
 

Single Nucleotide Polymorphisms and the Etiology of Basal-like and Luminal A Breast 

Cancer: A Pathway-Based Approach 

 
 
 

Sarah J. Nyante 

 

 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Epidemiology. 

 

 

Chapel Hill 

2009 

Approved by 

Robert C. Millikan 

Jeannette T. Bensen 

Marilie D. Gammon 

Jay S. Kaufman 

Dan Yu Lin

 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2009 
Sarah J. Nyante 

ALL RIGHTS RESERVED 



iii 
 

 
Abstract 

Sarah Nyante: Single Nucleotide Polymorphisms and the Etiology of Basal-like and Luminal 
A Breast Cancer: a Pathway-Based Approach 
(Under the direction of Robert C. Millikan) 

 

 Genetic models suggest that there are breast cancer-associated genetic variants that 

remain uncharacterized. Heterogeneity among breast tumors may increase the difficulty of 

identifying these variants. The intrinsic molecular subtypes of breast cancer are associated 

with distinct risk factors and survival. Genetic risk factors may also differ by subtype. 

 312 potentially functional and tag SNPs in candidate genes related to hormone 

synthesis and signaling (CYP19A1, ESR1, HSD17B2, HSD3B1, PGR, SHBG) and central 

adiposity (ADIPOQ, LEP, LEPR, IL6, TNF) were genotyped in the Carolina Breast Cancer 

Study, a population-based study of African-American and white women. Genotype data was 

available for 1776 of 2022 controls and 1972 of 2311 cases (200 basal-like, 679 luminal A). 

Data from 144 ancestry informative markers was used to estimate ancestry and adjust for 

residual population stratification. Odds ratios (ORs) and 95% confidence intervals (CIs) for 

the association between genotypes and breast cancer were estimated using logistic regression. 

Haplotype ORs and 95% CIs were estimated using HAPSTAT.  

 Genotypes in LEP, LEPR, TNF, CYP19A1, ESR1, HSD3B1, HSD17B2, and PGR 

were associated with breast cancer overall. Genotypes in ADIPOQ, IL6, LEP, LEPR, ESR1, 

HSD17B2, HSD3B1, PGR, and SHBG were associated with the luminal A or basal-like 

subtype. Many associations were stronger when cases were stratified by subtype compared to 
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associations for breast cancer overall. In some cases, such as with the strongest associations 

in ESR1 and HSD17B2, associations were strong overall and by subtype. Haplotypes in IL6, 

LEP, LEPR, CYP19A1, ESR1, and PGR were associated with breast cancer overall and by 

subtype. 

 Waist-hip ratio (WHR) and combined parity and lactation were evaluated as potential 

effect measure modifiers. Among genotypes and haplotypes displaying evidence of 

multiplicative or additive interaction, genotype/haplotype associations were weaker among 

women with higher WHR compared to those with lower WHR. There were no clear patterns 

of interaction between SNPs and parity and lactation. 

These results suggest that, for a subset of SNPs, SNP-breast cancer associations differ 

by intrinsic molecular subtype. Analyzing subtypes as distinct outcomes can increase the 

likelihood of identifying subtype-specific associations that may have been masked in 

analyses of breast cancer overall.
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1. Review of the Literature 

1.1 Public health burden of breast cancer 

 It has been several decades since the passage of the National Cancer Act (1971) and 

the Breast and Cervical Cancer Mortality Prevention Act (1990), but breast cancer is still a 

major cause of morbidity and mortality for women in the United States. As of 2006, breast 

cancer was the most commonly diagnosed cancer and second most common cause of cancer 

death for women in the US (1). Although recent data from SEER indicate that breast cancer 

incidence and mortality rates are decreasing, researchers estimate there will be more than 

192,000 newly diagnosed cases and more than 40,000 deaths due to breast cancer in 2009 

(1).  

Like many cancers, the risk of breast cancer increases with age. The median age of 

breast cancer diagnosis in the US is 61 years old, but the incidence actually has a bi-modal 

distribution (2, 3). Women approximately 50 and 70 years old account for the largest 

proportion of breast cancer diagnoses (3). The incidence rate increases steeply with age up 

until about 50 years, until it starts to slow after age 50. Non-parametric models show that the 

incidence rate of ER-negative cancers levels off around this point, and it is mainly ER-

positive cancers that increase in incidence after age 50 (4). This phenomenon was described 

previously by Yasui and Potter (5) in a Danish population. 

 Breast cancer incidence in the US differs among racial groups. During the period 

2001-2005, breast cancer incidence rates were higher for white women (125.9 per 100,000) 

compared to African-American (111.5 per 100,000), Hispanic (91.3 per 100,000), and 
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Asian/Pacific Islander women (81.6 per 100,000) (6). The downward trend in the breast 

cancer incidence observed in data from 1996-2005 was most apparent for white women (-1.3 

per 100,000); changes in breast cancer incidence rates were lower for Hispanics (-0.9 per 

100,000), African Americans (-0.6 per 100,000) and Asian/Pacific Islanders (0.2 per 

100,000) (6). The overall rate of breast cancer is higher in white compared to African-

American women, but among those younger than 35 African Americans have higher rates, 

although this gap in incidence seems to have narrowed recently (7). 

Breast cancer mortality rates vary by racial group as well. Breast cancer mortality is 

higher in African Americans (33.5 per 100,000) compared to whites (24.4 per 100,000), 

Asian/Pacific Islanders (12.6 per 100,000), and Hispanics (15.8 per 100,000) (6). In data 

collected by SEER and NAACCR registries, decreases in mortality were seen for all women 

during the period 1990-2002, but the largest decrease occurred in white women and among 

women younger than 50 years old (7). Higher mortality among African-American women 

may be explained in part by poorer prognostic features among African Americans. African-

American women are more likely to be diagnosed with distant disease compared to whites 

(8). In addition, African-American women are more likely to have tumors that are larger, 

hormone receptor-negative, and higher grade (9-12). 

Discrepancies in prognostic features and mortality between white and African-

American women are unlikely to be due to differences in mammography use. The prevalence 

of mammography use is similar between white and African-American women (7), and the 

performance of mammography between the two groups has been reported to be similar (13, 

14). Furthermore, controlling for stage at diagnosis, African-American women still have 

poorer survival compared to white women (15). Racial disparities persist when factors such 
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as socioeconomic status, access to healthcare, and co-morbid status are controlled for (11). 

An additional hypothesis is that tumor biology differs between African-American and white 

women. Breast tumors in African Americans are more likely to have higher mitotic activity 

and S-phase fraction (controlling for age and stage) (11). Younger African-American women 

are also more likely to have the basal-like subtype of breast cancer, which is marked by 

poorer prognosis and lack of targeted adjuvant treatment (16, 17). 

 

1.2 Traditional breast cancer risk factors  

Epidemiologic research has identified several characteristics that are risk factors for 

breast cancer. Age is one of the strongest breast cancer risk factors; the breast cancer 

incidence rate among women aged 85 and older is four times that of women aged 60-64 and 

17 times that of women aged 40-44 (18). A family history of breast cancer is also a strong 

risk factor for breast cancer. One first degree relative with breast cancer results in twice the 

risk of breast cancer compared to no first degree relatives with breast cancer (19). The 

relative risk is even higher for women whose first degree relative was diagnosed at a young 

age (19). Increased breast cancer risk due to family history is likely due to a combination of 

environmental and genetic factors that are shared within the family. However, several high 

penetrance genetic conditions are known risk factors for breast cancer in a small proportion 

of the population. Germ-line mutations in BRCA1 or BRCA2 genes carry relative risk of 

between 10 and 30 (20). In addition, rare conditions such as Li-Fraumeni syndrome, 

Cowden’s disease and ataxia telangiectasia greatly increase lifetime breast cancer risk (21). 

Studies of perinatal and birth characteristics suggest that hormone and growth factor 

exposures in utero influence breast cancer risk later in life. Birth weight has been associated 
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with breast cancer in several studies, with some reporting a J-shaped association between 

increasing birth weight and breast cancer risk (22-24). Stratification by menopausal status 

shows that the association between birth weight and breast cancer exists mainly in 

premenopausal women and that there is little evidence for an association in postmenopausal 

women (25). Additionally, some studies (22, 26-29), but not all (23), have reported that 

maternal age, paternal age, neonatal jaundice, birth order, head size, and birth length are 

associated with increased breast cancer risk. Pre-eclampsia and abruptio placentae are 

associated with decreased breast cancer risk (22, 27). The exact mechanism for how birth 

characteristics interact with breast cells is unknown, but some have hypothesized that birth 

characteristics affect the total number of mammary gland stem cells, are markers of high 

intrauterine estrogen exposure levels, or are related to epigenetic alterations leading to 

hypermethylation or hypomethylation of key regulatory genes (25). 

Studies suggest that anthropometric factors such as body weight, waist-hip ratio 

(WHR), height, and breast density are associated with breast cancer risk. Many studies have 

reported that increased body weight is associated with breast cancer risk among 

postmenopausal women, but not premenopausal women (30-36), though at least one study 

has reported a positive association between increased body weight and premenopausal breast 

cancer (37). Others have reported that increased body weight is inversely associated with 

premenopausal breast cancer (38). A non-parametric regression by van den Brandt et al. (30) 

showed that the breast cancer incidence rate ratio among premenopausal women increases 

slightly with normal and mild overweight status but then dips below the null for obese and 

morbidly obese women. The effect of postmenopausal HRT use on body weight and breast 

cancer is unclear. Studies have reported an association only among non-recent users (39), 
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only among current users (40), and similar associations independent of HRT status (38). 

Evidence for the association between WHR and breast cancer has been less consistent 

than the association between weight and breast cancer. Harvie et al. (41) reviewed the 

literature, and reported that smaller WHR was inversely associated with breast cancer in 

postmenopausal women; the inverse association was seen in premenopausal women when 

estimates were adjusted for BMI. A meta-analysis by Connolly et al. (42) produced similar 

results. WHR was positively associated with breast cancer in the majority of studies of 

premenopausal and postmenopausal women evaluated (42). The studies closest to the null for 

the association between WHR and premenopausal breast cancer were ones that did not adjust 

for BMI (42). There were studies where WHR was associated with breast cancer without 

adjustment for BMI (37, 40, 43). Not all studies show a positive relationship between WHR 

and breast cancer. WHR was not associated with breast cancer in women 45 years old and 

younger, where results were adjusted for height and weight but not BMI (44). WHR was not 

associated with breast cancer in the EPIC study (31). Tehard et al. (38) reported an inverse 

association between higher WHR and breast cancer in premenopausal women and no 

association in postmenopausal women; BMI adjustment did not affect the results for either 

group. 

Several studies have reported that height is positively associated with breast cancer in 

postmenopausal women only (34, 45, 46), but Baer et al. (47) reported that height is also 

associated with breast cancer in premenopausal women. The effect of height was similar for 

pre- and postmenopausal women in a pooled analysis by van den Brandt et al. (30). 

Percentage breast density is a strong risk factor for breast cancer [(48-51), reviewed by (52)], 

but change in breast density over time does not appear to be a risk factor for breast cancer 
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(53, 54).  

Evidence for an association between physical activity and breast cancer is not 

conclusive, but much of the available evidence supports the hypothesis that physical activity 

is associated with a reduced risk of breast cancer. In a recent systematic review (55), 

approximately equal numbers of studies showed either no association or a reduced risk of 

breast cancer with total and leisure time physical activity. However, when the authors 

analyzed all studies that included a continuous measure of activity (hours per week), the 

pooled studies showed a 6% reduction in breast cancer risk for each hour per week of 

physical activity. Several of the studies reviewed also found that physical activity during 

adulthood was more important in reducing breast cancer risk compared to activity during 

childhood or adolescence (55). Variability among study results may arise from the lack of 

standardized methodology for assessing physical activity used in the studies (56). 

Reproductive characteristics that affect endogenous estrogen exposure are associated 

with breast cancer. Exposure to estrogen and progesterone increases proliferation of breast 

epithelial cells [reviewed by (57, 58)]; the higher rate of cell division increases the chance of 

oncogene activation or tumor suppressor inactivation due to a replication error. Early age at 

menarche, later age at menopause, and a longer time interval between menarche and first 

full-term pregnancy are associated with increased breast cancer risk (21, 46, 59-61). Parity 

and lactation have a protective effect on the risk of breast cancer. The risk of breast cancer 

decreases with the number of children a woman has and the total number of months of 

breastfeeding, compared to breast cancer risk in nulliparous women (59, 62). Despite the 

overall long-term protective effects of pregnancy, there is also a short period of 

approximately 3-4 years following pregnancy where breast cancer risk is increased (63, 64).  
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Furthermore, what many have called the “dual effect” of parity may differ for young 

African-American women compared to young white women. Hall et al. (65) showed that 

parity is protective for white women but not for African-American women younger than 50 

years old, and in Ursin et al. (66) parity had a greater protective effect for white women 

compared to African-American women younger than 50. In comparisons of breast cancer risk 

factors in white and African-American women, young black women were more likely to be 

parous but less likely to have breastfed (65-67). Based on the known post-birth increase in 

breast cancer risk and the lower rate of breastfeeding in African Americans, Pathak and 

colleagues (68, 69) have hypothesized that it should be expected that young black women 

experience higher breast cancer incidence compared to young white women.  

It has not yet been shown to what extent the differences in reproductive patterns 

between black and white women account for differences in breast cancer incidence. 

Increased susceptibility to hormone-induced proliferation of undifferentiated mammary cells 

(70) and changes to the extracellular matrix (71) have been suggested as biological 

mechanisms by which pregnancy might increase the short-term risk of breast cancer. A 

potential explanation for the protective effect of breastfeeding is that lactation induces 

terminal differentiation of the mammary gland; this differentiation may protect mammary 

cells from elevated post-pregnancy hormone levels. 

Studies suggest that characteristics of pregnancy are associated with increased breast 

cancer risk. Higher placental weight is associated with increased breast cancer risk (72). 

Early gestational age and placental abruption are associated with increased risk of breast 

cancer (73), though another study (72) did not find an association between gestational age 

and breast cancer. A multiple birth is associated with increased breast cancer rates within 5 
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years of the pregnancy (73, 74). Innes et al. (73) reported that pre-eclampsia was associated 

with reduced risk of breast cancer, especially among women age 30 and older. 

Exogenous hormone use has also been linked to an increased risk of breast cancer. 

Several research groups have reported that oral contraceptive use is associated with a small 

increased risk of breast cancer in young women (75-78), though other studies have reported 

no association between oral contraceptive use and breast cancer in younger women (79). 

Subgroup analyses showed that the effects of oral contraceptive use are strongest among 

women with more recent use and a longer duration of use (76, 80, 81). Similarly, current and 

recent use of hormone replacement therapy (HRT) in postmenopausal women is associated 

with increased breast cancer risk (40, 82-84). Studies have found that the effect of 

combination (formulations containing estrogen and progesterone) hormone therapy is greater 

than the effect of estrogen only HRT (40, 82, 83). The pooled analysis by the Collaborative 

Group on Hormonal Factors in Breast Cancer (84) did not find a difference in effect for 

combination compared to estrogen only HRT, but it is possible that this result is due to 

selection bias. Information on type of HRT was available for only 39% of the women in 

Collaborative Group analysis. 

Alcohol use is associated with increased risk of breast cancer [reviewed in (85, 86)]. 

The relative risk of breast cancer risk increases steadily with number of drinks consumed per 

day (86). In some studies (87, 88) the effect of alcohol consumption appeared to be stronger 

in women with BMI < 25 kg/m2, but there was no difference in effect by BMI in a 

Collaborative Group meta-analysis (86).  

Exposure to light at night and night shift work are associated with an increased risk of 

breast cancer (89-91), although at least one study reported an inverse association between 
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overnight shifts and breast cancer (92). Researchers hypothesize that lack of sleep during 

nighttime melatonin production hours inhibits melatonin production by the body (90, 93, 94). 

Melatonin inhibits tumor formation in rodents, and may act by regulating reproductive 

hormone production, cell cycle control, or p53 expression (90, 94). 

Data from Japanese atomic bomb survivors and women exposed to radiation for 

medical treatment shows that ionizing radiation is associated with breast cancer incidence 

[reviewed by (95)]. The excess risk of breast cancer is proportional to the radiation dose 

received, though the shape of the dose-response curve differs between populations (95). Risk 

of radiation-associated breast cancer is modified by other breast cancer risk factors. Young 

age, nulliparity, low parity, and lack of breastfeeding have been associated with increased 

risk of breast cancer among those exposed to radiation (95). 

 

1.3 Common genetic variation and breast cancer 

The idea that breast cancer can be inherited is based on the fact that relatives of breast 

cancer patients are more likely to be diagnosed with breast cancer themselves. A woman’s 

risk of breast cancer is increased if she has a first-degree relative diagnosed with breast 

cancer compared to women with no affected first-degree relatives; the relative risk varies 

inversely with the affected relative’s age at diagnosis and the age of the woman at risk (19). 

Monozygotic twins of breast cancer cases have higher incidence of breast cancer compared 

to the mothers, sisters, or dizygotic twins of breast cancer cases, indicating that increased 

genetic similarity may be related to increased susceptibility to breast cancer (96-98).  

There are two main theories that attempt to explain the genetic model underlying 

familial breast cancer cases. The first theory proposes that hereditary breast cancer is caused 
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by rare, highly penetrant alleles. In 1988 researchers identified a susceptibility locus, 

eventually named Breast Cancer 1 Gene (BRCA1), that explained the clustering of breast 

cancer cases in high risk families under an autosomal dominant model of inheritance (99). A 

second susceptibility allele that was strongly associated with hereditary cases not linked to 

BRCA1 was identified by Wooster et al. (100), and named BRCA2. The cumulative risk of 

breast cancer by age 70 is estimated to be 65% in BRCA1 mutation carriers and 45% in 

BRCA2 mutation carriers (20). Germline mutations in BRCA1 and BRCA2 are rare and only 

account for approximately 25% of familial breast cancer cases and less than 5% of breast 

cancer cases in the general population (101, 102). Identification of BRCA1 and BRCA2 

demonstrates that there is a strong, heritable genetic component in some proportion of breast 

cancers. However, the fact that not all cases of familial patterns of inherited breast cancer can 

be attributed to known breast cancer genes suggests that there are susceptibility genes that 

have not yet been identified. Some research groups continue to search for additional high 

penetrance genes in non-BRCA1 or BRCA2 families (103). 

The second theory is the polygenic model, which provided the best model fit (along 

with a recessive model) in a series of segregation analysis that compared several models of 

inheritance, accounting for the effects of BRCA1 and BRCA2 mutations and parity (104-

106). Under the polygenic model, disease susceptibility is related to variation in multiple 

genes instead of a single, highly penetrant allele. Each individual disease allele is associated 

with a small increased risk of breast cancer, and an individual’s risk of cancer increases with 

the number of disease alleles they carry. Each disease gene has only a small effect on overall 

risk, and is therefore low penetrance, but the relatively high prevalence of the disease allele 

in the population makes it a risk factor in a large number of cancer cases. 
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Research seems to support both theories. Several rare, highly penetrant alleles have 

been identified (mutations in BRCA1, BRCA2, TP53, and ATM); together, mutations in 

these genes account for as much as 50% of breast cancer associated with family history 

(102). On the other hand, recent genome-wide association studies have identified several low 

penetrance alleles associated with small increases in risk of several chronic diseases, 

including prostate, colorectal, lung, and breast cancers (107-119). In one of the first genome-

wide multi-stage studies, Easton et al. (107) identified single nucleotide polymorphisms in 

FGFR2, TNRC9, MAP3K1, and LSP1 that were significantly associated with breast cancer. 

FGFR2 breast cancer-associated SNPs identified in a genome-wide association study 

(GWAS) of common genetic variants in postmenopausal white women and breast cancer 

were reported around the same time by Hunter et al. (108). In a third study, SNPs on 2q35 

and 16q12 were reported to be positively associated with breast cancer in European 

populations (109). Interestingly, the SNP on 16q12 is in the same linkage block as part of the 

gene TNRC9, which was reported by Easton et al. (107). GWA analysis in the Shanghai 

Breast Cancer Study replicated associations in SNPs in LSP1, TNRC9, and FGFR2, and 

reported a novel association between breast cancer and SNPs located at 6q25.1 (117). 

Additional breast cancer-associated SNPs have been reported on 1p11.2, 3p24, 14q24.1 and 

17q23.2 (118, 119).  

Most breast cancer-associated GWAS SNPs have been identified in populations of 

European descent, and the associations have not been consistently replicated in women of 

African descent. The 16q12 SNP reported by Stacey et al. (109) had the opposite association 

in African Americans compared to Europeans. In another study, Stacey et al. (116) reported 

that SNPs on 5p12 were associated with ER-positive breast cancer in women of European 



12 
 

ancestry. When the association was tested in a Nigerian population only one of the two main 

SNPs was marginally associated with breast cancer, and neither SNP was associated with 

breast cancer in African Americans (116). Zheng et al. (120) examined 9 GWAS SNPs that 

were first reported in studies of European and Chinese populations, and reported that only 2 

of these SNPs (rs13387042 in 2q35 and rs1219648 in FGFR2) were also associated with 

breast cancer in African-American women. 

High risk genetic variants do not act in a deterministic manner, even for high 

penetrance alleles like mutations in BRCA1 and BRCA2. The distribution of breast cancer 

risk varies in the population (105), suggesting that there are gene-gene or gene-environment 

interactions that affect overall breast cancer risk. By definition, the polygenic model states 

that the risk conferred by multiple alleles is multiplicative. In addition, Antoniou et al. (106) 

found evidence for statistical interaction between the effects of unknown variants and 

BRCA1 and BRCA2 under the polygenic model. Many biological systems are redundant so, 

in some cases, interaction between multiple variants in the same biologic pathway may be 

required before there is an effect on breast cancer risk. 

Most researchers acknowledge that the causes of cancer are not only genetic, and that 

non-genetic factors play a role in heritable and spontaneous breast cancer. Dizygotic twins of 

breast cancer cases have an elevated breast cancer risk compared to mothers and sisters of 

breast cancer cases, suggesting that shared environment contributes to increased breast 

cancer risk (97). Several studies have shown evidence of gene-environment interaction in 

breast cancer risk (121-125). Antoniou et al. (20) reported that the relative risk of BRCA-

associated breast cancer differs by birth cohort, though it is possible that changes in 

screening and diagnostic patterns contributed to the observed changes in addition to any 
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changes in the prevalence of interacting risk factors.  

 

1.4 Single nucleotide polymorphisms and linkage disequilibrium structure of the human 

genome 

Single nucleotide polymorphisms (SNPs) are one type of genetic variation that may 

influence cancer risk in a polygenic manner. There are several ways that SNPs could affect 

cancer risk by disrupting the normal function of a gene and associated biological pathways. 

Nonsynonymous SNPs in coding regions can alter the translated amino acid, potentially 

impairing or destroying its function (126). Synonymous changes, or SNPs that result in the 

same translated amino acid, can also affect protein form and/or function by affecting folding 

ability, translation kinetics, or splicing (126, 127). Changes in non-coding gene sequences, 

such as promoters, response element binding sites, and introns, can affect gene function by 

changing the affinity of cis- and trans-binding sites or creating erroneous stop codons.  

When details of the first draft sequence of the human genome were published in 2001, 

researchers mapped between 1.4 and 2.1 million SNPs across the genome (128-130), but 

Frazer et al. [(131)(supplementary data)] estimated that there may be as many as 9 to 10 

million common SNPs. The International HapMap Project is a multi-national collaboration 

whose goal is to genotype common SNPs from ethnically and geographically diverse 

populations (131, 132). The most recent data from Phase 3 of the HapMap Project includes 

genotypes from African American, Chinese American, Indian American, Kenyan, Mexican 

American, and Italian populations in addition to the Chinese, Japanese, Yoruba, and 

European American populations genotyped in Phases 1 and 2. Coverage and LD 

characteristics of Phase 3 data have not been reported. This literature review focuses on 
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HapMap data from Phases 1 and 2 only. The International HapMap Project has characterized 

more than 3 million SNPs in individuals from four different populations – Americans of 

northern and western European descent (CEU), Japanese in Tokyo, Japan (JPT), Han 

Chinese in Beijing, China (CHB), and Nigerians of Yoruban descent (YRI population) (131). 

Phase 2 of the HapMap Project has genotyped approximately 1 SNP per kilobase (kb), 

although the SNPs are not evenly spaced (131). Phase 1 and 2 HapMap SNPs are estimated 

to capture most common untyped SNPs with a mean correlation coefficient (r2) between 0.90 

and 0.96, meaning that nearly all common untyped variants are in strong linkage 

disequilibrium (LD), or frequently co-inherited with, with a typed HapMap variant. This 

coverage is lower for SNPs with a low minor allele frequency (131), and therefore will be 

lower for nonsynonymous SNPs, the majority of which have a minor allele frequency of 0.05 

or lower (133). According to Barrett and Cardon (133), nearly all common variation in the 

genome can be covered using a panel of 500,000 tag SNPs in European (CEU) and Asian 

(CHB and JPT) populations and more than 1,000,000 tags SNPs in western African (YRI) 

populations. 

Dense mapping of SNPs across the human genome has allowed researchers to 

investigate genomic structure in great detail. Reich et al. (134) analyzed LD across the 

genome in Europeans and Nigerians. Linkage disequilibrium is the correlation between 

alleles at two or more loci, and is representative of the alleles originating from a common, 

ancestral chromosome (134). According to Reich et al. (134), LD spanned longer regions of 

the genome than previously predicted, but the size of LD blocks varied between gene regions 

and ethnic populations. For example, the average distance between SNPs in LD was 60 kb in 

Europeans but less than 5 kb in Nigerians (134). The authors also stated that the LD pattern 
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in the Nigerian population is a subset of the LD pattern seen in Europeans, and difference 

between the two may be due to bottlenecks or founder effects after the populations separated 

(134). In another analysis of LD structure in African, African-American, European, and 

Asian subjects, Gabriel et al. (135) reported that the distance between SNPs in LD is shorter 

in African and African-American populations as compared to European and Asian 

populations. Gabriel et al. (135) observed only between 3 and 5 common haplotypes per 

block in all populations and that 6 to 8 common markers could sufficiently identify these 

haplotypes. Similar to Reich et al. (134), the majority of the common haplotypes were shared 

among all populations (135). Daly and colleagues (136) conducted an in-depth analysis of 

haplotype structure on 5q31 in a Canadian population of European descent, and found that 

blocks had only a few common haplotypes that accounted for most of the chromosomal 

sequences. Daly et al. (136) also showed that from a given locus, LD declines with increasing 

distance from the locus, and that the drops in LD are abrupt, suggesting ‘significant’ 

historical recombination.  

Voight et al. (137) reported evidence for recent positive selection throughout regions 

of the genome, and these selection signals were clustered in or near coding regions. Selection 

signals were more common in the YRI and CEU population data compared to that expected 

from simulations. The authors estimated that selection processes took place relatively 

recently, after the populations separated. In support of this, their data show that some but not 

all of the changes are shared, and that the types of genes exhibiting selection belong to 

different functional classes by population. Sabeti et al. (138) show evidence that positive 

selection occurs in genes belonging to the same biological pathway. 

The genomic structure among different ethnic populations is similar, but data from the 
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HapMap Project highlights potential technical difficulties and sources of bias that may occur 

when genotyping multiple populations within a single study. LD blocks are smaller in the 

YRI population (134, 135). During HapMap Phase 2 genotyping, the YRI population was 

more likely to have untaggable SNPs, and requires substantially more tag SNPs to cover all 

common SNPs across the genome (131). Therefore, genotyping failures are more likely to 

result in a complete loss of data for a particular region in studies of African and African-

American populations compared to European populations. 

There have been numerous analyses of the association between SNPs and breast 

cancer [reviewed in (139, 140)]. The Breast Cancer Association Consortium pooled data 

from 12 different studies and estimated associations with borderline statistical significance 

for SNPs in caspase 8, TGFB1, IGFBP3, PGR, and SOD2 (141). Pharoah et al. (142) studied 

710 common SNPs in 8800 subjects, and reported that SNPs in genes related to steroid 

hormone signaling and metabolism and cell cycle control were significantly associated with 

breast cancer. Several studies have also identified polymorphisms associated with breast 

cancer in genome-wide association studies of SNPs and breast cancer (107-119). Despite the 

progress made by these studies, it is likely that they have identified just some of the common 

genetic variants relevant to breast cancer in the US.  

 

1.5 Tumor classification and intrinsic subtypes of breast cancer 

Breast cancer subtypes are relevant to prognosis. Standard clinical practice guidelines 

call for measurement of ER, PR, and HER2 expression in all primary invasive breast tumors 

to determine treatment course (143). Hormone receptor expression is predictive of response 

to endocrine therapies, such as selective estrogen receptor modulators, aromatase inhibitors, 
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and ovarian ablation (143). HER2 overexpression or amplification is an important prognostic 

marker and predictive of response to several treatments, including chemotherapy, endocrine 

therapy, trastuzamab, and lapatinib (143). Routine use of ER, PR, and HER2 status to 

determine treatment is directly related to the term “triple-negative,” a tumor that does not 

express ER, PR or HER2 and is therefore not a candidate for endocrine or anti-HER2 

therapy. Invasive breast cancer patients with the triple-negative phenotype are more likely to 

be younger and African American or Hispanic (12, 144). Compared to tumors expressing ER, 

PR or HER2, triple-negative tumors also have poorer prognostic features such as larger size, 

higher grade, poor differentiation, and lower survival (12, 144-146).  

Perou et al. (147) undertook a more detailed classification of breast tumors by 

measuring the expression of more than 1700 genes using cDNA microarrays. Hierarchical 

clustering revealed four major clusters, or intrinsic subtypes, of breast tumors. The 

ER+/luminal epithelial-like tumors were characterized by expression of genes commonly 

expressed in luminal epithelial cells like estrogen receptor, cytokeratins 8 and 18, GATA-

binding protein 3, and hepatocyte nuclear factor 3-alpha (also known as FOXA1). The basal-

like group of tumors was characterized by expression of cytokeratins 5 and 17, integrin beta 

4, laminin, and the absence of estrogen receptor expression. The ErbB2 group was 

characterized by high HER2 levels and lower levels of the estrogen receptor and ER-

associated genes. The remaining tumors clustered with normal breast samples, and expressed 

higher levels of basal epithelial and adipose-related genes and lower levels of luminal/ER+ 

associated genes. When clustering was repeated using data from additional samples, what 

were previously described as luminal/ER+ tumors seemed to cluster further into subgroups 

(148, 149).  
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Perou et al. (147) and Sorlie et al. (148, 149) defined intrinsic molecular subtypes 

using tumor expression profiles of between four and six hundred genes. Based on the 

dominant expression patterns that defined each subtype, Nielsen et al. (150) showed that the 

intrinsic subtypes could be defined using immunohistochemical stains for ER, HER2, EGFR, 

and CK 5/6 in place of gene expression arrays. Abd El-Rehim et al. (151) and Yu et al. (152) 

demonstrated the identification of intrinsic molecular subtypes using gene expression 

signatures characterized by luminal epithelial-related proteins and hormone receptor 

positivity, HER2 expression, basal epithelial-related markers in independent populations. 

Although Abd El-Rehim et al. (151) described 6 main clusters, most of the characteristics 

they described parallel the intrinsic subtypes defined previously by Perou and colleagues 

(147, 148). 

Carey et al. (16) described the prevalence of characteristics of the intrinsic molecular 

subtypes within a population-based study. Using primary invasive breast cancer cases from 

the Carolina Breast Cancer Study, Carey et al. presented a modified classification system 

based on previous work of Perou and colleagues (discussed above). In addition to ER, HER2, 

EGFR, and CK 5/6, PR was also used to define the subtypes because it is a commonly 

measured estrogen-related gene and is a predictor of response to hormonal therapy (16). 

Also, tumors expressing both hormone receptors and HER2 were defined as a separate group, 

based on previous gene-clustering analyses. The following definitions were used by Carey et 

al. (16) to define the intrinsic molecular subtypes: luminal A (ER+ and/or PR+, HER2-); 

luminal B (ER+ and/or PR+, HER2+); HER2+/ER- (ER-, PR-, HER2+); and basal-like (ER-, 

PR-, HER2-, CK5/6+ and/or EGFR+). Tumors that did not fit these definitions were called 

“unclassified”.  



19 
 

Intrinsic subtypes have been described in several populations world-wide (17, 144, 

153-158). Basal-like tumors (in Fulford et al. (159) basal-like was defined based on CK14, 

not CK5/6) are more likely to be higher grade, solid tumors with a higher number of mitotic 

figures, greater necrosis, and no tubule formation (156, 157, 159-161). Patients with 

HER2+/ER- and luminal B tumors are most likely to have positive lymph nodes (16), those 

with basal-like tumors were less likely to have positive lymph nodes (156). In addition to 

lack of ER, PR, and HER2 expression, the basal-like phenotype is characterized by 

expression of smooth muscle actin and vimentin (160). Some studies have reported that 

basal-like tumors are more likely to be larger than other subtypes (156, 161). Expression of 

basal-like marker CK5/6 was more common among interval breast cancers compared to 

cancers detected by screening mammography (162). 

Intrinsic subtypes also show different patterns of chromosomal aberrations, indicating 

that different genetic mechanisms may be preferred by each subtype. Basal-like tumors have 

the most chromosomal gains and losses, whereas luminal B tumors are more likely to have 

high level amplifications (163). Also, the majority of tumors arising in patients with BRCA1 

mutations are basal-like tumors (164-166). 

Identification of intrinsic subtypes, particularly the basal-like subtype, has also been 

described in breast carcinoma in situ (152, 167-171). Compared to luminal A DCIS, luminal 

B, basal-like, and HER2+/ER- DCIS are more likely to have high nuclear grade, show areas 

of comedo necrosis, and have a high Ki-67 index (169, 170).  

Few studies have described the epidemiology of the intrinsic molecular subtypes, but 

those that have found that basal-like tumors are more common among younger and African-

American women (12, 16, 17, 144). Millikan et al. (17) reported that increased parity, 
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younger age at first full term pregnancy, not breastfeeding, high waist-to-hip ratio, young age 

at menarche, and higher adult adiposity compared to childhood are risk factors for the basal-

like subtype of breast cancer. Nulliparity and a high waist-to-hip ratio are risk factors for 

with luminal A breast cancer (17). In Yang et al. (172), younger age at menarche and family 

history were positively associated with basal-like breast cancer, but many estimates were 

imprecise, making it hard to interpret the results.  

Among invasive tumors, intrinsic subtypes have been shown to have different breast 

cancer-specific and overall survival patterns. Some studies have reported that patients with 

luminal A tumors tend to have the best survival and patients with HER2+/ER- tumors tend to 

have the poorest survival (16, 156, 173). Controlling for receipt of adjuvant therapy, basal-

like tumors were associated with poorer survival compared to non-basal-like tumors (174). 

Yamamoto et al. (175) reported that basal-like tumors were associated with significantly 

poorer survival compare to non-basal-like tumors. However, other studies suggest that the 

basal-like phenotype lacks prognostic value when compared to existing prognostic factors. In 

a study by Rodriguez-Pinilla et al. (161), the basal-like phenotype was associated with poor 

prognosis, but not independently of tumor size. In Potemski et al. (176) and Jumpannen et al. 

(177), the basal-like phenotype was not a significant prognostic factor among ER-negative 

cancers.  

Even if the basal-like phenotype is not an independent prognostic factor, 

characterization of basal-like tumors provides an opportunity to target prevention and therapy 

options towards a specific type of ER-negative breast cancer. The high prevalence of basal-

like tumors in African-American women may explain some of the poor clinical outcomes for 

this population, even after adjusting for stage at diagnosis.  
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If the breast cancer intrinsic molecular subtypes have different etiologies, GWAS and 

pooled candidate gene studies would be more likely to identify variants associated with the 

most common intrinsic molecular subtype (luminal A). Additionally, most of the populations 

in the GWAS and large pooled studies involved white and/or postmenopausal women (107-

109, 116, 118, 119, 141, 142). Given that basal-like breast cancer is less prevalent among 

white and postmenopausal women (12, 17, 144, 172), it is unlikely that the results of these 

studies will be generalizable to basal-like breast cancer. 

Replications of some of the GWAS SNP associations that were first reported in 2007 

support the idea that they are associated with certain types of cancer. In a pooled Breast 

Cancer Association Consortium analysis, Garcia Closas et al. (178) reported strong 

differences in association for GWAS SNPs rs2981582 (FGFR2) and rs13281615 (8q24) by 

ER status and tumor grade; none of the associations examined differed by nodal status. 

Nordgard et al. (179) examined associations between TNRC9, LSP1, FGFR2, MAP3K1, and 

H19 gene expression, GWAS-SNP genotype and breast cancer intrinsic molecular subtype. 

In that study, gene expression differed by molecular subtype for all five genes, and genotype 

distribution differed by molecular subtype for TNRC9 (179). Kristensen and Borresen-Dale 

re-analyzed the association of a SNP previously reported as associated with breast cancer, 

and observed that the variant homozygote genotype prevalence was much higher for the 

basal-like subtype than other subtypes (180, 181). Further research into the etiology of the 

intrinsic molecular subtypes of breast cancer has the potential to increase knowledge of the 

biological pathways that may be active in specific tumor subtypes. In turn, knowledge of 

which biological pathways are active in breast tumorigenesis can provide insight as to why 

some groups are at increased risk for particular subtypes, and possibly influence the 
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development of new treatment and prevention strategies. 

 

1.6 Estrogen and breast cancer 

Estrogen is a steroid hormone that is synthesized from cholesterol through a series of 

conversions involving several different cytochrome P450 and hydroxysteroid dehydrogenase 

enzymes (182). Estrogen is active in a variety of tissues throughout the body, and is 

responsible for stimulating growth of reproductive organs and decreasing the physical effects 

of aging (183). Estrogen also inhibits osteoclasts, preserving bone density, promotes 

endothelial cell development, and may have neuroprotective effects in older women (183). In 

the normal breast, estrogen stimulates the growth and differentiation of the ductal epithelium 

and surrounding stroma during puberty and pregnancy (183, 184). 

Estrogen production varies by stage of life and according to the menstrual cycle. 

Estrogen levels first rise during puberty after stimulation by gonadotropin (183). After 

menarche, the theca and granulosa cells in the ovary are the main source of estrogen 

production (183, 185). Plasma estrogen concentrations vary according to the menstrual cycle, 

with peak levels occurring before ovulation (183, 185). After menopause estrogen is no 

longer produced in the ovaries, and the estrogen is primarily produced through the 

aromatization of androgens in adipose tissue (183).  

Estrogen is produced in 3 forms – estradiol, estrone, and estriol (183). In addition to 

being produced from androgen precursors, estradiol and estrone can be inter-converted, in a 

reaction catalyzed by 17-beta hydroxysteroid dehydrogenases 1 and 2 (186). In the normal 

breast epithelium, the estradiol to estrone conversion pathway has much higher activity that 

the estrone to estradiol pathway (187). Serum concentrations of estriol are very low 
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compared to estrone and estradiol in premenopausal and postmenopausal women (183). 

There are two receptors that bind estrogen - estrogen receptor alpha (ER-alpha) and estrogen 

receptor beta (ER-beta). Estradiol is considered to be the more biologically potent estrogen 

because it has the strongest binding affinity for ER-alpha and ER-beta; estrone’s binding 

affinity is approximately 60% (ER-alpha) and 40% (ER-beta) compared to estradiol (183). 

Despite its beneficial role in many tissues, estrogen may lead to tumor formation 

either through its effects via estrogen receptor signaling or through the effects of its 

metabolites. Once bound to the estrogen receptor, the ligand-receptor complex translocates to 

the nucleus where it acts as a transcription factor to specific target genes. Estrogen is 

metabolized via two main pathways that involve hydroxylation of the A ring (leading to 

catechol estrogen formation) or hydroxylation of the D ring (leading to 16-alpha 

hydroxyestrone formation) (182). Estrogen metabolites can bind to DNA forming DNA 

adducts; high rates of DNA repair after adduct removal may introduce mutations that initiate 

carcinogenesis (188). 

Epidemiologic evidence strongly supports a role for estrogen (in addition to 

progesterone (57)) in many breast cancers. Serum levels of several sex steroids, including 

estradiol, estrone, androstenedione, testosterone, and dehydroepiandrosterone sulfate are 

associated with an increased risk of breast cancer, and high levels of sex hormone-binding 

globulin are associated with a decreased risk of breast cancer in postmenopausal women 

(189, 190). Lifestyle factors that increase the number of lifetime ovulatory cycles, such as 

early menarche, late menopause, and nulliparity, are consistently associated with increased 

breast cancer risk (21). Surgical removal of the ovaries in premenopausal women, and 

therefore removal of the main source of estrogen, can reduce the risk of breast cancer by 50% 
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in high risk women (191). Finally, exogenous estrogen use is associated with an increase in 

breast cancer risk (76, 80, 81). 

Furthermore, estrogen and the estrogen receptor are present in breast tumors. In breast 

cancer patients, aromatase activity and estradiol concentration is highest in tumor tissue and 

lowest in normal tissue (192). In hormone receptor-positive breast cancer, activity in the 

estrone to estradiol conversion pathway is predominant over the reverse reaction (193), 

potentially providing an additional source of estradiol to fuel tumor growth. In a nationwide 

sample of infiltrating ductal cancers in African-American and white women in the US, 75% 

were estrogen receptor-positive (4).  

Altogether, this evidence suggests that estrogen is instrumental in at least a subset of 

breast cancers. Therefore, factors that modify estrogen expression or estrogen activity may 

have an important impact on breast cancer risk.  

 

1.7 Estrogen pathway-related candidate genes and breast cancer 

 In order to investigate the relationship between variation in estrogen-related genes 

and the intrinsic subtypes of breast cancer, this study will focus on genes involved in 

estrogen synthesis, estrogen chaperoning in the bloodstream, and estrogen signaling. ER-

alpha is required for estrogen to exert its effects in the cell, and so SNPs in the estrogen 

receptor gene that increase transcription could increase estrogen-related proliferation and 

SNPs that reduce transcription would be expected to have a protective effect. The 

progesterone receptor is one of the target genes affected by estrogen signaling, and its 

expression is highly correlated with ER expression (194). Cytochrome P450 enzyme 19A1 

(CYP19A1) converts testosterone to estradiol (186), and so polymorphisms that upregulate 
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CYP19A1 activity could result in higher estrogen levels and therefore greater estrogen-

related proliferation. 17-beta hydroxysteroid dehydrogenase 2 converts estradiol to estrone, 

and is an important regulator of estradiol levels (195). 3-beta hydroxysteroid dehydrogenase 

1 (HSD3B1) converts pregnolone to progesterone, and polymorphisms that affect HSD3B1 

expression could increase progesterone receptor signaling (186). Finally, sex hormone 

binding globulin (SHBG) is a chaperone molecule that binds to sex steroids in the 

bloodstream. Estradiol that is bound to SHBG is not available to bind to the estrogen 

receptor, and so polymorphisms that reduce expression of SHBG will increase the amount of 

free estradiol. 

1.7.1 Estrogen receptor alpha (ESR1) 

Estrogen receptor alpha (ER-alpha) is a steroid hormone receptor present in the cell 

cytoplasm and nucleus (183). In its inactive form, ER-alpha is bound to heat shock proteins 

(196). After binding its ligand, estrogen, the receptor dissociates from heat shock protein, 

dimerizes, undergoes a conformational change, and translocates to the nucleus (183). In the 

nucleus, the estrogen-estrogen receptor complex modulates transcription by binding to 

estrogen response elements or interacting with other nuclear transcription factors like NFkB 

and AP-1 (183). ER-alpha is able to bind all forms of estrogen, but it has the highest affinity 

for 17 beta-estradiol compared to other forms of estrogen such as estrone, estriol, and 17 

alpha-estradiol (197). Hundreds of genes are regulated by estrogen signaling, including up-

regulation of genes associated with cell proliferation, survival (cyclin D1, replication factor 

C4, survivin), growth factors, and transcription factors, and down-regulation of tumor 

suppressors, pro-apoptotic genes (cyclin G2, IEX-1, caspase 9), and growth inhibitors (198).  

Researchers have also described a cell surface-bound form of the estrogen receptor 
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where signaling results in almost immediate physiological effects (183). This type of 

membrane-bound ER has been observed in vascular, endocrine, adipose, uterine and neuronal 

tissues (183, 199). The estrogen receptor can be activated by growth factor signaling as well, 

through phosphorylation of receptor serine or tyrosine kinase residues (183). Studies have 

shown that the epidermal growth factor receptor, heregulin, cyclic AMP, insulin/insulin-like 

growth factor, and dopamine can interact with estrogen receptor in the absence of an estrogen 

ligand (183). 

In the normal breast estrogen receptor-alpha is expressed in the nuclei of a small 

percentage of luminal epithelial cells that line the ducts and lobules, but not in other breast 

cells (200-202). In the breast, estrogen stimulates growth and differentiation of ductal 

epithelium (183). In ESR1 knockout mice, breast development was stunted (202), suggesting 

that the knockout mice lacked proliferative signaling required for further development of the 

mammary gland during puberty. Lack of a functional ESR1 gene has also been associated 

with osteoporosis and reduced fertility in female mice (183). 

Biological and epidemiological evidence suggests that the estrogen receptor is a 

major factor in breast tumor formation and survival. Levels of ER-alpha expression are 

altered in neoplastic growth. Atypical ductal hyperplasia and lobular carcinoma in situ both 

express the estrogen receptor at higher levels than that of normal breast (202). Approximately 

60-70% of ductal carcinoma in situ are ER-positive (203, 204). Also, eliminating estrogen-

receptor signaling reduces tumor formation in animal models. Oncogene-driven tumor 

formation in ER-alpha knockout mice occurred at half the rate of wild-type mice (205). 

Finally, estrogen receptor expression is a strong predictive marker of response to 

hormonal treatments (206). ER expression is a weak prognostic factor, and is correlated with 
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other prognostic factors like histologic grade, proliferation, and tumor size (4, 202, 206). 

Studies with long follow-up show that even though ER-positive patients have a longer time 

until recurrence, they eventually have recurrence rates similar to ER-negative patients (206).  

There have been several association studies of ESR1 polymorphisms and breast 

cancer, but results have been somewhat inconsistent. The variant T allele of the ESR1 +397 

C/T (PvuII) SNP has been associated with a small increase in breast cancer risk in two 

studies (207, 208), but the association was not observed in other studies (209-211). Zheng et 

al. reported an inverse association between the TT genotype and breast cancer (117). 

Interestingly, the results from one functional study suggest that the C allele and not the T 

allele would be associated with a greater breast cancer risk – the C allele creates a new 

functional myb binding site and is associated with increased transcriptional activity (212). 

For the S10S polymorphism, inverse, positive and null associations with breast cancer have 

been reported (211, 213, 214). 

Some studies have reported an association between the P325P polymorphism and 

breast cancer (215, 216), and familial history of breast cancer (217). Others (218, 219) 

reported no association between P325P and breast cancer. It has also been reported that 

P325P is inversely associated with lymph node metastasis in breast cancer cases (215, 219). 

Other SNPs -104062 C/T and 3’ UTR rs3798577 have been investigated, but no clear pattern 

of association has emerged. 

Tag SNP studies of ESR1 have identified intronic SNPs that are potentially associated 

with breast cancer. In data from the SEARCH study, Mavaddat et al. (220) reported that 

ESR1 SNPs rs3020314, rs3020407, and rs3020401 were strongly associated with breast 

cancer. Dunning et al. (211) combined the ESR1 rs3020314 associations from several case-
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control studies  and reported a very weak but precise association with breast. Subgroup 

analyses revealed that the association was only observed with ER-positive breast cancer in 

populations of European descent (211). 

ESR1 SNPs have also been associated with serum hormone levels. Sowers et al. (221) 

reported that several SNPs have ethnicity-specific associations with serum estradiol levels, an 

interesting finding given the ethnic and geographic variation in breast cancer incidence 

worldwide. The +397 C/T (PvuII)  CC genotype was associated with higher serum estradiol 

levels in African-American women (221) and +397T - +351A haplotype (PvuII-XbaI) was 

associated with lower serum estradiol levels in postmenopausal Danish women (222), which 

is consistent with the higher expression associated with +397C in vitro. It could be 

hypothesized that the higher levels of circulating estradiol associated with the C allele mean 

that less estradiol is able to bind to the variant receptor and translocate to the nucleus, and 

this is why the +397T allele is associated with increased breast cancer risk. The +397T allele 

was associated with higher levels of androstenedione in postmenopausal women (223); it is 

also possible that the increased breast cancer risk is mediated through testosterone and not 

estrogen. 

1.7.2 Progesterone receptor (PGR) 

The progesterone receptor (PR) is a steroid receptor which influences DNA 

transcription. PR signaling is initiated by binding of the ligand, progesterone, receptor 

dimerization, phosphorylation, and DNA binding (224). PR is expressed in three isoforms – 

PR-A, PR-B, and PR-C. The PR-A and PR-B isoforms are similar in some respects. Both are 

capable of forming either homodimers or heterodimers, and both have the ability to bind to 

progesterone-response elements in DNA (224, 225). PR-A and PR-B also have similar 
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structures, except that PR-B contains an additional transactivation domain (224). Despite 

these similarities, most studies suggest that these two isoforms have unique transcriptional 

activities (225). Like PR-A and PR-B, the PR-C isoform contains a ligand-binding domain, 

but it is truncated at the N-terminus and therefore lacks the progesterone response element-

binding motif and activation domains (225). PR-C has the ability to bind to PR-B and inhibits 

PR-B transcriptional activity, possibly by competing for progesterone or inhibiting PR-B 

ability to bind to DNA (225). 

PR-A and PR-B are expressed in equal amounts in the luminal epithelial cells in 

normal breast tissue (201, 225). PR knockout mice experience anovulation, abnormal uterine 

morphology and histology, and impaired branching and differentiation of the breast during 

pregnancy (224, 226), suggesting the progesterone receptor is required for normal 

reproductive function.  

PR expression is highly correlated with ER-alpha expression (201). In fact, PR 

expression is regulated by estrogen, and both estrogen and ER signaling are required for the 

progesterone receptor to be produced (194). PR can also induce proliferative activity through 

crosstalk with the estrogen receptor. In T47D cells, PR signaling stimulates proliferation via 

the Erk and PI3K/Akt pathways (227). Ballare et al. (227, 228) showed that progestin 

initiates Src/Erk signaling through a direct interaction of the PR-B N-terminus with the ER-

alpha ligand-binding domain.  

The progesterone receptor is expressed in 70% of invasive breast cancers (204). In 

breast tumors, PR expression is inversely associated with expression of HER2 and EGFR 

(194). The exact mechanism for loss of PR expression in breast tumors is unknown, but 

hypotheses include lack of functional ER, promoter methylation, loss of heterozygosity, and 
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signals from growth factors, such as IGF, EGF, or heregulin (194). PR-A and PR-B isoforms 

are expressed in equal amounts in the normal breast (225), however, in a subset of invasive 

tumors PR-A is present in higher amounts than PR-B, and some studies have suggested that 

this imbalance may be related to tamoxifen resistance (194, 225, 229). The predictive role of 

PR independent of ER status is unclear. A review of tamoxifen trials showed that PR status 

did not predict treatment benefit, but other studies have shown that among ER-positive 

patients, those that were PR-positive had a greater benefit from tamoxifen than PR-negative 

patients (194). 

The V660L amino acid change in exon 4 has been studied extensively, but the 

relationship between V660L and breast cancer remains unclear. Groups have reported both a 

positive association (213, 230) and no association (141, 231, 232) between the variant allele 

and breast cancer. In vitro experiments of the functional effects of the codon 660L variant 

also show varying results. One group reported that the codon 660L variant produced higher 

transcriptional activity and was degraded more slowly within the cell (233), suggesting that 

the codon 660L variant could have a stronger or more prolonged effect on the transcription of 

PR target genes or proliferative signaling cascades. This effect would be consistent with an 

increased breast cancer risk for the variant allele. However, another group reported that the 

codon 660L variant leads to reduced receptor phosphorylation, which would lead to reduced 

variant allele activity and presumably would not cause increased breast cancer risk (234). It 

is difficult to interpret the true causal effect of the V660L SNP because it is linked to several 

other PGR polymorphisms. The codon 660L polymorphism is in complete linkage 

disequilibrium (LD) with an Alu insertion polymorphism that has also been shown to 

increase PGR transcription (234, 235). Codon 660L is also in complete LD with a 
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polymorphism at codon 770, and in almost complete LD with a polymorphism at codon 344 

(235).  

The promoter polymorphism +331 G/A has also been investigated for a possible 

association with breast cancer. The +331 G/A SNP is located in between the wild type 

transcriptional start sites for PR-B (+1) and PR-A (+751), and creates a new transcriptional 

start site that results in increased transcriptional activity (235). Despite this, only the Nurses’ 

Health Study (236) has demonstrated an association between the 331A allele and breast 

cancer; other studies have not shown an association (213, 230, 231). After further analysis in 

the Nurses’ Health Study, Kotsopoulos et al. (237) reported that the +331 G/A association 

was modified by postmenopausal hormone use, and that the increased breast cancer risk 

associated with the A allele is much higher in never-users compared to past or current HRT 

users. 

1.7.3 17-beta-hydroxysteroid dehydrogenase type II (HSD17B2) 

17-beta-hydroxysteroid dehydrogenase type II (HSD17B2) is a member of the short 

chain alcohol dehydrogenase super family of enzymes that oxidizes active sex steroids into 

their inactive precursor forms (195). Specifically, HSD17B2 converts estradiol into estrone, 

testosterone to 4-androstenedione, and 5-androstenediol into dehydroepiandrosterone (195).  

HSD17B2 is expressed in a large number of normal tissues, including placenta, liver, 

endometrium, kidney, colon, and normal breast epithelium (187, 195). Only some studies 

have reported that HSD17B2 is expressed in breast tumors. Gunnarsson et al. (238) reported 

that HSD17B2 expression was detected in the cytoplasm of most breast tumors, but not in the 

surrounding stroma. In contrast, two other studies reported that HSD17B2 expression in 

breast cancer was very low (239) or undetectable (240). Gunnarsson et al. (238) also reported 
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that HSD17B2 expression is strongly correlated with expression of aromatase and 

cyclooxygenase 2, although Yoshimura et al. (239) did not find the same correlation. 

 Studies in breast cancer patients support the hypothesis that HSD17B2 may act to 

reduce available estradiol. In ER-positive patients, low levels of HSD17B2 are associated 

with distant recurrence and breast cancer-related death, but HSD17B2 levels have no effect 

on prognosis in ER-negative patients (238). Furthermore, a high HSD17B2:HSD17B1 ratio 

in ER-positive patients is associated with better prognosis (241). HSD17B1 reduces estrone 

to estradiol (195), and so higher amounts of HSD17B2 indicate the predominance of the 

estradiol to estrone oxidation pathway within the tumor. 

 Little has been published on the effect of HSD17B2 polymorphisms on breast cancer 

risk. One study examined the codon 226 M to V amino acid change and found no association 

with breast cancer (242). Molecular modeling did not predict any functional effects due to 

the codon 226 polymorphism, but in vitro studies were not performed to confirm this (242). 

Considering ER-positive cases only, the codon 226 V variant was associated with a two-fold 

increased risk of breast cancer for cases with two close relatives with breast cancer compared 

to controls carrying the codon 226 V variant, but the confidence interval was very imprecise 

and includes the null, and therefore should be interpreted with caution (242).   

1.7.4 3-beta-hydroxysteroid dehydrogenase type I (HSD3B1) 

3-beta hydroxysteroid dehydrogenase type I (HSD3B1) is a member of the short-

chain oxidoreductase enzyme super family that converts pregnolone to progesterone, 17-

alpha hydroxypregnenolone to 17-alpha hydroxyprogesterone, and dehydroepiandrosterone 

to androstenedione (186, 243). In addition to being expressed in normal breast, skin, prostate, 

and placenta, HSD3B1 is active in breast tumor cells, indicating that HSD3B1 activity could 
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act as a source of progesterone within breast tumors (186, 243, 244). Basal HSD3B1 

expression is controlled by a Sp1 binding site in intron 1 (245). In normal breast cultures and 

breast cancer cell lines, HSD3B1 expression can be induced further by cytokines interleukin-

4 and interleukin-13 (246). 

 Some studies have linked the HSD3B1 codon 367 N to T polymorphism with prostate 

cancer (247, 248), but other groups did not find an association (249). This nonsynonymous 

change creates a new PKC phosphorylation site in the COOH-terminal extramembrane 

domain, potentially causing a functional change in the HSD3B1 protein (247). The codon 

367T variant is associated with increased breast density among African-American women, 

decreased breast density among white American women, and decreased breast density in 

mostly white Australian women (250, 251). Increased breast density is a risk factor for breast 

cancer (50, 51), so it is possible that the codon 367T variant may be associated with 

increased breast cancer risk, particularly in African-American women. 

1.7.5 Cytochrome P450 Family 19 A1 (CYP19A1) 

Cytochrome P450 Family 19 A1 (CYP19) is part of a larger family of cytochrome 

P450 enzymes involved in steroid hormone biosynthesis (186). The CYP19 gene product and 

cofactor NADPH form the aromatase enzyme complex (252). Aromatase converts androgens 

into estrogens, including conversion of androstenedione to estrone and testosterone to 

estradiol (186). The CYP19 gene has several exon I splice sites that produce different forms 

of exon I which are expressed in a tissue specific manner (186). CYP19 translation begins in 

exon II, and so each tissue has a unique 5’ region, but the enzyme produced in each tissue 

type is the same (252). CYP19 is expressed in the ovary, placenta, testis, adipose tissue, 

bone, breast, and brain (186). In normal breast tissue, CYP19 is expressed in the epithelial 
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cells of the terminal ductal lobular unit and stromal fibroblasts (253, 254). In the ovary, 

aromatase is expressed in granulosa cells and the corpus luteum (252). In adipose tissue, 

CYP19 is expressed in the stromal cells; expression levels are higher in subcutaneous 

compared to visceral fat (252). 

