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Richárd Rimányi
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ABSTRACT

Nathaniel Bushek: Descending G-equivariant line bundles to GIT quotients
(Under the direction of Shrawan Kumar)

In part one, we consider descent of line bundles to GIT quotients of products of flag varieties. Let

G be a simple, connected, algebraic group over C, B a Borel subgroup, and T ⊂ B a maximal torus.

Consider the diagonal action of G on the projective variety (G/B)3 = G/B ×G/B ×G/B. For any

triple (χ1, χ2, χ3) of regular characters there is a G-equivariant line bundle L on (G/B)3. Then, L is

said to descend to the GIT quotient π : [(G/B)3(L)]ss → (G/B)3(L)//G if there exists a line bundle

L̂ on (G/B)3(L)//G such that L |[(G/B)3(L)]ss
∼= π∗L̂.

Let Q be the root lattice, Λ the weight lattice, and d the least common multiple of the coefficients

of the highest root θ of g, the Lie algebra of G, written in terms of simple roots. We show that L

descends if χ1, χ2, χ3 ∈ dΛ and χ1 + χ2 + χ3 ∈ Γ, where Γ is the intersection over root lattices Qs of

all semisimple Lie subalgebras s ⊂ g of maximal rank. Moreover, we show that L never descends if

χ1 + χ2 + χ3 /∈ Q.

In part two, we discuss joint work with Shrawan Kumar. Let g be any simple Lie algebra over C.

Recall that there exists a principal TDS embedding of sl2 into g passing through a principal nilpotent

element of g. Moreover, ∧(g∗)g is generated by primitive elements ω1, . . . , ω`, where ` is the rank

of g. N. Hitchin conjectured that for any primitive element ω ∈ ∧d(g∗)g, there exists an irreducible

sl2-submodule Vω ⊂ g of dimension d such that ω is non-zero on the line ∧d(Vω). We prove that the

validity of this conjecture for simple simply-laced Lie algebras implies its validity for any simple Lie

algebra.

Let G be a connected, simply-connected, simple, simply-laced algebraic group and let σ be

a diagram automorphism of G with fixed subgroup K. Then, we show that the restriction map

R(G)→ R(K) is surjective, where R denotes the representation ring over Z. As a corollary, we show

that the restriction map in the singular cohomology H∗(G)→ H∗(K) is surjective. Our proof of the

reduction of Hitchin’s conjecture to the simply-laced case relies on this cohomological surjectivity.
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INTRODUCTION

In this thesis we consider two separate questions that, in common, utilize the relationship between

Geometric Invariant Theory (GIT) of a simple, complex algebraic group G acting on a variety and

the corresponding representation theory of G. The first problem considers under what conditions a

line bundle L on (G/B ×G/B ×G/B) descends to the GIT quotient (G/B ×G/B ×G/B)//G. The

question of descent in this context has implications to the tensor product decomposition problem.

In part two, we consider a conjecture of N. Hitchin that remains an open question for all simple,

complex Lie algebras g. In joint work with S. Kumar, we prove that if this conjecture holds for all

simple g of simply-laced type, then it holds for all simple g.

0.1 Descending line bundles to (G/B ×G/B ×G/B)//G

Let G be a simple, connected, complex linear algebraic group. Let B be a fixed Borel subgroup

and T ⊂ B a fixed maximal torus. Let g be the Lie algebra of G, and t, b, the Lie algebras of T and

B. Let Λ be the weight lattices of g and X(T ) the character group of T . We let Λ++ denote the

regular weights and X(T )++ = X(T ) ∩ Λ++ the regular characters.

Then (G/B)3 = (G/B ×G/B ×G/B) is a projective variety with a natural action of G given by

the diagonal of left multiplication. Let L be an ample line bundle on (G/B)3. By taking the external

tensor product of three ample G-equivariant line bundles associated to a regular characters on G/B,

ample line bundles on (G/B)3 correspond to triples of regular characters on T . Let L(χ1, χ2, χ3)

be the line bundle associated to the triple of regular characters (χ1, χ2, χ3). Then, we consider the

following question.

Question 0.1.1. What conditions can be placed on a triple of regular characters (χ1, χ2, χ3) to

know that the corresponding line bundle L(χ1, χ2, χ3) on (G/B)3 will or will not descend to the GIT

quotient (G/B)3//G?

Although the question of descending line bundles has been considered in many contexts (e.g.,

[24]), the primary model for descent in this context comes from the work of Shrawan Kumar. In [17],
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Kumar considered the descent question for the GIT quotient (G/P )//T , where B ⊂ P is a parabolic

and the torus action is by left multiplication. Line bundles over G/P correspond to a single dominant

weight χ (Kumar considered the simply-connected group) such that χ vanishes on the subspace of t

spanned by the roots of the Levi subgroup of P .

Now, for a simple g, let Γ denote the intersection over all root lattices Qs of all semisimple

Lie subalgebras s of g of maximal rank. Using Borel-de Siebenthal theory (cf. [33]) of maximal

subalgebras, Kumar gives an explicit description of the lattice Γ for each simple g, which is listed in

Table 2.1. Finally, Kumar proves the following ([17], Theorem 3.10).

Theorem 0.1.1. The line bundle L(χ) descends to (G/P )//T if and only if χ ∈ Γ.

When considering descent of a line bundle L(χ1, χ2, χ3) to (G/B)3//G, the lattice Γ continues to

play an important role. Let d be the least common multiple of the coefficients of the longest root θ of

g when expressed in terms of the simple roots (cf. Table 2.2). The following theorem is the main

result of part one.

Theorem 0.1.2. Given χ1, χ2, χ3 ∈ X(T )++, if χ1, χ2, χ3 ∈ dΛ and χ1 + χ2 + χ3 ∈ Γ, then

L(χ1, χ2, χ3) descends to (G/B)3//G.

The proof of this theorem follows methods similar to those used by Kumar in Theorem 0.1.1. We

utilize Kempf’s ‘descent’ lemma (cf. [9], Theorem 2.3), which states that a line bundle descends if for

every point x ∈ (G/B)3//G such that the orbit G · x is closed in ((G/B)3)ss, the isotropy subgroup

Gx acts trivially on the fiber L(χ1, χ2, χ3)x. However, the case of (G/B)3//G becomes complicated

and additional assumptions are required that keep Theorem 0.1.2 from being optimal. Removing

these assumptions requires a better understanding of ((G/B)3)ss than is currently available. Also,

the isotropy subgroups Gx are, in general, unwieldy objects, so an important reduction is to prove

that it suffices to consider only such points x with Gx a reductive group. This reduction is done in

Section 2.2.

We also have the following necessary condition.

Proposition 0.1.1. If χ1 + χ2 + χ3 /∈ Q, then L(χ1, χ2, χ3) does not descend.

Moreover, we show that when (χ1, χ2, χ3) = (2ρ, ρ, ρ), where ρ = 1
2

∑
α∈R+ α, the corresponding

line bundle always descends to (G/B)3//G. Yet, the triple (2ρ, ρ, ρ) violates one or both of the

2



conditions in Theorem 0.1.2 depending on the type of g chosen. Thus, we know that, outside of type

A, Theorem 0.1.2 is not optimal.

The major motivation for the descent question is that when L(χ1, χ2, χ3) descends to a line bundle

L̂ on (G/B)3//G, we have the following isomorphism.

