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ABSTRACT 

ZHE ZHANG: The Use of Microarray Data Integration to Improve Cancer Prognosis 

(Under the direction of David Fenstermacher) 

 

Microarray is a high-throughput technology used to simultaneously measuring the 

expression of thousands of genes in each sample. Therefore, it has the potential to benefit the 

treatment of complicated diseases like cancer. This study made efforts to improve the 

application of microarray technologies to clinical medicine with two separate, but related 

phases. The first phase dealt with the generation of clinically valuable expression profiles 

from microarray data. By re-analyzing several published cancer datasets, we first confirmed 

that microarray data presented extra information about prognosis of cancer patients beyond 

currently used indexes such as tumor size. At the same time, it was noticed that those indexes 

generally confounded the correlation between gene expression and cancer outcome, so the 

contents of expression profiles were highly dependent on the clinical background of sample 

patients. Consequently, integrating multiple datasets was revealed by this study to obtain 

more general and reproducible cancer expression profiles. A novel data analysis procedure 

incorporating bootstrap re-sampling and training/testing validation was performed to 

impartially compare strategies of expression profiling. The results illustrated that after two 

independent datasets were integrated, the resultant expression profiles more correctly 

differentiated cancer patients in terms of disease outcome. 
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The second phase of this study was to develop MAMA (Meta-Analysis of MicroArray), a 

data mining platform for conveniently collecting, managing, and analyzing multiple 

microarray datasets altogether.  The complete MAMA system included three components: a 

relational database storing microarray cancer datasets; a web server providing the access to 

the database; and a client-side application implementing data manipulation and analysis 

methods. MAMA had an open-source framework allowing other developers to plug in their 

own data analysis methods. Moreover, it made cross-dataset analysis possible by 

standardizing annotation of samples and sequences in microarray datasets.  
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CHAPTER I 

INTRODUCTION 
 

While many biomedical researchers agree that we are now at the dawn of a ‘Genomic 

Age’, there are still short of clear visions about how to fit high-throughput technologies, such 

as microarray, into the diagnosis, prognosis and treatment of diseases. A large number of 

experiments using these technologies have been carried out to generate information-rich 

datasets. Analysis of these datasets, however, barely brought us results applicable in medical 

practice. A quick response to this problem is probably that the technologies are still immature. 

However, before the technologies become ideal, researchers can still work on fundamental 

questions such as: 

• Does high-throughput data really include helpful information for clinical decisions? If 

so, how valuable are they and what are their advantages and limitations?  

• Have we dug out as much as possible meaningful information from experimental data 

having been generated? If we have not, what data analysis techniques can we use to 

fully take advantage of these data?  

• What kind of evidences will we need to justify that information presented by high-

throughput technologies is clinically informative, and what data analysis methods and 

protocols should be applied to collect these evidences?  



• How much will these technologies change our current way of evaluating and treating 

disease? 

The current study gave its answer to above questions by investigating the relationship 

between microarray data and cancer. As a complex disease, cancer is an ideal subject of 

genomic research because its initiation, progression, and metastasis have been related to a 

series of genomic disorders. A large number of studies have been carried out in recent years 

to find out gene expression patterns in tumors or tumor subtypes. This study applied its own 

strategies to re-analyze published microarray datasets about cancer with the purposes 

different from those of the original studies. The process of identifying the expression patterns 

of samples is known as ‘gene expression profiling’. Identified patterns can be used to classify 

tumor tissues. For example, expression patterns obtained in this study were used to 

distinguish breast cancer patients having good or poor prognosis. A strategy of gene 

expression profiling can be evaluated by the quality of expression patterns identified. An 

expression pattern of good quality should classify samples precisely and consistently. The 

theme of this study is how to achieve more accurate, reproducible and efficient expression 

profiling of tumor tissues. Two independent but related phases were carried out, both taking 

about the same efforts to accomplish.  

In the first phase, published cancer microarray datasets were analyzed to verify two 

hypotheses: 

1. Microarray data present extra clinical information that is not available via currently 

used methods. 

2. It is feasible to perform gene expression profiling across multiple datasets to increase 

the overall sample size and quality of acquired profiles. 

 2



The first hypothesis was verified by proving that microarray data classified patients better 

than currently used clinical indexes. The confirmation of this hypothesis was the basis of all 

following steps, because if it is wrong, applying microarray technology to medical practice is 

not necessary. Although all similar studies should assume the correctness of this hypothesis 

too, few have verified it in their reports. 

It was observed in early stage of this study that the contents of gene expression patterns 

were highly dependent on the clinical scenario of sample patients. The expression patterns of 

the same features, such as the recurrence outcome of cancer, varied substantially when they 

were obtained from different subpopulations of patients. Consequently, the usefulness of 

these patterns to general population is limited. The major cause of this observation, ironically, 

was that the size of most microarray datasets was too small to give reproducible results of 

expression profiling. This suggestion led to the hypothesis about multi-dataset microarray 

analysis. The confirmation of this hypothesis will allow researchers to comfortably reuse and 

combine existing datasets, so information unable to be obtained from individual datasets can 

be discovered. Furthermore, multi-dataset analysis is a potential solution to the issue about 

medical application of high-throughput technologies since it can provide stronger statistical 

evidences by covering various patient subpopulations.  

The second phase of this study is the development of a software system called MAMA 

(Meta-Analysis of MicroArray). This project was motivated by the experience of the data 

analysis phase, which demonstrated that multi-dataset expression profiling was not 

technically straightforward. Systematic variation caused by experimental protocol to data 

annotation exists everywhere in independent microarray studies and datasets. Datasets 

collected from individual studies can be integrated together only after they have been 
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consistently annotated, processed and formatted. For biologists and statisticians whose 

primary interest is high-level data analysis, dealing with these issues is distracting and time-

consuming. The MAMA system was developed to provide users a software environment 

within which they could simultaneously and conveniently investigate multiple microarray 

datasets. Collected cancer microarray datasets were stored in a relational database after they 

were re-processed and re-annotated according to pre-defined guidelines. This database was 

made accessible on the web by a server program that can handle concurrent requests of 

multiple clients. The MAMA client program was a software application for users to 

manipulate and analyze microarray datasets. It has a graphical user interface. Using this 

program, users can selectively download data from the server or directly import their own 

data, and work with these data on their local disk. High flexibility was a priority of 

developing MAMA. For example, users were provided with programming interfaces to plug 

in their own data analysis methods. On the other hand, data objects were formally and 

consistently annotated. Popular sequence databases, such as GenBank and Unigene, were 

used to annotate nucleotide sequences; and controlled vocabularies, such as MGED ontology 

and NCI thesaurus, were used to describe biological samples. Implemented data analysis 

methods were focused on the correlation between genes and features of cancer samples, or 

other genes. Meta-analysis methods, such as combined tests and measures of effect size, were 

made available too.  

This dissertation is organized into following chapters, which usually illustrate the data 

analysis and MAMA projects separately: 

• Chapter 1. Introduction. 

• Chapter 2. Background: 
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o high-throughput technologies; 

o literature review about gene expression profiling in cancer research;  

o summary of standards, databases, and software used in microarray research.  

• Chapter 3: Methods:  

o description of analyzed datasets;  

o statistical methods and procedures used for data analysis;  

o software and standards used to develop MAMA. 

• Chapter 4: Results and Discussions:  

o pilot studies and the implications of their results;  

o verification of hypothesis about clinical value of microarray technology; 

o verification of the advantages of multi-dataset gene expression profiling; 

o a novel strategy of performing and evaluating gene expression profiling; 

o sensitivity vs. specificity of reporter gene selection; 

o vision, design and data model of MAMA system; 

o data analysis functions implemented in MAMA. 

• Chapter 5: Conclusion. 

• Chapter 6: References. 

• Chapter 7: Glossary. 

• Chapter 8: Appendices: 

o step-by-step data analysis procedure; 

o reviews of software development tools and standards; 

o review of meta-analysis methods; 

o supplementary results of data analyses; 
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o design documents of MAMA project, such as use cases and database schema; 

o user guides of MAMA, such as software installation and method plug-in; 

o source codes and deliverables of MAMA.  
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CHAPTER II 

BACKGROUND 
 

2.1 Gene Expression Profiling of Cancer Tissues 

Cancer threatens human life by destroying normal tissues with uncontrollable 

proliferation of malignant cells. While the disease is usually curable by surgery as long as the 

primary tumors are locally restrained, most cancer-related deceases are caused by metastasis: 

malignant cells escape from the primary tumor, enter lymphatic or vascular circulation, and 

establish inoperable secondary tumors at distant locations. Clinical decision about cancer 

treatment is mostly based on pathological observations of tumor status. The most referred to 

cancer clinical index is TNM classification, which categorizes cancer patients jointly 

according to tumor size (T), local lymph node metastasis (N), and distant metastasis (M) [1]. 

Other common indexes, such as histological grade and angioinvasion, have been used as 

supplements of TNM system [2, 3]. 

The search for a general cure of cancer has become the biggest dilemma of biomedical 

research. On one side, the knowledge about the molecular basis of cancer has been 

substantially improved after decades of enormous research effort. It is already known that 

cancer is caused by a series of genetic disorders, from point mutations to insertion/deletion to 

chromosome rearrangement [4-7]. Genetic defects destroy the balance between cell growth 



and cell death, and transform normal cells into malignant. Therefore, the investigation of 

cancer-related genes, such as tumor-suppressor genes and oncogenes, has been the focus of 

cancer research for more than 10 years [8, 9]. Some of these genes have been used as 

molecular markers in cancer clinics, such as p53 [10] and HER-2/neu [11]. On the other hand, 

discoveries in molecular biology have hardly benefited more cancer patients. Pathological 

indexes still dominate the diagnosis of cancer in clinics. Although the list of cancer-related 

genes is continuously growing, the addition of most new members was unable to improve the 

comprehensive image of malignancy transformation, advocating high genetic variability of 

cancer [12]. Regular laboratory approaches, which laboriously investigate a single gene or 

several closely linked genes at a time, have been proven ineffective to this complex and 

genomic-level disease. To improve cancer treatment, cancer patients should be classified 

based on genomic information produced by more efficient technologies. 

Development of high-throughput technologies in recent years is about to bring 

biomedicine into a genomic age. These technologies have promising potentials in cancer 

research by allowing investigators examine cancer from a systematic perspective. CGH 

(Comparative Genomic Hybridization) is able to detect chromosomal gains and losses 

through the entire genome [13]. Chromosomal DNA obtained from both cancer and normal 

tissues is labeled with two fluorescent colors, and the difference in signal intensity indicates 

sequence deletion or amplification. Although array-based CGH has been developed to 

improve the resolution of this technology [14], CGH is not suitable for detecting mutations of 

short sequences. Since point mutations are the most common chromosomal alteration, 

genomic sequencing is a thorough solution for identifying genes mutated in cancer. However, 

the effort and cost of whole-genome screening are still impractical for most research facilities. 
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Technologies such as heteroduplex analysis and CSGE (Conformation Sensitive Gel 

Electrophoresis) have been used as alternatives of sequencing for mutation detection [15-17]. 

While sequence information is mostly static, expression profiling technologies can describe 

the dynamic status of cancer cells at gene transcription level. SAGE (Serial Analysis of Gene 

Expression) and microarray have been used to generate source data of expression profiling. 

By assuming that 10-12 bp nucleotide sequences will uniquely represent most human 

transcripts, SAGE concatenates short cDNA fragments into sequencing vectors to constitute 

a SAGE library [18, 19]. The library will be sequenced to comprehensively quantify gene 

expression. SAGE constitutes an open system, so it can measure the expression of unknown 

or rarely-expressed genes in cells under investigation. Microarray is the most applied high-

throughput technology in recent years. By fixing probes (synthesized oligonucleotides or 

sequences extracted from cDNA libraries) of transcripts onto a solid surface as tiny spots, 

microarray technology is able to simultaneously and efficiently measure the expression of 

thousands of genes [20-22]. Microarray is not as sensitive as SAGE because background 

noise on arrays makes the measurement of low abundance mRNA inaccurate, but it is less 

laborious and expensive. Individual microarray studies are usually able to measure 

expression of genes in 20 to 200 samples. Therefore, in cancer research, microarray datasets 

are often used for classifying samples into categories such as cancer subtypes [23-26]. The 

protein-level genomic technology is proteomics, which relies on high-throughput platforms, 

such as array slides or 2-D electrophoresis gels, to simultaneously analyze a large number of 

proteins [27-29]. Proteomics has been used to classify biological samples as microarray, and 

to discover, identify, and quantify cancer biomarkers [30, 31]. Since proteins are the 
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functional units in cells, proteomics could be considered as the bridge connecting genomics 

and clinical medicine.  

As a relatively mature high-throughput technology, microarray has been used to produce 

gene expression datasets about a variety of types of cancer. A common application of 

microarray datasets is to identify gene expression patterns corresponding to the sample 

features under investigation, such as the recurrence of cancer. The process of identifying 

gene expression patterns is often referred to as ‘gene expression profiling’, which is 

characterized by the major trends in biomedical research: large datasets, computer-assisted 

data analysis, and integration of scientific domains including biomedicine, statistics, and 

information sciences. Because of its clinical prospects, expression profiling of cancer tissues 

has been extensively explored [32-35]. 

Statistical analysis plays a critical role in gene expression profiling. Clustering and 

reporter gene selection are two extensively applied techniques [36-38]. Clustering is 

relatively more visual and straightforward, while reporter selection is usually more complex 

and has more variations. Methods having been used to reporter selection include simple 

hypothesis testing methods, such as Student or permutation t test [39, 40], ANOVA [41], and 

advanced models, such as Bayesian Networks [42] and Principal Component Analysis [43]. 

Selection of expression profiling methods should be determined according to the purposes of 

research and the characteristics of dataset. Complicated methods are not necessarily better 

than simple ones, and powerful methods usually make stricter assumptions on data than 

methods that are less powerful but more robust.  

Analysis of microarray data also presents a challenge to traditional statistics because the 

number of variables (genes) in a microarray dataset is usually much larger than sample size. 
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Repeating a hypothesis test on a large number of variables will falsely reject the null 

hypothesis for some variables, an issue usually referred to as ‘multiple hypothesis testing’ 

[44]. For example, when a test is performed on each of 10,000 genes, averagely 100 genes 

will get a significant p-value less than 0.01 just because of the random distribution of data. 

Therefore, reporter gene lists derived from microarray datasets often include false positives. 

Decreasing the sample size or increasing the genes of a dataset will generally augment the 

rate of false positives in a reporter list. Reducing the size of the list will lift the specificity of 

reporter selection, but lessen the sensitivity at the same time. The ‘q-value’ index has been 

suggested to control the false positive rate of reporter selection by adjusting the test p-values 

by the number of tests performed [45, 46].  

The following gives a quick literature review about cancer microarray studies using 

breast cancer as an example. Breast cancer is aroused by an accumulation of genetic 

mutations, and its initiation, invasion, progression, and metastasis are related, but distinct 

diseases. The complexity of breast cancer makes it an ideal subject of genomic-level research 

[47]. Gene expression profiling about breast cancer has drawn many research interests in 

recent years and a large number of studies have been reported. The focuses of microarray 

studies about breast cancer ranged from biological differentiation of different cell lines [48] 

or normal/tumor tissues [49], to clinical classification of tumors into subtypes using 

expression profiles [49-52], to discovery of molecular markers and drug targets [53-56]. 

Since most breast cancer-related deaths are caused by recurrence and/or metastasis of disease, 

profiling of disease endpoints is clinically more valuable. It is a challenging topic at the same 

time because of the difficulty of predicting cancer outcome.  
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Practitioners usually measure and integrate a number of prognostic indexes to predict the 

outcome of breast cancer. The prediction guides the making of disease treatment decision, 

which is crucial for the quality of patients’ post-diagnosis life. Besides TNM classification, 

common prognostic indexes of breast cancer include age, ethnicity, grade, vascular invasion, 

and so on [57]. Moreover, molecular markers, such as HER2/neu and ER (Estrogen Receptor) 

status, have a growing utilization in the prognosis of breast cancer [57, 58]. For example, an 

extensive study (n>37,000) concluded that ER-negative patients were 7-times more likely to 

develop recurrent diseases than ER-positive patients after 5 years or more of adjuvant 

tamoxifen treatment [59]. However, currently used indexes often misclassify patients in 

terms of disease outcome because they are unable to describe the integral status of tumors 

with enough details. Microarray data, on the other hand, has the potential to characterize 

subtypes of cancer more specifically by making a census about gene expression in tumors. 

Microarray studies have reported expression profiles related to outcome of breast cancer. 

Sørlie et al  collected 85 tissue samples from breast cancer patients (78 cancers, three benign 

tumors, and four normal tissues), and categorized them with hierarchical clustering of their 

microarray data [49]. The categorization was supervised by post-diagnosis survival of 

patients. All samples were classified into 6 sub-groups and Kaplan-Meier survival curves of 

these sub-groups were significantly separated (p<0.01). Van‘t Veer et al  applied different 

approaches to identify gene expression profiles associated to recurrence of breast cancer, 

during which the correlation between expression of each gene and 5-year prognosis was 

evaluated with statistical tests across 78 breast cancer patients [60]. Genes having the most 

significant correlation were selected as reporters of recurrence outcome. ‘Leave-one-out’ 

cross-validation was then applied to optimize the length of reporter gene list. The 70-gene 
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profile achieved optimal validation results. When the expression profile including these 

genes was used to classify patients, observed recurrence outcome of 65 out of 78 patients 

(83%) was correctly matched by the classification. Furthermore, when this profile was 

applied to a testing group of 19 patients, 17 patients (89%) was correctly classified. Although 

previous study acquired inspiring results, its weakness should also be noticed. The self-

validation result might be an overfitting and the size of the testing group was too small to 

give enough statistical power. Furthermore, all sample patients were selected from a specific 

sub-population of breast cancer (lymph node negative, tumor size less than 5 cm, and age 

under 55 at diagnosis), so the expression profile obtained from these patients might not be 

generally applicable. 

The dependence of gene expression profiles on clinical background of sample patients 

has been observed in microarray datasets. Gruvberger et al noticed that 165 out of 231 top-

ranked genes in the study of van ‘t Veer had significant correlation with ER status of patients 

[61], and suggested that expression profiling should be performed separately on ER-positive 

and -negative patients. It has been reported that some clinical indexes, such as ER status and 

tumor size, ubiquitously influence the expression of genes in tumor cells [62, 63]. Therefore, 

these indexes are confounders of gene expression profiling. Since microarray data are 

expected to provide extra clinical value beyond currently used indexes, expression profiles 

will be more valuable if the intervening effect of clinical scenarios is controlled. The 

suggestion of Gruvberger, though, is not an ultimate solution to this issue because there are 

other confounders of expression profiling besides ER status and it is not feasible to further 

split sample patients into subgroups corresponding to all confounders. 
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Both of the sample size and confounder issues discussed above put doubts on the general 

usability of expression profiles identified from individual datasets about cancer. 

Consequently, recent microarray studies have been trying to give a solution by integrating 

multiple datasets. The advantages of data integration are apparent because it increases the 

overall sample size of data analysis. Furthermore, since research questions often need to be 

re-defined for data integration analysis, information not discovered by individual studies can 

be uncovered from integrated data. One of the most common techniques of data integration is 

meta-analysis [64, 65]. Meta-analysis is often referred to as ‘analysis of analyses’. It takes 

the results of individual studies as its inputs to carry out secondary analysis, and how those 

studies got their results is irrelevant to the process of meta-analysis.  

Meta-analysis and other data integration strategies have been used in cancer microarray 

studies [66-69]. Ghosh et al investigated the consistence of four prostate cancer microarray 

datasets using a meta-analysis process [68]. They concluded that the profiles derived from 

these independent datasets shared significant similarity and proposed candidate gene 

pathways with the results. Microarray datasets of various cancer types were meta-analyzed 

by Rhodes et al [69]. They applied a comparative meta-profiling method to 40 published 

datasets with an overall sample size greater than 3,700. Gene expression profiles identified 

from these data were mapped to several characteristics of cancer tissues. For example, 

comparison of gene expression in cancer and normal tissues across 21 independent datasets 

and 12 cancer types recognized 67 genes that had significantly high possibility to be selected 

as reporters from individual datasets. The expression profile including these genes was 

proposed as a general gene expression signature of neoplastic transformation. Altogether, 
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previous results shed light on the possibility to combine multiple microarray datasets for 

more precise profiling.  

Rhodes’ study implied that samples of disparate subpopulations might still share 

considerable commonness in terms of expression profiling results, which advocated the 

feasibility of integrated profiling of cancer outcomes. If a gene is highly correlated to a 

disease outcome in one patient subpopulation but not the others, its role in the integrated data 

will fade out as disparate patient cohorts are involved. On the other hand, genes whose 

correlation to an outcome is independent of clinical background of samples will have a 

bigger chance to be identified in integration analysis. Nevertheless, for multi-dataset 

expression profiling, it should be assumed that a common expression profile corresponding 

to the investigated output variable does exist regardless of the experimental design of 

individual studies and the substantial systematic variations between microarray datasets. 

Therefore, it is often necessary to re-define the output variables to make them proper for 

integration analysis. As a result, sample patients of the original studies may need to be 

filtered and re-categorized accordingly.  

Categorizing cancer patients into prognosis groups is not as straightforward as it looks. In 

ideal situation, sample patients will be followed up until their disease endpoint is reached, so 

they can be unquestionably categorized. In the case of breast cancer, patients are considered 

as being cured if they keep recurrence-free long enough (usually 15 to 20 years) until their 

hazard to the disease is not greater than that of the general population. In clinics, however, 

outcome of cancer patients is often censored by short follow-up or incomplete medical record. 

Survival analysis is the most common method dealing with censored data [70]. It builds a 

Kaplan-Meier curve with follow-up data of each patient group and calculates test statistics 
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about the separation of curves. Survival analysis is statistically powerful since it takes all 

available follow-up information into account. However, its assumption about the constant 

effect of predictive index on output variable is not the fact in the case of cancer outcomes 

because survival and recurrence rates of cancer patients usually change from time to time. 

Alternatively, classifying patients into pre-defined prognosis groups would simplify the 

subsequent statistical analyses. The clinical convention is to categorize patients according to 

their 5-year follow-up. Patients who survive and keep disease-free for at least five years will 

be thought as having good prognosis and who die or recur within five years after diagnosis 

will be thought as having poor prognosis. Such a classification will exclude some sample 

patients from the following data analyses if they have not been followed up long enough to 

be categorized. Meanwhile, it will make the generating and validating of expression profiles 

more convenient, and if the cutoff value for classification is properly chosen, the 

corresponding expression profiling could also be powerful. Nevertheless, it should be pointed 

out that the 5-year convention was established by usage rather than by any biological basis. 

Classifying sample patients arbitrarily regardless of their intrinsic difference in genetic 

background will considerably reduce the statistical power of gene expression profiling.  

Retsky et al. investigated the follow-up data of 1,173 breast cancer patients and 

discovered that their recurrence rate had two peaks [71, 72]. The summits of these peaks 

were located at about 18 and 60 months after mastectomy, separated by a nadir around 50 

months. It was also concluded that the appearance of this double-peaked distribution was 

independent of tumor size, number of positive nodes, and menopause status of patients. 

Computer simulation of tumor progression implied that this distribution might be caused by 

disparate dynamics of secondary tumor growth. It was proposed that early recurrence was 
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caused by mastectomy-initiated accelerated growth of secondary tumor, while the second 

peak was the result of steady stochastic transitions of tumor progression phases. It was 

further suggested that different treatment strategies should be applied to patients located in 

different peaks. 

Since Retsky’s recurrence model is independent of clinical indexes, it could be 

considered as applicable to general population of breast cancer. If the computer simulation 

model about growth of secondary tumors is true, patients respectively recurred during those 

two peaks have a good chance to be distinguished by their gene expression profiles. 

Therefore, as an output variable for expression profiling, 3-year prognosis of breast cancer 

has better grounds than 5-year prognosis.   

The medical application of microarray technology is at its very early stage. Researchers 

are actively bringing up new topics and methods in this field. The current study tried to 

verify that integration of microarray data from independent sources will improve expression 

profiling of cancer prognosis. A novel strategy of generating and validating gene expression 

profiles was developed and applied to two published microarray datasets about breast cancer. 

The two-peak recurrence model discovered by Retsky was adopted to make results more 

biologically meaningful and clinically beneficial. It was revealed after two datasets were 

integrated, not only selection of reporter genes had higher specificity, but also the expression 

profiles acquired were more predictive. Furthermore, when the same strategy was applied to 

four public microarray datasets about lung cancer, similar results were observed. It was also 

demonstrated that microarray data provide extra prognostic value besides commonly used 

indexes. 
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2.2 Microarray Standards, Databases and Software 

Handling of microarray data is challenging for most biomedical researchers since it 

involves many aspects of information technologies. First, the structure of microarray datasets 

is complicated and has many variations. To describe a reproducible microarray dataset, 

metadata from experiment design to data processing strategy should be completely and 

unambiguously given. Consequently, standards of formally describing microarray datasets 

are necessary. Secondly, microarray datasets include slide images, raw measurements, 

processed data and other related data types, which make their structure complicate and their 

size big. Storage of microarray datasets in centralized repositories, such as databases, will 

give researchers quick and convenient data access. Finally, methods for presenting, 

processing and analyzing microarray data are various and often sophisticated. Packing these 

methods into computer software will save researchers from the trouble of implementing these 

methods by themselves. 

MGED (Microarray Gene Expression Data) Society is the most active organization that 

creates microarray standards [73]. A series of standards established by MGED for annotating 

and exchanging microarray data are being widely used in microarray community. The 

following is a brief introduction to these standards.  

MIAME (Minimum Information About a Microarray Experiment) is the first standard 

proposed by MGED [74]. It is recommended to authors and editors of microarray 

publications as a set of information necessary to reproduce microarray datasets. Particularly, 

MIAME requires for description of array and experiment design, samples, experiment 

protocols, and measured data. These requirements are summarized in MIAME checklist. 

MIAME is mostly conceptual. It neither structuralizes the contents of microarray datasets nor 
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specifies the standard vocabularies to describe them, which are respectively the goals of 

MGED MAGE (MicroArray and Gene Expression) and Ontology working groups.  

MAGE has established two standards for structure of microarray data: MAGE-OM 

(Object Model) and MAGE-ML (Markup Language) [75]. MAGE-OM is a complex data 

model that defines over than 150 data types related to microarray experiments and the inter-

relationship of these types. Its development follows the principles of UML (Unified 

Modeling Language, Object Management Group, Inc.). MAGE-ML defines a set of XML 

(eXtensible Markup Language, World Wide Web Consortium) elements, which are 

automatically derived from MAGE-OM. Hence, XML documents tagged with these elements 

can be exchanged between MAGE-compliant data systems. Although MAGE standards have 

covered most aspects about microarray datasets, they are mostly focused on the generation of 

microarray data and do not strongly support high-level data analysis. Furthermore, the 

complexity of these standards makes them difficult to be implemented and may cause low 

performance of data processing programs.  

The aim of MGED Ontology is to provide a set of defined and tree-structured terms for 

description of microarray-related concepts [76]. It has two major branches: core and 

extended. The core ontology is limited to the description of data objects covered in MAGE-

OM while the extended one has a wider scope. Although a major part of MGEG Ontology 

has been put on the features of biological samples used in microarray experiments, the 

supplement of other controlled vocabularies is necessary to make unambiguous description 

of samples because the high diversity of biological entities. For example, NCBI (National 

Center for Biotechnology Information) Taxonomy database provides the official names of 

species and their categorization [77], and NCI  (National Cancer Institute) Metathesaurus is a 
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resource summarizing cancer-related vocabularies. The probes or nucleotide sequences 

included in array designs also need to be systematically annotated. Major sequence databases, 

such as GenBank [78] and Ensemble [79], have been used to annotate sequences in 

microarray datasets. However, these databases often store multiple sequence records 

belonging to the same genes and assign them different identifiers. Redundant appearance of a 

gene in an expression profile will reduce its sensitivity and artificially increase the weight of 

the gene, so it is better practice to condense data of redundant genes together for high-level 

analysis. Consequently, many researchers prefer annotating nucleotide sequences with 

systems developed for naming genes or gene products. NCBI Unigene database, which 

clusters GenBank sequences into a non-redundant set of genes, is such a system having been 

commonly used [80, 81]. Since individual studies use a variety of sequence annotation 

systems, mapping annotations between systems has became an ordinary data processing step 

in microarray studies. 

Databases play a crucial role in the storage, distribution, and standardization of 

microarray datasets. Public microarray databases are usually accessible via the web, so they 

have web-based interface for users to query for sequences, samples, experiments, and other 

data types. Some microarray databases also provide tools for data processing and analysis. 

Microarray data models such as MAGE-OM and RAD [82] have been taken as basis of 

database schemas.  

SMD (Stanford Microarray Database) is the first major microarray database whose 

source codes were released [83-85]. Although it was initially developed to serve human and 

yeast researches at Stanford University, its application was extended to a much larger scope 
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and has been adopted by other institutes. SMD was not MAGE-compliant originally, but its 

later version supported the exchange of data formatted with MAGE-ML.  

As more and more microarray studies are reported and their source data are available, the 

demand for centralized repository of published microarray datasets is increasing in research 

community. Two major bioinformatics organizations, NCBI and EBI (European 

Bioinformatics Institute), discretely provided their solution to this requirement. GEO (the 

Gene Expression Omnibus) is a database established by NCBI [86]. It currently stores about 

half a billion gene expression measurements generated by microarray or SAGE. The 

microarray database established by EBI is called ArrayExpress [87, 88]. The schema of 

ArrayExpress is consistent with MAGE-OM and other MGED standards including MIAME 

and MGED Ontology are also adopted by this database for data submission and description.  

Data-mining functions are provided by some microarray databases as their supplement. 

For example, ONCOMINE is a system combining a microarray database with a data-mining 

platform for discovering gene expression patterns in cancer [89]. Establishment of this 

system dramatically accelerated subsequent data analyses. Studies based upon ONCOMINE 

database have been carried out successfully and reported [69, 90-92].  

Computer software is a requisite part of microarray studies. To support their products, 

microarray hardware vendors such as Affymetrix, Inc. usually provide software tools for 

upstream handling of experimental results, such as image acquisition and in-chip 

normalization [93-95]. On the other hand, a large number of computer programs are available 

for high-level microarray analysis. These programs have been developed as simple desktop 

tools to powerful enterprise systems. Popular statistical programming language including R 
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(www.r-project.org), MatLab (MathWorks, Inc.), and SAS (SAS Institute, Inc.) are also 

extensively applied in microarray researches.  

GeneSpring GX (Aligent technologies, Inc.) is one of the most popular commercial 

microarray software. Like most of other business products, it has an attractive user interface 

and is relatively user-friendly. Besides rendering data with graphics, it implements various 

types of statistical methods, such as ANOVA and clustering, for identifying reporter genes or 

expression patterns. Furthermore, it provides programming interface that allows users to 

incorporate third party applications for data visualization or analysis. Although GeneSpring 

GX is gaining its popularity, sophisticated users may still feel that its functionality cannot 

fulfill their demand because of the rapid updating of data analysis techniques, which is 

probably the reason why most commercial microarray software did not succeed. 

Allowing users to modify or extend the source codes to meet their special requirements, 

open-source software has become a major driving force of microarray research [96-100]. 

BioConductor is an R-based open source project for the analysis of microarray and other 

genomic data [100-103]. Its newest version includes over 100 software packages 

implementing annotation, documentation, statistical analysis, and many other functions about 

genomic data. It should be pointed out that the quality of open source software varies. 

Unsophisticated programs may mistakenly implement statistical methods or inaccurately 

interpret results. Therefore, open source programs should only be recommended to 

experienced users.  

In spite of various options of microarray software, researchers often find it necessary to 

write programs by themselves, especially when they are developing new data analysis 
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methods or procedures. For example, the current study coded most programs used in its data 

analysis phase. 

The MAMA (Meta-Analysis of MicroArray) system presented in this dissertation is an 

open-source platform supporting data-mining in cancer microarray datasets. It has three 

major components: a relational database, a server program, and a data analysis package. The 

MAMA database provides a centralized storage of microarray datasets about cancer and the 

server program made this database web-accessible. Unlike ONCOMINE, the focus of the 

MAMA project is its data analysis package that could be run as a desktop application. This 

application supported basic operations about microarray dataset such as data import/export 

and re-processing. Furthermore, it provided an open-source framework to satisfy diverse user 

requirements on its functionality. Similar to GeneSpring GX, MAMA allows users to plug in 

their own methods by implementing specified programming interface. A highlight of MAMA 

project was the availability of meta-analysis functions, which was realized by using MGED 

Ontology and other controlled vocabularies to describe data from independent sources. The 

MAMA system was expected to provide microarray researchers an easy-to-use and 

extensible data mining platform with functions not fulfilled by other microarray software.  
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CHAPTER III 

METHODS 
 

3.1 Data Analysis 

3.1.1 Datasets and Data Pre-processing 

This study analyzed published microarray datasets, including two from breast cancer 

patients [49, 60] and four from lung cancer patients [104-107]. All datasets provided clinical 

data about patients, such as disease follow-up and tumor size, in addition to microarray data. 