Aromatase expression and activity is higher in breast tumors compared to normal 

breast tissue (255). Expression was detected in both stromal and carcinoma cells (255). In a 

study of aromatase mRNA levels in different quadrants of mastectomy specimens, Bulun et 

al. (256) reported that the tumor-bearing quadrant was significantly more likely to have the 

highest levels of aromatase. Aromatase transcript levels were also correlated with the number 

of stromal cells in each quadrant (256). In breast cancer patients, aromatase activity is highest 

in the tumor area and lowest in normal tissue (192). In Esteban et al. (257), aromatase 

activity was inversely correlated with ER-alpha but not PR expression. In Miki et al. (255), 

aromatase expression was positively correlated with ER-alpha. 

Aromatase activity can be altered by other molecules. Treatment with aromatase 

inhibitors such as letrozole and exemestane inhibited proliferation in MCF-7 cells (255). 

When used to treat postmenopausal breast cancer patients, aromatase inhibitors provided 

better long-term survival compared to standard treatment regimens and lead to fewer adverse 

effects (258). Endogenous factors also affect aromatase activity. Keratinocyte growth factor, 

epidermal growth factor, transforming growth factor alpha, and leptin all stimulate aromatase 

activity in breast cancer cell lines (259-261). 

Researchers have tested the functional effects of several CYP19 SNPs using in vitro 

studies. In the case of both the W39R and R264C amino acid changes, studies have reported 

that the variant allele is associated with reduced enzyme activity and that the polymorphism 
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has no effect on enzyme activity (262-264). Miyoshi et al. (265) reported a negative 

association between codon 39R and codon 264C variants and breast cancer. However, 3 

other studies of R264C did not find any association with breast cancer women (264, 266-

268).  

Riancho et al. (269) reported that a SNP in the I.2 promoter is associated with higher 

levels of aromatase in adipose tissue. One would expect that higher levels of aromatase in 

adipose tissue would result in higher estradiol levels and higher breast cancer risk, especially 

in women with more adipose tissue. However, there are no published studies of the I.2 

polymorphism and breast cancer. Talbott et al. (270) reported a positive association for 

rs108805 intron 2 A/G among premenopausal but not postmenopausal women. This SNP had 

been previously reported as having no association with breast cancer in a pooled study of 

postmenopausal women, where carriers of the G allele had increased levels of serum 

estradiol and estrone (267).  

Kristensen reported a positive association between the CT and TT genotypes of the 

exon 10 3’ UTR SNP rs10046, and later demonstrated that basal-like cases are more likely to 

have the TT genotype compared to women with other tumor subtypes (180, 181). However, 

other studies reported no association between rs10046 and breast cancer (271, 272). Raskin 

et al. (273) reported that the synonymous V80V polymorphism was positively associated 

with breast cancer in BRCA carriers younger than 50 years old. 

1.7.6 Sex hormone-binding globulin (SHBG)  

Sex hormone-binding globulin (SHGB) is an allosteric protein that binds sex steroids 

in the bloodstream, controlling their availability for downstream signaling processes. SHBG 

also binds to the membrane-bound SHBG receptor (SHBG-R); free SHBG can bind steroids 
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before or after it binds to its receptor, but once SHBG has bound a steroid ligand it is no 

longer able bind to the SHBG receptor (274).  

Experimental data supports the hypothesis that SHBG is instrumental in controlling 

the proliferative and anti-apoptotic effects of estradiol (275, 276). These anti-proliferative 

effects are due in part to SHBG/SHBG-R induction of cyclic AMP and PKA in the presence 

of estradiol (277, 278). Additionally, SHBG suppresses estradiol up-regulation of bcl-2, c-

myc, EGFR, and PR (278, 279). Estradiol down-regulation of ER-alpha is also inhibited 

(279). The ability of SHBG to reverse the effects of estradiol is sensitive to SHBG mutations: 

variants without the O-linked oligosaccharide on the threonine amino acid at codon 7 had no 

effect against estradiol (276). 

Moore et al. (280) detected SHBG mRNA in ER-positive and ER-negative breast 

cancer cell lines and breast tumor samples. In breast tumors, the presence of membrane 

SHBG-R is positively correlated with cytosolic levels of the progesterone receptor and 

negatively correlated with cellular proliferation (281).  

SHBG levels are associated with body size. SHBG concentration decreases with 

increasing BMI and waist circumference (282-285). In premenopausal African-American 

women, a waist-to-hip ratio of greater than 0.80 was associated with lower levels of SHBG 

compared to women with a waist-to-hip ratio of less than or equal to 0.75, regardless of 

obesity level (286). 

In postmenopausal breast cancer patients, treatment with tamoxifen is associated with 

a significant increase in SHBG levels (287). Higher levels of SHBG were associated with a 

reduced risk of breast cancer in postmenopausal women in some studies (288-290), but not in 

others (291, 292). Several studies also reported no association between SHBG levels and 
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premenopausal breast cancer (291, 293-295). However, in many cases the studies of 

premenopausal women were limited by low statistical power; the effect estimates suggested a 

trend of reduced risk for the highest vs. the lowest quartiles of SHBG. SHBG was not 

associated with ductal carcinoma in situ in a small prospective study of postmenopausal 

women (296). 

Researchers have identified two functional polymorphisms in SHBG that may be 

associated with breast cancer. The D356N amino acid change (also known as D327N) is 

associated with higher levels of SHBG (272, 297, 298). Based on the anti-proliferative 

effects of SHBG in cell lines, the expected effect of higher SHBG would be reduced breast 

cancer risk. However, in Dunning et al. (272) codon 356 NN homozygotes had an increased 

risk of breast cancer. The other functional SNP is a G to A nucleotide change in the 5’ UTR. 

In Dunning et al. (272) this SNP was associated with increased SHBG levels in 

postmenopausal women, but no association with breast cancer was observed by Dunning et 

al. or in a second study (299). 

 

1.8 Obesity, insulin resistance, and breast cancer 

Obesity is associated with increased incidence of many cancers, including breast 

cancer (300). Data from the NHANES national survey (1999-2004) shows that 29% of adult 

US women are overweight and 33% are obese (301). The 2003-2004 prevalence of obesity 

was 31% in non-Hispanic white women and 54% in non-Hispanic African-American women, 

up from 15% and 31% in the 1976-1980 NHANES survey (301, 302). 

In postmenopausal women, obesity is associated with an increased risk of breast 

cancer, (30, 32, 35, 45, 46, 303) though some studies have found no association (34). There 



38 
 

is some evidence that the association between body mass index (BMI) and increased breast 

cancer risk in postmenopausal women is modified by hormonal factors, such as HRT use or 

type of menopause. In the EPIC study, BMI was positively associated with breast cancer in 

postmenopausal women who were not HRT users, while there was no association among 

HRT users (31). Also, Kaaks et al. (33) reported an inverse association between BMI and 

breast cancer among women who experienced natural menopause and a positive association 

in women with surgical menopause, but both results were imprecise and did not appear 

statistically different from each other. In postmenopausal women, obesity is consistently 

associated with the incidence of ER-positive and PR-positive tumors and the relative risk 

increases with increasing obesity (304). Obesity is generally thought to be associated with a 

decreased risk of breast cancer in premenopausal women (30-32, 36), though some have 

reported no association (33-35) and at least one study has reported a positive (but imprecise) 

association (45).  

Central obesity is indicative of large amounts of deep visceral fat. Waist-hip ratio 

(WHR), a common measure of central obesity, has been associated with increased breast 

cancer risk in women independently of BMI [(33, 43, 305, 306), reviewed by (41, 42)]. 

Unlike the association between breast cancer and BMI, studies did not demonstrate any effect 

modification by menopausal status. 

Several mechanisms have been proposed to explain the relationship by which obesity 

and central obesity may increase breast cancer risk. First, obesity may increase breast cancer 

risk by influencing estrogen production. In postmenopausal women, estrone and estradiol 

levels increase with increasing BMI and WHR, and SHBG decreases with increasing BMI 

and WHR (285, 307, 308). Some groups contend that the effect of obesity on steroid 
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hormone levels explains most of the relationship between obesity and breast cancer - the 

effect of BMI on breast cancer risk was greatly attenuated when adjusted for serum estrogen 

levels (285). Others argue that this does not fully explain the extent of the association 

between obesity and breast cancer (309). Further evidence for the hypothesis that BMI 

increases breast cancer risk by estrogen-related mechanisms is the lack of association 

between BMI and breast cancer risk in HRT users. This suggests that among those with 

significantly increased hormone levels (due to exogenous hormones) the increase in 

hormones due to obesity has no effect, or that BMI only has an effect among women with 

low endogenous hormone levels (300). The lack of association between premenopausal 

obesity and breast cancer also fits this hypothesis. Premenopausal women have high levels of 

endogenous estrogens due to ovarian estrogen production. Compared to ovarian estrogens, 

additional estrogen produced by adipocytes and any increase in that level due to obesity is 

negligible. This hypothesis is also supported by the fact that estradiol levels do not vary by 

BMI in premenopausal women (310). 

A second hypothesis is that obesity affects cancer growth by promoting insulin 

resistance and hyperinsulinemia. Insulin resistance occurs when muscle, liver, and adipose 

cells have a reduced response to insulin (311). The pancreas continues to produce insulin in 

order to achieve a biological response, leading to the accumulation of insulin and un-

metabolized glucose in the bloodstream (311). Insulin promotes insulin-like growth factor 1 

(IGF-1) production and inhibits IGF-binding protein, further increasing the amount of free 

IGF-1 (312). Both insulin and IGF-1 promote cell proliferation and inhibit apoptosis in vitro 

(300). Furthermore, inhibition of the IGF1-receptor inhibits growth of xenograft breast 

cancer cells in mice (313), suggesting that tumor growth is slowed when IGF-1 is unable to 
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initiate signaling in downstream pathways. Insulin receptor and the IGF-IR hybrid receptor 

are expressed at significantly higher levels in breast tumors compared to normal breast (314), 

indicating that they may play an important role in breast tumorigenesis in humans. It is also 

possible that insulin resistance interacts with reproductive hormones and the estrogen-related 

carcinogenesis pathway. High levels of insulin and IGF-1 reduce production of SHBG, 

leading to more bioavailable estradiol and testosterone (300). 

A third hypothesis is that obesity leads to increased production of pro-inflammatory 

cytokines. Chronic low grade inflammation results in macrophage production of pro-

inflammatory cytokines tumor necrosis factor-alpha and interleukin-1B, which then stimulate 

interleukin-6 production (315). This hypothesis is supported by data from the Fatless A-

Zip/F1 mouse model. Fatless mice have features common to insulin resistance but lack 

adipose tissue or adipocytokines, which are growth factors produced by adipose tissue (315). 

Fatless mice grew tumors faster than the control mice, suggesting that adipocytokines were 

not essential for tumor formation in an insulin resistant environment, and that other pathways 

involved in insulin resistance may be responsible for increased cancer risk, not 

adipocytokines themselves (315).  

Finally, a fourth hypothesis is that increased levels of adipocytokines produced by 

adipose tissue may promote breast tumor growth. In vitro, adipocytokines have effects on 

cell proliferation, angiogenesis, and apoptosis (reviews: (316, 317)). For example, leptin 

stimulates aromatase activity and increases cell proliferation (259, 318-322), and IL-6 can 

activate ER-alpha transcription (323) – upregulation of these genes effects could promote 

breast tumor growth. Adiponectin inhibits the proliferative effects of estradiol, and so 

obesity-induced reduction of adiponectin levels could increase breast cancer risk (324-328). 
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Other adipocytokines, such as vascular endothelial growth factor, hepatocyte growth factor, 

and heparin-binding epidermal growth factor-like growth factor, promote angiogenesis and 

endothelial cell migration (316). 

 

1.9 Obesity-related candidate genes 

Adipocytokines are a group of growth factors and cytokines produced primarily by 

white adipose tissue (329). White adipose tissue is a multi-functional organ composed of 

adipocytes, fibroblasts, and macrophages that acts as the body’s main energy reserve through 

storage of fatty acids, insulation, and a source of hormones, adipocytokines, and 

inflammatory factors (330). Adipocytokine production levels are associated with insulin 

resistance syndrome and obesity (329). The circulating levels of most adipocytokines 

increase with increasing BMI and obesity, except for adiponectin which is inversely 

associated with BMI and obesity (316). Adipocytokines can have pro-carcinogenic effects 

and have been shown to affect aromatase activity, angiogenesis, and proliferation in cell lines 

(316, 317). Recent research has demonstrated that some adipocytokines and adipocytokine 

receptors are expressed in non-adipose tissues, including normal and malignant breast tissue. 

Adipocytokines produced within the breast epithelium could produce autocrine effects. On 

the other hand, excess adipocytokines produced in the surrounding adipose tissue in obese 

women could affect breast tissue or surrounding stroma in a paracrine manner (317).  

Waist-hip ratio was strongly associated with basal-like breast cancer in the CBCS 

(17), suggesting that factors associated with central adiposity may be associated with basal-

like breast cancer. Adipocytokines are one group of factors that fit into this hypothesis. In 

order to investigate the potential effect of common genetic variation on basal-like breast 
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cancer, I will focus on variation in the adipocytokines tumor necrosis factor alpha (TNF-

alpha), interleukin 6 (IL-6), leptin (LEP), the leptin receptor (LEPR), and adiponectin 

(ADIPOQ). Each of these genes is associated with obesity or insulin resistance (331), and is 

also associated with cellular processes that promote tumor formation.  

1.9.1 Tumor necrosis factor alpha (TNF) 

Tumor necrosis factor alpha (TNF-alpha) is a cytokine with pro- and anti-tumor 

functions, including inhibiting tumor cell proliferation, promoting apoptosis, stimulating 

estrogen synthesis through aromatase activity, and promoting angiogenesis (332). TNF-alpha 

is secreted by adipocytes, and increased TNF-alpha levels are associated with obesity and 

insulin resistance (331, 333). It is unclear whether TNF-alpha levels are a cause or a 

consequence of insulin resistance. The addition of TNF-alpha induces insulin resistance in 

adipose tissue in vitro (334). On the other hand, weight loss reduces TNF-alpha levels in 

humans (331). Blocking TNF-alpha improved insulin resistance in rats, but a similar 

technique had no effect in humans (331). 

TNF-alpha and its receptors are expressed in both normal and neoplastic breast tissue, 

which increases the plausibility that it acts on breast tissue. Chavey et al. (335) found that 

TNF-alpha is expressed at a much higher level in neoplastic compared to normal breast 

tissue, but other studies did not report the same result (336, 337). The tumor necrosis factor-

alpha receptor 1 was present in all samples of normal, in situ, and invasive breast tissue, but 

tumor necrosis factor-alpha receptor 2 was detected increasingly in more malignant tissues 

(invasive tumors were the highest percentage positive, benign were lowest percentage 

positive) (337). Chavey et al. (335) reported that TNF-alpha was over-expressed more 

commonly in ER-negative and PR-negative tumors compared to ER-positive tumors. 
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However, in Garcia-Tunon et al. (337) TNF-alpha expression was not associated with any 

tumor characteristics, including ER or PR status.  

There are several mechanisms by which TNF-alpha might affect breast tumor growth. 

TNF-alpha stimulates aromatase activity in normal and malignant breast fibroblasts cultured 

from breast surgical samples (318). Aromatase catalyzes the final step in the conversion of 

androgens to estrogens, so increased TNF-alpha could lead to higher estrogen levels and 

estrogen-related proliferation. Experiments by Hagemann et al. (327) showed that 

macrophage-produced TNF-alpha increased the invasiveness of malignant but not benign 

cells in vitro by causing an increase in matrix metalloproteinases 2, 3, 7, and 9. This action 

was inhibited by the addition of an anti-TNF antibody or a matrix metalloproteinase 

inhibitor. Some studies have shown that TNF-alpha has effects that may inhibit tumor 

growth. TNF-alpha inhibited epidermal growth factor-stimulated proliferation in MCF-7 cells 

(326), and thus TNF-alpha expression could provide protection against aberrant signaling in 

the epidermal growth factor pathway. TNF induced cell death in the MCF-7 breast cancer 

cell line, but the extent of apoptosis differed according to laboratory strain of MCF-7 (328).  

Even though studies show that TNF-alpha is present and has effects in breast cells, 

only one study has reported that serum levels of TNF are significantly higher in women with 

breast cancer compared to women with a negative breast biopsy (338). Others have reported 

that there is no association between serum TNF-alpha levels and breast cancer (339, 340). 

This may be due to the fact that TNF-alpha has both pro- and anti-tumor effects and could 

therefore increase or decrease breast cancer risk under different circumstances. The lack of 

association may also be due to the fact that adipose TNF-alpha acts through autocrine and 

paracrine mechanisms (331), and levels of TNF-alpha within breast tissue may not be the 
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same as TNF-alpha levels in serum.  

Multiple polymorphisms in TNF have functional effects, and may affect breast cancer 

risk. The T allele of the -857 C/T polymorphism has significantly higher activity after 

stimulation by lipopolysaccharide compared to the C allele (341, 342). The TNF-alpha -863A 

allele is associated with reduced transcription in reporter assays and differential binding of 

nuclear proteins (343, 344). Functional studies of the -308 G/A polymorphism have shown 

that the -308A allele drives higher expression compared to -308G in in vitro reporter assays 

(345, 346). Kroeger et al. (346) showed that the differential transcription due to the -308 G/A 

polymorphism only occurred in the presence of the TNF 3’ UTR. However, none of the cell 

lines tested in these studies were breast cancer cell lines; it is possible that the functional 

effects differ in breast cells. 

TNF polymorphisms are also associated with levels of TNF-alpha in human subjects. 

Skoog et al. (347) analyzed the association between TNF polymorphisms and TNF-alpha 

secretion in adipose tissue in non-obese individuals, and found that adipose tissue from -

863A carriers secreted less than half as much TNF-alpha compared to -863 CC homozygotes. 

Carriers of -308A and -1031C minor alleles also demonstrated lower TNF-alpha secretion 

compared to -308 GG homozygotes and -1031 TT homozygotes, respectively (347). These 

differences in TNF-alpha levels by genotype that were apparent in the non-obese disappeared 

in obese subjects (347), suggesting that under an obese phenotype different factors regulate 

TNF-alpha expression. In another study, TNF-alpha production was significantly higher in -

308A allele carriers compared to -308GG homozygotes, but this was measured in cultured 

blood cells, not adipocytes (348). The TNF -1031C allele was associated with lower serum 

TNF-alpha levels (344).  
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Polymorphisms in TNF have been linked to several diseases, including obesity and 

breast cancer. In a meta-analysis, the -308 G/A polymorphism was associated with obesity 

specifically among white, middle-aged subjects; -308 G/A was not associated with plasma 

leptin or WHR (349). In a comprehensive analysis of TNF-alpha and the neighboring gene 

lymphotoxin alpha (LTA), Gaudet et al. (350) reported an increased risk of breast cancer for 

-238 A variant allele carriers. Inferred haplotypes containing the -238 A allele were also 

associated with an increased risk of breast cancer (350). Women homozygous for the -857 C 

allele were at increased risk for breast cancer compared to TT major allele homozygotes, but 

this association was not confirmed in a second, Polish population (350). Gaudet et al. (350) 

did not find an association between the -308 G/A polymorphism and breast cancer.  

In a Tunisian population, the -308 AA genotype was more common among breast 

cancer cases than controls (351). Other studies reported no association between –238 G/A, –

308 G/A, –857 C/T, –863 C/A or –1031 T/C polymorphisms and breast cancer (350, 352-

355).   

Despite the reported pro- and anti-tumor effects of TNF-alpha in vitro, data from the 

studies described above (350-354) suggest that TNF-alpha polymorphisms have a positive 

effect or no effect on breast cancer risk. None of the results suggest that TNF-alpha 

polymorphisms are inversely associated with breast cancer risk.  

1.9.2 Interleukin 6 (IL6) 

Similar to TNF-alpha, IL6 is a cytokine associated with inflammation, immune 

function, and injury response (331). IL6 expression is positively associated with obesity 

(334). The relationship between IL6 and insulin resistance is complex. Many studies have 

shown that IL6 is associated with increased insulin resistance (331, 334), however at least 
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one study demonstrated that IL-6 increases insulin sensitivity in skeletal muscle cells and that 

IL6 effects on insulin signaling may be tissue specific (356). 

IL6 is expressed in normal and neoplastic breast tissue, but there are conflicting 

reports on whether IL6 levels differ between normal and malignant tissue. In Chavey et al. 

(335), IL6 was expressed at a significantly higher level in neoplastic compared to normal 

breast tissue, but in Basolo et al. (357), IL6 was highest in cultures of normal breast 

epithelium and lowest in breast tumor cells. Green at al. (336) found no significant difference 

in IL6 levels between normal and neoplastic cell cultures. Differences may be due to the 

timing and laboratory methods used to measure IL6 – in Green et al. (336) and Basolo et al. 

(357) cells were cultured and IL6 levels were measured after the first (336) or third/fourth 

passages (357), whereas in Chavey et al. (335) IL6 was measured directly in fresh, non-

cultured breast tissue. 

In vitro studies indicate that IL6 may have pro- and anti-tumorigenic effects 

(reviewed by Knupfer et al. (358)). IL6 has been reported to inhibit growth in several ER-

positive and ER-negative breast cancer cell lines (359-361). Danforth et al. (359) 

demonstrated that IL-6 and estradiol antagonize each other’s growth effects in MCF-7 cells, 

and that IL6 causes a small decrease in ER expression and an increase in PR expression in 

MCF-7 cells. Also, IL-6 induced rounding, reduced cell adhesion, and decreased E-cadherin 

expression in the ZR-75-1-Tx, T47D, and MCF-7 cell lines (361, 362). IL-6 increased 

migration of T47D cells (360). 

The effects of IL6 in cultured surgical breast specimens are not consistent with the 

reported in vitro effects. IL6 alone was able to activate transcription of ER-alpha in ER-

positive primary breast cell cultures (323). IL6 had no effect on proliferation (measured by 
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DNA synthesis) in cultured breast tumor cells (357). According to Basolo et al. (357), IL6 

stimulated DNA synthesis in cultures of normal breast, but Asgeirsson et al. (361) reported 

that IL6 inhibited growth (colony size and number) in normal breast cultures. The same study 

reported that IL6 did not affect adhesion or E-cadherin expression in normal mammary 

epithelial cultures (361), suggesting that any effects of IL6 to promote cell discohesion seen 

in cell lines require earlier cancer initiation and/or promotion events.  

One potential mechanism by which alterations in IL6 expression or accumulation 

might be related to breast cancer is interaction between IL6, estrogen, and the estrogen 

receptor. IL6 can stimulate estrogen synthesis by inducing aromatase activity in fibroblasts 

cultured from normal and malignant breast tissue (318). Additionally, Chavey et al. (335) 

reported that IL6 is expressed more commonly in tumors that were ER-negative, PR-

negative, and high grade tumors, but other studies (337, 363) found no association between 

ER or PR status and IL6 expression.  

The most well characterized polymorphism in the IL6 gene is the -174 G/C promoter 

polymorphism. In luciferase reporter assays in HeLa cells, the (AT)8/12 -174C haplotype was 

associated with lower baseline expression and reduced response to stimulation by 

lipopolysaccharide or interleukin-1. Terry et al. (364) tested not only the -174 G/C 

polymorphism, but other promoter polymorphisms including -572 G/C, -597 G/A, and a -373 

AT repeat polymorphism in both HeLa and ECV40 cells, and showed that changes in IL6 

expression level are likely due to a complex haplotype effect, not the single genotype at 

position -174. Some have reported that the -174G allele is associated with higher circulating 

IL6 levels (365), but in other studies the -174  genotype was not associated with serum IL6 

(366-369). In light of the work by Terry et al. (364), these differing results may depend on 
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differing haplotype structures in the different populations in which the studies were 

conducted.  

Several studies have attempted to determine whether the IL6 -174 G/C polymorphism 

is associated with breast cancer. In a case-control study of women of Austrian or German 

descent, Hefler et al. (370) the -174C allele was associated with increased breast cancer risk 

(370). Slattery et al. (371) reported an inverse association between -174 G/C and breast 

cancer. Gonzalez-Zuloeta Ladd et al. (372) reported a small, non-significant increase in the 

odds of breast cancer among -174C allele carriers (GC/CC vs. GG), but they also adjusted for 

several covariates that either do not affect nt -174 genotype or are potentially on the causal 

pathway between nt -174 genotype and breast cancer risk. In addition to increasing 

imprecision of their estimates, they may have induced confounding or attenuated their effect 

estimates by adjusting for factors in the causal pathway. Unadjusted results were not 

reported, and so it is unknown to what extent these results support those of Hefler et al. 

(370). Finally, Smith et al. (353) and Litovkin et al. (373) reported no association between 

the nt -174 genotype and breast cancer, but did not reported the corresponding odds ratio or 

confidence interval. 

In a study of women from the southwestern US, Slattery et al. (371) reported 

associations for -174 G/C (rs1800795), -572 G/C (rs1800796), and intron 2 G/A (rs2069832). 

Haplotypes containing the minor alleles for rs1800797, rs1800795, and rs2069832 were 

associated with lower obesity in non-Hispanic white women, but these same haplotypes were 

not associated with breast cancer (374). 

Studies have also reported conflicting results on the association between the -174 G/C 

polymorphism and breast cancer prognosis. In an Australian study, the CC genotype was 
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associated with poor histological grade, larger tumor size, and lower ER content (375). In the 

same study, the CC genotype was associated with almost twice the hazard of death compared 

to the GC or GG genotype, but was not an independent predictor of survival (375). In 

contrast, Demichele et al. (376) reported that the -174C allele is associated with improved 

disease-free survival and overall survival in node-positive breast cancer patients; the data 

also suggest that patients who are both ER-positive and -174C allele carriers have the best 

disease-free survival, but statistical evidence for interaction was not significant, probably due 

to the small number of patient years in the analysis (376).   

Although serum IL6 was not associated with breast cancer incidence in a prospective 

study of elderly subjects (340), serum levels of IL6 were significantly higher among breast 

cancer patients compared to women with a negative breast biopsy (338). IL6 is produced in 

many different tissues in the body, including adipose tissue, and so serum IL6 levels may not 

reflect breast-specific levels of IL6 (331). The in vitro effects of IL6 combined with the 

demonstrated link to the estrogen-related proliferation pathway provide a plausible link as to 

how IL6 may be causally related to breast cancer. Since IL6 may have pro- and anti-tumor 

effects in breast cells, it is hard to predict what effect an IL6 polymorphism will have on 

breast cancer risk. 

1.9.3 Leptin (LEP) and the leptin receptor (LEPR) 

Leptin is a hormone produced mainly by adipocytes that is involved in regulating 

body weight (334). After production in adipose tissue, leptin circulates in plasma eventually 

reaching the central nervous system, where it binds to the leptin receptor and upregulates 

anorexigenic peptides and downregulates orexigenic peptides (331). As a result, leptin 

reduces lipid levels and improves insulin sensitivity (331). In mice, leptin deficiency causes 
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insulin resistance, obesity, and diabetes, and leptin treatment reverses these conditions (331, 

334). Leptin treatment also reverses insulin resistance and diabetes that is due to 

lipodystrophy (331, 334). In non-obese humans, leptin is associated with decreased appetite 

and increased energy metabolism. Leptin levels are higher in the obese, suggesting that these 

individuals are no longer sensitive to leptin signaling, but the exact mechanism for this 

‘leptin resistance’ has not been described (331).  

Leptin is expressed in a variety of tissues, including adipose tissue, normal breast, 

breast cancer cell lines, and human breast tumors (377, 378). Ishikawa et al. (378) noted that 

there may be differences in patterns of leptin expression between malignant and benign 

tissues – normal breast displayed weak leptin staining whereas malignant breast cells 

typically displayed strong staining, similar to the levels seen in adjacent adipocytes. Caldefie-

Chezet et al. (379) did not observe leptin expression in normal tissue from healthy breasts, 

but did observe leptin expression in phenotypically normal glands adjacent to tumor in 

affected breasts. Leptin receptor isoforms are present in human breast tumors and breast 

cancer cell lines (319, 320, 322, 378), but were not observed in normal human breast tissue 

(378). 

There is growing evidence that leptin may play a role in the development of normal 

and cancerous breast tissue. Normal mammary growth (ductal branching and development) is 

impaired in leptin-deficient and leptin receptor–deficient mice (322, 380). Work by Cleary et 

al. (380) showed that transgenic TGF-α/LEPob LEPob genetically obese mice did not 

experience spontaneous mammary tumors, compared to 58 tumors in transgenic TGF-α/LEP+ 

LEP+ homozygotes and 63 tumors in TGF-α/LEPob LEP+ heterozygotes during the same 2 

year observation period. Similar results were obtained for TGF-α/LEPRdb LEPRdb genetically 
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obese mice, indicating that deficiencies in the leptin ligand-receptor unit inhibit normal and 

neoplastic mammary growth (380).  

In vitro, leptin stimulates proliferation of normal and cancerous cells. In MCF-7 and 

T47D breast cancer cell lines, leptin stimulates STAT3 and MAP kinase signaling (319, 320). 

Leptin also increases cell proliferation and DNA synthesis in MCF-7, T47D, and HBL100 

cell lines (319-322), and increases anchorage-independent growth in malignant (T47D) but 

not normal (HBL100) breast cell lines (322). In Catalano et al. (259), leptin enhanced 

aromatase expression and activity in MCF-7 cells, suggesting that the effect of leptin 

expression on cell proliferation may be mediated by estrogen receptor signaling. 

Reports of associations between serum leptin and breast cancer do not reveal a 

consistent trend. Studies in Chinese and Taiwanese populations reported that leptin was 

higher in breast cancer cases compared to controls (381, 382), but in Petridou et al. (383) 

leptin levels were significantly lower in premenopausal cases compared to controls and there 

was no difference among postmenopausal subjects. Mantzoros et al. (384) reported no 

association between mean leptin levels and DCIS in premenopausal women. Some of the 

inconsistency in the studies mentioned above may be due to the measurement of leptin after 

breast cancer diagnosis in cases. A Swedish nested case-control study measured leptin levels 

prospectively and found no association between leptin levels and breast cancer (385). 

Several studies indicate that polymorphisms in the leptin and leptin receptor genes 

may have an effect on serum leptin levels, leptin receptor levels, and breast cancer risk. 

Snoussi et al. (386) reported that the leptin -2548 G/A polymorphism was associated with 

breast cancer in a dose-dependent manner, but in Cleveland et al. (387) only the AA 

genotype was associated with breast cancer convincingly. Yiannakouris et al. (388) reported 
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that the LEP -2548 polymorphism was associated with plasma leptin receptor levels and 

leptin/leptin receptor ratios in women, but not in men. In vitro functional assays of this SNP 

have not been reported so it is unclear whether these associations are directly related to the -

2548 G/A SNP or other genetic polymorphisms in linkage disequilibrium with the -2548 

locus.  

Leptin receptor polymorphism codon 109 RR variant homozygotes had higher serum 

leptin levels compared to codon 109 KR heterozygotes in healthy Korean controls, but the 

K109R polymorphism was not associated with breast cancer (389). In van Rossum et al. 

(390), the 109R variant was associated with higher leptin levels among subjects who had 

gained weight over the course of the study, but there was no difference in leptin levels by 

genotype among subjects with stable weight. Some studies have reported that the LEPR 

codon 223R variant is associated with higher serum leptin levels postmenopausal women 

(391), and with breast cancer (382, 386). The LEPR codon Q223R polymorphism was not 

associated with breast cancer in two other studies (387, 389). Woo et al. (389) also reported 

no association between breast cancer and LEPR SNPs K656N and P1019P. 

Some LEPR polymorphisms are also associated with obesity. Clement et al. (392) 

described a rare LEPR mutation (exon 16 G → A) that leads to early onset morbid obesity in 

homozygotes. In other studies, the LEPR amino acid change Q223R was associated with 

obesity among Greek men and women and British women (391, 393), but K109R and K656N 

were not (393). LEPR polymorphisms at codons K109R, K204R, Q223R, and K656N were 

not associated with obesity in Danish men (394). 

1.9.4 Adiponectin (ADIPOQ)  

 Adiponectin is a hormone produced by mature adipocytes that plays a role in the 
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inflammatory response, countering the effects of insulin resistance, and inhibiting 

angiogenesis. Unlike other adipocytokines, plasma adiponectin and adiponectin mRNA 

levels are reduced in obese and insulin resistant subjects and increase with weight loss (331, 

395, 396). There is evidence that adiponectin and other adipocytokines have negative effects 

on each other. Dietze-Schroeder et al. (397) reported that adiponectin inhibits the secretion of 

other adipocytokines by adipocytes and may inhibit insulin resistance through this action. In 

Bruun et al. (396) adiponectin expression was reduced in adipose tissue when IL6/IL6-R or 

TNF-alpha were added. Also, adiponectin inhibited macrophage production of TNF-alpha in 

vitro (398). 

Korner et al. (399) found that adiponectin is expressed in breast tissue –the highest 

levels were in tumor-adjacent adipose tissue and lowest in breast tumor tissue. However, in 

Takahata et al. (400), adiponectin was only detected in axillary adipose tissue, and not breast 

tumor or normal breast tissue. Both studies detected adiponectin receptors in breast normal 

and tumor tissue (399, 400).  

Low circulating levels of adiponectin have been associated with many cancers that are 

also associated with obesity, including breast cancer (381, 399, 401-403). There are 

conflicting reports about whether the relationship is stronger in some subgroups of women. 

Korner et al. (399) reported that the protective effect of adiponectin was stronger in 

premenopausal and obese women, Tworoger et al. (404) reported that the protective effect 

was observed for postmenopausal but not premenopausal women, and Miyoshi et al. (403)  

observed an association in both premenopausal and postmenopausal women. In Fredriksson 

et al. (405), serum adiponectin levels were correlated with visceral but not subcutaneous 

adiponectin expression levels, suggesting that central obesity, not BMI, may be more 
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relevant to the relationship between adiponectin and breast cancer. Kang et al. (406) reported 

no association between adiponectin levels and breast cancer. 

Several groups have shown that adiponectin inhibits cell growth and proliferation in 

vitro. Adiponectin inhibited FGF2-stimulated endothelial cell proliferation and VEGF-

stimulated cell migration, and displayed anti-angiogenic effects in mouse models, possibly 

by inducing tumor vessel apoptosis through the activation of caspase 8 (407). In MCF-7 

cells, the addition of adiponectin reduced cyclin D1 and c-myc expression, and suppressed 

the proliferative effects of estradiol (324, 325). There is also some evidence that prolonged 

exposure to adiponectin could induce apoptosis in MCF-7 cells (324), although others found 

that adiponectin had no effect on apoptosis in MCF-7 or T47-D cell lines (325, 399). In Kang 

et al. (408), adiponectin’s antiproliferative, growth arrest and apoptotic effects were seen 

only in ER-negative cells and not in ER-positive cells. Differences in results could be due to 

experimental conditions. In experiments by Pfeiler et al. (409) increases in proliferation and 

apoptosis were only observed when both adiponectin and 17-beta estradiol were added to the 

cell culture medium. 

Studies have shown that two adiponectin polymorphisms have functional effects on 

gene expression. In luciferase reporter assays, the adiponectin -11377G variant produced 

lower promoter activity, and the -11391A variant construct increased promoter activity (410). 

Two other variants (at nucleotides +45 and +276) that are in linkage disequilibrium with 

alleles at -11377 and -11391 have been associated with serum adiponectin levels, obesity, 

and diabetes. In lean individuals the +276T carriers was associated with insulin resistance 

phenotype (411). According to Fredriksson et al.’s (405) study of obese subjects, changes in 

adiponectin expression due to +276 G/T genotype occur only in visceral fat, not 
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subcutaneous fat tissue. There are no functional studies of the +45 or +276 polymorphisms, 

and their associations with adiponectin and obesity may be due to the functional effects of -

11377 C/G and -11391 G/A. Kaklamani et al. (412) reported that the +45 T/G GT and GG 

genotypes were inversely associated with breast cancer, and +276 G/T GG and TT genotypes 

were positively associated with breast cancer. 

Some studies have reported interaction between adiponectin and TNF-alpha 

genotypes and adipocytokine serum levels. For example, serum adiponectin levels in Spanish 

men and women were associated with TNF -308 G/A genotype among ADIPOQ +45 G allele 

carriers, but adiponectin levels did not differ by TNF -308 G/A genotype among ADIPOQ 

+45 TT homozygotes (413).  

 

1.10 Critique of current research  

Research into the association between common genetic variation and cancer risk is 

advancing rapidly. Technological advances have allowed for efficient multi-marker 

genotyping that has resulted in a large number of studies analyzing associations between 

SNPs on breast cancer. Current research has many positive aspects. The low cost of 

genotyping has allowed for analyses to be conducted in large population-based studies (107, 

109, 141, 142). Also, many studies that were implemented years ago collected blood in 

anticipation of the genotyping analyses that are possible today. As a result, these studies have 

facilitated the identification of additional low penetrance alleles associated with breast 

cancer, particularly through the use of GWAS.  

Still, there are several areas in which different approaches might improve our ability 

to identify breast cancer susceptibility alleles. First, studies must recognize that breast cancer 
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is a heterogeneous disease, and that basing models on a single outcome of ‘breast cancer’ 

may mask effects that are not similar across all breast cancer subtypes. While an increasing 

number of studies are stratifying results by estrogen-receptor status, menopausal status, or 

clinical markers, it is rare that SNP associations are evaluated when stratified on the joint 

status of more than two characteristics. As Kristensen and Borresen-Dale have noted (181), 

refining the tumor subtype is an efficient way of detecting breast cancer-associated SNPs 

with modest effect than having a very large sample size. 

Second, early candidate SNP studies did not analyze the effect of haplotypes on 

breast cancer risk, though haplotype analysis has become more common (208, 210, 230, 350, 

374, 414-417). Haplotypes composed of closely-spaced SNPs are likely to represent a 

meaningful biological unit, and alleles in cis position can have synergistic effects (418). 

Furthermore, haplotype analysis can reduce the number of independent statistical tests 

performed, improving statistical power (419, 420). When multiple SNPs in the same gene 

region are being genotyped, use of haplotypes can reduce the number of associations 

evaluated because haplotypes consist of those allelic combinations that actually occur in the 

study population, instead of testing all possible SNP interactions. Since common genetic 

variants are hypothesized to have small effects, the increased power provided by haplotype 

analysis could aid researchers in identifying relevant allelic interactions and avoiding type II 

error. 

Third, few of the studies examining the candidate genes in this dissertation included a 

sizable proportion of African-American women. This limits generalizability of their results to 

African-American women, with regard to the prevalence of the alleles studied and 

characteristics of the SNP association with breast cancer (for example, if the association is 
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strongest within particular stratum of tumor characteristic or prognostic factor).  

This dissertation examined the association between functional and tag SNPs in 

estrogen synthesis and signaling-related (CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and 

SHBG) and adipocytokine-related (ADIPOQ, IL6, LEP, LEPR, and TNF) candidate genes 

and the luminal A and basal-like intrinsic molecular subtypes of breast cancer in a population 

of white and African-American women. The main hypothesis was that analyzing the data 

according to intrinsic subtype would make it easier to identify moderate effects that act in 

some but not all breast tumor subtypes. This approach is particularly relevant since disease-

associated polymorphisms are expected to have small effects under the polygenic hypothesis.  

In addition to estimation of genotype and haplotype main effects, potential gene-

environment interaction was explored. I hypothesized that the effects of SNPs in genes 

associated with the biologic pathways associated with these subtypes may differ based on 

whether the risk factor is present or absent. Breast cancer is a complex disease that involves 

alterations in multiple cellular processes. Assessment of gene-environment interaction is one 

way to evaluate how genetic and non-genetic component causes might combine to affect 

disease risk. 
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2. Research Design and Methods 

2.1. Specific Aims 

The strong association between family history of breast cancer and disease incidence 

is evidence that heritable traits can play a strong role in breast carcinogenesis (1). Positive 

family history of breast cancer is estimated to account for approximately 5%-10% of all 

breast cancer cases (2). However, alterations in genes that are known to confer a high risk of 

breast cancer, such as BRCA1, BRCA2, ATM, and others, account for approximately 50% of 

familial breast cancer cases and only about 5% of breast cancer cases in the general 

population (3, 4). Family and twin studies suggest that other genetic traits that have not yet 

been identified are involved in the majority of the other familial breast cancer cases (2).  

The polygenic model of breast cancer arises from complex segregation analyses 

suggesting that the remaining familial cases are the result of several common allelic variants, 

controlling for some environmental risk factors (5). Under this model each variant confers a 

small increase in cancer risk, and the effects of the alleles are multiplicative resulting in a 

higher level of risk with each additional susceptibility variant. Single nucleotide 

polymorphisms (SNPs) are specific locations in the genetic code whose sequence varies in a 

relatively large proportion (>1%) of the population, and are one type of common genetic 

variation that could increase cancer susceptibility under the polygenic model. Although these 

“low-penetrance” genetic variants are thought to increase cancer risk by a small amount, 

because the variants are common their total impact could involve a large number of cancer 

cases. Also, common genetic variants could affect biologic processes already known to play
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 a role in sporadic breast cancer cases; environmental risk factors may interact with common 

genetic variants to increase breast cancer risk. Therefore, low penetrance genetic variants are 

likely to affect susceptibility to sporadic as well as familial breast cancer.  

A central part of determining the etiology of breast cancer is the recognition that 

breast cancer is composed of several different subtypes of disease that could have different 

underlying etiologies. Microarray-based gene expression profiling has led to the 

characterization of five different intrinsic subtypes of breast cancer – luminal A, luminal B, 

HER2+/ER-, basal-like, and an unclassified type that clustered with normal breast tissue (6-

8). Studies suggest that the intrinsic breast cancer subtypes have unique risk factors (9-12), 

indicating that the cellular pathways involved in carcinogenesis may differ by subtype. The 

luminal A and basal-like subtypes are of particular interest. Luminal A is the most common 

subtype, whereas basal-like tumors have a poor prognosis and do not express any tumor 

markers for which there are targeted therapies (13).  

Analysis of the epidemiology of intrinsic breast cancer subtypes in the Carolina 

Breast Cancer Study (CBCS) indicated that parity without breastfeeding (vs. nulliparity), 

lactation suppressant use, younger age at menarche, and high waist-to-hip ratio were risk 

factors for the basal-like subtype (9). Additionally, earlier first full term pregnancy (vs. 

nulliparity) was associated more strongly with basal-like breast cancer compared to later first 

full-term pregnancy (9). In contrast, nulliparity, and high WHR were risk factors for luminal 

A breast cancer (9). Older age at first full term pregnancy (vs. nulliparity) was not a risk 

factor for luminal A breast cancer; younger age at first full-term pregnancy (vs. nulliparity) 

appeared to have a protective effect (9). Reproductive history is a known risk factor for 

breast cancer, and is thought to influence risk through exposure to estrogen and progesterone 
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(14-16). Adiposity may be linked to breast cancer through regulation of pro-inflammatory 

adipocytokines and stimulation of sex steroid production (17-19). Additionally, the basal-like 

subtype may be more strongly related to family history of breast cancer compared to the 

other intrinsic subtypes (10). If the polygenic model of disease holds for basal-like breast 

cancer, association studies of common genetic variants should be able to identify loci that 

contain or are in linkage disequilibrium with causal disease alleles in hormone metabolism or 

central adiposity-related pathways. 

I hypothesized that SNPs in genes associated with estrogen synthesis and signaling 

activity and central adiposity are associated with the incidence of the luminal A and basal-

like subtypes of breast cancer, and that the effects of these SNPs may be modified by SNPs 

or environmental factors. To investigate this hypothesis, functional and tag SNPs were 

genotyped in cases and controls from the Carolina Breast Cancer Study. The Carolina Breast 

Cancer Study (CBCS) is a population-based case control study of African-American and 

white women in North Carolina. Subjects were sampled so that African American women 

and women younger than 50 would be over-represented compared to the general population. 

Basal-like breast tumors are most common in premenopausal African-American women (9, 

20, 21), and so the CBCS sampling design provides increased statistical power for analyses 

of basal-like breast cancer.  

 

In this study, the following research questions were addressed: 

1. Based on the current literature, which candidate genes and candidate SNPs are 

most likely to be associated with basal-like and luminal A breast cancers? 

2. What is the association between candidate SNPs and basal-like and luminal A 
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breast cancer? 

3. For each candidate gene, are there haplotypes that are risk factors for basal-like and 

luminal A breast cancers?  

4. Are the effects of genotypes and/or haplotypes modified by environmental factors? 

 

These research questions were answered by completing the following specific aims:  

 

Specific aim 1: Identify pathway-specific genes and relevant SNPs that may be important to 

the etiology of the basal-like and luminal A breast cancer subtypes 

a. Conduct a literature review to identify candidate genes associated with risk 

factors for basal-like and luminal A breast cancers. 

b. Evaluate the LD structure for each candidate gene using data from the 

International HapMap Project and previously published studies. 

c. Select and genotype functional and tag SNPs in CBCS cases and controls.  

d. Perform quality control and data cleaning steps, including tests of Hardy 

Weinberg equilibrium and evaluation of missing data. 

 

Specific aim 2: Determine the association between genotypes and the basal-like and luminal 

A subtypes of breast cancer.  

a. Calculate allele and genotype frequencies for each SNP (stratified by self-

identified race). 

b. Estimate ORs and 95% CIs for the association between each genotype and the 

basal-like and luminal A subtypes of breast cancer. 
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c. Adjust estimates from b. for population stratification. 

 

Specific aim 3: Determine the association between specific haplotypes and the basal-like and 

luminal A subtypes of breast cancer. 

a. Identify SNP regions for haplotype analyses 

b.  Estimate ORs and 95% CIs for the association between haplotypes and the basal-

like and luminal A subtypes of breast cancer. 

c. Adjust estimates from c. for population stratification. 

 

Specific Aim 4: Determine whether genotype or haplotype effects are modified by interaction 

with environmental factors.  

a. Evaluate multiplicative interaction between genotypes and haplotypes in 

ADIPOQ, IL6, LEP, LEPR, and TNF and WHR using the likelihood ratio test. 

b. Evaluate multiplicative interaction between genotypes and haplotypes in 

CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and SHBG and parity and lactation 

using the likelihood ratio test. 

c. Evaluate additive interaction between genotypes and haplotypes in ADIPOQ, IL6, 

LEP, LEPR, and TNF and WHR using the synergy index. 

d. Evaluate additive interaction between genotypes and haplotypes in CYP19A1, 

ESR1, HSD3B1, HSD17B2, PGR, and SHBG and parity and lactation using the 

synergy index. 

 

2.2 Overview of methods 
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 The aim of this dissertation was to estimate the association between selected 

potentially functional and tag SNPs and the risk of the luminal A and basal-like breast cancer 

subtypes. This analysis was carried out using data from the Carolina Breast Cancer Study, a 

population-based case-control study of breast cancer in North Carolina (22, 23). 

 SNPs were genotyped from blood samples collected from cases and controls at the 

time of the in-home study interview. A panel of SNPs was genotyped for each gene of 

interest: (1) SNPs previously identified to have a functional effect on gene expression; 

function, or the circulating gene product; (2) SNPs evaluated previously for an association 

with breast cancer; and (3) tag SNPs, or the smallest set of SNPs that represents the majority 

of known genetic variation in the gene, as determined by linkage disequilibrium with other 

SNPs in the gene. Likelihood-based estimation methods were used to estimate the relative 

odds of basal-like and luminal A breast cancers due to SNP genotypes and haplotypes among 

African-American and white women in North Carolina. Odds ratios estimating genotype and 

haplotype associations in all breast cancer cases compared to controls were calculated as a 

representation of the overall association in the study population. Potential for additive and/or 

multiplicative interaction was evaluated for SNPs in the two candidate gene sets. Interaction 

between adipocytokine-related SNPs and WHR, and interaction between estrogen and 

progesterone-related SNPs and parity and lactation was explored for genotypes and 

haplotypes that were associated with luminal A or basal-like breast cancer. 

 

2.3 Carolina Breast Cancer Study (CBCS) 

2.3.1 CBCS study design 

 The Carolina Breast Cancer Study (CBCS) is a population-based case control study of 
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the genetic and environmental causes of breast cancer in African-American and white women 

in North Carolina. Study methods have been published previously by Newman et al. (22) and 

Millikan et al. (23). Study participants were recruited from 24 counties in central and eastern 

North Carolina (Figure 2.1). Counties were selected so that there would be a large proportion 

of African-American and rural residents.  

Women were recruited to the study in two phases – between 1993 and 1996 (Phase 1) 

and between 1996 and 2001 (Phase 2). Cases were defined as any woman between the ages 

of 20 and 74, who lived in one of the 24 study counties and was diagnosed with primary 

invasive breast cancer during the study accrual period. Rapid case ascertainment systems 

implemented through the North Carolina Central Cancer Registry were used to identify all 

eligible cases. During Phase 2, women diagnosed with breast carcinoma in situ (CIS) were 

also enrolled in the CBCS. 

Among eligible invasive breast cancer cases (eligibility based on age, gender, 

residence, diagnosis confirmation), a randomized recruitment case sampling strategy was 

used to insure adequate numbers of African-American and younger cases (24, 25). The study 

design sampled 100% of African-American women aged 20-49, 75% of African-American 

women aged 50-74, 67% of white women aged 20-49, and 20% of white women aged 50-74. 

No sampling was used for CIS cases recruited in Phase 2; all eligible CIS cases were 

included in the study.  

Women residing within the study geographic area and without a history of breast 

cancer were eligible to be controls in the study. Potential controls younger than age 65 were 

identified through Department of Motor Vehicles records, while potential controls 65-74 

years old were identified through Health Care Financing Administration records. Potential 
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controls were identified from these two sources using modified randomized recruitment (24) 

and were frequency matched to cases by race and 5-year age group distributions. 

For cases, a letter was first sent to the patient’s physician requesting permission to 

contact the patient about the study. Potential cases and controls selected by sampling were 

contacted by telephone. If a woman agreed to participate, an in-person interview was 

conducted by a trained registered nurse interviewer. During the interview, participants 

answered detailed questions about social and demographic characteristics, family history of 

cancer, reproductive history, menstrual history, exogenous hormone use, alcohol use, and 

occupational history. Anthropometric features, including height, weight, waist circumference 

and hip circumference, were measured by the interviewer. Participants were also asked to 

provide a 30 ml blood sample. DNA was extracted from blood and re-suspended in Tris-

EDTA buffer for storage.  

2.3.2 Case review and immunohistochemistry 

 Cases were asked to provide written consent for study access to their medical 

records and archival tumor tissue blocks. A centralized pathology review was performed 

to confirm each breast cancer diagnosis. CBCS immunohistochemistry (IHC) procedures 

are described fully in previous CBCS publications (13, 23, 26) 

 For invasive breast cancers, estrogen receptor (ER) and progesterone receptor 

(PR) status was abstracted from the patient’s medical record (80% of invasive cases). If 

ER or PR status was not recorded in the medical record but archival tissue was available, 

the assay was performed at the UNC Immunohistochemistry Core Laboratory (20% of 

invasive cases). ER and PR IHC was repeated at the UNC Core Laboratory for a random 

sample of 10% of ER-positive and 10% of ER-negative invasive tumors where ER status 
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was initially recorded from the medical record (13). A comparison of the two assays 

resulted in a kappa statistic of 0.62 and an overall concordance of 81%, indicating 

agreement between the two data sources.  

 All IHC staining for epidermal growth factor receptor (EGFR), v-erb-b2 

erythroblastic leukemia viral oncogene homolog 2 (HER2), and cytokeratin 5/6 (CK 5/6) 

was performed at the UNC Immunohistochemistry Core Laboratory. ER- and PR-

positivity was defined as at least 5 percent of cells showing nuclei-specific staining (26). 

HER2 status was measured using the CB11 monoclonal antibody, as described previously 

by Millikan et al. (23). Tumors were scored as HER2-positive if they showed 

unambiguous membrane staining with weak, moderate, or strong intensity in at least 10% 

of tumor cells. Immunohistochemistry staining for EGFR and CK 5/6 was performed 

using criteria adapted from Nielsen et al. (27). Tumors were scored as positive for EGFR 

and CK 5/6 if they showed any cytoplasmic or membranous staining. 

 All immunohistochemistry for CIS tumors was performed by the UNC 

Immunohistochemistry Core Laboratory, and was described by Livasy et al. (28). ER-

positivity was defined as an Allred score of 2 with nuclear staining. CIS cases were 

considered HER2-positive if they displayed greater than 10% membranous staining in 

CIS cells with an intensity equivalent to 3+ by DAB chromogen or 2+/3+ by SG 

chromogen. CIS cases were positive for EGFR if they showed any membranous staining 

and positive for CK 5/6 if they showed any cytoplasmic staining. PR expression was not 

used in classifying CIS cases due to the high correlation between ER and PR expression, 

and the need to preserve tissue (13). 
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2.3.3 IHC definition of intrinsic breast cancer subtypes 

 Breast cancer intrinsic molecular subtype was determined based on the joint 

expression of ER, PR, HER2, EGFR, and CK 5/6. Tumors were classified into one of five 

intrinsic subtypes using the hierarchy described in Nielsen et al. (27) and Carey et al. 

(13)(Figure 2.2). For invasive cases, the luminal A  subtype included tumors that were 

ER+ and/or PR+ and HER2-. Luminal B tumors were ER+ and/or PR+ and HER2+. 

HER2+/ER- tumors were HER2+, ER- and PR-. Basal-like tumors were EGFR+ and/or 

CK 5/6+ and ER-, PR-, and HER2-. Tumors that did not express any of the IHC markers 

were categorized as ‘unclassified’. CIS tumors were classified using a similar scheme, 

except PR status was not utilized. 

2.3.4 CBCS participation rates 

 Overall response rates (proportion of women who completed the interview out of 

eligible, selected women) for invasive cases and controls were 76% and 55%, respectively. 

Among cases, rates were highest among non-African Americans younger than 50 years old 

(81%) and lowest among African Americans age 50 and older (70%). Among controls, rates 

were highest among non-African Americans age 50 and older (65%) and lowest among 

African Americans younger than 50 years (47%).  

 Overall response rates for CIS cases and matched controls were 83% and 65%, 

respectively. Among CIS cases, the highest response rate was from non-African Americans 

younger than 50 (86%) and the lowest response was from African Americans age 50 and 

older (76%). Among CIS controls the highest response was from non-African Americans age 

50 and older (69%), the lowest response was from African Americans age 50 and older 

(51%). A total of 2311 cases (894 African American/1417 non-African American) and 2022 
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controls (788 African American/1234 non-African American) enrolled in the study. 

 Tumor tissue was available for 1845 of 2311 (80%) cases [1446 of 1808 (80%) 

invasive cases; 399 of 503 (80%) CIS cases]. IHC assays were completed successfully for 

1424 of 2311 (62%) cases [1149 of 1808 (64%) invasive cases; 275 of 503 (55%) CIS cases]. 

Cases with subtype data were more likely to be African American and to have a later stage at 

diagnosis (9). African American cases in the CBCS had larger tumors compared to non-

African American women, and larger tumors were more likely to have sufficient tissue for 

IHC assays (9, 13). 

 

2.4 Genotyping analyses 

2.4.1 SNP selection 

Millikan et al. (9) reported that increased parity, younger age at first full-term 

pregnancy, not breastfeeding, high waist-to-hip ratio, and self-reported higher adult adiposity 

compared to childhood are risk factors for the basal-like subtype of breast cancer in the 

CBCS. These risk factors can be divided into two broad categories – pregnancy/hormonal-

related factors and central obesity-related factors. In order to explore whether polymorphisms 

in genes related to these two broad categories of risk factors are associated with basal-like or 

luminal A breast cancer, a literature review was performed and several candidate genes 

hypothesized to play a role in breast carcinogenesis were selected for genotyping. The 

candidate genes in the pregnancy/hormonal factors-related pathway are CYP19A1, ESR1, 

HSD3B1, HSD17B2, PGR, and SHBG. Candidate genes in the central obesity-related factors 

are ADIPOQ, IL6, LEP, LEPR, and TNF. 

For each candidate gene, a combination of potentially functional SNPs and tags SNPs 
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were selected for genotyping. A potentially functional SNP was defined as a single base pair 

change that either has been shown to affect gene transcription, transcription factor binding, 

serum protein levels, or breast cancer risk in previously published studies, or is suspected of 

having such a function. Genotyping of functional SNPs is essential because functional 

changes can indicate a potential biological mechanism through which a particular genotype is 

causally related to breast cancer. Due to the methods used for genotyping, only biallelic 

SNPs were included in this study. An allele is defined as the state, or base pair identity, in 

which either copy of a gene can exist (29); a biallelic SNP has two possible alleles.  

Potentially functional SNPs were identified through a literature search in the National 

Library of Medicine (NLM) PubMed database (30). For each candidate gene, search terms 

combined all gene names and abbreviations (identified through the NLM OMIM and MeSH 

databases) with several MeSH terms and keywords that identified single nucleotide 

polymorphisms. The abstracts and articles from each gene search were reviewed for evidence 

of functional SNPs to be included in this analysis. Works cited in articles identified through 

this search were also reviewed for additional functional SNPs. Only potentially functional 

SNPs with a minor allele frequency of at least 0.05 in populations of European and African 

or African-American descent were genotyped.  

 

Example: search terms for candidate gene interleukin-6 

("Interleukin-6"[Mesh] OR "IL6 protein, human "[Substance Name] OR IL6 OR IL-6 
OR Interleukin-6 OR “interleukin 6” OR IFNB2 OR “interferon beta 2” OR 
“interferon beta-2”) AND (single nucleotide polymorphism OR genetic 
polymorphism OR SNP OR polymorphism[TITLE] OR “germline mutation” OR 
“germ-line mutation”) 

 

Tag SNPs, or SNPs that are highly correlated with other SNPs, were also selected for 
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genotyping (29, 31). Once a tag SNP is genotyped, the identity of untyped SNPs can be 

inferred, based on high linkage disequilibrium between the tag and untyped SNPs. As a 

result, genotyping tag SNPs identifies a large portion of the known genetic variation in a 

genomic region without genotyping every polymorphism.  