H0((G/B)3//G, L̂) ∼= H0((G/B)3,L(χ1, χ2, χ3))G. (1)

Now, using the Borel-Weil theorem, the dimension (over C) of right hand side of equation (1) is

dim[V (χ1)⊗ V (χ2)⊗ V (χ3)]G,

which is exactly the multiplicity of the irreducible representation V (χ1)∗ inside V (χ2)⊗ V (χ3). On

the other hand, the left hand side of equation (1) is, due to the vanishing of higher cohomology,

the Euler-Poincaré characteristic of L̂ over (G/B)3//G. Then, by the Riemann-Roch Theorem for

singular varieties, this value varies polynomially on open convex subsets of X(T )++.

In this sense, we say that the tensor product multiplicity function is piecewise polynomial. This

work is still in progress. The method for proving piecewise polynomiality is understood and follows as

in [19], yet the sectors of polynomiality are not yet known. Having a full description of the sectors of

polynomiality depends on knowing precisely which line bundles have a semistable locus differing from

the stable locus. This has proven a difficult problem since a useful characterization of semistability

and stability is still lacking. Moreover, proving a complete piecewise polynomiality result using our

methods requires optimal conditions for descent.

Piecewise polynomiality of the tensor product multiplicity function is already known separately

by the works of Berenstein-Zelevinsky in [2] and Meinrenken-Sjamaar in [22]. However, the proof

of Berenstein-Zelevinsky is non-constructive and the proof of Meinrenken-Sjamaar uses sympletic

geometry. Our proof method aims to give an explicit construction of the polynomial using algebraic-

geometry, and an explicit description of the sectors of polynomiality. Therefore, we believe this proof

of piecewise polynomiality will be a worthwhile contribution to the literature.

In chapter one, we develop the necessary notation and preliminary theory used in part one of this

thesis. In chapter two, we give the proof of Theorem 0.1.2, prove a necessary condition for descent,

providing the counter example “sufficient is necessary”, and answer a few questions on semistability.
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In the appendix, we develop some characterizations of semistability and stability.

0.2 Diagram Automorphisms, GIT, and Hitchin’s Conjecture

Let g be a simple, complex Lie algebra and G the corresponding simply-connected, connected,

linear algebraic group. In [16], Kostant proved the existence of a unique (up to the action of Ad(G))

embedding of sl2 into g, called a principal TDS, such that the image passes through a principal

nilpotent element of g (i.e., the image meets the open orbit of the nilpotent cone.) Under the adjoint

action of a principal TDS, the Lie algebra g decomposes as a direct sum of exactly ` irreducible

sl2-submodules

g = V1 ⊕ · · · ⊕ V`,

such that

dim(Vi) = 2mi + 1,

where ` is the rank of g and m1, . . . ,m` are the exponents of g.

On the other hand, the singular cohomology H∗(G) = H∗(G,C) with complex coefficients is a

Hopf algebra with co-multiplication induced by the multiplication map of G. Let P (g) ⊂ H∗(G) be

the graded subspace of primitive elements. Then, P (g) has a basis in degrees 2m1 + 1, . . . , 2m` + 1,

where again mi are the exponents of g. We naturally identify H∗(G) with ∧(g∗)g and hence consider

P (g) as a subspace of ∧(g∗)g.

Now, N. Hitchin made the following conjecture [13].

Conjecture 0.2.1. Let g be any simple Lie algebra. For any primitive element ω ∈ Pd ⊂ ∧d(g∗)g,

there exists an irreducible sub-module Vω ⊂ g of dimension d with respect to the principal TDS action

such that

ω|∧d(Vω) 6= 0.

The main motivation for Hitchin behind the above conjecture lies in its connection with the

study of polyvector fields on the moduli space MG(Σ) of semistable principal G-bundles on a smooth

projective curve Σ of any genus g > 2. Specifically, observe that the cotangent space at a smooth

point E of MG(Σ) is isomorphic with H0(Σ, g(E)⊗ Ω), where g(E) denotes the associated adjoint

bundle and Ω is the canonical bundle of the curve Σ. Given a bi-invariant differential form ω of degree
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k on G, i.e., ω ∈ ∧k(g∗)g, and elements Φj ∈ H0(Σ, g(E)⊗ Ω), 1 ≤ j ≤ k, ω(Φ1, . . . ,Φk) defines a

skew form with values in the line bundle Ωk. Dually, it defines a homomorphism

Θω : H1(Σ,Ω1−k)→ H0(MG(Σ),∧k T ),

where T is the tangent bundle of MG(Σ). As shown by Hitchin, the validity of the above conjecture

would imply that the map Θω is injective for any invariant form ω ∈ ∧k(g∗)g (cf. [13]).

The following reduction theorem is the main result of part two ([4] Theorem 2.5).

Theorem 0.2.1. If Hitchin’s conjecture is valid for any simply-laced simple Lie algebra g, then it is

valid for any simple Lie algebra.

More precisely, if Hitchin’s conjecture is valid for g of type (A2`−1;A2`;D4;E6), then it is valid

for g of type (C`;B`;G2;F4) respectively.

Thus, one needs to verify the conjecture only for the simple Lie algebras of types A,D and E. The

reduction of the conjecture from the simply-laced, simple Lie algebras to all simple Lie algebra relies

on the realization of any simple Lie algebra k as the fixed point subalgebra of a diagram automorphism

of an appropriate simple simply-laced Lie algebra g (cf. [28]).

Let K be the algebraic subgroup of G with Lie algebra k, where k is the fixed-point subalgebra

under a diagram automorphism of a simple simply-laced Lie algebra g. We utilized the description of

the root systems given by Springer in [28] to prove the following theorem ([4] Theorem 3.1).

Theorem 0.2.2. The canonical map φ : R(G) → R(K) is surjective, where R(G) denotes the

representation ring of G (over Z).

In particular, the canonical map K//Ad K → G//Ad G, between the GIT quotients, is a closed

embedding.

Let S•(V ) be the symmetric algebra on V . We have the following Lie algebraic analogue ([4]

Theorem 3.4) of the previous theorem.

Theorem 0.2.3. The canonical restriction map ψ : S•(g∗)g → S•(k∗)k is surjective.

Finally, we use H. Cartan’s transgression map (cf. [5], [21])

τ : (S+g∗)g → (∧g∗)g,

5



and similarly for k, and the surjectivity of ψ, to obtain the surjectivity of γo : P (g) → P (k), and

thereby the surjectivity of γ : H∗(G) → H∗(K). In our view, the surjectivity of φ, γ and γo is

of independent interest. Then, the proof of Theorem 0.2.1 relies on constructing a principal TDS

in k which remains a principal TDS in g. We use the surjectivity of γo to lift primitive elements

ωd ∈ ∧d(k∗)k to primitive elements ω̃d ∈ ∧d(g∗)g. In this way, we are able to use non-vanishing

assumptions on ω̃d to imply non-vanishing results of ωd .

In chapter six, we develop the notation and preliminary theory needed for part two of this thesis,

including a full construction of the root datum of K as the fixed point subgroup of G, a discussion of

principal TDS embeddings, and a description of the transgression map. In chapter seven, we give a

full proof of Theorem 0.2.2. Last, in chapter eight, we give a full proof of Theorems 0.2.1 and 0.2.3.

6



CHAPTER 1: NOTATION AND PRELIMINARIES I

In this chapter we give a brief overview of the theory and notation needed for part one of the thesis.