Cancer patients in each dataset were re-sampled and classified into two prognostic groups. 

Breast cancer patients who developed secondary tumors within three years after mastectomy 

were put into the poor prognosis group while patients who were followed up for at least three 

years and had no observed recurrence were classified as having good prognosis. Patients 

inappropriate to either group were excluded from this study. (See Appendix A.1 for demo of 

patient classification.) In the case of lung cancer, patients were classified according to their 

two-year survival outcome, and only adenocarcinoma patients were selected. Disease 

outcome of patients in all datasets was denoted as a dichotomous variable for all statistical 

analyses (0: good prognosis and 1: poor prognosis).  The resulting sample sizes of all breast 

and lung datasets are summarized separately in Table 1A and 1B. Before analyzing these 

datasets, several data pre-processing steps were carried out. Sequences of all datasets were 

mapped to Unigene clusters and expression levels of redundant entries were averaged to



generate a set of genes without redundancy. In the case of breast cancer, there were 5,569 

non-redundant Unigene clusters presented in both datasets. (See Appendix A.2 for demo of 

mapping sequences to Unigene.) Expression measurements having low quality and sequences 

unable to be mapped to Unigene were filtered out of the datasets. Ratio expression data of 

cDNA datasets were log10-transformed. Furthermore, expression measurements in each 

dataset were normalized for each patient and then for each gene, making the median 

expression level of each patient or gene equal to 0.0 and the standard deviation equal to 1.0. 

(See Appendix A.3 for demo of expression data pre-processing.) 

 

Table 1: 
Microarray Datasets Used in This Study 

 
Table 1A: Two Breast Cancer Datasets 

Poor prognosis: patients recurred within three years after diagnosis; good prognosis: patients had 
no observed recurrence and were followed up for at least three years. Patients who were in the 
original datasets, but could not be categorized into either group were removed from this study.  

 

Dataset [reference] / Platform Poor Prognosis Good Prognosis Total 

Rosetta Breast [60] / cDNA 31 51 82 

Stanford Breast [49] / cDNA 37 25 62 

Total 68 76 144 

 
Table 1B: Four Lung Cancer (Adenocarcinoma) Datasets 

Poor prognosis: patients died within two years after diagnosis; good prognosis: patients survived 
after at least two years of follow-up. Only adenocarcinoma patients were selected. Patients who 
were in the original datasets, but could not be categorized into either group were removed from 
this study.  

 

Dataset [reference] / Platform Poor Prognosis Good Prognosis Total 

Harvard Lung [106] / Oligo 30 33 63 

Michigan Lung [105] / Oligo 17 43 60 

Stanford Lung [104] / cDNA 10 9 19 

Ontario Lung [103] / cDNA 3 8 11 

Total 60 93 153 
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3.1.2 SEP: Score for Expression Profile 

A designed variable, Score for Expression Profile or SEP, was defined as a qualifier of 

gene expression profiles. Given a profile with N reporter genes, the SEP of each patient was 

calculated as: 

(1).     SEP = ΣN [wi ∗ (Xi – Ei)] 

In Formula (1), wi was the weight of ith gene in the profile. The sign of wi corresponded 

to a positive or negative correlation between ith gene and the output variable under 

investigation while the magnitude of wi indicated its relative importance in a profile. Xi was 

the expression measurement of ith gene in the patient while Ei was its expected expression 

level. Since the output variable was dichotomous, Ei was the expression level that had equal 

probability to be found in either sample group and could be denoted as E (Xi | p+=p-=0.5). 

The Ei of each gene was empirically estimated from the training data. By using Formula (1), 

the difference between Xi and Ei of each gene in the profile was weighted and then be 

linearly summarized to obtain a SEP score. According to this process of calculating SEP, 

patients with poor prognosis were expected to have lower SEP scores than patients with good 

prognosis in general. SEP demonstrated its advantage in the current study as a numeric 

variable appropriate for common quantitative methods, such as chi-square test and 2-group 

comparison. Consequently, it was treated as a potential prognostic index, representing the 

information provided by microarray data. (See Appendix A.8 for calculation of SEP score.) 

 

3.1.3 Correlation Analysis 

Genes whose expression is highly correlated to an investigated sample feature can be 

considered as the reporters of that feature. Identifying reporter genes from a genome involves 
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procedure called ‘feature selection’, during which one or more statistical tests are applied to 

evaluate gene-feature correlation. Among all the methods used to evaluate correlation 

between two variables, Pearson’s correlation is most common and straightforward [70]. It has 

the best performance when data follows linear distribution. Pearson’s correlation reports an r 

statistic as its result. After this r statistic is further transformed into a normally distributed t 

statistic, a p-value corresponding to a hypothesis testing about correlation can be acquired. In 

this study, reporters of an output variable were defined as those genes having the most 

significant p-values. (See Appendix A.5 for more details about correlation analysis.) 

 

3.1.4 Partial Correlation Analysis 

Partial correlation is a statistical technique used to control the effect of confounders out 

of the correlation between two variables [108]. In the case of cancer microarray analysis, it 

was observed that the correlation between gene expression and disease outcome varied with 

some clinical indexes (see Fig. 2), such as Estrogen Receptor (ER) status of breast tumors. 

This confounding effect causes the dependence of cancer expression profiles on the clinical 

scenarios of sample patients, and then reduces the reproducibility of profiles. A partial 

correlation analysis was proposed by this study, during which the gene-outcome correlation 

is re-evaluated after a confounding variable is controlled. The first step of this analysis is to 

transform each gene expression measurement to a residual using: 

(2).     Xresidue = X − E (X | controlled variable) 

In Formula (2), X was the original expression measurement of a gene and E was the 

expected X given a known value of the controlled variable, such as positive or negative ER 

status. Patients were classified into groups according to the controlled variable and E values 
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of each gene were estimated by averaging X of all patients in each group. Subsequently, the 

partial correlation coefficient (r’) of each gene to the output variable was calculated using the 

residuals. Once each measurement in the original data matrix was transformed to a residual, 

the gene-outcome correlation will be re-calculated, with X replaced by Xresidual, to get a 

partial correlation coefficient (r’). The r’ statistic was considered the same as r through the 

subsequent analyses. Theoretically, Formula (2) could be reiterated until all the confounders 

were controlled.  (See Appendix A.6 for more details about partial correlation analysis.) 

 

3.1.5 Rank Sum Test 

Since samples had only two outcome categories in this study, two-group comparison 

methods were potentially appropriate for calculating gene-output correlation. Wilcoxon Rank 

Sum Test (RST) [70] was used as the main method to evaluate differential expression of 

genes between opposite patient groups. As a non-parametric method, RST does not assume 

the normality of data as parametric methods, such as commonly used Student’s t test. Large 

portions of the genes in analyzed microarray datasets do not satisfy this assumption of 

normality. Although non-parametric methods have less statistical power, such a disadvantage 

is insignificant if reporter genes are selected based on relative ranks of genes instead of their 

p-values. RST reports a Z statistic as its result. It first transforms all expression 

measurements of a gene into ranks, and then calculates the Z statistic with the ranks assigned 

to the compared groups. When both groups have no less than eight observations, Z statistic 

follows standard normal distribution, so a corresponding p-value can be obtained. With the 

procedure used in this study, the Z statistic of a gene would be positive if it is generally over-

expressed in good prognosis patients; otherwise, it would be negative. No matter which 

 28



statistical test was used, the resultant test statistics were used to rank genes. In this study, 

genes having the highest magnitude of Z statistics or the smallest p-values were selected as 

reporter genes. (See Appendix A.7 for guide of calculating RST Z statistic.) 

  

3.1.6 Logistic Regression Model 

Logistic regression is a statistical technique used to evaluate the predictive ability of 

independent variable(s) on a dependent variable having dichotomous outputs [108]. Building 

logistic regression models is process during which the best estimation of the parameters of a 

regression formula is achieved based on input data. The resultant model has a statistic called 

-2 Log Likelihood (-2LL), which is used to compare fitness of models to actual observation 

of an output variable. For a fixed sample size, a smaller -2LL represents better model fitness. 

A model is uni-variate if it has only one independent variable and is multi-variate if it 

includes more than one independent variable. Models generated by this study utilized 

available prognostic indexes including SEP as independent variables and disease outcome as 

the dependent variable. Multi-variate models were built using a forward stepwise procedure, 

during which independent variables were added into a model one by one in the sequence of 

their significance. The resultant −2LL of each step was recorded to trace the changing of 

model fitness. All models were generated using SAS System for Windows, Release 8.02 

(SAS Institute, Inc.). 

 

3.1.7 ROC Curve 

ROC (Receptor Operating Characteristic) curve is a type of plot used to evaluate the 

accuracy of a clinical test [70]. It shows the tradeoff of sensitivity (true positive rate) and 
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specificity (true negative rate) when the test result is at each of its cutoff points. From a ROC 

curve, one can determine the false positive rate that needs to be tolerated to guarantee a 

certain sensitivity of a test. The curve is usually drawn from the lower left corner to the upper 

right corner in a 1.0Χ1.0 scale, so its AUC (Area Under the Curve) ranges from 0.0 to 1.0; 

the larger the AUC, the higher accuracy of a corresponding clinical test. A test will be ideal if 

its ROC curve has AUC equal to 1.0. In this study, the SEP scores of patients were 

considered as the results of a clinical test based on microarray experiment, and ROC curves 

built with these scores were used to evaluate the clinical value of expression profiles.  

 

3.1.8 Bootstrap Re-sampling Strategy 

Some reporter genes selected into expression profiles could be false positives because of 

the issue of multiple hypothesis testing. Consequently, validating a profile with the same data 

used to generate it will cause overfitting in results. To avoid self-adaptive overfitting, 

patients of each dataset were randomly re-sampled into training and testing subgroups. 

Thereafter, the expression profiles were generated from training data and validated with 

testing data. Although this strategy eliminated overfitting, it still had a major drawback. The 

random re-sampling process introduced bias into the profiling and validating results, 

especially when the sample size of a dataset was small. A bootstrap strategy was applied to 

remove sampling bias by repeating the sampling-profiling-validating process a large number 

of times. Each bootstrapping repeat created an expression profile from the training data, 

which was used to calculate SEP scores of testing patients. SEP scores were used to classify 

patients and build an ROC curve, insulting in classification accuracy and AUC as test 

statistics to indicate the quality of the expression profile. These statistics obtained from all 
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bootstrapping repeats were summarized to get their median and 90% Confidence Interval (CI) 

values. Hence, this bootstrap re-sampling strategy allowed the objective and unbiased 

comparison of gene expression profiles and the approaches used to generate them. Every 

bootstrapping repeat also assigned a Z statistic and a rank to each gene. These results were 

summarized to make a final ranking of all genes for entire dataset. Genes consistently getting 

significant Z values or top-ranked were selected as reporters. (See Appendix A.4 for demo of 

patient re-sampling.) 

 

3.1.9 Gene Categorization According to Gene Ontology 

Gene Ontology (GO) is an infrastructure of controlled vocabularies supporting 

unambiguous description of genes and their products [109]. All vocabularies of GO are 

organized as a tree-like structure with three roots: ‘Biological Processes’, ‘Cellular 

Components’, and ‘Molecular Functions’. GO allows researchers consistently and 

conveniently query for attributes of a given gene, genes of a specific category, and even the 

associations between genes. In this study, reporter genes were categorized into the 

‘Biological Processes’ domain of GO, which includes sub-categories such as Cell Cycle and 

Signal Transduction. The route of mapping Unigene clusters into GO categories was: 

Unigene ID → Entrez Gene Symbol [110] → International Protein Index [111] → GO ID.  
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3.2 MAMA Project 

3.2.1 Developmental Stages 

The development of the MAMA (Meta-Analysis of MicroArray) project followed the 

common criteria of software engineering. It started with vision and requirement analyses, 

followed by use case analysis, system architecture design and data modeling. The database of 

MAMA was designed and implemented before developing a software application of data 

analysis. The sequential developmental stages of this application were software architecture 

design, package and class design, coding and testing. Other efforts involved in this project 

included loading data into database, User Interface (UI) design, and documentation. 

 

3.2.2 Data Models 

MAMA project used two data models to describe microarray data objects and their 

relationship. The data model adopted by the MAMA database is MAGE-OM (MicroArray 

Gene Expression – Object Model) [75]. MAGE-OM is a complex data model developed by 

MGED (Microarray Gene Expression Data) Society to facilitate the sharing of microarray 

data. It defines the concepts about most aspects of microarray-based experiments and their 

associations. (See Appendix B for more details about MAGE-OM classes.) Although the 

MAMA database is fully MAGE-compliant, only a minor portion of its tables have data 

loaded into them because the current project only dealt with the high-level analysis aspect of 

microarray data. Despite of the complexity of MAGE-OM, it is focused on the description of 

static data, but not the data analysis procedures. Therefore, the data analysis application 

needs its own data model. Since this application was coded with Java (J2SE, v1.4.2 Sun 

Microsystems Inc.), an object-oriented programming language, its data model has an object-
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oriented tree structure. Specifically, its root class is called ‘Workspace’, within which various 

data manipulation and analysis operations can be performed by end users. Each Workspace 

includes various types of data objects, such as ‘Query’, ‘Experiment’, and ‘Analysis’. Each 

of these objects has its own contents and associations to other types of data. For example, a 

‘Query’ object has attributes including its identifier, subtype, created date, and selection 

limits, and it can be related to a ‘Query Result’ object.  

 

3.2.3 Relational Database 

The database schema of MAMA included the schema of ArrayExpress [87, 88], a 

MAGE-OM-based public database. Denormalization tables were added to improve query 

performance. The MAMA database was implemented into an Oracle 9i (Release 9.0.1, 

Oracle Corporation) database system located on a Sun 280R server (Sun Microsystems Inc.). 

In the current version of MAMA, a server program interacts with this database using Java 

JDBC package to load or retrieve data. The open architecture of MAMA allows other 

developers to integrate other methods for these tasks. The MAMA database provides a 

centralized repository of public microarray datasets about cancer. End users have free, but 

limited, access to this database. They will be able to freely query about the stored microarray 

datasets or directly download complete datasets, but cannot modify existing data or load data 

into the database, which are the tasks of data curator and administrator.  

 

3.2.4 Server Program 

The MAMA server program is running as a Java servlet (J2EE Servlet Specification 2.3, 

Sun Microsystems Inc.) deployed in a Tomcat container (Apache Tomcat Version 4.1, 
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Apache Software Foundation). A servlet uses threads to handle concurrent requests sent by 

different clients and send back responses. (See Appendix C for more details about 

Servlet/Tomcat server.) The server program interacts with the MAMA database with Java 

JDBC package to query or load data, and the client program accesses data in the database 

through the server. The server and client programs communicate with each other through a 

pre-defined protocol. Beyond the client program provided by the current build, other 

developers can write their own as long as this protocol is implemented.  

 

3.2.5 Client Program 

The MAMA client program is a data analysis application executable on any computer 

system running JVM (Java Virtual Machine). Although it requires network connection to 

retrieve data from MAMA database through the server program, this program can be used as 

a stand-alone application. End users can load microarray datasets into the client program 

either by downloading them from the MAMA database or by directly importing them from 

text files. Afterward, they will be able to save or work with loaded datasets on their local 

machine. The client program has a Graphical User Interface (GUI) programmed with Java 

Swing to improve its user-friendliness. The software development followed the MVC 

(Model-View-Controller) design pattern. The ‘Model’ package defined the Java classes for 

data objects and maintained them in a hierarchical structure, the ‘View’ package included 

GUI components, such as List and Table, to render data objects, and the ‘Controller’ package 

implemented handlers of user events that might modify the data objects and/or the GUI 

components. These packages encapsulate the functions of the client program and interact 

with each other through software interface. (See Appendix D for more details about MVC 
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design.) The MAMA client also includes a data analysis package, which implements the 

statistical methods of microarray analysis, such as Pearson’s correlation analysis or Student’s 

t test. These methods are called by the ‘Controllers’ in response to the initiation of data 

analysis operations. The Eclipse Platform (version 3.0.1, Eclipse contributors and others, 

http://www.eclipse.org), an open-source product, was used for the creation, organization, and 

compilation of Java source codes.  

 

3.2.6 File Formats 

The MAMA client program accepts and processes two file formats. The first one is tab-

delimited text. It is the only data format accepted by the current build for data importing, and 

is also used for saving matrixes of expression measurements in ‘Workspaces’. The other 

format is XML (eXtensible Markup Language). XML documents organize data in 

hierarchical structure and label them with defined tags. They are machine-readable files and 

proper for data exchange between different computer programs. The MAMA client uses 

XML for the storage of all data objects in ‘Workspaces’ except matrixes of expression 

measurements, whose amount is usually too large to be processed as XML documents. The 

current project did not define any schema or DTD (Data Type Definition) for XML 

documents. Instead, it utilized the XML data-binding functions provided by Castor XML 

(version 0.9.6, Exolab Group, Intalio Inc., and Contributors), which could automatically map 

Java objects to XML documents or vice versa. The mapping rules were defined in an XML 

document, which can be downloaded together with the client program. (See Appendix L for 

Java-XML mapping with Castor.) 
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3.2.7 Open Source Framework 

MAMA is an open-source project. Its source code will be freely downloadable. 

Furthermore, the three components of MAMA project: database, server, and client, are 

independent of each other, which means other researchers can develop their own programs to 

interact with any of these components as long as those proper interfaces to existing 

components are implemented. The current version also provides a mechanism for users to 

plug in their own data analysis methods into the client program. The plug-in of a method 

includes two steps. The first step is to create a Java class that realizes the method. This class 

will be able to activate a procedure to run the method. It should also implement the API 

(Application Program Interface), which is designed for the method category belonged to by 

the method. Methods sharing the same API will have the same types of inputs and outputs. 

For example, all methods evaluating correlation between two genes will have two arrays of 

expression measurements that have the equal length as its inputs, and the value of a test 

statistic and its corresponding p-value as its outputs. The second step of method plug-in is to 

register the new method by providing information about its type, name, and path of Java 

class. A file including all registration information can also be downloaded together with the 

client program. (See Appendix O for more description of method plug-in.)  

 

3.2.8 Meta-Analysis Methods 

A key feature of MAMA data analysis software is the availability of meta-analysis 

methods. Meta-analysis is often referred to as ‘Analysis of Analyses’, a statistical technique 

that reviews the results from multiple individual studies to draw integrated conclusions. 

MAMA implemented two major types of meta-analysis methods: ‘combined tests’ and 
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‘measures of effect size’ [64]. Combined tests are applied to the results from individual 

studies, such as p-values, t and z test statistics, to obtain a combined test statistic. Examples 

of these tests are Fisher, Winer, and Stouffer combined tests, all of which were adopted by 

MAMA. Compared to combined tests, which provide only the statistical significance of 

hypothesis tests, measures of effect sizes are more informative because ‘effect size’ 

represents ‘the degree to which the null hypothesis is false’. Many meta-analysis methods 

have been developed to deal with two types of effect size: correlation coefficients (r) and 

standardized mean differences between two groups (d). These methods usually utilize r or d 

statistics obtained from individual studies to generate a summary statistic. (See Appendix E 

for more description of meta-analysis methods.) 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 
 

4.1 Data Analysis 

4.1.1 Pilot Studies 

The pilot studies analyzed two published breast cancer datasets (Table 1A), mostly the 

Rosetta dataset. The purposes of these studies are to: 

• Evaluate the feasibility of using SEP as a prognostic index of cancer. 

• Verify the confounding effect of clinical indexes on expression profiling of cancer 

outcome. 

• Try partial correlation analysis to control the effect of confounders. 

• Confirm the prognostic value of microarray data on cancer outcome. 

 

4.1.1.1 Confounding Effect of Clinical Indexes 

The original study of Rosetta dataset selected 78 breast cancer patients from it to carry 

out expression profiling. 44 patients who did not develop recurrence and were followed up 

for at least five years were categorized into a good prognosis group, while the other 34 

patients who recurred within five years after diagnosis were considered as having poor 

prognosis. This study calculated the Pearson’s correlation between the expression of each 

gene and the recurrence outcome of patients, and 231 genes obtained significant correlation 

 



coefficient (|r| > 0.3, p < 0.01). The current study used these genes to calculate a SEP for the 

same 78 patients using Formula (1) within which the correlation coefficient r of each reporter 

genes was taken as its weight w.  

The density distribution of all 78 SEP scores was plotted in Fig. 1A and an unexpected 3-

peak mode was observed. Fig. 1B, on the other hand, separately plotted the density 

distributions of the scores of good and poor prognosis patients. Comparison of Fig. 1A and 

1B showed that the most of right and middle peaks were correspondingly composed of good 

and poor prognosis patients while the left peak was a mixture of patients from both prognosis 

groups. Shapiro-Wilk test [112] was used to test the normality of the two curves in Fig. 1B. It 

rejected the normality of good prognosis curve with p-value of 0.0022, but failed to reject it 

for the poor prognosis curve with p-value of 0.49. 

The existence of the left tails of both curves in Fig. 1B suggested that although all 

reporter genes were identified because of their observed significant correlation to recurrence 

outcome, some of them might more significantly correlated to other variable(s). This 

suggestion could be verified if the patients located in the left peak of Fig. 1A shared some 

common attributes that were not possessed by the patients in the middle and right peaks. This 

interpretation was consistent with the observations that most patients in the left tails were 

ER-negative and the majority of the reporter genes (165 of 231) were also significantly 

correlated to ER status of patients (p < 0.01).  

Chi-square tests were performed to evaluate the dependence of SEP scores on common 

clinical indexes. All 78 scores were artificially separated into two groups using -5 (left valley 

in Fig. 1A) as the cutoff. Clinical indexes were categorized according to the criteria used by 

the original study (e.g. ER: positive and negative; Grade: 1, 2, 3, and 4). Test result of all six  
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Figure 1A Density Distribution of SEP Scores 

of All 78 Breast Cancer Patients 

 
 
 
 
 

 
Figure 1B Density Distribution of SEP Scores 

of Both Prognosis Groups 

 

  
Figure 1C Density Distribution of SEP Scores 

of Both Prognosis Groups after Partial 
Correlation 

 

 
Figure 1 Density Distribution of SEP Scores 

Correlation or partial correlation analysis was 
based on microarray data of 78 breast cancer 
patients in Rosetta dataset. (1A) The 
distribution of all 78 scores were plotted 
together. SEP was calculated with 231 reporter 
genes identified by the original study. All 
reporters had significant correlation (p < 0.01) 
to 5-year recurrence outcome of breast cancer 
patients. Correlation coefficient r of each 
reporter was used as its weight to calculate SEP. 
(1B) The distributions of 44 scores from good 
prognosis patients and 34 scores from poor 
prognosis patients were separately plotted. SEP 
score were calculated with the same 231 genes 
and their weight. In general, good prognosis 
patients were expected to have higher SEP 
scores. (1C) The distributions of scores from 
good and poor prognosis patients were plotted 
again after partial correlation analysis. SEP was 
calculated with 127 reporters that had 
significant partial correlation (p < 0.01) to 5-
year recurrence after ER status of patients was 
controlled. Partial correlation coefficient r’ was 
used as weight of reporters. 
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available indexes were summarized in Table 2, which showed that the value of SEP was 

significantly dependent on tumor size, histological grade, ER and PR (Progesterone Receptor) 

status. Therefore, the confounding effect of these variables might have considerable 

influence on the expression profiling of breast cancer recurrence. 

 

Table 2:  
Chi-square Tests on SEP Scores and Clinical Indexes 

 
d.f.: degree of freedom, number of categories of each clinic index minus 1; χ2: chi-square test 
statistic, measurement of the association between two variables: SEP and a given clinical index; 
Grade: degree of morphological abnormality of cancer cells; Angioinvasion: invasion of cancer 
cells into blood or lymph vessels; ER: Estrogen Receptor; PR: Progesterone Receptor. 

 

Clinical Index d.f. χ2 p-value 

Age 2 0.51 0.776 

Tumor size 1 10.24 0.014 

Grade 3 13.10 0.014 

Angioinvasion 1 0.41 0.520 

ER status 1 42.55 <10-8

PR status 1 24.61 7X10-7

 

Fig. 2 presents a general causal model about the interrelationship of gene expression, 

disease outcome, and clinical indexes. In the model, both gene expression and clinical 

indexes are causal variables of cancer outcome while they are correlated to each other. Thus, 

when the gene-outcome correlation between gene and outcome is under investigation, 

clinical indexes are potential confounders. In Fig. 2, if both r23 and r13 are significant, r12 will 

not represent the ‘intrinsic’ correlation of a gene to disease outcome. When an expression 

profile includes many confounded genes, the value of this profile as an independent 

prognostic index will be reduced because its predictive ability varies with the clinical 

background of patient cohorts. To avoid acquiring expression profiles with inconsistent 
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performance, Gruvberger suggested that expression profiling should be carried out separately 

for ER-positive and -negative patients [61]. However, this suggestion did not give an 

ultimate solution to the problem. Since ER status is not the only confounding index 

according to previous chi-square tests, patients need to be further sub-grouped to control 

other indexes. Consequently, sample size of subgroups will be too small to produce 

statistically meaningful results. More sophisticated statistical techniques are required to 

generate more general and independent prognostic index of cancer from microarray data.  

This section demonstrated the advantage of using SEP to summarize expression profile 

into a numeric value. Common statistical analyses could be applied to this variable to provide 

powerful and straightforward results. Therefore, the rest part of this study would use SEP as 

a potential prognostic index of cancer outcome and compare it to other indexes in terms of 

their clinical value. 

 
Figure 2 Confounding Effect of Clinical Index on Gene-Outcome Correlation  

Observed correlation between gene expression and disease outcome (r12) is intervened by the clinical index 
because of the gene-index (r13) and index-outcome (r23) correlations. Direction of arrowheads indicates causal 
relationships.  
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4.1.1.2 Partial Correlation Analysis 

This analysis controlled the confounding effect of ER status, which has the highest 

correlation to SEP according to Table 2, from the calculation of gene-recurrence correlation. 

The conditional expected expression levels (E) of each gene in ER-positive and -negative 

patients were separately estimated by calculating the group averages (Appendix A.6). 

Thereafter, Formula (2) was used to subtract E from the original measurements to obtain 

residuals. These steps were repeated for all genes to generate a data matrix composed of the 

residuals. This matrix was used to replace the original data matrix in subsequent steps.  

A partial correlation coefficient (r’) of each gene to recurrence outcome was then 

obtained from the residuals. Among all 19,174 Unigene clusters, 127 had significant partial 

correlation (|r’| > 0.3, p < 0.01), including Cyclins (B2, E2, etc.), kinases (PK428, PGK1, 

etc.), transcription factors (FOXM1, GTF3C1, etc.), growth factors (TGFB3, FGF18, etc.), 

and genes related to cytokinesis (KIF3B, PRC1, etc.). This list of reporter genes had only 

about half the size of the previous 231-gene list, which was not unexpected because many 

genes in the first list were highly correlated to ER status, the controlled variable.  

SEP scores of all 78 patients were re-calculated with Formula (1) while r and L were 

replaced with r’ and Lresidue. The density distributions of the new scores corresponding to two 

prognosis groups are separately plotted in Fig. 1C. Both curves are bell-shaped and Shapiro-

Wilk tests failed to reject their normality (p = 0.50 and 0.79 respectively). Although 

Student’s t test rejected the equality of group means with p < 0.0001, these two curves shared 

noteworthy overlapping. Classification of patients had the best fit to actual observations 

when cutoff of SEP was -2.2. In particular, nine poor prognosis and four prognosis patients 

were incorrectly classified, giving an overall accuracy of 83.3%.  
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Logistic regression models were used to compare the expression profiles derived from 

regular and partial correlation analyses. Table 3 summarized the -2LL (-2 Log Likelihood) 

fitness and classification accuracy of various models. All models had SEP as independent 

variable and multi-variate models also included ER status and other clinical indexes (PR 

status, tumor size, grade, angioinvasion, and age of patients). Results in Table 3 suggested 

that: 

• When SEP was acquired from partial correlation analysis, models had improved 

fitness. 

• The model including all available indexes and SEP obtained from partial correlation 

had the best fitness (51.7) and accuracy (84.6%). Nevertheless, the difference of 

classification accuracy among models was not significant. 

• Multi-variate models combining the clinical indexes and SEP had better fitness than 

uni-variate models of SEP. 

 

Table 3: 
Comparison of SEP and Clinical Indexes Using Logistic Regression Models 

 
Regular Correlation: reporter genes and their weight were obtained by calculating the Pearson’s 
correlation between expression measurements and breast cancer recurrence; Partial Correlation: 
reporter genes and their weight were obtained by calculating the Pearson’s correlation between 
expression measurements and breast cancer recurrence after the effect of ER status was controlled; -
2LL: -2 log likelihood, indicating the fitness of models to actual observations; Accuracy: accuracy of 
patient classification using the model; Intercept: initial model having no independent variable and 
including the constant term only; ER: Estrogen Receptor; all indexes: Age, Angioinvasion, Grade, 
Tumor Size, and ER/PR statuses. 

 

Regular Correlation Partial Correlation 
Independent Variable(s) 

–2 LL Accuracy –2 LL Accuracy 

Intercept 106.8 56.4% 106.8 56.4% 

SEP only 71.6 83.3% 66.5 78.2% 

SEP + ER 66.7 79.5% 63.8 80.8% 

SEP + all indexes 54.1 80.8% 51.7 84.6% 
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Although the superiority of partial correlation analysis was supported by Table 3, these 

results were obtained from self-adaptive processes and might include overfitting. For 

example, when both expression profiles were cross-validated with the Stanford dataset, the 

127-gene profile did not perform better than the 231-gene profile. This observation revealed 

a critical drawback of partial correlation analysis. Since the conditional expected expression 

level (E) in Formula (2) was estimated from experimental data, extra variance and overfitting 

was introduced into the analyses and results. Furthermore, there existed more confounders 

other than ER status as showed in Table 2. Chi-square tests showed that the SEP calculated 

with the 127-gene profile was not dependent on ER status any more (p = 0.67), but still 

significantly correlated to PR status (p = 0.039), tumor size (p = 0.019), and histological 

grade (p = 0.0002). Although Formula (2) could be iteratively used to control all confounders, 

such a process would introduce even more variance and overfitting. Therefore, partial 

correlation analysis was not recommended by this study.  

 

4.1.1.3 Case Study: a Gene Regulatory Pathway 

In addition to expression profiling of sample features, an important application of 

microarray data is to discover or confirm gene regulatory pathways by revealing correlated 

expression of genes. Partial correlation analysis can be used for this purpose because gene-

gene correlation is also influenced by confounders. For example, if two genes are both highly 

correlated to ER status, they are very likely to have an observed correlation with each other 

too even they are functionally irrelevant. 

The residuals obtained from controlling ER status were used to perform a 2-way 

hierarchical clustering of 78 breast cancer patients and 127 reporter genes (Fig. 3). Patient  
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Figure 3 Clustering of 127 Reporter Genes and 78 Breast Cancer Patients 

Results were obtained from partial correlation analysis that controlled the ER status of patients from 
original expression measurements of Rosetta breast dataset. Identified 127 reporter genes were 
horizontally clustered into two major branches, corresponding to positive (right) and negative (left) 
correlation to disease outcome. Similarly, 78 breast cancer patients were vertically clustered into two 
major branches, corresponding to good (up) and poor (down) prognosis. Each of these branches also 
included two sub-branches. In the case of the branch of good prognosis patients, the bigger sub-branch 
included 33 patients, but only four of them had poor prognosis while seven of eight patients in the 
smaller sub-branch had poor prognosis. The branch of poor prognosis patients had the similar pattern.  
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clustering deviated in two first-level branches, corresponding to two prognosis groups. There 

was a large sub-branch of 29 patients including only two poor prognosis ones. Genes were 

clustered into two first-level branches too, corresponding to positive and negative correlation 

to recurrence outcome. A small sub-branch of eight reporter genes was further investigated 

because it demonstrated a very strong gene co-expression pattern. Literature searches 

indicated that six of these genes have functions directly or indirectly related to cell cycle 

regulation. Over-expression of CCNB2 (cyclin B2) will block the exit of mitosis [113]. 

MAD2L1 is located upstream of CCNB2 in a known gene pathway [114, 115]. BUB1 is a 

direct regulator of MAD2L1 [116] and HEC is required by kinetochore recruitment of 

MAD1-MAD2 complex [117]. Furthermore, FOXM1 gene is a transcription factor regulating 

several cyclins [118] while PRC1 is a substrate of several cyclin-dependent kinases [119]. 

Fig. 4 presented a diagram of regulatory relationship between these genes. The expression of 

all six genes was highly correlated to recurrence of 78 breast cancer patients in Rosetta 

dataset (Table 4), which implied that this pathway played an important role in breast cancer 

recurrence. 

