset by the sample size recalculation procedure

(power protecting IP characteristic).  Expected sample size under the alternative of interest is

slightly lower in the IPIA design allowing futility stopping due to the possibility of false

futility stops at first stage.  This chance increases with  due to the  naive p-value based#

futility stopping rules used to calculate the first stage futility critical value.

For an effect of twice the alternative of interest ( ), the IPIA designs offer) )œ # "

substantial expected sample size reduction due the large chance of early efficacy stopping in

the first stage.  The effect diminishes as increasing variance calls for more sample size in the

second stage and decreases first stage power.  There is very little difference in the two IPIA

designs considered under  as the chance of futility stopping is very small for the) )œ # "

large effect size.

4.6 DISCUSSION

In this chapter, I have derived theory that generalizes the two-stage internal pilot with

interim analysis for use for multiple degree of freedom univariate Gaussian linear model

hypotheses.  The exact results allow for accurate numerical calculation of type I error rate,

power, and expected sample size for various study designs without the need for simulations.

Many prospective research studies and even clinical trials are not large enough for

asymptotic properties to hold.  Since the theory in this chapter is not derived using

asymptotic results, it will be accurate and valuable for planning smaller studies.

This results from Example  highlight some of the different characteristics of the4.1

designs considered, all of which are special cases of the IPIA design and theory detailed in

this chapter.  Each design has its advantages and disadvantages.

The fixed sample design has the advantages of a known sample size and a controlled

type I error rate, but has an  power function affected by the unknown trueuncontrolled

variance, a nuisance parameter.   a study to stop early if effect sizeThe GS design allows

differs from the preplanned magnitude, and hence, decrease  expected sample size from thes
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fixed sample level.   this goal under all conditions whenIn the tables above it achieved

futility stopping is allowed, and under situations of high effect size when futility stopping is

not included.  Using large sample ( ) critical values, the GS designs have an inflation in;#

type I error rate due the critical values not accounting for uncertainty of the variance

estimate.  Finally, GS power is vulnerable to misspecification of variance at planning stage

as shown in Table 4.6.  This sensitivity is similar to that found in the fixed sample design and

is due to the lack of sample size re-estimation for the final stage sample size.

The primary goal of the IP design is to protect study power by re-estimating sample size

through interim power analysis without interim data analysis.  As Table  shows, this goal4.6

is greatly achieved by the design.  The IP design can also have sample size benefits due to

possible sample size reduction at the interim stage if the planning variance value was

specified higher than the true parameter value.  For high true variance values, the design has

higher expected sample sizes than the GS and fixed sample designs.  The IP design also has

inherent type I error rate inflation dependent on the true variance value.  This is typically

accounted for in smaller sample studies by adjusting the test statistic or critical value.

Adjustment  not made here for comparative purposes.was

The IPIA designs seek to incorporate the advantages of the GS and IP designs by

allowing for early stopping as well as sample size re-estimation at the interim stage.  Table

4.4 most shows that it does, in fact, ly achieve the power protective properties of the IP

design.  Also, Table  shows that the sample size benefits of the GS design are also4.8

inherent to the IPIA design as the expected sample sizes for many conditions are

significantly lower than for the IP design.

It is apparent that the challenge of the IPIA design is controlling the type I error rate

while maintaining the power and sample size benefits of the design.  In addition to enjoying

the benefits of power and sample size reduction from the IP and GS designs, respectively, it

retains the different sources of potential type I error rate inflation that the designs introduce.
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Careful adjustments that can control the type I error rate while maintaining the design's

benefits must be done in order for the IPIA procedure to be useful in practice.

The IPIA procedure as outlined in this chapter is purposefully kept general in many

regards.  For example, it does not specify mandatory methods for selecting critical values,

updating sample size, or selecting the interim stage sample size.  The theory developed in

this chapter as well as the further development of the prototype software to assist in

calculation would allow for the exploration of many different possible designs.  This would

not only be valuable for the development of general study guidelines with positive

characteristics.  Also, since all studies are not alike, extensive exploration for a specific study 

during planning stages can allow investigators to customize the procedure for their specific

needs.