In this first section, we discuss the necessary structure of linear algebraic groups. In section two, we

introduce the basics of Geometric Invariant Theory (GIT) and the ideas fundamental to variation

of GIT quotients. In section three, we discuss the notation and background of the representation

theory of G, as well as the Borel-Weil theorem, which provides the connection between geometry and

representation theory. In section four, we give a quick overview of the intersection theory later used.

1.1 Group Theory

Let G be a linear algebraic group over C, that is, a group that is also a complex affine variety. For

any G, there is a unique maximal, closed, connected, normal, solvable subgroup R(G) of G, called

the radical of G. There is also a unique maximal closed, connected, unipotent subgroup Ru(G) of

G, called the unipotent radical of G. Note that Ru(G) ⊂ R(G). Then, we say that G is reductive if

Ru(G) = {e} and semisimple if R(G) = {e}.

Any maximal, solvable, closed subgroup of G is called a Borel subgroup, denoted by B. Borel

subgroups have the property of being minimal subgroups of G such that the quotient G/B is a

projective variety. All Borel subgroups of G are conjugate to each other. A subgroup of G is called

a torus if it is isomorphic to (C∗)k for some k. The maximal tori of G are all conjugate, and for

any Borel subgroup B, the maximal tori of G contained in B are conjugate by B. We will fix a

maximal torus T contained in a fixed Borel subgroup B. When G is reductive, the Weyl group of G

is W := NG(T )/T , where NG(T ) is the normalizer of T in G, and acts on T by conjugation.

Given any algebraic group G, the tangent space at the identity is a Lie algebra g. Therefore, we

also have Lie algebras b and t corresponding to B and T . The dimension of t is called the rank of g,

denoted rank(g). A Lie algebra g is called simple if it has no non-zero, proper ideals. We say that

the algebraic group G is simple if its Lie algebra g is simple. Any simple group is semisimple.

There are natural connections between G and g. First, there is the exponential map: exp : g→ G.

7



In general, exp is neither a homomorphism nor a morphism of varieties. Second, G acts naturally on

its Lie algebra g by the Adjoint action. For g ∈ G and X ∈ g,

Ad(g) ·X =
d

dt t=0
(g exp(tX)g−1).

Two important properties of the Adjoint action relevant to our use are the following. For any g ∈ G

and X,Y ∈ g,

Ad(g)−1 = Ad(g−1), & Ad(g) · [X,Y ] = [Ad(g)X,Ad(g)Y ]. (1.1)

Through the Adjoint action, W acts naturally on t and t∗ := HomC(t,C). Moreover, by differentiation

of Ad : G→ GL(g), we get the adjoint action ad : g→ gl(g) given by

ad(X) · Y = [X,Y ].

Hence, t acts naturally on g by the adjoint action, and since t is diagonalizable, this affords an

eigenspace decomposition

g = t⊕
⊕
α∈R

gα. (1.2)

The linear functions α : t→ C arising as eigenvalues in this decomposition are called the roots of g.

The set of roots is denoted R and is W -invariant.

There is a basis of R, denoted by ∆. We call the roots in ∆ the simple roots. Note that

|∆| = rank(g). Then, every root α ∈ R is an integral linear combination of simple roots with either

all non-negative coefficients or all non-positive coefficients. The non-negative (non-positive) linear

combinations are called the positive (negative) roots, and the set is denoted by R+ (R−). Note that

R− = −R+. Then, fixing a Borel subgroup amounts to fixing R+ via

b = t⊕
⊕
α∈R+

gα. (1.3)

Given any w ∈W , define the set of inversions of w, denoted R(w), as follows.

R(w) := {β ∈ R+ | w · β ∈ −R+}. (1.4)
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Assume that G is semisimple and n = rank(g). There is a natural bilinear form (·, ·) : t∗ × t∗ → C

induced by the Killing form on g. If ∆ = {α1, · · · , αn}, then α∨i :=
2αi

(αi, αi)
are called the co-roots of

g. Let $1, · · · , $n ∈ t∗ be such that ($i, α
∨
j ) = δi,j ; these $i are called the fundamental weights.

The character group of T , denoted X(T ), is the group of all homomorphisms T → C∗. X(T ) is a

rank n lattice. Moreover, the Z-span of the fundamental weights inside t∗ forms a lattice Λ, called

the weight lattice, of rank n; and the Z span of ∆ forms a rank n lattice Q called the root lattice.

Upon differentiation of characters, we have the following containment.

Q ⊂ X(T ) ⊂ Λ. (1.5)

Note that Q and Λ only depend on g whereas X(T ) depends on G. Several different groups G will all

have the same Lie algebra g. When X(T ) = Λ, G is called the simply-connected group, and when

X(T ) = Q, G is called the adjoint group.

An element λ ∈ Λ is called a weight. If λ ∈ Λ is a non-negative (resp. positive) linear combination

of fundamental weights, λ is a dominant (resp.regular) weight. We denote the set of dominant (resp.

regular) weights as Λ+ (resp. Λ++). Moreover, we define the set of dominant characters (resp. regular

characters) to be X(T )+ := X(T ) ∩ Λ+ (resp. X(T )++ := X(T ) ∩ Λ++). When we are considering a

weight λ ∈ Λ as a character, we will write eλ to emphasize eλ as a homomorphsim T → C∗.

Now, for each β ∈ R, the restriction of the exponential map to gβ is an isomorphism of varieties.

The image, Uβ := exp(gβ) is a one-dimensional, closed subgroup of G. In particular, for each β ∈ R

there is an isomorphism of varieties uβ : C→ Uβ chosen to satisfy the following:

(i) ẇuβ(s)ẇ−1 = uw·β(s) for w ∈W and ẇ ∈ NG(T ) any representative,

(ii) and tuβ(s)t−1 = uβ(eβ(t)s) for all t ∈ T .

Let U+ = Ru(B). Then it is well known that B = TU+. We shall refer to this as the TU

decomposition of B. Moreover, given any ordering (β1, β2, . . . , βm) of R+, where m = |R+|, the

product map

Cm → U+ , (s1, . . . , sm) 7→ uβ1(s1)uβ2(s2) · · ·uβm(sm), (1.6)

is an isomorphism of varieties. In particular U+ ∼=
∏
β∈R+ Uβ . Similarly, if we let U− =

∏
β∈−R+ Uβ ,

then we define the opposite Borel subgroup of G to be B− := TU− (cf. [29] Proposition 8.2.1). An
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isomorphsim Cm → U− also exists similar to in equation (1.6) for any ordering of −R+.

Lastly, we have the Bruhat decomposition.

G =
∐
w∈W

BẇB =
∐
w∈W

Uw−1ẇB =
∐
w∈W

ẇU−
w−1B. (1.7)

Here Uw−1 =
∏
β∈R(w−1) Uβ ⊂ U and U−

w−1 = ẇ−1Uw−1ẇ =
∏
β∈R(w−1) Uw−1β ⊂ U−, and ẇ ∈ NG(T )

denotes any lift of w ∈W . Then,

G/B ∼=
∐
w∈W

C(w),

where C(w) := Uw−1ẇB/B ∼= C`(w), where `(w) is the length of w ∈W (cf. [29] §8.3.1).

1.2 Geometric Invariant Theory

Here we consider the theory of quotients by a reductive group G acting on a projective variety X.

Given a line bundle L over X, we say that L is a G-equivariant line bundle, or G-linearized, if there

is a G action on L that is linear on fibers and such that the bundle map L → X is G-equivariant.

