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ABSTRACT

JOHN A. KAIRALLA. An Internal Pilot Study with Interim Analysis
for Gaussian Linear Models.
(Under the direction of Keith E. Muller and Christopher S. Coffey)

Misspecification of a nuisance parameter can lead to study power far from the desired
level. Internal pilots for Gaussian data protect study power by allowing sample size re-
estimation based on an interim power analysis using a revised estimate of the variance
parameter, but without any data analysis. In order to reduce study time and cost, researchers
and sponsors of studies often desire early decision possibilities that the internal pilot design
lacks but that group sequential methods allow. Combining early stopping rules with internal
pilot methods would increase study flexibility, scope, and efficiency for general linear

models.

An internal pilot with an interim analysis (IPIA) design for Gaussian linear models is
introduced and defined. The design allows for early stopping for efficacy and futility while
also re-estimating sample size needs based on an interim variance estimate. In order for
accurate study planning in small samples, exact theory is derived for both the one or two
group t test setting, as well as more complex multiple degree of freedom hypothesis tests
within the general linear univariate model framework. Exact and computable forms of
distributions allow accurate calculations of power, type I error rate, and expected sample
size.

In general, the IPIA design maintains and controls power to the desired level and also
provides sample size savings. However, it can also inflate type I error rate, especially in
smaller studies. By utilizing the exact theory, planning procedures associated with the

design are examined and refined to create a working method for planning sound studies. A

il



bounding method successfully controls the type I error rate while maintaining the benefits of
the design. Explicit recommendations are detailed that achieve the combined goals of an
internal pilot and a two-stage group sequential design. The results can be used during
planning to create an efficient two-stage study with early stopping rules and predictable

power properties, even in small samples.
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CHAPTER 1. INTRODUCTION AND LITERATURE
REVIEW

1.1 INTRODUCTION

An important aspect to consider during study planning is an appropriate sample size to
detect an effect of interest for given type I error rate and power. Power in studies often
depends on one or more unknown nuisance parameters. For example, in a one group t-test,
let X7, X, ... be independent Gaussian observations with mean 6 and unknown error
variance o2. The goal is to test Hy : § = 0 versus H; : § # 0 with type I error rate a; and
power P; at § = 6. The required sample size for the test with given oy, P;, and #; depends
on o2. In practice, sample size needs are usually calculated using an estimated value, o7,
taken from similar studies or earlier trials. This value, however, is often not appropriate due
to characteristics such as differing populations or inadequate sample size of test trials. Study
power for a Gaussian linear model is very sensitive to misspecification of the variance

parameter, 0.

In general, sample size re-estimation techniques have been developed as tools for
adjusting the size of a study to meet its planned objectives. To ensure a correctly planned
study, very few interim analyses are conducted. In fact, two-stage designs have become
popular due to their practicality, effectiveness, and lack of administrative burden (Shih,
2006). Specifically, internal pilot (IP) designs are two-stage designs that allow sample size
modification based on revised estimates of nuisance parameters without interim data
analysis. For continuous data, the IP design introduced by Wittes and Brittain (1990) used
the ordinary (unadjusted) test statistic and critical value for testing. This procedure is
straightforward to implement, but may introduce type I error rate inflation in small samples.

For a general linear univariate model (GLUM) with fixed effects and Gaussian errors, Coffey



and Muller (1999) derived the exact distribution of the IP test statistic in a computable form.
The theory includes ¢-tests as special cases and allows for flexibility of hypotheses. The

exact theory also made study planning possible for small sample designs.

Researchers and sponsors of clinical trials and other studies would also like the ability
to reach early decisions when hypothesis outcomes are clear. Early decisions to stop a trials
may allow more effective treatments to reach a target population quickly and can protect
patients from ineffective, inefficient, or harmful treatments. Stopping early can also allow
resources to be diverted to other promising research, boosting overall research efficiency. To
address the need for early stopping capability in study design, study monitoring procedures

such as group sequential and stochastic curtailment methods have been developed.

Combining IP designs with early stopping rules would increase study flexibility, scope,
and efficiency for general linear models. In this dissertation, the exact distributions
necessary for small sample internal pilots with an interim analysis at the IP stage for GLUMs
with fixed effects and Gaussian errors are derived. The study design is hence referred to as
the internal pilot with interim analysis (IPIA) design. In Chapter 2 of this dissertation, the
model is introduced, the procedure is explained, and the necessary distributions for the IPTA
design for single degree of freedom tests are derived. These study designs consist of one and
two group comparisons with unknown, common variances for ¢-tests as well as other study
designs. The necessary distributions include a computable form of the exact joint
distribution of the first and second stage test statistics conditional on a final sample size.
Knowledge of these forms then allow for derivation of exact forms for unconditional study
power, type I error rate, and expected sample size. Examples will portray the characteristics
of the IPIA design and compare them with some other common designs.

The procedure introduced in Chapter 2 has various general design factors including the
methods for selection of critical values, sample size allocation and re-estimation, and

selection of an interim sample size. In order to calculate power, type I error rate, and



expected sample size for a design, these factors must be pre-specified. In Chapter 3 of this
dissertation, I discuss and evaluate procedures for planning the studies described in Chapter
2. The goal is to achieve sound study design strategies that control the type I error rate while

best maintaining the power and sample size advantages of the IPIA designs.

In Chapter 4, the results necessary for the IPIA design for multiple degree of freedom
tests in the GLUM framework are derived. These tests consist of more complex hypotheses
such as multiple group comparisons. The key new result is the exact conditional joint
distribution of the first and second stage test statistics. The new exact distributions may be
used to solve for power, type I error rate, and expected sample size in these study designs.
An example will demonstrate the characteristics of the IPIA design in this more complex

setting.

1.2 LITERATURE REVIEW

1.2.1 Introduction

Interim analysis (or interim monitoring) often takes place during the course of clinical
trials to acquire knowledge to make decisions such as design modification or early stopping.
Jennison and Turnbull (2000, Chapter 1) categorized reasons for conducting interim analyses
into three loosely defined classes: ethical, economic, and administrative. One ethical
consideration includes ensuring that patients are not exposed to unsafe, inferior, or
ineffective treatments. Another ethical consideration is the need to reallocate resources to
other promising treatments when a current study is unlikely to show a benefit. Economic
reasons for conducting interim analyses also exist from the ability to stop a trial early. Ifa
trial stops early with a positive result, a treatment can reach the public more quickly, saving
time and resources as well as generating an expedited revenue source for sponsors.
Conversely, an early stopping event can also be triggered by an ineffective treatment or
faulty study design. In this case, resources may be saved by stopping a study unlikely to

result in a positive outcome under reasonable conditions if carried to completion.



Administrative reasons for conducting interim analyses include determining if the
experiment is following both the designed protocol and planned assumptions. Assumptions
made during sample size planning often include values for outcome variability in quantitative

data or incidence rate values for binary data.

Three main types of interim analysis are group sequential methods, stochastic
curtailment, and sample size re-estimation. Group sequential methods are analyses in which
groups of subjects are enrolled and analyzed sequentially. They are designed to shorten the
expected length of a study by allowing early hypothesis decisions to be reached if true effect
sizes are larger or smaller than anticipated. Stochastic curtailment is another method of
shortening a study based on calculating probabilities of achieving hypothesis decisions
conditional on accumulated observed data. Sample size re-estimation procedures cover a
wide range of possible study designs. All include possible adjustment to the planned sample
size of a study (increases and/or decreases) in light of new information concerning aspects of

the study.

Specific to sample size re-estimation, methods vary based on what information may be
used, when the information is used, and the decisions made as a result. Flexible designs
allow the most freedom with few restrictions if the type I error rate is controlled. Adaptive
designs restrict the study to pre-planned design modifications based only on information
internal to the study. Internal pilot designs allow for modification of a study based only on
re-estimation of nuisance parameters, such as the error variance for Gaussian outcomes. The
sample size re-estimation methods also vary based on if rules are included for early stopping

at interim stages.

1.2.2 Group Sequential Methods

Group sequential methods (GSMs) allow for interim analyses in ongoing studies with
the possibility of early stopping with sequentially enrolled subject groups. Although these

methods may be applied to any study of sufficient duration that is completed in stages,



research focus has been the use of GSMs in clinical trials. An important reason for this focus
is to stop randomization of patients to a potentially inferior treatment when a significant

treatment difference can be proven with high probability.

An early influence in sequential analysis was Wald's (1947) sequential probability ratio
test (SPRT). The SPRT tests between two simple hypotheses by sampling observations
while the likelihood ratio remains in an interval (a, b) for constants a, b chosen to
approximately control type I and type II error rates. Armitage (1975) developed methods for
fully sequential analysis in medical studies. In these methods, data must be enrolled in
matched pairs and accumulating data monitored continuously. However, this was not proven
to conform well and did not achieve widespread use. GSMs worked better within clinical
trials settings and became a popular alternative with the release of papers by Pocock (1977)
and by O'Brien and Fleming (1979). For normally distributed data with known variance,
these papers presented clear approaches for two-sided group sequential testing that controls
the type I error rate while maintaining power. In a basic group sequential design for a
comparison of two treatments, a maximum number of stages (k), group-size (m), and critical
values for each stage (¢; fori € {1,...,k}) are pre-determined. Subjects are randomized to
treatment with the constraint that for each stage, m subjects are assigned to each treatment.
For stage ¢ a standardized statistic, Z;, is computed using data from the first ¢ groups and the
study stops with rejection of the null hypothesis, Hy, if | Z;| > ¢;, and continues otherwise.
At stage k, H is accepted if | Z;| < ¢y.

Critical values are chosen to preserve the overall type I error rate (), i.e.,

Pr{ |Zi| > ¢; fori e {1,..., k:}‘HO} = «. To preserve type I error rate, Pocock uses an

adjusted, constant nominal significance level for each test and O'Brien and Fleming describe
a procedure for the nominal significance level to increase as the study progresses. Other
techniques exist varying in degrees of complexities and efficacy. One very simple method is

the Haybittle-Peto test (Haybittle, 1971; Peto et al., 1976), which stops a trial at stage ¢



(1 < k) if|Z;] > 3 and then uses the ordinary stopping bound at the final stage. The final
stage could also be slightly modified to accurately control type I error rate. This method has
gained traction when trial planners need a simple rule to stop a study only when a clear and
strong effect is observed while paying little penalty in the final critical value. Due to
multiple testing possibilities, the maximum sample size of 2km is determined by a
procedure-specific inflation factor multiplied by the sample size from a corresponding fixed

sample test.

Wang and Tsiatis (1987) described a family of two-sided test designs, indexed by a
parameter A (0 < A < 0.5), for use in the general GSM framework. The family generalizes
the Pocock and O'Brien-Fleming methods with A = 0 giving the O'Brien-Fleming test and
A = 0.5 giving the Pocock test. The adjusted critical values depend on £, «, and A; the
maximum sample size inflation factors depend on £, o, 3, and A where /3 represents the
target type Il error rate. Lan and DeMets (1983) introduced a flexible way to construct
boundaries in group sequential methods using an a-spending function. The idea is to define
a monotonely increasing function for the information fraction ¢ (0 < ¢ < 1): a(t) with
a(0) = 0 and a(1) = «, the desired type I error rate. This function characterizes the rate at
which the error level « is spent. This method can approximately emulate the Pocock and
O'Brien-Fleming boundaries, but allows for other methods, for variable timing, and number
of analyses. A number of possible error spending functions have been proposed in the
literature (Lan and DeMets, 1983; Hwang et al., 1990; Kim and DeMets, 1987; Jennison and

Turnbull, 1989).

While classical group sequential designs allow for reductions in sample size by stopping
early for large effect sizes, they offer no reduction in sample size (in fact a small increase
occurs) under the null hypothesis (e.g., Hy : § = 0). Stopping a study early for futility,
while not as ethically important as stopping when a significant difference is proven, can be

important for financial considerations and resource allocation when the chance of a



significant study is low. Gould (1983) proposed methods for early stopping only to accept
the null if a test has a p-value greater than a fixed critical value. Pampallona and Tsiatis
(1994) described a one parameter (A) class of boundaries for group sequential methods
based on the family introduced by Wang and Tsiatis (1987) that can be used for any type I
and type II error rate choices. Whitehead and Straton (1983) and Whitehead (1997)
described an alternate method known as the triangular test based on combining two one-
sided tests. Jennison and Turnbull (2000, Chapter 5) compared these methods as well as
providing some tables of constants. Since allowing the study to stop to accept H for small
effect sizes may have significant savings in time and cost, Jennison and Turnbull (2000,
Chapter 5) recommend that the stopping bounds be considered in all group sequential two-
sided tests. Lachin (2005) explored the use of futility monitoring plans based on conditional
power within group sequential testing. The method has a single futility analysis at a
specified information fraction (such as 7" = (0.5) amidst the other interim tests before, at, and
after the futility analysis. Using O'Brien-Fleming bounds, the plan approximately controls

the type I error rate and maintains power while adding sample size benefits under the null.

Spurrier (1982) presented two-stage tests of hypothesis in the general linear univariate
model with normally distributed and independent errors, a special case of group sequential
methods. He proposes an ad hoc sample size selection method with each stage being of size
0.6*ny where ny is the sample size of a fixed sample test. In the method, the first sample
leads only to decisions to stop for efficacy (if F} > ¢,, reject Hy) or futility (if £7 < ¢,
accept Hy), or to take the final sample (if ¢; < F} < ¢,). The null hypothesis is then either
accepted or rejected if the final test statistic, F', is below or above critical value ¢4,
respectively. Proposed strategies for selecting critical values ¢;, ¢, and ¢, are given with a
primary concerns of controlling the type I error rate and secondary concerns of maximizing
power and minimizing expected sample size. Hewett and Spurrier (1983) described with

detail two-stage tests in a variety of settings. They promoted two-stage tests as a



compromise between fixed sample and sequential methods with more stages, offering well
defined theory with a reduction in expected sample size while minimizing uncertainty of

sample size and duration of study.

While most group sequential methods rely on large sample critical values or known
variances, some alternative critical value selection methods have been proposed and
reviewed. One simple approach suggested by Pocock (1977) shown to work quite well when
variance is unknown is to take the significance level of Gaussian derived critical values and
use them along with sample size to calculate corresponding ¢ distributed critical values.
Since the ¢ distribution takes into account the sample size used for estimation in the form of
degrees of freedom, it better relates to the uncertainty of the variance estimate used in the test
statistic. Although the statistics are sequences and hence have a joint relationship, this
simple method approximately controls the type I error rate for group sequential designs.
Additionally, Shao and Feng (2007) described a Monte Carlo method for calculation of
critical values in a small sample group sequential studies. Through simulation they showed
that their method works well at controlling the type I error rate and maintaining power with

an expected increase in expected sample size.

Group sequential methods have also been further generalized in various ways. Jennison
and Turnbull (1991, 1997) described distributional theory for group sequential ¢, 2, and F
tests. Methods have also been described to allow for flexibility in the number, timings, and

sizes of looks (Jennison and Turnbull, 2001).

1.2.3 Stochastic Curtailment

Study curtailment describes the idea that an experiment can be stopped once the
outcome is inevitable; that is, further data collected within the study can not affect the final
decision. In certain studies such as ones with normally distributed outcomes, there cannot be

absolute certainty in an outcome as long as more sample size can be taken. A study may be



stopped, however, if the outcome while not inevitable, is highly probable. This can increase

the efficiency of a study by decreasing expected sample size.

One approach to stochastic curtailment is the conditional power (CP) approach. CP is
defined here as the probability of a statistically significant result (rejecting H,) at the end of
a study given a true value of the effect size and conditional on data already observed. Let
P;(6) be the CP at some stage 7 for effect §. A method described by Lan et al. (1982) defines
a formal stopping rule where H) is rejected if P;(6y) > ¢, for a constant ¢ such as 0.8 or 0.9.
The logic behind this method is that the test will not likely accept the null at this point even if
it is true. Alternatively, a test could be stopped for futility (accept Hy) if 1 — P;(6,) > ¢/
where 6, is an alternative of interest. Proschan et al. (2006, Chapter 3) noted that, under a
futility scenario, as estimate of nuisance parameters such as the sample variance could be
used to recalculate unconditional power of the study. A low value implies an uninformative
acceptance of Hj and is further evidence to curtail the study. Under the scenario of a low CP
and a high unconditional power, continuing the study may be useful to clearly differentiate
between the hypotheses. A criticism of the CP stopping methods (Jennison and Turnbull,
2000, Chapter 10; Dmitrienko and Wang, 2006) is that they are based on calculations under
only specific values of # and ignore information about the effect size from current data. For
example, an overly optimistic value of 6; would make a study difficult to stop for futility

despite unpromising results.

Another form of stochastic curtailment known as the predictive power (PP) method
utilizes a mixture of Bayesian and frequentist ideas. Jennison and Turnbull (2000, Chapter
10) described the approach, which averages conditional power over values of effect § with
weighting corresponding to current belief: a posterior distribution given the prior distribution
and the observed data. This method gives an informative probability of success or failure in
a study and, like the CP method, formal rules can be developed for early stopping for

efficacy or futility. The method is described by Choi et al. (1985) and Spiegelhalter et al.



(1986) for binary endpoints. Choi and Pepple (1989) applied the Bayesian-frequentist
approach to normally distributed data. Jennison and Turnbull (2000, Chapter 10) and
Bernardo and Ibrahim (2000) also discussed the mixture approach in general settings.
Criticisms of the method include the lack of a clear frequentist interpretation and that it is

inconsistent with Bayesian principles (Jennison and Turnbull, 1990, Chapter 10).

A third method, described by Dmitrienko and Wang (2006), introduces a family of
Bayesian stopping bounds by extending a Bayesian predictive method proposed by Geisser
(1992). The paper reviews and compares the methods for stochastic curtailment. Dmitrienko
et al. shows that the Bayesian and Bayesian-frequentist methods typically allow higher
probability of early stopping with the pure Bayesian method being more sensitive to the
choice of prior distribution. Dmitrienko et al. (2005, Chapter 4) provided SAS macros for

the computation of stochastic curtailment stopping bounds for the three methods.
1.2.4 Sample Size Re-Estimation

1.2.4.1 Introduction

Sample size re-estimation (SSR) procedures differ from traditional and classical group
sequential methods. This difference occurs as at least some of the information accrued
during a study (possibly external to the study) is used to determine the size of future
sampling. Historically, SSR proposals go back over 60 years. Some of the first research was
proposed by Stein (1945), who introduced a two-stage procedure for normally distributed
data where sample size is computed based on variance information contained in a first stage
of the analysis. Later, Anscombe (1953), described a fully sequential procedure with sample
size re-calculated repeatedly based on updated variance estimates. More recently, increased
interest in the topic for application in clinical trials has led to many variations on the theme
to make the design of a clinical trial more flexible and/or adaptive. Uncertainties about

factors affecting power such as patient variation, treatment effect size, recruitment rates, or
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event rates have led to researchers desiring the ability to make midcourse adjustments to the

sample size of the study.

SSR methods vary by the number of stages used, the allowance for early stopping for
efficacy and/or futility, the information used for re-estimation, if the adaptation protocol
must be pre-specified, and if sample sizes are allowed to decrease. The great volume of
recent research and sometimes lack of clear definitions and delineations has led to a
confusion in terminology for similar methods. Different types of SSR methods will be
introduced in this section with a focus of clarifying the similarities and differences that exist

between them.

1.2.4.2 Flexible Designs

Flexible designs are study designs that permit mid-trial modifications with very little
restriction. Information for study modifications can come from information internal or
external to the trial. Also, adaptation does not need pre-specification. However, a major
design consideration for flexible designs is to maintain the type I error rate in order to better
maintain study validity. Flexible designs specifically will not be covered here; instead a

meaningful subset will be discussed: adaptive designs.

1.2.4.3 Adaptive Designs

Recently, there has been great interest in the development of adaptive design (AD)
methodology. ADs for clinical trials offer researchers flexibility to redesign trial procedures
and analysis at interim stages. Current research, however, has created a confusion in
terminology as many types of study modification are referred to as adaptive. In Spring 2005,
a PARMA working group on ADs in clinical drug development was formed to investigate
and facilitate the acceptance and usage of these design methods. An Executive Summary of
the group's findings (Gallo et al., 2006) defined an adaptive design as "a clinical study design
that uses accumulating data to decide how to modify aspects of the study as it continues,

without undermining the validity and integrity of the trial." This definition will be used
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when referring to ADs here. Under this definition, the adaptations only use information from
accumulating data internal to the trial as opposed to flexible designs which can also
incorporate external information. The PhARMA working group also stresses that the changes
should be made "by design" and not undertaken on an ad hoc basis. The definition makes it
clear that adaptive designs are not meant to be a remedy for poor planning. Rather, ADs are
meant to be designed study enhancements aimed at maintaining study validity and integrity

while increasing efficiency of drug development and utilization of resources.

Bauer and K6hne (1994) and Proschan and Hunsberger (1995) were two of the early
papers describing AD methods for adapting studies while maintaining type I error rate
controls. Bauer and Kohne used a weighted Fisher's combination test for a two-stage one-
sided test with possible early stopping and SSR based on effect size. Alternatively, Proschan
and Hunsberger based their test on a conditional error approach: overall type I error rate is
controlled as long as a second stage test conditional on the first stage results maintains the
type I error rate. Wassmer (1998) showed that for two stages and one sided hypotheses, the
methods of Bauer and Kéhne (1994) and Proschan and Hunsberger (1995) are extremely
similar in power and expected sample size. Other related adaptive methods include the
methods described by Lehmacher and Wassmer (1999) and Cui et al. (1999). Both
approaches use classical group sequential stopping boundaries with updating of sample size
based on data observed in a first study and use fixed, predetermined weights to combine
stage-wise results. The Lehmacher and Wassmer approach combines p-values using the
inverse normal approach with fixed, predetermined weights (usually equal across stages).

All of the methods above assume the variance is known for the study.

A number of issues have been raised concerning the use of adaptive designs. An
obvious concern is the use of the observed treatment effect to re-estimate needed sample size.
This issue will be discussed in section 1.2.4.4. Another issue is the potential abuse of

weighting schemes in extreme samples that could potentially result in a significant test result
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of a positive effect for a negative estimate (Proschan and Hunsberger, 1995; Burman and
Sonesson, 2006). The weighting schemes used to protect type I error rate also violate basic
sufficiency principles since observations from different stages are given different weightings
(Jennison and Turnbull, 2003). Tsiatis and Mehta (2003) and Jennison and Turnbull (2006)
argued that while adaptive designs have a place for preserving a study if unplanned analyses

are conducted, group sequential methods offer more efficiency under reasonable conditions.

1.2.4.4 Sample Size Re-Estimation Based on Conditional Power

Conditional power (CP) has been proposed as a tool for the recalculation of sample size
in clinical trials for adjusting study power (Proschan and Hunsberger, 1995). Two ways exist
using interim data to calculate a probability of rejection in the trial given the results observed
thus far. The first type of probability calculation assumes the true effect size, 0, is equal to
the value the study was originally powered to detect, ;. The other type assumes the true

effect size is the observed estimate,/ﬁ\i, for an interim stage .

The logic supporting the SSR is the adjustment of the sample size to that needed to
maintain study power at the target rate. Often, this kind of calculation includes the revised
estimates of nuisance parameters for SSR purposes (Denne, 2001). In this sense, the SSR is
similar to an internal pilot technique. The difference lies in that regardless if 6; or 0, is
assumed to be the true effect in the calculations, the calculations depend on the observed
value of the test statistic at the interim stage. While different conceptually, both kinds of CP

calculations raise questions in this context.

The less controversial use would be to adjust the sample size of the study to maintain
target power at § = 6, (Denne, 2001). For this method, due to conditioning on the interim
test statistic, the study is resized to allow for room to 'catch up' if observed effects are lower
that desired. On the other hand, if the effects are higher that anticipated, this practice can

save resources if the planned sample size is decreased in order to maintain target power.
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However, many researchers and even sponsors might prefer to keep the positive interim stage

data and increase their overall probability of success in the trial.

If instead the study is re-powered to achieve target power at § = /0\1 (Cui et al., 1999),
more issues are raised. In this case, the study is repowered at a new hypothesis of § = 0,. If
the sample size is increased, then statistically, the effect of interest is decreased. Uses for the
procedure such as flexibility to external factors and cases where an effect of interest is
unclear have been described by various researchers. In the case where sample size is
decreased due to interim analysis, the test could be underpowered to detect the originally

planned effect size if it is in fact true.

1.2.4.5 Internal Pilot Designs

A poor variance value used in sample size calculations can greatly impact the power of
a clinical trial. A value that is too low leads to an underpowered study with a small chance
of success regardless of the treatment's efficacy. Alternatively, a value that is too large leads
to a waste of money and other resources in an overpowered trial. Stein (1945) introduced a
two-stage t-test design with power independent from the variance. This technique updates
the sample size at an interim stage using only the observed sample variance. The final test
statistic uses information from all subjects for treatment effect, but only the variance estimate
from the first sample. For a two group comparison, the final test statistic under the null
hypothesis follows a ¢ distribution with n; — 2 degrees of freedom where n; is the total
sample size at the interim stage. A criticism of the method is that it throws away information
about the variance from the second sample. Proschan and Wittes (2000) noted that the
technique is not robust to possible changes in variance during the course of the trial. Also,
Coffey and Muller (1999) showed Stein's method does not perform well when the second

sample is large compared to the first.

Building on Stein's two-stage test, Wittes and Brittain (1990) introduced internal pilot

(IP) designs for two groups with normally distributed outcomes. The researchers modified
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Stein's method by using the pooled variance from all subjects in the final test statistic and
treating the final sample size as if it were fixed. Simulation was used to show power and
type I error rate for this test for an example using a preplanned sample size of 86 and an
internal pilot using half of the preplanned sample. For large samples and an upward-
restricted sample size adjustment design, they concluded that the type I error rate and power

were well preserved.

Birkett and Day (1994) explored the use of different sizes for the interim stage rather
than half of the initial fixed sample estimate. This design also allowed for decreases in the
final sample size. The conclusion was reached that as long as there are enough degrees of
freedom ( ~ 20) in the IP stage, the type I error rate and power are close to target levels.
Coffey and Muller (1999) showed by counterexample that significant type I error rate
inflation (up to 14% in their example) can still occur in test studies under this scenario.
Coffey and Muller determined that the choice of internal pilot size and other design
parameters can strongly affect results and should be inspected during planning for specific
studies. Despite the potential benefits in power properties or sample size savings, the risk of
type I error rate inflation, caused by a downward biased variance estimate (Proschan and
Wittes, 2000; Miller, 2005) offsets the benefits in the minds of many researchers (Kieser and
Friede, 2000) and regulatory agencies (ICH Topic E9 Guideline, Section 4.4). This risk has
led many researchers to propose methods to control the type I error rate. These methods can
be separated by if blinding is maintained on treatment allocation at the interim analysis, and
by if the test statistic or critical value is modified to preserve the type I error rate.

From a regulatory standpoint, methods that keep the treatment group allocation blinded
may be preferred to those that require unblinding (ICH Topic E9 Guideline, Section 4.4).
For blinded sample size re-estimation, Gould and Shih (1992) and Zucker et al. (1999)
suggested using the one-sample variance estimator with a simple adjustment based on the

planned treatment effect of interest. Kieser and Friede (2003) showed that this approach
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approximately controls the type I error rate when the true treatment difference is close to the
prespecified difference. A disadvantage of the blinded methods is that the one-sample
variance changes in relation to the treatment effect, which could cause inflation of sample
sizes if the treatment effect is larger than thought. Friede and Kieser (2001) note that the

sample size inflation is small when the true effect is close to the prespecified effect.

Many methods to control the type I error rate with unblinding have been proposed.
Miller (2005) points out that the decision on whether or not to use blinded procedures should
be made on a case-by-case basis and notes that careful control of information and the use of
an independent statistician can mitigate potential biases. Stein's method controls the type I
error rate by only using information from the first sample for the variance estimate. Zucker
et al. (1999) proposed an alternate method where only the information about the variance
independent from the IP stage is used in the final test statistic. This method controls the type
I error rate both conditionally and unconditionally. Denne and Jennison (1999) proposed a
method based on Stein's test that uses all information about the variance, but includes a
degree of freedom adjustment to the final test statistic that does not guarantee bounding of
type I error rate, but appears to work well in general. Proschan and Wittes (2000) introduced
a method that uses an unbiased variance estimate by fixing weights between the IP stage and
the second stage portions of the final variance estimate. Coffey and Muller (2001)
introduced a bounding method which alters the critical value so that the maximum type I
error rate inflation is equal to the target rate. The method by Miller (2005) adjusts the
normal variance estimate to control the type I error rate.

