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ABSTRACT 

CHIA-WEN HSU: Development of Multiplexable Biosensors to Quantify the 

Spatiotemporal Dynamics of Rho GTPases and Protein Kinases in the Same Living Cell 

(Under the direction of Dr. Klaus M. Hahn) 

 

       Cell motility is a highly dynamic and heterogenous cellular process regulated by the 

coordination of multiple Rho GTPases, Src family kinases, and the mitogen-activated 

protein kinase (MAPK) cascades. However, it has been difficult to monitor more than 

two protein activities in the same cell due to the overlapping spectra of current biosensors 

and biological perturbations at high biosensor concentrations. Dye-based biosensors, 

which rely on an affinity scaffold that binds only to the activated conformation of the 

endogenous targets and an environment-sensing dye that changes its fluorescence 

properties to report the specific binder-target interactions, possess great potential to 

monitor multiple endogenous targets in the same cell. Here, I created novel environment-

sensing dyes and exploited novel affinity scaffolds to develop multiplexable dye-based 

biosensors capable of quantifying the spatiotemporal dynamics of multiple Rho GTPases 

and protein kinases in the same cell. 

     Src protein kinase is an upstream regulator of the Cdc42 GTPase. The coordination of 

Cdc42 and Src at the leading edge has not been well characterized due to lack of 

multiplexable biosensors to monitor Cdc42 and Src activities in the same living cell. 

Therefore, I developed novel near infrared merocyanine dyes and a red ratiometric 

merocyanine dye with an intrinsic ratiometric response that can be used to construct 



iv 

 

multiplexible biosensors. The relative timing and the subcellular localization of active 

Cdc42 and Src during leading edge dynamics and during pinocytosis were revealed using 

the new dyes. 

     Src also plays an important role in the MAPK-mediated cell motility. However, the 

precise roles of MAPKKs and MAPKs at the leading edge remain poorly characterized 

due to the lack of sensitive biosensors for each target. By taking advantage of the specific 

interactions between MAPKKs and MAPKs, I developed the first substrate-based 

biosensor designs to report the activity of endogenous MEK1/2 and MKK3/6. I also 

developed a sensitive ERK1/2 biosensor based on artificial binders through 

collaborations with the Plűckthun group.  

     This work will provide a foundation to study the crosstalk between Rho GTPases, Src 

family kinases and the MAPK cascades via multiplexed live cell imaging.  
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“When you want something,  

all the universe conspires in helping you to achieve it.” 

— Paulo Coelho, The Alchemist 
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Chapter 1                                                                                                           

Long wavelength merocyanine dyes for multiplexed live cell imaging 

 

1.1 Summary 

       Activity of endogenous proteins can be reported by fluorescence changes of a 

solvatochromic merocyanine dye covalently attached to an affinity reagent that binds 

only the activated conformation of its target. It has however remained challenging to 

monitor multiple protein activities simultaneously in the same living cell due to the need 

for two fluorophores in a ratiometric biosensor and the spectral overlap that can occur 

when using multiple fluorophores. Here we describe a new class of near infrared and red 

merocyanine dyes with solvent-sensitive fluorescence properties for in vitro assays and 

for multiplexed live cell imaging. We also demonstrate the use of the new dyes to co-

image spatiotemporal dynamics of endogenous Cdc42 and Src family kinases (SFK) in 

the same living cell. We show that both active Cdc42 and SFK are mainly localized at the 

leading edge while only SFK is activated throughout pinocytosis.  

 

1.2 Introduction and Background 

      Biosensors that report protein activity in living cells are valuable tools used to 

investigate the spatial and temporal regulation of dynamic and complex cell signaling 

events. Subtle changes in the relative timing and subcellular localization of protein 

activity during the cross-talk of multiple signaling molecules can lead to diverse cell 
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responses; such spatiotemporal information needs to be studied in living cells because it 

is often lost in in vitro assays or fixed cell experiments, due to the need for long 

incubation times and/or to the disruption of cellular compartments. Fluorophores for live 

cell imaging must possess the following properties: sufficient brightness (i.e. large 

extinction coefficient, high quantum yield), photostability, water solubility, 

biocompatibility, and emissions at long wavelengths to avoid cellular autofluorescence.  

        Förster resonance energy transfer (FRET) and solvatochromism have been 

employed to generate biosensors for reporting protein activity in living cells. It has been 

difficult to monitor two or more biosensors in the same living cell due to significant 

spectral overlap of the multiple fluorophores and increasing biological perturbations at 

high total biosensor concentrations. In our experience, cells expressing two FP-based 

FRET biosensors usually fail to exhibit normal cell motility. An alternative approach we 

have been developing uses dye-based biosensors. Biosensors based on dyes can require 

less biosensor due to their enhanced brightness, and unlike their FP-based counterparts, 

dye-based biosensors have the ability to sense endogenous, unmodified target molecules. 

We are able to reduce biological perturbations by combining a FP-based FRET biosensor 

and a biosensor based on a solvatochromic dye, enabling use to study the coordination of 

Cdc42, Rac and Rho during cell motility with seconds and submicron resolution (1). Here 

we have sought to develop new merocyanine dyes for multiplexed imaging of two or 

more dye-based biosensors in the same living cell, and optimized the best versions of 

these dyes for intensity-based or lifetime-based imaging.  

     The first class of new dyes consists of the red-shifted versions of previously reported 

red merocyanine dyes with optimized properties for live cell imaging. Since addition of 
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each double bond to the conjugated polymethine chain in cyanine dyes usually results in 

a red shift of approximately 100 nm, red merocyanine dyes with these chemical 

modifications are likely to be excited by near infrared wavelengths. Thus these red-

shifted merocyanine dyes could provide an orthogonal fluorescent channel which can be 

imaged together with a red dye-based biosensor or commonly used fluorescent proteins. 

The second class consists of red merocyanine dyes with dual fluorescence changes in 

both intensity and wavelengths; these dyes do not require a second fluorophore for ratio 

imaging. In addition, because fluorescence lifetime of a molecule is insensitive to factors 

that influence dye intensity, biosensors based on solvatochromic dyes do not need a 

second fluorophore for quantification of protein activity in fluorescence lifetime imaging 

microscopy (FLIM).  Therefore FLIM properties of the new dyes were examined as well. 

The new dyes were tested on the two published activity sensor designs for endogenous 

activated Cdc42 GTPase and for Src family kinases (SFK). The best dye-based 

biosensors for intensity-based or lifetime-based detection were determined by comparing 

biosensor brightness, dynamic range, photostability, and solvent-dependent fluorescence 

properties (intensity, lifetime, and wavelength maxima).   

 

1.2.1 Protein-based biosensors for live cell imaging 

     Protein activity or abundance of analytes in live cells can be quantified by 

fluorescence changes of fluorescent proteins (FPs) or small organic dyes. The 

fluorophores are attached to target protein molecules or an affinity reagent that 

specifically binds the activated conformation of the target proteins or sites of 

posttranslational modifications. Affinity reagents based on protein scaffolds can be easily 

obtained from the natural binding partners of the target molecules or artificially designed 
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proteins via high-throughput screening (HTS) or protein engineering. Protein-based 

affinity reagents also provide more extensive binding interactions than small molecule- 

and peptide-based binders. While FP-based biosensors still dominate the mainstream for 

biological applications, an increasing number of chemically modified proteins with 

unique properties is being developed and applied to live cell studies.  Here I summarize 

recent progress in protein-based biosensors that use fluorescent proteins or organic dyes: 

 
Figure 1.1 Exisitng designs of protein-based biosensors.  

The target molecules and affinity reagents for binding of the targets are colored in black 

and dark grey, respectively. Fragments of a fluorescent protein or a protein tag are 

colored in light grey. (a) Biosensors based on FRET between two FPs with overlapping 

spectra. The binding interactions produce change in FRET/donor emission ratios. (b) 

Biosensors based on circular permuted FPs (cpFPs). Binding of the target molecules 

induce a conformational change in the cpFP that alters the fluorescence intensity of the 

cpFP. (c) Biosensors based on BiFC of an N-terminal and a C-terminal fragment 

consisting an intact fluorescent protein molecule. Upon binding, the two fragments 

reconstitute the intact fluorescent protein structure and generate fluorescence. (d) 

Biosensors based on solvatochromic dyes and affinity reagents that bind specifically to 

the activated targets. Binding interactions usually bring the dye to the more hydrophobic 

target-binder binding interface, resulting in fluorescence increase in the dye channel. (e) 

Biosensors based on FRET between two dyes with overlapped spectra. The mechanism is 
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identical to FP-FRET. Small molecule-FRET usually produces higher dynamic range 

than FP FRET. (f) Biosensors based on a solvatochromic dye-labeled target protein 

molecule. Upon conformational changes, the dye is likely in a more hydrophobic or a less 

hydrophobic environment on the binder surface and therefore displays a fluorescence 

change (g) Biosensors based on a cell permeable dye and split fragments of a protein tag 

such as SNAP tags or CLIP tags. The binding interactions enable reconstitution of the 

protein tags which can form a stable covalent linkage with the corresponding cell 

permeable dyes. 

 

     Fluorescent protein-based biosensors     Most biosensor designs are based on 

fluorescent proteins because FPs can be used for manipulation by transfecting reagents 

and for genetically targeting to specific tissues by incorporating a tissue-specific 

promoter sequence in the plasmids for transfection. The fluorescence readouts of FP-

based biosensors can be generated through bimolecular fluorescence complementation 

(BiFC), Förster resonance energy transfer (FRET), and other mechanisms (Fig 1.1a-c).  

BiFC utilizes the fluorescence recovery after in vivo reconstitution of the N-terminal and 

the C-terminal fragments derived from the parent fluorescent protein molecules (Fig 

1.1c).  The available fluorescent protein variants for BiFC include Cerulean, mVenus and 

GFP. The BiFC methods have been applied to many pairs of binding partners such Ras-

Raf (2), actin-cofilin (2), AP1-NFκB (3), Myc-Max-Mad (4), and p53-catalyse (5). The 

BiFC is easily adapted to a wide variety of protein-protein interactions; however this 

method suffers from limited temporal resolution because the method takes time for 

maturation of the reconstituted fluorescent proteins. The fluorescence intensity of a 

reconstituted fluorescent protein is also usually 10-100 fold weaker than the parent 

fluorescent protein (6). Because the wavelengths of the existing fluorescent proteins 

cover the entire visible spectrum (Fig 1.2), several pairs of fluorescent proteins capable 

of undergoing FRET have been developed (7). Cyan fluorescent protein (CFP) and 

yellow fluorescence protein (YFP) are the most commonly used FRET pair so far. The 
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emission spectrum of CFP is substantially overlapped with the excitation spectrum of 

YFP, indicating the close potential energies of the CFP-YFP pair. Because the FRET 

efficiency of the two fluorophores is inversely proportional to the sixth power of the 

distance between CFP and YFP, excitation of CFP can result in an increase in the 

emission of YFP through FRET when the two fluorophores are within 10 nm. Binding 

interactions between two binding partners alter the distance between the two fluorophores 

and the relative orientations of their dipole moments, thus the change in FRET/donor 

emission is a function of the protein-protein interactions (Fig 1.1a). To report target 

protein activity or detect amounts of target molecules, one of the fluorophores in the 

FRET pair is fused to a target-binding domain that specifically recognizes the activated 

conformations of target proteins (1, 8-12), sites of post-translational modifications (13-

24) or small molecules (25-30). Some FRET biosensors (24, 31, 32) are based on the loss 

of FRET upon enzymatic cleavage of a sequence between the donor and the acceptor 

fluorophores or conformational changes of the FP-tagged target proteins. The other 

fluorphore is fused to a docking domain or a recombinant target molecule for achieving 

specificity of the biosensor designs.  Circular permutation of fluorescent proteins not only 

enables FRET through different orientations of either the donor or the acceptor FP but 

also provide new biosensor designs based on single fluorophores. Structural changes 

occurring at the site of permutation can stabilize the hydrogen bonding network or affect 

the polarity surrounding the chromophore, resulting in a fluorescence intensity change 

(Fig 1.1b).  GCaMPs and Pericams are by far the most popular Ca
2+

 biosensors based on 

circularly permuted GFP and YFP, respectively (33).  Marvin et al extended this idea to 

generate a sensitive intensity-based sensor for maltose by inserting a circularly permuted 
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GFP to a periplasmic binding protein (PBD) (34). Binding of maltose induces a 

conformational change in PBD and affects the fluorescence intensity of the inserted 

cpGFP. This approach has great potential to become a generally applicable method to 

produce single FP-based reporters for a diverse array of analytes. Recently the detection 

of a ternary complex in live cells has been enabled by combining BiFC and FRET (35). 

In the BiFC-FRET biosensor design, a pair of split mVenus fluorescent protein fragments 

is fused to bJun and bFos transcription factors. The binding interactions between bJun 

and bFos activate the reconstitution of mVenus. The complex is then capable of 

associating with a Cerulean-tagged p65 transcription factor and undergoes FRET.    

 
Figure 1. 2 Brightness and excitation maxima of fluorescent proteins and organic 

dyes.  

Brightness is the product of the extinction coefficient ε and the quantum yield Φ of the 

fluorophore. The values were obtained from references (7, 36-39).   

 

     Dye-based biosensors     The major advantages of organic dyes over FPs include the 

relative small size of dyes when compared with FPs and binder molecules, ease of 
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optimization of dye properties through chemical modifications and the diversity of 

sensing mechanisms such as solvatochromism, FRET, twisted intramolecular charge 

transfer (TICT), and photo-induced electron transfer (PET). Despite the superior dynamic 

range, small molecule FRET (Fig 1.1e) is less used in protein-based biosensors than FP-

based FRET because the latter is much easier in terms of preparation and delivery. 

Therefore, the current scope of small molecule FRET is focused on detecting metabolites 

or enzymatic cleavage in vitro and in cell lysates. Mie et al recently reported a 

technology to visualize protein-protein interactions in live cells based on the newly 

developed split SNAP and split CLIP tags (Fig 1.1g) (40). They showed that a pair of c-

SNAP-tagged bJun and n-SNAP-tagged bFos can form a reconstituted SNAP tag and 

react with SNAP-Cell TMR Star dyes in HeLa cells. Since protein tags can easily be 

fused to protein-based affinity reagents, simultaneous labeling of a split SNAP tag and a 

split CLIP tag with SNAP-Cell Oregon Green and CLIP-Cell TMR-Star also 

demonstrates great potential for multiplexed imaging of two or more pairs of protein-

protein interactions in the same living cell.  

     Spatial and temporal dynamics of endogenous activated targets can be reported by 

biosensor designs based on solvatochromic fluorphores (Fig 1.1d & f). Solvatochromic 

fluorophores such as merocyanine dyes can emit at longer wavelengths than fluorescent 

proteins (FPs) where the spectral overlap with cellular autofluorescence is greatly 

diminished (Fig 1.2). Importantly, merocyanine dyes exhibit altered fluorescence 

intensity and/or wavelength maxima in either excitation or emission spectra in response 

to changes in polarity (hydrophobicity and charge) and hydrogen-bonding interactions in 

the local environment of the dye molecule. Merocyanine dyes have been employed to 
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generate dye-based biosensor designs (Fig 1.1 a & c) for reporting spatiotemporal 

dynamics of calmodulin (41, 42), S100A4 (43), Cdc42 (44, 45) and Src family kineases 

(SFKs) (46). Another advantage of the use of solvatochromic dyes is the direct excitation 

that produces a brighter signal per unit irradiation intensity. Thus less biosensor material 

is required to obtain sufficient biosensor signals with minimal cellular perturbation. 

Because of the smaller size and the use of longer wavelengths, dye biosensors are 

complementary to FP-based FRET biosensors and can be co-imaged with a FRET 

biosensor in a single living cell (1). 

 

1.2.2 Solvatochromism 

        The principle of fluorescence can perhaps be best understood by the Jabloński 

diagram (Fig 1.3A) in which the singlet ground state and the first singlet excited state are 

denoted as S0 and S2, respectively. A fluorophore can be populated at various vibration 

levels upon excitation. In some cases, fluorophore molecules quickly relax to the lowest 

excited state S1 in a process called internal conversion. When the excited electrons return 

to the ground state, a loss in vibrational energy accompanies with emission, resulting in a 

red shift of the emission spectra relative to the excitation spectra. The wavelength 

difference between the absorption maximum and emission maximum is called the Stokes 

shift. The relative potential energies of the ground state, the excited states and the 

transition states are influenced by various factors such as temperature, solvent polarity, 

and intermolecular interactions.  



10 

 

 
Figure 1.3 Jabloński diagrams of regular fluorescen and solvatochromism.  

A. Jabloński diagram. S0: singlet ground state. S1: the first excited state. hνA: absorption 

energy. hνF: dissipated energy via fluorescence. Γnr: energy loss via non-radiative 

processes. B. Solvatochromism. Emission maxima are red-shifted if the excited state is 

more stabilized than the ground state of a molecule in more polar solvents. These 

diagrams were adapted from: J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 

Springer, New York, NY, USA, 3rd edition, 2006. 

 

     Solvatochromism is a term to describe the solvent-sensitive fluorescence behaviors of 

some molecules (Fig 1.3B). These molecules usually possess a large difference in the 

dipole moments of the ground state and the excited state. Hypsochromic (blue shift) and 

bathochromic (red shift) transitions in the absorption spectra of a molecule are called as 

negative solvatochromism and positive solvatochromism, respectively. When a molecule 

undergoes a positive solvatochromism in a more polar solvent, a red shift in the emission 

spectra of the molecule is observed. Solvatochromism is determined by the relative 

stabilization in the ground state and the excited state of the molecule in solvents of 

various polarities. Because the time for the light-absorbing molecules to be excited to the 

excited state (femtoseconds) is much shorter than the time for molecules to undergo 

vibrational or rotational movements (1-100 picoseconds), solvatochromic fluorophores 

still obey the Frank-Condon principle in which the vibration levels in the ground state are 

similar to the vibration levels in the excited state. Due to the unique solvent-dependent 

fluorescence properties of solvatochromic dyes, several solvatochromic dyes have been 
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developed to report protein conformation change, protein-sensor binding interactions and 

post-translational modifications in vitro and in live cell imaging (1, 39, 41, 43-52).  

      The solvatochromic properties of native tryptophan residues in proteins led to their 

becoming the first well-investigated class of fluorophores that could be useful for 

detecting protein conformation changes (53, 54). Since then, many new extrinsic 

fluorophores with greater brightness and longer wavelengths have been developed to 

report biological events via probe-target interactions when a probe molecule is in 

proximity to the target molecule (55). One class of solvatochromic dyes that are 

especially useful for live cell imaging is merocyanine dyes. A merocyanine molecule 

consists of an electron donor, an electron acceptor, and a conjugated polymethine chain 

bridging the donor and the acceptor moieties (Fig 1.4A).  Depending on its environment 

and the chemical structure, the ground state resonance structure of a merocyanine dye can 

fall anywhere along a continuum between neutral, partially charged, and zwitterionic 

forms. Merocyanines are more attractive for live cell imaging applications than most 

solvatochromic dyes because merocyanines satisfy several criteria necessary for live cell 

imaging including brightness, solvent-dependent fluorescence, and long excitation 

wavelengths. Some merocyanine derivatives are brighter than most fluorescent proteins 

and/or are more photostable than commonly used imaging dyes such as fluorescein and 

cyanine dyes (Fig 1.2) (45, 56-58).  
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Figure 1.4 Mechanisms of dye-based biosensors. 

A. A merocyanine molecule consists of an electron donor (D) and an electron acceptor 

(A) connected by a conjugated polymethine chain (45, 58). B. An example of water-

soluble and thiol-reactive merocyanine dye for biosensor applications. The electron donor 

is colored in red and the electron acceptor is colored in blue. C. A typical dye-based 

biosensor is based on dye-labeled protein-based binder molecules that bind only activated 

conformation of the target and exhibit fluorescence changes upon binding.  

 

       Two examples of biosensor designs based on solvatochromic dyes for live cell 

imaging applications include MeroCBD for reporting activation of endogenous Cdc42 

(44, 45) and SFK merobody for reporting activation of endogenous Src family kinases 

(SFK) (46). To report protein conformational changes or protein-protein interactions, a 

merocyanine dye molecule (Fig 1.4B) is covalently attached to an engineered cysteine 

residue on an affinity reagent that binds only activated targets (Fig 1.4C). The affinity 

reagent in MeroCBD is derived from the CRIB domain of Wiscott-Aldrich syndrome 

protein (WASP)—a direct downstream effector of Cdc42, whereas the affinity reagent 

that specifically binds the SH3 domain of c-Src was discovered via phage display of a 

fibronectin scaffold library (59). According to the co-crystal structure (PDB: 1CEE), the 

binding interface between GTP-bound Cdc42 and WASP contains many hydrophobic 

residues. Therefore most dye-labeled MeroCBD designs exhibit fluorescence increase 
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upon binding when the merocyanine dye is covalently attached to the binding interface 

(Fig 1.5A). MeroCBD reveals that Cdc42 is highly active at the leading edge during 

protrusions (Fig 1.5B). When a Src family kinase molecule is activated after 

phosphorylation, the SH3 domain of SFK becomes accessible for the artificial binder 

(Fig 1.5C). When a merocyanine dye is covalently attached to the engineered cysteine 

residue at the potential binding interface between the affinity reagent and the activated 

SFK, the dye fluorescence either increases or decreases to reflect abundance of activated 

SFK in cells. The SFK merobody biosensor is capable of monitoring fluctuation of 

endogenous SFK activation during leading edge dynamics and macropinocytosis (Fig 

1.5D). Because merocyanine dyes report changes in total fluorescence intensity that are 

easily influenced by factors such as varying cell thickness and uneven illumination, a 

second fluorophore insensitive to protein activation is required as a volume indicator to 

use for ratiometric imaging. As a result, the broad spectral range of two fluorophores 

limits the maximum number of biosensors that can be imaged in a single cell using the 

available wavelengths in the visible region.  
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Figure 1.5 Biosensor designs for Cdc42 and SFKs.  

A. MeroCBD, a dye-based biosensor for endogenous activated Cdc42 Rho GTPase. The 

affinity reagent specific to GTP-bound Cdc42 was derived from a substrate of Cdc42. A 

second fluorophore such as EGFP is fused to the dye-labeled affinity reagent to eliminate 

factors that affect dye intensity in live cell imaging including varying cell thickness and 

uneven illumination. B. SFK merobody, a dye-based biosensor for endogenous activated 

Src family kinases (SFKs). The affinity reagent specific to c-Src SH3 domain was 

obtained through phage display of a library of fibronectin monobodies.  

 

     The current obstacles to using solvatochromic dyes inside living cells are the delivery 

of the highly polar dye conjugate and the lack of bright deep red (700-740  nm) or near 

infrared (740-780 nm) solvatochromic dyes for multi-color imaging. As bio-orthogonal 

reactions and site-specific labeling methods (60-84)  have been rapidly advanced in 

recent years, the solvatochromic dyes will be easier to use and provide more novel tools 

for live cell studies or in vivo imaging. 

 

1.2.3 Recent progress of near infrared dye-based probes for live cell imaging 

applications           

 

       Near infrared (NIR) fluorophores with excitation wavelengths ranging from 650 to 

900 nm are useful for in vivo imaging because of their deeper penetration depth in thick 
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tissues, the diminished contribution of cellular auto-fluorescence to background signal, 

and the reduced photo-toxicity to live cells. NIR fluorophores are also useful for 

multiplexed imaging since there are very few bright, photostable near infrared 

fluorephores that have been routinely used for biological applications. In addition to the 

most commonly-used cyanine derivatives, several dye scaffolds have progressed for live 

cell or live animal imaging applications. These near infrared dyes include rigidified 

cyanines, squaraines, BODIPY derivatives, xanthenes, Si-rhodamines, and 

dicyanomethylenedihydrofuran (DCDHF) derivatives (Fig 1.6).  

 

Figure 1.6 Examples of NIR dyes for live cell imaging applications.  

The scaffolds of the fluorophores are colored in red. Functional groups for sensing 

specific cellular events are circled with black dashed lines.  
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     Cyanine derivatives     Cyanine dyes are the most popular NIR fluorophores because 

of their long wavelengths, high extinction coefficients, high quantum yields in aqueous 

solution, and numerous well-established protocols for preparing dye-conjugates. White et 

al designed a deep-red fluorescent probe with selective response to the surface of both 

Gram-positive and Gram-negative bacteria in mice injected with bacteria (85). The probe 

reports the enhanced hydrophobicity surrounding the dye molecule by Förster resonance 

energy transfer (FRET) of the conjugate of a cyanine energy donor and a bis(zinc(II)-

dipicolyamie) energy acceptor. When titrated with POPC/lipid A, the probe showed an 

approximately four-fold increase in acceptor emission (85). A similar approach was 

applied by the Nagano group to generate QCy5, the first long wavelength FRET sensor 

for imaging hypoxia in MCF-7 cells and acute hypoxia in living mice (86). In their sensor 

design, a Black Hole Quencher (BHQ) derivative serves as the fluorescence quencher for 

Cy5 and an azobenzene moiety that undergoes reduction in hypoxia. For in vivo imaging, 

mice injected with QCy5 were imaged with an excitation wavelength of 620 nm and an 

emission wavelength of 680 nm. However, QCy5 is maximally excited at 605 nm and 

maximally emits at 645 nm. Okuda et al also reported a cyanine-based NIR sensor for 

hypoxia, GPU-167, which marks the tumor sites in mice with an excitation maxima of 

753 nm and an emission maxima at 778 nm (87). Yuan et al reported a series of 2,3-

dihydro-1H-xanthene-6-ol derivatives with λabs,max ranging from 608 to 698 nm and 

λem,max ranging from 677 to 718 nm (88). The brightest derivative, compound 3, has an 

extinction coefficient of 79000 cm
-1

M
-1

 and a quantum yield of 0.36 in 1:1 PBS-MeOH 

mixture at pH 7.4. They showed that two derivatives of compound 3 are capable of 

sensing endogenously generated H2O2 in live HeLa cells, macrophages and mice and 
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endogenous thiols in live Bel 7702 cells and mice.  Yuan et al also describe a new class 

of cyanine dyes named Changsha (CS) NIR dyes and demonstrated the use of the new 

dyes to detect endogenous HClO production in RAW264.7 macrophages and mice (88). 

The parent dye CS2 is maximally excited at 700 nm and emits most at 731 nm with an 

extinction coefficient of 139,500 cm
-1

M
-1

 and a quantum yield of 0.41 in ethanol. The 

probe exclusively responds to HClO over several representative reaction oxygen species 

(ROS) and reactive nitrogen species.  Addition of HClO opens up the OSu-protected 

derivative, resulting in increases emissions at 745 nm. Other NIR probes based on 

cyanines have been used to detect pH change (89), mercury ions (90), copper ions (91), 

singlet oxygen (92), ozone (93) and peroxynitrite (ONOO-) (94, 95).  

     Dicyanomethylenedihydrofuran (DCDHF) derivatives      DCDHF dyes are composed 

of an amine donor moiety and an acceptor group based on 2-dicyanomethylene-3-cyano-

2,5-dihydrofuran (DCDHF) connected with an extensive π-system (96).  DCDHF dyes 

are characterized by a large Stokes shifts and solvent-sensitive change in brightness and 

lifetime. A lipid-modified derivative, DCDHF-A-6, diffused to the plasma membrane of 

CHO cells for monitoring membrane dynamics (97). In water the dye is weakly 

fluorescent with an absorption maximum of 600 nm and an emission maximum of 830 

nm. While in toluene solution of 20% poly (methyl methacrylate) (PMMA), DCDHF-A-6 

has a quantum yield of 0.71, a blue-shifted absorption maximum at 594 nm and a blue-

shifted emission maximum at 686 nm. The extinction coefficients of DCDHF (ε: 29,000-

71,000 cm-1M-1) are relatively smaller than cyanines and merocyanines, making it still 

difficult to generate sufficient signal-to-noise ratios for intensity-based ratio imaging 

methods. Importantly the fluorescence lifetime of DCDHF derivatives is sensitive to 
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polarity differences in the environment. For example, another dye, DCDHF-N-6, has a 

quantum yield of 0.017 and a lifetime value smaller than 0.22 ns in ethanol; in PMMA 

solution the dye becomes brighter with a quantum yield of 0.98 and a lifetime value of 

3.2 ns. The photobleaching rates of DCDHF-A-6 and DCDHF-N-6 are 5.4 and 29.5 fold 

slower than fluorescein.  The major issue of DCDHF dyes is their low water solubility 

caused by the highly planar and hydrophobic conjugated system. Methods to generate 

more water soluble DCDHF derivatives are being developed to prevent non-specific 

binding to membrane molecules in living cells (98).   

      BODIPY derivatives Several near infrared derivatives based on the BODIPY 

(borondipyrromethane) scaffold by extending the π-conjugated system have been 

reported (99-103). Most applications of the NIR versions of BODIPY dyes have been in 

material science. However, Myochin et al recently reported a series of near infrared 

fluorescent probes for detecting matrix metalloproteinases (MMPs) in HT-1080 cells and 

in mice (100). Among the NIR probes, a probe based on a NIR BODIPY dye and a dark 

quencher BHQ is cell permeable and shows an increase in quantum yield from 0.001 to 

0.127 upon dequenching by the MMP-mediated cleavage of the probes. Interestingly, Hu 

et al reported another new class of near infrared BODIPY derivatives with large Stokes 

shifts with solvatochromic properties (102). They exploit the advantage of aggregation-

induced emission (AIE) of tetraphenylenes (TPE) and create a series of TPE-BODIPY 

derivatives with various conjugatable linkers. Although these dyes enter cells mainly by 

endocytosis, these BODIPY dyes might be useful to construct dye-based biosensors to 

monitor protein conformational changes in live cells.  
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      Xanthene derivatives     Two typical classes of xanthenes dyes are fluorescein, 

rhodamine, and their derivatives, which are usually not excited or emit in the NIR region. 

A series of new water soluble and low molecular weight semi-naphthofluorone ( SNAFR) 

containing xanthenes derivatives emit at near infrared region with moderate quantum 

yields of around 0.09 in DMSO and display dual fluorescence changes in both excitation 

and emission spectra (104). A test dye, SNAFR-6, was capable of rapidly passing through 

the cell membrane of HEp2 cells and accumulating mainly at endoplasmic reticulum 

(ER) and lysosomes with low cytotoxcity. This dye is excited maximally at 536 nm, 

emits maximally at 733 nm and exhibits a photobleaching rate 3.3 fold slower than 

fluorescein in aqueous solution. Despite the long emission wavelengths and large Stokes 

shifts of SNAFR dyes, their brightness and photostability will be the focus for future 

improvement.  

     Si-Rhodamine (SiR) derivatives     The Nagano group at the University of Tokyo 

recently invented a new class of near infrared fluorophores based on group 14-substituted 

rhodamine derivatives (105). Group 14 metalloles including silicon, germanium and tin 

possess unusually low-lying lowest unoccupied molecular orbitals (LUMO) due to the 

σ*-π* electronic transition between the σ* orbital of the two bonds connecting the group 

14 atom and the π* orbital of the butadiene part of the appended fluorophore. As a result, 

the rhodamine derivatives containing a bridge group 14 atom show a large bathochromic 

shift to far-red or near infrared regions in excitation and emission spectra. The Nagono 

group later incorporated an alkylaminobenzene group to a Si-rhodamine dye to generate a 

SiR-Zn—a NIR Zn
2+

 sensor with a Kd of 1.4 nM and were able to image the Zn reporter 
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in HeLa cells incubated with zinc or a zinc chelator, N,N,N’,N’-tetrakis(2-

pyridylmethyl)ethylene 

diamine  (105).  Another exciting new sensor design is a new NIR calcium probe based 

on Si-rhodamine which allows deeper tissue penetration with reduced photo-cytotoxicity 

(106). The probe, named CaSiR-1, consists of a Si-rhodamine (SiR) with 

excitation/emission maxima of 650 /664nm and a BAPTA ligand to chelate calcium ions. 

The new probe has a quantum yield of 0.20 upon binding of saturating concentrations of 

calcium ions with a Kd of 0.58 μM, enabling the co-imaging of sulforhodamine 101-

stained astrocytes and CaSiR-1-illuminated endogenous calcium in a hippocampal slice 

from a Thy1-mGFP mouse. Other in cell- or in vivo applications include detection of 

HClO generation during phagocytosis of porcine neutrophil and PMA-stimulated mice 

(107), and visualization of tumor sites in mice intravenously injected with a NIR siR-

labeled anti-tenascin-antibody (108).  

      Squaraine derivatives     Squaraine dyes feature an electron deficient four-member 

ring acceptor moiety which bridges two electron donor moieties. These dyes commonly 

exhibit intense fluorescence at long wavelengths. The major applications of squaraine 

dyes have been in dye-sensitized solar cells, but their use in live cell imaging is currently 

under development (109-113). Oushiki et al developed a squarylium-based NIR probe for 

alkaline phosphatase and β-galactosidase (113).  Upon cleavage of a dye-galactoside 

derivative by β-galactose expressed in LacZ-positive HEK293 cells or mice, the probe 

becomes brighter due to the enhanced hydrophobic environment at the probe-enzyme 

binding interface. The parent fluorophore has an extinction coefficient of 11,000 cm
-1

M
-1

 

and a quantum yield of 0.015 in phosphate buffer. When incubated in a solution of fetal 
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bovine serum (FBS), the dye is red-shifted from 626 nm to 645 nm in the excitation 

maximua and from 645 nm to 660 nm in the emission maxima. The extinction coefficient 

and the quantum yield values of the dye raises to 12,000 cm
-1

M
-1

 and 0.32. Another 

advantage of squaraine dyes is the superior photostability when compared with Cy5, a 

commonly used fluorophore for single molecule studies (114).  

     A few structures of near infrared merocyanine dyes (115, 116) have been reported. 

However, the current focus of most groups is to generate non-linear optical (NLO) 

materials, and none of these have been used for live cell imaging. While the key 

properties for live cell imaging of red merocyanine dyes have been carefully 

characterized by our group, the potential of near infrared merocyanines for multiplexed 

live cell imaging or in vivo imaging needs to be explored in more detail.  

 

1.3 Results and Discussion 

1.3.1 Design and synthesis of near infrared merocyanine dyes 

        The electron donor and the electron acceptor moieties of the new near infrared 

merocyanine dyes were selected based on red merocyanine dyes with optimized 

properties for live cell imaging (Fig 1.7). Solvent-sensitive fluorescence properties of a 

merocyanine dye molecule are determined by the electron donating ability of an electron 

donor, the electron withdrawing ability of an electron acceptor, and the conjugation 

length of a conjugated polymethine chain bridging the electron donor and the electron 

acceptor. It has been seen in many cyanine and merocyanine derivatives that polymethine 

dyes with hydrophobic terminal end groups tend to form dye aggregates which usually 

cause severe fluorescence quenching. As the conjugation system of polymethine dyes 



22 

 

becomes more extended, the hydrophobic interactions between polymethine dye 

molecules increases, resulting in stronger dye-dye association. Derivatives of 2,3,3-

trimethyl-3H-indole (I) used as the terminal end groups of cyanine and merocyanine dyes 

have been shown to greatly reduce the tendency for dye aggregation and rescue dye 

fluorescence in water; they contains an sp
3
 hybridized carbon which provides steric 

hindrance to dye-dye association. For this reason derivatives such as I and IS were used 

to construct new merocyanine dyes (Fig 1.7ii). IS was designed to have an additional 

charged sulfate group for extra charge-charge repulsive forces and for improving the 

overall water solubility of the test dyes. In the case of merocyanine-labeled activity 

sensors for Src family kinases, dyes with I or IS exhibited distinct fluorescence responses 

to binding of the c-Src SH3 domain, indicating the importance of orientating of the 

charged sulfate group relative to the sensor-target binding interface. Strong electron 

acceptor moieties such as diketobenzothiophen-3-one (SO), 1,3-indanedione (Pht), 1,3-

dimethylbarbituric acid (BA) and 1,3-diethyl-2-thiobarbituric acid (TBA) produced the 

best red merocyanine dyes, with balanced brightness, photostability, and solvent-sensitive 

fluorescence changes, when used together with the 2,3,3-trimethyl-3H-indole (I) electron 

donor moiety.  
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Figure 1.7 Design of red-shifted merocyanine dyes.  

i. Solvatochromism of hepta-merocyanine dyes. ii. Structures of electron donor moieties. 

