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ABSTRACT 
 

Stephanie T. Lane: Evaluating the Interaction of Growth Factors in the Univariate Latent 

Curve Model 

(Under the direction of Patrick Curran) 

 

 In the structural equation modeling framework, latent curve models have gained 

popularity for modeling change over time. Much work has focused on the use of covariates, 

whether time-invariant or time-varying, to predict the growth factors. Comparatively little 

work has focused on the use of growth factors as independent variables themselves. This 

project evaluated the performance of models where growth factors were used as main-effects 

predictors of a distal outcome; this main-effects-only model was expanded to include the 

interaction between the growth factors as a predictor. My results demonstrate the bias present 

when a main-effects-only model is fit to data where an interaction effect truly exists. These 

results provide motivation for researchers who employ growth factors as predictors of a distal 

outcome to test for an interaction effect in order to more clearly understand the role of 

starting point and rate of change over time, taken together, as predictors. 
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CHAPTER 1: INTRODUCTION 
 

In recent years, great emphasis in the behavioral sciences has been placed on reducing 

the incongruence between our motivating research questions and the methods with which we 

analyze our data. This effort has been particularly evident in the development of novel 

analytic strategies to address questions regarding the development of a construct over time. 

Thus, the last few decades have witnessed a shift away from cross-sectional data in favor of 

studies that bring longitudinal data to bear on our research questions regarding change over 

time. The shift toward longitudinal data collection has resulted in a corresponding surge of 

methods to evaluate change over time. Examples of these methods include the autoregressive 

cross-lagged model, random and fixed effects panel data models, the repeated measures 

multivariate analysis of variance (MANOVA) and the latent curve model (LCM) (Bollen & 

Curran, 2006).  

To date, latent curve modeling has been a particularly useful tool in aiding 

researchers in the behavioral sciences to address the course, causes, and consequences of 

behavior over time. Early work in latent curve models developed from the factor analytic 

tradition (Meredith & Tisak, 1984; 1990), as the modeling of individual trajectories could be 

expressed as a confirmatory factor analysis model. In this approach, each individual is 

allowed to have his or her own trajectory by the use of random intercepts and random slopes. 

In turn, these random coefficients are then brought into the structural equation modeling 

(SEM) framework by treating them as latent variables. Thus, instead of using assessments 

from previous time points as predictors of assessments at future time points, as in the case of 
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the autoregressive model, we instead use our observed repeated measures as indicators of an 

underlying latent trajectory thought to give rise to the repeated measures over time.  

Because of the emphasis on identifying and estimating an underlying trajectory, the 

latent curve model represents a closer match to the conceptualization of how growth unfolds 

over time in many domains. The structural equation modeling approach to the latent curve 

model allows researchers to draw on the many strengths of SEM; these strengths include 

readily available indices of fit, the ability to handle missing data, and the ability to 

incorporate different forms of growth.  To this effect, the latent curve model has become a 

standard approach to analyzing longitudinal data within behavioral sciences, from 

applications examining the development of antisocial behavior over time (Curran, Bauer, & 

Willoughby, 2004) to applications examining alcohol use over time in adolescent females 

(Hipwell, Stepp, Chung, Durand, & Keenan, 2012).  

An important strength of the latent curve model is its ability to approximate varying 

functional forms of change over time. Through the specification of fixed factor loadings 

relating the latent growth factors to the repeated measures observations, these trajectories can 

take the form of linear, quadratic, cubic, or other polynomial growth, as well as exponential, 

piece-wise, or freed-form growth (Bollen & Curran, 2006). Once the optimal factors 

representing growth have been identified, they can then be predicted. This possibility is 

another strength of the latent curve model – its ability to incorporate exogenous predictors of 

level and change over time.  

If a significant amount of individual variability is observed in a latent growth factor, 

time-invariant covariates (e.g., gender, ethnicity) can be introduced to the model in order to 

explain the variability in how individuals begin or change over time. That is, the growth 
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factors can be regressed onto time-invariant covariates in order to evaluate between-person 

predictors of level and growth. This flexibility also extends to a covariate assessed at 

multiple measurement occasions, which can be introduced as a predictor in the form a time-

varying covariate. In such an example, the TVCs are regressed onto the repeated measures 

and the growth factors are interpreted net the effect of the TVCs (Bollen & Curran, 2006). 

Taken together, these aspects of the growth model allow us to make inferences about inter-

individual differences in intra-individual change over time.  

To date, much work has focused on using exogenous covariates as predictors to 

explain variance in growth factors. However, little work has focused on the consequences of 

growth, or the potential to use the growth factors themselves as independent variables. As 

previously explicated, the growth factors thought to give rise to the repeated measures over 

time are often treated as dependent variables, with exogenous covariates frequently 

introduced to the model in order to explain individual variability in the growth factors. Little 

work has focused on these growth factors as predictors of a distal outcome, yet the structural 

equation modeling approach to latent curve modeling allows us the flexibility to directly use 

growth factors as predictors. Thus, at this point in time, the issues involved in estimating, 

testing, and evaluating random growth factors as predictors in SEM are currently not well 

understood. 

Further, in the broader discussion of independent variables predicting some outcome, 

the possibility of an interaction effect immediately presents itself. In the general linear model 

(GLM), a researcher must probe for interaction effects along with main effects. Indeed, in the 

presence of an interaction effect, the interpretation of main effects in isolation can become 

less meaningful. In the limited discussion thus far of growth factors as predictors (Bryan, 
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Schmiege, & Magnan, 2012; Hipwell et al., 2012), the predictive ability of the interaction 

effect between intercept and linear slope factors underlying a single construct has not been 

examined. An interaction effect among growth factors would suggest that the influence of the 

growth factors on an outcome is more than simply the additive effect of the two factors taken 

together. At this point, it is unclear whether the interaction effect between growth factors 

represents a further clarification of the conditional relations of the growth factors, or whether 

it is critical in the prediction of a distal outcome. In considering these issues, it is helpful to 

turn to a discussion of existing applications of growth factors as predictors. 

 A limited number of examples of growth factors as main effect predictors have been 

found in substantive areas of psychological research. In some instances, the growth factors 

for one variable are used to explicitly predict the growth factors for another variable; these 

variables are often measured concurrently (e.g., Bryan, Schmiege, & Magnan, 2012). Other 

instances of growth used as a predictor have arisen in the context of multilevel modeling 

where researchers are interested in using empirical Bayes estimates for intercept and slope to 

predict a distal outcome (e.g., Rowe, Raudenbush, & Goldin-Meadow, 2012). 

Given that growth factors have been used as main effects predictors in select 

applications, some researchers have extended this to conceptualizing growth factors as 

mediators. The discussion of growth factors as mediators was more formally discussed by 

Cheong, MacKinnon, and Khoo (2003), who demonstrated the capacity of growth factors to 

serve as mediators by presenting a parallel process growth model in which a time-invariant 

covariate influenced the growth of a mediator, which, in turn, affected the growth of the 

outcome. Similarly, in Hipwell et al. (2012), researchers first fit a univariate LCM with an 

intercept and slope factor to alcohol use measured longitudinally over the ages 12-15. An 
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intercept and slope factor were then used as predictors of later risky sex after age 16. 

Researchers then expanded the model to conceptualize growth factors as mediators between 

time-invariant covariates (e.g., race, poverty status, pubertal status) and risky sex at a later 

age.   

Taken together, these applied examples demonstrate an eagerness to expand the use 

of growth factors to be used as predictors. However, there is a need to first expand our 

understanding of the capacity of growth factors to serve as predictors. In order to continue 

the discussion of the latent curve model, I now turn to an analytic presentation of the latent 

curve model.  

The Latent Curve Model 

These models arise from the structural equation modeling (SEM) framework, where 

individual observations are fallible indicators of an individual’s true trajectory, defined by 

latent growth factors; commonly, these factors represent an intercept factor and a linear slope 

factor.  

From the SEM framework, the factor analytic model relates the observed variables y 

to the underlying latent construct η such that 

           (1) 
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Where   is a T × 1 vector of item intercepts,   is a T × 1 vector of repeated measures,   is a 

T × k matrix of factor loadings, and   is a T × 1 vector of time-specific residuals. Because we 

wish to reproduce the sample means through the means of the latent factors, we impose the 

restriction that the item intercepts are equal to zero: 
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     (2) 

This simplifies the measurement model to: 

         (3) 

 The latent variable equation is 

       (4) 

where    is a k × 1 vector of factor  means and   is a k × 1 residual vector individual 

deviations from these means, and  ( )     represents the covariance structure among the 

latent factors.  

The model implied variance of the reduced form is 

            (5) 

where   is the model implied covariance matrix of the  ’s and    represents the covariance 

structure of the disturbances for the T repeated measures of   such that  

    

(

 

  
    

   
   

    
     

 )

  

(6) 

   (
      

      
) 

(7) 

The expected value for the reduced form trajectory is  

 ( )       (8) 

To estimate the variance components associated with the random growth coefficients, 

the latent curve analysis imposes a highly restricted factor structure on   through the   

matrix. Two latent factors are estimated, one representing the intercept, or starting point (  ), 

and the second representing the slope, or rate of change (  ).  
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For an equally spaced set of T = 4 repeated assessments and a linear trajectory, the 4 

× 2 factor loading matrix is  

   (

  
  
  
  

) 

(9) 

With a 4 x 4 diagonal residual matrix 
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(10) 

And a symmetric covariance matrix among the random intercepts and linear slopes 

   (
      

      
) 

(11) 

  The factor loadings relating the observed repeated measures to the slope factors are a 

combination of fixed and possibly free loadings that best capture the functional form of the 

growth trajectory. The initial approach is to fix the factor loadings to 0, 1, 2, 3, …T-1 to 

represent straight-line growth. The estimated mean of the intercept factor (  ) represents the 

initial status of the trajectory averaged across all individuals; similarly, the estimated 

variance of the intercept factor (   ) represents the individual variability in starting point 

across all individuals. The estimated mean of the slope factor (  ) quantifies the slope 

averaged across all individuals, and the estimated variance of the slope (   ) represents 

individual variability in rates of change over time. Finally, the covariance between the 

intercept and slope factors is denoted    .  

 In order to estimate the model, full information maximum likelihood is used (FIML). 

In the presence of complete data, sufficient statistic maximum likelihood (ML) and FIML are 
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equivalent. Under the assumption of multivariate normality, the casewise likelihood of the 

observed data is obtained by maximizing the following function:  

          
 

    |  |
    (      )   

  (     ) 
(12) 

where    is the vector of complete data for case i,    and    are matrices containing the 

parameter estimates of the mean vector and covariance matrix, respectively, for variables 

complete for case  , and    is a constant that depends on the number of complete data points 

for case   (Arbuckle, 1996; Enders & Bandalos, 2001). The discrepancy function is then 

obtained by accumulating across the series and maximized as follows: 

    (   )  ∑     

 

   

 (13) 

Thus, all available data are utilized during parameter estimation.  

Conditional Latent Curve Model 

 The previous equations can be expanded to include a time-invariant covariate. Thus, 

we begin with our equation for the repeated measures,    , in matrix notation 

         (14) 

And expand the level 2 model to include covariates where  

          (15) 

where    is a k × 1 vector of factor  means,   is a k × p matrix of regressions of the factors 

on the TICs,   is a p × 1 vector of TICs,  and   is a k × 1 residual vector individual deviations 

from these means.  

Growth Factors as Predictors 

The previous equations can be expanded to allow for growth factors to predict distal 

outcomes. The equation for predicting a distal outcome of interest is:  
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            (16) 

where    is the outcome of interest,   is the intercept for the outcome, and   is a matrix of 

regression weights of the exogenous latent growth factor predictors,  , of the distal outcome. 

Growth factors as Main Effects  

Before considering the estimation of an interaction effect among growth factors and 

its potential utility in predicting an outcome, we must first consider the meaning and the 

ability of growth factors when used as main effects predictors (see Figure 1).   

 

 

 

 

 

 

 

 

 

 

 

Because of the estimated covariance(s) among growth factors, any main effect of one 

growth factor on a distal outcome would be interpreted as being above and beyond the 

effect(s) of any of the other growth factors. Just as in the conceptualization of main effects in 

a multiple regression, the regression coefficient of the distal outcome on one growth factor 

(e.g., the slope) is assumed to be equal across all levels of the other growth factor (e.g., the 

𝑧 

 

𝜂𝛼  

𝜖𝑦1
  𝜖𝑦2

 𝜖𝑦3
 𝜖𝑦4

 

𝑦  𝑦  𝑦  𝑦  

𝜂𝛽  

Figure 1. Growth Factors as Main Effects Predictors. 
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intercept). As a specific example, if a linear slope factor were to be used for prediction, its 

effect on an outcome would be interpreted in isolation. Therefore, the effect of the linear 

slope would be above and beyond the effect of the starting level or any form of polynomial 

growth over time. In other words, the effect of the linear slope on the outcome would be 

constant across all values of starting point, or intercept. 

However, given the relationship between an individual’s starting point and change 

over time, it is difficult to conceptualize the predictive ability of linear change over time 

without any regard for an individual’s level, or starting point. In envisioning such an 

analysis, the linear slope for two individuals who shared a similar rate of change over time 

but had radically different starting points would be treated as the same. This fact is 

immediately clear in the analyses, but its meaning is not; one could foresee a situation in 

which this would be less than desirable.  With drug use as a specific example, an increase of 

X amount in drug use for an individual who had a high starting level would seem 

qualitatively different than an increase of X amount in drug use for an individual who had a 

low starting level. This simple example highlights a broader need for the possibility of 

investigating an interactive effect between growth factors that could be then used as a 

predictor in conjunction with main effects.  

Growth Factors as an Interaction Effect 

 As previously mentioned, it may be possible that growth factors underlying a 

construct could have an interactive effect on an outcome, above and beyond the contributions 

they make to prediction when considered in isolation (see Figure 2). Unlike the main effects 

case, where the regression of an outcome on a growth factor had constant value across all 
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levels of the other growth factor, there would be a different regression line of the outcome on 

a growth factor at each level of the other growth factor.  

 

 

 

 

 

 

 

 

 

 

 

 

Conceptually, this could take the form of a buffering effect, where the level of one 

variable may buffer the impact of the other. Such a situation is commonly hypothesized in 

the context of multiple regression, with independent variables such as stress and social 

support (Aiken & West, 1991). Extending the idea of a buffering effect to the context of 

growth factors, it may be the case that starting level could buffer the influence of growth over 

time on an outcome for individuals who had lower starting levels on a construct. Put 

differently, there could theoretically be a certain threshold of starting point at which the slope 

becomes more meaningful as a predictor. 

𝑧 

 

𝜂𝛼  

𝜖𝑦1
  𝜖𝑦2

 𝜖𝑦3
 𝜖𝑦4

 

𝑦  𝑦  𝑦  𝑦  

𝜂𝛽  

Figure 2. Growth Factors with Main Effects and Interaction Effect as Predictors. 
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Alternatively, it may be the case that the interaction effect could be synergistic in 

nature, where individuals who both started a high level and grew more substantially over 

time could have a higher predicted outcome, above what would have been predicted by the 

intercept and slope factors independently. In considering the previously cited study with 

risky sex as an outcome (Hipwell et al., 2012), it could be the case that individuals with both 

high levels of drug use and high increases of drug use over time could have a higher 

endorsement of risky sex than would have been suggested by the additive effect of the 

growth factors in isolation.  

These brief examples highlight the need to investigate the interaction among growth 

factors more thoroughly, both conceptually and analytically. In order to consider the analytic 

issues that arise when considering an interaction effect among latent growth factors, I now 

turn to a discussion of previous techniques that have been developed for estimating 

interactions among latent variables. I then extend this discussion to the current approaches 

for estimating interactions among latent growth factors. 

Existing Methods for Estimating Latent Variable Interactions 

Several techniques have been proposed in recent years for the investigation and 

estimation of latent variable interactions in structural equation models. Kenny and Judd 

(1984) developed the product indicator approach, where a latent variable is formed from the 

cross-products of indicators for two latent variables. This approach also has come to be 

known as the elementary interaction model. Hayduk (1987) expanded on this approach by 

introducing phantom variables and nonlinear constraints to allow for the estimation of the 

model in LISREL (Jöreskog & Sörbom, 1989); Jöreskog and Yang distilled the elementary 

interaction model to include a single product indicator and argued for the inclusion of the 
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intercept term. Due to the complicated nature of the constraints and phantom variables in 

specifying the model, these approaches were followed by a variety of two-step approaches 

(Bollen, 1995, 1996; Moosbrugger, Frank, & Schermelleh-Engel, 1991; Ping, 1996a, 1996b). 

Finally, Klein and Moosbrugger introduced the latent moderated structural equations 

(LMS) approach, which explicitly takes into account the nonnormality present in latent 

interaction effects. Specifically, LMS represents the joint distribution of indicator variables 

as a finite mixture of normal distributions.  Subsequently, Klein and Muthen (2007) 

introduced a Quasi-Maximum Likelihood estimation procedure (Quasi-ML), which has less 

rigid distributional assumptions than LMS, and has been shown to be less computationally 

burdensome with more complicated models. Though LMS and QML largely overlap in the 

types of models that can be addressed by either approach, LMS is currently the standard for 

latent variable interactions, not only due to its availability in commercial software, but also 

due to its ability to build more complicated SEM models where there are multiple latent 

endogenous variables (Kelava et al., 2011). Therefore, for this project I will focus on LMS 

for the estimation of interactions among latent growth factors. 

Existing Approaches for Evaluating Interactions Among Latent Growth Factors 

Because little work has focused on the use of growth factors as predictors, even less 

work has focused on the interaction of growth factors when used as predictors. The current 

research using growth factors as predictors does not focus on the intercept-slope interaction 

within a univariate latent curve model. Instead, much of the limited amount of existing work 

focuses on growth factor interactions from two separate growth processes. For example, Li, 

Duncan, and Acock (2000) proposed a model in which univariate growth models were fit to 

two constructs assessed by repeated measures, with an intercept factor and a shape factor in 
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each model. The first two loadings for these shape factors were 0 and 1, followed by freed 

loadings to capture possible nonlinearity in the trajectories. The interaction between these 

shape growth factors was then captured by a factor defined by product indicators of the 

repeated measures for each construct. This factor defined by product indicators was then used 

to predict the slope growth factor of a distal outcome. Though a novel approach, it is unclear 

what the estimates from this model signify substantively. Additionally, this approach cannot 

readily be applied to the univariate case of evaluating an intercept-slope interaction in a 

single construct given that it relies on cross-products. 

Another approach to modeling latent variable interactions, termed the latent variable 

score approach, was discussed by Schumacker (2002) after latent variable scores were 

developed by Joreskog (2000) in LISREL that satisfied the same relationships as latent 

variables themselves. Importantly, this latent variable score approach bypasses the usage of 

product indicators. Instead, latent variable scores, or factor scores, are directly created for 

each growth factor and then multiplied together. This product would then be used to test the 

interaction of the growth factors in the presence of the main effect of each growth factor. 