The correlation between the genes described above and breast cancer recurrence was 

validated with testing data including 19 patients from Rosetta dataset and 48 patients from 

Stanford dataset. The resulting correlation coefficients (r) and corresponding p-values were 

listed in Table 4. As in training data, all genes had negative correlation to recurrence 

outcome. However, most of them did not get a significant correlation coefficient (Table 4), 

probably because of the relatively small sample size of testing data. Therefore, two meta-

analysis methods, Fisher and Stouffer combined tests, were applied to the results obtained 

from two testing datasets. The right side of Table 4 gave the p-values of each gene obtained 
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from both tests. All p-values were significant or marginally significant while Fisher 

combined test was more conservative than Stouffer in general. 

 

 

Figure 4 A Cell Cycle-related Pathway Revealed by Partial Correlation Analysis 
All Genes were related to a spindle checkpoint pathway according to literature search. Results were 
obtained from the microarray data of 78 breast cancer patients in Rosetta datasets. Direction of 
arrowheads indicated the regulatory relationship (solid line: direct regulation; dashed line: indirect 
regulation). Label numbers were the Pearson’s correlation coefficient (r) between each pair of genes. 

 

Although the focus of this study was not gene-gene relationship, this case study gave an 

interesting example about the application of microarray data to research of gene pathway. 

Moreover, cross-validation results suggested that independent datasets might share some 

common information. Meta-analysis demonstrated its value in microarray analysis by 

successfully combining such information from two testing datasets. 
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Table 4: 

Correlation of Genes in a Cell Cycle Pathway to Breast Cancer Recurrence 
 

Combined test: a type of meta-analysis test combining the test statistics of individual tests; n: number of 
patients having non-missing measurements of the gene; r: Pearson’s correlation coefficient, negative r 
indicated that gene was over-expressed in poor prognosis patients; Fisher: Fisher’s combined tests, using 
p-values of individual tests as its inputs; Stouffer: Stouffer’s combined test, using z test statistics of 
individual tests as its input.  

 

Training Data Testing Data Combined test
78 patients 
(Rosetta) 

19 patients 
(Rosetta) 

48 patients 
(Stanford) Fisher Stouffer

Gene 
Symbol 

Unigene 
ID 

n r p-value n r p-value n r p-value p-value p-value

BUB1 Hs.98658 77 -0.41 0.0002 19 -0.36 0.130 47 -0.21 0.157 0.064 0.038 

CCNB2 Hs.194698 78 -0.37 0.0009 19 -0.44 0.059 N/A N/A N/A 0.059 0.059 

FOXM1 Hs.239 77 -0.37 0.0009 19 -0.30 0.212 48 -0.29 0.046 0.034 0.022 

HEC Hs.58169 78 -0.39 0.0004 19 -0.14 0.568 7 -0.66 0.107 0.158 0.123 

MAD2L1 Hs.79078 78 -0.35 0.0017 19 -0.41 0.080 47 -0.13 0.384 0.090 0.064 

PRC1 Hs.344037 78 -0.37 0.0009 19 -0.45 0.053 N/A N/A N/A 0.053 0.053 

 
 

The pathway in Fig. 4 functioned as a block of mitosis exit, and the over-expression of 

CCNB2 and other genes was expected to slow down cell division and tumor growth, which 

would lead to good prognosis of patients. However, according to Table 4, the observed 

correlation coefficients between good prognosis and genes were all negative. This conflict 

might be explained by the fact that actively growing tumors had a larger portion of cycling 

cells than latent ones. Therefore, since above genes were known as being over-expressed 

during mitosis, quickly growing (poor prognosis) tumors would contain more mRNA of 

those genes. This observation occurred when the influence of cell cycle-dependent gene 

expression overwhelmed the functions of genes. This interpretation indicated the importance 

of biomaterial components on expression profiling.  
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4.1.2 Expression Profiling using Multiple Datasets 

Although the pilot studies confirmed the confounding effect of clinical indexes on 

expression profiling of cancer outcome, they did not propose practical approaches to generate 

more generally applicable profiles. Therefore, the following studies were carried out on more 

than one microarray dataset to: 

• Derive expression profiles from multiple independent microarray studies. 

• Combine training/testing validation and bootstrap strategies to make unbiased 

estimation about the quality of expression profiles. 

• Objectively compare SEP to currently used prognostic indexes by cross-validating of 

datasets. 

• Verify the recurrence model of breast cancer proposed by Retsky [71], and generate 

an expression profile corresponding to this model. 

 

4.1.2.1 Analysis of Individual Datasets 

In this section, expression profiles were generated separately from two breast cancer 

datasets, Rosetta and Stanford. Identical steps were applied to both datasets during the 

process. Patients were classified using 3-year recurrence outcome as the cutoff, according to 

the recurrence model of Retsky (Appendix A.1). The size of the resultant prognosis groups 

was given in Table 1A. Source expression data were pre-processed and filtered as described 

in Chapter 3. 

The first step was to split patients into training/testing subgroups. About two-thirds 

patients of each dataset were randomly selected into a training subgroup, leaving the rest for 

testing the expression profile derived from the training data (Appendix A.4). The testing 
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results would be critically influenced by sampling bias since the sample size of the current 

datasets could not provide satisfying statistical power. Consequently, a ‘no replacement 

bootstrap’ approach was performed to eliminate the sampling bias from the results. This 

approach repeatedly re-sampled patients into training/testing subgroups and executed 

identical analyses on each combination. The results obtained from all re-samplings were 

collected and summarized to draw an unbiased final conclusion.  

The differential expression of each gene in patients having good and poor prognosis was 

assessed using the data of each re-sampled training subgroup. A hypothesis test about gene-

outcome correlation was performed on every gene. Since it was a two-group comparison 

problem, Wilcoxon Rank Sum Test (RST) was used for the hypothesis test. As a non-

parametric method, RST was less powerful than Student’s t test, but it did not assume the 

normality of expression measurements, which was violated by many genes in microarray 

data. RST calculated a Z test statistic for each gene. When there were at least eight 

measurements in each prognosis group, RST Z followed standard normal distribution N (0, 

1). A gene would have positive Z if it was over-expressed in patients having good prognosis 

(Appendix A.7). Given the results of RST tests, all genes were ranked according to the 

magnitude of their Z values. Genes having the highest magnitude of Z statistic were top-

ranked and selected into an expression profile as reporters. The number of reporters in a 

profile was denoted as N. Some reporters might be false positives because of the problem of 

multiple hypothesis tests. Increasing N would improve the sensitivity of reporter selection, 

but reduce the specificity at the same time. Instead of arbitrarily setting the value of N, the 

current study applied a stepwise procedure to find an N that would optimal balance the 

sensitivity and specificity. This procedure increased the value of N one by one from 1 to 100, 
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and at each step, the SEP scores of testing patients were calculated with the top-ranked N 

genes. The SEP scores were calculated using Formula (1), while the weight w of each gene 

was its RST Z statistic and the expected expression level E was estimated from the training 

data (Appendix A.8). The resultant SEP scores were used to classify testing patients with 

cutoff = 0. Patients with positive or negative scores would be classified into good or poor 

prognosis group respectively. The accuracy of classification was obtained by comparing 

SEP-classification to actual patient outcomes. SEP scores of a testing subgroup were also 

used to build an ROC curve. The area under the curve (AUC) was an index indicating the 

ability of SEP to differentiate good and poor prognosis patients. Since ROC curve took the 

relative quantity of each score into account, it was more informative and powerful than 

dichotomous classification. 

Both datasets had totally 10,000 bootstrap re-samplings, each of which identically went 

through the above steps. Consequently, unbiased bootstrapping estimation of test statistics 

was concluded from all re-samplings. The upper half of Table 5A shows the median and 90% 

Confidence Interval (CI) of SEP-classification accuracy when N was 100. Bootstrapping 

statistics of two datasets were close to each other, although Rosetta dataset generally had 

better results. The left column in this table was the size-weighted averages summarized from 

both datasets. To calculate these values, the test statistics of both datasets were weighted by 

the size of the corresponding testing subgroups and averaged at each re-sampling. The final 

bootstrapping statistics were concluded from the size-weighted averages of all re-samplings. 

As in Table 5A, the median size-weight average accuracy was just above 70% and a 

symmetric 90% CI ranged from 61% to 80%. Eight of the 10,000 re-samplings got size-

weighted average accuracy lower than 50%, giving a 0.0008 bootstrapping p-value in favor 

 52



of that SEP of testing patients suggested their recurrence outcome. Table 5B presented the 

median and 90% CI of AUC when N was 100. The median of size-weighted average AUC 

was 0.767. Rosetta dataset got better results than Stanford data again, probably because of its 

relatively larger sample size and/or less diverse clinical background of patients. 

 

Table 5:  
Bootstrapping Test Statistics Collected from 10,000 Re-samplings 

 
10,000 bootstrapping re-samplings were performed on both individual breast cancer datasets and their 
combination. At each re-sampling, patients of each dataset were split into training/testing subgroups. 
Each dataset ranked genes based on RST Z statistic applied to training data and selected 100 top-ranked 
genes as reporter. These reporters and their weight were used to calculate SEP of testing patients. 
Resultant scores were used to classify testing patients and build ROC curves. Both classification 
accuracy and AUC were adjusted by size of testing subgroups to get the size-weighted averages. 
Bootstrapping median and 90% CI of these statistics were listed in tables.  

 
Table 5A: Classification Accuracy of SEP Scores 

 

Testing Dataset Training 
Dataset 

Bootstrapping 
Statistic Rosetta Stanford Size-weighted Avg. 

 5% high 84.00% 83.33% 80.00% 

Individual Median 71.43% 70.00% 70.59% 

 5% low 58.06% 55.00% 60.98% 

 5% high 83.33% 85.00% 80.43% 

Combined Median 71.43% 71.43% 71.11% 

 5% low 58.33% 56.52% 61.54% 
 

Table 5B: Area of ROC Curves (AUC) Built with SEP Scores 
 

Testing Dataset Training 
Dataset 

Bootstrapping 
Statistic Rosetta Stanford Set Size-weighted Avg. 

 5% high 0.895 0.902 0.860 

Individual Median 0.775 0.764 0.767 

 5% low 0.640 0.604 0.668 

 5% high 0.903 0.933 0.877 

Combined Median 0.786 0.799 0.789 

 5% low 0.654 0.636 0.689 
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The changing of size-weighted average accuracy and AUC with N were separately 

plotted in Fig. 5A and 5B. The middle curve in each figure corresponded to the medians 

while the other two curves parenthesized the ranges of 90% CI. Although all curves generally 

ascended with the increasing of N, they were not linear. They went up dramatically at the 

beginning and reached a plateau when N was around 60, suggesting that the classification 

and differentiation ability of expression profiles were about to get to their maximum. 

Consequently, it was empirically decided that the sensitivity and specificity of reporter 

selection were optimally balanced at N = 60.  Furthermore, the width of 90% CI in both 

figures had no noticeable change in both figures since N was larger than 5, indicating that 

increasing N would improve the performance stability of SEP as a classifier. 

In the next step, each gene was assigned a final rank from each dataset by counting how 

many times it was ranked top-100 by the dataset through all 10,000 re-samplings. The 60 

genes having the most counts were selected to make an expression profile of breast cancer 3-

year recurrence. The weight of each reporter was its RST Z statistic calculated with the data 

of all patients in the dataset. Both datasets got a 60-gene profile. The complete lists are 

presented in Appendix F. Both 60-gene profiles were precise classifiers when they were self-

validated by the same datasets generating them. SEP scores had 79.3% classification 

accuracy and 0.89 AUC in Rosetta dataset, and 82.3% accuracy and 0.93 AUC in Stanford 

dataset. These results clearly had overfitting because of the existence of false positives in 

expression profiles. 

The microarray analysis procedure developed in this section was able to provide unbiased 

estimation about the quality of expression profiles. Therefore, this procedure could be used to 

compare different strategies of expression profiling. Bootstrapping test statistics obtained  
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Figure 5A Classification Accuracy of SEP Scores 

 

 
Figure 5B Area of ROC Curves (AUC) Built with SEP Scores 

 

Figure 5 Bootstrapping Statistics Separately Obtained from Breast Cancer Datasets 
Changing of average test statistics was traced with number of reporter genes in expression profiles (N). 
At each of 10,000 re-samplings, SEP scores of testing patients were calculated with N reporters and their 
weight derived from the training patients, separately in Rosetta and Stanford breast cancer datasets. The 
averages were adjusted by the size of testing subgroups. Three bootstrapping statistics were reported in 
each figure. The blue line represents the bootstrapping median of size-weighted averages while the 
orange lines parenthesize the bootstrapping 90 CI of size-weighted averages. (5A) Testing patients were 
classified according to their SEP scores. The accuracy of classification was obtained by comparing SEP-
classification to actual events. (5B) SEP scores of testing patients were used to build ROC curves. The 
area under ROC curve represented the ability of SEP to differentiate patients.  
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from two datasets had no significant difference, suggesting that they had similar quality and 

were potentially suitable for multi-dataset analysis. Furthermore, stepwise procedure denied 

the necessity of high sensitivity of reporter selection. The influence of false positives on 

quality of expression profiles will be discussed in last section of this chapter. 

 

4.1.2.2 Cross-validation of Two Datasets 

In last section, two breast cancer datasets had similar results in terms of bootstrapping 

test statistics. However, the 60-gene profiles generated from these datasets barely overlapped 

with each other (Appendix F) although reporters of both profiles were selected from the same 

5,569 Unigene clusters. Only two genes, BUB1 and LRP8, appeared in both profiles. The 

following steps cross-validated the 60-gene profile of each dataset using the data of the other 

dataset.  

SEP of validating patients was calculated with Formula (1), using the 60 reporters and 

their weights obtained from the validated dataset. Expected expression level E of each gene 

was set as 0 by default, assuming that patients of both datasets were sampled from the same 

population. SEP scores of validating patients were used to classify patients with cutoff = 0. 

Consequently, 48 Stanford patients were correctly classified by Rosetta profile, giving an 

accuracy of 77.4% (p < 0.0001, 90% CI [69-86%]); and 58 Rosetta patients were correctly 

classified by Stanford profile, giving an accuracy of 70.3% (p = 0.0002, 90% CI [62-79%]). 

SEP scores were also used to build ROC curves. Classification accuracy and AUC results 

were listed in Table 6. The size-weighted averages were 73.6% and 0.795 respectively, 

which are impressive results considering the difficulty of cancer prognosis.  
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 Table 6:  
Cross-validation of Expression Profiles Derived from Breast Cancer Datasets 

 
60 reporters top-ranked by each validated dataset and their weight were used to calculate a SEP for each 
patient in the validating dataset. Resultant SEP scores were used to classify validating patients with 
cutoff equal to 0 and to build ROC curves. Subsequent classification accuracy and AUC were listed. 
Average of these statistics was adjusted by the sample size of validating datasets.  

 

Validated Dataset Validating Dataset Accuracy AUC 

Rosetta Stanford 77.42% 0.808 

Stanford Rosetta 70.73% 0.786 

Size-weighted Average 73.61% 0.795 

 

The SEP of validating patients was compared to known prognostic indexes of breast 

cancer using logistic regression models. Each uni-variate model was built with an individual 

index as the independent variable. The fitness of models to actual observations of recurrence 

outcome was listed in Table 7A, which showed that the models of both datasets had the 

smallest -2LL and the largest AUC when SEP was the independent variable. This result 

suggested that SEP was superior to all the other indexes. Histological grade had the best 

performance except for SEP and surprisingly, models using tumor size as the independent 

variable were among those having the worst fitness. Multi-variate models jointly including 

all available indexes were also built since it was better practice to synthesize multiple 

prognostic indexes to make clinical decisions. A forward stepwise procedure was applied to 

generate these models. At each step, one independent variable, which would improve model 

fitness better than all the remaining indexes, was added into the model. Table 7B listed the 

sequential addition of the indexes and the consequent statistics of the models. When SEP was 

used as an independent variable, it was always the one to be added first. The SEP-included 

multi-variate models of two datasets had AUC equal to 0.858 and 0.837, the best results in 

this study. When SEP was excluded from the models, other indexes were added into models 
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in similar sequence. The model fitness difference between models with and without SEP was 

marginally significant. In the case of Stanford dataset, the model without SEP reduced the 

final AUC by 0.04 and increased the -2LL by 3.3. This result supported the first hypothesis 

of the current study: microarray data provides extra information about cancer outcome 

beyond currently used clinical indexes. This conclusion was objective since overfitting in 

results was avoided by cross-validation process. 

 

Table 7:  
Comparison of Prognostic Indexes using Logistic Regression Models 

 
ER: Estrogen Receptor status; PR: Progesterone Receptor status; Size: tumor size; Node: lymph node 
metastasis; Grade: degree of morphological abnormality of cancer cells -2LL: -2 log likelihood, smaller 
-2LL indicated better model fitness. Each uni-variate model (Table 6A) had only one independent 
variable. Multi-variate models (Table 7B) were built with forward stepwise procedure, which added 
independent variables into a model one by one. Table 7B also shows the comparison of multi-variate 
models with or without SEP. 

 
Table 7A: Fitness (-2LL) of Uni-variate Models  

 

Dataset Null SEP ER PR Size Node Grade Age 

Rosetta 108.7 92.2 98.0 103.5 101.2 N/A* 94.5 95.5 

Stanford 83.6 66.5 79.1 N/A 80.9 79.7 70.1 83.5 

 
 

Table 7B: Fitness (-2LL) of Multi-variate Models  
 

Dataset   Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

SEP Age Grade Size ER PR With SEP 
92.2 82.7 79.9 78.6 78.2 76.9 

Age Grade ER Size PR  

  
Rosetta 

  Without SEP 
95.5 84.8 81.5 79.8 79.2  

SEP ER Grade Node Size Age With SEP 
63.5 61.3 60.2 59.5 59.3 58.9 

Grade ER Size Node Age  

  
Stanford 

  Without SEP 
70.6 65.2 63.2 62.5 62.2  
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Cross-validation results suggested that Rosetta and Stanford datasets share common 

information about prognosis of breast cancer. Therefore, such common information would 

constitute more general expression profiles if it could be extracted from multiple datasets. It 

was further implied that high sensitivity of reporter selection was unnecessary. Both 60-gene 

profiles performed well on the validating patients although the little overlapping between 

them suggested that both lists missed many true positives.  

 

4.1.2.3 Combination of Individual Datasets 

A straightforward strategy was used in this study for multi-dataset expression profiling. It 

directly combined the training subgroups of two datasets after each bootstrapping re-

sampling. No extra data processing was necessary for this combination as long as both 

datasets had been normalized to consistent scales. This assumed that patients of independent 

datasets were sampled from the same general population, which was also required by other 

cross-dataset analyses including meta-analysis. 

Reporter genes were selected from the combined subgroups with the same procedure 

performed on the individual subgroups. Thereafter, reporters and their weight were 

separately verified by both testing subgroups. The upper half of Table 5A and 5B gave the 

median and 90% CI of SEP-classification accuracy and AUC of 10,000 re-samplings when N 

was 100. Bootstrapping test statistics of size-weighted averages were also listed in these 

tables, which were generally higher than those obtained from the individual datasets. The 

median size-weighted accuracy and AUC were raised by 0.52% and 0.022 respectively. 

However, the difference was not significant. After 10,000 re-samplings, the comparison of 

results obtained from these two strategies showed that the difference in AUC had a one-tailed 
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bootstrapping p-value equal to 0.26. SEP scores incorrectly classified more than half testing 

patients only in five re-samplings when the cutoff was 0 (bootstrapping p = 0.0005). 

Fig. 6A and 6B compared the median size-weighted average accuracy and AUC obtained 

from individual datasets (blue lines) and the combined dataset (red lines). Blue curves were 

higher than the corresponding red curves at the beginning, which indicated that individual 

datasets were good at consistently identifying a few ‘true’ positive reporters having the 

highest ranks. These reporters and their weights were dataset-specific, so they did not 

perform on the combined dataset as well as on the individual ones. However, red lines grew 

up faster in both figures and they were generally above the corresponding blues lines after N 

was about 10. 

Same as the individual datasets, the combined dataset gave each gene a final rank 

according to how many times it was ranked within top-100 across the 10,000 re-samplings. 

The counts of top-300 genes obtained from both individual datasets and the combined dataset 

were plotted in Fig. 7. It illustrated that the specificity of reporter selection was low with 

given data. For example, the 100th genes of all three datasets had less than one-third 

probability to be selected into top 100 by any re-sampling. This observation explained why 

two re-samplings could generate fairly different expression profiles. Nevertheless, the 

combined dataset selected reporters, especially those finally ranked between 30 and 150, 

more specifically than the individual ones. Theoretically, increased sample size accounted for 

this improvement.  

The 60 genes top-ranked by the combined dataset and their weight defined an expression 

profile associated to 3-year recurrence of breast cancer. This was an optimal profile 

achievable with the current data and methods. Table 8 listed some of these genes by giving  
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Figure 6A Comparison of Classification Accuracy between Single-dataset and Multi-dataset Profiling  
 

 
Figure 6B Comparison of ROC Curve Area (AUC) between Single-dataset and Multi-dataset Profiling 

 

Figure 6 Comparison of Expression Profiling Strategies  
Changing of average test statistics was traced with number of reporter genes in expression profiles (N). At each 
of 10,000 re-samplings, SEP scores of testing patients were calculated with N reporters and their weight derived 
from the training patients of individual datasets or their combination. The averages were adjusted by the size of 
testing subgroups. Both blue lines in the figures were the same bootstrapping medians as in Figure 5A and 5B. 
The red lines were made of bootstrapping medians derived after the integration of two datasets. The two lines in 
each figure intercept when N was less than 10, indicating that the data integration strategy became superior 
afterwards. (6A)  Expression profiling using individual datasets or combined dataset was compared in terms of 
patient classification accuracy of SEP scores. The combined dataset increased bootstrapping median of 
classification accuracy by 0.52% when N was 100. (6B)  Expression profiling using individual datasets or 
combined dataset was compared in terms of area of ROC curves built with SEP scores. The combined dataset 
increased bootstrapping median of AUC by 0.022 when N was 100. 
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Figure 7 Comparison of Reporter Selection Consistence 
Two individual breast cancer datasets and their combination ranked genes based on how many times they were 
selected into the top-100 reporter lists across 10,000 bootstrapping re-samplings. The counts of the top-300 
genes of each dataset are plotted in this figure. (blue line: Stanford dataset, green line: Rosetta dataset, red line: 
the combined dataset)  

 
 
 
 
 
 

 62



 

 63 63



the counts and ranks of each reporter obtained from three datasets. (See Appendix F.1 for 

complete lists of reporter genes.) Two genes, BUB1 and LRP8, were presented in all three 

60-gene profiles while 15 others (CDC20, BECN1, etc.) were only within the profile of the 

combined dataset. These 17 genes got higher ranks from the combined dataset because of 

their low inter-dataset variance. Two well-known molecular markers of breast cancer, BCL2 

[120] and ESR1 [121], were ranked 4th and 30th by the combined dataset.  

To explore the functions of identified reporters, all genes in the final top-60 lists were 

mapped to the ‘Biological Process’ domain of Gene Ontology. Fig. 8 illustrated the 

categorization of these genes using GO and the numbers of genes in each category. 

According to this figure, most reporters have been related to important cellular processes 

such as cell cycle and transcription. Some sample reporters identified from the combined 

dataset and their GO categories were: 

• GO:0007049 || Cell cycle || CCNA2, CDC20, KIFC1, etc. 

• GO:0007165 || Signal transduction || ESR1, LRP8, EXT1, etc. 

• GO:0006350 || Transcription || TFDP1, GATA3, TLE1, etc. 

• GO:0050896 || Response to stimulus || BECN1, ACTL6A, BCL2, etc. 

• GO:0044267 || Protein modification || UBQLN1, BUB1, CDC25B, etc. 

Analyses in this section verified the second hypothesis of the current study: expression 

profiling across multiple datasets improved the quality of expression profiles. According to 

Fig. 7, this improvement was probably the consequence of higher reporter selection 

specificity. In the last section of this chapter will give more discussion on this topic. The 60-

gene profile derived from the combined dataset was recommended by this study as a valuable 

prognostic index of breast cancer. However, no more published datasets were available to  
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verify or further improve this profile. Up till now, all microarray analyses have been 

performed on breast cancer datasets. To verify the methods and results of previous studies, 

microarray datasets about lung cancer were also investigated in the following section.  

 

4.1.2.4 Results from Lung Cancer Datasets 

The microarray analyses of this section involved four published datasets about lung 

cancer (Table 1B). Because of their small sample sizes, Stanford and Ontario datasets were 

only used to validate the expression profiles derived from the other two datasets. Harvard and 

Michigan datasets were both generated from oligonucleotide gene chips produced by 

Affymetrix Inc. All genes were mapped to unique Unigene clusters. 4,036 clusters presented 

in both Harvard and Michigan datasets were used for expression profiling. Only 

adenocarcinoma patients were analyzed due to the high diversity of lung cancer subtypes. All 

four datasets provided clinical data and survival outcome of patients, but the recurrence 

information was incomplete. Literature searches failed to find a temporal model about lung 

cancer outcome similar to the model proposed by Retsky about breast cancer. Alternatively, 

lung cancer patients were classified according to their 2-year survival outcome. This 

classification was based on the fact that about 60% of invasive lung cancer patients did not 

survive more than two years after diagnose [122].  

Similar to what was applied to the breast cancer datasets, each lung dataset was analyzed 

with the following steps: 

• About two-thirds patients were randomly selected into a training subgroup. 

• Genes were ranked according to Wilcoxon RST performed on data of individual 

training subgroups and their combination. 
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• Top-ranked N genes and their RST Z were used to calculate SEP of the testing 

patients. 

• Resultant SEP scores were used as a 2-year prognostic index of lung cancer survival.  

• Above steps were repeated for 1,000 times.  

• Both individual datasets and their combination assigned a final rank to each gene 

according to how many times it was ranked within top 100 by all re-samplings. 

Fig. 9 plots the size-weighted median and 90% CI of AUC summarized from 1,000 

bootstrapping re-samplings. The blue and read curves respectively correspond to individual 

and the combined datasets. All curves grew up in the same pattern as what was observed in 

Fig. 5B when N was increased from 1 to 100. The red lines were generally above 

corresponding blue lines, confirming that the combined dataset generated more 

discriminative profiles. The difference of median AUC was 0.022 at N = 100. However, 

comparing to Fig. 6B, the curves of median AUC were located at an obviously lower level. 

Specifically, the median AUC of the combined dataset dropped from 0.789 to 0.685 at N = 

100. The classification accuracy of SEP had similar results and it bootstrapping p-value was 

0.029, in favor of rejecting the null hypothesis of 50% accuracy.  

The availability of Ontario and Stanford lung datasets made it possible to validate the 

expression profile derived from the combination of Michigan and Harvard datasets. Because 

of inconsistent microarray design, many identified reporter genes were not presented in the 

validating datasets. N of expression profile was increased from 60 to 100. Respectively, 53 

and 78 of 100 reporters identified from the combined dataset were found in Ontario and 

Stanford datasets. These genes and their weight were used to calculate SEP of validating 

patients, and patients were classified into two prognosis groups with the cutoff equal to 0.  
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Figure 9 Bootstrapping ROC Curve Statistics Obtained from Lung Cancer Datasets 
Changing of test statistics was traced with the number of reporter genes in expression profiles (N). 1,000 
bootstrapping re-samplings were carried out. The blue lines represent the bootstrapping medians and 
90% CIs of size-weighted average AUC when expression profiles were separately derived from 
individual datasets. The red lines represent the corresponding test statistics derived from the 
combination of two datasets. The combined dataset increased median AUC by 0.022 when N was 100. 
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The 2-year survival of 14 Stanford and 9 Ontario patients were correctly classified, 

giving an overall 76.7% accuracy (p = 0.005, 90% CI [62-92%]). ROC curves were 

separately built with SEP scores of each validating dataset. The size-weighted average AUC 

of two curves was 0.82. When the same patients were used to validate the 100-gene profile 

derived from the Michigan dataset, the size-weighted average accuracy and AUC is 66.7% 

and 0.77. (See Appendix F.2 for complete lists of reporter genes.) 

Because of insufficient patient follow-up, some patients in the validating datasets could 

not be classified into either prognosis group, which reduced the statistical power of validation. 

Kaplan-Meier survival curve, a technique frequently used in clinical research to deal with 

incomplete medical record, was generated with all 40 patients in the original datasets. These 

patients were categorized into two prognosis groups according to their SEP scores and 

survival curves were built based on the classification and patient follow-up data. Fig. 10A 

and 9B respectively showed the survival curves created with the combined dataset and 

Michigan dataset as the training data. The two curves in Fig. 10A were separated with a p-

value equal to 0.029, while those in Fig. 10B were insignificantly separated (p = 0.12).   

The analyses of lung cancer datasets further verified the superiority of multi-dataset 

expression profiling. However, as a prognostic index of lung cancer, SEP was not as 

differential as it was for breast cancer. An obvious reason of this difference was the smaller 

sample sizes of the lung datasets. The profiling quality might also be influenced by how 

patients were classified. Supported by the existing recurrence model, classification of breast 

cancer in this study might more ‘intrinsically’ reflect the difference of patients at genomic 

level. Nevertheless, when the profile derived from the combined dataset was validated by 

two other datasets, the results were satisfying.  
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Figure 10A Expression Profile Identified from the Combination of Harvard and Michigan Datasets 

 

 
Figure 10B Expression Profile Identified from Michigan Lung Dataset Only 

 

Figure 10 Comparison of Expression Profiling Strategies Using Survival Curves 
Expression profiles based on 1,000 re-samplings of lung cancer datasets were used to calculate SEP 
scores of all 40 patients in Stanford and Ontario testing lung datasets. Lung cancer patients were 
classified into prognosis groups with cutoff of SEP equal to 0. A Kaplan-Meier curve was built with 
each groups according to actual patient follow-up. The separation of two curves indicates the quality of 
an expression profile. (10A) Curves were generated from the expression profile identified from the 
combined dataset of Harvard and Michigan datasets. The separation of two curves is significant with p-
value equal to 0.029. (10B) Curves were generated from the expression profile identified from Michigan 
lung cancer dataset only. The separation of the two curves is marginally significant with p-value equal to 
0.12. 
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4.1.3 Sensitivity vs. Specificity of Reporter Gene Selection 

Microarray data are featured by the large number of variables (genes) and much smaller 

number of observations (patients). When a hypothesis test is repeatedly applied to all the 

genes for their differential expression, some tests will get significant p-values just because of 

the random distribution of data. Consequently, identified reporter gene list will include false 

positives. Shortening the reporter list will reduce its sensitivity while shortening it will 

reduce its specificity. Therefore, the balance between specificity and sensitivity of reporter 

selection should be considered during expression profiling.  

The necessity of achieving high sensitivity of reporter selection was questioned by 

previous results. As showed in Fig. 5 and 6, adding more reporters to profiles had little 

influence on bootstrapping results once the curves reached a plateau. Furthermore, the low 

consistence between reporter gene lists of two breast cancer datasets suggested that two 

disparate sets of reporters could perform very similarly on outcome prediction. This 

suggestion was advocated by a biological interpretation. Because of the regulatory interaction 

between genes, the expression of some genes is highly correlated with each other. If two 

genes are ideally co-expressed, they can replace each other in an expression profile. 

Including both of them in a profile has no impact on the profile except introducing 

redundancy. Therefore, it is not necessary to incorporate every true positive reporter to make 

a reliable profile. Conversely, low specificity of reporter selection can have considerably 

negative influence. Not only false positives will introduce extra variance into expression 

profiles, but also they will provide misleading information about functions of genes and their 

relationship to prognosis. 
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Figure 21A Consequence of Decreasing Selection Sensitivity via Reduction Procedure 

 
Figure 11B Consequence of Decreasing Selection Specificity via Replacement Procedure 

 

Figure 11 Changing of Expression Profile Quality with Sensitivity and Specificity 
Stepwise simulation procedures were carried out to trace how the decreasing of reporter selection 
sensitivity and specificity would change the quality of expression profiles. Results were collected from 
1,000 re-sampling analysis of the combined dataset of two breast cancer datasets. The top-ranked 60 
genes selected by each re-sampling were used for the following stepwise procedures. (11A) At each step, 
three reporter genes were randomly selected and removed, which artificially decreased the sensitivity of 
expression profile. The remaining reporters were used to calculate the SEP scores of testing patients, and 
the resultant scores were used to build ROC curves. The bootstrapping median and 90% CI of ROC 
curve area (AUC) are summarized in the figure.  (11B) After the reduction procedure at each step, three 
replacing genes were randomly selected from all genes and added into the reporter list, which kept the 
length of list unchanged but artificially decreased its sensitivity. The replacing genes inherited the weight 
(z statistic of RST test) of the replaced genes. The revised list was used to calculate the SEP scores of 
testing patients, and the resultant scores were used to build ROC curves. The bootstrapping median and 
90% CI of ROC curve area (AUC) are summarized in the figure. 
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Two simulation strategies were designed to evaluate how the change of reporter selection 

sensitivity and specificity would change the quality of expression profiles. Both strategies 

were applied to the combination of two breast cancer dataset and their first step was to run 

another 1,000 bootstrapping re-samplings on this dataset. RST was performed on each gene 

and genes were ranked according to their Z statistics. 60 top-ranked genes were selected from 

each re-sampling as reporters. 