I: 2,2,3-trimethylindolenine. IS: 2,3,3-trimethyl-3H-indole-5-sulfonate. iii. Structures of 

electron acceptor moieties.   SO:  diketobenzothiophen-3-one. Pht: 1,3-indanedione. BA:  

1,3-dimethylbarbituric acid. TBA: 1,3-diethyl-2-thiobarbituric acid. These end groups 

were previously optimized by Toutchkine et al (45, 56-58).  

 

     To extend the conjugation length, an extra double bond in the conjugated polymethine 

chain was added to each of the optimized parent red dyes. The newly synthesized red-

shifted merocyanine dyes include mero79 (I-Pht), mero80 (I-BA), mero81 (I-SO), 

mero82 (I-TBA), mero97 (IS-Pht), mero84 (IS-BA), and mero83 (IS-SO) as shown in 

Fig 1.8. Mero79, mero80, mero81, and mero82 were designed for basic characterization 

of several key dye properties important in live cell imaging including brightness, 

photostability, and solvent-sensitive fluorescence behaviors. Mero97, mero84, mero83, 

water-soluble versions of mero79, mero80, and mero81, were designed to investigate 
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dye aggregation and for studies conducted in aqueous solution including pH sensitivity 

and dye-protein interactions.  
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Figure 1.8 Structures of red-shifted merocyanine dyes.  

 

         The syntheses of the electron donor moieties 1 and 3 and electron acceptor 5 were 

conducted according to published procedures (Fig 1.9). The indolenine ring of compound 

3 was synthesized from 4-hydrazinylbenzenesulfonic acid and 3,3-dimethyl-2-butanone 

via Fischer Indole synthesis. Methylated derivatives of I and IS, compounds 1 and 3, 

were used for photophysical characterization and were prepared from indolenine 

intermediates through SN2 reaction with iodomethane. The synthesis of electron acceptor 

5 started with alkylation of thiosalicylic acid with chloroacetic acid. The thioether of 

alkylated thiosalic acid was then oxidized to sulfone with hydrogen peroxide, followed 

by a base-catalyzed cyclization between the aryl carboxylate group and the α-carbon 

between the sulfone group and the aryl carboxylate group.  The sulfone group of SO was 

designed to provide additional steric hindrance to further reduce potential dye 
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aggregation. Other electron acceptor moieties Pht, BA, and TBA were obtained from 

commercially available resources. Pht has the most planar structure, while BA and TBA 

are the least planar. BA and TBA also possess more hydrogen bonding donor and 

hydrogen bonding acceptor groups than SO and Pht. It would be interesting to find out 

how the hydrogen bonding interactions and conformations of these electron acceptor 

moieties affects dye aggregation in water and dye-protein interactions.  
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Figure 1.9 Synthesis of donor and acceptor moieties of merocyanine dyes.  

 

      The fluorophore scaffolds of red-shifted merocyanine dyes were synthesized by 

coupling an electron donor moiety with an activated acceptor intermediate. The α carbon 

adjacent to the electron withdrawing carbonyl group in an acceptor moiety can be 

deprotonated with sodium acetate and then react with an acetal molecule or di-anil group 

of an unsaturated aldehyde molecule. While the previously reported method for the 

preparation of red parent merocyanine dyes utilized acceptor intermediates activated by 
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reacting acceptor moieties with malonaldehyde bis(dimethyl) acetal, the activated 

acceptor intermediates for red-shifted dyes were found to be highly unstable and difficult 

to separate by chromatography. We found that by activating the acceptor moieties via 

SN2 reaction with glutacondialdehyde dianil, the resulting acceptor intermediates 6a-6d 

could be easily separated by re-crystallization, filtration, or flash chromatography with 

reasonable yields and purities.  
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Figure 1.10 Synthesis of red-shifted merocyanine dyes.  

i. Structure abbreviations of electron acceptor moieties. ii. Preparation of red-shifted 

merocyanine dyes.  
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     Severe compound decomposition after storage at 4 
o
C for three years was observed for 

activated BA and TBA acceptor intermediates (6b and 6d). The decomposed acceptor 

intermediates could easily form BA- and TBA-based red fluorescent cyanine dyes in the 

presence of base, as characterized by nuclear magnetic resonance and mass spectrometry 

(data not shown). For synthesis of mero79, mero80, mero81, and mero82, compound 1, 

an alkylated electron donor moiety of I, was dissolved in methanol and coupled with 

various activated electron acceptor intermediates upon addition of sodium acetate (Fig 

1.9). Because the other electron donor moiety, compound 3, is poorly soluble in 

methanol, the synthesis of mero97, mero84, and mero83 was conducted in heated 

ethanol and catalyzed by triethylamine.  

1.3.2 Photostability and spectral properties of NIR merocyanine dyes 

        Each newly synthesized merocyanine molecule has a red shift of approximately 100 

nm compared to their parent red derivatives. Thus these red-shifted dyes are capable of 

being excited with near infrared wavelengths ranging from 650 nm to 750 nm. Dyes in 

various solvents were irradiated using a halogen lamp, a xenon lamp in a fluorometer, or 

in a plate reader. The color of the new dyes and the reference dye Cy5 faded rapidly at 

temperatures over 50 
o
C when irradiated with a halogen lamp, which produces a 

continuous spectrum from near ultraviolet to infrared regions; therefore the temperature 

for photobleaching measurement was maintained at room temperature or 18 
o
C and dyes 

were irradiated with wavelengths longer than 550 nm.  Photobleaching of the new near 

infrared dyes at 0.1 mM resulted in significant fluorescence increase upon irradiation, 

indicating the presence of non-fluorescent dye aggregates (Fig 1.11A). The fluorescence 

of these dye aggregates is severely quenched due to deactivation caused by excimer 
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formation. Once one or a few of the dye molecules in the dye aggregates is 

photobleached, dye-dye interactions become less significant and fluorescence of the 

remaining dyes are no longer quenched. Mero79 (I-Pht) and mero81 (I-SO) exhibited a 

fluorescence increase upon irradiation at 0.1 µM in n-butanol. Some dyes produced less 

excimer formation when placed on biosensor proteins (Fig 1.10A); however 

photobleaching rates measured on dye-labeled proteins vary from batch to batch and vary 

between different types of sensor proteins, making it difficult to obtain reproducible and 

consistent photobleaching kinetics for each dye.  

 
Figure 1.11 Relative photostabilities of NIR merocyanine dyes.  
A. Photobleaching of 0.1 μM mero81 in n-butanol and 1 μM mero77-labeled Cdc42 

biosensor proteins in phosphate buffer (50 mM NaH2PO4, pH 7.6). B. Photobleaching 

curves of 0.1 μM near infrared merocyanine dyes and Cy5 in glycerol. C. Normalized 

remaining intensity of 0.1 μM near infrared merocyanine dyes and Cy5 in glycerol after 2 

hours of irradiation.  

 

     To obtain sufficient brightness for each test dye, the optimized photobleaching 

protocol for the new dyes and the reference dye Cy5 was to monitor the fluorescence 
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decay of 0.1 µM dyes in glycerol upon irradiation with a high energy xenon flashlamp 

(200 flashes per second) on a plate reader (Fig 1.11B). In general, most of the new near 

infrared merocyanine dyes exhibited photobleaching rates similar to the reference dye 

Cy5 (Fig 1.11C), with an exception being mero82 (I-TBA). After two hours of 

continuous irradiation, only approximately 60% of dye emission intensity remained in the 

case of mero82. In addition, mero62, a red and cysteine-reactive version of I-TBA, 

suffered from the tendency of over-labeling of sensor proteins of interest probably due to 

the strong association between free dye and dye-labeled proteins as assessed by SDS-

PAGE and fluorescence gel scanning. Based on the poor photostability and potential of 

over-labeling of I-TBA dyes, near infrared derivatives of I-TBA were excluded from the 

following studies. In summary, mero80 (I-BA) is the most photostable among the new 

near infrared merocyanine dyes.  

       All new near infrared merocyanine dyes are excited and emit at long wavelengths 

where interference from cellular autofluorescence becomes greatly reduced. Another 

important criterion of ideal live cell imaging dyes is that these fluorophores need to be 

capable of generating fluorescence images with sufficient signal-to-noise ratios. Dye 

brightness is defined as the product of dye extinction coefficient ε and dye quantum yield 

Φ. The extinction coefficient of a molecule measures how efficiently the molecule 

absorbs photons while the quantum yield of a molecule reports how efficiently the 

molecule makes use of these photons in radiative decay processes. Among all dyes, 

mero81 is brightest in DMSO while mero82 has the best basal brightness measured in 

methanol (Table 1.1).  
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Table 1.11Spectral properties of near infrared merocyanine dyes.  

Extinction coefficients were averaged with three separate preparations. Quantum yields 

were compared with Cy5.  

 

        Mero79 has the largest change in dye brightness with a nearly 12-fold increase from 

highly polar methanol to a solvent with lower hydrogen bonding such as DMSO.  

However the basal brightness of mero79 is too low. Therefore this dye might be more 

useful for in vitro fluorescence screening than for ratio images in live cells which require 

signal-to-noise ratios of over 3.0 across whole cell regions. These near infrared 

merocyanine dyes not only exhibit intensity changes in excitation and emission spectra 

but also have wavelength shifts in various solvents (Table 1.1 & Fig 1.12). For instance, 

mero79, mero80, and mero81 showed similar excitation and emission intensity values in 

isopropanol and 1,4-dioxane, but the wavelengths of these dyes were more blue-shifted in 

1,4-dioxane. 
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Figure 1.12 Solvent-sensitive fluorescence of NIR merocyanine dyes.  

10 μM of dyes were dissolved in 1,4-dioxane, dimethyl formamide (DMF) and iso-

propanol (IPA). A. Excitation spectra of mero79. B. Emission spectra of mero79. C. 

Excitation spectra of mero80. D. Emission spectra of mero80. E. Excitation spectra of 

mero81. F. Emission spectra of mero81.  
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Figure 1.13 Solvent-sensitive fluorescence lifetime values of red and NIR 

merocyanine dyes.  
A. Structures of red merocyanine dyes. Structures of tested near infrared merocyanine 

dyes were presented in Fig 2.1.  B. Fluorescence lifetime values of merocyanine dyes in 

n-butanol (BuOH, abbreviated as B), dimethyl sulfoxide (DMSO, abbreviated as D) and 

methanol (MeOH, abbreviated as M). The measurement and data analysis was conducted 

by Dr. Elizabeth Hinde in the Gratton group at the University of California at Irvine. 

 

        The fluorescence lifetime of a molecule is independent of fluorophore 

concentrations and many other artifacts. Thus sensors based on solvatochromic dyes 
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should not require a second insensitive fluorophore for ratio imaging in living cells using 

fluorescence lifetime imaging microscopy (FLIM). We set out to find near infrared dyes 

with the largest solvent-dependent fluorescence lifetime changes through collaborations 

with the laboratory of Dr. Enrico Gratton at the University of California at Irvine. The 

screening included seven red merocyanine dyes and five near infrared merocyanine dyes 

(Fig 1.8 & Fig 1.13A).  
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Figure 1.14 Fluorescence decays of mero79 in MeOH, BuOH, and DMSO.  
The measurement was conducted by Dr. Elizabeth Hinde in the Gratton group at the 

University of California at Irvine. 
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      In general, the near infrared dyes have much longer lifetime values than the tested red 

merocyanine dyes (Fig 1.13B). Mero79, the near infrared merocyanine dye with the 

largest change in dye brightness, also possesses the largest change in fluorescence 

lifetime with an average lifetime of 0.23 ns in methanol and an average lifetime of 1.53 

ns in DMSO. All the tested dyes showed single exponential fluorescence decay kinetics 

as shown in the example of mero79 (Fig 1.14). Mero81 and mero83 showed similar 

solvent-dependent fluorescence lifetime changes because the two dyes share the same 

combination of the electron donor I and the electron acceptor SO.  

              We next examined whether dye fluorescence responds to changes in pH and 

viscosity in the environment (Fig 1.15). Ideal solvatochromic dyes should possess 

constant fluorescence intensity throughout the physiological pH values ranging from pH 

5.5 to pH 8.0.  Water soluble derivatives of mero79 (I-Pht), mero80 (I-BA) and mero81 

(I-SO)—mero97 (IS-Pht), mero84 (IS-BA) and mero83 (IS-SO) were employed here 

for fluorescence measurement in aqueous solution. Mero97 was not reported because of 

its low emission intensity in glycerol-water mixture. We found that mero83 is slightly 

brighter at lower pH while mero84 is slightly brighter at higher pH. The pH-dependent 

fluorescence changes of the two dyes were regarded as insignificant as compared to 

polarity-dependent fluorescence changes.  

 
Figure 1.15 Effects of pH on the fluorescence properties of NIR merocyanine dyes 
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A. Relative dye emission intensity values of 10 μM mero83 (closed squares) and mero84 

(closed squares) in phosphate buffer (50 mM NaH2PO4) at pH 5.5, 6.0, 6.5, 7.0, 7.5 and 

8.0. Dye emission intensity values were normalized to the dye emission intensity value at 

pH 7.0. B. Relative dye fluorescence polarization values of 10 μM mero83 and mero84 

in phosphate buffer at pH 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0. Dye fluorescence polarization 

values were normalized to the dye fluorescence polarization values at pH 7.0  

 

       Dyes with large fluorescence response to viscosity have great potential as either 

membrane probes or protein activity sensors. Dye emission intensity and the fluorescence 

polarization values were measured in glycerol-water mixtures (Fig 1.16). Solvatochromic 

dyes usually become brighter in more viscous environments because solvent relaxation is 

greatly reduced. Both mero83 (IS-SO) and mero84 (IS-BA) exhibited limited 

fluorescence responses at low concentrations of glycerol molecules in water, with a 

maximum intensity increase of 5% for mero83 and 13% for mero84. Therefore the 

fluorescence response of dye-labeled sensor proteins is mainly due to the solvent-

sensitivity of dye molecules, rather than variations in glycerol concentrations during in 

vitro assays conducted in 0~5% glycerol-buffer mixture.  In summary, mero84 showed 

the most pronounced changes in fluorescence intensity and fluorescence changes in 

response to increased local viscosity.  

 
Figure 1.16 Effects of viscosity on the fluorescence properties of NIR merocyanine 

dyes.  

A. Relative dye emission intensity of 10 μM mero83 (closed circles) and mero84 (closed 

squares) in glycerol-water mixture containing 0%, 0.5%, 5%, 10%, 20% and 50% 

glycerol. Dye emission intensity values were normalized to the dye emission intensity 

values in water. B. Relative dye fluorescence polarization values of 10 μM mero83 (open 
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circles) and mero84 (closed squares) in glycerol-water mixture containing 0%, 0.5%, 

5%, 10%, 20% and 50% glycerol. Fluorescence polarization values were normalized to 

the fluorescence polarization value in water.  

 

       As the length of the conjugated polymethine chain becomes more extended in near 

infrared merocyanine dyes as compared to their red parent dyes, association of dye 

molecules or dye aggregation is likely to be more pronounced because of the increased 

hydrophobic interactions between dye molecules. Preliminary studies of near infrared 

merocyanine-labeled sensor proteins revealed that the fluorescence of I-SO-labeled 

sensor proteins was much more quenched than the fluorescence of I-BA-labeled sensor 

proteins. Mutating several aromatic residues near the site for dye attachment failed to 

rescue dye fluorescence. While the near infrared merocyanine dyes are bright in non-

polar solvents such as DMSO and DMF, the dye-labeled proteins become very dim in 

phosphate buffer. We reasoned that the near infrared dyes might form significant 

amounts of dye aggregates in water and the effects might be more pronounced when dye 

molecules are immobilized on bulky sensor proteins. We set to measure absorption 

spectra of dyes at various concentrations in water. All dyes were pre-dissolved in DMSO 

and then diluted to a final concentration of 5% DMSO in water. Because all near infrared 

merocyanine dyes have an apparent blue-shifted absorption peak from the H-type dye 

aggregates, the absorption spectra were normalized to the monomer absorption peak (Fig 

1.17). The absorption of the H-type dye aggregates became stronger than the absorption 

of the monomeric species in the case of mero79 (I-Pht) (Fig 1.17A). Mero80 (I-BA) did 

not show concentration-dependent aggregation (Fig 1.17B). Mero81 (I-SO) exhibited 

moderate response to concentration-dependent aggregation processes; however, the 

absorption of the H-type dye aggregates existed in high percentage throughout the tested 
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dye concentrations. Mero83, the water soluble derivative of mero81, contained a smaller 

absorption peak of H-type aggregates and a new red-shifted absorption peak, presumably 

to be J-type aggregates. Since H-type and J-type aggregates are determined by the 

relative spatial orientations of dye molecules, the addition of a charged sulfate group in 

mero83 did significantly alter dye-dye interactions. By comparing the absorption spectra 

of mero81 and mero83, dye aggregation behaviors seemed to be dominated by 

contributions from hydrophobic interactions, hydrogen bonding interactions, and 

electrostatic interactions of dye molecules, rather than aqueous solubility issues.   

 

 
Figure 1.17 Concentration-dependent aggregation of NIR merocyanine dyes in 

water.  
Absorption spectra of near infrared merocyanine dyes at various concentrations were 

measured in water and normalized to the monomeric (M) species. H and J were denoted 

as H-type aggregates and J-type aggregates, respectively. All dyes were pre-dissolved in 

DMSO and diluted to a final 5% DMSO solution in water. Dye concentrations: 1 μM (      

), 2 μM (      ), 4 μM (       ), 8 μM (-----) and 10 μM (
…..

). A. Absorption spectra of 
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mero79. B. Absorption spectra of mero80. C. Absorption spectra of mero81. D. 

Absorption spectra of mero83, a water-soluble derivative of mero81.  

 

       H-type aggregates of merocyanine dyes are usually non-fluorescent or weakly 

fluorescent. Thus the relative fluorescence changes were examined in DMSO-water 

mixtures (Fig 1.18). Both excitation and emission intensity values of mero79, mero80, 

and mero81 showed large changes at various concentrations of DMSO in water. Mero79 

became nearly non-fluorescent in 1:1 DMSO-glycerol mixtures. As dye molecules 

covalently attached on the surface of biosensor proteins are in a very hydrophilic 

environment, mero79 and its derivatives are less likely to generate bright activity sensors 

based on dye-labeled sensor proteins. A good correlation between the brightness of 

parent dyes in DMSO-water mixtures and the brightness of near infrared dye-labeled 

sensor proteins was found: mero80 and I-BA-labeled sensor proteins are both bright in 

high percentages (50-75%) of water while the fluorescence intensities of mero81 and I-

SO-labeled sensors proteins dropped dramatically (Fig 1.18). 

 
Figure 1.18 Effects of water on the excitation and emission properties of NIR 

merocyanine dyes.  
10 μM dyes were dissolved in DMSO-water mixture containing 0%, 25%, 50%, 75% and 

100% water. A. Maximum excitation intensity values of mero79, mero80 and mero81. 

B. Maximum emission intensity values of mero79, mero80 and mero81.  
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      It was observed during the preparation of dye-labeled sensor proteins based on red 

merocyanine dyes that some dye structures were more prone to over-labeling due to the 

stronger non-covalent interactions between free dyes and dye-labeled sensor proteins. 

Another potential problem caused by strong association between free dyes and sensor 

proteins is non-specific fluorescence response to other endogenous non-target proteins or 

hydrophobic microdomains. We therefore sought to set up a simple screen before 

spending extra efforts in synthesizing thiol-reactive versions for protein labeling.  Non-

specific fluorescence of near infrared merocyanine dyes in response to non-target 

proteins was tested using bovine serum album (BSA), a commonly used reference for 

non-specific interactions.   Mero80 (I-BA) showed little response to BSA while both the 

absorption and emission spectra of mero79 (I-Pht) showed distinct properties in the 

presence of 20 µM BSA in phosphate buffer (Fig 1.19).  

 
Figure 1.19 Fluorescence responses of mero79 and mero80 to BSA. 
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A. Absorption spectra of 10 μM mero79 with and without 20 μM bovine serum albumin 

(BSA) in phosphate buffer. B. Absorption spectra of 10 μM mero80 with and without 20 

μM BSA in phosphate buffer. C. Ratio of dimer absorbance and monomer absorbance of 

10 μM mero79 and mero80 in the presence of various amounts of BSA. D. Dye emission 

intensities of 10 μM mero79 and mero80 in the presence of various amounts of BSA.  

 

     In conclusion, mero80 possesses the most ideal properties for intensity-based 

fluorescence imaging among the tested near infrared dyes—mero79 (I-Pht), mero80 (I-

BA), mero81 (I-SO), and mero82 (I-TBA). These properties include photostability, 

basal brightness in water, and solvent-sensitive fluorescence intensity changes. These 

beneficial properties are in part due to the fact that mero80 was the least likely dye to 

form non-fluorescent H-type aggregates. However, mero80 has the smallest solvent-

dependent difference in fluorescence lifetime while mero79 (I-Pht) and mero81 (I-SO) 

showed useful changes in fluorescence lifetime of 0.13 ns and 0.08 ns, respectively. 

Mero79 has the best solvent-sensitive fluorescence response in intensity and lifetime but 

it has severe issues with aggregation in water and non-specific response to off-target 

proteins. Though mero82 has the best basal and second highest maximum brightness 

among the new dyes, this dye is the least photostable and is prone to be spontaneously 

converted to blue-shifted fluorophores and other species after long term storage at 4 
o
C. 

Therefore, further development of mono-functional dyes for the generation of red-shifted 

sensor designs was focused on derivatives of mero80 and mero81.  

 

1.3.3 Synthesis and spectral properties of thiol-reactive NIR merocyanine dyes 

       Each near infared merocyanine dye molecule was functionalized with a thiol-reactive 

group for labeling of cysteines and a sulfate group for improving the overall water 

solubility. Incorporation of the charged sulfate group to the hydrophobic merocyanine 
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dye molecule could also help reduce non-specific dye-sensor protein binding interactions 

and provide additional charge-charge interactions and hydrogen bonding interactions to 

the sensor-target binding interface.   

      For dye-iodoacetamde molecules mero77 (I-SO-IAA) and mero99 (I-BA-IAA), the 

synthesis started with 1,3-propane sultone and 3-bromopropyl amine via a base-catalyzed 

ring-opening SN2 reaction (Fig 1.20).  The product compound 7 was then used to 

alklylate 2,2,3-trimethylindolenine I to yield compound 8. The crystal-like compound 8 

precipitated out from the reaction mixture and was filtered off, followed by immediate 

drying under high vacuum. Because of the highly hygroscopic character, compound 8 

was used directly in the next step without further purification. The one pot procedure for 

the preparation of water soluble chloroacetamide derivatives was adapted from the 

previously described protocol for the preparation of red merocyanine derivatives. 

Because the same reaction led to multiple species for preparation of near infrared 

merocyanine derivatives, the reaction must be terminated while the majority of starting 

material has not yet been consumed. As monitored by absorbance spectra of reaction 

mixtures taken every 30 min after mixing of all reaction components, the molar ratios of 

product to starting material reached a plateau within the first or second hour of reaction 

time (data not shown). Overnight reactions usually resulted in the disappearance of blue 

products, as monitored by thin layer chromatography (TLC). This is consistent with 

previous observations in the synthesis of certain red merocyanine derivatives where the 

polymethine chain of dye molecules was found to be susceptible to Michael addition by 

the nearby free amino group of dye molecules.  
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Figure 1.20 Synthesis of thiol-reactive NIR merocyanine dyes with a sulfate group 

on the alkyl side chain 

 

        In the synthesis of I-BA or I-TBA derivatives, the red fluorescent BA-BA and 

TBA-TBA side products also formed immediately after reaction. This is likely attributed 

to the intrinsic reactivity of barbituric acid moieties. The other distinguishable side 

product appeared to be blue-green or green with an absorption maximum around 750 nm 

as observed from TLC and HPLC. Because the use of iodoacetic anhydride led to 

multiple species with no product formation in the one pot reaction, near infrared 

merocyanine dyes were first equipped with a chloroacetamide or a bromoacetamide 

group, followed by halogen exchange. As bromoacetic anhydride is very toxic and 

carcinogenic, most dyes were prepared as chloroacetamide derivatives. Because of the 

low conversion of starting material and the presence of multiple side products in the 

reaction mixtures, the overall yields for the one pot preparation of near infrared dye-

chloroacetamides were much lower than the yields for the preparation of red versions. 

The last step, halogen exchange, must be conducted in the dark and the product dye-

iodoacetamides also need to be purified in the dark. The deep blue crude products tend to 
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turn green immediately and completely in the presence of both iodide ions and light 

exposure.  

 

Figure 1.21 Synthesis of thiol-reactive NIR merocyanine dyes with a sulfate group 

on the aromatic ring of the electron donor moiety.  

 

       The synthesis of mero65 (IS-BA-IAA) and mero78 (IS-SO-IAA) started with an 

alkylation of compound 2 (Fig 1.21), followed by the one-pot preparation of dye-

chloroacetamides and halogen exchange. The resulting dye-chloroacetamides, mero101 

and mero103, are very polar and need to be purified by reverse phase HPLC. The yields 

of the one pot preparation of mero101 and mero103 are better than the yields of 

mero100 and mero102, probably because the donor intermediate compound 9 can be 

isolated in higher purity than the hygroscopic starting material compound 8.  
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Figure 1.22 Solvent-sensitive fluorescence of thiol-reactive and water soluble NIR 

merocyanine dyes.  

Emission spectra of 0.1 μM mero100 (I-BA) and mero101 (IS-BA) were measured in 

1,4 dioxane, n-octanol, isopropanol, n-propanol and dimethyl foramide (DMF).  

 

      Mero100 (I-BA-CAA) and mero101 (IS-BA-CAA), two of the dye-chloroacetamide 

derivatives, possess solvent-sensitive fluorescence in various solvents (Fig 1.22). 

Mero100 exhibited better sensitivity towards hydrogen bonding interactions, as shown 

by the relative fluorescence intensity values in n-propanol and isopropanol (Fig 1.22A & 

B). Mero100, mero101, and mero102 have average quantum yields of 0.14, 0.20 and 

0.05 in methanol, respectively, so the first two dyes are more likely to exhibit sufficient 

brightness for imaging near infrared biosensors in living cells. Formation of J-type dye 

aggregates was seen in the absorption spectra of mero100 but this was absent in 

mero101. Compared to mero100, mero101 also has a lower percentage of H-aggregates 

in water. Similar to the parent dyes mero80 (I-BA, Fig 1.17B) and mero84 (IS-BA), 

mero100 and mero101 also showed no concentration-dependent aggregation in the 

absorption spectra (Fig 1.23A & B). Interestingly, mero102 (I-SO-CAA) exhibited 
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reduced absorption of the H-type aggregates and the absorbance of the aggregates was 

not affected by variation in dye concentrations (Fig 1.23C). In addition, unlike the water 

soluble mero83 (IS-SO, Fig 1.17D), mero102 did not form J-type aggregates in water. 

We concluded that the addition of the charged sulfate group together with the 

incorporation of long alkyl side chains to the near infrared merocyanine dyes help reduce 

dye aggregation problems.  

 

 
Figure 1.23 Concentration-dependent of thiol-reactive NIR merocyanine dyes in 

water.  
Absorption spectra of mero100 (I-BA-CAA), mero101 (IS-BA-CAA) and mero102 (I-

SO-CAA) at 1, 2, 4, 8 and 10 µM in water were normalized to the monomeric species.  

 

      Because iodoacetamides are more reactive than chloroacetamides in the SN2 reaction 

with deprotonated thiols, the dye-iodoacetamides—mero65, mero77, mero78, and 
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mero99 were chosen for generation of red-shifted biosensor designs in the following 

studies.  

 

1.3.4 Construction of red-shifted biosensor designs using NIR merocyanine dyes 

        The new near infrared merocyanine dyes were first tested on the dye-based 

biosensor designs for active Cdc42 GTPases and Src family kinases (SFK). Mero77 (I-

SO-IAA) was used to generate near infrared versions of dye-labeled sensor proteins. 

When mero77 was covalently attached to a cysteine residue on the biosensor protein 

molecules, the dye molecules became more prone to form H-type dye aggregates in 

phosphate buffer (50 mM NaH2PO4, pH 7.6) as shown in comparison with the absorption 

spectra of mero77 in various solvents (Fig 1.24).  

 
Figure 1.24 Absorption spectra of mero77 (I-SO-IAA) and mero77-labeled sensor 

proteins.  
A. Absorption spectra of 10 μM mero77 in methanol, n-butanol, n-octanol and DMSO. B. 

Normalized absorption spectra of mero77-labeled biosensor proteins for reporting 

activation of Src family kinases (SFKs), Cdc42 and MEK1/2. The relative absorption of 

the dimeric and the monoeric species can be used to probe the local environment 

surrounding the dye molecule.  

 

       In general, mero65-labeled Cdc42 and SFK sensor proteins were brighter than other 

near infrared dye-labeled constructs (Fig 1.25A & B). Both the Cdc42 and SFK sensor 



48 

 

proteins were fused with a monomeric Cerulean fluorescent protein molecule with a 

C49S mutation to avoid over-labeling.  

 
Figure 1.25 Basal brightness and maximum fluorescence change of NIR SFK and 

Cdc42 biosensors.  

A. Average dye emission intensities of near infrared SFK sensor proteins in the absence 

of target proteins—active Src family kinases. B. Average dye emission intensities of 

Cdc42 sensor proteins in the absence of target proteins— active Cdc42. C. The maximum 

fluorescence response of near infrared SFK upon titration of excess c-Src SH3 domain 

proteins. D. The maximum fluorescence response of near infrared Cdc42 sensors upon 

titration of excess constitutively active Cdc42 Q61L proteins.  

 

        Interestingly, the Cerulean fluorescent proteins exhibited greater fluorescence 

change than the near infrared merocyanine dyes. For instance, both the emission 

intensities of the Cerulean fluorescent protein molecule and the dye molecule increased at 

higher concentrations of c-Src SH3 domain in the mero78-labeled SFK sensor design 

(Fig 1.26A, C & E). In contrast, the dye fluorescence remained steady while the 

Cerulean fluorescence protein first became brighter, followed by a large decrease in 

emission intensity at higher concentrations of c-Src SH3 domain in the mero77-labeled 
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SFK (Fig 1.26B, D & F). Such distinct fluorescence response was also observed in the 

previously described red dye-labeled SFK sensor designs based on mero53 and mero87 

dyes. Mero53 is the red version of mero78, while mero87 is the red version of mero77. 

The main difference between mero53 and mero87 is the position of a charged sulfate 

group.  Because mCerulean C49S became the major responding component, ratios for 

quantification of target protein activity were then defined as the CFP emission intensity 

divided by the dye emission intensity. Among the tested near infrared SFK sensor 

designs, mero99- and mero65-labeled SFK sensor proteins possesses the largest in vitro 

dynamic range with CFP-to-dye ratios of 180% for mero99 and 170% for mero65.  
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Figure 1.26 In vitro fluorescence response of mero77- and mero78-labeled SFK 

biosensors.  

A. Average increase in dye emission intensity of a mero78-labeled SFK sensor when 

titrated with increasing amounts of c-Src SH3 domain proteins. B. Average increase in 

dye emission intensity of a mero77-labeled SFK sensor when titrated with increasing 

amounts of c-Src SH3 domain proteins. C. Average increase in CFP emission intensity of 

a mero78-labeled SFK sensor when titrated with increasing amounts of c-Src SH3 

domain proteins. D. Average increase in CFP emission intensity of a mero77-labeled 

SFK sensor. E. Average increase in CFP/dye emission ratios of a mero78-labeled SFK 

sensor at various concentrations of c-Src SH3 domain proteins. F. Average increase in 

CFP/dye emission ratios of a mero77-labeled SFK sensor at various concentrations of c-

Src SH3 domain proteins.  
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Figure 1.27 In vitro fluorescence response of NIR Cdc42 biosensors.  
A. Average increase in dye emission intensity of a mero65-labeled Cdc42 sensor at 

various concentrations of Cdc42 Q61L. B. Average increase in dye emission intensity of 

a mero99-labeled Cdc42 sensor at various concentrations of Cdc42 Q61L. C. Average 

increase in CFP emission intensity of a mero65-labeled Cdc42 sensor at various 

concentrations of Cdc42 Q61L. D. Average increase in CFP emission intensity of a 

mero99-labeled Cdc42 sensor at various concentrations of Cdc42 Q61L. E. Average 

increase in CFP/dye emission ratios of a mero65-labeled Cdc42 sensor at various 

concentrations of Cdc42 Q61L. F. Average increase in CFP/dye emission ratios of a 

mero99-labeled Cdc42 sensor at various concentrations of Cdc42 Q61L.   

 

       All of the near infrared dye-labeled Cdc42 sensor designs exhibited large 

fluorescence increases relative to the mCerulean C49S molecule at higher concentrations 

of constitutively active Cdc42 Q61L (Fig 1.27C & D). The mCerulean C49S fluorescent 
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protein variant seemed to undergo a fluorescence energy transfer via interactions with 

near infrared fluorophores or conformation change-induced fluorescence change.   

 
Figure 1.28 Fluorescence lifetime changes of dye-labeled Cdc42 sensor proteins 

titrated with constitutively active Cdc42 Q61L.  
The fluorescent protein molecule of the original sensor design was replaced with a non-

fluorescent maltose-binding protein (MBP) molecule. A. Structures of thiol-reactive red 

merocyanine dyes in the screening. B. Average fluorescence lifetime values of dye-

labeled Cdc42-binding domain (CBD) in the absence and in the presence of constitutively 

active Cdc42 Q61L.The lifetime measurement and the data analysis were conducted by 

Dr. Elizabeth Hinde in the Gratton group at the University of California at Irvine.  
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      A library of five thiol-reactive red merocyanine dyes and two thiol-reactive near 

infrared merocyanine dyes was tested in the established sensor designs for Cdc42. The 

fluorescence lifetime values of dye-based biosensors of Cdc42 were measured using a 

Phasor approach (117) through collaboration with the Gratton group at the University of 

California at Irvine (Fig 1.28). The mero77-labeled Cdc42 activity sensor has the largest 

difference in fluorescence lifetime upon binding of active Cdc42 (Fig 1.29B). The red I-

SO versions mero87 and mero53 also showed superior changes in fluorescence lifetime 

among the red Cdc42 activity sensors. Mero61 and mero65, red and near infrared 

derivatives of I-BA, both showed moderate changes in fluorescence lifetime.  