Though this approach has not yet been directly applied to growth models, the lack of 

incorporation of the indicators directly may be promising for testing the interaction between 

an intercept and slope factor within a univariate growth process, as both intercept and linear 

slope factors are defined by the same indicators. In order to continue the discussion of 

interactive effects among latent growth factors, I now turn to a presentation of the estimation 

method, LMS, that will be used for the current study. 
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LMS  

The latent moderated structural equations (LMS) approach was developed by Klein 

and Moosbrugger (2000) to provide a maximum likelihood estimation of model parameters 

for an interaction effect between latent variables. The LMS approach is built on two main 

premises. The first is that nonlinear effects, such as interaction effects, become linear when 

conditioned on the proper variable. Second, a multivariate distribution of indicator variables 

can be approximated by a weighted combination, or mixture, of normal distributions. Unlike 

other approaches, no manifest indicators are needed to estimate nonlinear effects. Instead, 

LMS estimates nonlinear effects by representing the nonnormal distribution of the joint 

indicator vector as a finite mixture of normal distributions (Moosbrugger, Schermelleh-

Engel, Kelava, & Klein, 2008). LMS then applies Cholesky decomposition to the positive 

definite covariance matrix (m × m) of the latent exogenous variables (      ).  

In the case of two latent exogenous variables, the Cholesky decomposition can be 

formally expressed as: 

                      (  )(  )  (17) 

where   is an (   ) identity matrix. The variables are then decomposed into mutually 

independent random variables      . This matrix,  , is then replaced by the vector product 

of a vector   (     )  with itself. Each   variable from the   vector is standardized, 

normally distributed     (   ), and orthogonal to the   variables remaining. The 

decomposition of   replaces the correlated   variables by an   matrix and by the   vector of 

  independent   variables. This vector   (     ) is then partitioned into vectors    and 

   to separate the linear and nonlinear parts of the measurement and structural equations as 

follows: 
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  (     )     
    

    (18) 

where    (     )  and    (       )   The first   elements in    are the   variables 

that correspond to the   variables involved in nonlinear terms. This procedure creates 

orthogonal components that allow partitioning of the distribution of the variables into linear 

and nonlinear parts (Kelava et al., 2011). The    vector is used as the conditioning variable 

upon which the joint distribution of   and   is conditionally multivariate.  

Finally, a mixture distribution is used to represent the multivariate distribution of the 

  and   variables where    is used to determine means, variances, and covariances of the set 

of normal distributions used in the mixture. These normal distributions are then weighted and 

summed to represent the multivariate distribution of the observed variables. Hermite-

Gaussian quadrature is used to approximate the mixture distribution where the weights used 

by this process provide the best approximation of the multivariate surface. LMS utilizes the 

mixture distribution and adapts the Expectation-maximization (EM) algorithm to provide 

parameter estimates (Dempster, Laird, & Rubin, 1977). LMS also allows for the estimation 

of standard errors by calculating the Fisher information matrix (Klein & Moosbrugger, 

2000). Wald z tests can then be used to compare each parameter estimate and its 

corresponding standard error. 

The iterative ML estimation procedure used by LMS is tailored specifically for the 

type of nonnormality induced by interaction effects. Because the standard saturated model 

implemented in current SEM software is not accurate for nonlinear latent variable models, 

LMS does not provide measures of fit (Kelava et al., 2011). Additionally, LMS uses the full 

information contained in the raw data, not just the means and covariances.  
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Goals 

The goal of my project is to describe the incorporation and meaning of an interaction 

among latent growth factors and to analytically articulate the latent curve model with an 

interaction effect. In order to do this, I will first describe the treatment of latent growth 

factors as predictors of a distal outcome. I aim to discuss the conditions under which growth 

factors are adequate in isolation as predictors and to evaluate the finite sampling behaviors of 

a growth factors as main effects model.  

Given the possible limitations with a main effects only approach, I will then expand 

to include the interaction among growth factors. I aim to describe and evaluate the inclusion 

of an interaction among growth factors in the prediction of a single distal outcome, to discuss 

the utility of this interaction above and beyond the contributions of main effects in isolation, 

and to assess the extent to which the main effects are biased as predictors in the presence of 

an unmodeled interaction effect. The utility of the interaction among growth factors will be 

evaluated using simulated data. The unique contribution of my study is to articulate the 

issues involving in estimating, testing, and evaluating random growth factors as predictors in 

SEM. I will draw conclusions about the potential utility of these models, and I will articulate 

areas of interest for future quantitative research. 
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CHAPTER 2: METHOD 
 

Project 

In order to assess the meaning and utility of growth factors as predictors, I conducted 

a series of computer simulations. I simulated longitudinal data consistent with a univariate 

linear latent curve model; this simulation included a distal outcome that was a function of the 

latent factors. All data generation was conducted in R; data analysis was conducted in Mplus; 

outcomes of interest were calculated in R. 

 In order to address my research aims, I conducted a simulation under varying 

conditions commonly encountered in behavioral research to evaluate the finite sampling 

behavior of these models. I first evaluated the finite sampling behavior of a model (Model 1) 

where the interaction effect was not modeled.  I then demonstrated the anticipated bias that 

would be present in a main-effects-only growth model in the presence of an unmodeled 

interaction effect. I now turn to a discussion of the simulation factors that were varied for the 

study. 

Communalities 

The communalities were varied across three conditions that represent increasingly 

higher communalities: 0.4, 0.6, and 0.8, where high communalities imply low unique 

variance (MacCallum, Widaman, Zhang, & Hong, 1999). In the case of the latent curve 

model, the communality represents the amount of variance in the observed measures that can 

be explained by the growth factors. Given prior research in the factor analytic framework on 

the effect of communalities on the recovery of population factors (MacCallum et al., 1999), it 
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was anticipated that higher communalities would result in better detection of the interaction 

effect.  

Effect Size 

The effect size of the interaction between the growth factors on the distal outcome 

was also varied in this study. Data were generated such that there were four conditions of 

effect size for the interaction term, where the interaction uniquely explained 0, 1, 5, and 9 

percent of the variance in the distal outcome, corresponding to cutoff values for zero, small, 

small-to-moderate, and moderate effect size (Cohen, 1988).  

Sample Size 

The sample size was varied at N = 200 and N = 400. I selected the upper bound of N 

= 400 because it is a relatively large but reasonable sample size for longitudinal research in 

the social and behavioral sciences; importantly, this sample size has been used successfully 

in simulation studies involving LMS (Kelava et al., 2011). Similarly, I chose a sample size of 

N = 200 because it has been suggested that LMS may perform with samples of at least this 

size if the model is relatively simple, as in the case of a single interaction effect (Kelava et 

al., 2011). Though there are no explicit cutoffs for sample size in the latent curve model, 

sample sizes exceeding N = 100 are preferred (Curran, Obeidat, & Losardo, 2010).  

Repeated Measures 

Finally, there is no reliable rule of thumb that dictates the optimal number of repeated 

measures, but it has been recommended that linear models have at least four to five 

measurement occasions (MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997; Stoolmiller, 

1995). However, a linear latent curve model can be fit to as few as three repeated measures. 

Thus, the number of repeated measures were varied across two conditions that may be 
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encountered in practice: three and six repeated measures. These repeated measures were 

equally spaced in time. The repeated measures were generated to be multivariate normal. 

This is not always a tenable condition in practice; however, it was maintained for the current 

study so that other conditions could be investigated.  

Therefore, there were a total of ninety-six conditions (models × 2, communalities × 3, 

effect size × 4, sample size × 2, number of repeated measures × 2), and these conditions were 

assessed over R = 1000 replications. While important, missing data was not investigated in 

the course of this study given the desire to evaluate the performance of these models under 

more optimal conditions. Additionally, under missing at random (MAR), theory would not 

predict that missing data would substantially affect results in a manner different from 

expectation. 

Parameters for Unconditional LCM 

The parameters used in the simulation were adapted from mean and variance 

estimates from a subset of data pertaining to alcohol use in adolescence (Curran, Stice, & 

Chassin, 1997). The parameters for the unconditional LCM correspond to an intercept with a 

mean of      and a slope of       . The variance of the intercept is          and the 

variance of the slope is         . The covariance between the intercept and slope is 

        , which corresponds to a correlation of .24. The repeated measures are equally 

spaced and represent linear growth over time. The residual variances at each time point are 

varied to correspond to communalities of .4, .6, and .8 for the repeated measures, as 

demonstrated below. 

Repeated measures = 3 

  [
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For the generation of the distal outcome, the beta weights for the effect of the 

intercept and slope on the distal outcome correspond to standardized coefficients of 0.2. 

These standardized values were calculated using the formulas below (Muthén, 2012):  

  
     

√ (  )

√ ( ) 
 (19) 

  
     

√ (  )

√ ( ) 
 

(20) 

where each unstandardized coefficient is divided by the standard deviation of the distal 

outcome and multiplied by the standard deviation of the respective latent growth factor. 

Finally, the standardized estimate for    can be obtained by the formula: 

  
     

√ (  )√ (  )

√ ( )
 (21) 

where the unstandardized coefficient for the outcome regressed on the interaction is divided 

by the standard deviation of the distal outcome and multiplied by the product of the standard 

deviations of the latent growth factors. The beta weights for the effect of the interaction on 

the outcome were chosen to reflect squared semi-partial correlations of .00, .01, .05, and .09, 
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respectively; these squared semi-partials reflect the percentage of variance in the distal 

outcome uniquely explained by the interaction of the growth factors. The unstandardized 

coefficients for the interaction across the four effect size conditions correspond to 

standardized coefficients of 0, .10, .22, and .29. The variance of the distal outcome was set to 

 ( )   , and the residual variance diminishes across the three conditions as the unique 

variance explained by the interaction increases.  

Generating Distal Outcome 

Interaction           

              

    

               

   [

     

     

(     )(     )
] 

 ( )    

 ( )        

Interaction           

                  

 ( )        

Interaction           

                  

 ( )       

Interaction           
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 ( )       

Hypotheses 

In the main-effects only model (Model 1), I anticipated that the main effects would be 

increasingly biased as the effect size for the unmodeled interaction effect increased. 

Additionally, given the anticipated positive bias of the main effects, I expected there to be an 

inflated empirical rejection rate when detecting these main effects across increasingly higher 

values of effect size for the unmodeled interaction. 

In the interaction model (Model 2), I expected that there would be greater power to 

detect the interaction effect when its squared semi-partial was higher. Specifically, the 

proportion of false negatives will decrease. Additionally, I anticipated that there would be 

greater power to detect the interaction effect when sample size, communalities, and number 

of repeated measures were higher. I did not expect substantial bias otherwise, as I was fitting 

the data-generating model to its corresponding data.  

Evaluation Criteria: Outcomes of Interest 

In order to evaluate the behavior of my models, I considered outcomes including raw 

bias, relative bias, and power for each parameter within each condition. I also examined the 

bias for the standard errors corresponding to each parameter estimate, where the expected 

value is equal to the standard deviation of the observed parameter estimates and the observed 

value is the average of the observed standard errors for that parameter estimate. For effects 

where the population generating value was zero, Type I error was examined; similarly, for 

effects with a non-zero population generating value, power was examined. RMSE was also 

considered as an outcome measure of interest.  
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Raw bias is defined as the true population value ( ) subtracted from the average 

sample estimate ( ̂)  

 ̂    (22) 

 

Relative bias was calculated as  

 ̂   

 
      (23) 

RMSE was computed as  

      √
∑(   ̂)

 

 
 (24) 

Empirical power was calculated as the proportion of times that the null hypothesis was 

rejected when the null hypothesis was false. The raw bias across conditions of the simulation 

was analyzed using a four-factor analysis of variance (ANOVA). This 4×3×2×2 ANOVA 

detected any significant main or interaction effects, and I followed this analysis with specific 

contrasts. I then computed effect size using partial   , calculated as  

   
         

                  
 (25) 

where I consider effects above with a partial    value above the cutoff of          I then 

examined the main effects and interaction effects using graphics. 



 
 

 

 
 

CHAPTER 3: RESULTS 
 

 I will begin by presenting Model 1, the main-effects-only model. I will then continue 

to Model 2, the properly specified model where the interaction effect is included.
1
 I will 

begin by presenting results where the effect size for the interaction has been set to zero, 

averaging across all other simulation factors. These results will demonstrate the Type I error 

rates for estimating the interaction effect using LMS. After the presentation of Type I error, I 

will proceed to examine partial    values from ANOVA meta-models above the cutoff    

    ; I then present relative bias for parameters with a non-zero population generating value. 

Descriptively, I follow this with relevant RMSE values.  

Model 1: Main Effects Only  

Results were discarded if the estimation failed to terminate normally. This would 

result in Mplus failing to print standard errors. A total of 5856 replications out of 48000 were 

discarded, representing 12.20% of replications for this condition. Results were also excluded 

from analysis if the standard errors for parameter estimates exceeded 4 standard deviations 

above or below the mean of the standard error for that condition. This was done to catch 

unrealistic standard errors that were missed in the previous step. The conditions most 

affected were those where repeated measures = 3 and the effect size of the (unmodeled) 

interaction was     = .09. In contrast, regardless of effect size, the conditions with six 

repeated measures experienced almost no losses due to convergence issues.  

                                                           
1
 Comparisons will not include a comparison of fit indices across Model 1 and Model 2, as fit 

indices are not yet available for use with LMS. 
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A total of 102 replications were discarded in this screening, representing 0.22% of all 

runs. This left 42144 cases, or 87.80% of the original replications. The analyses below make 

use of this restricted subset. 

The ANOVA meta-model results examining bias in the parameter estimates are 

presented in Table 1. In this table, values in parentheses represent the partial    values for 

each effect, and partial    values exceeding .06 are bolded for ease of presentation. The 

mean, raw bias, and relative bias for the regression parameters are presented in Tables 2-3, 

and the RMSE values for    and    are presented in Table 4. Finally, power for    and    

across the various conditions is presented in Table 5.  

The standard errors of the parameter estimates were also examined in this study. 

Given the aim to discuss results for the most relevant parameters, information regarding 

standard errors is presented in Appendix A for the interested reader. Appendix A contains 

information for the ANOVA meta-model results examining bias in the standard errors of the 

full set of parameter estimates. The mean, raw, bias, relative bias, and RMSE for the non-

regression parameters,    ,   ,   ,    , and      are also presented in Appendix A. 

Finally, for the full set of parameters, the standard deviation of the parameter estimate, 

average standard error, raw bias, relative bias, and corresponding RMSE are presented in 

Appendix A. 

Part 1: Properly Specified Model. I will first explore the results I obtain when 

fitting the properly specified, main-effects-only model to the subset of conditions where the 

effect of the interaction on the distal outcome has been set to zero in data generation. This 

will serve as verification that the data have been properly generated and will illustrate the 

behavior of a properly-specified main-effects-only model in practice.  
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Across conditions, the relative bias for    remains under 10% in the properly 

specified model. With the exception of one condition, the relative bias for    similarly 

remains under 10%. Where communalities, sample size, and repeated measures are low, the 

relative bias for    is 13.79%. Thus, even in the least optimal of conditions for fitting a main-

effects only model in practice, the relative bias remains relatively modest. These results serve 

as a verification of proper data generation, as we are observing negligible bias where the 

data-generating model is being fit to its corresponding data.  

Part 2: Misspecified Model. The following results detail findings where a main-

effects-only model has been fit to data with a non-zero effect size for the effect of the 

interaction on the distal outcome. Multiple effects were present in examining the effect of the 

simulation factors on the bias of parameters of interest. The most important of these effects 

pertained to the regression parameters (  ,   ). Other effects were present for the means of 

the latent factors (   and   ), as well as the variance of the slope factor (   ). Here, I 

discuss in depth the outcomes pertaining to the regression parameters, or the main effects of 

the latent factors on the distal outcome. I then briefly summarize the factors influencing bias 

in the mean and variance of the latent factors. I follow this with a discussion of power and a 

summary of Model 1 results. 

Intercept effect on outcome,   . The effect size of the (unmodeled) interaction effect 

had the most demonstrable effect on the bias of   , the main effect of the intercept on the 

outcome, where partial        .  A nontrivial portion of this effect is due to the fact that the 

properly specified model (    = .00) is one level of the effect size factor. Specifically, the 

relative bias for the main effect of the intercept monotonically increased as the size of the 

unmodeled interaction effect increased, with relative bias values of 2.11%, 44.91%, 
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107.14%, and 139.88% (see Figure 3). Additionally, the spread of errors of prediction 

increased with increasing effect size. For example, for repeated measures = 3, communality = 

.6, and n = 200, the RMSEs for    were 0.42, 0.46, 0.74, and 0.86 across increasing effect 

size. This pattern indicates that the discrepancy between the observed and predicted values 

increases alongside the amount of bias in the parameter estimate caused by the effect size of 

the unmodeled interaction.  

Slope effect on outcome,   . A similar pattern was observed for the bias present in 

the effect of the slope on the outcome, where the size of the interaction effect had the most 

demonstrable effect on the bias of the main effect of the slope on the outcome, partial 

       . Again, the relative bias in the slope parameter increased as the size of the 

unmodeled interaction effect increased, with relative bias values of 0.40%, 58.17%, 

120.70%, and 173.83% (see Figure 3), corresponding to the respective     conditions. As 

with   , the RMSE values increased with increasing effect size for   ; for example, for 

repeated measures = 6, communality = .6, and n = 400, the RMSEs for    were 0.26, 0.60, 

1.02, and 1.66 across the respective     conditions. These values represent contribution of 

the bias and the sampling variability, so that estimates are increasingly biased and variable as 

the size of the unmodeled interaction increases. 

Power for    and    in Model 1. Because of the misspecification, the values to 

which I am referring as power could be better thought of as power augmented by an inflated 

empirical rejection rate. As anticipated, the proportion of significant estimates for    and    

increased with a) higher sample size, b) higher communalities, and c) more repeated 

measures. For example, with six repeated measures, communalities = .6, and         for 

the (unmodeled) interaction, the power to detect    was .84 and .99 for n = 200 and n = 400, 
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respectively. For    and   , the power increased as the effect size of the unmodeled 

interaction effect increased. For example, with communalities = .4, n = 400, and three 

repeated measures, the power to detect    was 0.32, 0.65, 0.74, and 0.80 across increasingly 

higher     values. Thus, for the regression of the distal outcome on the latent intercept and 

slope, power increased as the parameter estimates became more positively biased due to the 

increasing magnitude of the unmodeled (positive) interaction effect.  

Summary of other parameters. 

Across the parameters pertaining to the mean and variance of the latent factors, 

multiple main and interaction effects with partial    values exceeding .06 were present. For 

ease of presentation and to retain scope, only main effects will be presented briefly. For both 

the mean of the intercept factor and the variance of the slope factor, the relative bias in the 

parameter estimate decreased for repeated measures = 6 compared to repeated measures = 3, 

averaging over all other simulation factors. Note that this comparison does not occlude 

conditional effects, but instead focuses on the main effect in isolation. For example, the 

RMSE value for    is .06 at repeated measures = 3, when n = 200,     = 0, and 

communalities = .8 and is .03 when repeated measures = 6, holding other factors constant. 

Similarly, when n = 200, communalities =.6,     = .09, we see that the relative bias of     

goes from 16.04% to 0.68% when moving from 3 to 6 repeated measures, averaging over all 

other conditions. 