Recent review papers by Proschan (2005) and Friede and Kieser (2006) review internal
pilot designs for continuous and dichotomous outcomes. It the continuous case in which
most research addresses the independent groups ¢-test setting. In order to accommodate
more complex designs, Coffey and Muller (1999, 2000, 2001) have extended the idea of

internal pilots into any univariate linear model with fixed predictors and Gaussian errors.
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The researchers also derived computable forms for the exact distribution for the test statistic,
which includes ¢-tests as special cases. Kairalla et al. (2007) released a free software
package based in SAS/IML® (SAS Institute, 2004) for exact power, type I error rate, and
expected sample size calculations for a wide range of internal plot designs. For binary
outcomes, Proschan (2005) describes the possibility of an underpowered study if the control
event rate is overestimated. The paper describes two methods for re-estimating the sample
size, both with asymptotic validity. In an unblinded method, the control event rate can be re-
estimated and used for SSR. Alternatively, Gould (1992) described a blinded SSR procedure
for binary data based on the overall event proportion. Internal pilot methods have also been
extended into other settings of interest including ordinal data (Bolland et al., 1998), time-to-
event data (Whitehead et al, 2001), and repeated measures (Shih and Gould, 1995; Lake et
al., 2002; Zucker and Denne, 2002; Coffey and Muller, 2003).

1.2.4.6 Review of Related Topics

For clinical trials with Gaussian outcomes, IP designs allow for an update to sample size
based on an error variance estimate taken at an internal stage. While studies may be
lengthened or shortened by this estimate, the main objective is to ensure that the study is
sufficiently powered to detect an effect size of interest. Group sequential methods, on the
other hand, are designed to allow for a reduction in sample size if effect sizes deviate
substantially from anticipated sizes. A successful combination of GSMs with IP based
sample size re-estimation would allow for early stopping due to effect size differences and
also help assure correctly powered studies for an effect of interest with respect to the true
variance, a nuisance parameter. There have been a number of papers considering procedures

for combining GSM and IP studies to obtain their respective benefits.

Stein's (1945) two-stage design was a strong early influence to SSR in sequential
procedures. Baker (1950) and Hall (1962) introduced similar sequential tests based on the

sequential probability ratio test (SPRT; Wald, 1947) incorporating information about the
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variance using a single sample estimate. Arghami and Billard (1992) defined a partial
sequential procedure also based on the SPRT and a Stein-like variance estimate. Hochberg
and Marcus (1983) described a three-stage test for a one-sided, two-group comparison. This
comparison uses variance information from a first sample to determine sample sizes for two
testing stages. All of these procedures share the disadvantage of only incorporating early

stage variance information into the test statistics.

Facey (1992) described a Phase 2 trial design using the triangular test stopping bounds.
She compared the use of powering to absolute or standardized treatment differences. Type I
error rate inflation was high for the absolute differences and more reasonable for the
standardized differences in the cases considered (max type I error rate of 0.059 for target
0.05). Gould and Shih (1998) used a blinded variance estimate from the initial stage to fix
future sample sizes. The procedure only allows for sample size increases to the group
sequential procedure if the variance estimate is at least a constant factor larger than the
planning value (increase sample size if 3% > Ao? with A = 1.33, for example). A few
methods are explored, such as redistributing the sample sizes to match the originally planned
information times, or allowing the sample sizes to vary in pre-planned or unplanned manners.
They concluded through simulation, with a small fraction of error dedicated to the first
testing stage, that the procedure works adequately with two testing stages. Whitehead et al.
(2001) explored through simulation a method similar to Gould (1998) for comparing effects
from two groups by updating estimates of the standardized difference, §; /02, where &, is the
effect of interest and o? the common variance. The study is first planned to detect
0, = 61 /o3, which can then be revised by repowering to detect 6; = &/ &2 using an estimate
of o2 from an interim stage. The paper asserts that decision making will be flexible and up to
a Steering Committee, but for simulation purposes created one possible strict study protocol.
The use of both unblinded and blinded variance estimators were examined and similar results

were concluded. The results were generally of a large sample nature (smallest average
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sample scenario was n = 92). Despite the large samples, type I error rate inflation occurred
in simulations they ran with or without SSR (up to 0.032 for target of 0.025). The authors
noted that a large problem is that asymptotic results underlying sequential theory only

become accurate for very large samples.

Denne and Jennison (2000) proposed a group sequential ¢-test with sample size update.
This was based on the variance for a two-sided single group test of mean with early stopping
to reject the null. A test based only on a Stein-like first variance estimate was first described.
This method was used as a stepping stone to define a test procedure where the maximum
sample size is recalculated at each stage with updated variance estimates. The remaining
sample is then split based on the number pre-planned number of testing stages. Testing is
not done at the first stage if the originally planned first stage testing fraction is not met.

Thus, a two testing stage procedure could have three or more stages in total. In the
calculations for critical values and sample size adjustments, both a type I error rate spending
function and a degree of freedom correction are used to reflect the uncertainty of the variance
estimates. The "effective" number of degrees of freedom at stage ¢ is defined to be

ny + €(n; —ny) — 1 for 0 < e < 1 and n, the first stage sample size. Based on calculations
for several examples, ¢ = 1/4 is recommended to approximately achieve target error rates.
For tests with two and five stages, Denne and Jennison showed by a combination of
simulation and numerical integration that the procedure works reasonably well, especially
when n; is large (for example, > 20). For the two-stage test with low first stage sample

(n1 = b) type I error rate inflation in this example can occur with a worst case considered of
0.062 for a target rate of 0.05. Morgan (2003) considered sample size re-estimation in group
sequential trials with the goal of extending the idea for use in group-sequential response-
adaptive designs for Gaussian data. Morgan compared the performance of techniques similar

to the ones described by Denne and Jennison (2000) to conclude through simulation that a
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design using updated variance estimates at each stage has better power and sample size

properties.

Another approach to clinical trial monitoring with nuisance parameter based sample size
adjustment is the information based approach described by Mehta and Tsiatis (2001) or
Tsiatis (2006). Since statistical precision is determined by the amount of statistical
information, a study should continue until the needed statistical information level is reached.
At this point the study will closely achieve the desired statistical power. Mehta and Tsiatis
described the method for use within group sequential designs that allow for early stopping
while updating the estimated maximum sample size at each analysis stage as nuisance
parameter estimates are updated. Group sequential stopping bounds along with an inflation
factor on needed information (and hence needed sample size) due to multiple testing were
advocated. They used standardized test statistics with critical boundary determination based
on the error spending technique used. Large samples are needed for this design in order to
avoid type I error rate inflation caused by asymptotic properties in the distribution of the test
statistics and boundary point calculations as well as from the of a downwardly biased
variance estimate in study stages following the first. This is the same cause of type I error
rate inflation found in unadjusted internal pilot studies; see Proschan and Wittes (2000) or

Miller (2005) for details.

Most work has dealt only with the one or two group ¢-test scenario. This work
represents an intersection with the topics of this dissertation. Many of the results promote
general techniques for group sequential designs and are typically based on underlying large
sample assumptions to account for designs adjustments made in the trials. Group sequential
designs typically have a primary goal of reducing average sample size by frequently
monitoring studies in order to stop if effect sizes are larger or smaller than planned. Internal
pilots, typically only needing one interim analysis, attempt to check and correct for possible

misspecification of nuisance parameters in order to secure power levels for a study. Possible
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sample size reductions are a secondary benefit. The primary focus of this dissertation is
maintaining power by updating sample size needs, while incorporating the benefits of group

sequential theory by allowing the possibility of early stopping at the interim stage.

1.3 SUMMARY

Many prospective research studies and even clinical trials are not large enough for
asymptotic properties to hold. Researchers in small sample continuous outcome settings
need the ability to control type I error rate and maintain power over possible values of the
error variance, a nuisance parameter, while minimizing sample size needs. These small
sample settings can be one or two group studies (¢-tests), multiple group comparisons, or
other designs. Distributional knowledge and effective protocols in these settings would be

valuable to study designers.

Currently methods do not exist for exact theory calculations of power, type I error rate,
and expected sample size in small samples for an internal pilot design with interim analysis
for early stopping. These calculations could greatly increase the efficiency of study planning
through fast direct calculation. Useful and accurate sample size re-estimation and critical
value selection criteria that can control the type I error rate while maintaining power and
minimizing expected sample size are also unclear in the small sample settings, with most

methods being asymptotic results.

For the two-stage IPIA method, exact theory in the GLUM setting with Gaussian errors
and fixed predictors are derived. The theory may be applied accurately in small sample
settings and a wide range of study designs within the GLUM framework. Logically and
computationally, this method collapses to the unadjusted IP design detailed in Coffey and
Muller (1999) for early stopping regions set to the null space as well as to a two-stage group

sequential test when sample size re-estimation not allowed.
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CHAPTER 2. INTERNAL PILOT WITH INTERIM
ANALYSIS FOR SINGLE DEGREE OF FREEDOM
HYPOTHESIS TESTS

SUMMARY

In this chapter, I introduce the proposed model of an internal pilot with interim analysis
(IPIA) design, discuss sample size re-estimation technique, and derive the exact
distributional theory needed for planning studies with single degree of freedom tests. The
exact distributional theory allows computation of power, type I error rate, and expected
sample size for one and two group comparisons with unknown, common variances and other
single degree of freedom hypothesis univariate linear model study designs with fixed
predictors and Gaussian errors. Examples compare study characteristics with a fixed sample
design as well as with the internal pilot and two-stage group sequential designs, all of which

can be seen as special cases within the IPIA framework.
2.1 INTRODUCTION

2.1.1 Motivation

When planning clinical trials and other studies, researchers would like to ensure they
have an appropriate sample size to detect an effect of interest for a given target type I error
rate and power. Researchers and sponsors would also like to have the ability to reach early
decisions when hypothesis outcomes are clear. Often times studies consist of one or two
group effect size comparisons. Much of the current results promote general techniques for
group sequential type designs and are typically based on underlying large sample

assumptions to account for design adjustments made during the trials.



Group sequential designs have a primary goal of reducing average sample size by
frequently monitoring studies in order to stop early if effect sizes are larger or smaller than
planned. Internal pilots, typically only needing one interim power analysis, have the
alternative goal of checking and correcting for possible misspecification of nuisance
parameters in order to secure power levels for a study. Possible sample size reductions are a
secondary benefit. By developing procedures and theory for two-stage designs with interim
analyses, I focus primarily on the goal of maintaining power by updating sample size needs,
while also incorporating the benefits early stopping procedures. Exact distributional results
with computable formulae for power and sample size would allow researchers to accurately
explore properties for such designs, even in small samples, before undertaking a study. The
exact theory would allow for efficient study planning without the need for simulations, even

in small sample studies.

The importance of small sample theory is explicitly highlighted within the NIH
Roadmap (Clinical and Translational Science Awards, RFA-RM-07-002 U54). Also, while
large sample clinical trials get a lot of attention, they are often based on numerous small
sample studies. The results of this chapter can be used to examine exact properties for many
study designs in a two-stage framework, including the information based approach. The use
of the exact theory can facilitate studying and comparing properties of new methods in order
to ascertain ones with the most desirable features for a particular study. For example, a new
method for determining boundary points could lead to a more unbiased testing procedure in
small sample studies. The use of the exact theory for procedure comparison will be explored

in Chapter 3.

2.1.2 Literature Review

For a prospective study with Gaussian outcomes, an internal pilot (IP) design allows for
an update to sample size based on an error variance estimate taken at an interim stage. While

studies may be lengthened or shortened from their pre-planned size by this estimate, the main
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objective of an internal pilot design is to ensure that the study is sufficiently powered to
detect an effect size of interest. Group sequential (GS) methods, on the other hand, are
designed to allow for a possible reduction in pre-planned sample size due to early stopping
for efficacy or futility if effect sizes deviate substantially from anticipated magnitudes.
Current research is looking at ways to simultaneously obtain the benefits of both approaches,
i.e., combine the early stopping benefits of GS methods with sample size re-estimation
methods (such as IPs) protecting against misspecification of nuisance parameters. There
have been a number of papers considering procedures for combining GS and IP studies to

simultaneously obtain their respective benefits.

Stein's (1945) two-stage design, which used variance information only from the first
stage, was a strong early influence to sample size re-estimation in sequential procedures.
Baker (1950) and Hall (1962) introduced similar sequential tests based on the sequential
probability ratio test (SPRT; Wald, 1947) incorporating information about the variance using
a single sample estimate. Arghami and Billard (1992) define a partial sequential procedure
also based on the SPRT and a Stein-like variance estimate. Hochberg and Marcus (1983)
describe a three-stage test for a one-sided, two-group comparison using variance information
from a first sample to determine sample sizes for two testing stages. All of these procedure
have in common the disadvantage of only incorporating early stage variance information into

the test statistics.

Facey (1992) described a Phase 2 trial design using the triangular test stopping bounds
(Whitehead and Straton, 1983). She compared the use of powering to absolute or
standardized treatment differences. Type I error rate inflation was high for the absolute
differences and more reasonable for the standardized differences in the cases considered
(maximum type I error rate of 0.059 for target 0.05). Gould and Shih (1998) used a blinded
variance estimate from the initial stage to fix future sample sizes. The procedure only allows

for sample size increases to the group sequential procedure if the variance estimate is at least
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a constant factor larger than the planning value (increase sample size if 5> > Ao? with

A = 1.33, for example). In this case, they explore a few methods such as redistributing the
sample sizes to match the originally planned information times, or allowing them to vary in
pre-planned or unplanned manners. They concluded through simulation, with a small
fraction of error dedicated to the first testing stage, that the procedure works adequately with
two testing stages. Whitehead et al. (2001) explored through simulation a method similar to
the one described by Gould and Shih (1998) for comparing effects from two groups by
updating estimates of the standardized difference, 61/ o2, where ¢, is the effect of interest and
o? the common variance. The study is first planned to detect §; = &,/ 08, which can then be
revised by repowering to detect §; = 6, /G2 using an estimate of o> from an interim stage. In
the paper, the authors assert that decision making will be generally flexible and up to a
Steering Committee, but for simulation purposes they created a possible strict study protocol.
They examined the use of both unblinded and blinded variance estimators and concluded
similar results. The results were generally of a large sample nature (smallest average sample
scenario was n = 92). Despite the larger samples, type I error rate inflation occurred in
simulations they ran with or without sample size re-estimation (up to 0.032 for target of
0.025). The authors noted that asymptotic results underlying sequential theory only become

accurate for very large samples.

Denne and Jennison (2000) proposed a group sequential ¢-test with sample size update
based on the variance for a two-sided single group test of mean with early stopping to reject
the null. They first described a test based only on a Stein-like first variance estimate. They
used this method as a stepping stone to define a test procedure where the maximum sample
size is recalculated at each stage with updated variance estimates and remaining sample split
based on the pre-planned number of testing stages. For the procedure, testing is not done at
the first stage if the originally planned first stage testing fraction is not met. Thus, a two

testing stage procedure could have three (or more) stages in total. In the calculations for
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critical values and sample size adjustments, they used a type I error rate spending function
and an ad hoc degree of freedom correction to reflect the uncertainty of the variance
estimates used. The "effective" number of degrees of freedom at stage ¢ is defined as

ny + €(n; —ny) — 1 for 0 < e < 1 and n; the first stage sample size. Based on calculations
for several examples, ¢ = 1/4 is recommended to approximately achieve target error rates.
For tests with two and five stages, Denne and Jennison showed by a combination of
simulation and numerical integration that the procedure works reasonably well, especially
when n; is large (say > 20). For the two-stage test with low first stage sample (n; = 5)
type I error rate inflation in their example can occur with a worst case considered of 0.062

for a target rate of 0.05.

Morgan (2003) considered sample size re-estimation in group sequential trials with the
goal of extending the idea for use in group-sequential response-adaptive designs for Gaussian
data. Morgan compared the performance of similar techniques to those described by Denne
and Jennison (2000) and concluded through simulation that the use of updated variance

estimates at each stage had beneficial power and sample size properties.

Another approach to clinical trial monitoring with nuisance parameter based sample size
adjustment is the information based approach described by Mehta and Tsiatis (2001) or
Tsiatis (2006). Since statistical precision is determined by the amount of statistical
information, a study should continue until the needed statistical information level is reached.
At this point the study will closely achieve the desired statistical power. Mehta and Tsiatis
described the method for use within group sequential designs that allow for early stopping
while updating the estimated maximum sample size at each analysis stage as nuisance
parameter estimates are updated. Group sequential stopping bounds along with an inflation
factor on needed information (and hence needed sample size) due to multiple testing were
advocated. They used standardized test statistics with critical boundary determination based

on the error spending technique used.
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Large samples are needed for this design in order to avoid type I error rate inflation
caused by asymptotic properties in the distribution of the test statistics and boundary point
calculations. Another cause of type I error rate inflation in small samples for this design
comes from the use of a downwardly biased variance estimate in study stages following the
first. This is the same cause of type I error rate inflation found in unadjusted internal pilot

studies; see Proschan and Wittes (2000) or Miller (2005) for details.
2.2 THE IPIA MODEL AND PROPERTIES

2.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,
Chapter 1). Anr X 1 vector (always a column) is written a, and an r X ¢ matrix is written
A = {a;}, with transpose A’. For full rank matrix A, the inverse of the transpose equals
the transpose of the inverse and I will use A~* = (A’) ' = (A1), 1, always represents an
r x 1 vector of 1's and Dg(x) represents a diagonal matrix with (j, j) element z;.
Furthermore, define I, as the r x r identity matrix with I, = Dg(1,). The direct

(Kronecker) product is defined as A ® B = {a;;B}.

Detailed information about all random variables discussed in this paper can be found in
Johnson et al. (1994, 1995). The vector  ~ N, (u, X) indicates that random vector z
(n x 1) has a vector (multivariate) Gaussian distribution with mean vector g and covariance
matrix 3. For X less than full rank, « has singular vector Gaussian distribution, written as
x ~ SN, (p, ). Writing X ~ x?(v,w) indicates that X follows a non-central chi-square
distribution, with v degrees of freedom and noncentrality w. Likewise, writing
X ~ F(vy,15,w) indicates that X follows a noncentral F' distribution with numerator
degrees of freedom v, denominator degrees of freedom v, and noncentrality w. Writing
x?(v) or F(vy, 1) implies w = 0. More generally, writing X ~ x%(v;t,ty) indicates that
X follows a doubly-truncated central chi-square distribution with v degrees of freedom,

truncated to the interval [t1, t;7] (Coffey and Muller, 2000). For random variable U with
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parameters ;. . . Y, indicate the cumulative distribution function (CDF) taken at u as
Fy(u;7y...7v%). As a special case, let ®(z) indicate the CDF for the Gaussian(0,1)
distribution, taken at z. Also Fy;'(a;7i...7x) indicates the o quantile of a random variable

U with parameters ;. .. .

2.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) models discussed in this paper can be
viewed as generalizations of the two-stage internal pilot model in the GLUM framework as
introduced in Coffey and Muller (1999), which includes the one and two sample ¢-tests as
special cases. However, due to the possibility of early stopping, notational adaptations are
necessary. In an IP design, N (N4 min < Nt < 1y max) 1s the random final sample size that
is calculated using G2, the variance estimate from the interim sample. For the IPIA model,
Ni (n1 < Ny < 1y max) 1s also a random variable based on b'\% and fully determines the
variable No = N, — n;. However, due to the possibility of early stopping, it is not
necessarily the final sample size for the study. Let random variable V,, be the final sample
size used for the study. Then N,, = ny + N, - Z(continue) with Z an event indicator equal to

1 if a study is continued at the first stage. So

N, = { n, if study stopped after first stage @1

N, otherwise

The design leads to interest in different but intimately connected models. The combined

model for the final analysis may be written as

Y+ = X8 + e (2.2)
Ny x1 Ny xqgx1 Ny x1
or
Y . X><1 e .
ny X n q ny X
w» |7 x B e | (2.3)
N2 x 1 N2 X q NQ x 1
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with partitioning corresponding to the fixed n; and random N, observations in the first and
second samples, respectively. The second sample of size Ny = N, — ny shown above is
only taken if study continuation is determined from the first sample. Also, the special case of
N, = ny will cause the full model to collapse to the interim model. Model components
include random observed y (/V; X 1) (independent sampling units as rows), design matrix
of fixed form X, and unobserved e, such that e; ~ Ny, (0,0%Iy,). For computational
convenience, random values of sample size, N, = n; + Ny, increase only in multiples of a
replication factor, m. For example, a balanced 2-group study design would have m = 2. For
some X (m X q), assume X = 15, ® X, and X5 = 1, ® X, with fixed k; and random
K, the number of replications in the first and second samples, respectively. Consequently,
the columns of X; and X5 span the same space (when K5 > 0) and hence define

r = rank(X;) = rank(X,) = rank(X ). In order to simplify computations and some
discussions, attention will usually be restricted to a full rank design, that is rank(X) = q.
The principles of linearly equivalent models allow the restriction without meaningful loss of
generality.

The test of interest is Hy : @ = 6, with C a fixed a x g contrast matrix and 8 = C'3.
Without loss of generality I assume 6y = 0 (see Lemma A.1). For a ‘scientifically
important” effect of interest (@ = 6;), I seek a design that ensures a target type I error rate
() with sample size appropriate to achieve target power (P;).

Throughout, subscript s € {1, +} indicates a value for either the model based on the
internal pilot (first) sample or the total combined sample (conditioned on N = n.). Error
degrees of freedom are v; = ns — r. [ use functional notation in many places to emphasize

the dependence on n,. For example, with the 'hat' matrix H defined as

H, = X,(X.X,)"' X, , (2.4)

then,
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0(n,) = C(X.X,) ' XLy, (2.5)
and

5’ (ns) = yls(Ins — H,)y,/vs (2.6)

represent the unadjusted estimates of @ and o for the model based on sample s. Similarly,

define 'middle' matrix M, as

M, =C(XX,) 'C’ 2.7)
and noncentrality ¢ as
S =M '6 . (2.8)
Then
b(n.) = 8(n.) M '8(n.) (2.9)

is the observed hypothesis sum of squares for the model based on sample s. Hence, the

unadjusted test statistics for the two stages are defined as

F(ny) = [8(n)/a] /3%(ns) - (2.10)

When there is no confusion, the functional aspects of the estimators will be implied with a
subscript, e.g., @(n,) is written 8, and F (n,) is written F, = (751 / a) /3. 1 consider only
testable hypotheses, which require full rank C as well as C(X. X)) (X.X;) = C. Table

2.1 summarizes relevant dimensions, Table 2.2 summarizes parameters and constants, and
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Table 2.3 summarizes design factors for the study.

Table 2.1: Dimensions

Symbol Definition

ny Sample size, first stage

N,  Total random sample size if study continued at first stage
Ny Random second stage sample size, N, — n;

N,  Total random sample size used in study

q Number of predictors and columns in X,

m Replication factor, number of rows in X

r rank(X)), rank(X ), rank(X ), and rank(X5) when Ny > 0
Vs Errordf =ns —r, s € {1,+}

a Number of rows in C, hypothesis df for test statistics

k1 Number of replications in first stage, n /m

Ky Number of replications in second stage, random, Ny /m

Table 2.2: Parameters and constants

Symbol Size Definition and Properties
X m X q Fixed, known, base design matrix
X ny X q Fixed, known, first stage design matrix
X, N, x q Final design matrix
X5 Ny x q  Stage 2 design matrix
B qx1 Primary parameters
C axq Between-subject contrast matrix
0=0Cp ax1 Secondary parameters
6, ax1 Null hypothesis values (can set to 0 WOLOG)
M, =C(X.X,) 'C a xa  'Middle' matrix for stage s
H =X (X{Xl)_lX{ ny X ny  'Hat' matrix for first stage
H =X, (X’+X+)_1X’+ N, x N, 'Hat' matrix for second stage
o? 1x1 True variance
bs=60'M; 10 1x1 Unscaled noncentrality for stage s
A\ = 6,/0? 1x1 scaled noncentrality for stage s
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Table 2.3: Internal pilot with interim analysis notation

Symbol Definition
Design Parameters oy Target type I error rate
P, Target power
6, 'Scientifically Important' value of @
ol Variance value used for planning
no Planned sample size for oy, P, 6, 03
fi(ny), fu(ny), f+(ny) Critical values determined by N
Sample Size s Proportion of ny used in internal pilot
Allocation ny = mny Internal pilot sample size
T+ max Maximum size of final sample
Unknown Parameter v = o?/o} Ratio of true to planning variances

2.2.3 IPIA Properties
This section presents model properties needed for future proofs and consideration.

Lemma 2.1 For the model in equation 2.3 interpreted as a fixed n, design, the following

holds.

The following n; X n, matrices are symmetric and idempotent, for any testable

hypothesis, and have ranks of a, (n, — r), (n; — r) and ny:

A, = X, (X' x,)'Clcx,x,)'ccx,.x,)'x, (2.11)

-1
A = L, -X.(X. X)X, (2.12)
_ , —1 5~/
A, = |In—XXX) X3 0 (2.13)
0 OngX’ng
Aep = A —Aa. @14)
Furthermore
Ap Ay = Ap Ao = Ay Ay = AuA, = 0. (2.15)

See Coffey and Muller (1999) for details.
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Extending the notation gives

~1
Xl(Xin)_tC’[C(Xin)_lc”] c(X\X,)'X, 0

Ap = (2.16)
0
Ny XNy
Or, equivalently, let X, = { 0X1 ] = {1]“6@ XO} which gives
Mo Xq Mo Xq
-1
An = X (X1X) C'|oxix) o oxix) X, 2.17)

In turn, Ay, for s € {1, + }, is idempotent, symmetric, and rank a (testable hypothesis).
Hence one can define V;,; of dimension n x a with

Ahs — .‘/}LS‘/]'L/S (218)

and

‘/h/s‘/;LS — I(L . (219)

Also, since A., = A.; — A, is idempotent, symmetric, and rank n,, one can define V;,, of

dimension n X no with

Aep - ‘/é'p‘/;lp (220)
and
VoV =1, . 2.21)

Since it is symmetric and rank a, the matrix

M, = C(X)X,) 'C’ (2.22)

can be written as Fy Fy, for Fy of dimension a x a and rank a. This in turn implies that

M;'=F;'F;! . (2.23)

For ks = n,/m the number of replications at stage s, the fact that M, = k' M, implies that

M ' =kF,'F;" . (2.24)
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Also X; = 1, ® X, implies that
XX, =k XX .

From equation 2.18, A, = V},,V;

!
The matrices V}, . and V},; can now be derived as follows:
Ay =X (X, X)) 'OMIC(XL X)X,
= X, (k. X)Xo) 'C'M'C(k, X, X)) ' X,
= k%ky X (X Xo) 'C'Fy ' Fy 'O (X X)X
— k' X (X, X)) 'C'F,'Fy ' C(X,X,) ' X!,
— k! X+(X()X0)‘1C/Fo—t] [Fo—lc(X()Xo)‘1X’+

implies that

Vi =k 'PX (X)X, 'C'Fy
and

-1
Ay = X(x1x) "0 [oxix) e oxix) X,
= k' X1 (X0 X0) | C'Fy ' Fy ' C(X X)X,
= k[ X0 (X X0) 'Ry [ By o(X o) X

implies that
_-1/2 / =1~ gt
Vi =k, " X1.(XXy) C'F" .

Using the result

X

XX = X1 x|

] _ XX, XX |

the following is shown true:
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with V},; of dimension n, X a and V}/,V},s =

(2.25)

1,.