Given a G-equivariant ample line bundle L on X, the subsets of semistable points, denoted Xss, and

stable points, denoted Xs, are described as follows.

Xss := {x ∈ X | ∃σ ∈ H0(X,L⊗N )G such that σ(x) 6= 0}

Xs := {x ∈ Xss | G · x closed in Xss & dimGx = 0}.
(1.8)

Here, Gx denotes the isotropy subgroup of x.

Mumford (cf. [23]) devised a numerical criterion for determining semistability and stability. Given

any one-parameter subgroup δ of G, i.e., an algebraic group homomorphism δ : C∗ → G, and any

x ∈ X, the projectivity of X implies that the limit x0 := lims→0 δ(s) · x exists. Clearly, x0 is a δ-fixed

point. Thus, δ(C∗) acts on the fiber Lx0 by a C∗-character, i.e., δ(s) · vx0 = srvx0 for some r ∈ Z.

Then, define the Mumford index µL(x, δ) := −r. Semistability and stability then have the following

characterization

x ∈ Xss ⇐⇒ µL(x, δ) ≥ 0 for all non-trivial one-parameter subgroups δ of G

x ∈ Xs ⇐⇒ µL(x, δ) > 0 for all non-trivial one-parameter subgroups δ of G.
(1.9)
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For any one parameter subgroup δ : C∗ → G, the Mumford index satisfies the following properties

(cf. [23]).

Proposition 1.2.1. (i) µL(g · x, gδg−1) = µL(x, δ) for all g ∈ G and x ∈ X,

(ii) µL(lims→0 δ(s) · x, δ) = µL(x, δ) for all x ∈ X,

(iii) if X1, X2, and X3 respectively have G-equivariant line bundles L1, L2, and L3, and

pi : X1 ×X2 ×X3 → Xi is the ith projection; then, for L := p∗1L1 ⊗ p∗2L2 ⊗ p∗3L3,

µL((x1, x2, x3), δ) = µL1(x1, δ) + µL2(x2, δ) + µL3(x3, δ),

when (x1, x2, x3) ∈ X1 ×X2 ×X3.

A fundamental result of geometric invariant theory (GIT) provides the existence of a projective

variety X//G, called the GIT quotient, and a surjective morphism π : Xss → X//G that is a good

quotient(cf. [23] Theorem 1.10). Now we come to a central definition.

Definition 1.2.1. We say that a line bundle L on X descends to a line bundle on X//G if there

exists a line bundle L̂ on X//G such that π∗(L̂) ∼= L|Xss, where the isomorphism is G-equivariant.

Following ([31], section 3), the invariant direct image, πG∗ (L) of a line bundle L over X is the

coherent sheaf on X//G whose local sections are the G-invariant sections of π∗L. Then, πG∗ ◦ π∗ = Id.

Further, if we suppose that there are two line bundles L̂1 and L̂2 on X//G such that π∗(L̂1) ∼= LXss ∼=

π∗(L̂2), by applying πG∗ to both sides we get the following known lemma.

Lemma 1.2.1. If L descends to L̂ on X//G, then L̂ is unique up to isomorphism.

Now, recall the following ‘descent’ lemma of Kempf ([9], Theorem 2.3) adapted to our setting.

Lemma 1.2.2. L descends to X//G if and only if for any x ∈ Xss, the isotropy subgroup Gx acts

trivially on the fiber Lx. In fact, for the ‘if ’ part, it suffices to assume that Gx acts trivially for only

those x ∈ Xss such that the orbit G · x is closed in Xss.

The question of how GIT quotients vary depending on the line bundle L was considered by

Dolgachev-Hu in [8]. Define the G-ample cone, denoted CG(X), to be the cone generated by ample

line bundles L such that Xss(L) 6= ∅, where Xss(L) is the semistable locus determined by L. Then,
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CG(X) is a convex cone inside NSG(X)⊗Z R, where NSG(X) is the Neron-Severi group which is a

quotient of the Abelian group PicG(X) of G-equivariant line bundles over X. When X = (G/B)3,

NSG(X) = PicC(X) and CG(X) ⊂ (X(T )++)3, since χ1, χ2, and χ3 must all be regular in order for

L(χ1, χ2, χ3) to be ample.

Within CG(X) define an equivalence relation L ∼ L′ if and only if Xss(L) = Xss(L′). Then,

the equivalence classes of L such that Xs(L) = Xss(L) are called chambers. If L ∈ CG(X) does

not belong to a chamber, i.e., Xss(L) 6= Xs(L), then the equivalence class of L is called a wall. In

this way, we partition CG(X) into chambers and walls. Chambers are open convex cones and walls

are closed convex cones. There are finitely many walls, and since the chambers are the connected

components of the complements of the union of walls, there are also finitely many chambers ([8],

Theorem 3.3.3). In the case of (G/B)3, the boundary of CG(X) = (X(T )+)3 consists of precisely

those ample line bundles with Xss 6= ∅ and Xs = ∅ ([8], Proposition 3.2.8, Proposition 3.3.5, and

Corollary 4.1.9). Further, in our setting, walls are always of positive co-dimension in CG(X).

1.3 Representation Theory and the Borel-Weil Theorem

Ample line bundles on G/B correspond to regular characters of T . Because of B = TU decompo-

sition, any character eχ ∈ X(T ) extends to a character on B by setting eχ|U ≡ 1. Let B act on C

by the character e−χ and denote this one dimensional B representation by C−χ. Then, define the

quotient ∼ on G× C−χ by (gb−1, bz) ∼ (g, z) for all b ∈ B, g ∈ G and z ∈ C−χ. We denote the class

of (g, z) by [g, z]. Then, define G×B C−χ := G× C−χ/ ∼. This is a G-equivariant line bundle over

G/B, denoted L(χ), with the bundle map [g, z] 7→ gB and G action given by the left multiplication.

In fact, every G-equivariant line bundles over G/B is formed in this way.

All representations of G considered here will be finite dimensional, and admit an eigenspace

decomposition with respect to the action of T . We call such a decomposition a weight space

decomposition; the T -eigenvalues are called the weights of the representation and the T -eigenspaces

are called the weight spaces. There is a partial order on the set of weights, where λ > µ if

µ = λ−
∑

α∈∆ kαα and kα ∈ Z≥0. Moreover, in each irreducible representation there is a unique line

that is fixed by B and the corresponding weight is highest with respect to the partial order. We call

any vector spanning the unique B-fixed line the highest weight vector and the corresponding weight,

χ, the highest weight. Each irreducible representation is determined by its unique highest weight.
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Conversely, given any dominant weight χ, there is a unique irreducible representation with χ as its

highest weight. We denote the representation of highest weight χ by V (χ). Given a representation

V (χ), the dual representation V (χ)∗ has highest weight −w0χ, where w0 ∈W is the longest element

in the Weyl group. Then, we have the following well known Borel-Weil theorem (cf. [26]).

Theorem 1.3.1.

H0(G/B,L(χ)) ∼= V (χ)∗. (1.10)

Similarly, triples of regular characters (χ1, χ2, χ3) correspond to the ample line bundles on (G/B)3

as follows. Let pi : (G/B)3 → G/B be the projection onto the i-th coordinate. Define

L(χ1) � L(χ2) � L(χ3) := p∗1L(χ1)⊗ p∗2L(χ2)⊗ p∗3L(χ3),

which is an ample line bundle on (G/B)3. Let us simply denote L(χ1)�L(χ2)�L(χ3) by L(χ1, χ2, χ3),

or even by L when no confusion is likely. By applying the Borel-Weil theorem we have the following.