Finally, there is a main effect of effect size of the interaction on the mean of the 

slope. That is, across increasing effect size, the magnitude of the relative bias of the mean of 

the slope decreases, though these values range between -5% and 5%, indicating a small 

effect. The RMSE, by comparison, fluctuates little, as the RMSE values for    are 0.03, 
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0.04, 0.04, and 0.03 across increasing effect size when n = 200, communality = .8, and 

repeated measures = 3. Taken together, the effects pertaining to the mean and variance of the 

latent factors are modest in size and do not behave in a manner different from expectation. 

Summary of Model 1 Results 

Overall, these results demonstrate the substantial bias present in a model where an 

unmodeled interaction effect exists. The most prominent of these effects pertain to the bias 

present in the main effects of the growth factors on the distal outcome. With increasing effect 

size of the unmodeled interaction effect, the main effects become increasingly biased. For a 

side-by-side demonstration of this, see Figure 3. Other simulation factors that do not affect 

the regression parameters, but instead affect the recovery of the parameters pertaining to the 

mean and variance of the growth factors, result in small amounts of bias. Finally, the 

simulation factors affect power in a pattern consistent with expectation. 

Model 2: Interaction 

For the models, results were discarded if the estimation failed to terminate normally 

due to nonconvergence. This would result in Mplus failing to print standard errors. 

Additionally, results were discarded if a warning message was presented that indicated that 

the "model estimation has reached a saddle point or a point where the observed and the 

expected information matrices do not match." This warning appears when the optimization 

algorithm reaches a saddle point; it then produces standard errors that are calculated using the 

MLF estimator, or maximum likelihood with first-order derivative standard errors 

(Asparouhov & Muthén, 2012).  Though it has been stated that it is possible to interpret the 

parameter estimates in such situations, this estimator is known to overestimate standard 

errors in small or medium sample sizes (Asparouhov & Muthén, 2012). Given that the 
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standard errors were of interest in this project, these results were discarded. A total of 1546 

replications were discarded due to these two factors, representing 3.22% of all runs for the 

interaction-effect model. The number of complete replications was affected most in 

conditions where n = 200, repeated measures = 3, and communality = .4.  

Using the same outlier screening as before, an additional 102 cases were removed, 

representing 0.22% of all cases. This left 46352 runs, or 96.57% of all replications. The 

analyses below make use of this restricted subset. 

The ANOVA meta-model results examining bias in the parameter estimates are 

presented in Table 6 for multiple parameters of interest:   ,   ,   ,  ,    ,   ,   ,    , and 

   . In this table, values in parentheses represent the partial    values for each effect, and 

partial    values exceeding .06 are bolded for ease of presentation. The mean, raw bias, and 

relative bias for the regression parameters are presented in Tables 7-8, and RMSE values for 

the regression parameters are presented in Table 9. Finally, power for   ,   , and    is 

presented in Table 10.  

 The ANOVA meta-model results examining bias in the standard errors of the 

parameter estimates are presented in Appendix B for the aforementioned parameters of 

interest:   ,   ,   ,  ,    ,   ,   ,    , and    . The mean, raw bias, relative bias, and 

RMSE for  ,    ,   ,   ,    , and     are presented in Appendix B. For the full set of 

parameters, the standard deviation of the parameter estimate, average standard error, raw 

bias, relative bias, and RMSE are presented in Appendix B.  

Verification of proper data generation. To demonstrate the ability of LMS to 

estimate an interaction that truly exists and to verify that the data were properly generated, I 

begin by presenting relative bias for the regression parameters for the conditions where 
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repeated measures = 6, communality = .8, and sample size = 400. These selections represent 

more optimal conditions encountered in practice. Collapsing across the non-zero effect size 

values (     .01,      .05, and      .09), the average relative bias for   ,   , and    is 

0.12%, -0.16%, and -0.08%, respectively. This demonstration illustrates the ability of LMS 

to recover a non-zero interaction and serves as verification that the data were properly 

generated. 

Type I error. Averaging over all other simulation factors (repeated measures, 

communality, and sample size), I examined the proportion of cases that resulted in a 

significant estimate for the regression of the distal outcome on the interaction between the 

latent factors in the       condition when Model 1 was applied to the data. The Type I 

error rate was .036, indicating that 3.6% of interaction effects were significant in the 

condition where they were set to zero by design. Looking across conditions, the Type I error 

rate ranged from .027 to .045, where the highest rates were observed at lower repeated 

measures and lower sample size. No individual condition exceeded        Thus, the Type I 

error rates across conditions where       were all below the standard cutoff of      , 

indicating that the null hypothesis is not rejected more than the nominal rate.  

Summary of main and interactive effects on outcome (  ,   ,   ): For the 

regression of the distal outcome on the growth factors and the interaction between the growth 

factors, there were no substantial effects according to the partial    values. That is, according 

to the ANOVA meta-model, the properly specified model recovered the effects without any 

simulation factor contributing to bias in the parameter estimates above the specified partial 

   cutoff. Averaging overall all conditions, we see relatively low levels of raw bias and 

relative bias (see Figures 4 and 5). 
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However, differences can still be seen by examining individual conditions. For 

example, with repeated measures = 3,         , n = 200, and communality = .4, the relative 

bias in    is -41.58%, the relative bias in    is 46.98%, and the relative bias in    is 39.65%. 

In contrast, with all as above but communality = .8, the relative bias for    is 3.36%, the 

relative bias for    is 9.39%, and the relative bias for    is -8.45%. This relative bias is 

further reduced when considering the same parameters at n = 400, holding other conditions 

constant.  

This pattern is also present in the RMSE values. For example, for   , the RMSE 

value  is 0.75, 0.50, and 0.39 for communalities of 0.4, 0.6, and 0.8, respectively, at repeated 

measures = 6,         , and n = 200. For the same conditions, increasing to n = 400, the 

RMSEs further decrease to 0.42, 0.31, and 0.23, respectively. Importantly, these RMSE 

values also demonstrate the degree of spread in the estimates for the regression parameters, 

even in a properly specified model. 

Summary of other parameters. For both the mean of the intercept factor and the 

mean of the slope factor, there was a main effect of repeated measures and effect size of the 

interaction. However, for the mean of the latent intercept, both the main effect of repeated 

measures (partial        ) and effect size of the interaction (partial        ) show 

negligible relative bias, under 3%. Similarly, for the mean of the slope factor, the main 

effects showed negligible differences in relative bias across increasing effect size and across 

repeated measures, with relative bias <5%. Further investigating the main effect of repeated 

measures, the RMSE value for    is .14 at repeated measures = 3, when n = 200,     = 0, 

and communalities = .4 and is .07 when repeated measures = 6, holding other factors 

constant. These RMSE values for the mean of the intercept demonstrate a lower degree of 
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variability in parameter estimates than was observed in the RMSE values for the regression 

parameters.  

An interaction between sample size and effect size presented itself for   ; however, 

though this effect (partial        ) exceeded our cutoff, the relative bias across the levels of 

these conditions hovers around 5%. Thus, even the most substantial of the effects did not 

produce troublesome bias. From the most substantial of the interaction effects for   , we see 

that the amount of bias across     values is lower as communalities increase. We again have 

a small effect, as the relative bias remains under 10% across these conditions.  

Power in Model 2. As anticipated, the proportion of significant estimates for   ,   , 

and    increase with a) higher sample size, b) higher communalities, and c) more repeated 

measures. For example, with six repeated measures, n = 400, and       for the interaction, 

the power to detect    was .36, .64, and .83 with communalities of .4, .6, and .8, respectively. 

For   , the power increased as the proportion of variance in the distal outcome uniquely 

explained by the interaction increased. For example, with communalities = .6, n = 200, and 

six repeated measures, the power to detect    was 0.03, 0.36, 0.74, and 0.99 across 

increasingly higher     values.  Demonstrating the impact of sample size and number of 

repeated measures, where      .05,  and communality = .4, the empirical power to detect    

increased from .61 to .87 moving from three to six repeated measures at a sample size of 200, 

and increased from .76 to .99 moving from three to six repeated measures at a sample size of 

400. Without an expected power calculation, it is unknown how these empirical power values 

compare to what we would expect. 
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Summary of Model 2 Results 

 Taken together, though there are no main or interactive effects of simulation factors 

on the key regressions in Model 2:   ,   ,     careful examination across conditions reveals 

cell-to-cell differences that behave as predicted. The effects that exceed the partial    cutoff 

involve the bias present in the estimates of the growth factors themselves. However, even the 

most substantial of these main and interactive effects show modest impact on the growth 

factors, with relative bias ranging from -10% to 10%. As expected, the simulation factors 

impact the power in a pattern consistent with expectation. 
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CHAPTER 4: DISCUSSION 

  

 For this study, I employed a simulation study to evaluate my hypotheses regarding the 

inclusion of an interaction effect among growth factors as a predictor of a distal outcome. 

This is the first study to evaluate the estimation and inclusion of an interaction among growth 

factors in a univariate latent curve model and to rigorously test the finite sampling behavior 

of these models under conditions researchers may commonly encounter in practice. This 

study furthers current knowledge regarding the performance of LMS by extending previous 

simulation work (e.g., Kelava et al., 2011). Additionally, where prior research has focused on 

an intercept-covariate interaction within the latent curve model (Sun & Willson, 2009), this 

study focuses on the predictive utility of the interaction between the growth factors.  

 The results from my project demonstrate the importance of testing for an interaction 

effect when growth factors are used as predictors and clearly demonstrate the bias that would 

be obtained in the parameter estimates when a main-effects-only model is fit to data where an 

interaction truly exists. From the thorough examination of multiple factors, two conclusions 

are clear. First, the size of the unmodeled interaction effect is the most important factor for 

determining the bias that would be present should a main-effects-only model be fit to data 

where an interaction exists. Second, of the simulation factors, the communality of the 

repeated measures and the effect size of the interaction are the most important determinants 

of power to detect the interaction. I will first discuss the effect of model specification, and I 

will proceed to briefly summarize the effects of each factor in my study on parameters of 

interest.  
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Effect of Model Specification 

 The proper specification of the model was shown to be crucial. I initially 

hypothesized that the main effects would be biased in the presence of an unmodeled 

interaction effect, and the results supported this prediction. Importantly, this bias should be 

interpreted as over-estimation. We observed that the properly specified model performed 

well and the misspecified model performed poorly; we would expect this outcome under 

proper data generation.  

Effects of Simulation Factors 

 Before the discussion of each individual simulation factor, it is important to first note 

the variability in certain parameter estimates that likely affected why some partial    values 

exceeded the cutoff while others did not. For the parameters pertaining to the mean and 

variance of the latent factors, the distribution of bias within each cell did not fluctuate 

tremendously across simulation conditions. For example, in Model 2, the RMSE for    was 

0.14 for a sample size of 200 with three repeated measures,     = 0 and communality = .4. 

The RMSE value for the same conditions with communality = .8 was 0.06. At higher sample 

size and higher repeated measures, the discrepancy in RMSE values across levels of 

communality is diminished. These values demonstrate that there is less variability in the 

parameter estimates as the simulation conditions become more optimal, but that even the 

least optimal of conditions do not produce troublesome RMSE for the parameter estimates 

pertaining to the mean and variance of the latent factors. 

 By contrast, there was much more fluctuation in parameter estimates for the 

regression parameters across various conditions. For example, the RMSE for    was 1.17 in 

the least optimal of conditions (     .00, repeated measures = 3, sample size = 200, and 
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communality = .4). In contrast, the RMSE reduced drastically to 0.12 in what could be 

considered the most optimal of conditions (     .00, repeated measures = 6, sample size = 

200, communality = .8). Given that the partial    is calculated as a ratio of           and 

                   (see Equation 25), it is likely the case the large amount of within-cell 

variability for the regression parameters overwhelmed the meaningful degree of between-

group differences witnessed in the relative bias across conditions. 

This variability at least in part explains why partial    values for effects pertaining to 

the mean and variance of the latent factors exceeded the cutoff, but upon further 

investigation, produced differences in relative bias across conditions <10%. On the other 

hand, there were substantial differences in relative bias for the regression parameters across 

varying combinations of the levels of the simulation factors that did not meet the criteria for 

partial   . With this consideration in mind, I now turn to a discussion of the effects of the 

simulation factors. 

Effect of Sample Size and Number of Repeated Measures. Regarding the effects 

of sample size and repeated measures, I hypothesized that there would be greater power to 

detect the interaction when the sample size and the number of repeated measures were 

higher. This pattern was largely supported. Finally, though all Type I error rates stayed below 

the nominal    .05 level, the highest of the Type I error rates that were observed occurred 

in cells where the sample size and the number of repeated measures were small.  

Effect of Communality. In Model 1, the misspecified main-effects-only model, the 

bias in the regression parameters was affected little by the level of communality. In the 

properly-specified condition, where the effect size for the interaction was set to zero, the 
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already small amount of relative bias in the regression parameters decreased slightly as 

communalities increased. 

In Model 2, multiple effects involved the communality factor. Power for the 

regression parameters was greater at higher communalities. Additionally, high communality 

served to protect from loss of power at a small number of repeated measures and a smaller 

sample size. For example, at a communality of .4, there was a substantial increase in power 

when sample size or number of repeated measures increased; this increase in power exceeded 

30% for some cells. Conversely, at a communality of .8, there was a negligible increase in 

power (< 2%) across increased sample size and number of repeated measures.  

Impact of Effect Size. My initial hypothesis was that the power to detect the 

interaction effect would increase as its unique contribution to the variance of the distal 

outcome increased. This conclusion was supported, where power ranged from .88 to <1 for 

the condition where the effect size for    was      .09, spanning over all other conditions. 

That is, even in the least optimal of conditions in countered in practice (small number of 

repeated measures, low communality, and small sample size), there was sufficient power to 

detect an interaction corresponding to a moderate effect size. 

Implications for Research 

 From this, several implications for applied and quantitative research arise. The first is 

that, when using growth factors as predictors of a distal outcome, the interaction effect 

should also be considered and tested for. My results demonstrate that, at best, testing for an 

interaction that truly exists will protect the researcher from potentially overinterpreting main 

effects that are positively biased due to an unmodeled positive interaction effect or, 

hypothetically, from artificially deflating main effects that are negatively biased due to a 
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negative interaction effect. If researchers test for an interaction and find that no interaction 

exists, I demonstrated that the main effects will not be biased by testing for this interaction. 

Thus, much like is done in the standard two-way ANOVA, testing for an interaction among 

growth factors when using growth factors as predictors should become standard practice. 

Much like in the standard multiple regression model, this interaction can be probed such that 

the strength of the influence of    on z (  ) is moderated by        This representation 

matches the conceptualization of the slope as a focal predictor and the intercept as the 

moderator, where the effect of growth over time on a distal outcome depends on the 

individual’s initial starting point.  

Importantly, these results represent a unique contribution beyond existing knowledge 

pertaining to testing interactions in multiple regression. The process of testing interactions in 

LCM introduces the unique challenges of 1) estimating an interaction among latent, not 

observed, variables, 2) having latent variables defined by the same repeated measures, and 3) 

retaining the mean structure of the growth factors. 

 Limitations and Future Directions 

The present study is not without limitations. Given the possible number of factors that 

could have been varied in the study, several potentially interesting factors were not 

considered for this project. Four factors that were not investigated that could have impacted 

the results in meaningful ways were the 1) normality of the repeated measures, 2) the 

measurement scale of the repeated measures, 3) the sign of the regression parameters, and 4) 

the method of estimating the interaction between the latent variables. 

In this study, the repeated measures were generated to be multivariate normal and 

continuous in nature, conditions that do not frequently exist in practice. The extent of non-
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normality of the repeated measures could have been varied to mimic observations that may 

be encountered more often in practice. However, I do not anticipate that the non-normality 

would have impacted the results differently than one might hypothesize. Indeed, LMS is 

known to be biased in the presence of nonnormality, as it only able to approximate the 

nonnormality due to the interaction; under this condition, QML may be the better choice of 

estimator (Kelava et al., 2011). Similarly, repeated measures in practice are frequently 

composed of items that may be ordinal in nature, where a researcher has a five- or seven-item 

scale. Again, this was not examined to retain scope, and results would have likely not been 

present that went against expectations. 

Additionally, the direction of the effects of the growth factors and the corresponding 

interaction on the distal outcome was not varied. That is, the main effects and interaction 

effect were all generated to be positive. In the results for the main-effects-only model, we 

observed that this unmodeled interaction effect positively biased the main effects, which in 

turn increased the rejection rate of the null hypothesis. A condition with positive main effects 

and a negative unmodeled interaction effect was not examined, nor was a condition with 

negative main effects and a positive interaction effect.  

Finally, the method of estimating the interaction effect was not varied. The current 

study used LMS, but QML could have been evaluated as well as an alternative method of 

estimating the interaction between the latent factors. However, LMS and QML are known to 

perform similarly under several of the conditions that were varied in my study (Klein & 

Muthén, 2007); other simulation factors would better serve a study comparing the 

performance of LMS and QML. Additionally, though possibly a less optimal approach, the 

factor-score method of estimating an interaction effect could have been considered given its 
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potential use among substantive researchers aiming to include an interaction effect (e.g., 

McCarty et al., 2013). Future projects would do well to consider these additional factors for 

further study. 

Conclusion  

 Taken together, this project presents numerous insights for further consideration. 

Among the most important points is that the main effects of interest will be biased in the 

presence of an unmodeled interaction effect, and that the magnitude of this bias will increase 

as the size of the unmodeled interaction effect increases. Depending on the sign and 

magnitude of the main and interaction effects, this bias could take the form of a spurious 

finding or could result in a null finding where an effect truly exists. 

 In the presence of a properly-specified model where the interaction effect is included, 

LMS can be used successfully to estimate an interaction effect among latent factors that are 

defined by the same repeated measures. For this properly specified model, we observe bias in 

less than optimal conditions, such as low sample size, lower repeated measures, and lower 

communalities; similarly, we observe negligible bias under more optimal, but still tenable, 

conditions. This project demonstrates the importance for substantive researchers to test for an 

interaction and to more carefully conceptualize the role of starting point and rate of change 

over time as predictors of a distal outcome. 
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Table 1. 