(2.26)

(2.27)

(2.28)

(2.29)
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Vh/+Vhl
= (kiky) P ES O(XX0) 1X’+} [Xl*(X(’)XO)_lc"FO‘t]
= (ki/ks) Py C(X0X0) (X0 X0) (X, X)) C'Fy !
= (m/ny) *Fy'C (X4 Xo) ' C'Fy!
= (ny/n )P F My Fy
= (n1/ny)
= (1 /n+)

1/n

VR RFF!
1/2

Also, directly from symmetry,

ViVie = Vi Via = (m/ny)'?1,

Since Ay Acp = Vi ViV, V), = 0, the following are true:

h/+‘/ep - 0 .
and
i Vep=0and VV;,. =0 .
Similarly, since A.,A.1 = V.,V V — 0, the following are true:
‘/th‘/cp =0
and
V. Viy =0 .
Also,
vV, =V, A,
- ‘/;IP(A Ael)
- ‘/G/PAC+ - ‘/e/pAel
= ‘/e/pAe—&—

which implies that
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(2.34)

(2.35)
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‘/c,pll’-‘r = V@/pAe+M+
= ‘/e/p(I+ - H,)X.p
= ‘/e/p(X+ - H.X.)B
=V,08
=0.

Also,

(In+ - Aep - Ah-i—)‘/hl
- [In+ - (Ae+ - Ael) - Ah—i—]‘fhl
= [T, — Acr — Aps|Vin
= [Imr - (In+ - H+) - Ah+]WLl
= (Hy — Ap)Via
= H—Q—WLI - Ah-i—%Ll
= k' X (X0 X)X Via = (k /Ky )P Viy

= k'R X (X X)) O R - kTR P X (X X,) ' CFy !

=0 .

Define the following:
Yy = Viyr  axngxl
Yep = ‘/.e;ger ng X ny X1

ynr = Vi,yy axng x1.

With
Vi
‘/e/p In+[‘/hl ‘/ep ‘/h-i-]
(i
[ I, hll‘/ep Vii Vi
- ‘/;/p‘/hl In2 ‘/e/p‘/;L—i-
_Vh/+Vhl Vh,+Vep 1,
1 ViVey (m/n)'I,
=| V.V I, 0
| (n/n )1, 0 I,
and
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(2.40)
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Vhll M+ Hh1
Vs | =10 , (2.44)

/
Vit it | (21n)x1

the following vector can be defined:

Vhlll Yn1
Yn = ‘/ep Y+ = Yep . (245)
W+ Ynh+
This is then distributed as
Keh1 1, ViiVep (”1/”+)1/2Ia
yn ~ (S)Noasn, | | 0 |0 Vi,V I, 0 . (2.46)
i (m/n)'?L, 0 1,
Temporarily defining
Sy T fo [ViiVey (m/n)'"L]
{211 212}202 |ZA [Inz 0] . (247)
21 22 12
(n1/n) 1, 0 I

using the properties in equation 2.39 one can write the relation:

Yn1 = ‘/h/l (Aep + Ah+)y+ + V;l/l (In+ - Aep - Ah+)y+
=Vii(Agp + A )y +0
=V Ayy: + Vi Anyy
= Vi Veplyep + Vit Vir it

2.48
= W(l‘/epycp + (nl/n+)1/2yh+ ( )

with y.,, independent of g, and both distributed as described in equation 2.46. That is, the
relation in equation 2.48 holds for independent y,,, and y;, and

Yep ~ an (07 UQInz) (2.49)

Yn+ ~ No(pne, 0°1L) (2.50)
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Additionally,

pi = Vi gy
= [Fo—lc(xgxo)‘lxg]xm

=k Yk, [Fo—lo(xgxo)‘l(xgxo)} 8

=k’ F;'0
= (n./m)"*F;'0 (2.51)
and similarly,
pii = (n1/m)"*F;'6 . (2.52)

These then imply the useful relation

Hh1 = (nl/n+)1/2/-l'h+ . (2.53)

For E, = v,6% /0%, and E, = E, — E; with s € {1, +}, a key result needed for the
results of this chapter is the distribution of E,, conditional on V}; V,,y., for the special case

of a = 1. The following properties will help describe this distribution.

‘/h/lAep‘/hl - ‘/hllAe+‘/hl
= Wl(Im - H+)Vh1
=1, — ‘/h/lH-i-V;Ll

— 1, — k! Fo—lc(xgxo)‘l(xl*)/} H, [Xl*(X()XO)‘lc’FU—t

=I,— (ki /k,)F;'C(X,X,) 'C'F!

=1, — (ki /k ) F, ' FyFyF"

=1, - (kl/k+)Ia

= (na/n)1, . (2.54)
Of course for a = 1, this result becomes v),; A.,v51 = ng/n,. Using the results from

equations 2.49 and 2.54, the distribution of V}/; V., ., can then be stated:

Vi Vislep ~ NL [0, (na/ny )0’ L) (2.55)

Or, fora =1,

V1 Veplep ~ N[0, (na/ny)o?] (2.56)
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A useful result is the distribution of ., conditional on V}; V,,y., for the a = 1 case.

For a = 1, their joint distribution is

)L e oS, o)
{U§L1w1>yep} ['U%,lvgp Yep (5)Naa1 0] 'v§11V6p (na/my)] )"
(2.57)

Conditional Gaussian theory (see Muller and Stewart, 2006; Chapter 8) then implies for
a =1, pen = (ny/n2)toVun1, and Bej, = 0 [I,, — (ny /1) V), Ap1 V., |, the distribution
of y,,, conditional on v}, V;, ., is

Yeh = y6p|('v;zl‘/6py€p =) ~ (S)No,(Ke.ns Ben) - (2.58)

For E), = y.,Yep/ o2, 1 can now state in a corollary the distribution of E,, conditional on

V| Vepyep for the special case of a = 1.

Corollary 2.1 Fora = 1and £, = y;, Y,/ o, the distribution of E,, conditional on
v%l‘/;,pyep = tO is

Ep|('v;zl‘/epyep =19) = Xp+ (n+/n2)(t0/0)2 (2.59)

where X, is a central x? distributed variable with ny — 1 degrees of freedom.

A proof of Corollary 2.1 is in Appendix A.
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2.3 THE IPIA PROCEDURE AND PROPERTIES

Table 2.4: General procedure

Step 1a : Specify oy, P;, X, hypotheses, 6, and 0(2)
1b : Solve for first stage sample size ()
Step 2 : Collect first n; observations
Step 3 : Solve for Ny = n, critical values f;(n), fu(ny), and fi(ny), and F}
Step 4 : Decide:
If F; < f; then STOP, ACCEPT H,
If F7 > f, then STOP, REJECT H,
If f; < Fy < f, then take ny = n. — n; additional observations
Step 5 : Solve for F',
Step 6 : Decide:
If I\ < f, then ACCEPT H,
If I\ > f. then REJECT H,

Table 2.4 outlines the general procedure for the IPIA model. The order of the steps

matters in specifying the distributions. The above sequence seems the most sensible.

The value of the internal pilot sample size, n{, should be made at the design stage of the
study. The choice is important since lower values give more uncertain estimates of o> while
higher values reduce possible savings in sample size. For traditional internal pilot designs,
Birkett and Day (1994) recommended at least 20 degrees of freedom in the first stage
sample; however, Coffey and Muller (1999) showed that this scenario can still produce type I
error rate inflation depending on the design and noted the importance of examining
properties of specific study designs. A default in literature seems to be taking a designated
fraction of the sample size from fixed sample equations using the best guess for the variance
at the planning stage, i.e., 7 - ny for 0 < m < 1 and n( determined from o2. A default choice
for 7 seems to be 1/2; that is, the size of the first sample is half of the fixed sample study
sample size based on 0. For this chapter, a choice of 7 as close to 1/2 as possible will be
chosen. The effect of the initial sample size choice in the IPIA design will be considered as a

factor in examples in Chapter 3.
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Calculation of the three critical values for the study, f;(n), fu(n:),and fy(n. ), must
be done following rules pre-specified in the study protocol. The critical values may depend
on n., the realized value of NV, ; however, when it is clear, they will be referred to as f;,
fu,and f,. Ideally, they should be chosen in a way that controls the type I error rate while
having good power and expected sample size properties. The theory developed here
optionally allows for stopping under the null at the interim analysis if £} < f;, where f; is
the first stage lower critical value. This can cause a great reduction in expected sample size
when the effect size is near the null value by allowing the study to stop for a "lost cause". If
no early stopping ability under the null is desired, then f; = 0 for all n; # n;. In all cases
fi = fu when n, = n;, which guarantees stopping for acceptance or rejection of the null.
More detailed exploration and comparison of selection methods will be undertaken in

Chapter 3 of this dissertation.

The sample size re-estimation rule will determine the distribution of NV,.. It is an
important consideration in the design affecting type I error rate, power, and expected sample
size. Like internal pilot designs, the sample size for IPIA designs is determined by using the
updated variance estimate at the interim stage to recalculate the estimated sample size need
to achieve target power in the final test. The procedure takes advantage of the monotone
relationship between continuous 5% and discrete N, . In order to determine the distribution
of sample size, one solves the cumulative distribution function for possible values of NV,
that is Pr{ N, < n}, by determining cut-off points based on the first stage variance estimate.
For a particular value n, of random N, one solves for scaled noncentrality A(n. ) that
satisfies

P, =1 — F|fai; a, A(ng)] (2.60)

or

P=1 _FF[fCrit;a‘7V+7)\<n+>] (261)

where feit = FX’Ql(l — ay;a) or Fpl(1 — ay; a, v, ) depending on whether or not large
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sample distributional assumptions are used. The scaled noncentrality A(n, ) here represents
the minimum value that would lead to a final sample size of n.. Since the effect of interest,
61, is used at the planning stage, for §(n,.) = 8] M 10, the following hold:

A(ny) = 6(ny)/o*(ny) (2.62)
or

o*(ny) = 6(ny)/A(ny). (2.63)

Here, 0%(n..) designates the largest value of 5% that would produce N, = n.. Therefore,
since 1152 ~ a2W for W ~ x2(11),

Pr{N. < n,} =Pr{6] < o*(ny)}
=Pr{W < wvi0*(ny)/0*}
=Pr{W < v1é(n.)/[0*A(ns)] }. (2.64)

The discreteness of sample size implies

Pr{N, =n,} =Pr{N; <n, } —Pr{N, <n,—m}. (2.65)

When restrictions are given for minimum or maximum sample size, the tail probabilities are

collapsed into the smallest or largest allowable values, respectively.

A key result of this process is the determination of cut-off points that determine a range
into which continuous 2 must have fallen in order for a given final sample size to occur.

Define ¢;(n.) and go(n) to be the values such that

Ny =n; & qng) <ngi/o’ < g(n), (2.66)

which in turn implies that

Pr{N, =n;} = Flg(ni);n] = Fela(ng); nl. (2.67)

The cut off points determine the probabilities for discrete values of N and hence describe

the variable's distribution. When it is unambiguous, ¢; and g¢» are used for ¢; (n, ) and

q2(ny).
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One small difference between this technique and that used for sample size calculations
in group sequential methods is the lack of the sample size inflation factor used to account for
the drop in power from multiple looks. While it's use could be integrated into the method
without much difficulty, it would have very little effect on this two-stage design. For
example, using O'Brien-Fleming bounds for P, = 0.9 and «; = 0.05 calls for a sample size
inflation factor of 1.007 (Jennison and Turnbull, 2000; Chapter 2). Additionally, changing
the P, and oy does not change this factor much. Due to its lack of significance, I decided to

simplify the method by leaving it out for now; it can always be added if deemed important.

2.4 KEY ANALYTIC RESULTS FOR PROCEDURE

The results in this paper are developed to test H : 6 = 0 with § = C 3 for the case
where contrast matrix C' has only one row, namely, a = 1. Model designs falling under this
restriction include one and two group mean comparisons, tests for interaction, and other

designs of interest. Key results in this section will be specific to this design restriction.

In order to compute power (and hence, type I error rate) for the study design, a joint
distribution of the two stage test statistics if necessary. Since critical values and denominator
degrees of freedom depend on sample sizes, I derive the joint CDF conditional on an N,
value, or Fr, p v, (f1, f+). By using the law of total probability and summing over possible
values, this result leads to calculation of unconditional power.

Conditional on N, E; = 1157/0? ~ x2[v1;¢1(n4 ), g2(n )] (Coffey & Muller, 1999).
The following theorem gives a convenient expression for the conditional joint CDF of the test

statistics for the a = 1 case.

Theorem 2.1 Related results and definitions can be found in section 2.2.3. Define

b(te,tn) = 13/(0%C1) — te, d(ty) = nst2/ (n202), h(te,tn) = o(eite)'* — (na/ny)t,
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l(te,ty) = —U(C1t@)1/2 — (nl/n+)1/2th, and p,, = F\2(q2; 1) — F\2(qi;11). Fora =1,
FF1F+|N+ f17f+

h(tevth)
= p;! / Folten / P (s uns s 0%) /l Flty: 0, (nafms)o?)

(tmth)

x {1 = Fa[b(te, ty) — d(t,):ny — 1] }dt,dtydt, (2.68)

A proof of Theorem 2.1 is in Appendix A.

A needed result when early futility stopping is allowed follows directly from Theorem

2.1 as follows

Pri{fi < FI < fu, Fy < fiNy =ny} = Fp g v, (fu, f+) = Fropgn. (ft, f4)-

(2.69)
A special case distribution is the condition joint distribution of the test statistics when
ne = 1. This result would be needed for single group hypothesis tests and is a simplification
of Theorem 2.1.
Theorem 2.2. Related results and definitions can be found in section 2.2.3. Fora =1

and ny = 1, define b(t.) = n,ct. and pgj = F\2(qo; 1) — F\2(qu1; 1), then
Fp v, (f15 f+)

1 Q2 b(t.)
:p;+ fXQ(te;V1>/0 fxz(tp;n2)
a1
X Flo{min[(b(t.) — t,)/n1, c4(te +tp)], 1, Ay Jdtpdt. (2.70)

A proof of Theorem 2.2 is in Appendix A.

Another distribution important to power and expected size calculations is the CDF of
the first test statistic, conditional on N, i.e., Fir,n, (f1). This result is not new and can be
found in Coffey and Muller (1999) who considered it for use in internal pilots for the case of
N, = ny. In the context of the IPIA model it has greater importance due to early stopping
possibilities and is presented here to use in the forthcoming equations for power and

expected sample size.
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Theorem 2.3 The conditional CDF of the first test statistic can be written

Fap(f) = [ Frelatia, M) fehin)
)=
i @ FXQ(Q%VI)_FX?(Ql;Vl)

dt; 2.71)

A proof of Theorem 2.3 is in Appendix A.
The following corollary adapts Theorem 2.3 to solve for the probability of the test
continuing to the second stage conditional on Ny = n when futility stopping is possible.
Corollary 2.2

Pr{fl <P < fu|N, = n+}

_ /[D [F\2(cutisa, A1) — Fe(ati;a, A1) fre(t; vn)
G FXZ(QQ;Vl)_FXQ(QUVl)

dt (2.72)

The proof is similar to proof of Theorem 2.3, in Appendix A.

The above results can then be used to calculate exact expressions for the power, type [
error rate (power under the null hypothesis), and expected sample size in the study. The
values change with design parameters and are valuable knowledge in study planning. The

following theorem gives the formula for unconditional power.

Theorem 2.4 An expression for unconditional power, P, can be written

P,=1- Z [sz(QQ; Vl) — FX2(QI§ Vl)]{FF1|N+(fl(n+)) +
{Ny=ny}

Prlfini) € Fi < funa), i < fon)| N =]} o @73)
A proof of Theorem 2.4 is in Appendix A.

The results in this section can also be applied to calculate an expected sample size

formula for a study design in the following form.

Theorem 2.5 Let N,, = total sample size taken in study, that is,

n;  if study stopped after first stage
N, = :
N,  otherwise
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then

E(Ny) =n1 + Z no[F\2(q2; 1) — Fye(qi; Vl)]Pr[fl < F < fy
{Ni=n.}

Ny = n+]

(2.74)

A proof of Theorem 2.5 is in Appendix A.
2.5 EXAMPLES

2.5.1 Motivation for Examples

Two example study designs are considered in this chapter and revisited in Chapter 3,
where design strategies are evaluated. The designs are both two group comparisons, but
have different sample size needs. There are three main purposes of the examples in this
chapter. First, to compare the numeric results using exact theory to simulations in order to
justify the computational algorithms utilized in calculations and as an additional check on the
accuracy of the theory. Second, to examine the properties of the proposed internal pilot with
interim analysis (IPIA) procedure and how they compare to properties of special cases such
as fixed sample, internal pilot (IP), or two-stage group sequential (GS) procedures. To
facilitate this purpose, I use a naive, but common approach to critical value selection and
study design. Properties to be examined include type I error rate, power, and expected
sample sizes under various scenarios. Finally, a comparison of the two examples will allow

for an illustration of properties and designs that are sensitive to study sample size.

The fixed sample, IP and two-stage GS designs considered for the examples in this
chapter are all special cases within the general IPTA framework introduced. The IP design
does not allow for early stopping at the interim power analysis (special case of IPIA: f; = 0,
fu = o0) and in the design used here, it is assumed that sample size can be reduced from the
pre-planned level (n.4 min = n1). The two-stage GS design, on the other hand, allows for
early stopping at the interim analysis, but does not allow for a change to the preplanned

maximum sample size, or: Pr{ N, = ng} = 1. The fixed sample approach can be seen as a
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special case combining the restrictions of the IP and GS designs (f; = 0, f, = oo, and
Pr{N; = ng} = 1). The IPIA design combines the features of the IP and two-stage GS
designs by allowing for stopping at the interim stage as well as allowing for a change in

maximum sample size used when a study is to be continued.

Table 2.5: Two-stage designs

Early Stopping
Yes No
SSR Yes IPIA Int Pilot

No | Grp Seq Fixed Sample

In addition to stopping at the interim stage for efficacy, both the GS and the IPIA
procedures can have possible early stopping at the interim stage for futility. Hence, they will
be considered here under both scenarios. No futility stopping implies that the lower first
stage critical value, f;, is 0. For futility stopping in this chapter, I will use a simple p-value
cut point of 0.85. In other words, if the p-value for the first stage hypothesis test is greater
than 0.85 then the study will stop and conclude that the alternative hypothesis is not
supported. In reality, this is not an ideal approach since the first stage may contain only a
small fraction of the needed information of the study (especially for high true variance
values) and so may not be very informative in some cases. It is used here for simplicity in

order to portray the characteristics of the procedures.

Critical values used in the examples will be calculated as follows. Critical values for
the fixed sample, group sequential, and IPIA designs will be based on the standard Gaussian
distribution. This is to show the consequences of not accounting for the use of variance
estimates in the test statistics for the small and moderate studies examined. The fixed sample
result using the ¢ distribution will also be included since it will exactly achieve the target
type I error rate. The critical values for the internal pilot design will only be solved with the
unadjusted ¢ distribution since it is the method described by literature. O'Brien-Fleming

stopping rule bounds determined by the design and information fraction at the interim
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analysis will be used for the group sequential and IPIA (early stopping) designs. These
bounds are designed to allow for conservative early stopping while adjusting the final critical

value for type I error rate inflation due to multiple testing.

Due to misalignment of test statistic and critical value distributions and a biased
variance value used in sample size re-estimation designs, the unadjusted selection for a final
critical values will likely cause type I error rate inflation for most designs considered. They
are used here in order to best compare the procedures and also to notice the magnitudes of
such inflations. Strategies that better control the type I error rate and maintain power while
minimizing expected sample size will be considered in Chapter 3 when these examples are

revisited. The importance here is to illustrate design characteristics and comparisons.

In total seven design procedures will be considered: fixed sample (Z and ¢), IP, two-
stage GS with and without futility stopping, and IPIA with and without futility stopping.
Type I error rate, power, and expected sample size will be calculated for each of these
procedures for true variance values determined by v € {0.5, 0.75, 1, 1.5, 2} where
v = 0?/o3. 1 will use the sampling fraction 7 = 0.5 and 1 yax = 00. Since the expected
sample size of procedures with early stopping (GS and IPIA with and without futility
stopping) depends on the true effect size 0, I will calculate values under three conditions:
under the null (¢ = 0), under the alternative of interest (6 = 6;), and under a true effect twice

that of the effect size of interest (6 = 26;).

2.5.2 Computational Methods
All programs for the examples were written in SAS/IML (SAS Institute, 2004). Most of
the computation for the examples utilizes the exact theory developed in this chapter. The
exceptions are the fixed sample and internal pilot designs. The fixed results could be directly
calculated using standard distribution functions. The internal pilot calculations were easily

obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla
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et al., 2007) software package. All other results came from use of the exact theory,

including the two-stage group sequential designs, which are a special case.

Stopping bound computation utilized the SEQSCALE function and the numeric
integrations utilized the QUAD function within SAS/IML. To avoid numerical instability of
the calculated integrals, computation was performed using quantile transformations (Glueck
and Muller, 2001) of the distributions derived in Section 2.4. For illustration, let
p = F\2(t;v). Then the integral transformation using ¢ = Fx_21 (p;v) and dp = f2(t;v)dt
allows for integration using finite bounds with better behaved integrands.

Simulations were conducted for a limited set of cases in order to check the accuracy of
the programming and numerical algorithms, provide an additional check on the analytical
derivations, and to compare the speed of calculation using the two methods. Using a subset
of a dozen cases from both examples over a range of conditions, I conducted simulation with
1,000,000 replications per case. All programs were run using an Intel Xeon 3.2 GHz
processor. For each of the cases considered, the analytically calculated values were within

two standard deviations of the simulated values.

The comparison programs were each run in groups of three cases corresponding to
variance values of ~y € {0.5, 1, 2} with v = 02 /o3. Runs were made under the null
hypothesis (¢ = 0) and assuming the effect of interest (¢ = 6;) for the IPIA design without
futility for both the moderate (Example 2.1, Section 2.5.3) and small sample examples
(Example 2.2, Section 2.5.4) considered in this chapter. Timing results are detailed in Table

2.6 below.

Table 2.6: Simulation and calculation times (minutes)
6 = 0 (null) 0 = 0, (alt)
Sim Calc Sim Calc
Ex. 2.1 176.3 4.6 171.9 7.1
Ex. 2.2 1242 1.8 124.5 2.8
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Clearly from the results above, the analytic calculations using the exact theory are much
faster than the simulations for all cases. While little effort has been made thus far to improve
the computational speed of the programs, the simulations took between 24-70 times more
computation time depending on the case. It is of note that the alternative case results took
longer for the analytical calculations but made little difference in the simulations. This is
most likely due to the various noncentralities that come into play in such circumstances.
Also, for both methods, the timing is larger for the larger design (Example 2.1). The
proportional increase is greater for the analytical results due to the increase in conditional
cases that must be considered and calculated. The timing benefits remain clear however with

the worse case still being over 20 times more efficient.

2.5.3 Example 2.1 Results

The design parameters for Example 2.1 are summarized in Table 2.7.

Table 2.7: Design parameters for Example 2.1

a P 01 o3 ng ny
0.05 09 1 2 86 44

Example 2.1, a study design of moderate size, was considered by Wittes and Brittain (1990)
and Coffey and Muller (1999) in an internal pilot framework. Values are calculated
analytically for type I error rate, power, and expected sample size under the design
conditions described in Table 2.7 for Example 2.1.

Table 2.8: Type I error rates x 100 for Example 2.1

Fixed Group Sequential IPIA
ot Z t IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 53 50 52 5.5 5.4 5.8 5.8
0.75 53 50 54 5.5 54 6.0 6.0
1.00 53 50 53 5.5 54 59 59
1.50 53 50 52 5.5 5.4 5.6 5.4
2.00 53 50 52 5.5 5.4 5.4 5.1

Table 2.8 displays the values for type I error rate for each of the seven designs described

in Section 2.5.1: Fixed sample (Z and ?), IP, two-stage GS with and without futility stopping,
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and IPIA with and without futility stopping. In order to see results as a function of variance,
values are calculated for true variances corresponding to values of v = 0% /02 with
v € {0.5,0.75, 1, 1.5, 2}.

For the fixed sample design, type I error rate is somewhat inflated by a constant amount
across ¥ when the standard Gaussian distribution is used for critical value determination and
is controlled at the target level when the ¢ distribution is used. In the IP design, mild type I
error rate inflation occurs due to downward bias in variance estimate used. The magnitude of
inflation is shown to depend on true variance value. Due to the use of Gaussian critical
values, the GS designs also have type I error rate inflation. The inflation for the GS designs
is constant across y since no sample size re-estimation occurs and noncentrality is zero under
the null. The IPIA designs, which combine early stopping ability with sample size re-
estimation, have moderate type I error rate inflation caused by both variance estimate bias
and the use of Gaussian critical values. For both GS and IPIA, allowing for early stopping
for futility causes a small reduction in the type I error rate. For this example, the magnitude
of type I error rate is comparable between the Fixed, IP, and GS methods and the IPIA
method has an somewhat increased level of inflation.

Table 2.9: Power x 100 for Example 2.1

Fixed Group Sequential IPIA
o Z t IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 99.6 99.6 929 99.6 99.5 93.0 93.0
0.75 96.5 96.3 90.6 96.4 96.2 90.3 90.2
1.00 90.5 90.0 90.0 90.3 90.0 89.8 89.5
1.50 76.3 754 894 76.1 75.7 89.4 88.0
2.00 64.1 63.0 89.2 63.9 63.4 89.1 86.5

Table 2.9 displays the values for unconditional power for the seven designs. Power for
both fixed sample designs is sensitive to the true variance value. With a target level of 90%,
a fixed sample study can be significantly over or under powered depending on the true
variance regardless of the critical value determination method employed. Power for the

considered GS designs is also highly dependent on the true variance value, with power levels
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very similar to those for the fixed sample design. In the IP design, power is greatly stabilized
due to the variance estimate based sample size re-estimation at first stage. The IPIA designs
also have very stable power similar to the IP design due to the sample size re-estimation
analysis at the first stage. The GS and IPIA designs with first stage futility stopping have
power at slightly lower levels than their counterparts without futility stopping. For power in
this example, the IP and IPIA designs greatly achieve the target rate while the two-stage GS
and fixed sample designs are shown to be vulnerable to misspecification of the variance, a

nuisance parameter, at the planning stage.

Table 2.10: E(N,,) for Example 2.1: fixed, IP, and GS

GS (no futility) GS (futility)

0.50 86 48.1 85.6 56.3 44.0 79.4 56.3 44.0
0.75 86 66.2 85.6 65.7 44.2 79.4 65.7 44.2
1.00 86 87.0 85.6 71.3 453 79.4 70.9 453
1.50 86 129.0 85.6 77.1 50.3 79.4 76.1 50.3
2.00 86 171.0 85.6 79.8 56.3 79.4 78.2 56.3

Table 2.10 displays the values for expected sample size for the fixed sample, IP, and GS with
and without futility stopping designs. For the GS designs, expected sample sizes are
calculated assuming the null hypothesis (f = 0), the alternative of interest (f = 6,), and

assuming a true effect size twice the effect of interest (6 = 26,).

Under controlled conditions, the sample size for the fixed sample design is always the
preplanned sample size, 86. As would be expected, the expected sample size for the IP
design is dependent on the true variance due to sample estimate based sample size re-
estimation at the first stage. It achieves an expected savings in sample size for variance
values lower than the value assumed at the planning stage and rises above that of the fixed
sample design as it accounts for larger true variance values by increasing the estimated
sample size need at the internal pilot stage. Under the null hypothesis, the expected sample
size for the GS designs are constant over 7y values. This is because no variance value based

sample size re-estimation takes place at first stage and true noncentrality is zero. The small
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departure from the fixed design sample size in the GS design without futility stopping is due
to the small chance of falsely stopping for efficacy at the first stage. The GS designs
allowing futility stopping at the first stage causes an across the board drop in expected
sample size under the null due the probability of correctly stopping early for futility. Under
the alternative of interest (6 = 6,), the expected sample sizes for the GS designs are
noticeable lower than the fixed design sample sizes due to possible early stopping for
efficacy at first stage. This demonstrates the clear sample size benefits of the GS designs
compared to single analysis, fixed sample designs. The effect diminishes as variance
increases due to the lowered power of the first test with decreasing noncentrality of the test
statistic. When futility stopping is allowed, the expected sample size for the GS design
decreases slightly as the probability of false futility stopping at the first stage analysis is
introduced. For an effect of twice the alternative of interest (6 = 26,), the GS designs offer
significant expected sample size reduction at all v considered. The effect diminishes
somewhat as first stage power decreases for increasing variance. There is very little
difference in the two GS designs considered under this condition as the chance of first stage
futility stopping is very small for 6 = 26,.