Procedural strategies for single degree of freedom hypotheses within the IPIA

framework were examined in Chapter 3 of this dissertation.  I found that using the >

distribution for critical value computation had a significant effect of reducing the type I error

rate for the IPIA design.  Also, I introduced a bounding method which controlled the type I

error rate while maintaining the power and sample size benefits of the design.  While I have

not fully explored these methods within the more complex settings considered here, I believe

that they have great promise.  Unfortunately the computational intensity of the current IPIA

bounding method would be burdensome to employ here due to the added layer of numerical

integration of the results for this chapter.  However, straightforward attention to choosing

better numerical integration methods will likely radically speed the calculations.

I believe that using the  distribution for all critical value calculation is a good startJ

towards further improvements.   Developing and refining design strategies for the IPIA

design, especially for complex hypotheses, will be a main topic of future research and is

discussed in Chapter 5.



CHAPTER 5.  SUMMARY AND FUTURE RESEARCH

5.1 SUMMARY OF ACCOMPLISHMENTS

5.1.1 Chapter 2: Internal Pilot with Interim Analysis for

 Single Degree of Freedom Hypothesis Tests

In Chapter 2 I 1) introduced the proposed model of a two-stage internal pilot with 

interim analysis (IPIA) design and 2) derived the exact distributional theory needed for 

planning studies with single degree of freedom hypothesis tests.  The exact theory applies to

any single degree of freedom hypothesis in a univariate linear model with fixed predictors,

Gaussian errors, and unknown variance, including one and two group comparisons.  Direct

computation using the theory allows for fast calculation of power, type I error rate, and

expected sample size. In the example considered, simulations took from 24-70 times more  

computational time.  Also, I compared study characteristics of various designs and concluded

that the IPIA was the only one able to control power at the level desired and simultaneously

achieve sample size savings (when available) over a wide range of conditions.  The

numerical enumerations demonstrated the need for active intervention, above and beyond

popular group sequential corrections, in order to guarantee control of the type I error rate.

5.1.2 Chapter 3: Planning Procedures for an Internal Pilot

 with Interim Analysis Design

In Chapter 3, I focused on design strategies for the IPIA for the single degree of

freedom Gaussian linear models considered in Chapter 2.  The goal was to achieve sound

study design strategies that control the type I error rate while best maintaining the power and

sample size advantages of the design.  I introduced the IPIA bounding method which allows

for type I error controlled IPIA designs.  I showed the importance of accounting for the
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uncertainty of the variance estimate in test statistics through use of  distribution based>

critical value calculation.  Using the with the bounding method gave not only good control>

of type I error rate for the IPIA design, but also gave good control of power and sample size,

even in small sample studies. Finally, I demonstrated and briefly explored the complexity of  

study properties with respect to the interim sample size decision.

5.1.3 Chapter 4: Internal Pilot with Interim Analysis for

 Multiple Degree of Freedom Hypothesis Tests

Chapter 4 also centered on the model and IPIA design introduced in Chapter 2, but

generalized the results to  general linear hypothesis with one or more degrees of freedom.any

I introduced new exact theory that allows for accurate study planning for complex designs

even within small sample studies.  The theory includes an explicit and computable form for

the conditional joint distribution of the first and second stage test statistics.  Together with

the results from Chapter 2, the distribution allows calculating power, type I error rate, and

expected sample size for the models compared study characteristics of.  Through examples, I 

an IPIA design with the characteristics of a fixed sample design, internal pilot, and a two- 

stage group sequential design, all of which are special cases within the IPIA framework.  In

the numerical enumerations considered, the IPIA design best protected power while allowing

for sample size saving (when available) over a range of conditions.  The levels of type I error

rate inflation observed in the examples demonstrated the need for design and analysis

methods more complex than traditional group-sequential corrections based on large sample

theory.
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5.2 FUTURE RESEARCH

5.2.1 Futility Bounds

The theory developed in Chapters 2 and 3 optionally allows for stopping under the null

at the interim analysis if , where  is the first stage lower critical value.  This canJ  0 0" 6 6

cause a great reduction in expected sample size when the effect size is near the null value by

allowing the study to stop for a "lost cause".  If no early futility stopping ability is desired,

then the lower critical value, , is set to zero.  In the examples in Chapters 2 and 4, a simple06

p-value based futility bound was employed:  a study was stopped for futility when the p-

value for the first stage test was greater than 0.85.  This simple method clearly showed the

possible resource savings of a carefully used futility bound procedure.  In all cases when no

effect was present, there was a noticeable drop in expected sample size due to early stopping

under the null.  I believe that further development in this area for the IPIA model is

extremely important.