Model 1: Main-Effects-Only, Factorial ANOVA for Bias in Parameter Estimates 

 

Factor df                                   

n 1 101.38(0) 191.18(0) 1.69(0) 224.44(0.01) 888.53(0.02) 646.59(0.02) 7.78(0) 3.51(0) 

comm 2 73.82(0) 18.22(0) 109.08(0.01) 526.25(0.02) 744.98(0.03) 174.87(0.01) 583.92(0.03) 621.17(0.03) 

sr 3 15416.69(0.52) 19795.26(0.59) 10261.22(0.42) 226.45(0.02) 643.97(0.04) 1038.75(0.07) 322.12(0.02) 308.46(0.02) 

rm 1 228.72(0.01) 89.17(0) 176.09(0) 4517.22(0.1) 3485.91(0.08) 5778.89(0.12) 652.11(0.02) 2835.55(0.06) 

n*comm 2 69.88(0) 22(0) 66.14(0) 190.26(0.01) 849.46(0.04) 226.01(0.01) 33.29(0) 67.87(0) 

n*sr 3 19.69(0) 35.48(0) 61.53(0) 10.78(0) 3765.75(0.21) 293.36(0.02) 310.69(0.02) 130.06(0.01) 

n*rm 1 200.75(0) 0.1(0) 194.26(0) 242.15(0.01) 1953.53(0.04) 1379.36(0.03) 751.75(0.02) 49.39(0) 

comm*sr 6 24.33(0) 41.13(0.01) 49.13(0.01) 303.6(0.04) 1314.5(0.16) 469.71(0.06) 356.08(0.05) 93.32(0.01) 

comm*rm 2 24.92(0) 76.91(0) 26(0) 1253.03(0.06) 948.07(0.04) 38.22(0) 31.25(0) 808.96(0.04) 

sr*rm 3 50.33(0) 45.71(0) 123.05(0.01) 679.09(0.05) 575.82(0.04) 178.17(0.01) 100.18(0.01) 345.07(0.02) 

n*comm*sr 6 18.79(0) 11.14(0) 12.8(0) 82.64(0.01) 183.99(0.03) 1088.28(0.13) 297.15(0.04) 53.32(0.01) 

n*comm*rm 2 18.25(0) 1.69(0) 18.49(0) 377.95(0.02) 1121.4(0.05) 3.03(0) 99.31(0) 15.93(0) 

n*sr*rm 3 126.55(0.01) 56.52(0) 473.95(0.03) 267.06(0.02) 1850.74(0.12) 1608.31(0.1) 327.22(0.02) 151.81(0.01) 

comm*sr*rm 6 8.81(0) 26.25(0) 38.32(0.01) 130.93(0.02) 662.15(0.09) 550.04(0.07) 279.55(0.04) 250.33(0.03) 

n*comm*sr*rm 6 10.12(0) 8.28(0) 29.32(0) 202.5(0.03) 1720.07(0.20) 1518.64(0.18) 127.09(0.02) 65.32(0.01) 

Residuals 42096         

*note: values are F(  )  n = sample size; comm = communality; sr = effect size of   ; rm = number of repeated measures 
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Table 2.  

Means and Bias for Model 1, Repeated Measures = 3 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter 

(pop. value) 

M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Communality = .4 

      N = 200       

   (0.54) 0.54 0 0.51 0.89 0.36 66.85 1.13 0.60 112.34 1.49 0.96 179.04 

   (0.82) 0.93 0.11 13.79 1.22 0.4 49.57 1.78 0.96 117.93 2.18 1.37 167.22 

N = 400 

   (0.54) 0.53 0 -0.33 0.74 0.21 38.82 1.13 0.59 110.88 1.22 0.69 128.56 

   (0.82) 0.85 0.03 4 1.38 0.57 69.48 1.89 1.07 131.42 2.29 1.47 180.48 

 

Communality = 0.6 

N = 200 

   (0.54) 0.55 0.02 3.81 0.83 0.30 56.19 1.22 0.68 127.87 1.38 0.84 157.82 

   (0.82) 0.80 -0.02 -2.56 1.23 0.41 50.21 1.56 0.74 90.63 2.12 1.30 159.76 

N = 400 

   (0.54) 0.55 0.01 2.51 0.75 0.21 40 1.20 0.66 124.27 1.35 0.81 152.41 

   (0.82) 0.81 -0.01 -1.35 1.27 0.45 55.29 1.79 0.97 118.71 2.05 1.23 151.17 

 

Communality = 0.8 

N = 200 

   (0.54) 0.56 0.03 5.13 0.82 0.29 54.33 1.12 0.58 109.18 1.39 0.86 160.36 

   (0.82) 0.80 -0.02 -1.86 1.26 0.44 54.41 1.69 0.88 107.35 2.24 1.42 173.91 

N = 400 

   (0.54) 0.53 -0.01 -1.24 0.75 0.22 40.82 1.04 0.51 95.11 1.26 0.72 135.03 

   (0.82) 0.83 0.01 1.28 1.32 0.50 61.64 1.77 0.95 116.46 2.14 1.32 162.13 
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Table 3. 

Means and Bias for Model 1, Repeated Measures = 6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter            

(pop. value) 

M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

     Communality = .4      

     N = 200      

   (0.54) 0.58 0.04 8.35 0.81 0.28 52.28 1.19 0.65 122.11 1.26 0.73 136.17 

   (0.82) 0.77 -0.04 -5.22 1.22 0.4 49.07 1.83 1.02 124.63 2.17 1.35 165.81 

     N = 400      

   (0.54) 0.55 0.01 2.77 0.73 0.2 37.4 1.08 0.55 102.12 1.28 0.74 138.95 

   (0.82) 0.81 0 -0.34 1.28 0.46 56.39 1.89 1.07 131.03 2.37 1.55 190.2 

           

     Communality = .6      

     N = 200      

   (0.54) 0.55 0.02 2.88 0.7 0.17 31.87 1.14 0.6 113.13 1.2 0.67 124.53 

   (0.82) 0.82 0 0.58 1.32 0.5 61.36 1.7 0.89 108.41 2.27 1.45 177.48 

     N = 400      

   (0.54) 0.54 0.01 1.23 0.77 0.24 44.35 1.04 0.51 94.9 1.32 0.79 147.71 

   (0.82) 0.82 0 -0.13 1.36 0.55 67 1.81 1 121.96 2.48 1.66 203.16 

           

     Communality = .8      

     N = 200      

   (0.54) 0.53 0 -0.13 0.74 0.2 37.77 1.04 0.5 93.95 1.14 0.61 114.01 

   (0.82) 0.82 0 0.49 1.33 0.51 62.37 1.94 1.12 137.31 2.07 1.25 152.99 

     N = 400      

   (0.54) 0.53 0 -0.55 0.78 0.25 46.75 1.04 0.51 94.96 1.3 0.76 142.67 

   (0.82) 0.81 0 -0.19 1.3 0.48 58.75 1.85 1.04 126.81 2.25 1.43 175.23 
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Table 4.  

RMSE for Model 1 Regression Parameters 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 

N = 200 

Repeated Measures = 3 

    0.41 0.64 0.7 1.05 0.42 0.46 0.74 0.86 0.3 0.36 0.6 0.87 

    0.94 1.04 1.26 1.56 0.63 0.7 0.88 1.33 0.56 0.58 0.91 1.44 

Repeated Measures = 6 

    0.41 0.51 0.79 0.83 0.31 0.3 0.65 0.68 0.24 0.3 0.53 0.63 

    0.61 0.68 1.16 1.42 0.43 0.6 0.95 1.47 0.3 0.59 1.15 1.26 

 

N = 400 

Repeated Measures = 3 

    0.46 0.36 0.73 0.78 0.21 0.32 0.68 0.83 0.17 0.26 0.53 0.73 

    0.8 0.84 1.28 1.64 0.37 0.61 1 1.25 0.32 0.57 0.98 1.33 

Repeated Measures = 6 

    0.28 0.28 0.6 0.77 0.19 0.29 0.53 0.8 0.14 0.29 0.52 0.77 

    0.34 0.56 1.12 1.57 0.26 0.6 1.02 1.66 0.22 0.52 1.05 1.44 
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Table 5.  

Empirical Power for Model 1 Regression Parameters 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 

N = 200 

Repeated Measures = 3 

    0.4 0.59 0.76 0.8 0.45 0.76 0.94 0.99 0.55 0.91 0.99 1 

    0.14 0.34 0.59 0.73 0.36 0.65 0.89 0.98 0.39 0.9 0.99 1 

Repeated Measures = 6 

    0.4 0.72 0.86 0.9 0.49 0.84 1 1 0.65 0.92 1 1 

    0.41 0.76 0.89 0.93 0.5 0.97 0.99 1 0.79 0.99 1 1 

 

N = 400 

Repeated Measures = 3 

    0.48 0.71 0.76 0.77 0.73 0.83 0.99 0.99 0.88 0.97 1 1 

    0.32 0.65 0.74 0.8 0.63 0.85 0.98 0.99 0.82 0.99 1 1 

Repeated Measures = 6 

    0.6 0.97 0.98 0.99 0.83 0.99 1 1 0.95 1 1 1 

    0.71 0.95 0.98 0.99 0.87 1 1 1 0.97 1 1 1 
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Table 6.  

Model 2: Interaction, Factorial ANOVA for Bias in Parameter Estimates. 

 

Factor df                                       

n 1 7.96(0) 14.31(0) 1.5(0) 61.57(0) 102.95(0) 1248.95(0.03) 805.48(0.02) 13.68(0) 135.47(0) 

comm 2 12.11(0) 50.42(0) 32.94(0) 58.18(0) 41.17(0) 715.61(0.03) 316.66(0.01) 285.95(0.01) 14.26(0) 

sr 3 3.87(0) 8.57(0) 4.07(0) 4.34(0) 461.95(0.03) 948.27(0.06) 919.73(0.06) 290.93(0.02) 19.6(0) 

rm 1 225.63(0) 346.2(0.01) 33.22(0) 33.12(0) 875.26(0.02) 4467.13(0.09) 5815.58(0.11) 0.03(0) 0(0) 

n*comm 2 8.12(0) 7(0) 55.8(0) 20.2(0) 112.9(0) 653.78(0.03) 193.67(0.01) 135.77(0.01) 7.48(0) 

n*sr 3 6.32(0) 2.83(0) 11.49(0) 5.99(0) 82.05(0.01) 3647.05(0.19) 319.45(0.02) 467.96(0.03) 120.69(0.01) 

n*rm 1 12.86(0) 3.39(0) 100.37(0) 5.79(0) 41.13(0) 2712.65(0.06) 1425.05(0.03) 419.26(0.01) 64.33(0) 

comm*sr 6 4.04(0) 2.99(0) 10.91(0) 2.65(0) 372.13(0.05) 1308.66(0.14) 511.33(0.06) 528.99(0.06) 115.6(0.01) 

comm*rm 2 65.75(0) 97.16(0) 22.52(0) 11.7(0) 250.33(0.01) 1047.24(0.04) 42.22(0) 389.52(0.02) 110.45(0) 

sr*rm 3 3.42(0) 4.8(0) 5.97(0) 3.5(0) 866.27(0.05) 722.6(0.04) 270.36(0.02) 159.72(0.01) 366.77(0.02) 

n*comm*sr 6 2.37(0) 4.86(0) 27.77(0) 2.23(0) 87.96(0.01) 269.66(0.03) 1020.83(0.12) 404.47(0.05) 51.62(0.01) 

n*comm*rm 2 3.02(0) 3.94(0) 59.33(0) 3.44(0) 327.92(0.01) 1209.99(0.05) 10.26(0) 58.78(0) 87.42(0) 

n*sr*rm 3 9.25(0) 12.5(0) 47.38(0) 5.82(0) 483.82(0.03) 2141.26(0.12) 1582.49(0.09) 354.47(0.02) 96.2(0.01) 

comm*sr*rm 6 10.02(0) 1.63(0) 36.03(0) 5.79(0) 158.76(0.02) 728.97(0.09) 600.68(0.07) 349.49(0.04) 256.08(0.03) 

n*comm*sr*rm 6 8.07(0) 7.97(0) 41.45(0.01) 7.41(0) 284.9(0.04) 1869.57(0.2) 1602.98(0.17) 136.34(0.02) 73.04(0.01) 

Residuals 46304          

*note: values are F(  )  n = sample size; comm = communality; sr = effect size of   ; rm = number of repeated measures 
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Table 7.  

Means and Bias for Model 2, Repeated Measures = 3 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter (pop. value) M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

             

Communality = .4 

N = 200 

   (0.54) 0.38 -0.16 -29.2 0.31 -0.22 -41.58 0.39 -0.15 -27.69 0.57 0.04 7.4 

   (0.82) 1.25 0.43 52.9 1.2 0.38 46.98 1.15 0.33 40.6 1.12 0.3 37.24 

   (0.00,0.47,1.06,1.42) 0.13 0.13 - 0.66 0.19 39.65 1.24 0.18 17.21 1.37 -0.05 -3.68 

N = 400 

   (0.54) 0.49 -0.05 -8.92 0.29 -0.25 -46.00 0.46 -0.07 -14.01 0.39 -0.14 -26.35 

   (0.82) 0.88 0.07 8.2 1.23 0.41 50.17 1.3 0.49 59.71 1.19 0.37 45.9 

   (0.00,0.47,1.06,1.42) 0.04 0.04 - 0.55 0.08 16.83 0.93 -0.13 -12.08 1.43 0.01 0.38 

 

Communality = .6 

N = 200 

   (0.54) 0.44 -0.09 -17.35 0.55 0.02 3.38 0.4 -0.14 -25.73 0.5 -0.04 -6.97 

   (0.82) 0.96 0.14 17.56 1.18 0.37 44.82 1.19 0.38 46.16 0.99 0.18 21.45 

   (0.00,0.47,1.06,1.42) 0.03 0.03 - 0.34 -0.13 -28.35 1.01 -0.06 -5.21 1.46 0.04 2.62 

N = 400 

   (0.54) 0.49 -0.04 -7.45 0.41 -0.13 -23.96 0.46 -0.08 -14.74 0.48 -0.06 -10.44 

   (0.82) 0.9 0.08 10.2 1.02 0.21 25.24 0.81 0 -0.47 0.99 0.18 21.67 

   (0.00,0.47,1.06,1.42) 0.01 0.01 - 0.51 0.03 7.22 1.18 0.12 11.37 1.39 -0.04 -2.63 

 

Communality = .8 

N = 200 

   (0.54) 0.51 -0.02 -4.46 0.55 0.02 3.36 0.52 -0.02 -3.62 0.47 -0.06 -11.95 

   (0.82) 0.88 0.06 7.9 0.89 0.08 9.39 0.87 0.05 6.62 0.75 -0.07 -8.28 

   (0.00,0.47,1.06,1.42) 0.02 0.02 - 0.43 -0.04 -8.45 1.05 -0.02 -1.44 1.56 0.14 9.71 

N = 400 

   (0.54) 0.52 -0.02 -3.13 0.52 -0.01 -2.49 0.56 0.02 4.6 0.57 0.03 5.76 

   (0.82) 0.81 -0.01 -1.08 0.85 0.03 3.63 0.9 0.08 9.84 0.86 0.05 5.92 

   (0.00,0.47,1.06,1.42) 0.02 0.02 - 0.48 0 0.61 0.98 -0.08 -7.67 1.37 -0.05 -3.57 
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Table 8.  

Means and Bias for Model 2, Repeated Measures = 6  

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter (pop. value) M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

             

Communality = .4 

N = 200 

   (0.54) 0.65 0.12 22.21 0.63 0.10 17.92 0.60 0.07 12.37 0.60 0.07 12.44 

   (0.82) 0.77 -0.04 -5.30 0.80 -0.01 -1.44 0.75 -0.07 -7.98 0.80 -0.02 -2.51 

   (0.00,0.47,1.06,1.42) -0.05 -0.05 - 0.42 -0.05 -10.87 1.08 0.02 1.64 1.40 -0.03 -1.84 

N = 400 

   (0.54) 0.53 0.00 0.03 0.55 0.01 2.13 0.54 0.00 0.36 0.54 0.00 0.92 

   (0.82) 0.77 -0.05 -5.80 0.85 0.04 4.42 0.79 -0.02 -2.91 0.69 -0.13 -15.82 

   (0.00,0.47,1.06,1.42) 0.04 0.04 - 0.44 -0.04 -7.46 1.10 0.04 3.55 1.51 0.08 5.73 

 

Communality = .6 

N = 200 

   (0.54) 0.56 0.03 5.27 0.50 -0.03 -6.33 0.60 0.07 12.97 0.60 0.07 12.24 

   (0.82) 0.84 0.02 3.03 0.83 0.02 2.09 0.72 -0.09 -11.21 0.96 0.15 18.09 

   (0.00,0.47,1.06,1.42) -0.02 -0.02 - 0.50 0.02 5.23 1.06 0.00 -0.45 1.29 -0.13 -9.39 

N = 400 

   (0.54) 0.53 0.00 -0.11 0.53 -0.01 -1.19 0.57 0.04 6.89 0.52 -0.02 -3.19 

   (0.82) 0.8 -0.02 -2.52 0.86 0.04 5.03 0.81 0.00 -0.57 0.75 -0.07 -8.07 

   (0.00,0.47,1.06,1.42) 0.02 0.02 - 0.46 -0.01 -2.72 1.05 -0.01 -1.26 1.49 0.07 5.02 

 

Communality = .8 

N = 200 

   (0.54) 0.54 0.00 0.73 0.53 0.00 -0.08 0.53 -0.01 -1.05 0.54 0.01 1.48 

   (0.82) 0.83 0.01 1.71 0.83 0.02 2.07 0.84 0.02 2.39 0.83 0.02 1.85 

   (0.00,0.47,1.06,1.42) -0.01 -0.01 - 0.46 -0.01 -2.17 1.06 0.00 0.37 1.41 -0.01 -0.98 

N = 400 

   (0.54) 0.52 -0.01 -1.82 0.54 0.01 1.38 0.56 0.03 4.8 0.51 -0.02 -3.97 

   (0.82) 0.8 -0.02 -2.15 0.81 -0.01 -1.17 0.85 0.03 4.16 0.79 -0.02 -2.64 

   (0.00,0.47,1.06,1.42) 0.02 0.02 - 0.47 0.00 0.01 1.03 -0.03 -3.03 1.45 0.02 1.74 
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Table 9.  

RMSE for Model 2 Regression Parameters 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 

N = 200 

Repeated Measures = 3 

    1.77 1.69 1.04 1.01 1.8 0.9 0.65 0.25 0.56 0.35 0.26 0.27 

    4.05 3.28 2.08 1.32 2.84 1.66 1.21 0.59 1.15 0.63 0.44 0.48 

    1.17 0.80 0.59 0.43 0.61 0.66 0.31 0.34 0.43 0.35 0.28 0.38 

Repeated Measures = 6 

    0.87 0.66 0.54 0.45 0.38 0.28 0.31 0.19 0.32 0.28 0.21 0.16 

    1.15 0.79 0.75 0.56 0.58 0.45 0.50 0.35 0.54 0.52 0.39 0.26 

    0.57 0.39 0.34 0.3 0.41 0.32 0.42 0.25 0.45 0.4 0.29 0.21 

             

N = 400 

Repeated Measures = 3 

    1.13 0.89 0.89 0.63 0.43 0.59 0.32 0.24 0.23 0.18 0.2 0.17 

    1.94 1.60 1.43 1.13 0.75 1.13 0.52 0.47 0.49 0.38 0.34 0.3 

    0.47 0.40 0.37 0.29 0.31 0.34 0.27 0.19 0.31 0.23 0.26 0.25 

Repeated Measures = 6 

    0.38 0.24 0.26 0.14 0.23 0.23 0.17 0.11 0.18 0.19 0.15 0.1 

    0.54 0.41 0.42 0.27 0.42 0.42 0.31 0.21 0.33 0.32 0.23 0.16 

    0.39 0.27 0.27 0.18 0.30 0.30 0.23 0.16 0.25 0.23 0.18 0.12 
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Table 10.  