 
Figure 1.29 Fluorecence decays of mero65- and mero77-labeled Cdc42 biosensors.  
A. Phasor plot of a mero65-labeled Cdc42 activity sensor. B. Fluorescence decay 

kinetics of mero65-labeled Cdc42 activity sensor after irradiation. C. Phasor plot of a 

mero77-labeled Cdc42 activity sensor. D. Fluorescence decay kinetics of mero77-

labeled Cdc42 activity sensor.  The measurement was conducted by Dr. Elizabeth Hinde 

at the Gratton group at the University of California at Irvine.  
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         Because the Phasor approach is based on frequency-domain analysis, a typical 

Phasor plot provides the information of both modulation and phase of the fluorescence 

signals. Each fluorescent molecule has its own modulation and phase shifts which can be 

reflected on a Phasor blot as a subset of g and s values. The smaller g and s values 

indicate longer lifetime values of the fluorophore. As the distance between (g1, s1) and 

(g2, g2) becomes larger, the change in fluorescence lifetime increases.  In the case of the 

mero77-labeled Cdc42 activity sensor, Cdc42-bound and unbound sensor proteins have a 

larger difference in (g, s), as shown as a green and a red circle on the Phasor plot (Fig 

1.29C).  Faster fluorescence decay kinetics was also observed in the raw data of mero77-

labeled Cdc42 activity sensor (Fig 1.29D). In summary, the near infrared mero77-labeled 

Cdc42 activity sensor possesses great potential for fluorescence lifetime biosensor 

imaging and for co-imaging of multiple biosensors in the same living cell.  

 

1.3.5 Live cell imaging of a red-shifted SFK activity sensor 

          Spatiotemporal dynamics of endogenous Src family kinases (SFK) were visualized 

at near infrared wavelengths using a red-shifted sensor. The mero65-labeled SFK activity 

sensor was chosen for ratio imaging because this sensor was the brightest and the most 

sensitive among the tested near infrared versions of the SFK sensor design. SFK activity 

was defined by the ratio of CFP emission divided by dye emission.  The mCerulean C49S 

fluorescent protein molecules were monitored with a 436/20X excitation filter and a 

470/24M emission filter. Mero65 was excited with wavelengths ranging from 620 to 660 

nm and the dye emission was recorded from 669 to 741 nm. The near infrared dyes 

require filters with broader bandwidths than shorter wavelength fluorophores because the 
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mercury arc lamp provides only approximately 5% light output at near infrared 

wavelengths as compared to CFP excitation. The near infrared mero65-labeled SFK 

activity sensor also showed ratio patterns similar to the previously reported red mero53-

labeled SFK activity sensor (Fig 1.30). The dynamic range of mero65-labeled SFK 

activity (1.0-1.8) was approximately two fold greater than the original biosensor design 

(1.0-1.4).  

 

 
Figure 1.30 Live cell imaging of a NIR mero65-labeled SFK biosensor in NIH 3T3 

MEF cells.  

A. Differential interference contrast (DIC) image of a biosensor-loaded mouse embryo 

fibroblast (MEF). B. CFP emission image of a biosensor-loaded MEF cell. C. Dye 

emission image of a biosensor-loaded MEF cell. D. Ratio image of the biosensor-loaded 

MEF cell at the first time point. SFK activity was defined by the ratio of CFP to dye 

emissions. E. Ratio image of the same biosensor-loaded MEF cell imaged after 19 min 

and 12 sec. F. Ratio image of the other biosensor-loaded MEF cell.  

 

1.3.6 Characterization of a red merocyanine dye with an intrinsic ratiometric 

response 
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      Imaging two or more biosensors in the same cell remains a challenge because there 

are limited wavelengths in the visible region and most biosensor designs require two 

fluorophores of different colors to eliminate factors such as uneven illumination and 

varying cell thickness when recording biosensor signals in living cells. Here we describe 

a bright and photostable red merocyanine dye which exhibits dual fluorescence changes 

in both intensities and wavelength maxima for ratio imaging.  

     Multiplexing of current bright and photostable merocyanine dyes in live cells are 

limited by the need of two fluorophore for ratio imaging of a dye-based biosensor 

because these dyes prefer the neutral resonance form in the ground state and only show 

solvent-dependent changes in fluorescence intensity when placed on biosensor proteins; 

however the zwitterionic resonance form is the major contributor to solvent-dependent 

fluorescence (Fig 1.31). In a separate study of dye properties, we found a negative 

correlation between photostability and solvent-sensitive fluorescence. Dyes with large 

fluorescence changes in both intensities and wavelength maxima usually have a very 

strong electron donor moiety and the α-carbon adjacent to the electron donor moiety is 

more susceptible to photo-oxidation in the air because of the increased electron density. 

To rescue the photostability of some bright but not photostable merocyanine dyes, 

introduction of an electron withdrawing cyano group to the α-carbon has proven to be 

effective to improve the photostability of I-SO and S-SO dyes. However, the 

fluorescence quantum yields of the cyano-substituted merocyanine dyes were greatly 

reduced as compared to their parent fluorophores. In order to create new merocyanine 

dyes with balanced properties including brightness, photostability, and dual fluorescence 

changes in both intensities and wavelength maxima, we first introduced a more electron 
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rich electron donor moiety to enhance dye brightness and solvent-dependent fluorescence 

properties and then added an electron withdrawing cyano group at the α-carbon adjacent 

to the electron donor moiety to slow down photo-oxidation rates of the tested dyes.  
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Figure 1.31 Resonance forms of merocyanine dyes.  
I and II respresent typical merocyanine dyes. III and IV represent new merocyanine 

dyes. The thiol-reactive derivative mero199 was used for biosensor applications.  
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Table 1.22Spectral properties of ratiometric merocyanine derivatives.  

Quantum yields were measured using merocyanine 540 as an internal standard (quantum 

yield of merocyanine 540 = 0.39 in methanol, excited at 530 nm). Cy5 was used to 

measure relative photostability (rel. photostability of Cy5 = 1.0). These properties were 

measured by Dr. Alexei Toutchkine.  

 

     Increased aromaticity was introduced to 2,3,3-trimethylindolenine (I) to stabilize the 

more solvent-sensitive resonance form in the ground state (Fig 1.31).  Derivatives of I-

BA, I-SO, and I-TBA were synthesized and characterized by Dr. Alexei Toutchkine. The 

resulting dyes have larger Stokes’ shifts and solvent-dependent wavelengths than the 

parent dyes (Table 1 .2). For instance, the new dye AI-BA has a red shift of 30 nm in 

excitation spectra and a red shift of 36 nm in emission spectra when transitioning from 

methanol to n-butanol, while the parent dye I-BA only has red shifts of 4 nm in both 

excitation and emission spectra under the same conditions. AI-TBA decomposed easily, 

probably due to the poor photostability and chemical instability. The extinction 

coefficients and quantum yields of AI-BA were also larger than I-BA. However, the 

photobleaching rate of AI-BA was approximately 100 fold faster than I-BA and 33 fold 

faster than the Cy5 dye reference. An electron withdrawing cyano group was added at the 

α-carbon of AI-BA to yield AI-BA-CN. AI-BA-CN was 42 fold more photostable than 

AI-BA and 1.25 fold more photostable than the Cy5 dye reference. Therefore, the thiol-

reactive derivative mero199 (Fig 1.31) was designed based on AI-BA-CN. 
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Figure 1.32 Fluorescence response of a mero199-labeled Cdc42 biosensor.  
Biosensor proteins were titrated with 0, 0.4, 0.8, 1.2, 2.0, 4.0 and 8.0 µM constitutively 

active Cdc42 Q61L. Each sensor molecule was composed of a mero199 dye molecule 

and a mCerulean C49S molecule. A. Excitation spectra of the mero199-labeled Cdc42 

activity sensor at various concentrations of active Cdc42. B. Emission spectra of the 

mero199-labeled Cdc42 activity sensor at various concentrations of active Cdc42. C. 

Excitation and emission spectra of the mero199-labeled Cdc42 activity sensor in the 

absence and in the presence of Cdc42 Q61L. D. Ratiometric response from a dye/CFP 

pair and from a single dye mero199 at increasing concentrations of active Cdc42.  

 

      Mero199 was tested on the established biosensor designs for Cdc42 and Src family 

kinases (SFK).  Mero199-labeled sensor proteins exhibited ratiometric response in the 

Cdc42 sensor design but not the SFK sensor design (data not shown).  The introduction 

of the electron withdrawing cyano group to the AI-BA dye greatly improved the 

photostability but also caused a reduction in solvent-dependent wavelength shifts and dye 

brightness of approximately 50%. AI-BA-CN has a red shift of only 11 nm in excitation 

spectra and a red shift of 7 nm in emission spectra when going from methanol to n-

butanol. In the case of the SFK sensor design, the sensor-SH3 binding interactions 

produced less of a change to the environmental properties surrounding the site of dye 
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attachment when compared to the Cdc42 sensor design. For example, the most sensitive 

red SFK sensor has a narrower dynamic range of 1.0 to 1.4 while the most sensitive 

Cdc42 sensor showed a 14.7 fold maximum fluorescence change upon binding of active 

Cdc42 (data not shown).  

      Mero199 showed ratiometric response in the excitation spectra of the mero199-

labeled Cdc42 sensor designs (Fig 1.32A) while the dye alone also showed intensity 

change in the emission spectra (Fig 1.32B & C). The biosensor design consisted of a 

mero199 dye molecule, a Cdc42-binding domain, and a non-fluorescent maltose-binding 

protein (MBP) molecule. Upon binding of constitutively active Cdc42 Q61L, a blue shift 

of 10 nm in excitation spectra and a 2.5 fold enhancement in emission intensity were 

observed. On the contrary, I-BA or I-SO-labeled Cdc42 sensor designs did not show any 

wavelength shifts in either excitation or emission spectra (data not shown) although their 

parent dyes showed dual fluorescence changes in wavelengths and intensities in various 

solvents. One possible explanation is that the dye-protein interactions help stabilize the 

dipolar resonance form of dye molecules in the ground state. Only dyes with greatly 

enhanced solvent sensitivity such as AI-BA-CN are capable of retaining partial 

ratiometric response even on the protein surface.   

         We speculate that the 10 nm wavelength shift of the mero199-labeled Cdc42 

activity sensor is still sufficient for it to be used alone to quantify Cdc42 activity, 

negating the need of a second fluorophore for ratio imaging. For comparison, the 

mero199-labeled Cdc42 sensor was fused with a monomeric Cerulean fluorescent protein 

molecule with a C49S mutation to prevent over-labeling. Since most fluorescence 

microscopes measure fluorescence emission images, protein activity values are usually 
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quantified by ratiometric response in emission spectra of the fluorescence reporter. Based 

on the Frank-Condon principle, electronic transitions in excitation should be similar to 

electronic transitions in emission. Ratiometric response in the excitation spectra of the 

mero199-labeled Cdc42 activity sensor should also be reflected in emission ratios with 

the proper settings. We determined that the best ratiometric response was achieved when 

collecting emission intensity at 620 nm, using 570 nm and 600 nm as the two excitation 

wavelengths. Thus we developed three methods to quantify Cdc42 activity in vitro 

(Method A-C).  

Method A: Using Dye/CFP ratio 

 

Iem stands for emission intensity. Mero199 is the protein activity indicator and 

mCerulean C49S serves as a volume indicator for normalization. Mero199 was excited at 

600 nm and the dye emission intensity at 620 nm was collected.  mCerulean C49S was 

excited at 435 nm and the CFP emission intensity at 476 nm was recorded.  

Method B: Using Dye/Dye excitation ratio 

 

Iex stands for excitation intensity. A second excitation wavelength of mero199 was used 

for normalization. Dye emission was set at 620 nm and the excitation intensities were 

collected at 600 nm (Iex, 600 nm) and 570 nm (Iex, 570  nm). 

Method C: Using Dye/Dye emission ratio:  
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This method measures dye emission ratios by using two excitation wavelengths of 

mero199. Mero199 was excited at 570 nm or 600 nm. The resulting dye emission 

intensity values at 620 nm were recorded.  

        For comparison, the intrinsic ratiometric response of mero199 and the ratiometric 

response of a pair of mero199 and mCerulean C49S were recorded at increasing 

concentration of constitutively active Cdc42 (Fig 1.32D).  The large correlation 

coefficient of 0.99 between the two quantification methods confirmed that we could 

generate a ratiometric response from a single fluorophore using mero199. The excitation 

and emission ratios from a single fluorophore, mero199, also exhibited a large 

correlation coefficient of 0.91.  

         Mero199-labeled CBD-MBP was used to quantify activation of endogenous 

activated Cdc42 in living NIH 3T3 mouse embryo fibroblasts (MEF) (Fig 1.33). To 

obtain ratio images from mero199, one fluorescence channel was collected by an 

excitation filter of 577/10X and an emission filter of 645/30M, and the second 

fluorescence channel was collected using the same emission filter but with an excitation 

filter of 600/20X. As compared to the conventional Cdc42 activity sensor design based 

on a typical merocyanine dye mero87 (Fig 1.33A), mero199-labeled sensor proteins 

report similar activation patterns of endogenous Cdc42 (Fig 1.33B). The mero199-

labeled non-binding control biosensor CBD H246D/H249D also showed weak 

fluorescence response to endogenous activated Cdc42 under the same cell culture and 

imaging conditions (Fig 1.34).    
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Figure 1.33 Activation of endogenous Cdc42 revealed by mero87- and mero199-

labeled sensor designs in MEF cells.  
Biosensors were imaed in NIH 3T3 mouse embryo fibroblasts (MEF). Scale bar: 20 

µM for all images. A. Ratio image of a mero87-labeled Cdc42 activity sensor. Cdc42 

activity was quantified by the relative emission ratios of mero87 and mCerulean C49S. 

B. Left: Differential interference contrast (DIC) image of one biosensor-loaded cell and 

one biosensor-free cell. Right: Ratio image of mero199-labeled Cdc42 activity sensor of 

the biosensor-loaded cell. Cdc42 activity was quantified by the relative emission intensity 

ratios recorded at 577 nm and 600 nm excitation wavelengths.  

 
Figure 1.34 Cdc42 biosensor ratios at the protrusion sites of MEF cells.  
Cells were loaded with mero199-labeled CBD-mCerulean C49S via microinjection. Each 

image was acquired using a 30 second increment. A. Top: Cdc42 activation was 

quantified by dye-to-CFP emission ratios. Bottom: Dye-to-CFP emission ratios of a non-

binding mutant sensor. B. Top: Cdc42 activation was quantified by the intrinsic 
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ratiometric response of mero199. Bottom: Dye-to-dye emission ratios of a non-binding 

mutant sensor.  

 

 
Figure 1.35 Endogenous Cdc42 became more activated during cell spreading as 

initiated by a photoactivatable Rac Rho GTPase.  

NIH 3T3 mouse embryo fibroblasts (MEF) stably expressing photoactivatable mVenus-

LOV2-Rac1 Q61L (PA-Rac) were loaded with mero199-labeled Cdc42 activity sensor 

(CBD-MBP). Fourteen regions with an identical size at the cell edges were used for 

comparison of Cdc42 activation in the whole cell level and specifically at the cell edge. 

At the 20
th

 min, cells were irradiated with 5 sec of GFP excitation per 10 sec cycle. Dye 

fluorescence images were acquired at every 2 min intervals. A. Ratio images of Cdc42 

activity before and after photoactivation of PA-Rac. B. Change in total cell area and in 

the fourteen regions at the leading edge in response to photoactivation of PA-Rac. C. 

Change in biosensor ratios in the entire cell and in the fourteen regions at the leading 

edge in response to photoactivation of Rac1 Q61L.      

 

        The mero199-labeled Cdc42 activity sensor doesn’t require a second fluorophore 

for ratio imaging. Thus this new red fluorescent sensor can be easily used together with a 

second biosensor or a protein manipulation tool with orthogonal wavelengths. It is 

extremely difficult to characterize dye-based biosensors using the traditional starvation-

stimulation protocols because starved cells respond poorly to microinjection or bead 

loading. Therefore protein manipulation tools that selectively activate a known upstream 

activator in non-starved conditions would be valuable for not only studying cross-talk of 
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multiple signaling molecules in the same living cell but also for characterization of non-

cell permeable and non-genetically-encodable sensor designs. For instance, Rac and 

Cdc42 GTPases are both important regulators of cell motility. There is no direct evidence 

regarding the possible role of Rac in regulating Cdc42 during cell migration. Here we 

imaged the mero199-labeled Cdc42 activity sensor molecules in MEF cells stably 

expressing photoactivatable Rac1 Q61L (PA-Rac) (Fig 1.35). This photoactivatable Rac 

is composed of an mVenus fluorescent protein molecule as an indicator of protein 

expression levels, a photosensory LOV2 domain for light regulation, and a constitutively 

active Rac1 Q61L molecule for effector activation (118). Upon blue light irradiation, the 

photosensory LOV2 domain undergoes a large conformational change and the 

constitutively active Rac Q61L protein molecule fused at the C-terminal of the LOV2 

domain becomes accessible for activating the downstream effectors such as p21-activated 

protein kinase, resulting in protrusions and lamellipodia. Because cells are highly 

dynamic and heterogenous, not every Rac-activated cell produces huge cell spreading and 

protrusions upon light irradiation. In the preliminary studies, the mero199-labeled Cdc42 

activity sensor only showed fluorescence increase in cells with large increases in cell area 

upon blue light irradiation and the biosensor signals remained steady in cells with no cell 

area change (Fig 1.35B & C). Increase in Cdc42 activity was more pronounced at the 

leading edge than the entire cell. This is consistent with the EGF-stimulation experiment 

of mero199-labeled Cdc42 activity sensor in MEF cells where the biosensor ratios also 

increased during cell spreading induced by EGF. A good correlation between cell area 

and total Cdc42 activity was consistently seen in these two types of experiments. It would 
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be interesting to dissect the underlying mechanism of cell spreading and activation of 

endogenous Cdc42 at the cell edge.  

 

1.3.7 Co-imaging the spatiotemporal dynamics of endogenous Cdc42 and SFK 

activation in the same living cell 

 

         Next we tried to co-image two dye-based biosensors in the same living cell. It has 

been challenging to image multiple protein activity sensors in the same cell because both 

the FRET type sensors and the typical dye-based sensors require two colors for ratio 

imaging and there are a limited number of wavelengths in the visible region for 

generation of orthogonal sensor designs. With the new near infrared merocyanine dyes 

and the new red ratiometric merocyanine dye mero199, we sought to co-image the 

spatiotemporal dynamics of endogenous Cdc42 and SFK in the same living cell using a 

mero199-labeled Cdc42 activity sensor and a mero65-labeled SFK activity sensor. We 

were able to begin by using a set of excitation filters, emission filters and a dichroic 

available in the Hahn laboratory (Fig 1.36). Though these were not optimal for all 

fluorophores, they were sufficient for preliminary studies.  

 
Figure 1.36 Filter and dichroic setting for co-imaging CFP, mero199 and mero65 

channels in the same cell.  
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The transmittance of the dichroic is presented as a black line.  

 

         The first issue we encountered was in the simultaneous delivery of the two types of 

dye-labeled sensor proteins. As the total amount of sensor proteins doubled for 

multiplexing, the protein solution containing the two sensors was more prone to cause 

severe clogging in micropipettes during microinjection.  The best solution to this problem 

was found to be the use of bead loading methods to deliver these dye-labeled sensor 

proteins. Unlike microinjection that usually uses 50 µM or higher concentrations for 

loading, the loading concentrations for bead loading were limited to 10~30 µM. At higher 

loading concentrations, severe fluorescence backgrounds and low numbers of biosensor-

loaded cells were observed.  Very bright cells usually rounded up because of the 

dominant negative effects from elevated total sensor concentrations of SFK and Cdc42 

sensor proteins. Therefore all fluorescent channels required longer exposure time to 

accumulate sufficient signal-to-ratios to enable the imaging of healthy biosensor-loaded 

cells. The lack of optimal microscope settings, together with the increasing biological 

perturbation at higher total biosensor concentrations, made it difficult to rapidly acquire 

biosensor signals.  
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Figure 1.37 Co-imaging of spatiotemporal dynamics of endogenous SFKs and Cdc42 

in the same living cell.  
COS7 cells were loaded with a near infrared mero65-labeled SFK activity sensor and a 

red mero199-labeled Cdc42 activity sensor. Images were taken every 60 sec in the 

acquisition sequence of DIC, CFP, mero65, mero199-577 nm and mero199-600 nm. 

SFK activity was defined by the ratios of CFP emissions divided by dye emissions. 

Cdc42 activity was defined by the emission ratios of mero199 excited with 577 nm and 

600 nm.    

 

         Despite the difficulty of rapid acquisition of two biosensor signals at millisecond’s 

level which makes it impossible to study how Cdc42 and Src coordinate at the cell 

leading edge during cell motility with seconds and submicrons resolutions, the 

multiplexable sensors were still capable of monitoring cellular events with subminute 

resolution. For instance, both Cdc42 and Src are involved in pinocytosis (11, 119-125). 

Co-imaging of a SFK activity sensor and a Cdc42 activity in the same living cell revealed 

that both SFK and Cdc42 were activated at the cell edge (23, 44, 126-132) while only 

SFK activity peaked at the pinocytolic vesicles (122, 124, 125) but not Cdc42 (Fig 1.37). 

The result is consistent with the earlier findings that Cdc42 mainly participates in the 

beginning of pinocytosis at the plasma membrane regions (119, 120, 123). At the current 
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stage, the major application of multiplexing two dye-based protein activity sensors in the 

same cell is to study spontaneous cellular events. Because Src is an upstream regulator of 

Rho GDP-dissociation factors (RhoGDI) (119, 133-136) and several guanidine nucleotide 

exchange factors (GEF) including vav2 (136, 137), cool-2/α-pix (138), and FRG (137, 

139), it would be interesting to investigate how the spatiotemporal dynamics of Src and 

Cdc42 are altered in response to selective knock-outs or activation of one of the 

regulators.  

 

1.3.8 Fluorescence lifetime imaging of dye-based biosensors 

        The first dye-based biosensor tested for fluorescence lifetime imaging was the 

mero87-labeled ERK activity sensor characterized in part 2. Mero87-labeled ERK 

activity sensor was loaded into NIH 3T3 mouse embryo fibroblasts (MEF) stably 

expressing YPet fluorescent protein molecule. Because the mero87-labeled ERK activity 

sensor photobleached very rapidly upon continuous laser irradiation on a confocal 

fluorescence scope, we were only able to capture one fluorescent biosensor-loaded cell 

with sufficient brightness for lifetime imaging. Intensity-based ratio analysis was not 

conducted because mero87 became too dim after the lifetime acquisition. Both the phase 

lifetime values (τP) and the modulation lifetime values (τM) were recorded at the three cell 

regions of interest—nucleus, cytosol, and cell edge. In the nucleus, the ERK activity 

sensor showed a largest average τP of 1.654 ns and a smallest average τM of 1.817 ns (Fig 

1.38A). In the cytosol, the ERK activity sensor has a moderate average τP of 1.572 ns and 

a greatly increased average τM of 3.790 ns (Fig 1.38B). At the cell edge, the sensor 

exhibited the smallest average τP of 1.522 ns and the largest average τM of 4.790 ns (Fig 

1.38C). The lifetime values at the cell edge was the least confident as the background 
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noise became higher at the thinner cell edge. The modulation lifetime and the phase 

lifetime values showed a perfect negative correlation in the three regions (Fig 1.38D). In 

summary, we have demonstrated that we could quantify biosensor response based on the 

fluorescence lifetime change of a single solvatochromic fluorophore.  

 
Figure 1.38 Fluorescence lifetime imaging of mero87-labeled ERK biosensor in 

MEF cells.  

Mero87-labeled ERK activity sensor was imaged in NIH 3T3 mouse embryo fibroblasts 

(MEF) stably expressing YPet fluorescent protein molecules. The phase lifetime and the 

modulation lifetime values were measured on a confocal fluorescence microscope 

equipped with lifetime acquisition settings and quantified using Phasor analysis. A. 

Phasor plot of nuclear ERK sensor signals. B. Phasor plot of cytosolic ERK sensor 

signals. C. Phasor plot of ERK sensor signals at the cell edge. D. Plot of phase lifetime 

and modulation lifetime values of the three regions. Lifetime values were normalized to a 

lifetime standard—fluorescein prior to acquisition.  
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1.4 Conclusions 

     We have developed a series of new near infrared merocyanine dyes and demonstrated 

the potential of the new dyes for multiplexed live cell imaging. The new near infrared 

dyes were designed based on the best set of red merocyanine dyes with optimized 

properties for live cell imaging. These key properties include brightness, photostability, 

solvent-dependent fluorescence, and optimal dye-protein interactions. These new near 

infrared merocyanine dyes have superior maximum brightness as compared to current 

near infrared fluorescent proteins and are able to use direct excitation for reporting 

protein conformation changes in vitro and in live cell imaging. The best dye has a 

maximum brightness value similar to the commonly used enhanced green fluorescent 

protein (EGFP) molecules and the near infrared dyes can be excited at long wavelengths 

where cellular autofluorescence is greatly reduced. However, the dye brightness of near 

infrared merocyanine dyes was greatly diminished when located on the surface of sensor 

protein molecules in phosphate buffer. This fluorescence quenching effect was later 

found to be correlated with the tendency of the new dyes to form H-type aggregates in 

water. Near infrared merocyanine dyes consisting of I-BA structures showed no 

concentration-dependent dye aggregation and their fluorescence intensities also exhibited 

the smallest decreases in aqueous solution. I-BA-labeled sensor proteins for active Src 

family kinases (SFK) and for active Cdc42 were the brightest among the near infrared 

sensor designs. The resulting I-BA-labeled SFK activity sensor displayed sufficient 

brightness for ratio imaging and its dynamic range was approximately two-fold larger 

than the previously reported red SFK activity sensor design.  
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In collaboration with Dr. Alexcei Toutchkine, I also developed a new red merocyanine 

dye with an intrinsic ratiometric response. Because we found a negative correlation 

between photostability and solvent-dependent fluorescence in a series of red merocyanine 

dyes, we introduced aromaticity into the electron donor moiety to shift the equilibrium 

towards the more solvent-sensitive zwitterionic resonance form in the ground state, 

followed by addition of an electron withdrawing group to the polymethine chain to 

minimize photo-oxidation. The resulting dye, mero199, possesses balanced properties in 

brightness, photostability, and solvent-dependent dual fluorescence changes in intensity 

and wavelength maximum. We also demonstrated that activation of endogenous Cdc42 

could be quantified by the intrinsic ratiometric response of a mero199-labeled Cdc42 

activity sensor in living cells.  

Next we showed that the spatiotemporal dynamics of endogenous Src and Cdc42 could 

be monitored in the same living cell by using a new near infrared SFK activity sensor and 

a new red ratiometric Cdc42 activity sensor. By co-imaging the two sensors in the same 

cell, we found that both active Cdc42 and SFK are enriched at the cell edge while only 

Src is activated throughout pinocytosis. The observations were consistent with the 

literature. The main difference is that we can now provide more precise information 

regarding the relative timing and subcellular localization of Cdc42 and Src activation in 

each pinocytolic vesicle. Multiplexing of Cdc42 and Src in the same cell also has great 

potential to be used together with protein manipulation tools and knock-outs of specific 

regulators.  

In the future it will be possible to multiplex two or more dye-based biosensors using 

the lifetime changes of the solvatochromic dyes. Because the fluorescence lifetime of a 
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molecule is independent of varying biosensor concentrations and uneven illumination 

settings, protein activity sensors based on solvatochromic dyes could be quantified by the 

average fluorescence lifetime values of target-bound and unbound sensors. Among all of 

the red and near infrared merocyanine dyes tested, the near infrared I-Pht and I-SO dyes 

displayed the largest solvent-dependent fluorescence lifetime changes. The I-SO-labeled 

Cdc42 activity sensor also showed decent response in fluorescence lifetime when titrated 

with active Cdc42 in vitro. The preliminary study on a red I-SO-labeled ERK activity 

sensor revealed distinct fluorescence lifetime values in the nucleus, in the cytosol, and at 

the cell edge, which was consistent with the earlier observations of elevated ERK activity 

in the nucleus. The study also pointed out the problem of rapid photobleaching of these 

merocyanine dyes under continuous laser irradiation. Current efforts are focused on 

adjustment of the microscope settings to enable time-course studies of dye-FLIM.  

In summary, the newly developed near infrared and red merocyanine dyes exhibit great 

potential for imaging multiple biosensors in the same living cell via intensity-based and 

lifetime-based imaging. The current capacities of these new multiplexable sensors are for 

studying cellular events that occur on the minutes timescale and also for still images of 

samples pre-treated with various environmental stimuli. Faster acquisition and higher 

quality ratio images will require significant work in upgrading current microscope 

settings, including improved light sources for near infrared dyes, more sensitive cameras 

for making good use of photons, and optimal filters for each multiplexable fluorophore.  
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1.5 Materials and Methods 

      General materials and methods     All reagents were purchased from Sigma Aldrich, 

Acros Organics, Alfa Aesar, or TCI America. UV-Visible spectra were recorded on a 

Hewlett-Packard 8453 diode array spectrophotometer. Fluorescence spectra were 

obtained on a Spex Fluorolog 2 spectrofluorometer. Reverse phase high performance 

liquid chromatography was performed on a Shimadzu module with a Phenomenex C18 

preparative column using elution systems composed of acetonitrile/water/0.5% 

trifluoroacetic acid (TFA). Fluorescence screening was conducted on a PHERAstar HTS 

microplate reader equipped with a 430EX/480EM optical filter module for CFP 

acquisition and a 590EX/675EM optical filter module for near infrared dye acquisition. 

NMR spectra were taken on a Varian Mercury-300 or Inova-400 spectrometers using 

deuterated solvents purchased from Cambridge Isotope Laboratories. Low resolution 

mass spectra were collected on an Agilent MSD-trap Ion trap mass spectrometer with 

direct infusion. High resolution mass spectra were obtained on an Agilent 6520 Accurate-

Mass Q-TOF LC-MS.  

 

Synthesis of intermediate 1: 

 

1,2,3,3-tetramethyl-3H-indolium iodide (1) 2,3,3-trimethylindolenine (7.998 g, 50.27 

mmol) and iodomethane (3.3 ml, 53.01 mmol) in 500 ml of ethanol was heated to reflux 

under argon for 20 hours and cooled down to room temperature. The precipitate was 

washed with ethyl acetate, diethyl ether and methanol, followed by drying under high 
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vacuum overnight to give the product as a red powder (10.71 g, 71%). 
1
H NMR (400 

MHz, d6-DMSO) δ 7.91 (d, 1H, J = 7.4 Hz), 7.82 (d, 1H, J = 7.0 Hz), 7.62 (t, 2H, J = 3.5 

Hz), 3.97 (s, 3H), 1.52 (s, 6H). Cal. Mw for C12H16N
+
: 174.1; LRMS (ESI) for [M+]: 

174.2.  

 

Synthesis of intermediate 2: 

N

+K-O3S

 

Potassium 2,3,3-trimethyl-3H-indole-5-sulfonate (2) 3-methyl-2-butanone (17 ml, 

158.69 mmol) was added to a stirring solution of p-hydrazinobenzenesulfonic acid 

(10.0010 g, 53.14 mmol) in 30 ml of acetic acid at room temperature. The resulting 

mixture was heated to reflux for 4 hours and then cooled down to room temperature. The 

precipitate was filtered off, washed with ethyl acetate, and dried under reduced pressure 

to give a pink solid intermediate. The intermediate was dissolved in 35 ml of methanol 

and added dropwise to a stirring solution of potassium hydroxide (3.0 g, 53 mmol) in 35 

ml of n-propanol. The resulting solution was then stirred at room temperature for 24 

hours. The precipitate was filtered off, washed with hexane and dried under high vacuum 

as a yellow powder (8 g, 56% yield). 
1
H NMR (400 MHz, D2O) δ 7.61 (s, 1H), 7.59 (d, 

1H, J = 8.2 Hz), 7.34 (d, 1H, J = 8.0 Hz), 2.06 (s, 3H), 1.06 (s, 6H). Cal. Mw for 

C11H12NO3S
-
: 238.1; LRMS (ESI) for [M

-
]: 238.0.  

 

Synthesis of intermediate 3: 

-O3S

N
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1,2,3,3-tetramethyl-3H-indolium-5-sulfonate (3) To compound 4 (4.513 g, 16.22 

mmol) in 100 ml of ethanol was added iodomethane (5 ml, 81.09 mmol). The resulting 

mixture was heated to reflux under argon for 24 hours. The precipitate was filtered off, 

washed with hexane and dried under high vacuum as a pink power (4.733 g, quant.). 
1
H 

NMR (d6-DMSO, 400 MHz) δ 7.32-7.38 (m, 2H), 6.57-6.67 (m, 1H), 3.87 (s, 2H), 2.47 

(s, 3H), 1.25 (s, 6H). Cal. Mw for C12H14NO3S
-
: 252.1; LRMS (ESI) for [M-H]: 252.2.  

 

Synthesis of intermediate 4: 

COOH

S

OH

O

 

2-(carboxymethylthio)benzoic acid (4)  Thiosalicilic acid (15.737 g, 102.06 mmol) was 

dissolved in 100 ml of stirred 10% NaOH aqueous solution at 0 
o
C, followed by dropwise 

addition of chloroacetic acid (12.128 g, 128.34 mmol) in 50 ml of 10% NaOH aqueous 

solution over 30 min . The mixture was heated at reflux under argon with stirring for 3 

hours, cooled to room temperature, and acidified with 22 ml of HCl aqueous solution.  

The acidified mixture was then heated to boiling and cooled down again. The precipitate 

was filtered off, washed with water, and dried under high vacuum overnight to give the 

product as a pink solid (27.9408 g, 85% yield). 
1
H NMR (400 MHz, d6-DMSO) δ 7.63 (d, 

1H, J = 7.4 Hz), 7.38-7.47 (m, 2H), 7.24 (t, 1H, J = 7.0 Hz), 3.61 (s, 2H). Cal. Mw for 

C9H7O4S: 211.0; LRMS (ESI) for [M-H]: 211.1.  

 

Synthesis of intermediate 5:  
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S

O
O

O

 

Benzo[b]thiophen-3(2H)-one 1,1-dioxide (5) A suspension of compound 4 (20.352 g, 

95.90 mmol) in 120 ml acetic acid was added 25 ml of 35% hydrogen peroxide aqueous 

solution. The mixture was heated to 60 
o
C and stirred for 4 hours, cooled to room 

temperature, and concentrated via rotary evaporation. The residue was dissolved in 50 ml 

of acetic anhydride, followed by addition of sodium acetate (1.0001 g, 12.19 mmol). The 

resulting mixture was stirred at 110 
o
C under argon for 1 hour.  Acetic anhydride was 

removed via rotary evaporation and the residue was treated with 50 ml of 5% HCl 

aqueous solution. The precipitate was filtered off, washed with water, and dried under 

high vacuum overnight to give the product as a light yellow solid (16.521 g, 95% yield 

for two steps). Rf: 0.15 (hexane: EA = 4:1). 
1
H NMR (CDCl3, 300 MHz), 7.93-8.02 (2H, 

m), 7.91 (1H, d, J = 1.2 Hz), 7.78-7.85 (m, 1H), 4.09 (2H, s). 
13

C NMR (CDCl3, 300 

MHz) δ187.2, 148.2, 137.7, 134.7, 133.9, 125.2, 122.2, 57.7. Cal. Mw for C8H6O3S: 

182.0; LRMS (ESI) for [M-H]: 181.3.  

 

     General procedures for the synthesis of acceptor intermediates   A mixture of 15.0 

mmol of the acceptor precursor and 21.00 mmol of N-(5-anilino-2,4-

pentadienylidene)aniline hydrochloride in 25 ml of acetic anhydride was heated to reflux 

under argon for 2 hours and cooled down to room temperature. The precipitate was 

washed with ethyl acetate and dried under vacuum. The product was re-crystalized from 

isopropanol or purified by silica gel chromatography using dichlromethane and ethyl 

acetate as the eluents.  
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N-((1E,3E,5E)-5-(1,1-dioxido-3-oxobenzo(b)thiophen-2(3H)-ylidene)penta-1,3-dien-

1-yl)-N-phenylacetamide (6a)  Yield: 73%. Rf: 0.26 (hexane: EA = 2 : 1). 
1
H NMR (400 

MHz, CDCl3) δ 8.14 (d, 1H, J = 13.84 Hz), 8.01 (d, 1H, J = 7.6 Hz), 7.92 (d, 1H, J = 7.7 

Hz), 7.82 (t, 1H, J = 7.4 Hz), 7.75 (t, 1H, J = 7.6 Hz), 7.53-7.64 (m, 4H), 7.19 (d, 2H, J = 

7.7 Hz), 7.12 (d, 1H, J = 11.2 Hz), 6.79 (t, 1H, J = 13.6 Hz), 5.34 (t, 1H, J = 13.6 Hz), 

1.96 (s, 3H). Cal. Mw for C21H17NNaO4S: 402.1; LRMS (ESI) for [M+Na]: 402.0. 