H0((G/B)3,L(χ1, χ2, χ3))G ∼= [V (χ1)∗ ⊗ V (χ2)∗ ⊗ V (χ3)∗]G. (1.11)

Since

dim[V (χ1)∗ ⊗ V (χ2)∗ ⊗ V (χ3)∗]G = dim[V (χ1)⊗ V (χ2)⊗ V (χ3)]G,

it follows that there is a semistable point of (G/B)3 relative to L(χ1, χ2, χ3) if and only if, for some

N > 0,

dim[V (Nχ1)⊗ V (Nχ2)⊗ V (Nχ3)]G 6= 0.

In particular, CG((G/B)3) is exactly the saturated tensor semigroup Γ3(G) of G (cf. [1]).

1.4 Intersection Theory

In this section we cover some of the basics of intersection theory that are relevant later in this work.

We follow the treatment in [10]. Here, we let X be any projective variety. Then, the group of k-cycles,

denoted Zk(X), is the free abelian group generated by the k-dimensional irreducible subvarieties of

X; i.e., a k-cycle has the form
∑
ni[Yi], where Yi are k-dimensional irreducible subvarieties of X and
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ni ∈ Z. We say that two k-cycles are rationally equivalent if their difference is an integral sum

∑
mi[div(fi)],

where fi are non-zero rational functions on some k + 1 dimensional subvarieties Zi and div(fi) is the

principal divisor of fi. We denote the group of k-cycles modulo rational equivalence by Ak(X). Then,

the cycle class group of X is the free abelian group

A∗(X) :=
⊕

Ak(X). (1.12)

A proper morphism between varieties f : X → Y , induces a homomorphism f∗ : Ak(X)→ Ak(Y ),

called the proper push-forward. A particularly important push-forward is when p : X → Spec(C) is

the projection to a point for a projective variety X. Then, for α ∈ A0(X), we set

∫
X
α := p∗(α). (1.13)

This takes integral values by the obvious identification A0(Spec(C)) ∼= Z. This makes sense as well

for any α ∈ A∗(X) since p∗(β) = 0 for any β ∈ Ak(X) with k > 0.

Given a line bundle L on X, we think of the first Chern class of L is an operator (cf. [10] §2.5)

c1(L) : Ak(X)→ Ak−1(X).

The most relevant property of the first Chern class to our use is the following additive property. For

line bundles L1 and L2 on X,

c1(L1 ⊗ L2) = c1(L1) + c1(L2). (1.14)

Then, the Chern character is given by

Ch(L) := ec1(L) =

∞∑
j=0

c1(L)j

j!
, (1.15)

where the power c1(L)i : Ak(X) → Ak−i(X) is taken as composition of maps. Clearly, this is a

polynomial in c1(L) of degree ≤ dim(X). The most relevant property of the Chern character to our
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use is the following multiplicative property. Given line bundles L1 and L2 on X,

Ch(L1 ⊗ L2) = Ch(L1) · Ch(L2), (1.16)

where the latter is viewed as a composition of operators on A∗(X). Then, we have the following

fundamental result known as the Riemann-Roch Theorem for singular varieties. ([10] Corollary 18.3.1)

Theorem 1.4.1. For any projective variety X and line bundle L on X we have

X (X,L) =

∫
X

Ch(X) ∩ Td(X),

where Td(X) ∈ A∗(X)Q is an element of the rational extension of the cycle class group independent

of L and for any projective variety Y and any coherent sheaf F ,

X (Y,F) =
∑
i≥0

(−1)i dimH i(Y,F) (1.17)

is the Euler-Poincaré characteristic.
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CHAPTER 2: CONDITIONS FOR DESCENT

In this chapter we prove conditions for descent of line bundles to (G/B)3//G. We denote

X := (G/B)3 in this chapter. After some basic results in the first section, in the second section, we

reduce the problem of descent to considering only points x ∈ X with stabilizer Gx that is a reductive

group. This is a useful simplification. In section three, we prove a theorem giving sufficient conditions

for descent. In section four, we give a necessary condition for descent, although, except in type A,

this necessary condition does not match the sufficient conditions. In section five, we give an example

to show that the sufficient conditions are not necessary.

2.1 Beginning Statements

We begin with (χ1, χ2, χ3) ∈ (X(T )++)3 such that the semistable locus of the line bundle

L(χ1, χ2, χ3) is non-empty, i.e., (χ1, χ2, χ3) ∈ Γ3(G) where Γ3(G) denotes the saturated tensor

semigroup (cf. Section 1.3). Here, we produce some sufficient conditions when L(χ1, χ2, χ3) descends

to X//G under the diagonal action of G.

The relation g·(g1B, g2B, g3B) = (gg1B, gg2B, gg3B) = (g1B, g2B, g3B) is equivalent to g−1
1 gg1, g

−1
2 gg2, g

−1
3 gg3 ∈

B. Therefore, for x = (g1B, g2B, g3B), the isotropy subgroup is

Gx = g1Bg
−1
1 ∩ g2Bg

−1
2 ∩ g3Bg

−1
3 . (2.1)

This is, a priori, much too complex to deal with and we want to simplify this.

Lemma 2.1.1. If X is any G-variety with a G-linearized line bundle L, then Gx acts trivially on

Lx if and only if Ggx acts trivially on Lgx for any g ∈ G.

Proof: The result is symmetric so we only need to show one direction. Suppose vx ∈ Lx and

h · vx = vx for all h ∈ Gx. If h′ ∈ Ggx and vhx ∈ Lgx, then h′ = ghg−1 for h ∈ Gx and vgx = g · vx for

some vx ∈ Lx, so h′ · vgx = ghg−1 · (g · vx) = gh · vx = vgx.
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Recall the Bruhat decomposition from section 1.1

G =
∐
w∈W

Uw−1ẇB =
∐
w∈W

ẇU−
w−1B,

where Uw−1 =
∏
α∈R(w−1) Uα ⊂ U and U−

w−1 = ẇ−1Uw−1ẇ =
∏
α∈R(w−1) Uw−1α ⊂ U−, and ẇ ∈ NG(T )

denotes any lift of w ∈W . Here, R(w−1) is the set of inversions of w−1 as defined in equation (1.4).

In light of Lemma 2.1.1, we can consider points of the form x = (B, ẇ1u1B, ẇ2u2B) with w1, w2 ∈W

and ui ∈ U−w−1
i

for i = 1, 2. Let tu ∈ Gx ⊂ B, then by equation (2.1) there exist t1, t2 ∈ T and

v1, v2 ∈ U+ such that

tu = ẇ1u1t1v1u
−1
1 ẇ−1

1 = ẇ2u2t2v2u
−1
2 ẇ−1

2 . (2.2)

Lemma 2.1.2. If tu ∈ B and t1, t2 ∈ T satisfy equation (2.2), then t = ẇ1t1ẇ
−1
1 = ẇ2t2ẇ

−1
2 .