Empirical Power for Model 2 Regression Parameters 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 0.00 0.01 0.05 0.09 

N = 200 

Repeated Measures = 3 

    0.15 0.17 0.2 0.3 0.23 0.3 0.43 0.56 0.33 0.52 0.62 0.47 

    0.08 0.09 0.06 0.18 0.14 0.21 0.35 0.45 0.21 0.38 0.57 0.36 

    0.04 0.13 0.61 0.88 0.04 0.09 0.92 0.98 0.05 0.25 0.98 0.99 

Repeated Measures = 6 

    0.27 0.36 0.36 0.51 0.37 0.5 0.56 0.93 0.45 0.53 0.74 0.9 

    0.23 0.36 0.33 0.49 0.34 0.48 0.3 0.86 0.41 0.42 0.58 0.88 

    0.03 0.25 0.87 1 0.03 0.36 0.74 1 0.04 0.26 0.95 1 

 

N = 400 

Repeated Measures = 3 

    0.26 0.29 0.37 0.45 0.55 0.43 0.58 0.67 0.63 0.78 0.82 0.88 

    0.14 0.15 0.2 0.21 0.38 0.3 0.48 0.73 0.43 0.67 0.82 0.82 

    0.04 0.3 0.76 0.98 0.03 0.29 1 1 0.04 0.54 0.99 1 

Repeated Measures = 6 

    0.36 0.7 0.59 0.88 0.64 0.63 0.91 0.99 0.83 0.85 0.97 1 

    0.35 0.6 0.52 0.71 0.51 0.57 0.78 0.94 0.7 0.72 0.94 1 

    0.04 0.38 0.99 0.96 0.03 0.37 1 1 0.03 0.54 1 1 
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Figure 3. Model 1, Main-Effects-Only, Relative Bias of    and    by Effect Size of   . 
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Figure 4. Model 2, Interaction, Raw Bias for Intercept, Slope, and Interaction Effects. 
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Figure 5. Model 2, Interaction, Relative Bias in Intercept and Slope by Effect Size of   . 
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Figure 6. Relative Bias of     across Effect Size of    for Model 1 and Model 2. 
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Figure 7. Relative Bias of     across Effect Size of    for Model 1 and Model 2. 
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APPENDIX A: SUPPLEMENTAL TABLES FOR MODEL 1, MAIN-EFFECTS-ONLY MODEL 
 
A.1. Model 1: Main-Effects-Only, Factorial ANOVA for Standard Error Bias  

 

  df                                   

n 1 19.06(0) 37.07(0) 69.86(0) 30711.35(0.42) 109124.63(0.72) 85252.09(0.67) 19989.95(0.32) 32111.6(0.43) 

comm 2 167.65(0.01) 195.82(0.01) 281.98(0.01) 15084.23(0.42) 110521.51(0.84) 80955.94(0.79) 3111.98(0.13) 16427.27(0.44) 

sr 3 1.9(0) 1.02(0) 8.52(0) 35.82(0) 1258.1(0.08) 1655.66(0.11) 224.18(0.02) 309.71(0.02) 

rm 1 434.67(0.01) 587.47(0.01) 371.99(0.01) 53939.55(0.56) 2597.54(0.06) 129589.8(0.75) 18123.9(0.3) 72436.83(0.63) 

n*comm 2 4.29(0) 5.65(0) 41.47(0) 2915.88(0.12) 8021.74(0.28) 2166.67(0.09) 1212.91(0.05) 2938.73(0.12) 

n*sr 3 0.73(0) 0.3(0) 1.38(0) 224.84(0.02) 699.02(0.05) 648.51(0.04) 314.28(0.02) 95.58(0.01) 

n*rm 1 11.48(0) 30.18(0) 31.38(0) 10575.51(0.20) 2155.18(0.05) 4869.83(0.1) 4620.35(0.10) 12041.78(0.22) 

comm*sr 6 0.52(0) 0.84(0) 0.54(0) 341.94(0.05) 624.25(0.08) 412.22(0.06) 474.15(0.06) 298.58(0.04) 

comm*rm 2 193.44(0.01) 235.25(0.01) 214.74(0.01) 53807.29(0.72) 1782.77(0.08) 1154.64(0.05) 19311.28(0.48) 59091.29(0.74) 

sr*rm 3 3.22(0) 3.05(0) 3.23(0) 1157.54(0.08) 230.98(0.02) 969.39(0.06) 482.97(0.03) 170.11(0.01) 

n*comm*sr 6 3.79(0) 2.33(0) 2.42(0) 249.24(0.03) 689.99(0.09) 235.98(0.03) 350.62(0.05) 72.79(0.01) 

n*comm*rm 2 0.33(0) 2.77(0) 8.25(0) 4074.03(0.16) 549.34(0.03) 774.84(0.04) 1120.55(0.05) 4380.01(0.17) 

n*sr*rm 3 2.09(0) 1.29(0) 5.14(0) 480.51(0.03) 1209.22(0.08) 570.28(0.04) 146(0.01) 158.21(0.01) 

comm*sr*rm 6 0.71(0) 1.71(0) 0.73(0) 757.25(0.10) 1198.31(0.15) 1052.46(0.13) 372.76(0.05) 666.07(0.09) 

n*comm*sr*rm 6 3.64(0) 1.76(0) 3.86(0) 32.55(0) 547.42(0.07) 786.09(0.1) 132.71(0.02) 300(0.04) 

Residuals 42096         

*note: values are F(  )  n = sample size; comm = communality; sr = effect size of   ; rm = number of repeated measures 
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A.2. Means and Bias for Model 1 Non-Regression Parameters, Communalities = .4 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter 

(pop. value) 

M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3 

N = 200 

    (.11) -0.05 -0.16 -142.73 0.02 -0.09 -85.39 0 -0.11 -96.56 0.01 -0.1 -92.38 

   (1.00) 1.13 0.13 12.65 1.06 0.06 5.77 1.01 0.01 1.17 1.01 0.01 0.61 

   (0.50) 0.52 0.02 3.66 0.52 0.02 3.61 0.46 -0.04 -8.71 0.59 0.09 18.70 

    (0.70) 0.75 0.05 7.28 0.72 0.02 2.49 0.85 0.15 22.04 0.76 0.06 7.90 

    (0.30) 0.35 0.05 16.21 0.36 0.06 18.58 0.38 0.08 27.54 0.41 0.11 37.55 

  (3.00) 2.94 -0.06 -2.08 2.73 -0.27 -8.96 2.54 -0.46 -15.24 2.24 -0.76 -25.20 

N = 400 

    (.11) 0.07 -0.04 -37.67 0.06 -0.05 -47.83 0.05 -0.06 -54.89 0.04 -0.07 -59.29 

   (1.00) 0.94 -0.06 -5.67 0.99 -0.01 -0.62 1.08 0.08 7.69 1.05 0.05 5.45 

   (0.50) 0.48 -0.02 -3.26 0.49 -0.01 -1.05 0.52 0.02 3.91 0.47 -0.03 -5.97 

    (0.70) 0.71 0.01 1.32 0.80 0.10 13.96 0.65 -0.05 -6.64 0.69 -0.01 -1 

    (0.30) 0.35 0.05 16.66 0.37 0.07 23.46 0.37 0.07 22.38 0.36 0.06 21.17 

  (3.00) 2.98 -0.02 -0.63 2.80 -0.20 -6.67 2.50 -0.50 -16.66 2.42 -0.58 -19.42 

 

Repeated Measures = 6 

N = 200 

    (.11) 0.07 -0.04 -40.82 0.16 0.05 48.35 0.11 0 -0.17 0.13 0.02 19.34 

   (1.00) 1.01 0.01 1.25 0.97 -0.03 -3.04 1.09 0.09 9.25 1.04 0.04 3.65 

   (0.50) 0.44 -0.06 -11.94 0.5 0 0.06 0.51 0.01 1.34 0.51 0.01 1.54 

    (0.70) 0.69 -0.01 -0.82 0.8 0.1 14.46 0.65 -0.05 -6.52 0.64 -0.06 -7.95 

    (0.30) 0.27 -0.03 -10.09 0.34 0.04 13.86 0.3 0 -0.15 0.35 0.05 15.06 

  (3.00) 2.98 -0.02 -0.8 2.84 -0.16 -5.39 2.47 -0.53 -17.52 2.5 -0.5 -16.71 

N = 400 

    (.11) 0.08 -0.03 -24.81 0.12 0.01 7.08 0.12 0.01 4.95 0.17 0.06 56.08 

   (1.00) 0.98 -0.02 -1.75 0.97 -0.03 -3.27 0.97 -0.03 -2.59 1.07 0.07 6.61 

   (0.50) 0.5 0 0.56 0.47 -0.03 -6.4 0.49 -0.01 -2.16 0.47 -0.03 -5.87 

    (0.70) 0.62 -0.08 -12.03 0.85 0.15 21.61 0.7 0 -0.7 0.78 0.08 11.89 

    (0.30) 0.3 0 0.09 0.3 0 -1.15 0.29 -0.01 -4.64 0.33 0.03 9.71 

  (3.00) 2.99 -0.01 -0.44 2.86 -0.14 -4.63 2.57 -0.43 -14.31 2.43 -0.57 -18.92 
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A.3. Means and Bias for Model 1 Non-Regression Parameters, Repeated Measures = 3, Communalities = .6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter    

(pop. value) 

M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3  

N = 200 

    (.11) 0.07 -0.04 -33.77 0.01 -0.1 -87.16 0.14 0.03 30.75 0 -0.11 -101.24 

   (1.00) 1.04 0.04 3.64 1.06 0.06 5.78 1.04 0.04 3.96 1.05 0.05 4.66 

   (0.50) 0.48 -0.02 -3.41 0.55 0.05 10.61 0.53 0.03 5.7 0.54 0.04 8.13 

    (0.70) 0.64 -0.06 -9.01 0.68 -0.02 -3.52 0.86 0.16 23.45 0.87 0.17 23.95 

    (0.30) 0.35 0.05 16.81 0.31 0.01 3.25 0.39 0.09 29.54 0.35 0.05 16.04 

  (3.00) 2.99 -0.01 -0.2 2.77 -0.23 -7.82 2.68 -0.32 -10.81 2.3 -0.7 -23.21 

N = 400 

    (.11) 0.11 0 1.21 0.07 -0.04 -37.77 0.1 -0.01 -11.27 0.09 -0.02 -14.47 

   (1.00) 1.01 0.01 0.89 0.93 -0.07 -7.1 0.96 -0.04 -4.37 1.05 0.05 5.16 

   (0.50) 0.49 -0.01 -1.56 0.48 -0.02 -3.54 0.52 0.02 3.2 0.52 0.02 4.26 

    (0.70) 0.76 0.06 8.59 0.65 -0.05 -6.68 0.74 0.04 5.92 0.75 0.05 7.61 

    (0.30) 0.35 0.05 17.81 0.3 0 -1.11 0.35 0.05 17.96 0.35 0.05 17.09 

  (3.00) 3 0 -0.12 2.83 -0.17 -5.51 2.51 -0.49 -16.38 2.46 -0.54 -17.84 

             

Repeated Measures = 6 

N = 200 

    (.11) 0.14 0.03 26.08 0.12 0.01 12.07 0.07 -0.04 -37.66 0.18 0.07 66.17 

   (1.00) 1.04 0.04 3.63 0.94 -0.06 -6.2 1.03 0.03 2.51 0.97 -0.03 -3.16 

   (0.50) 0.51 0.01 2.61 0.43 -0.07 -13.91 0.48 -0.02 -4.85 0.53 0.03 6.68 

    (0.70) 0.64 -0.06 -8.99 0.71 0.01 1.1 0.67 -0.03 -4.78 0.79 0.09 13.12 

    (0.30) 0.28 -0.02 -7.41 0.34 0.04 14.25 0.25 -0.05 -17.33 0.3 0 0.68 

  (3.00) 2.98 -0.02 -0.83 2.87 -0.13 -4.19 2.54 -0.46 -15.3 2.57 -0.43 -14.21 

N = 400 

    (.11) 0.12 0.01 11.93 0.09 -0.02 -15.99 0.12 0.01 6.52 0.13 0.02 19.39 

   (1.00) 0.99 -0.01 -0.81 1.06 0.06 6.08 0.97 -0.03 -2.86 1.08 0.08 7.93 

   (0.50) 0.44 -0.06 -11.59 0.55 0.05 10.81 0.44 -0.06 -12.87 0.52 0.02 3.42 

    (0.70) 0.68 -0.02 -3.29 0.67 -0.03 -4.36 0.71 0.01 1.24 0.69 -0.01 -1.69 

    (0.30) 0.3 0 1.49 0.29 -0.01 -3.67 0.3 0 0.06 0.31 0.01 3.27 

  (3.00) 3 0 -0.15 2.77 -0.23 -7.76 2.65 -0.35 -11.8 2.27 -0.73 -24.29 
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A.4. Means and Bias for Model 1 Non-Regression Parameters, Repeated Measures = 3, Communalities = .8 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter 

(pop. value) 

M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3 

N = 200 

    (.11) 0.13 0.02 14.25 0.11 0 -4.13 0.15 0.04 38.52 0.03 -0.08 -71.71 

   (1.00) 1.05 0.05 5.34 1.05 0.05 5.36 0.97 -0.03 -2.89 1.06 0.06 6.34 

   (0.50) 0.5 0 0.28 0.52 0.02 4.55 0.52 0.02 4.26 0.5 0 0.93 

    (0.70) 0.68 -0.02 -2.23 0.72 0.02 3.53 0.79 0.09 13.44 0.64 -0.06 -9.19 

    (0.30) 0.26 -0.04 -14.65 0.32 0.02 5.27 0.34 0.04 14.29 0.31 0.01 3.77 

  (3.00) 2.97 -0.03 -0.83 2.77 -0.23 -7.71 2.68 -0.32 -10.51 2.21 -0.79 -26.34 

      N = 400       

    (.11) 0.06 -0.05 -45.65 0.13 0.02 14.17 0.11 0 2.05 0.06 -0.05 -48.02 

   (1.00) 1.05 0.05 5.19 1.05 0.05 5.36 0.95 -0.05 -4.99 1.04 0.04 4.19 

   (0.50) 0.5 0 -0.83 0.49 -0.01 -2.54 0.54 0.04 8.13 0.46 -0.04 -7.36 

    (0.70) 0.67 -0.03 -4.93 0.75 0.05 6.5 0.61 -0.09 -13.06 0.66 -0.04 -5.68 

    (0.30) 0.27 -0.03 -9.63 0.31 0.01 4.99 0.34 0.04 12.33 0.31 0.01 3.78 

  (3.00) 2.99 -0.01 -0.18 2.83 -0.17 -5.7 2.67 -0.33 -11.06 2.43 -0.57 -19.17 

 

Repeated Measures = 6 

N = 200 

    (.11) 0.07 -0.04 -39.19 0.1 -0.01 -11.06 0.11 0 -4.38 0.14 0.03 27.02 

   (1.00) 0.99 -0.01 -1.01 1.01 0.01 1.13 0.99 -0.01 -0.81 0.9 -0.1 -9.61 

   (0.50) 0.47 -0.03 -6.72 0.48 -0.02 -3.92 0.48 -0.02 -4.37 0.46 -0.04 -7.39 

    (0.70) 0.57 -0.13 -18.7 0.61 -0.09 -13.01 0.72 0.02 3.08 0.68 -0.02 -3.42 

    (0.30) 0.32 0.02 6.65 0.29 -0.01 -4.99 0.28 -0.02 -7.22 0.32 0.02 8.07 

  (3.00) 2.99 -0.01 -0.25 2.83 -0.17 -5.66 2.58 -0.42 -13.91 2.66 -0.34 -11.37 

N = 400 

    (.11) 0.09 -0.02 -15.91 0.1 -0.01 -6.59 0.13 0.02 17.75 0.13 0.02 15.33 

   (1.00) 0.93 -0.07 -7.23 1.02 0.02 2.46 0.97 -0.03 -3.49 1.03 0.03 3.48 

   (0.50) 0.46 -0.04 -7.07 0.47 -0.03 -6.1 0.49 -0.01 -2.83 0.52 0.02 4.09 

    (0.70) 0.71 0.01 1.61 0.65 -0.05 -7 0.7 0 -0.36 0.69 -0.01 -1.03 

    (0.30) 0.31 0.01 4.5 0.29 -0.01 -2.91 0.32 0.02 7.94 0.32 0.02 7.16 

  (3.00) 3 0 0.09 2.8 -0.2 -6.67 2.64 -0.36 -12.03 2.41 -0.59 -19.56 
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A.5. Standard Errors and Bias for Model 1, Repeated Measures = 3, Communalities = .4 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.41 0.77 0.36 88.21 0.53 0.99 0.46 87.79 0.36 0.66 0.3 81.41 0.42 0.84 0.42 100.24 

    0.93 1.68 0.76 81.27 0.96 1.76 0.8 83.64 0.82 1.42 0.6 73.11 0.75 1.45 0.7 93.63 

     0.15 0.21 0.07 46.12 0.15 0.21 0.06 40.29 0.15 0.21 0.06 38.48 0.16 0.2 0.04 26.1 

    0.07 0.09 0.02 26.35 0.07 0.09 0.02 22.15 0.07 0.09 0.02 28.69 0.07 0.09 0.02 32.92 

    0.07 0.08 0.01 10.79 0.07 0.08 0.01 7.17 0.07 0.08 0.01 10.31 0.07 0.08 0.01 17.31 

     0.23 0.31 0.08 37.38 0.23 0.3 0.07 29.62 0.24 0.31 0.08 31.82 0.25 0.3 0.05 18.38 

     0.15 0.21 0.06 38.93 0.14 0.21 0.06 44.69 0.15 0.21 0.05 36.11 0.15 0.2 0.05 33.21 

   0.46 0.68 0.21 46.04 0.45 0.67 0.22 47.74 0.36 0.52 0.16 44.89 0.42 0.61 0.19 45.28 

 

N = 400 

    0.46 0.85 0.4 86.37 0.3 0.5 0.2 66.07 0.43 0.73 0.3 68.62 0.37 0.67 0.3 80.56 

    0.8 1.46 0.66 81.89 0.62 0.98 0.36 58.53 0.7 1.17 0.47 66.18 0.71 1.2 0.49 68.62 

     0.12 0.15 0.04 30.81 0.12 0.15 0.03 24.49 0.12 0.15 0.02 20.29 0.12 0.15 0.03 22.14 

    0.05 0.06 0.01 25.95 0.05 0.06 0.01 29.67 0.05 0.06 0.01 29.35 0.05 0.06 0.01 28.97 

    0.05 0.06 0.01 12.25 0.05 0.06 0 9.31 0.05 0.06 0.01 16.08 0.05 0.06 0.01 17.36 

     0.18 0.22 0.05 26.43 0.19 0.22 0.03 18.17 0.18 0.21 0.03 15.2 0.18 0.21 0.03 18.54 

     0.12 0.15 0.03 24.12 0.12 0.15 0.03 25.09 0.11 0.15 0.03 28.58 0.12 0.15 0.03 23.73 