Table 2.11: E(N,,) for Example 2.1: IPIA

IPIA (no futility) IPIA (futility)
0.50 47.2 44.8 44.0 46.6 44.8 44.0
0.75 64.0 54.3 44.2 60.8 54.3 44.2
1.00 84.7 73.4 47.1 78.3 73.0 47.1
1.50 126.8 119.8 78.3 1140 117.7 78.3

2.00 169.0 165.5 133.8 149.7  160.6 134.0

Table 2.11 displays the values for expected sample size for the IPIA designs with and
without futility stopping. Similar to the IP design, IPIA expected samples sizes are lower
than the fixed design sample size for low true variance and increase with the true variance as
the first stage sample size re-estimation requires larger second stage samples on average.

Under the null hypothesis (@ = 0), the IPIA design without futility stopping has very similar
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sample size values to the IP design since stopping at the first stage for efficacy is rare here.
The null case IPTIA design with possible futility stopping causes a drop in expected sample
size for all variance values when compared the design without futility stopping due to the
chance of a correct decision to accept the null and stop at the first stage analysis. Under the
alternative of interest, (6 = 6,), the expected sample sizes for the IPIA designs are noticeably
lower than the fixed sample design for variance values at the preplanned value or lower. The
expected sample sizes rise with v due to the increased sample size needs detected at the first
stage analyses to protect study power. In this case, early stopping (GS-like) sample size
benefits are offset by the sample size recalculation procedure (power protecting IP
characteristic). Expected sample size under the alternative of interest is slightly lower in the
IPIA design allowing futility stopping due to the possibility of false futility stops at first
stage. This chance increases with v due to the naive p-value based futility stopping rules
used to calculate the first stage futility critical value. For an effect of twice the alternative of
interest (§ = 26,), the IPIA designs offer significant expected sample size reduction due the
large chance of early efficacy stopping in the first stage. The effect diminishes as increasing
variance calls for more sample size in the second stage and decreases first stage power.
There is very little difference in the two IPIA designs considered under 6 = 26, as the

chance of futility stopping is very small for the large effect size.

2.5.4 Example 2.2 Results

The design parameters for Example 2.2 are summarized in Table 2.12.

Table 2.12: Design parameters for Example 2.2

oy P 0 ot ng n
0.05 09 16 1 20 10

Example 2.2 is a smaller study than Example 2.1 and was considered by Coffey and Muller

(1999) in order to explore small sample properties for internal pilots. It will be useful to
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describe characteristics of the study designs that are sensitive to the planning stage sample
size estimate for the study. Values are calculated analytically for type I error rate, power,

and expected sample size under the design conditions described in Table 2.13 for Example

2.2.
Table 2.13: Type I error rates x 100 for Example 2.2
Fixed Group Sequential IPIA
ot Z t IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 6.6 50 55 7.8 7.7 8.8 8.8
0.75 6.6 50 6.2 7.8 7.7 9.3 9.3
1.00 6.6 50 6.5 7.8 7.7 9.6 9.5
1.50 6.6 50 6.5 7.8 7.7 9.4 9.2
2.00 6.6 50 62 7.8 7.7 8.8 8.5

Table 2.13 displays the values for type I error rate for the seven designs described in
Section 2.5.1. Values are calculated for true variances corresponding to values of v = 0% /02
with v € {0.5,0.75, 1, 1.5, 2}.

The type I error rate for the standard Gaussian fixed sample design here is significantly
inflated. This is due to using standard Gaussian critical values that do not take into account
the uncertainty of the variance estimate. Like the previous example, using the correct ¢ based
distribution exactly achieves the target rate. Like the Gaussian fixed design, the GS designs
also have type I error rate inflation due to large sample nature of the critical value selection
methods. The inflation for the fixed and GS methods is constant over true variance values.
In the IP and IPIA designs, type I error rate inflation again occurs as a function of variance.
The IPIA method has the greatest amount of inflation due to both the biased variance
estimate being used as well as the Gaussian critical values. For both GS and IPIA designs,

allowing for early stopping for futility causes a small reduction in the type I error rate.

For Example 2.2, type I error rates have similar trends to values calculated in Example
2.1, but with differing magnitudes. All magnitudes of type I error rate inflation are

magnified here by the small nature of the study compared to the moderately larger study
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examined in Example 2.1. Additionally, the magnitude difference for the IPIA designs is the

greatest due to being vulnerable to both sources of inflation.

Table 2.14: Power x 100 for Example 2.2

Fixed Group Sequential IPIA
o Z t IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 99.8 99.8 96.1 99.8 99.8 96.7 96.7
0.75 974 974 932 98.2 98.1 93.6 93.6
1.00 94.1 922 913 94.2 94.0 91.7 91.5
1.50 82.6 78.9 88.8 82.9 82.6 90.5 88.6
2.00 71.5 66.8 87.3 72.0 71.6 88.2 86.3

Table 2.14 displays the values for unconditional power for Example 2.2. As in Example
2.1, power for fixed sample and GS designs is very sensitive to the true variance value. With
a target level of 90%, these designs can be significantly over or under powered if the
variance is misspecified at planning. In the IP and IPTA designs, power is again greatly
stabilized due to the sample size re-estimation at the first stage analysis based on the sample
variance estimate. For power in this example, the IP and IPIA designs greatly achieve the
target rate while the two-stage GS and fixed sample designs are shown to be vulnerable to

misspecification of the variance, a nuisance parameter, at the study planning stage.

A comparison of power in Examples 2.1 and 2.2 shows that the size of a study does not
have a clear effect on the power functions for these study designs in general or as a function
of v = 0%/02. In other words, the planned size of the study can not appreciably relieve the
dangers of over or under powering a study based on nuisance parameter misspecification at
the planning stage for the examined fixed sample and GS designs. The results show that

sample size re-estimation procedures are effective ways to help stabilize study power so that
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important questions of interest can be explored accurately and dependably.

Table 2.15: E(N,,) for Example 2.2: fixed, IP, and GS

GS (no futility) GS (futility)
0.50 20 123  19.8 12.4 10.0 18.3 12.4 10.0
0.75 20 159 198 14.3 10.1 18.3 14.3 10.1
1.00 20 19.7 19.8 15.6 10.3 18.3 15.5 10.3
1.50 20 27.8 19.8 17.0 11.2 18.3 16.8 11.2
200 20 359 19.8 17.8 12.4 18.3 17.5 12.4

Table 2.15 displays the values for expected sample size for the fixed sample, IP, and GS
with and without futility stopping designs. For the GS designs, expected sample sizes are
calculated assuming the null hypothesis (f = 0), the alternative of interest (f = 6,), and

assuming an effect of twice the alternative of interest (6 = 26,).

The results show similar trends in sample sizes as those found in Example 2.1. The
fixed sample design will always have the sample size of ny, in this case ny = 20. Expected
sample size for the GS designs is always less than the fixed sample size due to possible early
stopping and no possible increase in sample size. When no early futility stopping is allowed,
the GS expected sample size values will be very close to the fixed study sample size when
6 = 0. Otherwise, it shows the biggest sample size benefits for lower variances and larger
effect sizes, which both increase the chance of early stopping. Additionally, the GS with

futility stopping shows the added benefit of reduced expected sample size under the null

hypothesis.
Table 2.16: E(N,,) for Example 2.2: IPIA
IPIA (no futility) IPIA (futility)
v 0=0 0=0, 0=20, 0=0 60=0, 0=20,

0.50 11.3 10.6 10.0 11.0 10.6 10.0
0.75 14.2 12.8 10.3 13.4 12.8 10.3
1.00 17.8 16.1 11.7 16.4 16.1 11.7
1.50 257  24.1 17.9 229 237 17.9
2.00 338 325 26.6 29.7  31.6 26.6

57



Table 2.16 displays the values for expected sample for the IPIA with and without
futility stopping designs. The results show similar trends in sample sizes for the IPIA
designs as those found in Example 2.1. The IPIA expected samples sizes are lower than the
fixed sample design size for low true variance and increase with the true variance as the first
stage sample size re-estimation requires larger second stage sample sizes on average.
Although the expected sample size rises with y for the IPIA designs, it still has smaller
sample sizes than the IP design (Table 2.15). This is caused by the offsets of early decision
sample size benefits and the power protective sample size re-estimation procedure, both of
which are characteristics of the IPIA design. Additionally, the IPIA design with futility
stopping once again shows the added benefit of reduced sample size under the null
hypothesis. The sample size advantage of the IPIA design versus the IP design is extremely
evident for an effect of twice the alternative of interest, (¢ = 26;). The IPIA designs offer
significant expected sample size reduction for this case due the large chance of early efficacy
stopping in the first stage. The effect diminishes as increasing variance calls for more

sample size in the second stage and hence decreases first stage power.

By comparing the expected sample sizes from Examples 2.1 and 2.2, one can examine
the possible effect of fixed sample study size on expected sample size for these designs. In a
proportional sense, there does not seem to be a difference in sample size benefits between the
two studies. However, if the cost per subject in the study designs was equal between the
larger and smaller studies, than the sample size reductions and increases would be more

significant in the larger study (Example 2.1).

2.6 DISCUSSION

In this chapter, I have presented a proposed framework for an internal pilot with interim
analysis model for univariate Gaussian linear model hypotheses with fixed predictors. The
framework generalizes traditional internal pilots by allowing for early stopping rules at the

interim analysis to go along with variance estimate based sample size re-estimation. I have
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derived the exact theory needed for the IPIA framework for single degree of freedom GLM
hypotheses, including one and two group ¢-tests with unknown, common variances and other
tests of interest. The exact results allow for numerical calculation of type I error rate, power,
and expected sample size for various study designs without the need for time-consuming
simulations. Many prospective research studies and even clinical trials are not large enough
for asymptotic properties to hold. Since the theory in this chapter is not derived using

asymptotic results, it will be accurate and valuable for planning smaller studies.

Examples 2.1 and 2.2 highlight some of the different characteristics of the IPIA design
while comparing them to results from fixed sample, IP, and two-stage GS designs, all of
which are special cases of the IPIA design and theory detailed in this chapter. The size
difference between Example 2.1 and Example 2.2 displayed the sensitivity of study
characteristics such as type I error rate to sample size. The examples here use large sample
distributional assumptions for critical value calculation in order to illuminate features of the

designs examined. Each design considered has its advantages and disadvantages.

The fixed sample design has the advantages of a known sample size and a controlled
type I error rate, but has an unstable power function affected by the unknown true variance, a
nuisance parameter. The goal of the GS design is to allow a study to stop early if effect size
differs from the preplanned magnitude, and hence, decrease expected sample size from the
fixed sample level. It has been shown in the tables above to achieve this goal under all
conditions when futility stopping is allowed, and under situations of high effect size when
futility stopping is not included. Using standard Gaussian critical values, the GS designs
have an inflation in type I error rate due the critical values not accounting for uncertainty of
the variance estimate. Finally, GS power is vulnerable to misspecification of variance at
planning stage as shown in Table 2.9. This sensitivity is similar to that found in the fixed
sample design and is due to the lack of sample size re-estimation for the final stage sample

size. The primary goal of the IP design is to protect study power by re-estimating sample
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size through interim power analysis without interim data analysis. As Table 2.9 shows, this
goal is greatly achieved by the design. The IP design can also have sample size benefits due
to possible sample size reduction at the interim stage if the planning variance value was
specified higher than the true parameter value. For high true variance values, the design has
higher expected sample sizes than the GS and fixed sample designs. The IP design also has
inherent type I error rate inflation dependent on the true variance value. This is typically
accounted for in smaller sample studies by adjusting the test statistic or critical value.

Adjustment is not made here for comparative purposes.

The IPIA designs seek to incorporate the sample size advantage of the GS by allowing
for early stopping and the power protective properties of internal pilots through variance
estimate based sample size re-estimation at the interim analysis. Table 2.11 shows that the
sample size benefits of the GS design are incorporated into the design as the expected sample
sizes for many conditions are significantly lower than for the IP design. The sample size
benefits are attained by allowing possible early stopping for efficacy and/or futility at the
interim analysis. Also, Table 2.9 shows that the IPTA design does, in fact, greatly achieve
the power protective properties of the IP design. This characteristic creates a power function
robust to variance misspecification at the planning stage, unlike fixed sample and GS

designs.

In addition to the advantages of the IP and GS designs, the IPIA design was shown to
inherit some of the elements of concern from the designs. The internal pilot design has type |
error rate inflation caused by an unbiased variance estimate used in the final test statistic,
with more magnitude of inflation found in small studies where exact theory has the most
value. The group sequential designs examined also have type I error rate inflation due to the
inappropriate use of large sample critical values. Since the IPIA designs examined in this
chapter combine characteristics of these two designs, it has elements of both sources of type I

error rate inflation: distributional alignment vulnerability as well as potentially biased
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variance estimates used in the second stage test statistic. Because of this, careful adjustments
that can control the type I error rate while maintaining the design's benefits must be achieved

in order for the IPIA procedure to be useful in practice.

The IPIA procedure as outlined in this chapter is purposefully kept general in many
regards. For example, it does not specify mandatory methods for selecting critical values,
updating sample size, or selecting the interim stage sample size. The theory developed in
this chapter as well as the development of software to assist in calculation would allow for
the exploration of many different design possible designs. This would not only be valuable
for the development of general study guidelines with positive characteristics, but since
studies are not alike, extensive exploration for a specific study during planning stages can
allow investigators to customize the procedure for their specific needs. Through comparison
to simulation, that analytical calculations were shown in Section 2.5.2 to be highly efficient.
Thus, using the exact theory would allow for far more efficient study planning such as
graphing power and type I error rate functions over various conditions. Also, the efficiency
facilitates new research methods using the exact forms as a component. Procedural strategies
for the IPIA model utilizing the exact theory introduced in this chapter here is the major
theme of Chapter 3 in this dissertation. Examples from this chapter are revisited with

implementation of differing possible design strategies with results examined.
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CHAPTER 3. PLANNING PROCEDURES FOR AN
INTERNAL PILOT WITH INTERIM ANALYSIS DESIGN

SUMMARY

In Chapter 2 of this dissertation, I introduced exact theory to help plan single degree of
freedom internal pilot with interim analysis (IPIA) designs for Gaussian linear models. Here,
I discuss and evaluate procedures for planning the studies described in Chapter 2. The goal
is to achieve sound study design strategies that control the type I error rate while best
maintaining the power and sample size advantages of the IPIA designs. The exact theory

allows for simple procedure comparisons and facilitates the development of new procedures.
3.1 INTRODUCTION

3.1.1 Motivation

In Chapter 2, I examined the properties of the proposed two-stage internal pilot with
interim analysis (IPTA) procedure and how it compare to properties of special cases such as
fixed sample, internal pilot (IP), or two-stage group sequential (GS) procedures. I
determined that the IPIA design had sample size advantages compared to the IP design and
power advantages compared to the two-stage GS and fixed sample designs. Also, using
naive, but common approaches to critical value selection, sample size re-estimation method,
and interim sample size calculation showed that, especially in small samples, the IPIA design
has the potential for type I error rate inflation. Unless controlled, this can offset the IPTA
sample size and power advantages. Smart design procedures and strategies are needed to

attain the benefits of the exact IPIA theory derived in Chapter 2.

Pre-specification of critical value selection procedures as well as sample size allocation

and re-estimation methods are needed in order to calculate power, type I error rate, and



expected sample size during study planning. Critical values for first stage and second stage
must be selected to accurately and strategically allocate the type I error rate while
minimizing expected sample size and maintaining power. Sample size determination
methods also affect study power and expected sample size. I consider methods that allow

implementation of an IPIA design while preserving the type I error rate.

3.1.2 Literature Review

The relevant literature review is largely covered in Chapters 1 and 2 of this dissertation.

Some additional background specific to this chapter is included in this section.

A large portion of this chapter is devoted to the problem of potential type I error rate
inflation in small sample IPIA studies. I focus on two known sources of inflation. The first
source is the use of large sample distributional assumptions in standard Gaussian based
sample size re-estimation and critical value techniques. The second source of inflation
occurs due to a biased variance estimate the is characteristic of internal pilot based sample

size re-estimation designs.

The information based approach to clinical trial monitoring with nuisance parameter
based sample size adjustment described by Mehta and Tsiatis (2001) or Tsiatis (2006) was
reviewed in Chapter 2. Mehta and Tsiatis described the method for use within group
sequential designs that allow for early stopping while updating the estimated maximum
sample size at each analysis stage as nuisance parameter estimates are updated. Group
sequential stopping bounds along with an inflation factor on needed information (and hence
needed sample size) due to multiple testing were advocated. They used standardized test
statistics with critical boundary determination based on the error spending technique used.
The effects on type I error rate of large sample distributional assumptions are portrayed in
the examples of Chapter 2 in this dissertation. For the small and moderate sample size

designs considered, clear type I error rate inflation was present.
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Within group sequential designs for two group comparisons, some alternative critical
value selection methods have been proposed and reviewed. One simple approach suggested
by Pocock (1977) shown to work quite well is to take the significance level of Gaussian
derived critical values and use them along with sample size to calculate corresponding ¢
distributed critical values. Since the ¢ distribution takes into account the sample size used for
estimation in the form of degrees of freedom, it better relates to the uncertainty of the
variance estimate used in the test statistic. Although the statistics are sequences and hence
have a joint relationship, this simple method approximately controls the type I error rate for

group sequential designs.

Shao and Feng (2007) described a Monte Carlo method for calculation of critical values
in a small sample group sequential studies. Through simulation they show that their method
works well at controlling the type I error rate and maintaining power with an expected

increase in expected sample size.

The second source of type I error rate inflation present in IPIA designs is from the use
of a downwardly biased variance estimate in study stages following the first. This is the
same cause of type I error rate inflation found in unadjusted internal pilot studies; see
Proschan and Wittes (2000) or Miller (2005) for details. Various methods for controlling the
type I error rate within internal pilots have been considered. Some have the downside of
only considering a fraction of the available information in order to create an unbiased
variance estimate (Stein, 1945; Zucker et al., 1999). Denne and Jennison (1999) proposed a
method based on Stein's test that uses all information about the variance, but includes a
degree of freedom adjustment to the final test statistic that does not guarantee bounding of
type I error rate, but appears to work well on average. Proschan and Wittes (2000)
introduced a method that uses an unbiased variance estimate by fixing weights between the
IP stage and the second stage portions of the final variance estimate. Coffey and Muller

(2001) introduced a bounding method which alters the critical value through an alpha-
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adjustment so that the maximum type I error rate inflation across true variance is equal to the
target rate. Due to its importance to this chapter, further details on this last method are

included below.

For internal pilots, the goal of the bounding method described by Coffey and Muller
(2001) is to find the nominal «y, used in critical value determination with maximum type I
error rate over possible true variances equal to ;. Although a definitive proof is not
available, Coffey and Muller (2001) provided substantial evidence in support of the
hypothesis that there is a single maximum type I error rate as a function of the true variance.
The a4, value is calculated by using a doubly iterative algorithm that uses exact internal pilot
theory for calculations. The outer loop searches over possible o values for the desired a,.
The inner loop takes advantage of the unimodal characteristic of internal pilot type I error
rate over true variance to determine the location and magnitude of the maximum type I error
rate for a given « (fixed critical value). The procedure is conservative in that the type I error
rate for some true variance values may be less that the target rate, but power properties for
the method are quite stable and very near to the unadjusted method. Of note is that the
published version of the bounding method uses the originally planned target type I error rate,
oy, for sample size re-estimation. An alternative method currently being considered would
use the adjusted level for sample size re-estimation as well as for critical value calculation to
better align the assumed distributions. Interim results show that this alternative would
greatly close the power gap between the bounding method and an unadjusted method, but

would use more sample size.
3.2 THE IPIA MODEL AND PROCEDURE

3.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,
Chapter 1). Anr X 1 vector (always a column) is written a, and an r X ¢ matrix is written

A = {a;}, with transpose A’. Let 1, represents an r x 1 vector of 1's and Dg(x)
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represents a diagonal matrix with (7, j) element x;. Furthermore, define I, as the r x r
identity matrix with I, = Dg(1,). The direct (Kronecker) product is defined as
A® B = {a;;B}.

Detailed information about all random variables discussed in this paper can be found in
Johnson et al. (1994, 1995). Letx ~ N, (u, X) indicate that random vector = (n x 1) has a
vector (multivariate) Gaussian distribution with mean vector x4 and covariance matrix 3.
For X less than full rank, = has singular vector Gaussian distribution, written as
x ~ SN, (u, ). Writing X ~ x?(v,w) indicates that X follows a non-central chi-square
distribution, with v degrees of freedom and noncentrality w. Likewise, writing
X ~ F(vy,15,w) indicates that X follows a noncentral F' distribution with numerator
degrees of freedom v, denominator degrees of freedom v, and noncentrality w. Writing
x?(v) or F(vy,v5) implies w = 0. More generally, writing X ~ x%(v;t1,ty) indicates that
X follows a doubly-truncated central chi-square distribution with v degrees of freedom,
truncated to the interval [t1, t;7] (Coffey and Muller, 2000). For random variable U with
parameters ;. .. Y, indicate the cumulative distribution function (CDF) taken at u as
Fy(u;7y...7%). As a special case, let ®(z) indicate the CDF for the Gaussian(0,1)
distribution, taken at z. Also let ;! (a;71...7;) indicate the  quantile of a random

variable U with parameters ;... V.

3.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) model discussed in this paper is
introduced in Chapter 2 of this dissertation. It can be viewed as a generalization of the two-
stage internal pilot model in the GLUM framework as introduced by Coffey and Muller
(1999), which includes the ¢-test as a special case. Let random variable IV, be the final
sample size used for the study. Then N,, = n; + N - Z(continue) with Z an event indicator

equal to 1 if a study is continued at the first stage. So
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N, = { ny if study stopped after first stage (3.75)

N, otherwise

The design leads to interest in two different but intimately connected models. The combined

model for the final analysis may be written as

Y+ = X8 + e (3.76)
Ny x1 Ny xqgx1 Ny x1
or
Y . X><1 e )
ny X ny q ny X
= 3.77
” x, |Bt| e |- (3.77)
N2 x 1 N2 X q NQ x 1

with partitioning corresponding to the n; and, random, /N2 observations in the first and
second samples, respectively. The second sample of size Ny = N, — ny shown above is
only taken if study continuation is determined from the first sample. Also, the special case of
N, = ny will cause the full model to collapse to the interim model. Model components
include random observed y (/V; X 1) (independent sampling units as rows), design matrix
of fixed form X, and unobserved e, such that e; ~ Ny, (0,0%Iy,). For computational
convenience, random values of total sample size, N, = n; + Ns, increase only in multiples
of a replication factor, m. For example, a balanced 2-group study design would have m = 2.
For some X, (m X q), [ assume X; = 15, ® X and X5 = 1, ® X, with k; and K> the
number of replications in the first and second samples, respectively. Consequently, the
columns of X and X, span the same space (when Ky > 0) and hence define

r = rank(X;) = rank(X,) = rank(X ). In order to simplify computations and some
discussions, attention will usually be restricted to a full rank design, that is rank(X,) = q.
The principles of linearly equivalent models allow the restriction without meaningful loss of

generality.

The test of interest is Hy : @ = 6, with C a fixed a x g contrast matrix and 8 = C' 3.

Without loss of generality one can assume 6y = O (see Lemma A.1). For a ‘scientifically
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important’ effect of interest (8 = 6;), a desirable design ensures a target type I error rate

() with sample size appropriate to achieve target power (P;).

Section 2.2.2 of this dissertation includes tables containing definitions and descriptions

of model elements and can be referenced for additional IPIA model details.

3.2.3 The General Procedure

Table 3.1: General procedure

Step 1a : Specify oy, P;, X, hypotheses, 6, and 0(2)
1b : Solve for first stage sample size (1)
Step 2 : Collect first n; observations
Step 3 : Solve for Ny = n, critical values f;(n), fu(ny), and fi(ny), and F}
Step 4 : Decide:
If F; < f; then STOP, ACCEPT H,
If F7 > f, then STOP, REJECT H,
If f; < Fy < f, then take ny = n. — n; additional observations
Step 5 : Solve for F',
Step 6 : Decide:
If I\ < f, then ACCEPT H,
If I\ > f. then REJECT H,

Table 3.1 gives the general procedure for the IPIA model. General steps include
selection of n; (Step 1b), n, (Step 3), and critical values (Step 3). These design factors will

be examined in the sections to follow.
3.3 CRITICAL VALUE SELECTION

3.3.1 Overview

Calculation of the three critical values for the study, f;(n), fu(n4),and f(n), must
be done following rules pre-specified in the study protocol. The general IPIA procedure
described in Section 3.2.3 does not specify a method for determining critical values. Hence,
there are countless possible methods from which they can be determined. Ideally, they
should be chosen in a way that controls the type I error rate while having good power and

expected sample size properties. The critical values may depend on n ., the realized value of
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N ; however, when it is clear, they will be referred to as f;, f,,,and f,. In this chapter, I
focus on the selection of efficacy values (f, and f, ) and leave discussion for selection of

futility bounds to future research.

Efficacy bounds for both stages could be calculated in many ways. The simplest and
most naive method would be to assume a large sample distribution (such as Z or x?) and
ignore the multiple testing issue by using a nominal type I error rate of «; at each stage.
Smarter methods would account for the uncertainty in the variance estimate and/or adjust the

nominal type I error rates used for critical value calculation to create more sound designs.

The goal is to choose a limited number of sensible and/or common methods that can be
easily employed in practice and compare their study characteristics by way of examples. [
plan to adapt the examined methods from the common error rate spending methods of group
sequential designs. Once N, is determined at the interim stage, one can determine the first
stage sample fraction 7' = n; /N, (0 < T < 1). Based on a specified error-spending
method, the value of 7" can be used to determine what nominal type I error rate to use at the
interim and final stages in order to maintain an unbiased hypothesis test. The chosen
nominal rates are used to determine the critical values for the two stages. For example, if the
error rate spending function specifies that o; = 0.01 and o, = 0.04 where «; and o, are the
nominal type I error rates for the interim and final stages, then the large sample critical
values could be calculated as f, = FX‘21(0.99; 1)and f, = FX‘21(0.96; 1). For greater values

of T' (more information), more study error will typically be spent at the first stage.

3.3.2 Distributional Assumptions

For large sample study designs, the uncertainty in the variance estimates used in test
statistics becomes minimal. Because of this, variance estimates are often be treated as
known quantities during analysis and asymptotically correct distributions (such as Z or x?)

are commonly used for critical value calculation.
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For smaller studies, however, these distributions become increasingly inaccurate and
can cause a decrease in study integrity due to type I error rate inflation. A simple adjustment
with beneficial results is the use of more accurate distributions that account for the
uncertainty of variance estimation with degree of freedom adjustments for sample size (such
as t or F'). To do this, you take the significance level of Gaussian derived critical values and
use them along with sample size to calculate corresponding small sample critical values. For
example, if the error rate spending function specifies that o; = 0.01 and oy = 0.04 where
o and o are the nominal type I error rates for the interim and final stages, then the critical
values could be calculated as f, = Fr1(0.99;1,n; —2) and f, = Fz'(0.96;1,n, —2). In
group sequential designs, these distributions have been shown as useful for helping to control
the type I error rate of a study (Pocock, 1977). This method could be valuable in smaller
IPIA studies by controlling the type I error rate and maintaining the benefits of the IPIA
design. In the examples in this chapter, I will compare results using both the large sample

and small sample methods of critical value calculation for the IPIA model.

3.3.3 The IPIA Bounding Method

An important characteristic of internal pilot based sample size re-estimation is the
potential type I error rate inflation caused by a downward biased variance estimate used in
the test statistic calculations (Proschan and Wittes, 2000; Miller, 2005). The effect is more
pronounced for smaller studies and should be accounted for during critical value calculation
planning. Group sequential based error spending functions, even when more exact theory
such as the ¢ distribution are used, do not take this sample size re-estimation based bias into

account and hence, may alone be inadequate for the IPIA design.

A proposed critical value selection method for the IPIA design is the /PIA bounding
method. The method is an adaptation of the design introduced for use in internal pilots by
Coffey and Muller (2001) and discussed in Section 3.1.2. The IPIA bounding method

employs a similar approach as the IP bounding method. The goal is to predetermine a

70



nominal target type I error rate, ay, ( < o), that when used during the study in place of ay,

controls the true type I error rate to at or below the target level.