Tag SNPs were selected using data from the International HapMap Project database 

(32). The CBCS is composed of white and African-American participants. African 

Americans are of both European and African ancestry and have different allelic frequencies 

and LD structures compared to European and African populations (33, 34). The International 

HapMap Project database currently has SNP data for multiple populations from around the 

world, including a population of African Americans from the southwestern US. However, 

this data was not available at the time that tag SNPs were selected. Therefore, in order to 

select tag SNPs that defined genetic variation in both white and African-American CBCS 

participants, tag SNPs were selected from HapMap populations representing both European 

and African ancestry. The HapMap genotype data for populations of European ancestry is 

based on 90 individuals from Utah, US who are of northern and western European ancestry 

(CEU population) (35). Genotypes for West African populations are based on data from 90 

individuals of Yoruban descent in Ibadan, Nigeria (YRI population) (35).  

The gene region to be tagged was identified based on the most 3’ and most 5’ SNP 

mapped to the candidate gene in the NCBI dbSNP database (36). Files containing the 

genotype data for this region in the CEU and YRI populations were downloaded from the 

HapMap website.  

Tag SNPs were selected using the Tagger SNP selection program in Haploview 

version 3.32 (37, 38). Tagger constructs lists of tag SNPs using methods described by 
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Carlson et al. (39) and the correlation coefficient r2. Pairwise r2 is one measure of how well 

the identity of one allele at a polymorphic locus predicts the identity of the allele at another 

polymorphic locus (40) . The single SNP that is correlated with the greatest number of other 

SNPs at a pre-specified r2 threshold is identified and grouped with its correlated SNPs into a 

bin. R2 is re-calculated for SNPs in the bin to identify the best tag SNP. This process is 

repeated using the non-binned SNPs until only SNPs that are not in high LD with other SNPs 

are left. These are assigned to single-SNP bins. In this study, a minimum r2 of 0.80 was 

required for tagging (39). Only SNPs with a minor allele frequency of 0.10 or greater were 

included in the tagging procedure, to increase the power to detect an association between the 

tag SNP and breast cancer and also to reduce the total number of tag SNPs per gene. Any 

potentially functional SNPs identified from the literature that was also genotyped in the 

HapMap database were included in the tagging procedure using the “force include” option in 

Tagger.  

SNPs from other investigators were genotyped in the same GoldenGate assay, and so 

the number of SNPs that could be genotyped for this dissertation was limited. Aggressive 

tagging was used for ESR1, LEPR, HSD17B2, and PGR in order to reduce the total number 

of tag SNPs for each gene. The aggressive tagging procedure attempts to replace tag SNPs 

with 2-marker haplotypes composed of singleton SNPs (37). If the 2-marker haplotype can 

replace the tag SNP at the required r2 threshold, then only 2 SNPs will be genotyped to 

determine the same amount of information that would require genotyping 3 SNPs using 

simple pairwise tagging. In this study, aggressive tagging reduced the number of required 

SNPs by an average of 3.5 SNPs when selecting tags for the CEU population and 11.5 SNPs 

for the YRI population. 
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Analyses of Phase 1 HapMap data indicate that coverage of common SNPs (minor 

allele frequency > 0.05) is high, though it varies throughout the genome (41). In white 

populations, use of CEU tags captured 86% to 100% of common SNPs with r2 > 80% (41, 

42). In African Americans, YRI tags captured approximately 80% of common SNPs with r2 > 

80% (41, 42). Coverage for African-American populations when SNPs were chosen from 

both YRI and CEU panels was not determined. In simulated case-control studies, the use of 

tag SNPs from both CEU and YRI populations increased the power to detect a causal allele 

in African Americans compared to when tags were selected from the YRI genotype panel 

only, particularly when the causal allele was untyped (90% vs. 81%) (42). In the same study, 

power for detecting untyped causal alleles in white American populations was between 91% 

and 95% using CEU tags (42). Therefore, the final tag SNP list for each candidate gene was a 

combination of the CEU and YRI tag SNPs (Table 2.1). All SNPs were genotyped in all 

CBCS study participants regardless of self-reported race. 

Tagging procedures described above were used to select SNPs for ADIPOQ, IL6, 

LEP, LEPR, TNF, ESR1, PGR, HSD3B1, HSD17B2, and SHBG. For the CYP19A1, a set of 

19 haplotype tag SNPs identified by Haiman et al. (43, 44) was submitted for genotyping, 

along with additional SNPs identified in the literature review. Using data from the Multi-

Ethnic Cohort study, Haiman et al. (43, 44) used a panel of high density markers to map 

regions of LD in white, Hispanic, Japanese, Hawaiian, and African-American women. They 

identified four blocks of LD that could be defined in all five ethnic groups in their study 

population using 19 haplotype tag SNPs.  

2.4.2 Ancestry informative markers (AIMs) 

AIMs are a series of unlinked markers with large differences in allele frequencies that can 
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distinguish between ancestral populations (45, 46). Fisher’s information content is the 

inverse of the maximum likelihood estimation of the ancestral proportion, and can be used in 

addition to allele frequency differences to increase the efficiency of AIM selection (46). 

AIMs were selected from a larger panel of AIMs that were used to estimate ancestry in 

African Americans (45). 200 AIMs that maximized Fisher’s information content and the 

difference in allele frequencies for the CEU and YRI populations were submitted for 

genotyping (45).  

2.4.3 Genotyping laboratory methods 

SNPs were genotyped by the UNC Mammalian Genotyping Core using the Custom 

GoldenGate Genotyping assay from Illumina (Illumina, Inc., San Diego, CA). The 

GoldenGate assay allows multiple SNPs to be genotyped in a single assay using 2µg of study 

subject DNA. First, the SNP identity and position was validated by Illumina based on the 

SNP rs number, a unique identifier assigned by the NLM dbSNP database (36). An assay 

designability score was assigned to each SNP, indicating the likelihood for a successful 

genotyping in the multiplex assay. Possible reasons for SNP validation failure included a 

short flanking sequence, formatting error, more than two possible alleles, close proximity to 

another SNP being assayed, or the presence of degenerate nucleotides in the assay design 

region (47). 

The GoldenGate assay has been described in detail by Shen et al. (48). Genotypes 

were determined using a solid-phase bead array with 1536 bead stations; 1536 SNPs were 

genotyped per study subject in each assay. DNA was activated and combined with 

hybridization buffer, paramagnetic particles, and oligonucleotides specific to each of the 

possible SNP alleles plus a unique oligonucleotide specific to a locus just downstream of the 
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SNP. In the first step of the assay, allele-specific and locus-specific oligonucleotides 

hybridized to the DNA sample. Then, allele-specific oligonucleotides were extended and 

joined with the locus-specific oligonucleotide, creating a double stranded DNA fragment. 

This fragment was amplified in a PCR reaction using primers labeled with Cy3 and Cy5 

fluorescent dyes, where the dye color corresponds to a specific SNP allele. DNA was then 

hybridized to a bead array where the DNA strand localized to a specific bead station based on 

the locus-specific oligonucleotide sequence. The ratio of Cy3:Cy5 fluorescence was 

measured at each bead station on the array, where each bead corresponded to a unique SNP 

locus. 

A list of all SNPs to be genotyped was submitted to Illumina, Inc. (Illumina, Inc., San 

Diego, CA) for validation. Of the 366 candidate gene SNPs submitted, 47 failed the Illumina 

validation assay. Failed SNPs were replaced by another SNP in the same bin with high 

correlation (r2 ≥ 0.8), if one existed. When multiple replacement SNPs were available to tag a 

given bin, preference was given to SNP with the highest correlation with the failed SNP. 

After repeated assay validation tests, 335 SNPs were genotyped in the GoldenGate assay. 

158 of 200 AIMs passed Illumina validation and were genotyped in the GoldenGate assay. 

2.4.4 Genotyping quality control  

Several quality control measures were used to reduce the chances of genotype 

misclassification or other bias. Assay intensity data and genotype cluster images for all SNPs 

were reviewed individually. SNPs were excluded from the dataset due to low signal intensity 

or inability to clearly distinguish between genotype clusters. 163 of 1536 (11 %) SNPs were 

excluded from the entire dataset based on cluster analysis.  

Blind duplicates of 169 study samples were assayed order to verify the reproducibility 
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of genotype calls from the same sample. 7 SNPs had 1 genotype miscall and 2 SNPs had 2 

genotype miscalls. Lab controls (Coriell CEPH trios) were also genotyped in each 96-well 

plate; each control was repeated between 11 and 14 times over the course of the entire assay. 

Out of 184 lab control samples, there were 2 instances of genotype disagreement with 

duplicate samples. These error rates were within our pre-specified range of acceptable values, 

and no SNPs were excluded from the analysis on the basis of these results. 

4155 CBCS DNA samples were genotyped, representing 3857 unique study subjects. 

204 samples representing 135 unique subjects had genotype calls for less than 95% of SNPs 

and were excluded from the dataset. 103 subjects were excluded from the dataset because of 

low call rates (< 95%), 5 subjects were excluded because of an apparent gender mismatch, 

and 1 subject was excluded because of discordance between 2 non-blind DNA samples. 

Subjects excluded due to low call rates did not differ from the overall group submitted for 

genotyping with regard to case status, self-identified race, AJCC stage (cases only), or 

intrinsic molecular subtype (cases only). 

 A total of 312 of 335 (93 %) candidate gene SNPs were genotyped successfully in 

3748 CBCS samples (ADIPOQ - 16, IL6 – 11, LEP - 14, LEPR - 74, TNF – 2, CYP19A1 - 

24, ESR1 - 97, HSD3B1 - 7, HSD17B2 - 40, PGR - 26, SHBG – 1). All 23 SNPs with 

unacceptable genotype calls were excluded during the initial quality control review 

performed by the UNC Mammalian Genotyping Core, due to low signal intensity and/or poor 

genotype cluster definition. 

2.4.5 Hardy Weinberg Equilibrium 

Tests of Hardy-Weinberg equilibrium (HWE) were conducted for candidate gene 

SNPs to determine whether alleles were inherited independently in the CBCS source 
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population. Deviations from Hardy Weinberg equilibrium in controls can indicate genotyping 

error, selection bias, population stratification, new mutations, or a violation of the HWE 

population assumptions (49, 50). In cases, deviation from HWE can signal an association 

between a particular allele and disease. Deviations from HWE may also occur due to chance. 

Tests of HWE were conducted for each SNP in controls stratified by self-identified race 

using the method of Wigginton et al. (51) in Plink v1.05. The exact test was used because 

some SNPs had a low minor allele frequency. The asymptotic χ
2 test has high type I error 

rates at low minor allele frequencies (51, 52). The exact test was used for all SNPs for 

consistency. Genotyping cluster images were re-reviewed for all SNPs with HWE test P-

values less than 0.01 to ensure data quality (Table 2.2). Data quality for these SNPs was 

confirmed, and no SNPs were excluded during this process. 

2.4.6 Genotyping study participation rates 

 2045 of 2311 (88%) enrolled cases and 1818 of 2022 (90%) enrolled controls 

provided a blood sample at the time of interview. Non-African American women were more 

likely to provide DNA than African American women. Blood donation did not differ by other 

breast cancer risk factors or by stage at diagnosis among cases. 6 cases had insufficient 

amounts of DNA available for genotyping and were excluded from further analyses. An 

additional 67 cases and 42 controls were excluded during quality control analyses. A total of 

1776 of 2022 (88%) controls and 1972 of 2311 (85%) cases were successfully genotyped. 

Overall, subjects without genotyping data were more likely to be cases, from the Phase 2 

invasive study, and African American. 

Among cases, 978 of 1808 (54%) invasive cases had both genotyping and tumor 

subtype data and 242 of 503 (48%) CIS cases had genotyping and subtype data, including 
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200 basal-like cases (182 invasive, 18 CIS) and 679 luminal A cases (528 invasive, 151 CIS). 

Stage at diagnosis, lymph node status, or the distribution of intrinsic molecular subtypes did 

not differ between enrolled cases with and without genotyping data. 

 A flow chart of participants’ inclusion in the genotyping study is shown in Figure 2.3. 

Characteristics of CBCS participants included in the genotyping study are shown in Table 

2.3. It is important to note that the denominator of the participation rate for the intrinsic 

molecular subtypes is the proportion of subtype cases successfully identified by IHC, not the 

total number of subtype cases enrolled in the CBCS.  

 

2.5 Population stratification 

Population stratification is a potential source of bias in any genetic association study 

conducted in an admixed population, like the CBCS. Population stratification occurs when a 

population is composed of multiple ancestral groups, and the ancestral groups have different 

allelic frequencies for the genetic marker of interest (46, 53). If the outcome is more common 

in one ancestral group, then members of that subpopulation are more likely to be among the 

case group, and any genotype present at a higher frequency in that subpopulation will be 

associated with the outcome, regardless of whether it is in linkage disequilibrium with the 

true causal allele (54).  

Although self-identified race is expected to be correlated with ancestry, there is still 

potential for residual bias due to population stratification because of admixture of African 

and European ancestry in African Americans (46). There is also the possibility of cryptic 

stratification among white CBCS participants who are descended from multiple European 

populations with distinct genetic backgrounds (54). Studies have reported that African 
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Americans have approximately 5% to 20% European ancestry (33, 45, 55-59). Others have 

demonstrated that there is identifiable population substructure in Americans of European 

descent (60). Population stratification can also occur when the amount of admixture in the 

population varies among individuals (53). 

2.5.1 Methods of assessing population stratification 

There are several methods of assessing population stratification in genetic association 

studies. One method is to estimate individual ancestry and adjust parameter estimates for 

ancestry. Individual estimates of ancestry can be calculated using maximum likelihood 

estimation (MLE), and was described previously Barnholtz-Sloan et al. (56). This method 

requires that the study population is genotyped for a set of AIMs specifically selected to 

maximize the differences between ancestral populations, and knowledge of the allele 

frequencies in the ancestral populations (46). The MLE maximizes a log-likelihood equation 

that is a function of the observed allele frequencies in the admixed population, the 

contributions from the ancestral populations, and the difference in allele frequency between 

the ancestral populations (56). The likelihood is maximized using the Newton-Raphson grid 

search method, yielding proportions of ancestry for each ancestral population that sum to 

1(56). 

Structured association methods can also be used to estimate individual ancestry. 

Structured association uses genetic marker information to infer subpopulation membership, 

based on the pre-specified number of subpopulations [reviewed by (46)]. Structured 

association can use markers pre-selected to differ between ancestral populations (AIMs) or 

random genetic markers (46). Structure, a commonly used structured association program, 

uses Bayesian Markov Chain Monte Carlo estimation to simultaneously estimate allele 
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frequencies in subpopulations and individual ancestry proportions (54, 58, 61, 62). If the 

number of subpopulations is unknown ancestry can be inferred based on the posterior 

probability for a range of subpopulations, though the number of subpopulations may not have 

a valid interpretation in the context of the data (58). Studies comparing maximum likelihood 

and structured association ancestry estimates report that the two methods are highly 

correlated (55, 59, 63). 

Genomic control was proposed by Devlin and Roeder to eliminate the problems of 

type I error that may occur due to population stratification or cryptic relatedness in case 

control studies (64). Association test statistics can be inflated when there is population 

substructure (64). The genomic control method of adjusting for population stratification 

involves calculating a variance inflation factor for a set of random, unlinked SNPs across the 

genome, and adjusting all SNP association tests for the extra variance due to population 

substructure (64, 65). Genomic control assumes that the variance inflation is roughly constant 

across all loci being tested, but this is not always true leading to possible over- or under-

adjustment of variance for different loci. Case-control simulations by Devlin and Roeder 

showed that despite controlling for type I error, genomic control also resulted in reduced 

power to detect risk alleles (64). Marchini et al. (66) demonstrated that using too few markers 

for genomic control can lead to false positives, and the degree of bias increases with 

increasing sample size. While using more markers can reduce the chance of type I error it can 

also lead to loss of power (66). 

Principal components analysis is a method of transforming correlated variables into 

new, uncorrelated variables based on the linear relationships that can be defined within the 

data (67). Applied to population genetics, the goal is to identify the principal components that 
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describe the variation in a set of genetic markers (68). Price et al. (60) described the use of 

principal components analysis to control for population stratification by identifying the axes 

of genetic variation, continuously adjusting genotypes and phenotypes for ancestry along 

each axis, and calculating associations using the adjusted genotypes and phenotypes. One of 

the major advantages of principal components compared to structured association is that it is 

much more efficient at determining population structure using a very large number of 

markers. This is not an advantage for ancestry estimation in the CBCS because of the prior 

decision to genotype using the 1536 marker custom GoldenGate platform instead of a much 

larger GWAS platform. Furthermore, the principal components method has a higher rate of 

type I error when the number of markers used to identify genetic variation is low (60). This 

method is more suited to large GWAS datasets rather than candidate gene studies with a 

limited number of SNPs, such as the CBCS genotyping panel.  

MLE, structured association, and principal components all require some prior 

knowledge of the number and types of subpopulations present in the data, either for AIM 

selection or interpretation of the number of populations inferred from the data. However, 

unlike MLE and structured association methods, genomic control and principal components 

analysis do not explicitly model individual ancestry estimates. As such, MLE and structured 

association provide more information that allows for characterization of the distribution of 

ancestry and admixture in the study population as opposed to providing methods mainly 

intended to adjust for population stratification.  

2.5.2 African and European ancestry in the CBCS 

144 ancestry informative markers (AIMs) were genotyped in the same Illumina 

GoldenGate assay as the candidate gene SNPs, using methods described above. Individual 
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proportions of African and European ancestry were estimated using maximum likelihood and 

structured association. Under the maximum likelihood method, the ancestry proportions were 

estimated for each study subject by solving likelihood equations described by Barnholtz-

Sloan et al. (56) using the Newton-Raphson method. AIMs were selected to describe ancestry 

with regard to African and European populations only, and the maximum likelihood equation 

is restricted such that the ancestry proportions add up to 1 (56). The proportion of African 

ancestry in CBCS subjects is described and utilized in the remainder of this dissertation; the 

proportion of European ancestry is equal to one minus the proportion of African ancestry.  

The structured association estimates were generated using Structure v.2.0, which uses 

Bayesian estimation to determine the proportion of a subject’s genome that belongs to each 

ancestral population cluster, K (58, 61, 62). Preliminary estimates were calculated for K=1 

through K=5 and the most likely number of populations was determined to be 2, based on a 

plateau reach in the estimated log probability of the data (69). Cluster membership and 

ancestry estimates were re-calculated for K=2 using the admixture and correlated allele 

frequencies models (58). 

Results from the maximum likelihood ancestry estimation are shown in Figure 2.4. 

The median proportion of African ancestry was 81% in African Americans and 6% in whites. 

Subjects who reported that they were white, Hispanic, and Asian/Pacific Islander had less 

than 50% African ancestry. Subjects who described themselves as American Indian or 

Eskimo had varying amounts of African ancestry, ranging from 2% to 89%. The majority of 

African Americans had between 50% and 96% African ancestry. There were some self-

identified white subjects with relatively high proportions of African ancestry, and some self-

identified African Americans with relatively low proportions of African ancestry (Figure 
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2.4). Subjects with seemingly discordant race and ancestry results are not concentrated in any 

particular genotyping plate, column, or row, so it is unlikely that these results are due to 

some systematic error during plating and/or genotyping (data not shown). 

Ancestry estimates obtained from Structure were similar to MLE estimates, but were 

skewed towards the ends of the distributions (Figure 2.5). The median Structure-determined 

African ancestry was 92% in African Americans and 1% in whites. Ancestry estimates from 

the two methods were highly correlated (all subjects r2 = 0.97, P < 0.0001; African American 

r2 = 0.99, P < 0.0001; non-African American r2= 0.87, P < 0.0001) (Figure 2.6).  

Recent studies using MLE and Structure have estimated that African Americans have 

between 77% and 87% African ancestry (45, 55, 56, 58, 59). Parra et al. (33) reviewed early 

studies of ancestry estimation and found that estimated African ancestry in African 

Americans from South Carolina and Georgia varied from approximately 85% to 96%. Others 

have reported that MLE and Structure ancestry estimates are highly correlated in admixed 

populations (55, 59, 63). Shriver et al. (59) also reported that the correlation between 

Structure and MLE individual ancestry estimates was higher in African Americans from 

Washington, DC compared to white Americans from State College, PA, which is what was 

observed in the CBCS.  

 

2.6 Genotype associations 

2.6.1 Determination of genotype and allele frequencies  

Genotype and allele frequencies were calculated stratified by case status and self-

identified race. Genotype and allele frequencies were adjusted for the sampling probabilities 

used during study recruitment so that frequencies reflect the prevalence in the general 
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population. 

2.6.2 Genotype exposure definitions 

There are several potential model forms that can be used to model genotype effects. A 

genotype refers to the allelic identity at a particular locus on both copies of a chromosome. 

All SNPs included in this study were biallelic, so there are three possible genotypes for each 

SNP locus – homozygous for the major (common) allele, heterozygous, or homozygous for 

the minor (rare) allele. It is possible that a SNP may have only two genotypes if the third 

genotype is rare or does not occur in the study population. Under the dominant genetic 

model, one variant allele is sufficient to affect disease risk and the effects of the heterozygote 

and minor allele homozygote genotypes are the same. Under the recessive genetic model, 

two variant alleles are needed to affect disease risk, and the risk of disease is the same among 

major allele homozygotes and heterozygotes. Under the additive genetic model, the effects of 

genotype are linear, and the change in disease risk is proportional to the number of variant 

alleles in the genotype. In a logistic regression model, this means that the log odds ratio for 

the minor allele homozygote genotype is twice that of the heterozygote genotype. Under the 

general model, no relationship is assumed between heterozygote and minor allele 

homozygote effects.  

All SNP associations were estimated initially using the general model with 2 degrees 

of freedom. In simulations of a linear regression model, Lettre et al. (70) showed that the 

general model has only slightly less power than the true, correctly specified mode of 

inheritance; this is expected because the general model requires two degrees of freedom 

whereas the additive, recessive, and dominant models all have one degree of freedom, 

assuming no covariates. However, when the true model form is not known the general model 
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has greater power compared to if the wrong model form is chosen (for example, if the effects 

are modeled as dominant but the true underlying mode of inheritance is recessive) (70). The 

difference in power between the wrong model and the true and general models was greatest 

at low minor allele frequencies, whereas the difference between the true and general models 

was constant across the range of minor allele frequencies (70). Because the mode of 

inheritance for most SNPs in this study is unknown, not imposing a particular mode of 

inheritance by using a general model enables a more accurate characterization of genotype 

effects. 

For each locus, 2 indicator variables were created to model the effects of the 

heterozygote and variant allele homozygote genotypes compared to the major allele 

homozygote genotype. Estimated ORs contrasted the effect of minor allele homozygote vs. 

major allele homozygote and heterozygote vs. major allele homozygote, where the major 

allele homozygote served as the reference group.  

When the general model ORs suggested that a particular locus had an additive, 

dominant, or recessive mode of inheritance, a second model was created using the more 

appropriate genetic model. When there were too few minor allele homozygotes in the study 

population, then minor allele homozygotes and heterozygotes were combined into a single 

category and compared to major allele homozygotes (equivalent to the dominant genetic 

model). Homozygote count cutoffs of less than 5 cases, or less than 5 controls, or less than 10 

cases and less than 10 controls were used to define when there were too few homozygotes for 

odds ratio estimation. 

2.6.3 Maximum likelihood logistic regression 

 Logistic regression was used to estimate the association between candidate SNP 
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genotypes and breast cancer. First, unconditional binary maximum likelihood regression 

models were used to estimate the effect of a given genotype on case or control status. In this 

model, the outcome was ‘any breast cancer case,’ and represents the association that is 

comparable to other studies that are unable to stratify breast tumors by intrinsic molecular 

subtype. Results from the binary logistic regression models were also used to compare 

genotype associations in the CBCS to previously reported associations from other studies. 

The binary logistic model function is: 

Logit[D=1|X=x] = α + β1X1 + β2X2    

where  α = regression model intercept 

β1 = regression coefficient corresponding to heterozygote genotype 

β2 = regression coefficient corresponding to minor allele homozygote 

genotype 

X1 = presence or absence of heterozygote genotype  

X2 = presence or absence of minor allele homozygote genotype 

D = case (1) or control (0) status 

Unconditional polytomous logistic regression models were used to estimate the 

association between SNPs and the intrinsic breast cancer subtypes. The polytomous logistic 

regression model simultaneously estimates regression parameters for n-1 comparisons when 

there is an n-level outcome variable. Here, the models estimated the log odds of luminal A, 

basal-like, HER2+/ER-, luminal B, and unclassified breast cancer compared to controls, 

yielding 5 intercept parameters and 5 effect estimates for each independent variable in the 

model (71). Parameter estimates were determined using maximum likelihood estimation, 

similar to when the outcome is binary. The logit functions for the polytomous model are: 
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Logit[D=basal-like|X=x] = αbasal + βbasal(1)X1 + βbasal(2)X2 

Logit[D=luminal A|X=x] = αlum A + βlum A(1)X1 + βlum A(2)X2 

Logit[D=HER2+/ER-|X=x] = αHER2 + β HER2(1)X1  + β HER2(2)X2 

Logit[D=luminal B|X=x] = αlum B + βlum B(1)X1  + βlum B(2)X2 

Logit[D=unclassified|X=x] = αunclass + βunclass(1)X1 + βunclass(2)X2 

According to Hosmer and Lemeshow (71), parameter estimates from individual 

binary logistic regression models where the cases are restricted to a particular subtype should 

be close to the estimates from the polytomous model. However, it is recommended that final 

parameter estimates and standard errors come from the polytomous model (71). 

Odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association 

between genotypes in the candidate genes and the basal-like and luminal A subtypes of breast 

cancer will be estimated using both binary and polytomous logistic regression models. An 

offset term will be included in all regression models to account for the sampling structure in 

the study design (24, 25). A statistic testing the equality of parameter estimates for basal-like 

and luminal A subtypes was calculated based on the asymptotic chi-square distribution of the 

Wald statistic. The null hypothesis for this test was H0: βbasal(i) = βlum A(i). 

 

2.7 Haplotype associations  

  A haplotype is a sequence of alleles on the same DNA strand, and represents the 

biologically relevant unit of DNA sequence. Haplotype analyses can have greater power 

compared to multiple single SNP analyses when the causal allele is unknown, though power 

may be reduced when there are many haplotypes (72). Haplotype analyses may also have 

greater power than single SNP analyses if multiple causal alleles have greater joint effects 
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when they are inherited together on the same DNA strand (73, 74). 

 In case-control studies like the CBCS, family genotype data is unavailable and 

haplotypes must be inferred based on the observed genotypes in the study population. Several 

methods have been described for inferring haplotypes in case-control data, such as Clark’s 

algorithm, the expectation-maximization (EM) algorithm, coalescence-based algorithms, and 

the partition-ligation method (75). However, when inferred haplotypes are used directly in 

the estimation of regression parameters without consideration of the probability of haplotype 

assignment for each individual, regression parameters can be biased (72).  

2.7.1 HAPSTAT and HAPSCAN 

 Haplotype frequencies, ORs, and standard errors were estimated using a modified 

version of the HAPSTAT program, which estimates the probability of a given haplotype 

using maximum likelihood estimation and the EM algorithm (76, 77). The modified 

HAPSTAT program relaxes the assumption of independence between genetic and non-

genetic variables, allowing adjustment for self-identified race, African ancestry, and age. 

HAPSTAT was also modified to incorporate the offset term in parameter estimation. 

HAPSTAT uses a probability distribution to estimate the haplotype-associated ORs and 

standard errors, yielding unbiased parameters estimates with appropriate variance (76). 

Additionally, HAPSTAT allows the user to model gene-environment interactions and can 

accommodate missing genotype data and deviations from Hardy Weinberg equilibrium (76). 

HAPSCAN uses HAPSTAT algorithms to estimate a global test of haplotype association for 

a given set of SNPs, and can be programmed to test multiple groups of SNPs.  

 SNPs were selected for haplotype analysis using two methods. First, haplotype effects 

were estimated across each candidate gene using HAPSCAN. Overlapping sliding 3-SNP and 
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5-SNP windows were used. HAPSCAN was run several times, defining the outcome as all 

breast cancer cases, luminal A cases only, and basal-like cases only. Regions with the highest 

–log10 P-values were similar for 3-SNP and 5-SNP windows, and analysis continued with 3-

SNP windows. Sliding windows with global test –log10 P-values greater than 2 were chosen 

for haplotype OR estimation. If the global test –log10 P-values indicated the haplotype 

association extended over multiple windows, then SNPs from consecutive windows were 

combined for haplotype frequency and OR estimation. Next, genotype ORs were reviewed 

for consecutive SNPs with non-null ORs. There were 4 SNP regions that were identified by 

both HAPSCAN and review of single SNP ORs. 

For each region identified as described above, preliminary estimates of all possible 

haplotype ORs and 95% CIs were estimated using SAS/Genetics v9.1.3. ORs were estimated 

for breast cancer overall and the luminal A and basal-like subtypes, regardless of which 

outcome was associated with a potential haplotype effect in the review of single SNP ORs or 

the HAPSCAN analysis. Haplotypes with an OR of 1.5 or greater or less than 0.67 were re-

calculated using HAPSTAT. A comparison of ORs and 95% CIs showed that estimates from 

SAS/Genetics were systematically further from the null compared to HAPSTAT estimates, 

so it is unlikely that any associations were missed by not calculating all possible estimates in 

HAPSTAT (data not shown). All haplotype associations were estimated using the general 

model (2-d.f.). 

 

2.8 Interaction  

The biologic mechanism that leads to the formation of breast cancer is likely to have 

multiple component causes that interact. In addition to estimating main effects, statistical 
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interaction with non-genetic breast cancer risk factors was evaluated in order to estimate the 

extent to which those factors influence genotype and haplotype associations. WHR and 

combined parity and lactation were chosen for interaction analyses because parity without 

lactation and WHR were two strong risk factors for basal-like breast cancer in the CBCS, the 

association for those factors and luminal A breast cancer was either weaker or in the opposite 

direction, and the candidate genes were chosen based on biology associated with these two 

risk factors (9). I hypothesized that candidate gene associations would be modified in the 

presence of the environmental risk factor.  

Evidence for a biological interaction between genotypes or haplotypes was inferred 

from measures of statistical interaction calculated from regression models. Statistical 

interaction, or effect measure modification, occurs when the joint effects of two exposures 

are not additive for difference measures or not multiplicative for ratio measures. Some have 

argued that independent steps of a multistage process, such as cancer, have multiplicative 

effects (78). On the other hand, additive interaction on the risk scale may be more reflective 

of biological interaction in simple systems (78). As Greenland and colleagues note (78), if 

both exposures have marginal effects, the presence of exact additivity on one scale implies 

departure from additivity on another scale.  

 To limit the number of comparisons, potential effect measure modifiers were selected 

based on the plausibility of biologic interaction. Two-way interactions between the effect 

measure modifier and SNPs with a main effect OR greater than 1.5 or less than 0.67 were 

evaluated to determine whether the joint effect is associated with a departure from additivity 

or multiplicativity. Although there is a chance that synergistic interactions were missed 

[SNPs have no effect individually, but have a causal effect when both the effect modifier is 
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present (78)] by limiting this analysis to SNPs that showed a main effect, it was necessary to 

limit the number of interaction terms that were evaluated. 

Effect measure modification was evaluated through the introduction of a 

multiplicative interaction term to the regression model. Departures from the multiplicative 

null were evaluated using the likelihood ratio test (LRT), which compares the -2 log-

likelihood of nested models under the null hypothesis that the addition of the interaction term 

does not improve model fit. Likelihood ratio test P-values less than 0.10 were considered 

evidence of multiplicative interaction, and stratified ORs were calculated for those SNPs.  

Departures from the additive null were evaluated by calculating the synergy index (S) 

and the corresponding 90% CI (79). S compares the excess risk of joint exposure allowing 

for interaction to the excess risk of joint exposure under the additive null. The null value for 

S is 1; values less than 1 indicate less than additive interaction and values greater than 1 

indicate greater than additive interaction. Although the interaction contrast ratio (ICR) is 

commonly used to assess additive interaction and may have a more accessible interpretation, 

the ICR is not valid when covariates are included in the logistic regression model (80). All 

models in this analysis must be adjusted for age and self-identified race due to frequency 

matching. This problem may be avoided if the ICR is estimated using a linear odds ratio 

model instead of a log-linear model (80, 81), however procedures available to fit linear odds 

ratio models in SAS did not allow for the incorporation of an offset term. 

A basic logistic regression model allowing for interaction is: 

logit[D=1|X=x] = α + β1X1 + β2X2 + β3(X1)(X2) 

where  α = regression model intercept 

 X1 = exposure 
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 X2 = effect modifier  

 β1 = effect of exposure on outcome 

 β2 = effect of effect modifier on outcome 

 β3 = excess effect due to joint exposure 

The synergy index is calculated as: 

S= [e(β1 + β2 + β3) – 1]/[(eβ1 -1) + (eβ2 -1)] 

2.8.1 Parity and lactation variable definition 

 Parity was measured by self-report during the study interview. Women were asked 

how many times they had been pregnant in their lifetime, including the current pregnancy if 

they were pregnant at the time of the interview. Women were then asked the duration of each 

pregnancy and the outcome. Parity was defined as the total number of full-term births 

reported by the study subject. Lactation was measured by self-report during the study 

interview. For each live birth reported, women were asked whether they breastfed the baby 

and for how long (in months). Only 5 subjects with genotyping data were missing 

information on lactation history. This constitutes less than 1% of the population and is 

unlikely to bias the results. There was no missing data for parity. 

 The association between parity and basal-like breast cancer did not differ for CBCS 

participants with 1-2 children compared to 3 or more children (where nulliparous women 

were the referent group) for women with the same lactation status (9). Likewise, the 

association between parity and lactation and luminal A breast cancer was the same for 

women with 1-2 children compared to women with 3 or more children for women with the 

same lactation status (9). Therefore, parity and lactation was defined as a single 3-category 

variable: nulliparous (controls N=201; all cases N=301; luminal A N=111; basal-like N=24), 
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parous/never breastfed (controls N=878; all cases N=983; luminal A N=317; basal-like 

N=124), and parous/ever breastfed (controls N=694; all cases N=686; luminal A N=251; 

basal-like N=52). 

2.8.2 Waist-hip ratio (WHR) variable definition  

 WHR was calculated as the ratio of waist circumference to hip circumference. Waist 

and hip circumference were measured using a tape measure by a trained nurse-interviewer 

during the study interview and were recorded to the nearest half centimeter. The waist 

measurement was taken at the natural indentation of the waist. Hip circumference was 

measured at the greatest protrusion of the buttocks. Both measurements were taken twice and 

averaged. If measurements differed by more than 1 cm, a third measurement was taken and 

the two closest measurements were averaged.  

 WHR was categorized based on the tertile distribution CBCS controls. Associations 

between WHR and basal-like breast cancer and WHR and luminal A breast cancer were 

similar for tertile 2 and tertile 3 (vs. tertile 1) in the CBCS (9), and so the top two tertiles 

were combined. Data on WHR was missing for 21 controls and 29 cases (5 basal-like cases, 

7 luminal A cases). The proportion of missing WHR data was similar for cases compared to 

controls as well as basal-like cases compared to controls and luminal A cases compared to 

controls. 

2.8.3 Body mass index (BMI) variable definition 

Studies suggest that body mass index (BMI, weight in kg/height in m2) is a 

confounder of the association between WHR and breast cancer in premenopausal women 

[reviewed by (82, 83)]. Preliminary analyses showed that BMI was a confounder of the 

association between WHR and breast cancer in the CBCS; ORs estimated from models not 



129 
 

adjusting for BMI were closer to the null (data not shown). Therefore, all models estimating 

WHR parameters were adjusted for BMI. BMI was calculated from height and weight 

measured during the study visit. Weight was the average of two measurements taken using a 

standardized scale and recorded to the nearest half kilogram. Height was the average of two 

measurements made to the nearest half centimeter.  

BMI data was missing for 78 subjects with genotyping data (37 controls, 41 cases, 5 

basal-like cases and 15 luminal A cases), 10 of whom were classified as WHR < 0.77, 30 of 

whom were classified as WHR ≥ 0.77, and 38 of whom were missing WHR data.  

A total of 90 of 3748 (2%) genotyped subjects (40 controls, 50 cases, 6 basal-like 

cases, 17 luminal A cases) were missing data for either WHR or BMI and were excluded 

from the WHR effect measure modification analysis. Proportions of subjects missing data for 

either WHR or BMI did not differ by case status. The low proportion of missing data 

combined with the fact that missingness was unrelated to case status strongly indicate that 

missing WHR or BMI data was not a source of bias in the WHR interaction analyses. 

 

2.9 Methodological issues 

2.9.1 Inclusion of breast carcinoma in situ (CIS) 

There is evidence for and against the theory that CIS is an intermediate step in the 

progression of cells from hyperplastic to malignant. CIS and invasive lesions from the same 

woman often share genetic changes, grade, and gene expression patterns, and regions of the 

breast with invasive tumors are more likely to also have CIS [reviewed by (84-88)]. 

However, early studies of the natural history of DCIS show that not all women with CIS 

progress to invasive breast cancer [reviewed in (89)]. Morrow et al. (90) details the 
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ambivalence of some towards the grouping of CIS with invasive breast cancer because of the 

lack of predictors to reliably determine which CIS will progress to invasive disease.  

CIS cases were included in this dissertation for several reasons. First, many risk 

factors for DCIS are similar to risk factors for invasive breast cancer including family 

history, which is likely to have a strong genetic component [reviewed in (89)]. Two studies 

that compared multiple risk factors for invasive breast cancer and DCIS in the same 

screening population reported that associations were similar for family history of breast 

cancer, previous breast surgery, postmenopausal hormone use, and hysterectomy (91, 92). 

Associations differed between invasive breast cancer and DCIS for age, early age at 

menarche (among women 50 and older), and presence of a palpable mass (91). There were 

conflicting results between the two studies for age at first birth and BMI in older or 

postmenopausal women (91, 92).  

Another reason CIS were included in this dissertation is that CIS and invasive tumors 

often share similar tumor characteristics. Most importantly for this study, intrinsic molecular 

subtypes have been observed in pure DCIS lesions and in DCIS observed alongside invasive 

breast tumors (28, 93-95), indicating that changes associated with the basal-like phenotype 

occur early. Like invasive tumors, most basal-like DCIS showed strong expression of CK 

5/6, vimentin, EGFR, and Ki-67; expression of p63 and smooth muscle actin was rare (28, 

93).  

 It has not been reported whether intrinsic molecular subtypes are associated with 

recurrence. However, the similarity between risk factors and molecular features suggest that 

there are a common set of factors that lead to both types of lesions. For these reasons, 

subjects recruited for the CIS study from this analysis were not excluded from the study 
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population. A sensitivity analysis comparing genotype ORs for all cases (invasive and CIS) 

and controls to ORs for invasive cases and controls sampled for the invasive study was 

performed to evaluate the effect of retaining CIS cases and matched controls. 

2.9.2 Selection bias and missing data 

Selection bias is defined as the distortion of an estimated effect due to procedures 

used to select subjects for inclusion in a study or from factors that affect participation (96). 

Selection bias can be thought of as a type of missing data problem, where in a complete case 

analysis non-participants are not included in the analysis. If missing data is unrelated to case, 

exposure, or covariate status it is said to be missing completely at random and will not bias 

effect estimates. Under this scenario, a complete case analysis will yield an unbiased odds 

ratio. For selection bias, this is equivalent to the situation where non-participants are a 

random sample of the eligible source population. Most of the analyses performed in this 

study involve a 3-level exposure, and the severity of bias due to selection or missing data for 

a specific SNP or haplotype depends on the true distribution of cases and controls across 

those three levels.  

Selection bias and missing data have the potential to affect the results of this study at 

each step where data was obtained from participants. Initial study recruitment was related to 

case and race status, and inclusion in the genotyping phase of the study was related to race. If 

factors related to selection bias are measured, they can be adjusted for in statistical analyses 

(97). Race was a frequency matching factor and was automatically included in all models. 

This should minimize the possibility of selection bias, assuming that genotype distributions 

are similar within self-identified race groups. All analyses also adjust for ancestry. So even if 

there are residual differences in allelic distributions within race groups due to admixture, 
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adjustment for African ancestry should control for this potential bias. Several hundred 

enrolled participants were not included in the genotyping study. Similar to the overall study, 

inclusion in the genotyping study was related to case status and race. Adjustment for race and 

ancestry in statistical models should control for any potential bias from this step. 

Potential selection bias at a third step of the study only affects the analyses where the 

outcome is basal-like or luminal A breast cancer. Not all cases had IHC data available in 

order to determine the breast tumor intrinsic molecular subtype. The presence of subtype data 

was related to race and tumor stage. There is the potential for selection bias if the molecular 

subtype distribution for cases without IHC data differs from the distribution of molecular 

subtypes in the case source population.  

It was difficult to assess how likely bias is to occur in this situation. It has been 

observed that the prevalence of the basal-like and luminal A subtypes is related to race, but 

whether this is true depends on the subtype distribution in the uncharacterized tumors. The 

actual distribution of these mostly smaller tumors will probably never be measured 

accurately. A central question is what is the distribution of intrinsic molecular subtypes 

among early stage tumors? Data from external populations will be subject to the same 

problem of smaller tumors not having sufficient tissue for research purposes after diagnostic 

obligations are met, and thus will have the same potentially skewed distributions as in the 

CBCS. 

To summarize, there were several parts of the study where selection bias may 

influence the results. Most of the potential selection bias in the analysis of breast cancer 

overall is due to lower inclusion rates among African Americans and cases. Adjusting for 

race and ancestry in models should control for this potential bias, assuming that the sampling 
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procedures selecting cases and controls were unbiased. Inclusion in molecular subtype-

specific analyses was related to stage in addition to race. One way to limit possible bias 

would be to conduct subtype analyses with cases stratified by stage. However, it was not 

feasible to stratify cases by stage because of sample size limitations. 

2.9.3 Confounding 

Confounding is defined as the mixing of effects of a third covariate with that of the 

exposure on disease, resulting in a biased effect estimate. In order for a covariate to be a 

confounder, it must be causally related to the exposure of interest and the outcome of interest 

(98). In this study, the main exposure in all analyses was a genotype or a haplotype. 

Therefore, any confounders would have to causally affect a genotype or haplotype to meet 

the confounding criteria described by Rothman and Greenland. The effect of potential 

confounders was also evaluated using statistical models. If the addition of a covariate 

changed the |ln(OR)| of the exposure of interest by more than 0.10, then that covariate was 

considered a confounder. 

While some associations between environmental variables and genotype may be 

observed due to the random error, no environmental variables were expected to be causally 

associated with candidate gene genotypes (meaning that on a directed acyclic graph (DAG), 

genotype was not the descendent of an environmental variable). Therefore even if the 

covariate was associated with genotype and outcome, it still did not meet the definition of a 

confounder. Even more importantly, if that covariate was on the causal pathway between 

genotype and the outcome, adjusting for that covariate could bias the association between 

exposure and outcome.  

The only breast cancer risk factor that was likely to be causally associated with 
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candidate genotypes was ancestry. The proportion of African ancestry was estimated for each 

subject and included in all models, as described above. Adjustment for ancestry had little 

effect on ORs estimated for breast cancer overall and basal-like breast cancer. Ancestry 

adjustment did affect ORs for a small number of genotypes and luminal A breast cancer, and 

was adjusted for in all models to control for bias in these associations. 

 Effect measure modifiers in analyses of genotype-environment interactions can be 

susceptible to confounding by other environmental variables. However, this was problematic 

because adjusting for a confounder of the effect modifier has the potential to bias the 

association of the genotype. Even more importantly, if the potential confounder was on the 

causal pathway between genotype and the outcome, adjusting for that covariate could drive 

the estimated genotype effect towards the null.  

 Relationships between WHR and basal-like and parity, lactation, and luminal A 

breast cancer were explored using DAGs. In the WHR-breast cancer DAG menopausal status 

and parity/lactation status were identified as potential confounders. Potential confounders 

from DAG analysis were evaluated for a statistical effect on the parameter estimate of 

interest. Adjustment for these two risk factors did not alter the parameter estimates for WHR, 

and they were not included in further WHR interaction analyses. Reviews of the literature 

suggest that BMI is a confounder of the association between WHR and breast cancer in 

premenopausal women, and failure to adjust for BMI biases associations towards the null 

(82, 83). In CBCS data, BMI adjustment biased the association for between WHR and breast 

cancer overall by more than ln(OR) = 0.10. The bias for basal-like and luminal A 

associations was lower than this threshold, but closer to 0.10 than to 0. Based on the effect of 

BMI adjustment in CBCS data and the acknowledgement of BMI as a confounder in the 
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literature, BMI was kept as a confounder in WHR interaction models. 

 In the DAG examination of relationships between parity, lactation, and breast cancer, 

menopausal status and age at menarche were identified as potential confounders. Neither of 

these risk factors affected parameter estimates for the association between the combined 

parity and lactation variable and basal-like or luminal A breast cancer. Neither factor was 

included in further analyses as a confounder. 

2.9.4 WHR misclassification 

Waist and hip circumference were measured at the time of interview. Cases were 

interviewed a median 3.9 months (range, 0.8 – 42.5 months) after diagnosis, meaning that 

waist circumference and hip circumference may have been measured after the start of 

adjuvant therapy for some cases. If case WHR at the time of interview was systematically 

different from pre-diagnosis WHR, there is the potential for misclassification. There was no 

systematic event that would have led to WHR change in controls, so misclassification would 

be non-differential. 

Weight change is a commonly documented side effect of breast cancer-related 

therapy [reviewed by (99, 100)]. In most patient series, patients gained approximately 2 to 20 

pounds, and the amount of weight gained varied by study cohort and treatment (99, 100). 

Most studies reported that weight gain began shortly after breast cancer diagnosis, and the 

amount of weight gained increased over time (100-104). In some studies, patients 

experienced weight loss during the year following diagnosis (101, 105). Freedman et al. 

(106) reported that a group of healthy controls gained more weight on average than breast 

cancer patients receiving adjuvant therapy, but that the breast cancer patients had a greater 

fluctuation in weight during the time period shortly before the initiation of chemotherapy 
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until 6 months post-chemotherapy completion.  

Ingram et al. (107) reported that post-diagnosis weight change was related to the type 

of adjuvant therapy, but other studies found no difference by chemotherapy type or regimen 

(103, 108, 109). Studies have also reported that weight change in breast cancer patients is 

associated with being premenopausal (99, 101, 106, 110). Two studies reported that lower 

pre-diagnosis BMI was associated with weight change, but another study did not find an 

association (101, 103, 109). There is also evidence that African-American breast cancer 

patients experienced greater weight gain compared to white patients, especially following 

adjuvant chemotherapy (101, 109).  

In addition to changes in weight, studies have reported that breast cancer patients 

experienced increases in body fat percentage, fat mass, waist size, and hip size (102, 106, 

111-113). Goodwin et al. (114) reported that although waist size and hip size increased 1 

year after diagnosis, WHR was unchanged over the same time period. However women may 

have already started chemotherapy at the time of baseline WHR measurement, biasing the 

association toward the null.   

A sensitivity analysis was conducted in order to estimate the potential effect that 

WHR misclassification due to chemotherapy might have on the association between WHR 

and basal-like breast cancer. The sensitivity analysis was conducted using a publicly 

available probabilistic bias analysis program <https://sites.google.com/site/biasanalysis/> 

(115), which calculates a simulated data table of “true” classification based on the observed 

data table and estimated sensitivity and specificity of the classification. The CBCS lacks data 

on whether cases had started chemotherapy by the time of interview. Sensitivity and 

specificity ranges were estimated based on the stage and race distribution in CBCS basal-like 
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breast cancer cases and the prevalence of chemotherapy treatment by stage in North Carolina 

Central Cancer Registry data (116). 

2.9.5 Outcome misclassification 

Probabilistic sensitivity analyses were also conducted to evaluate the potential effects 

of molecular subtype misclassification. There has been some discussion in the literature as to 

the true definition of ‘basal-like’ breast cancer (117, 118). Not all studies use the same set of 

markers to define ‘basal-like’, and in studies that have used markers similar to those used by 

CBCS, there was not 100% agreement between tumors defined as basal-like using 

microarray expression profiles and immunohistochemistry definitions (27, 119, 120). 

Simulations of genotype and basal-like vs. luminal A associations were conducted, assuming 

non-differential misclassification of case status. Sensitivity and specificity ranges were based 

on previously published data (27, 119, 120). Sensitivity analyses were conducted using a 

publicly available program (115). All analyses were run for 5000 simulations. 

 

2.10 Data interpretation 

The results from this analysis were interpreted based on effect size, precision, and any 

trends or patterns in the data. The precision of the effect estimates were measured by 

calculating the confidence interval ratio (CLR), which is equal to the upper 95% confidence 

limit divided by lower 95% confidence limit. A single CLR has relatively little meaning, but 

it can be useful for comparing several effect estimates to each other. A lower CLR indicates a 

more precise estimate. Null hypothesis testing was not used to draw conclusions about SNP 

or haplotype main effects.  

Only associations for basal-like breast cancer, luminal A breast cancer, and breast 
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cancer overall (all cases) were reported here. The basal-like subtype is of interest because it 

is largely uncharacterized, and is a unique type of hormone-receptor negative breast cancer. 

The luminal A subtype is of interest because luminal A is the most common subtype and 

therefore a logical point of reference. Also, the candidate genes under study and potential 

effect measure modifiers were selected based on risk factors for these two subtypes. The 

luminal A and basal-like subtypes were also the two subtypes with the largest sample size. 

Even though parameters were estimated for luminal B, HER2+/ER-, and unclassified 

subtypes in the polytomous model, the associations were not reported due to limited sample 

size and imprecise OR estimates.  
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2.12 Tables 
Table 2.1 SNPs selected for genotyping1 

 
Number of tag SNPs 

 
CEU YRI CEU + YRI 

Shared by CEU and 
YRI   

ADIPOQ 11 14 19 6 
IL6 6 9 13 2 
LEP 5 12 16 1 
LEPR 23 67 82 8 
TNFA 3 3 3 3 

    
 

ESR1 38 83 105 16 
HSD3B1 3 5 8 0 
HSD17B2 7 43 46 4 
PGR 9 23 32 0 
SHBG 1 0 1 0 

1 - aggressive tagging was used for LEPR, ESR1, HSD17B2, and PGR; pairwise tagging was used for all other 
genes 
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Table 2.2 Candidate gene SNPs with extreme Hardy Weinberg P-values 
 Gene SNP Exact HWE P-value 
White controls ADIPOQ rs9877202  < 0.0001 
 HSD17B2 rs16956274  0.0046 
 HSD17B2 rs8049423  0.0046 
 HSD17B2 rs8045494  0.0046 
 ESR1 rs6914211  0.0068 
    
African-American 
controls 

LEPR rs9436740  < 0.0001 

 HSD17B2 rs2955162  < 0.0001 
 CYP19A1 rs2470144  0.0021 
 LEPR rs9436748  0.0041 
 LEPR rs11808888 0.0064 
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Table 2.3 Characteristics of CBCS participants with genotyping data 
 Controls All cases Luminal A Basal-like 
N 1776 1972 679 200 
Median age  
 (range) 

51 (21 – 74) 50 (23 – 74) 52 (23-74) 46 (25-74) 

Self-identified race     
African American 658 742 233 108 
Non-African American 1117 1229 446 92 
Unknown 1 1   

Menopausal status     
Premenopausal 761 879 277 111 
Postmenopausal 1015 1093 402 89 

Stage     
CIS  838 151 18 
1  615 224 43 
2  635 237 108 
3  146 41 19 
4  43 8 6 
Missing1  1471 18 6 

  1- invasive breast cancer cases 



2.13 Figures 
Figure 2.1 Carolina Breast Cancer Study geographic area
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Figure 2.2 Definition of intrinsic molecular subtypes by immunohistochemical staining in the CBCS  
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Figure 2.3 CBCS participants flow chart 
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Figure 2.4 Maximum likelihood African ancestry stratified by self-identified race, with median individual ancestry estimates 
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Figure 2.5 Structure African ancestry stratified by self-identified race, with median individual ancestry estimates 
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Figure 2.6 Correlation between maximum likelihood and Structure estimates of African 
ancestry 

  

Spearman correlation = 0.97 

P-value <0.0001 



 

3. Results Paper 1: Association between genetic variation in adipocytokines and basal-like 

and luminal A breast cancer 

 

3.1 Abstract 

Introduction: ADIPOQ, IL6, LEP, LEPR, and TNF are associated with central obesity and 

influence tumorigenic activities in cell culture. We investigated whether single nucleotide 

polymorphisms (SNPs) in these genes are associated with breast cancer. We previously 

reported that the association between waist-hip ratio (WHR) and basal-like breast tumor 

subtype was stronger than the association between WHR and the luminal A subtype. 

Therefore, we analyzed SNP associations focusing on the basal-like and luminal A subtypes. 

 

Materials and Methods: Eligible cases were women aged 20-74, diagnosed with primary 

breast cancer between 1993 and 2001, and living in North Carolina. ER. PR, HER2, CK5/6, 

and EGFR immunohistochemistry was used to determine the intrinsic molecular subtype of 

case tumors. Controls were cancer-free women living in the same geographic area, and were 

frequency matched to cases by age and race. 143 tag and functional SNPs were genotyped in 

cases and controls using the Illumina GoldenGate assay. Genotype data was available for 

1776 of 2022 controls and 1972 of 2311 cases. There were 200 basal-like and 679 luminal A 

cases. Odds ratios and 95% confidence intervals estimating the associations between SNPs 

and all breast cancer cases, basal-like breast cancer, and luminal A breast cancer were 

estimated using logistic regression. Haplotype frequencies and odds ratios were estimated 
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using HAPSTAT. Additive interaction of genotype effects and waist-hip ratio (WHR) was 

estimated by calculating the synergy index and multiplicative interaction was evaluated using 

the likelihood ratio test.  

 

Results: Genotypes in ADIPOQ, IL6, LEP, LEPR, and TNF had moderate to weak 

associations with breast cancer overall. Stronger associations were apparent when cases were 

stratified by subtype. Genotypes in IL6 were associated with luminal A but not basal-like 

breast cancer. Genotypes in ADIPOQ, LEP, and LEPR were associated with both subtypes. 

Functional variants were associated with luminal A breast cancer, but no functional variants 

were associated with the basal-like subtype. Haplotypes in IL6, LEP, and LEPR were 

associated with breast cancer overall and by subtype. There was evidence of interaction on 

additive and multiplicative scales between WHR and SNPs in ADIPOQ (luminal A cases), 

IL6 (basal-like cases), and LEPR (all cases, luminal A cases). There was evidence of 

interaction on the multiplicative scale between WHR and haplotypes in IL6 and LEPR, 

where the outcome was all breast cancer cases. 

 

Conclusions: SNPs in ADIPOQ, LEP, IL6, and LEPR were associated with basal-like and/or 

luminal A breast cancer subtypes. Some of these associations were not apparent when all 

breast tumors were analyzed as a single outcome. These results are supportive of a role of 

adipocytokine SNPs in the etiology of different types of breast tumors, including those that 

do and do not express hormone receptors. 
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Keywords: adipocytokines, adiponectin, interleukin 6, leptin, leptin receptor, tumor necrosis 

factor-alpha, breast cancer, single nucleotide polymorphism, basal-like, luminal A
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3.2 Introduction 

Gene expression-based characterization of breast tumors has revived interest in the 

‘basal-like’ subtype of breast cancer (1, 2, 3). The basal-like subtype is characterized by 

expression of cytokeratins 5 and 17, EGFR, smooth muscle actin, and vimentin, a lack of ER, 

PR, or HER2 expression, tumor characteristics associated with poor prognosis, and high 

prevalence among BRCA1-associated breast cancers (4-10). The basal-like subtype is also 

associated with poorer survival compared to the other breast cancer subtypes (6, 11, 12). 

Comparative studies of breast cancer risk factors suggest that associations between some 

traditional breast cancer risk factors and the basal-like subtype differ from the associations 

with other breast tumors (13, 14).This study investigated whether common genetic variants 

are also uniquely associated with the basal-like subtype. Identification of genetic risk factors 

specific to the basal-like subtype could help explain underlying biological mechanisms 

involved in basal-like breast cancer risk.  

In the Carolina Breast Cancer Study (CBCS), we previously reported that the basal-

like subtype is strongly associated with elevated waist-hip ratio (WHR) in addition to some 

other breast cancer risk factors (13). One potential mechanism that could explain the 

association between central obesity and breast cancer is the induction of pro-tumor pathways 

by adipocytokines (15, 16). Adipocytokines are hormones produced in visceral adipose 

tissue, and circulating levels are correlated with obesity (15, 16). Adipocytokines are also 

expressed in breast tissue, and have the ability to increase proliferation, interact with the 

estrogen receptor, and promote cell migration and invasion [reviewed in (15-17)]. In this 

study, we investigated single nucleotide polymorphisms (SNPs) in adiponectin (ADIPOQ), 

interleukin 6 (IL6), leptin (LEP), leptin receptor (LEPR), and tumor necrosis factor-alpha 
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(TNF) and their association with breast cancer risk.  

Reported associations between adipocytokine functional SNPs, such as IL6 -174 G/C, 

LEPR Q223R, and TNF 863 C > A, and breast cancer have been inconsistent (18-27). It is 

possible that some of the variation in reported associations has to do with tumor 

heterogeneity, and that stratification by tumor type will allow for the identification of unique 

associations that cannot be detected reliably in a pooled tumor population. In the CBCS, 

elevated WHR was more strongly associated with the basal-like subtype compared to the 

more common luminal A subtype, suggesting that genetic risk factors associated with central 

obesity may also be more strongly associated with the basal-like subtype (13). To evaluate 

this, we estimated SNP associations for breast cancer subtypes in addition to estimating 

associations for all breast cancer cases. 