   0.26 0.38 0.12 45.13 0.24 0.3 0.06 23.9 0.32 0.46 0.14 44.58 0.32 0.44 0.12 37.42 
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A.6. Standard Errors and Bias for Model 1, Repeated Measures = 3, Communalities = .6 

 
 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.42 0.59 0.17 39.97 0.35 0.43 0.08 23.82 0.3 0.37 0.08 26.02 0.14 0.2 0.05 37.03 

    0.63 0.88 0.25 39.25 0.56 0.79 0.23 40.59 0.47 0.66 0.19 39.39 0.28 0.47 0.19 66.24 

     0.1 0.12 0.02 22.6 0.1 0.12 0.02 22.15 0.1 0.12 0.02 21.79 0.1 0.12 0.02 20.91 

    0.05 0.07 0.03 55.66 0.05 0.07 0.03 61.36 0.05 0.08 0.03 70.65 0.05 0.08 0.03 71.07 

    0.05 0.06 0.02 36.05 0.05 0.06 0.01 28.24 0.05 0.06 0.02 33.44 0.05 0.06 0.01 31 

     0.15 0.18 0.03 17.27 0.15 0.18 0.03 19.3 0.15 0.18 0.03 21.04 0.15 0.18 0.04 23.75 

     0.1 0.12 0.02 24.12 0.09 0.12 0.02 23.55 0.09 0.12 0.03 30.38 0.07 0.11 0.03 44.48 

   0.34 0.4 0.07 20.16 0.34 0.37 0.03 9.9 0.21 0.25 0.04 20.53 0.23 0.27 0.04 18.84 

 

N = 400 

    0.21 0.27 0.05 24.56 0.24 0.29 0.06 23.17 0.15 0.19 0.04 29.24 0.14 0.17 0.03 25.5 

    0.37 0.47 0.09 25.11 0.41 0.54 0.13 30.99 0.25 0.36 0.1 41.84 0.22 0.34 0.12 52.51 

     0.08 0.09 0.01 13.23 0.07 0.08 0.01 17.35 0.07 0.08 0.01 16.59 0.07 0.08 0.01 18.11 

    0.03 0.05 0.02 64.15 0.03 0.05 0.02 63.34 0.03 0.05 0.02 59.77 0.03 0.05 0.02 82.17 

    0.03 0.04 0.01 33.4 0.03 0.04 0.01 27.43 0.03 0.04 0.01 35.85 0.03 0.04 0.01 36.72 

     0.12 0.13 0.02 15 0.11 0.12 0.02 15.2 0.11 0.13 0.02 16.61 0.11 0.12 0.01 13.2 

     0.08 0.09 0.01 9.96 0.07 0.08 0.02 22.24 0.07 0.08 0.02 23.87 0.06 0.08 0.02 35.1 

   0.2 0.2 0.01 3.36 0.21 0.22 0 0.55 0.16 0.17 0.01 6.44 0.15 0.17 0.03 18.09 
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A.7. Standard Errors and Bias for Model 1, Repeated Measures = 3, Communalities = .8 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.29 0.36 0.07 23.66 0.22 0.24 0.02 9.98 0.15 0.18 0.03 23.48 0.14 0.17 0.03 20.34 

    0.56 0.7 0.14 24.48 0.38 0.42 0.04 10.81 0.23 0.32 0.09 40.99 0.21 0.29 0.09 41.16 

     0.05 0.07 0.02 29.24 0.06 0.07 0.01 23.38 0.05 0.07 0.02 30.92 0.05 0.06 0.01 29.34 

    0.03 0.07 0.04 125.8 0.03 0.07 0.04 136.11 0.03 0.07 0.04 152.21 0.03 0.06 0.03 117.04 

    0.03 0.05 0.02 59.9 0.03 0.05 0.02 66.72 0.03 0.05 0.02 73.87 0.03 0.05 0.02 65.61 

     0.08 0.11 0.03 38.2 0.08 0.12 0.03 41.18 0.08 0.12 0.03 38.78 0.08 0.1 0.03 34.66 

     0.05 0.07 0.01 20.92 0.06 0.07 0.01 20.36 0.05 0.07 0.02 30.13 0.04 0.06 0.02 41.86 

   0.28 0.28 0 0.21 0.25 0.25 0 0.3 0.19 0.19 0.01 3.65 0.21 0.22 0.01 2.88 

 

N = 400 

    0.17 0.17 0 1.01 0.15 0.16 0.01 8.26 0.14 0.16 0.02 10.73 0.1 0.12 0.02 21.52 

    0.32 0.31 -0.01 -2.61 0.26 0.28 0.02 5.77 0.22 0.24 0.02 10.11 0.16 0.22 0.05 32.84 

     0.04 0.05 0.01 14.72 0.04 0.05 0.01 15.56 0.04 0.05 0.01 18.13 0.03 0.04 0.01 29.18 

    0.02 0.05 0.03 135.99 0.02 0.05 0.03 136.47 0.02 0.04 0.02 111.46 0.02 0.04 0.02 121.43 

    0.02 0.03 0.01 67.51 0.02 0.03 0.01 70.67 0.02 0.04 0.01 70.57 0.02 0.03 0.01 66.11 

     0.06 0.08 0.02 26.25 0.07 0.08 0.02 26.79 0.06 0.07 0.02 27.8 0.05 0.07 0.02 35.88 

     0.04 0.05 0.01 13.69 0.04 0.05 0.01 14.79 0.04 0.05 0.01 19.77 0.03 0.04 0.01 39.12 

   0.2 0.2 0 1.37 0.17 0.17 0 0.57 0.15 0.16 0.01 4.4 0.14 0.15 0.01 5.24 
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A.8. Standard Errors and Bias for Model 1, Repeated Measures = 6, Communalities = .4 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.4 0.41 0 0.66 0.42 0.44 0.01 3.1 0.44 0.48 0.04 8.11 0.4 0.46 0.06 14.69 

    0.61 0.59 -0.02 -2.74 0.55 0.59 0.04 6.37 0.56 0.6 0.04 8.01 0.43 0.51 0.08 18.83 

     0.07 0.08 0.01 10.03 0.07 0.08 0.01 17.28 0.06 0.08 0.01 16.23 0.07 0.08 0.01 14.57 

    0.07 0.09 0.02 30.38 0.06 0.09 0.02 37.52 0.07 0.08 0.02 26.69 0.06 0.08 0.02 33.93 

    0.04 0.05 0.01 41.39 0.03 0.05 0.02 57.71 0.03 0.05 0.02 50.53 0.04 0.05 0.02 51.97 

     0.17 0.19 0.02 11.07 0.17 0.19 0.02 13.61 0.16 0.18 0.02 12.71 0.17 0.18 0.01 5.7 

     0.05 0.06 0.01 14 0.05 0.06 0.01 20.24 0.05 0.06 0.01 20.52 0.05 0.06 0.01 23.3 

   0.33 0.35 0.02 6.26 0.28 0.3 0.02 8.98 0.33 0.37 0.04 13.39 0.28 0.34 0.06 20.66 

 

N = 400 

    0.28 0.28 0 0.35 0.2 0.2 -0.01 -3.5 0.24 0.23 -0.01 -3.85 0.19 0.18 -0.01 -6.84 

    0.34 0.34 0 -0.54 0.32 0.32 0 -0.04 0.33 0.33 0 -0.51 0.25 0.25 0 1.84 

     0.05 0.05 0 5.54 0.05 0.06 0.01 10.7 0.05 0.05 0.01 10.83 0.05 0.06 0.01 19.1 

    0.04 0.06 0.02 38.54 0.04 0.06 0.02 46.53 0.04 0.06 0.02 38.43 0.04 0.06 0.02 48.95 

    0.03 0.04 0.01 47.95 0.03 0.04 0.01 44.58 0.03 0.04 0.01 44.88 0.02 0.04 0.01 58.93 

     0.12 0.13 0 4.08 0.13 0.14 0.02 12.01 0.12 0.13 0.01 6.88 0.13 0.14 0.01 7.47 

     0.04 0.04 0.01 17.04 0.04 0.04 0.01 15.41 0.03 0.04 0.01 15.95 0.04 0.04 0.01 19.22 

   0.24 0.24 0 1.04 0.18 0.18 0 -0.7 0.18 0.19 0 2.19 0.14 0.15 0.01 6.22 
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A.9. Standard Errors and Bias for Model 1, Repeated Measures = 6, Communalities = .6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.31 0.3 -0.01 -2.84 0.25 0.24 -0.01 -3.47 0.23 0.23 0 0.35 0.16 0.17 0.01 5.98 

    0.43 0.43 0 0.01 0.33 0.32 -0.01 -2.86 0.34 0.36 0.01 3.85 0.25 0.26 0.01 4.75 

     0.04 0.05 0.01 33.34 0.04 0.05 0.01 35.66 0.04 0.05 0.01 28.27 0.04 0.05 0.02 42.24 

    0.04 0.07 0.03 72.56 0.04 0.07 0.03 68.94 0.04 0.07 0.03 63.59 0.04 0.08 0.03 79.73 

    0.02 0.04 0.02 84.05 0.02 0.05 0.02 96.36 0.02 0.04 0.02 75.18 0.02 0.05 0.02 92.52 

     0.09 0.11 0.02 19.74 0.09 0.12 0.03 28.05 0.09 0.12 0.02 23.47 0.1 0.13 0.02 23.8 

     0.03 0.04 0.01 40.18 0.03 0.05 0.02 49 0.03 0.04 0.01 37.63 0.03 0.04 0.01 42.14 

   0.29 0.29 0 -0.53 0.24 0.24 0 -0.69 0.25 0.25 0 -0.06 0.14 0.16 0.01 9.06 

 

N = 400 

    0.19 0.18 0 -2.24 0.17 0.17 0 -2.57 0.14 0.15 0 3.19 0.1 0.11 0.01 6.2 

    0.27 0.26 0 -1.76 0.24 0.24 0 0.95 0.22 0.22 0 -0.43 0.14 0.16 0.01 8.95 

     0.03 0.04 0.01 29.28 0.03 0.04 0.01 29.49 0.03 0.04 0.01 32.67 0.03 0.04 0.01 34.37 

    0.03 0.05 0.02 74.65 0.03 0.05 0.02 70.27 0.03 0.05 0.02 80 0.03 0.05 0.02 67.53 

    0.02 0.03 0.02 95.54 0.02 0.03 0.01 86.7 0.02 0.03 0.02 101.32 0.02 0.03 0.02 99.48 

     0.07 0.08 0.02 24.52 0.07 0.08 0.01 21.89 0.07 0.08 0.02 24.84 0.07 0.08 0.02 24.92 

     0.02 0.03 0.01 40.73 0.02 0.03 0.01 34.57 0.02 0.03 0.01 39.74 0.02 0.03 0.01 41.1 

   0.19 0.19 0 -1.92 0.19 0.19 0 0.8 0.15 0.15 0.01 4.45 0.1 0.12 0.01 14.3 
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A.10. Standard Errors and Bias for Model 1, Repeated Measures = 6, Communalities = .8 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.24 0.23 -0.01 -3.92 0.23 0.21 -0.01 -6.1 0.16 0.16 0.01 4.6 0.14 0.15 0.01 7.97 

    0.3 0.29 0 -0.51 0.3 0.3 0 0.04 0.24 0.26 0.02 9.36 0.2 0.22 0.02 8.76 

     0.02 0.04 0.02 71.07 0.02 0.04 0.02 88.92 0.02 0.04 0.02 86.65 0.02 0.04 0.02 97.63 

    0.03 0.06 0.03 122.8 0.03 0.06 0.03 133.54 0.03 0.07 0.04 145.7 0.03 0.06 0.04 144.19 

    0.01 0.04 0.03 189.38 0.02 0.04 0.03 169.3 0.01 0.04 0.03 167.3 0.01 0.04 0.03 197.3 

     0.05 0.07 0.03 54.6 0.05 0.08 0.03 56.54 0.05 0.09 0.04 69.79 0.05 0.08 0.03 70.08 

     0.02 0.04 0.02 103.95 0.02 0.03 0.02 99.8 0.02 0.03 0.02 93.11 0.02 0.04 0.02 107.31 

   0.28 0.28 -0.01 -3.07 0.27 0.25 -0.01 -4.88 0.2 0.2 0 2.49 0.15 0.17 0.02 13.86 

 

N = 400 

    0.14 0.14 0 -0.38 0.15 0.14 0 -0.98 0.12 0.12 0 -1.5 0.08 0.09 0.01 14.91 

    0.22 0.21 0 -1.87 0.21 0.21 0 -1.47 0.16 0.17 0.01 4.34 0.11 0.13 0.02 19.09 

     0.01 0.03 0.01 89.75 0.01 0.03 0.01 82.4 0.02 0.03 0.01 85.3 0.01 0.03 0.01 93.57 

    0.02 0.05 0.03 142.84 0.02 0.04 0.03 141.77 0.02 0.05 0.03 154.33 0.02 0.05 0.03 155.59 

    0.01 0.03 0.02 179.53 0.01 0.03 0.02 173.5 0.01 0.03 0.02 199.27 0.01 0.03 0.02 190.92 

     0.04 0.06 0.02 64.93 0.04 0.06 0.02 62.35 0.04 0.06 0.02 67.46 0.04 0.06 0.02 64 

     0.01 0.03 0.01 106.79 0.01 0.02 0.01 100.02 0.01 0.03 0.01 113.72 0.01 0.03 0.01 109.22 

   0.18 0.18 0 -2.3 0.18 0.18 -0.01 -2.85 0.13 0.14 0 2.96 0.09 0.11 0.02 17.98 
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A.11. RMSE for Model 1 Non-Regression Parameters 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

N = 200 

Repeated Measures = 3 

     0.22 0.18 0.19 0.19 0.1 0.14 0.1 0.15 0.06 0.06 0.07 0.09 

    0.14 0.09 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.04 0.07 

    0.08 0.08 0.08 0.12 0.05 0.07 0.06 0.06 0.03 0.04 0.04 0.03 

     0.23 0.23 0.28 0.26 0.16 0.15 0.22 0.22 0.08 0.08 0.13 0.1 

     0.16 0.15 0.17 0.19 0.11 0.09 0.13 0.09 0.07 0.06 0.07 0.04 

   0.47 0.52 0.58 0.86 0.34 0.41 0.39 0.73 0.28 0.34 0.37 0.82 

Repeated Measures = 6 

     0.08 0.09 0.06 0.07 0.05 0.04 0.06 0.08 0.05 0.02 0.02 0.04 

    0.07 0.07 0.11 0.07 0.06 0.08 0.05 0.05 0.03 0.03 0.03 0.1 

    0.07 0.04 0.04 0.04 0.03 0.07 0.03 0.04 0.04 0.02 0.03 0.04 

     0.17 0.2 0.17 0.18 0.11 0.09 0.1 0.14 0.14 0.1 0.06 0.06 

     0.06 0.07 0.05 0.07 0.04 0.05 0.06 0.03 0.03 0.02 0.03 0.03 

   0.33 0.32 0.62 0.57 0.29 0.27 0.52 0.45 0.28 0.32 0.46 0.37 

             

N = 400 

Repeated Measures = 3 

     0.12 0.13 0.14 0.14 0.08 0.08 0.07 0.07 0.07 0.05 0.04 0.06 

    0.08 0.05 0.09 0.07 0.03 0.08 0.06 0.06 0.06 0.06 0.05 0.05 

    0.05 0.05 0.05 0.06 0.03 0.04 0.04 0.04 0.02 0.02 0.05 0.04 

     0.18 0.21 0.19 0.18 0.13 0.12 0.12 0.12 0.07 0.08 0.11 0.07 

     0.13 0.14 0.13 0.13 0.1 0.07 0.08 0.08 0.05 0.04 0.05 0.03 

   0.26 0.32 0.59 0.66 0.2 0.27 0.52 0.56 0.2 0.24 0.36 0.59 

Repeated Measures = 6 

     0.06 0.05 0.05 0.08 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 

    0.05 0.06 0.05 0.08 0.03 0.07 0.04 0.08 0.08 0.03 0.04 0.04 

    0.02 0.04 0.03 0.04 0.06 0.06 0.07 0.02 0.04 0.03 0.02 0.02 

     0.15 0.2 0.12 0.15 0.07 0.07 0.07 0.07 0.04 0.06 0.04 0.04 

     0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 

   0.24 0.23 0.47 0.58 0.19 0.3 0.38 0.74 0.18 0.27 0.38 0.59 
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A.12. RMSE for Standard Errors of Non-Regression Parameters in Model 1, N = 200 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

Repeated Measures = 3 

    1.49 1.75 1.29 1.79 1.13 0.92 1.05 0.16 0.7 0.18 0.08 0.05 

    3.17 3.08 2.39 2.58 1.51 1.5 1.64 0.34 1.44 0.38 0.15 0.11 

     0.07 0.06 0.06 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 

    0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 

    0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 

     0.09 0.07 0.08 0.05 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 

     0.06 0.07 0.06 0.05 0.02 0.02 0.03 0.03 0.01 0.01 0.02 0.02 

   0.81 0.81 0.53 0.71 0.49 0.22 0.25 0.06 0.06 0.02 0.01 0.02 

Repeated Measures = 6 

    0.5 1 0.82 0.77 0.09 0.05 0.07 0.05 0.02 0.03 0.02 0.02 

    0.68 1.08 0.92 0.8 0.11 0.06 0.07 0.06 0.02 0.02 0.03 0.02 

     0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 

    0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 

    0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 

     0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.04 

     0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 

   0.19 0.38 0.43 0.41 0.03 0.02 0.03 0.02 0.02 0.02 0.01 0.02 
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A.13. RMSE for Standard Errors of Non-Regression Parameters in Model 1, N = 400 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

Repeated Measures = 3 

    2.04 0.95 1.53 1.44 0.41 0.7 0.18 0.27 0.11 0.05 0.04 0.03 

    3.13 1.85 2.12 1.99 0.72 1.1 0.32 0.35 0.22 0.1 0.06 0.06 

     0.04 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

    0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 

    0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

     0.05 0.04 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

     0.03 0.03 0.03 0.03 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 

   0.60 0.25 0.68 0.65 0.06 0.16 0.02 0.10 0.01 0.01 0.01 0.01 

Repeated Measures = 6 

    0.18 0.08 0.12 0.14 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 

    0.16 0.11 0.13 0.15 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.02 

     0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

    0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 

    0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 

     0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

     0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

   0.09 0.02 0.04 0.08 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 
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APPENDIX B: SUPPLEMENTAL TABLES FOR MODEL 2, INTERACTION MODEL 
 