 

 

N-((1E,3E)-5-(1,3-dimethyl-2,4,6-trioxo-tetrahydropyrimidin-5(6H)-ylidene) 

penta-1,3-dienyl)-N-phenylacetamide (6b) Yield: 66%. 
1
H NMR (CDCl3, 300 MHz), 

8.16 (1H, d, J = 13.5 Hz), 8.04 (1H, d, J = 12.3 Hz), 7.70 (1H, t, J = 14.4 Hz), 7.52-7.66 

(3H, m), 7.16-7.29 (3H, m), 5.36 (1H, t, J = 12.8 Hz), 3.29-3.35 (6H, m), 1.98 (3H, s). 

13
C (CDCl3, 300 MHz), 169.2, 162.5, 161.9, 157.1, 154.9, 151.5, 140.7, 138.2, 130.5, 

129.7, 128.2, 126.7, 113.7, 111.5, 28.5, 27.8, 23.3. Cal. Mw. for C19H19N3NaO4: 376.1; 

LRMS (ESI) for [M+Na]: 376.1.  
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N-((1E,3E)-5-(1,3-dioxo-1H-inden-2(3H)-ylidene)penta-1,3-dienyl)-N-

phenylacetamide (6c) Yield: 48%. Rf: 0.11 (hexane: EA = 4:1). 
1
H NMR ( 400 MHz, d6-

DMSO) δ8.18 (d, 1H, J = 13.6 Hz), 7.83-7.86 (m, 4H), 7.55-7.64(m, 4H), 7.34-7.49 (m, 

4H), 5.28 (t, 1H, J = 13.4 Hz), 1.95 (s, 3H). Cal. Mw for C22H17NNaO3: 366.1; LRMS 

(ESI) for [M+Na]: 366.2.  

 

 

N-((1E,3E)-5-(1,3-diethyl-4,6-dioxo-2-thioxo-tetrahydropyrimidin-5(6H)-

ylidene)penta-1,3-dienyl)-N-phenylacetamide (6d)  Yield: 19%. Rf: 0.45 (hexane: EA 

= 5:1). 1H NMR (CDCl3, 300 MHz), 8.20 (1H, d, J = 13.5 Hz), 8.06 (1H, d, J = 12.6 Hz), 

7.74 (1H, t, J = 14.1 Hz), 7.54-7.58 (3H, m), 7.18-7.30 (3H, m), 5.38 (1H, t, J = 13.5 Hz), 

4.43-4.55 (4H, m), 1.98 (3H, s), 1.21-1.30 (6H, m). Cal. Mw for C21H23N3NaO3S: 420.1; 

LRMS (ESI) for [M+Na]: 420.2.  

 

     General procedure for the synthesis of parent dyes without an aryl sulfate. A 

mixture of compound 2, acceptor intermediate and sodium acetate in methanol was 

heated at reflux for 10 min with stirring and then cooled down to room temperature. The 
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mixture was concentrated via rotary evaporation and purified by silica gel 

chromatography using dichloromethane and ethyl acetate as the eluent. The blue fractions 

were combined, concentrated, and dried under high vacuum to give the product as a blue-

olive solid.  

 

N

S

O

O
O

 

(E)-2-((2E,4E,6E)-6-(1,3,3-trimethylindolin-2-ylidene)hexa-2,4-dien-1-ylidene) 

benzo(b)thiophen-3(2H)-one 1,1-dioxide (mero81)  Yield: 65%. Rf: 0.31 (CH2Cl2: EA 

= 100:1). 
1
H NMR (400 MHz, CDCl3) δ 8.00 (d, 1H, J = 7.6 Hz), 7.94 (d, 1H, J = 7.5 

Hz), 7.66-7.81 (m, 3H), 7.38-7.47 (m, 1H), 7.21-7.28 (m, 3H), 7.03 (t, 1H, J = 7.4 Hz), 

6.93 (t, 1H, J = 13.32 Jz), 6.82 (d, 1H, J = 6.8 Hz), 6.38 (t, 1H, J = 12.7 Hz), 5.64 (d, 1H, 

J = 12.8 Hz), 3.31 (s, 3H), 1.63 (s, 6H). Cal. Mw for C25H24NO3S: 418.1; LRMS (ESI): 

418.3. 

 

 

1,3-dimethyl-5-((2E,4E,6E)-6-(1,3,3-trimethylindolin-2-ylidene)hexa-2,4-

dienylidene)pyrimidine-2,4,6(1H,3H,5H)-trione (mero80)  Yield: 33%. Rf: 0.15 in 

pure CH2Cl2. 
1
H NMR (CDCl3, 300 MHz) 8.04 (d, 1H, J = 12.9 Hz), 7.81 (t, 1H, J = 13.5 

Hz), 7.42 (t, 1H, J = 13.2 Hz), 7.29 (t, 1H, J = 12.0 Hz), 7.19-7.29 (m, 1H), 7.00 (t, 1H, J 
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= 7.2 Hz), 6.79 (d, 1H, J = 8.1 Hz), 6.35 (t, 1H, J = 12.0 Hz), 5.63 (d, 1H, J = 12.6 Hz), 

5.27 (s, 1H), 3.33 (d, 6H, J = 3.3 Hz), 3.28 (s, 3H), 1.57-1.60 (m, 6H) 

13
C NMR (CDCl3, 100 MHz) 165.8, 163.3, 159.3, 156.8, 152.0, 145.6, 139.6, 136.1, 

128.1, 124.7, 123.9, 122.3, 121.8, 101.9, 88.0, 47.2, 29.7, 28.3, 28.2, 27.7. Cal. Mw for 

C23H25N3O3: 391.2; LRMS (ESI): 392.2 [M+H] and 413.3 [M-H+Na].  

 

 

2-((2E,4E,6E)-6-(1,3,3-trimethylindolin-2-ylidene)hexa-2,4-dienylidene)-2H-indene-

1,3-dione (mero79)  Yield: 61%. Rf: 0.49 (CH2Cl2: EA = 100:1). 
1
H NMR (400 MHz, 

CDCl3) δ7.82-7.90 (m, 2H), 7.64-7.76 (m, 3H), 7.54 (d, 1H, J = 12.7 Hz), 7.35 (t, 1H, J = 

13.08 Hz), 7.16-7.24 (m, 3H), 6.99 (t, 1H, J = 7.2 Hz), 6.77 (d, 1H, J = 7.7 Hz), 6.40 (t, 

1H, J = 12.6 Hz), 5.60 (d, 1H, J = 12.6 Hz), 3.27 (s, 3H), 1.63 (s, 6H). Cal. Mw for 

C26H24NO2: 382.2; LRMS (ESI): 382.2.  

 

 

1,3-diethyl-2-thioxo-5-((2E,4E,6E)-6-(1,3,3-trimethylindolin-2-ylidene)hexa-2,4-

dienylidene)-dihydropyrimidine-4,6(1H,5H)-dione (mero82) Yield: 19%. 
1
H NMR 

(CDCl3, 300 MHz) 8.05 (d, 1H, J = 13.2 Hz), 7.89 (t, 1H, J = 7.2 Hz), 7.55 (t, 1H, J = 
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13.2 Hz), 7.37 (t, 1H, J = 12.6 Hz), 7.26-7.30 (m, 2H), 7.09 (t, 1H, J = 7.5 Hz), 6.90 (d, 

1H, J = 7.8 Hz), 7.75 (d, 1H, J = 13.2 Hz), 5.30 (s, 1H), 4.56 (q, 4H, J = 7.2 Hz), 3.38 (s, 

3H), 1.64 (s, 6H), 1.25-1.33 (m, 6H). 
13

C NMR (CDCl3, 100 MHz) 178.3, 162.5, 160.5, 

160.42, 156.9, 147.8, 128.2, 125.1, 124.5, 123.1, 121.9, 108.5, 106.9, 100.1, 47.7, 43.3, 

42.8, 28.1, 12.5. Cal. Mw for C25H29N3O2S: 435.2; LRMS [ESI]: 435.3 for [M-H], 437.6 

for [M+H].  

 

     General procedure for the synthesis of parent dyes with an aryl sulfate.  

Compound 3 (0.50 mmol) and an acceptor intermediate compound 6a-6c were suspended 

in ethanol (5 ml), followed by addition of triethylamine (60 μl, 0.51 mmol). The resulting 

mixture was stirred at reflux for 30 min. The solvent was removed by evaporation at 

reduced pressure. Unreacted starting material was removed by passing the mixture 

through a short plug of silica gel and the acetone-eluted fractions were concentrated. The 

residue was re-dissolved in acetonitrile-water co-solvents and subjected to reverse phase 

HPLC purification. The blue fractions were confirmed by mass spectrometry and dried 

by lyophilization.   

 

N

S

O

O
O

+Na-O3S

 

Sodium (E)-2-((2E,4E,6E)-6-(1,1-dioxido-3-oxobenzo(b)thiophen-2(3H)-ylidene) 

hexa-2,4-dien-1-ylidene)-1,3,3-trimethylindoline-5-sulfonate (mero83) Yield: 80%. 

Rf: 0.09 (CH2Cl2: MeOH = 10:1). 
1
H NMR (d6-DMSO, 400 MHz) δ 8.01 (d, 1H, J = 7.2 

Hz), 7.69-7.92 (m, 5H), 7.66 (s, 1H), 7.57 (d, 1H, J = 8.2 Hz), 7.52 (d, 1H, J = 13.4 Hz), 
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7.07-7.21 (m, 2H), 6.51 (t, 1H, J = 12.5 Hz), 6.06 (d, 1H, J = 13.3 Hz), 3.43 (s, 3H), 1.61 

(s, 6H).Cal. Mw for C25H22NO6S2
-
: 496.08940; LRMS (ESI) for [M-H]: 495.9; HRMS 

(Q-TOF) for [M-H]: 496.09090.  

 

N

N

N

O

O

O

+Na-O3S

 

sodium (E)-2-((2E,4E)-6-(1,3-dimethyl-2,4,6-trioxo-tetrahydropyrimidin-5(6H)-

ylidene)hexa-2,4-dienylidene)-1,3,3-trimethylindoline-5-sulfonate (mero84) Yield: 

55%. 
1
H NMR (d6-DMSO, 400 MHz) δ 8.03 (d, 1H, J = 12.6 Hz), 7.82 (t, 1H, J = 13.2 

Hz), 7.40 (t, 1H, J = 13.3 Hz), 7.17-7.27 (m, 2H), 6.82 (d, 1H, J = 7.8 Hz), 6.37 (t, 1H, J 

= 12.1 Hz), 5.70 (d, 1H, J = 12.5 Hz), 5.30 (s, 1H), 3.29 (s, 3H), 1.55-1.58 (m, 6H). Cal. 

Mw for C23H24N3O6S
-
: 470.1; LRMS (ESI) for [M-H]: 470.7.  

 

Synthesis of intermediate 7:  

Br N
H

SO3H
 

3-(3-bromopropylamino)propane-1-sulfonic acid (7) Triethylamine (14 ml, 50 mmol) 

was added to a solution of bromopropylamine (11.0224 g, 50.35 mmol) and 1,3-propane 

sultone (12.2138 g, 100.00 mmol) in 250 ml of ethanol. The reaction mixture was stirred 

at room temperature for 24 hours and precipitation was induced by cooling in an ice bath. 

The precipitate was filtered, washed with hexane, dried under high vacuum, and the 

product was isolated as white flakes (7.5226 g, 57% yield). 
1
H NMR (400 MHz, d6-

DMSO) δ3.59 (t, 2H, J = 6.6 Hz), 2.96-3.12 (m, 4H), 2.63 (t, 2H, J = 6.8 Hz), 2.08-2.18 
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(m, 2H), 1.88-1.98 (m, 2H). Cal. Mw for C6H14BrNNaO3S: 282.0; LRMS (ESI): 

260.0/262.0 for [M+H], 280.0/282.0 for [M-H+Na].  

 

Synthesis of intermediate 8: 

N
N
H

SO3H

Br  

2,3,3-trimethyl-1-(3-(3-sulfopropylamino)propyl)-3H-indolium bromide (8)  To 

compound 1 (1.5031 g, 5.78 mmol) in a microwave tube was added 2,3,3-trimethyl 

indolenine (1.3572g, 8.52 mmol). The sealed microwave tube was stirred and heated at 

180 
o
C for 30 min and then cooled down to room temperature. The excess starting 

material was removed by pipetting while new diethyl ether was added to wash and 

protect the hygroscopic product crystals. The crystals in diethyl ether were transferred to 

a 20 ml vial and the solvent was removed by rotary evaporation. The product crystals 

were then dried under high vacuum overnight to yield red crystals (1.5697 g, 80% yield). 

Dried compound 8 was used directly in the next step without further purification. Cal. 

Mw for C17H27N2O3S
+
: 339.2; LRMS (ESI) for [M

+
]: 339.3.  

 

 Synthesis of intermediate 9: 

N

-O3S

NH3
+

Br  

1-(3-ammoniopropyl)-2,3,3-trimethyl-3H-indolium-5-sulfonate bromide (9) 

Compound 2 (2.7760 g, 10.01 mmol) and 2-bromopropylamine (2.1898 g, 10.00 mmol) 

were suspended in 10 ml of α-dichlorobenzene. The resulting mixture was heated at 
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reflux under argon for 16 hours. Precipitation was induced by cooling on an ice bath. The 

precipitates were filtered, washed with ethyl acetate, and dried under vacuum to give the 

product as a pink solid (2.4749 g, 60% yield). Because compound 9 is highly 

hygroscopic, the solid was used without further purifications. Cal. Mw for C14H19N2O3S
-
: 

295.1; LRMS (ESI) for [M-H]: 295.2.  

     General procedures for synthesis of dye-chloroacetamides with an alkyl sulfate.  

Compound 8 (0.5 mmol) in 10 ml of anhydrous DMF was added 2.5 mmol of 

chloroacetic anhydride and 1.5 mmol of sodium acetate. The solution was stirred at room 

temperature for 15 min, followed by addition of an acceptor intermediate 6a-c (0.6 mmol, 

1.2 eq). For compounds 12a and 12b, the reaction mixture was stirred at room 

temperature under argon for 2 hours. For compound 12c, the mixture was heated to 60
o
C 

with stirring under argon for 2 hours and cooled to room temperature. The majority of 

DMF was removed via azeotropic distillation with toluene under reduced pressure. The 

residue was purified by gradient elution on a silica gel column using dichloromethane 

and methanol as the elutants (0 to 10% MeOH in CH2Cl2). The blue fractions were 

combined, concentrated via rotary evaporation, and dried under high vacuum to yield 

blue solid products.  
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Figure 1.39 Reaction tracking of the formation of dye-chloroacetamide conjugates.  

The product/starting material ratios were obtained by the relative absorbance at 450 nm 

(Astarting material) for the starting material and at 695 nm (Aproduct) for the product. Prolonged 

reaction times resulted in the disappearance of the blue products and the increasing 

amount of red and green side products.   

 

N

N

N

O

O

O

N

O
Cl

SO3
-Na+

 

Sodium 3-(2-chloro-N-(3-((E)-2-((2E,4E)-6-(1,3-dimethyl-2,4,6-trioxo-tetrahydro- 

pyrimidin-5(6H)-ylidene) hexa-2,4-dienylidene)-3,3-dimethylindolin-1-yl)propyl) 

acetamido)propane-1-sulfonate (mero100) Yield: 28%. Rf: 0.16 (CH2Cl2: MeOH = 10 : 

1). 
1
H NMR (d6-DMSO, 400 MHz) δ 7.85-8.02 (m, 1H), 7.80-7.85 (m, 1H), 7.54-7.68 

(m, 1H), 7.46 (d, 1H, J = 7.2 Hz), 7.27-7.34 (m, 1H), 7.15-7.27 (m, 1H), 7.08 (t, 1H, J = 

7.2 Hz), 6.78-7.03 (m, 1H), 6.38-6.50 (m, 1H), 6.03 (t, 1H, J = 13.3 Hz), 4.07 (s, 2H), 

3.37-3.70 (m, 4H), 3.17 (s, 6H), 3.08-3.13 (m, 2H), 2.32-2.44 (m, 2H), 1.68-1.83 (m, 

2H), 1.54 (s, 6H). Cal. Mw for C30H36ClN4O7S: 631.2; LRMS (ESI) for [M-H]: 631.7.  
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N

S

O

O
O

N

O
Cl

SO3
-Na+

 

sodium-3-(2-chloro-N-(3-((E)—((2E,4E,6E)-6-(1,1-dioxido-3-oxobenzo(b) 

thiophen-2(3H)-ylidene)hexa-2,4-dien-1-ylidene)-3,3-dimethylindolin-1-yl) 

propyl)acetamido)propane-1-sulfonate (mero102) Yield: 15%. Rf: 0.11 (CH2Cl2: 

MeOH = 10 : 1). 
1
H NMR (400 MHz, d6-DMSO) δ8.01 (d, 1H, J = 7.2 Hz), 7.49 (d, 1H, J 

= 7.4 Hz), 7.26-7.36 (m, 1H), 7.21 (d, 1H, J = 7.8 Hz), 7.11 (t, 1H, J = 7.3 Hz), 6.46-6.58 

(m, 1H), 6.04-6.20 (m, 1H),  4.39 (s, 2H), 4.26-4.32 (m, 2H), 3.90-4.00 (s, 2H), 2.30-2.50 

(m, 4H), 1.80-1.95 (m, 2H), 1.61 (s, 6H). Cal. Mw for C32H34ClN2O7S2
-
: 657.15014; 

LRMS (ESI): 657.2; HRMS (Q-TOF): 657.14900.  

 

     General procedures for synthesis of dye-chloroacetamides with an aryl sulfate.   

Compound 9 (0.50 mmol) was dissolved in 10 ml of anhydrous DMF, followed by 

addition of chloroacetic anhydride (2.5 mmol) and sodium acetate (1.5 mmol). The 

solution was stirred at room temperature for 15 min, followed by addition of an acceptor 

intermediate 6a-c (0.55 mmol). For compound 13a and 13b, the reaction mixture was 

stirred at room temperature under argon for 2 hours. For compound 13c, the stirred 

mixture was heated at 60 
o
C under argon for 2 hours, cooled to room temperature, and 

concentrated via azeotropic distillation with toluene under reduced pressure. The residue 

was first passed through a short plug of silica and eluted with acetone. The purple, blue, 

or green fractions were combined, concentrated via rotary evaporation and separated by 

reverse HPLC using acetonitrile/water/0.5%TFA as the eluents.  Fractions with an 
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absorption peak around 660 nm (for 13b) or 690 nm (for 13a and 13c) were concentrated 

via rotary evaporation and dried by lyophilization.   

 

N

N

N

O

O

O

+Na-O3S

N
H

O
Cl

 

Sodium (E)-1-(3-(2-chloroacetamido)propyl)-2-((2E,4E)-6-(1,3-dimethyl-2,4,6-

trioxo-tetrahydropyrimidin-5(6H)-ylidene)hexa-2,4-dienylidene)-3,3-dimethyl 

indoline-5-sulfonate (mero101) Yield: 29%. Rf: 0.23 (CH2Cl2: MeOH: NH4OH = 10 : 

1:0.01) 1H NMR (d6-DMSO, 400 MHz) δ 8.36 (m, 1H), 7.83-7.92 (m, 1H), 7.70-7.83 

(m, 1H), 7.60-7.70 (m, 2H), 7.48-7.57 (m, 1H), 6.97-7.12 (m, 1H), 6.42 (t, 1H, J = 10.6 

Hz), 5.98 (t, 1H, J = 5.6 Hz), 4.07 (s, 2H), 3.03-3.36 (m, 10H), 1.72-1.88 (m, 2H), 1.59 

(s, 6H).   

 

N

S
+Na-O3S

O

O
O

N
H

O
Cl

 

Sodium (E)-1-(3-(2-chloroacetamido)propyl)-2-((2E,4E,6E)-6-(1,1-dioxido-3-

oxobenzo(b)thiophen-2(3H)-ylidene)hexa-2,4-dien-1-ylidene)-3,3-dimethyl- 

indoline-5-sulfonate (mero103)  Yield: 23%. Rf: 0.26 (CH2Cl2: MeOH: NH4OH = 10 : 

1:0.01). Cal. Mw for C29H28ClN2O7S2: 615.1; LRMS (ESI) for [M-H]: 615.1.  
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     General procedures for synthesis of dye-iodoacetamides.  The dye-

chloroacetamides (0.036 mmol) and sodium iodide (0.18 mmol) in anhydrous methanol 

(10 ml) was refluxed for 3 hrs under nitrogen and then concentrated by evaporation at 

reduced pressure in the dark. The product was purified by reverse phase HPLC, using 

acetonitrile and water as the eluents. 

 

N

N

N

O

O

O

+Na-O3S

N
H

O
I

 

Sodium (E)-2-((2E,4E)-6-(1,3-dimethyl-2,4,6-trioxo-tetrahydropyrimidin-5(6H)-

ylidene)hexa-2,4-dienylidene)-1-(3-(2-iodoacetamido)propyl)-3,3-dimethyl 

indoline-5-sulfonate (mero65) Yield: 20%. 
1
H NMR (DMSO, 400 MHz) δ 8.40 (t, 1H, J 

= 5.0 Hz), 7.72-7.87 (m, 2H), 7.60-7.69 (m, 2H), 7.54 (d, 1H, J = 8.0 Hz), 7.10 (d, 1H, J 

= 2.0 Hz), 6.45 (t, 1H, J = 12.0 Hz), 6.01 (d, 1H, J = 13.0 Hz), 3.89 (s, 2H), 3.66 (s, 2H), 

3.17 (s, 6H), 3.01 (s, 2H), 1.75-1.80 (m, 2H), 1.59 (s, 6H). Cal. Mw for C27H30IN4O7S
-
: 

681.08854; LRMS (ESI): 680.9; HRMS (Q-TOF): 681.08818.  

 

N

S

O

O
O

N

O
I

SO3
-Na+

 

sodium 3-(N-(3-((E)-2-((2E,4E,6E)-6-(1,1-dioxido-3-oxobenzo(b)thiophen-2(3H)-

ylidene)hexa-2,4-dien-1-ylidene)-3,3-dimethylindolin-1-yl)propyl)-2-iodo 

acetamido)propane-1-sulfonate (mero77) Yield: 12%. Rf: 0.50 (CH2Cl2: MeOH = 5: 

1). 
1
H NMR (d6-DMF, 7.87-8.08 (m, 4H), 7.80 (t, 1H, J = 12.9 Hz), 7.62-7.64 (m, 1H), 
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7.58-7.60 (m, 1H), 7.53 (d, 1H, J = 7.8 Hz), 7.32-7.45 (m, 2H), 7.16 (t, 1H, J = 7.2 Hz), 

6.96 (t, 1H, J = 13.5 Hz), 6.53-6.65 (m, 1H), 6.29 (d, 1H, J = 13.5 Hz), 4.07-4.25 (m, 

4H), 3.45-3.3.70 (m, 4H), 2.71 (t, 2H, J = 6.6 Hz), 2.01-2.16 (m, 4H), 1.69-1.71 (m, 8H). 

Cal. Mw. for C32H35IN2O7S2: 750.1; LRMS (ESI) for [M+H]: 751.1. 

 

N

S
+Na-O3S

O

O
O

N
H

O
I

 

Sodium (E)-2-((2E,4E,6E)-6-(1,1-dioxido-3-oxobenzo(b)thiophen-2(3H)-ylidene) 

hexa-2,4-dien-1-ylidene)-1-(3-(2-iodoacetamido)propyl)-3,3-dimethylindoline-5-

sulfonate (mero78) Yield: 21%. Rf: 0.29 (CH2Cl2: MeOH = 5: 1). 
1
H NMR (d6-DMSO, 

400 MHz) δ 8.36 (t, 1H, J = 5.2 Hz), 8.02 (d, 1H, J = 7.4 Hz), 7.81-7.95 (m, 2H), 7.68-

7.81 (m, 2H), 7.65 (s, 1H), 7.52-7.58 (m, 2H), 7.13 (d, 1H, J = 8.2 Hz), 6.50 (t, 1H, J = 

12.3 Hz), 6.07 (d, 1H, J = 13.0 Hz), 4.09 (s, 2H), 3.87-3.97 (m, 2H), 3.18-3.27 (m, 2H), 

1.78-1.87 (m, 2H), 1.61 (s, 6H). Cal. Mw. for C29H28IN2O7S2: 708.0; LRMS (ESI) for 

[M-H]: 707.0.  

 

N

N

N

O

O

O

N

O
I

SO3
-Na+

 

Sodium 3-(N-(3-((E)-2-((2E,4E)-6-(1,3-dimethyl-2,4,6-trioxo-tetrahydro 
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pyrimidin-5(6H)-ylidene)hexa-2,4-dienylidene)-3,3-dimethylindolin-1-yl)propyl)-2-

iodoacetamido)propane-1-sulfonate (mero99)  Yield: 9%. Rf: 0.07 (CH2Cl2: MeOH = 

10: 1). Cal. Mw for C30H38IN4O7S: 752.2; LRMS (ESI): 725.4.  

 

      Quantum yield measurements      Spectrometric grade solvents were degassed on a 

sonicator for 1 hour prior to measurement. The absorbance at the excitation wavelength 

was kept below 0.1 to avoid inner filter effects. Each quantum yield value was calculated 

as the average of three separate preparations. Dye quantum yields were calculated using 

the following formula:  

 

Areaem,dye and Areaem,std. are the integrated area of the emission peak of the dye molecule 

and the QY standard, respectively. The references include Cy5 (QY = 0.27 in MeOH) 

and 3,3’-diethylthiadicarbocyanine iodide (QY = 0.36 in MeOH).  

 

     Photobleaching experiments     Time-based fluorescence decays of 1 μM of parent dye 

in glycerol in a 96-well black bottom plate (Costar) was measured  on a PHERAstar 

microplate reader (BMG Labtech) equipped with an optical module with a 590/50 

excitation filer and a 675/50 emission filter. Dye solutions were illuminated with 200 

flashes per well and per cycle and the fluorescence intensity values were recorded for 

every 30 sec.  

 

     Protein expression and purification     Plasmids encoding for CBD, SFK Fn, and 

Cdc42 were transformed into BL21 (DE3) E.coli strain and cultured at 37 
o
C on LB-agar 

plates containing 100 μg/ml carbencillin. Plasmids encoding for the SFK SH3 domain 
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were transformed into NEB Express Iq E.coli strain and cultured at 37
o
C on LB-agar 

plates containing 100 μg/ml kanamycin. Bacteria were cultured at 37 
o
C untill the 

cultures reached an optical density at 600 nm of 0.8. Protein expression was conducted at 

32 
o
C overnight in the presence of 0.5 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and 100 μg/ml antibiotics. Frozen bacteria pellets were warmed up on ice and re-

suspended in equilibration buffer (50 mM NaH2PO4, 300 mM NaCl, pH 7.0). The 

bacterial suspension was homogenized by sonication and the insoluble bacterial debris 

was removed by centrifugation (Sorvall, model T21). The supernatant was incubated with 

pre-equilibrated Talon Metal Affinity Resin (Clontech) at 4 
o
C for 1 hour on a nutator 

(BD Clay Adams, model 1105). Protein-bound resins were washed with equilibrium 

buffer by centrifugation, loaded onto a polypropylene column, and washed with wash 

buffer (50 mM NaH2PO4, pH 7.5). The 6xHis-tagged proteins were eluted by gravity 

using elution buffer (300 mM imidazole, pH 7.0) and concentrated by centrifugation 

(VivaSpin 20 MWCO 10K; Eppendorf, model 5810). Protein solutions for labeling were 

added 1 μl of β-mercaptoethanol (BioRad) to reduce cysteines prior to concentration. The 

concentrated proteins were passed through a dextran desalting column (Pierce) using 

protein labeling buffer (50 mM NaH2PO4, pH 7.5) as the eluent. Protein solutions for 

labeling were adjusted to 100 μM and all proteins were stored as aliquots at -80 
o
C.  

 

     SDS-PAGE and fluorescence gel scanning     Protein samples were loaded to a 4-12% 

Bis-Tris NuPAGE gel (Invitrogen) and separated according to manufacturer’s protocol. 

Dye-labeled proteins were imaged on a fluorescence imager (Typhoon 9410) equipped 

with 520BP40, 610 BP30 and 670 BP30 emission filters. Relative fluorescence intensity 

of dye-labeled proteins and free dyes were quantified using imageJ software.  
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     Protein labeling with thiol-reactive dyes   100 μM Cdc42 or SFK sensor protein 

solution was incubated with 5 fold excess dye-iodoacetamide at room temperature in the 

dark for 1 hour on a rotary shaker. The reaction was terminated by adding 1 μl of β-

mercaptoethanol per 100 μl protein solution at room temperature for 5 min. Excess dyes 

and dye-labeled proteins were separated on a Sephadex G-15 size exclusion column (GE 

Healthcare Life Sciences) using protein labeling buffer as the eluent. Labeling efficiency 

of dye-labeled proteins was calculated by the following formula:  

 

The biosensor solution was concentrated to 20 to 60 μM by centrifuge at 12000 rpm at 4 

o
C (Millipore, Amicon Ultra-0.5mL, MWCO 10K). Insoluble dye-protein aggregates 

were removed prior to microinjection. 

 

     Fluorescence titration assays of MeroCBD     GTP-bound wild type Cdc42 was 

prepared by incubating 10 μM 6xHis-tagged wild type Cdc42, 100 μM non-hydrolyzable 

GTPγS, and 1 mM EDTA in protein labeling buffer 37 
o
C for 5 min. To compare relative 

response of wild type GTP-bound Cdc42 and constitutively active Cdc42 Q61L, 300 nM 

mero53-labeled CBD-mCerulean was mixed with 0 or 2 μM of active Cdc42 at room 

temperature for 5 min in assay buffer (50 mM Tris, 50 mM NaCl, 5 mM MgCl2, 1 mM 

dithiothreitol, 1.2 mM EDTA, pH 7.5). To compare relative response of near infrared 

MeroCBD, 100 nM MeroCBD was incubated with 0, 0.5, 2.5, 5.0, 7.5, 10.0, 12.5 and 

15.0 μM Cdc42 Q61L at room temperature for 5 min.  For mero199, 100 μl of 300 nM 

dye-labeled CBD fusion proteins in assay buffer (50 mM NaH2PO4, 150 mM NaCl, pH 

7.6) was added 100 μl of 0 to 40 μM constitutively active Cdc42 Q61L. Fluorescence 
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spectra were recorded at room temperature on a SPEX Fluorolog 1681 fluorometer. To 

obtain maximum excitation intensity, emission was set at 611 nm in the absence of 

Cdc42 Q61Lor 615 nm in the presence of Cdc42 Q61 for excitation spectra. To obtain 

maximum emission intensity, excitation was set at 581 nm in the absence of Cdc42 Q61L 

and 599 nm in the presence of Cdc42 Q61L.  

 

     Fluorescence titration assays of SFK Merobody     50 nM SFK Merobody was 

incubated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 μM of Src SH3 domain in assay 

buffer (50 mM NaH2PO4, 150 mM NaCl, pH 7.6) at room temperature for 10 min.  

     Live cell imaging and image analysis     The NIH 3T3 mouse embryonic fibroblasts 

(MEF), COS7 cells, and MEF cells expressing YPet or PA-Rac were maintained in 10% 

CO2 at 37 
o
C in Dulbecco’s modified Eagle’s medium (DMEM, Cellgro) with 10% fetal 

bovine serum (HyClone, Thermo Scientific) and 2 mM GlutaMax (Gibco, Life 

Technologies). The cells were plated on fibronectin (Sigma-Aldrich) coated coverslips 

overnight. Micropipettes were freshly made with a flaming/brown micropipette puller 

(Sutter Instrument Co., Model P-97) and thin-walled glass capillary tubes (World 

Precision Instruments, 1.2 O.D./ 0.9 I.D., TW120F-4 ). Biosensor proteins were delivered 

into cells via microinjection or bead loading. Microinjection was executed on an inverted 

microscope (Ziess Axiovert S100 TV) with a 20x objective (LD Achrostigmat, 0.30 

N.A., Ph1), followed by recovery in the cell incubator in Ham’s F-12K medium without 

phenol red (Gibco) with 5% fetal bovine serum, 15 mM HEPES, and 2mM GlutaMax for 

at least 30 min prior to imaging.  All fluorescence images were shade-corrected, 

background substracted, photobleaching-corrected, and processed according to routine 

protocols using MetaMorph and Matlab software.  



 

 

 

 

Chapter 2  

Dye-based biosensors to quantify the spatiotemporal dynamics of MAPKKs and 

MAPKs in living cells 

 

2.1 Summary 

     Mitogen-activated protein kinase (MAPK) signaling cascades govern numerous 

cellular processes.  Subtle differences in the relative timing and the sub-cellular location 

of activation of different MAPK pathways can lead to highly divergent cell responses 

such as apoptosis versus cellular proliferation. Despite the importance of MAPK 

signaling, very few biosensors for the detection of MAPK kinase (MAPKK) or MAPK 

activation in live cells are currently available. We describe here a generic strategy to 

create MAPKK activity sensors based on MAPK binding scaffolds. A solvent-sensitive 

dye that is covalently attached at a position within the MAPKK-MAPK binding interface 

can report binding interactions through associated fluorescence changes. Multiple 

solvent-accessible intrinsic cysteines of ERK2 and p38α were mutated to serines to 

prevent over-labeling while the phosphorylation site of MAPKs remained unaltered. Dye-

labeled ERK2 and dye-labeled p38  showed maximum fluorescence increases upon 

binding to active MEK1/2 and MKK3/6 of 77% and 30%, respectively. Several dye-

labeled ERK2 constructs specifically responded to active MEK1, and not to other tested 

ERK-interacting proteins. Preliminary imaging studies of a MEK1/2 activity sensor in 

NIH 3T3 mouse embryo fibroblasts revealed that endogenous activated MEK1/2 is 

abundant in the cytoplasm but absent in the nucleus.  Unusually high biosensor signals at 



90 

 

the cell periphery were also observed. Protein stability predictions suggested that most of 

the new MAPK binding scaffolds were highly destabilized due to the multiple cysteine-

to-serine mutations and the extent of protein destabilization is likely to play important 

roles in sensor specificity and lifetime in cells. Collaborative efforts to develop a new 

ERK activity sensor based on designed ankyrin repeat protein (DAPRin) are also reported 

in this chapter.  
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2.2 Introduction and Background 

2.2.1 Overview of MAPK signaling 

     Mitogen-activated protein kinase (MAPK) signaling regulates diverse cell functions 

including proliferation, growth, survival, differentiation, development, inflammation, 

stress/osmotic response and cell motility.  Complex MAPK signaling responds to a wide 

array of extracellular stimuli via the coordination of several parallel MAPK cascades in 

space and in time. A typical MAPK cascade consists of a MAP kinase kinase kinase 

(MAPKKK), a MAP kinase kinase (MAPKK), and a MAP kinase (MAPK) (Fig 2.1). 