Consideration of breast cancer subtypes is essential for identifying risk factors for and 

improving characterization of the basal-like subtype. Basal-like breast cancer is a poor 

prognosis breast cancer that does not express molecular targets of breast cancer treatment 

such as the HER2 receptor or estrogen receptor (2, 3, 11). Focusing on the basal-like subtype 

may provide some insight into the molecular mechanisms involved in tumor development 

and provide information for treatments. The luminal A subtype is included in this analysis as 

a point of reference. Luminal A breast cancer was the most common molecular subtype in the 

CBCS and has a relatively good prognosis (11). 

 

3.3 Methods 

3.3.1 Study population 

The CBCS is a population-based case control study of breast cancer in North 
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Carolina. Details of the CBCS study design have been described in detail by Newman et al. 

(28) and Millikan et al.(29). Eligible cases included all women ages 20-74 who were 

diagnosed with primary invasive breast cancer from 1993 to 2001, and who lived within the 

24-county study area at the time of diagnosis. Cases were identified through the North 

Carolina Central Cancer Registry using rapid case ascertainment. Randomized recruitment 

was used to oversample African American cases and cases younger than 50 years old (30). 

Women diagnosed with breast carcinoma in situ (CIS) were also enrolled in the study from 

1996-2001. All eligible CIS cases were asked to participate in the study.  

Eligible controls were defined as women ages 20 to 74 years, residing within the 

study area, and who did not have a history of breast cancer. Controls younger than age 65 

were identified through Department of Motor Vehicles records, while controls 65-74 years 

old were identified through Health Care Financing Administration records. Controls were 

frequency-matched to cases by race and 5-year age groups. 

Cases and controls were contacted by mail followed by a telephone call. Women who 

agreed to participate in the study provided informed consent and completed an in-home 

interview conducted by a trained nurse. During the interview, women were asked about 

known and suspected breast cancer risk factors, including social and demographic 

characteristics, family history of cancer, reproductive history, menstrual history, exogenous 

hormone use, alcohol use, and occupational history. Height, weight, waist circumference and 

hip circumference were measured by the nurse. Women were also asked to provide a 30 ml 

blood sample. DNA was extracted from the blood sample and stored at -80oC in TE buffer.  

Overall response rates for invasive cases and controls were 76% and 55%, 

respectively. Among cases, rates were highest among non-African Americans younger than 
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50 years old (81%) and lowest among African Americans age 50 and older (70%). Among 

controls, rates were highest among non-African Americans age 50 and older (65%) and 

lowest among African Americans younger than 50 years (47%). Overall response rates for 

CIS cases and matched controls were 83% and 65%, respectively. Among CIS cases, the 

highest response rate was from non-African Americans younger than 50 (86%) and the 

lowest response was from African Americans age 50 and older (76%). Among CIS controls 

the highest response was from non-African Americans age 50 and older (69%), the lowest 

response was from African Americans age 50 and older (51%). A total of 2311 cases (894 

African American/1417 non-African American) and 2022 controls (788 African 

American/1234 non-African American) were enrolled in the study.  

Among cases, tumor subtype was determined by immunohistochemistry (IHC) 

analysis of archival tumor tissue. IHC procedures for invasive breast cancers have been 

described by Carey et al. (11). Cases were asked to provide written consent for access to their 

medical records and formalin-fixed paraffin-embedded tumor tissue blocks. A centralized 

pathology review was performed to confirm each breast cancer diagnosis. For invasive breast 

cancers, estrogen receptor (ER) and progesterone receptor (PR) status was abstracted from 

the patient’s medical record (80% of invasive cases). If ER or PR status was not recorded in 

the medical record but archival tissue was available, the assay was performed at the UNC 

Immunohistochemistry Core Laboratory (20% of invasive cases). All IHC staining for 

epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene 

homolog 2 (HER2), and cytokeratin 5/6 (CK 5/6) was performed at the UNC 

Immunohistochemistry Core Laboratory. Scoring for ER, PR, HER2, EGFR, and CK 5/6 has 

been described previously (13, 31, 32).  
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All immunohistochemistry for CIS cases was performed by the UNC 

Immunohistochemistry Core Laboratory, and was described by Livasy et al. (33). ER-

positivity was defined as an Allred score of 2 with nuclear staining. CIS cases were 

considered HER2-positive if they displayed greater than 10% membranous staining in CIS 

cells with an intensity equivalent to 3+ by DAB chromogen or 2+/3+ by SG chromogen. 

Finally, CIS cases were positive for EGFR if they showed any membranous staining and 

positive for CK 5/6 if they showed any cytoplasmic staining. PR expression was not used in 

classifying CIS cases due to the high correlation between ER and PR expression, and the 

need to preserve tissue (11).  

Tumor tissue was available for 1845 of 2311 (80%) cases [1446 of 1808 (80%) 

invasive cases; 399 of 503 (80%) CIS cases]. IHC assays were completed successfully for 

1424 of 2311 (62%) cases [1149 of 1808 (64%) invasive cases; 275 of 503 (55%) CIS cases]. 

225 cases were classified as basal-like (ER -, PR -, HER2 -, CK5/6 + and/or EGFR +) and 

796 cases were classified as luminal A (ER + and/or PR +, HER2 -). The remaining subtypes 

consisted of 137 luminal B (ER + and/or PR +, HER2 +), 116 HER2+/ER- (ER -, PR -, 

HER2 +), and 150 unclassified (ER -, PR - , HER2 -, CK 5/6 -, and EGFR -) tumors. Tumor 

subtype could not be determined for 887 cases (38%). Cases with missing subtype data were 

more likely to be non-African American and to have an earlier stage at diagnosis (13). As 

described above, this analysis focuses on basal-like and luminal A breast cancer, and results 

for HER2+/ER-, luminal B, and unclassified tumors are not shown.  

3.3.2 Genotyping  

3.3.2.1 SNP selection 

A combination of tag SNPs and potentially functional SNPs was selected for 
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genotyping. Potentially functional SNPs were defined as SNPs with a minor allele frequency 

of 0.05 or greater that were reported to have a functional effect in vitro, or had been 

investigated previously for an association with breast cancer (ADIPOQ rs1501299, 

rs2241766, rs822396, IL6 rs1800795, rs1800796, rs2069832, LEPR rs1137100, rs1137101, 

rs8179183, and TNF rs1800630; no potentially functional SNPs were genotyped for LEP).  

Tag SNPs for each gene were selected using genotype frequency information from 

the International HapMap Project (34). At the time of SNP selection only Phase 1 and 2 

genotypes were available from HapMap, so tag SNPs intended to represent genetic variation 

from European ancestral populations was selected using CEU data and tag SNPs intended to 

represent genetic variation from African ancestral populations were selected using YRI data. 

Tag SNPs with a minor allele frequency of 0.10 or greater were selected using Tagger in 

Haploview (35, 36). Pairwise tagging with a minimum r2 of 0.80 was used to select tags (37). 

CEU and YRI tag SNPs were combined into a single list and genotyped in all subjects. 

Pairwise tagging for LEPR required more than 90 tag SNPs, which stretched the limits of the 

space available on the genotyping chip. Tagging for LEPR was repeated using aggressive 

tagging with 2-marker haplotypes, which reduced the number of SNPs required by 15. To 

increase the efficiency of tag SNP selection, SNPs selected from the literature were also used 

as tag SNPs, using the “force include” option in Tagger. 

3.3.2.2 Genotyping results and quality control 

The SNPs in this study were genotyped as part of a larger panel of 1536 SNPs. In 

addition to candidate gene SNPs, 158 ancestry informative markers (AIMs) were genotyped 

in order to adjust for population stratification. Genotyping was performed by the UNC 

Mammalian Genotyping Core using the Illumina GoldenGate assay (Illumina, Inc., San 
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Diego, CA). Assay intensity data and genotype cluster images for all SNPs were reviewed 

individually. SNPs were excluded from the dataset due to low signal intensity or inability to 

clearly distinguish between genotype clusters. 163 of 1536 (11 %) SNPs were excluded from 

the entire dataset based on cluster analysis.  

Additionally, blind duplicates of 169 study samples were assayed in order to verify 

the reproducibility of genotype calls from the same sample. 7 SNPs had 1 genotype miscall 

and 2 SNPs had 2 genotype miscalls. Lab controls (Coriell CEPH trios) were also genotyped 

in each 96-well plate – each control was repeated between 11 and 14 times over the course of 

the entire assay. Out of 184 lab control samples, there were 2 instances of genotype 

disagreement with duplicate samples. These error rates were within our pre-specified range 

of acceptable values, and no SNPs were excluded from the analysis on the basis of these 

results. 1373 of 1536 (89%) SNPs in the panel had data that was acceptable for analysis. 

Among SNPs in ADIPOQ, IL6, LEP, LEPR, and TNF, 117 of 143 (82%) SNPs provided 

DNA data of acceptable quality and are included in this analysis (ADIPOQ - 16, IL6 – 11, 

LEP - 14, LEPR - 74, TNF - 2). 144 of 158 (91%) AIMs passed quality control and were 

used to estimate ancestry. 

Exact tests for deviation from Hardy Weinberg equilibrium (HWE) were conducted 

in controls stratified by self-identified race to determine whether genotype frequencies were 

distributed as expected given the allele frequencies. Deviations from HWE in controls can 

indicate several things, including genotyping error, selection bias, new mutations, or failure 

of the source population to fulfill HWE assumptions (38, 39). Deviations from HWE can also 

occur by chance. HWE test statistics and P-values were calculated in Plink v1.05 using 

methods described by Wigginton et al. (40). In order to confirm that HWE deviations were 
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not due to erroneous genotype calls, genotyping cluster images were re-reviewed for all 

SNPs with HWE test P-values less than 0.01. All SNPs reviewed during this process were 

judged to have acceptable signal intensity and genotype cluster definition, and none were 

excluded. 

Of the 2311 cases and 2022 controls enrolled in the CBCS, 2045 (88%) cases and 

1818 (90%) controls provided a blood sample at the time of interview. 2039 (88%) cases and 

1818 (90%) controls had sufficient amounts of DNA available for genotyping. Of these, 64 

cases and 39 controls had genotype calls for less than 95% of SNPs in the Illumina panel and 

were excluded from the analysis. An additional 2 cases and 3 controls were excluded due to 

an apparent gender mismatch. One case was excluded because of suspected contamination 

identified though the analysis of non-blind duplicate samples.  

Ultimately, 1776 of 2022 (88%) controls and 1972 of 2311 (85%) cases were 

successfully genotyped. Subjects without genotype data were more likely to be cases, 

recruited during phase 2 of the study, and African American. The presence or absence of 

genotype data did not differ by any breast cancer risk factors other than African American 

race. Among cases the presence of genotype data was not associated with stage at diagnosis, 

lymph node status, or molecular subtype. 

Among cases, 978 of 1808 (54%) invasive cases had both genotyping and tumor 

subtype data and 242 of 503 (48%) CIS cases had genotyping and subtype data, including 

200 basal-like cases (182 invasive, 18 CIS) and 679 luminal A cases (528 invasive, 151 CIS). 

The distribution of intrinsic molecular subtypes did not differ between enrolled cases with 

and without genotyping data. 

3.3.3 Variable definitions and statistical methods  
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3.3.3.1 Variables 

Age was defined as age in years at breast cancer diagnosis for cases, and age in years 

at the time of sampling for study participation for controls. Self-identified race was reported 

during the study interview. Of the 3748 CBCS subjects with genotyping data 2293 identified 

themselves as white and 1400 identified themselves as African American. Less than 2% of 

CBCS participants reported that they were Native American/Eskimo (N=19), Asian or 

Pacific Islander (N=18), Hispanic (N=11), or mixed race (N=5). For regression analyses, 

Native American, Eskimo, Asian/Pacific Islander, Hispanic, and mixed race women and self-

described white women were grouped together as non-African American. Self-identified race 

information was missing for 2 study subjects, who were excluded from analyses that adjusted 

for or stratified by self-identified race. 

Individual estimates of African and European ancestry were estimated from 144 

AIMs. Two methods were used to estimate ancestry in study subjects – maximum likelihood 

estimation and structured association. Under the maximum likelihood method, the proportion 

of African ancestry was estimated for each study subject by solving likelihood equations 

described by Barnholtz-Sloan et al. (41). The structured association estimates were generated 

using Structure v.2.0, which uses Bayesian estimation to determine the proportion of a 

subject’s genome that belongs to each ancestral population cluster (K) (42-44). Preliminary 

estimates were calculated for K=1 through K=5 and the most likely number of populations 

was determined to be 2. Estimates were re-calculated for K=2 using the admixture and 

correlated allele frequencies models. 

By maximum likelihood, the median proportion of African ancestry was 81% among 

subjects whose self-reported race was African American and 6% among those whose self-
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reported race was white. Using Structure, African ancestry was estimated to be 92% among 

self-reported African Americans and 1% among whites. The correlation between 

STRUCTURE and maximum likelihood ancestry estimates was very high (Spearman 

correlation, all subjects r = 0.97, P < 0.0001; African Americans r = 0.98645, P < 0.0001, 

non-African Americans r = 0.86767, P < 0.0001). Data analysis continued using the 

maximum likelihood estimates only. The distribution of African ancestry estimated by 

maximum likelihood is shown in Figure 3.1. 

Waist-hip ratio (WHR) is the ratio of waist circumference to hip circumference. 

Waist and hip circumference were measured using a tape measure by a trained nurse during 

the study visit and were recorded to the nearest half centimeter. The waist measurement was 

taken at the natural indentation of the waist. Hip circumference was measured at the greatest 

protrusion of the buttocks. Measurements were taken twice and averaged. If the first two 

measurements differed by more than 1 cm, a third measurement was taken and the two 

closest measurements were averaged. The WHR variable used in this analysis is based on the 

tertile distribution of WHR in CBCS controls. The associations between basal-like breast 

cancer and WHR and luminal A breast cancer and WHR were similar for tertile 2 and tertile 

3 (vs. tertile 1) (13), and so those two categories were combined and WHR was categorized 

as < 0.77 and ≥ 0.77 for this analysis. Body mass index (BMI, weight in kg/height in m2) was 

calculated from height and weight measured during the study visit and was included in 

regression models as a continuous variable. Weight was the average of two measurements 

taken using a standardized scale and recorded to the nearest half kilogram. Height was the 

average of two measurements made to the nearest half centimeter.  

A total of 90 of 3748 (2%) genotyped subjects (40 controls, 50 cases, 6 basal-like 
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cases, 17 luminal A cases) were missing data for either WHR or BMI and were excluded 

from the effect measure modification analysis. Proportions of subjects missing data for either 

WHR or BMI did not differ by case status. The low proportion of missing data combined 

with the fact that missingness was unrelated to case status strongly indicate that missing 

WHR data was not a source of bias in this analysis. 

3.3.3.2 Genotype associations 

Genotype frequencies for each SNP were calculated stratified by self-identified race. 

Genotype proportions were adjusted for the sampling probabilities used to select eligible 

participants. Linkage disequilibrium measures were calculated using Haploview (36). 

Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between 

genotypes and breast cancer overall were estimated using unconditional binary logistic 

regression models. ORs and 95% CIs for basal-like and luminal A breast cancer were 

estimated using unconditional polytomous logistic regression models that simultaneously 

estimated parameters for all breast cancer subtypes. Statistics testing the equality of 

parameter estimates for basal-like and luminal A subtypes were calculated based on the 

asymptotic chi-square distribution of the Wald statistic. The polytomous regression model 

did not converge for rs9436748, so parameters were estimated using separate binary logistic 

regression models for basal-like cases and controls, and luminal A cases and controls. 

Parameter estimates from individual binary logistic regression models where the cases are 

restricted to a particular subtype should be similar to the parameter estimates from the 

polytomous model (45). All single SNP regression models were run using SAS v9.1.3 (SAS, 

Cary, NC). 

Genotype effects were modeled using the general model form with 2 degrees of 



 

 172  

freedom, unless the rare homozygote cell counts were too small. In that case, the model 

compared the rare homozygote and heterozygote genotypes to the common homozygote 

genotype. If the results using the general model indicated that the underlying genetic model 

form may be recessive, dominant, or additive, additional analyses specific to the likely 

genetic model were conducted. All models were adjusted for the frequency matching factors 

age at recruitment into the study (continuous) and self-identified race (African American, 

non-African American). An offset term was included in all models to account for randomized 

recruitment sampling (30). Confidence limit ratios (CLR, upper 95% confidence limit 

divided by lower 95% confidence limit) were calculated as a measure of relative precision. 

Self-identified race was included in all models due to the study design. The inclusion 

of ancestry information was based on whether adjusting for ancestry improved model fit and 

confounding control in the presence of self-identified race. Comparing parameter estimates 

for models adjusted for and not adjusted for ancestry, parameter estimates changed by more 

than 0.10 for some SNPs when estimating associations for luminal A cases and controls. 

Based on this, African ancestry was included in all models as a continuous variable in order 

to provide additional control for residual confounding due to population stratification. SNPs 

with a relatively strong odds ratio ( ≥ 1.5 or ≤ 0.67) or a P-value less than 0.05, and a precise 

confidence interval (CLR ≤ 5) were considered to be the best candidates for association with 

breast cancer and are described in the results section. 

3.3.3.3 Haplotype associations 

Haplotype frequencies and ORs were estimated using a modified version of the 

HAPSTAT program (46, 47). HAPSTAT estimates the probability of a given haplotype using 

maximum likelihood estimation and the EM algorithm, and incorporates that probability into 
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the estimation of the haplotype effects. This yields unbiased parameter estimates with 

appropriate variance given that the true haplotype phase of CBCS subjects is unknown. 

Modifications to the original HAPSTAT program allowed for inclusion of the offset term and 

a relaxation of the assumption of independence between genotypes and environmental 

variables, allowing for adjustment of age, self-identified race, and AIM-estimated African 

ancestry in all haplotype analyses. SNPS were selected for haplotype analysis using a 3-SNP 

sliding window scanning method (HAPSCAN) and by reviewing single SNP ORs for a 

consecutive string of associated SNPs. All haplotype ORs were estimated using the general 

model, and were adjusted for age, self-identified race, and African ancestry. 

3.3.3.4 Effect measure modification 

Associations between WHR and breast cancer in the CBCS have been reported 

previously (13, 48, 49). Multiplicative genotype-WHR and haplotype-WHR interaction was 

evaluated using the likelihood ratio test (LRT). Systematic reviews of the literature have 

shown that the association between WHR and premenopausal breast cancer was biased 

towards the null in studies that did not adjust for BMI (50, 51). In the CBCS, not adjusting 

for BMI pushed the WHR OR towards the null (data not shown). Therefore, BMI was 

included in models evaluating WHR-genotype interaction. SNPs and haplotypes yielding 

LRT P-values less than 0.10 were considered to demonstrate evidence of interaction. ORs 

and 95% CIs were calculated stratified by WHR and genotype for these SNPs. Additive 

interaction for genotypes and WHR was explored by calculating the synergy index (S) and 

90% confidence intervals (52). S estimates above 1 indicate greater than additive interaction, 

and S estimates below 1 indicate less than additive interaction. Additive interaction was not 

evaluated for haplotypes. 
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3.3.3.5 Interpretation 

In the analysis of genotype and haplotype associations, P-values were used in 

conjunction with point estimates and confidence limit ratios to evaluate the combined 

strength and precision of estimated associations. Strict hypothesis testing was not performed, 

and so P-values were not adjusted for multiple comparisons. Decisions to display stratified 

ORs for the evaluation of multiplicative and additive interaction were based on P-values. The 

intent was to display stratified ORs for the SNPs and haplotypes that showed the strongest 

evidence of heterogeneity. Interaction P-values were not adjusted for multiple comparisons. 

3.3.3.6 Sensitivity analysis 

Probabilistic sensitivity analyses were performed to evaluate the potential effects of 

WHR misclassification. WHR was measured at the time of interview, which was a median of 

3.9 months (range, 0.8 – 42.5 months) after diagnosis for cases and a median of 3.8 months 

(range, 0 – 45.2 months) after sampling for controls. Weight change is a commonly 

documented side effect of breast cancer-related therapy, and so it is possible that WHR may 

have also changed among cases that started treatment before the study interview (53-64).  

Studies that have reported on waist and hip measures after breast cancer diagnosis 

have found that though waist size and hip size increased following breast cancer-related 

chemotherapy, WHR remained the same (56, 61, 65). In Goodwin et al. (65), some women 

may have already started chemotherapy at the time of baseline WHR measurement, biasing 

any association between chemotherapy and WHR change. None of these three studies 

reported on differences in waist and hip measures by race, so it is unknown whether 

chemotherapy-related waist and hip change affects African-American cases differently from 

non-African Americans. 
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Complete information is not available on when CBCS cases started treatment, so a 

range of sensitivity and specificity values were calculated by estimating the likely false 

negative (FN) and false positive (FP) rates. FN and FP are based on the expected number of 

CBCS women in each category of WHR who likely received chemotherapy, based on the 

prevalence of chemotherapy treatment by stage in North Carolina Central Cancer Registry 

data (66). Simulations estimated a bias-corrected OR for the association between WHR and 

basal-like breast cancer. 

Probabilistic sensitivity analyses were also conducted to evaluate the potential effects 

of molecular subtype misclassification. Not all studies used the same set of markers to define 

‘basal-like’ breast cancer, and in studies that have used markers similar to those used by 

CBCS, there has not been 100% agreement between tumors defined as basal-like using 

microarray expression profiles and immunohistochemistry definitions (5, 32, 67). 

Simulations of genotype and basal-like vs. luminal A associations were conducted, assuming 

non-differential misclassification of case status. Sensitivity and specificity ranges were based 

on previously published data (5, 32, 67). Sensitivity analyses were conducted using a 

publicly available program (68). All analyses were run for 5000 simulations. 

A simple sensitivity analysis was also performed to evaluate the effect of including 

CIS cases in the analysis. There is evidence to support that CIS is an intermediate step in the 

progression of cells from hyperplastic to malignant [reviewed by (69, 70)]. However, some 

argue against grouping CIS with breast cancer because of the lack of predictors to reliably 

determine which CIS will progress to invasive disease (71). 

CIS were included in this study for the following reasons. First, most risk factors for 

DCIS are similar to risk factors for invasive breast cancer [reviewed in (72)]. Studies that 
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compared risk factors for invasive breast cancer and DCIS in the same screening population 

reported that were similar for family history of breast cancer, previous breast surgery, 

postmenopausal hormone use, and hysterectomy (73, 74). Associations differed between 

invasive and DCIS for age, early age at menarche (among women 50 and older), and 

presence of a palpable mass (73). There were conflicting results between the two studies for 

age at first birth and BMI in older or postmenopausal women (73, 74).  

Second, intrinsic molecular subtypes have been observed in pure DCIS and in DCIS 

observed alongside invasive breast tumors (33, 75-77). Like invasive tumors, most basal-like 

DCIS showed strong expression of CK 5/6, vimentin, EGFR, and Ki-67; expression of p63 

smooth muscle actin was rare (33, 75). Others did not report that cases were consecutive case 

series or systematically sampled from a defined population (77). 

 It has not yet been reported whether intrinsic molecular subtypes are associated with 

recurrence or survival in CIS. However the similarity between risk factors and molecular 

features suggest that there are a common set of factors that lead to both types of lesions. For 

these reasons, we chose not to exclude subjects recruited for the CIS study from this analysis. 

In a simple sensitivity analysis, the exclusion of CIS cases and matched controls did not 

systematically change the estimated genotype ORs (data not shown). 

 

3.4 Results 

3.4.1 Genotype associations 

Genotype frequencies adjusted for sampling probabilities are shown in Table 3.1. 

None of the SNPs were monomorphic in African Americans or non-African Americans. 

Several SNPs did have very low minor allele frequencies, most commonly among non-
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African American subjects. Odds ratios for SNPs associated with breast cancer overall are 

shown in Table 3.2 (the subtype-specific associations for these SNPs are included in Table 

3.3 for comparison to overall effects). SNPs in LEP, LEPR, and TNF were associated with 

breast cancer overall. Few ORs were strong; most ranged from approximately 0.7 to 1.4, with 

many effect estimates near the null. The strongest association was for LEPR rs1409802 [all 

cases, adjusted for age, self-identified race, African ancestry, and offset term, AA vs. 

AG+GG OR, 1.50; 95% CI, 1.10 - 2.06)]. 

 SNPs associated with basal-like and luminal A breast cancer are shown in Table 3.3 

(associations with breast cancer overall are included in Table 3.2 for comparison). SNPs in 

IL6 (rs1800796, rs2069824, rs2069827) were associated with luminal A but not basal-like 

breast cancer. SNPs in ADIPOQ were inversely associated with both luminal A and basal-

like subtypes, while SNPs in LEP were positively associated with basal-like and luminal A 

breast cancer.  

SNPs in LEPR were associated with both basal-like and luminal A breast cancer. 

Nonsynonymous SNPs K109R (rs1137100) and Q223R (rs1137101) were associated with 

the luminal A subtype but not the basal-like subtype (Table 3.3). A cluster of 3 SNPs in 

LEPR intron 2 (rs17412175, rs9436746, rs9436748) were inversely associated with basal-

like breast cancer, with odds ratios ranging from 0.48 to 0.57 (Table 3.3, Figure 3.2). Two 

additional SNPs (rs17097182 and rs970467) were also inversely associated with basal-like 

breast cancer but the estimated ORs had very wide confidence intervals and therefore are not 

presented. SNPs in TNF were not strongly associated with basal-like or luminal A breast 

cancer. In sensitivity analyses of the difference between basal-like and luminal A subtype 

associations bias-corrected ORs were similar to observed ORs, suggesting that any potential 
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subtype misclassification likely had minimal effects on the results (data not shown).  

 Effect measure modification of SNP ORs by WHR was explored on the additive and 

multiplicative scales for SNPs with a marginal association with breast cancer. For breast 

cancer overall, the LRT suggested evidence of multiplicative interaction for LEPR rs1137100 

and rs12042877 (Table 3.4a). For basal-like breast cancer, only IL6 rs2069824 showed 

evidence of genotype-WHR interaction (Table 3.4b). For luminal A breast cancer, ADIPOQ 

rs16861194 and LEPR rs12042877, rs6588147, rs6704167, and rs9436746 showed evidence 

of WHR-genotype interaction (Table 3.4c). For breast cancer overall and by subtype, the 

joint effect of the index genotype and high WHR was usually less than multiplicative. Effects 

were greater than multiplicative only for rs6704167 (TT) and rs9436746 and luminal A 

breast cancer. Confidence intervals for estimates of additive interaction were imprecise, but 

for most SNPs S statistics were less than 1, indicating that interaction was also less than 

additive (Tables 3.4a-3.4c). Exceptions were rs1137100 (AG) in breast cancer overall where 

interaction was greater than additive, and rs6704167 (TT) in luminal A breast cancer for 

which an S statistic could not be calculated. There was little difference between bias 

corrected ORs and ORs estimated from the observed data in sensitivity analyses of potential 

WHR misclassification due to the effects of breast cancer treatment (data not shown). 

3.4.2 Haplotype associations 

Haplotype effects were estimated for regions identified by HAPSCAN and regions 

where several consecutive SNP main effects were associated with basal-like or luminal A 

breast cancer, and are shown in Table 3.5. Overall, haplotype associations tended to be 

stronger than single SNP associations. The strongest haplotype association was that of 

haplotype 5 with luminal A breast cancer (OR = 3.21), whereas the strongest single SNP 
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association was an OR of 0.48 (LEPR rs9436748, Table 3.3). There were several additional 

strong haplotype associations with ORs of 2 or greater, including those in IL6 (haplotype 1a), 

LEP (haplotypes 3, 4a, 4b, 5) and LEPR (haplotype 8b), where two copies of the target 

haplotype were strongly associated with breast cancer overall and/or luminal A breast cancer 

(Table 3.5). Only LEP haplotype 4a had a similarly strong association with the basal-like 

subtype, but the estimate was very imprecise (Table 3.5). Haplotype associations for luminal 

A breast cancer were similar to associations for breast cancer overall, except for haplotype 

4a, where the association for breast cancer overall was greater than for the luminal A, and 

haplotype 5 where the association for breast cancer overall was weaker than the association 

for the luminal A subtype. Haplotype associations for basal-like breast cancer were less 

similar to haplotype associations for breast cancer overall, and there were several instances 

where the estimated haplotype association for the basal-like subtype (haplotypes 5, 6a, 6b, 

9b) was not also observed in breast cancer overall. 

Based on the LRT, there was evidence of multiplicative haplotype-WHR interaction 

for haplotypes 1a and 8b in breast cancer overall. No haplotypes showed evidence of 

multiplicative interaction for the luminal A or basal-like subtypes. Associations for 

haplotypes 1a and 8b with breast cancer overall stratified by WHR are shown in Table 6. 

Although the ORs for 2 copies vs. 0 copies of the at risk haplotype were imprecise, the 

association for 2 copies was greater among women with lower WHR.  

 

3.5 Discussion 

SNPs in ADIPOQ, IL6, LEP, LEPR, and TNF were genotyped in order to determine 

whether polymorphisms in these genes were associated with breast cancer. ORs were 
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estimated for basal-like and luminal A breast cancer subtypes in addition to estimating 

effects for all breast cancer cases combined under the hypothesis that the breast cancer 

molecular subtypes have unique risk factors, and that SNPs may be associated specifically 

with the basal-like or luminal A subtype. Effects unique to one tumor subtype may not be 

apparent if all breast cancer cases are analyzed together.  

SNPs associated with breast cancer overall had weak to moderate effects, including 

the potentially functional variant LEPR rs1137100 (K109R). Work by Cleary et al. (78) 

demonstrated that mice with two functionally silent copies of LEPR did not develop 

spontaneous mammary tumors while mice with one or more functional copies of LEPR were 

susceptible to mammary tumors. This suggests that a polymorphism that disables leptin 

receptor signaling would not increase breast cancer risk. An alternative mechanism may be 

that impaired leptin receptor signaling leads to an accumulation of leptin, and excess leptin 

leads to increased breast cancer risk. A breakdown in the leptin/leptin receptor negative 

feedback loop leading to an accumulation of leptin in the bloodstream has been described as 

a feature of obesity (79). There are several other pathways through which leptin signaling 

could proceed. Leptin has been shown to enhance aromatase activity and activate the 

estrogen receptor in an estrogen receptor-positive cell line (80, 81). Leptin has also been 

shown to stimulate signaling of the HER2 and IGF-1 receptors in some breast cancer cell 

lines (82, 83).  

Reports vary on the biological effect of LEPR K109R in women. Woo et al. (21) and 

van Rossum et al. (84) reported that healthy women with codon 109 RR variants have higher 

serum leptin levels compared to women with 109 QR variants, though in van Rossum et al. 

the difference in leptin levels was limited to women who had gained weight after a mean of 
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6.7 years of follow-up. This is consistent with the hypothesis that leptin accumulation is 

involved in the biological mechanism, if K109R is causally associated with breast cancer. In 

contrast, when Wauters et al. (85) examined leptin levels in relation to K109R genotype in 

overweight and obese women, leptin levels were lower among postmenopausal women with 

at least one copy of the 109R variant. There was no difference in leptin by K109R genotype 

in premenopausal women (85).  

For many SNPs, the genotype-breast cancer association was stronger when the cases 

were stratified by molecular subtype. SNPs in LEP and LEPR were associated with basal-like 

and/or luminal A breast cancer; SNPs in ADIPOQ and IL6 were also associated with basal-

like and/or luminal A breast cancer, but were not associated with all cases. Most of the 

associated SNPs were tag SNPs with unknown function, so it is unclear what biological link 

exists between the presence of one or more polymorphic alleles and an increased risk of 

breast cancer. There are numerous genomic variants that were not measured in this study that 

could be responsible for the observed associations, including insertion-deletion 

polymorphisms, repeat polymorphisms and untyped SNPs. Therefore, future studies should 

focus on variants in LD with the SNPs identified in this study in addition to the associated 

tag SNPs themselves. 

SNP effects were stronger when analyzed in combination as haplotypes, and in many 

cases the haplotype OR magnitude exceeded that of any single SNP within the haplotype. 

Generally, haplotype effect estimates were the most stable for all cases and luminal A cases 

compared to controls. Corresponding estimates for the basal-like subtype were less precise 

and are therefore somewhat inconclusive. Estimates for several haplotypes and basal-like 

breast cancer could not be calculated due to the small number of basal-like cases. An 
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exception to this was LEPR haplotype 6b, which was positively associated with basal-like 

breast cancer with a precise confidence interval. Haplotype analysis using the sliding window 

technique also enabled the identification of a breast cancer-associated region (LEP haplotype 

3) where the individual SNPs showed no association. Thus, in this study employing 

haplotype analysis in addition to single SNP analysis enhanced our ability to identify breast 

cancer-associated SNPs. 

There were some very general themes in the observed associations. For ADIPOQ and 

LEP, the associations were consistently in one direction for both luminal A and basal-like 

subtypes, which suggests that alterations to the sequence or structure of the genes have a 

similar effect on both breast cancer subtypes. For example, the strongest associations among 

LEP SNPs were consistently positive. LEP -2548 G/A was not genotyped in this study, but 

has been reported to be positively associated with breast cancer in Tunisian and American 

women (20, 25). In ADIPOQ, associated SNPs were inversely associated with both subtypes. 

A similar pattern was reported by Kaklamani et al. (86), although their results were not 

always presented with the most common genotype as the referent group. In the case of 

ADIPOQ, IL6, and LEP, no single SNP was associated with both subtypes. This is very 

consistent with the idea that molecular subtypes have unique sets of risk factors that are only 

evident in a stratified analysis. In contrast, several SNPs in LEPR were associated with both 

subtypes.  

The 3 associated SNPs in IL6 were associated with luminal A but not basal-like 

breast cancer. This is consistent with several lines of evidence that IL6 is active in ER-

positive breast cancer cells. The addition of IL6 to ER-positive cell lines induces tumorigenic 

effects such as cell rounding, reduced cell adhesion, decreased E-cadherin expression, and 
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increased cell migration (87-89). In cell cultures, IL6 is able to activate transcription of ER-

alpha in ER-positive breast cells and stimulate estrogen synthesis by inducing aromatase 

activity (90, 91). IL6 polymorphisms -174 G/C, -597 G/A, and -373A8T12 were associated 

with disease-free survival among patients with ER-positive but not ER-negative tumors (92). 

However, the presence of IL6 in breast tumors does not appear to be related to ER status. 

Several studies reported that IL6 was expressed more commonly in ER-negative breast 

tumors or that there was no association between IL6 expression and ER status (93-95). 

Table 7 shows CBCS ORs for SNPs that have been studied previously alongside the 

associations reported by others. The only SNP whose effect was consistent with previous 

studies was IL6 -572 G/C (rs1800796), which was weakly associated with breast cancer 

overall in the CBCS. The association was stronger comparing luminal A cases to controls, 

and was similar to results reported by Slattery et al. (19) for premenopausal women and 

postmenopausal women not on hormone therapy (Table 7). Other previously studied SNPs 

were associated with luminal A but not basal-like breast cancer. LEPR Q223R (rs1137101) 

was associated with luminal A breast cancer, but the association was not as strong as that 

observed by Snoussi et al. (20)(Table 7). Some studies reported that the LEPR codon 223R 

variant was associated with higher serum leptin levels in postmenopausal women (96), and 

with breast cancer risk (20, 24). The LEPR Q223R polymorphism was not associated with 

breast cancer in two other studies (21, 25). LEPR variant K109R (rs1137100) was also 

associated with the luminal A subtype and not the basal-like. Woo et al. (21) reported that 

LEPR codon 109 RR homozygotes have higher serum leptin levels compared to codon 109 

KR heterozygotes in healthy Korean controls, but the K109R polymorphism was not 

associated with breast cancer.  
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 In many cases, ORs estimated in the CBCS were not in agreement with previous 

studies (Table 7). Kaklamani et al. (86) reported associations for +45 T/G (rs2241766) and 

+276 G/T (rs1501299) but no association was seen for either SNP in the CBCS. IL6 -174 

G/C (rs1800795) and intron 2 G/A (rs2069832) were not associated with all cases, luminal A 

breast cancer, or basal-like breast cancer although other investigators reported associations 

(18, 19). Terry et al. (97) tested not only the -174 G/C polymorphism, but other promoter 

polymorphisms including -572 G/C, -597 G/A, and a -373 A8T12 repeat polymorphism in 

both HeLa and ECV40 cells, and showed that changes in IL6 expression level are likely due 

to a complex haplotype effect, not the single genotype at position -174. In this study the -

572/-174 C-G/C-G diplotype is positively associated with all breast cancer cases and one 

copy of the C-G haplotype is associated with luminal A breast cancer (Table 5). The full 

haplotype described by Terry et al. was not analyzed because polymorphisms at nt -597 and -

373 were not genotyped in the CBCS. Other studies also reported no association between -

174 G/C and breast cancer (26, 27). In TNF -863 C/A (rs1800630), the AA vs. CC genotype 

was inversely associated with all breast cancer cases in the CBCS, whereas Gaudet et al. (22) 

reported no association. In vitro, the A allele reduced TNF transcription levels and serum 

TNF levels (98, 99).  

None of the previously studied SNPs in Table 7 were associated with the basal-like 

subtype. This may be due to greater imprecision of basal-like estimates because of the small 

number of basal-like cases. Another explanation could be that SNPs of interest from previous 

studies have been defined based on the etiology of “all cases”, the majority of which are 

luminal A breast cancers. It is possible that different functional variants are associated with 

basal-like tumors. Even though the effects of potentially “functional” SNPs in the CBCS did 
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not agree with the results of other studies, the minor allele frequencies of these SNPs in 

CBCS controls are comparable to those found in other white and African American 

populations (Table 8).  

Previous analyses in the CBCS found that higher WHR was a strong risk factor for 

basal-like breast cancer (13), so effect measure modification of genetic effects by WHR was 

evaluated on the multiplicative and additive scales. Interaction was less than multiplicative 

and less than additive for most joint SNP-WHR effects. These results should be interpreted 

with caution. In many cases the confidence intervals of the effect estimates were similar 

across strata even though the odds ratios differed. Joint effects could not be calculated for 

haplotypes, but stratified analysis of haplotypes with low LRT P-values showed that 

haplotype associations with breast cancer overall were greater in magnitude among women 

with lower WHR compared to women with higher WHR. Cleveland et al. (25) reported that 

there was no evidence of interaction between BMI and LEPR Q223R. We also found no 

evidence of interaction between this SNP and WHR in the CBCS. 

Data from Slattery et al. (100) showed evidence of multiplicative interaction between 

IL6 rs1800795 and rs1800796 and WHR, but genotype-WHR interaction was not observed 

for these SNPs in the CBCS. Differences in WHR categorization limit direct comparison of 

results. The IL6 SNP that showed evidence of WHR interaction in the CBCS was not in LD 

with rs1800795 or rs1800796 in CBCS white or African-American cases or controls. Also, 

joint genotype-WHR effects reported by Slattery et al. (100) women showed patterns of 

being both less than additive and greater than additive, which is not what was observed in the 

CBCS. In the CBCS rs1800796 was part of a haplotype (1a) that showed evidence of 

interaction with WHR; 2 copies of the haplotype with the C allele was strongly associated 
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with breast cancer among women with low WHR. The data presented by Slattery et al. are 

not consistent with this trend.   

 The results presented here offer new insight into the etiology of breast cancer. Many 

of these tag SNPs have not been analyzed previously for their association with breast cancer. 

Additionally, this is one of few reports where SNP associations have been presented stratified 

by molecular subtype. Although estimates for the basal-like subtype were less precise 

compared to the luminal A estimates due to smaller sample size, the results presented were 

chosen based on both the strength of the OR and precision in order to avoid bias in reporting 

results by subtype. P-values were not adjusted for multiple comparisons because hypothesis 

testing was not used as strict criteria for evaluating ORs. Instead, the P-value was used as a 

proxy measure for the OR magnitude and standard error. Nevertheless, random error and/or 

systematic bias may have influenced the results, and thus approach used here and the results 

need to be replicated by others. Probabilistic sensitivity analyses were conducted to 

determine the effect that WHR misclassification or molecular subtype classification may 

have had on the results. Results of these analyses show that the ORs estimated from the data 

are close in magnitude to the range of corrected estimates, given the estimated sensitivity and 

specificity ranges.    

 The results of this study are promising, but we must keep in mind the potential effects 

that unequal study participation may have had on the study population. Study response rates 

were higher for cases compared to controls. Response also differed by self-identified race 

and age group – among invasive cases, CIS cases, and CIS study controls the lowest response 

rates were for African Americans age 50 and older. Adjustment for self-identified race and 

age should control for possible selection bias in an analysis of all cases compared to controls, 
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assuming that genotype distributions within case, race, and age strata are a representative 

sample of genotypes in those strata of the source population (101). 

 Selection bias may also have occurred during genotyping. This analysis includes 

genotyping data for 86% of enrolled CBCS subjects, which is 57% of all women invited to 

participate in the study. Enrolled subjects without genotyping data were more likely to be 

cases, from the Phase 2 invasive study, and African American compared to enrolled subjects 

with genotyping data. Enrolled subjects were missing genotype data because they were 

unwilling or unable to provide a blood sample at the time of interview, a mechanism of 

missingness that is likely a combination of self-selection and severity of illness (among 

cases). As with overall study participation, adjustment for factors associated with 

participation should control for the possible selection bias. However, if a particular genotype 

is associated with severity of disease, cases with genotyping data would most likely not be a 

random sample of all eligible cases and the possibility of selection bias would exist even 

after adjustment for other factors associated with study participation.  

 The third stage of the study where selection bias could occur was in determining the 

breast tumor intrinsic molecular subtype in cases. Tumor subtype was determined for 62% of 

enrolled cases, or 48% of eligible cases invited to participate in the study. Subtype and 

genotype was available for 1220 cases (53% of enrolled cases, 41% of eligible cases). Study 

results could be biased if the genotypes of cases with sufficient tumor tissue for subtyping 

were systematically different from the genotypes of women without subtype information. 

Genotype distributions between cases with and without subtype information were 

comparable, differing for only a few SNPs. In African American cases, distributions differed 

for ADIPOQ rs822391, LEP rs10954173 and rs11760956 (which were in perfect LD, 
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r2=1.0), and LEPR rs10889563, rs11208654, rs12042877, rs6413506. In non-African 

American cases, distributions differed for LEPR rs10889569, rs11585329, rs6678033, 

rs6700896, rs8179183 (rs10889569, rs6678033, and rs6700896 were in strong LD, r2 > 

0.94). The molecular subtype distribution was similar between cases with and without 

genotyping data.  

 In conclusion, SNPs in ADIPOQ, IL6, LEP, LEPR, and TNFA were associated with 

breast cancer; some of these associations appeared to be subtype-specific. The use of 

haplotypes to estimate the effect of several alleles in combination produced even stronger 

associations. Furthermore, these effects may be modified by WHR. Further research into 

adipocytokine-WHR interaction could play a role in identifying the causal relationship 

between adipocytokines, central obesity, and breast cancer.  

 The identification of a group of LEPR SNPs associated with basal-like breast cancer 

is target for future research. In-depth analysis of other variants in the region, including non-

SNP variants, will increase the chance of locating the causal variant. Fine-mapping and 

analysis of conserved DNA sequences in the region could also help determine the location of 

the causal variant (s). Contingent on replication of the results in other studies, these results 

provide evidence that genetic polymorphisms in adipocytokines are associated with breast 

cancer risk. 
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3.7 Tables 
Table 3.1 Genotype frequencies in adipocytokines, adjusted for sampling probabilities1 

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

ADIPOQ 
         

rs16861194 AA 387 62 945 86 438 59 1038 86 

 
AG 220 31 159 13 256 34 186 14 

 
GG 51 7 12 2 48 6 5 0 

 
Missing 

  
1 

     

          
rs16861205 AA 29 3 12 2 40 6 3 0 

 
AG 203 30 150 12 223 30 178 13 

 
GG 426 67 955 87 479 64 1048 87 

          
rs822391 CC 3 0 44 3 4 1 58 4 

 
CT 64 8 359 40 57 8 430 36 

 
TT 591 91 713 57 681 92 741 60 

 
Missing 

  
1 

     

          
rs16861210 AA 14 2 11 1 20 3 10 1 

 
AG 196 30 184 15 197 26 214 19 

 
GG 448 68 922 84 525 71 1005 81 

          
rs822396 AA 407 60 730 60 467 63 767 62 

 
AG 222 36 346 38 238 32 405 34 

 
GG 29 4 41 3 37 5 57 4 

          
rs12495941 GG 282 43 476 39 302 41 545 45 

 
GT 304 47 502 50 350 47 554 44 

 
TT 72 10 139 11 90 12 130 11 

          
rs7649121 AA 493 73 763 71 564 76 811 67 

 
AT 147 25 320 25 168 23 384 30 

 
TT 18 2 34 4 9 1 34 3 

 
Missing 

    
1 

   

          
rs9877202 AA 481 72 1109 100 519 70 1224 100 

 
AG 162 26 6 0 207 28 5 0 

 
GG 15 2 2 0 16 2 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

          
rs2241766 GG 

  
26 2 5 1 25 2 

 
GT 46 7 231 18 58 8 250 20 

 
TT 612 93 860 80 679 91 954 78 

          
rs1501299 AA 95 14 74 5 89 12 78 7 

 
AC 304 45 434 40 327 44 486 40 

 
CC 259 41 609 55 325 44 664 53 

 
Missing 

    
1 

 
1 

 

          
rs3821799 CC 134 19 348 34 157 21 391 31 

 
CT 312 51 542 48 336 45 605 49 

 
TT 212 30 227 18 249 34 233 20 

          
rs6444174 CC 11 2 

  
23 3 

  

 
CT 167 27 15 1 201 27 6 0 

 
TT 480 71 1102 99 518 70 1223 100 

          
rs6773957 AA 208 30 166 12 239 33 171 15 

 
AG 312 50 529 49 339 45 592 49 

 
GG 138 20 422 40 164 22 466 37 

          
rs1063537 CC 626 96 870 81 696 94 963 78 

 
CT 32 4 222 18 43 6 244 20 

 
TT 

  
25 2 3 0 22 2 

          
rs9842733 AA 539 82 1114 100 593 80 1228 100 

 
AT 116 18 3 0 142 19 1 0 

 
TT 3 0 

  
7 1 

  

          
rs1403697 CC 5 1 

  
18 2 

  

 
CT 155 24 3 0 181 25 2 0 

 
TT 498 75 1114 100 543 73 1227 100 

IL6 
         

rs2069824 CC 11 2 6 0 9 1 12 1 

 
CT 135 19 161 12 127 17 162 12 

 
TT 507 79 950 88 606 82 1055 87 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
Missing 5 

       

          
rs2069827 GG 632 97 918 84 720 97 1000 81 

 
GT 26 3 188 15 22 3 219 19 

 
TT 

  
11 1 

  
10 1 

          
rs1800796 CC 11 1 6 0 8 1 6 1 

 
CG 96 15 81 8 118 16 115 10 

 
GG 551 83 1030 92 616 83 1108 90 

          
rs1800795 CC 5 0 204 17 4 1 230 19 

 
CG 95 13 543 56 104 14 589 50 

 
GG 556 87 367 27 630 85 408 31 

 
Missing 2 

 
3 

 
4 

 
2 

 

          
rs2069832 AA 5 0 202 16 4 1 224 18 

 
AG 94 13 542 56 105 14 592 50 

 
GG 559 87 371 28 633 85 411 32 

 
Missing 

  
2 

   
2 

 

          
rs2069835 CC 4 1 2 0 11 2 4 0 

 
CT 110 15 125 10 145 20 107 8 

 
TT 544 84 990 90 585 79 1118 91 

 
Missing 

    
1 

   

          
rs2069840 CC 470 67 476 40 526 71 540 43 

 
CG 171 30 489 49 194 26 545 46 

 
GG 16 3 151 11 22 3 144 11 

 
Missing 1 

 
1 

     

          
rs2069842 AA 4 1 

  
8 1 1 0 

 
AG 87 16 6 0 99 13 2 0 

 
GG 567 83 1111 100 635 86 1226 100 

          
rs1548216 CC 23 3 1 0 26 3 1 0 

 
CG 199 31 41 4 226 30 58 5 

 
GG 435 66 1075 96 490 66 1170 95 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
Missing 1 

       

          
rs2069843 AA 7 1 1 0 7 1 1 0 

 
AG 162 22 39 4 183 24 56 4 

 
GG 489 77 1077 96 552 75 1172 95 

          
rs2069845 AA 281 43 342 26 312 42 370 28 

 
AG 299 46 548 55 344 46 604 51 

 
GG 77 10 226 19 86 12 252 20 

 
Missing 1 

 
1 

   
3 

 
LEP 

         
rs6976701 AA 7 1 1 0 5 1 

  

 
AG 125 19 12 1 154 21 25 2 

 
GG 526 80 1103 99 581 78 1204 98 

 
Missing 

  
1 

 
2 

   

          
rs4236625 AA 460 68 973 87 510 69 1063 86 

 
AT 182 30 135 13 202 27 153 13 

 
TT 15 2 7 1 27 4 5 1 

 
Missing 1 

 
2 

 
3 

 
8 

 

          
rs12706832 AA 403 61 248 23 453 61 251 22 

 
AG 225 33 539 41 246 33 619 50 

 
GG 29 7 329 35 43 6 358 28 

 
Missing 1 

 
1 

   
1 

 

          
rs10244329 AA 154 25 272 33 169 23 304 24 

 
AT 331 49 543 43 369 50 626 51 

 
TT 173 25 301 24 204 27 299 24 

 
Missing 

  
1 

     

          
rs11763517 CC 30 4 290 24 24 3 287 24 

 
CT 225 33 537 43 237 32 617 50 

 
TT 402 63 288 34 481 65 325 26 

 
Missing 1 

 
2 

     

          
rs7795794 AA 6 1 6 0 15 2 6 1 



 

 202  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
AG 157 26 129 13 167 23 149 13 

 
GG 495 73 982 86 560 75 1073 86 

 
Missing 

      
1 

 

          
rs11760956 AA 24 3 176 16 19 3 165 15 

 
AG 201 29 504 39 222 30 580 47 

 
GG 433 68 437 45 501 68 483 39 

 
Missing 

      
1 

 

          
rs10954173 AA 24 3 176 16 19 3 165 15 

 
AG 201 29 504 39 220 30 580 47 

 
GG 433 68 437 45 503 68 483 39 

 
Missing 

      
1 

 

          
rs3793162 AA 19 3 

  
19 3 

  

 
AG 192 28 10 1 163 22 15 1 

 
GG 447 69 1107 99 560 76 1214 99 

          
rs3828942 AA 20 6 210 27 36 5 231 19 

 
AG 198 28 520 41 245 33 603 48 

 
GG 438 66 385 32 460 62 394 34 

 
Missing 2 

 
2 

 
1 

 
1 

 

          
rs17151919 AA 4 1 

  
8 1 

  

 
AG 100 15 5 0 131 18 1 0 

 
GG 554 85 1112 100 603 81 1228 100 

          
rs17151922 GG 375 57 1099 99 383 52 1203 98 

 
GT 242 37 17 1 308 41 26 2 

 
TT 41 6 1 0 51 7 

  

          
rs10954174 AA 8 1 

  
6 1 

  

 
AG 90 11 8 0 116 16 6 0 

 
GG 560 88 1109 100 620 83 1223 100 

          
rs11761556 AA 20 2 332 35 30 4 354 28 

 
AC 188 27 528 41 211 29 614 49 



 

 203  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
CC 448 71 255 23 499 67 259 23 

 
Missing 2 

 
2 

 
2 

 
2 

 
LEPR 

         
rs3806318 AA 573 84 586 53 664 90 629 51 

 
AG 81 16 439 40 72 10 521 42 

 
GG 4 1 90 7 6 1 77 7 

 
Missing 

  
2 

   
2 

 

          
rs1327118 CC 115 19 234 19 127 17 231 20 

 
CG 308 51 546 45 341 46 661 53 

 
GG 235 30 336 35 273 37 337 27 

 
Missing 

  
1 

 
1 

   

          
rs12145690 AA 234 30 334 35 272 37 337 27 

 
AC 310 51 547 45 340 46 661 53 

 
CC 114 19 234 19 129 17 231 20 

 
Missing 

  
2 

 
1 

   

          
rs9436738 AA 9 1 24 2 9 1 29 2 

 
AG 159 22 257 19 177 24 290 24 

 
GG 490 77 835 79 556 75 909 74 

 
Missing 

  
1 

   
1 

 

          
rs9436297 CC 9 1 25 2 13 2 30 2 

 
CT 176 24 258 19 189 25 290 24 

 
TT 473 74 833 79 540 73 909 74 

 
Missing 

  
1 

     

          
rs9436740 AA 96 15 562 47 124 17 635 53 

 
AT 418 65 473 44 459 62 496 39 

 
TT 143 20 82 9 157 21 97 8 

 
Missing 1 

   
2 

 
1 

 

          
rs9436299 AA 438 69 531 45 485 65 580 47 

 
AC 191 28 490 48 230 31 503 41 

 
CC 29 3 96 8 27 4 146 11 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

rs17127608 CC 472 73 1113 100 559 75 1220 99 

 
CT 172 24 4 0 165 22 8 1 

 
TT 14 3 

  
18 2 1 0 

          
rs3790433 AA 335 49 74 6 373 50 95 8 

 
AG 252 43 403 31 306 41 438 35 

 
GG 71 9 640 63 63 9 696 57 

          
rs17127618 CC 427 64 799 74 464 63 878 72 

 
CG 196 31 292 24 249 33 317 25 

 
GG 34 5 26 2 26 3 33 2 

 
Missing 1 

   
3 

 
1 

 

          
rs7534511 AA 37 4 84 7 36 5 127 10 

 
AG 206 35 478 46 241 33 501 41 

 
GG 414 62 553 48 465 62 600 49 

 
Missing 1 

 
2 

   
1 

 

          
rs9436301 CC 93 18 73 6 114 15 89 8 

 
CT 309 45 430 35 370 50 443 34 

 
TT 256 37 614 59 258 35 697 58 

          
rs1887285 CC 9 3 13 1 15 2 14 1 

 
CT 122 22 183 15 158 21 196 16 

 
TT 526 75 921 85 569 77 1017 83 

 
Missing 1 

     
2 

 

          
rs17097182 AA 337 55 1041 94 395 53 1127 91 

 
AT 251 36 73 6 288 39 99 9 

 
TT 70 9 3 0 59 8 3 0 

          
rs17412175 AA 7 1 257 23 8 1 245 22 

 
AT 104 18 553 55 121 16 628 50 

 
TT 547 81 307 23 613 83 356 28 

          
rs970467 AA 39 7 14 1 37 5 25 2 

 
AG 229 33 232 18 270 36 249 19 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
GG 390 60 871 81 435 59 955 79 

          
rs9436746 AA 259 38 153 12 294 40 190 15 

 
AC 285 44 532 49 338 46 587 48 

 
CC 112 18 430 39 106 14 449 37 

 
Missing 2 

 
2 

 
4 

 
3 

 

          
rs9436748 GG 449 68 331 25 504 68 382 30 

 
GT 175 27 555 55 214 29 627 50 

 
TT 34 4 228 21 24 3 220 19 

 
Missing 

  
3 

     

          
rs6657868 AA 175 25 133 11 184 25 180 14 

 
AG 308 45 532 50 366 50 553 45 

 
GG 174 30 452 39 192 25 496 41 

 
Missing 1 

       

          
rs17127655 CC 417 66 1106 99 508 69 1220 100 

 
CT 206 29 8 1 198 27 7 0 

 
TT 33 5 1 0 30 4 1 0 

 
Missing 2 

 
2 

 
6 

 
1 

 

          
rs6588147 AA 473 74 511 43 511 68 560 46 

 
AG 160 23 503 48 211 29 524 43 

 
GG 25 3 103 8 20 3 145 11 

          
rs7531110 GG 221 29 146 12 227 31 195 15 

 
GT 319 51 562 52 384 52 578 47 

 
TT 118 21 408 36 131 17 456 38 

 
Missing 

  
1 

     

          
rs7555955 AA 25 3 103 8 23 3 145 11 

 
AG 177 25 503 48 216 30 524 43 

 
GG 455 72 511 43 503 67 560 46 

 
Missing 1 

       

          
rs6704167 AA 397 57 347 26 450 61 394 31 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
AT 229 39 544 55 256 34 620 51 