Proof:

We show t = ẇ1t1ẇ
−1
1 , the proof for the second identity follows similarly.

tu = ẇ1(t1ẇ
−1
1 ẇ1t

−1
1 )u1t1v1u

−1
1 ẇ−1

1 = (ẇ1t1ẇ
−1
1 )ẇ1(t−1

1 u1t1)v1u
−1
1 ẇ−1

1 . (2.3)

Since this lies in B and (ẇ1t1ẇ
−1
1 ) ∈ T , left multiplying by (ẇ1t1ẇ

−1
1 )−1 gives

ẇ1(t−1
1 u1t1)v1u

−1
1 ẇ−1

1 = ẇ1(t−1
1 u1t1)(ẇ−1

1 ẇ1)v1(ẇ−1
1 ẇ1)u−1

1 ẇ−1
1 ∈ B. (2.4)

Since T normalizes all root subgroups, t−1
1 u1t1 ∈ U−w−1

1

. Thus,

ẇ1(t−1
1 u1t1)ẇ−1

1 , ẇ1u
−1
1 ẇ−1

1 ∈ ẇ1U
−
w−1

1

ẇ−1
1 = Uw−1

1
⊂ B.

By the appropriate left and right multiplication on equation (2.4), we have ẇ1v1ẇ
−1
1 ∈ B. But since

v1 ∈ U , this implies that ẇ1v1ẇ
−1
1 ∈ U . Hence, the expression in equation (2.4) is also in U . Finally,

apply TU = B decomposition to equation (2.3) to conclude the desired result.

Lemma 2.1.3. Let x = (B, ẇ1u1B, ẇ2u2B) where w1, w2 ∈ W and ui ∈ U−
w−1
i

for i = 1, 2. If

tu ∈ Gx, then tu acts trivially on Lx if and only if eχ1+w1χ2+w2χ3(t) = 1.
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Proof: For tu ∈ Gx and z1, z2, z3 ∈ C∗,

tu · [e, z1]⊗ [ẇ1u1, z2]⊗ [ẇ2u2, z3]

= [tu, z1]⊗ [tuẇ1u1, z2]⊗ [tuẇ2u2, z3].

Since tu = ẇ1u1t1v1u
−1
1 ẇ−1

1 = ẇ2u2t2v2u
−1
2 ẇ−1

2 for some t1, t2 ∈ T and v1, v2 ∈ U+, as was seen in

equation (2.2), this becomes

[tu, z1]⊗ [ẇ1u1t1v1u
−1
1 ẇ−1

1 ẇ1u1, z2]⊗ [ẇ2u2t2v2u
−1
2 ẇ−1

2 ẇ2u2, z3]

= [tu, z1]⊗ [ẇ1u1t1v1, z2]⊗ [ẇ2u2t2v2, z3]

= [e, tu · z1]⊗ [ẇ1u1, t1v1 · z2]⊗ [ẇ2u2, t2v2 · z3]

= e−χ1(t)e−χ2(t1)e−χ3(t2)[e, z1]⊗ [ẇ1u1, z2]⊗ [ẇ2u2, z3].

But, by Lemma 2.1.2 this coefficient is just

e−χ1(t)e−χ2(t1)e−χ3(t2) = e−χ1−w1χ2−w2χ3(t).

Proposition 2.1.1. Let pT : B � T be the projection with kernel U+. Let x ∈ Xss be such that

Gx ⊂ B and let H ⊂ pT (Gx) be any subgroup. If H is a divisible group, then eχ1+w1χ2+w2χ3 |H≡ 1.

In particular, if pT (Gx) is divisible, then Gx acts trivially on Lx.

Proof:

Let x ∈ Xss and tu ∈ Gx be as above. Semistability of x implies existence of σ ∈ H0(X,LN )G,

for some N > 0, such that σ(x) 6= 0. Recall that LN = L(Nχ1) � L(Nχ2) � L(Nχ3) and let

σ(x) = [e, z1]⊗ [ẇ1u1, z2]⊗ [ẇ2u2, z3].
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G-invariance of σ implies σ(x) = (tu · σ)(x) = tu · σ((tu)−1 · x) = tu · σ(x) when tu ∈ Gx. Just as in

the proof of Lemma 2.1.3,

tu · σ(x) = e−Nχ1−w1Nχ2−w2Nχ3(t)[e, z1]⊗ [ẇ1u1, z2]⊗ [ẇ2u2, z3].

Hence

e−Nχ1−Nw1χ2−Nw2χ3 |pT (Gx) ≡ 1.

Now given t ∈ H, divisibility implies there is some s ∈ π(Gx) such that sN = t, from which the result

follows. The final statement follows immediately from Lemma 2.1.3.

2.2 Reductive Stabilizers

Recall from section 1.1 that given any β ∈ R, there is an isomorphism uβ : C → Uβ such that

duβ(C) = gβ , where gβ is the β root subspace of g. Let φ : Cm → U− be such an isomorphism given

by φ(x1, . . . , xm) = uβ1(x1) · · ·uβm(xm) corresponding the ordering of negative roots (β1, . . . , βn)φ.

Here we use the subscript on the ordering to denote that the ordering corresponds to the isomorphism

φ.

Given some u ∈ U− and some isomorphism φ : Cm → U−, let

Rφ(u) = {β ∈ −R+ | pβ(φ−1(u)) 6= 0}

where pβ is the projection from Cm to the coordinate xβ = φ−1(uβ(xβ)). The following lemma

proceeds similar to Lemma 3.5 of [17].

Lemma 2.2.1. Given any isomorphism φ : Cn → U− and u ∈ U−,

T ∩ uBu−1 = ∩α∈Rφ(u) ker(eα),

where eα : T → C∗ is the character corresponding to the root α. This subgroup is independent of φ.

Proof:

Let ubu−1 = t, then u−1tu = b and so u−1tut−1 ∈ B ∩ U− = {e}. Hence, tut−1 = u, and
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expanding u we have

uαi1 (eαi1 (t)xi1) · · ·uαik (eαik (t)xik) = tuαi1 (xi1) · · ·uαik (xik)t−1

= uαi1 (xi1) · · ·uαik (xik).

(2.5)

Hence,

φ(. . . , xi1 , . . . , xi2 , . . . , xik , . . . ) = φ(. . . , eαi1 (t)xi1 , . . . , e
αi2 (t)xi2 , . . . , e

αik (t)xik , . . . ),

where similar entries are taken in the same coordinates and zero is in all other coordinates. Since φ

is an isomorphism this implies eαij (t)xij = xij for all 1 ≤ ij ≤ k, but xij 6= 0, so eαij (t) = 1. The

reverse inclusion follows immediately from equation (2.5). The final statement follows immediately.

Remark 2.2.1. Note that if ubu−1 = t, then b = u−1tu, and as in the proof above u−1tut−1 = e. So

b = t. Thus, T ∩ uBu−1 = T ∩ uTu−1.

Lemma 2.2.2. Let, φ and φ′ be two isomorphisms Cm → U− and u ∈ U−. Suppose that

(. . . , β1, . . . , β2, . . . , βk, . . . )φ for all βi ∈ Rφ(u), where k = |Rφ(u)|. If (. . . , β1, . . . , β2, . . . , βk, . . . )φ′,

then Rφ(u) = Rφ′(u).

Proof:

Just observe that φ(φ−1(u)) = uβ1(xβ1) · · ·uβk(xβk) = φ′(φ′−1(u)) since the relative ordering of

β1, . . . , βk determined by φ also obeys the ordering determined by φ′.