Each component is an ultrasensitive switch in which the activity of these molecules can 

be turned on and off through phosphorylation and dephosphorylation by the 

corresponding upstream regulators. Growth factors or mechanical stimulation lead to 

activation of subsets of small GTPases including Ras, Rac, Cdc42, and RhoA by 

regulating the binding of a guanosine triphosphate (GTP) molecule or a guanosine 

diphosphate (GDP) molecule. These small GTPases activate one or multiple downstream 

protein kinases such as MAPKKKKs, MAPKKKs, and p21-activated protein kinases 

(PAKs). The mammalian MAPKs can be categorized into the following four classes: 

extracellular signal-regulated kinases (ERK1 and ERK2), isozymes of p38 (p38α, p38β, 

p38γ and p38δ), Jun N-terminal kinases (JNK1, JNK2 and JNK3), and ERK5. Each 

pathway is tightly regulated at various levels including specific kinase-substrate 

interactions, kinase-scaffold protein interactions, duration and strength of upstream 

signals, feedback mechanisms, and sub-cellular location of each component during 

individual transient signaling events.  
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Figure 2.1 Overview of MAPK signaling in cell motility.  

A typical MAPK cascade is composed of MAPKKKs, MAPKKs and MAPKs. Upstream 

activators of MAPK signaling include Rho GTPases and protein kinases such as Ras, 

Rac, Src and FAK. In response to growth factors or mechanical forces, ERK, JNK, and 

p38 coordinate to regulate cell motility by activating distinct subsets of effectors involved 

in protrusion, adhesion and actin dynamics.  

 

     Origins of signaling specificity of MAPK signaling     MAPKKs show great specificity 

towards the downstream MAPKs, but these MAPKKs are regulated by a large number of 

upstream MAPKKKs through phosphorylation of dual sites on the activation loop of 

MAPKKs (Fig 2.2). MAPKs also undergo a dual phosphorylation of the T-X-Y sequence 

in their activation loop by the corresponding upstream MAPKKs. Activated MAPKs 

become capable of phosphorylating thousands of MAPK substrates containing the P-X-

S/T-P motif. The duration and strength of each MAPK signal is specifically controlled by 

a variety of dual-specificity MAPK phosphatases (MKPs) (140), Thr/Ser phosphatases 

and tyrosine phosphatases in both the nucleus and cytoplasm.  The bipartite binding 
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mechanism might account for the signaling specificity of each MAPK pathway (141). 

MAPK proteins contain a common docking (CD) site for all MAPK-interacting proteins 

and a MAP kinase insert region which is absent in other protein kinase families (142-

146).  

 

 
Figure 2.2 Structures and  regulation of MAPKs.  

A. Structure of unphosphorylated/ inactive ERK2 (PDB: 1ERK) (147). The MAP kinase 

insert and the activation loop are colored in green and magenta, respectively. B. Structure 

of phosphorylated/active ERK2 (PDB: 2ERK) (147). The common docking (CD) site and 

the substrate-binding site are circled in yellow and red, respectively. C. Regulation of 

MAPKs. All MAPK-interacting proteins dock to the CD site. Inactive MAPK is 

phosphorylated by MAPKKs. Phosphorylated MAPKs phosphorylate and activate 

downstream substrates of distinct cell functions. Activated MAPKs are also inactivated 

by phosphatases such as MAP phosphatases (MKPs) through dephosphorylation.   

 

     MAPKs and cell motility     The ERK, JNK, and p38 MAPK pathways coordinate to 

regulate cell motility (Fig 2.1) (148). During lamellipodial protrusions, Rac GTPase 
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activates p21-activated protein kinase (PAK), and then PAK phosphorylates and activates 

MEK1/2 MAPKK, followed by phosphorylation/activation of ERK1/2 by MEK1/2; 

active ERK1/2 phosphorylates multiple sites in the WASP-family verprolin homologous 

protein-2, thus promoting binding of Arp2/3 to the WAVE2 regulatory complex (WRC) 

(149-152). Rac GTPase also activates the JNK pathway through PAK to control 

collective cell migration (153). ERK, p38, and JNK are all capable of phosphorylating 

and regulating paxillin, a signal transduction adaptor protein that anchors at focal 

adhesions (129).  During cell adhesion and detachment, recruitment of Src tyrosine 

protein kinase, focal adhesion kinase (FAK), and ERK to paxillin has been observed 

(128, 132, 154-156). ERK also mediates the phosphorylation and activation of calpain, a 

cysteine protease that cleaves and degrades focal adhesion kinase to facilitate cell 

detachment during motility (155, 157). JNK and p38 MAPK regulate actin dynamics 

through phosphorylation of MARCKSL1 and heat shock protein 27 (HSP27) (158, 159), 

respectively.  

      Disease relevance to aberrant activation of MAPK pathways Potential new 

therapeutics targeting the ERK, JNK, and p38-mediated pathways are currently under 

development because of the direct relevance of these pathways in several clinical 

conditions, including inflammatory diseases, neurological disorders, and cancer (128, 

160-167). For instance, hyper-activation of the MEK-ERK pathways frequently occurs in 

various types of human cancer including pancreatic cancer, papillary thymus cancer, 

colon cancer, ovary cancer, and breast cancer (Fig 2.3A) (168). There are at least seven 

MAPKKs for regulating ERK, p38, JNK or ERK5. Each MAPKK consists of a kinases 

domain and short N-terminal and C-terminal sequences (Fig 2.3B). Both the active and 
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inactive MEK1 and MEK2 are retained in the cytoplasm because the two MAPKKs 

feature a nuclear export signal (NES) in the N-terminal sequence (169). Preclinical 

studies indicate that blocking ERK activation by MEK1/2 inhibitors is effective in 

inhibiting proliferation of various cancer cells through regulation of the cell cycle and 

apoptosis (170-172). However, targeting either one of the MAPK pathways has been 

difficult because these parallel pathways can not only compete with each other but can 

also develop compensatory effects under certain circumstances. Acquired resistance to 

Raf inhibitors and MEK1/2 inhibitors has been observed in melanoma cells (161, 173-

176).   

 
Figure 2.3 Cancer-relevance of mutations in the ERK pathway and structures of 

human MAPKKs.  

A. High occurrence of mutations in Ras and B-Raf in cancer patients. B.MAPKKs have a 

kinase domain (colored in blue) and short N-terminal and C-terminal sequences. The N-

terminal sequences of MEK1 and MEK2 contain a nuclear export signal (NES) as 

indicated in yellow. The two figures were reprinted from the reference (168) with 

permissions: Frêmin et al (2010), J. Hematol. Oncol., 3, 1-11.  

 

     Understanding the cross-talk between individual MAPK pathways with improved 

spatial and temporal resolutions is therefore of great importance. Traditional methods 

such as in vitro biochemical assays and fixed cell experiments (128, 169, 177-181) are 

limited in their ability to reveal MAPK dynamics with submicron and seconds resolution. 
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While several versions of fluorescent protein-based reporters of ERK phosphorylation for 

live cell experiments (15, 17, 20) and a dye-based p38 phosphorylation sensor (182, 183) 

for use in unfractionated cell lysate (49) have been reported, activity sensors for their 

activators—MEK1/2 for ERK and MKK3/6 for p38 are not yet available. 

2.2.2 Structures and regulation of MAPKs and MAPKKs 

 
Figure 2.4 Structures of MAPKKs and MAPKK complexes, and a model of a 

MEK1-MEK2 heterodimer.  

The kinase domain, activation loop and other regions are colored in blue, magenta and 

cyan, respectively. The synthetic peptide of p38 is colored in yellow. (a) 

Unphosphorylated Homo sapiens MEK1 [39-382] in complex with ADP, Mg
2+

, Ca
2+

 and 

Na
+
 at 1.90 Å resolutions (PDB: 3EQI) (184). (b) Unphosphorylated Homo sapiens 

MEK1 [39-382] in complex with Mg
2+

, Ca
2+

, Na
+
 and a non-hydrolyzable ATP analog, 

ATP-γS, at 2.1 Å resolutions (3EQD) (184).  (c) Unphosphorylated Homo sapiens MEK2 

[60-393] in complex with ATP, Mg
2+

 and an inhibitor at 3.2 Å resolutions (PDB: 1S9I) 

(185). (d) Homo sapiens MKK6 [44-334] in complex with Mg
2+

 and a non-hydrolyzable 

ATP analog, AMP-PNP, at 2.60 Å resolutions. (PDB: 3VN9) (186). (e) Homo sapiens 

MKK4 [5-389] in complex with a mono-phosphorylated synthetic peptide of p38α [3-10], 

AMP-PNP and Mg
2+

 at 2.60 Å resolutions (PDB: 3ALO) (187). (f) Unphosphorylated 

Oryctolagus cuniculus MEK1 [37-381] in complex with Homo Sapiens KSR [653-931], 

ATP, Mg
2+

 and Cl
-
 at 3.46 Å resolutions (PDB: 2Y4I) (188). The figure was reprinted 

with permissions. (g) A computation model of a MEK1-MEK2 heterodimer (188). The 

figure was reprinted with permissions.  

 

    Structures of MAPKKs Structures of wild type MAPKKs have been solved for MEK1, 

MEK2, MKK4, and MKK6 (Fig 2.4). A co-crystal structure of MKK4 in complex with a 



97 

 

mono-phosphorylated synthetic peptide derived from p38 suggested that MKK4 is likely 

to be auto-inhibited by the binding of a substrate molecule at an allosteric site on the N-

terminal lobe of MKK4, which leads to extension of an α-helix and blockage of substrate 

access to the ATP-binding pocket of MKK4 (187). A recently reported co-crystal 

structure of MEK1 in complex with truncated KSR scaffold protein molecules shed new 

light on the regulation of Raf-MEK-ERK signaling (Fig 2.4f) (188). MEK1 and KSR 

interact with each other through their catalytic sites and some regions at the C-terminal 

lobes near the catalytic sites. MEK1 and MEK2 form both homodimers and 

hetereodimers. The formation of a MEK1-MEK2 heterodimer is found to be responsible 

for modulating the duration and strength of MEK/ERK signaling by affecting the ERK-

mediated phosphorylation of Thr292 of MEK1 (189). The computational model of a 

MEK1-MEK2 heterodimer revealed that the dimerization interface occurs at the 

activation loops of MEK1 and MEK2 (Fig 2.4g). The heterodimer was predicted to have 

a free energy of dimerzation of -15.1 kcal/mol and dissociation constants of 1.1 x 10
-11

 

M
-1

, which are similar to the calculated values for the MEK1 homodimer. There is no 

clear structural information showing how the activator MAPKKs, the substrate MAPKs, 

or the phosphatases bind MAPKKs.  

     Upstream signaling of MEKs    Upstream activators of MEK include PAK1 and 

several MAPKKKs including Raf, MOS, TPL2, and MEKK2 (164). Both MEK1 and 

MEK2 have dual phosphorylation sites for activation: Ser218 and Ser222 in MEK1, 

Ser222 and Ser226 in MEK2. The dual phosphorylation sites of MEK1/2 are mainly 

phosphorylated by Raf family MAPKKK.  Raf isoforms exhibit differential regulation of 

MEK1/2. A-Raf weakly activates MEK1/2. B-Raf prefers to activate MEK1 while Raf-1 
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is capable of activating both. Upon activation by GTP-bound activated GTPases, Rafs are 

recruited to the plasma membrane, the outer membrane of the Golgi apparatus, or other 

putative cellular compartments such as mitochondria and endoplasmic reticulum (ER). 

Constitutively active forms of MEK1 and MEK2 have been obtained by mutating the 

dual phosphorylation sites to charged amino acids. For instance, S218D or S222D 

mutations to MEK1 increase MEK activity by 10-50 fold, and S218D/S222D or 

S218D/S222 E double mutations activate MEK1 about 6000 fold (190).  Other 

phosphorylation sites of MEK1 include Ser212, Thr 286, Thr292, Ser298, and Thr386. 

PAK1 phosphorylates Ser218 and/or Ser222 of MEK1 but does not phosphorylate MEK2 

(191).  Phosphorylation on Ser212 of MEK1 was found to result in inhibition of MEK 

activity both in vitro and in vivo but the upstream regulator has not yet been identified.  

Thr286 and Thr386 of MEK1 can be phosphorylated by Cdk5 (192, 193). When Ser218, 

Ser222, and Ser298 of MEK1 are all phosphorylated, the association of phosphorylated 

MEK1 and its substrate ERK is enhanced. In contrast, phosphorylation of Thr292 of 

MEK1 by activated ERK not only decreases the phosphorylation levels of Ser298 of 

MEK1 but also greatly reduces the binding affinity between phosphorylated MEK1 and 

phosphorylated ERK (194).  

     Subcellular localization of MEKs     Expression of CFP-tagged wild type MEK1 in 

HEK293 cells showed that CFP-MEK1 localizes homogeneously and exclusively in the 

cytoplasm  throughout growth factor-induced stimulation (195), which is consistent with 

immune-staining of total MEK in epidermal growth factor (EGF)-stimulated and phorbol 

12-myristate 13-acetate (PMA)-stimulated Swiss 3T3 cells (196). The observed 

localization is due to the fact that both MEK1 and MEK2 contain a nuclear export signal 
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(NES) in the N-terminal sequence of MEKs. Seger group reasoned that active MEK 

massively translocates to the nucleus and is then rapidly exported to the cytoplasm 

because of the NES signal (197). When they deleted the NES region of MEK, they 

observed substantial accumulation of the MEK mutant in the nucleus in both COS7 and 

HEK 293T cells. The NES-deleted MEK mutant proteins were also found in the 

cytoplasm, cell periphery, and possibly in the lamellipodia regions. Interestingly, 

Tolwinski et al showed that wild type dual-phosphorylated MEKs localized mainly in the 

cytoplasm in resting cells and were enriched in the nucleus in mitotic cells, as visualized 

by immunostaining (198).  

 
Figure 2.5 Signal specificity of MEKs and ERKs is regulated by subsets of scaffold 

proteins.  

A. GPCRs modulate the Raf-MEK-ERK signaling activity in the cytoplasm through β-

arrestin and MORG.  MEKs constitutively associate with KSR to respond to various 

growth factors. MP1/p14 is responsible for growth factor-stimulated MEK-ERK 

signaling in the later endosomes. PEA-15 regulates the Ras-mediated MEK-ERK 

signaling to inhibit apoptosis. Sef sequesters MEK and ERK in the Golgi apparatus. EV: 

endocytic vesicles. EE: early endosomes. RE: recycling endosomes. LE: late endosomes. 

B. IQGAP is an actin-binding molecule that renders Cdc42 and Rac in GTP-bound 
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conformations. MEKs and ERKs are likely to be localized at the tips of microtubes 

through binding of IQGAP and interactions with CLIP170/+TIPs. C. GRK interacting 

GIT molecules interact with multiple proteins, coordinating MEK and ERK to membrane 

trafficking through the action of ARF-GAPs.  Paxillin is both the scaffold and the 

substrate of ERKs at peripheral adhesion complexes. This figure was reprinted from the 

reference (199)  with permission: A.K. Pullikuth et al (2007), Cellular Signaling 19, 

1621-1632.   

 

     Another plausible mechanism contributing to why MEKs are mainly localized in the 

cytoplasm is their association with distinct scaffold proteins in various cellular 

compartments (199-209). These known scaffold proteins include kinase suppressor of 

Ras (KSR) (188, 210, 211), MEK partner 1 (MP1) (212-215), similar expression to FGF 

genes (sef) (216-218), MAP kinase organizer 1 (MORG-1) (219), phosphoprotein 

enriched in astrocytes 15 (PEA-15) (220-222), GRK-interacting protein (GIT1) (223-

225), IQGAP1 (226-230), paxillin (132, 231-234), and β-arrestins (235-237) (Fig 2.5). 

KSR enhances ERK activation by anchoring Rafs, MEKs, and ERKs at the plasma 

membrane. MP1 brings MEKs and ERKs to p14 and endosomes to fully activate ERKs, 

thus MP1 determines how long ERK activation is sustained. In contrast, Sef is important 

for suppression of ERK signaling. Sef has a transmembrane segment and tethers MEK 

and ERK to the Golgi apparatus. Sef preferentially binds to activated MEK and inhibits 

the dissociation of the MEK-ERK complex. As a result, the activated ERKs cannot enter 

the nucleus and mainly activate downstream effectors in the cytoplasm. ERKs have been 

found to co-localize with paxillin (Fig 2.5C) and IQGAP1 (Fig 2.5B). IQGAP1, an actin-

binding protein important for cell-cell adhesion, is also a scaffold protein for EGF-

stimulated activation of the BRAF-MEK-ERK pathway. Paxillin is an important 

cytoskeletal protein that anchors to focal adhesions. Upon stimulation by hepatocyte 

growth factor (HGF), Raf1, MEK, and ERK associate with paxillin (131, 238). The HGF-
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stimulated ERK activation is also promoted by Src-mediated phosphorylation of Tyr118 

of paxillin. Activated ERK then phosphorylates Ser83 of paxillin to enhance recruitment 

of focal adhesion kinase (FAK) to paxillin, resulting in turnover of focal adhesions and 

lamellipodia via the FAK-PI3K-Rac pathaway (239).  The use of biosensors for 

simultaneous imaging of MAPKK and MAPK sensors at specific time and subcellular 

localization will greatly improve the understanding of the complex regulation and 

signaling specificity of MAPK pathways.  

     Structures of MAPKs     All MAPK-binding proteins bind MAPKs through the 

common docking (CD) site of the corresponding MAPK and a second docking site on the 

MAPK surface. Most available structures are complexes of a full length MAPK molecule 

in complex with one or two synthetic peptides derived from the binding partners (Fig 

2.6). Fus3, ste7, ste5, far1, and Msg5 are a MAPK, a MAPKK, a scaffold protein, a 

MAPK substrate, and a MAPK phosphatase in yeast. The co-crystal structures of 

unphosphorylated p38α in complex with the full length MAPK-activated protein kinase-2 

(MK2), a substrate of p38α (Fig 2.6j, PDB: 2OZA (240) , 2OKR (241)  and 2ONL (241) 

), provide a clear picture of how MAPK susbstrates bind MAPKs; p38α interacts with 

MK2 through the CD site and the substrate binding site near the catalytic site of p38α. It 

has been determined that unphosphorylated and activated p38α binds inactive MK2 with 

a Kd of 2.5 nM and 6.5 nM, respectively (242). The binding interaction between 

unphosphorylated p38 and MK2 has a proposed role in regulating the transport of the 

p38-MK2 complex from the nucleus to the cytoplasm because the NLS signal of MK2 

becomes inaccessible when MK2 binds p38, as shown in the co-crystal structures (241). 

In vitro binding assays of unphosphorylated ERK2 with several ERK2 substrates also 
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showed that some ERK2 substrates preferentially bind unphosphorylated ERK2 over 

phosphorylated ERK2 (243). Although there is no direct evidence showing that the 

binding interactions between inactive MAPKs and MAPK substrate proteins do exist in 

vivo, we cannot exclude the possibility that some MAPK substrates might constitutively 

associate with inactive MAPK and compete with the activator MAPKKs. Interestingly, 

the MAP kinase insert region of unphosphorylated p38α showed minimal contacts with 

MK2. Together with the fact that deletions or some mutations in the MAP kinase insert 

region of ERK2 abolished the formation of stable MEK-ERK complex but only caused 

slight to moderate influences on the stability of the ERK-substrate or ERK-phosphatase 

complexes (244), a small environment sensitive fluorophore attached at the MAP kinase 

insert region of MAPK proteins is likely to exhibit fluorescence change specifically to 

MAPKK-MAPK binding interactions, despite the fact that the unphosphorylated dye-

labeled MAPK proteins might still bind to diverse substrates in vivo.  
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Figure 2.6 Structures of MAPKs in complex with full length proteins or synthetic 

peptides derived from ERK-interacting proteins.  

MAPKs and MAPK-interacting proteins are colored in blue and yellow, respectively.  

The MAP kinase insert of MAPKs is highlighted in green and the missing residues are 

represented as magenta spheres. (a) Mus musculus p38α [4-353] in complex with a 

synthetic peptide of MKK3b [97-104] at 2.3 Å resolutions (PDB: 1LEZ) (245) . (b) 

Homo sapiens p38α [4-353] in complex of a synthetic peptide of MKK6 [10-17] at 1.95 

Å resolutions (PDB: 2Y8O, to be published by Barkal et al). (c) Saccharomyces 

cerevisiae fus3 [1-353] in complex with ADP, Mg
2+

 and a synthetic peptide derived from 

Saccharomyces cerevisiae Ste7 [9-20] at 1.55 Å resolutions (PDB: 2B9H) (246) . (d) 

Unphosphorylated Rattus norvegicus ERK2 [8-356] in complex with a synthetic peptide 

derived from MKP-3 [64-74] at 2.5 Å resolutions (PDB: 2FYS) (247) . (e) 

Unphosphorylated Rattus norvegicus ERK2 [10-354] in complex with a synthetic peptide 

derived from the D motif of HePTP [16-31] at 1.90 Å resolutions (PDB: 2GPH) (248) . 

(f) Saccharomyces cerevisiae fus3 [1-353] in complex with a synthetic peptide derived 

from Saccharomyces cervisiae Msg5 [25-38] at 2.5 Å resolutions (PDB: 2B9I) (246) . (g) 

Unphosphorylated Rattus norvegicus ERK2 [9-354] in complex with a synthetic peptide 

derived from a netrin acceptor DCC [148-155] at 1.95 Å resolutions (PDB: 3O71) (249). 

(h) Saccharomyces cerevisiae fus3 [1-353] in complex with a synthetic peptide derived 
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from Saccharomyces cerevisiae Far1 [72-82] at 2.3 Å resolutions (PDB: 2B9J) (246) . (i) 

Mus musculus p38α [5-354] in complex of a synthetic peptide of MEF2 [2-11] at 2.30 Å 

resolutions (PDB: 1LEW) (245) . (j) Homo sapiens p38α [6-353] in complex with Homo 

sapiens MK2 [51-390] at 2.70 Å resolutions (PDB: 2OZA) (240) . (k) Homo sapiens 

JNK1 [6-365] in complex of a synthetic peptide derived from Homo sapiens NFAT3 

[143-154] at resolutions (PDB: 2XS0, to be published by Barkai et al). (l) 

Unphosphorylated Homo sapiens JNK1 [7-363] in complex of a synthetic peptide derived 

from Homo sapiens JIP1 [54-63] at 3.00 Å resolutions (PDB: 3O17, to be published by 

Comess et al). (m) Saccharomyces cerevisiae fus3 [3-353] in complex with two synthetic 

peptides derived from Saccharomyces cerevisiae Ste5 [288-297] and [306-314] at 1.90 Å 

resolutions (PDB: 2F49) (246) .  

 

     Putative binding sites of ERK-interacting proteins by computational analysis    The 

putative binding sites of several known ERK-interacting proteins on the ERK protein 

(Fig 2.7) were recently predicted by the Nussinov group using PRISM, a motif-based 

protein-protein interaction (PPI) prediction method (250) . The target set of ERK-

interacting proteins included an activator MEK1, a scaffold protein—MP1, two 

phosphatases—MKP and PTP, and four substrates—c-Myc, cPLA2, Rsk2, and Mnk1/2. 

These known protein-protein interactions, obtained through the KEGG database, were 

clustered and the potential binding motifs were extracted based on the structural 

similarity of the target proteins using Multiprot. All of the available ERK structures with 

and without binding partners were used as a template set. Hot spots responsible for 

binding affinity and stabilization of the protein complexes were identified by the 

HotPoint webserver. Protein-protein interaction prediction by structural matching 

(PRISM) then generated several potential ERK-target protein complexes through 

comparing the structural and sequence similarities of the target proteins with the known 

binding interactions in the template set. Bad predictions indicating severe steric clashes in 

the putative binding interface were excluded. The flexibility of the complexes was 

refined using FiberDock. According to the predictions, the activator MEK1 and the 
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substrate cPLA2 possibly bind ERK at the same time (Fig 2.7a), while the phosphatase 

MKP3 and the substrate Rsk2 are unlikely to bind ERK simultaneously, owing to the 

large steric clashes of these protein-protein interactions (Fig 2.7b). The generated model 

suggested that MEK1 binds ERK throught the MAP kinase insert. The truncated MEK1 

with a deletion in the N-terminal sequence abolishes the binding between MEK and ERK 

(251). The model also predicted that MEK2 and the scaffold protein MP1 cannot bind 

MEK simultaneously because they share the identical binding site (Fig 2.7c). Although 

the predictions collectively provide a big picture of how the activators, the substrates, the 

phosphatases, and the scaffold proteins could possibly interact with ERK, all the models 

of the ERK-target complexes only contain one binding site on ERK, whereas numerous 

biochemical and structural studies suggest that most ERK-interacting proteins should 

bind ERK in a bipartite manner (141, 145, 252-256).  



106 

 

 
Figure 2.7 Putative binding interfaces of ERK and ERK-interacting proteins 

predicted by PRISM.  

(a) Potential binding sites of individual ERK-interacting proteins mapped on an ERK 

molecule (blue). (b) Model of simultaneous binding interactions of ERK-MEK1 and 

ERK-cPLA2. ERK, MEK1 and cPLA2 were colored in blue, red and magenta, 

respectively (c) Steric clash in the model of simultaneous binding interactions of ERK-

PTP and ERK-Rsk2. ERK, PTP and Rsk2 ware colored in blue, cyan, and brown, 

respectively. (d) Model of complex formation between ERK (blue), MEK1 (red), MEK2 

(grey), and the MP1 scaffold (yellow). This figure was reprinted from the reference (250)  

with permission: G. Kuzu et al (2012), Current Opinion in Structural Biology 22, 367-

377.  

 

      Regulation of ERKs Active MEK1/2 first phosphorylate Tyr185 of ERK2. The 

resulting phosphorylated ERK2 dissociates from MEK1/2 and then associates with 

MEK1/2 again for the second phosphorylation on Thr187 of ERK2 (32, 257, 258). The 

two residues of ERK2 must be both phosphorylated to become fully activated. The dual 

phosphorylation sites of ERK1/2 are dephosphorylated by dual specificity phosphatases 

(DUSPs) (259-265). There are at least 10 DUSPs known to dephosphorylate ERK in 
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mammalian cells and these DUSPs are so-called MAPK phosphatases (MKPs). ERKs are 

also inactivated by protein phosphatase-2 (PP2A) (266) and hematopoietic protein-

tyrosine phosphatase (HePTP) (248, 267), indicating the importance of these 

phosphatases in determining the duration and strength of ERK activation at a specific 

time and place (265, 268, 269). ERK signaling is compartmented inside cells as regulated 

by various scaffold proteins molecules for MEK and ERK (270-272).  

     Downstream of ERKs The majority of ERK substrates are nuclear targets (178, 273, 

274). Upon phosphorylation in the cytoplasm, activated ERKs rapidly translocate to the 

nucleus and regulate gene expression (177, 178, 275-281). For instance ERK 

phosphorylates E twenty-six (ETS)-like transcription factor 1 (Elk1) (180, 243, 259, 282-

285) and mitogen- and stress-activated protein kinases (MSKs) (286-288) at multiple 

sites.  Two products of proto-oncogenes important for growth control are c-fos and v-myc 

myelocytomatosis viral oncogene homolog (c-Myc) (289-291) transcription factors. To 

regulate cell growth and proliferation, ERKs phosphorylate Pol III-specific transcription 

factor B (TFIIIB) (292, 293) which is in charge of the synthesis of 5S rRNA and tRNA 

during protein synthesis. Other key transcription factors that are activated by ERKs in the 

nucleus include activator protein 1 (AP-1) for stimuli-induced gene expression (294-297), 

NFκB for inflammation (200, 273), and B cell lymphoma 2 (Bcl-2) for apoptosis (266, 

298). Cytoplasmic targets of ERKs are crucial for negative feedback regulation of ERK 

signaling. For instance, once SOS is phosphorylated by ERK in the cytoplasm, the SOS-

GRB2 complex becomes destabilized for membrane recruitment, which in turn leads to 

down regulation of the Ras-dependent ERK activation pathway (299). ERK-mediated cell 

motility relies on the phopshorylation of paxillin (131, 132, 232, 234, 300) and myosin 
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light chain kinases (MLCKs) (128, 301, 302) in the cytoplasm.  Another important 

cytoplasmic target of RSKs (286, 303),  activated RSKs translocate to the nucleus and 

phosphorylate many transcription factors, including Ser103 of serum response factor 

(SRF), Ser133 of cyclic AMP response element-binding protein (CREB), and Ser 362 of 

c-fos (288, 304). ERKs also directly phosphorylate MAPK-interacting kinases (MNKs) at 

Thr197 and Thr202 in the cytoplasm (305, 306). Activated MNKs then activate CREB or 

eukaryotic initiation factor-4E (eIF-4E) to regulate translation (306-309). RSKs, MSKs, 

and MNKs can be group together as MAPK activated protein kinases (MAPKAPKs) 

which work together with ERK to phosphorylate hundreds of downstream substrates that 

regulate distinct cell functions including proliferation, growth, survival, differentiation, 

and cell motility (143, 305, 310). Tanimura et al showed that sustained duration of ERK 

activity in the nucleus is responsible for hepatocyte growth factor (HGF)-induced cell 

motility in MDCK cells (311). They observed abolished activation of Elk-1, c-fos, and 

matrix metalloproteinase 9 (MMP-9) when cells were transfected with MKP3, which 

anchored ERKs in the cytoplasm.  

 

2.2.3 Current biosensor designs for reporting spatiotemporal dynamics of MAPK 

signaling in live cells 

 

     Several biosensor designs that report activation of ERK and JNK in live cells have 

been developed by various groups (Fig 2.8). All the biosensor designs were based on 

genetically targetable fluorescent proteins and Förster resonance energy transfer (FRET).        
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Table 2.13Comparison of the reported biosensors for ERK and JNK MAPKs.  

 

      Miu2 (Fig 2.8a), the first biosensor design for visualizing ERK activity in live cells, 

consists of a wild type ERK molecule, a CFP molecule, and a YFP molecule (32). Upon 

phosphorylation by endogenous MEK or dephosphorylation by endogenous 

phosphatases, the CFP-ERK-YFP molecules undergo conformational changes that affect 

the relative orientations and distance between the CFP and the YFP molecules. Ideal 

probes for live cell imaging should exhibit at least a 20% change in FRET/donor ratios 

between the active state and the inactive state, so the small dynamic range of the Miu2 

probe limits its further application (Table 2.1). Other biosensor designs are based on 

substrates of ERK or JNK (15-17, 32, 312). A phosphor-binding domain that binds the 

phosphorylated region and/or a docking domain for recruitment of specific MAPK was 

incorporated into the sensor designs. EKAR (Fig 2.8c), an ERK biosensor based on 

FRET between EGFP and mRFP1, showed a 20% maximum change in FRET ratios and 

a maximum change in fluorescence lifetime of 0.08 ns in two-photon fluorescence 

lifetime imaging microcopy (2p-FLIM) (17). EKAR has also been used to image ERK 

activity in hippocampal neurons. EKAREV, an optimized version of EKAR with a 

maximum change of about 45%, was applied in a high content screen of nuclear ERK 

activity change in response to growth factors or inhibitors (312). In general, the JNK 

biosensors have superior dynamic ranges relative to the currently available ERK 

biosensors (16, 312).  
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Figure 2.8 Existing biosensor designs for ERK and JNK.  

The biosensor design (a) relies on the conformational changes of the ERK fusion proteins 

upon phosphorylation and dephosphorylation. Other designs (b)-(e) use MAPK substrates 

and the binding interactions between phosphorylated substrates and a motif which 

preferentially binds the phosphorylation sites of biosensor proteins.    

 

       Except in the case of Miu2, these sensor designs not only respond to endogenous 

ERK activation but also sense fluctuation from endogenous phosphatases.  Without 

directly sensing the target, accurate measurements of spatial and temporal resolution were 
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hampered by phosphorylation kinetics and the diffusion rate of the biosensor proteins. 

The other two major issues are the use of nuclear export signals (NES)/ nuclear 

localization signals (NLS), and the bulky size of the FRET cassette. The cytoplasmic-

retained versions still have insufficient sensitivity for studying MAPK dynamics in the 

cytoplasm. NES or NLS tags are usually added to the biosensor designs to enhance the 

dynamic range of these biosensor designs in specific subcellular compartments. Since the 

activation of MAPKs by MAPKKs is mainly regulated by scaffold proteins, the appended 

fluorescent proteins in the sensor designs likely limit the access of the biosensor proteins 

to endogenous MAPKs in such multi-protein complexes. Despite the importance of 

MAPKKs, there is currently no way to accurately monitor the signaling dynamics of 

MAPKKs in vivo due to the lack of available biosensors. 
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2.3 Results and Discussion 

2.3.1 Biosensor designs based on dye-labeled ERK2      

     ERK2 activity sensors and MEK1/2 activity sensors were both designed based on dye-

labeled ERK2 with two distinct mechanisms of fluorescence response (Fig 2.9). 

According to previous studies, the measured dissociation constant of the ppMEK1/ERK2 

complex is approximately 0.1 µM while the association constant of ppMEK1 and 

ppERK2 cannot be measured by current experimental methods (32). The inability to 

measure this constant is likely due to a feedback mechanism in which ppERK2 

phosphorylates T292 of ppMEK1 to initiate fast dissociation of the ppMEK1-ppERK2 

complex (164, 313). Based on these facts, new ERK2 activity sensors were designed 

based on a dye-labeled ERK2 molecule that would maintain the capacities of endogenous 

wild type ERK2, including that it is phosphorylated by active upstream MAPK kinase 

MEK1/2, is dephosphorylated by active MAPK phosphatases, and phosphorylates 

substrates of wild type ERK2. Upon activation/phosphorylation by active MEK1/2, an 

ERK2 protein molecule undergoes a large conformational change. To report a 

phosphorylation-induced conformational change of ERK2, a solvent-sensitive dye was 

covalently attached to a solvent-accessible cysteine of ERK2 in a region where major 

conformational changes occur after phosphorylation.  The dye molecule exhibited 

changes in fluorescence in response to the altered hydrophobicity around the dye-

attachment site, resulting from phosphorylation-induced conformational changes. In 

contrast, MEK1/2 activity sensors require a “dead” dye-labeled ERK2 protein molecule 

as an affinity scaffold that specifically binds activated MEK1/2 but not other ERK-

interacting proteins. In this case a solvent-sensitive dye molecule was covalently attached 
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to an engineered cysteine at or near the MEK-ERK binding interface.  Upon binding, the 

dye became brighter when hydrophobicity at the MEK-ERK binding interface increased. 

Since MEK1 and MEK2 MAPKK are the only known upstream activators of ERK2, 

inactivated dye-labeled ERK2 molecules possess great potential of being specific 

reporters of MEK activation.  

 
Figure 2.9 Rational designs of ERK biosensors and MEK1/2 biosensors based on 

dye-labeled ERK2.  

i. Phosphorylated MEK1/2 binds unphosphorylated ERK2 with a Kd of 100 nM; 

phosphorylated ERK2 dissociates from phosphorylated MEK1/2. ii. A dye-labeled ERK 

mimic reports phosphorylation-induced conformation changes by changing fluorescence 

properties of the attached dye molecule. iii. A dye-labeled dead ERK reports binding with 

activated MEK1/2 through a fluorescence change of the attached dye molecule.  