 
TT 32 4 224 19 34 5 215 18 

 
Missing 

  
2 

 
2 

   

          
rs7529650 AA 85 15 400 34 99 13 450 37 

 
AG 316 51 561 53 354 48 576 47 

 
GG 256 34 156 13 287 39 203 16 

 
Missing 1 

   
2 

   

          
rs2025804 CC 27 3 104 8 44 6 141 11 

 
CT 210 33 494 48 240 32 515 42 

 
TT 421 64 519 44 458 61 573 47 

          
rs7518849 CC 26 4 4 0 25 3 6 0 

 
CT 172 23 127 10 197 27 132 11 

 
TT 460 73 986 90 520 70 1091 89 

          
rs10158579 CC 92 16 16 1 87 12 28 3 

 
CT 274 44 260 21 335 45 277 22 

 
TT 292 40 841 78 320 43 922 76 

 
Missing 

      
2 

 

          
rs11808888 AA 176 28 18 1 178 24 29 3 

 
AG 294 47 268 22 366 50 281 22 

 
GG 188 26 831 77 198 27 919 75 

          
rs17127677 GG 415 59 843 78 435 59 928 76 

 
GT 213 35 259 21 275 37 274 21 

 
TT 30 7 15 1 32 4 27 3 

          
rs17127686 AA 450 70 1112 100 528 72 1224 100 

 
AG 185 28 5 0 191 26 4 0 

 
GG 22 2 

  
14 2 1 0 

 
Missing 1 

   
9 

   

          
rs6694528 CC 247 34 839 78 268 36 923 76 

 
CT 295 48 262 21 353 48 278 22 
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Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
TT 116 18 16 1 121 16 28 3 

          
rs11208654 CC 28 4 104 8 39 6 141 11 

 
CT 211 32 495 48 253 34 519 43 

 
TT 415 64 516 44 447 60 567 47 

 
Missing 4 

 
2 

 
3 

 
2 

 

          
rs10889556 AA 229 30 619 52 264 36 674 55 

 
AG 326 56 432 43 364 49 451 37 

 
GG 103 13 65 5 114 15 104 8 

 
Missing 

  
1 

     

          
rs7526141 CC 545 82 297 22 625 84 333 26 

 
CT 108 18 556 55 108 14 638 52 

 
TT 5 0 262 23 9 1 257 21 

 
Missing 

  
2 

   
1 

 

          
rs1171275 AA 49 7 35 2 51 7 44 4 

 
AG 257 40 325 28 323 44 345 27 

 
GG 351 53 756 70 368 49 840 69 

 
Missing 1 

 
1 

     

          
rs1475397 CC 92 13 613 59 113 15 669 55 

 
CT 297 51 418 35 340 46 470 37 

 
TT 269 36 86 6 289 39 90 7 

          
rs1627238 CC 215 32 751 70 220 29 833 68 

 
CT 299 49 328 28 389 53 350 28 

 
TT 143 19 37 2 132 18 46 4 

 
Missing 1 

 
1 

 
1 

   

          
rs11208662 CC 26 3 10 1 23 3 12 1 

 
CG 187 27 168 13 212 29 185 15 

 
GG 445 69 939 87 507 68 1032 84 

          
rs1171279 CC 92 13 613 59 112 15 669 55 

 
CT 297 51 418 35 340 46 469 37 



 

 208  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
TT 269 36 86 6 290 39 91 8 

          
rs1751492 CC 52 10 79 6 63 9 116 9 

 
CT 270 42 451 44 315 42 495 40 

 
TT 336 48 587 50 364 49 618 51 

          
rs6697315 CC 92 16 120 9 115 15 161 13 

 
CT 324 50 501 47 366 49 542 45 

 
TT 241 34 495 44 260 35 526 43 

 
Missing 1 

 
1 

 
1 

   

          
rs1171267 GG 291 40 496 44 313 43 529 43 

 
GT 299 46 502 47 336 45 539 45 

 
TT 68 13 118 9 92 12 156 12 

 
Missing 

  
1 

 
1 

 
5 

 

          
rs1782763 CC 43 9 116 9 66 9 160 12 

 
CT 263 39 475 45 289 39 489 41 

 
TT 352 51 524 46 387 52 580 47 

 
Missing 

  
2 

     

          
rs1409802 AA 22 4 54 4 27 4 93 7 

 
AG 201 30 417 41 241 32 444 36 

 
GG 435 66 646 55 474 64 692 56 

          
rs10157610 CC 496 76 1114 100 590 79 1224 100 

 
CT 150 23 3 0 142 19 4 0 

 
TT 12 1 

  
10 1 1 0 

          
rs3790431 CC 40 4 57 4 47 7 58 5 

 
CT 287 46 385 33 303 41 409 34 

 
TT 331 50 674 63 392 53 760 60 

 
Missing 

  
1 

   
2 

 

          
rs1137100 AA 449 66 633 54 490 66 684 56 

 
AG 189 31 425 41 225 30 448 37 

 
GG 20 3 59 4 25 3 97 7 



 

 209  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
Missing 

    
2 

   

          
rs3790429 AA 528 78 777 63 622 84 875 72 

 
AT 128 22 305 35 115 16 334 27 

 
TT 2 0 35 2 5 1 20 2 

          
rs3790426 GG 374 58 679 63 440 60 766 61 

 
GT 232 35 383 33 242 33 405 34 

 
TT 52 6 53 4 56 8 56 5 

 
Missing 

  
2 

 
4 

 
2 

 

          
rs1343982 AA 55 10 68 5 75 10 108 8 

 
AG 268 44 444 42 314 42 471 39 

 
GG 335 46 605 53 353 48 650 53 

          
rs10493380 AA 547 81 741 59 644 87 823 68 

 
AC 110 18 337 39 94 13 375 30 

 
CC 1 0 39 2 4 1 31 2 

          
rs1938489 AA 361 51 677 63 431 58 767 61 

 
AG 265 45 385 33 274 37 408 34 

 
GG 32 4 55 4 37 5 54 5 

          
rs10889563 AA 137 20 297 26 166 23 323 26 

 
AG 358 55 567 54 366 49 605 48 

 
GG 163 26 253 19 210 28 300 25 

 
Missing 

      
1 

 

          
rs12042877 CC 341 50 606 53 361 49 648 53 

 
CT 268 43 444 42 314 42 473 39 

 
TT 49 7 67 5 67 9 107 8 

 
Missing 

      
1 

 

          
rs10749754 AA 176 26 211 16 220 30 252 21 

 
AG 341 52 548 52 357 48 588 47 

 
GG 141 22 358 32 165 22 389 32 

          



 

 210  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

rs12564626 AA 121 20 207 16 137 19 249 21 

 
AG 324 46 549 52 363 49 591 47 

 
GG 213 34 361 32 242 33 388 32 

 
Missing 

      
1 

 

          
rs1137101 AA 127 20 358 32 138 19 387 32 

 
AG 326 49 547 52 367 49 585 47 

 
GG 204 31 212 17 237 32 257 22 

 
Missing 1 

       

          
rs4655537 AA 89 12 160 16 111 15 169 15 

 
AG 324 50 514 42 356 48 557 44 

 
GG 245 37 443 43 275 37 503 41 

          
rs3828034 CC 1 0 38 2 1 0 43 3 

 
CT 58 10 332 36 40 5 342 27 

 
TT 599 90 747 61 701 95 844 70 

          
rs12405556 GG 461 71 650 56 515 69 696 57 

 
GT 174 26 406 40 203 27 434 36 

 
TT 23 3 61 5 24 3 99 7 

          
rs3762274 AA 125 20 420 37 139 19 483 39 

 
AG 335 49 544 51 363 49 558 44 

 
GG 198 30 153 12 238 32 188 17 

 
Missing 

    
2 

   

          
rs11585329 GG 608 92 789 74 691 93 865 71 

 
GT 48 8 300 25 51 7 331 26 

 
TT 2 0 28 2 

  
33 3 

          
rs11801408 CC 226 36 715 59 281 38 812 68 

 
CT 311 46 360 39 352 48 363 29 

 
TT 121 18 42 3 109 15 54 4 

          
rs8179183 CC 35 6 34 2 20 3 40 3 

 
CG 215 30 326 36 228 31 340 27 



 

 211  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
GG 408 64 757 62 494 67 849 70 

          
rs6678033 AA 201 30 154 19 210 28 172 13 

 
AG 336 52 522 43 373 50 564 45 

 
GG 119 18 441 38 158 21 493 42 

 
Missing 2 

   
1 

   

          
rs4655555 AA 20 5 32 2 20 3 46 3 

 
AT 165 24 322 33 204 28 340 28 

 
TT 473 71 763 65 518 70 842 68 

 
Missing 

      
1 

 

          
rs10889569 AA 110 15 441 38 148 20 493 42 

 
AT 331 54 518 43 371 50 563 45 

 
TT 211 31 155 19 219 30 171 13 

 
Missing 6 

 
3 

 
4 

 
2 

 

          
rs6693573 CC 1 0 

  
2 0 

  

 
CG 90 11 6 0 101 14 3 0 

 
GG 567 89 1111 100 639 86 1226 100 

          
rs17127807 AA 481 76 1071 96 527 71 1177 96 

 
AG 162 22 45 3 204 28 51 4 

 
GG 14 2 1 0 11 1 

  

 
Missing 1 

     
1 

 

          
rs6700896 CC 191 28 427 37 211 29 476 40 

 
CT 321 46 530 44 383 51 576 46 

 
TT 146 26 160 19 148 20 177 14 

          
rs17127826 AA 386 59 1065 96 416 56 1177 96 

 
AG 232 34 51 4 292 39 51 4 

 
GG 40 7 1 0 34 5 1 0 

          
rs17127828 AA 465 72 1068 96 536 72 1182 97 

 
AG 183 28 48 4 191 26 47 3 

 
GG 9 1 1 0 15 2 

  



 

 212  

  
Controls 

   
Cases 

   

  
African 
American  

Non-
African 
American 

 
African 
American  

Non-
African 
American 

 

  
N % N % N % N % 

 
Missing 1 

       

          
rs6413506 AA 600 90 1117 100 662 89 1224 99 

 
AG 57 9 

  
79 11 5 1 

 
GG 1 0 

  
1 0 

  
TNFA 

         
rs1799964 CC 19 3 56 4 12 2 50 4 

 
CT 181 28 346 31 211 28 445 36 

 
TT 458 69 715 65 519 70 734 59 

          
rs1800630 AA 11 2 35 2 5 1 30 3 

 
AC 126 19 285 26 148 20 334 27 

 
CC 521 79 797 71 589 80 865 71 

1 - counts (N) reflect raw data. Percentages are adjusted for study sampling probabilities. 
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Table 3.2 Association between adipocytokine SNPs and breast cancer 

 
Cases Controls OR (95% CI)1 CLR2 P-value 

ADIPOQ 
     

rs16861194 
     

    GG 53 63  0.70 ( 0.47 ,  1.04) 2.2 0.0794 

    AG 443 380  1.00 ( 0.85 ,  1.19) 1.4 0.9709 

    AA 1476 1332 Referent 
  

rs16861205 
     

    AA+AG 445 395  0.98 ( 0.83 ,  1.16) 1.4 0.8182 

    GG 1527 1381 Referent 
  

rs3821799 
     

    CC 548 482  1.02 ( 0.85 ,  1.24) 1.5 0.8197 

    CT 942 854  0.99 ( 0.84 ,  1.17) 1.4 0.9232 

    TT 482 440 Referent 
  

IL6 
     

rs2069824 
     

    CC+CT 311 313  0.84 ( 0.70 ,  1.01) 1.4 0.0604 

    TT 1661 1458 Referent 
  

rs2069827 
     

    GT+TT 251 225  1.03 ( 0.84 ,  1.27) 1.5 0.7805 

    GG 1721 1551 Referent 
  

rs1800796 
     

    CC+CG 247 194  1.18 ( 0.96 ,  1.46) 1.5 0.1253 

    GG 1725 1582 Referent 
  

LEP 
     

rs6976701 
     

    AA+AG 184 145  1.16 ( 0.91 ,  1.50) 1.7 0.2366 

    GG 1786 1630 Referent 
  

rs3793162 
     

    AA+AG 197 221  0.75 ( 0.59 ,  0.95) 1.6 0.0168 

    GG 1775 1555 Referent 
  

rs17151922 
     

    TT 51 42  1.17 ( 0.75 ,  1.83) 2.5 0.4915 

    GT 334 259  1.30 ( 1.05 ,  1.62) 1.5 0.0166 

    GG 1587 1475 Referent 
  

rs10954174 
     

    AA+AG 128 106  1.13 ( 0.84 ,  1.50) 1.8 0.4205 

    GG 1844 1670 Referent 
  

LEPR 
     

rs9436299 
     

    CC 173 126  1.30 ( 1.00 ,  1.69) 1.7 0.05 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    AC 733 681  0.97 ( 0.84 ,  1.12) 1.3 0.6815 

    AA 1066 969 Referent 
  

rs17412175 
     

    AA 253 264  0.87 ( 0.70 ,  1.06) 1.5 0.1677 

    AT+TT 1719 1512 Referent 
  

rs9436746 
     

    CC 555 542  0.88 ( 0.75 ,  1.02) 1.4 0.0951 

    AA+AC 1410 1230 Referent 
  

rs9436748 
     

    TT 244 262  0.81 ( 0.66 ,  0.99) 1.5 0.0429 

    GG+GT 1728 1511 Referent 
  

rs6657868 
     

    AA 364 309  1.07 ( 0.88 ,  1.31) 1.5 0.4803 

    AG 919 840  0.99 ( 0.85 ,  1.15) 1.4 0.8541 

    GG 689 626 Referent 
  

rs17127655 
     

    TT+CT 236 248  0.78 ( 0.62 ,  0.98) 1.6 0.0301 

    CC 1729 1524 Referent 
  

rs6588147 
     

    GG 165 129  1.21 ( 0.93 ,  1.58) 1.7 0.1541 

    AG 735 663  1.02 ( 0.88 ,  1.18) 1.3 0.838 

    AA 1072 984 Referent 
  

rs6704167 
     

    TT 249 256  0.86 ( 0.69 ,  1.08) 1.6 0.1929 

    AT 876 773  1.02 ( 0.88 ,  1.19) 1.3 0.7866 

    AA 845 745 Referent 
  

rs7529650 
     

    AA 550 485  0.97 ( 0.79 ,  1.18) 1.5 0.7401 

    AG 930 877  0.89 ( 0.75 ,  1.06) 1.4 0.1841 

    GG 490 413 Referent 
  

rs2025804 
     

    CC 185 132  1.31 ( 1.02 ,  1.69) 1.7 0.0369 

    CT 755 704  0.96 ( 0.83 ,  1.11) 1.3 0.5751 

    TT 1032 940 Referent 
  

rs11808888 
     

    AA 208 194  0.99 ( 0.77 ,  1.27) 1.7 0.9159 

    AG 647 562  1.05 ( 0.89 ,  1.23) 1.4 0.5842 

    GG 1117 1020 Referent 
  

rs11208654 
     

    CC 180 133  1.29 ( 0.99 ,  1.66) 1.7 0.0547 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    CT 772 706  1.00 ( 0.86 ,  1.15) 1.3 0.9493 

    TT 1015 931 Referent 
  

rs10889556 
     

    GG 218 168  1.19 ( 0.94 ,  1.51) 1.6 0.1397 

    AG 815 759  0.95 ( 0.82 ,  1.10) 1.3 0.5011 

    AA 939 848 Referent 
  

rs7526141 
     

    TT 266 267  0.83 ( 0.66 ,  1.05) 1.6 0.1292 

    CT 746 664  0.96 ( 0.81 ,  1.14) 1.4 0.6383 

    CC 959 843 Referent 
  

rs1751492 
     

    CC 179 131  1.30 ( 1.01 ,  1.67) 1.7 0.0431 

    CT 810 722  1.06 ( 0.92 ,  1.22) 1.3 0.4436 

    TT 983 923 Referent 
  

rs1171267 
     

    TT 248 186  1.25 ( 1.01 ,  1.54) 1.5 0.0402 

    GG+GT 1718 1589 Referent 
  

rs1782763 
     

    CC 226 159  1.36 ( 1.09 ,  1.71) 1.6 0.0069 

    TT+CT 1746 1615 Referent 
  

rs1409802 
     

    AA 120 76  1.50 ( 1.10 ,  2.06) 1.9 0.0113 

    AG 685 619  1.02 ( 0.88 ,  1.17) 1.3 0.8225 

    GG 1167 1081 Referent 
  

rs1137100 
     

    GG 122 79  1.45 ( 1.06 ,  1.97) 1.9 0.0202 

    AG 673 615  1.00 ( 0.87 ,  1.16) 1.3 0.9629 

    AA 1175 1082 Referent 
  

rs1343982 
     

    AA 183 123  1.43 ( 1.11 ,  1.83) 1.6 0.0048 

    GG+AG 1789 1653 Referent 
  

rs10889563 
     

    AA 490 434  0.91 ( 0.75 ,  1.10) 1.5 0.3435 

    AG 971 926  0.80 ( 0.68 ,  0.95) 1.4 0.0091 

    GG 510 416 Referent 
  

rs12042877 
     

    TT 174 116  1.43 ( 1.11 ,  1.84) 1.7 0.0063 

    CC+CT 1797 1660 Referent 
  

rs10749754 
     

    AA 472 387  1.11 (0.91, 1.34) 1.5 0.2992 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    AG 945 890  0.92 (0.79, 1.08) 1.4 0.3183 

    GG 555 499 Referent 
  

rs1137101 
     

    GG 526 485  0.91 ( 0.75 ,  1.10) 1.5 0.3114 

    AG 952 874  0.89 ( 0.75 ,  1.06) 1.4 0.1868 

    AA 494 416 Referent 
  

rs4655537 
     

    AA 281 249  0.99 ( 0.81 ,  1.23) 1.5 0.9611 

    AG 913 839  0.96 ( 0.83 ,  1.11) 1.3 0.5877 

    GG 778 688 Referent 
  

rs3828034 
     

    CC 44 39  0.96 ( 0.60 ,  1.54) 2.5 0.8742 

    CT 382 390  0.83 ( 0.69 ,  0.98) 1.4 0.0324 

    TT 1546 1347 Referent 
  

rs12405556 
     

    TT 123 84  1.35 ( 1.00 ,  1.83) 1.8 0.0529 

    GT 637 581  1.00 ( 0.86 ,  1.15) 1.3 0.9583 

    GG 1212 1111 Referent 
  

rs3762274 
     

    GG 426 351  1.09 ( 0.89 ,  1.33) 1.5 0.3948 

    AG 921 880  0.90 ( 0.77 ,  1.05) 1.4 0.1912 

    AA 623 545 Referent 
  

rs11801408 
     

    TT 163 163  0.84 ( 0.66 ,  1.08) 1.6 0.1676 

    CC+CT 1809 1613 Referent 
  

rs17127826 
     

    GG 35 41  0.70 ( 0.43 ,  1.14) 2.6 0.1495 

    AA+AG 1937 1735 Referent 
  

TNF 
     

rs1799964 
     

    CC 62 75  0.71 ( 0.49 ,  1.03) 2.1 0.068 

    CT 657 527  1.16 ( 1.01 ,  1.35) 1.3 0.0419 

    TT 1253 1174 Referent 
  

1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
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Table 3.3 Odds ratios for SNPs associated with luminal A and basal-like breast cancer 

 
Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

ADIPOQ 
          

 

rs16861194 
          

 

    GG 14 63  0.56 ( 0.30 ,  1.03) 3.5 0.0634 8 63  0.74 ( 0.34 ,  1.64) 4.9 0.4574 0.5382 

    AG 144 380  0.98 ( 0.77 ,  1.23) 1.6 0.8330 42 380  0.78 ( 0.53 ,  1.14) 2.1 0.1947 0.2746 

    AA 521 1332 Referent 
  

150 1332 Referent 
  

 

rs16861205 
          

 

    AA+AG 150 395  1.02 ( 0.81 ,  1.29) 1.6 0.8559 39 395  0.66 ( 0.45 ,  0.97) 2.2 0.0345 0.0369 

    GG 529 1381 Referent 
  

161 1381 Referent 
  

 

rs3821799 
          

 

    CC 191 482  0.99 ( 0.76 ,  1.28) 1.7 0.9200 58 482  1.01 ( 0.68 ,  1.50) 2.2 0.9695 0.9235 

    CT 323 854  0.97 ( 0.77 ,  1.22) 1.6 0.7792 80 854  0.70 ( 0.48 ,  1.00) 2.1 0.0499 0.0969 

    TT 165 440 Referent 
  

62 440 Referent 
  

 

IL6 
          

 

rs2069824 
          

 

    CC+CT 89 313  0.70 ( 0.54 ,  0.92) 1.7 0.0090 37 313  1.01 ( 0.68 ,  1.48) 2.2 0.9781 0.1021 

    TT 590 1458 Referent 
  

163 1458 Referent 
  

 

rs2069827 
          

 

    GT+TT 107 225  1.31 ( 1.01 ,  1.72) 1.7 0.0455 21 225  1.05 ( 0.64 ,  1.73) 2.7 0.8491 0.3942 

    GG 572 1551 Referent 
  

179 1551 Referent 
  

 

rs1800796 
          

 

    CC+CG 97 194  1.44 ( 1.09 ,  1.90) 1.7 0.0095 22 194  0.86 ( 0.53 ,  1.40) 2.6 0.5468 0.0461 

    GG 582 1582 Referent 
  

178 1582 Referent 
  

 

LEP 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

rs6976701 
          

 

    AA+AG 69 145  1.42 ( 1.01 ,  1.99) 2.0 0.0415 23 145  0.99 ( 0.60 ,  1.64) 2.7 0.9748 0.1922 

    GG 610 1630 Referent 
  

177 1630 Referent 
  

 

rs3793162 
          

 

    AA+AG 64 221  0.82 ( 0.58 ,  1.14) 2.0 0.2393 29 221  0.79 ( 0.50 ,  1.26) 2.5 0.3174 0.8953 

    GG 615 1555 Referent 
  

171 1555 Referent 
  

 

rs17151922 
          

 

    TT 12 42  0.89 ( 0.44 ,  1.77) 4.0 0.7315 7 42  0.98 ( 0.41 ,  2.34) 5.7 0.9699 0.8374 

    GT 111 259  1.41 ( 1.04 ,  1.92) 1.8 0.0248 40 259  1.01 ( 0.65 ,  1.55) 2.4 0.9809 0.1572 

    GG 556 1475 Referent 
  

153 1475 Referent 
  

 

rs10954174 
          

 

    AA+AG 35 106  1.01 ( 0.66 ,  1.54) 2.3 0.9581 23 106  1.66 ( 0.99 ,  2.78) 2.8 0.0524 0.0976 

    GG 644 1670 Referent 
  

177 1670 Referent 
  

 

LEPR 
          

 

rs9436299 
          

 

    CC 69 126  1.46 ( 1.04 ,  2.05) 2.0 0.0273 10 126  0.91 ( 0.46 ,  1.82) 4.0 0.7876 0.1913 

    AC 251 681  0.95 ( 0.78 ,  1.16) 1.5 0.6108 84 681  1.25 ( 0.91 ,  1.71) 1.9 0.1671 0.1124 

    AA 359 969 Referent 
  

106 969 Referent 
  

 

rs17412175 
          

 

    AA 92 264  0.85 ( 0.64 ,  1.12) 1.7 0.2578 14 264  0.56 ( 0.31 ,  1.01) 3.3 0.0528 0.1765 

    AT+TT 587 1512 Referent 
  

186 1512 Referent 
  

 

rs9436746 
          

 

    CC 197 542  0.87 ( 0.70 ,  1.07) 1.5 0.1781 37 542  0.57 ( 0.39 ,  0.85) 2.2 0.0050 0.0468 

    AA+AC 481 1230 Referent 
  

161 1230 Referent 
  

 

rs9436748 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    TT 88 262 0.82 (0.62, 1.08) 1.7 0.1526 14 262 0.48 (0.27, 0.87) 3.2 0.0148 0.1305 

    GG+GT 591 1511 Referent 
  

186 1511 Referent 
  

 

rs6657868 
          

 

    AA 132 309  1.18 ( 0.91 ,  1.55) 1.7 0.2178 36 309  1.16 ( 0.74 ,  1.84) 2.5 0.5177 0.9452 

    AG 310 840  0.99 ( 0.80 ,  1.21) 1.5 0.9003 110 840  1.45 ( 1.02 ,  2.06) 2.0 0.0383 0.0434 

    GG 237 626 Referent 
  

54 626 Referent 
  

 

rs17127655 
          

 

   CT+TT 70 248  0.76 ( 0.54 ,  1.06) 1.9 0.1047 29 248  0.65 ( 0.41 ,  1.04) 2.5 0.0729 0.5662 

    CC 606 1524 Referent 
  

170 1524 Referent 
  

 

rs6588147 
          

 

    GG 66 129  1.36 ( 0.96 ,  1.91) 2.0 0.0805 8 129  0.74 ( 0.35 ,  1.59) 4.6 0.4412 0.1295 

    AG 260 663  1.04 ( 0.85 ,  1.27) 1.5 0.7223 86 663  1.39 ( 1.01 ,  1.91) 1.9 0.0417 0.0905 

    AA 353 984 Referent 
  

106 984 Referent 
  

 

rs6704167 
          

 

    TT 91 256  0.87 ( 0.65 ,  1.17) 1.8 0.3663 16 256  0.67 ( 0.37 ,  1.19) 3.2 0.1742 0.3920 

    AT 297 773  0.97 ( 0.79 ,  1.19) 1.5 0.7989 94 773  1.18 ( 0.85 ,  1.63) 1.9 0.3289 0.2881 

    AA 291 745 Referent 
  

89 745 Referent 
  

 

rs7529650 
          

 

    AA 196 485  0.90 ( 0.69 ,  1.17) 1.7 0.4211 39 485  0.89 ( 0.55 ,  1.43) 2.6 0.6285 0.9784 

    AG 307 877  0.78 ( 0.62 ,  0.98) 1.6 0.0362 112 877  1.21 ( 0.84 ,  1.76) 2.1 0.3071 0.0287 

    GG 176 413 Referent 
  

49 413 Referent 
  

 

rs2025804 
          

 

    CC 73 132  1.51 ( 1.08 ,  2.09) 1.9 0.0148 13 132  1.11 ( 0.59 ,  2.06) 3.5 0.7512 0.3463 

    CT 269 704  1.02 ( 0.84 ,  1.24) 1.5 0.8366 85 704  1.20 ( 0.88 ,  1.65) 1.9 0.2526 0.3431 

    TT 337 940 Referent 
  

102 940 Referent 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

rs11808888 
          

 

    AA 67 194  0.97 ( 0.68 ,  1.39) 2.0 0.8775 20 194  0.60 ( 0.34 ,  1.06) 3.1 0.0792 0.1243 

    AG 206 562  0.95 ( 0.76 ,  1.18) 1.6 0.6424 76 562  0.98 ( 0.69 ,  1.39) 2.0 0.9089 0.8694 

    GG 406 1020 Referent 
  

104 1020 Referent 
  

 

rs11208654 
          

 

    CC 69 133  1.43 ( 1.03 ,  2.00) 2.0 0.0346 12 133  1.03 ( 0.54 ,  1.96) 3.6 0.9199 0.3336 

    CT 277 706  1.08 ( 0.89 ,  1.31) 1.5 0.4479 88 706  1.25 ( 0.92 ,  1.71) 1.9 0.1572 0.3807 

    TT 331 931 Referent 
  

100 931 Referent 
  

 

rs10889556 
          

 

    GG 78 168  1.40 ( 1.02 ,  1.92) 1.9 0.0365 23 168  1.24 ( 0.74 ,  2.07) 2.8 0.4155 0.6560 

    AG 287 759  1.03 ( 0.85 ,  1.26) 1.5 0.7384 98 759  1.21 ( 0.87 ,  1.67) 1.9 0.2531 0.3787 

    AA 314 848 Referent 
  

79 848 Referent 
  

 

rs7526141 
  

 

       
 

    TT 103 267  0.95 ( 0.69 ,  1.29) 1.9 0.7377 17 267  0.66 ( 0.36 ,  1.21) 3.4 0.1766 0.2580 

    CT 270 664  1.04 ( 0.83 ,  1.32) 1.6 0.7124 68 664  0.98 ( 0.67 ,  1.44) 2.2 0.9086 0.7499 

    CC 306 843 Referent 
  

115 843 Referent 
  

 

rs1751492 
          

 

    CC 59 131  1.33 ( 0.94 ,  1.87) 2.0 0.1059 17 131  1.19 ( 0.68 ,  2.09) 3.1 0.5329 0.7514 

    CT 290 722  1.13 ( 0.93 ,  1.37) 1.5 0.2165 85 722  1.09 ( 0.80 ,  1.49) 1.9 0.5878 0.8609 

    TT 330 923 Referent 
  

98 923 Referent 
  

 

rs1171267 
          

 

    TT 85 186  1.29 ( 0.97 ,  1.71) 1.8 0.0796 25 186  1.21 ( 0.77 ,  1.92) 2.5 0.4078 0.9120 

    GG+GT 593 1589 Referent 
  

174 1589 Referent 
  

 

rs1782763 
          

 

    CC 78 159  1.38 ( 1.03 ,  1.87) 1.8 0.0332 21 159  1.29 ( 0.79 ,  2.12) 2.7 0.3094 0.7955 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

   CT+TT 601 1615 Referent 
  

179 1615 Referent 
  

 

rs1409802 
          

 

    AA 42 76  1.64 ( 1.09 ,  2.48) 2.3 0.0176 8 76  1.08 ( 0.50 ,  2.33) 4.7 0.8499 0.2962 

    AG 254 619  1.13 ( 0.93 ,  1.37) 1.5 0.2307 72 619  1.05 ( 0.76 ,  1.44) 1.9 0.7690 0.6762 

    GG 383 1081 Referent 
  

120 1081 Referent 
  

 

rs1137100 
          

 

    GG 45 79  1.64 ( 1.10 ,  2.45) 2.2 0.0155 8 79  1.02 ( 0.48 ,  2.21) 4.6 0.9505 0.2417 

    AG 248 615  1.10 ( 0.91 ,  1.34) 1.5 0.3280 70 615  1.04 ( 0.75 ,  1.42) 1.9 0.8319 0.7139 

    AA 384 1082 Referent 
  

122 1082 Referent 
  

 

rs1343982 
          

 

    AA 62 123  1.47 ( 1.05 ,  2.04) 1.9 0.0228 19 123  1.37 ( 0.81 ,  2.30) 2.8 0.2380 0.7985 

    AG+GG 617 1653 Referent 
  

181 1653 Referent 
  

 

rs10889563 
          

 

    AA 157 434  0.75 ( 0.58 ,  0.97) 1.7 0.0301 42 434  0.81 ( 0.52 ,  1.26) 2.4 0.3515 0.7346 

    AG 331 926  0.71 ( 0.57 ,  0.89) 1.6 0.0028 105 926  0.84 ( 0.59 ,  1.21) 2.1 0.3470 0.3983 

    GG 191 416 Referent 
  

52 416 Referent 
  

 

rs12042877 
          

 

    TT 60 116  1.49 ( 1.06 ,  2.09) 2.0 0.0200 20 116  1.55 ( 0.93 ,  2.58) 2.8 0.0931 0.8886 

    CC+CT 619 1660 Referent 
  

180 1660 Referent 
  

 

rs10749754 
          

 

    AA 177 387  1.35 ( 1.04 ,  1.74) 1.7 0.0238 48 387  1.21 ( 0.78 ,  1.87) 2.4 0.4015 0.6436 

    AG 319 890  0.97 ( 0.78 ,  1.21) 1.6 0.7719 106 890  1.15 ( 0.79 ,  1.67) 2.1 0.4577 0.3902 

    GG 183 499 Referent 
  

46 499 Referent 
  

 

rs1137101 
          

 

    GG 182 416 1.35 (1.04, 1.75) 1.7 0.0252 53 416 1.10 (0.72, 1.69) 2.4 0.6648 0.3831 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    AG 327 874 1.07 (0.86, 1.35) 1.6 0.5379 99 874 1.01 (0.70, 1.47) 2.1 0.9443 0.7760 

    AA 170 485 Referent 
  

48 485 Referent 
  

 

rs4655537 
          

 

    AA 79 249  0.72 ( 0.54 ,  0.98) 1.8 0.0341 27 249  0.92 ( 0.57 ,  1.47) 2.6 0.7145 0.3623 

    AG 312 839  0.87 ( 0.71 ,  1.06) 1.5 0.1683 93 839  0.92 ( 0.67 ,  1.28) 1.9 0.6337 0.7322 

    GG 288 688 Referent 
  

80 688 Referent 
  

 

rs3828034 
          

 

    CC 14 39  0.92 ( 0.48 ,  1.76) 3.7 0.8060 5 39  1.52 ( 0.57 ,  4.08) 7.2 0.4037 0.3162 

    CT 152 390  0.96 ( 0.76 ,  1.21) 1.6 0.7496 28 390  0.70 ( 0.45 ,  1.09) 2.4 0.1127 0.1816 

    TT 513 1347 Referent 
  

167 1347 Referent 
  

 

rs12405556 
          

 

    TT 47 84  1.58 ( 1.06 ,  2.33) 2.2 0.0233 9 84  1.02 ( 0.49 ,  2.12) 4.3 0.9587 0.2573 

    GT 231 581  1.06 ( 0.87 ,  1.30) 1.5 0.5419 62 581  0.97 ( 0.70 ,  1.35) 1.9 0.8762 0.6209 

    GG 401 1111 Referent 
  

129 1111 Referent 
  

 

rs3762274 
          

 

    GG 161 351  1.40 ( 1.07 ,  1.82) 1.7 0.0132 49 351  1.08 ( 0.71 ,  1.67) 2.4 0.7102 0.2753 

    AG 311 880  0.96 ( 0.77 ,  1.20) 1.5 0.7325 93 880  0.87 ( 0.61 ,  1.25) 2.0 0.4552 0.6132 

    AA 205 545 Referent 
  

58 545 Referent 
  

 

rs11801408 
          

 

    TT 48 163  0.77 ( 0.54 ,  1.09) 2.0 0.1420 16 163  0.65 ( 0.37 ,  1.14) 3.0 0.1353 0.6105 

    CC+CT 631 1613 Referent 
  

184 1613 Referent 
  

 

rs17127826 
          

 

    GG 8 41  0.50 ( 0.23 ,  1.10) 4.9 0.0856 6 41  0.78 ( 0.32 ,  1.93) 6.0 0.5965 0.4168 

    AA+AG 671 1735 Referent 
  

194 1735 Referent 
  

 

TNF 
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Luminal 
A 

 
   

Basal-
like 

 
   

Luminal 
A vs. 
basal-like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

rs1799964 
          

 

    CC 24 75  0.79 ( 0.48 ,  1.30) 2.7 0.3506 5 75  0.60 ( 0.23 ,  1.53) 6.6 0.2852 0.6064 

    CT 223 527  1.14 ( 0.93 ,  1.39) 1.5 0.1963 52 527  0.83 ( 0.59 ,  1.17) 2.0 0.2884 0.0942 

    TT 432 1174 Referent 
  

143 1174 Referent 
  

 
1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
3 - H0: β (luminal A) = β(basal-like) 
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Table 3.4a Joint effects for SNPs with multiplicative interaction between genotype and 
WHR1, comparing all cases and controls 
 

 
WHR < 0.77 WHR ≥ 0.77 

 
 

 
 

Case/control 
OR (95% CI)2 

Case/control 
OR (95% CI)2 

LRT3 P-value S (90% CI)4 

 
 

<0.77 >=0.77 
 

 

LEPR  
    

 

rs1137100 GG 50/24 70/53 0.06055  

 
 

2.32 (1.36, 3.95) 1.37 (0.91, 2.07) 
 

0.33 (0.12, 0.96) 

 AG 204/220 456/390 
 

 

 
 

0.92 (0.71, 1.18) 1.27 (1.02, 1.57) 
 

1.32 (0.56, 3.12) 

 AA 356/352 805/716 
 

 

 
 

Referent 1.23 (1.01, 1.49) 
 

 

 
    

 

rs12042877 TT 57/31 115/81 0.08941  

 
 

2.07 (1.29, 3.32) 1.61 (1.16, 2.22) 
 

0.55 (0.25, 1.18) 

 CC+CT 552/565 1218/1078 
 

 

 
 

Referent 1.27 (1.09, 1.49) 
 

 
1 - waist-hip ratio 
2 - odds ratio, 95% confidence interval adjusted for BMI, age, self-identified race, African ancestry, and offset 
term 
3 - likelihood ratio test  
4 - synergy index, 90% confidence interval 
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Table 3.4b Joint effects for SNPs with multiplicative interaction between genotype and 
WHR1, comparing basal-like cases and controls 
 

 
WHR < 0.77 WHR ≥ 0.77 

 
 

 
 

Case/control 
OR (95% CI)2 

Case/control 
OR (95% CI)2 

LRT3 P-value S (90% CI)4 

 
 

<0.77 >=0.77 
 

 

IL6  
    

 

rs2069824 TT 32/492 127/948  0.0756  

 
 

Referent 2.25 (1.45, 3.48) 
 

0.45 (0.19, 1.06) 

 CC+CT 11/103 25/207 
 

 

 
 

1.96 (0.92, 4.15) 1.92 (1.07, 3.47) 
 

 
1 - waist-hip ratio 
2 - odds ratio, 95% confidence interval adjusted for BMI, age, self-identified race, African ancestry, and offset 
term 
3 - likelihood ratio test  
4 - synergy index, 90% confidence interval 
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Table 3.4c Joint effects for SNPs with multiplicative interaction between genotype and 
WHR1, comparing luminal A cases and controls 

  
WHR < 0.77 WHR ≥ 0.77   

  
Case/control 
OR (95% CI)2 

Case/control 
OR (95% CI)2 

LRT3 P-
value 

S (90% CI)4 

ADIPOQ 
   

  

rs16861194 AA 155/481 363/834 0.0454  

  
Referent 1.28 (1.00, 1.63)   

 
AG 38/95 103/281   

  
1.08 (0.69, 1.68) 1.19 (0.86, 1.65)  0.64 (0.42,  0.97) 

 
GG 1/20 12/43   

  
---5 0.92 (0.45, 1.89)  ---5 

    
  

LEPR 
   

  

rs9436746 AA+AC 134/371 340/839 0.0895  

  
Referent 1.16 (0.89 , 1.50)   

 
CC 60/223 137/318   

  
0.71 (0.49, 1.02) 1.13 (0.84, 1.53)  ---5 

    
  

rs6588147 AA 88/315 265/657 0.0508  

  
Referent 1.54 (1.14, 2.08)   

 
AG 78/234 176/423   

  
1.18 (0.81, 1.70) 1.46 (1.07, 2.00)  0.67 (0.38, 1.16) 

 
GG 28/47 37/79   

  
2.44 (1.40, 4.24) 1.55 (0.95, 2.52)  0.37 (0.14, 0.93) 

    
  

rs6704167 AA 74/224 212/509 0.0561  

  
Referent 1.30 (0.93, 1.81)   

 
AT 95/254 200/511   

  
1.09 (0.75, 1.58) 1.18 (0.85, 1.63)  0.56 (0.24, 1.31) 

 
TT 25/118 66/137   

  
0.63 (0.37, 1.06) 1.38 (0.91, 2.10)  ---5 

    
  

rs12042877 CC+CT 175/565 438/1078 0.0762  

  
Referent 1.35 (1.08, 1.69)   

 
TT 19/31 40/81   

  
2.42 (1.30, 4.53) 1.73 (1.11, 2.69)  0.43 (0.16, 1.16) 

1 - waist-hip ratio 
2 - odds ratio, 95% confidence interval adjusted for BMI, age, self-identified race, African ancestry, and offset 
term 
3 - likelihood ratio test of multiplicative interaction term 
4 - synergy index, 90% confidence interval 
5 - parameters could not be estimated 
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Table 3.5 Association between adipocytokine haplotypes and breast cancer 
Haplotype  All Cases   Luminal A   Basal-like   
 No. Copies OR (95% CI)1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 
IL6           
1: rs2069827, rs1800796          
1a: G-C 0 Referent   Referent   Referent   
 1  1.07 (0.88, 1.30) 0.4930 1.5 1.32 (1.02, 1.72) 0.0382 1.7 0.86 (0.53, 1.38) 0.5239 2.6 
 2  2.05 (1.13, 3.72) 0.0189 3.3 1.88 (0.67, 5.24) 0.2284 7.8 ---3   
           
1b: G-G 0 Referent   Referent   Referent   
 1  0.85 (0.60, 1.20) 0.3599 2.0 0.81 (0.48, 1.37) 0.4399 2.8 ---3   
 2  0.82 (0.56, 1.20) 0.3004 2.1 0.64 (0.37, 1.09) 0.1021 2.9 ---3   
           
2: rs1800796, rs1800795          
C-G 0 Referent   Referent   Referent   
 1 1.06 (0.87, 1.29) 0.5672 1.5 1.30 (1.00, 1.70) 0.0465 1.7 0.86 (0.53, 1.39) 0.5304 2.6 
 2 1.96 (1.08, 3.57) 0.0275 3.3 1.81 (0.65, 5.05) 0.2576 7.8 ---3   
           
LEP           
3: rs12706832, rs10244329, rs11763517, rs7795794        
A-T-T-G 0 Referent   Referent   Referent   
 1  0.82 (0.71, 0.95) 0.0088 1.3 1.31  (1.00, 1.73) 0.0514 1.7 0.89 (0.64, 1.26) 0.5176 2.0 
 2  2.14 (1.57, 2.93) < 0.0001 1.9 2.27  (1.32, 3.89) 0.0029 2.9 1.14 (0.43, 2.99) 0.7910 6.9 
           
4: rs11760956, rs10954173, rs3793162, rs3828942, rs17151922       
4a: G-G-A-G-G 0 Referent   Referent   Referent   
 1  0.79 (0.64, 0.96) 0.0202 1.5 0.79 (0.57, 1.09) 0.1501 1.9 0.65 (0.40, 1.07) 0.0909 2.7 
 2  2.69 (1.62, 4.46) 0.0001 2.8 1.78 (0.75, 4.25) 0.1945 5.7 2.51 (0.78, 8.06) 0.1226 10.3 
           
4b: G-G-G-G-T 0 Referent   Referent   Referent   
 1  0.90 (0.77, 1.05) 0.1665 1.4 1.27 (0.95, 1.68) 0.1012 1.8 0.94 (0.66, 1.33) 0.7220 2.0 
 2  2.32 (1.62, 3.33) < 0.0001 2.1 2.09 (1.09, 4.02) 0.0265 3.7 1.11 (0.34, 3.58) 0.8670 10.5 
           
5: rs17151922, rs10954174, rs11761556         
T-G-C 0 Referent   Referent   Referent   
 1  0.92 (0.77, 1.11) 0.3876 1.4 1.22 (0.92, 1.63) 0.1694 1.8 0.63 (0.39, 1.00) 0.0504 2.5 
 2  2.00 (1.26, 3.17) 0.0031 2.5 3.21 (1.49, 6.90) 0.0029 4.6 ---3   
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Haplotype  All Cases   Luminal A   Basal-like   
 No. Copies OR (95% CI)1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 
           
LEPR           
6: rs17412175, rs9436746, rs9436748         
6a: A-C-T 0 Referent   Referent   Referent   
 1  0.79 (0.69, 0.91) 0.0010 1.3 0.79 (0.65, 0.97) 0.0261 1.5 0.83 (0.58, 1.20) 0.3180 2.1 
 2  0.97 (0.78, 1.22) 0.8214 1.6 0.93 (0.68, 1.27) 0.6460 1.9 0.61 (0.32, 1.19) 0.1507 3.8 
           
6b: T-A-G 0 Referent   Referent   Referent   
 1  0.99 (0.87, 1.12) 0.8254 1.3 0.95 (0.78, 1.15) 0.6107 1.5 1.52 (1.03, 2.23) 0.0336 2.2 
 2  1.15 (0.95, 1.39) 0.1388 1.5 1.24 (0.96, 1.61) 0.0948 1.7 1.63 (1.03, 2.58) 0.0352 2.5 
           
7: rs10749754, rs12042877, rs12564626           
7a: A-T-A 0          
 1  1.03 (0.90, 1.17) 0.6941 1.3 1.11 (0.92, 1.34) 0.2758 1.5 1.04 (0.75, 1.43) 0.8250 1.9 
 2  1.37 (1.06, 1.76) 0.0158 1.7 1.52 (1.07, 2.16) 0.0196 2.0 1.15 (0.57, 2.33) 0.6969 4.1 
           
7b: G-C-G 0          
 1  0.87 (0.77, 0.99) 0.0342 1.3 0.82 (0.67, 1.00) 0.0458 1.5 0.86 (0.61, 1.20) 0.3707 2.0 
 2  0.88 (0.73, 1.06) 0.1787 1.4 0.74 (0.57, 0.95) 0.0204 1.7 0.87 (0.57, 1.33) 0.5230 2.4 
           
8: rs12405556, rs3762274              
8a: G-A  Referent         
  0.84 (0.74, 0.96) 0.0127 1.3 0.74 (0.61, 0.91) 0.0048 1.5 0.92 (0.65, 1.31) 0.6440 2.0 
  0.88 (0.73, 1.06) 0.1648 1.5 0.71 (0.55, 0.92) 0.0092 1.7 0.87 (0.56, 1.35) 0.5355 2.4 
           
8b: T-A 0 Referent   Referent   Referent   
 1 1.24 (0.96, 1.59) 0.0938 1.6 1.19 (0.85, 1.66) 0.3092 2.0 ---3   
 2 2.59 (1.31, 5.11) 0.0060 3.9 2.39 (0.83, 6.85) 0.1053 8.2 ---3   
           
8c: T-G 0 Referent   Referent   Referent   
 1  0.96 (0.83, 1.11) 0.5535 1.3 1.05 (0.86, 1.28) 0.6479 1.5 0.86 (0.60, 1.23) 0.4141 2.1 
 2  1.32 (0.96, 1.80) 0.0832 1.9 1.60 (1.05, 2.46) 0.0302 2.4 0.96 (0.38, 2.41) 0.9336 6.3 
           
9: rs2025804, rs7518849, rs10158579         
9a: T-C-T 0 Referent   Referent   Referent   
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Haplotype  All Cases   Luminal A   Basal-like   
 No. Copies OR (95% CI)1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 
 1 0.90 (0.76, 1.06) 0.2163 1.4 0.74 (0.58, 0.95) 0.0172 1.6 1.25 (0.88, 1.78) 0.2152 2.0 
 2 1.43 (0.83, 2.20) 0.1011 2.4 1.57 (0.83, 3.00) 0.1680 3.6 1.99 (0.78, 5.04) 0.1485 6.4 
           
9b: T-T-T 0 Referent   Referent   Referent   
 1 0.91 (0.81, 1.03) 0.1331 1.3 0.82 (0.68, 0.99) 0.0349 1.4 0.79 (0.58, 1.08) 0.1435 1.9 
 2 0.91 (0.75, 1.11) 0.3628 1.5 1.00 (0.77, 1.29) 0.9748 1.7 0.65 (0.40, 1.07) 0.0927 2.7 
1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, BMI, and offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
3 - parameters not estimated due to small sample size 
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Table 3.6 Association between adipocytokine haplotypes and breast cancer overall, stratified by WHR 
Haplotype  WHR < 0.77   WHR ≥ 0.77    

 No. copies OR (95% CI)1 P-Value CLR2 OR (95% CI)1 P-Value CLR2 
LRT3 
P-value 

IL6 1a: G-C4 0 Referent   Referent   0.0822 
 1  1.65 (1.11, 2.43) 0.0124 2.2 0.91 (0.73, 1.15) 0.4477 1.6  

 2  3.80 (1.05, 13.75) 0.0415 13.1 1.67 (0.85, 3.28) 0.1403 3.9  
         

LEPR 8b: T-A5 0 Referent   Referent   0.0997 
 1 1.13 (0.75, 1.71) 0.5440 2.3 1.29 (0.94, 1.77) 0.1160 1.9  

 2 4.32 (1.72, 10.83) 0.0018 6.3 1.45 (0.48, 4.32) 0.5092 8.9  
1 - odds ratio and 95% confidence interval, adjusted for age, self-identified race, African ancestry, BMI, and offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
3 - likelihood ratio test 
4 - rs2069827and rs1800796 
5 - rs12405556 and rs3762274     
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Table 3.7 Adipocytokine functional SNP odds ratios and 95% confidence intervals for CBCS and previously published studies    

 
CBCS  
all cases1  

CBCS  
luminal A1  

CBCS  
basal-like1  

Kaklamani et al. 
(86) 

   

ADIPOQ        
rs2241766        
+45 T/G        
GG+GT 1.00 (0.84, 1.21) 0.99 (0.77, 1.27) 1.18 (0.78, 1.77) 0.64 (0.49, 0.83)    
TT Referent Referent Referent Referent    
        
rs1501299        
+276 G/T        
GG 1.13 (0.89, 1.45) 1.22 (0.86, 1.73) 0.84 (0.52, 1.37) 1.80 (1.14, 2.85)    
GT 1.10 (0.86, 1.41) 1.14 (0.81, 1.63) 0.72 (0.44, 1.19) 1.59 (1.03, 2.48)    
TT Referent Referent Referent Referent    
        

 
CBCS  
all cases1  

CBCS  
luminal A1  

CBCS  
basal-like1  

Slattery et al.(19), 
premenopausal2 

Slattery et al.(19), 
postmenopausal/ 
no HRT2 

Slattery et al.(19), 
postmenopausal/ 
HRT2 

Hefler et al.(18) 

IL6        
rs1800795        
-174 G/C        
CC 0.99 (0.78, 1.26) 1.06 (0.77, 1.46) 1.23 (0.70, 2.17)    2.0 (1.1, 3.6) 
CG 1.00 (0.85, 1.18) 1.00 (0.80, 1.26) 1.03 (0.71, 1.53)    1.5 (1.0, 2.3) 
CC+CG 1.00 (0.85, 1.17) 1.02 (0.82, 1.26) 1.08 (0.75, 1.56) 0.76 (0.56, 1.02) 0.68 (0.47, 0.99) 0.78 (0.61, 1.00)  
GG Referent Referent Referent Referent Referent Referent Referent 
        
rs1800796        
 -572 G/C        
CC+CG 1.18 (0.96, 1.46) 1.44 (1.09, 1.90) 0.86 (0.53, 1.40) 1.53 (0.99, 2.37) 1.33 (0.78, 2.26) 1.12 (0.77, 1.64)  
GG Referent Referent Referent Referent Referent Referent  
        
rs2069832        
Intron 2 
G/A 

       

AA+AG 1.01 (0.86, 1.18) 1.03 (0.83, 1.27) 1.07 (0.74, 1.55) 0.76 (0.56, 1.03) 0.70 (0.48, 1.02) 0.77 (0.60, 1.00)  
GG Referent Referent Referent Referent Referent Referent  
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CBCS  
all cases1  

CBCS  
luminal A1  

CBCS  
basal-like1  

Snoussi et al. (20) Woo et al. (21) Han et al. (24) Cleveland et al. 
(25) 

LEPR        
rs1137101        
Q223R        
GG 1.10 (0.91, 1.34) 1.35 (1.04, 1.75)  1.10 (0.72, 1.69) 2.26 (1.31, 3.90) 0.59 (0.19, 1.81) Referent 1.04 (0.81, 1.34) 
AG 0.99 (0.84, 1.16) 1.07 (0.86, 1.35)  1.01 (0.70, 1.47) 1.68 (1.12, 2.50) Referent3 1.30 (1.03, 2.70) 1.00 (0.78, 1.27) 
AA Referent Referent Referent Referent  7.14 (1.92, 25.60) Referent 
        
rs1137100        
K109R        
GG 1.45 (1.06, 1.97)  1.64 (1.10, 2.45)  1.02 (0.48, 2.21)  1.08 (0.40, 2.93)   
AG 1.00 (0.87, 1.16)  1.10 (0.91, 1.34)  1.04 (0.75, 1.42)  Referent3   
AA Referent Referent Referent     
        
rs8179183        
K656N        
CC  0.70 (0.48, 1.03)  0.70 (0.41, 1.20)  0.78 (0.34, 1.77)     
CG  0.90 (0.77, 1.04)  1.05 (0.86, 1.28)  0.84 (0.60, 1.18)  0.63 (0.14, 2.81)   
GG Referent Referent Referent  Referent   
        

 
CBCS  
all cases1  

CBCS  
luminal A1  

CBCS  
basal-like1  

Gaudet et al.(22) Kohaar et al. (23) 
  

TNFA        
rs1800630        
-863 C/A        
AA 0.65 (0.40, 1.05) 0.76 (0.41, 1.44) 0.67 (0.20, 2.21) 0.95 (0.64, 1.42)    
AC 1.07 (0.91, 1.26) 1.12 (0.90, 1.38) 0.84 (0.58, 1.22) 0.89 (0.76, 1.05)    
AA+AC 1.03 (0.88, 1.20) 1.08 (0.88, 1.33) 0.82 (0.57, 1.19)  0.86 (0.41, 1.80)   
CC Referent Referent Referent Referent Referent   
1 - odds ratio, 95% confidence interval adjusted for age, self-identified race, African ancestry, offset term 
2 - white, non-Hispanic women only 
3 - no subjects with AA genotype in study 
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Table 3.8 Minor allele frequencies in adipocytokine functional SNPs 
 Study Subjects    
   rs822396 (-3971 A>G) 

minor allele: G 
rs2241766 (+45 T>G) 
minor allele: G 

rs1501299 (+276 G>T) 
minor allele: T 

ADIPOQ CBCS AA and white female 
population-based 
controls from North 
Carolina 

AA: 0.22 
non-AA: 0. 22 

AA: 0.40 
non-AA: 0.11 

AA: 0.38 
non-AA: 0.26 

 International HapMap 
Project 

 CEU: 0.16 
ASW: 0.15 
YRI: 0.24 

CEU: -- 
ASW: -- 
YRI: -- 

CEU: 0.28 
ASW: 0.32 
YRI: 0.38 

 Bouatia-Naji et al. (102) Unrelated controls from 
Lille and Paris, France 

 0.13 0.26 

      
   rs1800796 (-572 G>C) 

minor allele: C 
rs1800795 (-174 G>C) 
minor allele: C 

rs2069832 (Intron 2 
G>A) 
minor allele: A 

IL6 CBCS AA and white female 
population-based 
controls from North 
Carolina 

AA: 0.09 
non-AA: 0.0 4 

AA: 0.07 
non-AA: 0.45 

AA: 0.07 
non-AA: 0.44  

 International HapMap 
Project 

 CEU: 0.04 
ASW: -- 
YRI: 0.09 

CEU: 0.54 
ASW: 0.10 
YRI: 0 

CEU: 0.54 
ASW: 0.10 
YRI: -- 

 Seattle SNPs Program 
for Genomic 
Applications 

DNA samples from the 
Coriell Cell Repository 
(PGA-UW-FHCRC) 

AA: 0.05 
white: 0 

AA: 0 
white: 0.50 

AA: 0.02 
white: 0.50  

 Fishman et al. (103) White controls: healthy 
men and women 
recruited from general 
practice in north London  
Afro-Caribbean controls: 
A random sample drawn 
from Family Practitioner 
Committee population 
registers in northwest 
London 

 AC: 0.05 
white: 0.40 
 

 

 Terry et al. (97) 182 unrelated  0.41  
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individuals from a  study 
of hypertension 

 Hefler et al. (18) Study controls - women 
of Austrian or German 
descent with no history 
of breast cancer who 
attended study hospital 
outpatient departments 
in Halle-Wittenberg, 
Germany and Vienna, 
Austria 

 0.37  

 Balasubramanian et al. 
(104) 

 Study controls: 
recruited from Sheffield 
Breast Screening 
Service. White women 
only 

 0.42 
 

 

 Slattery et al. (19) Controls from 4-Corners 
Study: Population-based 
female controls living in 
Arizona, Colorado, New 
Mexico, Utah. 

Non-Hispanic white: 
0.06 
 

Non-Hispanic white: 
0.44 
 

Non-Hispanic white: 
0.44 
 

      
   rs1137101 (Q223R) 

minor allele: G(R) 
rs1137100 (K109R) 
minor allele: G (R) 

 

LEPR CBCS AA and white female 
population-based 
controls from North 
Carolina 

AA: 0.56 
non-AA: 0.43 

AA: 0.19 
non-AA: 0.25 

 

 International HapMap 
Project  

CEU: 0.47 
ASW: 0.62 
YRI: 0.60 

CEU:  0.29 
ASW: 0.21 
YRI: 0.17 

 

 Seattle SNPs Program 
for Genomic 
Applications 

Individuals of African 
American and European 
descent from the Coriell 
Cell Repository 
(AFD_AFR, 
AFD_EUR) 

AA: 0.54 
white: 0.54 

  

 Chiu et al. (105) 36 female and 31 male 0.47   
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healthy white controls 
from west Los Angeles 
who were normotensive 
and glucose tolerant 

 

Snoussi et al. (20) 

Blood donor study 
controls with no family 
history of breast cancer 
from Sousse Hospital, 
Tunisia 

0.34   

 
Cleveland et al. (25) 

Controls from a case-
control study in Long 
Island, New York 

0.58   

 

Pechlivanis et al. (106) 

Male and female 
controls from a 
colorectal cancer case-
control study in the 
Czech Republic 

0.46   

 

Wauters et al. (85) 

Overweight or obese 
white women, without 
diabetes, visiting an 
obesity clinic in 
Antwerp, Belgium 

 0.28  

      
   rs1800630 (-863 C>A) 

minor allele: A 
  

TNFA CBCS AA and white female 
population-based 
controls from North 
Carolina 

AA: 0.12 
non-AA: 0.15 

  

 International HapMap 
Project 

 CEU: 0.15 
ASW: 0.10 
YRI: 0.10 

  

 Seattle SNPs Program 
for Genomic 
Applications 

DNA samples from the 
Coriell Cell Repository 
(PGA-UW-FHCRC) 

AA: 0.08 
European: 0.21 

  

 Skoog et al. (98) 254 healthy men of 
Swedish origin, 
randomly recruited using 

0.17   
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a population registry 
 Gaudet et al. (22) White female controls 

living in Wisconsin, 
Massachusetts, or New 
Hampshire, ages 20-74, 
selected through drivers 
license or Medicare lists 

0.17   

Abbreviations: AA-African American, AC – Afro-Caribbean. 
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3.8 Figures 
Figure 3.1 Maximum likelihood African ancestry stratified by self-identified race, with median individual ancestry estimates 
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Figure 3.2 LEPR associations by molecular subtype 
a. 