Since the IPIA design employs an internal pilot based sample size re-estimation
technique, the type I error rate as a function of true variance behaves similarly. That is,
holding other study characteristics constant, the type I error rate as a function of true
variance is a unimodal curve. Although this is not proven conclusively, I strongly believe it
to be true based on all examples considered to date. This characteristic allows for a doubly
iterative search algorithm to locate the desired value for nominal target type I error rate, oy,
that can then be used in place of the true target type I error rate, i, during study analysis.
The outer procedure searches for oy, that bounds the maximum unconditional type I error rate
at the target level while the inner procedure determines the location and magnitude of the
maximum type I error over variance values. The «; is then used instead of o;; within the
error spending functions that determine the nominal « used for critical value determination.
Additionally, for the IPIA bounding method, I will use the new o, value as the target type |
error rate for sample size re-estimation. I have found that this best maintains the power of

the IPIA design with only a small cost in sample size.
3.4 SAMPLE SIZE SELECTION METHODS

3.4.1 Sample Size Re-estimation

The sample size re-estimation rule will determine the distribution of N, and so is an
important consideration in the design affecting power and expected sample size. Section 2.3
describes a procedure for determining the distribution of the total sample size for the IPIA
design by taking advantage of the monotone relationship between discrete NV, and
continuous 6. By calculating the scaled noncentrality parameters needed to achieve a given
power, the procedure calculates cut off points into which &> must fall in order for a specific

value of N, to occur. Since the distribution of 5% is known, the cut-off points give us
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Pr{ N, = n.} for all possible n allowed in the study design. Some flexibility is allowed

within this framework as described below.

In order to determine the needed noncentrality for a given sample size, a critical value
must be specified. One common way to do this is to assume an uncorrected « level for the
final statistic for sample size estimation purposes. This is common practice in group
sequential planning. The resulting sample size is then sometimes multiplied by a design
dependent sample size inflation factor in order to take into account the multiple testing
element of the study. More complicated ways to determine the « levels are possible, such as
adapting it dependent on the information fraction at the interim stage by an o spending
function. This would better align the sample size needs to correctly power the study and
could do away with the need for the sample size inflation factor. While promising, this
creates complications with critical values dependent on sample size and sample size
dependent on critical values. More research should be done in this area to better align the

sample size re-estimation rules with the distributional realities of the test statistics employed.

Another flexibility in the sample size re-estimation procedure is with the distributional
assumptions used. For example, sample size can be calculated assuming either large sample
distributions (Z or x?) or small sample distributions (¢ or F') for the distribution of the final

test statistic. This affects the noncentrality parameter and hence the sample size distribution.

A disconnect between the distributional assumption used in sample size re-estimation
and that employed for critical value determination could cause undesired study properties.
For example, using a ¢ distribution during sample size re-estimation would call for sample
sizes greater than if a Gaussian distribution is used and creates an over powered study if
Gaussian based critical values are employed during analysis. Alternatively, using Gaussian
bases sample size re-estimation with ¢ distribution based critical values calls for too little
sample size creating an underpowered study. The logical method here is to align the

distribution type used in sample size re-estimation with that used to calculate critical values
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during analysis. Since this kind of alignment was found to work best, it is the process

followed for the examples in section 3.5.

3.4.2 Interim Sample Size Selection

The value of the internal pilot sample size, n{, should be made at the design stage of the
study. The choice is important since lower values give more uncertain estimates of o> while
higher values may have better power properties, but can lose sample size benefits. For the
IPIA design, the choice of n; is completely general and the theory holds for any selection

method employed.

For traditional internal pilot designs, Birkett and Day (1994) recommended at least 20
degrees of freedom in the first stage sample; however, Coffey and Muller (1999) showed that
this scenario can still produce type I error rate inflation depending on the design and noted
the importance of examining properties of specific study designs. A default in literature
seems to be taking a designated fraction of the sample size from fixed sample equations
using the best guess for the variance at the planning stage, i.e., 7 - ng for 0 < 7 < 1 and ny
determined from US. A default choice for 7 seems to be 1/2; that is, the size of the first

sample is half of the fixed sample study sample size based on o?.

With the added element of early stopping, the choice of n; for the IPIA model is a more
complex matter than in the IP design. Depending on the critical value method employed and
true effect size and variance values, a high value of n; could possibly have sample size
savings due to the changing power at the first stage test statistic. Because of the complex and
interactive nature of this factor, I stress that it should always be examined as a study design
element keeping in mind the goals of a particular study.

In Section 3.5.6, I numerically examine an example employing three methods for
selecting the internal pilot sample size. In Chapter 2, the examples used n; = 7n for the
value m = 0.5. The examples in this chapter also use 7 = 0.5 and compare its use to the

results using 7 = 0.25 and 0.75. The resulting complications will be discussed.
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3.5 EXAMPLES

3.5.1 Example Motivation

The results of the examples in this chapter are calculated using the exact theory
developed in Chapter 2. The goal is to compare possible study designs within the IPIA
framework and find an easy to employ design method that controls the type I error rate while
maintaining the power and sample size benefits of the IPIA design. Futility bounds will not
be used in this chapter. Their clear benefits were shown in Chapter 2, and refinement of their

use is saved for future research.

3.5.2 Example Methods

All numeric calculations in this chapter are done for vy € {0.5, 0.75, 1, 1.5, 2} where
v = 0?/o3. Each example begins by comparing the type I error rates of nine possible
designs. Then, selecting study types with superior control of type I error rates, power
properties are examined. Finally, expected sample sizes for the designs with both attractive
type I error rate and power properties are calculates and described. Since the expected
sample sizes of procedures with early stopping depend on the true effect size 6, they will be
calculated under three conditions: under the null (6§ = 0), under the alternative of interest

(60 = 61), and under a true effect twice that of the effect size of interest (0 = 26).

Critical values will be calculated by either using the standard Gaussian distribution or
by using the ¢ distribution. For procedures with two testing stages, I will employ an O'Brien-
Fleming type alpha spending technique using the SAS SEQSCALE function (SAS Institute,
2004). Sample size re-estimation will use «; to calculate the sample size determining critical
values for all values of V.. The exception to this is for the bounding methods, which will
use the pre-determined adjusted oy, values for sample size determination. The assumed
distribution used in sample size re-estimation will mirror the distribution used for analysis

critical value determination. All of the designs considered in Sections 3.5.4 and 3.5.5 use
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ny = mng for m = 0.5. The effects of different values for = will be examined in Section

3.5.6.
The nine methods to be compared in Sections 3.5.4 and 3.5.5 are as follows:

B Fixed sample design using standard Gaussian distribution for critical value
calculation

B Fixed sample design using ¢ distribution for critical value calculation

B Two-stage group sequential using O'Brien-Fleming critical value calculation based on
the standard Gaussian distribution

B Two-stage group sequential using O'Brien-Fleming critical value calculation based on
the ¢ distribution

M Internal pilot allowing sample size to decrease from planning estimate (174 max = 11)
using ¢ distribution for sample size re-estimation and critical value calculation

B IPIA design using sample size re-estimation and O'Brien-Fleming critical value
calculation based on the standard Gaussian distribution

B [PIA design using sample size re-estimation and O'Brien-Fleming critical value
calculation based on the ¢ distribution

M IPIA bounding method” using sample size re-estimation and O'Brien-Fleming critical
value calculation based on the standard Gaussian distribution, both using ay,

M IPIA bounding method” using sample size re-estimation and O'Brien-Fleming critical
value calculation based on the ¢ distribution, both using «y,

* The bounding method employed is an approximation and does not perfectly bound the type
I error rate in all cases. For computational convenience, the prototype software created and
used for this research to calculate the adjusted « levels is using a modified version of the
bounding method that approximates the algorithm described in Section 3.3. Instead of
recalculating the location of maximum type I error rate for each o considered, it does so only
for a = oy (say the location is 7). It then finds «; such that the type I error rate at v = ~; is
equal to ;. In reality the location of the peak can shift slightly with o values which causes
the computationally expedient, but approximate IPIA bounding method.

3.5.3 Computational Methods
All programs for the examples were written in SAS/IML (SAS Institute, 2004). Most of
the computation for the examples utilizes the exact theory developed in this chapter. The
exceptions are the fixed sample and internal pilot designs. The fixed results could be directly
calculated using standard distribution functions. The internal pilot calculations were easily

obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla
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et al., 2007) software package. All other results came from use of the exact theory,
including the two-stage group sequential designs, which are a special case.

To avoid numerical instability of the calculated integrals, computation was performed
using quantile transformations (Glueck and Muller, 2001) of the distributions derived in
Section 2.4. For illustration, let p = F\2(¢; v). Then the integral transformation using
t= FXQI (p;v) and dp = f,2(t; v)dt allows for integration using finite bounds with better

behaved integrands.

3.5.4 Example 3.1 Results
The design parameters for Example 3.1 are summarized in Table 3.2. The nominal
target type I error rates used in the bounding methods are a;7 and a4 for the methods using
the Z and ¢ distributions, respectively.

Table 3.2: Design parameters for Example 3.1

a  apy  ayw P60 0k mg m
0.050 0.042 0.047 09 1 2 86 44

Example 3.1, a study design of moderate size, was considered by Wittes and Brittain

(1990) and Coffey and Muller (1999) in an internal pilot framework and previously in

Chapter 2 for the IPIA.
Table 3.3: Type I error rates x 100 for Example 3.1
Fixed GS IP IPTA Bounding
~ 7 ot 7 ot ¢ 7 ot Z ot

0.50 53 5.0 55 5.0 52 57 5.1 49 48
0.75 53 5.0 55 5.0 54 6.0 53 51 5.0
1.00 53 5.0 55 5.0 53 59 54 50 5.0
1.50 53 50 55 5.0 5.2 56 53 47 5.0
2.00 53 5.0 55 5.0 52 54 52 45 48

Table 3.3 displays the type I error rate values for each of the nine designs described in
Section 3.5.2. To see results as a function of variance, values are calculated for true

variances corresponding to values of v = 02 /03 with v € {0.5, 0.75, 1, 1.5, 2}.
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It is clear from the table that for this moderately sized study design, type I error rate
inflation is a concern, especially for the designs using the standard Gaussian distribution for
sample size re-estimation and critical value calculation. The effect of not accounting for the
uncertainly in the variance estimate becomes extremely clear in the fixed sample and GS
designs, which control the type I error rate when the ¢ distribution is used. Within the IPIA
design, the use of the ¢ distribution significantly decreases the type I error rate inflation,
leaving the internal pilot based inflation caused by the biased variance estimate. The IPIA
bounding methods control the type I error rate quite well in both cases, however, the type I

error rate is more stable across y for the ¢ distribution based design.

From the results in Table 3.3, I claim that for moderately sized study designs, the use of
distributions taking into account the uncertainty of the variance estimate are preferred to the
use large sample calculations which ignore the uncertainty. The focus of the examination of

power will be on the five designs using the ¢ distribution for this example.

Table 3.4: Power x 100 for Example 3.1
~v  Fixed(t) GS(?) IP(%) IPIA(t) Bounding(?)

0.50  99.6 99.3 92.9 92.6 92.4
0.75 96.3 96.0 90.6 90.1 90.1
1.00  90.0 89.6 90.0 89.7 89.7
1.50 754 74.8 89.6 89.2 89.2
200 63.0 62.4 89.3 89.0 89.0

Table 3.4 displays the values for unconditional power for each of the five designs that

use the ¢ distribution for sample size re-estimation and critical value calculation.

The table makes a clear distinction between the designs with and without sample size
re-estimation abilities. All of the designs basically achieve the target power when the
planning assumption for variance is true (v = 1). However, if the true value of ~y varies
either lower or higher, the fixed sample and group sequential methods become either over or
under powered. All three of the methods with sample size re-estimation have very similar

and stable power properties over the true variance values considered. Since this power
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protective behavior is desirable, I will continue by looking at sample size properties for the

sample size re-estimation procedures.

Table 3.5: E(N,,) for Example 3.1

IPIA(?) Bounding(?)
0.50 48.1 48.1 45.2 44.0 48.6 454 44.0
0.75 66.2 66.0 56.4 443 67.1 57.5 44.4
1.00 87.0 86.8 76.9 48.7 88.3 78.8 494
1.50 129.0 1289 1239 87.7 131.1 126.5 91.4

2.00 171.0 171.0 168.9 146.7 173.9 172.1 151.5

Table 3.5 displays the values for expected sample size for the IP, IPIA, and IPIA
Bounding designs. For the IPIA and IPIA Bounding designs, expected sample sizes are
calculated assuming the null hypothesis (f = 0), the alternative of interest (f = 6,), and

assuming a true effect size twice the effect of interest (6 = 26,).

Since the IPIA designs considered here do not include early futility stopping and there is
little chance for early stopping when the null is true, the expected sample sized at § = 0
comes very close to the IP design. The advantages of the IPIA methods become more
apparent here as 6 increases. The early stopping capability makes the IPIA method more

efficient than the IP by lowering expected sample size and saving resources.

The IPIA bounding method uses a little more sample size on average than its unadjusted
counterpart. This is due to the use of the adjusted « level in the sample size re-estimation
procedure and first stage critical value calculation. The small increase in sample size,
however, is offset by the control of the type I error rate for the design. For this example, the
IPIA bounding method is the only one of those considered to control the type I error rate,

maintain a stable power, and hold a sample size advantage over the IP design.
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3.5.5 Example 3.2 Results

The design parameters for Example 3.2 are summarized in Table 3.6. The nominal
target type I error rates used in the bounding methods are a;7 and a4 for the methods using

the Z and ¢ distributions, respectively.

Table 3.6: Design parameters for Example 3.2

o oy aw P0 ad ng m
0.050 0.019 0.038 09 16 1 20 10

Example 3.2 is a smaller study than Example 3.1 and was considered by Coffey and
Muller (1999) as well as in Chapter 2 in order to explore small sample study properties.
Values for type I error rate, power, and expected sample size are analytically calculated using
the exact theory developed in Chapter 2 under the design conditions described in Section

3.5.2.

Table 3.7: Type I error rates x 100 for Example 3.2
Fixed GS IP IPIA Bounding
~ Z ot Z ot t Z ot Z ot

0.50 6.6 5.0 7.8 5.1 5.5 88 54 49 4.2
0.75 6.6 5.0 7.8 5.1 6.2 93 6.0 52 47
1.00 6.6 5.0 7.8 5.1 6.5 9.5 6.5 52 5.1
1.50 6.6 5.0 7.8 5.1 6.5 94 6.6 47 52
2.00 6.6 5.0 7.8 5.1 6.2 8.8 64 4.1 49

Table 3.7 displays the values for type I error rate for each of the nine designs described
in Section 3.5.2. To see results as a function of variance, values are calculated for true
variances corresponding to values of y = ¢ / 08 with v € {0.5,0.75, 1, 1.5, 2}. The results
above show that the potential of type I error rate inflation becomes more dangerous and
extensive for small sample studies. The cost of not accounting for the uncertainly in the
variance estimate is clear in the fixed sample, GS, and IPIA designs. While the fixed sample
and group sequential designs largely control the type I error rate when the ¢ distribution is

used instead, the IPIA retains a much decreased, but significant inflation. This is due to the
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internal pilot based inflation caused by the biased variance estimate. All of the inflation
levels become magnified with the small sample study. The IPIA bounding methods control
the type I error rate quite well in both cases, however, the extreme nature of the o correction
needed for the Z based design makes it undesirable.

From the results in Table 3.7, I claim that for small sample study designs, the use of
distributions taking into account the uncertainty of the variance estimate are greatly preferred
to the use large sample calculations, which ignore the uncertainty. The examination of

power will focus on the five designs using the ¢ distribution for this example.

Table 3.8: Power x 100 for Example 3.2
Fixed(t) GS(?) IP(%) IPIA(t) Bounding(?)

0.50 998 99.6 92.9 95.8 95.4
0.75 97.4 97.1 90.6 92.9 92.5
1.00 922 91.9 90.0 91.0 90.6
1.50 789 78.3 89.6 88.7 88.2
200 668 66.2 89.3 87.3 86.8

Table 3.8 displays the values for unconditional power for each of the five designs that
use the ¢ distribution for sample size re-estimation and critical value calculation.

The results for power closely mirror the results obtained for Example 3.1. The methods
with sample size re-estimation all have superior power properties over the true variance
values considered. Since sample size re-estimation procedures in this example have

beneficial power protective behavior, I will examine their sample size properties.

Table 3.9: E(N,,) for Example 3.2

IPIA(?) Bounding(?)
0.50 12.3 12.3 11.5 10.2 13.0 12.2 10.4
0.75 15.9 15.8 14.9 11.8 16.9 16.0 12.8
1.00 19.7 19.7 18.8 15.2 21.1 20.4 17.0
1.50 27.8 27.7 27.1 24.2 29.7 29.3 26.9
2.00 35.9 35.9 35.5 335 38.5 38.2 36.7
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Table 3.9 displays the values for expected sample size calculated for the IP, IPIA, and
IPIA Bounding designs. The values are calculated for values of v = o /o7 with
v € {0.5,0.75, 1, 1.5, 2}. For the IPIA and IPIA Bounding designs, expected sample sizes
are calculated assuming the null hypothesis (8 = 0), the alternative of interest (¢ = 6,), and

assuming a true effect size twice the effect of interest (6 = 26,).

The sample size trends for this small sample study are similar to those found in Example
3.1. For this small sample example, the IPIA bounding method is the only method of those
considered that controls the type I error rate, maintains a stable power function, and it largely
holds a sample size advantage over the IP design. The IPIA bounding method thus shows it

largely achieves its goals even in the small sample design considered here.

3.5.6 Interim Sample Size Selection Results

Example 3.1 using the IPIA bounding method based on the ¢ distribution is here further
examined in order to describe the effects of the choice of interim sample size. Study designs
using each case of w € {0.25, 0.5, 0.75} are used to determine the initial sample size. The

middle value (m = 0.5) corresponds to the case described in Section 3.5.4.

Table 3.10: Type I error rates x 100 for € {0.25, 0.5, 0.75}
ap = 0.043 ap = 0.047 ap = 0.048

vy ny = 22 ny = 44 ny, = 66
0.50 5.0 4.8 4.8
0.75 4.8 5.0 4.8
1.00 4.7 5.0 5.0
1.50 4.5 5.0 5.0
2.00 43 4.8 4.9

Table 3.10 displays the values for type I error rate calculated using the exact theory
described in Chapter 2 for the ¢ distribution based IPIA bounding method described in
Section 3.3.3. Values are calculated for true variances corresponding to values of v = 02 /o7
with v € {0.5,0.75, 1, 1.5, 2} as well as for 7 € {0.25, 0.5, 0.75}. The values for a;, were

computed separately for each of the three designs.
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The results for the bounding method are shown to successfully control the type I error
rate at the target level for each of the designs. Also, the location and magnitude of type I
error rate peak varies depending on the size of the interim stage. The study design with
smaller interim sample size has a type I error peak at a lower variance and has a steeper type
I error rate curve over true variance than the other designs. The type I error rate peak shifts

higher and the curve becomes flatter as the interim sample size increases.

Table 3.11: Power x 100 for m € {0.25, 0.5, 0.75}

y ny =22 n, =44 ny = 66
0.50 89.7 92.4 97.8
0.75 88.7 90.1 92.0
1.00 88.1 89.7 90.0
1.50 87.5 89.2 89.6
2.00 87.2 89.0 89.5

Table 3.11 displays the values for power calculated using the exact theory described in

Chapter 2 for the ¢ distribution based IPIA bounding method.

The three design cases considered exhibit differences in power properties over true
variance values. The larger interim sample size (n; = 66) causes the study to be over
powered for small «. This is due to the study already having more than enough sample size
without the ability to decrease. Conversely, the study with small interim sample size
(n1 = 22) has trouble achieving the power of the other designs. This is most likely due to
the inaccuracy of the variance estimate used for sample size re-estimation purposes at the
interim stage. The power properties for all designs considered here are very good compared
to non sample size re-estimation procedures, however, the larger and smaller studies seem to

tend to be more over and under powered over various conditions.
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Table 3.12: E(N,,) for m € {0.25, 0.5, 0.75}
7’L1:22 n1:44 TL1:66
v 0=060=6, 0=20, 6=0060=6, 6=20, 606=0 60=06, 0 =20,
0.50 46.8 43.6 30.0 48.6 454 44.0 66.0 66.0 66.0
0.75 68.6 67.1 55.8 67.1 57.5 44 .4 76.8 67.2 66.0
1.00 90.5 89.8 83.6 88.3 78.8 49.4 88.1 755 66.0
1.50 134.2 134.1 1325 131.1 1265 91.4 1303 1142  71.1
2.00 178.0 177.9 177.5 173.9 172.1 151.5 173.0 162.7 100.9

Table 3.12 displays the values for expected sample size calculated using the exact
theory described in Chapter 2 for the ¢ distribution based IPIA bounding method. Expected
sample sizes are calculated assuming the null hypothesis (§ = 0), the alternative of interest

(6 = 61), and assuming a true effect size twice the effect of interest (6 = 26,).

The effect of interim sample size on expected sample size is fairly complex. Under the
null (0 = 0), expected sample size is higher for low 7 in the 7 = 0.75 and similar for high ~.
Under the alternative of interest (6 = 6;), the middle sized study (7 = 0.5) saves sample size
for lower ~y and the larger study (m = 0.75) saves sample size for high . For a large true
effect size (f = 6;), the small study saves sample size for low true variance (7 = 0.5), the
middle sized study works best for middle variances (like v = 1.0), and the larger study
works best when variance is large.

The process behind the effects shown in the tables above is complicated since it
involves a combination of minimum sample size, precision of estimates, and power at interim
stage. All of these factors are sensitive to the interim stage size, the true effect size, and the

true variance.

3.6 DISCUSSION

In order to conduct an IPIA study, design features such as critical value selection
procedures as well as sample size allocation and re-estimation methods must be pre-
specified. In this chapter, I have examined the use of easy to employ study design

characteristics within the IPIA framework using the exact theory introduced in Chapter 2.
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The exact theory allowed for fast and accurate calculations to facilitate the comparison of
designs and also allowed us to develop new methods with the theory as a basis. I proposed
simple design strategies as well as the new IPIA bounding method and compared their type I
error rate, power, and expected sample size characteristics under various conditions through
examples. The results suggest that IPIA designs can be very useful in maintaining study
integrity while minimizing needed time and resources. Additionally, the bounding method

has all of the desirable properties wanted in a two-stage IPIA design.

I compared the use of ¢ distribution with the standard Gaussian distribution based
methods of critical value determination. Simply using the ¢ distribution for sample size re-
estimation and critical value determination for small to moderate sample study designs can
go a long way towards controlling the type I error rate inflation inherent to the design. This
works well since it takes into account the uncertainty of the variance estimate due to sample
size. While this very simple method works in the examples considered for improving the
alignment of the critical values with the test statistics, it is not an exhaustive conclusion as
the best possible method since the final test statistic does not exactly follow a ¢ distribution.
Incorporating other group sequential critical value selection methods such as that described
by Shao and Feng (2007) with the IPIA design could increase study characteristics and

should be considered.

In addition to the distribution type assumed for critical value selection, sample size re-
estimation methods have another source of potential problems due to a downwardly biased
variance estimate. The impact of this characteristic is most apparent in small sample studies,
such as those considered here. In order to control for this source of type I error rate inflation,
I introduced the IPIA bounding method. The method works within the group sequential
bound framework to achieve a test with maximum type I error at the target level. In the

examples considered, the conservative test was shown to work quite well for achieving the
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goals of the IPIA design. It achieves an unbiased error rate while maintaining the IPTIA

power and having sample size benefits.

Finally, in this chapter I examined the effects of using different sample sizes for the
interim stage of an IPIA design. Most of the examples considered in this chapter and in
Chapter 2 used a n; = ny - 7 for m = 0.5 technique. However, I conclude that the choice is
important and far from clear cut. The example showed that differing sizes have benefits
under different conditions. Some of the sample principles apply here as in the internal pilot
case such as a larger interim size giving a better variance estimate. However, the interplay
between re-estimation and testing at the interim stage causes the choice of interim size to be
more complex in the IPIA setting. Because of the sensitivity of type I error, power, and
expected sample size to the interim sample size of the study, its effects should be explored in
more detail and in particular should be explored during study planning for a particular study.
With the study goals in mind, an educated decision can allow researchers to achieve the

benefits they most desire from the design.

In addition to the results described here, there are many areas where important future
methodological work is needed. For example, the sample size re-estimation method
employed during a study affects the distribution of sample size and is thus an important
consideration for study design. A common approach is to use the target type I error rate to
determine a critical value to base sample size needs on during the interim analysis. This
approach makes matters simple, but could possibly be improved upon by considering the
amount of error spent during the interim analysis. I believe that aligning the alpha levels
would better the alignment of the final test statistic with that assumed at the interim analysis
and thus create a more efficient study. Another consideration related to sample size re-
estimation technique is the assumed distribution of the final test statistic during the interim
power analysis. I conclude that power is best maintained at the target level by aligning the

distribution used in sample size calculation by that used for critical value calculation.
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Finally, in addition to the efficacy stopping bounds considered in this chapter, important
future work should include the incorporation of smart futility stopping bounds for the first
stage analysis of the IPIA design. As shown in Chapter 2 of this dissertation, this can save
much time and resources when little or no effect is present in a study. The resources saved
could then be allocated to other promising studies and thus further important scientific

research.
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CHAPTER 4. INTERNAL PILOT WITH INTERIM
ANALYSIS FOR MULTIPLE DEGREE OF FREEDOM
HYPOTHESIS TESTS

SUMMARY

In Chapter 2 of this dissertation, I introduced the procedure and theory for an internal
pilot with interim analysis (IPIA) design for use with single degree of freedom hypothesis
tests. In this chapter, I will again focus on the IPIA design for Gaussian linear models as
introduced in Chapter 2, but for use in more complex designs such as multi-group
comparisons. In this case C, the contrast matrix in the General Linear Univariate Model
(GLUM) framework, has more that one row (a > 1), creating multiple degree of freedom
hypotheses. I introduce exact theory that can be used in small sample situations to plan
studies with complex hypotheses. The theory includes an exact computable form for the
conditional joint distribution of the first and second stage test statistics. Together with the
results from Chapter 2, the new results allow calculation of power, type I error rate, and
expected sample size for any univariate linear model with fixed predictors and Gaussian
errors. Examples compare study characteristics with a fixed sample design as well as with
internal pilot and two-stage group sequential designs, all of which are special cases within

the IPIA framework.
4.1 INTRODUCTION

4.1.1 Motivation
When planning clinical trials and other studies, researchers would like to ensure they
have an appropriate sample size to detect an effect of interest for a given target type I error

rate and power. Researchers and sponsors would also like to have the ability to reach early



decisions when hypothesis outcomes are clear. In Chapter 2 of this dissertation, I focused on
single degree of freedom hypotheses, derived the needed exact theory, and laid out the
procedure for a two-stage internal pilot with interim analysis (IPIA). The design maintains
power by re-estimating sample size needs and can save resources by allowing for early
stopping. While most methodological research in internal pilot theory for continuous data
involves only the independent groups t-test setting, not all study designs, or even all clinical
trials involve only one or two groups. For example, a recently published study by Totonchi
and Guyuron (2007) compared treatments suggested for reducing the postoperative edema
and bruising associated with rhinoplasty. A total of 48 rhinoplasty patients were randomized
to one of two treatment plans or a control group and a three-group analysis of variance
(ANOVA) performed to evaluate results. This is an example of a small sample 3-group

design that could benefit from the IPIA setting.

Generalizing the exact distributional theory to more complex hypotheses involving
multiple group comparisons with computable formulae for power and sample size would
allow researchers to accurately explore properties for such designs, even in small samples,
before undertaking a study. The importance of small sample theory is explicitly highlighted
within the NIH Roadmap (Clinical and Translational Science Awards, RFA-RM-07-002
U54). The exact theory would allow for efficient study planning without the need for

simulations.

4.1.2 Literature Review

The relevant literature review is largely covered in Chapters 1 and 2. Some additional
background specific to this chapter is included in this section.

While most theory for continuous Gaussian data in internal pilot and group sequential
designs has been focused on one and two group ¢ tests, some effort has been made to
generalize the methods to more complex hypothesis tests. Spurrier (1982) presented two-

stage group sequential tests of hypothesis in the general linear univariate model with
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normally distributed and independent errors. Additionally, Jennison and Turnbull (1991,

1997) described distributional theory for multiple stage group sequential ¢, x?, and F tests.