Current methods exist for futility stopping within group sequential methods

(Pampallona and Tsiatis, 1994; Lachin, 2005).  Adapting these methods for use in the IPIA

setting could be a good start into an IPIA futility analysis plan.  The IPIA is simpler than the

group sequential design in that it only has two stages, but more complex in that sample size

is unknown and based on a random variance estimate.  Accuracy in small samples requires

accounting for the uncertainty of the variance at the interim stage.  One possible method

would be to solve futility bounds based on conditional power calculations assuming variance

to be a lower confidence limit (optimistic) at the interim stage.  This would assure that a

study only stops when the probability of a significant outcome if continued is low.

5.2.2 Sample Size Re-Estimation Method

For continuous Gaussian data, sample size re-estimation is an interim power analysis

that uses the variance estimate from the first stage to calculate the estimated sample size

needs of a study.  The sample size re-estimation rule determines the distribution of  byR
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taking advantage of the monotone relationship between continuous  and discrete .  It is5s R"
#



an important consideration in the IPIA design affecting type I error rate, power, and expected

sample size.

For general linear hypotheses within the IPIA framework, this process is complicated by

the lack of knowledge of the final test statistic distribution as well as by the difficulty in

knowing the correct critical value to use.  The final test statistic is not a true distributedJ

variable.  Both the choice of continuation and selection of sample size complicate and bias

the effect size and variance estimates used in the test statistic calculation.

The critical value selection at interim power analysis is also complex.  As is typical in

group sequential sample size calculation, I used the target type I error rate to assume a final

critical value for sample size re-estimation purposes.  In reality, the amount of type I error

spent on the second stage is not equal to the target level due to early testing.  The issue is

complicated by the feedback between critical value and sample size.  The critical value

determines the sample size needs and the sample fraction determines the critical value to use.

Research into better aligning the true test statistic distribution and critical values used with

the assumptions at the interim power analysis seems likely to boost IPIA study efficiency and

accuracy.

5.2.3 Selection of Interim Sample Size

The value of the interim sample size, , is an important consideration in determining8"

the performance characteristics of an IP or IPIA design.  In Chapter 3, I illustrated the 

complexity engendered by the choice of  for the IPIA model.  Depending on the critical 8"

values employed, true effect size, and ratio of planning and true variance values, a high value 

of  could possibly have sample size savings due to the changing power at the first stage8"

test.  Because of the interactive nature and sensitivity of type I error, power, and expected

sample size to the interim sample size, the effects should be explored in detail some as part 

of study planning.
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5.2.4 Computation

New methods will rarely be adopted without a convenient means to use them.

Consequently I feel it is extremely important to produce accurate and user-friendly software

for the study planning and data analysis with an IPIA design.  The open-source software

would also facilitate future research using these results as a foundation.

During the course of this research, a large amount of code was written for the

calculations completed.  The code consists of a number of SAS/IML (SAS Institute, 2004)

modules that together form a prototype program.  The code supports calculation of type I

error rate, power (under any alternative), and expected sample size for any general linear

univariate model with Gaussian errors and fixed predictors.  Additionally, the code allows

using the IPIA bounding method for the single degree of freedom hypotheses as described in

Chapter 3.  The code can calculate the location and value of maximum type I error rate as a

function of true variance, or it can find the adjusted rate with bounded type I error rate

inflation (see Chapter 3).  For single degree of freedom IPIA tests, the current code works

many times faster than simulation.  While the developed code has worked well for the needs

at hand, it is a prototype in that little effort has been made at increasing its usability, error-

checking of inputs, and efficiency of calculation.  Further development in this area would not

only allow the IPIA methods to more easily be adopted, but would facilitate my personal

research and that of others by making an efficient foundation for future development.

5.2.5 Strategies for Multiple Degree of Freedom Tests

In Chapter 3 I examined IPIA design strategies for single degree of freedom hypothesis  

tests.  I believe that many of the recommended methods would also be applicable in the

multiple degree of freedom setting.  For example, the use of the  distribution instead of theJ

large sample  distribution would more accurately model the distribution of the test;#

statistic.  Obviously the bounding method will work within the more complex setting, with

computational speed the only current barrier.
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5.2.6 Generalizations to Other Settings

Multiple Stage Designs

In this research, I considered only two-stage designs.  The priority was to combine the

power protection of the internal pilot design with the ability to save resources through early

stopping.  Traditional group sequential methods allow for more than two looks during the

course of a study.  It would be valuable to theory and methods to allow for a larger number

of looks during the course of a study.  I feel that a good approximation may be achieved in

two simple steps.  First, employ the current IPIA bounding method for a two-stage design to

choose an adjusted overall alpha as a first step.  Second, traditional group sequential rules

would be used to split alpha across stages.