 
 

Subtype 

basal-like 

 

luminal A 
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b. Pairwise r2 in African American controls 
 rs17097182 rs17412175 rs970467 rs9436746 rs9436748 
rs17097182 1     
rs17412175 0.04 1    
rs970467 0.25 0.15 1   
rs9436746 0.08 0.32 0.31 1  
rs9436748 0.12 0.03 0.44 0.01 1 
 
c. Pairwise r2 in African American cases 
 rs17097182 rs17412175 rs970467 rs9436746 rs9436748 
rs17097182 1     
rs17412175 0.03 1    
rs970467 0.10 0.03 1   
rs9436746 0.20 0.17 0.45 1  
rs9436748 0.06 0.29 0.04 0.34 1 
 
d. Pairwise r2 in White controls 
 rs17097182 rs17412175 rs970467 rs9436746 rs9436748 
rs17097182 1     
rs17412175 0.03 1    
rs970467 0.05 0.53 1   
rs9436746 0.03 0.86 0.50 1  
rs9436748 0.00 0.12 0.03 0.10 1 
 
e. Pairwise r2 in White cases 
 rs17097182 rs17412175 rs970467 rs9436746 rs9436748 
rs17097182 1     
rs17412175 0.11 1    
rs970467 0.52 0.07 1   
rs9436746 0.87 0.09 0.49 1  
rs9436748 0.47 0.06 0.65 0.45 1 
 
Figure 3.2 Legend 
 
a. Odds ratios for the association between LEPR SNPs and basal-like (red) and luminal A 
(blue) breast cancer. Odds ratios are adjusted for age, self-identified race, and African 
ancestry. SNPs rs17412175, rs9436746, and rs9436748 (circled above) show a strong inverse 
association with basal-like breast cancer. There are two additional SNPs in the region 
(rs17097182 and rs970467) that are inversely associated with basal-like breast cancer but the 
estimates were imprecise and are not shown. The 3 SNPs in the plot above are located in 
intron 2 and span 6786 bp. 
 
b-e. R2 correlation among LEPR basal-like breast cancer-associated SNPs in (b) African 
American controls, (c) African American cases, (d) white controls, and (e) white controls. 



 

4. Results Paper 2: Association between CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and 

SHBG SNPs and breast cancer: an exploration of tumor subtype-specific effects 

 

4.1 Abstract 

Introduction: Previous analyses in the Carolina Breast Cancer Study (CBCS) showed that 

some reproductive risk factors were differentially associated with basal-like and luminal A 

breast cancer. This analysis investigated the association between breast cancer and SNPs in 

genes involved in estrogen and progesterone synthesis and signaling (CYP19A1, ESR1, 

HSD3B1, HSD17B2, PGR, SHBG). Associations were analyzed with respect to breast 

cancer overall, and basal-like and luminal A intrinsic molecular subtypes. 

 

 Methods: Eligible cases were women aged 20-74, living in North Carolina, who were 

diagnosed with primary breast cancer between 1993 and 2001. ER, PR, HER2, CK5/6, and 

EGFR immunohistochemistry was used to determine breast tumor intrinsic molecular 

subtypes. Controls were cancer-free women living in the same geographic area, and were 

frequency-matched to cases by age and race (African American/non-African American). 195 

candidate gene SNPs were genotyped using the Illumina GoldenGate assay. 1776 controls 

and 1972 cases (200 basal-like, 679 luminal A) were included in the analysis. Odds ratios 

and 95% confidence intervals were estimated using unconditional logistic regression for the 

association between genotypes and all breast cancer cases, basal-like breast cancer, and 

luminal A breast cancer. Haplotype frequencies and odds ratios were estimated using 



 

241 

HAPSTAT. The likelihood ratio test was used to evaluate multiplicative interaction between

 genotypes and parity/lactation status. Ancestry informative markers were used to control for 

population stratification in genotype and haplotype analyses. 

 

Results: The strongest associations for breast cancer overall were in ESR1 (rs2207232, 

rs6914211, rs985181, rs8052451), HSD17B2 (rs8052451), and CYP19A1 (haplotype 1). 

Genotypes in ESR1, HSD3B1, HSD17B2, and SHBG were strongly associated with both 

luminal A and basal-like subtypes. Genotypes in PGR were only strongly associated with the 

basal-like subtype. Haplotypes in CYP19A1, ESR1, and PGR were associated with breast 

cancer, and in most cases associations did not differ by subtype. 

 

Conclusion: SNPs in genes related to estrogen and progesterone synthesis and signaling were 

associated with breast cancer overall and by intrinsic molecular subtype. In some cases, 

haplotype associations were much stronger than single SNP associations. These results 

support the hypothesis that variation in genes related to estrogen and progesterone synthesis 

and signaling are important to different subtypes of breast cancers, including those that do 

not express ER and/or PR at the time of diagnosis. 

 

Keywords: breast cancer, single nucleotide polymorphism, haplotype, estrogen receptor, 

progesterone receptor, 17-beta hydroxysteroid dehydrogenase type II, 3-beta hydroxysteroid 

dehydrogenase type I, sex hormone-binding globulin, cytochrome P450 family 19 type A1, 

basal-like, luminal A  
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4.2 Introduction 

 It has been proposed that common genetic variants contribute to familial breast cancer 

cases unrelated to known high penetrance mutations, and that because such polymorphisms 

are common they may play a role in sporadic breast cancer as well (1-3). Genes related to 

estrogen and progesterone activity are likely candidates for harboring such variants, due to 

the central role that estrogen, progesterone, and their respective receptors play in breast 

cancer. In addition to promoting normal growth patterns during puberty and pregnancy (4-6), 

estrogen and progesterone can also have carcinogenic effects in the breast. When estrogen 

binds to the estrogen receptor (ER) the ligand-receptor unit translocates to the nucleus where 

it can act as a transcription factor to genes associated with cell proliferation and survival, 

such as growth factors, transcription factors, tumor suppressors, pro-apoptotic genes, and 

growth inhibitors (7). Independent of its receptor, estrogen may contribute to carcinogenesis 

through the action of its metabolites. Estrogen metabolites can bind to DNA forming adducts; 

high rates of DNA repair after adduct removal may introduce mutations that initiate 

carcinogenesis (8).  

 Exposure to estrogen and progesterone increases proliferation of breast epithelial 

cells; the higher rate of cell division increases the chance of oncogene activation or tumor 

suppressor inactivation due to a replication error (9). Furthermore, removing the main source 

or estrogen and progesterone production via oopherectomy greatly reduces breast cancer risk 

in high risk premenopausal women (10), underlining the importance of these two hormones 

in breast tumor formation. The present study focuses on variation in genes that affect 

estrogen and progesterone production, bioavailability, and signaling. 

 The estrogen bio-synthesis pathway includes enzymes that catalyze forward and 
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reverse reactions leading to hormone synthesis from cholesterol. Cytochrome P450 family 19 

subfamily A polypeptide 1 (CYP19A1) encodes the enzyme aromatase. Aromatase converts 

androgens into estrogens, including the conversion of androstenedione to estrone and 

testosterone to estradiol (11). SNPs in CYP19A1 have been associated with serum estrogen 

levels in postmenopausal women (12). 17-beta hydroxysteroid dehydrogenase type II 

(HSD17B2) oxidizes active sex steroids into their inactive precursor forms, including the 

conversion of estradiol into estrone, a less potent form of estrogen (13). Sex hormone-

binding globulin (SHBG) binds estrogen in the bloodstream, controlling its availability to 

bind to ER. Experimental data supports the hypothesis that SHBG is instrumental in 

controlling the proliferative and anti-apoptotic effects of estradiol (14, 15). Like estrogen, 

progesterone is synthesized from cholesterol. 3-beta hydroxysteroid dehydrogenase type I 

(HSD3B1) is part of the progesterone synthesis pathway and converts pregnolone to 

progesterone, 17-alpha hydroxypregnenolone to 17-alpha hydroxyprogesterone, and 

dehydroepiandrosterone to androstenedione (11, 16).  

 Perou et al. (17) and Sorlie et al. (18, 19) defined five breast cancer ‘intrinsic 

molecular subtypes’, which were characterized by hierarchical clustering of breast tumor 

gene expression profiles. The intrinsic molecular subtypes have been observed independently 

in other populations, and are associated with breast cancer survival (20, 21-23). Recently, 

Nordgard et al. (24) reported that associations between SNPs and gene expression levels 

varied by intrinsic molecular subtype, and Kristensen and Borresen-Dale (25) reported the 

association of the rs10046 variant homozygote with basal-like breast cancer. We hypothesize 

that stratification by tumor subtype will allow for the identification of unique associations 

between CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and SHBG and the basal-like and 



 

244 

luminal A breast cancer subtypes that would not be detected in a pooled case population. 

  Luminal A breast cancer is the most common intrinsic molecular subtype and is 

defined by relatively high expression of the estrogen receptor and related genes (17, 22). 

Thus, it is reasonable to hypothesize that polymorphisms in genes related to estrogen 

synthesis or function may affect the incidence of luminal A breast cancer. Basal-like breast 

cancer is defined in part by low estrogen receptor expression and high expression of 

cytokeratins 5 and 17, integrin beta 4, and laminin, but with the exception of a high 

prevalence of basal-like tumors among women with BRCA1 mutations, relatively little is 

known about the genetic variants that may predispose to this type of breast cancer (17, 19, 

26-28). We have reported previously that associations for some traditional breast cancer risk 

factors differed by intrinsic molecular subtype in the CBCS. Parity (vs. nulliparity) was 

inversely associated with luminal A breast cancer regardless of breastfeeding status (29). In 

contrast, parity in women who did not breastfeed was positively associated with basal-like 

breast cancer, and parity in women who breastfed was unassociated with the basal-like 

subtype (29). This suggests that factors associated with parity and lactation may influence 

pathways leading to basal-like and luminal A breast cancer in different ways. Since the 

candidate gene products are involved in the production and action of hormones directly 

related to pregnancy, parity, and breastfeeding, we explored the possibility of effect measure 

modification of genotype and haplotype associations by parity and lactation history.  

 

4.3 Methods 

4.3.1 Study population 

The Carolina Breast Cancer Study is a population-based case-control study of breast 
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cancer in North Carolina, and has been described in detail previously (30, 31). Eligible cases 

included all women ages 20-74 who were diagnosed with primary invasive breast cancer 

from 1993 to 2001, and who lived within the 24 county study area at the time of diagnosis. 

Women diagnosed with breast carcinoma in situ (CIS) were also enrolled in the study from 

1996-2001. Cases were identified through the North Carolina Central Cancer Registry using 

rapid case ascertainment. Randomized recruitment was used to oversample African 

American invasive cases and invasive cases younger than 50 years old (32). All eligible CIS 

cases were asked to participate in the study.  

Eligible controls were chosen from the same 24 county study area as cases, and 

included women between the ages of 20 and 74 who did not have a history of breast cancer. 

Controls younger than age 65 were identified through Department of Motor Vehicles records, 

and controls 65 years and older were identified through Health Care Financing 

Administration records. Controls were frequency-matched to cases by race and 5-year age 

groups. 

Cases and controls were contacted first by mail and then by telephone. Women who 

agreed to participate in the study were asked to complete an in-home interview conducted by 

a trained nurse. During the interview, women were asked about social and demographic 

characteristics, family history of cancer, reproductive history, menstrual history, exogenous 

hormone use, alcohol use, and occupational history. Waist circumference, hip circumference, 

height and weight were measured by the nurse following completion of the study 

questionnaire. Women were also asked to provide a 30 ml blood sample. DNA was extracted 

from the blood sample and stored at -80oC in TE buffer. 

Overall response rates for invasive cases and controls were 76% and 55%, 



 

246 

respectively. Overall response rates for CIS cases and matched controls were 83% and 65%. 

A total of 2311 cases (894 African American/1417 non-African American) and 2022 controls 

(788 African American/1234 non-African American) were enrolled in the study.  

Tumor subtype was determined by immunohistochemistry (IHC) analysis of archival 

tumor tissue (22, 33). Cases were asked to provide written consent for access to their medical 

records and formalin-fixed paraffin-embedded tumor tissue blocks. A centralized pathology 

review was performed to confirm each breast cancer diagnosis. For invasive breast cancers, 

estrogen receptor (ER) and progesterone receptor (PR) status were abstracted from the 

patient’s medical record (80% of invasive cases). If ER or PR status was not recorded in the 

medical record but archival tissue was available, the assay was performed at the UNC 

Immunohistochemistry Core Laboratory (20% of invasive cases). IHC staining for epidermal 

growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 

(HER2), and cytokeratin 5/6 (CK 5/6) was performed at the UNC Immunohistochemistry 

Core Laboratory, and has been described previously (29, 34, 35).  

For CIS cases, ER, HER2, CK 5/6, and EGFR IHC was performed by the UNC 

Immunohistochemistry Core Laboratory, as described by Livasy et al. (33). PR expression 

was not used in classifying CIS cases due to the high correlation between ER and PR 

expression, and the need to preserve tissue (22).  

Tumor tissue was available for 1845 of 2311 (80%) cases [1446 of 1808 (80%) 

invasive cases; 399 of 503 (80%) CIS cases]. IHC assays were completed successfully for 

1424 of 2311 (62%) cases [1149 of 1808 (64%) invasive cases; 275 of 503 (55%) CIS cases]. 

Tumors were classified as follows: 796 luminal A (ER+ and/or PR+, HER2-); 225 basal-like 

(ER-, PR-, HER2-, CK5/6+ and/or EGFR+); 150 unclassified (ER-, PR-, HER2-, CK5/6-, 
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EGFR-); 137 luminal B (ER+ and/or PR+, HER2+); 116 HER2+/ER- (ER-, PR-, HER2+). 

Cases with missing subtype data were more likely to be non-African American and to have 

an earlier stage at diagnosis (29). 

4.3.2 Genotyping 

4.3.2.1 SNP selection 

A two-pronged approach was used in selecting SNPs for genotyping: 1) SNPs 

previously investigated for an association with breast cancer or an in vitro functional effect 

were selected, based on a review of the literature; and 2) tag SNPs were selected in order to 

capture any potential unknown variants associated with breast cancer. The following 

potentially functional SNPs with a minor allele frequency (MAF) of at least 0.05 were 

genotyped: CYP19A1 rs10046, rs2236722, rs700519; ESR1 rs2077647, rs2234693, 

rs3798577, rs851982, rs9341070; HSD17B2 rs4445895 and rs8191136; PGR rs10895068; 

and SHBG rs1799941. No potentially functional SNPs for HSD3B1 were selected from the 

literature. 

Most participants in the CBCS were either white or African American, and so tag 

SNP selection was performed twice – once using data from the HapMap CEU (European) 

population and once using data from the HapMap YRI (West African) population (36). The 

two lists of tag SNPs were combined into a single list. Tag SNPs for ESR1, HSD3B1, 

HSD17B2, PGR, and SHBG were selected using Haploview Tagger, where a minimum r2 of 

0.80 was used to define tags (37-39). Tag SNPs selection was restricted to SNPs with a 

minimum MAF of 0.10. For ESR1, PGR, HSD17B2, HSD3B1 and SHBG, tag SNPs were 

selected initially using the pairwise tagging method. This resulted in a greater number of tag 

SNPs than there was space available in the genotyping assay. Tags for ESR1, PGR, and 
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HSD17B2 were re-selected using aggressive tagging with 2-marker haplotypes, reducing the 

number of tag SNPs by 25, 7, and 8 SNPs, respectively. SNPs selected from the literature 

were also used as tag SNPs, using the “force include” option in Tagger. 

SNPs for CYP19A1 were taken from a list published by Haiman et al. (12, 40) used 

to tag LD blocks in African American and white Multi-Ethnic Cohort participants. 

4.3.2.2 Genotyping results and quality control 

SNPs were genotyped by the UNC Mammalian Genotyping Core using the Illumina 

GoldenGate assay (Illumina, Inc., San Diego, CA) as part of a larger genotyping panel of 

1536 SNPs. Assay intensity data and genotype cluster images were reviewed manually, and 

SNPs were excluded if there was low signal intensity or a lack of clear separation between 

genotype clusters. 163 of 1536 (11%) SNPs were excluded from the entire dataset based on 

cluster analysis.  

Blind duplicates of 169 study samples were assayed in order to verify the 

reproducibility of genotype calls from the same sample. 7 SNPs had 1 genotype miscall and 2 

SNPs had 2 genotype miscalls. Lab controls (Coriell CEPH trios) were also genotyped in 

each 96-well plate – each control was repeated between 11 and 14 times over the course of 

the entire assay. Out of 184 lab control samples, there were 2 instances of genotype 

disagreement with duplicate samples. These error rates were within our pre-specified range 

of acceptable values, and no SNPs were excluded from the analysis on the basis of these 

results.  

Exact tests for deviation from Hardy Weinberg equilibrium (HWE) were conducted 

in controls stratified by self-identified race to determine whether genotype frequencies were 

distributed as expected given the allele frequencies. Deviations from HWE in controls can 
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indicate genotyping error, selection bias, the appearance of new mutations, failure of the 

source population to fulfill HWE assumptions, or random error (41, 42). HWE test statistics 

and P-values were calculated in Plink v1.05 using methods described by Wigginton et al. 

(43). Genotyping cluster images were re-reviewed for all SNPs with HWE test P-values less 

than 0.01 in order to confirm that HWE deviations were not due to erroneous genotype calls. 

All candidate gene SNPs reviewed during this process were judged to have acceptable signal 

intensity and genotype cluster definition, and none were excluded for poor quality.  

195 of 207 (94%) candidate gene SNPs passed quality control and are included in this 

analysis (CYP19A1 - 24, ESR1 - 97, HSD3B1 - 7, HSD17B2 - 40, PGR - 26, SHBG – 1). 

144 of 158 (91%) ancestry informative markers (AIMs) genotyped in the panel passed 

quality control. The overall success rate for the panel was 1373 of 1536 (89%).  

Blood samples were obtained from 2045 (88%) cases and 1818 (90%) controls, and 

2039 (88%) cases and 1818 (90%) controls had a sufficient amount of DNA for genotyping. 

Of these subjects, 64 cases and 39 controls had genotype calls for less than 95% of SNPs in 

the Illumina panel and were excluded from the analysis. An additional 2 cases and 3 controls 

were excluded due to apparent gender mismatch. One case was excluded because of 

suspected contamination identified though the analysis of non-blind duplicate samples.  

1776 of 2022 (88%) controls and 1972 of 2311 (85%) cases were successfully 

genotyped, including 200 basal-like cases and 679 luminal A cases. Subjects without 

genotype data were more likely to be cases, recruited during phase 2 of the study, and 

African American. The presence or absence of genotype data did not differ by any breast 

cancer risk factors other than African-American race. Among cases the presence of genotype 

data was not associated with stage at diagnosis, lymph node status, or molecular subtype. 
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Among all enrolled cases, 978 of 1808 (54%) invasive cases had both genotyping and 

tumor subtype data and 242 of 503 (48%) CIS cases had genotyping and tumor subtype data, 

including 200 basal-like cases (182 invasive, 18 CIS) and 679 luminal A cases (528 invasive, 

151 CIS). The distribution of intrinsic molecular subtypes did not differ between enrolled 

cases with and without genotyping data. 

4.3.3 Variable definitions and statistical methods  

4.3.3.1 Variables 

Age was defined as age in years at breast cancer diagnosis for cases, and age in years 

at the time of sampling for study participation for controls. Self-identified race was reported 

during the study interview. Less than 2% of CBCS participants reported that they were 

Native American/Eskimo (N=19), Asian or Pacific Islander (N=18), Hispanic (N=11), or 

mixed race (N=5). These women and self-described white women were grouped together as 

non-African American. Self-identified race information was unknown for 2 participants, who 

were excluded from analyses that adjusted for or stratified by self-identified race.  

Individual estimates of African and European ancestry were estimated from 144 

AIMs using maximum likelihood estimation (44, 45). The median proportion of African 

ancestry was 81% among self-reported African Americans and 6% among self-reported non-

African Americans. African ancestry was included in regression models as a proportion 

ranging from 0 to 1.Parity and lactation were reported during the study interview. Women 

were asked how many times they had been pregnant in their lifetime, including the current 

pregnancy if they were pregnant at the time of the interview. Women were then asked the 

duration of each pregnancy and the outcome. Parity was defined as the total number of full-

term live births reported by the study subject. For each live birth reported, women were 
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asked whether they breastfed the baby and for how long. 

In previous CBCS analyses, the association between parity/lactation and basal-like 

breast cancer did not differ among women with 1-2 children compared to women with 3 or 

more children (where nulliparous women were the referent group) (29). Likewise, the 

association between parity/lactation and luminal A breast cancer was the same for women 

with 1-2 children compared to women with 3 or more children (29). Thus, in this analysis 

parity and lactation was defined as a single 3-category variable: nulliparous (controls N=201; 

all cases N=301; luminal A N=111; basal-like N=24), parous/never breastfed (controls 

N=878; all cases N=983; luminal A N=317; basal-like N=124), and parous/ever breastfed 

(controls N=694; all cases N=686; luminal A N=251; basal-like N=52). 2 cases and 3 

controls with genotyping data were missing data on parity and lactation. 

4.3.3.2 Genotype associations 

 Genotype frequencies were calculated for each SNP, and proportions were adjusted 

for the sampling probabilities used to select eligible participants. Pairwise r2 was calculated 

using Haploview (39). 

 Odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association 

between genotypes and all breast cancer cases were estimated using unconditional binary 

logistic regression. ORs and 95% CIs for basal-like and luminal A breast cancer were 

estimated using unconditional polytomous regression models that simultaneously modeled 

regression parameters for all breast cancer subtypes. Statistics testing the equality of 

parameter estimates for basal-like and luminal A subtypes were calculated based on the 

asymptotic chi-square distribution of the Wald statistic. Confidence limit ratios (CLR, upper 

95% confidence limit divided by lower 95% confidence limit) were calculated as a measure 
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of relative precision. All genotype regression models were run using SAS v9.1.3 (SAS 

Institute, Cary, NC). 

Genotype associations were modeled using the general model with 2 degrees of 

freedom, unless the rare homozygote cell counts were too small. In that case, the model 

compared the rare homozygote and heterozygote genotypes to the common homozygote 

genotype. If the results of the general statistical model indicated that the underlying genetic 

model form may be recessive, dominant, or additive, additional analyses specific to the 

genetic model were conducted. Genotype associations with a relatively strong odds ratio (OR 

≥ 1.5 or OR ≤ 0.67) or a P-value less than 0.05 and a precise confidence interval (CLR ≤ 5) 

were considered to be the best candidates for association with luminal A and/or basal-like 

breast cancer, and are presented in the results section. 

4.3.3.3 Haplotype associations 

 Haplotypes were investigated in order to explore the effects of several alleles in 

combination. Regions for examining haplotype associations were identified through a two 

step process. First, a sliding window analysis (window width of 3 SNPs) was conducted for 

each gene using HAPSCAN, which is based on the HAPSTAT haplotype analysis program. 

HAPSCAN estimates a global likelihood ratio test statistic and corresponding P-value for the 

association of all possible haplotypes with the outcome. Sliding window analysis was 

performed for all cases, as well as stratified by self-identified race and for basal-like and 

luminal A breast cancer, versus controls. The windows with the highest –log10 P-values were 

flagged for estimation of specific haplotype ORs. Secondly, regions where consecutive SNPs 

were positively or inversely associated with luminal A or basal-like breast cancer were 

selected for haplotype analysis. Haplotype frequencies, ORs, and 95% CIs were estimated 
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using HAPSTAT (46, 47). HAPSTAT uses a probability distribution to estimate haplotype 

associations, which yields unbiased parameters estimates with appropriate variance. 

HAPSTAT software was modified to relax the assumption of independence between 

genotype and covariate distributions, and to incorporate an offset term into parameter 

estimation. All haplotype ORs were estimated using the general model. 

All SNP and haplotype models were adjusted for the frequency-matching factors, age 

and self-identified race, and an offset term to account for randomized recruitment methods 

(32, 48). SNP and haplotype models were also adjusted for the proportion of African ancestry 

in order to control for residual population stratification.  

4.3.3.4 Effect measure modification 

 In the CBCS, the ORs for the association between parity without lactation and 

luminal A breast cancer were 0.7 (95% CI, 0.5-0.9) for 1-2 children and 0.7 (95% CI, 0.5-

0.9) for ≥ 3 children. The associations between parity without lactation and basal-like breast 

cancer were 1.8 (95% CI, 1.1-3.0) and 1.9 (95% CI, 1.1-3.3) for ≥ 3 children (29). The ORs 

for the two subtypes are on opposite sides of the null, suggesting qualitative differences 

between the two associations. Given the substantial heterogeneity between the subtype-

specific main effects, interpretation of effect measure modification for breast cancer overall 

would be less meaningful and was not evaluated. Genotype-parity and lactation interaction 

was only examined for basal-like and luminal A breast cancers, and not breast cancer overall. 

Multiplicative interaction between genotypes and haplotypes and the combined parity and 

lactation variable was evaluated using the likelihood ratio test (LRT). LRT P-values less than 

0.10 were considered consistent with a departure of the joint effects from the multiplicative 

null. ORs and 95% CIs for SNPs with LRT P-values less than 0.10 are presented in the 
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results. 

4.3.3.5 Interpretation 

 In the analysis of genotype and haplotype associations, P-values were used in 

conjunction with point estimates and confidence limit ratios to evaluate the combined 

strength and precision of estimated associations. Strict hypothesis testing was not performed, 

and so P-values were not adjusted for multiple comparisons. Decisions to display stratified 

ORs for the evaluation of multiplicative were based on P-values. However, the intent was to 

display stratified ORs for the SNPs and haplotypes that showed the strongest evidence of 

heterogeneity. Interaction P-values were not adjusted for multiple comparisons. 

4.3.3.6 Sensitivity analysis 

 Not all studies use the same set of markers to define ‘basal-like’, and in studies that 

have used markers similar to those used by CBCS, there has not been 100% agreement 

between tumors defined as basal-like using microarray expression profiles and 

immunohistochemistry definitions (23, 35, 49). Probabilistic sensitivity analyses were 

conducted to evaluate the potential effects of bias due to molecular subtype misclassification. 

Simulations of genotype and basal-like vs. luminal A associations were conducted, assuming 

non-differential misclassification of case status. Sensitivity and specificity ranges were based 

on previously published data (23, 35, 49). Analyses were conducted using a publicly 

available program and were run for 5000 simulations (50). 

 A simple sensitivity analysis was performed to evaluate the effect of including CIS 

cases in the analysis. There is evidence that CIS is an intermediate step in the progression of 

cells from hyperplastic to invasive disease [reviewed by (51, 52)]. However, not all CIS 

progress to invasive cancer, and this is some question as to whether a CIS outcome should be 
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treated like an invasive breast cancer outcome (53, 54).   

 CIS were included in this study for several reasons. First, most risk factors for DCIS 

are similar to risk factors for invasive breast cancer in populations being screened for breast 

cancer (53, 55, 56). In particular, CIS and invasive breast cancer were both reported to be 

associated with family history of breast cancer (55, 56).  

 Intrinsic molecular subtypes have been observed in pure DCIS and DCIS near 

invasive lesions (33, 57-59). Like invasive tumors, most basal-like DCIS showed strong 

expression of CK 5/6, vimentin, EGFR, and Ki-67; expression of p63 smooth muscle actin 

was rare (33, 57). It has not been reported whether intrinsic molecular subtypes are 

associated with recurrence in CIS. However the similarity between risk factors and molecular 

features suggest that there are a common set of factors that lead to both types of lesions. For 

these reasons, we chose to include subjects recruited from the CIS study in this analysis. In a 

simple sensitivity analysis, the exclusion of CIS cases and matched controls did not 

systematically change the estimated genotype ORs (data not shown). 

 

4.4 Results 

4.4.1 Genotype associations 

195 SNPs were genotyped in CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and 

SHBG. Genotype counts and proportions are shown in Table 1. Proportions were adjusted 

using the sampling probabilities used to select study subjects and represent estimates of the 

population-level genotype prevalence.  

Genotype odds ratios for breast cancer overall, the luminal A subtype, and the basal-

like subtype are shown in Tables 4.2 and 4.3, selected based upon criteria mentioned in the 
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Methods section. SNPs that were associated with breast cancer overall are also shown in 

Table 4.3, and SNPs associated with basal-like or luminal A breast cancer are included in 

Table 4.2 for comparison of overall and subtype-specific effects. While 2 SNPs in CYP19A1 

had small but precise associations with breast cancer overall, the associations were neither 

strong nor precise by subtype (Table 3). ESR1 SNPs rs2207232, rs6914211, and rs985191 

had some of the strongest associations with breast cancer overall (Table 2). ESR1 SNPs were 

also associated with both luminal A and basal-like subtypes. While rs6914211 and rs985191 

were also strongly associated with the luminal A and basal-like subtypes, rs2207232 was 

unassociated with luminal A breast cancer and the association between rs2207232 and basal-

like breast cancer was positive but imprecise. Associations for rs1709183 and rs3020381 

were seen only with the luminal A subtype, and rs3020401 was associated with the basal-like 

subtype, though the differences between the parameters for the two subtypes were not always 

statistically different (Table 4.3). Several of these associated ESR1 SNPs are located near 

each other on chromosome 6, and are shown in Figure 1. 

HSD3B1 SNPs rs6205 and rs932603 had strong positive associations with breast 

cancer overall; by subtype these association were much stronger for luminal A compared to 

basal-like breast cancer. Additionally, the association between rs6428830 and basal-like 

breast cancer was almost twice as strong as its association with luminal A breast cancer.  

Most SNPs in HSD17B2 had moderate associations with breast cancer overall. SNP 

rs8052451 had the strongest association for a HSD17B2 SNP and breast cancer overall 

(Table 4.2). When cases were stratified by subtype, the association between rs8052451 and 

luminal A breast cancer was even stronger than the overall association, and was one of the 

strongest subtype-specific associations estimated (Table 4.3). HSD17B2 SNPs were 
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associated with luminal A breast cancer only, basal-like breast cancer only, and both 

subtypes. In the case of HSD17B2 rs1364287 and rs16956326, the associations for luminal A 

subtype were in the opposite direction of associations for the basal-like subtype (Table 4.3). 

HSD17B2 rs7200696, rs8050327, and rs8191072 form a small region of SNPs inversely 

associated with luminal A breast cancer, and are shown in Figure 2. The 3 HSD17B2 SNPs 

are located within 1205 bp of each other in intron 1. SNP rs8050327 and rs8191072 were in 

very strong LD in African Americans and in perfect LD in whites, as is shown in Figure 2. 

Correlation with rs7200696 was weaker for both African Americans and non-African 

Americans (Figure 4.2). 

PGR associations with breast cancer overall were moderate (Table 4.2). Stratified by 

subtype, a number of strong associations with basal-like breast cancer were apparent in SNPs 

that were unassociated with breast cancer overall (rs546763, rs548668, rs596223, and 

rs660149, Table 4.3). Figure 3a shows 2 groups of PGR SNPs with similar inverse 

associations with basal-like but not luminal A breast cancer. The first group, rs546763 and 

rs548668, are within 214 bp of each other in PGR intron 7 and are highly correlated 

(rs546763 and rs548668: AA cases r2 = 0.99; AA controls r2 = 0.99; white cases r2 = 1.00; 

white controls r2 = 1.00). The second group, rs660149, rs2124761, and rs503602, are within 

2993 bp of each other in PGR intron 3 but are not in strong LD (Figure 4.3b).  

Only 1 SNP in SHBG was genotyped, rs1799941 (nt -67 G/A). SHBG rs1799941 was 

moderately associated with breast cancer overall (Table 2). The association was stronger 

when cases were divided into luminal A and basal-like subtypes (Table 4.3).  

Multiplicative interaction between genotypes and parity and lactation was evaluated 

for SNPs with a marginal association with basal-like or luminal A breast cancer. ESR1 
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rs11155818 and rs7759411, HSD17B2 rs2955153, rs2955159, and rs7196087, HSD3B1 

rs6428830, PGR rs546763 and rs548668, and SHBG rs1799941 had LRT P-values less than 

0.10 for interaction when the outcome was basal-like breast cancer, but the sample size was 

too limited to calculate stratified estimates that were precise enough to be compared to one 

another (data not shown). Genotype-outcome associations stratified by parity and lactation 

status for SNPs with LRT P-values less than 0.10 where the outcome was luminal A breast 

cancer are shown in Table 4.4. There were few nulliparous luminal A cases with variant 

genotypes, so in many cases ORs could not be estimated for this group. HSD17B2 rs2911418 

and ESR1 rs985191 showed strong differences in effect between parous women who did and 

did not breastfeed. Associations were also divergent for PGR rs660149 CG genotype 

comparing association for nulliparous to parous/never breastfed, and parous/never breastfed 

to parous/ever breastfed.  

A series of sensitivity analyses were conducted to determine the effect of breast 

cancer subtype misclassification on the estimated difference in association between the two 

subtypes. For some, but not all SNPs analyzed, the bias-corrected odds ratio comparing 

basal-like to luminal A genotypes was further from the null than the observed odds ratio, 

indicating that if tumor subtypes were misclassified it would decrease the chances of 

detecting differences in subtype associations. 

4.4.2 Haplotype associations 

 Associations between common haplotypes and all cases, luminal A, and basal-like 

cases were somewhat different from single SNP associations. Whereas no individual 

CYP19A1 SNPs were associated with basal-like breast cancer, CYP19A1 haplotype 1 

(rs749292, rs1902586, rs936306, rs2445759, rs28566535) was strongly associated with 
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basal-like breast cancer, though with a confidence limit ratio of 7.1 it was less precise than 

most other associations (Table 4.5). Other haplotypes associated with breast cancer were in 

ESR1 (2a, 2b: rs851984, rs851982, rs2881766; 3: rs1709183, rs9340835, rs9322335; 4: 

rs6914211, rs9383599, rs3020314, rs3020401, rs985191, rs6557177) and PGR (5a, 5b, 5c: 

rs1824128, rs660149, rs495997, rs2124761, rs11224579). The strongest associations were 

for CYP19A1 haplotype 1 and all breast cancer cases, haplotype 1 and basal-like breast 

cancer, ESR1 haplotype 2b and basal-like breast cancer, and PGR haplotype 5c and luminal 

A breast cancer (Table 4.5).  

 There was strong evidence of multiplicative interaction between ESR1 haplotype 4 

and parity and lactation with respect to luminal A breast cancer (LRT P = 0.0362). Odds 

ratios for the association between haplotype 4 and luminal A breast cancer stratified by parity 

and lactation are shown in Table 4.6. Like the single SNP analysis, haplotype ORs were 

positively associated with the luminal A subtype in parous women. In nulliparous women, 1 

copy of HAP5 was not associated with luminal A breast cancer, and the OR for 2 copies was 

too imprecise to draw any conclusions. 

 

4.5 Discussion 

We investigated whether SNPs in CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and 

SHBG were associated with breast cancer. SNPs in most of these genes have been 

investigated by others, but this analysis using data from the Carolina Breast Cancer Study 

contributes to the existing literature in the following ways. First, a large proportion of the 

CBCS population is African American, allowing for the inclusion and potential discovery of 

SNPs that are relevant to disease risk in this population. Secondly, CBCS cases have been 
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characterized by IHC-determined intrinsic molecular subtype. Associations were estimated 

for SNPs and the basal-like and luminal A subtypes in addition to the association for breast 

cancer cases overall. An increasing number of analyses of SNPs and breast cancer have 

shown that there are relevant subgroup effects (24, 25, 60-64). Most of these analyses have 

stratified cases on menopausal status, ER/PR status, and other prognostic factors, except for 

Nordgard et al. (24) and Kristensen et al.(25), which stratified by intrinsic molecular subtype. 

 Nordgard et al. (24) examined associations between TNRC9, LSP1, FGFR2, 

MAP3K1, and H19 gene expression, SNP genotype (SNPs initially identified by GWAS) and 

breast cancer intrinsic molecular subtype. Gene expression differed by subtype for all five 

genes, and genotype distribution differed by subtype for TNRC9. These results suggest that 

there are SNP associations specific to breast tumor types. It follows that a more refined tumor 

classification, such as the intrinsic molecular subtypes, may improve our ability to detect 

SNPs associated with specific mechanisms of breast cancer risk.  

Tag SNPs in HSD17B2 (rs2955153, rs7196087), HSD3B1 (rs6428830), PGR 

(rs503602, rs546763, rs548668, rs596223, rs660149), and potentially functional SNP SHBG 

nt -67 G/A (rs1799941) were strongly associated with luminal A and/or basal-like breast 

cancer but were not strongly associated with breast cancer overall, supporting the hypothesis 

that potentially important SNPs with strong associations may be missed if cases are not 

stratified based on subtype. The most interesting of these associations were those in PGR 

where all 5 SNPs were strongly associated with the basal-like subtype, but associations with 

luminal A were close to the null. Progesterone receptor signaling is involved in pregnancy-

related breast development and lactation (65). Previously, the CBCS has estimated that the 

risk of basal-like breast cancer among parous women who did not breastfeed was almost 
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twice that of nulliparous women (29). Other studies have reported a similar association for 

parity and basal-like breast cancer, but based on a small number of basal-like cases (66).  

Likelihood ratio test P-values for multiplicative genotype-parity/lactation interaction 

were less than 0.10 for PGR SNPs rs503602 and rs660149 and luminal A breast cancer, and 

for rs548668 and basal-like breast cancer. PGR contains several splice sites that produce 

three different isoforms of the progesterone receptor. PR-A and PR-B are structurally similar, 

but have unique transcriptional activities (65, 67). PR-C lacks the progesterone response 

element-binding motif and activation domains present in PR-A and PR-B, but PR-C is able to 

bind PR-B and inhibit PR-B transcriptional activity (67). Thus, SNPs or other genetic 

variants that affect the ratio of PR isoforms could affect PR signaling. Although the basal-

like subtype is defined by low levels of PR expression, SNPs are present in normal cells 

before tumor formation, and so the effects of SNPs in PGR could influence early stages of 

basal-like tumor formation. 

In addition to the PGR SNPs associated with basal-like breast cancer, there were two 

other clusters of SNPs that were associated with the breast cancer subtypes. In ESR1, SNPs 

rs6914211, rs3020401, rs985191, and rs6557177 were positively associated with both 

luminal A and basal-like breast cancer (Figure 1). Located from 152354108 bp to 152355411 

bp in intron 4, these associations may be indicative of a causative locus nearby. The other 

subtype-associated region was in HSD17B2, where rs8050327, rs8191072, and rs7200696 

were inversely associated with luminal A breast cancer, but at or near the null for basal-like 

breast cancer (Figure 2). Located in intron 1, these SNPs are in LD with each other in CBCS 

subjects, and are likely marking the effect of the same causal variant. The strength of 

association and number of SNPs that showed an association within these two regions in this 
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study makes these SNPs good candidates for genotyping in replication studies. In the case of 

HSD17B2, replication should be pursued with cases that meet the definition of luminal A 

subtype (ER+ and/or /PR+). 

There were several SNPs that were strongly associated with breast cancer overall, 

which was unexpected given the theory that associations for common polymorphisms will be 

modest. The strongest associations for breast cancer overall were for ESR1 rs2207232, 

rs6914211, and rs985191, HSD17B2 rs8052451. All four of these SNPs are intronic; 

rs6914211 and rs985191 are approximately 15 kb apart (14918 bp) and are in strong LD 

(Figure 1b-e). For rs6914211, rs985191, and rs8052451, associations with basal-like and 

luminal A subtypes were similar to the association for breast cancer overall. 

Table 7 compares the odds ratios estimated in the CBCS to those from previously 

published studies. Our results indicate an association between 2 previously studied candidate 

SNPs and breast cancer - SHBG rs1799941 (-67 G/A) and CYP19A1 rs700519 (R264C). The 

SHBG rs1799941 AA genotype was associated moderately with breast cancer overall in the 

CBCS, but the association was even stronger for the luminal A and basal-like subtypes. Other 

studies have reported no association for this SNP (68, 69). Thompson et al. (69) reported 

results for rs1799941 using an additive model, but in the CBCs the mode of inheritance 

seems to be recessive for breast cancer overall as well as by luminal A or basal-like subtype. 

When an additive model was used in CBCS, the estimated odds ratio was similar to that 

reported by Thompson et al. [CBCS all cases, A vs. G, OR (95% CI): 1.02 (0.90, 1.16)]. 

Dunning et al. (68) reported that the A allele of rs1799941 was associated with 

elevated levels of circulating SHBG and a reduced estradiol:SHBG ratio in healthy 

postmenopausal women. The association between the A allele and reduced estradiol:SHBG 
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levels was most consistent with the additive model (68). Our results do not agree with the 

biological mechanism that would follow from the work of Dunning et al. (68). SHBG 

circulates in the blood and sequesters sex hormones (like estrogen and testosterone), limiting 

their availability to be metabolized or bind to receptors and initiate signaling. In both cases, 

estrogen signaling and estrogen metabolism can contribute to carcinogenesis. If the 

rs1799941 A allele increases SHBG levels and sex-hormone binding capacity, it would 

presumably decrease the amount of estrogen available to contribute to carcinogenesis and 

reduce breast cancer risk (at least for the proportion of breast cancers caused by this 

mechanism). But in the CBCS the A allele was associated with increased, not decreased risk. 

While there could certainly be other biological mechanisms through which rs1799941, 

SHBG, and estrogen interact, this incongruity highlights the need for further study of this 

SNP.       

The CYP19A1 rs700519 (R264C) TT genotype was inversely associated with breast 

cancer in CBCS cases overall, but this genotype is uncommon, and was extremely rare in 

CBCS non-African American subjects (Table 4.1). The minor allele frequency in CBCS 

subjects was similar to what has been reported in other populations (Table 4.8). Among 

African Americans only, the association was similar to the association in the overall 

population [CBCS, AA cases vs. AA controls, TT vs. CC, OR (95% CI): 0.37 (0.17, 0.78)]. 

In the CBCS, the TT vs. CC association appears to follow a recessive mode of inheritance. 

Miyoshi et al. (70) reported an inverse association for rs700519 but used a dominant model, 

likely due to the rarity of TT homozygotes. It is possible that the effect for TT homozygotes 

using a general or recessive model would be even closer to what was estimated in the CBCS. 

Other studies that compared the TT to CC genotype found no association (12, 71). The 
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functional effects of the R264C substitution are unclear – some studies reported that 264C 

caused reduced the hydrophobicity, reduced expression, and reduced aromatase activity, but 

another study reported that there was no difference in enzymatic activity between 264R and 

264C (72-74). If the 264C polymorphism does actually cause reduced aromatase activity, this 

would be consistent with the reduced breast cancer risk observed in the CBCS. 

Although 2 additional CYP19A1 SNPs were associated with breast cancer overall, 

these associations were modest and there was no association for the luminal A or basal-like 

subtype. This is in agreement with results from Haiman et al.(12) who found that although 

genetic variation in CYP19A1 was related to circulating estrogen levels, SNPs in CYP19A1 

were unrelated to breast cancer risk in postmenopausal white women. Talbott et al. (75) 

reported a positive association between a htSNP (rs1008805) from Haiman et al. (12) and 

breast cancer, and that the association was modified by menopausal status. Like Haiman et 

al., there was no association in the CBCS for rs1008805 and breast cancer overall, by 

subtype, or stratified by menopausal status (Table 7, menopausal status-stratified data not 

shown). Kristensen et al. (76) reported a positive association between CYP19A1 rs10046 (3’ 

UTR) and breast cancer, and later reported that the rs10046 TT genotype was significantly 

associated with basal-like breast cancer (25). However, these associations were not replicated 

in the CBCS or two other studies (68, 77).  

Raskin et al. (78) reported that the CYP19A1 V80V (rs700518) polymorphism was 

associated with an increased risk of breast cancer among BRCA1 carriers less than 50 years 

old, but not in BRCA2 carriers or BRCA non-carriers. BRCA1 cases exhibit an increased 

frequency of basal-like tumors (19, 26, 28), but an association for V80V was not seen in 

CBCS basal-like cases (Table 4.7). When the CBCS analysis was restricted to basal-like 



 

265 

cases less than 50 years old, the OR was elevated (Table 4.7), but with wide confidence 

intervals that included the null. The prevalence of BRCA1 mutations is low in CBCS cases 

(prevalence, 2.6%; 95% CI, 0-5.5%)(79), so CBCS results are not directly comparable to 

Raskin et al. Still, the results are suggestive, and warrant further study in a larger population 

of young basal-like cases. In a study of postmenopausal women, the V80V GG genotype (vs. 

AA) was associated with lower serum estradiol (80), which runs contrary to the hypothesized 

mechanism of increased estradiol being associated with the at risk genotype. However, it is 

compatible with the fact that basal-like breast cancers do not express the estrogen receptor, 

and are likely estrogen independent tumors. Further research is needed to determine whether 

the genotype association is real, and what pro-tumor effects could occur in response to 

reduced estrogen.  

No ESR1 functional SNPs were associated with breast cancer in the CBCS, either for 

breast cancer overall or by subtype, but other ESR1 SNPS identified in recent comprehensive 

tag SNP analyses were associated with breast cancer in the CBCS. Using data from the 

SEARCH and EPIC-Norfolk studies, Mavaddat et al. (62) identified ESR1 SNPs rs3020314, 

rs3020407, and rs3020401 as 3 of 52 SNPs recommended for further study after a two-stage 

analysis of 700 candidate gene SNPs and breast cancer. ESR1 rs3020314 was also identified 

by Dunning et al. (81) as having a very weak but precise association with breast cancer in a 

3-stage study of ESR1 haplotype tag SNPs. Subgroup analyses revealed that the rs3020314 

association was confined to ER-positive breast cancer and was not present in the two studies 

with Asian populations (81). Fine-mapping of SNPs in LD with rs3020314 revealed that 

rs3020314 is likely not responsible for the entire association with breast cancer (81). 

In the CBCS, ESR1 rs3020401 was strongly associated basal-like breast cancer, and 
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more weakly associated with breast cancer overall. Moreover, rs3020401 is in region of 

associated SNPs, and is part of a breast cancer-associated haplotype in the CBCS, albeit one 

associated with all cases and luminal A, not basal-like breast cancer. ESR1 SNPs rs3020314 

and rs3020407 were correlated with rs3020401 in CBCS subjects, but were not associated 

with breast cancer overall or by subtype in the CBCS. The OR reported by Dunning et al. 

(81) is so close to the null that CBCS data provide equal support for no association and the 

weak association identified by meta-analysis.  

In the CBCS, ESR1 rs3020314 was part of a 6-SNP haplotype that was positively 

associated with breast cancer overall and luminal A breast cancer (Table 5, haplotype 4). 

There was evidence of interaction between haplotype 4 and parity and lactation with regards 

to luminal A breast cancer – the excess risk of luminal A breast cancer associated with 1 or 2 

copies of haplotype 4 was seen mainly among parous women who breastfed (Table 6). The 

OR for 2 copies of haplotype 4 was also elevated for parous women who never breastfed 

(Table 6). That there was sufficient statistical support for this interaction in luminal A breast 

cancer but not breast cancer overall is consistent with Dunning et al.’s observation that the 

rs3020314 association was seen for ER-positive breast cancer only. This is in disagreement 

with the finding by Mavaddat et al. (62) that the rs3020314 association was not specific to 

any breast cancer subgroup. Despite some inconsistencies in single SNP associations, the 

repeated identification of SNPs in this region of ESR1 as associated with breast cancer and 

the CBCS haplotype 4 associations strongly suggests that there is at least one genetic variant 

of some importance within LD range. 

In another study of ESR1 tag SNPs, Einarsdottir et al. (82) identified rs3003925, 

rs3020318, rs726281, rs3020407, rs2144025 as potentially associated with breast cancer. 
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SNPs rs3020318, rs3020407, and rs2144025 were genotyped in the CBCS but none were 

associated with breast cancer, either overall or by subtype. Interestingly, rs3020407 was 

highlighted by both Einarsdottir et al. (82) and Mavaddat et al. (62). 

SNPs in HSD3B1 were associated with breast cancer in the CBCS, a finding that has 

not been reported before to our knowledge. There have studies on the association between 

HSD3B1 SNPs and breast density. The codon 367T variant was associated with increased 

breast density among African American women, decreased breast density among white 

American women, and decreased breast density in mostly white Australian women (83, 84). 

Increased breast density is a risk factor for breast cancer (85, 86), so it is possible that the 

codon 367T variant may be associated with increased breast cancer risk, particularly in 

African American women. 

The strongest haplotype association was for CYP19A1 haplotype 1, a 5-SNP 

haplotype composed of intronic tag SNPs. Associations for haplotype 1 and breast cancer 

overall and the basal-like subtype were very strong. This was consistent with a 

comprehensive haplotype analysis conducted in the MultiEthnic Cohort (MEC) study (40). In 

the MEC, Haiman and colleagues used dense SNP genotyping to characterize LD and 

haplotype block structure in CYP19A1. Haplotype associations with breast cancer were 

observed for MEC Block 2, which contains 2 of the 5 SNPs in CBCS HAP1 (rs2445759 and 

rs936306) and MEC Block 3, which contains CBCS HAP1 SNP rs749292. Though rs749292 

is in intron 2 and the other haplotype SNPs are in intron 1, Haiman et al. reported a stronger 

odds ratio for the long range haplotype MEC 2b-3c that combined SNPs from the two 

regions. The OR estimated in the CBCS was much stronger than the OR estimated in the 

MEC study [MEC 2b-3c, OR (95% CI): 1.31 (1.11, 1.54)] (40). Since the SNPs did not 
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overlap completely between the MEC and CBCS haplotypes, it is possible that one of the 

non-overlapping CBCS SNPs tags a region that is in stronger LD with a causal variant.  

Associations reported in the MEC were not observed in a follow-up pooled study of 

haplotype associations with estrogen levels and breast cancer in postmenopausal, mainly 

white participants from several large cohort studies, where none of the haplotypes were 

associated with breast cancer (12). CYP19A1 haplotypes in the pooled study block 2 

included 4 of 5 SNPs in CBCS CYP19A1 HAP1, but the HAP1 haplotype identified in the 

CBCS was not analyzed. 

Several groups have examined ESR1 haplotypes and breast cancer risk, but the 

haplotypes identified in CBCS (haplotypes 2, 3, 4, 5)) did not fully correspond to haplotypes 

identified in these studies. Fernandez et al. (87) reported a protective effect for an ESR1 

haplotype that contains functional variants (rs2077647, rs1801132, rs3798577, rs3798758) 

[C-G-T-G, OR (95% CI): 0.34 (0.14, 0.83)], but this haplotype was not associated with breast 

cancer in the CBCS (data not shown). Gold et al. (88) identified multiple haplotypes 

associated with breast cancer, but CBCS results could not be compared to Gold et al. because 

there were two few SNPs in common between haplotypes in the two studies. Others did not 

find any association between any haplotypes composed of rs746432, rs2234693, rs9340799, 

and rs1801132 (identified by Gold et al.) and breast cancer (89).  

 We investigated the possibility of multiplicative interaction between breast cancer-

associated variants and a combined parity and lactation variable. There were several SNPs 

and one haplotype that demonstrated evidence of multiplicative interaction with parity and 

lactation. However, estimation of associations stratified by parity/lactation status did not 

reveal any consistent patterns for luminal A or basal-like breast cancer. This was due in part 
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to small numbers of basal-like cases and nulliparous women. 

 Though candidate genes and SNPs were chosen with careful consideration to the 

biological plausibility of gene effects on breast cancer risk, the results should be replicated in 

other studies before conclusions are made. It is possible that some associations are due to 

chance. Since hypothesis testing was neither the goal of this analysis nor was it used as strict 

criteria for culling results, P-values were not adjusted for multiple comparisons.  

 There was also some potential for systematic bias. Not all CBCS subjects had DNA 

available for genotyping. Not all eligible women chose to participate in the CBCS. 

Furthermore, not all women provided blood for genotyping analyses. 3748 of 4333 (86.5%) 

CBCS subjects had adequate data for inclusion in the analysis, and subjects without data 

were more likely to be cases and African American. However, all models were adjusted for 

self-identified race, which should provide sufficient control for bias that would occur if 

genotypes for the SNPs in question also differed by case and race status (90).  

 Additionally, not all of the cases enrolled in the CBCS had sufficient amounts of 

tumor tissue necessary for determining molecular subtype. Cases with subtype data were 

more likely to be African American and have a later stage at diagnosis compared to cases 

without subtype data, but did not differ by other breast cancer risk factors (29). Study results 

could be biased if the genotypes of cases with sufficient tumor tissue for subtyping were 

systematically different from the genotypes of women without subtype information. 

Genotype distributions between cases with and without subtype information differed for 

HSD17B2 rs3111351 and rs8191136 in African Americans, and for ESR1 rs6557177r and 

rs985695r in non-African Americans. Selection bias may have affected the associations 

estimated for these SNPs in the CBCS. 
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 Another potential source of bias was intrinsic molecular subtype misclassification. 

The intrinsic subtypes were characterized based on gene expression data, but there is not 

always perfect agreement between gene expression and IHC-based classification (23, 35, 49). 

In a series of sensitivity analyses that simulated the genotype-subtype association, bias-

corrected ORs for some SNPs were further from the null from the observed OR. The 

difference between observed and bias-corrected ORs was largest when the sample size in 

variant genotype cells was small. This means that in the case of subtype misclassification 

between luminal A and basal-like subtypes, observed differences between subtype effects 

were likely biased towards the null. The differences observed in this study are unlikely to be 

false positives due to bias; in fact the sensitivity analysis suggests that we may have missed 

some differences between the subtypes when the number of variant alleles was small.  

 In conclusion, this analysis has identified SNPs in ESR1, PGR, CYP19A1, 

HSD17B2, SHBG, and HSD3B1 that were associated with breast cancer. In some cases, 

these associations were only apparent when cases were stratified by intrinsic molecular 

subtype. Several associations are consistent with other reports in the literature, including 

associations for functional SNPs in SHBG and CYP19A1. Further characterization of the 

effects of these SNPs could help identify novel biological pathways active in breast cancer. 

The evidence to support interaction between ESR1 haplotype 4, parity and lactation, and 

luminal A breast cancer is also promising, particularly since comprehensive ESR1 analyses 

from the SEARCH study also point towards a breast-cancer associated variant in that region. 