In order to accommodate more complex designs for internal pilots, Coffey and Muller
(1999, 2000, 2001) extended the idea into any univariate linear model with fixed predictors
and Gaussian errors. They derived computable forms for the exact distribution of the test
statistic. The exact theory allows for flexibility of hypotheses in combination with accurate

and efficient study planning for small sample internal pilot designs.
4.2 IPIA MODEL AND PROPERTIES

4.2.1 Notation

Notational conventions will be followed as described in Muller and Stewart (2006,
Chapter 1). Anr X 1 vector (always a column) is written a, and an r X ¢ matrix is written
A = {a;}, with transpose A’. For full rank matrix A, the inverse of the transpose equals
the transpose of the inverse, so Iuse A = (A’)"' = (A~!)". Throughout 1, represents an
r x 1 vector of 1's and Dg(x) represents a diagonal matrix with (j, j) element z;.
Furthermore, define I, = Dg(1,) as the r x r identity matrix. The direct (Kronecker)

product is defined as A ® B = {a;;B}.

Detailed information about all random variables discussed in this paper can be found in
Johnson et al. (1994, 1995) and Muller and Stewart (2006). Writing  ~ N,,(u, X) indicates
that random vector « (n x 1) has a vector (multivariate) Gaussian distribution with mean
vector 1 and covariance matrix 3. For X less than full rank, « has singular vector
(multivariate) Gaussian distribution, written as  ~ SN, (u, X). Writing z ~ (S)N,, (i, 2)
indicates the possibility of a singular distribution. Furthermore, X ~ N, ,(M,E,X)
indicates that random matrix X follows a matrix Gaussian distribution, which implies that
vee(X) ~ (S)Nyplvee(M), X E]. If X ~ N, ,(M,I,,X), then
X'X ~ Wy(n, X, M' M) indicates that X’ X a noncentral Wishart distribution with n
degrees of freedom, shift parameter A = M’ M, and noncentrality @ = M' M3~
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Writing W,(n, 2) implies M = 0. Muller and Stewart (2006, Chapters 8 and 10) presented

more details about the matrix Gaussian and Wishart distributions.

Writing X ~ x%(v, w) indicates that X follows a non-central chi-square distribution,
with v degrees of freedom and noncentrality w. Likewise, writing X ~ F'(vy, 15, w)
indicates that X follows a noncentral F' distribution with numerator degrees of freedom v,
denominator degrees of freedom v, and noncentrality w. Writing x?(v) or F (v, v5) implies
w = 0. More generally, writing X ~ 2 (v;tr,ty) indicates that X follows a doubly-
truncated central chi-square distribution with v degrees of freedom, truncated to the interval

[t1,ty] (Coffey and Muller, 2000).

For random variable U with parameters ;... 7y, indicate the cumulative distribution
function (CDF) taken at u as Fyy(u;y1...7,). As a special case, ®(z) indicates the CDF for
the standard Gaussian distribution (mean zero, variance one), taken at z. Also

Fy; Y(a;71... ) indicates the o quantile of a random variable U with parameters 7. .. ;.

4.2.2 The IPIA Model

The internal pilot with interim analysis (IPIA) models discussed in this paper can be
viewed as generalizations of the internal pilot model in the GLUM framework as introduced
by Coffey and Muller (1999). However, due to the possibility of early stopping, notational
changes are necessary. In an IP design, N} with n min < N < 1y ey 1S the random final
sample size that is calculated using 52, the variance estimate from the interim sample. For
the IPIA model, N, (n; < N4 < ny max) 18 also a random variable based on 52. However,
due to the possibility of early stopping, it is not necessarily the final sample size for the
study. Hence for clarity N, indicates the random final sample size used for the study.
Furthermore NV,, = n; + N - Z(continue) with Z an event indicator equal to 1 if a study is
continued at the first stage. Equivalently

N, = { ny if study stopped after first stage @.1)

N, otherwise
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The design leads to interest in three different but intimately connected models. The

combined model for the final analysis may be written as

Yi = X8 + e (4.2)
Ny x1 Ny xgx1 Ny x1

or
yll X><1 611
n1 X _ ny xXdq ny X 43
y2 X2 18+ e s ()
N2><1 NQXq N2X1

with partitioning corresponding to the fixed n; and random N, observations in the first and
second samples, respectively. Here the second sample of size N = N, — n; shown above
is only taken if study continuation is determined from the first sample. Also, the special case
of N, = ny will cause the full model to collapse to the interim model. Model components
include random observed y; (N x 1) (independent sampling units as rows), design matrix
of fixed form X, , and unobserved e, such that e, ~ Ny, (0,5°Iy,). For computational
convenience, random values of total sample size, N, = n; + Ns, increase only in multiples
of a replication factor, m. For example, a balanced 3-group study design would have m = 3.
For some X, (m X q), l assume X; = 1;, ® X and X = 1, ® X, with fixed k; and
random K, the number of replications in the first and second samples, respectively.
Consequently, the columns of X; and X span the same space (when K, > 0) and hence
define r = rank(X) = rank(Xy) = rank(X ). In order to simplify computations and some
discussions, attention will usually be restricted to a full rank design, that is rank(X) = q.
The principles of linearly equivalent models allow the restriction without meaningful loss of

generality.

The test of interest is H : @ = 6y, with @ = C'8 and C a fixed a x g contrast matrix.
The results of this chapter will focus on hypotheses with a > 1. Without loss of generality I

assume @) = 0 (Lemma A.1). For a ‘scientifically important’ effect of interest (8 = 6,), a
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preferable design ensures a target type I error rate (a;) with sample size appropriate to

achieve target power (F;).

Throughout, subscript s € {1,2, +} indicates a value for either the model based on the
internal pilot (first) sample, the second sample, or the total combined sample (conditioned on

N, = n,). Error degrees of freedom are vy, = ng — 7.

Section 2.2.2 of this dissertation includes tables containing definitions and descriptions

of model elements and can be referenced for additional IPIA model details.

4.2.3 IPIA Properties

The IPIA model properties developed in Section 2.2.3 (equations 2.11-2.55) were
developed for the general case of a numerator degrees of freedom hypotheses and hence still
hold for hypotheses considered in this chapter (@ > 1). They are not all included here but
will be cited when necessary. Additional model properties are needed especially for a > 1

case and are included in this section and in Appendix B for reference.

Defining the following n, x m, matrices facilitates deriving the distributions needed to

calculate IPIA probabilities for the a > 1 case.

A, = X, (x,x,)'cMmcx,x,)'x, (4.4)
4, - |XXX)'C'MilCXiX) X 0} (4.5)
i 0 0
0 0
A — 4.6
h 0 XQ(XQXQ)1C’M2IC(X§X2)1X5] (4.6)
A, = I,-H (4.7)
_ [I,-H o0
A, = o 0, } (4.8)
-07L1><TL1 0
A, = 0" I, HJ (4.9)
A, = Apn+Ap-—A, (4.10)
Aeb - Ae+ - Ael - AeZ - Aep (41 1)

Additionally, I define the following matrices
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X, = )(()1 (4.12)
L Inyxq
X = [0 (4.13)
2k — X2 .
L Inyxq
B, = (X, X,) 'C'M;C(X) X)) . (4.14)
Lemma 4.1 defines a relationship that will be useful in subsequent results.
Lemma 4.1 For s € {1,2,+}, the following holds.
BX/X.B=FkB. (4.15)
A proof for Lemma 4.1 is in Appendix B.
Lemma 4.2 For the model in equation 4.3 interpreted as a fixed n., design, the
following hold for the matrices defined in equations 4.4-4.11.
a. The matrices are all symmetric.
b. A, A1, and Ay, can be re-written as
[ X,BX, X,BX,
_ -1 / _ -1 1 1 1 2
A, = kX, BX, = ki | X,BX] XQBX5:| (4.16)
B /
A, = k'X.BX,, = k! Xllgxl g} (4.17)
. , [0 o
AhQ = kQ XQ*BXQ* - kQ i 0 XQBXé (418)

c. The following relations are true.
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!
T s
!

ii. Ap Ap = ki [8 §;g§2 }

iii. Ay A +A A = Apy

iv. ApnAp+AnAn = Ap kA — kD R A
Vo A Ap+ ApAn = Apy — kU kA 4 kTR A
vi. A An = A

i, A, A, . A,
i, A A, — A,

d. Ay Ay = Apr A = Ap Ay = Ap Ay = Apr Ay = A Aoy = ApAer =
ApAp =AnAy = AjpAy = AppAp = ApAy = AgApn =A0A,, =

AnAgy = A Aep = A Aoy = AcpAcy = 0, 5,

e. All of the matrices defined in equations 4.4-4.11 are idempotent.

f. For a equal to the number of rows of contrast C' and r the rank of X, the matrices defined

in equations 4.4-4.11 have the following ranks.

Ah+ a
Ahl a
Ahg a
A ny —r
A, n—r
A€2 Nno —r
A a
A r—a

A proof for Lemma 4.2 is in Appendix B.
Using the results from Lemma 4.1 and 4.2, I now derive a series of results necessary for
the key distributional results of this chapter.

For s € {1,2, + }, A, is idempotent, symmetric, and rank a from Lemma 4.2. Hence

V},s of dimension n, x a can be defined with

Ahs — WLS ‘/]'L/s (4 1 9)
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and

VisVis =1, . (4.20)
From equation 2.32, it was shown that
Ve =V, Vin = (n1/n+)1/21a - 4.21)
It can be similarly shown that
ViVii = Vi, Via = (n2/n)'°1, . (4.22)
Also, for
Vie = ky X0, (X0 X,) 'C'F; (4.23)
the following holds:

ViaVin = (kak) ™ | By C(XX0) ™' X3, | | X0 (X0 X0) 'Oy |

X
0n2><q

ﬂwwmﬂwmmw%mlﬂﬂ ]mmwb%f

(koki) P Fy 'O (X X0) ™ 0gxq (X4 X0) ' C'Fy!

0,4 - (4.24)
With
5! [ I VitVie ViV
V;l/g [‘/hl ‘/h2 ‘/h+] = V;l/2‘/hl Ia ‘/h/z‘/th
‘/;L/Jr _‘/;L/erﬂ ‘/h/+‘/h,2 Ia
I, 0 (n1 /)", (4.25)
= 0 I, (ng/n+)1/2Ia
L (ni/n )L, (no/n )T, I,

and, using equation 2.53,

Viibs Hh1 (”1/”+>1/2Mh+
Vinttr | = | Bz | = | (ma/n)Ppun | - (4.26)
Vit Hh+ yr7n

If
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/
Vhl Yn1

Y= |Vio |y+= | yn2 | » (4.27)
‘/;L/Jr Yn+
then
7 I, 0 (ny/ny )2,
yn ~ (S)Nsa | | a2 |,0° 0 I, (no/n )21, | |- (4.28)
bt (nl/n+)1/2Ia (n2/n+)1/2Ia I,

Another important relationship is

(n1/n4) Vi + (na/n) PV =
kP F C(X0X) T X + PR C(X 0 X0) T X, =
kB (X0 X0) ™ [ X Ogn, ] + 2By C (X X0) ™ [0gn, X3] =
KPR OXX0) X Xy =V, (4.29)
which implies that
)Pyt + (n2/n)Pyns (4.30)

Ynt = (m/ng

Since y;,1 1s independent from y;,9, it follows for a x 2 matrix 77 defined as
T = [ (”1/n+)1/2yh1 (nz/n+)l/2yh2 } (4.31)

that

T ~ Na,2{[(n1/n+)#h+ (na/my)peny |, I, (02/n+)Dg(n1,n2)} . (4.32)

This in turn implies that the 2 x 2 matrix S} defined as T7/7T} can be expressed as

[ S Si
1= | S12 522]
(n1/n4) "y,
= ! 1/2 " [(na/n) Pyn (na/n ) Pyps ]
_("2/”+) Yho
- s .
_ (n1/n4 ) Yh1Yn (711”2/”3) / Yh1Yn2
= 1/2
(mna/n2) Py (na/n )y |
- 7 s -
_ (n1/n4)o1 (ning/n%) / Y Yn2 433)
o 25\1/2 ’5 ’ ’
| (mina/n3) Y Yna (n2/n4)02

96



Also,

0, =1,81,. (4.34)
For 2 x 2 matrix Mg, defined as
(”1/”+)N§z+]
Mg = ni/n No/n
O ke o (Y T T e

— 2 |: n%,u’?wll'th nln?.u';wrﬂlwr}
i NAM2 L), Hoh+ n%ﬁl';z-i-/*"h-i-
_ mn

= n+2 (N;H.U'h-&-) ( |:TL;:| [n1 mo ]) s (4.35)

using the definition of a non-

(20006) it follows that

central Wishart variable from Chapter 10 of Muller and Stewart

Sl ~ WQ [CL, (02/n+)Dg(n1,n2),M51] . (436)
If
T—ot|l (m/ m)"? , (4.37)
1 —(ny/ng)"?
then
T2/(02/n+)Dg(n1,n2)T2 =
][5 [ ) -
F Lna/m)? = /o) 2 1L O ma [ 1 —(ny fno) 2
nl[ . . ] 1 (nQ/nl)l/Q _ =
FLouna)'? —(una) |1 —(na /o) 2 |
no! ni + ng (nana)'? = (ming)? | _
* (nlng) / — (n1n2)1/2 Nno + Ny i
—1] N+ O 1 .
n; { 0 n| =1, . (4.38)

Also, for Ay = g, /02,

97



TyMgT) =

(B o+ ) { 1 1 } { ni n1n2 712/”1) 2 _
2 9 /2 1/2 /2 | —
nio (ng/nq) (ny/ns9) ning nj —(n1/n2)"" |
(Khy on+) nf +niny ning + 13 (1 (na/m)”? | _
n2 o nl/?niM2 ;/27%?/2 ng/Qn}/Q 3/2 1/2 1 (nl/n2)l/2_
(Bhy on+) [n% +nine N3+ nmz] (1 (ny/my)"? _
n? o2 0 0 1 —(ny/no)"? ]
(o i) [ (mn +n2)2 (n?/zné/z +ng/2n}/2) _ (n2/2n}/2 +n1/2n§/2) _
nio’ 0 0 ]
(Bhbni) [1 0] _
o? 0 0]
Dg(A4,0). (4.39)
The inverse of 75 can be expressed as
Ty = —0((n1/n2)1/2 + (n2/n1)1/2)_1 [_(”l/nQ)l/Q _(”2/711)1/2]
-1 1
1/2 1/2
= an;l(nan)l/Q {ml/gb?) (”2/_”11) ]
—1 n na
= 4.40
o [(”1”2)1/2 —(n1n2)1/2} (340
For independent random variables
X7~ xP(a M), (4.41)
X;~x*(a—-1), (4.42)
Z ~N(0,1), (4.43)

due to the properties of S and 77, described in equations 4.36-4.39, a non-central Wishart

theorem (Gupta and Nagar, 2000; Theorem 3.5.8, p.121) allows expressing the distribution of

Sy = T3S, T in terms of { X, Z, X»}. In particular,
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S, = TS, T}

[xy 0][xy 2z
1z X|l0 X

X% Xz
= . 4.44
[XlZ 7% + X%] ( )
This in turn implies that S} can be expressed as
Sl — TQ_tSQT_l
1/2 2
9 _a|m1 (ning) [ X7 X\ Z ] [ ni N2 ]
= o‘n ) (4.45)
i [nz —(ame)? | L X0Z 22+ X3 | [ (amp)'? —(nimy)"?
So, for S| = Su S , the components of S, are
So1 Sa
Sll = 0’27’L_T_2 [H%X% + 2n1(n1n2)1/2XlZ + ninsg (Z2 + X22>:|
2
= a%fnl [(nile + n;/QZ) + nQXS} (4.46)
512 = 02?1;2 |:TL1HQX% + (?’LQ — nl)(nan)l/QXlZ — N1n9 (Z2 + X%):|
= O'QTL:LZ [nlng (X% — Z2 - XQQ) + (ng - 7%1)(7’1,17’1,2)1/2X12:| (447)
521 = 027@2 [nanX% + (TLQ — nl)(n1n2)1/2X1Z — Nning (ZQ + X%)]
= 0'271_7_2 [nan (X% — 22 — X%) + (’ng — nl)(n1n2)1/2XlZ] (448)
522 = 0'2TL12 [TL%X% — 2%2(711712)1/2X1Z “+ ning (Z2 + X22):|
2
:a%M%QK@”Xy—@”Z)4wuXﬂ. (4.49)

Now, using the results above, I can get desired expressions for the conditional sums of

squares hypothesis for multiple degree of freedom hypotheses.

Lemma 4.3 Fora > 1 and X? ~ x?*(a, \;) defined as in equation 4.41, the conditional

sum of squares hypothesis for the final test statistic can be written as
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b, =0’ X7, (4.50)

A proof for Lemma 4.3 is in Appendix B.

Corollary 4.1 For a > 1 and X7 ~ x*(a, A;) defined as in equation 4.41, the
conditional sum of squares hypothesis for the final test statistic, scaled by o2, can be written

as

G.=0b,/0"=X?. (4.51)

Proof. Follows directly from equation 4.50.

Lemma 4.4 Fora > 1and X7, X3, and Z defined as in equations 4.41-4.43, the

conditional sum of squares hypothesis for the first test statistic can be written as

~ 2
o = JQnJ_rl {(n}/QXl + n§/22> + nng] ) (4.52)

A proof for Lemma 4.4 is in Appendix B.

Corollary 4.2 Fora > 1 and X?, X%, and Z defined as in equations 4.41-4.43, the
conditional sum of squares hypothesis for the first test statistic, scaled by o2, can be written

as

~ 2
Gy =61/ =n}' {(n}/ X, + n;/QZ) + n2X§] . (4.53)

Proof. Follows directly from equation 4.52.

Lemma 4.5 Fora > 1and X % , X%, and Z defined as in equations 4.41-4.43, the

conditional sum of squares hypothesis from the second stage can be written as

~ 2
8y = 0?7l {(n;/ X, — n}/gz> + nlxg] . (4.54)

A proof for Lemma 4.5 is in Appendix B.

Corollary 4.3 Fora > 1 and X?, X3, and Z defined as in equations 4.41-4.43, the

conditional sum of squares hypothesis from the second stage, scaled by ¢, can be written as
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~ 2
Gy =by/0% =n;! [(n;ﬂxl - n}/QZ) + nlxg] . (4.55)

Proof. Follows directly from equation 4.54.

Corollary 4.4 Fora > 1, X%, X%, and Z defined as in equations 4.41-4.43, and G; and

(G2 defined in equations 4.53 and 4.55, the following holds true

G+ Gy = (?51 +32) Jo? = X2+ X34+ 72, (4.56)

Proof. Follows directly from summing the results in equations 4.53 and 4.55.

4.3 THE IPIA PROCEDURE AND PROPERTIES

Table 4.1: General procedure

Step 1a : Specify oy, P;, X, hypotheses, 6, and 0(2)
1b : Solve for first stage sample size (1)
Step 2 : Collect first n; observations
Step 3 : Solve for Ny = n, critical values f;(n), fu(ny), and fi(ny), and F}
Step 4 : Decide:
If F; < f; then STOP, ACCEPT H,
If F7 > f, then STOP, REJECT H,
If f; < Fy < f, then take ny = n. — n; additional observations
Step 5 : Solve for F',
Step 6 : Decide:
If I\ < f, then ACCEPT H,
If I\ > f. then REJECT H,

Table 4.1 outlines the general procedure for the IPIA model. The order of the steps

matters in specifying the distributions.

The value of the internal pilot sample size, n1, must be chosen at the design stage of the
study. The choice is important since lower values give more uncertain estimates of o> while
higher values reduce possible savings in sample size. Most authors discussing internal pilot
designs take a designated fraction of the sample size from fixed sample equations such as

ny = m-ng for 0 < 7 < 1 and ng determined from o7. A typical choice for 7 seems to be
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0.5; that is, the size of the first sample is half of the fixed sample study sample size based on
2. In Chapter 3, I showed that this choice is a complex decision and should be a design
factor during study planning with the goals of an individual study in mind. In order to
clearly portray the usage and properties of the IPIA technique compared to other design types
for multiple degree of freedom hypotheses, I will not enumerate examples for various values
of 7 here. This will be undertaken as part of additional research into design strategies for
multiple degree of freedom hypothesis tests (Chapter 5). For the examples considered in this

chapter, the value as close to possible to 7 = 0.5 with conforming sample size will be used.

Calculation of the three critical values for the study, f;(n), fu(ny),and fy(n. ), must
be done following rules pre-specified in the study protocol. The critical values may depend
on n., the realized value of NV, ; however, when it is clear, they will be referred to as f;,
fu,and f,. Ideally, they should be chosen in a way that controls the type I error rate while
having good power and expected sample size properties. The theory developed here
optionally allows for stopping under the null at the interim analysis if £} < f;, where f; is
the first stage lower critical value. This can cause a great reduction in expected sample size
when the effect size is near the null value by allowing the study to stop for a "lost cause". If
early stopping under the null is not allowed, then f; = 0 for all n,. # ny. Inall cases f; = f,
when n, = nj, which guarantees stopping for acceptance or rejection of the null. Detailed
exploration and comparison of sample size selection methods will be saved for future

research (Chapter 5).

The sample size re-estimation rule will determine the distribution of N,. Itis an
important consideration in the design affecting type I error rate, power, and expected sample
size. Like internal pilot designs, the sample size for IPIA designs is determined by using the
updated variance estimate at the interim stage to recalculate the estimated sample size need
to achieve target power in the final test. The procedure takes advantage of the monotone

relationship between continuous 5> and discrete N .
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Computing the distribution of sample size, the cumulative distribution function for
possible values of N, that is Pr{ /N, < n}, requires determining cut-off points based on the
first stage variance estimate. For a particular value n of random N, the first step is to
solve for scaled noncentrality A(n ) that satisfies what about notation Apin(7n+)

H =1- sz [fcrit; a, )\(TL+)] (457)

or

Pt - 1_FF[fcrit;a7 V+,)\(?’L+)] ’ (458)

with feir = FX’Ql(l — ay;a) or Fpl(1 — ay; a, v, ) depending on whether or not large sample
distributional assumptions are used. The scaled noncentrality A(n, ) here represents the
minimum value that would lead to a final sample size of n. Since the effect of interest, 6,

is used at the planning stage, for §(n) = @] M '6; the following hold:
Any) = 8(ny)/o*(ny) (4.59)
or

o*(ny) = 6(ny)/A(ny) . (4.60)

Here, 0%(n..) designates the largest value of 5% that would produce N, = n.. Therefore,
since 1152 ~ o2W for W ~ x2(11),

Pr{N+ S n+} = Pr{&% S 02(n+)}
=Pr{W <wvio*(ny)/0’}
=Pr{W < vié(ny)/[0*A(ny)]} . (4.61)
The discreteness of sample size implies

PT{N+ = TL+} = PI‘{N+ S n+} — Pr{N+ S ny — m} . (462)
When restrictions are given for minimum or maximum sample size, the tail probabilities are

collapsed into the smallest or largest allowable values, respectively.

A key result of this process is the determination of cut-off points that determine a range

into which continuous 2 must have fallen in order for a given final sample size to occur.
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Define ¢;(n) and g2(n4) to be the values such that

Ny =n; & qng) <ndi/o’ < g(ny), (4.63)

which in turn implies that

Pr{N, =n,} = Felg(n);n] — Fela(ng);m] . (4.64)

The cut off points determine the probabilities for discrete values of NV, and hence describe

the variable's distribution. When it is unambiguous, ¢; and ¢» are used for ¢; (n. ) and
@2 (n4).
4.4 KEY ANALYTIC RESULTS FOR PROCEDURE

The results in this paper are developed to test H : @ = 6, for a contrast matrix C' with

more than one row, a > 1. Without loss of generality I assume 8, = O (by Lemma A.1).

In order to compute overall power and type I error rate for a study design, a joint
distribution of the two stage test statistics is necessary. Since critical values and denominator
degrees of freedom depend on sample sizes, the joint CDF is derived conditional on an N,
value, or Fr, p,|n, (f1, f+) where F and F'; are the test statistics for the first and second
(final) stage, respectively. Using the law of total probability and summing over possible

values for sample size gives unconditional power.

Unconditional power requires computing each conditional result. The conditional joint
CDF of the test statistics, F'r, g, |, (f1, f1), is derived in a computable form by decomposing
the parts into independent elements. Lemma 4.6 gives a key form involving three

independent variables defined in Section 4.2.3.

Lemma 4.6 Intermediate functions of interest include u; = ¢, g4, us =
ci(gi/na + g4), us(pr) = cipr — g us = g1/n2, b(p1, p2) = \/g1/n2 — p2 —
vVpini/ne, fp = fX2 (P1)s fpr = fxg (p2), d(p1, p2) \/gl/nz p2 + \/p1n1/n2,
h(p1,p2) = \/ci'p1 — pa — g+ For strictly positive {g1, g4, cy,n1,n2}, integer a > 1,
Z ~N(0,1), X} ~ XQ(a, A), X5 ~ x%(a — 1) with {Z, X?, X3} mutually independent,
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the following holds.
Pr{ [(\/nTXl +/122)° +naX? < 91] N[ei'Xx?— X3 - 2% < 94} -

/Oul/owfmfpz{q)[b(pl;p?)] — (D[_d(pl,p2)]}dp2dp1 +

u, prus(pr)
L o (e {amind—hon, 2, b 21} — @1, 21.0) +
max{®[b(p1, p2)] — @[h(p1, p2)],0} | dpadpr +

/ g A0, )] — Bl—d(p, p2)] Ydpadpr +

u, Juz(pr)

/ujc OU4fp1fpz [max(q){min[_h(php?)a b(plaP?)]} - (I)[_d(phpQ)]v 0) + (465)

max{®[b(p1, p2)] — @[ (p1, p2)], 0} | dpacpr
A proof for Lemma 4.6 is in Appendix B.

The result from Lemma 4.6 can be used in the following result in order to calculate the
conditional joint distribution of the test statistics. From Coffey and Muller (1999),
conditional on N, E; = 1167 /0” ~ x2(v1;q1,q2). The following theorem provides an
explicit form for the desired conditional CDF.

Theorem 4.1 If Z ~ N(0,1), X? ~ x*(a, A\;), and X3 ~ x*(a — 1) with {Z, X}, X3}
mutually independent. Additionally, define £, = 1/+61 Jo? =y, Aay./o?,

Ey =1v101/0* =y Aay. /0%, By =y (Aw + Au)y, /0%, B3 = Y, Aoy, /o7,

G, :/55/02 =y, Apsy; /0%, cs = afsvs for s € {1,2,+}, fr (t1) =

fe(ti )/ [Fye(q;vi) — Fye(qi; 1)), and fg,(t2) = fy2(t2;n2 — a), then for a > 1, the
conditional joint distribution of the two stage test statistics can be written as

Fr v (fi,fr) =

/qQ/OO}EI (tl)sz(tQ)PrM{ [(\/”_1X1+\/ﬂ_22)2+n2X§ < n+01t1]

N [ X2 X227 < ty+t,] })dtgdtl (4.66)

A proof for Theorem 4.1 is in Appendix B.
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A result needed if early futility stopping is allowed follows directly from Theorem 4.1:

Pr{fi < F1 < fu, Fy < fy Ny = ny} = Fppn, (fu, f+) = Fropgn, (fis f1) (4.67)

The results from Theorems 4.1 and 4.2 can be used to explicitly solve for the
conditional joint distribution of the test statistics for multiple degree of freedom hypotheses
in the IPIA setting. Taken together with results already derived in Chapter 2, explicit
calculations can be made for power, type I error, and expected sample size. The following
results from Chapter 2 apply to the a > 1 setting by using the form for Fr, p |n, (f1, 1)

derived in Theorem 4.1.

A distribution important to power and expected size calculations is the CDF of the first
test statistic, conditional on N, i.e., F'ipyn. (f1).

Theorem 4.2 For \; = p),, 1 /0>, the conditional CDF of the first test statistic can be

written

2F o (citi:a. A 2(t1:
Fryw, (1) = / pleti @ A)feltin) g, (4.68)

Q@ FXQ(QQ; Vl) - FXZ(Ql; V1)

A proof of Theorem 4.2 is in Appendix A.

The following corollary adapts Theorem 4.2 to solve for the probability of the test

continuing to the second stage conditional on N, = n when futility stopping is possible.