Multivariate and Repeated Measures Models

The current theory was developed within the general linear univariate model

framework.  Generalizing it to studies with multivariate and repeated measures models would

greatly increase its range of usefulness.  The general linear multivariate model may be stated

as , with having  columns corresponding to  responses.] \F I ] F Iœ  ß ß : :e f 

Interest lies in testing the null hypothesis  for  of dimensionsL À œ œ! !@ @ @ GFY

+ ‚ ,.

A particularly interesting class of multivariate hypotheses,  and , has+ œ " ,  "

recently been shown by Park (2007) to have equivalent univariate forms.  She was therefore

also able to show that such models fit exactly into the framework and exact theory of the

univariate internal pilot.  Interesting applications include any one or two group comparison

of multivariate responses or profiles (such as time trends).  Hotelling one and two sample

tests are special cases.  I believe the IPIA theory can also be applied exactly to this particular

multivariate setting.

In the general case of min it helps to distinguish between the MULTIREP� �+ß ,  "ß

tests based on the affine invariant statistics used for the multivariate approach to repeated
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measures, and the UNIREP tests based on the orthonormal invariant test used for the

univariate approach to repeated measures (Muller and Stewart, 2006, Chapter 3, et seq.).

Park (2007) also indicated that the MULTIREP approximate methods reviewed in Muller et.

al. (1992) could in a parallel way give equally accurate approximations for min .� �+ß ,  "

Similarly, general approximations for the UNIREP case (Muller et al., 2007) as used in

Coffey and Muller (2003) for internal pilots, should provide equally accurate approximations

for IPIA designs.

Mixed Models

  The proposals for future models to consider reflect the 'Divide and Conquer' approach

recommended for mixed models by Gurka, Coffey, and Muller in an invited presentation at

the Joint Statistical Meetings of 2007.  Following the approach of piecemeal adaptation,

Gurka et al. (2007) described a useful class of mixed models that can be expressed as

equivalent univariate tests and work exactly within developed internal pilot theory.  This

class includes complete and balanced designs with compound symmetric covariance.

Detailing how the IPIA theory can be used with this class of designs models would bring

further generalization to the methods.  In turn, Johnson's work (2007) on cluster samples can

be understood as generalizing the exact results of Gurka et al. to unbalanced designs.  Her

work therefore indicates how to extend the IPIA model in a parallel way.
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APPENDIX A:  CHAPTER 2 PROOFS
Lemma A.1  Any testable general linear hypothesis with  may be expressed in)! Á !

terms of a related model and general linear hypothesis with .)! œ !

Proof.  Transforming the model gives
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Here  has rank 1, with only nonzero eigenvalue � � � � � �ˆ ‰@ @ @ Z Z @B" /: 2" # B" /:
w w w

2" œ 8 Î8

because, in general,  and  have same nonzero eigenvalues and the eigenvalue of a\\ \ \w w

scalar the number itself.  Hence  is , rank ,DE œ M Z E Z8  # 2" /: # # #/:
w

#
 8 Î8 8 ‚ 8 8  "� � � �

and idempotent, so has  eigenvalues of one and one of zero.  Hence,  has rank� �8  "# DE

8  "# .

By spectral decomposition one can write
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Now the following can be expressed:

; œ

œ    

œ    #  

œ    #  

œ D 

C C

D D

D D D

D D D @ @

E E
w

D ! D !
w

D D D ! !
w ww w w

!

D D D B# !
w w w w w

B# !E

5œ"

8 "

5 D 5

c d c d� � � �� � � � � �� � � � � �
�ˆ ‰

G . . G . .

. GG . . G . . .

. . . G . . .
#

. � � #
!
w

! . .   .

(A.11)

Also, since

. .

G

G

G

D


w

œ

œ

œ

œ

G

.

E
"

/Þ2
" w w

/: 2"

" w
B#

5

5

5

ˆ ‰Z @

@

!œ   

(A.12)

and

. . . .