The next step of reduction strategy gradually decreased the sensitivity of reporter list 

using a stepwise process. Three genes were randomly selected and removed from the list at 

each step, followed by re-calculating SEP of testing patients with the remaining genes. Fig. 

11A presents the relationship between AUC of SEP scores and the sensitivity of reporter list. 

Generally, the median and 90% CI of AUC decreased when more genes were removed. 

However, the descending was slow most of the time. They were almost unchanged until 

about one-third genes were removed; decreased slightly after the removal of another one-

third genes; and dropped down more obviously afterwards. The profiles of last three reporters 

had a median AUC equal to 0.716. These results suggested that the loss of sensitivity could 

be tolerated by expression profiles to an extensive level. 

The replacement strategy, on the other hand, simulated the consequence of decreasing 

reporter selection specificity by substituting reporter genes with false positives. It had the 

same procedure as the reduction strategy except that in replacement strategy, the removed 

reporter genes were replaced by genes randomly selected from the whole datasets, keeping 

the size of expression profiles unchanged. The replacing genes inherited the weight of the 

replaced genes, so they could be considered as artificially introduced noises. The stepwise 

process continued until all 60 genes were replaced. Fig. 11B presented the relationship 
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between AUC of SEP scores and the specificity of reporter lists. Similar to Fig. 11A, all 

curves were gradually decreasing when more false positives were added. The median AUC 

was steady at the beginning; dropped by about 0.02 when half reporters were replaced; and 

fell rapidly afterwards. Furthermore, the range of 90% CI tended to be wider when more 

reporters were replaced. The median AUC was about 0.5 when the profiles contained only 

false positives.   

Comparison of Fig. 11A and 10B indicated that at the same level of selection sensitivity, 

drop of specificity might have considerable negative impact. This conclusion advocated the 

superiority of multi-dataset expression profiling, because the combined dataset selected 

reporters more specifically than the individual ones (Fig. 7). In the current study, the 

sensitivity and specificity of reporter selection were arbitrarily balanced according to Fig. 5A 

and other results.  
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4.2 MAMA Project 

4.2.1 Project Requirements and Use Cases 

The general purpose of the MAMA project was to provide researchers with a data-mining 

platform for discovering gene expression profiles about cancer. To serve this purpose, three 

core components of MAMA system were developed: the centralized storage of microarray 

data in a relational database, the access to the database via a server program, and the data 

manipulation/analysis functions packed in a client-side program. 

The requirement document of the MAMA project was given Appendix G. The schema 

design of the MAMA database had two considerations. On one side, the database was 

required to be MAGE-compliant, which accomplished the standardization of microarray data, 

but also increased the complexity of database schema. On the other side, the database was 

expected to enable quick access to its data by reducing the complexity of queries. The 

dilemma of these two requirements was solved by storing frequently requested data in 

denormalization tables. More details about MAMA database denormalization will be 

discussed in ‘Database Schema’ section. The requirements to the server program were 

straightforward. It should be able to connect to the database and handle concurrent requests 

from various clients. Requirements of the MAMA system related to data analysis were put on 

the client program. Besides regular data manipulation operations, this program was expected 

to maintain the data objects in a tree-like structure and provide the open-source APIs for 

developers to plug in data analysis methods. Unlike commercial microarray software, 

commonly available functions like clustering and graphics were not implemented. The client 

program was also required to have a Graphic User Interface (GUI), which should render data 

objects and system status in a consistent style.  
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Limited by the scale of the MAMA project, non-functional requirements was balanced to 

satisfy its essential utilities. The functionality and extensibility of the client program were 

given the priority. The targeted users of MAMA system are those researchers who are 

familiar with the basics of microarray analysis and want to apply more sophisticated or user-

specific statistical methods. As a result, the MAMA client was required to be functionally 

extensible. Ease of use was also a major concern. User guides and FAQ were needed to 

provide end users sufficient guidance. By reading the documentation, an experience 

microarray researcher was expected to grasp the basic operations of the MAMA system 

within an hour. On several occasions, however, user-friendliness was traded to give end users 

more control over their data and analysis results. For example, end users have to make more 

effort to maintain data on their local disk since all data analysis functions were assigned to 

the client program. Security, reusability, and portability of MAMA were not explicitly 

required, although the client program was coded with Java, which made it portable to all 

computers that installed the Java Virtual Machine (JVM). Finally, performance was 

considered as an unstable fact of MAMA system. The complexity and the amount of data 

involved would decide the performance of operations. Furthermore, the performance of plug-

in methods would be the responsibility of developers who added them into the application. A 

major bottleneck of performance was the operations performed on complete datasets, such as 

reading/writing them from/to files or retrieving them from database. The execution of these 

operations should be preserved as much as possible. Frequently used metadata about 

microarray experiments should be extracted and separately saved in advance, so it would not 

be necessary to dynamically summarize the metadata from all the source data when they 

were required. 
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Table 9:  
Example: ‘Create Workspace’ Use Case 

 
Use Case Name Create Workspace 
Author Zhe Zhang 
Date 2004/11/16 

Objective Create a new, empty workspace and open it. If there already is a workspace opened, 
close it 

Actor User, System 
Level Primary 
Trigger User decides to create a new workspace 
Included Use Case <<save workspace>> 
Extended Use Case  
Frequency Intermediate 
Pre-condition • Client program is running 
Post-condition • A new, empty workspace is created and opened in the client program 

Actor Action System Action 
1. User clicks ‘Workspace’ menu, then 
clicks ‘New’ menu item  

 2. System shows a dialog box asking for 
the name of the new workspace 

3. User specifies the directory of the 
workspace and names it, then clicks 
‘Create’ 

 

 4. System creates the new workspace 
object and opens it in the client program 

5. User Clicks ‘OK’  

Main Flow 

 6. System terminates process 
Steps Blanching Action 

4. There already is a currently opening 
workspace in the client program 

1. System prompts for what to do: 
• Save 
• Not save 
• Cancel 
2. User selects one 
3. System responds to user’s selection 
• Save it, open the new one 
• Not Save it, open the new one 
• Abort creating, keep the old one 
INCLUDE <<save workspace>> 

Sub flows 

3. User clicks ‘Cancel’ System aborts process 
Conditions Actions 

Exceptions 
4. Redundant workspace name 

System prompts for what to do: 
• Overwrite (will replace the old one) 
• Change name (will repeat step 3) 
• Cancel (will abort process) 
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Use cases of the MAMA client program were broken into multiple levels, from general 

categories to step-by-step description, following the design patterns of UML (Unified 

Modeling Language) [123, 124]. The major packages of use cases were diagramed in Fig. 

12A. It showed that most use cases were about management, presentation, or operation of 

data objects. Use cases of ‘Manage Workspace’ package and their relationship were 

summarized in Fig. 12B, and the flowchart of an example use case, ‘Create Workspace’, was 

given in Fig. 12C as an UML activity diagram. Furthermore, the details about ‘Create 

Workspace’ use case were described in Table 9. (See Appendix H for more use cases.)  

 
Figure 12A All Use Case Packages 
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Figure 12B All Use Cases of ‘Manage Workspace’ Package 

 
 

 
Figure 12C Event Flow Diagram of ‘Create Workspace’ Use Case 

 

Figure 12 Examples: Use Cases  
The functions of MAMA system were described as a number of use cases. All use cases were categorized into 
several packages (12A), and use cases might be related to each other (12B). The events happened during each 
use case could be represented in flow diagrams (12C). 
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4.2.2 Design of MAMA System 

Besides satisfying the requirements mentioned above, the basic objectives of designing 

MAMA include: 

• Minimize the requirement on hardware and maintenance resources. 

• Encapsulate software components. 

• Follow existing standards related to microarray as much as possible.  

• Control the scale of this project at a feasible level. 

 

4.2.2.1 Software Development Environment 

The following software and hardware were used for the development of MAMA system. 

This list can also be considered as the recommended system requirements of installing and 

running MAMA database or programs. 

Software: 

• Server computer 

o Operation system: Solaris 9 (Sun Microsystems Inc.). 

o Database management system: Oracle Release 9.0.1 (Oracle Corporation). 

o Database access API: Java JDBC Package (Sun Microsystems Inc.). 

o Web server and servlet engine: Apache Tomcat Version 4.1 (Apache Software 

Foundation). 

o Server program API: J2EE Servlet Specification 2.3 (Sun Microsystems Inc.). 

• Personal computer 

o Operation system: Microsoft Windows XP Professional Version 2002 

(Microsoft Corporation). 
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o Programming language: Java2 SDK, Standard Edition Version 1.4.2 (Sun 

Microsystems Inc.). 

o Source code and project management: Eclipse Platform Version 3.0.1 (Eclipse 

contributors and others). 

o Statistical functions: Common-Math Library Release 1.0, Jakarta Commons 

Project (The Apache Software Foundation). 

o Java/XML mapping: Castor XML Version 0.9.6 (Exolab Group, Intalio Inc., 

and Contributors). 

o UML diagrams: SmartDraw Version 7.01 (Hemera Technologies Inc.). 

o Local database management: Microsoft Access 2000 (Microsoft Corporation.) 

--- The local installation of the MAMA database was used just to simplify the 

coding/testing efforts during the developmental stages. To access this database, 

a local version of the server program and its Tomcat container were also 

installed. 

Hardware: 

• Server computer 

o Model: Sun Fire 280R (Sun Microsystems Inc.). 

o CPU: 2 Χ 1200 MHz UltraSparc-III+. 

o Memory: 2.0 GB of RAM. 

o Disk space: 10 GB assigned to the MAMA database. 

• Personal computer 

o Model: Inspiron 5100 Notebook (Dell Inc.). 

o CPU: Pentium(R) 4 CPU 2.66GHz. 
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o Memory: 1.0 GB of RAM. 

o Disk space: 15GB reserved for the development of MAMA project. 

 

4.2.2.2 System Architecture 

The system architecture of MAMA system was straightforward as shown in Fig. 13. The 

database maintained the permanent storage of microarray datasets collected and loaded by its 

administrators or curators. Any end users would be able to query this database. The server 

program is a Java Servlet managed by an Apache Tomcat container. This server can 

simultaneously handle multiple requests from different clients and interact with the database 

to query the data. The data retrieved from the MAMA database is wrapped into Java 

serializable objects by the server before they are sent to the clients. Therefore, all database 

operations are encapsulated in the server program and the client program does not need to 

directly interact with the database. The server and client programs communicate with each 

other using a pre-defined protocol, which codes the status of requests or responses. The 

complete protocol is listed in Appendix I. As long as the protocol is unchanged, the server or 

client program can be separately updated without notifying the other. Furthermore, other 

developers can add their own programs to communicate with the MAMA server or client via 

this protocol. The MAMA client program was also developed as a stand-alone application for 

microarray analysis. It can be run on the local computer without connecting to the server. 

Microarray datasets are imported into the client program directly from text files, annotated 

with standard vocabularies, and saved on local disk in pre-defined formats for users to load 

later. The client program saves all local files as XML documents except those containing 

expression data matrixes. Because of the large amount and simple structure of those matrixes, 
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they are saved as tab-delimited text files with sample identifiers as column names and gene 

identifiers as row names. XML documents and java objects are mapped to each other using 

functions provided by Castor XML API. The mapping rules are specified in file 

‘mapping.MAMA’, which is wrapped together with the client program.  

The system architecture of MAMA suggested a ‘light server’ and a ‘heavy client’. It 

simplified the development and maintenance of the server. Consequently, end users should 

rely on the computational power of their local computers for time-consuming operations. 

They also need to manage their data and analysis results on their local disk, which might be 

preferred by sophisticated users. Another critical feature of this architecture was the 

encapsulation of functions, which makes the MAMA system more modifiable and extensible.  

   

4.2.2.3 Database Schema 

The schema of the MAMA database had two levels. The first level copied the schema of 

ArrayExpress [87], a public microarray database developed by EBI (European 

Bioinformatics Institute). This schema was directly derived from MAGE-OM, which defines 

concepts related to most aspects of microarray experiments. MAGE-OM was designed as a 

complex data model using object-oriented mode. Consequently, the database schema of 

ArrayExpress would make the SQL queries intricate and inefficient. Many queries need to 

join a number of large tables and sometimes, the response time would be practically 

unacceptable.  For example, retrieving the identifiers of sequences in an array design 

involved the join of at least six database tables, most of which might contain millions of 

records. To improve the performance of the MAMA database, a second level of database 

schema was added, which included a group of denormalization tables. The purpose of these 
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tables was to redundantly store frequently requested data. Because of the introduction of 

redundancy, maintaining database integrity would be a heavy burden and error-prone when 

data were inserted, updated, or deleted. The MAMA database, however, would barely be 

harmed by this drawback of denormalization since it functions similar to a data warehouse. 

Insertions and deletions will be rare operations in this database, and updating will be even 

rarer because the existing data are the results of previous microarray experiments. Therefore, 

the two levels of the MAMA database serve different purposes. MAGE-OM tables 

permanently would store microarray datasets in a standard schema and allow other MAGE-

compliant systems to reuse them, while the denormalization tables benefits the data analysis 

applications by improving the accessibility of the database. To further reduce the response 

time of queries, most columns of denormalization tables are indexed.  

Database tables used by the current version of MAMA and their relationship are 

presented in Appendix J. Fig. 14 demonstrates a group of tables involved in the key entities 

of microarray analysis. The table located on up-left corner was a denormalization table 

storing the gene expression measurements. Each row of this table corresponds to a processed 

measurement, which is 2-dimensionally labeled with biomaterial (sample) and design 

element (sequence) identifiers. According to this diagram, each experiment can have only 

one array design, so the original experiment using multiple array designs should be split in 

advance. This diagram also contains a special table: ‘T_DATA_SUMMARY’. This table 

stores some common statistics about the expression level of a specific gene in a specific 

experiment. Since ‘experiment’ is the basic unit of data analysis in MAMA, these statistics 

are frequently queried metadata that should be conveniently acquired. 
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4.2.2.4 Data Flow 

The MAMA system provides two types of data storage: a remote database for publicly 

available long-term storage and a local file system for temporary, user-specific and analysis-

oriented storage. Fig. 15 demonstrates how data would be transferred between various 

locations of the MAMA system, which is directed by a group of software packages. The 

following sequentially described the data flow steps in a typical data analysis procedure: 

1. Source microarray dataset is imported in the format of tab-delimited text. The 

MAMA client program provides a GUI wizard to guide users through the process. 

The wizard prompts for the description and metadata of the dataset. The data 

submitter can choose to send the dataset to one of the two following locations: 

1A. The dataset is sent to the MAMA database for long-term storage through the 

server program. After receiving the submitted dataset, the server program pre-

processes its expression data before loading it into the database. The guidelines of 

data pre-processing are given in Appendix K. Loading datasets into database is a 

complicated and time-consuming operation and only the administrators or 

curators of the database have the authority to execute it. Ordinary users need to 

contact these people if they want their data to be stored in the database. 

1B. The dataset is parsed into an ‘Experiment’ object and added into the currently 

opened workspace of the client program. The new ‘Experiment’ object is saved as 

files in the local file system. This operation is simpler and faster comparing to 1A. 

It may be preferred by users who do not want to expose their data to the public.  

2. If a needed dataset already exists in the database, the client program fetches it from 

the database by sending a request to the MAMA server. Retrieved dataset are parsed 
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into an ‘Experiment’ object, added into the current workspace, and saved locally. 

Instead of fetching complete datasets, users can also query the database about the 

existing data, such as the sequences in an array design or the samples in a dataset.  

3. Before an analysis is performed on experiments in the current workspace, users might 

need to customize the contents or re-process the expression data of those experiments. 

For example, if users were only interested in analyzing genes whose expression 

varied radically in samples, a filtering operation would be carried out to remove genes 

having low-variance.  

4. The client program defined an ‘Analysis’ object and executed it using selected 

dataset(s). After the analysis was finished, its results are saved in local file system too.  

5. Saved data objects, such as analysis results, can be exported from the client program 

as text files. 

 

4.2.2.5 Software Architecture 

Source codes of both the client and server programs were written with Java2 SDK 

Standard Edition and managed within Eclipse platform. The fundamental software design 

principle in the MAMA project was to achieve the encapsulation of functions. Fig. 16A 

demonstrates the architecture of the client program, which mostly follows the MVC (Model-

View-Controller) software design pattern. The ‘Model’ package defines Java classes 

corresponding to various data objects, such as nucleotide sequences and biological samples. 

At runtime, the client program maintains all data objects in a tree-like structure within a 

‘Workspace’. The data objects kept by the client program are presented on the user interface 

through the ‘View’ package, which defines various graphic components, such as dialog 
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boxes and menus. Graphical components are used to render data objects (lists, tables, and so 

on), or listen to user actions (buttons, menu items, and so on) initiated by keyboard input or 

mouse click. User actions are passed to and handled accordingly by processes implemented 

in the ‘Controller’ package. The handling of actions might cause a change of system status. 

Consequently, the controllers notify the ‘Model’ and/or ‘View’ to update their contents. The 

controllers have the key position in this architecture. When necessary, they execute the 

methods implemented in the ‘Data Analysis’ package to carry out statistical analyses, or 

interact with the ‘Communication’ package to establish connection with the server program. 

The server program has a simpler structure with four layers: servlet, listener, handler and 

database facade. The whole server program is designed as a Java servlet, which is activated 

the first time it is requested by a client program and keeps running until it is explicitly shut 

down. The activated MAMA servlet creates a listener that listens to requests sent by clients at 

a network port. The listener responds to each request by generating a handler, so concurrent 

requests are handled simultaneously. Each handler interacts with a single client by 

exchanging data objects. Since the current version of MAMA server only handles database 

query requests, the incoming data objects are passed to the database facade layer. This layer 

parses the requests into database queries and sends the queries to the MAMA database. 

The details about client-server communication in MAMA system are illustrated in Fig. 

16B. The following gave the step-by-step description of this procedure: 

1. When a ‘Controller’ needs to access the MAMA database, it defines a Java ‘Query’ 

object and specifies the query attributes in this object. The controller sends this 

‘Query’ to a ‘Communication Facade’ and specifies the action, such as ‘insert’ or 

‘select’. 

 90



2. The ‘Communication Facade’ wraps the ‘Query’ and the action into a ‘Request’ 

object and assigns a key to the query. Each facade maintains a ‘Requester’, which 

might contain multiple ‘Request’ objects. Once all ‘Request’ objects are added into 

the ‘Requester’, the facade passes the ‘Requester’ to a ‘Communicator’, which 

handles the network communication with the server. 

3. The ‘Communicator’ contacts the ‘Servlet’ in order to set up a network connection. If 

the ‘Servlet’ has not been activated, it is loaded and creates a ‘Listener’ to listen for 

requests from the clients. 

4. The request for connection from the ‘Communicator’ is caught by the ‘Listener’. The 

‘Listener’ generates a thread as a ‘Handler’ to handle the incoming request. 

5. A network socket is established between the ‘Communicator’ and the ‘Handler’ for 

exchanging data. The ‘Requester’ is sent to the server through this socket. The 

‘Communicator’ waits for response from the server. 

6. The ‘Handler’ passes the received ‘Requester’ to a ‘Database Facade’ and waits for 

results. 

7. The incoming ‘Requester’ is unwrapped by the ‘Database Facade’ and the ‘Request’ 

objects inside it are collected. Each ‘Request’ is parsed into an SQL query based on 

its attributes. The query is sent to the database. 

8. The database returns query results to the ‘Database Facade’. 

9. The ‘Database Facade’ uses the returned results to generate a ‘Response’ object and 

assigns it a key equal to the key of the corresponding ‘Request’ object. A response 

code and a text message are also added to each ‘Response’ to indicate the 

consequence of executing the request. The interpretation of response codes are given 
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in Appendix I. After all ‘Response’ objects are collected, the ‘Database Facade’ 

wraps them into a ‘Responser’ and a status code is added to the ‘Responser’ to 

indicate the overall consequence of executing the requests. The interpretation of 

status codes are also given in Appendix I. Finally, the ‘Database Facade’ passes the 

‘Transfer’ to the ‘Handler’. 

10. The ‘Handler’ sends the ‘Responser’ including all the responses to the 

‘Communicator’, and terminates itself. 

11. The ‘Communicator’ reads data returned from the server, closed the network socket, 

and sends the ‘Responser’ object to the ‘Communication Facade’.  

12. The ‘Communication Facade’ retrieves the status code from the ‘Responser’ and 

reports it on the user interface if there is any error. The ‘Responser’ is then 

unwrapped to create a list including all the ‘Response’ objects. The response code and 

text message of ‘Response’ objects are reported on the user interface if there is any 

error. The ‘Communication Facade’ informs the ‘Controller’ that the query results are 

ready. Finally, the ‘Controller’ retrieves each ‘Response’ by providing its key and 

uses it to create a ‘Query Result’ object corresponding to the ‘Query’ object. 

The client-server communication architecture presented above gives an example of how 

various software modules were encapsulated in the MAMA system. The same principle was 

applied to other operations implemented in the client program.  
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Figure 16A Software Architecture of the MAMA Client Program 

 

 
Figure 16B Layered Software Structure of Client-server Communication in MAMA System 

 

Figure 16 Software Architecture 
The primary principal of software design in MAMA project was the encapsulation of functions. Therefore, a 
software package was designed for each basic function. (16A) The software architecture of the client program 
followed the MVC (Model-View-Controller) design pattern. The ‘Model’ package defined Java classes 
corresponding to various data objects, the ‘View’ package renders data objects on user interface, and the 
‘Controller’ package handles user actions. The ‘Controller’ was the key component in this architecture. It can 
interact with the ‘Data Analysis’ packages to execute data analysis methods or with the ‘Communication’ 
package to establish connection with the server program. (16B) The client-server communication had multiple 
layers. Each of these layers encapsulated certain functions. For example, the ‘Database Facade’ layer is in 
charge of translating user requests to database queries and wrapping query results into data objects. 

 93



4.2.2.6 Graphical User Interface 

The MAMA client program has a graphical user interface (GUI). The main window 

includes a split panel with two panes and a group of pull-down menus (Fig. 17A). The left 

pane renders the hierarchical structure of data objects in two trees. The upper tree is called 

‘Database Snapshot’, representing the status of MAMA database at the time when the 

snapshot was taken. The summary about the status of the database has three parts: existing 

array designs, experiments, and sample traits. The sample traits are a set of controlled 

vocabularies used to describe samples. The lower tree renders the contents of the currently 

opened workspace. Each workspace contains three types of objects: ‘Query’, ‘Experiment’, 

and ‘Analysis’, in any numbers. The details of a selected object are presented in the right 

pane, usually by table(s). For example, the right pane of Fig. 17A lists all samples of 

experiment ‘E-MICH-01’ with available clinical data of patients.  

Dialog boxes are extensively used for users to specify inputs or parameters of operations. 

Fig. 17B shows a dialog designed for inserting a new sample trait (ontology entry) into the 

database. In this dialog, an ontology entry called ‘Age’ is submitted by this dialog. 

According to the inputs, this entry is defined by MGED Ontology, which also assigned it an 

accession number and a URI link to it. Furthermore, ‘Age’ has ‘year’ as its unit. When an 

operation has too many inputs or parameters to be included in one dialog box, it is split into 

several steps sequentially organized by a wizard. Fig. 17C shows one of four steps of a 

wizard used to import a microarray dataset from text files. The name and location of the 

imported files are specified with this dialog. As shown in Fig. 17B and 16C, the design of 

GUI components has consistent style.  
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Figure 17A Main Window of the MAMA Client Program 

 

 
Figure 17B User Interface Example: Import New 

Entry of Biomaterial Ontology 

 

 
Figure 17C User Interface Example: Import 

Microarray Dataset from Text Files  

 
Figure 17 Graphic User Interface of the Client Program  

Graphic user interface was coded with Java Swing API. Dialog boxes were extensively used in a consistent 
style for users to specify the inputs of an operation. (17A) The main window of the client program has two 
panes. The left pane allows users to browser the data objects in the current workspace, and the right pane 
renders the details of a selected data objects, such as all samples in a virtual experiment. (17B) This dialog 
defines an entry of biomaterial ontology to be submitted into the database. (17C) This dialog is part of the 
wizard that imports a new experiment into MAMA system. Users can specify the imported files of samples, 
genes, and expression measurements within this box. 
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4.2.3 Data Annotation 

The results of microarray analysis are meaningful only when the sequences and samples 

in a dataset are properly annotated. Different microarray studies have been using various 

naming systems or terminologies to annotate their datasets. Since the MAMA system was 

design to allow for simultaneously analyzing multiple datasets, it is critical to consistently 

annotate different datasets with standard and/or common systems.  Consequently, the 

importing and the processing of microarray datasets often involve the mapping of annotation 

systems.  

The annotation of biological samples is more complicate. Researchers often use different 

terms to refer to the same concept, such as ‘tumor size’ and ‘tumor diameter’. Therefore, 

sample traits should be described with ontology or controlled vocabularies in the MAMA 

system to achieve cross-dataset analysis. The mapping between sample annotations was more 

difficult and error-prone. Data submitters should fully understand the definition of 

standardized terms before using them to describe samples. Currently, the controlled 

vocabularies used in MAMA have four sources as listed in Table 10A. MGED Ontology 

defines concepts and terms closely related to microarray experiments, such as ‘ArrayDesign’ 

and ‘SurfaceType’. Although MGED Ontology made a major effort on the description of 

biological samples (‘BioMaterial’), it only covered some general concepts, such as ‘Age’ and 

‘Sex’. While the terms provided by MGED Ontology had the priority, NCI Thesaurus and 

Metathesaurus were used as its supplements for cancer-specific traits and trait values, such as 

‘Angioinvasion’ and ‘Metastasis’. Comparatively, NCI Thesaurus was smaller and more 

stable and Metathesaurus was larger and more frequently updated. A number of ontology 

categories have been imported into the current version of MAMA. A list of these categories 

 96



and their definition can be obtained by taking a database snapshot and viewed by opening the 

‘Sample Traits’ folder in the left pane of Fig. 17A. Users are allowed to extend the pool of 

controlled vocabularies by submitting new ontology databases or entries to MAMA system. 

The sequences of microarray datasets are annotated with the identifiers assigned by 

various sequence databases. A large number of sequence databases about nucleotide acids 

(genes), gene products (proteins), and gene functions had been used to provide systematic 

annotations. Table 10B lists the sequences databases already registered in the MAMA 

database. Microarray sequences labeled with the identifiers of these databases is acceptable. 

The list can be further extended if necessary. In order to simplify the related operations, the 

client program recognizes and processes sequence annotations provided by four systems: 

GenBank, RefSeq, Unigene, and GO (Gene Ontology), which are highlighted in Fig. 11B. 

For example, to search a sequence in the database or the current workspace, only sequence 

identifiers provided by these systems can be used to specify the searched sequence. When a 

new ‘Experiment’ object was created in the client program by downloading from the 

database or directly importing from text files, other annotation types are not be accepted. 

Therefore, before a source dataset is loaded into the MAMA system, the annotation of its 

sequences should be mapped to identifiers of those four systems.  

 

Table 10: 
Data Annotation Resources 

 
Table 10A Biological Sample Annotation Resources 

 
Name Provider URI 

MGED Ontology MGED http://mged.sourceforge.net/ontologies/MGEDontology.php 
NCBI Taxonomy NCBI http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html 
NCI Metathesaurus NCI http://ncimeta.nci.nih.gov/indexMetaphrase.html 
NCI Thesaurus NCI http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do 
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Table 10B Nucleotide Sequence Annotation Resources 
 

Name Provider URI 

Affymetrix Probe Set Affymetrix http://www.affymetrix.com 

Blocks Database FHCRC http://blocks.fhcrc.org 

Enzyme Nomenclature IUBMB http://www.chem.qmw.ac.uk/iubmb/enzyme 

EMBL EBI http://www.ebi.ac.uk/embl 

Ensembl ENSEMBL http://www.ensembl.org 

Entrez Gene NCBI http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene 

Entrez Protein NCBI http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein 

GenBank NCBI http://www.ncbi.nlm.nih.gov/Genbank/ 

GO GO 
Consortium http://www.geneontology.org/index.shtml 

GPCRDB GPCR http://www.gpcr.org/7tm 

InterPro EBI http://www.ebi.ac.uk/interpro 

KEGG Kanehisa Lab. http://www.genome.jp/kegg 

LocusLink NCBI http://www.ncbi.nlm.nih.gov/LocusLink 

MGD Jackson Lab. http://www.informatics.jax.org/ 

NetAffx Affymetrix http://www.affymetrix.com/ 

OMIM NCBI http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM 

Pfam SANGER http://www.sanger.ac.uk/Software/Pfam 
Protein Kinase 
Classification PKR http://pkr.sdsc.edu/html/pk_classification/pk_catalytic/pk_hanks_class.

html 
RefSeq NCBI http://www.ncbi.nlm.nih.gov/RefSeq 

SCOP UC, Berkeley http://scop.berkeley.edu 

SPTR Database MRC http://www.hgmp.mrc.ac.uk/Bioinformatics/Databases/sptr-help.html 

EGAD TIGR http://www.tigr.org/tdb/egad/egad.shtml 

Unigene NCBI http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene 

 
 

4.2.4 Working with Data Objects 

Since data objects are structured hierarchically by the client program, all user data can be 

saved on local disk as a single XML document for the ease of maintenance. However, 

reading, writing, and parsing such XML documents are very inefficient because of the large 

size of microarray datasets. A tradeoff was made to improve the performance of data 
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reading/writing at the cost of more software development and data maintenance efforts. It 

was decided that user data would be spilt into multiple files having proper size. The 

relationship between saved data objects is implied by the location and name of the files. Any 

file writing operation retains the consistency of data in related files. The client program uses 

Castor XML package to accomplish the mapping between Java data objects and XML 

elements. The mapping information is provided in an XML document named 

‘mapping.MAMA’, which was wrapped into the client program. (See Appendix L for details 

about XML mapping.) 

 

4.2.4.1 Workspace 

‘Workspace’ is the top-level data object and has a unique name (identifier). Users can 

create multiple Workspaces on local disk, but each running client program will open only 

one Workspace at any time. All data manipulation and analysis operations must be carried 

out within an opened Workspace. The ‘Default’ Workspace is opened automatically when 

the client program is activated. Contents of each Workspace are saved in an XML document 

and a directory of files, both named after its identifier. The XML document stores the 

metadata about a Workspace and the data objects inside it, while the contents of the data 

objects are stored in the directory as individual files. To simplify the maintenance of data, 

users are recommended to create a new Workspace for each data analysis project. 

The following illustrated an XML document of the metadata about ‘Default’ Workspace:

<?xml version="1.0" encoding="UTF-8" ?>  
<workspace name="Default" created="2005-09-30T19:19:28.603-04:00" last-
modified="2005-12-01T18:49:52.447-05:00"> 

<query identifier="BCL seq" subtype="Sequence" created="2005-10-
25T01:12:58.450-04:00" last-run="2005-10-25T01:13:00.132-04:00"> 

<inner-join-limit operator="LIKE" value="bcl" field="NAME" />  
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<outer-join-limit operator="=" value="E-MICH-01" field="Experiment 
Identifier" />  
<outer-join-limit operator="=" value="E-ROSE-01" field="Experiment 
Identifier" />  

       </query> 
<query identifier="My Query 1" subtype="Sample" created="2005-07-
21T16:56:28.877-04:00" last-run="2005-07-22T00:05:48.450-04:00"> 

<inner-join-limit operator=">=" value="50" field="Age" />  
<inner-join-limit operator="=" value="Cancer" field="DiseaseState" />  
<outer-join-limit operator="=" value="Breast" field="Organism Part" />  
<outer-join-limit operator="=" value="Lung" field="Organism Part" />  

       </query> 
       …… 

<experiment identifier="E-MICH-01" name="Michigan Lung Cancer - 
Adenocarcinoma" description="Complete dataset of Michgan Lung cancer 
study." created="2005-09-21T23:20:32.988-04:00" last-modified="2005-
09-21T23:20:32.988-04:00" num-samples="96" num-sequences="7129"> 

<source-experiments identifier="E-MICH-01" name="" description="" num-
samples="0" num-sequences="0" />  

      </experiment> 
<experiment identifier="E-ROSE-01" name="Profiling of breast cancer 
recurrence, Rosetta Inpharmatics" description="Complete dataset of 
Rosetta Breast cancer research" created="2005-09-21T23:03:08.255-
04:00" last-modified="2005-09-21T23:03:08.255-04:00" num-
samples="117" num-sequences="24481"> 

<source-experiments identifier="E-ROSE-01" name="" description="" num-        
samples="0" num-sequences="0" />  

       </experiment> 
       …… 
</workspace> 
 

4.2.4.2 Query 

‘Query’ is one of three data types contained by Workspaces. The client program creates a 

new Query by specifying its type and limits, such as ‘select all tissue samples collected from 

lung tumors’. The execution of Queries involves all three components of MAMA system. 