 

      Strategies for selection of the best dye-labeled ERK2 molecules as ERK2 activity 

sensors or as MEK1/2 activity sensors are depicted as a workflow (Fig 2.10). Because it 

is prohibitively labor-intensive to sample all 358 amino acids in Rattus norvegicus ERK2 

for dye attachment, the first step was to determine suitable sites for dye attachment 

through computational approaches.  Each of the predicted sites from this initial set was 

then mutated to a cysteine residue and reacted with an iodoacetamide-containing dye to 
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form a stable covalent linkage. The next step was to construct a library of dye-labeled 

ERK2 from combinations of an ERK2 mutant protein molecule and one of several 

solvent-sensitive dyes.  Each dye-labeled ERK2 construct was then titrated with various 

amounts of active MEK1, both in the absence and in the presence of ATP, to identify 

whether the biosensor candidate senses phosphorylation-induced conformational changes 

of dye-labeled ERK, MEK-ERK binding interactions, or both mechanisms. For MEK1/2 

activity sensor designs, biosensor candidates with more than 20% in vitro fluorescence 

response to MEK binding were then titrated with several test proteins representative of 

the wide array of over 500 known ERK-interacting proteins. Subcellular localization and 

response to known stimuli of the best biosensor candidates were examined in live cells to 

determine whether the biosensor could be useful for investigating biological questions, or 

if further modification of the design was required.  
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Figure 2.10 Work flow for developing ERK biosensor and MEK biosensors based on 

dye-labeled ERK2.  

Step 1: Identification of i) solvent-accessible residues which might undergo large 

conformation changes upon phosphorylation in the case of ERK2 activity sensors and ii) 

solvent-accessible residues located on MEK-ERK binding interface but away from 

docking sites of other ERK-interacting proteins.  Step 2: Preparation of ERK mutants 

with a solely exposed cysteine residue for dye attachment and a paint box of cysteine-

reactive solvent-sensitive dyes. Step 3: Screening, characterization and optimization of 

dye-labeled ERK. Step 4: Validation and redesign of dye-labeled ERK2.  

         As a proof of principle, a library of nine solvent-sensitive merocyanine dyes was 

used to construct biosensors based on dye-labeled ERK2. According to previous work in 

the Hahn laboratory to optimize red merocyanine dyes for live cell biosensor applications 

(45, 56, 57, 314), mero60 (Fig. 2.11) was found to be more solvent-sensitive than all 

other dyes in the library.  A biosensor using this dye was therefore most likely to exhibit 

the largest dynamic range, but its maximum brightness was known to be lower than other 

red dyes. Mero61 is the least solvent-sensitive but the most photostable among the red 

merocyanine dyes, so it might be more useful for time-lapse imaging experiments. 
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Another red dye, mero62, with balanced properties in brightness, photostability, and 

solvent-sensitivity, could serve as an alternative fluorophore to tune dye-protein 

interactions depending on the type of protein interactions encountered. Mero77 and 

mero99, two near infrared merocyanine dyes previously described (see Part 1) were 

employed to generate red-shifted sensor designs that could enable co-imaging of multiple 

dye-based biosensors in the same cell. Mero199, a unique red merocyanine dye which 

can produce an intrinsic ratiometric response, was also tested on dye-labeled ERK with 

the aim of generating MEK1/2 biosensors with intrinsic ratiometric responses for the 

purpose of multiplex imaging. Mero87 has shown well-balanced photophysical 

properties in biosensor designs for activated endogenous Cdc42 and Src family kinases.  

Two other structurally similar derivatives, mero53 and mero221, share the identical 

electron donor, electron acceptor, and conjugation length as mero87 but differ in the 

position of a thiol-reactive iodoacetamide group and the position of a charged sulfate 

group.  These differences can potentially have profound effects on dye-protein 

interactions. Therefore mero87, mero53, and mero221 were chosen as the primary set of 

test dyes for construction and screening of bright and sensitive biosensors based on dye-

labeled ERK2.  
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Figure 2.11 Cysteine-reactive merocyanine dyes used in this study.  

These dyesin the composition of electron donor, electron acceptor, and conjugation 

lengths which determine brightness, labeling efficiency, dynamic range and protein 

stability of biosensor conjugates.  

 

2.3.2 Selection of sites for dye attachment in ERK2      

      Robust biosensors require reproducible one-way reactions in which a dye molecule 

only forms a covalent linkage with the most reactive engineered cysteine residue but not 

with other exposed intrinsic cysteines in the biosensor protein of interest.  Over-labeling 

of other exposed cysteines in biosensor proteins usually results in non-reproducible 

biosensor response as observed in a preliminary study of dye-labeled wild type ERK2, 

which suffered from over-labeling of multiple solvent-accessible intrinsic cysteines. To 

ensure that only the desired cysteine residue is covalently labeled with the solvent-

sensitive dye molecule, all other solvent-accessible intrinsic cysteines in ERK2 must be 

mutated to non-cysteine amino acids.  
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Figure 2.12 Solvent accessible surface area (SASA) analysis of each residue in 

ERK2.  

SASA values were calculated by VMD using the published structures of inactive ERK2 

(PDB: 1ERK) and active ERK2 (PDB: 2ERK). A. Comparison of SASA values at each 

residue in active and inactive conformations of ERK2. B. List of SASA values of 

intrinsic cysteines. C. Location of exposed (colored in red) and buried (colored in blue) 

intrinsic cysteines mapped in the crystal structure of inactive ERK2 (1ERK).  

 

     Residues with sufficient solvent accessibility and minimal steric hindrance for dye 

labeling reactions were identified using computational models including Visual 

Molecular Dynamics (VMD), GetArea and ASAView with the input protein structures of 

inactive/unphosphorylated ERK2 (PDB: 1ERK) and active/dual-phosphorylated ERK2 

(PDB: 2ERK). The estimated solvent accessible surface area (SASA) values of each 

residue in active and inactive conformations of wild type ERK2 were plotted (Fig 

2.12A). Higher SASA values indicate higher accessibility to solvent or dye molecules at 

the residue of interest. Residues with SASA values smaller than 50 Å
2
 are considered to 
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be buried residues in the protein of study. According to the model generated by VMD, 

Cys252 is the most solvent-accessible. Cys159 and Cys164 are partially exposed while 

Cys38, Cys63, Cys125 and Cys214 are essentially buried intrinsic cysteines in both 

active and inactive conformations of wild type ERK2 (Fig 2.12B, Fig 2.12C). Because 

Cys63 was thought to be responsible for sensing ERK conformation changes in the case 

of dye-labeled wild type ERK2 in preliminary studies, C63S, C159S, C164S and C252S 

mutations were introduced into all biosensor constructs.  
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Figure 2.13 Local hydrophobic property of each residue in ERK2.  

A. Hydrophobicity maps of inactive ERK2 (PDB: 1ERK) and active ERK2 (PDB: 

2ERK) created by Discovery Studio Visualizer. B. ∆SNAPP scores of each residue in 

ERK2 calculated by Yetian Chen. C. Solvent-accessible surface area (SASA) values and 

∆SNAPP scores of selected residues for dye attachment in ERK2.  

 

         The initial attempt was to design dye-labeled ERK2 which acts like the wild type 

ERK2 in living cells and shows fluorescence change upon activation/inactivation of the 

dye-labeled ERK2. In this design the solvent-sensitive dye molecule needs to be placed at 
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a region where the dye is able to sense large changes in local hydrophobicity upon 

phosphorylation-induced conformation changes of the dye-labeled ERK molecule itself. 

Structural alignment of the published protein structures of active/phosphorylated ERK2 

(PDB: 2ERK) and inactive/unphosphorylated ERK2 (PDB: 1ERK) (Fig 2.13A) indicated 

that the conformational change mainly occurs around the activation loop of ERK2. With 

the high resolution structures of inactive and active ERK2, residues that undergo large 

conformational changes upon phosphorylation were identified by a model generated by 

Simplicial Neighborhood Analysis of Protein Packing (SNAPP) (315-318) through 

collaboration with Yetain Chen in the Tropsha group at the University of North Carolina 

at Chapel Hill (Fig 2.13B). The SNAPP score of a residue reflects the extent of 

hydrophobicity surrounding the residue, thus the difference of SNAPP scores of a residue 

in inactive and active conformations was used here to predict whether a residue of 

interest will be in a more hydrophobic or in a less hydrophobic environment after 

phosphorylation-induced conformational changes. The SNAPP model was first validated 

using the published biosensor design for Cdc42; Phe271 in the Cdc42-binding domain 

(CBD), the optimized site for dye attachment, was also predicted to be the residue with 

the largest SNAPP score in the model of Cdc42-WASP complex (data not shown). 

Because it is necessary to retain the function of dye-labeled ERK in our designed ERK 

activity sensor, candidate residues located at or near the ATP-binding pocket, the 

activation loop, and the common docking (CD) sites were excluded from the list.  Glu31 

in ERK2 was predicted to be in a more hydrophobic environment after phosphorylation 

while Ala172, Phe181, and Phe329 in ERK2 were predicted to be in a less hydrophobic 

environment after phosphorylation. Ile29, Ser151, Gly228 and Leu333 in ERK2, with 
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∆SNAPP scores close to zero, were chosen as negative controls to validate the predictive 

power of this model. The intrinsic cysteine Cys164 in ERK2, partially solvent-accessible 

and with a moderate ∆SNAPP score of 0.7, was also chosen for dye attachment. The 

solvent-accessible surface area values of these predicted sites for dye attachment are 

listed in Fig. 2.13C. 

       The biosensor designs of MEK1/2 activity sensors rely on inactivated ERK2 mutant 

proteins as affinity reagents which specifically bind to activated MEK1 and MEK2 

MAPKK. The dye molecule needs to be placed at the MEK-ERK binding interface and at 

a distance from the docking sites of other ERK-interacting proteins to ensure specific 

fluorescence response of the designed biosensor constructs. Inactive/unphosphorylated 

ERK2 is known to bind active MEK1/2 and scaffold proteins while 

active/phosphorylated ERK2 interacts with a tremendous number of ERK2 substrates and 

several MAPK phosphatases (203). Additionally, phosphorylated ERK2 is able to form a 

homodimer in the cytoplasm that promotes nuclear translocation of activated ERK2 (319, 

320). Due to the lack of co-crystal structures of ERK and its interacting proteins, the 

alternative approach here was to build a model to map the possible ERK2 binding 

interactions on the crystal structures of active ERK2 (PDB: 2ERK) and inactive ERK2 

(PDB: 1ERK) based on correlation of biochemical and structural studies of known ERK 

mutations (Fig 2.14A). Criteria used to define relevant and irrelevant ERK mutations 

included binding affinity values and phosphorylation rates of ERK mutants, wild type 

ERK regulators, and wild type ERK effectors (141, 146, 253, 282, 320-333). In summary, 

it seems that all ERK-interacting proteins bind ERK in a bipartite manner involving the 

common docking (CD) domain as well as a second region on the protein surface of ERK; 
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active MEK1/2 MAPKKs bind the CD domain, the MAP kinase insert domain, and some 

regions near the activation loop of inactive ERK2.  

 
Figure 2.14 Potential docking sites of ERK-interacting proteins.  

A. Known ERK mutations with corresponding altered ERK function are shown in 

spheres on the structures of inactive ERK2 (blue, PDB: 1ERK) and phosphorylated 

ERK2 (red, PDB: 2ERK). The activation loop is shown in magenta in 1ERK and cyan in 

2ERK. The common docking (CD) site for all ERK-interacing proteins is highlighted in 

yellow. The MAP kinase insert region is highlighted in green. Mutations in ERK which 

alter binding affinity between ERK and MEK were shown as white spheres. Residues of 
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ERK responsible for Ste5-fus3 binding interactions were shown as cyan spheres (PDB: 

2F49). Ste5 and fus3 are homologs of KSR and ERK in yeast. Mutations in ERK which 

alter ERK-substrate binding interactions or phosphorylation kinetics of ERK substrates 

were shown in magenta spheres. Mutations in ERK which alter the ERK-phosphatase 

binding interactions or dephosphorylation kinetics of ERK mutants were shown as green 

spheres. Residues forming homodimerization interface of phosphorylated ERK were 

shown in orange spheres. B. A magnified view of the MAP kinase insert region  with 

inactive ERK2 colored in white. C. Solvent accessible surface area (SASA) values of 

residues at the MAP kinase insert region.  

 

     According to a previous study, deletion of the MAP kinase insert of ERK2 (ERK2-

∆242-271) and single point mutations at Tyr261 or Ser264 of ERK2 were found to 

severely disrupt MEK-ERK binding interactions (244). The same truncation and single 

point mutations in ERK2 showed a slight decrease in ERK-substrate binding interactions 

and ERK-phosphatase binding interactions, indicating that the docking interactions of 

ERK substrates and ERK phosphatases are less dependent on the MAP kinase insert. 

Scaffold proteins are likely to interact with the CD domain and the N-lobe of ERK2 as 

shown in the co-crystal structure of fus3 and two peptides derived from ste5 (PDB: 2F49) 

(334); fus3 and ste5 are homologs of ERK2 and a scaffold protein KSR1 in yeast, 

respectively. There are more than seven existing scaffold proteins for MEK and ERK 

(204, 206, 207, 335); it remains unclear whether all these scaffold proteins bind ERK and 

MEK in the same manner. The docking sites of ERK substrates and MAPK phosphatases 

overlap extensively on active ERK2. In addition, some ERK substrates including c-fos, 

RSK-1 and ELK-1 have a preference to bind unphosphorylated ERK2 with binding 

affinities in the sub-micromolar range (243). An important finding here was the extensive 

overlap between the ERK homodimerization interface, ERK’s substrate binding sites, and 

the sites with large ∆SNAPP scores.  Thus the majority of dye-labeled ERK sensor 

proteins would be likely to exhibit fluorescence changes not only in response to 
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phosphorylation-induced conformational changes of dye-labeled ERK but also due to 

binding interactions with the ERK homodimer or sensor-ERK interacting proteins.  

     Based on these facts, the working hypothesis was that ERK mutant proteins with a dye 

attached at or near the MAP kinase insert are more likely to produce specific fluorescence 

changes in response to activated MEK1/2. The solvent accessibility values of residues 

246-266 in the MAP kinase insert of ERK2 are compared in Fig 2.14C. Except for 

Cys252, Ile254 and Asn255 in ERK2, other residues are located away from the insert or 

in the α-helical structures which might be easily disrupted by mutagenesis.  Thus Cys252, 

Ile254, and Asn255 in ERK2 were chosen as the sites for dye attachment to generate 

MEK1/2 activity sensors.  



126 

 

 
Table 2.24Summary of known mutations in ERK2 that cause altered binding 

affinity and/or phosphorylation kinetics of ERK2.  
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Table 2.2 (Continued) Summary of known mutations in ERK2.   
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Table 2.2 (Continued) Summary of known mutations in ERK2 that cause altered 

binding affinity and/or phosphorylation kinetics of ERK. 
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Table 2.2 (Continued) Summary of known mutations in ERK2 that cause altered 

binding affinity and/or phosphorylation kinetics of ERK. Sources: (a) M.A. Emrick et 

al, 2001; (b) B. Zhou et al, 2006; (c) D.J. Robbins et al, 1993; (d) Emrick et al, 2006; (e) 

J. Zhang et al, 2003; (f) V. Levin-Salomon et al, 2008; (g) T. Zhou et al, 2006; (h) O. 

Abramczyk et al, 2007; (i) C. Tarrega et al, 2005; (j) J.L.Wilsbacher et al, 2006; (k) D. J. 

Robbins et al, 1993; (l) M.N. Yazicioglu et al, 2007; (m) S. Polychronopoulos et al, 

2006; (n) A.W. Whitehurst et al, 2004; (o) B. Zhou et al 2006; (p) A.M. Delaney et al, 

2002; (q) B. Xu et al, 2001; (r) M. Mahalingam et al, 2008. 

 

2.3.3 Generation of ERK2 mutants      

     Full length rat ERK2 with an additional hexa-histidine tag at the N-terminus for 

affinity purification was cloned into a pET23 vector for bacterial expression. Over-

expression of ERK2 mutant proteins in growing bacteria was observed in crude bacteria 

lysate, with an approximate fivefold increase in protein yields induced by 1.0 mM IPTG 
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(Fig 2.14B). IPTG-induced expression in the BL21 (DE3) E.coli strain yielded from 0.02 

to 15 mg of soluble ERK2 mutant proteins per 1 L culture, likely depending on the 

stability of the ERK2 mutant proteins (Fig 2.14A). 6xHis-tagged ERK2 mutant proteins 

with a molecular weight of 42 kDa (theoretical Mw: 42236.48) were prepared in 90-95% 

purity using cobalt-NTA resins (Fig 2.14C).  

 
Figure 2.15 Expression and purification of ERK mutant proteins.  
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A. Weight of soluble ERK2 mutant proteins purified from 1 L culture. B. ERK2 

C63S/C159S/C164S/C252S/F329C was cultured at 32 
o
C untill OD600 reached 0.8, 

followed by IPTG-induced protein expression at 28 
o
C. Lane 1: 0.0 mM IPTG. Lane 2: 

0.2 mM IPTG. Lane 3: 0.5 mM IPTG. Lane 4: 1.0 mM IPTG. C. Purified hexa-histidine 

tagged ERK2 C63S/C159S/C164S/C252S protein. D. Purified dye-labeled ERK2 

C63S/C159S/C164S/C252S/F329C proteins. Lane 1: unlabeled ERK mutant protein. 

Lane 2 & 6: different batches of mero87-labeled ERK mutant proteins. Lane 3, 5 & 9: 

different batches of mero199-labeled ERK mutant proteins. Lane 4 & 8: different batches 

of mero77-labeled ERK mutant proteins. Lane 7: mero221-labeled ERK mutant proteins.  

 

In general, 6xHis-tagged ERK2-EGFP constructs produce a lower amount of soluble 

proteins compared with wild type 6xHis-tagged ERK2, and the purity of ERK2-EGFP 

drops to 70% after affinity purification (date not shown). Both of these findings indicate 

decreased stability of the ERK2-EGFP fusion proteins. Dye-labeled ERK2 mutant 

proteins were purified by size-exclusion chromatography. After dye labeling reactions the 

products contained the dye-labeled ERK2 protein and a side product of a molecular 

weight of approximately 90 kDa (Fig 2.15D). The side product is likely to be a cross-

linked adduct between the iodoacetamide dye and nucleophiles present in ERK2. Dye 

concentrations of dye-labeled ERK2 were used to calculate biosensor concentrations for 

the following fluorescence titration and live cell imaging experiments.  

 

2.3.4 Preparation of test MEK proteins for fluorescence screening      

     Each biosensor candidate requires at least 30 µg of active MEK1 protein for 

fluorescence screening. Therefore the development of protocols for large scale 

production of active MEK1 and other test proteins were necessary to reduce production 

costs.  Expression levels and protein purity after affinity chromatography of the two 

constructs of constitutively active MEK1, 6xHis-tagged MEK1 R4F (MEK1 

∆N3/S218D/S222D), and GST-tagged MEK1DD (MEK1 S218D/S222D) are compared 
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in Fig 2.16. The 6xHis-tagged human MEK1 R4F was expressed in large quantity with 

an average yield of 8 mg protein per 1 L culture. In contrast, all of the GST-tagged 

human MEK1DD constructs were poorly expressed and severely contaminated with 

degradation products containing GST tags (Fig 2.16C, Fig 2.16D). The kinase activity of 

6xHis-tagged MEK1 R4F was however found to be greatly reduced after freeze-thaw 

cycles whereas the GST-tagged MEK1DD remained active to phosphorylate ERK2 under 

the same conditions. Therefore fresh-made 6xHis-tagged MEK1 R4F was used for 

fluorescence titration experiments. Commercially available active MEK1 or GST-tagged 

MEK1DD proteins were used for Western blot analysis. 

 

Figure 2.16 Expression and purifcation of active MEK proteins. 

A. IPTG-induced expression of 6xHis-tagged MEK1 R4F (MEK1 ∆N3/S218D/S222D). 

Cultures were grown at 32 
o
C untill OD600 reached 0.8 and protein expression was 

conducted at 28 
o
C in the presence of IPTG. Lane 1: 0 mM IPTG. Lane 2: 0.2 mM IPTG. 

Lane 3: 0.5 mM IPTG. Lane 4: 1.0 mM IPTG. B. Purified 6xHis-tagged MEK1 R4F. 

Lane 1: Excess MEK proteins in the supernatant after incubation with resins. Lane 2: 
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Insoluble proteins in bacterial lysate. Lane 3: Eluted MEK proteins after affinity 

chromatography. C. IPTG-induced expression of GST-tagged MEK1DD (MEK1 

S218D/S222D). Cultures were grown at 32 
o
C untill OD600 reached 0.8 and protein 

expression was conducted at 26 
o
C or 18 

o
C at various concentrations of IPTG. Lane 1: 

0.2 mM IPTG, 26
o
C. Lane 2: 0.5 mM IPTG, 26

o
C. Lane 3: 1.0 mM IPTG, 26

o
C. Lane 4: 

0.2 mM IPTG, 18
o
C. Lane 5: 0.5 mM IPTG, 18

o
C. Lane 6: 1.0 mM IPTG, 18

o
C. D. 

Purification of GST-tagged MEK1 DD using immobilized glutathione. Lane 1: Eluted 

MEK proteins after affinity chromatography. Lane 2: Insoluble proteins in bacterial 

lysate. Lane 3: Unbound fractions in the supernatant after incubation with resins.  
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2.3.5 Preparation of test proteins for specificity screening      

     The purified test proteins included 6xHis-tagged wild type E twenty-six-like 

transcription factor-1 (ELK-1), 6xHis-tagged MAPK phosphatase-3 (MKP3), GST-

tagged truncated murine wild type kinase-suppressor of Ras 1 (KSR1) 383-619, GST-

tagged truncated non-binding mutant of KSR1 383-619 FSF471-473AAA, GST-tagged 

truncated murine paxillin α (PXNα) 1-338, 6xHis-tagged wild type ERK1 and 6xHis-

tagged wild type MKK3. GST-tagged KSR1 proteins, with a molecular weight of 41 kDa 

(theoretical Mw: 41338.91), were well expressed with an average yield of 10 mg proteins 

per 1 L culture and were isolated in 50% purity after affinity purification by immobilized 

glutathione (Fig 2.17B). GST-paxillin α 1-338 requires further optimization because of 

the low expression levels in both BL21(DE3) and NEB Express I
q
 competent E.coli 

strains at various concentrations of IPTG and at temperatures ranging from 18 
o
C to 37 

o
C (data not shown).  The 6xHis-tagged ELK-1, MKK3, MKP3, ERK1 proteins, prepared 

in moderate yields and purity (Fig 2.17A), were used directly after affinity 

chromatography to prevent activity loss over the course of multiple purification steps.  

 

Figure 2.17 Purified ERK-interacting proteins and controls for specificity test.  

A. Lane 1: 6xHis-tagged wild type ELK-1 proteins. Lane 2: The first batch of 6xHis-

tagged MEK1 R4F proteins. Lane 3: The second batch of 6xHis-tagged MEK1 R4F 

proteins. Lane 4: 6xHis-tagged wild type MKK3 proteins. Lane 5: 6xHis-tagged wild 

type MAPK phosphatase-3 (MKP3). B. Lane 1: Eluted GST-tagged wild type [383-589] 

KSR-1 from immobilized glutathione. Lane 2: Insoluble proteins in bacteria lysate of 
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GST-tagged wild type [383-589] KSR-1. Lane 3: Unbound fractions in the supernatant of 

GST-tagged wild type [383-589] KSR-1 after incubation with resins. Lane 4: Eluted 

GST-tagged [383-589] KSR-1 FSF471-473AAA from immobilized glutathione. Lane 5: 

Insoluble proteins in bacteria lysate of GST-tagged [383-589] KSR-1 FSF471-473AAA. 

Lane 6: Unbound fractions in the supernatant of GST-tagged [383-589] KSR-1 FSF471-

473AAA after incubation with resins.  

 

 
Figure 2.18 Spectral properties of dye-labeled ERK2 conjugates.  

A, B. Labeling efficiency of dye-labeled ERK2. C. Absorption spectra of mero87-

labeled ERK2 C63S/C159S/C164S/C252S/F329C and mero199-labeled ERK2 
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C63S/C159S/C164S/C252S/F329C in phosphate buffer. H and M are denoted for the H-

type aggregates and the monomers, respectively. D. Dye emission intensity of dye-

labeled ERK2.  

 

2.3.6 Properties of dye-labeled ERK2      

     Labeling efficiency, brightness, and absorption spectra of several dye-labeled ERK2 

samples are summarized in Fig 2.18. Labeling efficiency, or dye-to-protein ratio, can be 

affected by the relative solvent accessibility and nucleophilicity of the desired site for dye 

attachment, the degree to which over-labeling of other potentially reactive residues may 

occur, and the residual association of free dyes with the dye-labeled protein molecules. 

Unusually low labeling efficiency at residues with high predicted solvent accessibility 

implies unfavorable dye-protein interactions at the site of dye attachment or severe 

structural destabilization caused by mutations. For example, mero199 was able to label 

ERK2 N255C and ERK2 F329C mutant proteins with moderate dye-to-protein ratios but 

only produced poorly-labeled ERK2 C63, ERK2 C164, and ERK2 F181C (Fig 2.18A). 

Importantly, the labeling control, an ERK2 mutant with no exposed intrinsic cysteines 

(ERK2 C63S/C159S/C159S/C252S), was labeled with a 30% dye-to-protein ratio (Fig 

2.18B). One possible explanation is that the “buried” cysteines—C38S, C125S, and 

C214S in ERK2 become partially solvent accessible because the ERK protein is strongly 

destabilized by the C63S/C159S/C164S/C252S mutations. Methionines, histidines, 

aspartates, glutamates, and N-terminal lysines are also likely to become the major species 

reacting with excess iodoacetamide in the absence of solvent-accessible cysteines.  In 

certain cases, free dye may remain associated with the dye-labeled protein throughout the 

purification process, depending on the hydrophobicity of both the dye and the labeled 

protein. As a result, the primary site for dye attachment in the optimized biosensor 
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construct for biological applications must be confirmed by MALDI analysis. Unlike 

mero87-labeled MeroCBD and mero87-labeled SFK Merobody in which the dye 

absorption peaks were mainly composed of monomeric (M) dye species, all mero87-

labeled ERK2 mutant proteins showed broadening in the absorption peak.  This can be 

attributed to the spectral overlap between the monomeric species and H-aggregates (H) of 

dye molecules (Fig 2.18C Left). Formation of H-aggregates deactivates the excitation 

pathways of the monomeric species and usually causes severe fluorescence quenching. In 

the case of some mero199-labeled ERK2 mutant proteins, absorption from H-aggregates 

was more pronounced than absorption from the monomeric species (Fig 2.17C Right). In 

general observations, the basal brightness of mero87-labeled ERK mutant proteins is 

more constant than mero53-labeled or mero221-labeled ERK mutant proteins.  For 

instance, mero53-labeled ERK2 F329C and mero53-labeled ERK2 S151C exhibited 

similar ratios of H-aggregates and monomers in phosphate buffer (data not shown). 

However, mero53-labeled ERK2 F329C was 1.5 fold brighter than mero53-labeled 

ERK2 S151C. In the case of mero199-labeled ERK2 F329C, in which its H-aggregate 

absorption peak was significantly higher than the monomer absorption peak, the sensor 

protein showed dramatically reduced dye emission intensity, indicating severe 

fluorescence quenching due to dye aggregation. In conclusion, brightness of dye-labeled 

ERK was influenced by both the hydrophobicity of the site of dye attachment and the 

tendency of the conjugates to form non-fluorescent dye aggregates.  
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2.3.7 Mechanisms of action of dye-labeled ERK      

     ERK2 activity sensors require a functional dye-labeled ERK2 molecule that can 

undergo conformational changes upon activation/inactivation. The MEK1/2 activity 

sensors are instead based on dye-labeled dead ERK2 that only binds active MEK1/2 and 

no other ERK-interacting proteins. Because it was unclear how the introduction of C63S, 

C159S, C164S, and C252S mutations might affect the structural flexibility of ERK2, the 

dual phosphorylation sites Thr183 and Tyr185 of the initial set of ERK mutants were not 

mutated. According to Western blot analysis (Fig 2.19A), the labeling control, an ERK2 

mutant with no exposed intrinsic cysteines (ERK2 C63S/C159S/C164S/C252S), cannot 

be efficiently phosphorylated by active MEK1. This mutant also failed to phosphorylate 

ELK-1, a substrate of wild type ERK2. Since the four cysteine-to-serine mutations were 

sufficient to generate inactivated ERK, no additional mutations at the ERK 

phosphorylation sites were required. The representative biosensor candidate ERK2 

N255C (ERK2 C63S/C159S/C164S/C252S/N255C) also showed behavior similar to 

ERK2 T183A/Y185F-EGFP (Fig 2.19B). Western blot analysis of several other ERK2 

mutant proteins all showed much slower or abolished phosphorylation kinetics. The 

strategy of using dye-labeled ERK containing the four cysteine mutations is more likely 

to generate MEK1/2 activity sensors, rather than ERK2 activity sensors.   

 
Figure 2.19 Assessment of phosphorylation kinetics of ERK2 mutants.  
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A. Phosphorylation of wild type ERK2-EGFP, control ERK2 T183A/Y185F-EGFP, and 

ERK2 C63S/C159S/C164S/C252S (ERK2 no Cys) by activator MEK1 was blotted with 

anti-phosphoERK antibody. Phosphorylation of ELK1, an ERK substrate, by wild type 

ERK2-EGFP, ERK2 T183A/Y185F-EGFP and ERK2 C63S/C159S/C164S/C252S was 

blotted with anti-phoshpoELK antibody. B. Phosphorylation of wild type ERK2-EGFP, 

ERK2 T183A/Y185F-EGFP and a biosensor candidate ERK2 

C63S/C159S/C164S/C252S/N255C was blotted with anti-phosphoERK antibody and 

anti-ERK antibody.  

 

         Fluorescence response of dye-labeled ERK towards binding of active MEK1 and/or 

phosphorylation by MEK1 was recorded at various concentrations of 6xHis-tagged 

MEK1 R4F and at multiple time points following addition of ATP in order to monitor 

MEK1-mediated phosphorylation of dye-labeled ERK. Mero87-labeled ERK2 was 

chosen for mechanistic studies because this dye has demonstrated good biosensor 

response when used in other biosensors such as MeroCBD and the SFK Merobody. 

According to the results of fluorescence titration assays, the affinity between the 

biosensor proteins and the target—active MEK1, although weaker than the reported 

binding affinity of unphosphorylated ERK2 and phosphorylated MEK1, was still within  

a useful range to construct biosensors for live cell experiments. All mero87-labeled 

ERK2 mutants showed a dose-dependent fluorescence increase at increasing 

concentrations of constitutively active MEK1 R4F (Fig 2.20). Mero87-labeled ERK2 

L333C (ERK2 C63S/C159S/C164S/C252S/L333C) had the largest dynamic range of 

77% maximum fluorescence increase upon addition of active MEK1. However no 

significant fluorescence change was observed after addition of ATP to active MEK1. 

This result is consistent with a previous finding that these ERK2 mutants cannot be 

phosphorylated by active MEK1 as efficiently as wild type ERK2. A significant drop of 

emission intensity at 2.6 μM of constitutively active MEK1 R4F was observed in the 

fluorescence titration experiments of all dye-labeled ERK2. Signal drops were also seen 
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in the titration experiments of MeroCBD when using very high concentrations of 

constitutively active Cdc42 Q61L.  In both cases, constitutively active kinases or 

GTPases are less thermostable than wild type enzymes. Thus when dye-based biosensors 

have reached the maximum response, higher target concentrations are likely to induce 

aggregation of target proteins or biosensor proteins. Biosensor signals can therefore be 

greatly reduced due to decreased amounts of soluble target proteins or formation of non-

fluorescent dye-aggregates.  
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Figure  2.20 Fluorescence titration of 50 nM dye-labeled ERK2.  

Dye emission intensity of mero87-labeled ERK mutants in the presence of 0, 0.25, 0.55, 

1.4, and 2.8 µM constitutively active MEK1 without (left) and with (right) addition of 

ATP.  

 ERK2 F329C (ERK2 C63S/C159S/C164S/C252S/F329), expressed in large 

quantity and highly accessible for labeling, was first tested with the following dyes: 

mero53, mero60, mero87, mero199, and mero221 (Fig 2.21). Among all biosensor 

candidates, the mero87-labeled ERK2 F329C is brighter and has greater dynamic range 

than other versions (Fig 2.21C). Unlike mero199-labeled MeroCBD, which exhibits an 

intrinsic ratiometric response in the excitation spectra upon binding to GTP-bound 

Cdc42, mero199-labeled ERK2 F329C did not produce a ratiometric response in either 

the excitation or emission spectra (Fig 2.21D). Together with the fact that all mero87-

labeled ERK2 have much smaller dynamic ranges as compared with mero87-labeled 

MeroCBD (9-fold change in dye emission intensity), the change in local hydrophobicity 

of MEK-ERK binding interactions is likely also smaller than the binding interactions 

between Cdc42 and WASP, as probed by these solvent-sensitive fluorophores. 

Interestingly, ERK2 F329C possesses residual ERK activity towards MEK1-mediated 

phosphorylation and phosphorylation of ELK-1, an ERK2 substrate (Fig 2.21E), while its 

fluorescence intensity remains constant after MEK1-mediated phosphorylation (Fig 

2.21B). The possible explanation is that this type of ERK2 mutant can be phosphorylated 

but the phosphorylation-induced conformational changes were undetectable by solvent-

sensitive fluorophores. Western blot analysis of some other unlabeled or dye-labeled 

ERK2 mutant proteins also showed that some versions become more prone to undergo 

MEK1-mediated phosphorylation than the labeling control mutant which has no exposed 

intrinsic cysteines. It is plausible that both the combination of multiple mutations in 
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ERK2 and the degree of dye labeling of ERK2 mutants have strong influences on the 

stability of these biosensor proteins 

 
Figure 2.21 Characterizaiton of dye-labeled ERk2 F329C.  

A. Fluorescence titration of mero87-labeled ERK2 F329 (ERK2 

C63S/C159S/C164S/C252S/F329C) with 0, 276, 552, 1380 and 2760 nM constitutively 

active MEK1 R4F. B. Fluorescence response of mero87-labeled ERK2 F329 before and 

after phosphorylation by MEK1 R4F. C. Maximum fluorescence change of dye-labeled 

ERK2 F329 in the absence and in the presence of MEK1 R4F. D. Excitation and 

emission spectra of mero199-labeled ERK2 F329 in the absence and in the presence of 

MEK1 R4F. E. Western blot analysis of mero87-labeled ERK2 F329. Phosphorylation of 

mero87-labeled ERK2 F329 by MEK1 was blotted by anti-ERK and anti-phosphoERK 

antibodies. Phosphorylation of ELK-1 by mero87-labeled ERK2 F329 was blotted by 

anti-ELK and anti-phosphoELK antibodies.  
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2.3.8 Fluorescence screening of MEK1/2 activity sensors      

     A library of 24 dye-labeled ERK2 mutant proteins was freshly prepared and average 

dye emission intensity values were compared in both the absence and presence of 1000 

nM constitutively active MEK1 R4F proteins. The mero53 version of ERK2 G228C 

(ERK2 C63S/C159S/C164S/G228C/C252C), the mero53 version of ERK2 C252 (ERK2 

C63S/C159S/C164S), and the mero221 version of ERK2 I254C (ERK2 

C63S/C159S/C164S) were not included in the screening because these ERK2 mutant 

proteins precipitated on ice during the freeze-thaw process. All other test biosensor 

proteins either remained soluble after a freeze-thaw cycle or were freshly purified from 

bacteria without freeze-thaw cycles.  In general, mero87-labeled ERK2 mutants have 

greater dynamic range while mero53-labeled ERK2 have less favorable dye-protein 

interactions in this biosensor design (Fig 2.22).   

 
Figure 2.22 Maximum fluorescence change of dye-labeled ERK2.   