Remark 2.2.2. (i) For each x = (B, ẇ1u1B, ẇ2u2B) ∈ X, we can always choose some φ : Cn → U−

such that for all βi ∈ Rφ(u2), (β1, β2, . . . , βk, β̃1, . . . , β̃j)φ for all β̃i ∈ −R+ \ Rφ(u2). For,

assuming φ does not satisfy this property, if (. . . , β1, . . . , β2, . . . , βk, . . . )φ for all βi ∈ Rφ(u2),

then, there is some φ′ such that (β1, β2, . . . , βk, β̃1, . . . , β̃j)φ′ for all βi ∈ Rφ(u2) and all β̃i ∈

−R+ \ Rφ(u2). Then, by Lemma 2.2.2, Rφ′(u2) = Rφ(u2).

(ii) For the remainder of this chapter, at each x = (B, ẇ1u1B, ẇ2u2B) ∈ X, we fix an isomorphism φ

that satisfies the property in (i). We will drop notational dependence on φ and write onlyR(u) :=

Rφ(u) for u ∈ U− and take (β1, β2, . . . , βk, β̃1, . . . , β̃j) to mean (β1, β2, . . . , βk, β̃1, . . . , β̃j)φ. This

convention certainly depends on x, but this dependence will always be clear from the context.
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For any subset S ⊂ R and w ∈W ,

ẇ(∩α∈S ker(eα))ẇ−1 = ∩β∈wS ker(eβ).

Then, for x = (B, ẇ1u1B, ẇ2u2B) ∈ X with ui ∈ U−w−1
i

and wi ∈W , define

Tx := Gx ∩ T.

By the above and Lemma 2.2.1, we have

Tx = T ∩ ẇ1u1Bu
−1
1 ẇ1

−1 ∩ ẇ2u2Bu
−1
2 ẇ2

−1

=
[
T ∩ ẇ1u1Bu

−1
1 ẇ1

−1
]
∩
[
T ∩ ẇ2u2Bu

−1
2 ẇ2

−1
]

=
[
∩α∈w1R(u1) ker(eα)

]
∩
[
∩α∈w2R(u2) ker(eα)

]

= ∩α∈(w1R(u1)∪w2R(u2)) ker(eα).

(2.6)

Remark 2.2.3. Note that Tx depends only on R(ui) and wi, i = 1, 2.

The following lemma appears in [17] but with the weight lattice Λ in place of X(T ). While one

can simply observe from the proof given there that the lemma holds just as well for X(T ), we include

a proof for completeness.

Lemma 2.2.3. For S ⊂ R any collection of roots, let TS := ∩α∈S ker(eα) ⊂ T . For any character

µ ∈ X(T ), eµ|TS ≡ 1 if and only if µ ∈ ZS.

Proof: If µ ∈ ZS, then it is clear that eµ|TS ≡ 1. For the reverse inclusion consider the

isomorphism ξ : T → HomZ(X(T ),C∗), ξ(t)(µ) = eµ(t). Then, the following is immediate upon

considering the definition of TS

ξ
(
TS
)

= {φ ∈ HomZ(X(T ),C∗) | φ|ZS ≡ 1}.

Now, suppose that µ ∈ X(T )\ZS, we claim there must be some φ ∈ HomZ(X(T ),C∗), with φ|ZS ≡ 1,
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such that φ(µ) 6= 1. If we prove the claim, then by the above inequality there must be some t ∈ TS

such that eµ(t) 6= 1. This a contradiction and hence µ ∈ ZS.

To see the claim, let X = Ze1 + · · ·+ Zen and µ =
∑n

i=1 aiei. Now we must have aiei /∈ ZS for

some i, we may assume i = 1. Now, if Ze1 ∩ ZS = ∅, then define φ(e1) to be any z 6= 1 ∈ C∗, and

define φ(ej) = 1. If there is some n ∈ Z such that ne1 ∈ ZS, we can choose n of minimum absolute

value. Then define φ(e1) = ζn, where ζn is a primitive n-th root of unity, and φ(ej) = 1.

Let w ∈W and ∆ = {α1, . . . , αn} be the simple roots. Define

εw(α) =


1 w−1α < 0

−1 w−1α > 0

.

That is, εw(α) is the appropriate sign such that ε(α)w−1α ∈ −R+. Let the αi ∈ ∆ be indexed so that

(. . . , ε(α1)w−1α1, . . . , ε(αn)w−1αn, . . . ). The function εw is certainly dependent on w ∈W , and the

ordering on ∆ is dependent on x ∈ X, but these dependencies are always clear from context. For

notational simplicity, we will write ε(α) := εw(α). Given any subset P of the root lattice Q, we define

ZP to be the sublattice of Q spanned by the elements of P .

Lemma 2.2.4. Let x = (B, ẇ1u1B, ẇ2u2B) ∈ X and define S ⊂ ∆ to be any subset of simple roots

satisfying ε(α)w−1
2 α /∈ R(u2), for all α ∈ S, then

Z[w2R(u2

∏
α∈S

uε(α)w−1
2 α(xα))] = Z(w2R(u2)) + ZS,

whenever xα 6= 0 for all α ∈ S.

Proof: Since for α ∈ S, ε(α)w−1
2 α /∈ R(u2), β < ε(α)w−1

2 α via remark 2.2.2 for all β ∈ R(u2).

We have

R(u2

∏
α∈S

uε(α)w−1
2 α(xα)) = R(u2) ∪ {ε(α)w−1

2 α}α∈S . (2.7)

So

Zw2R(u2

∏
α∈S

uε(α)w−1
2 α(xα)) = Z(w2R(u2)) + ZS.

22



2.3 Sufficient Conditions for Descent

Lemma 2.3.1. If Gx acts trivially on Lx for every x ∈ Xss such that Gx is reductive, then L

descends.

Proof:

Recall from Lemma 1.2.2 that it suffices to show that Gx acts trivially on Lx for all x ∈ Xss such

that G · x is closed in Xss. By ([8], Lemma 3.3.12), if G · x is closed in Xss, then, Gx is reductive

(this is just an application of Matsushima’s Theorem).

Proposition 2.3.1. Any reductive subgroup H of B must be contained in some torus. In particular,

bHb−1 ⊂ T for some b ∈ B.

Proof:

Recall the projection pT : B → T sending tu to t, this is a homomorphism of algebraic groups.

Compose pT with the inclusion H ⊂ B to get a homomorphism ψ : H → T . We claim that

ker(ψ) = H ∩ U = {e}. H is a closed subgroup of a solvable group, so H is solvable and hence

R(H) = H◦, where R(H) is the radical of H. Upon observing that Hu = (Hu)◦ = (H◦)u = {e} the

claim follows. The last equality follows from the reductivity of H. The first two equalities follow by

using the fact that Hu and (H◦)u are closed subgroups of U and thus connected.

Then, ψ : H ↪→ T is an injective algebraic group homomorphism. To determine if elements of an

algebraic group are semisimple, it suffices to see if their images are semisimple under any faithful

representation. Any faithful representation of T gives a faithful representation of H, under which all

the elements of H then are semisimple. Last, any subgroup of B which consists of all semi-simple

elements must lie in a maximal torus S ⊂ B ([29] §6.3.6). But all maximal tori in B are B-conjugates,

so there is some b ∈ B such that bHb−1 ⊂ T .

Corollary 2.3.1. L descends if Gx acts trivially on Lx for all x ∈ Xss such that Gx = Tx.

Proof:

Assume Gx acts trivially on Lx for all x ∈ Xss such that Gx = Tx. Let x ∈ Xss be such that Gx

is reductive. By Matsushima’s Theorem, it follows that for any b ∈ B, bGxb
−1 = Gbx is also reductive.