The client sends a Query to the server program, which parses it into an SQL query to the 

database. After results are returned from the database, the server wraps them into a ‘Query 

Result’ object and sends it to the client. Each pair of Query and Query Result objects is 

separately saved as two files within the directory of their Workspace. 
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The current version of MAMA supports the query of three data types: microarray 

experiments, biological samples, and nucleotide sequences. Fig. 18A shows a dialog box 

used to define a samples Query. Its upper half specifies the experiment, organism part, and 

material type of the required samples. The lower half, on the other hand, allows users to put 

up to three limits on any field of the samples. Therefore, the Query defined by Fig. 18A is 

interpreted as: ‘select all samples obtained from the breast or lung tissue of the donators who 

had been diagnosed with cancer before 60 years old’. The Query is named ‘Test Query’ and 

its results are given in Fig. 18B, which shows that totally 59 samples in two experiments 

were selected from the database.  

 

4.2.4.3 Experiment 

‘Experiment’ is the essential data object of the MAMA system. It contains the microarray 

dataset, and is the unit of query and data analysis results (Fig. 18B). It was arbitrarily decided 

that each Experiment included one and only one microarray dataset. The contents of this 

dataset is N sequences, M samples, and a 2-dimensional matrix of expression measurements 

whose size should be N x M. Therefore, each Experiment would be saved in Workspace as 

four files: metadata, sequences and their annotations, samples and their traits, and the 

expression data matrix.  

Each microarray dataset stored in the MAMA database usually corresponded to an actual 

microarray study. In the client program, however, Experiment objects are not always 

equivalent to studies carried out in laboratories. They were often generated for a specific 

analysis by filtering, splitting, or combining the data of existing datasets. Therefore, they are 

sometime ‘Virtual Experiments’. As shown in Fig. 17A, a new Virtual Experiment can be  
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Figure 18A Specification of a New Database Query 

 

 
Figure 18B Results of a Database Query 

 

Figure 18 Demo: Database Query 
The user defines a ‘Query’ object by specifying parameters in a dialog box and executed it to retrieve 
results. (18A) The inputs specify a query for biological samples. This query asks for all samples that were 
taken from lung or breast tissue of cancer patients older than 60 at diagnosis. (18B) The execution of 
query defined in Fig. 18A finds qualified samples in two experiments (2 in E-ROSE-01 and 57 in E-
MICH-01). The query results are saved and can be showed to users later in the right pane of the main 
window.  
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created by directly importing data from text files or querying the database. The former option 

allows users to use the client program without exposing their source data to the public, which 

would be required by those researchers who had not published their data.  

After an Experiment is created, it can be further customized to meet the requirements of 

subsequent data analysis. The current client program implements four types of data 

customization: sample filtering, sequence filtering, sample trait conversion, and 

normalization of expression measurements. Samples and sequences can be filtered with their 

annotations or values of summary statistics. For example, Fig. 19A specifies that all samples 

obtained from patients who were more than 40 years old will be removed from the 

Experiment, and Fig. 19B states that only sequences whose expression have a variance 

within the top 25% of all sequence will be kept. Conversion of trait values is used to change 

the scale or unit of a sample trait. Such modification is necessary when different studies 

measured a sample trait differently. For example, tumor size is represented as diameter 

(millimeter or centimeter) or TNM grading system (T1-T4) in different studies. Furthermore, 

discretizing continuous variables to categorical or interval variables was required by 

statistical methods like chi-square test. Fig. 19C shows a dialog box that changes the unit of 

patient follow-up data from ‘month’ to ‘year’ by dividing the original values by 12.0. Finally, 

the expression data of a Virtual Experiment is normalized by user specification. Since 

microarray data normalization had a large number of variations, the current version of 

MAMA was unable to implement enough normalization methods to meet the request of users. 

Instead, it allowed users to plug in their own methods using an API provided in the source 

codes. The process of method plug-in is discussed in the last section of this chapter.  

 

 103



 

 
 

 
Figure 19A Example of Experiment Customization: 

Filter Samples 

 
 
 

 
Figure 49B Example of Experiment 

Customization: Filter Sequences 

 

 

 
Figure 19C Example of Experiment Customization: 

Convert the Values of a Sample Trait  

 

Figure 19 Demo: Microarray Experiment 
Customization 

The client program is able to customize the contents 
of microarray experiment in various ways in order to 
perform certain data analysis procedure. (19A) 
Samples of an experiment can be filtered according 
to their values of a trait or a descriptive statistic. This 
dialog specifies that all samples taken from 
individuals older than 40 will be removed.  (19B) 
Sequences of an experiment can be filtered according 
to their availability of an annotation type or a 
descriptive statistic. This dialog specifies that only 
sequences whose variance of expression 
measurements are in the top-25% will be kept. (19C) 
Values of a sample trait can be converted to a 
different type of variable. Such conversion is 
necessary when the original variable cannot be used 
by a specific statistical method. Users can choose to 
cast the original variable automatically or manually, 
or change its unit. In this dialog, it is specified that 
the unit of patient follow-up will be changed to ‘year’ 
by dividing each original values by 12.0. 
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4.2.4.4 Analysis 

‘Analysis’ objects define the data analysis operations executed by the client program. The 

attributes of an Analysis include name of the statistical method, Experiments to be analyzed, 

and how to report the results. The execution of an Analysis generates an ‘Analysis Result’ 

object, which is saved in a separate file. If multiple Experiments were included in an 

Analysis, the results obtained from individual experiments can be used for meta-analysis. 

The results of meta-analysis are put into the Analysis Result object. 

The creation of an Analysis object had at least two steps. The first step is to specify the 

statistical method used for the analysis. As shown in Fig. 20A, the Rank Sum Test was 

selected to evaluate gene-trait correlation by measuring the differential expression of gene(s) 

between two sample groups. The second step was to specify the inputs of the Analysis with a 

dialog box (Fig. 20B). This dialog has three parts. The upper left box is used for specifying 

the variables to be analyzed. In Fig. 20B, the tested variable was the expression of all genes 

and the treatment variable was the survival outcome of patients. The upper right box is used 

for selecting the Experiments to be analyzed. All Experiments including the specified 

variables are listed. The bottom box specifies how to report the analysis results. If multiple 

Experiments are selected in this box, meta-analysis is possible. Results of data analysis are 

exported as text files if users want to process them using other programs such as Microsoft 

Excel.  

 

4.2.5 Implementation of Analysis Methods 

Because a large number of statistical methods have been applied to microarray analysis, 

the limited resources of developing MAMA system made it infeasible to satisfy users with  
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Figure 20A Selection of Data Analysis Method 

 
Figure 20B Specification of a New Data Analysis 

Operation 

 
Figure 20C Results of a Data Analysis Operation 

 
Figure 20 Demo: Data Analysis Operation 

Data analysis operations are initiated through a wizard: (20A) User selects the method category and the 
statistical method used for a new ‘Analysis’ object. (20B) User specifies the input variables of an analysis 
procedure and how to report the results. This dialog states that the correlation between cancer metastasis and all 
genes in experiment ‘E-ROSE-01_Unigene’ will be calculated with Rank Sum Test, and 100 genes having the 
highest magnitude of z statistic will be reported in the results. (20C) The results of an analysis are saved and can 
be showed to user later in the right pane of the main window. 
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enough methods. Consequently, a method plug-in mechanism is provided by MAMA to 

allow users to extend the client program by adding their own analysis methods. Therefore, 

the MAMA system is mostly considered as a platform of data-mining instead of a data 

analysis package. 

Statistical methods are classified into several categories, such as gene-trait correlation, 

and MAMA provides an API for each method category. The inputs and outputs of methods in 

the same category have the same data types, which were specified in a Java abstract class. 

For example, the API of gene-trait correlation methods stated that any method in this 

category should be a hypothesis test involving a sample trait and the expression of a gene. 

The inputs of this test were two equal-length arrays of double values and the outputs included 

a test statistic and corresponding p-value. Once the API of a method category was available, 

plug-in of a new method into this category had two steps. First, users implement the API by 

extending the abstract class. In the sub-class, users specify the name of the new method and 

the symbol of test statistic, and implement the algorithm of the method. The second step of 

method plug-in is to register the new method. All registration information should be written 

to an XML document called ‘plugins.MAMA’, which is wrapped into the client program. To 

register a method, users need to add an ‘analysis-method’ XML element under its category. 

This element itself should include two required elements: ‘name’, which is the method name 

readable to users, and ‘class’, which is the name of the Java class implementing this method. 

Before the creation of a new Analysis object, this registration file is loaded and parsed into a 

list of categories and methods for users to select (Fig. 20A).  

The following is a segment of the method registration file, which illustrates the 

registration information of two methods used to evaluate gene-trait correlation: 
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<analysis-type name="Gene-Trait Correlation">   
<analysis-method name="2 Group Comparison: Student's T" class="GeneToTraitStudentT"> 
</analysis-method>  
<analysis-method name="2 Group Comparison: Rank Sum Test (RST)" class="GeneToTraitRST"> 
</analysis-method>  
… 

       </analysis-type> 
 

Meta-analysis methods can be implemented and registered using a similar plug-in 

mechanism. The current version of MAMA provides two categories of meta-analysis method: 

combined test and measurement of effect size (Appendix E). 
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CHAPTER V 

CONCLUSION 

 

Complicated diseases, such as Alzheimer’s, cardiovascular diseases, and most types of 

cancer, are currently considered incurable because of the lack of systematic perspective about 

the molecular-level perturbations in individual patients. Development of high-throughput 

biological technologies presents a new opportunity to overcome these diseases. The 

enormous amount of data generated by these technologies is changing the face of biomedical 

studies, which involves statistical analysis and information process more and more. At the 

same time, researchers are being challenged by the requirement of translating technologies 

into clinical medicine. Properly designed data mining strategies are critical for recognizing 

causative information, which will help discovering new drug targets or making more reliable 

clinical decisions, from raw high-throughput data. 

Microarray is relatively more mature and less expensive compared to other high-

throughput technologies. Therefore, it has been commonly applied to the identification of 

gene expression patterns in specific types or subtypes of diseases. A variety of microarray 

datasets have been publicly available, which makes it possible to integrate multiple datasets 

for more powerful statistical analysis.  

The current study was performed to solve some issues involved in the practical 

application of microarray data to cancer. It included two related projects. The data analysis 

 



project justified the advantages of integrating microarray datasets and the necessity of 

developing a computer system like MAMA. The MAMA project, in return, will drastically 

accelerate the process of similar microarray analyses. 

 

5.1 Data Analysis 

The data analysis phase of this study was focused on the confirmation of two hypotheses. 

The first hypothesis was intended to validate the value of microarray technology in clinics by 

suggesting that microarray data provide extra clinical information besides commonly used 

indexes. The truthfulness of this hypothesis is the basis of all similar studies because its 

denial means that inclusion of microarray data in clinical decision will not make disease 

prognosis more accurate. Surprisingly, it has been overlooked by most microarray studies 

about cancer prognosis. Using two datasets about breast cancer and four datasets about lung 

cancer, this study attempted to validate this hypothesis by cross-validation of independent 

datasets and logistic regression models. The results implied that (1) when indexes were 

applied separately, gene expression profiles were superior classifiers of cancer patients than 

currently used prognostic indexes; (2) when all indexes were applied jointly, inclusion of 

expression profiles improved the overall accuracy of classification; and (3) to achieve 

optimal classification, expression profiles should be applied in corporation with other indexes. 

These implications altogether solidly confirmed the clinical value of microarray data. 

At the beginning of this study, it was proposed to perform expression profiling across 

multiple microarray datasets. The hypothetical advantage of this strategy is that larger overall 

sample size will increase the generality of resultant expression profiles. At the same time, it 

may be criticized of ignoring the extensive diversity of independently generated microarray 
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datasets. Our study demonstrated that as long as assumptions were properly made and source 

data were consistently annotated and processed, expression profiles derived from multiple 

datasets would have better quality than those obtained from individual datasets. In specific 

patient subpopulations, genes highly correlated to clinical indexes are more likely to have 

observed significant correlation to cancer outcome than other genes, but they will lose their 

status in other subpopulations having different clinical background. This is one of the reasons 

why expression profiles obtained from independent studies are mostly inconsistent. On the 

other hand, genes not influenced by the confounder would win over the long haul as long as 

they had certain level of consistent correlation to outcome in general population. CDC20 and 

BECN1 are the examples of such genes (Table 8).  

Expression profiles composed of those genes will be more reproducible, and more 

precisely differentiate patients into prognosis groups. The validation of this hypothesis is 

critical. Due to the high expense and complexity, microarray studies often do not have 

enough samples to obtain significant statistical results about cancer features. Therefore, 

reusing existing data by integration analysis will allow researchers to extract information or 

draw conclusions that can not be reached by analyzing individual datasets. The 60 reporter 

genes and their weight derived from the combined dataset made an optimal expression 

profile of breast cancer recurrence achievable using the given datasets. The value of this 

profile is worthy of some further investigation. 

The lung cancer datasets were also used to ensure the advantage of data integration. The 

source data were re-processed differently because of the disparity between breast and lung 

cancers. Since lung cancer subtypes are highly dissimilar in terms of tissue type, survival rate, 

and so on, only adenocarcinoma patients were used. Patients were categorized into two 
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prognosis groups according to their 2-year survival outcome because recurrence outcome of 

most patients was not available and about 60% invasive lung cancer patients did not survive 

more than two years after diagnosis. As shown in Fig. 9 and 10, results from lung datasets 

also strongly advocated integration analysis.  

In addition to the confirmation of those two hypotheses, the data analysis project of the 

current study also made the following conclusions: 

The artificial variable SEP (Score for Expression Profile) was designed and successfully 

fitted into data analysis procedures. The utilization of SEP was the key of statistical analyses 

in this study. As a numeric and continuous variable, SEP was suitable for many analytical 

methods. For example, the density distribution of SEP scores in Fig. 1A and subsequent chi-

square tests provided strong evidence about the general confounding effect of clinical 

indexes on gene-outcome correlation. Because of these confounders, the observed significant 

correlation of a gene to disease outcome could be the result of high correlation between the 

gene and a clinical index. Genes taking advantage of confounders will have higher chance to 

be selected as a reporter. This is why many reporter genes can be linked to one or more 

clinical indexes. Sampling criteria varies among studies. In the case of breast cancer datasets 

analyzed in this study, all patients in Rosetta dataset were lymph node-positive while 

Stanford dataset included both node-positive and -negative patients. Hence, controlling the 

confounding effect of clinical indexes will improve the generality of expression profiles.   

A partial correlation procedure was the first strategy used in this study to control the 

confounders of expression profiling. The procedure calculated a residual value for each gene 

expression measurement and replaces the original measurements with the residuals in the 

following steps.  Although theoretically all confounders could be controlled by recursively 
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calculating residuals, extra variance will be introduced into results since the residuals were 

estimated from the sample data. Consequently, the resultant expression profiles would have 

higher false positive rate and lower quality. For example, when the 127-gene profile obtained 

from the partial correlation analysis of Rosetta dataset was cross-validated with Stanford 

dataset, it did not perform better than the profile generated by regular correlation analysis. 

The major data analysis procedure of this study combined training/testing validation and 

bootstrap re-sampling. This procedure was used to avoid overfitting in results and make 

unbiased comparison of expression profiling strategies. However, it should be noted that this 

procedure did not take full advantage of the source data because all expression profiles were 

generated from the training data, which contained just about two-third of the complete 

datasets. For example, when the breast cancer 60-gene profile obtained from a complete 

dataset was cross-validated with the other dataset, the overall accuracy of patient 

classification using SEP was 73.61%, higher than the bootstrapping median (70.59%) 

obtained from within-dataset validation. 

Results of this study advocated a breast cancer recurrence model suggesting that the 

progression of secondary tumors had two growth patterns. Each of these patterns 

corresponded to a post-diagnosis recurrence peak. Instead of arbitrarily categorizing patients 

according to their 5-year prognosis as what most breast cancer studies prefer, this study 

adopted this 2-peak model and classified patients into two groups corresponding to the peaks. 

Considering breast cancer as a cell growth abnormality, this classification had more 

biological grounds. Comparison of Fig. 6B and 8 shows that at N=100, the median AUC 

obtained from the lung data was 0.1 lower than that from the breast data, a relatively 

significant dropping. This difference might be caused by smaller sample size of two training 
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lung datasets, but more possibly because of the lack of a well-defined biological model to 

support the 2-year survival classification of patients. In addition, recurrence is a better output 

variable of expression profiling than survival because the factors influencing survival are 

more diverse. 

The stepwise procedures were applied to trace the consequence of adjusting the 

sensitivity and specificity of reporter gene selection. The necessity of high reporter selection 

sensitivity was questioned by various results. First, as in Figure 5 and 6, medians of test 

statistics gradually reached a plateau with the raising of N. When N was greater than 60, 

increasing its value had very little influence on the quality of expression profiles. Secondly, 

cross-validation results demonstrated that two mostly different reporter gene list had similar 

performance on testing patients (Table 6). Thus, both lists must miss some true positive 

reporters since each of them was valid classifiers of testing patients and included some true 

positives. Finally, the result of the reduction process (Fig. 11A) showed that the loss of 

sensitivity could be tolerated to an extensive level without significantly reducing the quality 

of expression profiles. On the other hand, high selection specificity was proved to be critical. 

The relationship between higher reporter selection specificity and better expression profiles 

was suggested by results presented in Fig. 7. The combined dataset selected reporter genes 

more consistently, implying that the expression profiles obtained from it included less false 

positives. Furthermore, the replacement process (Fig. 11B) caused more dramatic 

subsequence than the reduction process. Comparison of Fig.10A and 10B concluded that 

with the same sensitivity, decreasing specificity of reporter selection would quickly decrease 

the quality of expression profiles. Therefore, an effective expression profile should include 

false positives as few as possible, but do not have to take in all or most of true positives. 
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Nevertheless, high sensitivity should still be preferred when no substantial tradeoff is 

required. The more true positives an expression profile includes, the more reliable and robust 

it will be. In this study, the optimal tradeoff was arbitrarily decided based on the observed 

trend as the value of N was increased. More investigation on this topic is expected in the 

future.  

The data integration strategy used in the current study was straightforward and easy to 

perform. It assumed that patients of independent studies were sampled from the same 

population and their expression data had similar distribution and range after proper data re-

processing. A major criticism of this strategy might be the information leaking due to the 

filtering of genes before combining two datasets having different array design. A large 

portion of genes in the source data were not included in the combined dataset because they 

were not in both datasets. However, both breast and lung combined datasets still included 

about 5,000 Unigene clusters. According to previous conclusion about reporter selection 

sensitivity, the quality of resultant expression profiles was merely influenced by the filtering 

process. If the data integration involves more than two microarray datasets, inconsistent array 

design will make the current strategy less feasible. For example, there were only about 1,000 

Unigene clusters included by all four lung datasets used in this study. An alternative strategy 

of integration analysis is meta-analysis, the analysis of results obtained from individual 

studies. With meta-analysis, each gene will get a summary statistic no matter its presence in 

multiple datasets. 

Microarray is an evolving technology. A pre-requisite of its clinical application is the 

standardization of platform, protocol, data analysis, and so on, which will make large-scale 

clinical tests doable and provide a common reference for sample categorization. Otherwise, 
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datasets generated by independent studies are not directly comparable. For example, when 

SEP was calculated with the same reporter genes and their weight in this study, scores of 

different patient cohorts usually did not have ranges analogous to each other. The 

standardization of microarray relies on the knowledge learned from the existing data. As 

more and more microarray datasets about cancer or other diseases are published, there is 

increasing interest on comparing and summarizing multiple datasets to discover general 

expression patterns, which help the design of standard array template. By successfully 

verifying and realizing the advantages of multi-dataset expression profiling, the current study 

will accelerate the standardization of microarray.  

 

5.2 MAMA Project 

Although its name highlighted meta-analysis, the MAMA system is more of a data-

mining platform than a meta-analysis toolbox. Particularly, it provided users with a 

centralized storage of microarray datasets, a data annotation and management tool, a data-

mining environment for simultaneously investigating multiple datasets. Therefore, any 

researcher interested in the expression profiling of tumor tissues may take advantage of it. 

MAMA is also an open-source project. Applications of MAMA include, but are not limited 

to: 

• Store and share microarray datasets about cancer. 

• Correlate the expression of genes to cancer features, such as recurrence or ER status 

of patients. 

• Identify or confirm co-expression of genes across multiple datasets to help the 

building of genetic pathways.  
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• Generate gene expression patterns from one or multiple datasets, and validate these 

patterns with data from independent sources. 

• Implement and test novel methods or procedures of microarray data analysis.  

• Help researchers to discover clinical indexes or molecular markers of cancer.  

A noticeable feature of the MAMA system is the simplicity of the server program. Due to 

the limited human and computer resources, a heavy duty server, which would handle data 

analysis operations for all users, was avoided to minimize the development and maintenance 

efforts. Therefore, MAMA does not provide a web-like interface for users to interact with the 

system through a web browser. Instead, all data manipulation and analysis functions were 

implemented in the client program, which need to be downloaded and installed by users 

themselves. Consequently, users have to take more responsibility on the execution of 

operations. For example, they need to ensure that their local computer meets the hardware 

requirements of complicate data analysis procedures. On the other side, this system 

architecture improved the extensibility of the MAMA system. Modification and addition of 

data analysis functions are limited at the client-side. Since all source codes are freely 

available, users are able to customize the functions of MAMA system without setting up their 

own database and server.  

MAMA was developed as a highly flexible system for both of data manipulation and 

analysis. It is assumed that independent datasets should have similar subjects and definition 

of variables when they are integrated by meta-analysis or other statistical techniques. For 

example, two studies respectively examining prognosis of breast and lung cancer usually 

cannot be integrated because their subjects are too dissimilar. In practice, since each study 

has its own purpose and experimental design, datasets used by meta-analysis usually need to 
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be re-processed first. The data manipulation functions provided by the MAMA client allow 

users to filter sample patients or sequence and convert variables before specific analyses. 

Consequently, user-defined ‘virtual’ studies, which have a different objective from the 

original studies, can be carried out to discover new information from existing data. 

Furthermore, by establishing a method plug-in mechanism, MAMA allows users to 

implement and apply their own methods of expression data normalization.  

Flexibility is critical for the usability of MAMA. Cancer is a complex disease involving 

many aspects. To identify an optimal gene expression pattern, researchers often want to 

conveniently try and compare different strategies (e.g. 5-year vs. 3-year prognosis) or 

methods (e.g. parametric vs. non-parametric test) of gene expression profiling. The MAMA 

system fulfilled this requirement by its high flexibility, which could be error-prone at the 

same time. If users do not thoroughly understand the data or methods of their analysis, 

variables could be incorrectly defined, methods could be misused or mistakenly implemented, 

and analysis results could be inaccurately interpreted. Therefore, the targeted users of 

MAMA are those already familiar with the characteristics and statistical methods of 

microarray analysis.  

An important lesson learned from this study is the complexity of realizing the medical 

application of microarray technology. Although most biomedical researchers would agree 

that high-throughput technologies will have extensive application in clinical medicine, no 

substantial breakthrough has been made so far. A possible reason is that the current 

knowledge about cancer and other complex diseases is still not enough for researchers to 

fully take advantage of these technologies. Besides, datasets generated with these 

technologies usually have low quality and small sample size, probably the reason why results 
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of microarray studies usually have not been taken seriously by most medical practitioners. 

Microarray-based diagnosis requires the standardization of technology and the data analysis 

procedures. While microarray technologies will keep developing in near future, suitable and 

practicable data analysis procedure are essential now. Similar to the data analysis procedure 

used in clinical trials, samples selected from various subpopulations should be pooled 

together to draw more solid and general conclusions. This study presented such a procedure 

during the data analysis phase and the MAMA system will help other researchers to develop 

more.   

Although microarray provides gene expression measurements at a genomic level, its 

value should not be exaggerated. The comprehensive description of biological systems 

should cover information at different levels, including sequence, mRNA, protein, metabolite, 

and so on. The integration of data at multiple levels will provide a better understanding about 

investigated subjects. For example, the results of this study demonstrated that expression 

pattern and other clinical indexes jointly accomplished the best prognostic model of breast 

cancer. While systems biology is recently becoming one of the most active topics of 

biomedical research, its success highly relies on the development of data integration 

techniques. This study shared some commonness with systems biology researches in terms of 

data integration. For example, data objects should be formally and consistently annotated. 

Therefore, the vision and process of developing the MAMA project are partly applicable to 

similar projects of systems biology.  

While the current version of MAMA system has met its basic requirements, it is still 

prototypic. Future upgrades under consideration are: 
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• Data collection: More datasets will be loaded into MAMA database as a continuous 

effort. 

• Data presentation: New data presentation functions will be added for users to navigate 

data contents more conveniently. Examples of such functions are rendering data 

distribution in diagrams and sorting or filtering analysis results in tables. 

• Method categories: According to feedbacks from users, new categories of data 

analysis methods will be implemented and corresponding API for method plug-in will 

be provided. 

• Prediction models: The current version of MAMA did not support the functions for 

generating prediction models, an important application of microarray data. Realizing 

this feature involves a major upgrade of MAMA source codes. New data objects need 

to be defined and new data analysis functions, such as testing a model with datasets, 

need to be implemented.  

Biomedical informatics is a new but promising field. Its prospects are highly dependent 

upon the insight and vision of researchers. Presenting some fresh ideas to the research 

community, this study strongly supported the application of microarray on cancer clinics by 

its data analysis results and data mining platform. 
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Appendix A: 

Demo of Data Analysis Steps Using a Pseudo-dataset 
 

This demo uses a simple and artificial microarray dataset of 10 breast cancer patients to 

demonstrate some data analysis steps utilized in this study. Table 1 and 2 separately list the 

clinical data of all patients and the expression measurements of all sequences in the source 

dataset. The original study annotated the sequences using accessions of NCBI RefSeq 

database and has processes microarray images to generate a 2-dimensional matrix of gene 

expression data. The expression profiling procedure used in this study would start with the 

categorization of sample patients into prognosis groups. 

 

Table 1 Clinical Information of Sample Patients 

Sample ID Recurrence Follow-up 
(year) ER Status Tumor 

Size Grade Age 
(year) 

p_1 1 2.53 1 2 2 43 

p_2 0 6.44 1 2 1 44 

p_3 1 1.66 0 2 3 41 

p_4 1 1.3 1 2 3 41 

p_5 0 11.98 0 2 3 48 

p_6 1 1.16 1 1 2 49 

p_7 0 10.14 0 2 1 46 

p_8 0 8.8 0 2 3 48 

p_9 0 1.29 1 1 3 48 

p_10 1 6.64 1 1 2 38 
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Table 2 Expression Measurements in Source Dataset 

Sequence p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_10 

NM_003000 0.03 -0.09 0.08 0.08 -0.01 0.09 0.1 0 -0.02 -0.08 

NM_003001 1.11 -0.12 1.28 0.2 1.11 -0.04 1.07 -0.13 1.02 -0.14 

NM_003002 -0.26 -0.17 -0.35 -0.26 -0.29 0.03 -0.06 0.12 -0.27 -0.13 

NM_003003 -0.7 -0.04 -0.73 -0.05 -0.71 -0.03 -0.63 -0.01 -0.69 0.03 

NM_003004 0.82 0.25 0.6 -0.08 0.78 0.16 0.63 -0.23 0.65 0.07 

NM_003005 -0.89 0.01 -0.81 0.05 -0.8 0.01 -0.6 -0.02 -0.77 0.13 

NM_003006 -0.78 -0.01 -0.71 0.13 -0.86 -0.09 -0.7 -0.01 -0.76 -0.03 

NM_003007 -1.23 0.25 -1.09 0.23 -1.23 0.05 -1.1 0.04 -1.16 0.45 

NM_003033 -1.29 0.25 -1.11 0.26 -1.34 -0.01 -1.16 0.08 -1.19 0.44 

NM_198139 1.09 -0.15 1.06 -0.18 1.21 0 1.16 -0.07 0.95 -0.34 

 

A.1 Categorization of Sample Patients 

Breast cancer patients are categorized into prognosis groups based on their follow-up data. 

Patients who had observed recurrence within three years after diagnosis are classified into 

poor prognosis group (p_1, p_3, p_4, and p_6). Patients who were followed up for at least 

three year and had no observed recurrence are classified into good prognosis group (p_2, p_5, 

p_7, and p_8). The follow-up of p_9 was too short and the recurrence of p_10 happened too 

late. These two patients cannot be put into either group and will be excluded from all the 

following steps.  

 

A.2 Mapping Sequences to Unigene Clusters 

All sequences are mapped to Unigene clusters. File containing the mapping information 

between RefSeq and Unigene is available at NCBI website. Both of sequence NM_003007 

and NM_198139 are mapped to cluster Hs.1968 (SEMG1), so the expression measurements 
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of these two sequences are averaged for each patient to get rid of redundancy. Sequence 

NM_003303 cannot be mapped to any Unigene cluster, so it is removed from the dataset. 

Table 3 gives the gene expression data of entire dataset after this step. 

 

Table 3 Contents of Dataset after Sample and Sequence Filtering 

Sequence Gene Name p_1 p_2 p_3 p_4 p_5 p_6 p_7 

Hs.1968 SEMG1 -0.07 0.05 -0.02 0.03 -0.01 0.02 0.03

Hs.356270 SDHD -0.26 -0.17 -0.35 -0.26 -0.29 0.03 -0.06

Hs.444472 SDHC 1.11 -0.12 1.28 0.2 1.11 -0.04 1.07

Hs.464184 SEC14L1 -0.7 -0.04 -0.73 -0.05 -0.71 -0.03 -0.63

Hs.465924 SDHB 0.03 -0.09 0.08 0.08 -0.01 0.09 0.1

Hs.506670 SELPLG -0.78 -0.01 -0.71 0.13 -0.86 -0.09 -0.7

Hs.546296 SECTM1 0.82 0.25 0.6 -0.08 0.78 0.16 0.63

Hs.73800 SELP -0.89 0.01 -0.81 0.05 -0.8 0.01 -0.6

 
 

A.3 Pre-processing of Expression Measurements 

Details about pre-processing expression data are given in ‘Specification for Curation of 

Expression Measurements’. In this demo, it is assumed that all expression measurements are 

in good quality and have been log10-transformed. Therefore, all measurements are directly 

normalized. The first normalization step is to make the median of gene expression in each 

patient equal to 0.0 and the standard deviation (SD) equal to 1.0. For example, the median 

and SD of gene expression in patient p_1 are respectively -0.17 and 0.74, so each expression 

measurement of p_1 is subtracted by -0.17 and then divided by 0.74. Afterward, expression 

measurements of each gene are also normalized with the same process. The resultant 

normalized data matrix is given in Table 4.  
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Table 4 Normalized Expression Measurements 

Sequence Gene Name p_1 p_2 p_3 p_4 p_5 p_6 p_7 

Hs.1968 SEMG1 0.14 2.34 0.61 -0.83 0.45 -0.18 -0.14

Hs.356270 SDHD 0.03 -0.97 -0.07 -1.96 -0.03 0.35 0.09

Hs.444472 SDHC 0.23 -1.62 0.44 -0.22 0.23 -1.6 0.22

Hs.464184 SEC14L1 -0.14 1.62 -0.18 0.14 -0.25 0.3 -0.84

Hs.465924 SDHB 0.09 -1.85 0.34 0.13 -0.09 1.84 -0.12

Hs.506670 SELPLG -0.09 1.28 0.09 2.02 -0.28 -0.81 -0.44

Hs.546296 SECTM1 0.11 0.67 -0.07 -1.4 0.07 0.47 -0.11

Hs.73800 SELP -0.99 1.38 -0.74 1 -0.82 0.74 -0.88

 

A.4 Re-sampling of Patients 

Bootstrap strategy repeatedly re-samples patients to generate training and testing 

subgroups. The following steps will be applied to one of such bootstrap re-samplings. The 

results obtained from all re-samplings will be summarized to give unbiased estimation of test 

statistics. It is assumed that patient p_1, p_2, p_3, p_4, p_5, and p_7 are assigned to the 

training subgroup, leaving p_6 and p_8 in the testing subgroup.  

 

A.5 Correlation Analysis 

The Pearson correlation coefficient (r) of each gene to recurrence outcome is calculated 

with data of all training patients. For example, r of sequence Hs.1968 (SEMG1) is calculated 

with {1, 0, 1, 1, 0, 0} and {0.14, 2.34, 0.61, -0.83, 0.45, -0.14}, and the result equals to -0.47. 

Resultant correlation coefficients of all genes are given in Table 5. Genes are also ranked 

according to the magnitude of their r, from the highest to the lowest. Coefficient r can be 

transformed to t statistic using formula: t = r * ((n – 2) / (1 – r2))1/2, where n is sample size.  
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Table 5 Results of statistical tests on gene-recurrence correlation 

Pearson 
Correlation 

Partial 
Correlation 

Rank  
Sum Test Sequence Gene 

Name 
r rank r rank r rank 

Hs.1968 SEMG1 -0.47 7 -0.51 3 0.65 5.5 

Hs.356270 SDHD -0.24 8 -0.04 8 0.65 5.5 

Hs.444472 SDHC -0.72 3 0.73 2 -0.87 3 

Hs.464184 SEC14L1 -0.51 6 -0.48 5 -0.65 5.5 

Hs.465924 SDHB 0.95 1 0.8 1 -1.96 1 

Hs.506670 SELPLG 0.64 4 0.05 7 -1.09 2 

Hs.546296 SECTM1 -0.59 5 -0.49 4 0.65 5.5 

Hs.73800 SELP 0.92 2 -0.38 6 0.22 8 

 

A.6 Partial Correlation Analysis 

ER status is the controlled variable in this demo. The following description uses sequence 

Hs.1968 as an example to demonstrate the process of controlling ER status from expression 

data. 