B.1. Model 2: Interaction, Factorial ANOVA for Standard Error Bias  

 

  df                                       

n 1 0.95(0) 0.46(0) 1.77(0) 6.87(0) 15.45(0) 6581.8(0.12) 1710.21(0.04) 30.27(0) 14.05(0) 

comm 2 70.72(0) 96.96(0) 49.02(0) 109.07(0) 18.72(0) 5392.35(0.19) 1289.04(0.05) 11.45(0) 32.89(0) 

sr 3 3.7(0) 4.45(0) 32.38(0) 2.24(0) 3.61(0) 95.34(0.01) 72.63(0) 8.5(0) 2.18(0) 

rm 1 159.53(0) 173.98(0) 35.6(0) 229.63(0) 19.65(0) 71.88(0) 2725.06(0.06) 49.39(0) 18.67(0) 

n*comm 2 1.89(0) 3.97(0) 0.17(0) 6.05(0) 0.54(0) 424.12(0.02) 33.48(0) 0.47(0) 0.19(0) 

n*sr 3 3.2(0) 2.48(0) 5.5(0) 3.05(0) 2.31(0) 60.34(0) 5.81(0) 2.11(0) 0.88(0) 

n*rm 1 0.61(0) 2.2(0) 10.87(0) 17.63(0) 2.23(0) 242.11(0.01) 38.13(0) 7.39(0) 0.63(0) 

comm*sr 6 2.51(0) 3.15(0) 17.16(0) 1.82(0) 4.28(0) 62.57(0.01) 77.29(0.01) 2.39(0) 3.55(0) 

comm*rm 2 101.61(0) 109.31(0) 4.03(0) 119.62(0.01) 55.71(0) 56.28(0) 2.36(0) 66.82(0) 93.12(0) 

sr*rm 3 2.73(0) 2.96(0) 4.26(0) 3.81(0) 0.57(0) 19.61(0) 20.59(0) 0.66(0) 1.22(0) 

n*comm*sr 6 2.46(0) 1.02(0) 7.97(0) 3.17(0) 1.7(0) 29.63(0) 8.6(0) 5.56(0) 1.87(0) 

n*comm*rm 2 6.6(0) 7.15(0) 3.03(0) 9.2(0) 1.41(0) 70.75(0) 6.25(0) 4.69(0) 0.65(0) 

n*sr*rm 3 0.56(0) 1.03(0) 3.49(0) 1.23(0) 1.56(0) 88.61(0.01) 32.16(0) 1.12(0) 0.71(0) 

comm*sr*rm 6 3.74(0) 3.42(0) 5.73(0) 1.1(0) 0.98(0) 58.78(0.01) 41.32(0.01) 2.96(0) 0.95(0) 

n*comm*sr*rm 6 2.69(0) 0.84(0) 9.23(0) 1.02(0) 1.74(0) 68.74(0.01) 62.71(0.01) 4.21(0) 2.16(0) 

Residuals 46304          

*note: values are F(  )  n = sample size; comm = communality; sr = effect size of   ; rm = number of repeated measures 
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B.2. Means and Bias for Model 2 Non-Regression Parameters, Repeated Measures = 3, Communalities = .4 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3 

N = 200 

    (.11) 0.02 -0.09 -82.26 0.09 -0.02 -21.22 0.1 -0.01 -11.42 0.11 0 -1.62 

   (1.00) 1.12 0.12 12.44 1.06 0.06 5.63 1.01 0.01 0.98 1 0 0.20 

   (0.50) 0.52 0.02 3.93 0.52 0.02 3.27 0.46 -0.04 -8.45 0.59 0.09 18.97 

    (0.70) 0.66 -0.04 -5.31 0.63 -0.07 -9.80 0.75 0.05 6.54 0.63 -0.07 -10.11 

    (0.30) 0.29 -0.01 -4.21 0.28 -0.02 -6.13 0.28 -0.02 -6.01 0.32 0.02 7.09 

  (3.00) 2.86 -0.14 -4.76 2.92 -0.08 -2.83 2.89 -0.11 -3.55 2.82 -0.18 -6.02 

N = 400 

    (.11) 0.1 -0.01 -11.57 0.1 -0.01 -6.07 0.1 -0.01 -13.61 0.1 -0.01 -5.66 

   (1.00) 0.94 -0.06 -5.53 0.99 -0.01 -0.64 1.08 0.08 7.59 1.05 0.05 5.42 

   (0.50) 0.48 -0.02 -3.26 0.5 0 -0.96 0.52 0.02 4.11 0.47 -0.03 -5.95 

    (0.70) 0.67 -0.03 -4.46 0.74 0.04 5.86 0.6 -0.1 -14.52 0.63 -0.07 -10.37 

    (0.30) 0.33 0.03 8.48 0.33 0.03 8.76 0.32 0.02 5.82 0.3 0 -1.00 

  (3.00) 2.99 -0.01 -0.24 2.99 -0.01 -0.33 2.91 -0.09 -3.08 2.95 -0.05 -1.68 

 

Repeated Measures = 6 

N = 200 

    (.11) 0.07 -0.04 -39.08 0.17 0.06 50.50 0.11 0 -0.28 0.14 0.03 24.97 

   (1.00) 1.01 0.01 1.25 0.97 -0.03 -3.06 1.09 0.09 9.27 1.04 0.04 3.61 

   (0.50) 0.44 -0.06 -11.91 0.5 0 0.04 0.51 0.01 1.33 0.51 0.01 1.55 

    (0.70) 0.69 -0.01 -1.67 0.79 0.09 13.41 0.65 -0.05 -6.82 0.63 -0.07 -10.25 

    (0.30) 0.27 -0.03 -10.30 0.34 0.04 13.59 0.3 0 0.14 0.34 0.04 13.97 

  (3.00) 2.93 -0.07 -2.29 2.95 -0.05 -1.83 2.95 -0.05 -1.78 2.95 -0.05 -1.53 

N = 400 

    (.11) 0.08 -0.03 -24.40 0.12 0.01 7.71 0.12 0.01 6.87 0.19 0.08 75.94 

   (1.00) 0.98 -0.02 -1.76 0.97 -0.03 -3.27 0.97 -0.03 -2.58 1.06 0.06 6.39 

   (0.50) 0.5 0 0.56 0.47 -0.03 -6.40 0.49 -0.01 -2.18 0.47 -0.03 -5.73 

    (0.70) 0.61 -0.09 -12.25 0.85 0.15 21.31 0.69 -0.01 -1.4 0.74 0.04 5.61 

    (0.30) 0.3 0 0.06 0.30 0 -1.23 0.29 -0.01 -5.00 0.33 0.03 9.20 

  (3.00) 3 0 0.03 2.99 -0.01 -0.29 2.98 -0.02 -0.61 2.97 -0.03 -1.14 
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B.3. Means and Bias for Model 2 Non-Regression Parameters, Repeated Measures = 3, Communalities = .6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3 

N = 200 

    (.11) 0.09 -0.02 -14.99 0.04 -0.07 -67.49 0.18 0.07 66.48 0.03 -0.08 -74.05 

   (1.00) 1.04 0.04 3.55 1.06 0.06 5.76 1.04 0.04 3.98 1.05 0.05 4.52 

   (0.50) 0.48 -0.02 -3.23 0.55 0.05 10.65 0.53 0.03 5.81 0.54 0.04 8.23 

    (0.70) 0.61 -0.09 -12.52 0.65 -0.05 -6.71 0.83 0.13 18.27 0.86 0.16 22.47 

    (0.30) 0.33 0.03 9.43 0.28 -0.02 -5.35 0.34 0.04 12 0.28 -0.02 -7.06 

  (3.00) 3.02 0.02 0.76 2.87 -0.13 -4.2 2.98 -0.02 -0.7 2.97 -0.03 -1.16 

N = 400 

    (.11) 0.12 0.01 8.17 0.08 -0.03 -25.35 0.13 0.02 15.17 0.15 0.04 32.15 

   (1.00) 1.01 0.01 0.88 0.93 -0.07 -7.13 0.96 -0.04 -4.33 1.05 0.05 5.21 

   (0.50) 0.49 -0.01 -1.53 0.48 -0.02 -3.48 0.52 0.02 3.15 0.52 0.02 4.29 

    (0.70) 0.75 0.05 7.33 0.64 -0.06 -8.89 0.71 0.01 1.03 0.7 0 -0.34 

    (0.30) 0.34 0.04 14.97 0.28 -0.02 -6.27 0.32 0.02 8.07 0.29 -0.01 -2.6 

  (3.00) 3 0 0.02 3 0 -0.07 2.99 -0.01 -0.46 2.97 -0.03 -1.03 

 

Repeated Measures = 6 

N = 200 

    (.11) 0.14 0.03 27.3 0.12 0.01 13.13 0.07 -0.04 -38.3 0.18 0.07 63.34 

   (1.00) 1.04 0.04 3.63 0.94 -0.06 -6.2 1.03 0.03 2.52 0.97 -0.03 -3.15 

   (0.50) 0.51 0.01 2.61 0.43 -0.07 -13.91 0.48 -0.02 -4.85 0.53 0.03 6.68 

    (0.70) 0.63 -0.07 -9.46 0.7 0 0.63 0.67 -0.03 -4.91 0.8 0.1 14.22 

    (0.30) 0.28 -0.02 -7.61 0.34 0.04 14.12 0.25 -0.05 -17.11 0.3 0 0.97 

  (3.00) 2.97 -0.03 -1.12 3.01 0.01 0.35 2.97 -0.03 -1.13 2.95 -0.05 -1.65 

N = 400 

    (.11) 0.12 0.01 12.74 0.09 -0.02 -15.38 0.12 0.01 8.58 0.14 0.03 24.47 

   (1.00) 0.99 -0.01 -0.8 1.06 0.06 6.08 0.97 -0.03 -2.86 1.08 0.08 7.94 

   (0.50) 0.44 -0.06 -11.59 0.55 0.05 10.81 0.44 -0.06 -12.87 0.52 0.02 3.4 

    (0.70) 0.67 -0.03 -3.6 0.67 -0.03 -4.58 0.7 0 0.59 0.68 -0.02 -3.23 

    (0.30) 0.3 0 1.36 0.29 -0.01 -3.79 0.3 0 -0.29 0.31 0.01 2.38 

  (3.00) 3 0 0.01 2.99 -0.01 -0.28 2.97 -0.03 -1.01 2.99 -0.01 -0.19 
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B.4. Means and Bias for Model 2 Non-Regression Parameters, Repeated Measures = 3, Communalities = .8 

 
 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias M Raw Bias Rel.Bias 

Repeated Measures = 3 

N = 200 

    (.11) 0.13 0.02 16.23 0.11 0 -1.67 0.17 0.06 53.47 0.06 -0.05 -40.95 

   (1.00) 1.05 0.05 5.34 1.05 0.05 5.39 0.97 -0.03 -2.97 1.06 0.06 6.43 

   (0.50) 0.5 0 0.24 0.52 0.02 4.56 0.52 0.02 4.26 0.5 0 0.75 

    (0.70) 0.68 -0.02 -2.61 0.72 0.02 3.11 0.78 0.08 11.07 0.6 -0.1 -13.91 

    (0.30) 0.25 -0.05 -15.44 0.31 0.01 4.03 0.32 0.02 8.3 0.27 -0.03 -8.86 

  (3.00) 2.98 -0.02 -0.66 2.96 -0.04 -1.39 2.99 -0.01 -0.25 3 0 -0.11 

N = 400 

    (.11) 0.06 -0.05 -45.01 0.13 0.02 15.11 0.11 0 4.18 0.08 -0.03 -30.42 

   (1.00) 1.05 0.05 5.18 1.05 0.05 5.36 0.95 -0.05 -5.01 1.04 0.04 4.24 

   (0.50) 0.5 0 -0.82 0.49 -0.01 -2.54 0.54 0.04 8.15 0.46 -0.04 -7.45 

    (0.70) 0.66 -0.04 -5.06 0.74 0.04 6.3 0.61 -0.09 -13.41 0.64 -0.06 -8.62 

    (0.30) 0.27 -0.03 -9.8 0.31 0.01 4.69 0.33 0.03 11.31 0.29 -0.01 -2.83 

  (3.00) 3 0 0.13 3 0 -0.08 2.98 -0.02 -0.62 2.96 -0.04 -1.17 

 

Repeated Measures = 6 

N = 200 

    (.11) 0.07 -0.04 -39.13 0.1 -0.01 -11.03 0.1 -0.01 -5.11 0.14 0.03 27.23 

   (1.00) 0.99 -0.01 -1.01 1.01 0.01 1.13 0.99 -0.01 -0.81 0.9 -0.1 -9.62 

   (0.50) 0.47 -0.03 -6.72 0.48 -0.02 -3.92 0.48 -0.02 -4.37 0.46 -0.04 -7.39 

    (0.70) 0.57 -0.13 -18.71 0.61 -0.09 -13.01 0.72 0.02 3.19 0.68 -0.02 -3.29 

    (0.30) 0.32 0.02 6.64 0.29 -0.01 -4.99 0.28 -0.02 -7.05 0.32 0.02 7.94 

  (3.00) 2.99 -0.01 -0.38 3 0 0.01 3 0 -0.11 2.99 -0.01 -0.45 

N = 400 

    (.11) 0.09 -0.02 -15.9 0.1 -0.01 -6.55 0.13 0.02 17.82 0.13 0.02 15.33 

   (1.00) 0.93 -0.07 -7.23 1.02 0.02 2.46 0.97 -0.03 -3.49 1.03 0.03 3.48 

   (0.50) 0.46 -0.04 -7.07 0.47 -0.03 -6.1 0.49 -0.01 -2.83 0.52 0.02 4.09 

    (0.70) 0.71 0.01 1.6 0.65 -0.05 -7.02 0.7 0 -0.37 0.69 -0.01 -1.12 

    (0.30) 0.31 0.01 4.5 0.29 -0.01 -2.91 0.32 0.02 7.93 0.32 0.02 7.23 

  (3.00) 3.01 0.01 0.27 3 0 0.02 2.97 -0.03 -0.84 3.02 0.02 0.54 
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B.5. Standard Errors and Bias for Model 2, Repeated Measures = 3, Communalities = .4 

 
 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    1.77 2.45 0.68 38.48 1.68 2.66 0.98 58.53 1.03 1.74 0.71 68.33 1.01 1.7 0.7 69.03 

    4.03 5.4 1.37 34.1 3.26 4.93 1.67 51.21 2.06 3.97 1.91 92.55 1.29 2.75 1.46 112.91 

    1.16 1.1 -0.06 -5.28 0.78 0.82 0.04 4.83 0.56 0.66 0.1 17.24 0.43 0.52 0.09 21.99 

     0.17 0.19 0.02 14.1 0.15 0.18 0.03 23.49 0.12 0.16 0.03 27.83 0.11 0.15 0.04 38.75 

    0.07 0.09 0.02 28 0.07 0.09 0.02 25.99 0.07 0.09 0.02 30.81 0.07 0.1 0.03 37.34 

    0.07 0.08 0.01 11.87 0.07 0.08 0.01 7.52 0.07 0.08 0.01 13.19 0.07 0.1 0.02 32.11 

     0.25 0.29 0.04 16.67 0.23 0.29 0.05 22.3 0.2 0.26 0.06 32.5 0.17 0.24 0.07 40.19 

     0.18 0.2 0.02 12.99 0.16 0.19 0.03 21.61 0.15 0.18 0.03 20.31 0.13 0.17 0.03 26.01 

   1.62 1.92 0.29 18.1 1.05 1.5 0.45 43.42 0.62 1.06 0.44 71.06 0.5 0.79 0.29 57.82 

 

N = 400 

    1.13 1.89 0.76 66.89 0.86 1.33 0.47 55.12 0.89 1.49 0.6 67.51 0.61 1.26 0.65 107.07 

    1.94 3.12 1.17 60.32 1.55 2.47 0.92 59.62 1.35 2.57 1.23 91.14 1.07 2.3 1.23 114.87 

    0.47 0.47 0 0.94 0.39 0.42 0.02 5.71 0.35 0.37 0.02 5.27 0.29 0.35 0.06 22.16 

     0.13 0.16 0.03 21.43 0.13 0.15 0.02 15.22 0.11 0.12 0.02 16.1 0.08 0.12 0.04 48.79 

    0.05 0.06 0.02 31.66 0.05 0.06 0.02 30.41 0.05 0.06 0.01 26.49 0.05 0.06 0.01 29.79 

    0.05 0.06 0.01 14.7 0.05 0.06 0.01 10.64 0.05 0.06 0.01 12.98 0.05 0.06 0.01 21.41 

     0.2 0.24 0.04 20.03 0.19 0.22 0.03 15.7 0.16 0.19 0.03 18.4 0.13 0.2 0.06 47.08 

     0.13 0.17 0.03 24.33 0.13 0.15 0.02 15.93 0.12 0.14 0.02 17.62 0.1 0.13 0.03 30.07 

   0.42 0.7 0.28 67.08 0.4 0.58 0.18 44.36 0.44 0.65 0.21 46.95 0.3 0.53 0.23 74.17 
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B.6. Standard Errors and Bias for Model 2, Repeated Measures = 3, Communalities = .6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    1.79 1.48 -0.31 -17.5 0.9 1.09 0.19 21.45 0.64 0.89 0.25 39.66 0.25 0.27 0.03 10.86 

    2.84 2.41 -0.44 -15.33 1.63 2.24 0.62 37.86 1.15 1.61 0.46 40.07 0.57 0.6 0.04 6.18 

    0.61 0.61 0.01 0.84 0.64 0.64 0 -0.15 0.31 0.3 -0.01 -1.82 0.34 0.36 0.03 8.01 

     0.11 0.12 0.01 11.34 0.11 0.13 0.02 19.2 0.08 0.1 0.02 24.31 0.06 0.07 0.01 23.35 

    0.05 0.07 0.03 54.78 0.05 0.07 0.03 62.19 0.05 0.08 0.03 73.11 0.05 0.08 0.03 70.21 

    0.05 0.06 0.02 34.82 0.05 0.06 0.01 27.71 0.05 0.06 0.02 34.53 0.05 0.06 0.01 24.48 

     0.16 0.18 0.02 12.51 0.16 0.19 0.03 21.79 0.14 0.17 0.03 20.62 0.1 0.15 0.04 41.64 

     0.11 0.12 0.01 10.83 0.11 0.12 0.02 14.94 0.09 0.11 0.01 14.43 0.07 0.08 0.01 11.52 

   0.68 0.75 0.07 10.25 0.56 0.69 0.13 23.4 0.26 0.35 0.09 34.78 0.28 0.29 0.01 4.67 

 

N = 400 

    0.43 0.52 0.09 21.49 0.58 1.15 0.57 97.42 0.31 0.38 0.07 22.53 0.24 0.27 0.03 14.8 

    0.75 0.94 0.19 25.48 1.11 2.11 1 90.01 0.52 0.66 0.13 25.81 0.44 0.49 0.06 13.29 

    0.31 0.3 -0.01 -1.96 0.34 0.37 0.03 7.62 0.24 0.25 0.01 2.61 0.19 0.2 0.01 5.82 

     0.09 0.09 0.01 8.36 0.08 0.1 0.02 28.11 0.06 0.06 0.01 9.3 0.05 0.05 0.01 16.99 

    0.03 0.05 0.02 65.33 0.03 0.05 0.02 64.83 0.03 0.05 0.02 59.58 0.03 0.05 0.02 74.87 

    0.03 0.04 0.01 34.06 0.03 0.04 0.01 27.58 0.03 0.04 0.01 32.9 0.03 0.04 0.01 34.24 