Mero53, mero87, and mero221 differ in the positions of iodoacetamide and sulfate 

group attachment.  Dye-labeled ERK mutant proteins (50 nM) were titrated with 

constitutively active MEK1 R4F.  
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     In the case of ERK2 S151C (ERK2 C63S/S151C/C159S/C164S/C252S), mero87-

labeled and mero53-labeled ERK2 S151C became brighter with increasing concentration 

of MEK1 R4F while the fluorescence of mero221-labeled ERK2 became quenched upon 

addition of active MEK1. The orientation of charge-charge interactions of the dye 

molecule appeared to be the most important factor at this residue in proximity to the ATP 

binding site. In the case of ERK2 I29C (ERK2 I29C/C63S/C159S/C164S/C252S), both 

mero87-labeled and mero221-labeled ERK2 I29C showed increases in dye emission 

intensity in the presence of active MEK1, while the dye emission intensity of mero53-

labeled ERK2 I29C was slightly decreased upon binding to active MEK1. All mero87-

labeled ERK2 mutants tested in the screening have sufficient sensitivity for live cell 

imaging, because all of the selected sites for dye attachment are near the activation loop 

and/or near the MAPK kinase insert. It seems that most ERK-binding interactions and 

ERK conformational changes mainly occur near the activity loop. A good negative 

control will be to place a solvent sensitive dye at a residue distant from these regions.   

 
Figure 2.23 Fluorescence response of mero87-labeled ERK2 against ERK 

regulators, ERK substrates, and control proteins.  
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Biosensor response is defined as the increase in dye emission intensity of 50 nM dye-

labeled ERK2 mutant proteins upon addition of 1µM test proteins. ERK regulators 

include constitutively active MEK1 R4F (CA MEK) and wild type MAPK phosphatase-3 

(MKP3). ERK substrates include constitutively active RSK1DD, wild type c-fos, 

constitutively active c-fos, and wild type ELK1. Unrelated test proteins include wild type 

MKK3, wild type ERK1, and BSA.  

 

     Mero87-labeled ERK2 mutants with sufficient dynamic range were titrated with the 

same amount of test proteins (Fig 2.23). The initial pool of representative ERK-

interacting proteins chosen for specificity testing included three types of ERK2 

substrates, two scaffold proteins, one MAPK phosphatase and three un-related proteins. 

c-Fos, a substrate for both ERK and p38, is known to bind unphosphorylated ERK2 with 

a dissociation constant of 0.97 µM through a DEF motif (243). The second representative 

ERK substrate, ribosomal S6 kinase-1 (RSK-1), uses a DEJL motif to bind 

unphosphorylated ERK2 with a dissociation constant of 0.15 µM (243). E twenty-six 

(ETS)-like transcription factor 1 (ELK-1), another shared substrate of ERK and p38, 

binds unphosphorylated ERK2 with a dissociation constant of 0.25 µM using both the 

DEF and DEJL motifs (243). Constitutively active RSK1 DD, wild type c-fos, and 

constitutively active c-fos EE were dialyzed in assay buffer prior to the screening to 

remove glycerol contained in the storage buffer which if left in the sample may influence 

the fluorescence readout of the solvent-sensitive dye mero87.  ERK2 L333C (ERK2 

C63S/C159S/C164S/C252S/L333C) not only exhibited the best response against active 

MEK1 but also showed the maximum increase to wild type MKP3 and wild type ELK-1.  

The dirty specificity profile of ERK2 F329C (ERK2 C63S/C159S/C164S/C252S/F329C) 

likely indicates the exposure of hydrophobic regions due to destabilization of the ERK2 

mutant. Among the library, mero87-labeled ERK2 C252 (ERK2 C63S/C159S/C164S), 

mero87-labeled ERK2 I254C (ERK2 C63S/C159S/C164S/C252S/I254C), and mero87-
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labeled ERK2 N255C (ERK2 C63S/C159S/C164S/C252S/N255C) yielded relatively 

cleaner specificity profiles; these three sites of dye attachment are located at the MAP 

kinase insert region of ERK2. Ile29, Ser151, Cys164 and Gly228 in ERK2 are located 

closer to the substrate binding sites in ERK2.  Dyes labeled at these residues have higher 

fluorescence response to ELK-1.  The use of solvent-sensitive fluorophores also revealed 

that wild type ELK-1 still binds ERK2 mutants with a lower affinity than active MEK1. 

Thus the reversibility of MEK-biosensor and ELK-biosensor binding interactions should 

be examined in greater detail in further studies. In practice, non-specific fluorescence 

response from endogenous ELK-1 may be trivial in live cell imaging experiments since 

the MEK1/2 activity sensor and endogenous ELK-1 are likely to be in different cellular 

compartments. This difference in localization is due to the fact that an ideal MEK1/2 

activity sensor is based on dead ERK, which hardly shuffles into the nucleus due to the 

lack of a phosphorylation-promoted nuclear transport mechanism, while ELK-1 is only 

found inside the nucleus, except in the case of a second function in the cytoplasm of 

neurons (336, 337). The results of biosensor candidate titrations with both constitutively 

active and dominant negative versions of MEK1 and MEK2 MAPK kinase proteins, 

GST-tagged MEK1DD, GST-tagged MEK1AA, GST-tagged MEK2DD, and GST-tagged 

MEK2AA, are not reported due to significant non-specific response from impurities 

present in the preparations. GST-tagged KSR proteins were also not tested in this 

screening because scaffold proteins are likely to only bind ERK in multi-protein 

complexes, and it remains challenging to reconstruct such protein complexes in vitro. The 

mero87-labeled ERK2 constructs other than ERK2 F329C and ERK2 L333C were 

qualified for further validation in cell experiments.  
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2.3.9 Construction of dye-labeled ERK-EGFP for ratio imaging      

     When quantifying protein activity levels using a dye-based biosensor in live cell 

microscopy, dye fluorescence intensity is not only determined by activation of target 

proteins but is also influenced by illumination settings, biosensor concentrations, and cell 

thickness. It is therefore necessary to normalize dye fluorescence with a second 

fluorophore with an orthogonal emission wavelength. A second fluorophore, usually 

enhanced green fluorescent protein (EGFP) or monomeric Cerulean fluorescent protein 

(mCerulean), was fused to the N-terminus of ERK2 mutants through a Gly-Ser-Gly-Ser 

linker (Fig 2.24A). MEK1/2 activity could then be defined by the relative emission ratio 

of the solvent sensitive dye relative to the fluorescence protein molecule. Fusion of ERK2 

mutants with mCerulean was not successful due to difficulties in cloning the mCerulean 

fragments from the available constructs. EGFP fusions of ERK2 C252, ERK2 N255C and 

ERK2 G228C were successfully cloned into a pET23 bacterial expression vector, but all 

three constructs could not be expressed as full length proteins in BL21(DE3) and NEB 

Express I
q
 E.coli strains. Instead, yellow-to-green colored truncated proteins were 

expressed in these constructs with good yields (>10 mg per 1 L culture). The molecular 

weight of these truncated proteins corresponds to the molecular weight of a GFP 

molecule; the identity of the truncated proteins was later confirmed to contain EGFP 

fragments by Western blotting (Fig 2.24C). As was seen during expression and 

purification of the full length proteins of 6xHis-tagged wild type ERK2-EGFP and 6xHis-

tagged ERK2-EGFP T183A/Y185F, the yields of soluble proteins are much lower than 

the yields of wild type 6xHis-tagged ERK2.  Protein degradation products were observed 

as shown in the SDS PAGE gel (Fig 2.24B). The translational artifacts of expressing 
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these EGFP versions of ERK2 mutants in bacteria were likely due to the dual 

destabilization effects from multiple mutations and from ERK-EGFP fusions. Fusion of 

bulky protein molecules at either the N-terminus or the C-terminus of ERK2 might easily 

disrupt MEK-ERK binding interactions or the overall stability of ERK mutant proteins. It 

has been reported that the C-terminus of wild type ERK2 interacts with the N-terminus of 

MEK1 and the N-terminus of ERK2 is spatially very close to the C-terminus of ERK2. 

An alternative approach would be to insert a circularly permuted fluorescent protein 

molecule into one of the loops in ERK2 to generate more stable biosensor proteins for 

cell experiments. The other option is to modify the N-terminus of ERK2 so that a 

cysteine-reactive dye and a second organic dye with an orthogonal wavelength could be 

used to generate dual-labeled ERK2 through thiol-modification and native chemical 

ligation.  

 
Figure 2.24 Construction of ERK-EGFP fusion proteins for ratio imaging.  

A. Design of ERK-EGFP fusion proteins. T183 and Y185 in ERK2 are the 

phosphophoryltion sites for MEK1/2. B. Purified 6xHis-tagged wild type ERK-EGFP and 

truncated protein products from bacteria expressing ERK2 C63S/C159S/C164S EGFP, 

ERK2 C63S/C159S/C164S/C252S/N255C, or ERK2 C63S/C159S/C164S/ 

G228C/C252S.  C. Identity of truncated protein products was confirmed by anti-ERK and 

anti-GFP antibodies.  
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2.3.10 Live cell imaging of dye-labeled ERK2       

     Mero87-labeled ERK2 S151C was successfully loaded into mouse embryo fibroblasts 

stably expressing YPet fluorescent proteins (Fig 2.25) through bead loading. Freshly 

prepared mero87-labeled ERK2 N255C and mero87-labeled G228C failed to enter cells 

via bead loading and produced high fluorescence backgrounds.   Biosensor ratios were 

obtained by dividing a dye fluorescence image with a YPet fluorescence image. The 

biosensor ratios were close to zero in the nuclear region and moderate in the cytoplasm, 

with peaks at the cell periphery and at the leading edge. The subcellular localization of 

mero87-labeled ERK2 S151C was in good correlation with the known biology of MEK1 

and MEK2. The N-terminus of MEK1 contains a nuclear export sequence (NES) and the 

only known role of MEK1 is to phosphorylate/activate ERK1/2 in the cytoplasm (164, 

169, 194, 195, 338). MEK2 also phosphorylates/activates ERK1/2; the other role of 

MEK2 is to form a heterodimer with MEK1 to regulate MEK1 activation in the 

cytoplasm (189).  In contrast, ERK2 is activated in the cytoplasm and is believed to 

rapidly translocate into the nucleus through formation of homodimers of phosphorylated 

ERK2 (279, 319, 320, 339). Therefore, under serum-stimulated conditions, the total ERK 

and active ERK are more abundant in the nucleus (Fig 2.25). Significantly, elevated 

biosensor ratios were observed at the leading edge, which is consistent with the fact that 

MEK and ERK are downstream effectors of both Rac GTPases and Src family kinases 

during protrusion and adhesion dynamics (127-130, 156, 191, 300, 340-342). In all cells 

loaded with dye-labeled ERK2 or dye-labeled wild type ERK2-EGFP, high biosensor 

ratios were seen at the cell periphery. More controls are required to identify whether the 

elevated sensor signals at the cell periphery reveal an abundance of active MEK at this 
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region or are artifacts arising from degradation products of sensor proteins in cells. Since 

aggregates of merocyanine dyes are essentially non-fluorescent, and mero87 is very dim 

in water, one possible explanation is that the biosensor protein molecules were rapidly 

recognized and degraded by endogenous proteases or proteasomes within 30 minutes 

after biosensor loading and the cleaved dye molecules then became brighter when they 

were recruited to more hydrophobic microdomains inside cells. The best way to 

distinguish the two mechanisms will be to create a non-binding mutant biosensor and 

compare the fluorescence images. According to the literature, mutations in the common 

docking (CD) sites of ERK2 are insufficient to remove all ERK-interactions because 

these ERK2-interacting proteins bind ERK2 in a bipartite manner (330). Deletion or 

mutation of the MAPK insert in ERK2 was effective to block MEK-ERK interactions in 

yeast two hybrid screening; however, it is uncertain whether these proteins could be 

expressed and purified as stable proteins.  

 
Figure 2.25 Live cell images of a MEK1/2 activity sensor.  

Scale bar: 20 µm. ERK2 C63S/S151C/C159S/C164S/C252S was delivered into NIH 3T3 

mouse embro fibroblasts (MEF) stably expressing YPet fluorescent protein. From left to 
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right: differential interference contrast (DIC) image, YPet fluorescence image, dye 

fluorescence image, and ratio image.  Biosensor ratio is generated by normalizing dye 

emission intensity with YPet emission intensity.  

 

     The other important observation related to the cell morphology differences in these 

brighter biosensor-loaded cells when compared to neighboring biosensor-free cells. Cell 

thickness at the cell edge in biosensor-loaded cells was usually greater than that of 

biosensor-free cells, despite the fact that these biosensor-loaded cells were still capable of 

forming protrusions and filopodia. The use of lower amounts of biosensor proteins will 

be necessary to diminish such dominant negative effects, while the basal brightness of 

biosensor proteins at this concentration must still be sufficient to produce ratioed images 

with signal-to-noise ratios greater than 3.0. Because the basal brightness of the mero87-

labeled ERK2 S151C test construct exhibited only 50% of the average brightness of all 

dye-labeled ERK2 constructs in vitro (Fig 2.18), several other brighter constructs should 

be tested before deciding to replace mero87 with a brighter dye such as mero61 or 

mero199.     

 

2.3.11 Correlation of biosensor properties with protein stability predictions         

     Eris (343, 344), a protein stability prediction server, was used to estimate the change 

in protein stability caused by the sum of multiple mutations (Fig 2.26). The crystal 

structures of active ERK2 (PDB: 2ERK) and inactive ERK2 (PDB: 1ERK) were used as 

the input protein structures.  Backbone structure pre-relaxation prior to simulations and 

the backbone flexibility was modeled in most cases. The Medusa force field was used to 

model the structures and the free energy of the input protein computed by Eris was the 

result of a combination of van der Waals (VDW) interactions, solvation effects, 
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hydrogen-bonding interactions, and backbone-dependent statistical energies . The last 

term is of great importance because it detects the strain on the backbone induced by 

multiple mutations and these effects are taken into consideration by Eris. Positive 

changes in the free energy ∆∆G (∆∆G = ∆G
mutant

 - ∆G
wild-type

) of the mutant of interest 

indicates that destabilization effects are introduced by the mutations. Strong stabilization 

by mutations might also cause malfunction of the mutant proteins, thus the ideal ∆∆G 

values should be close to zero. It is clear that the labeling control, the ERK2 mutant with 

no exposed intrinsic cysteines (ERK2 Cys-free, ERK2 C63S/C159S/C164S/C252S), was 

strongly destabilized as compared to wild type ERK2; ∆∆G between inactive wild type 

ERK2 and inactive mutant is 2.42 kcal/mol and ∆∆G between active wild type ERK2 and 

active mutant is 4.22 kcal/mol.  Only the ERK2 I254C (ERK2 C63S/ 

C159S/C164S/C252S/I254S) construct has a slightly lower ∆∆Ginactive of 2.04 kcal/mol 

and ∆∆Gactive of 2.14 kcal/mol. However these values still imply strong destabilization 

effects. ERK2 F181C (ERK2 C63S/C159S/C164S/F181C/C252S), ERK2 G228C (ERK2 

C63S/C159S/C164S/G228C/C252S), ERK2 C252 (ERK2 C63S/C159S/C164S), and 

ERK2 F329C (C63S/C159S/C164S/C252S/F329C) were predicted to have more than 10 

kcal/mol destabilization in free energy as compared to inactive wild type ERK2.  

Compared to wild type ERK2, these strongly destabilized ERK mutants still retained the 

same features in secondary structures but the orientation of individual residues was very 

distinct as indicated by structural alignment of wild type ERK2 and computed models 

(data not shown).  In conclusion, protein stability of dye-labeled ERK2 needs to be 

improved through the computer-aided selection of mutations. Effects of dye attachment 
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on the stability of biosensor proteins should also be modeled and compared using models 

compatible with unnatural amino acids.  

 
Figure 2.26 Calculated ΔΔG for all tested biosensor constructs.  

Results were obtained from the Eris protein stability predictor using pre-relaxation of 

flexible backbones of protein structures of inactive ERK2 (PDB: 1ERK) and active 

ERK2 (PDB: 2ERK). The change in free energy difference was calculated as: ∆∆G = 

∆G
mutant

 - ∆G
wild-type

. Except ERK2 C63, ERK2 C164, and ERK2 C252, all other mutants 

contain C63S, C159S, C164S, C252C mutations.  

 

      Correlation between estimated protein stability change (∆∆Ginactive) versus average 

protein yields, average labeling efficiency, average biosensor brightness, average 

biosensor response to MEK binding, and average biosensor specificity of ERK2 cysteine 

mutants are plotted in Fig 2.27. ∆∆Ginactive, the change in protein stability between 

inactive conformations of wild type ERK2 and an ERK2 mutant, was used for correlation 

because these purified ERK2 proteins are mainly unphosphorylated, as confirmed by 

Western blotting. The experimental values of ERK2 I29C, ERK2 S151C, ERK2 C164, 

ERK2 G228C, ERK2 C252, ERK2 I254C, ERK2 N255C, ERK2 F329C, and ERK2 

L333C were used for correlation analysis. Average protein yields were measured as 

amounts of soluble proteins purified from a 1 L culture using similar expression and 

purification procedures.  A low correlation coefficient was found between ∆∆Ginactive and 

average protein yields because many samples were expressed with sufficient amounts for 
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assays only once (Fig 2.18). Multiple smaller-scale protein productions or the use of 

ratios of soluble and insoluble fractions as assessed by SDS PAGE and Coomassie blue 

staining should yield more consistent data points for correlation analysis.   Average 

labeling efficiency of each ERK2 cysteine mutant was obtained using the dye-to-protein 

ratios of mero53-labeled, mero87-labeled, and mero221-labeled ERK2 sensor proteins. 

A correlation coefficient of 0.49 was found between labeling efficiency and relative 

stability of inactive biosensor proteins. Since dye concentrations for calculation of 

labeling efficiency include contributions from both dye-labeled proteins and free dye that 

may be non-covalently associated with the surface of biosensor proteins, one possible 

explanation of low correlation between labeling efficiency and protein stability may be 

that, due to  misfolding, the surface of some destabilized mutant proteins becomes more 

hydrophobic than that of wild type ERK2, which results in increased association of free 

dye through hydrophobic interactions. These low-molecular weight non-covalently 

associated free dyes would dissociate from dye-labeled proteins upon denaturing, thus 

ratios of free dyes and dye-labeled proteins could be quantified by SDS PAGE and 

fluorescence gel scanning. Average brightness and average biosensor response of these 

dye-labeled proteins showed no correlation with predicted protein stability of biosensor 

proteins because dyes were attached to different regions on the ERK surface. The 

correlation value would be useful when comparing ERK mutants with an identical site of 

dye attachment, but different combinations of cysteine mutations for removal of intrinsic 

exposed cysteines. Incorporation of protein stability predictions and measurements of 

biosensor proteins into the design of MAPKK activity sensors will be very helpful for 
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understanding how these sensor proteins behave and whether they are truly able to report 

events of interest.        

 
Figure 2.27 Correlation of experimental data with predicted protein stability of 

biosensor proteins.  

∆∆G
inactive

, the change of free energy difference after mutations calculated by Eris, 

represents the predicted protein stability value of ERK mutants. A. Correlation between 

average protein yields and predicted protein stability. Amounts of purified soluble 

proteins from a 1 L culture were used to calculate average protein yields. B. Correlation 

between average labeling efficiency and predicted protein stability. Labeling efficiency 

was defined as the relative concentrations of dyes and proteins of dye-labeled ERK 

measured in phosphate buffer. C. Correlation between average biosensor brightness and 

predicted protein stability. Average biosensor brightness values measured the average 

dye emission intensity values of mero53-, mero87-, or mero221-labeled ERK. D. 

Correlation between average biosensor response and predicted protein stability. Average 

biosensor response was defined as the maximum fluorescence change upon addition of 

constitutively active MEK1. E. Correlation between average biosensor specificity and 

predicted protein stability. Average biosensor specificity is defined as the ratio of 
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fluorescence response towards active MEK1 versus the total amounts of fluorescence 

response against all test proteins. F. A table of correlation coefficients of the above 

comparison.  

 

2.3.12 Future directions: Designing more stable MEK1/2 activity sensors      

     Mutating cysteines to serines might not be the best choice to increase protein stability 

in the case of ERK2, as calculated by i-Mutant and Site-directed Mutator (SDM), 

predictors of protein stability change upon single point mutation. ∆∆G values of single 

point mutations of cysteine-to-serine, cysteine-to-alanine, and cysteine-to-methionine at 

Cys63, Cys159, Cys164, and Cys252 in inactive ERK2 (PDB: 1ERK) and active ERK2 

(PDB: 2ERK) are compared in Fig 2.28. Both i-Mutant and SDM are in general 

agreement that cysteine-to-serine mutations tend to cause much more destabilization on 

ERK protein structures as compared to cysteine-to-alanine and cysteine-to-methionine 

mutations.  In fact, the Cys63 residue remains buried in both inactive conformations of 

wild type ERK2 (SASA at C63 = 0 Å
2
) and ERK2 Cys-free mutant (ERK2 

C63S/C159S/C164S/C252S, SASA at C63 = 6.0 Å
2
) as calculated by Eris and VMD; 

therefore C63S, C63A and C63M mutations in ERK2 result in higher degrees of protein 

destabilization compared to mutations at the more solvent-accessible Cys159, Cys164, 

and Cys252 residues of ERK2. According to predictions by i-Mutant and SDM, ERK2 

C159M/C164M/C252M and ERK2 C63M/C159M/C164M/C252M were superior affinity 

scaffolds with greater stability then the original construct, ERK2 C63S/C159S/C164S/ 

C252S.  
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Figure 2.28 Estimated ∆∆G of cysteine mutations in ERK2.  

The three types of mutations to remove intrinsic solvent-accessible cysteines include Cys 

to Ser, Cys to Ala, and Cys to Met of inactive ERK2 (PDB: 1ERK) and active ERK2 

(PDB: 2ERK),  predicted using i-Mutant and Site-Directed Mutator (SDM). A. ∆∆G 

values of cysteine mutations in inactive ERK2 predicted by i-Mutant. B. ∆∆G values of 

cysteine mutations in active ERK2 predicted by i-Mutant. C. ∆∆G values of cysteine 

mutations in active ERK2 predicted by SDM. D. ∆∆G values of cysteine mutations in 

inactive ERK2 predicted by SDM.  

 

       A good rule in designing dye-labeled ERK2 as MEK1/2 activity sensors is to 

introduce the fewest possible mutations so the generated biosensor proteins can have 

better stability in living cells. Estimated ∆∆Ginactive and ∆∆Gactive values of twenty 

combinations of mutations in ERK2 were predicted by Eris (Table 2.3).  Combinations 

of multiple cysteine-to-methionine mutations stabilize the ERK structure while 

combinations of multiple cysteine-to-alanine or cysteine-to-serine alanine mutations 

introduce slight to severe structural destabilization effects to wild type ERK2. Because 

stable ERK2 mutant constructs may undergo phosphoryation-induced conformational 

changes, while ideal MEK1/2 activity sensors require inactivated ERK2 as the affinity 

reagent, mutations at the dual phosphorylation sites of ERK2 might need to be 
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incorporated to abolish the remaining kinase activity of sensor proteins. The computed 

data predicted by Eris collectively indicate that introduction of the phosphorylation site 

mutations-T183A/Y185F are likely to dramatically decrease the stability of sensor 

proteins. Therefore an alternative, although potentially risky approach is to look for 

constructs that might be stabilized in the inactive conformation and be strongly 

destabilized in the active conformation. For example, the construct ERK2 

C159M/C164M/C252M/I254 was predicted to be stabilized in the inactive form (∆∆G of 

-7.76 kcal/mol) and destabilized in active form (∆∆G of +6.31 kcal/mol). Such constructs 

could be the next starting point for screening and could also be useful to test the 

predictive power of various protein stability prediction models. It would also be 

interesting to compare the conformations of final unphosphorylated and phosphorylated 

ERK2 biosensor constructs via circular dichroism (CD) spectroscopy or amide hydrogen-

exchange NMR (HX-NMR). 
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Table 2.35Predicted ∆∆G values of tested biosensor proteins and newly designed 

constructs.  

 

2.3.13 Generation of MKK3/6 activity sensors based on dye-labeled p38α      

     Simultaneous monitoring of parallel MAPK pathways in the same living cell will 

greatly improve the understanding of when, where, and how these complex and parallel 

pathways coordinate to regulate cell function.  Here this approach was explored through 

the generation of MKK3/6 activity sensors as a proof of concept. MKK3 and MKK6 

MAPKKs are the upstream activators of p38 MAPK; no activity sensors for MKK3 and 

MKK6 have been reported yet. The design of MKK3/6 activity sensors relied on a 

solvent sensitive dye covalently attached to the MAPK insert region of dead p38 (Fig 

2.29A). Unlike ERK2, which has seven intrinsic cysteines, p38α has four intrinsic 

cysteines and only Cys119 and Cys162 are solvent accessible. A published crystal 

structure of p38β C119S/C162S (PDB: 3GC9) was used to estimate the solvent 
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accessible surface area (SASA) at each residue in p38α C119S/C162S. Ser252 in p38 is 

the sole solvent accessible residue at the loop region of the MAP kinase insert in p38, so 

several other residues near the MAPK insert were also taken into consideration (Fig 

2.29B & C). Residues in proximity to the substrate binding region in p38 were excluded 

in accordance with the published co-crystal structures (PDB: 2ONL and 2OZA)(240, 

345) of the complex of unphosphorylated p38α and MAPK activated kinase-2 (MK2). 

Based on these criteria, the primary set of sites for dye attachment included Ala172, 

Asn196, Met198, His199, Tyr200, and Ser252 in p38α. The dual phosphorylation sites of 

p38α remained unaltered in this preliminary study; therefore, all p38-based biosensor 

proteins carried C119S/C162S double mutations and a third point mutation as the site for 

dye attachment.  
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Figure 2.29 Rational designs of MKK3/6 activity sensors based on dye-labeled p38α.  

A. Mechanism of action of a MKK3/6 activity sensor. A “dead” p38 MAPK which 

cannot be phosphorylated by MKK3/6 was designed as the affinity reagent for MKK3 

and MKK6. A solvent-sensitive fluorophore was covalently attached to the MKK-p38 

binding interface and became brighter upon binding to activated MKK3 or MKK6. B. 

Calculated solvent-accessible surface area (SASA) values of some residues at or near the 

MAP kinase insert region of p38β C119S/C162S (PDB: 3GC9). The structure was used 

to mimic the mutation-induced backbone change in p38α C119S/C162S. C. A magnified 

view of the sites chosen for dye attachment.  

 

        Most dye-labeled p38α mutant proteins retain the ability to be phosphorylated by 

MKK6 because the two cysteine-to-serine mutations at Cys119 and Cys162 of p38 have 

limited destabilization effects on protein structures (Fig 2.30B). Mero87-labeled p38α 

N196C (p38α C119S/C162S/N196C), mero221-labeled p38α N196C, mero87-labeled 

p38α H199C (p38α C119S/C162S/N196C), and mero87-labeled p38α Y200C (p38α 

C119S/C162S/Y200C) were 1.2 fold brighter than the brightest mero87-labeled or 
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mero221-labeled ERK2 mutant proteins (Fig 2.30A). The basal phosphorylation level of 

mero87-labeled p38α Y200C was higher than wild type p38α, while other dye-labeled 

p38α proteins exhibited slower phosphorylation kinetics (Fig 2.30B). This finding was 

consistent with the result of fluorescence titrations of biosensor proteins with increasing 

amounts of active MKK6; the dye emission intensity of mero221-labeled p38α Y200C 

continuously increased over time in the presence of both active MKK6 and ATP (Fig 

2.30D). Such apparent fluorescence change caused by phosphorylation-dependent 

conformational changes was also seen in the case of mero87-labeled p38α S252 (p38α 

C119S/C162S/S252C) (Fig 2.30E). Interestingly, mero87-labeled p38α Y200C did not 

show a fluorescence increase after addition of ATP (Fig 2.30C) despite the fact that the 

conjugate could be phosphorylated by MKK6, as quantified by Western blot analysis 

(Fig 2.30B). The main difference between mero87 and mero221 is the position of the 

thiol-reactive iodoacetamide group. Thus the relative spatial orientation of the electron 

donor, the electron acceptor, and the sulfate group differ at the binding surface of 

biosensor proteins and activated targets. Most of the mero87-labeled p38α and mero221-

labeled p38α proteins also exhibited distinct fluorescence response upon phosphorylation 

(Fig 2.30C & D), indicating the importance of the orientation of dye-attachment. 

Mero87-labeled p38α A172C (p38α C119S/C162S/A172C) and mero221-labeled p38α 

N196C (p38α C119S/C162S/N196C), which did not show significant fluorescence 

response towards phosphorylation, have relatively low dynamic ranges of 20% maximum 

fluorescence change upon MKK6 binding (Fig 2.30F). Mero87-labeled p38α S252C and 

mero221-labeled p38α Y200C possess the largest in vitro dynamic range among all 

mero87-labeled and mero221-labeled p38α conjugates. However, the two biosensor 
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candidates respond to both MKK6 binding and phosphorylation-dependent 

conformational changes. Therefore these two sensors require further modification, 

including mutation of the dual phosphorylation sites-Thr180 and Tyr182 to other 

unphosphorylable amino acids.  
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Figure 2.30 Characterization of dye-labeled p38α mutants.  

A. Brightness of 50 nM mero87- or mero221-labeled p38α in phosphate buffer. B. In 

vitro kinase assay of mero87-labeled p38α. Biosensor proteins were phosphorylated by 

constitutively active MKK3 S218E/T222D and analyzed by Western blotting using anti-
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phospho p38 antibody. C. Maximum fluorescence change of mero87-labeled p38α upon 

addition of active MKK6 and upon phosphorylation by MKK6. D. Maximum 

fluorescence change of mero221-labeled p38α upon addition of active MKK6 and upon 

phosphorylation by MKK6. E. Fluorescence response of mero87-labeled p38α S252 

(p38α C119S/C162S/S252C) versus MKK binding or phosphorylation-dependent 

conformational changes. Biosensor proteins were titrated with 0, 12.5, 25, 50, and 100 

nM active MKK6. F. Fluorescence response of mero221-labeled p38α N196 (p38α 

C119S/C162S/N196C) versus MKK binding or phosphorylation-dependent 

conformational changes. Biosensor proteins were titrated with 0, 12.5, 25, 50, and 100 

nM active MKK6.  

 

     In conclusion, the new library of dye-labeled p38α mutants should contain mutations 

at Cys119, Cys162, Thr180 and Tyr182 positions. In addition, since many 

crystallographic structures of phosphorylated p38, unphosphorylated p38, and p38 in 

complex with substrates or small molecule inhibitors have been published, the selection 

of mutations could be guided by protein stability prediction and protein-protein docking 

models.  

 

2.3.14 Characterization of an ERK activity biosensor based on artificial binders     

     A new dye-based biosensor for endogenous activated ERK—pE59RFD was 

characterized in living cells. pE59, the affinity reagent specific to phosphorylated ERK2 

based on designed ankyrin repeat proteins (DARPins) (346, 347), was recently obtained 

from ribosome display through collaboration with Dr. Lutz Kummer at the laboratory of 

Andreas Plückthun at the University of Zurich. The co-crystal structure of pE59 in 

complex with phosphorylated ERK2 (PDB: 3ZUV) (347) aided in the selection of the 

optimal sites for dye attachment and these sensor candidates were characterized by 

biochemical assays prior to live cell experiments. The N123C residue of the pE59 binder 

was covalently labeled with mero87 and the resulting mero87-labeled pE59—pE59RFD 

produced a fluorescence increase in response to binding of phosphorylated ERK2 (Fig 
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2.31A). When mero87 was covalently attached at an engineered cysteine at the N-

terminus, a region away from the pE59-pERK binding interface, the resulting control 

biosensor did not show dose-dependent fluorescence change against purified 

phosphorylated ERK2 (Fig 2.31B). The pE59RFD biosensor construct was tested in NIH 

3T3 cells stably expressing YPet, a yellow fluorescent protein variant. The emission of 

YPet enabled ratiometric imaging of ERK activity to correct for dye fluorescence change 

caused by uneven illumination or varying cell thickness. The pE59RFD sensor can be 

easily loaded into cells via microinjection or bead loading methods due to the small size 

of the sensor proteins. The sensor proteins remain stable in living cells for at least six 

hours after biosensor loading. No significant dominant negative effects were observed 

throughout a wide range of bright and dim biosensor-loaded cells (Fig 2.31D). The raw 

fluorescence images in the dye channel showed apparent nuclear localization of dye 

signals (Fig 2.31C). ERK activity as defined by the ratios of dye to YPet images revealed 

high ERK activity in the nucleus and cell periphery because the majority of ERK 

substrates are transcription factors and regulators of transcription factors. To confirm that 

the elevated biosensor ratios in the nucleolus were real signals, and not artifacts due to 

non-uniform distribution of biosensor proteins and YPet fluorescent protein molecules, a 

single chain biosensor designs based on a solvent sensitive dye and a fluorescent protein 

molecule was constructed. A monomeric Cerulean fluorescent protein molecule was 

fused to the N-terminus of the DARPin fragment through a Gly-Ser-Gly-Ser-Gly-Ser-

Gly-Ser linker or a Gly-Ser-Gly-Ser-Gly-Ser-Gly-Ser-Gly-Ser-Gly-Ser-Gly-Ser-Gly-Ser 

linker. The biosensor ratio images of DARPin pE59-mCerulean also confirmed the 

elevated ERK activity in the nucleolus (Fig 2.31E).  
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Figure 2.31 Characterization of pE59RFD, an ERK activity sensor.  

A, B. Fluorescence titration of mero87-labeled pE59 N123C with various amounts of 

phosphorylated ERK2. Cys-N-terminus served as a negative control as mero87 was 

attached away from the pE59-pERK binding interface. C. pET59RFD was imaged in 

NIH 3T3 mouse embryo fibroblasts (MEF) stably expressing YPet fluorescence protein. 

From left to right: YPet fluorescence image, dye fluorescence image, differential 

interference contrast (DIC) image and dye/YPet ratio image. D. Cell health of biosensor-

loaded MEFs with different concentrations of pE59RFD. Retraction is indicative of 
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perturbation. E.  Ratio image of a YPet-MEF loaded with a single chain ERK activity 

sensor containing the red solvent-sensitive dye mero87 and a fluorescent protein 

molecule Cerulean.  

 

        The image analysis of ERK activity patterns was conducted using MetaMorph 

software. The average ratios of ERK activity in the cytoplasm, in the nucleus, or in the 

nucleolus were measured using the region statistics function (Fig 2.32A). Regions used to 

segment the ERK ratios into the cytoplasm, the nucleus, and the nucleolus were created 

by manual thresholding. Signals outside or inside the thresholded regions were assigned 

to zero depending on the region being studied. The ratio values were normalized against 

the lowest 5% value to compare ratio images obtained from different image acquisition 

settings. It has been well characterized that phosphorylated ERK1/2 can translocate from 

the cytoplasm to the nucleus and activate numerous nuclear targets, including several 

families of transcription factors, the mitogen- and stress-activated protein kinases 

(MSKs), and RSK-related kinases. The biosensor showed a higher abundance of nuclear 

phosphorylated ERK1/2 in non-starved MEF cells relative to cells serum-starved or pre-

incubated with a MEK1/2 inhibitor U0126 prior to biosensor loading (Fig 2.32B & C). 