1. Training patients are classified based on their ER status. ER-positive group includes 

patient p_1, p_2, and p_4 and ER-negative group includes patient p_3, p_5, and p_7. 

2. Average expression level of Hs.1968 in ER-positive and –negative patients is 

separately calculated. The values are considered as conditional expected expression 

(E) of gene Hs.1968 in all patients. 

• Mean+ {0.14, 2.34, -0.83} = 0.55 

• Mean− {0.61, 0.45, -0.14} = 0.31 
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3. The residuals are calculated by subtracting expression measurements in Table 4 with 

corresponding E values. In the case of Hs.1968, the residuals of all eight patients are:  

• {-0.41, 1.79, 0.30, -1.38, 0.14, -0.73, -0.45, -1.03} 

After all expression measurements are transformed to residuals, the partial correlation 

coefficient (r’) between each gene and the recurrence outcome is calculated with the 

residuals of training patients using the same formula of Pearson correlation. Table 5 gives the 

r’ of each gene and the corresponding rank. The r and r’ values of some genes, such as 

Hs.444472, are dramatically different. 

 

A.7 Wilcoxon Rank Sum Test (RST) 

RST is performed on training data of each gene to calculate a Z statistic. The following 

description uses sequence Hs.1968 as an example to demonstrate the process of RST. 

1. Training patients are put into two groups of opposite recurrence outcome. Group 1 

includes patient p_1, p_3 and p_4, and group 2 includes patient p_2, p_5, and p_7. 

Size of both groups is three.  

2. Expression measurements of gene Hs.1968 in all training patients are transformed to 

ranks. So, given data points {0.14, 2.34, 0.61, -0.83, 0.45, -0.14}, corresponding 

ranks will be {4, 1, 2, 6, 3, 5}. If there are equal data points, their ranks will be 

averaged. 

3. Parameter W1 is calculated as the summation of ranks assigned to group 1:  

• W1 = Σ ranksgroup1 = rankp_1 + rankp_3 + rankp_4 = 4 + 2 + 6 = 12 

4. Parameter U1 is calculated with W1 and the size of group1:  

• U1 = W1 − N1 (N1 + 1) / 2 = 12 – 3 (3 + 1) / 2 = 6 
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5. Mean is calculated as:  

• Mean = (N1 + N2) / 2 = (3 + 3) / 2 = 4.5 

6. Variance is calculated as: 

• Variance = N1 N2 (N1 + N2 + 1) / 12 = 3 * 3 * (3 + 3 + 1) / 12 = 5.25 

7. Z statistic is calculated as: 

• Z = (U – Mean) / Variance1/2 = (6 – 4.5) / 5.251/2 = 0.655 

Table 5 also gives the Z statistic of each gene and the corresponding ranks. The ranks of 

genes having equal Z statistics are averaged.  

 

A.8 Calculation of SEP Score 

In this demo, reporter genes are selected based on RST results. The number of reporters 

(N) is arbitrarily set to two. Therefore, top-ranked sequence Hs.465924 and Hs.506670 are 

selected as reporters and their weights are respectively -1.96 and -1.09. The SEP score of 

each patient is calculated with the following steps, and the intermediate results and final SEP 

scores are given in Table 6. 

1. The expected expression level (E) of each reporter gene is calculated by averaging the 

expression measurement of each reporter in all training patients. In the case of 

Hs.465924, its value of E is calculated as: 

• MeanHs.465924 {0.09, -1.85, 0.34, 0.13, -0.09, -0.12} = -0.25 

2. The difference between the observed and the expected expression levels of each 

reporter gene is calculated and then weighted by the RST Z statistic of the gene.  

3. The resultant values obtained from the last step are summed up to generate a SEP 

score for each patient.  
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The SEP scores of patients can be applied to other statistical analysis to evaluate 

expression profiles or the strategy used to generate them. For example, if cutoff of SEP is set 

as 0, both testing patient p_6 and p_8 will be classified into poor prognosis group. According 

to actual observation of recurrence outcome, p_6 is correctly classified, but p_8 is not, giving 

a classification accuracy of 50%. 

 

Table 6 Step-by-step calculation of SEP scores 

Hs.465924 (E = -0.25, W = -1.96) Hs.506670 (E = 0.43, W = -1.09) 
Patient 

X X–E W(X–E) X X–E W(X–E) 
SEP 

p_1 0.09 0.34 -0.67 -0.09 -0.52 0.57 -0.1

p_2 -1.85 -1.6 3.14 1.28 0.85 -0.93 2.21

p_3 0.34 0.59 -1.16 0.09 -0.34 0.37 -0.79

p_4 0.13 0.38 -0.74 2.02 1.59 -1.73 -2.47

p_5 -0.09 0.16 -0.31 -0.28 -0.71 0.77 0.46

p_6 1.84 2.09 -4.1 -0.81 0.38 -0.41 -4.51

p_7 -0.12 0.13 -0.25 -0.44 -0.01 0.01 -0.24

p_8 -0.21 0.04 -0.08 1.18 0.75 -0.82 -0.9
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Appendix B: 

Sample Class Diagrams of MAGE-OM 
 

MAGE-OM (MicroArray Gene Expression – Object Model) is a complex data model 

developed by MGED (Microarray Gene Expression Data) Society to facilitate the sharing of 

microarray data between data systems. Because MAGE-OM is described with UML (Unified 

Modeling Language), definitions and relationships of entities within this model can be 

graphically represented with class diagrams. Fig. 1 gives the class packages and root classes 

of MAGE-OM. Classes have an object-oriented structure and most of them inherit class 

‘Extendable’. Fig. 2 is a UML class diagram including major classes of ‘BioMaterial’ 

package. The ‘OntologyEntry’ class defines the standard vocabularies that will be used to 

describe characteristics of biological samples.  

 

References: 

1. Source of figures: http://www.ebi.ac.uk/arrayexpress/Schema/MAGE/MAGE.htm 

2. MAGE Web Home: http://www.mged.org/Workgroups/MAGE/mage.html 

3. More MAGE: http://www.mged.org/Workgroups/MAGE/MAGEdescription2.pdf 
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Figure 1 Class Packages and Root Classes of MAGE-OM 

 

Figure 2 Class Diagram of 'BioMaterial' Package 
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Appendix C: 

Architecture of Tomcat/Servlet Server 
 

Java servlets are small server-side programs that response to connection of clients. They 

extend the functionality of web servers with improved performance and security. The 

execution of servlets needs Java Virtual Machine (JVM) and a service called ‘servlet engine’. 

The servlet engine loads a servlet the first time it is required by client, and keeps it activated 

to handle concurrent requests. The servlet keeps activated until it is explicitly unloaded or the 

servlet engine is stopped. Apache Tomcat is a container that provides a servlet-supporting 

environment. The Tomcat server includes a servlet engine, which incorporates servlets into a 

web server to make their services available to the clients. Fig. 1 demonstrates the general 

architecture of a Tomcat/Servlet server.  

 

References: 

1. Servlet Web Home: http://java.sun.com/products/servlet/ 

2. Servlet API: http://java.sun.com/products/servlet/2.2/javadoc/ 

3. Tomcat Web Home: http://tomcat.apache.org/ 
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Figure 1 Architecture of Tomcat/Servlet Server 
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Appendix D: 

Architecture of MVC Design Pattern 
 

MVC (Model-View-Controller) software architecture is commonly used in applications 

having GUI. It breaks the functions of an application into three parts. The ‘Model’ maintains 

the contents of data objects and is independent of the visual representation of data. The 

‘View’ has two major tasks. It determines how the data should be rendered on screen and 

responds to user actions. The ‘Controller’ accepts the user actions, handles the events, and 

consequently generates results. These three elements interact with each other to keep 

themselves updated. As showed in Fig. 1, a user action is received by View and passed to 

Controller, which will change Model and/or View after the action is handled. Model is 

independent of both View and Controller, and View is independent of Controller. Therefore, 

different types of functions are encapsulated, and the code updates in one element will not 

influence other elements as long as their interfaces keep unchanged. 

  

References: 

1. Source of figure: 

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-

arch/app-arch2.html#1106102 

2. Inderjeet Singh, B.S., Mark Johnson, and the Enterprise Team, Designing Enterprise 

Applications with the J2EETM Platform, 11.1.1 Model-View-Controller Architecture. 

Second ed. 2002. 
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Figure 1 Model-View-Controller Architecture 
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Appendix E: 

Meta-analysis Methods 
 

Meta-analysis collects the results of individual studies to draw integrated conclusion and 

is often referred to as ‘analysis of analyses’. Successful meta-analysis is able to reuse 

research resource to obtain information that cannot be made available by individual studies. 

There are two common types of meta-analysis methods: combined test and measures of 

effect size. 

 

E.1 Combined Test 

Combined test is a procedure that summarizes the results from independent tests of the 

same hypothesis. It can be considered as a hypothesis test performed on the p-values or test 

statistics of individual tests. 

Fisher combined test is one of the best known meta-analysis method. It uses the p-values 

of individual tests to calculate a χ2 statistic:  

χ2 = -2 Σ loge p 

The χ2 statistic obtained from this formula following chi-square distribution with degrees 

of freedom equal to 2N, where N is the number of tests combined. 

Winer combined test uses the t statistics and df (degrees of freedom) of individual tests to 

calculate a Z statistic: 

Z = (Σt) / (Σ (df / (df – 2))) 1/2
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In this formula, df / (df – 2) is the variance of a t distribution. When each df is no less 

than 10, the resultant Z statistic can be transformed to a p-value based standard normal 

distribution.  

Stouffer combined test, on the other hand, uses z statistics of individual tests to calculate 

a summarized Z statistic:  

Z = Σz / N1/2

In this formula, N is the number of tests combined. The resultant Z statistic follows 

standard normal distribution. When all results of individual tests are obtained from large 

samples, Winer and Stouffer combined tests will have nearly the same results.  

The results of different combined tests are mostly consistent with each other although 

each method has its strengths and limitations. Before a combined test, it is often necessary to 

transform various statistics, such as t and z, into a common statistic or one-tailed p-value. 

 

E.2 Measures of Effect Size 

Combined tests provide the statistical significance of the results, but do not any give 

insight into the strength of the relationship, which can be achieved by measures of effect size. 

The phrase ‘effect size’ means ‘the degree to which the null hypothesis is false’ while the 

null hypothesis states that the effect size is zero. 

There are types of effect sizes commonly dealt with by meta-analysis methods: 

1. differences of two groups in their means, as d statistic calculated by Student’s t test. 

• d = |Mean1 – Mean2| / σ 

2. the degree of association between two variables, as Pearson correlation coefficient (r). 
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The average of these effect sizes obtained from individual studies is calculated by meta-

analysis methods for further steps: 

daverage = Σd / N 

and 

raverage = Σr / N 

 

E.3 Transformation of Test Statistics 

For the purpose of meta-analysis, it is often necessary to transform test statistics to each 

other.  

1. Transform to r: 

• t: r = (t2 / (t2 + df))1/2 

• F: r = (F / F + df(error))1/2   

• χ2: r = (χ2 / n)1/2  

• d: r = d / (d2 + 4)1/2 

2. Transform to d: 

• t: d = 2t / df1/2 

• F: d = 2F1/2/df(error) 1/2  

• r: d = 2r / (1 – r2) 1/2 
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Appendix F: 

Complete Lists of Reporter genes 
 

This appendix presents the complete reporter gene lists derived from breast and lung 

cancer microarray datasets using bootstrap procedure. In the tables, ‘ID’ is the Unigene 

accession of a reporter while ‘Name’ is its Unigene symbol. ‘Count’ represents how many 

times a reporter was ranked within top-100 by bootstrapping re-samplings. Finally, ‘Weight’ 

is the Z statistic of a reporter gene obtained from Wilcoxon Rank Sum Test (RST) applied on 

the data of all patients in the dataset.  

 

F.1 Reporter Lists of Breast Cancer 

Table 1-3 separately give the 60-gene reporter list derived from two independent breast 

cancer datasets and their combination. These lists represent gene expression profiles 

corresponding to 3-year recurrence outcome of breast cancer and the list in Table 3 is 

recommended by this study. The counts of reporters are based on 10,000 bootstrapping re-

samplings.  

 

F.2 Reporter Lists of Lung Cancer 

Table 4-6 separately give the 60-gene reporter list derived from two independent breast 

cancer datasets and their combination. These lists represent gene expression profiles 

corresponding to 2-year survival outcome of lung cancer and the list in Table 6 is 

recommended by this study. The counts of reporters are based on 1,000 bootstrapping re-

samplings.  
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Table 1 The Reporter List Derived from Rosetta Breast Dataset 

Sequence Name Count Weight 

Hs.435861 SCUBE2 9991 6.57 

Hs.27860 PTGER3 9463 5.51 

Hs.148767 RQCD1 9432 -5.4 

Hs.352962 HRB 9248 -5.09 

Hs.171834 PCTK1 8768 -5.12 

Hs.25001 YWHAG 8743 -5.05 

Hs.9589 UBQLN1 8723 -5.15 

Hs.433512 ACTR3 8537 -4.74 

Hs.20013 P29 8213 4.66 

Hs.181461 ARIH1 8119 -4.7 

Hs.84113 CDKN3 8114 -4.64 

Hs.1578 BIRC5 8079 -4.55 

Hs.439200 KIAA0090 8012 4.7 

Hs.2006 GSTM3 7915 4.55 

Hs.351680   7855 -4.72 

Hs.30743 PRAME 7646 -4.68 

Hs.429 ATP5G3 7590 -4.52 

Hs.437546 SMARCE1 7577 4.62 

Hs.283532 BM039 7396 -4.35 

Hs.421337 XTP1 7038 -4.25 

Hs.82285 GART 6862 -4.39 

Hs.276466 FLJ21062 6852 4.29 

Hs.178761 PSMD14 6549 -4.2 

Hs.287472 BUB1 6547 -4.2 

Hs.35096 KAISO-L1 6383 4.14 

Hs.424966 PIR 6144 -4.12 

Hs.79353 TFDP1 6035 -4.11 

Hs.155204 ZNF174 5950 4.12 

Hs.25913 PEX12 5771 4.07 

Hs.35120 RFC4 5679 -4 

Hs.184161 EXT1 5652 -4 

Hs.173162 NOC4 5647 -4 
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Hs.2025 TGFB3 5644 4.02 

Hs.23255 NUP155 5636 -4 

Hs.190389 KIAA0266 5492 4 

Hs.128425 NY-REN-24 5463 4 

Hs.153752 CDC25B 5249 -3.92 

Hs.49932 C21orf45 5246 -3.92 

Hs.350966 PTTG1 5204 -3.85 

Hs.443793 MIR 5159 3.92 

Hs.53447 KNSL8 5108 3.92 

Hs.77448 ALDH4A1 5074 3.85 

Hs.78885 BTD 4962 3.92 

Hs.173034 AMPH 4940 3.85 

Hs.433951 GPX4 4831 3.8 

Hs.7888   4811 3.8 

Hs.388921 PSMD2 4717 -3.8 

Hs.348501 PCM1 4652 3.74 

Hs.284153 FANCA 4650 -3.8 

Hs.163091 HIP14L 4647 -3.8 

Hs.407912 COL4A2 4646 -3.74 

Hs.77515 ITPR3 4548 -3.74 

Hs.81934 ACADSB 4538 3.8 

Hs.83383 PRDX4 4515 -3.7 

Hs.109706 HN1 4382 -3.7 

Hs.436187 TRIP13 4343 -3.74 

Hs.308045 BRRN1 4308 -3.7 

Hs.110457 WHSC1 4303 -3.66 

Hs.153357 PLOD3 4281 -3.66 

Hs.410784 LRP8 4211 -3.7 
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Table 2 The Reporter List derived from Stanford Breast Dataset 

Sequence Name Count Weight 

Hs.411509 GSTP1 9866 -5.17 

Hs.1657 ESR1 9297 4.33 

Hs.329989 PLK 9268 -4.25 

Hs.85137 CCNA2 8925 -4.09 

Hs.211589 PPEF1 8822 4.28 

Hs.149156 GLDC 8755 -4.14 

Hs.79748 SLC3A2 8719 -4.11 

Hs.94865 TEAD4 8599 -4.07 

Hs.150684 XPO6 8465 -4.04 

Hs.77329 PTDSS1 8305 -3.92 

Hs.287472 BUB1 8049 -4 

Hs.301011 KIAA0876 8019 3.8 

Hs.79241 BCL2 8003 3.85 

Hs.433984 SLC4A2 7632 -3.74 

Hs.12853   7585 3.7 

Hs.434367 TXNRD1 7402 -3.62 

Hs.82109 SDC1 6652 -3.47 

Hs.416854 RERG 6635 3.42 

Hs.178695 MAPK13 6614 -3.4 

Hs.267659 VAV3 6421 3.42 

Hs.5372 CLDN4 6149 -3.36 

Hs.408219 BCL7B 6099 -3.28 

Hs.435249 KIAA1025 5763 3.24 

Hs.102471 C6orf56 5627 -3.22 

Hs.169946 GATA3 5530 3.21 

Hs.78619 GGH 5439 -3.19 

Hs.3416 ADFP 5113 -3.1 

Hs.30901 SLC39A3 5067 -3.07 

Hs.406491 TLE1 5043 -3.08 

Hs.188011 MS4A7 4994 3.08 

Hs.405774 CTRL 4918 -3.05 

Hs.166071 CDK5 4698 -3 
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Hs.225952 PTPRT 4690 2.98 

Hs.83114 CRYZ 4581 2.97 

Hs.69771 BF 4561 3 

Hs.278526 RNTRE 4555 -2.97 

Hs.406458 GPI 4524 -2.98 

Hs.159637 VARS2 4432 -2.95 

Hs.368149 CCT7 4333 -2.94 

Hs.90911 SLC16A5 4281 -2.94 

Hs.91728 PMSCL1 4109 -2.89 

Hs.155287 KIAA0010 4019 -2.82 

Hs.387906 ABI-2 3993 2.82 

Hs.5719 CNAP1 3984 -2.86 

Hs.150444 KIAA0373 3979 2.83 

Hs.82963 GNRH1 3971 2.85 

Hs.437459 MYO1E 3965 -2.85 

Hs.179718 MYBL2 3913 -2.85 

Hs.83583 ARPC2 3862 -2.83 

Hs.410784 LRP8 3858 -2.85 

Hs.460184 MCM4 3857 -2.8 

Hs.24395 CXCL14 3836 2.82 

Hs.183800 RANGAP1 3829 -2.8 

Hs.12820 USP39 3826 -2.79 

Hs.430725 RHOIP3 3812 -2.79 

Hs.369358 SRPK1 3810 -2.82 

Hs.250712 CACNB3 3770 -2.77 

Hs.362805 MEIS2 3754 -2.79 

Hs.260555 C14orf45 3695 2.77 

Hs.432750 HPN 3685 2.77 
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Table 3 The Reporter List Derived from the Combination of Two Breast Datasets 

Sequence Name Count Weight 

Hs.171834 PCTK1 9862 -4.94 

Hs.435861 SCUBE2 9732 5.18 

Hs.287472 BUB1 9681 -4.56 

Hs.1657 ESR1 9647 5.23 

Hs.35096 KAISO-L1 9559 5.14 

Hs.25001 YWHAG 9426 -4.94 

Hs.436187 TRIP13 9360 -4.48 

Hs.173162 NOC4 8970 -4.42 

Hs.85137 CCNA2 8673 -4.17 

Hs.169946 GATA3 8651 4.93 

Hs.1578 BIRC5 8595 -4.6 

Hs.82906 CDC20 8466 -4.42 

Hs.410784 LRP8 8428 -4.76 

Hs.267659 VAV3 8415 5.01 

Hs.78619 GGH 8407 -4.29 

Hs.308045 BRRN1 8299 -4.5 

Hs.163091 HIP14L 8176 -4.43 

Hs.12272 BECN1 8158 4.92 

Hs.3416 ADFP 8043 -4.45 

Hs.77329 PTDSS1 8035 -4.36 

Hs.83383 PRDX4 7839 -4.36 

Hs.79353 TFDP1 7821 -4.32 

Hs.301011 KIAA0876 7750 4.94 

Hs.153752 CDC25B 7690 -4.47 

Hs.9589 UBQLN1 7634 -3.94 

Hs.27860 PTGER3 7542 4.79 

Hs.2006 GSTM3 7365 4.62 

Hs.49932 C21orf45 7178 -4.69 

Hs.421337 XTP1 7061 -3.9 

Hs.79241 BCL2 7047 4.59 

Hs.12109 CIAO1 6994 -4.07 

Hs.5719 CNAP1 6931 -4.1 
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Hs.434367 TXNRD1 6828 -4.21 

Hs.78771 PGK1 6698 -4.14 

Hs.111554 ARL7 6626 -4.41 

Hs.77515 ITPR3 6519 -4.24 

Hs.81934 ACADSB 6417 4.68 

Hs.374378 CKS1B 6363 -4.07 

Hs.406491 TLE1 6356 -4.3 

Hs.24395 CXCL14 6352 4.37 

Hs.109706 HN1 6339 -4.34 

Hs.435326 BAF53A 6336 -3.91 

Hs.153357 PLOD3 6083 -3.98 

Hs.350966 PTTG1 6024 -3.96 

Hs.433512 ACTR3 5987 -4.13 

Hs.413636 C7orf14 5963 -4.26 

Hs.278526 RNTRE 5925 -4.16 

Hs.348501 PCM1 5901 4.79 

Hs.311054 ITGBL1 5724 4.38 

Hs.184161 EXT1 5655 -4.17 

Hs.171955 TROAP 5653 -4.16 

Hs.188011 MS4A7 5600 4.74 

Hs.20830 KIFC1 5402 -3.95 

Hs.424966 PIR 5357 -3.96 

Hs.35962   5350 -3.99 

Hs.409065 FEN1 5326 -4.02 

Hs.226390 RRM2 5259 -3.99 

Hs.82285 GART 5256 -3.88 

Hs.184601 SLC7A5 5216 -4.14 

Hs.69771 BF 5168 4.08 
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Table 4  The Reporter List Derived from Harvard Lung Dataset 

Sequence Name Count Weight 

Hs.412707 HPRT1 1000 -4.57 

Hs.447492 PGAM1 949 -3.66 

Hs.411312 ITGA2B 889 3.52 

Hs.41270 PLOD2 841 -3.3 

Hs.91747 PFN2 827 -3.24 

Hs.408093 TCF2 825 3.28 

Hs.79037 HSPD1 816 -3.24 

Hs.119000 ACTN1 797 -3.12 

Hs.84136 PITX1 761 -3.07 

Hs.153647 MATN2 745 3.03 

Hs.195825 RBPMS 725 2.95 

Hs.172589 PWP1 693 -2.88 

Hs.155048 LU 673 2.91 

Hs.381072 PPIF 662 -2.88 

Hs.51 PIGA 634 2.77 

Hs.75318 TUBA1 633 -2.79 

Hs.293885 GARS 630 -2.74 

Hs.409965 PNN 620 -2.71 

Hs.436181 HOXB7 595 -2.69 

Hs.89901 PDE4A 593 2.7 

Hs.77917 UCHL3 584 -2.64 

Hs.75823 AF1Q 581 -2.64 

Hs.154672 MTHFD2 578 -2.63 

Hs.2006 GSTM3 573 2.65 

Hs.79347 KIAA0211 569 2.65 

Hs.155206 STK25 531 -2.63 

Hs.512601 HUMCYT2A 529 -2.57 

Hs.446579 HSPCA 528 -2.56 

Hs.58414 FLNC 527 -2.56 

Hs.282260 RPE 526 -2.57 

Hs.77613 ATR 521 -2.53 

Hs.59889 HMGCS2 507 2.48 
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Hs.409065 FEN1 504 -2.41 

Hs.79110 NCL 498 -2.51 

Hs.75160 PFKM 480 -2.46 

Hs.290432 HOXB2 473 -2.43 

Hs.78771 PGK1 460 -2.43 

Hs.512587 MST1 442 2.43 

Hs.150358 DPYSL3 441 -2.34 

Hs.10842 RAN 440 -2.4 

Hs.420563 NDUFS1 437 -2.41 

Hs.73769 FOLR1 429 2.41 

Hs.512711 TPI1 428 -2.32 

Hs.46319 SHBG 428 2.32 

Hs.67928 ELF3 418 2.3 

Hs.155079 PPP2R5A 415 2.28 

Hs.433941 SEPW1 414 2.34 

Hs.245540 ARL4 407 -2.25 

Hs.437475 STAT6 403 2.33 

Hs.360033 KIAA0186 402 -2.28 

Hs.79081 PPP1CC 398 -2.3 

Hs.6906 RALA 386 -2.3 

Hs.640 CALCR 380 -2.2 

Hs.278311 PLXNB1 375 2.22 

Hs.83583 ARPC2 372 -2.29 

Hs.111903 FCGRT 369 2.22 

Hs.226755 YWHAH 361 -2.22 

Hs.1420 FGFR3 360 2.26 

Hs.181973 CYP2A13 359 2.22 

Hs.118127 ACTC 356 -2.16 
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Table 5 The Reporter List Derived from Michigan Lung Dataset 

Sequence Name Count Weight 

Hs.352962 HRB 946 -3.85 

Hs.75968 TMSB4X 930 3.74 

Hs.75514 NP 917 -3.66 

Hs.99029 CEBPB 912 -3.62 

Hs.511822 CRK 908 -3.7 

Hs.119192 H2AFZ 900 -3.47 

Hs.576 FUCA1 881 3.42 

Hs.73800 SELP 853 3.42 

Hs.231975 CREM 850 -3.47 

Hs.517814 CCR2 829 3.27 

Hs.77961 HLA-B 822 3.21 

Hs.156324 PRKACB 803 3.24 

Hs.304682 CST3 796 3.21 

Hs.408615 P2RX5 783 3.15 

Hs.362807 IL7R 721 3.08 

Hs.2375 EMR1 711 2.98 

Hs.17287 KCNJ15 708 3.03 

Hs.75671 STX1A 690 -3.03 

Hs.381072 PPIF 662 -2.89 

Hs.433416 NME2 653 -2.92 

Hs.169824 KLRB1 649 2.82 

Hs.83795 IRF2 642 2.89 

Hs.433888 RAB11B 634 2.89 

Hs.1765 LCK 612 2.77 

Hs.173381 DPYSL2 580 2.76 

Hs.79993 PEX7 575 -2.74 

Hs.436949 CD6 557 2.65 

Hs.162757 LRP1 531 2.69 

Hs.414480 DBP 530 2.61 

Hs.386748 MS4A2 527 2.63 

Hs.512640 PRKCSH 526 2.64 

Hs.394609 SORT1 506 2.69 
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Hs.75932 NAPA 496 2.61 

Hs.119651 GPC3 494 2.5 

Hs.285091 C18orf1 482 2.57 

Hs.142912 FZD2 475 2.56 

Hs.278426 PDAP1 473 -2.54 

Hs.435342 SLU7 468 2.54 

Hs.1578 BIRC5 466 -2.54 

Hs.150580 SUI1 455 -2.54 

Hs.169476 GAPD 446 -2.54 

Hs.434367 TXNRD1 443 -2.51 

Hs.95327 CD3D 434 2.43 

Hs.73793 VEGF 428 -2.47 

Hs.524835 UBC 415 -2.43 

Hs.12013 ABCE1 411 -2.39 

Hs.73172 GFI1 406 2.4 

Hs.159494 BTK 405 2.37 

Hs.409934 HLA-DQB1 397 2.37 

Hs.172609 NUCB1 393 2.36 

Hs.439911 TERT 392 -2.37 

Hs.57718 CHRNA2 382 2.28 

Hs.246381 CD68 378 2.28 

Hs.150930 XRCC4 377 -2.36 

Hs.433319 CTF1 374 2.32 

Hs.417361 UGP2 369 -2.4 

Hs.91390 PARG 369 -2.32 

Hs.169849 MYBPC1 357 2.29 

Hs.68877 CYBA 353 2.24 

Hs.388617 RORA 353 2.24 
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Table 6 The Reporter List Derived from Combination of Two Lung Datasets 

Sequence Name Count Weight 

Hs.381072 PPIF 965 -4.33 

Hs.412707 HPRT1 911 -3.97 

Hs.75514 NP 904 -4.08 

Hs.409065 FEN1 882 -3.84 

Hs.433416 NME2 873 -3.87 

Hs.79037 HSPD1 873 -3.85 

Hs.119192 H2AFZ 868 -3.81 

Hs.41270 PLOD2 846 -3.82 

Hs.433888 RAB11B 840 3.91 

Hs.10842 RAN 822 -3.76 

Hs.576 FUCA1 817 3.7 

Hs.55279 SERPINB5 804 -3.77 

Hs.155048 LU 764 3.72 

Hs.75318 TUBA1 750 -3.69 

Hs.304682 CST3 735 3.56 

Hs.195825 RBPMS 712 3.58 

Hs.78771 PGK1 711 -3.63 

Hs.447492 PGAM1 696 -3.56 

Hs.352962 HRB 693 -3.59 

Hs.172589 PWP1 668 -3.46 

Hs.94367 TITF1 654 3.5 

Hs.433941 SEPW1 639 3.4 

Hs.463110 ANXA8 631 -3.46 

Hs.75671 STX1A 625 -3.43 

Hs.6906 RALA 623 -3.47 

Hs.58414 FLNC 619 -3.48 

Hs.435342 SLU7 616 3.44 

Hs.1578 BIRC5 583 -3.38 

Hs.154672 MTHFD2 583 -3.34 

Hs.153884 APACD 581 -3.39 

Hs.414480 DBP 579 3.33 

Hs.3281 NPTX2 572 -3.42 
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Hs.2006 GSTM3 562 3.4 

Hs.437475 STAT6 562 3.4 

Hs.78563 UBE2G1 552 -3.33 

Hs.149957 RPS6KA1 552 3.31 

Hs.436657 CLU 526 3.26 

Hs.79347 KIAA0211 518 3.31 

Hs.1420 FGFR3 516 3.28 

Hs.32393 DARS 516 -3.29 

Hs.394609 SORT1 501 3.24 

Hs.154846 PIK4CB 494 3.25 

Hs.111903 FCGRT 487 3.21 

Hs.404814 VDAC1 486 -3.28 

Hs.348500 VIPR1 486 3.35 

Hs.446429 PTGDS 483 3.26 

Hs.405958 CDC6 473 -3.35 

Hs.82432 KIAA0089 456 3.18 

Hs.119000 ACTN1 455 -3.18 

Hs.356342 RPL27A 443 -3.22 

Hs.352119 GGT1 441 3.18 

Hs.77917 UCHL3 436 -3.17 

Hs.83795 IRF2 433 3.11 

Hs.1594 CENPA 429 -3.19 

Hs.75932 NAPA 428 3.1 

Hs.191990 PRKCBP1 422 -3.1 

Hs.282260 RPE 419 -3.09 

Hs.79993 PEX7 416 -3.14 

Hs.169824 KLRB1 410 3.25 

Hs.81892 KIAA0101 407 -3.09 
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Appendix G: 

Requirements of MAMA Project 
 

G.1 General Description 

Microarray technology is a powerful tool for the research of complex diseases like 

cancers. Many microarray datasets have been generated from cancer tissues in order to 

identify gene expression profiles corresponding to various features of tumors. However, due 

to the high expense of microarray experiment, the sample sizes of individual microarray 

studies (usually around 100) are rather small comparing to the number of genes (up to 30 

thousands) under investigation. The generality of profiles identified from single datasets are 

then questionable. One solution to this issue is to increase the sample size and power of 

statistical analyses by integrating information from multiple datasets.  Results from previous 

studies already showed that despite of various inter-study variations, independent microarray 

datasets did share significant consistence if proper assumptions and data processing were 

made.  

It is not technically straightforward to achieve analysis involving multiple microarray 

datasets. Datasets from independent resources are processed and formatted differently. Each 

study has its own experiment design, so the cancer tissues may be sampled from disparate 

populations. Even when two studies use identical samples, inter-dataset variations still could 

be significant because microarray experiment is a complicate process during which factors 

including experimenter, protocol, instrument, and array quality may introduce systematic 

bias into the final measurements. Furthermore, statistical methods used for microarray 

analysis are becoming more and more complex and sophisticated, and increasing sample size 
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will aggravate the computational burden of these methods. For biologists and statisticians 

who want to focus their work on the high-level data analysis, dealing with these issues is 

distracting and time-consuming.  