The apparent difference in haplotype 4 association between parous and nulliparous women 

could have implications for breast cancer prevention strategies and screening among parous 

women. Fine-mapping of SNPs within this region in the CBCS may help localize the causal 
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variant. 
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4.7 Tables 
Table 4.1 Genotype frequencies in estrogen-related genes, adjusted for sampling weights1 

Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

CYP19A1 

rs4646 AA 62 9 78 7 72 9 85 6 

AC 295 43 437 45 325 44 533 45 

CC 301 47 601 47 345 47 611 49 

Missing 1 

rs10046 CC 386 55 242 21 395 53 299 24 

CT 235 41 555 54 293 40 625 53 

TT 37 4 320 25 54 7 305 23 

rs17601241 AA 1 0 8 1 1 0 9 1 

AG 60 10 184 17 70 9 223 18 

GG 596 90 925 83 671 90 997 82 

Missing 1 

rs700519 CC 458 67 1055 94 537 72 1156 94 

CT 177 29 62 6 193 26 71 6 

TT 23 4 12 2 2 0 

rs28757184 CC 606 93 1027 90 662 89 1145 92 

CT 50 7 88 9 78 11 84 8 

TT 2 0 2 1 2 0 

rs700518 AA 425 61 265 23 446 60 327 26 

AG 209 37 558 54 263 36 621 51 

GG 23 2 292 23 31 4 281 22 

Missing 1 2 2 

rs2414096 AA 23 2 290 23 30 4 278 22 

AG 208 37 559 54 264 36 621 52 

GG 427 61 267 23 448 60 327 26 

Missing 1 3 

rs727479 GG 32 4 127 10 36 5 163 13 

GT 208 32 521 51 252 34 575 47 

TT 418 64 469 39 454 61 491 40 

rs2236722 TT 658 100 1117 100 742 100 1229 100 

rs1008805 CC 30 5 206 20 28 4 227 18 

CT 209 32 512 48 237 32 599 50 

TT 419 64 397 32 477 64 403 33 

Missing 2 

rs6493494 AA 41 5 216 17 64 9 209 16 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

AG 254 45 527 48 307 41 588 50 

GG 363 51 374 35 371 50 432 34 

rs749292 AA 138 18 227 17 188 26 219 17 

AG 313 52 535 48 356 48 602 51 

GG 207 30 355 35 198 26 408 32 

rs1902586 AA 160 22 7 1 170 23 4 0 

AG 311 49 92 8 358 48 112 10 

GG 187 29 1018 91 214 29 1113 90 

rs936306 CC 117 17 797 71 116 16 854 69 

CT 295 46 281 26 347 47 346 29 

TT 245 37 39 3 279 38 29 2 

Missing 1 

rs2445759 GG 571 84 948 85 613 83 1028 84 

GT 83 16 161 14 124 17 198 16 

TT 3 0 8 1 5 1 3 0 

Missing 1 

rs28566535 AA 171 26 1016 91 202 27 1105 89 

AC 307 49 92 8 353 47 119 10 

CC 179 26 9 1 187 25 5 0 

Missing 1 

rs3751591 CC 1 0 39 3 2 0 41 3 

CT 52 8 303 27 66 9 356 30 

TT 605 92 775 70 674 91 831 67 

Missing 1 

rs1902584 AA 571 83 936 82 655 88 1040 84 

AT 84 17 175 17 86 12 183 15 

TT 3 0 6 1 1 0 6 1 

rs1004984 CC 187 26 406 37 212 29 444 37 

CT 344 55 553 46 388 52 573 46 

TT 126 19 158 17 140 19 209 17 

Missing 1 2 3 

rs28757081 CC 458 71 1112 99 525 70 1222 100 

CT 183 26 4 1 203 28 6 0 

TT 17 3 1 0 14 2 1 0 

rs2445762 CC 101 13 76 7 97 13 118 10 

CT 315 50 481 41 363 49 492 39 

TT 242 37 560 53 281 38 617 50 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

Missing 1 2 

rs2470144 AA 26 3 257 19 26 3 286 23 

AG 148 22 584 56 186 25 615 49 

GG 484 75 276 25 530 72 328 27 

rs2445765 CC 35 8 32 3 31 4 40 4 

CG 235 42 347 30 285 39 379 31 

GG 388 51 738 67 422 57 808 65 

Missing 4 2 

rs2446405 AA 189 33 34 3 214 29 44 4 

AT 320 48 354 30 356 48 381 31 

TT 148 19 728 66 170 23 804 65 

Missing 1 1 2 

ESR1 

rs851984 CC 384 57 414 33 407 55 418 34 

CT 226 35 518 52 280 38 586 49 

TT 46 7 184 16 55 7 223 17 

Missing 2 1 2 

rs851982 CC 42 7 187 16 41 6 223 17 

CT 215 34 514 51 261 35 585 49 

TT 401 59 415 33 440 59 419 34 

Missing 1 2 

rs2881766 GG 271 44 45 4 297 40 56 5 

GT 293 40 358 31 331 44 373 30 

TT 94 16 714 65 114 15 800 65 

rs2077647 AA 155 27 306 26 200 27 333 26 

AG 346 48 566 46 372 50 614 51 

GG 155 25 244 28 170 23 282 23 

Missing 2 1 

rs532010 CC 133 18 170 22 129 18 186 15 

CT 326 49 524 42 354 48 569 48 

TT 197 33 420 36 255 35 474 37 

Missing 2 3 4 

rs17081703 AA 446 65 1111 99 503 68 1221 99 

AG 194 32 6 1 223 30 8 1 

GG 18 3 16 2 

rs12523805 GG 440 68 1103 98 497 67 1212 99 

GT 196 29 14 2 223 30 17 1 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

TT 22 3 22 3 

rs3866461 CC 113 15 20 1 99 14 29 2 

CT 301 45 246 21 373 50 282 22 

TT 243 40 851 77 270 36 918 75 

Missing 1 

rs7759411 CC 478 74 1086 97 580 78 1199 98 

CT 169 25 30 3 153 21 30 2 

TT 11 1 1 0 9 1 

rs11155813 CC 91 13 16 1 75 10 21 2 

CT 297 43 206 17 360 48 242 19 

TT 270 44 895 81 307 41 966 79 

rs17081740 CC 4 0 

CT 79 14 4 0 100 13 3 0 

TT 574 86 1113 100 637 87 1225 100 

Missing 1 5 1 

rs7761133 CC 256 42 30 2 263 36 47 4 

CT 297 40 300 26 363 49 318 26 

TT 105 18 786 72 116 16 858 70 

Missing 1 6 

rs7775047 CC 256 42 30 2 263 36 47 4 

CG 297 40 300 26 363 49 318 26 

GG 105 18 787 72 116 16 864 70 

rs6903763 AA 12 1 3 0 14 2 

AG 193 28 73 7 179 25 84 7 

GG 453 71 1041 93 548 73 1145 93 

Missing 1 

rs827421 CC 254 40 263 30 274 37 320 27 

CT 304 44 575 45 356 48 608 50 

TT 100 16 279 25 112 15 301 24 

rs4870056 AA 159 24 212 18 168 23 266 22 

AG 336 52 575 51 391 53 586 48 

GG 163 24 328 31 182 25 373 30 

Missing 2 1 4 

rs2234693 CC 182 26 216 18 198 27 272 23 

CT 334 52 573 51 396 53 588 48 

TT 142 22 327 31 148 20 369 29 

Missing 1 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

rs9322332 AA 105 14 217 18 114 16 266 22 

AC 322 50 568 50 358 48 588 48 

CC 231 36 332 32 270 36 375 30 

rs9340817 AA 12 2 24 3 2 0 

AC 193 29 52 4 217 29 66 6 

CC 453 70 1065 96 499 67 1161 94 

Missing 2 

rs712221 AA 90 16 387 35 96 13 437 35 

AT 304 44 550 51 338 46 582 48 

TT 264 40 180 14 308 41 210 17 

rs1514348 AA 90 16 391 35 96 13 434 35 

AC 304 44 549 51 339 46 585 48 

CC 264 40 177 14 307 41 209 17 

Missing 1 

rs11155818 AA 5 1 2 0 7 1 

AG 139 21 30 2 120 16 34 3 

GG 514 78 1085 97 615 83 1195 97 

rs1709183 AA 263 37 560 48 296 40 612 50 

AG 314 54 486 46 340 46 500 41 

GG 80 10 71 6 106 14 112 9 

Missing 1 5 

rs9340835 AA 61 11 126 11 81 11 154 12 

AG 275 39 516 50 309 42 532 45 

GG 322 50 474 39 350 47 541 43 

Missing 1 2 2 

rs9322335 CC 316 45 626 53 338 46 682 55 

CT 277 42 428 42 317 43 457 37 

TT 65 13 63 5 86 12 89 8 

Missing 1 1 

rs9322336 CC 1 0 41 3 1 0 62 5 

CT 66 10 353 35 58 8 399 32 

TT 591 90 723 62 683 92 768 62 

rs9322337 AA 56 6 4 0 72 10 8 1 

AC 287 45 84 7 280 38 93 7 

CC 315 48 1029 93 390 52 1128 93 

rs9322338 AA 172 28 4 0 237 32 3 0 

AG 339 54 49 4 333 45 42 3 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

GG 143 19 1064 96 168 23 1182 97 

Missing 4 4 2 

rs6557170 AA 10 2 59 4 7 1 81 6 

AG 131 20 403 40 116 16 440 36 

GG 517 78 655 56 619 83 708 58 

rs6557171 CC 193 29 496 44 225 30 554 45 

CT 323 48 502 47 357 48 533 43 

TT 141 23 119 9 159 22 142 12 

Missing 1 1 

rs9340888 AA 526 78 1109 98 608 82 1228 100 

AC 129 22 8 2 128 17 1 0 

CC 3 0 6 1 

rs12154178 AA 116 14 494 42 129 17 549 45 

AC 326 52 504 49 366 49 526 42 

CC 215 34 118 9 245 33 144 13 

Missing 1 1 2 10 

rs7739274 AA 48 7 1 0 61 8 

AG 244 41 86 6 284 39 91 8 

GG 364 52 1030 94 393 53 1135 92 

Missing 2 4 3 

rs4583998 AA 204 32 117 9 231 31 143 13 

AG 331 53 504 48 368 50 526 42 

GG 121 15 495 42 142 19 559 45 

Missing 2 1 1 1 

rs6911230 AA 334 52 138 12 349 48 162 14 

AG 261 40 522 49 330 44 553 44 

GG 62 8 457 40 61 8 514 42 

Missing 1 2 

rs1801132 CC 507 76 663 57 599 81 717 58 

CG 144 23 400 39 134 18 433 35 

GG 7 1 54 4 8 1 79 7 

Missing 1 

rs9397459 AA 12 1 6 1 

AG 135 18 6 0 148 20 5 0 

GG 511 81 1111 100 588 79 1224 100 

rs3020410 AA 16 2 21 2 21 3 26 3 

AC 177 27 262 27 176 24 285 23 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

CC 465 71 831 70 544 73 916 75 

Missing 3 1 2 

rs3003917 AA 272 42 719 61 322 43 774 63 

AG 312 48 356 37 337 46 400 32 

GG 74 11 42 3 81 11 55 5 

Missing 2 

rs6914211 AA 27 4 13 1 45 6 40 4 

AT 229 39 298 24 274 37 278 23 

TT 402 56 806 75 423 57 911 73 

rs9383599 CC 561 88 1114 100 622 83 1224 100 

CG 92 11 3 0 115 16 5 0 

GG 5 0 5 1 

rs3020314 CC 315 49 128 9 339 46 181 16 

CT 278 43 523 51 339 45 526 42 

TT 65 8 466 40 63 8 522 42 

Missing 1 

rs3020401 AA 91 12 467 40 86 11 533 43 

AG 312 48 525 51 361 48 524 41 

GG 253 40 124 9 294 40 171 15 

Missing 2 1 1 1 

rs985191 AA 400 58 801 73 411 55 900 72 

AC 233 38 299 26 286 39 288 24 

CC 25 5 17 1 45 6 41 4 

rs3003925 AA 438 69 689 60 534 72 772 62 

AG 199 28 384 36 195 26 402 34 

GG 21 3 44 4 13 2 55 5 

rs6557177 CC 55 12 40 3 69 9 64 6 

CT 288 44 366 29 328 44 354 29 

TT 315 44 711 68 345 47 811 65 

rs2982699 AA 19 3 33 3 17 2 49 4 

AG 198 28 332 33 216 29 349 29 

GG 440 70 752 64 509 69 831 67 

Missing 1 

rs985695 CC 219 28 707 67 233 31 805 65 

CT 329 52 366 30 397 54 358 29 

TT 110 19 44 3 112 15 66 6 

rs1884049 CC 253 42 745 64 286 38 819 66 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

CT 313 46 335 33 361 49 355 30 

TT 90 12 37 3 94 13 49 4 

Missing 2 1 6 

rs3020318 CC 31 4 423 37 29 4 484 39 

CT 213 31 533 51 256 34 544 43 

TT 414 65 161 12 457 62 201 19 

rs1884053 CC 414 65 164 12 459 62 203 19 

CT 214 31 535 51 254 34 547 43 

TT 30 4 418 37 29 4 479 38 

rs9383951 CC 12 1 13 2 

CG 151 20 8 0 193 26 6 0 

GG 495 79 1109 100 536 72 1222 100 

Missing 1 

rs3020403 CC 28 4 497 51 30 4 571 45 

CG 225 31 508 41 256 35 513 42 

GG 405 65 112 8 456 61 144 13 

Missing 1 

rs3020404 AA 591 91 593 48 657 88 655 54 

AG 66 9 442 44 83 12 483 39 

GG 1 0 82 8 2 0 90 7 

Missing 1 

rs9397462 AA 24 3 20 3 1 0 

AT 172 25 11 1 205 28 14 1 

TT 462 72 1106 99 517 70 1214 99 

rs9397463 CC 407 59 772 73 438 59 867 69 

CT 215 34 320 25 261 35 314 26 

TT 35 7 25 2 42 6 48 5 

Missing 1 1 

rs926777 AA 204 36 65 6 237 32 101 9 

AC 308 45 465 36 350 47 456 38 

CC 145 19 587 59 154 21 672 53 

Missing 1 1 

rs2982684 AA 34 6 5 1 27 4 14 1 

AC 188 25 207 15 197 26 205 18 

CC 436 70 905 84 518 70 1010 81 

rs9371236 AA 382 60 1063 94 454 61 1177 96 

AG 237 36 51 5 248 34 48 3 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

GG 39 4 2 0 37 5 3 0 

Missing 1 3 1 

rs3020407 AA 30 5 483 46 33 4 549 43 

AG 205 27 520 45 247 33 523 43 

GG 423 68 113 9 461 62 155 13 

Missing 1 1 2 

rs2144025 CC 219 32 811 76 255 34 870 70 

CT 323 48 281 23 367 49 326 27 

TT 115 20 25 2 120 16 33 3 

Missing 1 

rs12212176 CC 608 92 747 68 694 94 835 68 

CT 50 8 335 27 48 6 350 29 

TT 35 5 44 3 

rs11964865 AA 502 78 1062 94 582 78 1161 95 

AT 146 21 55 6 149 20 68 5 

TT 10 1 11 2 

rs7754762 AA 79 18 13 1 89 12 23 2 

AT 294 40 228 17 309 42 249 22 

TT 285 42 875 82 343 46 957 76 

Missing 1 1 

rs13192976 AA 393 55 879 83 450 61 957 77 

AT 224 35 221 16 250 34 242 22 

TT 41 10 12 1 42 6 22 2 

Missing 5 8 

rs9340944 AA 9 1 28 2 11 1 29 2 

AG 135 19 275 22 160 22 321 26 

GG 514 80 814 76 571 77 879 72 

rs6905370 AA 226 37 88 7 244 33 115 9 

AG 312 44 458 36 381 52 496 42 

GG 120 19 571 58 117 15 618 49 

rs9340971 AA 529 77 1084 98 603 81 1201 98 

AG 119 18 33 2 131 18 28 2 

GG 10 4 8 1 

rs7755185 AA 184 29 514 54 178 24 570 45 

AG 322 49 495 38 394 54 529 45 

GG 152 22 108 8 170 23 130 10 

rs17082028 CC 8 1 7 1 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

CT 120 14 5 0 147 20 

TT 530 85 1112 100 588 79 1229 100 

rs2207232 CC 20 3 9 1 28 4 21 2 

CT 184 31 227 17 197 27 241 22 

TT 453 67 881 83 517 69 967 77 

Missing 1 

rs9397472 AA 490 71 943 88 559 75 1029 82 

AG 156 28 167 11 165 22 186 17 

GG 12 1 7 1 18 2 14 1 

rs2982712 CC 509 79 225 16 560 75 259 21 

CT 136 19 541 52 173 23 585 48 

TT 13 2 350 32 9 1 385 31 

Missing 1 

rs3020434 CC 489 76 774 74 524 71 851 69 

CT 161 23 304 24 203 27 344 29 

TT 8 1 39 2 15 2 34 2 

rs3020364 AA 114 14 478 51 122 16 528 42 

AG 304 43 511 40 348 47 551 46 

GG 240 43 128 9 272 37 150 12 

rs6901451 AA 130 26 12 1 147 20 25 2 

AG 326 49 230 17 356 48 253 23 

GG 202 25 875 82 239 32 951 75 

rs3020368 CC 495 77 907 85 537 73 999 81 

CT 154 22 194 14 189 25 213 17 

TT 9 1 16 1 16 2 17 1 

rs9341008 AA 6 0 5 1 

AG 94 14 2 0 99 14 

GG 558 85 1115 100 638 86 1229 100 

rs2207396 AA 43 5 58 3 58 8 59 4 

AG 255 35 390 33 280 38 426 34 

GG 360 60 669 64 404 55 744 61 

rs3020371 CC 108 13 490 53 115 16 532 42 

CT 326 50 497 37 353 47 550 46 

TT 224 37 130 9 274 37 147 12 

rs3798569 AA 126 23 13 1 146 20 26 2 

AG 324 51 230 16 354 48 250 23 

GG 208 25 874 83 242 32 953 75 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

rs3778082 AA 107 20 14 1 134 18 28 2 

AG 316 51 231 17 351 47 251 23 

GG 235 29 872 82 257 35 950 75 

rs3020375 AA 54 7 467 51 50 7 515 41 

AC 267 39 514 40 315 43 558 47 

CC 337 53 135 10 377 51 156 12 

Missing 1 

rs12055837 AA 272 38 875 82 299 40 951 75 

AT 298 47 228 17 340 46 249 23 

TT 88 15 14 1 103 14 29 2 

rs2459107 AA 283 41 132 9 308 42 152 12 

AG 292 45 501 39 353 48 548 46 

GG 82 13 484 52 81 11 529 42 

Missing 1 

rs11155833 AA 257 37 875 82 282 39 949 75 

AG 293 46 228 17 342 47 248 23 

GG 101 17 13 1 102 14 27 2 

Missing 7 1 16 5 

rs13192678 CC 258 36 875 82 283 38 951 75 

CT 295 46 227 17 350 47 249 23 

TT 105 17 15 1 109 15 29 2 

rs3020381 AA 236 33 133 10 272 37 157 12 

AT 317 50 508 39 349 47 554 47 

TT 105 17 476 51 121 16 518 41 

rs2474148 GG 262 45 535 55 299 40 588 47 

GT 318 44 474 38 337 45 522 43 

TT 78 11 107 7 106 14 118 10 

Missing 1 1 

rs9341052 AA 638 97 976 89 721 97 1080 88 

AG 20 3 136 11 21 3 146 12 

GG 5 0 3 0 

rs3020383 CC 1 0 15 1 1 0 15 1 

CG 43 6 168 12 50 7 184 15 

GG 614 94 934 87 691 93 1030 84 

rs3778099 CC 18 2 10 1 26 3 18 1 

CT 192 28 202 15 211 29 220 19 

TT 443 69 904 84 503 68 989 79 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

Missing 5 1 2 2 

rs9341062 AA 569 86 1053 95 625 85 1148 93 

AG 84 13 63 5 112 15 81 7 

GG 5 0 1 0 4 1 

Missing 1 

rs9341070 CC 658 100 1109 100 742 100 1223 99 

CT 8 0 6 1 

rs3798577 CC 130 23 268 21 140 19 277 22 

CT 309 47 541 51 367 49 609 51 

TT 219 31 308 28 235 32 342 27 

Missing 1 

rs3798758 GG 513 81 1036 94 586 79 1136 92 

GT 130 17 79 6 147 20 90 8 

TT 15 2 2 0 9 1 1 0 

Missing 2 

rs2813543 AA 3 0 49 3 3 0 61 5 

AG 61 8 359 33 62 8 385 31 

GG 594 92 709 64 677 91 782 64 

Missing 1 

HSD3B1 

rs932603 CC 68 13 2 0 105 14 2 0 

CT 287 44 15 1 325 44 19 1 

TT 303 43 1100 99 312 42 1208 99 

rs6671149 GG 499 75 1111 100 549 74 1218 99 

GT 143 22 5 0 175 24 11 1 

TT 16 2 1 0 17 2 

Missing 1 

rs3765945 CC 260 42 131 13 328 44 157 13 

CT 304 42 506 45 328 44 538 42 

TT 94 16 479 42 86 12 532 45 

Missing 1 2 

rs6428830 AA 6 0 91 8 7 1 119 10 

AG 114 14 462 44 149 20 484 38 

GG 538 85 563 48 586 79 626 52 

Missing 1 

rs6205 CC 94 17 2 0 132 18 1 0 

CT 297 45 21 1 346 46 20 1 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

TT 267 38 1094 98 263 36 1208 99 

Missing 1 

rs6203 CC 541 84 375 42 626 84 374 31 

CT 111 15 527 38 106 14 622 50 

TT 6 1 215 20 10 1 233 20 

rs10754400 GG 267 43 118 11 323 43 134 11 

GT 299 43 480 44 338 46 527 41 

TT 92 14 519 45 81 11 568 48 

HSD17B2 

rs4445895 CC 306 47 427 41 328 44 460 38 

CT 281 43 525 47 340 46 607 49 

TT 71 9 165 12 74 10 162 13 

rs8052451 CC 99 19 1 0 84 11 2 0 

CT 295 43 10 1 310 41 12 1 

TT 264 38 1106 99 348 47 1215 99 

rs8059915 CC 408 68 177 14 421 57 187 15 

CG 211 27 546 57 264 36 620 51 

GG 33 5 392 29 57 8 419 34 

Missing 6 2 3 

rs16956274 CC 456 66 1112 99 540 73 1219 99 

CT 184 33 4 0 187 25 10 1 

TT 18 2 1 0 15 2 

rs11648233 AA 20 3 371 29 34 5 397 33 

AC 176 23 543 55 206 27 620 50 

CC 462 74 203 16 502 68 212 17 

rs8049423 AA 424 62 1110 99 511 69 1222 100 

AC 208 35 6 1 207 28 7 0 

CC 25 3 1 0 24 3 

Missing 1 

rs8050327 AA 281 41 1104 99 331 45 1219 99 

AC 290 38 12 1 332 45 9 1 

CC 87 21 1 0 79 11 1 0 

rs8191072 AA 269 40 1104 99 319 43 1218 99 

AG 298 39 12 1 340 46 10 1 

GG 91 21 1 0 83 11 1 0 

rs7200696 CC 166 30 2 0 150 20 2 0 

CG 300 44 46 3 374 50 45 3 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

GG 190 25 1068 97 217 29 1176 97 

Missing 2 1 1 6 

rs8045494 AA 32 3 1 0 30 4 

AG 221 39 7 1 224 30 10 1 

GG 405 58 1109 99 488 66 1219 99 

rs4243229 AA 6 1 10 1 1 0 

AG 115 18 29 3 135 18 25 2 

GG 537 82 1088 97 597 80 1203 98 

rs7196087 CC 410 57 1093 98 456 61 1213 99 

CT 221 37 23 2 248 34 16 1 

TT 27 6 1 0 38 5 

rs16956326 CC 452 64 1113 100 519 70 1225 100 

CT 186 30 4 0 201 27 4 0 

TT 20 6 22 3 

rs8191102 CC 394 53 1110 100 461 62 1221 99 

CT 219 41 7 0 247 33 7 1 

TT 45 6 34 5 1 0 

rs8191136 AG 22 4 16 2 

GG 636 96 1117 100 726 98 1229 100 

rs8191167 AA 318 43 1104 99 407 56 1207 99 

AG 277 50 12 1 270 36 15 1 

GG 61 7 59 8 

Missing 2 1 6 7 

rs2966245 CC 76 10 199 23 95 13 220 18 

CT 315 47 549 48 347 47 617 51 

TT 267 43 369 28 300 41 390 31 

Missing 2 

rs2955159 AA 62 12 1 0 72 10 2 0 

AG 254 39 26 2 294 40 23 2 

GG 339 49 1090 98 374 50 1204 98 

Missing 3 2 

rs2042429 AA 263 41 306 25 291 39 338 27 

AG 317 48 578 47 353 47 630 51 

GG 78 10 233 28 98 13 261 21 

rs3111351 AA 163 24 1085 98 206 28 1200 98 

AG 329 46 30 2 348 47 26 2 

GG 166 30 2 0 188 25 3 0 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

rs2966244 CC 437 60 1055 94 475 64 1152 94 

CT 197 33 60 6 240 32 76 6 

TT 24 6 2 0 27 4 1 0 

rs9889094 CC 476 71 1029 92 555 75 1127 92 

CT 166 26 87 8 172 23 101 8 

TT 16 3 1 0 15 2 1 0 

rs7196807 CC 393 58 502 42 456 62 548 44 

CT 241 39 497 49 246 33 526 44 

TT 24 3 116 9 40 5 155 12 

Missing 2 

rs9319572 CC 197 34 161 21 238 32 209 16 

CG 341 47 532 45 368 50 559 47 

GG 120 19 424 34 136 18 461 36 

rs1364287 CC 488 77 507 50 521 71 557 45 

CT 158 21 494 41 202 27 528 44 

TT 10 2 115 9 16 2 142 11 

Missing 2 1 3 2 

rs723013 GG 34 7 123 10 66 9 160 12 

GT 254 39 493 49 272 36 526 44 

TT 370 54 501 41 404 55 543 43 

rs6564962 AA 166 24 420 34 174 24 459 36 

AG 340 50 536 45 380 51 561 48 

GG 151 26 160 21 188 26 209 16 

Missing 1 1 

rs2911418 CC 19 2 23 3 

CT 166 23 31 11 214 29 35 3 

TT 473 74 1086 89 505 68 1194 97 

rs2966250 AA 458 70 1076 88 499 67 1185 96 

AG 182 28 41 12 218 29 43 3 

GG 18 2 25 4 1 0 

rs2955153 AA 353 52 1082 89 399 54 1190 97 

AG 264 43 35 11 283 38 37 3 

GG 41 5 60 8 2 0 

rs2911420 AA 20 3 129 10 28 4 157 12 

AC 212 37 515 45 235 32 548 46 

CC 425 61 472 46 473 64 521 42 

Missing 1 1 6 3 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

rs8191232 CC 16 4 12 2 

CT 145 20 9 1 164 22 5 0 

TT 497 76 1108 99 566 76 1224 100 

rs6564964 GG 89 14 143 12 111 15 175 14 

GT 304 49 529 52 343 46 555 46 

TT 264 37 444 36 288 39 498 40 

Missing 1 1 1 

rs2966248 GG 311 44 468 45 336 45 517 42 

GT 282 45 520 45 321 43 547 46 

TT 65 11 128 10 85 12 161 13 

Missing 1 4 

rs1364286 AA 172 25 443 36 196 27 497 40 

AG 343 51 531 52 362 49 550 46 

GG 142 24 142 12 182 25 181 14 

Missing 1 1 2 1 

rs2955163 CC 439 64 1012 83 536 72 1107 90 

CG 199 33 103 17 183 25 117 10 

GG 20 3 2 0 23 3 5 0 

rs1364285 CC 261 35 453 36 285 39 504 40 

CG 309 51 527 52 346 46 551 46 

GG 88 14 137 11 111 15 174 14 

rs2955162 AA 9 4 62 5 5 1 61 5 

AG 245 39 426 35 312 42 459 37 

GG 404 57 629 61 424 57 708 58 

Missing 1 1 

rs2966246 CC 46 6 2 0 61 8 4 0 

CG 264 43 109 17 250 34 124 10 

GG 348 51 1006 82 431 58 1101 89 

rs1424151 CC 4 0 1 0 8 1 2 0 

CT 122 23 83 7 92 12 98 8 

TT 532 77 1033 93 641 87 1129 92 

Missing 1 

PGR 

rs11224565 AA 11 4 15 2 

AG 147 24 8 1 179 25 8 0 

GG 500 72 1109 99 548 73 1221 100 

rs11224566 CC 2 0 1 0 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

CG 63 13 4 0 71 10 4 0 

GG 593 87 1113 100 670 90 1225 100 

rs546763 AA 105 16 78 8 92 12 83 7 

AC 302 44 409 35 340 46 479 39 

CC 251 40 629 57 309 42 665 54 

Missing 1 1 2 

rs548668 CC 105 16 78 8 92 12 83 7 

CT 304 45 409 35 341 46 480 39 

TT 248 39 629 57 309 42 666 54 

Missing 1 1 

rs492827 CC 186 31 79 8 191 26 84 7 

CT 312 47 415 35 356 48 485 39 

TT 160 22 623 57 195 26 659 54 

Missing 1 

rs11224570 AA 6 3 8 1 

AT 109 18 5 0 141 19 2 0 

TT 543 79 1112 100 593 80 1227 100 

rs11571247 AA 495 74 1112 100 593 80 1227 100 

AG 150 24 5 0 140 19 2 0 

GG 13 2 8 1 

Missing 1 

rs578029 AA 73 11 89 15 87 12 77 7 

AT 321 50 453 35 339 46 480 40 

TT 263 40 575 50 316 43 668 53 

Missing 1 4 

rs11224575 AA 11 2 41 4 18 2 44 4 

AG 124 14 300 24 197 27 355 28 

GG 517 84 776 72 517 71 830 69 

Missing 6 10 

rs543936 AA 213 29 605 52 235 32 698 56 

AG 315 49 438 43 362 49 457 38 

GG 130 22 73 5 144 20 74 6 

Missing 1 1 

rs679275 AA 122 22 73 5 137 19 73 6 

AG 323 49 439 43 369 50 459 38 

GG 213 29 605 52 236 32 697 56 

rs693765 GG 526 80 1112 100 620 84 1223 100 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

GT 123 18 5 0 118 16 6 0 

TT 9 2 4 1 

rs1824128 GG 527 84 820 75 532 72 862 71 

GT 121 14 266 22 193 26 327 26 

TT 10 2 31 3 17 2 39 3 

Missing 1 

rs660149 CC 331 50 579 51 398 54 667 53 

CG 283 42 451 35 281 38 488 40 

GG 44 8 87 15 63 9 74 6 

rs495997 AA 215 36 394 38 264 36 397 33 

AG 329 49 556 45 357 48 615 49 

GG 114 15 167 16 121 16 217 18 

rs2124761 GG 428 65 1095 98 541 73 1201 97 

GT 198 31 21 2 185 25 28 3 

TT 32 4 1 0 16 2 

rs11224579 CC 506 74 924 84 527 71 1004 82 

CT 144 22 181 15 203 28 207 16 

TT 8 4 12 1 12 2 17 2 

Missing 1 

rs503602 AA 87 14 19 2 69 9 27 3 

AC 268 39 272 23 286 39 302 24 

CC 303 47 826 75 387 52 900 74 

rs653752 CC 160 22 150 10 217 29 163 14 

CG 338 53 524 52 363 49 576 47 

GG 160 25 443 38 161 22 489 39 

Missing 1 1 

rs538915 CC 480 72 841 76 561 76 923 76 

CT 166 25 260 22 165 22 284 22 

TT 12 3 15 2 16 2 22 2 

Missing 1 

rs555653 AA 216 29 280 23 264 36 306 25 

AG 331 50 594 57 366 49 625 51 

GG 110 21 243 20 111 15 298 24 

Missing 1 1 

rs11224590 GG 565 82 1113 100 637 86 1228 100 

GT 90 16 4 0 101 14 1 0 

TT 3 3 4 1 
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Controls Cases 

African 
American 

Non-
African 
American 

African 
American 

Non-
African 
American 

N % N % N % N % 

rs11224591 AA 565 82 1113 100 636 86 1228 100 

AG 90 16 4 0 101 14 1 0 

GG 3 3 4 1 

Missing 1 

rs596223 AA 514 82 494 42 582 79 554 45 

AG 132 17 508 49 147 20 557 46 

GG 9 1 113 9 12 2 113 9 

Missing 3 2 1 5 

rs501732 CC 118 17 35 2 161 22 36 3 

CT 325 52 329 29 355 48 349 28 

TT 215 32 753 68 225 30 844 69 

Missing 1 

rs10895068 AA 3 0 1 0 4 1 

AG 18 3 117 10 18 2 146 11 

GG 640 97 996 89 723 97 1079 88 

Missing 1 

SHBG 

rs1799941 AA 3 0 68 5 1 0 88 8 

AG 96 13 420 34 91 12 435 36 

GG 559 86 628 61 650 88 706 56 

Missing 1 
1- counts (N) reflect raw data. Genotype percentages are adjusted for study sampling probabilities. 
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Table 4.2 Association between estrogen-related candidate gene SNPs and breast cancer 

 
Cases Controls OR (95% CI)1 CLR2 P-value 

CYP19A1 
     

rs4646 
     

    AA 157 140  1.00 ( 0.77 ,  1.29) 1.7 0.9699 

    AC 859 733  1.15 ( 1.00 ,  1.33) 1.3 0.0499 

    CC 956 902 Referent 
  

rs2445759 
     

    TT+GT 330 255  1.24 ( 1.03 ,  1.50) 1.5 0.0213 

    GG 1642 1520 Referent 
  

ESR1 
     

rs7759411 
     

    TT+CT 192 211  0.77 ( 0.61 ,  0.97) 1.6 0.0255 

    CC 1780 1565 Referent 
  

rs827421 
     

    CC+CT 1558 1397  1.06 ( 0.90 ,  1.25) 1.4 0.5009 

    TT 414 379 Referent 
  

rs11155818 
     

    AA+AG 161 176  0.77 ( 0.60 ,  0.98) 1.6 0.0318 

    GG 1811 1600 Referent 
  

rs1709183 
     

    GG 218 151  1.37 ( 1.08 ,  1.74) 1.6 0.0099 

    AG 841 801  0.93 ( 0.81 ,  1.07) 1.3 0.3182 

    AA 908 823 Referent 
  

rs9340835 
     

    AA 235 187  1.19 ( 0.96 ,  1.48) 1.5 0.1027 

    AG+GG 1733 1588 Referent 
  

rs9322335 
     

    TT 175 128  1.32 ( 1.02 ,  1.71) 1.7 0.0333 

    CT 775 706  0.99 ( 0.86 ,  1.14) 1.3 0.8759 

    CC 1020 942 Referent 
  

rs9322338 
     

    AA 240 176  1.18 ( 0.88 ,  1.60) 1.8 0.2718 

    AG 375 388  0.81 ( 0.63 ,  1.03) 1.6 0.0876 

    GG 1351 1208 Referent 
  

rs9340888 
     

    CC+AC 135 140  0.76 ( 0.58 ,  1.00) 1.7 0.0485 

    AA 1837 1636 Referent 
  

rs6914211 
     

    AA 85 40  2.24 ( 1.51 ,  3.33) 2.2 0.0001 

    AT+TT 1887 1736 Referent 
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Cases Controls OR (95% CI)1 CLR2 P-value 

rs3020314 
     

    TT 585 532  0.92 ( 0.75 ,  1.12) 1.5 0.3924 

    CT 866 801  0.84 ( 0.70 ,  1.00) 1.4 0.0442 

    CC 520 443 Referent 
  

rs3020401 
     

    GG 465 377  1.25 ( 1.05 ,  1.48) 1.4 0.0102 

    AA+AG 1505 1396 Referent 
  

rs985191 
     

    CC 86 42  2.11 ( 1.43 ,  3.13) 2.2 0.0002 

    AC 574 532  0.99 ( 0.86 ,  1.16) 1.4 0.9447 

    AA 1312 1202 Referent 
  

rs3003925 
     

    GG 68 65  0.95 ( 0.66 ,  1.37) 2.1 0.7779 

    AG 598 583  0.86 ( 0.74 ,  0.99) 1.3 0.0382 

    AA 1306 1128 Referent 
  

rs6557177 
     

    CC 133 95  1.38 ( 1.04 ,  1.83) 1.8 0.0258 

    CT+TT 1839 1681 Referent 
  

rs9397463 
     

    TT 90 60  1.38 ( 0.97 ,  1.95) 2.0 0.0731 

    CC+CT 1881 1715 Referent 
  

rs2982684 
     

    AA 41 39  0.87 ( 0.54 ,  1.39) 2.6 0.5566 

    AC 402 395  0.89 ( 0.75 ,  1.05) 1.4 0.1672 

    CC 1529 1342 Referent 
  

rs9340944 
     

    AA+AG 521 448  1.10 ( 0.94 ,  1.29) 1.4 0.2185 

    GG 1451 1328 Referent 
  

rs2207232 
     

    CC 49 29  1.77 ( 1.09 ,  2.86) 2.6 0.0202 

    CT 438 411  0.96 ( 0.81 ,  1.12) 1.4 0.5872 

    TT 1485 1335 Referent 
  

rs3020381 
     

    AA 429 369  1.14 ( 0.94 ,  1.40) 1.5 0.1927 

    AT 904 826  1.06 ( 0.91 ,  1.25) 1.4 0.4430 

    TT 639 581 Referent 
  

rs9341052 
     

    AG+GG 171 161  1.00 ( 0.78 ,  1.27) 1.6 0.9819 

    AA 1801 1615 Referent 
  

rs3778099 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    CC 44 28  1.51 ( 0.92 ,  2.48) 2.7 0.1058 

    CT 431 394  0.96 ( 0.82 ,  1.14) 1.4 0.6648 

    TT 1493 1348 Referent 
  

HSD3B1 
     

rs932603 
     

    CC 107 70  1.48 ( 1.06 ,  2.06) 1.9 0.0207 

    CT+TT 1865 1706 Referent 
  

rs3765945 
     

    TT 618 574  0.83 ( 0.68 ,  1.02) 1.5 0.0738 

    CT 867 810  0.83 ( 0.70 ,  1.00) 1.4 0.0460 

    CC 485 391 Referent 
  

rs6428830 
     

    AA 126 97  1.21 ( 0.90 ,  1.62) 1.8 0.2047 

    AG+GG 1846 1678 Referent 
  

rs6205 
     

    CC 133 96  1.48 ( 1.07 ,  2.05) 1.9 0.0178 

    CT 366 318  1.20 ( 0.95 ,  1.51) 1.6 0.1188 

    TT 1472 1362 Referent 
  

rs10754400 
     

    TT 649 612  0.86 ( 0.70 ,  1.05) 1.5 0.1459 

    GT 866 779  0.93 ( 0.77 ,  1.11) 1.4 0.4243 

    GG 457 385 Referent 
  

HSD17B2 
     

rs8052451 
     

    CC 86 100  0.56 ( 0.40 ,  0.80) 2.0 0.0012 

    CT 322 305  0.81 ( 0.64 ,  1.02) 1.6 0.0688 

    TT 1564 1371 Referent 
  

rs8059915 
     

    GG 477 425  1.23 ( 1.00 ,  1.52) 1.5 0.0473 

    CG 884 758  1.22 ( 1.03 ,  1.45) 1.4 0.0229 

    CC 608 585 Referent 
  

rs16956274 
     

    CT+TT 212 207  0.85 ( 0.67 ,  1.08) 1.6 0.1794 

    CC 1760 1569 Referent 
  

rs8049423 
     

    CC+AC 238 240  0.79 ( 0.63 ,  1.00) 1.6 0.0480 

    AA 1734 1535 Referent 
  

rs8050327 
     

    CC 80 88  0.67 ( 0.47 ,  0.95) 2.0 0.0266 

    AC 341 302  0.94 ( 0.75 ,  1.18) 1.6 0.6179 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    AA 1551 1386 Referent 
  

rs8191072 
     

    GG 84 92  0.67 ( 0.47 ,  0.96) 2.0 0.0286 

    AG 350 310  0.96 ( 0.76 ,  1.20) 1.6 0.6953 

    AA 1538 1374 Referent 
  

rs7200696 
     

    CC 152 168  0.69 ( 0.53 ,  0.90) 1.7 0.0061 

    CG+GG 1813 1605 Referent 
  

rs7196087 
     

    TT 38 28  1.15 ( 0.68 ,  1.96) 2.9 0.5917 

    CT 264 244  0.94 ( 0.76 ,  1.18) 1.6 0.6051 

    CC 1670 1504 Referent 
  

rs16956326 
     

    TT 22 20  0.89 ( 0.46 ,  1.69) 3.7 0.7149 

    CT 205 190  0.90 ( 0.71 ,  1.15) 1.6 0.4087 

    CC 1745 1566 Referent 
  

rs8191102 
     

    TT 35 45  0.63 ( 0.39 ,  1.03) 2.6 0.0632 

    CT 254 226  0.90 ( 0.72 ,  1.14) 1.6 0.3911 

    CC 1683 1505 Referent 
  

rs8191167 
     

    GG 59 61  0.71 ( 0.48 ,  1.07) 2.2 0.0994 

    AG 285 289  0.71 ( 0.56 ,  0.88) 1.6 0.0024 

    AA 1615 1423 Referent 
  

rs2955159 
     

    AA 74 63  1.05 ( 0.72 ,  1.53) 2.1 0.8121 

    AG 317 280  1.03 ( 0.83 ,  1.28) 1.5 0.8001 

    GG 1579 1430 Referent 
  

rs3111351 
     

    GG 191 168  0.85 ( 0.63 ,  1.16) 1.8 0.3080 

    AG 374 359  0.84 ( 0.66 ,  1.08) 1.6 0.1705 

    AA 1407 1249 Referent 
  

rs9319572r 
     

    CC 448 358  1.20 ( 1.02 ,  1.42) 1.4 0.0311 

    GG+CG 1524 1418 Referent 
  

rs1364287 
     

    TT 159 125  1.27 ( 0.97 ,  1.66) 1.7 0.0861 

    CT 730 653  1.05 ( 0.90 ,  1.21) 1.3 0.5484 

    CC 1078 995 Referent 
  

rs723013 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    GG 227 157  1.41 ( 1.11 ,  1.78) 1.6 0.0044 

    GT 798 748  0.97 ( 0.84 ,  1.12) 1.3 0.7231 

    TT 947 871 Referent 
  

rs6564962 
     

    GG 398 311  1.24 ( 1.02 ,  1.51) 1.5 0.0313 

    AG 941 877  1.00 ( 0.85 ,  1.16) 1.4 0.9596 

    AA 633 586 Referent 
  

rs2911418 
     

    CC+CT 272 216  1.22 ( 0.98 ,  1.51) 1.5 0.0752 

    TT 1700 1560 Referent 
  

rs2955153 
     

    GG 62 41  1.43 ( 0.94 ,  2.19) 2.3 0.0929 

    AA+AG 1910 1735 Referent 
  

rs1364286 
     

    GG 363 284  1.24 ( 1.04 ,  1.49) 1.4 0.0182 

    AA+AG 1606 1490 Referent 
  

rs1364285 
     

    GG 285 225  1.24 ( 1.02 ,  1.51) 1.5 0.0325 

    CC+CG 1687 1551 Referent 
  

rs1424151 
     

    CC+CT 200 210  0.82 ( 0.66 ,  1.02) 1.5 0.0789 

    TT 1771 1566 Referent 
  

PGR 
     

rs546763 
     

    AA 175 183  0.81 ( 0.64 ,  1.02) 1.6 0.0671 

    AC+CC 1794 1592 Referent 
  

rs548668 
     

    CC 175 183  0.80 ( 0.64 ,  1.01) 1.6 0.0645 

    CT+TT 1797 1591 Referent 
  

rs11571247 
     

    GG+AG 150 168  0.77 ( 0.59 ,  1.00) 1.7 0.0467 

    AA 1821 1608 Referent 
  

rs11224575 
     

    AA 62 52  1.00 ( 0.67 ,  1.50) 2.2 0.9888 

    AG 553 424  1.28 ( 1.10 ,  1.50) 1.4 0.0018 

    GG 1347 1294 Referent 
  

rs693765 
     

    TT+GT 128 137  0.76 ( 0.57 ,  1.00) 1.7 0.0491 

    GG 1844 1639 Referent 
  

rs1824128 
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Cases Controls OR (95% CI)1 CLR2 P-value 

    TT+GT 577 428  1.33 ( 1.14 ,  1.55) 1.4 0.0003 

    GG 1394 1348 Referent 
  

rs660149 
     

    GG 137 131  0.90 ( 0.69 ,  1.18) 1.7 0.4494 

    CG 770 735  0.93 ( 0.81 ,  1.07) 1.3 0.2955 

    CC 1065 910 Referent 
  

rs2124761 
     

    TT+GT 229 252  0.74 ( 0.59 ,  0.92) 1.6 0.0073 

    GG 1743 1524 Referent 
  

rs11224579 
     

    TT+CT 439 345  1.21 ( 1.03 ,  1.43) 1.4 0.0237 

    CC 1532 1431 Referent 
  

rs503602 
     

    AA 96 106  0.74 ( 0.54 ,  1.01) 1.9 0.0590 

    AC 588 540  0.92 ( 0.79 ,  1.07) 1.4 0.2866 

    CC 1288 1130 Referent 
  

rs596223 
     

    GG 125 122  0.90 ( 0.68 ,  1.19) 1.7 0.4754 

    AA+AG 1841 1649 Referent 
  

SHBG 
     

rs1799941 
     

    AA 89 71  1.35 ( 0.96 ,  1.89) 2.0 0.0830 

    AG+GG 1883 1704 Referent 
  

1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, offset term 
2- CLR – confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 



 

307 

Table 4.3 Association between estrogen-related candidate SNPs and luminal A and basal-like breast cancer 

 
Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

CYP19A1 
          

 

rs4646 
          

 

    AA 47 140 0.85 (0.59, 1.23) 2.1 0.3995 18 140 1.00 (0.58, 1.74) 3.0 0.9947 0.5987 

    AC 305 733 1.21 (1.00, 1.46) 1.5 0.0554 87 733 1.13 (0.83, 1.55) 1.9 0.4381 0.7114 

    CC 327 902 Referent 
  

95 902 Referent 
  

 

rs2445759 
          

 

    GT+TT 112 255 1.22 (0.95, 1.57) 1.7 0.1185 30 255 1.09 (0.72, 1.66) 2.3 0.6787 0.6209 

    GG 567 1520 Referent 
  

170 1520 Referent 
  

 

ESR1 
          

 

rs7759411 
          

 

    CT+TT 56 211  0.70 (0.50, 0.98) 2.0 0.0393 22 211  0.63 (0.38, 1.03) 2.7 0.0656 0.6933 

    CC 623 1565 Referent 
  

178 1565 Referent 
  

 

rs827421 
          

 

    CC+CT 550 1397  1.27 (1.01, 1.61) 1.6 0.0419 163 1397  1.14 (0.77, 1.67) 2.2 0.5207 0.5827 

    TT 129 379 Referent 
  

37 379 Referent 
  

 

rs11155818 
          

 

    AA+AG 51 176  0.76 (0.53, 1.07) 2.0 0.1182 18 176  0.60 (0.35, 1.02) 2.9 0.0587 0.4294 

    GG 628 1600 Referent 
  

182 1600 Referent 
  

 

rs1709183 
          

 

    GG 81 151  1.55 (1.14, 2.13) 1.9 0.0058 16 151  0.83 (0.47, 1.47) 3.1 0.5211 0.0384 

    AG 288 801  0.93 (0.76, 1.13) 1.5 0.4590 91 801  0.90 (0.65, 1.23) 1.9 0.4931 0.8354 

    AA 309 823 Referent 
  

93 823 Referent 
  

 

rs9340835 
  

 

       
 

    AA 88 187  1.35 (1.02, 1.79) 1.8 0.0374 25 187  1.36 (0.86, 2.14) 2.5 0.1901 0.9819 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    AG+GG 589 1588 Referent 
  

175 1588 Referent 
  

 

rs9322335 
          

 

    TT 62 128 1.38 (0.98, 1.95) 2.0 0.0622 22 128 1.38 (0.82, 2.30) 2.8 0.2236 0.9814 

    CT 267 706 0.99 (0.82, 1.21) 1.5 0.9329 73 706 0.88 (0.64, 1.21) 1.9 0.4263 0.4851 

    CC 350 942 Referent 
  

104 942 Referent 
  

 

rs9322338 
          

 

    AA 72 176  0.99 (0.66, 1.50) 2.3 0.9697 26 176  0.82 (0.45, 1.49) 3.3 0.5094 0.5572 

    AG 109 388  0.66 (0.47, 0.92) 2.0 0.0147 61 388  0.92 (0.56, 1.49) 2.6 0.7321 0.2126 

    GG 496 1208 Referent 
  

113 1208 Referent 
  

 

rs9340888 
          

 

    AC +CC 39 140 0.73 (0.49, 1.09) 2.2 0.1276 20 140 0.81 (0.48, 1.37) 2.9 0.4308 0.7479 

    AA 640 1636 Referent 
  

180 1636 Referent 
  

 

rs6914211 
          

 

    AA 33 40  2.70 (1.66, 4.39) 2.6 0.0001 10 40  2.19 (1.06, 4.53) 4.3 0.0349 0.5770 

    AT+TT 646 1736 Referent 
  

190 1736 Referent 
  

 

rs3020314 
          

 

    TT 209 532 0.95 (0.72, 1.26) 1.7 0.7386 45 532 0.79 (0.50, 1.25) 2.5 0.3112 0.4482 

    CT 310 801 0.89 (0.70, 1.14) 1.6 0.3602 88 801 0.80 (0.56, 1.15) 2.1 0.2284 0.5870 

    CC 159 443 Referent 
  

67 443 Referent 
  

 

rs3020401 
          

 

    GG 145 377  1.19 (0.94, 1.50) 1.6 0.1495 65 377  1.61 (1.14, 2.28) 2.0 0.0063 0.1084 

    AA+AG 534 1396 Referent 
  

135 1396 Referent 
  

 

rs985191 
          

 

    CC 32 42  2.47 (1.51, 4.04) 2.7 0.0003 9 42  1.98 (0.92, 4.24) 4.6 0.0801 0.5750 

    AC 203 532  1.08 (0.88, 1.33) 1.5 0.4525 74 532  1.34 (0.97, 1.84) 1.9 0.0749 0.2265 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    AA 444 1202 Referent 
  

117 1202 Referent 
  

 

rs3003925 
          

 

    GG 24 65 0.94 (0.57, 1.55) 2.7 0.8122 5 65 0.67 (0.26, 1.71) 6.6 0.3988 0.4939 

    AG 205 583 0.84 (0.69, 1.03) 1.5 0.0895 60 583 0.91 (0.65, 1.26) 1.9 0.5582 0.6693 

    AA 450 1128 Referent 
  

135 1128 Referent 
  

 

rs6557177 
          

 

    CC 47 95  1.48 (1.02, 2.15) 2.1 0.0397 19 95  1.72 (1.01, 2.93) 2.9 0.0455 0.6029 

    CT+TT 632 1681 Referent 
  

181 1681 Referent 
  

 

rs9397463 
          

 

    TT 35 60  1.62 (1.04, 2.53) 2.4 0.0329 10 60  1.31 (0.65, 2.66) 4.1 0.4463 0.5732 

    CC+CT 644 1715 Referent 
  

189 1715 Referent 
  

 

rs2982684 
          

 

    AA 9 39  0.59 (0.28, 1.26) 4.6 0.1742 7 39  1.12 (0.48, 2.63) 5.5 0.7929 0.2185 

    AC 132 395  0.85 (0.67, 1.07) 1.6 0.1592 39 395  0.80 (0.54, 1.16) 2.1 0.2393 0.7667 

    CC 538 1342 Referent 
  

154 1342 Referent 
  

 

rs9340944 
          

 

    AA+AG 196 448  1.26 (1.03, 1.55) 1.5 0.0262 50 448  1.14 (0.81, 1.61) 2.0 0.4634 0.5760 

    GG 483 1328 Referent 
  

150 1328 Referent 
  

 

rs2207232 
          

 

    CC 9 29  0.98 (0.45, 2.13) 4.7 0.9648 6 29 1.58 (0.63, 3.99) 6.4 0.3309 0.3802 

    CT 160 411 1.02 (0.82, 1.28) 1.5 0.8310 42 411 0.82 (0.56, 1.18) 2.1 0.2823 0.2574 

    TT 510 1335 Referent 
  

152 1335 Referent 
  

 

rs3020381 
          

 

    AA 154 369  1.39 (1.06, 1.83) 1.7 0.0171 47 369  0.99 (0.64, 1.54) 2.4 0.9632 0.1561 

    AT 309 826  1.15 (0.93, 1.43) 1.5 0.2016 91 826  0.95 (0.66, 1.36) 2.1 0.7904 0.3305 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    TT 216 581 Referent 
  

62 581 Referent 
  

 

rs9341052 
          

 

    AG+GG 61 161  1.01 (0.73, 1.40) 1.9 0.9512 9 161  0.63 (0.31, 1.27) 4.1 0.1925 0.1995 

    AA 618 1615 Referent 
  

191 1615 Referent 
  

 

rs3778099 
          

 

    CC 8 28 0.84 (0.38, 1.89) 5.0 0.6777 5 28 1.42 (0.53, 3.82) 7.3 0.4894 0.3728 

    CT 147 394 0.95 (0.75, 1.18) 1.6 0.6237 49 394 1.05 (0.73, 1.49) 2.0 0.8042 0.6018 

    TT 523 1348 Referent 
  

145 1348 Referent 
  

 

HSD3B1 
          

 

rs932603 
          

 

    CC 36 70 1.77 (1.14,  2.77) 2.4 0.0115 12 70 1.13 (0.58, 2.19) 3.8 0.7231 0.2083 

    CT+TT 643 1706 Referent 
  

188 1706 Referent 
  

 

rs3765945 
          

 

    TT 223 574 0.71 (0.54, 0.93) 1.7 0.0125 42 574 0.72 (0.45, 1.15) 2.6 0.1641 0.9662 

    CT 279 810 0.68 (0.53, 0.86) 1.6 0.0015 105 810 1.11 (0.76, 1.60) 2.1 0.5980 0.0162 

    CC 175 391 Referent 
  

53 391 Referent 
  

 

rs6428830 
          

 

    AA 50 97 1.36 (0.93, 1.98) 2.1 0.1099 18 97 2.37 (1.35, 4.15) 3.1 0.0026 0.0636 

    AG+GG 629 1678 Referent 
  

182 1678 Referent 
  

 

rs6205 
          

 

    CC 45 96 1.72 (1.10, 2.69) 2.4 0.0169 15 96 1.27 (0.65, 2.47) 3.8 0.4839 0.4053 

    CT 107 318 1.12 (0.81, 1.56) 1.9 0.4956 60 318 1.50 (0.96, 2.36) 2.5 0.0762 0.2531 

    TT 527 1362 Referent 
  

125 1362 Referent 
  

 

rs10754400 
          

 

    TT 236 612 0.73 (0.55, 0.96) 1.7 0.0255 43 612 0.73 (0.45, 1.18) 2.6 0.2013 0.9954 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    GT 279 779 0.75 (0.59, 0.96) 1.6 0.0249 107 779 1.25 (0.85, 1.83) 2.1 0.2499 0.0153 

    GG 164 385 Referent 
  

50 385 Referent 
  

 

HSD17B2 
          

 

rs8052451 
          

 

    CC 21 100 0.39 (0.23, 0.67) 2.9 0.0006 11 100 0.50 (0.25, 1.03) 4.2 0.0601 0.5505 

    CT 93 305 0.68 (0.49, 0.94) 1.9 0.0182 47 305 0.81 (0.52, 1.26) 2.4 0.3465 0.4691 

    TT 565 1371 Referent 
  

142 1371 Referent 
  

 

rs8059915 
          

 

    GG 167 425 1.24 (0.93, 1.65) 1.8 0.1432 38 425 1.12 (0.70, 1.81) 2.6 0.6288 0.7062 

    CG 320 758 1.29 (1.02, 1.64) 1.6 0.0324 81 758 1.07 (0.75, 1.54) 2.1 0.7108 0.3421 

    CC 192 585 Referent 
  

81 585 Referent 
  

 

rs16956274 
          

 

    CT+TT 54 207 0.65 (0.46, 0.93) 2.0 0.0172 25 207 0.65 (0.40, 1.06) 2.6 0.0861 0.9867 

    CC 625 1569 Referent 
  

175 1569 Referent 
  

 

rs8049423 
          

 

    AC+CC 64 240 0.66 (0.47, 0.92) 2.0 0.0157 28 240 0.60 (0.37, 0.95) 2.6 0.0303 0.7014 

    AA 615 1535 Referent 
  

172 1535 Referent 
  

 

rs8050327 
          

 

    CC 20 88 0.49 (0.28, 0.85) 3.0 0.0106 14 88 0.91 (0.46, 1.78) 3.8 0.7718 0.1231 

    AC 99 302 0.81 (0.59, 1.11) 1.9 0.1878 53 302 1.25 (0.80, 1.94) 2.4 0.3311 0.0811 

    AA 560 1386 Referent 
  

133 1386 Referent 
  

 

rs8191072 
          

 

    GG 21 92 0.48 (0.28, 0.83) 2.9 0.0082 14 92 0.86 (0.44, 1.68) 3.8 0.6555 0.1478 

    AG 101 310 0.80 (0.58, 1.09) 1.9 0.1599 54 310 1.23 (0.79, 1.91) 2.4 0.3696 0.0827 

    AA 557 1374 Referent 
 

 132 1374 Referent 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

rs7200696 
          

 

    CC 38 168 0.52 (0.35, 0.78) 2.2 0.0014 29 168 1.01 (0.63, 1.63) 2.6 0.9711 0.0205 

    CG+GG 639 1605 Referent 
  

170 1605 Referent 
  

 

rs7196087 
          

 

    TT 10 28 1.00 (0.47, 2.16) 4.6 0.9965 10 28 2.23 (1.00, 4.97) 4.9 0.0487 0.0940 

    CT 87 244 0.97 (0.71, 1.33) 1.9 0.8569 34 244 0.88 (0.56, 1.37) 2.4 0.5626 0.6791 

    CC 582 1504 Referent 
  

156 1504 Referent 
  

 

rs16956326 
          

 

    TT 5 20 0.71 (0.39, 1.27) 3.3 0.2467 7 20 2.02 (1.01, 4.07) 4.0 0.0479 0.0103 

    CT 62 190 0.84 (0.63, 1.13) 1.8 0.2467 38 190 1.42 (1.00, 2.02) 2.0 0.0479 0.0103 

    CC 612 1566 Referent 
  

155 1566 Referent 
  

 

rs8191102 
          

 

    TT 9 45 0.48 (0.22, 1.03) 4.6 0.0583 6 45 0.97 (0.39, 2.45) 6.3 0.9553 0.2019 

    CT 77 226 0.85 (0.61, 1.17) 1.9 0.3150 49 226 1.46 (0.95, 2.24) 2.4 0.0829 0.0252 

    CC 593 1505 Referent 
  

145 1505 Referent 
  

 

rs8191167 
          

 

    GG 14 61 0.48 (0.25, 0.90) 3.6 0.0231 10 61 0.92  (0.44 , 1.94) 4.4 0.8307 0.1455 

    AG 83 289 0.61 (0.44, 0.85) 1.9 0.0031 38 289 0.63 (0.40, 0.98) 2.4 0.0415 0.9259 

    AA 577 1423 Referent 
  

151 1423 Referent 
  

 

rs2955159 
          

 

    AA 25 63 1.15 (0.68, 1.94) 2.9 0.6029 14 63 1.51 (0.77, 2.95) 3.8 0.2257 0.4702 

    AG 96 280 0.99 (0.72, 1.34) 1.9 0.9266 45 280 1.13 (0.73, 1.73) 2.4 0.5837 0.5786 

    GG 558 1430 Referent 
  

141 1430 Referent 
  

 

rs3111351 
          

 

    GG 56 168 0.70 (0.46, 1.06) 2.3 0.0915 33 168 0.92 (0.53, 1.59) 3.0 0.7631 0.3692 
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313 

 
Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    AG 109 359 0.68 (0.48, 0.95) 2.0 0.0245 43 359 0.62 (0.38, 1.00) 2.6 0.0507 0.7223 

    AA 514 1249 Referent 
  

124 1249 Referent 
  

 

rs9319572 
          

 

    CC 146 358 1.20 (0.95, 1.51) 1.6 0.1178 48 358 1.08 (0.75, 1.55) 2.1 0.6726 0.5922 

    CG+GG 533 1418 Referent 
  

152 1418 Referent 
  

 

rs1364287 
          

 

    TT 61 125 1.45 (1.02, 2.06) 2.0 0.0387 7 125 0.74 (0.33, 1.66) 5.1 0.4608 0.1102 

    CT 259 653 1.08 (0.89, 1.32) 1.5 0.4390 83 653 1.38 (1.00, 1.89) 1.9 0.0500 0.1687 

    CC 358 995 Referent 
  

109 995 Referent 
  

 

rs723013 
          

 

    GG 78 157 1.46 (1.07, 2.00) 1.9 0.0174 17 157 1.27 (0.73, 2.23) 3.1 0.4023 0.6343 

    GT 285 748 1.02 (0.84, 1.25) 1.5 0.8161 96 748 1.32 (0.96, 1.80) 1.9 0.0860 0.1421 

    TT 316 871 Referent 
  

87 871 Referent 
  

 

rs6564962 
          

 

    GG 134 311 1.31 (1.00, 1.72) 1.7 0.0471 40 311 1.18 (0.76, 1.84) 2.4 0.4687 0.6516 

    AG 331 877 1.04 (0.84, 1.28) 1.5 0.7199 104 877 1.09 (0.77, 1.55) 2.0 0.6213 0.7939 

    AA 214 586 Referent 
  

56 586 Referent 
  

 

rs2911418 
          

 