. .

. .

!
w w w w

!
w w

w

œ

œ

œ M 

M 

E E

E E

E E

@ @ @ @

@ @

œ

œ Z Z Z E Z Z Z

œ

B# B#B# B#

B# B#

E
# w #

/Þ2 E /Þ2

 # !  #
# #



� �ˆ ‰D

. D .5 5

5� � � � � �
� �
8 Î8 > Î 8 Î8

8 Î8

2" /: /:
w w w

/: 2" /: 2" ‘
# !

$ #

 # ! #  # 
$ #

 # !
#

� � � �
� � � �� �� �

> Î

8 Î8 > Î 8 Î8 8 Î8

8 Î8 > Î

5

5

5

Z E Z Z E Z

œ

œ

2" 2"
w w

/: 2" /: 2"� �
� �� �

  ,

(A.13)

one can write
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# is a central  distributed variable with  degrees of freedom.;
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Theorem 2.3 Proof.
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APPENDIX B:  CHAPTER 4 PROOFS
Lemma 4.1 Proof.
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E E ! E2" 2"/, œ  (  idempotent from Section 2.2.3):
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e.  Idempotency of , , , and  are given in Lemma 2.1.  Also, since labelingE E E E2 2" / /"

order of data is arbitrary, proofs about middle matrices for first sample apply to second

sample without loss of generality, so  and  are also idempotent.  This leaves showing E E2# /#

idempotency of  and .  The results below use properties derived earlier in this lemma.E E/, /:
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f.  Ranks of , , , and  are given in Lemma 2.1.  Also, since the labeling orderE E E E2 2" / /"

of data is arbitrary, it follows that  and  have ranks  and , respectively.  This E E2# /# #+ 8  <
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Multiplying the first  rows of the left matrix by creates a matrix of identical5 " � �5"Î5#  

rows, and so the left matrix has rank 1.  Now,  is of rank  andE " " \ F\2 5 !
w w
5 !œ Œ ++ +
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" "5
w
5+ +

 is clearly rank 1.  The fact that the rank of a Kronecker product is the product of the

ranks, allows showing that  is rank  which implies that \ F\ E!
w
! + /: is also rank .+

The matrix .   E E E E E E/, /# is defined as Therefore/ /" /: /   œ

E E E E E/" /: /  /# /, decomposes  into four symmetric, idempotent pieces.  Now

since  is also idempotent and symmetric,  decomposition theorem from MullerE/ a matrix

and Stewart (2006; Theorem 9.16, page 187) to show that the sum of the ranks of the pieces

is equal to the rank of .  This then implies for rank  thatE \/ !< œ � �
rank rank rank rank rank� � � � � � � � � �� � � � � �E E E E E/, /#
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/ /" /:

    œ
œ <  +

Lemma 4.3 Proof.  For  and equation 4.41 and+  " \ µ +ß"
# #

; -� � defined as in   

using results from equations 4.34 and 4.46-4.49, 
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Lemma 4.4 Proof.  For  and equation 4.41-4.43,+  " \ \ ^" #
# #, , and  defined as in s 

using results from equations 4.33 and 4.46,
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Lemma 4.5 Proof.  For  and equation 4.41-4.43,+  " \ \ ^" #
# #, , and  defined as in s 

using results from equations 4.33 and 4.49,
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The following two lemmas will be useful in the proofs for Lemma 4.6 and Theorem 4.2

which follow.  They are distributional results involving a standard Gaussian and it's square.

Lemma B.1 For  and e f2ß 6   ! ^ µ !ß "a � �, the following holds.
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Lemma B.2 For and e f.ß 2   ! ^ µ !ß "a � �, the following holds
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Lemma 4.6 Proof. Let ? œ - 1 ? œ - 1 Î8  1 ? : œ - :  1"   #  " #  $ " " 
"
, , ,� � � �

? œ 1 Î8 , 1 Î8  :  0 œ 0 : 0 œ 0 :% " # " # # " #, , ,� �: ß : œ" # \ \
È � � � �È: 8 Î8" " # : :,  

" " #
# #

#

. : ß : œ 2 : ß : œ� � � � È" # " #È1 Î8  :  -  : 1" # # # 
"