The general purpose of MAMA project is to provide researchers a data mining platform 

that will support the precise gene expression profiling of cancer tissues using microarray data 

from independent resources. Users of MAMA will be able to access a centralized repository 

of microarray datasets about cancer and investigate them simultaneously, so they can identify 

gene expression profiles of certain features of cancer patients, such tumor stage or patient 

survival. The data repository will be a relational database located on a server machine. All 

datasets will be processed and formatted with same criteria before they are loaded into the 

database. Besides gene expression measurements, the database will also store related 

information about microarray experiments, such as author contact, experiment design and 

clinical scenario of patients. This database is accessible to users through a server program, 

which can handle concurrent requests from multiple clients. The client program developed by 

MAMA project will be data analysis application, which implements statistical methods 

suitable for microarray analysis. Other components of MAMA system include user interface, 

web server, data processing package, and so on.  

 

G.2 Definitions 

Workspace --- It is the root of data object in MAMA client program within which end 

users perform operations such as manipulating, retrieving, and analyze data. Each client 

program opens and operates on one and only one workspace at a time. Workspaces can be 
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stored on local disk as XML documents. Workspace maintains the information about data, 

results, and procedures in a hierarchical tree structure.  

Virtual experiment --- Virtual experiment is a key feature of MAMA system. Each virtual 

experiment is built with genes and samples originated from one or more original studies. 

Building virtual experiments will allow researchers to analyze data with purposes different 

from those of the original studies. For example, with a microarray dataset originally used to 

profile normal and cancer lung tissues, users can select only the data from the cancer tissues 

to build a virtual experiment and use this experiment to profile subtypes of lung cancer. In 

MAMA system, virtual experiments are the units to which analysis methods are applied. 

Meta-analysis --- Meta-analysis is the technique used to draw summary conclusions from 

the results of multiple independent studies. Therefore, the inputs of meta-analysis are the 

results of individual studies rather than the source data of those studies. Implementing meta-

analysis algorithms is a major, but not the only, purpose of developing MAMA system. For 

example, meta-analysis can be used to evaluate the consistence of several expression profiles 

or to combine test statistics obtained from individual tests.  

Expression profile --- Expression profiles are identified from one or more microarray 

datasets using certain statistical methods and can be used to classify sample tissues. An 

expression profile includes a group of reporter genes and their relative weights.  

Metadata of microarray experiment --- In MAMA system, metadata refer to all 

information related to microarray experiments except the gene expression measurements, 

including attributes of experiments, samples, and genes. Users are commended to investigate 

the metadata of a dataset before loading the complete dataset into the client program because 

of the large size of the expression measurements matrix.  
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MIAME, MAGE, and MGED ontology --- The MGED (Microarray Gene Expression 

Data) society (www.mged.org) has developed three standards for description of microarray 

data: MIAME, MAGE, and MGED ontology. MIAME (Minimum Information About a 

Microarray Experiment) describes the information needed to unambiguously interpret results 

of a microarray experiment and potentially reproduce it. Providers of microarray data can 

satisfy MAMA requirements by following up a checklist. The database of this system will be 

designed as MIAME-compatible. MAGE (MicroArray and Gene Expression) is a standard 

defining the entities related to microarray experiments and their relationship. MAGE is 

composed of an object model represented with UML (MAGE-OM) and a markup language 

developed as an XML-DTD (MAGE-ML). MAGE-OM captures the information specified by 

MIAME. The MGED ontology provides a standard specification of microarray-related 

vocabularies and their relationship. MAMA database adopts MAGE-OM for database 

schema and MGED ontology for description of samples and other data objects. 

 

G.3 Functional Requirements 

Database: 

1. A relational database schema 

2. MAGE-OM and MIAME compliant 

3. Use controlled vocabularies, such as MGED ontology, to describe samples, 

experiment design, and other data objects. 

4. Support storage of microarray datasets generated on both of oligonucleotide and 

cDNA platform. 

5. Have genes annotated by accessions of common sequence databases. 
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6. Separately store frequently requested data, such as metadata about microarray 

experiments, for quick access. 

7. Accept data submission through the web. 

 

Server Program: 

1. Access to the database. 

2. Process microarray datasets by following a standard guideline before loading them 

into the database. 

3. Execute build-in database queries for experiments, samples, sequences and 

expression measurements. 

4. Implement a pre-defined communication protocol between the server and the client 

programs. 

5. Handle concurrent requests from multiple clients. 

 

Client Program: 

1. Load/retrieve data to/from the database by communicating with the server program. 

2. Import microarray datasets from the database or text files 

3. Maintain data objects in a tree-like structure. 

4. Save data on local disk as XML documents and map between java objects and XML 

elements. 

5. Manipulate data objects with operations such as filtering samples and normalizing 

expression measurements. 
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6. Have a graphic user interface and render data objects with GUI components such as 

lists and tables. 

7. Implement common statistical processes of microarray analysis, such as calculation 

of descriptive statistics and gene-feature correlation. 

8. Provide APIs for plug-in of user-specific methods. 

9. Support meta-analysis of microarray data. 

 

User Interface: 

1. Render data objects and their relationship in a way consistent to the data model. 

2. Allow for browsing of data objects in a folder-like structure. 

3. Provide Wizards for multi-step operations. 

4. Group related operations into menus. 

 

G. 4 Non-functional Requirements 

Performance --- The performance of MAMA system is mostly dependent upon the 

network connection and complexity of operations. While immediate response is unachievable, 

users should be informed that the operations is on its way. On the other hand, a quick 

response is required for operations such as showing the description of an experiment. Due to 

the large size of microarray datasets, the downloading of complete datasets is usually time-

consuming. Therefore, users will be recommended to execute such operations only when 

they are necessary.  The performance of plug-in methods is the responsibility of 

corresponding developers.  
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Security --- Security is a major concern of MAMA system since the database and the 

client-side program is open to the public. However, the database needs to be protected from 

the unexpected data. Therefore, only authorized users or administrators are allowed to load or 

update database data. 

Availability --- The client-side package will be downloaded for free and run on any 

computer installing Java Virtual Machine. Database and server-side program will be 

available as long as the server machine is running. Updating and maintenance will be 

scheduled occasionally. There is no backup of server and database services. 

Usability --- User guides should be provided for users to learn the concepts and methods 

of MAMA system. Operations need user guide include, but not limited to: dataset importing, 

method plug-in, defining database query or analysis, and so on. The user interface should 

look familiar to experienced users of GUI software. Guided by instructions, these users 

should be able to execute most operations within an hour.  The analysis methods 

implemented in the standard release should partly satisfy basic data analysis needs of users.  

Modifiability and extensibility --- The client program of MAMA system should be highly 

modifiable and extensible. Major software packages, such as user interface and data analysis 

packages, should be encapsulated, so the updating of one package will not affect the others. 

As an open-source application, all source codes of MAMA system will be publicly available. 

Furthermore, a plug-in mechanism should be provided for other developers to add their own 

methods. The data model and database schema of MAMA are less flexible. They should be 

cautiously designed at the beginning. 

Portability --- The client program should be runnable on any computer having Java 

Virtual Machine installed. Stored data will be exported in a standard format, such as tab-
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delimited text or XML. Besides Oracle, it is not required that MAMA database can be 

installed to other database administration system, such as MySQL.  

 

Maintainability --- Due to the limited human resource, the system will have a simple 

architecture to keep the burden of its maintenance minimal. Source codes will be updated and 

tested periodically. The major maintenance issue is the updating and inspection of microarray 

datasets. 

Reusability --- No a concern for MAMA project.   

 

G. 5 System Requirements for Development 

Software: 

1. Administration of relational database (Oracle) 

2. High-level programming language (Java, with Java Virtual Machine) 

3. Web server  and Servlet engine (Apache Tomcat) 

4. Source code and project management (Eclipse) 

5. XML parsing (Castor) 

6. UML diagram (SmartDraw) 

7. Ontology (MGED Ontology, NCI Thesaurus, … ) 

 

Hardware: 

1. Enough disk space on server machine to store at least 100 microarray datasets in 

regular size.  

2. I/O bandwidth of server machine to handle 10 or more concurrent requests. 
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3. Stable network connection between server and client. 

4. High speed network connection of client machine (1 mbps or faster). 

5. Enough internal memory (512 MB or more) of client machine to handle operations 

that need to load the complete expression data matrix into the memory.  
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Appendix H: 

User Cases of the MAMA Client Program 
 

The following is a list of major use cases of the MAMA client program: 

• Manage Workspace: use cases operating on workspaces, the root of tree-like structure 

of MAMA client data model. 

o Create Workspace: create a new workspace and related files on local disk and 

open it as the current workspace 

o Open Workspace: open an existing workspace as the current workspace, 

update the data object tree on user interface 

o Delete Workspace: delete an existing workspace and related files from local 

disk. 

o Save Workspace: save the currently opened workspace and its contents to 

local disk. 

o Sort Objects: sort the data objects by specified order on user interface. 

o Delete Object from Workspace: delete a specified data object from the 

currently opened workspace. 

• Query Database: use cases querying the database to retrieve data. 

o Query Experiments: query for microarray experiments. 

o Query Samples: query for biological samples by their features. 

o Query Sequences: query for nucleotide sequences by their names or 

accessions. 
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o Query Database Metadata: take a snapshot about the current status of MAMA 

database, retrieving information such as the number of currently stored 

datasets.  

o Export Query Results: export query results to external files in standard format. 

• Manipulate Experiment: use cases creating or customizing the microarray 

experiments. 

o Submit Experiment to Database: submit a new microarray dataset to the 

database by running a wizard or importing XML documents. 

o Create Virtual Experiment: create a experiment in the current workspace by 

querying database or direct submitting. 

o User-specific Data Processing: customize the contents of a virtual experiment 

by filtering samples or sequences, discretizing sample features, or normalizing 

expression measurements. 

• Data Analysis: use cases related to the analysis of microarray data. 

o Create Analysis: create and run a microarray analysis by specifying statistical 

method to use and the inputs of the analysis. 

o Create Meta-analysis: create and run a meta-analysis based on the outputs of 

individual analyses, and specify the meta-analysis methods. 

o Plug in Method: Plug in a user-specific statistical method. 

o Export Results: export the results of an analysis to external files in standard 

format. 

• Render Data: use cases specifying the functions of user interface. 
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o Initiate Operations with Menus: browse menus and select menu item to 

initiate an operation. 

o Run Wizard: run a GUI wizard for multi-step operations. 

o Summarize Database Status: summarize the major contents of database, such 

as existing array designs or experiments. 

o Browse Structured Data Objects: browse the data objects in a folder-like 

structure.  

o List Details of Data Objects: render the details of a data objects, such as the 

samples, sequences, or expression measurements of an experiment. 
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Figure 1 Use Cases Packages 

 

Figure 2 Use Cases about Workspace 
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Figure 3 Use Cases about Database Query 

 

Figure 4 Use Cases about Microarray Experiment 
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Figure 5 Use Cases about Data Analysis 

 

Figure 6 Use Cases about User Interface 
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The following tables give the detailed description about the use cases of Workspace 

package: 

 
Use Case Name Create Workspace 
Author Zhe Zhang 
Date 2004/11/16 
Objective Create a new, empty workspace and open it. If there already is a workspace opened, 

close it 
Actor User, System 
Level Primary 
Trigger User decides to create a new workspace 
Included Use Case <<save workspace>> 
Extended Use Case  
Frequency Intermediate 
Pre-condition • Client program is running 
Post-condition • A new, empty workspace is created and opened in the client program  

Actor Action System Action 
1. User clicks ‘Workspace’ menu, then 
clicks ‘New’ menu item 

 

 2. System shows a dialog box asking for 
the name of the new workspace 

3. User specifies the directory of the 
workspace and names it, then clicks 
‘Create’ 

 

 4. System creates the new workspace 
object and opens it in the client program 

5. User Clicks ‘OK’  

Main Flow 

 6. System terminates process 
Steps Blanching Action 
4. There already is a currently opening 
workspace in the client program 

1. System prompts for what to do: 
• Save 
• Not save 
• Cancel 
2. User selects one 
3. System responds to user’s selection 
• Save it, open the new one 
• Not Save it, open the new one 
• Abort creating, keep the old one 
INCLUDE <<save workspace>> 

Sub flows 

3. User clicks ‘Cancel’ System aborts process 
Conditions Actions Exceptions 
4. Redundant workspace name System prompts for what to do: 

• Overwrite (will replace the old one) 
• Change name (will repeat step 3) 
• Cancel (will abort process) 
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Use Case Name Open Workspace 
Author Zhe Zhang 
Date 2004/11/16 
Objective Open a stored workspace from disk and make it the active workspace in the client 

program. Close the currently opening workspace. 
Actor User, System 
Level Primary 
Trigger User decides to open a stored workspace. 
Included Use Case  
Extended Use Case  
Frequency Intermediate 
Pre-condition • Client program is running 

• There is at least one workspace stored in the disk 
Post-condition • A stored workspace is resumed in the client program  

Actor Action System Action 
1. User clicks ‘Workspace’ menu, then 
clicks ‘Open’ menu item 

 

 2. System shows a dialog box for user to 
select a workspace XML file from the 
disk 

3. User browses the directories on the 
disk and clicks the file to be opened, 
then clicks ‘open’ 

 

Main Flow 

 4. System validates the XML file with 
DTD, parses it to workspace object, and 
opens it in the client program 

Steps Blanching Action 
4. There already is a opening workspace 
in the client program 

1. System prompts for what to do: 
• Save 
• Not save 
• Cancel 
2. User selects one 
3. System responds to user’s selection 
• Save it, open the stored one 
• Not Save it, open the stored one 
• Abort opening, keep the old one 
INCLUDE <<save workspace>> 

Sub flows 

3. User clicks ‘Cancel’ System aborts process 
Conditions Actions Exceptions 
4. XML file is invalid System shows error message and aborts 

process 
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Use Case Name Close Workspace 
Author Zhe Zhang 
Date 2004/11/16 
Objective Close the workspace currently opened in the client program. 
Actor User, System 
Level Primary 
Trigger User decides to close the opened workspace. 
Included Use Case  
Extended Use Case  
Frequency intermediate 
Pre-condition • Client program is running 

• There is an opened workspace in the client program 
Post-condition • There is no opened workspace in the client program  

Actor Action System Action 
1. User clicks ‘Workspace’ menu, then 
clicks ‘Close’ menu item 

 

 2. System asks user whether to save the 
workspace 

3. User makes the selection about 
saving 

 

Main Flow 

 4. System removes the workspace from 
the client program 

Steps Blanching Action 
3a. User selects to save the workspace 
to disk 

System transforms the workspace to 
XML file and saves it to the disk 

3b. User selects not to save the 
workspace to disk 

System closes workspace without 
saving it 

Sub flows 

3c. User clicks ‘Cancel’ System aborts closing 
Conditions Actions Exceptions 
There is no currently opened workspace None 
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Use Case Name Save Workspace 
Author Zhe Zhang 
Date 2004/11/16 
Objective Save the opened workspace to disk as an XML file 
Actor User, System 
Level Included 
Trigger User needs to backup the opened workspace, or other procedures, such as close 

workspace, initiate it 
Included Use Case None 
Extended Use Case None 
Frequency high 
Pre-condition • Client program is running 

• There is an opened workspace in the client program 
Post-condition • A up-to-date version of the workspace is saved to disk 

Actor Action System Action 
1. User sends ‘Save workspace’ 
command 

 
Main Flow 

 2. System transforms the workspace 
object to an XML file and saves it to 
disk 

Steps Blanching Action 
2a. The XML file of this workspace 
already exists in the disk 

Overwrite the old one 

2b. There is no XML file of this 
workspace exists 

Just write the XML file to the disk 

Sub flows 

  
Conditions Actions Exceptions 
Transform to XML error System aborts saving 
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Use Case Name Delete an Object from Workspace 
Author Zhe Zhang 
Date 2004/11/16 
Objective Remove a query, experiment, analysis, or profile object from workspace.  
Actor User, System 
Level Included 
Trigger An object in the workspace is not needed any more.  
Included Use Case  
Extended Use Case <<Browse Workspace>> 
Frequency High 
Pre-condition • Client program is running 

• There is a opened workspace in the client program 
• There at least exists one sub-class object of the opened workspace 

Post-condition • An object is removed from the workspace 
Actor Action System Action 
1. User clicks to highlight an object, 
then right-clicks 

 

 2. System shows right-click menu 
3. User clicks ‘delete’  
 4. System asks for confirmation of 

deletion 
5. User clicks ‘delete’  

Main Flow 

 6. System removes the object 
Steps Blanching Action 
5a. User clicks ‘delete’ System removes the object 

Sub flows 

5b. User clicks ‘cancel’ System aborts deletion 
Conditions Actions Exceptions 
Objects is used by other objects System shows error message and aborts 

deletion 
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Use Case Name Sort Objects 
Author Zhe Zhang 
Date 2004/11/17 
Objective Sort a field in the table of objects currently showed in the central panel.  
Actor User, System 
Level Primary 
Trigger User decides to sort the object according to one of its attributes.  
Included Use Case  
Extended Use Case  
Frequency High  
Pre-condition • Client program is running 

• There is an opened workspace 
• There is list of objects showed in the central panel as a table 

Post-condition • Search result is showed in the central panel 
Actor Action System Action 
1. User right-clicks a field name in the 
table 

 

 2. System shows a right-click menu 
3. User clicks ‘sort’ in the menu  

Main Flow 

 4. System sorts the rows in the table and 
refreshes table to show updated order of 
objects  

Steps Blanching Action 
3a. Sort ascending  System sorts objects in ascending 

Sub flows 

3b. Sort descending System sorts objects in descending 
Exceptions Conditions Actions 
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Appendix I: 

Client-server Communication Protocol of the MAMA System 

 
Code  Definition 

1000 Continue --- waiting for user to send more requests. 

  

2000 User request has been successfully handled; the type of request is 
unspecified. 

    2010 ‘None’ request is handled, an ‘echo’ response is sent back to the client. 

  2100 ‘Select’ request has been handled successfully without specified knowledge 
about returned data.  

    2110 No entry is returned by database as the result of query specified in the ‘select’ 
request. 

    2120 A single entry is returned by database as the result of query specified in the 
‘select’ request. 

    2130 Multiple and same type of entries are returned by database as the result of 
query specified in the ‘select’ request. 

    2140 Multiple and different type of entries are returned by database as the result of 
query specified in the ‘select’ request. 

  2200 ‘Insert’ request has been handled successfully, with unspecified consequence. 

    2210 Successfully ‘insert’ a single entry into a single database table. 

    2220 Successfully ‘insert’ multiple entries into a single database table. 

    2230 Successfully ‘insert’ one or multiple entries into multiple database tables. 

  2300 ‘Delete’ request has been handled successfully, with unspecified 
consequence. 

  2400 ‘Update’ request has been handled successfully, with unspecified 
consequence. 

  2500 ‘Save’ request has been handled successfully, with unspecified consequence. 

    2510 Successfully save data in the request into a single file. 

    2520 Successfully save data in the request into multiple files. 

    2530 Successfully save data in the request into one or multiple files within a newly 
created directory. 

  2600 ‘Load’ request has been handled successfully without specified knowledge 
about loaded data. 

    2610 No data are loaded and returned. 

    2620 Data in a single file is loaded and returned. 

    2630 Data from multiple file is loaded and returned. 

    2640 Data are loaded from a specified directory with one or multiple files.  
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4000 There exists error in the request, type of error and request is unspecified.  

    4010 Null request error: the received request is null. 

    4020 Null action error: the ‘action’ field of the request is null. 

    4030 Unknown action error: the ‘action’ field specified in the request cannot be 
recognized.  

    4040 Obsolete version error: received request has newer version than the one 
implemented on the server. 

  4100 ‘Select’ request includes client error due to unspecified reason. 

    4110 Null query error: query is not specified in the request.  

    4120 Unknown data type error: the query specified in the request cannot be 
interpreted by the server program.  

    4130 SQL error: error happens when database executes SQL script . 

  4200 ‘Insert’ request includes client error due to unspecified reason. 

    4210 Null request error: no data are given in the request to ‘insert’. 

    4220 Unknown data type error: server doesn’t know how to handle the type of data 
to be inserted.  

    4230 SQL error: error happens when database executes SQL script.  

      4231 Batch execution error: error happens when database executes a batch of SQL 
scripts. 

    4240 Duplicate entry error: value of ‘non-duplicate’ field of inserted entry already 
exists in the database.   

      424X X: an Integer indicates the field going wrong, sequentially number fields 
from 1. 

    4250 Missing data error: value of ‘non-null’ field is not given in the inserted entry. 

      425X X: an Integer indicates the field going wrong, sequentially number fields 
from 1. 

    4260 Unexpected data content error: the data to be submitted include unexpected 
contents. 

      426X X: an Integer indicates the field going wrong, sequentially number fields 
from 1. 

  4500 ‘Insert’ request includes client error due to unspecified reason. 

      4510 File not found error: cannot find XML mapping file in specified location. 

      4520 I/O error: I/O error happened during file read or write. 

      4530 Mapping error: error in the mapping between XML and data objects. 

      4540 Marshal error: error when parsing data object to XML document. 

      4550 Validation error: XML file failed validation. 

  

5000 Error on the server side or in the response. 

    5010 Null response error: the expected response is null object. 

    5020 Null action error: the ‘action’ field of the response is null. 
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    5030 Unknown action error: the ‘action’ field specified in the response cannot be 
recognized.  

    5040 Obsolete version error: received response has newer version than the one 
implemented on the client. 

    5050 Missed response error: expected response of a specified request not received 
from server. 

      5050.X X: identifier of the specified request. 

  5100 Database connection error: unspecified error happens during establishing or 
maintaining a connection to database 

    5110 Driver not found error: Fail to load database driver. 

    5120 Database access error  

  5200 Program error: Bug detected in server program. 

  

  200 Requests handled and response returned. 

  

  400 Error in the received ‘REQUESTER’ with unknown reason. 

    410 Unexpected data type error: the object received from client is null or not a 
‘REQUESTER’. 

    420 No request error: no request is given. 

    430 User name specified in the request does not exist.  

    440 Password specified in the request is wrong.   

    450 Obsolete version error: received ‘REQUESTER’ has newer version than the 
one implemented on the server. 

    460 Client-side communication error 

      461 Communication timeout: client did not send requests to server within 
specified time scale. 

  

  500 Error happened when on the server is handling the ‘REQUESTER’ or in the 
‘RESPONSER’. 

    510 Unexpected data type error: the object received from server is null or not a 
‘RESPONSER’. 

    520 No response error: no response is given in the ‘RESPONSER’. 

    550 Obsolete version error: received ‘RESPONSER’ has newer version than the 
one implemented on the client. 

    560 Server-side communication error 

      561 Communication timeout: server did not send responses within specified time. 
Server may still finish the operation. 
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Appendix J: 

Database Schema of MAMA project 
 

The complete MAMA database includes tables derived from MAGE object model and 

denormalization tables. The overall schema is too complex to be showed in one diagram and 

most MAGE tables are not involved in the current version of MAMA system. This appendix 

only demonstrates tables having data loaded into them. The general schema is broken down 

to smaller diagrams for the convenience of illustration. These schema diagrams are given in 

the ‘Database Schema’ folder within the data disc attached to this article. MAGE-derived 

tables have names started with ‘TT_’ are and denormalization tables have names started with 

‘T_’. In the current version of MAMA system, some database tables are only used for 

permanent storage of source data and not accessible to the queries. These tables are drawn in 

black color. Tables whose data will be queried by the current version of MAMA client 

program are drawn in blue color. 
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Appendix K: 

Specification for Pre-processing of Expression Data 
 

The general purpose of this specification is to define a data processing guideline, which 

will be applied to expression data matrix of all microarray datasets before loading them into 

the MAMA database. It is expected that by following this guideline, all gene expression 

datasets permanently stored in this system will have same format, as well as similar median 

(or mean), scale, and distribution. These processed datasets could be considered as the basis 

of many user-specific operations, such as retrieving data and building virtual experiments.  

MIAME specified three level of data processing: image, image quantitative output, and 

expression data matrix. However, images and the immediate quantitative output of images 

are often missing in the published experimental results. Instead, authors tend to provide their 

data after performing some data curating steps. For example, some authors just make ratio 

data available for their 2-color cDNA arrays. Furthermore, different authors treat their raw 

data differently according to the purpose of their studies. While there still have no widely-

adopted standards about the processing of microarray data yet, we try to define a ‘common 

sense’ guideline for the curating of all microarray datasets. This guideline will utilize 

relatively common and straightforward processing strategies so it could be generally 

accepted. For example, it will prefer linear normalization rather than the non-linear ones. In 

later development stages, we may provide user-specific processing options by implementing 

more sophisticated steps, but all datasets permanently stored in the database will always be 

treated following this guideline. This guideline will be implemented as a data curating 

program. A data curator runs this program by choosing parameters according to related 
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metadata and description, and make sure that the guideline is fulfilled before loading data to 

database. We will keep tuned to the progression of MGED data transformation and 

normalization working group. Once standards are recommended by this group, we will adopt 

them soon.  

The data curating steps proposed in this guideline can be classified into four categories, 

which are: 

• Filtering, e.g. removal of low quality or non-positive data points; 

• Transformation, e.g. ratio and/or log transformation; 

• Within array normalization, e.g. density-dependent normalization; and 

• Between array normalization, e.g. scale normalization 

In practice, it is not always doable, or necessary, to apply all these steps on a specific 

dataset. For example, if authors have carried out ratio transformation and only publish the 

resulting ratio data, density-dependent normalization will be unfeasible and ratio 

transformation can be skipped during the curating. Some authors may publish their data in 

multiple levels, which is a more plausible activity according to MIAME requirements. In 

such instances, the ‘rawest’ level of data will be taken, as many common processing steps as 

possible can be applied to each dataset.  

Currently, we only consider one-color oligonucleotide/cDNA data and two-color cDNA 

data in this guideline. Different processing steps will be applied to these two different types 

of data. In later stages, more types of expression data will be added. 

 

K.1 Guidelines for Pre-processing 2-color cDNA Datasets 

 177



The processing of 2-color data starts from the intensity measurements obtained from two 

channels if they are available. ‘Rawer’ data such as readings on each pixel will not be 

processed because they are highly dependent on the scanning equipment and image analysis 

software used by authors. It is assumed that the original authors had performed necessary 

background correction and spatial adjustment before they published their 2-color or ratio data. 

Up to seven steps could be applied to a 2-color cDNA dataset. Some of them are not always 

necessary, such as log-transformation, if they have been done the original authors. The 

normalization of the expression measurements is limited to each single array. Users perform 

cross-array normalization within the client program. 

Fig.1 illustrates the following steps using an activity diagram. 

1. Filtering of low quality measurements. This step will only be performed when the 

original authors provided a single-value index, such as a flag, to indicate the quality 

of measurements.  

2. Filtering of non-positive values. All non-positive values should be removed before 

log-transformation no matter the original authors provided the measurements as 

intensity or ratio data. Low variance and other types of filtering will not be performed. 

Instead, user-specific filtering was enabled in the client program. The descriptive 

statistics of each gene are calculated in advanced and saved in a separate database 

table for the convenience of advance filtering. This step will be performed on all 

datasets. 

3. Ratio transformation. If intensity measurements of the two colors are provided 

separately, their ratio is calculated. The gene expression intensity in the 
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samples will be divided by the gene expression intensity in the reference, no 

matter which color the samples are labeled with.  

4. Log transformation. All ratio data will be log2-transformed. If the original 

authors only provided log-transformed ratio data with base=n, all data points 

will be adjusted by multiplying a constant log2n. This step will be performed 

on all datasets. 

5. Intensity-dependent linear normalization. When intensity data is available, this 

step is carried out to correct the dye imbalance caused by different spot 

intensity. Linear normalization is preferred other than non-linear ones because 

of its simplicity and generality. After this step, data are transformed to 

corresponding residual values of a linear model. 

6. Global median normalization of samples. All measurements of each sample 

are subtracted with their median value, so they will be centered at zero. This 

step will be performed on all datasets. 

7. Scale normalization of samples. All expression measurements of each sample 

are divided by a scaling factor, which indicates the variance of data in each 

array.  For simplicity, the standard deviation of measurements is used as the 

scaling factor. 

 

K.2 Guidelines for Pre-processing 1-color cDNA Datasets 

1. Filtering low quality data points. Quality filtering will only be performed when 

authors provide a single-value index, such as a flag, to indicate the quality of data 

points.  
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2. Global median normalization. All data points within an array are subtracted with their 

median value, so they will be centered at zero. This step will be performed on all 

datasets. 

3. Log transformation. All expression data will be log2-transformed. If data provider 

already log-transformed data with base=n, their log ratio data will be adjusted by 

multiplying a constant log2n. If provider have not log-transformed the source data, the 

transformation will follow: 1) If value X is greater than 1.0, transform it to log2X; 

else if X is between 1 and -1, transform it to 0; else if X is less than -1, transform it to 

-log2|X|. This step will be performed on all datasets.  

4. Scale normalization. Each data point is divided by a scaling factor, which indicates 

the variance of data in each array.  For simplicity, the standard deviation is used as 

the scaling factor. 

 

References:  

1. Quackenbush, J. (2002). "Microarray data normalization and transformation." Nat Genet 32 Suppl: 

496-501. 

2. Tseng, G. C., M. K. Oh, et al. (2001). "Issues in cDNA microarray analysis: quality filtering, channel 

normalization, models of variations and assessment of gene effects." Nucleic Acids Res 29(12): 2549-

57. 

3. Park, T., S. G. Yi, et al. (2003). "Evaluation of normalization methods for microarray data." BMC 

Bioinformatics 4(1): 33. 

4. Kroll, T. C. and S. Wolfl (2002). "Ranking: a closer look on globalisation methods for normalisation of 

gene expression arrays." Nucleic Acids Res 30(11): e50. 

5. Smyth, G. K. and T. Speed (2003). "Normalization of cDNA microarray data." Methods 31(4): 265-73. 

 180



6. Yang, Y. H., S. Dudoit, et al. (2002). "Normalization for cDNA microarray data: a robust composite 

method addressing single and multiple slide systematic variation." Nucleic Acids Res 30(4): e15. 

7. http://www.mged.org/Workgroups/MIAME/miame_checklist.html 

8. http://genome-www5.stanford.edu/mged/normalization.html  

 

 

Figure 1 Pre-processing of 2-Channel cDNA Microarray Datasets 
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Appendix L: 

Mapping between XML Elements and Java Data Objects 
 

The Java/XML data binding is accomplished in the MAMA client program using the 

XML package developed by Castor project. The Castor XML achieved mapping between 

XML elements and Java data objects by reading a file including mapping information. The 

file is called ‘mapping.MAMA’ in MAMA system and can be downloaded together with the 

client program. In the mapping file, Java classes and their attributes are related to XML 

elements. 

The following is a segment of the mapping file that maps Java ‘QueryResult’ class and its 

attributes to XML elements. The complete mapping file is given in the ‘XML Mapping’ 

folder within the data disc attached to this article. 

<!-- CLASS: QueryResult --> 
<class name="edu.upenn.bmif.mama.model.QueryResult" auto-
complete="false">     

<field name="runTime"> 
<bind-xml node="attribute"/> 

</field>  
<field name="query" 
type="edu.upenn.bmif.mama.model.Query" 
get-method="getQuery" set-method="setQuery" > 

<bind-xml name="query" node="element" /> 
</field>  
<field name="resultUnits" 
type="edu.upenn.bmif.mama.model.QueryResultUnit" 
collection="collection" 
get-method="getResultUnits" set-method="addResultUnit" > 

<bind-xml name="result-unit" node="element" /> 
</field>  

</class> 
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Appendix M:  

Glossary 
 

Correlation and Partial Correlation 

Statistical correlation is a measure about the relationship between two variables. Strength 

of correlation can be numerically represented by a number of correlation coefficients, among 

which the best known one is Pearson’s product-moment correlation coefficient (r). The value 

of r ranges from -1.0 to 1.0. Two variables having perfect negative or positive correlation 

will correspondingly have an r of -1.0 or 1.0 while a value of 0.0 represents a totally 

unrelated relationship. 

When a third variable intervenes the correlation between two variable, it can be 

controlled out by partial correlation analysis. Partial correlation is commonly used for 

controlling only one variable because the process itself will introduce extra bias into results. 

However, it can be iteratively used to control more variables too if sample is large enough. 

According to the type of intervening effect, partial correlation coefficient may be equal to or 

larger/smaller than corresponding correlation coefficient. 

 

Database Denormalization 

Database denormalization is a technique used to speed up database access by introducing 

certain level of redundant data storage. A normalized database schema often stores logically 

related data in separated tables. Queries that draw data by joining several table could be slow. 

Denormalization improves the performance of database by tradeoff some costs. Besides data 

redundancy, it requires extra efforts of database designer to maintain data integrity. 
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Denormalization design are more error-prone in practice. However, it fits to databases whose 

stored data are rarely updated or deleted, such as data warehouses. 

 

Java 

Java is an object-oriented programming language developed by Sun Microsystems. Sun’s 

standard edition of Java is freely available, and developers are using it for various types of 

software from web applications to desktop programs. With a purely object-oriented 

architecture, Java codes are highly reusable and extensible. The running of Java programs is 

independent of operation systems, but only relies on installation of Java Virtual Machine 

(JVM). The official Java website is java.sun.com. 