    CC+CT 93 216 1.35 (1.00, 1.82) 1.8 0.0478 37 216 1.20 (0.78, 1.83) 2.3 0.4054 0.6066 

    TT 586 1560 Referent 
  

163 1560 Referent 
  

 

rs2955153 
          

 

    GG 25 41 1.96 (1.15, 3.35) 2.9 0.0141 11 41 1.78 (0.87, 3.65) 4.2 0.1138 0.8094 

    AA+AG 654 1735 Referent 
  

189 1735 Referent 
  

 

rs1364286 
          

 

    GG 130 284 1.35 (1.06, 1.72) 1.6 0.0145 34 284 0.98 (0.65, 1.46) 2.2 0.9093 0.1355 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    AA+AG 549 1490 Referent 
  

166 1490 Referent 
  

 

rs1364285 
          

 

    GG 104 225 1.35 (1.04, 1.75) 1.7 0.0251 27 225 1.12 (0.72, 1.74) 2.4 0.6066 0.4364 

    CC+CG 575 1551 Referent 
  

173 1551 Referent 
  

 

rs1424151 
          

 

    CC+CT 58 210 0.70 (0.51, 0.96) 1.9 0.0255 22 210 0.74 (0.46, 1.20) 2.6 0.2217 0.8154 

    TT 621 1566 Referent 
  

178 1566 Referent 
  

 

PGR 
          

 

rs546763 
          

 

    AA 64 183 0.87 (0.63, 1.19) 1.9 0.3673 12 183 0.47 (0.25, 0.86) 3.4 0.0151 0.0613 

    AC+CC 614 1592 Referent 
  

187 1592 Referent 
  

 

rs548668 
          

 

    CC 64 183 0.86 (0.63, 1.18) 1.9 0.3601 12 183 0.46 (0.25, 0.86) 3.4 0.0142 0.0592 

    CT+TT 615 1591 Referent 
  

188 1591 Referent 
  

 

rs11571247 
          

 

    AG+GG 49 168 0.81 (0.56, 1.18) 2.1 0.2724 20 168 0.67 (0.40, 1.13) 2.9 0.1364 0.5184 

    AA 630 1608 Referent 
  

180 1608 Referent 
  

 

rs11224575 
          

 

    AA 23 52 0.96 (0.56, 1.63) 2.9 0.8799 6 52 0.88 (0.36, 2.15) 5.9 0.7860 0.8631 

    AG 180 424 1.18 (0.95, 1.46) 1.5 0.1339 46 424 1.04 (0.73, 1.49) 2.0 0.8351 0.5191 

    GG 474 1294 Referent 
  

146 1294 Referent 
  

 

rs693765 
          

 

    GT+TT 38 137 0.69 (0.46, 1.04) 2.3 0.0781 19 137 0.75 (0.44, 1.29) 2.9 0.3015 0.7935 

    GG 641 1639 Referent 
  

181 1639 Referent 
  

 

rs1824128 
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Luminal 
A 

 
   

Basal-like  
   

Luminal A 
vs. basal-
like3 

 
Case Control OR (95% CI)1 CLR2 P-value Case Control OR (95% CI)1 CLR2 P-value P-value 

    GT+TT 190 428 1.22 (0.99, 1.50) 1.5 0.0609 52 428 1.16 (0.83, 1.64) 2.0 0.3852 0.7969 

    GG 489 1348 Referent 
  

148 1348 Referent 
  

 

rs660149 
          

 

    GG 47 131 0.88 (0.61, 1.28) 2.1 0.5039 8 131 0.53 (0.25, 1.13) 4.5 0.0985 0.2040 

    CG 265 735 0.92 (0.76, 1.12) 1.5 0.4217 91 735 1.17 (0.86, 1.59) 1.8 0.3122 0.1572 

    CC 367 910 Referent 
  

101 910 Referent 
  

 

rs2124761 
          

 

    GT+TT 74 252 0.75 (0.54, 1.02) 1.9 0.0689 29 252 0.64 (0.40, 1.00) 2.5 0.0519 0.5330 

    GG 605 1524 Referent 
  

171 1524 Referent 
  

 

rs11224579 
          

 

    TT+CT 152 345 1.24 (0.99, 1.55) 1.6 0.0644 48 345 1.20 (0.84, 1.72) 2.0 0.3053 0.8885 

    CC 527 1431 Referent 
  

152 1431 Referent 
  

 

rs503602 
          

 

    AA 34 106 0.85 (0.55, 1.30) 2.4 0.4566 10 106 0.58 (0.29, 1.17) 4.1 0.1290 0.3255 

    AC 204 540 0.96 (0.78, 1.18) 1.5 0.6693 63 540 0.87 (0.62, 1.21) 2.0 0.3972 0.5868 

    CC 441 1130 Referent 
  

127 1130 Referent 
  

 

rs596223 
          

 

    GG 43 122 0.82 (0.56, 1.20) 2.1 0.3130 18 122 1.73 (0.99, 3.01) 3.0 0.0538 0.0153 

    AA+AG 635 1649 Referent 
  

180 1649 Referent 
  

 

SHBG 
          

 

rs1799941 
          

 

    AA 36 71  1.57 (1.02, 2.43) 2.4 0.0408 9 71  1.87 (0.89, 3.92) 4.4 0.0976 0.6600 

    AG+GG 643 1704 Referent 
  

191 1704 Referent 
  

 
1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, offset term 
2- confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
3 - H0: β (luminal A)= β(basal-like) 
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Table 4.4 Stratified odds ratios for SNPs with multiplicative interaction between genotype 
and parity/lactation, comparing luminal A cases and controls 

 
Nulliparous Parous, never breastfed Parous, ever breastfed 

 

 
Luminal A  
case/control 

Luminal A 
case/control 

Luminal A  
case/control  

 
OR (95%CI)1 OR (95%CI)1 OR (95%CI)1 LRT2 P-value 

ESR1  
   

rs6914211  
  

0.0954 

AA 4/8 15/18 14/14 
 

 
---3 2.96 (1.43, 6.14) 3.55 (1.58, 7.99) 

 
AT+TT 107/193 302/860 237/680 

 

 
Referent Referent Referent 

 

 
 

   
rs985191  

  
0.0153 

CC 4/8 15/20 13/14 
 

 
---3 2.46 (1.20, 5.06) ---3 

 
AC 35/66 82/269 86/195 

 

 
1.13 (0.66, 1.93) 0.76 (0.56, 1.04) 1.53 (1.10, 2.12) 

 
AA 72/127 220/589 152/485 

 

 
Referent Referent Referent 

 

 
 

   
rs6557177  

  
0.0471 

CC 7/19 22/45 18/31 
 

 
---3 1.58 (0.91, 2.76) 1.78 (0.94, 3.35) 

 
CT+TT 104/182 295/833 233/663 

 

 
Referent Referent Referent 

 

 
 

   
HSD17B2  

   
rs2911418  

  
0.0017 

CC+CT 16/20 58/114 19/82 
 

 
---3 1.82 (1.21, 2.74) 0.61 (0.34, 1.09) 

 
TT 95/181 259/764 232/612 

 

 
Referent Referent Referent 

 

 
 

   
PGR  

   
rs660149  

  
0.0026 

GG 4/17 21/61 22/53 
 

 
---3 0.75 (0.43, 1.30) 1.09 (0.61, 1.94) 

 
CG 56/80 107/379 102/276 

 

 
1.69 (1.01, 2.82) 0.63 (0.47, 0.83) 1.15 (0.83, 1.59) 

 
CC 51/104 189/438 127/365 

 

 
Referent Referent Referent 
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rs503602  

  
0.0597 

AA 3/15 17/47 14/43 
 

 
---3 1.25 (0.67, 2.31) 0.95 (0.47, 1.90) 

 
AC 31/71 106/270 67/198 

 

 
0.61 (0.35, 1.07) 1.14 (0.84, 1.55) 0.87 (0.62, 1.24) 

 
CC 77/115 194/561 170/453 

 

 
Referent Referent Referent 

 
1- odds ratio and 95% confidence interval, adjusted for self-identified race, age, African ancestry, and offset 
term 
2 - likelihood ratio test 
3 - parameters not estimated due to sample size 
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Table 4.5 Association between estrogen-related gene haplotypes and breast cancer 
Haplotype  All Cases   Luminal A   Basal-like   
 No. Copies OR (95% CI)1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 
CYP19A1           
1: rs749292, rs1902586, rs936306, rs2445759, rs28566535        
A-A-T-G-C 0 Referent   Referent   Referent   
 1  1.29 (1.00, 1.66) 0.0513 1.7 1.22 (0.84, 1.77) 0.2944 2.1 1.22 (0.72, 2.06) 0.4520 2.8 
 2 4.65 (2.60, 8.31) < 0.0001 3.2 1.79 (0.54, 5.93) 0.3431 11.0 9.01 (3.39, 23.98) < 0.0001 7.1 
           
ESR1           
2: rs851984, rs851982, rs2881766           
2a: C-T-G 0 Referent   Referent   Referent   
 1  0.61 (0.52, 0.71) < 0.0001 1.4 0.55 (0.43, 0.69) < 0.0001 1.6 0.52 (0.35, 0.79) 0.0019 2.3 
 2  1.04 (0.81, 1.34) 0.7489 1.7 0.94 (0.66, 1.35) 0.7367 2.0 0.68 (0.39, 1.17) 0.1630 3.0 
           
2b: T-C-G 0 Referent   Referent   Referent   

 1 1.00 (0.82, 1.23) 0.9796 1.5 0.80 (0.58, 1.10) 0.1692 1.9 1.10 (0.69, 1.76) 0.6970 2.6 
 2 1.67 (0.99, 2.81) 0.0562 2.8 1.63 (0.73, 3.61) 0.2339 4.9 3.27 (1.27, 8.44) 0.0141 6.6 
           
3: rs1709183, rs9340835, rs9322335         
A-A-T 0 Referent   Referent   Referent   
 1  0.85 (0.75, 0.97) 0.0130 1.3 0.75 (0.62, 0.92) 0.0065 1.5 0.82 (0.57, 1. 18) 0.2767 2.1 
 2  0.92 (0.75, 1.12) 0.4092 1.5 0.77 (0.56, 1.05) 0.1019 1.9 1.07 (0.64, 1.77) 0.8023 2.7 
           
4: rs6914211, rs9383599, rs3020314, rs3020401, rs985191, rs6557177      
A-C-C-G-C-C  0 Referent   Referent   Referent   
 1  1.07 (0.93, 1.23) 0.3627 1.3 1.20 (0.98, 1.46) 0.0799 1.5 1.31 (0.94, 1.82) 0.1049 1.9 
 2  1.62 (1.17, 2.25) 0.0041 1.9 1.83 (1.13, 2.97) 0.0134 2.6 1.27 (0.51, 3.19) 0.6095 6.3 
           
PGR           
5: rs1824128, rs660149, rs495997, rs2124761, rs11224579        
5a: G-C-A-G-C 
 

0 Referent   Referent   Referent   

 1  1.04 (0.92, 1.17) 0.5100 1.3 0.96 (0.80, 1.14) 0.6165 1.4 1.24 (0.91, 1.68) 0.1787 1.9 
 2  1.06 (0.85,1.33) 0.6024 1.6 1.04 (0.76, 1.42) 0.8232 1.9 1.63 (0.97, 2.73) 0.0647 2.8 
           
5b: G-C-G-T-C 0 Referent   Referent   Referent   
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 1  0.66 (0.54, 0.82) 0.0001 1.5 0.67 (0.49, 0.91) 0.0112 1.8 0.57 (0.36, 0.90) 0.0170 2.5 
 2  1.35 (0.77, 2.36) 0.3007 3.1 1.95 (0.87, 4.35) 0.1035 5.0 1.79 (0.55, 5.85) 0.3376 10.7 
           
5c: T-C-G-G-T 0 Referent   Referent   Referent   
 1  1.25 (1.04, 1.49) 0.0150 1.4 1.31 (1.03, 1.67) 0.0253 1.6 1.11 (0.72, 1.71) 0.6312 2.4 
 2  1.89 (1.12, 3.18) 0.0163 2.8 2.29 (1.09, 4.81) 0.0295 4.4 2.11 (0.51, 8.77) 0.3053 17.3 
1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, and offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
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Table 4.6 Association between estrogen-related gene haplotypes and breast cancer 

Haplotype  Nulliparous   
Parous/never 
breastfed 

  
Parous/ever 
breastfed 

  

 No. Copies OR (95% CI)1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 OR (95% CI) 1 P-Value CLR2 
A-C-C-G-C-C 0 Referent   Referent   Referent   
 1  0.91 (0.54, 1.54) 0.7337 2.9 0.92 (0.68, 1.25) 0.6131 1.8 1.73 (1.26, 2.38) 0.0007 1.9 
 2 0.68 (0.15, 3.09) 0.6150 20.9 1.86 (0.95, 3.64) 0.0681 3.8 2.45 (1.12, 5.35) 0.0254 4.8 
1 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, and offset term 
2 - confidence limit ratio, upper 95% confidence limit divided by lower 95% confidence limit 
3 - rs6914211, rs9383599, rs3020314, rs3020401, rs985191, rs6557177 
4 - LRT P-value = 0.0362 
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Table 4.7 Estrogen-related functional SNP odds ratios1 and 95% confidence intervals in the CBCS and previously published studies 

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

CBCS  
basal-like2,  
< 50 yrs old 

Raskin et al. (78) 
BRCA1 carriers, 
< 50 yrs old 

Raskin et al. (78) 
non-carriers, <50 
yrs old 

CYP19A1        
rs700518 GG 0.87 (0.70, 1.08) 0.93 (0.70, 1.25) 1.05 (0.64, 1.70) 1.46 (0.81, 2.64) 2.81 (1.09, 7.22) 1.20 (0.51, 3.21) 
V80V AG 1.07 (0.92, 1.25) 1.08 (0.87, 1.34) 0.93 (0.66, 1.32) 0.88 (0.56, 1.37) 1.41 (0.61, 3.26) 1.22 (0.59, 2.38) 
 AA Referent Referent Referent Referent Referent Referent 
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Miyoshi et al. (70) Lee et al. (71) Haiman et al. 
(12) 

rs700519 TT 0.44 (0.21, 0.89) 0.67 (0.26, 1.71) 0.48 (0.11, 2.13)  1.0 (0.3, 3.9) 1.05(0.94, 1.17) 
R264C CT 0.99 (0.81, 1.21) 1.17 (0.89, 1.56) 1.06 (0.70, 1.60)  1.5 (1.1, 2.2) 1.05 (0.78, 1.41) 
 CT+TT 0.94 (0.77, 1.15) 1.13 (0.86, 1.49) 0.99 (0.66, 1.50) 0.75 (0.50, 1.12) 1.5 (1.1, 2.2)  
 CC Referent Referent Referent Referent Referent Referent 
        

     
Gulyaeva et al. 
(91) 

  

rs700519 TT       
(cont.) CT    1.34 (0.51, 3.51)   
 CT+TT    0.96 (0.39, 2.36)   
 CC    Referent   
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Talbott et al. (75), 
premenopausal 

Talbott et al. (75), 
postmenopausal 

Haiman et al. 
(12) 

rs1008805 TT 0.98 (0.78, 1.22) 0.91 (0.68, 1.23) 0.86 (0.50, 1.46) 1.615 1.145 Referent 
Intron 2 A/G CT 1.10 (0.95, 1.28) 1.07 (0.87, 1.31) 1.02 (0.73, 1.41) 1.27 (1.02, 1.58) 1.07 (0.91, 1.25) 1.02 (0.95, 1.10) 
 CC Referent Referent Referent Referent Referent 0.98 (0.88, 1.08) 
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Kristensen et al. 
(76) 

Haiman et al. (77) Dunning et al. 
(68) 

rs10046 TT 0.90 (0.73, 1.10) 0.90 (0.68, 1.20) 0.98 (0.61, 1.56) 2.00 (1.28, 3.11) 0.87 (0.60, 1.27) 1.07 (0.93, 1.23) 
3’ UTR CT 1.11 (0.95, 1.30) 1.16 (0.94, 1.44) 1.00 (0.71, 1.41) 1.53 (1.04, 2.24) 0.96 (0.69, 1.34) 1.03 (0.91, 1.16) 
 CC Referent Referent Referent Referent Referent Referent 
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Onland Moret et 
al.3 (92) 

Onland Moret et 
al. 4 (92) 

Wang et al. (89) 
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ESR1        
rs2234693 TT 0.90 (0.74, 1.09) 0.79 (0.61, 1.04) 0.93 (0.60, 1.45) 1.43 (0.93, 2.22) 1.23 (1.08, 1.42)  
+397 C/T CT 0.92 (0.77,  1.09) 0.98 (0.78, 1.23) 1.09 (0.75, 1.59) 1.32 (0.90, 1.95) 1.14 (1.00, 1.32) 0.98 (0.74, 1.32) 
PvuII CC Referent Referent Referent Referent Referent Referent 
        

     

Iwasaki et al. (94),  
Japanese 
(Nagano) 

Iwasaki et al. (94),  
Japanese-
Brazilian (Sao 
Paolo) 

Iwasaki et al. 
(94), non-
Japanese 
Brazilian (Sao 
Paolo) 

rs2234693 TT    Referent Referent Referent 
(cont.) CT    0.70 (0.49, 1.00) 0.66 (0.29, 1.47) 0.99 (0.68, 1.43) 
 CC    0.64 (0.40, 1.02) 0.93 (0.31, 2.86) 1.51 (0.98, 2.31) 
        

     Zheng et al. (93) 
Sonestedt. et al. 
(95) 

Dunning et al. 
(81) 

rs2234693 TT    0.79 (0.63, 1.00) Referent Referent 
(cont.) CT    0.95 (0.80, 1.12) 1.03 (0.81, 1.31) 1.01 (0.88, 1.16) 
 CC    Referent 1.00 (0.74, 1.34) 1.09 (0.92, 1.28) 
        

  

CBCS 
all cases2  

CBCS 
all cases2, 
postmenopausal 
only 

CBCS 
 luminal A2 

CBCS  
basal-like2 

Gallicchio et al. 
(96) 

Gallicchio et al. 
(96), 
postmenopausal 
only 

rs2077647 CC 0.99 (0.81, 1.20) 1.17 (0.90, 1.52) 1.12 (0.85, 1.46) 1.10 (0.71, 1.69) 1.14 (0.65, 1.99) 1.88 (0.94, 3.75) 
+29 T/C CT 0.96 (0.82, 1.13) 0.98 (0.79, 1.22) 1.10 (0.88, 1.38) 1.08 (0.75, 1.55) 0.71 (0.42, 1.20) 0.90 (0.46, 1.77) 
S10S TT Referent Referent Referent Referent Referent Referent 
MspI        

     
Fernandez et al. 
(87) 

Dunning et al. 
(81) 

 

rs2077647 CC    0.74 (0.53, 1.02) 1.07 (0.91, 1.27)  
(cont.) CT    0.76 (0.57, 1.00) 0.92 (0.80, 1.06)  
 TT    Referent Referent  
        
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Fernandez et al. 
(87) 

Tapper et al. (64) 
Dunning et al. 
(81) 
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rs3798577 CC 0.94 (0.78, 1.14) 1.06 (0.82, 1.37) 0.97 (0.62, 1.50) 1.04 (0.75, 1.46) 1.23 6 1.03 (0.87, 1.22) 
3’ UTR CT 1.08 (0.92, 1.26) 1.08 (0.87, 1.35) 1.27 (0.90, 1.80) 1.09 (0.83, 1.44) 1.11 (1.00, 1.24) 0.98 (0.85, 1.12) 
 TT Referent Referent Referent Referent Referent Referent 
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Gallicchio et al. 
(96) 

  

rs851982 TT 0.93 (0.75, 1.15) 1.08 (0.80, 1.46)  0.80 (0.48, 1.32) 0.88 (0.47, 1.67)   
-104062 C/T CT 1.03 (0.83, 1.28) 1.14 (0.85, 1.54)  1.08 (0.66, 1.77) 0.65 (0.40, 1.05)   
 CC Referent Referent Referent Referent   
        
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Pooley et al. (97) Fernandez et al. 
(87) 

Johnatty et al. 
(98) 

PGR AA 1.44 (0.31, 6.72)   0.87 (0.40, 1.88)   
rs10895068 AG 1.10 (0.85, 1.41)   0.97 (0.85, 1.10) 0.84 (0.53, 1.33)  
+331G/A AA+AG 1.10 (0.86, 1.42) 0.94 (0.66, 1.33) 0.99 (0.53, 1.83)   1.06 (0.76, 1.49) 
 GG Referent Referent Referent Referent Referent Referent 
        
     DeVivo et al. (99)   
rs10895068 AA       
(cont.) AG       
 AA+AG    1.26 (0.97, 1.63)   
 GG    Referent   
        

  
CBCS 
all cases2  

CBCS 
 luminal A2 

CBCS  
basal-like2 

Dunning et al. 
(68) 

Thompson et al. 
(69) 

 

SHBG AA 1.31 (0.93, 1.85) 1.52 (0.98, 2.37) 1.92 (0.90, 4.07) 1.02 (0.75, 1.38) 1.06 6  
rs1799941 AG 0.93 (0.80, 1.09) 0.92 (0.74, 1.14) 1.07 (0.74, 1.54) 1.08 (0.92, 1.27) 1.03 (0.94, 1.13)  
-67 G>A GG Referent Referent Referent Referent Referent  

1 - unless specified otherwise 
2 - odds ratio, 95% confidence interval, adjusted for age, self-identified race, African ancestry, offset term 
3 - risk ratio, 95% confidence interval 
4 - meta-analysis 
5 - additive model 
6 - calculated based on additive model OR given in paper 
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Table 4.8 Minor allele frequencies in functional SNPs 
Gene Group Subjects Minor allele frequency 
CYP19A1   rs10046 (3’UTR) 

minor allele: T 
rs700518 (V80V) 
minor allele: G  

rs700519 (R264C) 
minor allele: T 

rs2236722 
(W39R) 
minor allele: C 

rs28757184 
(T201M) 
minor allele: T 

 CBCS AA and white female 
population-based 
controls from North 
Carolina 

nonAA: 0.52 
AA: 0.25 
 

nonAA: 0.50 
AA: 0.21 
 

nonAA: 0.03 
AA: 0.19 
 

nonAA: 0 
AA: 0 
 

nonAA: 0.04 
AA: 0.04 
 

 International 
HapMap 
Project 

 CEU: 0.57 
ASW:0.22 
YRI: 0.17 

CEU: 0.58 
ASW: 0.16 
YRI: 0.13 

CEU: 0.03 
ASW: 0.17 
YRI: 0.21 

CEU: 0 
ASW: --- 
YRI: 0 

CEU: 0.04 
ASW: 0.04 
YRI: 0.06 

 Perlegen AFD_AFR PANEL  EUR: 0.52  
AA: 0.22 

EUR: 0 
AA: 0.23 

EUR: 0 
AA: 0 

 

 SNP500 Anonymized samples 
from individuals of 
self-described 
African/African 
American  or 
Caucasian heritage 

CAUC1: 0.50 
AFR1: 0.17 

CAUC1: 0.50 
AFR1: 0.10 

CAUC1: 0 
AFR1: 0.15 

 CAUC1: 0.06 
AFR1: 0 

 Ma et al. (72) Anonymous 
Caucasian-American 
and African American 
samples from Coriell 
Cell Repository 

white: 0.56 
AA: 0.19 

white: 0.54 
AA: 0.17 

white: 0.03 
AA: 0.22 

white: 0 
AA: 0 

 

 Haiman et al. 
(12) 

70 white subjects in the 
MultiEthnic Cohort 
study 

0.44 white: 0.46 white: 0.46  white: 0.01 

 Dunning et al. 
(68) 

Postmenopausal 
women from EPIC-
Norfolk (>98% white)  

0.53     

 Riancho et al. 
(100) 

Postmenopausal 
women living in 
northern Spain 

 0.48    

 Somner et al. 
(80) 

White, postmenopausal 
women living in 
London  

 0.33    

 Haiman et al. White and AA controls white: 0.48 white: 0.46 white: 0.04   
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Gene Group Subjects Minor allele frequency 
(40) in the MEC cohort 

study  
AA: 0.26 AA: 0.81 AA: 0.15 

 Raskin et al. 
(78) 

Ashkenazi Jewish 
BRCA1/2 non-carriers 
enrolled in Clalit 
Health Services in 
Israel 

 0.49    

 He et al. (101) American women of 
European origin, 
recruited for genetic 
studies 

 0.52    

 Gulyaeva et al. 
(91) 

Control women, 
without gynecological 
disease, living in 
Novosibirsk, Russia 

  0.05   

 
ESR1   rs2077647 (S10S) 

minor allele: C 
rs2234693 (PvuII/-
397T/C) 
minor allele: C 

rs3798577 (C/T) 
minor allele: T(A) 

rs851982 ( -
104062 C/T) 
minor allele: T 

 

 CBCS AA and white female 
population-based 
controls from North 
Carolina 

nonAA: 0.51 
AA: 0.49 
 

nonAA: 0.44 
AA: 0.52 
 

nonAA: 0.54 
AA: 0.54 

nonAA: 0.59 
AA: 0.76 
 

 

 International 
HapMap 
Project 

 CEU: 0.43 
ASW: 0.58 
YRI: 0.50 

CEU: 0.41 
ASW: 0.56 
YRI: 0.50 

CEU: 0.56 
ASW: 0.52 
YRI: 0.56 

CEU: 0.54 
ASW: 0.85 
YRI: 0.86 

 

 Perlegen AFD_AFR PANEL  EUR: 0.38 
AA: 0.46 

EUR: 0.50 
AA: 0.57 

EUR: 0.58 
AA: 0.76 

 

 SNP500 Anonymized samples 
from individuals of 
self-described 
African/African 
American  or 
Caucasian heritage 

CAUC1: 0.52 
AFR1: 0.50 

CAUC1: 0.52  
AFR1: 0.71 

CAUC1: 0.44 
AFR1: 0.58 

  

 Tapper et al. 
(64) 

Controls of western 
European ancestry 
from the Wellcome 

  0.53   
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Gene Group Subjects Minor allele frequency 
Trust Case Control 
Consortium 

 Sonestedt et al. 
(95) 

Female controls from 
the Malmo Diet and 
Cancer in Sweden 

0.47 0.45    

 Kjaergaard et 
al. (102) 

Male and female 
participants in the 
Copenhagen City Heart 
Study in Denmark 

 0.46    

 Onland-Moret 
et al. (92) 

Participants in 
population-based case-
cohort study in Utrecht, 
Holland 

 0.51    

 Fernandez et 
al. (87) 

Pre-/postmenopausal 
female volunteers from 
Madrid and Oviedo, 
Spain (recruited 
through Madrid 
College of Lawyers 
and Menopause 
Research Centre) 

0.52  0.55   

 Gallicchio et 
al. (96) 

White women from 
Washington County, 
Maryland with benign 
breast disease  

0.51   0.39  

 Sowers et al. 
(103) 

Participants in the 
Study of Women’s 
Health Across the 
Nation, a prospective 
cohort study of 
women’s health 

 white: 0.45 
AA: 0.55 

white: 0.52 
AA: 0.56 

  

 Wang et al. 
(89) 

Controls, age 65 and 
older, in the Study of 
Osteoporotic Fractures 

 0.48    

 Zofkova et al. 
(104) 

Postmenopausal Czech 
women 

 0.43    

 Pharoah et al. EPIC-Norfolk/Anglian 0.47 0.46 0.46   
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Gene Group Subjects Minor allele frequency 
(105), 
Dunning et al. 
(81) 

Breast Cancer Study 

 Iwasaki et al. 
(94) 

Non-Japanese 
Brazilian hospital-
based cancer-free 
controls living in Sao 
Paolo, Brazil 

 0.42    

 
PGR   rs10895068 

(+331G/A) 
minor allele: A 

    

 CBCS AA and white female 
population-based 
controls from North 
Carolina 

nonAA: 0.05 
AA: 0.02 
 

    

 International 
HapMap 
Project 

 CEU: 0.06 
ASW: 0.01 
YRI: ---  

    

 SNP500 Unrelated controls of 
self-described 
African/African 
American  or 
Caucasian heritage 
from the Human 
Diversity Panel 

CAUC3: 0.05 
AFR3: 0 

    

 DeVivo et al. 
(99) 

Cancer-free Nurses’ 
Health Study 
participants 

0.10     

 Westberg et al. 
(106) 

Women ages 41-42 
living in Göteborg, 
Sweden 

0.07     

 Fernandez et 
al. (87) 

Pre-/postmenopausal 
female volunteers from 
Madrid and Oviedo, 
Spain (recruited 
through Madrid 

0.04     
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Gene Group Subjects Minor allele frequency 
College of Lawyers 
and Menopause 
Research Centre) 

 Johnatty et al. 
(98) 

Population-based 
controls less than 59 
yrs, from the 
Australian Breast 
Cancer Family Study 

0.05     

 Pooley et al. 
(97) 

EPIC-Norfolk/Anglian 
Breast Cancer Study  

0.06     

 
SHBG   rs1799941 (-67 G/A) 

minor allele: A 
    

 CBCS AA and white female 
population-based 
controls from North 
Carolina 

non-AA: 0.22 
AA: 0.07 
 

    

 International 
HapMap 
Project 

 CEU: 0.23 
ASW: 0.07 
YRI: 0.03 

    

 SNP500 Anonymized samples 
from individuals of 
self-described 
African/African 
American  or 
Caucasian heritage 

CAUC1: 0.39 
AFR1: 0.08 

    

 Dunning et al. 
(68) 

EPIC-Norfolk/Anglian 
Breast Cancer Study  

0.25     

 Garcia-Closas 
et al. (107) 

Population controls 
from Warsaw and 
Lodz, Poland 

0.68     

Abbreviations: AA-African American, AC – Afro-Caribbean. 
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4.8 Figures 
Figure 4.1 ESR1 breast cancer-associated SNPs  

 
 
 
  

a. 

rs6557177 
rs3020401 

rs6914211 
rs985191 

Subtype 

basal-like   luminal A 
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b. R2 in African American controls 
 rs6914211 rs3020401 rs985191 rs6557177 
rs6914211 1.    
rs3020401 0.12 1.   
rs985191 0.70 0.15 1.  
rs6557177 0.32 0.15 0.47 1. 
 
c. R2 in African American cases 
 rs6914211 rs3020401 rs985191 rs6557177 
rs6914211 1.    
rs3020401 0.17 1.   
rs985191 0.76 0.17 1.  
rs6557177 0.37 0.18 0.49 1. 
 
d. R2 in White controls 
 rs6914211 rs3020401 rs985191 rs6557177 
rs6914211 1.    
rs3020401 0.32 1.   
rs985191 0.95 0.32 1.  
rs6557177 0.38 0.16 0.40 1. 
 
e. R2 in White cases 
 rs6914211 rs3020401 rs985191 rs6557177 
rs6914211 1.    
rs3020401 0.31 1.   
rs985191 0.96 0.30 1.  
rs6557177 0.45 0.19 0.46 1. 
 
Figure 4.1 Legend 
 
a. ORs for luminal A (blue) and basal-like (red) breast cancer-associated SNPs in ESR1. 
SNPs shown are from 152354108 bp to 152355411 bp on chromosome 6. While there were 
several SNPs in ESR1 associated with luminal A and basal-like breast cancer, SNPs in this 
region seemed to show a consistent, positive association within a defined area. SNPs 
rs6914211 and rs985191 are 14918 bp apart. 
 
b. Pairwise r2 among SNPs rs6914211, rs3020401, rs985191, and rs6557177. 
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Figure 4.2 HSD17B2 breast cancer-associated SNPs 
a. 

 
 
 
 
 
 
 
 
 
  

rs7196087, rs16956326 

rs8050327,  rs8191072, rs7200696 

Subtype 

basal-like   luminal A 
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b. R2 in African American controls 
 rs8050327 rs8191072 rs7200696 
rs8050327 1.   
rs8191072 0.94 1.  
rs7200696 0.58 0.62 1. 
 
c. R2 in African American cases 
 rs8050327 rs8191072 rs7200696 
rs8050327 1.   
rs8191072 0.94 1.  
rs7200696 0.59 0.61 1. 
 
d. R2 in White controls 
 rs8050327 rs8191072 rs7200696 
rs8050327 1.   
rs8191072 1.00 1.  
rs7200696 0.14 0.14 1. 
 
e. R2 in White cases 
 rs8050327 rs8191072 rs7200696 
rs8050327 1.   
rs8191072 1.00 1.  
rs7200696 0.22 0.22 1. 
 
 
Figure 4.2 Legend  
 
a. HSD17B2 SNPs rs8050327, rs8191072, and rs7200696 had strong inverse associations with 
luminal A breast cancer. These 3 SNPs span 1205 bp in intron 1. Nearby SNPs rs7196087 and  
rs16956326 were strongly associated with basal-like breast cancer. These SNPs are 1624 bp apart in 
intron 1. 
 
b-e. Pairwise r2 among SNPs rs8050327, rs8191072, and rs7200696. 
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Figure 4.3 PGR breast cancer-associated SNPs 
a. 

 
 

 
 
 
 
 
 

b. R2 in African American controls 
 rs660149 rs2124761 rs503602 
rs660149 1.   
rs2124761 0.09 1.  
rs503602 0.18 0.22 1. 

 
c. R2 in African American cases  
 rs660149 rs2124761 rs503602 
rs660149 1.   
rs2124761 0.06 1.  
rs503602 0.15 0.18 1. 

 
d. R2 in White controls 
 rs660149 rs2124761 rs503602 
rs660149 1.   
rs2124761 0.00 1.  
rs503602 0.06 0.04 1. 

 
e. R2 in White cases 
 rs660149 rs2124761 rs503602 
rs660149 1.   
rs2124761 0.00 1.  
rs503602 0.05 0.06 1. 

rs660149, 

rs2124761, 

rs503602 

rs546763, 

rs548668 

Subtype 

basal-like   luminal A 
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Figure 4.3 Legend 
 
a. ORs for the association between luminal A (blue) and basal-like (red) breast cancer. The first two 
SNPs, rs546763 and rs548668, are 214 bp apart and were in strong LD in CBCS African Americans 
and whites. The second group of SNPs, rs660149, rs2124761, and rs503602, are 2993 bp apart. 
They were moderately correlated in CBCS African Americans, and showed little to no 
correlation in whites.  
 
b-e. Pairwise r2 for rs660149, rs2124761, and rs503602. 
  
 



 

5. Summary and Conclusions 

5.1 Main findings  

 The purpose of this dissertation was to explore the association between common 

SNPs and breast cancer, with the hypothesis that the associations for some SNPs differ by 

breast cancer molecular subtype. Breast cancer molecular subtypes were determined in the 

CBCS using immunohistochemistry, where the two principal subtypes were luminal A (ER+ 

and/or PR+ and HER2-) and basal-like (ER-, PR-, HER2-, and CK 5/6+ or EGFR+). The 

hypothesis that SNP associations differ by molecular subtype is based on the fact that 

previous CBCS analyses found that molecular subtypes exhibit different tumor 

characteristics and clinical outcomes, as well as distinct associations with non-genetic breast 

cancer risk factors (1-3). The present analysis was driven by a candidate gene approach, 

focusing on genes involved in biological pathways identified by non-genetic risk factors for 

basal-like and luminal A breast cancer in the CBCS. Additive and multiplicative interaction 

was evaluated in order to determine whether genetic associations were modified in the 

presence of non-genetic risk factors.  

 Chapter 3 focused on a set of genes chosen based on the differing association for 

WHR and basal-like vs. luminal A breast cancer in the CBCS. WHR was positively 

associated with both tumor subtypes, but the association was approximately twice as strong 

for the basal-like compared to luminal A subtype (3). ADIPOQ, IL6, LEP, LEPR, and TNF 

were chosen for this study because of their relationship to central obesity, for which WHR is 

a proxy measure. Plasma levels of interleukin-6, TNF-alpha, and leptin increase with 
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increasing amounts of obesity and serum adiponectin decreases with increasing obesity (4). 

Studies have also shown that these gene products affect pathways potentially involved in 

breast cancer [reviewed in (4-8)].   

 The genes in Chapter 4 were chosen based on the differing association of parity and 

lactation with the basal-like and luminal A subtypes in the CBCS, specifically the association 

for parity without lactation. Compared to nulliparous women, parous women who did not 

breastfeed were at a decreased risk of luminal A breast cancer but a strong increased risk of 

basal-like breast cancer (3). CYP19A1, ESR1, HSD3B1, HSD17B2, PGR, and SHBG were 

selected for their roles in the synthesis and action of estrogen and progesterone, two 

hormones instrumental in breast carcinogenesis, at least for a subset of breast tumors 

[reviewed in (9-11)]. CYP19A1, HSD17B2, and HSD3B1 encode enzymes that convert 

cholesterol into estrogen and progesterone (and several other hormones) (12). SHBG binds 

estrogen in the blood stream and affects bioavailability for estrogen signaling (13). The 

progesterone receptor is a nuclear transcription factor that binds progesterone and affects the 

transcription of genes whose sequence includes progesterone response elements [reviewed in 

(14, 15)]. The estrogen receptor binds estrogen, and can act as a nuclear transcription factor, 

though it can also be activated without estrogen binding [reviewed in (16-18)]. 

 A total of 117 adipocytokine-related SNPs and 195 SNPs in the estrogen-related 

genes were genotyped using the Illumina GoldenGate assay. The SNPs included previously 

reported SNPs of interest as well as tag SNPS selected to cover the region from the first to 

last SNP recorded for each gene in the NCBI dbSNP database. The tag SNPs were chosen 

using allele frequency and LD information for populations of European and West African 

descent from Phases 1 and 2 of the International HapMap Project. Overall, 89% of the SNPs 
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were genotyped successfully and were included in the analysis (adipocytokine-related – 82%, 

estrogen-related– 94%), a success rate identical to the overall success rate for the 1536 SNPs 

in the assay.  

 African and European ancestry in CBCS subjects was estimated from 144 AIMs. 

Individual ancestry estimates were used to control for any residual confounding due to 

population stratification still present after adjustment for self-identified race. Overall, 

ancestry adjustment did not affect the ORs, though there were some differences by 

subgroups. For example, AIM adjustment affected |lnORs| by more than 0.10 when 

comparing luminal A cases to controls, but not when comparing basal-like cases to controls. 

AIM adjustment also caused |lnORs| to differ by 0.10 or more when comparing white cases 

to controls in a subset of SNPs, but adjustment had little effect on ORs when comparing 

African-American cases and controls. These two results were expected, considering that 54% 

of genotyped basal-like cases were African American and 65% of genotyped luminal A cases 

were white. To maintain model consistency all estimates were adjusted for ancestry.  

 The first step of the analysis followed a traditional approach, estimating odds ratios 

for the association between individual genotypes and all breast cancer and controls. The 

majority of single SNP associations were close to the null, though some displayed moderate 

associations with breast cancer. Notably, the strongest genotype associations for breast 

cancer overall (ORs > 2) were estimated for SNPs in ESR1 (rs6914211 and rs985191). A 

handful of other SNPs from the estrogen-related genes pathway had ORs between 1.5 and 2, 

or between 0.67 and 0.5 (ESR1 rs2207232 and rs3778099; HSD17B2 rs8052451 and 

rs8191102). All of the single SNP associations for adipocytokine SNPs were between 1.50 

and 0.67.  
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 Next, genotype associations were estimated separately for the basal-like and luminal 

A breast cancer subtypes. The results of this analysis supported the hypothesis that some 

SNP-breast cancer associations are unique to breast cancer subtypes. SNPs that were not 

strongly associated with breast cancer overall showed associations of greater magnitude 

when the analysis was stratified by subtype. For example, small groups of SNPs in LEPR, 

HSD17B2, and PGR were strongly associated with basal-like breast cancer. When ORs 

differed by subtype it was unusual for the associations to be in opposite directions. More 

commonly, when ORs differed by subtype the OR was weak or close to the null for one 

subtype, and elevated (or decreased) for the other subtype. There were also SNPs for which a 

strong association with breast cancer was seen in breast cancer overall and in both subtypes, 

including both ESR1 rs6914211 and rs985191. 

 The majority of SNPs associated with breast cancer, either overall or by subtype, 

were intronic SNPs that have not been evaluated previously for an association with breast 

cancer, emphasizing the importance of a systematic tagging approach as opposed to 

genotyping a few individual SNPs per gene. Comprehensive tagging of whole candidate 

genes has become more common, in large part due to the increased efficiency and decreased 

cost of genotyping in large studies. CBCS ORs for many SNPs selected from the literature 

indicated no association with breast cancer. Exceptions were LEPR K109R (rs1137100), 

CYP19A1 R264C (rs700519), TNF -863 C/A (rs1800630) and SHBG -67 G/A (rs1799941), 

which were associated with breast cancer overall. By subtype, LEPR K109R, Q223R 

(rs1137101), IL6 -572 G/C (rs1800796) and SHBG -67 G/A were associated with luminal A 

breast cancer, and SHBG -67 G/A was associated with the basal-like subtype. 

 The magnitude of the strongest genotype ORs was unexpected, given the hypothesis 
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that common variant associations will be modest, and it is the accumulation of multiple 

variants that impact disease risk (19). Furthermore, breast cancer-associated SNPs identified 

by GWAS, most of which have been validated in multi-stage analyses, are in the range of 1.2 

to 2.0 for 2 copies of the variant allele (20-26). In the literature, the highest ORs were 

estimated for the FGFR2 SNPs identified by Hunter et al. (21); most other SNP associations 

were lower. CBCS ORs for breast cancer overall are similar in magnitude to the GWAS ORs, 

but several of the subtype-specific ORs are stronger. This could be interpreted as better 

estimation of the association due to refining the outcome definition. For example, if a SNP 

was associated with the basal-like subtype but completely unassociated with other subtypes, 

performing a subtype-specific regression model would be equivalent to removing non-cases 

from the case group. However, the novel associations estimated in the CBCS should be 

interpreted with caution until they can be replicated. It is likely that most true associations are 

of a lower magnitude than the ones reported here (27). 

 Associations between haplotypes and breast cancer were estimated using maximum 

likelihood estimation in HAPSTAT. Haplotypes in IL6, LEP, LEPR, CYP19A1, ESR1, and 

PGR were associated with breast cancer (all cases, luminal A, and/or basal-like). In many 

cases, haplotype ORs were stronger in magnitude than single SNP ORs. This is consistent 

with the findings of some investigations of the advantages of haplotype analysis but not 

others (28-30). Additionally, by using a sliding, overlapping 3-SNP window to estimate 

associations for all possible 3-SNP haplotypes, associated haplotypes were identified where 

the single SNP ORs indicated no association. For example, the SNPs in LEP haplotype 3 

were largely unassociated with breast cancer when considered individually (the strongest 

ORs were for rs11763517 CC vs. TT [all cases OR: 0.86; luminal A OR: 0.86; basal-like OR: 
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0.88]), but 2 copies of LEP haplotype 3 were associated with more than twice the risk of 

breast cancer overall and luminal A breast cancer. This finding further supports the 

hypothesis that alleles inherited together on the same chromosome may have greater effects 

together compared to when they are inherited on different chromosomes. One caveat to this 

finding is that the haplotype associations involve a likelihood-based estimation of haplotypes 

in the population, but the true haplotype phase in individuals is unknown. This is a problem 

that is inherent to all studies with unrelated subjects where haplotypes are not sequenced 

directly. The algorithms used in HAPSCAN and HAPSTAT were designed to incorporate the 

uncertainty attached to haplotype estimation in unphased data into the effect estimates and 

confidence intervals, yielding unbiased ORs with proper standard errors. Thus, though the 

haplotype associations should be replicated, the estimates provided by HAPSTAT should be 

an accurate estimation of the association between measured haplotypes in the CBCS 

population and breast cancer assuming no other sources of bias. 

 Statistical interaction between WHR and genotypes was evaluated on the additive and 

multiplicative scales for breast cancer-associated SNPs in ADIPOQ, IL6, LEP, LEPR, and 

TNFA. Interaction was evaluated on the multiplicative scale only for breast cancer-associated 

SNPs in estrogen-related genes and parity and lactation. Additive effects were not evaluated 

due to sample size limitations. There was evidence to suggest interaction between WHR and 

SNPs in LEPR (breast cancer overall), IL6 (basal-like), and ADIPOQ and LEPR (luminal A). 

Overall the pattern of interaction was less than multiplicative and less than additive, 

suggesting antagonism between genotypes and WHR (31). These results suggest that the 

predominant type of interaction in the study population for these SNPs and WHR involves 

the presence of one factor blocking the effect of the other factor, although other mechanisms 
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of interaction may also be present in the population (31). In the case of the parity and 

lactation interaction, additional studies would benefit from a larger study population. Both of 

the genotype and parity/lactation variables were 3-level variables, leading to imprecise 

stratified ORs. 

 

5.2 Strengths and Limitations 

5.2.1 Strengths 

One of the mains strengths of this dissertation is the high proportion of African-

American women in the CBCS. Most previous studies involving the SNPs evaluated in this 

study and breast cancer have consisted mainly of women of European descent, and may not 

be representative of the general US population. There was some diversity. One study 

population was based in Tunisia (32), one consisted of Ashkenazi Jews (33), one consisted of 

women of Indo-Aryan ethnicity recruited in New Delhi, India, several were studies of Asian 

women (24, 34-38), and another had a large proportion of Hispanic women from the 

southwestern US (39). However, with the exception of the MultiEthnic Cohort (40, 41), these 

studies included few African Americans. African-American women have higher age-adjusted 

breast cancer mortality than any other racial group in the US (42), and so inclusion of 

African Americans in studies of breast cancer risk is essential to identifying risk factors 

relevant to disease prevention in this subgroup. The CBCS used randomized recruitment to 

oversample African-American (and younger) breast cancer cases. This increases the 

likelihood that associations for risk alleles important to African-American women will be 

identified and estimated with sufficient precision. 

A second strength of this study is that molecular subtypes were determined for cases, 
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allowing the distinction of basal-like cases from other triple-negative tumors (ER-, PR-, 

HER2-). The triple-negative designation groups basal-like tumors along with a less well 

characterized group of tumors that gene expression studies have shown are biologically 

distinct (43-47). This study identified SNPs and haplotypes associated with the basal-like 

subtype that were not associated with breast cancer overall. It is possible that these 

associations would not have been detected in a mixed group of triple-negative tumors.  

Thirdly, SNPs were selected using a combination of approaches in order to increase 

the chance of identifying SNPs associated with the basal-like and luminal A breast cancer 

subtypes. Regions of the genome that were more likely to be associated with the basal-like or 

luminal A subtypes, based on gene function and subtype risk factors, were pre-selected for 

analysis by focusing on candidate genes. Focusing the study on genetic variation in regions 

where there is evidence that part of the genome has an effect on breast cancer has the 

potential to increase the efficiency with which causal alleles are identified (48). The selection 

of tag SNPs in addition to potentially functional SNPs allowed for the identification of 

previously unreported breast cancer associations. Although the majority of tag SNPs are 

unlikely to have a direct effect on gene function, they may be in linkage disequilibrium with 

one or more untyped variants which do have a functional effect. The efficiency of the tagging 

method is dependent on how well HapMap SNPs covered the candidate genes, and on LD 

between genotyped and untyped SNPs being as high in the CBCS as in the CEU and YRI 

HapMap populations. LD similarities cannot be compared because non-tag SNPs remained 

untyped in the CBCS. Nevertheless, this SNP selection method has enabled the identification 

of breast cancer-associated SNPs, including SNPs with hypothesized functional effects and 

those with no known function. 
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Finally, this analysis was strengthened by the estimation of African and European 

ancestry in CBCS subjects. The proportion of African ancestry followed a continuous 

distribution in self-identified African Americans and non-African Americans, suggesting that 

there could be residual confounding after adjustment for self-identified race. Ancestry 

estimates were similar using maximum likelihood and structured association, demonstrating 

that the results were robust to the statistical methods used. Analyses confirmed that ancestry 

adjustment does not affect SNP associations with breast cancer overall and only affects a few 

SNP associations with the luminal A subtype. The results of ancestry analyses provide 

evidence that admixture of African and European populations was unlikely to have biased the 

majority of genetic associations in the CBCS.  

5.2.2 Limitations 

One of the main limitations of this analysis was the potential for selection bias related 

to study participation. Savitz (49) discusses case-control study selection in terms of the 

comparability of case exposure and control exposure to the source populations from which 

they were sampled. In terms of this analysis, if case study participant genotypes are 

representative of genotypes among all cases sampled for the study, and control participant 

genotypes are representative of genotypes among all sampled controls, then there will be no 

selection bias due to non-participation. This assumes that the sampling procedure used by the 

CBCS was unbiased.  

An in-depth analysis of response patterns among CBCS subjects recruited from 1993 

to 1996 reported that the most common reason for non-participation in cases and controls 

was subject refusal (50). Other reasons for non-participation included being deceased, 

ineligible, not able to be located, and physician refusal to grant permission for the study to 
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contact the patient (cases only) (50). Analysis of women who responded to a partial 

telephone interview suggests that women who did not complete the in-person study interview 

differed from full participants for several non-genetic breast cancer risk factors, but most of 

these risk factors do not influence genotype. Race has the potential to affect study 

participation and genotype frequencies (through correlation with ancestry), and this could 

result in selection bias if genotype frequencies differed by race in the source population.  

In cases, if genotypes were related to factors downstream of diagnosis, such as 

severity of illness, response to treatment, or survival, then the genotype distribution among 

case participants would differ from that in all eligible cases. Sampled CBCS cases who 

refused to participate in the study were more likely to be African American, whereas among 

controls rates of refusal were similar (50). 

The same scenario applies to selection into the study at the genotyping phase. African 

Americans were less likely to donate blood for genotyping, but within self-identified race 

groups blood donation did not differ by case status. Potential reasons for not donating blood 

could include unwillingness to donate and inability to donate because of illness. In addition 

to women who did not donate DNA, 103 women were excluded from the analysis because of 

poor genotyping results. Subjects with low call rates were similar to the overall CBCS 

population with DNA submitted for genotyping with respect to case status, self-identified 

race, AJCC stage at diagnosis (invasive cases only), and molecular subtype distribution 

(cases only). Thus, the potential for selection bias at the genotyping phase again depends on 

whether genotype distributions in the source population differ by race group. All models in 

this study were adjusted for self-identified race and African ancestry, which should control 

for potential selection bias at the enrollment and genotyping stages of the study (49).  
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Non-African Americans and women with earlier stage tumors were less likely to have 

tumor subtype information, which could lead to additional bias of the molecular subtype-

specific analyses. It is difficult to evaluate whether the tumors without subtype information 

are a random sample of all eligible cases. Other studies of breast tumor molecular subtypes 

that defined basal-like rather than triple-negative tumors have been conducted in various 

countries (47, 51-54). It is unlikely that those any of those case groups are comparable to the 

CBCS case base, and so valid inferences cannot be made based about subtype identity. 

Efforts are currently underway to determine molecular subtypes for African-American breast 

cancer cases in the MultiEthnic Cohort, Women’s Circle of Health Study, and the Black 

Women’s Health Study (40, 41, 55). While it will be useful to compare subtype distribution 

in the CBCS to that of other large case series in the US, other studies are also subject to 

possible selection bias due to an inability to subtype all eligible cases.  

Another limitation is the reduction in sample size due to missing subtype information, 

particularly the small number of basal-like cases. Because of the small sample size, the 

standard error for basal-like parameter estimates will always be higher than the standard error 

for luminal A parameter estimates, leading to wider confidence intervals and higher P-values 

for similar point estimates. The imbalance between basal-like and luminal A cases is a 

natural function of the lower prevalence of basal-like tumors in the population (assuming no 

selection bias), but the low absolute number of basal-like cases was problematic when 

estimating the association for a rare genotype or haplotype. Unstable parameter estimates 

were avoided by eliminating estimates with wide confidence limit ratios, which indicated 

imprecision. Small sample size also limited the ability to evaluate associations for the 

HER2+/ER-, luminal B, unclassified molecular subtypes.  
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WHR was measured after cases were diagnosed, raising the possibility that physical 

changes related to breast cancer may cause WHR to be systematically different among cases 

compared to WHR in those cases prior to diagnosis. A sensitivity analysis was conducted to 

evaluate the possible effects WHR misclassification on the WHR-basal-like breast cancer 

association. The sensitivity analysis addressed the possible effects of disease and treatment-

related changes in WHR. Treatment information was not collected for CBCS cases, so 

estimates of the proportion of cases who would have received chemotherapy were based on 

data from North Carolina Central Cancer Registry data (56). The validity of this sensitivity 

analysis depends on the extent to which treatment patterns recorded by the Cancer Registry 

from 2001 to 2002 reflect the treatment patterns of CBCS cases in 1993 to 2001. Bias-

corrected and observed ORs were similar, even under some of the more extreme 

misclassification scenarios. Overall, the results suggest that if chemotherapy-related WHR 

misclassification occurred in the CBCS, the effects on this analysis were minimal. 

The tagging procedure used in this analysis was designed to tag other SNPs. So, 

although efforts were made to capture the associations for all CEU and YRI HapMap SNPs 

in the candidate genes through genotyping or high pairwise LD, this study did not evaluate 

all genetic variation in the gene regions. There may be residual unmeasured genetic variation. 

Additionally, this study did not systematically capture the effects of non-SNP variation such 

as copy number variants, insertion-deletion polymorphisms, and repeat polymorphisms, 

though by chance some of these variants may be in LD with genotyped tag SNPs. Methods 

are currently available to analyze SNP and copy number polymorphism information from a 

single genotyping assay using the Affymetrix SNP 6.0 array (57). It is likely that similar 

software will be developed for use with other commonly used genotyping chips in the future. 
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5.3 Public health impact 

 Some researchers have hypothesized that racial and ethnic differences in the 

prevalence of genetic variants contribute to racial differences in breast cancer incidence and 

survival (58, 59). Basal-like tumors are more prevalent among premenopausal African-

American women, and are associated with poorer survival compared to hormone receptor 

positive subtypes (1, 3). The identification of additional risk factors for basal-like breast 

cancer will help improve identification of women at high risk for poor prognosis breast 

cancer. It may also help explain some of the correlation between African-American race and 

poor prognosis. Several SNPs with associations specific to the basal-like subtype were 

identified in this analysis. Through further research, the identification causal variants near 

these SNPs could be used to define a subgroup of susceptible women who may benefit from 

increased breast cancer surveillance.  

 Interaction between genotypes and/or haplotypes and other breast cancer risk factors 

is an important aspect of the investigation between genetic variation and breast cancer. 

Evaluation of additive and multiplicative interaction has the potential to further define 

subgroups with elevated or decreased breast cancer risk. Using LEPR rs1137100 as an 

example, the antagonism detected in the present  study suggests that the population of 

women carrying the GG genotype who also have elevated WHR would experience fewer 

cases of breast cancer than would be expected based on the independent associations of 

WHR and rs1137100 with breast cancer. In such a situation, population-level interventions to 

reduce WHR may not result in the expected reduction in breast cancer if the variant is highly 

prevalent. Knowledge of the patterns of biological interaction in the population may help 

policy makers tailor primary and secondary prevention strategies so they are more efficient.  
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 This study also has the potential to impact public health by helping identify biological 

mechanisms underlying the intrinsic molecular subtypes. Identification of key genes, 

proteins, and pathways active in basal-like breast cancer could provide new drug targets. This 

type of research is necessary because women with basal-like breast cancer have limited 

treatment options. The development of a long-term breast cancer drug to be taken after initial 

treatment, similar to how selective estrogen receptor modulators and aromatase inhibitors are 

used now, has the potential to increase survival among basal-like cases. 

 

5.4 Future directions 

 The results of this dissertation investigation support two main conclusions: 1) there is 

evidence that some of the genotypes and haplotypes studied are associated with breast 

cancer; and 2) some genotype and haplotype associations differ between the basal-like and 

luminal A breast cancer subtypes. With respect to the first point, replication of the most 

promising SNP and haplotype associations is necessary before strong conclusions can be 

made about the magnitude of candidate gene associations. In addition to the potential 

selection bias that has been discussed, OR estimates are also subject to random sampling 

error. In the absence of systematic error, consideration of CBCS SNP associations in the 

context of associations estimated in other populations will provide a more precise estimate of 

the SNP or haplotype association in the general population. It may also be useful to replicate 

the results using a different genotyping platform to insure that the genotype calls are robust 

to the laboratory methods.  

 Another logical step in this investigation is to fine map regions in ESR1, HSD17B2, 

LEPR, and PGR where multiple breast cancer-associated SNPs were located in close 
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proximity. Fine mapping involves genotyping a dense group of SNPs within a specific region 

in order to localize the SNP(s) most strongly associated with the outcome (60). Fine mapping 

in the CBCS could be accomplished by genotyping a second group of SNPs concentrated in 

the regions of interest. Alternatively, this analysis could be conducted within a proposed 

GWAS of African-American cases and controls from the CBCS, MultiEthnic Cohort, and 

Women’s Circle of Health Study. 

 Finally, future research should include a comprehensive evaluation of the genomic 

elements in the regions where the breast cancer-associated SNPs are located. As discussed 

previously, the majority of the SNPs associated with breast cancer (overall and by subtype) 

were intronic SNPs with no known function, suggesting that either the typed SNP is in LD 

with the true causal variant and is indeed functioning as a tag, or that the SNP itself is 

associated with breast cancer. There are currently several publicly available databases 

containing genome sequence information (ENCODE database, 1000 Genomes Project), 

promoter sequence information (Eukaryotic Promoter Database, Transcriptional Element 

Search System, Transcriptional Regulatory Element Database), and estimates of evolutionary 

conservation across species (University of California Santa Cruz genome browser, 

PANTHER classification system) that can be used to evaluate the possible effects of SNPs. 

Identification and characterization of the causal variant are important steps in identifying the 

biological mechanism through which SNPs act. Identifying the biological mechanism will be 

instrumental in further exploring interaction between genetic variants and environmental 

factors in the etiology of breast cancer subtypes. 
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