È: 8 Î8 : " " # ", . For strictly

positive , integer , e f1 ß 1 ß - ß +  ""   8 ß 8 ^ µ !ß " +ß \ µ +  "" # 
# # #

#a ; - ;� � � � � �, , \ µ"
#

with ,  mutually independent, the following holds.^ \\"
#, #

#



141

Pr

Pr

š ›’ “  ‘
( œ ” • ˆ ‰
( (

ˆ ‰È È
Š ‹È

8 \  8 ^  8 \ \  ^

: 8 Î8  ^ \ 8 : \  ^

" " # #
# # # #

# #

: " " # # "

#
# # #
# #

: :

Ÿ 1 ∩ -  Ÿ 1

œ 0 Ÿ 1 Î ∩ -  1 Ÿ .:

œ 0 0

" 
"


!

∞

"  "
"


! !

∞ 1 Î8

\"
#

"

" #

" #

          ‚ Ÿ 1 Î ∩ -  1 Ÿ .: .:

œ 0 0 Ÿ 1 Î .: .:



Pr

Pr

œ ” • ˆ ‰
( ( œ 
(

Š ‹È
Š ‹È

: 8 Î8  ^  8 :  ^

: 8 Î8  ^ 8 

" " # # "

#
#

: : " " # #

#

: :

:

# #

#

"  # "
"


! !

- 1 1 Î8

" # "

- 1

- 1 Î8 1

  " #

 

 " # 

" #

� �(
œ ” • ˆ ‰

( ( œ 

!

- : 1

"  # "
"


- 1 - : 1

- 1 Î8 1 1 Î8

"
 " 

  " 

 " #  " #

"


0 0

‚ Ÿ 1 Î ∩ -  1 Ÿ .: .:

 0 0

: :

" " # # "

#
#

: : " " #

" #

" #

     Pr

Pr

Š ‹È
Š ‹È

: 8 Î8  ^ 8  :  ^

: 8 Î8

: :# #

� �
 ^ 8 

: 8 Î8  ^ 8  :  ^

#

#

: :

" " # # "

#
#

Ÿ 1 Î .: .:

 0 0

‚ Ÿ 1 Î ∩ -  1 Ÿ .: .:

" # "

- 1 Î8 1 !

∞ 1 Î8

"  # "
"


:

: :

#

# #

( (
œ ” • ˆ ‰

 " # 

" #

� � " #

     Pr Š ‹È



142

œ 0 0  Ÿ ^ Ÿ , .: .:

 0 0  Ÿ ^ Ÿ , ∩ .: .:

 0

( ( e f
( ( ˜ ™c d ˆ ‰
( (

! !

? ?

# "

? !

? ? :

# "

? ? :

? ?

" %

"

# $ "

"

#

$ "

%

: :

: :
#

" #

" #

Pr

Pr

. : ß : : ß :

. : ß : : ß : 2 : ß :

� � � �
� � � � � �

" # " #

" # " # " #
#

� �

� �

^  

: :

: :
#

: :

" #

" #

" #

0  Ÿ ^ Ÿ , .: .:

 0 0  Ÿ ^ Ÿ , ∩ .: .:

œ 0 0 , 

Pr

Pr

e f
( ( ˜ ™c d ˆ ‰
( ( e fc d c

. : ß : : ß :

. : ß : : ß : 2 : ß :

: ß :

� � � �
� � � � � �

� �

" # " #

" # " # " #
#

" #

# "

? !

∞ ?

# "

! !

? ?
#

%

" %

^  

F F d
( ( ’ Š ‹e f c dc d

e fc d

 .: .:

 0 0 ,   ß !

 ,

. : ß :

2 : ß : ß : ß : . : ß :

:

� �
� � � � � �

� �

" #

" # " # " #

# "

? !

? ? :

"

# $ "� �
: :" #

max min

max

F F

F



                                " # " #

" # " #

" # "

ß : 2 : ß :

: ß : . : ß :

2 : ß : ß : ß

 ß ! .: .:

 0 0 ,   .: .:

 0 0 ,

F

F F

F

c d “
( ( e fc d c d
( ( ’ Š e fc d

� �
� � � �

� � � �

# "

? ? :

? ?

# "

? !

∞ ?

   

   

"

#

$ "

%

#

%

� � : :

: :

" #

" #
max min  : . : ß :

: ß : 2 : ß :

# " #

" # " #

  ß !

 ,  ß ! .: .:

F

F F

c d ‹
e fc d c d “

� �
� � � �                               max # "



143
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