 

Meta-Analysis 

Meta-analysis is a type of statistical methods that combines the results from multiple 

independent studies dealing with the same research question. Therefore, it is often referred to 

as ‘analysis of analyses’. By integrating findings of individual studies about the same 

hypothesis, meta-analysis methods conclude a summary overall result of hypothesis testing. 

Properly designed meta-analysis will take full advantage of the research efforts having been 

made by discovering information that cannot be obtained from individual studies. Despite of 

its advantages, meta-analysis also receives criticisms. For example, one of its weakness is 

that it has no control on the quality of individual studies, and badly design studies may cause 

biased results even if the meta-analysis method is faultless. Steps of a typical meta-analysis 

include: problem formulation, data collection and evaluation, analysis and interpretation, etc.  
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Microarray 

Microarray is a high-throughput technology that allows researchers to measure the 

expression level of genes at a genomic level. Physically, it is collection of tiny DNA spots 

attached to a solid surface such as glass and silicon chip to form a 2-dimensional array of 

probes. In a microarray experiment, these spots are hybridized to the DNA in a given cell 

extraction and the expression level of genes in the extraction is measured by the amount of 

hybridized DNA. Two types of nucleotide sequences are commonly used as probes: cDNA 

and oligonucleotide.  

 

MVC (Model-View-Controller) Architecture 

MVC is a software design pattern often used for graphic user interface of applications. Its 

basic idea is to divide and encapsulate codes of an application into three major components: 

model (data model), view (user interface), and controller (business logic), so the modification 

of one component will have minimal influence on the others. These packages interact with 

each other by passing inputs/outputs without worrying about the implementation details in 

other packages. MVC is often used in web applications within which code modularization is 

preferred. Although MVC has various flavors, the typical control flow works as the 

following: 

1. ‘View’ renders ‘model’ on user interface; 

2. User interacts with ‘view’ to initiate an action; 

3. The action is passed to ‘controller’; 

4. The action is handled by ‘controller’, which may access ‘model’ to get data input; 

5. ‘Controller’ informs ‘view’ and/or ‘model’ for proper updates at the end of the action; 
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6. User interface waits for next action. 

 

Open Source Software 

Officially, open source and free software are two similar but different concepts, 

separately defined by Open Source Initiative (www.opensource.org) and Free Software 

Foundation (www.fsf.org). Developers of open source software make their source codes 

freely available for other developers to modify or extend under an open source license. 

Although the definition open source software involves complicate legal issues, it generally 

means free-of-charge software to ordinary users.  

 

Parametric vs. Non-Parametric Statistical Tests 

Choice of parametric or non-parametric methods is a common decision for statistical tests. 

Parametric methods have relatively stricter assumptions on analyzed data, including: 

1. normal distribution 

2. homogeneous variances between data groups 

3. continuous measures with equal intervals 

Non-parametric methods do not require above assumptions, so they are computationally 

easier and quicker but statistically less powerful. Most parametric methods have their 

equivalent non-parametric ones. For example, the most common parametric and non-

parametric methods for two group comparison are respectively Student’s t test and Wilcoxon 

rank sum test.  

 

Servlet and Tomcat 
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Java servlet is a type of web application implementing the Java Servlets API. A servlet 

accepts HTTP requests from its clients and correspondingly responds with dynamically 

generated web pages. Dynamic building of web pages is necessary when contents of pages 

are based on user inputs, retrieved from database, or frequently updated (e.g. weather report). 

Servlets interact with web server via servlet container, which maps a URL to each particular 

servlet. Tomcat is such a servlet container developed by Apache Software Foundation. It 

implements the standard servlet specification from Sun Microsystems. Tomcat also includes 

its own HTTP server internally, so it also works as an independent web server.  

 

Statistical Power 

In statistical hypothesis testing, ‘power’ of a test means the probability of rejecting the 

null hypothesis H0 when the alternative hypothesis Ha is true. Larger sample size usually 

leads to higher power. Quality of experimental data and used analysis methods also have 

their influence. Methods that need stricter assumptions usually have higher statistical power. 

 

TNM Classification 

TNM is the most widely used staging system of malignant tumors. It is developed and 

maintained by International Union Against Cancer and has become a standard in clinical 

practice. The three letters stand for Tumor, Node, and Metastasis. This system classifies 

cancer patients into categories according to size of tumor, number of infected lymph nodes, 

and presence of distant metastasis, so proper treatment decisions can be made based on their 

classification. Definition of categories varies among cancer types.  
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UML (Unified Modeling Language) 

UML defines the standards of data modeling and documentation language for design of 

object-oriented software. It is used to formally specify, visualize, and document the structure 

and functions of software under development. Standardized diagrams play a key role in UML 

design. Commonly used UML diagram include use case diagram (general functions), class 

diagram (system structure), activity diagram (general system workflows), sequence 

diagram(interaction between classes and detailed workflows), and so on.  

 

XML (eXtensible Markup Language) 

A markup language labels and format the contents of plain text to make them machine-

readable. XML is a general-purposed markup language recommended by W3C consortium. 

Its primary purpose is to facilitate automatic data sharing across different software systems. 

The basic units of XML documents are called elements, which have a hierarchical structure. 

XML elements can be defined with XML schema or DTD (Data Type Definition). Format of 

XML documents must follow a few rules, so computer programs can recognize their 

elements and parse their contents. Many programming languages including Java provide 

standard libraries for parsing and writing XML documents. XML documents are nothing but 

labeled plain text files, which makes them independent of platforms and unaffected by 

changes in software. How to deal with these documents are program-specific. Despite of 

many advantages of XML format, its verbose structure is not very friendly for human reading 

and may substantially reduce program performance. 
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Chapter V

conclusion

Complicated diseases, such as Alzheimer’s, cardiovascular diseases, and most types of cancer, are currently considered incurable because of the lack of systematic perspective about the molecular-level perturbations in individual patients. Development of high-throughput biological technologies presents a new opportunity to overcome these diseases. The enormous amount of data generated by these technologies is changing the face of biomedical studies, which involves statistical analysis and information process more and more. At the same time, researchers are being challenged by the requirement of translating technologies into clinical medicine. Properly designed data mining strategies are critical for recognizing causative information, which will help discovering new drug targets or making more reliable clinical decisions, from raw high-throughput data.


Microarray is relatively more mature and less expensive compared to other high-throughput technologies. Therefore, it has been commonly applied to the identification of gene expression patterns in specific types or subtypes of diseases. A variety of microarray datasets have been publicly available, which makes it possible to integrate multiple datasets for more powerful statistical analysis. 

The current study was performed to solve some issues involved in the practical application of microarray data to cancer. It included two related projects. The data analysis 


project justified the advantages of integrating microarray datasets and the necessity of developing a computer system like MAMA. The MAMA project, in return, will drastically accelerate the process of similar microarray analyses.


5.1 Data Analysis

The data analysis phase of this study was focused on the confirmation of two hypotheses. The first hypothesis was intended to validate the value of microarray technology in clinics by suggesting that microarray data provide extra clinical information besides commonly used indexes. The truthfulness of this hypothesis is the basis of all similar studies because its denial means that inclusion of microarray data in clinical decision will not make disease prognosis more accurate. Surprisingly, it has been overlooked by most microarray studies about cancer prognosis. Using two datasets about breast cancer and four datasets about lung cancer, this study attempted to validate this hypothesis by cross-validation of independent datasets and logistic regression models. The results implied that (1) when indexes were applied separately, gene expression profiles were superior classifiers of cancer patients than currently used prognostic indexes; (2) when all indexes were applied jointly, inclusion of expression profiles improved the overall accuracy of classification; and (3) to achieve optimal classification, expression profiles should be applied in corporation with other indexes. These implications altogether solidly confirmed the clinical value of microarray data.


At the beginning of this study, it was proposed to perform expression profiling across multiple microarray datasets. The hypothetical advantage of this strategy is that larger overall sample size will increase the generality of resultant expression profiles. At the same time, it may be criticized of ignoring the extensive diversity of independently generated microarray datasets. Our study demonstrated that as long as assumptions were properly made and source data were consistently annotated and processed, expression profiles derived from multiple datasets would have better quality than those obtained from individual datasets. In specific patient subpopulations, genes highly correlated to clinical indexes are more likely to have observed significant correlation to cancer outcome than other genes, but they will lose their status in other subpopulations having different clinical background. This is one of the reasons why expression profiles obtained from independent studies are mostly inconsistent. On the other hand, genes not influenced by the confounder would win over the long haul as long as they had certain level of consistent correlation to outcome in general population. CDC20 and BECN1 are the examples of such genes (Table 8). 


Expression profiles composed of those genes will be more reproducible, and more precisely differentiate patients into prognosis groups. The validation of this hypothesis is critical. Due to the high expense and complexity, microarray studies often do not have enough samples to obtain significant statistical results about cancer features. Therefore, reusing existing data by integration analysis will allow researchers to extract information or draw conclusions that can not be reached by analyzing individual datasets. The 60 reporter genes and their weight derived from the combined dataset made an optimal expression profile of breast cancer recurrence achievable using the given datasets. The value of this profile is worthy of some further investigation.


The lung cancer datasets were also used to ensure the advantage of data integration. The source data were re-processed differently because of the disparity between breast and lung cancers. Since lung cancer subtypes are highly dissimilar in terms of tissue type, survival rate, and so on, only adenocarcinoma patients were used. Patients were categorized into two prognosis groups according to their 2-year survival outcome because recurrence outcome of most patients was not available and about 60% invasive lung cancer patients did not survive more than two years after diagnosis. As shown in Fig. 9 and 10, results from lung datasets also strongly advocated integration analysis. 

In addition to the confirmation of those two hypotheses, the data analysis project of the current study also made the following conclusions:


The artificial variable SEP (Score for Expression Profile) was designed and successfully fitted into data analysis procedures. The utilization of SEP was the key of statistical analyses in this study. As a numeric and continuous variable, SEP was suitable for many analytical methods. For example, the density distribution of SEP scores in Fig. 1A and subsequent chi-square tests provided strong evidence about the general confounding effect of clinical indexes on gene-outcome correlation. Because of these confounders, the observed significant correlation of a gene to disease outcome could be the result of high correlation between the gene and a clinical index. Genes taking advantage of confounders will have higher chance to be selected as a reporter. This is why many reporter genes can be linked to one or more clinical indexes. Sampling criteria varies among studies. In the case of breast cancer datasets analyzed in this study, all patients in Rosetta dataset were lymph node-positive while Stanford dataset included both node-positive and -negative patients. Hence, controlling the confounding effect of clinical indexes will improve the generality of expression profiles. 


A partial correlation procedure was the first strategy used in this study to control the confounders of expression profiling. The procedure calculated a residual value for each gene expression measurement and replaces the original measurements with the residuals in the following steps.  Although theoretically all confounders could be controlled by recursively calculating residuals, extra variance will be introduced into results since the residuals were estimated from the sample data. Consequently, the resultant expression profiles would have higher false positive rate and lower quality. For example, when the 127-gene profile obtained from the partial correlation analysis of Rosetta dataset was cross-validated with Stanford dataset, it did not perform better than the profile generated by regular correlation analysis.

The major data analysis procedure of this study combined training/testing validation and bootstrap re-sampling. This procedure was used to avoid overfitting in results and make unbiased comparison of expression profiling strategies. However, it should be noted that this procedure did not take full advantage of the source data because all expression profiles were generated from the training data, which contained just about two-third of the complete datasets. For example, when the breast cancer 60-gene profile obtained from a complete dataset was cross-validated with the other dataset, the overall accuracy of patient classification using SEP was 73.61%, higher than the bootstrapping median (70.59%) obtained from within-dataset validation.


Results of this study advocated a breast cancer recurrence model suggesting that the progression of secondary tumors had two growth patterns. Each of these patterns corresponded to a post-diagnosis recurrence peak. Instead of arbitrarily categorizing patients according to their 5-year prognosis as what most breast cancer studies prefer, this study adopted this 2-peak model and classified patients into two groups corresponding to the peaks. Considering breast cancer as a cell growth abnormality, this classification had more biological grounds. Comparison of Fig. 6B and 8 shows that at N=100, the median AUC obtained from the lung data was 0.1 lower than that from the breast data, a relatively significant dropping. This difference might be caused by smaller sample size of two training lung datasets, but more possibly because of the lack of a well-defined biological model to support the 2-year survival classification of patients. In addition, recurrence is a better output variable of expression profiling than survival because the factors influencing survival are more diverse.

The stepwise procedures were applied to trace the consequence of adjusting the sensitivity and specificity of reporter gene selection. The necessity of high reporter selection sensitivity was questioned by various results. First, as in Figure 5 and 6, medians of test statistics gradually reached a plateau with the raising of N. When N was greater than 60, increasing its value had very little influence on the quality of expression profiles. Secondly, cross-validation results demonstrated that two mostly different reporter gene list had similar performance on testing patients (Table 6). Thus, both lists must miss some true positive reporters since each of them was valid classifiers of testing patients and included some true positives. Finally, the result of the reduction process (Fig. 11A) showed that the loss of sensitivity could be tolerated to an extensive level without significantly reducing the quality of expression profiles. On the other hand, high selection specificity was proved to be critical. The relationship between higher reporter selection specificity and better expression profiles was suggested by results presented in Fig. 7. The combined dataset selected reporter genes more consistently, implying that the expression profiles obtained from it included less false positives. Furthermore, the replacement process (Fig. 11B) caused more dramatic subsequence than the reduction process. Comparison of Fig.10A and 10B concluded that with the same sensitivity, decreasing specificity of reporter selection would quickly decrease the quality of expression profiles. Therefore, an effective expression profile should include false positives as few as possible, but do not have to take in all or most of true positives. Nevertheless, high sensitivity should still be preferred when no substantial tradeoff is required. The more true positives an expression profile includes, the more reliable and robust it will be. In this study, the optimal tradeoff was arbitrarily decided based on the observed trend as the value of N was increased. More investigation on this topic is expected in the future. 

The data integration strategy used in the current study was straightforward and easy to perform. It assumed that patients of independent studies were sampled from the same population and their expression data had similar distribution and range after proper data re-processing. A major criticism of this strategy might be the information leaking due to the filtering of genes before combining two datasets having different array design. A large portion of genes in the source data were not included in the combined dataset because they were not in both datasets. However, both breast and lung combined datasets still included about 5,000 Unigene clusters. According to previous conclusion about reporter selection sensitivity, the quality of resultant expression profiles was merely influenced by the filtering process. If the data integration involves more than two microarray datasets, inconsistent array design will make the current strategy less feasible. For example, there were only about 1,000 Unigene clusters included by all four lung datasets used in this study. An alternative strategy of integration analysis is meta-analysis, the analysis of results obtained from individual studies. With meta-analysis, each gene will get a summary statistic no matter its presence in multiple datasets.

Microarray is an evolving technology. A pre-requisite of its clinical application is the standardization of platform, protocol, data analysis, and so on, which will make large-scale clinical tests doable and provide a common reference for sample categorization. Otherwise, datasets generated by independent studies are not directly comparable. For example, when SEP was calculated with the same reporter genes and their weight in this study, scores of different patient cohorts usually did not have ranges analogous to each other. The standardization of microarray relies on the knowledge learned from the existing data. As more and more microarray datasets about cancer or other diseases are published, there is increasing interest on comparing and summarizing multiple datasets to discover general expression patterns, which help the design of standard array template. By successfully verifying and realizing the advantages of multi-dataset expression profiling, the current study will accelerate the standardization of microarray. 


5.2 MAMA Project

Although its name highlighted meta-analysis, the MAMA system is more of a data-mining platform than a meta-analysis toolbox. Particularly, it provided users with a centralized storage of microarray datasets, a data annotation and management tool, a data-mining environment for simultaneously investigating multiple datasets. Therefore, any researcher interested in the expression profiling of tumor tissues may take advantage of it. MAMA is also an open-source project. Applications of MAMA include, but are not limited to:


· Store and share microarray datasets about cancer.


· Correlate the expression of genes to cancer features, such as recurrence or ER status of patients.


· Identify or confirm co-expression of genes across multiple datasets to help the building of genetic pathways. 


· Generate gene expression patterns from one or multiple datasets, and validate these patterns with data from independent sources.


· Implement and test novel methods or procedures of microarray data analysis. 


· Help researchers to discover clinical indexes or molecular markers of cancer. 


A noticeable feature of the MAMA system is the simplicity of the server program. Due to the limited human and computer resources, a heavy duty server, which would handle data analysis operations for all users, was avoided to minimize the development and maintenance efforts. Therefore, MAMA does not provide a web-like interface for users to interact with the system through a web browser. Instead, all data manipulation and analysis functions were implemented in the client program, which need to be downloaded and installed by users themselves. Consequently, users have to take more responsibility on the execution of operations. For example, they need to ensure that their local computer meets the hardware requirements of complicate data analysis procedures. On the other side, this system architecture improved the extensibility of the MAMA system. Modification and addition of data analysis functions are limited at the client-side. Since all source codes are freely available, users are able to customize the functions of MAMA system without setting up their own database and server. 


MAMA was developed as a highly flexible system for both of data manipulation and analysis. It is assumed that independent datasets should have similar subjects and definition of variables when they are integrated by meta-analysis or other statistical techniques. For example, two studies respectively examining prognosis of breast and lung cancer usually cannot be integrated because their subjects are too dissimilar. In practice, since each study has its own purpose and experimental design, datasets used by meta-analysis usually need to be re-processed first. The data manipulation functions provided by the MAMA client allow users to filter sample patients or sequence and convert variables before specific analyses. Consequently, user-defined ‘virtual’ studies, which have a different objective from the original studies, can be carried out to discover new information from existing data. Furthermore, by establishing a method plug-in mechanism, MAMA allows users to implement and apply their own methods of expression data normalization. 


Flexibility is critical for the usability of MAMA. Cancer is a complex disease involving many aspects. To identify an optimal gene expression pattern, researchers often want to conveniently try and compare different strategies (e.g. 5-year vs. 3-year prognosis) or methods (e.g. parametric vs. non-parametric test) of gene expression profiling. The MAMA system fulfilled this requirement by its high flexibility, which could be error-prone at the same time. If users do not thoroughly understand the data or methods of their analysis, variables could be incorrectly defined, methods could be misused or mistakenly implemented, and analysis results could be inaccurately interpreted. Therefore, the targeted users of MAMA are those already familiar with the characteristics and statistical methods of microarray analysis. 


An important lesson learned from this study is the complexity of realizing the medical application of microarray technology. Although most biomedical researchers would agree that high-throughput technologies will have extensive application in clinical medicine, no substantial breakthrough has been made so far. A possible reason is that the current knowledge about cancer and other complex diseases is still not enough for researchers to fully take advantage of these technologies. Besides, datasets generated with these technologies usually have low quality and small sample size, probably the reason why results of microarray studies usually have not been taken seriously by most medical practitioners. Microarray-based diagnosis requires the standardization of technology and the data analysis procedures. While microarray technologies will keep developing in near future, suitable and practicable data analysis procedure are essential now. Similar to the data analysis procedure used in clinical trials, samples selected from various subpopulations should be pooled together to draw more solid and general conclusions. This study presented such a procedure during the data analysis phase and the MAMA system will help other researchers to develop more.  


Although microarray provides gene expression measurements at a genomic level, its value should not be exaggerated. The comprehensive description of biological systems should cover information at different levels, including sequence, mRNA, protein, metabolite, and so on. The integration of data at multiple levels will provide a better understanding about investigated subjects. For example, the results of this study demonstrated that expression pattern and other clinical indexes jointly accomplished the best prognostic model of breast cancer. While systems biology is recently becoming one of the most active topics of biomedical research, its success highly relies on the development of data integration techniques. This study shared some commonness with systems biology researches in terms of data integration. For example, data objects should be formally and consistently annotated. Therefore, the vision and process of developing the MAMA project are partly applicable to similar projects of systems biology. 


While the current version of MAMA system has met its basic requirements, it is still prototypic. Future upgrades under consideration are:


· Data collection: More datasets will be loaded into MAMA database as a continuous effort.


· Data presentation: New data presentation functions will be added for users to navigate data contents more conveniently. Examples of such functions are rendering data distribution in diagrams and sorting or filtering analysis results in tables.


· Method categories: According to feedbacks from users, new categories of data analysis methods will be implemented and corresponding API for method plug-in will be provided.


· Prediction models: The current version of MAMA did not support the functions for generating prediction models, an important application of microarray data. Realizing this feature involves a major upgrade of MAMA source codes. New data objects need to be defined and new data analysis functions, such as testing a model with datasets, need to be implemented. 


Biomedical informatics is a new but promising field. Its prospects are highly dependent upon the insight and vision of researchers. Presenting some fresh ideas to the research community, this study strongly supported the application of microarray on cancer clinics by its data analysis results and data mining platform.
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Microarray is relatively more mature and less expensive compared to other high-throughput technologies. Therefore, it has been commonly applied to the identification of gene expression patterns in specific types or subtypes of diseases. A variety of microarray datasets have been publicly available, which makes it possible to integrate multiple datasets for more powerful statistical analysis. 

The current study was performed to solve some issues involved in the practical application of microarray data to cancer. It included two related projects. The data analysis 


project justified the advantages of integrating microarray datasets and the necessity of developing a computer system like MAMA. The MAMA project, in return, will drastically accelerate the process of similar microarray analyses.


5.1 Data Analysis

The data analysis phase of this study was focused on the confirmation of two hypotheses. The first hypothesis was intended to validate the value of microarray technology in clinics by suggesting that microarray data provide extra clinical information besides commonly used indexes. The truthfulness of this hypothesis is the basis of all similar studies because its denial means that inclusion of microarray data in clinical decision will not make disease prognosis more accurate. Surprisingly, it has been overlooked by most microarray studies about cancer prognosis. Using two datasets about breast cancer and four datasets about lung cancer, this study attempted to validate this hypothesis by cross-validation of independent datasets and logistic regression models. The results implied that (1) when indexes were applied separately, gene expression profiles were superior classifiers of cancer patients than currently used prognostic indexes; (2) when all indexes were applied jointly, inclusion of expression profiles improved the overall accuracy of classification; and (3) to achieve optimal classification, expression profiles should be applied in corporation with other indexes. These implications altogether solidly confirmed the clinical value of microarray data.
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The artificial variable SEP (Score for Expression Profile) was designed and successfully fitted into data analysis procedures. The utilization of SEP was the key of statistical analyses in this study. As a numeric and continuous variable, SEP was suitable for many analytical methods. For example, the density distribution of SEP scores in Fig. 1A and subsequent chi-square tests provided strong evidence about the general confounding effect of clinical indexes on gene-outcome correlation. Because of these confounders, the observed significant correlation of a gene to disease outcome could be the result of high correlation between the gene and a clinical index. Genes taking advantage of confounders will have higher chance to be selected as a reporter. This is why many reporter genes can be linked to one or more clinical indexes. Sampling criteria varies among studies. In the case of breast cancer datasets analyzed in this study, all patients in Rosetta dataset were lymph node-positive while Stanford dataset included both node-positive and -negative patients. Hence, controlling the confounding effect of clinical indexes will improve the generality of expression profiles. 


A partial correlation procedure was the first strategy used in this study to control the confounders of expression profiling. The procedure calculated a residual value for each gene expression measurement and replaces the original measurements with the residuals in the following steps.  Although theoretically all confounders could be controlled by recursively calculating residuals, extra variance will be introduced into results since the residuals were estimated from the sample data. Consequently, the resultant expression profiles would have higher false positive rate and lower quality. For example, when the 127-gene profile obtained from the partial correlation analysis of Rosetta dataset was cross-validated with Stanford dataset, it did not perform better than the profile generated by regular correlation analysis.

The major data analysis procedure of this study combined training/testing validation and bootstrap re-sampling. This procedure was used to avoid overfitting in results and make unbiased comparison of expression profiling strategies. However, it should be noted that this procedure did not take full advantage of the source data because all expression profiles were generated from the training data, which contained just about two-third of the complete datasets. For example, when the breast cancer 60-gene profile obtained from a complete dataset was cross-validated with the other dataset, the overall accuracy of patient classification using SEP was 73.61%, higher than the bootstrapping median (70.59%) obtained from within-dataset validation.


Results of this study advocated a breast cancer recurrence model suggesting that the progression of secondary tumors had two growth patterns. Each of these patterns corresponded to a post-diagnosis recurrence peak. Instead of arbitrarily categorizing patients according to their 5-year prognosis as what most breast cancer studies prefer, this study adopted this 2-peak model and classified patients into two groups corresponding to the peaks. Considering breast cancer as a cell growth abnormality, this classification had more biological grounds. Comparison of Fig. 6B and 8 shows that at N=100, the median AUC obtained from the lung data was 0.1 lower than that from the breast data, a relatively significant dropping. This difference might be caused by smaller sample size of two training lung datasets, but more possibly because of the lack of a well-defined biological model to support the 2-year survival classification of patients. In addition, recurrence is a better output variable of expression profiling than survival because the factors influencing survival are more diverse.

The stepwise procedures were applied to trace the consequence of adjusting the sensitivity and specificity of reporter gene selection. The necessity of high reporter selection sensitivity was questioned by various results. First, as in Figure 5 and 6, medians of test statistics gradually reached a plateau with the raising of N. When N was greater than 60, increasing its value had very little influence on the quality of expression profiles. Secondly, cross-validation results demonstrated that two mostly different reporter gene list had similar performance on testing patients (Table 6). Thus, both lists must miss some true positive reporters since each of them was valid classifiers of testing patients and included some true positives. Finally, the result of the reduction process (Fig. 11A) showed that the loss of sensitivity could be tolerated to an extensive level without significantly reducing the quality of expression profiles. On the other hand, high selection specificity was proved to be critical. The relationship between higher reporter selection specificity and better expression profiles was suggested by results presented in Fig. 7. The combined dataset selected reporter genes more consistently, implying that the expression profiles obtained from it included less false positives. Furthermore, the replacement process (Fig. 11B) caused more dramatic subsequence than the reduction process. Comparison of Fig.10A and 10B concluded that with the same sensitivity, decreasing specificity of reporter selection would quickly decrease the quality of expression profiles. Therefore, an effective expression profile should include false positives as few as possible, but do not have to take in all or most of true positives. Nevertheless, high sensitivity should still be preferred when no substantial tradeoff is required. The more true positives an expression profile includes, the more reliable and robust it will be. In this study, the optimal tradeoff was arbitrarily decided based on the observed trend as the value of N was increased. More investigation on this topic is expected in the future. 

The data integration strategy used in the current study was straightforward and easy to perform. It assumed that patients of independent studies were sampled from the same population and their expression data had similar distribution and range after proper data re-processing. A major criticism of this strategy might be the information leaking due to the filtering of genes before combining two datasets having different array design. A large portion of genes in the source data were not included in the combined dataset because they were not in both datasets. However, both breast and lung combined datasets still included about 5,000 Unigene clusters. According to previous conclusion about reporter selection sensitivity, the quality of resultant expression profiles was merely influenced by the filtering process. If the data integration involves more than two microarray datasets, inconsistent array design will make the current strategy less feasible. For example, there were only about 1,000 Unigene clusters included by all four lung datasets used in this study. An alternative strategy of integration analysis is meta-analysis, the analysis of results obtained from individual studies. With meta-analysis, each gene will get a summary statistic no matter its presence in multiple datasets.

Microarray is an evolving technology. A pre-requisite of its clinical application is the standardization of platform, protocol, data analysis, and so on, which will make large-scale clinical tests doable and provide a common reference for sample categorization. Otherwise, datasets generated by independent studies are not directly comparable. For example, when SEP was calculated with the same reporter genes and their weight in this study, scores of different patient cohorts usually did not have ranges analogous to each other. The standardization of microarray relies on the knowledge learned from the existing data. As more and more microarray datasets about cancer or other diseases are published, there is increasing interest on comparing and summarizing multiple datasets to discover general expression patterns, which help the design of standard array template. By successfully verifying and realizing the advantages of multi-dataset expression profiling, the current study will accelerate the standardization of microarray. 


5.2 MAMA Project

Although its name highlighted meta-analysis, the MAMA system is more of a data-mining platform than a meta-analysis toolbox. Particularly, it provided users with a centralized storage of microarray datasets, a data annotation and management tool, a data-mining environment for simultaneously investigating multiple datasets. Therefore, any researcher interested in the expression profiling of tumor tissues may take advantage of it. MAMA is also an open-source project. Applications of MAMA include, but are not limited to:


· Store and share microarray datasets about cancer.


· Correlate the expression of genes to cancer features, such as recurrence or ER status of patients.


· Identify or confirm co-expression of genes across multiple datasets to help the building of genetic pathways. 


· Generate gene expression patterns from one or multiple datasets, and validate these patterns with data from independent sources.


· Implement and test novel methods or procedures of microarray data analysis. 


· Help researchers to discover clinical indexes or molecular markers of cancer. 


A noticeable feature of the MAMA system is the simplicity of the server program. Due to the limited human and computer resources, a heavy duty server, which would handle data analysis operations for all users, was avoided to minimize the development and maintenance efforts. Therefore, MAMA does not provide a web-like interface for users to interact with the system through a web browser. Instead, all data manipulation and analysis functions were implemented in the client program, which need to be downloaded and installed by users themselves. Consequently, users have to take more responsibility on the execution of operations. For example, they need to ensure that their local computer meets the hardware requirements of complicate data analysis procedures. On the other side, this system architecture improved the extensibility of the MAMA system. Modification and addition of data analysis functions are limited at the client-side. Since all source codes are freely available, users are able to customize the functions of MAMA system without setting up their own database and server. 


MAMA was developed as a highly flexible system for both of data manipulation and analysis. It is assumed that independent datasets should have similar subjects and definition of variables when they are integrated by meta-analysis or other statistical techniques. For example, two studies respectively examining prognosis of breast and lung cancer usually cannot be integrated because their subjects are too dissimilar. In practice, since each study has its own purpose and experimental design, datasets used by meta-analysis usually need to be re-processed first. The data manipulation functions provided by the MAMA client allow users to filter sample patients or sequence and convert variables before specific analyses. Consequently, user-defined ‘virtual’ studies, which have a different objective from the original studies, can be carried out to discover new information from existing data. Furthermore, by establishing a method plug-in mechanism, MAMA allows users to implement and apply their own methods of expression data normalization. 


Flexibility is critical for the usability of MAMA. Cancer is a complex disease involving many aspects. To identify an optimal gene expression pattern, researchers often want to conveniently try and compare different strategies (e.g. 5-year vs. 3-year prognosis) or methods (e.g. parametric vs. non-parametric test) of gene expression profiling. The MAMA system fulfilled this requirement by its high flexibility, which could be error-prone at the same time. If users do not thoroughly understand the data or methods of their analysis, variables could be incorrectly defined, methods could be misused or mistakenly implemented, and analysis results could be inaccurately interpreted. Therefore, the targeted users of MAMA are those already familiar with the characteristics and statistical methods of microarray analysis. 


An important lesson learned from this study is the complexity of realizing the medical application of microarray technology. Although most biomedical researchers would agree that high-throughput technologies will have extensive application in clinical medicine, no substantial breakthrough has been made so far. A possible reason is that the current knowledge about cancer and other complex diseases is still not enough for researchers to fully take advantage of these technologies. Besides, datasets generated with these technologies usually have low quality and small sample size, probably the reason why results of microarray studies usually have not been taken seriously by most medical practitioners. Microarray-based diagnosis requires the standardization of technology and the data analysis procedures. While microarray technologies will keep developing in near future, suitable and practicable data analysis procedure are essential now. Similar to the data analysis procedure used in clinical trials, samples selected from various subpopulations should be pooled together to draw more solid and general conclusions. This study presented such a procedure during the data analysis phase and the MAMA system will help other researchers to develop more.  


Although microarray provides gene expression measurements at a genomic level, its value should not be exaggerated. The comprehensive description of biological systems should cover information at different levels, including sequence, mRNA, protein, metabolite, and so on. The integration of data at multiple levels will provide a better understanding about investigated subjects. For example, the results of this study demonstrated that expression pattern and other clinical indexes jointly accomplished the best prognostic model of breast cancer. While systems biology is recently becoming one of the most active topics of biomedical research, its success highly relies on the development of data integration techniques. This study shared some commonness with systems biology researches in terms of data integration. For example, data objects should be formally and consistently annotated. Therefore, the vision and process of developing the MAMA project are partly applicable to similar projects of systems biology. 


While the current version of MAMA system has met its basic requirements, it is still prototypic. Future upgrades under consideration are:


· Data collection: More datasets will be loaded into MAMA database as a continuous effort.


· Data presentation: New data presentation functions will be added for users to navigate data contents more conveniently. Examples of such functions are rendering data distribution in diagrams and sorting or filtering analysis results in tables.


· Method categories: According to feedbacks from users, new categories of data analysis methods will be implemented and corresponding API for method plug-in will be provided.


· Prediction models: The current version of MAMA did not support the functions for generating prediction models, an important application of microarray data. Realizing this feature involves a major upgrade of MAMA source codes. New data objects need to be defined and new data analysis functions, such as testing a model with datasets, need to be implemented. 


Biomedical informatics is a new but promising field. Its prospects are highly dependent upon the insight and vision of researchers. Presenting some fresh ideas to the research community, this study strongly supported the application of microarray on cancer clinics by its data analysis results and data mining platform.
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