Some cells exhibited an extremely high concentration of phosphorylated ERK1/2 in the 

nucleolus, implying higher transcriptional activity in these cells (285, 288, 292, 303, 

348). Greatly reduced biosensor response was observed in the weak-binding control 

biosensor where the D46A/R90A mutations in pE59RFD prevent the formation of two 

essential hydrogen bonds in the DARPin/pERK binding interface (Asp46 to K229 in 

pERK2 and Arg90 to pTyr185 in pERK). More importantly, unlike the current ERK 

biosensors that only illuminate ERK activity in the nucleus or in the cytoplasm, the 

fluctuation of the cytoplasmic ERK phosphorylation recorded by the DARPin biosensor 
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is easily visualized by saturating the biosensor ratios in the nucleus region. In the 

cytoplasm, the trafficking and spatiotemporal regulation of ERK1/2 have been shown to 

be governed by MEK1, MEK2, several scaffold proteins, and the MAP kinase 

phosphatase (MKP). In addition to the cytoplasmic targets of ERK1/2 that activate 

certain transcription factors, such as MAPK-interacting kinase 1 (MNK1), MNK2 (291, 

305-309), and ribosomal protein S6 kinases (RSKs) (286, 303, 305, 349, 350), several 

other cytoplasmic substrates of ERK1/2 have been indicated to regulate the feedback 

mechanism of ERK1/2 phosphorylation (351, 352) or to mediate cell movement (129, 

234, 342, 353). While the spatiotemporal regulation of ERK1/2 in the cytoplasm remains 

poorly characterized due to the lack of sensitive ERK biosensors, this DARPin-based 

ERK biosensor could be very useful, particularly for studying the cross-talk of MEK and 

ERK dynamics during cell motility.  
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Figure 2.32 Quantification of ERK activity in living cells.  

A. Average ERK activity in the cytoplasm, in the nucleus, and in the nucleoli was 

quantified using the intensity thresholds. B. Ratio images of pET59RFD in NIH 3T3 

mouse embryo fibroblasts (MEF) with and without pre-treatment of 10 µM U0126, a 

MEK inhibitor.  C. Comparison of the average biosensor ratios of the biosensor in 2% 

fetal bovine serum (13 cells), pre-treated with 10 µM U0126 (46 cells), and a control 

mutant sensor in 2% fetal bovine serum (60 cells).  
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2.4 Conclusions 

      Our approaches have generated sensitive biosensor designs targeting endogenous 

activated MEK1/2 and MKK3/6 MAPKK. The biosensor designs, based on inactivated 

substrates of MAPKK, utilize the capacity of inactivated MAPK protein molecules that 

specifically bind activated MAPKK and are labeled with a bright solvent-sensitive dye 

covalently attached to an engineered cysteine at the MAPKK-MAPK binding interface of 

the inactivated MAPK; the dye changes its fluorescence in response to the increased local 

hydrophobicity induced by MAPKK-MAPK binding interactions. Inactivated MAPK 

affinity scaffolds were obtained through introduction of multiple cysteine-to-serine 

mutations to remove all solvent-accessible intrinsic cysteines. In the case of biosensors 

based on dye-labeled ERK2, all biosensor proteins contain C63S/C159S/C164S/C252S 

mutations as well as an engineered cysteine for dye attachment, whereas in the case of 

biosensors based on dye-labeled p38α, all biosensor proteins contain C119S/C162S 

mutations. As a result, most dye-labeled ERK2 constructs were strongly destabilized and 

could not be efficiently phosphorylated by the activator MEK1, which resulted in a loss 

of the ability to phosphorylate ERK substrates. In contrast, the majority of the dye-

labeled p38α constructs are still capable of being phosphorylated by MKK3 or MKK6, 

probably due to the reduction of protein destabilization effects induced by the two 

cysteine mutations. According to the correlation analysis of biosensor performance 

versus predicted protein stability of each biosensor construct, we determined that the 

incorporation of protein stability predictions will be crucial for future optimization of 

both MEK1/2 and MKK3/6 activity sensors.  
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2.5 Materials and Methods 

     DNA constructs and mutagenesis  Constructs provided from outside sources or 

prepared by previous colleagues are listed as follows: GST-tagged human MEK1 WT in 

pGEX-2t, GST-tagged human MEK1 S218D/S222D (MEK1DD) in pGEX-2t, GST-

tagged human MEK1 S218A/S222A (MEK1AA) in pGEX-2t, GST-tagged human 

MEK2 WT in pGEX-2t, GST-tagged human MEK2 S222D/S226D (MEK2DD) in 

pGEX-2t, GST-tagged human MEK2 S222A/S226A (MEK2AA) in pGEX-2t, GST-

tagged mouse paxillin α (PXNα) 1-338 in pGEX-2t, GST-tagged murine KSR-1 AA383-

519 in pGEX-2t,  GST-tagged murine KSR-1 AA318-519 FSF471-473AAA in pGEX-2t, 

T7-tagged human MEK1 WT, T7-tagged human MEK1 S218D/S222D in pCDNA3, T7-

tagged human MEK1 S218A/S222A in pCDNA3, HA-tagged human MEK2 WT in 

pCDNA3, HA-tagged human MEK2 S222D/S226D in pCDNA3, HA-tagged human 

MEK2 S222A/S226A, human MEK1 WT in pBabeNeo, human MEK1 S218D/S222D in 

pBabeNeo, human MEK1 S218A/S222A in pBabeNeo, human MEK2 WT in pBabeNeo, 

human MEK2 S222D/S226D in pBabeNeo and human MEK2 S222A/S226A in 

pBabeNeo were generous gifts from Dr. John Blenis at the Harvard Medical School. 

6xHis-tagged human MEK1R4F (MEK1 ∆N3/S218E/S222D) and 6xHis-tagged 

ERK2/MEK1R4F in pET vectors were provided by Dr. Melanie Cobb at the UT 

Southwestern Medical Center. 6xHis-tagged MAPK Phosphatase-3 (MKP3) in pRSET 

was obtained from Dr. Alexei Toutchkine. GST-tagged ERK1 WT in pGEX-2t was 

provided by the Gran lab. 6xHis-tagged ELK-1 in pET22b(+), 6xHis-tagged EGFP-

ERK2 WT in pET23, 6xHis-tagged EGFP-ERK2 T183A/Y185F in pET23 and 6xHis-
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tagged EGFP-ERK2 K52R in pET23 were prepared by Dr. Frédérique Gaits. 6xHis-

tagged ERK DAPRin N123C in pDST67 and 6xHis-tagged ERK DAPRin 

D46A/R90A/N123C in pDST67 were provided by Dr. Andreas Plueckthun at the 

University of Zurich. The T7-tagged MEK1 constructs in pCDNA3 were sequenced 

using a forward primer 5’-AAGGCCGGCCACCCAAGAAGAAGCCGACGCCC-3’ and 

a reverse primer 5’- CAAGAAGGCGCGCCTTAGACGCCAGCAGCATGGGTTG-3’. 

The HA-tagged MEK2 constructs in pCDNA3 were sequenced using a forward primer 

5’-AAGGATCCCTGGCCCGGAGGAAGCCGGTG-3’ and a reverse primer 5’- 

CAAGAAGGCGCGCCTCACACGGCGGTGCGCGTGGG-3’. The GST-tagged MEK1 

constructs in pGEX-2t were sequenced using forward primer 5’- 

AAGGCCGGCCACCCAAGAAGAAGCCGACGCCC-3’ and a reverse primer 5’- 

CAAGAAGGCGCGCCTTAGACGCCAGCAGCATGGGTTG-3’. The MEK1 

constructs in pBabeNeo were sequenced using a forward primer 5’-

AAGGCCGGCCACCAATGCCCAAGAAGAAGCCGACG-3’ and a reverse primer 5’- 

CAAGAAGGCGCGCCTTAGACGCCAGCAGCATGGGTTG-3’. The MEK2 

constructs in pBabeNeo were sequenced using a forward primer 5’-

AAGGATCCACCAATGCTGGCCCGGAGGAAGCCG-3’ and a reverse primer 5’- 

CAAGAAGGCGCGCCTCACACGGCGGTGCGCGTGGG-3’. Other constructs in 

pGEX-2t were sequenced using a forward primer 5’-GGGCTGGCAAGCCACGTTT 

GGTG-3’ and a reverse primer 5’- CCGGGAGCTGCATGTGTCAGAGG-3’.  

      Site-directed mutagenesis of rat wild type ERK2 in pET23 was obtained by multi-

step overlap extension PCR using the primers (Integrated DNA Technologies) listed in 

Table 2.4. All mutations were confirmed by sequencing (Eton Bioscience) using a 
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forward primer of 5’-TAATACGACTCACTATAGG-3’ or a reverse primer of 5’-

GCTAGTTATTGCTCAGCGG-3’. The obtained constructs include ERK2 C63S/C252S, 

ERK2 C63S/C159S/C252S, ERK2 C63S/C164S/C252S, ERK2 

C63S/C159S/C164S/S252C, ERK2 C63S/C159S/C164S/C252S/F329C, ERK2 C63S/ 

C159S/C164S/F181C/C252S, ERK2 C63S/C159S/F181C/C252S, ERK2 I29C/C63S/ 

C159S/C164S/C252S, ERK2 C159S/C164S/C252S, ERK2 C63S/C159S/C252S/ 

F329C, ERK2 C63S/C159S/C252S, ERK2 K52R/C63S/C159S/C164S/C252S, ERK2 

C63S/C159S/C164S/C252S/L333C, ERK2 C63S/C159S/C164S/C252S/D319N, ERK2 

C63S/C159S/C164S/C252S, ERK2 C63S/C159S/C164S/C252S/F329C, ERK2 

C63S/C159S/C164S/C252S/I254C, ERK2 C63S/C159S/C164S/G228C/C252S, ERK2 

C63S/C159S/C164S/T183A/C252S/F329C, ERK2 C63S/C159S/C164S/ 

Y185W/C252S/F329C, ERK2 C63S/C159S/C164S/C252S/D316A/D319A.  

      ERK2-EGFP fusion proteins were cloned from the two parent constructs- 6xHis-

tagged ERK2 mutant in pET23 and 6xHis-tagged wild type ERK2-EGFP in pET23. The 

restriction enzyme cleavage sites of BamHI and NotI were added to the 6xHis-tagged 

ERK2 mutant in pET23 by PCR using a reverse primer 5’-

CTCGAGCGCGGCCGCTTGTTAAGATCTGTATCC-3’, a forward primer 5’-

GATCTCGAGGGATCCATGGCACATCACCATC-3’ and the Phusion High-Fidelity 

DNA Polymerase kit (New England BioLabs). ERK2-EGFP fusion proteins were 

prepared from the PCR products of the 6xHis-tagged ERK2 mutants and the entire 

plasmid of 6xHis-tagged wild type ERK2-EGFP in pET23 using BamHI, NotI and Quick 

Ligase (New England BioLabs) according to the manufacturer’s instructions. The double 

phosphorylation site mutations T183A/Y185W were introduced to the new 6xHis-tagged 



176 

 

ERK2-EGFP mutants at the same time using a forward primer 5’-

CATACAGGGTTCTTGGCCGAGTGGGTAGCCACGCGTTGG-3’, a reverse primer 

5’-CCAACGCGTGGCTACCCACTCGGCCAAGAACCCTGTA 

TG-3’ and the QuikChange Site-Directed Mutagenesis Kit (Stratagene). 

       Site-directed mutagenesis of mus musculus wild type p38α was conducted in pTriEx 

and pET23. p38α mutants were cloned with the help of Evan Trudeau. The useful cloning 

products include p38α C119S/C162S, p38α C119S/C162S/A172C, p38α 

C119S/C162S/A172S, p38α C119S/C162S/N196C, p38α C119S/C162S/M198C 

, p38α C119S/C162S/H199C, p38α C119S/C162S/Y200C and p38α C119S/C162S/ 

C252S. Constructs were sequenced using a forward primer 5’- ATATGGATCCATG 

TCGCAGGAGAGGCCCAC-3’ and a reverse primer 5’- ATATAAGCTTTCAGG 

ACTCCATTTCTTCTTGG-3’.  

         ERK DARPin-mCerulean C49S fusion proteins were cloned assisted by Evan 

Trudeau. 6xHis-tagged mCerulean C49S-(GSGS)2-ERK DARPin N123C and 6xHis-

tagged mCerulean C49S-(GSGS)4-ERK DARPin N123C were cloned into pTriEx-3 and 

pDST67. Constructs in pDST67 were sequenced using a forward primer 5’- 

GTTCTGAGGTCATTACTGG-3’ and a reverse primer 5’- GTTCTGAGGTCATTA 

CTGG-3’.  
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Table 2.46Nucleotide sequences of primers for site-directed mutagenesis.  

      Expression and purification of recombinant proteins     Proteins purified from E.Coli 

expression systems include 6xHis-tagged rat ERK2 mutants, 6xHis-tagged rat p38α 

mutants, 6xHis-tagged rat ERK-EGFP fusion proteins, 6xHis-tagged constitutive active 

MEK1 R4F, 6xHis-tagged wild type MEK1, GST-tagged wild type MEK1, GST-tagged 

constitutive active MEK1 S218D/S222D (MEK1DD), GST-tagged dominant negative 

MEK1 S218A/S222A (MEK1AA), GST-tagged wild type MEK2, GST-tagged 

constitutively active MEK2 S222D/S226D (MEK2DD), GST-tagged dominant negative 

MEK2 S222A/S226A (MEK2AA), 6xHis-tagged MKK3 wild type, 6xHis-tagged 

constitutively active MKK3 S189E/T193D (MKK3ED), 6xHis-tagged dominant negative 

MKK3 S189A/T193A (MKK3AA), 6xHis-tagged MAPK Phosphatase-3 (MKP-3), 

6xHis-tagged Elk-1, GST-tagged KSR-1 AA383-519, GST-tagged KSR-1 FSF471-

473AAA , GST-tagged paxillin. BL21(DE3), 6xHis-tagged ERK DARPin N123C, 

6xHis-tagged ERK DARPin D46A/R90A/N123C, 6xHis-tagged mCerulean C49S-

(GSGS)2-ERK DARPin N123C and 6xHis-tagged mCerulean C49S-(GSGS)4-ERK 

DARPin N123C.  Express I
q
 Competent E.coli strains (New England BioLabs or 

Stratagene) were transformed with the various plasmids and plated on LB-agar plates 

containing 100 µg/ml carbencillin. A single fresh transformed colony from a 25 ml LB-

agar plate was inoculated into a culture tube of 1 ml LB medium containing 100 µg/ml 

carbenicillin, grown overnight at 37 
o
C at 245 rpm in an orbital bacterial shake. Bacteria 

pellets were collected by centrifugation at room temperature at 12,000 rpm for 10 min on 

a benchtop centrifuge, re-suspended in 500 µl of glycerol/LB medium (1:1), and stored at 

-80
o
C up to one year. 10 µl of frozen bacterial stock or a single fresh colony from a LB-

agar plate were inoculated in three tubes of 5 ml of LB medium containing 100 µg/ml 
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carbenicillin. The cultures were grown overnight at 32
o
C at 245 rpm in an orbital 

bacterial shaker and then transferred to 1 L of LB medium containing 10 µg/ml 

carbenicillin in a 2 L sterile flask. Details of the customized expression and purification 

protocols for each protein of interest are described as follows.  

For 6xHis-tagged MEK1R4F, 6xHis-tagged wild type MEK1, 6xHis-tagged wild type 

MKK3, 6xHis-tagged MKK3ED and 6xHis-tagged MKK3AA, the 1 L cultures were 

grown at 32 
o
C at 245 rpm to an optical density at 600 nm of 0.8, followed by induced-

expression at 28 
o
C at 245 rpm for 4 hours in the presence of 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 100 µg/ml carbenicillin. The bacterial pellets were 

collected by centrifugation at 4000 rpm at 4 
o
C for 20 min and stored at -80

o
C prior to 

purification. The frozen pellet from a 1 L culture was warmed up on an ice bath and then 

re-suspended in 30 ml MEK lysis buffer (50 mM K2HPO4, 1 mM dithiothreitol, 1 mM 

phenylmethanesulfonylfluoride, 2 mM benzamidine.HCl, 0.25% Tween-20, 10% 

glycerol, pH 8.0). The lysis of the bacterial suspension was conducted on ice using an 

ultrasonic homogenizer (Branson Digital Sonifier) at 70% sonication strength, three 

cycles of 20 seconds and 30 second-intervals for cooling between each cycle. The 

homogenized suspension was transferred into a 35 ml tube and the supernatant was 

collected by centrifugation (Sorvall, model T21) at 7000 rpm under 4
o
C for 20 min.  

Slurry of TALON Metal Affinity Resin (Clontech, 10 mg protein/ml resin capacity) was 

pre-equilibrated with lysis buffer in a 50 mL cornical tube. For 6xHis-tagged MEK1 R4F, 

30 ml homogenized suspension was added into the cornical tube containing 2 ml slurry of 

the pre-equilibrated resin (1 ml resin plus 1 ml lysis buffer). The resulting mixture was 

rotated at 4
o
C on a nutator (BD Clay Adams, model 1105) for 1 hour. The protein-bound 
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resin was collected by centrifugation (Eppendorf, model 5810) at 1800 rpm at 4
o
C, 

washed twice with 50 ml of lysis buffer, and loaded into a polypropylene column 

(BioRad). The protein-bound resin was washed with 30 ml of chilled MEK wash buffer 

(50 mM K2HPO4, 10 mM imidazole, 1 mM DTT, 1 mM PMSF, 2 mM benzamidine.HCl, 

0.25% Tween-20, 10% glycerol, pH 8.0) and the 6xHis-tagged protein fractions were 

eluted with MEK elution buffer (50 mM K2PO4, 150 mM imidazole, 1 mM DTT, 1 mM 

PMSF, 2 mM benzamidine.HCl, 0.25% Tween-20, 10% glycerol, pH 8.0). The collected 

fractions were combined and dialyzed at 4 
o
C overnight in 1 L dialysis buffer (50 mM 

Trizma, 0.2 M NaCl, 0.1% v/v β-mercaptoethanol, 20% glycerol, pH 7.5). Protein 

concentration was estimated using BCA assay and yield was calculated approximately 15 

mg proteins per 1 L culture on average. The purified 6xHis-tagged MEK1 R4F protein 

remains active within a few days on ice and its activity is entirely lost upon any freeze-

thaw cycles. Snap-freeze in liquid nitrogen or preparation in 50% glycerol prior to long-

term storage at -80 
o
C failed to retain its activity to phosphorylated wild type ERK2 

proteins as examined by in vitro kinase assays. Purification of 6xHis-tagged wild type 

MEK1, 6xHis-tagged wild type MKK3, 6xHis-tagged MKK3ED and 6xHis-tagged 

MKK3AA was conducted similarly to the protocol for 6xHis-tagged MEK1R4F except 

the use of 1 ml resin per 1 L culture. These proteins were stored in 40% glycerol at -80 
o
C 

and the constitutively active MAPKK proteins remained active after a single freeze-thaw 

cycle as examined by in vitro kinase assays. The protein concentration for each fraction 

was determined by BCA protein assay kits (Thermo Scientific Pierce) or absorbance at 

280 nm divided by theoretical extinction coefficients (23,620 cm
-1

M
-1

 at 280 nm for 

MEK1 and 29,310 cm
-1

M
-1

 at 280 nm for MKK3).  
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For 6xHis-tagged ERK2 mutant proteins, 6xHis-tagged ERK2-EGFP fusion proteins, 

6xHis-tagged p38α mutant proteins, 6xHis-tagged Elk-1 and 6xHis-tagged MKP-3, the 1 

L cultures were grown at 37
o
C till the optical density at 600 nm of the culture is between 

0.6 and 0.8. The 1 Lcultures for production of 6xHis-tagged Elk-1 and 6xHis-tagged 

MKP-3 were grown at 28
o
C at 245 rpm for 12 hours in an orbital bacterial shaker in the 

presence of 0.5 mM IPTG and 100 µg/ml carbencillin. Expression of 6xHis-tagged 

MAPK proteins were induced at 28 
o
C at 245 rpm for 5 hours in the presence of 0.5 mM 

IPTG and 100 µg/ml carbencillin. Prolonged incubation results in significant amounts of 

sticky bacterial debris. Bacteria pellets were collected and stored using the same protocol 

for 6xHis-tagged MEK1R4F. The frozen pellets were re-suspended in MAPK lysis buffer 

(50 mM Trizma, 500 mM NaCl, 5% glycerol, pH 8.0) and then homogenized according 

to the protocol for MEK1R4F. 2 ml slurry of pre-equilibrated Talon Metal Affinity Resin 

(Clontech) was added to the lysate from the 1 L culture and the resulting mixture was 

rotated at 4
o
C for 1 hour on a nutator. The protein-bound resin was washed with MAPK 

lysis buffer by centrifugation followed by gravity using MAPK lysis buffer in separation 

column. The 6xHis-tagged proteins were eluted by a gradient of imidazole from 0 to 250 

mM in MAPK lysis buffer.  The eluate containing the MAPK proteins was added 1 µLβ-

mercaptoethanol (BioRad) prior to dialysis to reduce all cysteine residues of MAPK 

proteins. The fractions containing 6xHis-tagged Elk-1 and 6xHis-tagged MKP-3 were 

combined and dialyzed at 4
o
C overnight in dialysis buffer (50 mM Trizma, 150 mM 

NaCl, 1 mM EDTA, 1 mM DTT, 5% glycerol, pH 7.5) while the eluate of 6xHis-tagged 

MAPK proteins were dialyzed at 4 
o
C overnight in protein labeling buffer (50 mM 

Na2HPO4, 10% glycerol, pH 7.5). The protein concentration was determined by using 
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absorbance at 280 nm divided by the theoretical extinction coefficients (42,230 cm
-1

M
-1

 

at 280 nm for ERK2, 48,130 cm
-1

M
-1

 at 280 nm for p38α, 56,000 cm
-1

M
-1

 at 490 nm for 

ERK2-EGFP, 33,480 cm
-1

M
-1

 for Elk-1 and 31,190 cm
-1

M
-1

 for MKP-3 ) or BCA protein 

assay kits (Thermo Scientific Pierce). 6xHis-tagged Elk-1 and 6xHis-tagged MKP-3 

proteins were adjusted to 40% glycerol in MAPK dialysis buffer and stored as aliquots in 

-80 
o
C. Portion of the reduced MAPK proteins was concentrated to 100 µM by centrifuge 

at 4000 rpm at 4 
o
C for 20 to 40 min in concentration tubes.(VivaSpin 20 MWCO 10K; 

Eppendorf, model 5810) and stored as 100 µl aliquots in a 0.5 ml low adhesion 

microcentrifuge tube (USA Scientific) at -80 
o
C. Some MAPK mutant proteins formed 

insoluble protein aggregates upon freeze-thaw cycles. All ERK2 and p38α mutant 

proteins for screening were freshly made and immediately used for labeling and assays 

without going through any freeze-thaw cycles.   

For GST-tagged wild type MEK1, GST-tagged MEK1DD, GST-tagged MEK1AA, 

GST-tagged wild type MEK2, GST-tagged MEK2DD, GST-tagged MEK2AA, GST-

tagged KSR-1 AA383-519, GST-tagged FSF471-473AAA and GST-tagged paxillin α 1-

338, the 1 L cultures were grown at 32 
o
C to an optical density of 0.8. Expression of 

GST-tagged proteins was conducted at 28 
o
C overnight in the presence of 1.0 mM IPTG 

and 100 µg/ml carbencillin. The bacteria pellets were collected by centrifugation at 4000 

rpm at 4 
o
C for 20 minutes, stored at -80 

o
C and re-suspended in GST lysis buffer (50 

mM Trizma, 150 mM NaCl, 270 mM sucrose, 0.1 mM EGTA, 1 mM benzamidine.HCl, 

1X protease cocktail, 0.1% v/v β-mercaptoethanol, 0.03% v/v Brij-35, pH 7.5). The 

bacteria lysate was prepared according to the protocol for 6xHis-tagged MEK1R4F. 2 ml 

slurry of pre-equilibrated immobilized glutathione resin (Thermo Scientific Pierce) was 
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added to the supernatant and incubated at 4 
o
C for 2 hours on a nutator. The protein-

bound resins were first washed three times with GST lysis buffer by centrifugation at 

1800 rpm at 4 
o
C, loaded into a polypropylene column and washed again with 60 ml of 

GST lysis buffer at 4
o
C. The GST-tagged proteins were eluted using freshly prepared 

GST elution buffer (33 mM glutathione, 50 mM Trizma, 150 mM NaCl, 270 mM 

sucrose, 0.1 mM EGTA, 1 mM benzamidine.HCl, 1X protease cocktail, 0.1% v/v β-

mercaptoethanol, 0.03% v/v Brij-35, pH 7.5). The eluate was concentrated to 200 µl by 

centrifugation (VivaSpin 20 MWCO 10K; Eppendorf, model 5810) at 4000 rpm at 4 
o
C 

for 10 to 40 minutes depending on the initial volume. The concentrated eluate was loaded 

into a pre-equilibrated Dextran Desalting Column (Thermo Scientific Pierce) and eluted 

with MAP2K dialysis buffer (50 mM Trizma, 0.2 M NaCl, 0.1% v/v β-mercaptoethanol, 

20% glycerol, pH 7.5) to remove excess glutathione molecules and to change the buffer 

composition for the sub sequential in vitro fluorescence titration experiments. Protein 

solutions were adjusted to 40% glycerol in the MAP2K dialysis buffer and stored at 

aliquots at -80 
o
C. Protein concentration was approximated by SDS-PAGE and 

Commassie staining using bovine serum albumin (New England BioLabs) as reference.  

Optimization of expression conditions for GST-tagged MEK1/2 and GST-tagged paxillin 

α 1-338 was performed in a 5 ml mini culture at various concentrations of IPTG and 

temperature. The bacteria pellets were collected by centrifugation at 13,200 rpm at room 

temperature for 10 minutes and lyzed using the BugBuster Protein Extraction Reagent 

(Novagen) according to the manufacturer’s instructions. The soluble fractions of the 

bacteria lysate were analyzed by SDS-PAGE and Commassie Blue staining. Due to the 

substantial amounts of anomalously cleaved GST tags present in the eluate of GST-



184 

 

tagged MAP2K proteins, GST-MEK1DD and GST-MEK2DD were only used for in vitro 

kinase assays.  

The general expression and purification protocol of 6xHis-tagged ERK DARPin 

N123C, 6xHis-tagged ERK DARPin D46A/R90A/N123C, 6xHis-tagged mCerulean 

C49S-(GSGS)2-ERK DARPin and 6xHis-tagged mCerulean C49S-(GSGS)4-ERK 

DARPin in pDST67 was adapted from the previous protocol [cite references]. E.coli 

strain I
q
 express (New England BioLabs) was transformed with various plasmids on LB-

Agar plates containing 1% glucose and 50 µg/ml carbenicillin. A single fresh transformed 

colony was inoculated in 100 ml of LB medium containing 1% glucose and 50 µg/ml 

carbenicillin in a 250 ml sterile culture flask, and the culture was grown at 37 
o
C at 245 

rpm on an orbital bacterial shaker overnight. The overnight culture was scaled up to 1 L 

medium in a 2 L sterile culture flask and grown at 37 
o
C at 245 rpm in an orbital bacterial 

shaker to an optical density at 600 nm of 0.7. Expression of ERK DARPin was conducted 

at 37 
o
C at 245 rpm for 5 hours in the presence of 0.5 mM IPTG, 1% glucose and 50 

µg/ml carbenicillin. The bacteria pellets were collected by centrifugation at 4000 rpm at 4 

o
C for 20 min and stored at -80 

o
C.  

      Protein labeling     Labeling reactions were conducted in the dark at room 

temperature for 1 hour on a rotary shaker by mixing 100 µl of 100 µM reduced MAPK 

proteins in protein labeling buffer and 3 µl of 20-30 mM cysteine-reactive dyes in DMF. 

Tested conjugatable dyes include mero53, mero61, mero77, mero87, mero199 and 

mero221. The reactions were terminated by addition of 1 µL β-mercaptoethanol 

(BioRad) at room temperature for at least 10 minutes prior to separation. Excess dyes 

were removed by passing the reaction mixture through a pre-equilibrated Sephadex G-15 



185 

 

size-exclusion column (GE Healthcare). Concentration of the purified MAPK proteins 

were determined by using absorbance at 280 nm in protein labeling buffer and the 

theoretical extinction coefficients described earlier in the protein purification protocols; 

dye concentrations were then calculated using the extinction coefficients for each dye of 

interest in DMSO (140,000 cm
-1

M
-1

 for mero53, 93,750 cm
-1

M
-1

 for mero61, 12,3746 

cm
-1

M
-1

 for mero77, 10,2520 cm
-1

M
-1

 for mero87, 190,000 cm
-1

M
-1

 for mero199 and 

140,000 cm
-1

M
-1

 for mero221). Dye-labeled proteins with labeling efficiency (dye 

concentration/protein concentration) greater than 100% were subjected to thermal 

denaturation on a heated sand bath, followed by SDS-PAGE; the relative amount of free 

dyes versus the amount of dye-labeled proteins were visualized by Typhoon 9410 gel and 

blot imager (GE Healthcare) and quantified by imageJ software.  

     Fluorescence titrations    50 nM dye-labeled MAPK in assay buffer (40 mM Tris, 0.08 

mM EGTA, 20 mM MgCl2, 0.08% v/v β-mercaptoethanol, 0.08 mg/ml bovine serum 

albumin, 0.05% v/v Brij-35, pH 7.5) was mixed with MAPKK proteins or other test 

proteins.  100 µl samples was prepared in 96-well black glass-bottom microplate (Costar) 

and dye emission intensity values were measured at 580/620 nm for excitation and 

emission on a microplate reader PHERAstar (BMG Labtech). ATP (Sigma-Aldrich) was 

added to the reaction mixture to make a final concentration of 0.25 mM and time-course 

of fluorescence change upon phosphorylation was monitored every five minutes. A 

solution containing the same biosensor concentration was measured to examine degrees 

of photobleaching or dequenching of dye excimers. Excitation and emission spectra of 

biosensor proteins were obtained using a SPEX Fluorolog 3 spectrometer.  
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     In vitro kinase assays    Kinase assays were conducted at 30
o
C in heated water bath 

using 0.03 mg/ml wild type ELK-1, 0.03 mg/ml MAPK or dye-labeled MAPK, and 0.12 

mg/ml active MEK1 (Millipore) or active MKK3ED in assay buffer (10 mM Tris, 1 mM 

dithiothreitol, 10 mM MgCl2). 7 µl of sample was taken from a 30 µl reaction mixture at 

0, 15, 30, 45 and 60 min and then diluted with 8 µl deionized water and 15 µl 2X gel 

loading buffer for SDS-PAGE.      

     SDS-PAGE and Western blot analysis     Antibodies were all purchased from Cell 

Signaling. Samples separated by SDS-PAGE were transferred to a PVDF membrane in 

transfer buffer (25 mM Tris, 192 mM glycine, 20% MeOH, pH 8.3) using Panther Semi-

dry Electroblotting System. Membranes were blocked with blocking solution (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, 5% w/w milk, 3% w/w bovine 

serum albumin, pH 7.4) at room temperature for 1 hour or at 4
o
C overnight. Membranes 

were then washed with TBST buffer (10 mM Tris, 150 mM NaCl, 0.1% v/v Tween-20, 

pH 7.6) three times and incubated in primary antibody solution at room temperature for 2 

hours.  Primary antibodies for ERK, ELK and p38 included mouse antibody for p42 

MAPK (dilution 1:2000), rabbit antibody for phosphor-p44/42 MAPK (dilution 1:1000), 

rabbit antibody for ELK1 (dilution 1:1000), rabbit antibody for pS383 ELK1 (dilution 

1:1000), rabbit antibody for p38 (dilution 1:1000) and rabbit antibody for phosphor-p38 

(dilution 1:1000). The mouse p42 MAPK antibody was prepared in 5% milk in TBST; 

other antibodies were prepared in TBST containing 5% bovine serum album. The 

membranes were then washed with TBST buffer three times and incubated with 

secondary anti-rabbit-HRP (dilution 1:5000) or anti-mouse-HRP (dilution 1:5000) in 

2.5% w/w milk in TBST at room temperature for 2 hours. Upon completion the 
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membranes were washed three times with PBST buffer (137 mM NaCl, 2.7 mM KCl, 10 

mM Na2HPO4, 1.76 mM KH2PO4, 0.1% v/v Tween-20, pH 7.4), incubated in TBST 

buffer at room temperature for 20 min, and dried over air. Labeled proteins were 

visualized using ECL western blotting substrates (Pierce) and a developer. Signals in 

each lane were quantified using imageJ software.  

     Cell culture     NIH 3T3 mouse embryonic fibroblasts (MEF) were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM, Cellgro) with 10% fetal bovine serum 

(HyClone, Thermo Scientific) and 2 mM GlutaMax (Gibco, Life Technologies) and 

grown in a 37 °C humidified incubator with 5% CO2 atmosphere.  

     Microscopy    The YPet MEF cells were plated on glass coverslips coated with 

fibronectin (Sigma-Aldrich) overnight. A bead loading method (425-600 microns, Sigma) 

was used to introduce the dye-labeled ERK or dye-labeled pET59RFD proteins (10 μl of 

20 μM biosensor solution) into the YPet MEFs.  Bead loaded cells were gently washed 

with 1 ml of phosphate saline buffer (DPBS) twice and recovered in 2ml of imaging 

medium in 37
o
C incubator with 5%CO2 for at least 30 min prior to imaging. For 

depleting endogenous phosphorylated ERK1/2 cells were pre-incubated with 10 μM 

U0126 in the culture serum containing 0.2% fetal bovine serum before bead loading. 

Imaging was conducted on a motorized inverted fluorescence microscope (IX81F-3, 

Olympus) equipped with a ZDC focus drift compensator (IX2-ZDC, Olympus), a cooled 

digital 14-bit CCD camera (CoolSnap ES-2, Roper Scientific), a 100 W mercury arc lamp 

and a 40X UPlanFLN 1.3 NA oil immersion objective. The microscope was controlled 

with MetaMorph imaging software (Molecule Devices). An ET-sputtered multi-band 

dichroic mirror (440/505/585, 89006, Chroma) was used with the band filters for YPet 
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(ET500/20X & ET535/30M, Chroma), mero87 (HQ572/35X & ET632/60M, Chroma) 

and mCerulean (ET430/24X & ET470/24M). Images and movies were acquired and 

processed using the imaging routines previously described.  

     Estimation of solvent accessible surface area (SASA) per residue     The crystal 

structures of inactive/unphosphorylated ERK2 (PDB: 1ERK) and active/phosphorylated 

ERK2 (PDB: 2ERK) and unphosphorylated p38β C119S/C162S (PDB: 3GC9) were used 

to calculate solvent-accessible surface area (SASA) values of each residue in proteins by 

Visual Molecular Dynamics (VMD),  GetArea or ASAView software. The script for 

computing SASA values by VMD: 

  

set allsel [atomselect top all]  

set residlist [lsort -unique [$allsel get residue]] 

foreach r $residlist {  

  set sel [atomselect top "residue $r"]  

  set rsasa [measure sasa 1.4 $allsel -restrict $sel]  

  $sel set user $rsasa  

  $sel delete  

  puts "residue $r, sasa: $rsasa" 

mol modcolor 0 [molinfo top] User  

mol colupdate 0 [molinfo top] 1  

mol scaleminmax [molinfo top] 0 auto 

     Estimation of relative protein stability of each ERK mutant     The crystal structures of 

inactive ERK2 (PDB: 1ERK) and active ERK2 (PDB: 2ERK) were used for computation 
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analysis of relative protein stabilities of ERK2 mutants. Effects of single point mutations 

in ERK2 were computed using i-Mutant Suites and Site-Directed Mutator (354). Protein 

stability free energy change (∆∆G) and relative solvent accessible area caused by 

specified single-site mutations were both computed by SDM.  Effects of multiple 

mutations on ERK2 were simulated using a web-based protein stability estimation 

program Eris (343, 344).  
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