     0.12 0.14 0.02 12.03 0.11 0.14 0.03 26.27 0.09 0.1 0.01 12.96 0.08 0.1 0.02 21.76 

     0.09 0.09 0 4.76 0.08 0.1 0.02 28.27 0.07 0.07 0 5.97 0.05 0.06 0.01 14.83 

   0.24 0.27 0.03 12.42 0.27 0.39 0.13 46.91 0.18 0.2 0.02 10.43 0.14 0.15 0.01 8.29 
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B.7. Standard Errors and  Bias for Model 2, Repeated Measures = 3, Communalities = .8 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.56 0.59 0.03 4.7 0.35 0.35 0 0.94 0.26 0.27 0.02 6.88 0.26 0.27 0.01 4.01 

    1.15 1.11 -0.04 -3.44 0.63 0.63 0 0.74 0.44 0.47 0.03 6.31 0.47 0.49 0.01 2.9 

    0.43 0.43 0 0.05 0.35 0.35 0.01 2.21 0.28 0.27 -0.01 -2.82 0.36 0.36 0 1.29 

     0.06 0.07 0.01 20.17 0.06 0.07 0.01 12.8 0.05 0.06 0.01 23.24 0.04 0.05 0.01 21.92 

    0.03 0.06 0.04 127.71 0.03 0.07 0.04 137.52 0.03 0.07 0.04 151.66 0.03 0.06 0.03 124.06 

    0.03 0.05 0.02 59.66 0.03 0.05 0.02 67.01 0.03 0.05 0.02 72.46 0.03 0.05 0.02 63.38 

     0.09 0.11 0.02 27.45 0.09 0.12 0.03 38.53 0.08 0.1 0.02 27.25 0.06 0.08 0.02 30.51 

     0.06 0.07 0.01 19.2 0.06 0.07 0.01 13.26 0.05 0.06 0.01 17.6 0.04 0.05 0.01 16.41 

   0.36 0.37 0.01 3.14 0.29 0.29 0.01 1.74 0.19 0.19 0 0.38 0.25 0.24 0 -1.22 

 

N = 400 

    0.23 0.24 0.01 3.28 0.18 0.19 0.01 5.57 0.2 0.2 0 -1.28 0.17 0.17 0 1.88 

    0.49 0.47 -0.02 -3.38 0.37 0.36 -0.01 -2.8 0.34 0.31 -0.02 -6.18 0.3 0.3 0 1.49 

    0.31 0.31 0 -0.78 0.23 0.23 0 -1.66 0.24 0.24 0 -1.5 0.24 0.24 0 -1.21 

     0.04 0.05 0.01 14.89 0.04 0.05 0.01 15.42 0.04 0.04 0 11.62 0.03 0.04 0.01 20.3 

    0.02 0.05 0.03 135.84 0.02 0.05 0.03 136.3 0.02 0.04 0.02 112.53 0.02 0.04 0.02 120.84 

    0.02 0.03 0.01 67.61 0.02 0.03 0.01 70.74 0.02 0.04 0.01 70.92 0.02 0.03 0.01 67.11 

     0.06 0.08 0.02 29.5 0.07 0.08 0.02 29.71 0.05 0.07 0.01 27.5 0.05 0.07 0.02 37.18 

     0.04 0.05 0 11.37 0.04 0.05 0.01 12.7 0.04 0.04 0 10.77 0.03 0.04 0.01 17.84 

   0.25 0.26 0 1.84 0.18 0.19 0 2 0.16 0.16 0 1.17 0.14 0.15 0.01 6.48 
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B.8. Standard Errors and Bias for Model 2, Repeated Measures = 6, Communalities = .4 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.86 0.55 -0.31 -36.19 0.65 0.57 -0.08 -12.64 0.54 0.56 0.03 4.79 0.45 0.46 0.01 2.54 

    1.15 0.89 -0.26 -22.48 0.79 0.8 0.01 1.09 0.74 0.79 0.05 6.33 0.56 0.6 0.04 6.71 

    0.57 0.56 -0.01 -1.15 0.39 0.37 -0.01 -3.82 0.34 0.37 0.03 8.67 0.29 0.3 0.01 2.88 

     0.07 0.08 0.01 11.98 0.07 0.08 0.01 13.84 0.06 0.07 0.01 14.42 0.06 0.07 0.01 14.84 

    0.07 0.09 0.02 30.51 0.06 0.09 0.02 37.55 0.07 0.08 0.02 26.62 0.06 0.08 0.02 33.16 

    0.04 0.05 0.02 41.84 0.03 0.05 0.02 57.01 0.03 0.05 0.02 50.17 0.04 0.05 0.02 51.14 

     0.17 0.19 0.02 10.19 0.18 0.19 0.02 8.93 0.15 0.17 0.02 10.93 0.16 0.16 0 0.45 

     0.05 0.06 0.01 13.88 0.05 0.06 0.01 16.74 0.05 0.06 0.01 19.28 0.05 0.06 0.01 26.28 

   0.55 0.44 -0.11 -19.42 0.36 0.35 -0.01 -3.13 0.37 0.41 0.04 11.49 0.29 0.31 0.02 7.32 

 

N = 400 

    0.38 0.35 -0.03 -7.57 0.24 0.23 -0.01 -3.48 0.26 0.26 0 -0.29 0.14 0.21 0.07 51.48 

    0.54 0.53 -0.01 -2.02 0.41 0.41 0 0.64 0.42 0.43 0 0.88 0.24 0.36 0.12 50.37 

    0.38 0.38 -0.01 -1.61 0.27 0.27 0 0.56 0.26 0.27 0.01 2.82 0.16 0.24 0.08 47.55 

     0.05 0.05 0 5.74 0.05 0.06 0.01 10.77 0.04 0.05 0.01 13.15 0.03 0.06 0.03 89.12 

    0.04 0.06 0.02 38.52 0.04 0.06 0.02 46.43 0.04 0.06 0.02 38.45 0.04 0.07 0.03 58.13 

    0.03 0.04 0.01 48.04 0.03 0.04 0.01 44.48 0.03 0.04 0.01 44.94 0.03 0.05 0.02 76.07 

     0.12 0.13 0 3.17 0.13 0.14 0.01 9.66 0.12 0.13 0.01 7.04 0.11 0.15 0.04 38.44 

     0.04 0.04 0.01 18.34 0.04 0.04 0.01 18.17 0.03 0.04 0.01 16.88 0.03 0.05 0.02 48.13 

   0.3 0.3 -0.01 -1.9 0.2 0.19 0 -1.98 0.2 0.2 0 1.47 0.1 0.12 0.02 24.95 
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B.9. Standard Errors and Bias for Model 2, Repeated Measures = 6, Communalities = .6 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.38 0.36 -0.02 -4.32 0.28 0.26 -0.01 -4.89 0.31 0.3 -0.01 -1.91 0.17 0.17 -0.01 -3.13 

    0.58 0.56 -0.02 -4.25 0.45 0.44 -0.01 -3.14 0.5 0.51 0.01 2.85 0.31 0.31 -0.01 -1.74 

    0.41 0.39 -0.02 -4.54 0.32 0.32 0 -0.86 0.42 0.41 -0.01 -1.69 0.22 0.22 0 -0.42 

     0.04 0.05 0.01 38.33 0.04 0.05 0.02 40.09 0.04 0.05 0.01 32.17 0.03 0.05 0.01 38.28 

    0.04 0.07 0.03 72.48 0.04 0.07 0.03 69.05 0.04 0.07 0.03 63.48 0.04 0.08 0.03 79.72 

    0.02 0.04 0.02 84.22 0.02 0.05 0.02 96.28 0.02 0.04 0.02 75 0.02 0.05 0.02 92.37 

     0.09 0.11 0.02 17.99 0.09 0.12 0.03 30.19 0.09 0.11 0.02 20.45 0.1 0.12 0.02 24.72 

     0.03 0.04 0.01 40.47 0.03 0.05 0.01 47.3 0.03 0.04 0.01 41.22 0.03 0.04 0.01 39.83 

   0.32 0.31 -0.02 -5.22 0.25 0.24 -0.01 -3.12 0.29 0.29 -0.01 -2.83 0.14 0.14 0 -2.31 

 

N = 400 

    0.23 0.23 0 -1.34 0.23 0.23 -0.01 -2.26 0.17 0.17 0 2.16 0.11 0.11 0 -2.17 

    0.42 0.4 -0.02 -4.32 0.41 0.4 -0.01 -2.33 0.31 0.29 -0.01 -4.42 0.2 0.2 0 2.49 

    0.3 0.3 0 0.14 0.3 0.3 -0.01 -1.85 0.23 0.22 -0.01 -2.46 0.14 0.14 0 -0.08 

     0.03 0.04 0.01 28.23 0.03 0.03 0.01 28.96 0.03 0.03 0.01 34.06 0.02 0.03 0.01 40.99 

    0.03 0.05 0.02 74.69 0.03 0.05 0.02 70.23 0.03 0.05 0.02 79.98 0.03 0.05 0.02 67.53 

    0.02 0.03 0.02 95.64 0.02 0.03 0.01 86.78 0.02 0.03 0.02 101.24 0.02 0.03 0.02 99.5 

     0.07 0.08 0.02 23.52 0.07 0.08 0.01 21.93 0.07 0.08 0.02 23.78 0.06 0.08 0.02 27.42 

     0.02 0.03 0.01 35.59 0.02 0.03 0.01 39.11 0.02 0.03 0.01 39.27 0.02 0.03 0.01 38.84 

   0.22 0.21 -0.01 -4.58 0.24 0.24 0 -1.92 0.15 0.16 0 1.54 0.1 0.1 0 -0.1 
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B.10. Standard Errors and Bias for Model 2, Repeated Measures = 6, Communalities = .8 

 

 Effect Size = .00 Effect Size = .01 Effect Size = .05 Effect Size = .09 

Parameter SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

SD SE Raw  

Bias 

Rel. 

Bias 

N = 200 

    0.32 0.31 -0.02 -4.79 0.28 0.26 -0.02 -7.18 0.21 0.2 0 -1.2 0.16 0.16 0 2.71 

    0.54 0.5 -0.04 -7.02 0.52 0.49 -0.02 -4.66 0.39 0.39 0 -0.1 0.26 0.26 0 1.7 

    0.45 0.42 -0.02 -5.44 0.39 0.37 -0.02 -6.12 0.29 0.29 -0.01 -2.14 0.21 0.21 0 1.12 

     0.02 0.03 0.01 61.4 0.02 0.04 0.02 86.09 0.02 0.04 0.02 83.84 0.02 0.04 0.02 107.25 

    0.03 0.06 0.03 122.75 0.03 0.06 0.03 133.73 0.03 0.07 0.04 145.3 0.03 0.06 0.04 144.41 

    0.01 0.04 0.03 189.63 0.02 0.04 0.03 169.54 0.01 0.04 0.03 167.14 0.01 0.04 0.03 197.56 

     0.05 0.07 0.02 40.06 0.05 0.08 0.03 54.14 0.05 0.09 0.04 69.28 0.05 0.1 0.05 98 

     0.02 0.03 0.01 81.36 0.02 0.03 0.02 100.83 0.02 0.03 0.02 97.78 0.02 0.03 0.02 96.25 

   0.34 0.32 -0.02 -5.25 0.3 0.28 -0.02 -7.13 0.22 0.22 -0.01 -2.77 0.15 0.15 0 -0.11 

 

N = 400 

    0.18 0.18 0 1.42 0.19 0.18 -0.01 -3.26 0.15 0.14 -0.01 -5.11 0.1 0.1 0 2.17 

    0.33 0.32 -0.01 -3.83 0.32 0.31 0 -0.76 0.23 0.24 0.01 2.54 0.16 0.16 0 1.96 

    0.25 0.25 -0.01 -2.16 0.23 0.23 0 -2 0.18 0.18 0 0.17 0.12 0.12 0 2.53 

     0.01 0.03 0.01 87.4 0.01 0.03 0.01 88.92 0.02 0.03 0.01 80.99 0.01 0.03 0.02 114.64 

    0.02 0.05 0.03 143.07 0.02 0.04 0.03 141.88 0.02 0.05 0.03 154.58 0.02 0.05 0.03 155.36 

    0.01 0.03 0.02 179.04 0.01 0.03 0.02 173.61 0.01 0.03 0.02 198.95 0.01 0.03 0.02 190.69 

     0.04 0.06 0.02 56.81 0.04 0.06 0.02 63.49 0.04 0.06 0.03 75.48 0.04 0.06 0.02 63.96 

     0.01 0.02 0.01 96.9 0.01 0.03 0.01 118.73 0.01 0.03 0.02 125.76 0.01 0.03 0.01 113.15 

   0.2 0.19 -0.01 -2.72 0.2 0.2 -0.01 -2.99 0.14 0.14 0 -1.5 0.1 0.1 0 1.15 
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B.11. RMSE for Model 2 Non-Regression Parameters 

 
 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

N = 200 

Repeated Measures = 3 

     0.19 0.15 0.12 0.11 0.11 0.13 0.11 0.10 0.06 0.06 0.08 0.06 

    0.14 0.09 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.04 0.07 

    0.07 0.08 0.08 0.12 0.05 0.07 0.06 0.06 0.03 0.04 0.04 0.03 

     0.25 0.24 0.20 0.19 0.18 0.16 0.19 0.19 0.09 0.09 0.11 0.12 

     0.18 0.16 0.15 0.14 0.12 0.11 0.10 0.07 0.08 0.06 0.06 0.05 

   1.63 1.05 0.63 0.53 0.68 0.57 0.26 0.28 0.36 0.29 0.19 0.24 

Repeated Measures = 6 

     0.08 0.09 0.06 0.06 0.05 0.04 0.06 0.08 0.05 0.02 0.02 0.04 

    0.07 0.07 0.11 0.07 0.06 0.08 0.05 0.05 0.03 0.03 0.03 0.10 

    0.07 0.04 0.04 0.04 0.03 0.07 0.03 0.04 0.04 0.02 0.03 0.04 

     0.17 0.20 0.16 0.18 0.12 0.09 0.10 0.14 0.14 0.10 0.06 0.05 

     0.06 0.07 0.05 0.06 0.04 0.05 0.06 0.03 0.03 0.02 0.03 0.03 

   0.56 0.37 0.37 0.29 0.32 0.25 0.30 0.15 0.34 0.30 0.22 0.15 

             

N = 400 

Repeated Measures = 3 

     0.14 0.13 0.11 0.08 0.09 0.08 0.06 0.06 0.07 0.05 0.04 0.04 

    0.07 0.05 0.09 0.07 0.03 0.08 0.06 0.06 0.06 0.06 0.05 0.05 

    0.05 0.05 0.06 0.06 0.03 0.04 0.04 0.04 0.02 0.02 0.05 0.04 

     0.20 0.20 0.19 0.15 0.14 0.13 0.09 0.08 0.07 0.08 0.11 0.08 

     0.14 0.14 0.12 0.1 0.10 0.08 0.07 0.05 0.05 0.04 0.05 0.03 

   0.42 0.40 0.45 0.31 0.24 0.27 0.18 0.14 0.25 0.18 0.16 0.15 

Repeated Measures = 6 

     0.06 0.05 0.04 0.09 0.03 0.03 0.03 0.04 0.02 0.02 0.02 0.02 

    0.05 0.06 0.05 0.08 0.03 0.07 0.04 0.08 0.08 0.03 0.04 0.04 

    0.02 0.04 0.03 0.04 0.06 0.06 0.07 0.02 0.04 0.03 0.02 0.02 

     0.15 0.2 0.12 0.12 0.07 0.08 0.07 0.06 0.04 0.06 0.04 0.04 

     0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 

   0.30 0.20 0.20 0.10 0.22 0.24 0.16 0.10 0.20 0.20 0.14 0.10 
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B.12. RMSE for Standard Errors in Model 2, N=200 

 
 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

Repeated Measures = 3 

    5.71 5.83 4.67 5.8 3.1 2.27 3.32 0.27 2.1 0.4 0.39 0.1 

    11.19 11.64 9.8 9.41 4.59 5.18 6.24 0.78 3.66 0.84 0.68 0.2 

    1.06 0.7 0.59 0.6 0.28 0.38 0.09 0.15 0.12 0.1 0.05 0.12 

     0.17 0.22 0.21 0.3 0.08 0.11 0.11 0.03 0.02 0.02 0.01 0.01 

    0.02 0.02 0.02 0.08 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 

    0.01 0.02 0.02 0.1 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 

     0.2 0.29 0.29 0.41 0.1 0.13 0.14 0.05 0.03 0.04 0.02 0.02 

     0.18 0.2 0.21 0.18 0.08 0.1 0.1 0.02 0.02 0.01 0.01 0.01 

   3.18 2.23 2.34 1.82 1.21 1.09 0.73 0.15 0.53 0.08 0.06 0.06 

Repeated Measures = 6 

    0.92 1.79 1.56 1.18 0.1 0.06 0.08 0.04 0.05 0.04 0.03 0.02 

    0.99 2.07 1.98 1.02 0.13 0.08 0.1 0.06 0.09 0.08 0.06 0.04 

    0.19 0.1 0.16 0.08 0.08 0.07 0.08 0.04 0.07 0.07 0.05 0.03 

     0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02 

    0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 

    0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 

     0.04 0.03 0.06 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.05 

     0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 

   0.52 0.7 0.81 0.66 0.06 0.04 0.05 0.02 0.05 0.04 0.03 0.02 
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B.13. RMSE for Standard Errors in Model 2, N = 400 

 

 Communality = .4 Communality = .6 Communality = .8 

Effect Size .00 .01 .05 .09 .00 .01 .05 .09 .00 .01 .05 .09 

Repeated Measures = 3 

    5.75 4.31 4.45 4.28 1.25 6.61 0.98 0.42 0.11 0.08 0.13 0.03 

    9.79 7.29 7.91 7.25 2.07 11.9 1.81 0.81 0.22 0.14 0.2 0.05 

    0.29 0.24 0.16 0.33 0.09 0.15 0.05 0.04 0.06 0.04 0.04 0.04 

     0.26 0.2 0.13 0.56 0.04 0.18 0.04 0.03 0.01 0.01 0.01 0.01 

    0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 

    0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

     0.32 0.24 0.16 0.81 0.05 0.22 0.05 0.04 0.02 0.02 0.02 0.02 

     0.25 0.19 0.13 0.31 0.04 0.18 0.03 0.03 0.01 0.01 0 0.01 

   1.55 1.4 1.17 1.7 0.29 1.57 0.22 0.08 0.03 0.02 0.02 0.02 

Repeated Measures = 6 

    0.25 0.08 0.28 0.43 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 

    0.23 0.12 0.37 0.69 0.06 0.06 0.04 0.03 0.04 0.03 0.03 0.02 

    0.08 0.05 0.05 0.47 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 

     0.01 0.01 0.01 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 

    0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 

    0.01 0.01 0.01 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

     0.01 0.02 0.02 0.19 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 

     0.01 0.01 0.01 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

   0.12 0.03 0.11 0.2 0.02 0.03 0.02 0.01 0.02 0.02 0.01 0.01 
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