Corollary 4.5

Pr{fl§F1<fu

N+ :n+} =
/q2 [F\2(cutis a, Ar)—Fe(cty; a, \)] fye(t;v1)
a FXQ(Q2;V1) _FX2(Q1§V1)

dt, . (4.69)

The proof parallels the proof of Theorem 4.2, in Appendix A.

The above results can be used to calculate exact expressions for the power, type I error

rate (power under the null hypothesis), and expected sample size. The values change with
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design parameters and are valuable knowledge in study planning. The following theorem

gives the formula for unconditional power.

Theorem 4.3 An expression for unconditional power, P, can be written

P,=1- Z [F\2(qe; 1) — Fre(qus Vl)]{FF1|N+(fl(n+>> +
{Ny=n,}

Pr[(fl(n+) <P < fulng), Fi < f+(”+))‘N+ = n+}} . (4.70)
A proof of Theorem 4.3 is in Appendix A.

The results in this section can also be applied to calculate an expected sample size

formula for a study design in the following form.

Theorem 4.4 If N, equals the total sample size taken in study, that is,

n;  if study stopped after first stage
N, = :
N,  otherwise,

then

E(Ny,) =n1 + Z na[F\2(qos 1) — Fe(quin)|Pr| fi < Fy < fu| Ny = n+] (4.71)

{Ny=n}

A proof of Theorem 4.4 is in Appendix A.
4.5 AN EXAMPLE

4.5.1 Motivation for the Example

To illustrate usage of the exact theory in the application of internal pilot studies to more
complex designs, I consider Example 4.1, a three-group one-way analysis of variance
(ANOVA) described by Coffey and Muller (1999; Example C) for use in internal pilot
designs. There are two main purposes of the example in this chapter. First, to compare the
numeric results using exact theory to simulations in order to justify the computational
algorithms utilized in calculations and as an additional check on the accuracy of the theory.

Second, to compare the properties of the internal pilot with interim analysis (IPIA) procedure

107



with special cases, including a fixed sample, an internal pilot (IP), and a two-stage group
sequential (GS) procedure in a multiple degree of hypothesis setting. To help simplify the
comparisons, I use a naive but common approach to critical value selection and study design.
Properties to be examined include type I error rate, power, and expected sample sizes under

various scenarios.

The fixed sample, IP and two-stage GS designs considered for Example 4.1 are all
special cases within the general IPIA framework. An IP design does not allow early stopping
at the interim power analysis, except when Ny = 0. An IP design may be described as
special case of IPIA with f; = 0, f, = oo. In the IPIA design used here, it is assumed that
sample size can be reduced from the pre-planned level (14 min = n1). The two-stage GS
design, on the other hand, allows for early stopping at the interim analysis, but does not
allow for a change to the preplanned maximum sample size, i.e., Pr{ Ny = ng} = 1. The
fixed sample approach can be seen as a special case combining the restrictions of the IP and
GS designs (f; = 0, f, = o0, and Pr{ N, = ng} = 1). The IPIA design combines the
features of the IP and two-stage GS designs by allowing for stopping at the interim stage as

well as allowing for a change in maximum sample size used when a study is to be continued.

Table 4.2: Two-stage designs

Early Stopping
Yes No
SSR Yes IPIA Int Pilot

No | Grp Seq Fixed Sample

In addition to stopping at the interim stage for efficacy, both the GS and the IPIA
procedures can allow early stopping at the interim stage for futility. Hence both scenarios
will be considered here. No futility stopping implies that the lower first stage critical value,
f1,1s 0. For futility stopping in this chapter, I will use a simple p-value cut point of 0.85.
Therefore if the p-value for the first stage hypothesis test is greater than 0.85, the study will

stop and conclude that the alternative hypothesis is not supported. In reality, this is not an
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ideal approach since the first stage may contain only a small fraction of the needed
information of the study (especially for high true variance values) and so may not be very
informative in some cases. It is used here for simplicity in order to portray the characteristics
of the procedures. Chapter 5 has some additional discussion about the use of futility

stopping within the IPIA framework.

Critical values used in the example will be determined as follows. For the fixed sample,
group sequential, and IPIA designs critical values will be based on the chi-square distribution
with a degrees of freedom. For example, if a particular stage's nominal alpha level is
determined to be o = 0.04, then the efficacy critical value for that stage would be
FX;1 (1 —0.04;a)/a. The large sample method is used to show the consequences of not
accounting for the use of variance estimates in the test statistics for the small and moderate
studies examined. The fixed sample results will also be determined using the F' distribution
since it will exactly achieve the target type I error rate. For the internal pilot design, critical
values will only be solved with the unadjusted F' distribution since it is the method described
by literature. For these methods, a particular stage nominal alpha level of o = 0.04 would
cause the efficacy critical value for that stage (say stage s) to be Fz'(1 — 0.04;a, v). For
the group sequential and IPIA designs (early stopping designs), I will use O'Brien-Fleming
stopping rules to solve for the nominal type I error rates used in critical value calculation.
These bounds are designed to allow for conservative early stopping while adjusting the final

critical value for type I error rate inflation due to multiple testing.

Due to misalignment of test statistic and critical value distributions and a biased
variance value used in sample size re-estimation designs, the selection of final critical values
will likely cause type I error rate inflation for most designs considered. They are used here
in order to best compare the procedures and also to assess the magnitudes of such inflations.

Strategies that better control the type I error rate and maintain power while minimizing
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expected sample size for these designs are saved for future research and will be briefly

discussed in Chapter 5.

In total seven design procedures will be considered: fixed sample (x? and F)), IP, two-
stage GS with and without futility stopping, and IPIA with and without futility stopping.
Type I error rate, power, and expected sample size will be calculated for each of these
procedures over a range of true variances. I will use the sampling fraction 7 = 0.5 and

Ty max = Q.

4.5.2 Computational Methods

All programs for the example were written in SAS/IML (SAS Institute, 2004). Most of
the computation for the examples utilizes the exact theory developed in this chapter. The
exceptions are the fixed sample and internal pilot designs. The fixed results could be directly
calculated using standard distribution functions. The internal pilot calculations were easily
obtained utilizing exact internal pilot theory from the freely available GLUMIP 2.0 (Kairalla
et al. 2007) software package. All other results came from use of the exact theory, including

the two-stage group sequential designs, which are a special case.

Stopping bound computation utilized the SEQSCALE function and the numeric
integrations utilized the QUAD function, both within SAS/IML. To avoid numerical
instability of the calculated integrals, computation was performed using quantile
transformations (Glueck and Muller, 2001) of the distributions derived in Section 4.4. For
illustration, transforming variable of integration ¢ to give p = F\2(t; v) implies
t= FXQI (p;v) and dp = f\2(t;v)dt. The approach always gives finite bounds and often
radically improves computational accuracy and speed.

Simulations were conducted for a limited set of cases in order to check the accuracy of
the programming and numerical algorithms, provide an additional check on the analytical
derivations, and to compare the speed of calculation using the two methods. Using a subset

of a half dozen cases from over a range of conditions, simulation was conducted with

110



1,000,000 replications per case. All programs were run using an Intel Xeon 3.2 GHz
processor. For each of the cases considered, the analytically calculated values were within

two standard deviations of the simulated values.

The comparison programs were each run in groups of three cases corresponding to
variance values of v € {0.5, 1, 2} with v = 0 /03. Runs were made under the null
hypothesis (8 = 0) and assuming the effect of interest (@ = ;) for the IPIA design without
futility for Example 4.1. Timing results are detailed in Table 4.3 below.

Table 4.3: Simulation and calculation
times (hours) for Ex. 4.1
Simulation  Calculation
60=0 2.9 16.2
0=06 2.8 17.3

For the examples considered, the analytic calculations using the exact theory were
slower than the simulations (about 5x). This is not surprising considering the program
calculates four dimensional integrals as nested univariate integrations using the QUAD
functions in SAS/IML and no effort has been made thus far to improve the computational
efficiency of the program. Given the speed improvements seen in the very similar a = 1

case, even these complex results should be more efficient that simulations.

4.5.3 Example 4.1 Results

Example 4.1 is a three-group one-way analysis of variance (ANOVA) example
previously described by Coffey and Muller (1999; Example C) in an internal pilot
framework. For the two degree of freedom test of differences among groups with a; = 0.05,
P, =0.90,6, =[0.5 1.0], and o2 = 1, a fixed sample size power calculation suggests 27
observations per group (ny = 81). For the early stopping procedures, I consider a design
with 13 observations per group (n; = 39) in the interim sample and 74 max = 00. The

design parameters for Example 4.1 are summarized in Table 4.4.

111



Table 4.4: Design parameters for Example 4.1

o P 6, o Mo N1 N max
0.05 09 [0.5 1.0]" 1 81 39 oo

I analytically calculated values for type I error rate, power, and expected sample size

under the design conditions described in Table 4.4.

Table 4.5: Type I error rates x 100 for Example 4.1

Fixed Sample Group Sequential IPIA
0 2 F IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 5.6 50 53 59 5.8 6.4 6.4
075 5.6 50 5.6 59 5.8 6.8 6.8
1.00 5.6 50 55 59 5.8 6.6 6.6
1.50 5.6 50 53 5.9 5.8 6.1 59
200 5.6 50 52 5.9 5.8 5.7 5.4

Table 4.5 displays the values for type I error rate for each of the seven designs described
in Section 4.5.1: Fixed sample (x? and F), IP, two-stage GS with and without futility

stopping, and IPIA with and without futility stopping.

For the fixed sample design, type I error rate is somewhat inflated by a constant amount
across ¥ when the large sample chi-square distribution is used for critical value
determination and is controlled at the target level when the F' distribution is used. In the IP
design, some type I error rate inflation occurs due to downward bias in variance estimate
used. The magnitude of inflation is shown to depend on true variance value with a peak at
around v = 0.75. Due to the use of chi-square based critical values, the GS designs also
have moderate type I error rate inflation. The inflation for the GS designs is constant across
~ since no sample size re-estimation occurs and noncentrality is zero under the null. The
IPIA designs, which combine early stopping ability with sample size re-estimation, have type
I error rate inflation caused by both variance estimate bias and the use of large sample critical
values. For both GS and IPIA, allowing for early stopping for futility causes a small

reduction in the type I error rate. For this example, the magnitude of type I error rate is
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moderate and comparable for the Fixed (x?), IP, and GS methods. The IPIA method has an

increased level of inflation.

Table 4.6: Power x 100 for Example 4.1

Fixed Sample Group Sequential IPIA
vy x> F IP  w/o Futility w/ Futility w/o Futility w/ Futility
0.50 99.8 99.7 933 99.8 99.7 93.3 93.3
0.75 973 969 091.2 97.2 97.1 90.9 90.8
1.00 91.6 90.8 90.4 91.5 91.2 90.2 90.0
1.50 769 754 89.6 76.8 76.4 89.5 88.3
2.00 639 62.1 89.1 63.9 63.5 89.1 86.8

Table 4.5 displays the values of unconditional power for the seven designs. Power for
both fixed sample designs is sensitive to the true variance value. The fixed sample study
considered can be significantly over or under powered depending on the true variance
regardless of the critical value determination method employed. Power for the considered
GS designs is also highly dependent on the true variance value, with power levels very
similar to those for the fixed sample design. In the IP design, power is greatly stabilized due
to the variance estimate based sample size re-estimation at first stage. The IPIA designs also
have very stable power similar to the IP design due to the sample size re-estimation analysis
at the first stage. The GS and IPIA designs with first stage futility stopping have power at
slightly lower levels than their counterparts without futility stopping. For power in this
example, the IP and IPIA designs greatly achieve the target rate while the two-stage GS and
fixed sample designs are shown to be vulnerable to misspecification of the variance, a

nuisance parameter, at the planning stage.

Table 4.7: E(N,,) for Example 4.1: fixed, IP, and GS

GS (no futility) GS (futility)

v FixedSample IP 6=0 60=6; 6=20, 60=0 60=6, 60 =20,
0.50 81 445 80.6 52.7 39.0 744  52.7 39.0
0.75 81 61.6 80.6 625 39.2 744 624 39.2
1.00 81 80.5 80.6 68.1 40.5 744 678 40.5
1.50 81 1184 80.6  73.5 46.1 744  72.6 46.1
2.00 81 156.4 80.6 759 52.7 744 745 52.7

113



Table 4.7 displays the values for expected sample size for the fixed sample, IP, and GS
with and without futility stopping designs. For the GS designs, expected sample sizes are
calculated assuming the null hypothesis (6 = 0), the alternative of interest (8 = 6,), and

assuming a true effect size twice the effect of interest (8 = 26,).

Under controlled conditions, the sample size for the fixed sample design is always the
preplanned sample size, 81. As would be expected, the expected sample size for the IP
design is dependent on the true variance due to sample estimate based sample size re-
estimation at the first stage. It achieves an expected savings in sample size for variance
values lower than the value assumed at the planning stage (44.5 at v = 0.5) and rises above
that of the fixed sample design as it accounts for larger true variance values by increasing the

estimated sample size need at the internal pilot stage (156.4 at v = 2.0).

Under the null hypothesis, the expected sample size for the GS designs are constant
over v values. This happens because no variance-value based sample size re-estimation
takes place at the first stage and true noncentrality is zero. The small departure from the
fixed design sample size in the GS design without futility stopping is due to the small chance
of falsely stopping for efficacy at the first stage. The GS designs allowing futility stopping at
the first stage causes an across the board drop in expected sample size (to 74.4 from 80.6)

under the null due the probability of correctly stopping early for futility.

Under the alternative of interest (8 = 6;), the expected sample sizes for the GS designs
are noticeable lower than the fixed design sample sizes due to possible early stopping for
efficacy at first stage. This demonstrates the clear sample size benefits of the GS designs
compared to single analysis, fixed sample designs. The effect diminishes as variance
increases due to the lowered power of the first test with decreasing noncentrality of the test
statistic. When futility stopping is allowed, the expected sample size for the GS design
decreases slightly as the probability of false futility stopping at the first stage analysis is

introduced.
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For an effect of twice the alternative of interest (8 = 26,), the GS designs offer
significant expected sample size reduction from the fixed design at all v considered. The
effect diminishes somewhat as first stage power decreases for increasing variance. There is
virtually no difference in the two GS designs considered under this condition as the chance

of first stage futility stopping is very small for 8 = 26, .

Table 4.8: E(N,,) for Example 4.1: IPIA

IPIA (no futility) IPIA (futility)
0.50 42.7 40.2 39.0 42.0 40.1 39.0
0.75 584 50.0 39.2 55.1 50.0 39.2
1.00 77.1 67.8 423 70.8 67.5 42.3
1.50 115.1 109.4 71.9 102.8 107.7 71.9
2.00 153.2 150.2 122.1 1349 146.1 122.0

Table 4.8 displays the values for expected sample size for the IPIA designs with and
without futility stopping. Similar to the IP design, IPIA expected samples sizes are lower
than the fixed design sample size for low true variance and increase with the true variance as
the first stage sample size re-estimation requires larger second stage samples on average.
Under the null hypothesis (6 = 0), the IPIA design without futility stopping has similar
sample size values to the IP design since stopping at the first stage for efficacy is rare here.
The difference comes from the use of different distributions for sample size re-estimation (IP
uses F, IPIA uses x? here). The null case IPIA design with possible futility stopping causes
a drop in expected sample size for all variance values when compared the design without
futility stopping due to the chance of a correct decision to accept the null and stop at the first
stage analysis.

Under the alternative of interest, (8 = ), the expected sample sizes for the IPIA
designs are noticeably lower than the fixed sample design for variance values at the
preplanned value or lower. The expected sample sizes rise with v due to the need for

increased sample size detected at the first stage to protect study power. In this case, early
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stopping (GS-like) sample size benefits are offset by the sample size recalculation procedure
(power protecting IP characteristic). Expected sample size under the alternative of interest is
slightly lower in the IPIA design allowing futility stopping due to the possibility of false
futility stops at first stage. This chance increases with v due to the naive p-value based

futility stopping rules used to calculate the first stage futility critical value.

For an effect of twice the alternative of interest (8 = 26,), the IPIA designs offer
substantial expected sample size reduction due the large chance of early efficacy stopping in
the first stage. The effect diminishes as increasing variance calls for more sample size in the
second stage and decreases first stage power. There is very little difference in the two IPIA
designs considered under @ = 26, as the chance of futility stopping is very small for the

large effect size.

4.6 DISCUSSION

In this chapter, I have derived theory that generalizes the two-stage internal pilot with
interim analysis for use for multiple degree of freedom univariate Gaussian linear model
hypotheses. The exact results allow for accurate numerical calculation of type I error rate,
power, and expected sample size for various study designs without the need for simulations.
Many prospective research studies and even clinical trials are not large enough for
asymptotic properties to hold. Since the theory in this chapter is not derived using
asymptotic results, it will be accurate and valuable for planning smaller studies.

This results from Example 4.1 highlight some of the different characteristics of the
designs considered, all of which are special cases of the IPIA design and theory detailed in
this chapter. Each design has its advantages and disadvantages.

The fixed sample design has the advantages of a known sample size and a controlled
type I error rate, but has an uncontrolled power function affected by the unknown true
variance, a nuisance parameter. The GS design allows a study to stop early if effect size

differs from the preplanned magnitude, and hence, decreases expected sample size from the
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fixed sample level. In the tables above it achieved this goal under all conditions when
futility stopping is allowed, and under situations of high effect size when futility stopping is
not included. Using large sample (x?) critical values, the GS designs have an inflation in
type I error rate due the critical values not accounting for uncertainty of the variance
estimate. Finally, GS power is vulnerable to misspecification of variance at planning stage
as shown in Table 4.6. This sensitivity is similar to that found in the fixed sample design and

is due to the lack of sample size re-estimation for the final stage sample size.

The primary goal of the IP design is to protect study power by re-estimating sample size
through interim power analysis without interim data analysis. As Table 4.6 shows, this goal
is greatly achieved by the design. The IP design can also have sample size benefits due to
possible sample size reduction at the interim stage if the planning variance value was
specified higher than the true parameter value. For high true variance values, the design has
higher expected sample sizes than the GS and fixed sample designs. The IP design also has
inherent type I error rate inflation dependent on the true variance value. This is typically
accounted for in smaller sample studies by adjusting the test statistic or critical value.

Adjustment was not made here for comparative purposes.

The IPIA designs seek to incorporate the advantages of the GS and IP designs by
allowing for early stopping as well as sample size re-estimation at the interim stage. Table
4.4 shows that it does, in fact, mostly achieve the power protective properties of the IP
design. Also, Table 4.8 shows that the sample size benefits of the GS design are also
inherent to the IPIA design as the expected sample sizes for many conditions are
significantly lower than for the IP design.

It is apparent that the challenge of the IPIA design is controlling the type I error rate
while maintaining the power and sample size benefits of the design. In addition to enjoying
the benefits of power and sample size reduction from the IP and GS designs, respectively, it

retains the different sources of potential type I error rate inflation that the designs introduce.
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Careful adjustments that can control the type I error rate while maintaining the design's

benefits must be done in order for the IPIA procedure to be useful in practice.

The IPIA procedure as outlined in this chapter is purposefully kept general in many
regards. For example, it does not specify mandatory methods for selecting critical values,
updating sample size, or selecting the interim stage sample size. The theory developed in
this chapter as well as the further development of the prototype software to assist in
calculation would allow for the exploration of many different possible designs. This would
not only be valuable for the development of general study guidelines with positive
characteristics. Also, since all studies are not alike, extensive exploration for a specific study
during planning stages can allow investigators to customize the procedure for their specific

needs.

Procedural strategies for single degree of freedom hypotheses within the IPIA
framework were examined in Chapter 3 of this dissertation. I found that using the ¢
distribution for critical value computation had a significant effect of reducing the type I error
rate for the IPIA design. Also, I introduced a bounding method which controlled the type I
error rate while maintaining the power and sample size benefits of the design. While I have
not fully explored these methods within the more complex settings considered here, I believe
that they have great promise. Unfortunately the computational intensity of the current IPIA
bounding method would be burdensome to employ here due to the added layer of numerical
integration of the results for this chapter. However, straightforward attention to choosing
better numerical integration methods will likely radically speed the calculations.

I believe that using the F' distribution for all critical value calculation is a good start
towards further improvements. Developing and refining design strategies for the IPIA
design, especially for complex hypotheses, will be a main topic of future research and is

discussed in Chapter 5.
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CHAPTER S. SUMMARY AND FUTURE RESEARCH
5.1 SUMMARY OF ACCOMPLISHMENTS

5.1.1 Chapter 2: Internal Pilot with Interim Analysis for

Single Degree of Freedom Hypothesis Tests

In Chapter 2 I 1) introduced the proposed model of a two-stage internal pilot with
interim analysis (IPIA) design and 2) derived the exact distributional theory needed for
planning studies with single degree of freedom hypothesis tests. The exact theory applies to
any single degree of freedom hypothesis in a univariate linear model with fixed predictors,
Gaussian errors, and unknown variance, including one and two group comparisons. Direct
computation using the theory allows for fast calculation of power, type I error rate, and
expected sample size. In the example considered, simulations took from 24-70 times more
computational time. Also, I compared study characteristics of various designs and concluded
that the IPIA was the only one able to control power at the level desired and simultaneously
achieve sample size savings (when available) over a wide range of conditions. The
numerical enumerations demonstrated the need for active intervention, above and beyond

popular group sequential corrections, in order to guarantee control of the type I error rate.

5.1.2 Chapter 3: Planning Procedures for an Internal Pilot

with Interim Analysis Design

In Chapter 3, I focused on design strategies for the IPTA for the single degree of
freedom Gaussian linear models considered in Chapter 2. The goal was to achieve sound
study design strategies that control the type I error rate while best maintaining the power and
sample size advantages of the design. I introduced the IPIA bounding method which allows

for type I error controlled IPIA designs. I showed the importance of accounting for the



uncertainty of the variance estimate in test statistics through use of ¢ distribution based
critical value calculation. Using the ¢ with the bounding method gave not only good control
of type I error rate for the IPIA design, but also gave good control of power and sample size,
even in small sample studies. Finally, I demonstrated and briefly explored the complexity of

study properties with respect to the interim sample size decision.

5.1.3 Chapter 4: Internal Pilot with Interim Analysis for

Multiple Degree of Freedom Hypothesis Tests

Chapter 4 also centered on the model and IPIA design introduced in Chapter 2, but
generalized the results to any general linear hypothesis with one or more degrees of freedom.
I introduced new exact theory that allows for accurate study planning for complex designs
even within small sample studies. The theory includes an explicit and computable form for
the conditional joint distribution of the first and second stage test statistics. Together with
the results from Chapter 2, the distribution allows calculating power, type I error rate, and
expected sample size for the models. Through examples, I compared study characteristics of
an IPIA design with the characteristics of a fixed sample design, internal pilot, and a two-
stage group sequential design, all of which are special cases within the IPTA framework. In
the numerical enumerations considered, the IPIA design best protected power while allowing
for sample size saving (when available) over a range of conditions. The levels of type I error
rate inflation observed in the examples demonstrated the need for design and analysis
methods more complex than traditional group-sequential corrections based on large sample

theory.
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5.2 FUTURE RESEARCH

5.2.1 Futility Bounds

The theory developed in Chapters 2 and 3 optionally allows for stopping under the null
at the interim analysis if F} < f;, where f; is the first stage lower critical value. This can
cause a great reduction in expected sample size when the effect size is near the null value by
allowing the study to stop for a "lost cause". If no early futility stopping ability is desired,
then the lower critical value, f;, is set to zero. In the examples in Chapters 2 and 4, a simple
p-value based futility bound was employed: a study was stopped for futility when the p-
value for the first stage test was greater than 0.85. This simple method clearly showed the
possible resource savings of a carefully used futility bound procedure. In all cases when no
effect was present, there was a noticeable drop in expected sample size due to early stopping
under the null. I believe that further development in this area for the IPIA model is

extremely important.

Current methods exist for futility stopping within group sequential methods
(Pampallona and Tsiatis, 1994; Lachin, 2005). Adapting these methods for use in the IPIA
setting could be a good start into an IPIA futility analysis plan. The IPIA is simpler than the
group sequential design in that it only has two stages, but more complex in that sample size
is unknown and based on a random variance estimate. Accuracy in small samples requires
accounting for the uncertainty of the variance at the interim stage. One possible method
would be to solve futility bounds based on conditional power calculations assuming variance
to be a lower confidence limit (optimistic) at the interim stage. This would assure that a

study only stops when the probability of a significant outcome if continued is low.

5.2.2 Sample Size Re-Estimation Method

For continuous Gaussian data, sample size re-estimation is an interim power analysis
that uses the variance estimate from the first stage to calculate the estimated sample size

needs of a study. The sample size re-estimation rule determines the distribution of N, by
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taking advantage of the monotone relationship between continuous 52 and discrete N,. It is
an important consideration in the IPIA design affecting type I error rate, power, and expected

sample size.

For general linear hypotheses within the IPIA framework, this process is complicated by
the lack of knowledge of the final test statistic distribution as well as by the difficulty in
knowing the correct critical value to use. The final test statistic is not a true F' distributed
variable. Both the choice of continuation and selection of sample size complicate and bias

the effect size and variance estimates used in the test statistic calculation.

The critical value selection at interim power analysis is also complex. As is typical in
group sequential sample size calculation, I used the target type I error rate to assume a final
critical value for sample size re-estimation purposes. In reality, the amount of type I error
spent on the second stage is not equal to the target level due to early testing. The issue is
complicated by the feedback between critical value and sample size. The critical value
determines the sample size needs and the sample fraction determines the critical value to use.
Research into better aligning the true test statistic distribution and critical values used with
the assumptions at the interim power analysis seems likely to boost IPIA study efficiency and

accuracy.

5.2.3 Selection of Interim Sample Size

The value of the interim sample size, n;, is an important consideration in determining
the performance characteristics of an IP or IPIA design. In Chapter 3, I illustrated the
complexity engendered by the choice of n; for the IPIA model. Depending on the critical
values employed, true effect size, and ratio of planning and true variance values, a high value
of n; could possibly have sample size savings due to the changing power at the first stage
test. Because of the interactive nature and sensitivity of type I error, power, and expected
sample size to the interim sample size, the effects should be explored in some detail as part

of study planning.
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5.2.4 Computation

New methods will rarely be adopted without a convenient means to use them.
Consequently I feel it is extremely important to produce accurate and user-friendly software
for the study planning and data analysis with an IPIA design. The open-source software

would also facilitate future research using these results as a foundation.

During the course of this research, a large amount of code was written for the
calculations completed. The code consists of a number of SAS/IML (SAS Institute, 2004)
modules that together form a prototype program. The code supports calculation of type I
error rate, power (under any alternative), and expected sample size for any general linear
univariate model with Gaussian errors and fixed predictors. Additionally, the code allows
using the IPIA bounding method for the single degree of freedom hypotheses as described in
Chapter 3. The code can calculate the location and value of maximum type I error rate as a
function of true variance, or it can find the adjusted rate with bounded type I error rate
inflation (see Chapter 3). For single degree of freedom IPIA tests, the current code works
many times faster than simulation. While the developed code has worked well for the needs
at hand, it is a prototype in that little effort has been made at increasing its usability, error-
checking of inputs, and efficiency of calculation. Further development in this area would not
only allow the IPIA methods to more easily be adopted, but would facilitate my personal

research and that of others by making an efficient foundation for future development.

5.2.5 Strategies for Multiple Degree of Freedom Tests

In Chapter 3 I examined IPIA design strategies for single degree of freedom hypothesis
tests. I believe that many of the recommended methods would also be applicable in the
multiple degree of freedom setting. For example, the use of the F' distribution instead of the
large sample x? distribution would more accurately model the distribution of the test
statistic. Obviously the bounding method will work within the more complex setting, with

computational speed the only current barrier.
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5.2.6 Generalizations to Other Settings
Multiple Stage Designs

In this research, I considered only two-stage designs. The priority was to combine the
power protection of the internal pilot design with the ability to save resources through early
stopping. Traditional group sequential methods allow for more than two looks during the
course of a study. It would be valuable to theory and methods to allow for a larger number
of looks during the course of a study. I feel that a good approximation may be achieved in
two simple steps. First, employ the current IPIA bounding method for a two-stage design to
choose an adjusted overall alpha as a first step. Second, traditional group sequential rules

would be used to split alpha across stages.
Multivariate and Repeated Measures Models

The current theory was developed within the general linear univariate model
framework. Generalizing it to studies with multivariate and repeated measures models would
greatly increase its range of usefulness. The general linear multivariate model may be stated
asY = XB + FE, with {Y, B, E'} having p columns corresponding to p responses.
Interest lies in testing the null hypothesis Hj : © = ©( for © = C'BU of dimensions

a X b.

A particularly interesting class of multivariate hypotheses, a = 1 and b > 1, has
recently been shown by Park (2007) to have equivalent univariate forms. She was therefore
also able to show that such models fit exactly into the framework and exact theory of the
univariate internal pilot. Interesting applications include any one or two group comparison
of multivariate responses or profiles (such as time trends). Hotelling one and two sample
tests are special cases. I believe the IPIA theory can also be applied exactly to this particular

multivariate setting.

In the general case of min(a, b) > 1, it helps to distinguish between the MULTIREP

tests based on the affine invariant statistics used for the multivariate approach to repeated
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measures, and the UNIREP tests based on the orthonormal invariant test used for the
univariate approach to repeated measures (Muller and Stewart, 2006, Chapter 3, et seq.).
Park (2007) also indicated that the MULTIREP approximate methods reviewed in Muller et.
al. (1992) could in a parallel way give equally accurate approximations for min(a, b) > 1.
Similarly, general approximations for the UNIREP case (Muller et al., 2007) as used in
Coffey and Muller (2003) for internal pilots, should provide equally accurate approximations

for IPIA designs.
Mixed Models

The proposals for future models to consider reflect the 'Divide and Conquer' approach
recommended for mixed models by Gurka, Coffey, and Muller in an invited presentation at
the Joint Statistical Meetings of 2007. Following the approach of piecemeal adaptation,
Gurka et al. (2007) described a useful class of mixed models that can be expressed as
equivalent univariate tests and work exactly within developed internal pilot theory. This
class includes complete and balanced designs with compound symmetric covariance.
Detailing how the IPIA theory can be used with this class of designs models would bring
further generalization to the methods. In turn, Johnson's work (2007) on cluster samples can
be understood as generalizing the exact results of Gurka et al. to unbalanced designs. Her

work therefore indicates how to extend the IPIA model in a parallel way.
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APPENDIX A: CHAPTER 2 PROOFS

Lemma A.1 Any testable general linear hypothesis with 8, # 0 may be expressed in

terms of a related model and general linear hypothesis with 8, = 0

Proof. Transforming the model gives

y—XC'cc) e, = X[B - C’(CC”)’IGU] +e
Hence 8, = CB. =0 — 0y and H, : 8, = 0 is equivalent to Hy: C' B = 6,. O

Corollary 2.1 Proof. From equation 2.58, fora = 1, ., = (ny/ nz)tOV;’pvhl and
3., = o2 [ I, — (ny/ n2)Ve’pAh1Vep] the following distribution hold:

Yeh = yep|(v;L1‘/:2pyep = tO) ~ (S)an (/J’e.ha Ze.h) .

So, since E, = y,,yecp/0”, the variable E,| (v}, Vepyep = to) is distributed the same as

q =Y, 1 Yen /0> =Y., AYe (A.2)

for A= A" = (1/0?)I,,. Also, for Fy = 0 'I,,, A can be written
A=F,F, . (A.3)

Forps = Flipren, =0 ey and g = F 3, . Fy = (1/0%)%, 1, define

Ya = Fiyen ~ (SN, (pa; 3a) (A4)

Also note,

zA — nz n—i—/nQ V!pAhl‘/:ep
ng Ny /Mo (V, 'Uhl)('v;zl‘/cp)

—( )
—( )
L, — (4 /12)(va) (V)1)
—( )
—( )

I
~

= I,, — (ni/ns [(Vep'vhl) (nz/n+)71/2] (n2/n) [(nQ/nwL)il/%;nVep] }

Ny /ng)ves(ng/ny v,
= Inz 'Uw2'vfr2

(A.5)

126



Here (v,1v)},) has rank 1, with only nonzero eigenvalue (v}, Vz,) (Vi vn1) = (n2/n.)
because, in general, X X’ and X’ X have same nonzero eigenvalues and the eigenvalue of a
scalar the number itself. Hence X4 = I,,, — (ny/n2)V,},Aj1 Vo), is na X ng, rank (ng — 1),
and idempotent, so has (n, — 1) eigenvalues of one and one of zero. Hence, 3 4 has rank
no — 1.

By spectral decomposition one can write

B I, o][¥
mmto w5 O[] o
Then
U= (U)W (A.7)
= .
Also,
w/ / /
(¥ v, ['0/2] =W +vv, =1, . (A.8)
So
pa =P s +vv o . (A.9)

Deﬁne IJ’Z = ‘I’/MA and MO = vx2v;2ﬂA. Ifyo = yA — MA and 2z~ Nn2<0; Inz)’ then
Yo ~ (S)N,,(0,X,4) and
Ya = Yo+ pa
=90 + O g + 20 pa

= Wz + ¥ pa| + po
=W(z+p.) + po -

(A.10)
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Now the following can be expressed:

4= Yaya
= [W(2 + p.) + po) [¥(2 + p2) + pro]
= (2+ ) OU(z + ) + 2(z + p) O o + o
= (z+ p.) (z+ p=) + 2(z + ) Cv00o s + popo

7L2_1

= Z (2 + Nz(k))2 + moso -
k=1

(A.11)
Also, since
7 (A.12)
= Uil\I//uc.h
=o' (Ve/,pvhl)
= o "W,
=0
and
Bk = V2V, 000V,0 A (A.13)
= HAV:2V,oHA
=pa(l —Za)pa
=0 pe ) (I — 0724) e
= (n4/n2)*(to/0)* Vi1 Vi [(ny /2) VA Vi |V, Vi
= (n4/n2)*(to/0)* (Vi1 Aep Vi) (Vi1 Acp Vi)
= (ny/n2)’(to/0)* (n2/n+)(na/ny)
= (ny/na)(to/0)
one can write
7L2_1 5
q=> 7+ (ni/n)(to/0)* = X, + (ny /ns)(t/0) (A.14)
k=1
where X, is a central x? distributed variable with ny — 1 degrees of freedom.
O

128



Theorem 2.1 Proof. Related results and definitions can be found in section 2.2.3. For
cs = fs/vs, Es = 14,6?/02, E,=FE,—-E,G; :/55/02 with s € {1,+}. Define
b(te,tn) = 13/(0%C1) — te, d(ty) = nst2/ (1202), h(te,tn) = o(eite)* — (na/ny)t,

Utestn) = —o(cite)” — (na/ni) Pty and p ! = Fra(go; 1) — Fie(qis ).

Fp pon, (f1, f)

=Pry {F < fi, Fy < fr )

= PrN+{?51/6% < f1, A5+/ai < f+}

=Pry {G1 < c1E,Gy < cy (B + By}

= p;j QQfxz(tc; v)Pry {G1 < eite, G4 < cy(te + E,)}dt,

q1
q2

= p;j fo(te§ Vi)

q1
ny
/
X PrN+{ vhl‘/epyep + 1/ n_yh+
+

q2 00
:p;j fx2<te;7/1)/ f/\/’(tiz§ﬂh+;0'2)
q1 —00

X PrN+{l(te>th) < 'U;zl‘/cpyep < h(teath)a b(teath) < Ep}dthdte

& 00 h(testn)
ngj/ fx?(teSVl)/ fN(th§Hh+702)/l( fN[tp;O, (ng/nJr)UQ}
q1 —00

t67t/L)

X PrM{b(te,th) < Ep‘v;nv;pyep}dtpdthdte

< ov/eite, yi, < otey(te + Ep)}dte

q2 ee] h(teath)
=p,! fx2<tc;7/1)/ fN(th;uh+,02)/ Fv [t3 0, (no/ns ) o]

q1 0 l(tcyth)
x PrN+{b<tcath) - d(tp) < Xp}dtpdthdtc

q2 o0 h(te,th,)
= pvll Fa(te; ’/1)/ fN(thWthaUQ)/ Fa [ty 0, (n2/n+)02]

q1 l(t67tlb)

x {1 = Falb(te,ty) — d(t,); ny — 1]}dt,dtydt,
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Theorem 2.2 Proof. Related results and definitions can be found in section 2.2.3. For
ng =1,cs = fs/vs, Es = 14,6?/02, E,=FE,—-E,G; :/55/02 with s € {1, +}. Define

blte) = nycite and p, [ = Fe(gei1) = Felai;n).

Frop v, (f15 f+)
=Pry {1 < f1i, Fy < fy}

=Py {81/61 < fi, Bo/a 5% < .}
= PTN+{G1 S ClEl, G+ S C+<E1 + Ep>}

q2
=p. [ fe(tesv)Pry {Gr < eite, G < ey (te + By) dt,
q1

1 q2
= Dn, fxz(teﬂ/l)

Q1
2
n n
X PrN+ _dep + —1yh+ < O'2C1te, G+ < C+(te + Ep) dte
ny ny

1 q2
= pT_L+ fxz(te;yl)
q1
X PI"N+{(Ep + n1G+) <nicite, G4 < C+(te + Ep)}dte

1 q2 b(ta)
:p;+ fxz(te;l/l)/ fo(tp;nZ)
q 0
x Pry {Gy < [b(te) —tp]/m1, Gy < ey (te + 1) bdtpdie

1 q2 b(te)
:p;+ fo(te;V1>/0 fxz(tp;nQ)
Q1
X Flo{min[(b(t.) —t,)/n1, cy(te + 1)), 1, Ay pdtpdt.
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Theorem 2.3 Proof.

_ ("G s at)fe(tin) o
- 1
o Felasv) — Fe(qsn)
/quXQ(CltISGv Al)fxz(tIQVI)
q1

F2(qo; 1) — Fe(qi; 1)

dt,

Corollary 2.2 Proof.

Pr{fl <I< fu N+ = 7’L+}
B
— Pr{fl < iéa < fu|Ny = n+}
01

= Pr{clEl <Gi < cuEl‘NJr = n+}
“Pr{ct; < G < et} fre(ti; )

- /q1 Pr{N, =n,}

_ /q2 [Fr2(cutisa, A1) — Fe(ati; a, A\)] fre(t vr)
" F\2(qo;v1) — Fro(q1; 1)

dty

dty

Theorem 2.4 Proof. An expression for unconditional power, P,,, can be written

P, = Pr{Reject Hy}
=1 — Pr{Accept Hy}
= 1 — Pr{Accept H) at stage 1 U (Continue at stage 1 N Accept H at stage 2)}

=1-Y Pr(N, = TL+){FF1|N+[fl(n+)] +
{Ny=n,}

Prlfilns) < Fi < fulns), Fe < fy(n)| Ny = ne] |

Pr(Ny =ny) = [F\2(q; 1) — F\2(q1; v1)] finishes the proof.
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Theorem 2.5 Proof. For NV, defined as

ny  if study stopped after first stage
Ny = :
N,  otherwise

the following holds:
E(Ny)

_Z {nl [1=Pr(fi < F1 < fu, Ny =ny)]
{Ni=n.}

+nyPr(fy < Fy < fu, Ny = n+)}

= ni -+ Z n2Pr(N+ = n+)Pr |:f[ S Fl < fu N+ = n+i|
{Ny=n}

_”1+Z no[F\2(qo;v1) — FX?(QISVI)]Pr[fl <Fi < fy N+:n+]
{Ni=n.}
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APPENDIX B: CHAPTER 4 PROOFS

Lemma 4.1 Proof.

BX/X,B = (X, X)) 'C'M;'C(X|X,) ' X/X,(X(Xo) 'C'M;'C(X|X,) "'
= k(X X0) 'O’ My O (X X)) O My O(X) X))
= k(X Xo) ' C' My MM, ' C(X)X,) "
= k,(X3Xo) 'C'My ' C(XXo)
=k,B

Lemma 4.2 Proof. a. Symmetry is clear from the expressed forms.
b. The results follow directly by using two simple results from Chapter 2, namely
X' X, = kXX, and M, = k;1 M,.

c. i.

Ah+Ah1 = kllklil |:X2.BX1 XQBXé 0 0

X,BX| XlBXg] [Xleg 0]
_ [ X BX(X\BX] 0

+" | X,BX!X,BX, 0
_[XBx; 0

+ | X,BX, 0

ii.

! !
A Ay — kg [XlBXl Xleﬂ {0 0 ]

X,BX, X,BX,||0 X,BX|,
_ 110 XiBX,X,BX;

+% |0 X,BX,X,BX,
_ 1[0 XBX,

|0 X,BX,

iii. Summing the results from parts i. and ii. gives

4|1 XGyBX! X,BX,
Ap Ay + Ay Ay =k { ! ] ! 2} =

X,BX, X,BX)
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iv.

4| X3BX] 0 L[ XBX! X,BX,
Ah-i-Ahl + AhlAh+ = k+1 |: 1 1 :| + k+1 |: 1 1 1 9

X,BX| 0 0 0
_,1[2X:BX] X\BX}
— " | X,BX| 0

= Api + kT k1A — kL ko Apo

V.
[0 xxBXx}],, [ o© 0
An+Anz + AppApy =k {0 x,Bx,| T " | x,Bx| X,BX]
_ ! 0 XlBXé
+ | x,BX, 2X,BX],
= Ap — k7 ki Ay + kL R Ao
vi.

Ae+Ae1 = (In+ - H+)Ae1

- -xxx) M xg xR

0 Onang
— A - X,(X. X)X}, — H) 0]
— Aq - X, (X, X,)7'[0 0]

vii. Proof similar to part v, above.
viii. Note that (1 — k1k3!) = kok!,

Ae+Aep = (In+ - H+)Aep
- Aep - H+Aep
= Ay —H (Ay + Ay — Ayy)

—l_p—1 / _ 7.1 /
- a,-x x|t e ]

k' XoBX) (k' -k X2 BX,
— A, - {AX;()(;AX;)‘1 x

[(1 = kk7! — Bk 7)) X0 X0BX] (1 - I{:gk’;l—klk;l)X{)XoBXg]}
— A, - X, (X' X)7'0- X, X,BX| 0-X,X,BX}]
- A, — X (X,X,)'[0 0]
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d. Lemma 2.1 gives A, A., = Ay A,y = 0. Similarly, A, Ao = 0.

Ah+ACp == 0:
Ay Ay = Apy (A + Ape — Apy)
= Ay Ay + Ay Ay — Ay
- Ah+ - Ah+ =0 5
Ah+Aeb =0:
Ah+Aeb = Ah+ (Ae+ - Ael - AeQ - Aep)
~0-0-0-0=0,
Ap A = 0:
. [x:Bx, o][o o
A Az = ki 7k [ 0 0||0 X,BX]
1,110 O
:k-‘rlk?l[o 0:|:0>
Ah,lAel =0:
. [x:BX, 0|[I,-H, 0
AhlAel - kl I 0 0 0 0n2><n2
_ [ XiBX((Z, —H)) 0
b 0 0
_ 1 [XBX|- X\BX{H, 0
| 0 0
_ 1[0 0] _
=k o 0} =0,
Ah,lAeZ =0:
1 XBX; 0[[0,x, O
AhlAeQ - kl |: 0 0 0 In2 _ H2
_ 1|0 0] _
=k [0 0] =0

A1 Ay = 0 (Ay; idempotent from Section 2.2.3):
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AhlAeb - Ahl (Ae+ - Acl - AeZ - Aep)

= Ah1A6+ - AhlAep
= Ahl (I - H+) - Ahl (Ahl + Ah2
=Am —AnH, — A+ ApnApy
= ApApy —AnH,

- A}L+)

[ X,BX|

X, BX}]

_ 1.—1 _1.-1 -XlBXi 0|X1 / —1 5
_k+_ 0 0 | & .0 0||X> (X X)X
B ! /] B /
= k! le,’Xl le)’X? — k! XlBgfoXo](X()Xo)l[Xi X3
:k_l'Xleg XlBXg'_k_l'XlBX{ X\BX;| _,
+ 0 0 + 0 0 ’
Athd:OZ
. 4[o0 0 I, —H 0 4]0 o] _
AnrAer = ky [0 XQBXQH 0 (- =k lg o] =0
Ah2A€2:02
. 4[o0 0 00
AnAer = ky 0 X,BX,||0 I,-H,
_k,l'o 0
~ "0 X,BX\(I,, — H>)
_k_l'o 0 _ 1[0 0] _,
~ " |0 X,BX,-X,BX,H,| " |0 0|

A A = 0 (idempotency of Ay, is established in part f.):
Ah2Aeb - Ah2 <A6+ - Ael - Ae? - Aep)

= Ah2A6+ - AhZAep

- Ah2 (Im. - H+) - Ah2 (Ahl + Ah2 - A}L+)
=Ap — ApH, — Apy + ApApy

= ApAyy — ApH,

- 0 o ] ,..fo 0 X .
_ -1 o : / /
~h | xBx; xBx,] " o XngéHXz](X*X” x4
a0 o 1 . 0 i /
= hy _XzBXi XgBXé_ ke _X2BX6X0 (X0 Xo) [XT X5
_ ]{3_1 [ 0 0 1 _ ]{:_1 I 0 0 0
=Ry _XQBXi XQBXé_ + _XQBXi XQBXé =0,
AelACQZO:

136



AA,— [Im - H, 0} {0 0

0 o||lo IHQ—HQ}

AelAep = 0:
AelAep — Ael (Ahl + Ah2 - A}L+)
=04+0-0=0,
A A, = 0 (A, idempotent from Section 2.2.3):
AelAcb - Acl <A6+ - Ael - Ae? - Aep)
= A61A6+ - Ael
- Acl - Ael =0 )
AegAep =0:
ApA,, = An(Ap + Ape — Apy)
=04+0-0=0,
A A, = 0 (idempotency of A, is established in part f.):
AeQAeb == AeQ (Ae+ - Ael - AeZ - Aep)
- A62A6+ - Ae?
- Ae2 - Ae? =0 )
AepAeb =0:

AepAcb - (Ahl + Ah2 - Ah+)(Ae+ - Acl - Ac2 - Aep)
= Ah1A6+ - AhlAep + Ah2A6+ - AhQAep
= (AhlAe-i- - AhlAep) + (AhQAe—i- - AhQAep)
= AnAep + ApAey
=0+0=0.
e. Idempotency of Ay, A1, A, and A,y are given in Lemma 2.1. Also, since labeling
order of data is arbitrary, proofs about middle matrices for first sample apply to second

sample without loss of generality, so A9 and A, are also idempotent. This leaves showing

idempotency of A, and A.,. The results below use properties derived earlier in this lemma.
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AepAep = (Ahl + Ah? - Ah-i—)(Ahl + Ah2 - Ah+)
= Ap — AnApy +Apy — ApApy — Ap Ay — Ap Aps + Ay
= Ap + Apy + Apy — (AntAny + An Apy) — (AnApy + A Apa)
= Ay + Ay — Apy — (kT k1 Api =k ko Apo) + (T k1 A —k T ko Ay
= Ay + Ape — Ay
= Acp

AebAeb = (Ae+ - Ael - AeZ - Aep) (Ae-i- - Ael - AeQ - Aep)
- Ae+ - AG+A61 - A6+Ae2 - A6+Aep - A61A6+ +
Ael - A62A6+ =+ AeZ - AepAe+ =+ Aep
=A,-A1-An—-A,—An+Aq —Ax+An— A, + A,
= Ae+ - Ael - AeQ - Aep
= Aeb

f. Ranks of Ay, A1, Ao, and A, are given in Lemma 2.1. Also, since the labeling order

of data is arbitrary, it follows that A, and A.» have ranks a and ny — r, respectively. This

leaves showing rank for A., and A.,.

Aep = Ahl + Ah,2 - Ah+
_ [P =YX BX] —ki' X, BX;
—kI' X, BX] (k3! — kxH) X, BX),

Ferk,

o ki —k
_kll(lkz ® XO)B( ;ﬂ ® X(/)) ( —];2k+ 2) (1k2 ® XO)B( ;472 ® X(/))

(ka/k1)(1y, © XoB) (1}, @ X))  —(Li, @ XoB)(1}, ® Xj)

— (14, ® XoB)(1}, ® Xj) (k1/k2) (14, ® XoB) (1}, ® Xj)
(kz/kl)(lkl ;61 ®XQBX6) _(11611;@2 ®XOBX6)

— (14,1}, ® XoBX{) (k1/k2) (11,1}, ® XoBX)
(ka/k1) (15,1}, —(11,1},)

_(lkz 21) (kl/kQ) (lkz 12@2)

[k —k
() e XBL o X) k(1 8 X0B(), © X)

® X(BX),

Multiplying the first k1 rows of the left matrix by —(k1/ks) creates a matrix of identical

rows, and so the left matrix has rank 1. Now, A4, = 1;,1), ® X,BX] is of rank a and
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1;,1), is clearly rank 1. The fact that the rank of a Kronecker product is the product of the

ranks, allows showing that X B X, is rank a which implies that A, is also rank a.

The matrix A is defined as A, — A,y — Ay — A,,,. Therefore A, =
Ao + Ao+ A + Ay decomposes A, into four symmetric, idempotent pieces. Now
since A, is also idempotent and symmetric, a matrix decomposition theorem from Muller
and Stewart (2006; Theorem 9.16, page 187) to show that the sum of the ranks of the pieces
is equal to the rank of A.;. This then implies for » = rank(X) that

rank(A.,) = rank(A.,) — rank(A.;) — rank(A.2) — rank(A.,)

=y —r)—(m—-r)=(2—r)-a

=r—a
Lemma 4.3 Proof. Fora > 1 and X? ~ x?(a, \) defined as in equation 4.41 and
using results from equations 4.34 and 4.46-4.49,
/5+ = yﬁrAh+y+
= y;L—I—yh"r
= 1,511,
= S11 + S12 + S21 + S22
=0’ X?

Lemma 4.4 Proof. Fora > 1and X7, X2, and Z defined as in equations 4.41-4.43,

using results from equations 4.33 and 4.46,
A51 = y;Amer

= Y1Yn
= (n4/n1)Snu

= o [ (Vr X+ mZ)” + noX3|
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Lemma 4.5 Proof. Fora > 1 and X?, X%, and Z defined as in equations 4.41-4.43,

using results from equations 4.33 and 4.49,

A52 = yirAh2y+

= YaYh2
= (ny/n2)Snu
= o' (VXo = /mZ)’ + mX3| m

The following two lemmas will be useful in the proofs for Lemma 4.6 and Theorem 4.2

which follow. They are distributional results involving a standard Gaussian and it's square.
Lemma B.1 For {h,l} > 0and Z ~ N(0, 1), the following holds.

Pr{(l+2)* < h?}
= Pr{|l + Z| < h}
=Pr{~h <1+ Z < h}
=Pr{—(h+1) < Z < (h—1)}
= &[(h — )] = &[=(h +1)] 0

Lemma B.2 For {d,h} > 0and Z ~ N(0, 1), the following holds

Pr{(—d < Z<b)n(Z2*>h*}
—Pr{(~d < Z < )N (12| > )}
=Pr{(-d<Z<b)N[(Z<-h)U(Z =h)]}
=Pr{(-d<Z<b)N(Z<-h)}+Pr{(-d<Z<b)N(Z>h)}
=Pr{—d < Z <min(b, —h)} +Pr{h < Z < b}
= max{®[min(b, —h)] — ®(—d), 0} + max[®(b) — ®(h), 0] O

Lemma 4.6 Proof. Let u; = ¢, g4, us = ¢y (g1/n2 + g+), us(p1) = c3'p1 — g+,

uy = g1/n2, b(p1, p2) \/91/”2 - \/plnl/?”m, Im = fxf (p1)s fp = fxg (p2),

d(p1,p2) = \V/91/n2 — p2 + \/pimi1/ne, h(p1, p2) \/Cllpl — p2 — g+ For strictly

positive {g1, g+, cy,n1,n2}, integera > 1, Z ~ N(0,1), X? ~ x*(a, A} ), X3 ~ x*(a — 1)

with Z, X2, X3 mutually independent, the following holds.
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Pl (Vi Xi 4 ms2)’ £ X3 < )] 0 [e'X3 - X3 - 22 < ]}

0 2
= / fp1Pr{ [(\/ ping/ng + Z) + X% < gl/”?} N (Cllpl — X% — g+ < Z2)}dp1
0
oo pgi/ng
= / / fplfpz
o Jo
2
X Pr{ {(\/ pina/na + Z) +p2 < gl/nz} N(ei'p—p—gy < 2°) }dmdpl
C+0+ g1/na2 )
= / / fplprPr{ (v piny/ng + Z) < g1/ng — pQ}dpzdpl
0 0
er(gr/natgy) pei'pi—gy
+/ / fplpr
C+g+ 0
2
X Pr{ [(\/mm/nz + Z) < g1/n9 — pQ] N (cjrlpl —p2— g+ < Z2) }dpzdpl
ci(gi/natgs)  roi/ne 2
+/ / fplprPr{<vp1n1/n2+Z) Sgl/nz—pz}dpgdm

+9+ Ilpl —9+

o0 g1/mn2
+ / / fpl fpz
¢y (g91/n2+g94)J0

X Pr{ {(\/m—k 2)2 < g1/ne —pg} N (Cllpl —py— gy < ZQ>}dp2dp1
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+

/ / fplfngr{ d(p1,p2) < Z < b(p1, p2) bdpadpy
/ fplprPr{ d(p1,p2) < Z < b(p1,p2)] N (2% = h*(p1, p2)) }dpadpy

/.

/ / Fo FoPr{—d(p1, ) < Z < b(pr po) bpodpy
U5P1

+

+

/ fp1fszr{ d(p1,p2) < Z < b(p1,p2)) N (2% > h*(p1, p2)) }dpadp

- / o (@1, p2)] — B d(pr. p2) Y dppy
e " [ (@ minl (o1, o) b, )1} — (o1, 21, 0)

+ max{®[b(p1, p2)] — @[(p1, )], 0} dpzcp,

/ / Fo Fo{®1b(p1, p2)] — ®[—d(pr, pa)]}dpadp,

/u2 /0'u4fp1fp2 [max(cp{mln[— (p1,p2), b(p1, p2)]} — ®[—d(p1, p2)], 0)

+ max{®[b(p1, p2)] — P[h(p1, p2)], 0} | dpadpy
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Theorem 4.1 Proof. a > 1, Z ~ N(0,1), X? ~ x*(a, \;), X5 ~ x*(a — 1) with Z,

X?, X? mutually independent. E, = 1,6 /0? =y, Ay, /0%,
Ey =1101/0* =y, Aay, /0%, By =y (An + Au)y, /0%, B3 = y, Ayy, o’
G, =b,/0? = Y+ Ansy/o* and ¢s = afs/vs for s € {1,2,+}.
fe,(t1) = fe(t ) /[Fe (g2 1) — Fe(qis )]s [, (t2) = fre(tasne — a)

Fr pon. (f1, f+)

v {[(bin)at < 4]0 [yt < 1)

=Pry {(G1 < i 1) N (G4 < e By}

= PrN+{(G1 < ClEl) N [CllG_,_ < FEy+ Ey + Eg]}

= PI'N+{(G1 S ClEl) N [C;1G+ — E3 S E1 + EQ]}

q2
= | fe,(t))Pry, {(G1 < arth) N [c'Gy — B3 < ty + By }dty

q1

q2 [0
= / / fE1 (tl)fEQ(tQ)PI'N+{(G1 < Cltl) N [C;lG_;_ —FEy<t; + tg] }dtgdtl
@ JO

B /[Iqu/OOOfEl (t1) fE, (t2)

X PTN+{<G1 < Cltl) N [C;lG_F — (Gl + Gy — G+) <t + tg] }dtgdtl

B /q]qz/ooofEl (t1) fr,(t2)

x Pry, {(G1 < art)) N [(1+ ") Gy — (G1 + Ga) <ty + o] }dtadt
= /q2/0 fE1<t1)fE2(t2)PI'N+{ (n:_l [(MX1 + \/?’TQZ)Q + TLQX%} S Clt1>
a1

N[+ XT = (X7 + X5+ Z°) <ty + t] }dtzdtl

= /qz/OOOfEl(tl)sz(b)Prm{ [(\/n_le + \/”_22)2 +ne X3 < n+clt1]

N[e'XT— X5 — 2% <ty + o] }dtgdtl
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