By Proposition 2.3.1, we have Gbx = Tbx for some b ∈ B. Thus, Gbx acts trivially on Lbx according
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to our assumption. But, by Lemma 2.1.1, this implies that Gx acts trivially on Lx. Now use Lemma

2.3.1.

Recalling Lemma 2.1.1 and noting that T ◦x is a divisible group (cf. [29] 3.2.7) we have the following.

Corollary 2.3.2. Let x = (B, ẇ1u1B, ẇ2u2B) ∈ Xss such that Gx is reductive, then eχ1+w1χ2+w2χ3 |T ◦x ≡

1.

For s a semisimple subalgebra of g, let Qs be the root lattice of s.

Theorem 2.3.1. For x = (B, ẇ1u1B, ẇ2u2B) ∈ Xss, if χ1 + w1χ2 + w2χ3 ∈ Qs for all semisimple

subalgebras s containing t, then eχ1+w1χ2+w2χ3 |Tx≡ 1.

Proof:

There is a correspondence between sublattices of Q of finite index and the Lie subalgebras of s of

g of maximal rank (cf. [17], §3). Now, suppose Z(w1R(u1) ∪ w2R(u2)) is finite index in Q. Then

there is a semisimple subalgebra s of g containing t such that

Z(w1R(u1) ∪ w2R(u2)) = Qs,

hence χ1 + w1χ2 + w2χ3 ∈ Z(w1R(u1) ∪ w2R(u2)). Now apply lemma 2.2.3.

Now, suppose that Z(w1R(u1) ∪ w2R(u2)) fails to be finite index in Q. Let S ⊂ ∆ be a subset of

simple roots such that

QS ∩Q(w1R(u1) ∪ w2R(u1)) = ∅ (2.8)

and

Z(w1R(u1) ∪ w2R(u1)) + ZS

is finite index in Q.

For each α ∈ S, the fact that {±α} ∩ w2R(u2) = ∅ implies ε(α)w−1
2 α /∈ R(u2). Let ũ =∏

α∈S uε(α)w−1α(xα) for xα ∈ C∗ with the product taken in the order in the spirit of Remark 2.2.2.

Then by Lemma 2.2.4 we have

Z(w2R(u2ũ)) = Z(w2R(u2)) + ZS.
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Hence,

Z(w1R(u1) ∪ w2R(u2ũ)) = Z(w1R(u1) ∪ w2R(u2)) + ZS. (2.9)

Consider x̃ = (B, ẇ1u1B, ẇ2u2ũB) ∈ X, where ẇ1u1 and ẇ2u2 are as before. Then by equations

(2.9) and (2.7) of Lemma 2.2.4,

Tx̃ =
⋂

α∈w1R(u1)∪w2R(u2ũ)

ker(eα) =
⋂

α∈w1R(u1)∪w2R(u2)∪S

ker(eα).

Moreover, χ1 + w1χ2 + w2χ3 ∈ Z(w1R(u1) ∪ w2R(u2ũ)) since this lattice is finite index in Q. Thus,

eχ1+w1χ2+w2χ3 |Tx̃≡ 1 by Lemma 2.2.3.

Next, there is a short exact sequence

ZS ⊂ > X(T )/Z(w1R(u1) ∪ w2R(u2)) >> X(T )/[ZS + Z(w1R(u1) ∪ w2R(u2))].

Equation (2.8) forces ZS ∩ Tor(X(T )/Z(w1R(u1) ∪ w2R(u2))) = ∅. Hence,

Tor(X(T )/Z(w1R(u1) ∪ w2R(u2))) ⊂ > Tor(X(T )/ZS + Z(w1R(u1) ∪ w2R(u2)))). (2.10)

Now, Tx̃ ⊂ Tx since the former is an intersection over a larger set of roots. By Lemma 3.7 of [17],

observing that the proof given there holds for X(T ) in place of Λ,

Tx/T
◦
x
∼= HomZ

(
Tor(X(T )/Z(w1R(u1) ∪ w2R(u2))),C∗

)
and

Tx̃/T
◦
x̃
∼= HomZ

(
Tor(X(T )/[ZS + Z(w1R(u1) ∪ w2R(u2))]),C∗

)
.

Hence, we have a natural surjection using the injectivity of C∗ on the map in equation (2.10),

Tx̃/T
◦
x̃ � Tx/T

◦
x ,

that commutes with the inclusion Tx̃ ⊂ Tx and the quotient maps. In particular, the surjectivity

implies that for each T ◦x coset, we can choose some representative in Tx that is also in Tx̃.

Since x is semistable, by Corollary 2.3.2, eχ1+w1χ2+w2χ3 |T ◦x≡ 1. On the other hand, eχ1+w1χ2+w2χ3 |Tx̃≡
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Table 2.1: The Lattice Γ
A` (` ≥ 1) : Γ = Q.
B` (` ≥ 3) : Γ = 2Q.
C` (` ≥ 2) : Γ = 2Λ.
D4 : Γ = {n1α1 + 2n2α2 + n3α3 + n4α4 | ni ∈ Z and n1 + n3 + n4 ∈ 2Z}.
D` (` ≥ 5) : Γ = {2n1α1 + 2n2α2 + · · ·+ 2n`−2α`−2 + n`−1α`−1 + n`α` | ni ∈ Z and n`−1 + n` ∈ 2Z}.
G2 : Γ = Z6α1 + Z2α2.
F4 : Γ = Z6α1 + Z6α2 + Z12α3 + Z12α4.
E6 : Γ = 6Λ.
E7 : Γ = 12Λ.
E8 : Γ = 60Q.

1. Hence by the surjectivity of the above map, eχ1+w1χ2+w2χ3 |Tx≡ 1 as well.

Remark 2.3.1. (i) Although the proof doesn’t require that x̃ be semistable, it follows easily that it

can be chosen to be so. The reason is that x is semistable, and x is obtained from x̃ be setting

certain coordinates to zero. Thus, there is an open subset of x of semistable points from which

to choose x̃.

(ii) This proof can be significantly simplified by just defining the subgroup Tx̃ as the intersection

of kernels of roots we want. Then, we proceed with final steps of the proof. The key here is

that this subgroup Tx̃ doesn’t actually need to be an isotropy subgroup of any point. However,

we consider it worthwhile to include the full construction here and it may prove worthwhile to

know that the desired subgroup is an honest isotropy subgroup of a semistable point.

For any g, let Γ be the intersection of lattices Qs for all semisimple Lie subalgebras s of g containing

t. The following description of Γ, proved by Kumar in [17], Theorem 3.10, relies on the Borel-de

Siebenthal classification of semisimple subalgebras of g of maximal rank (cf. [33]). In the proof, Γ

is an intersection ∩w∈WwM for some fixed lattice M . In particular, this means that Γ is always

W -invariant.

Theorem 2.3.2. For each type of G, Γ is given in Table 2.1.

Let us define the subset W ss
red of W ×W as follows

{(w1, w2) | ∃ u1 ∈ U−w−1
1

, u2 ∈ U−w−1
2

with x = (B, ẇ1u1B, ẇ2u2B) ∈ Xss and Gx = Tx}.

The following is an obvious consequence of Theorem 2.3.2, Corollary 2.3.1, Theorem 2.3.1, and Lemma

26



2.1.3.

Corollary 2.3.3. If χ1 + w1χ2 + w2χ3 ∈ Γ for all (w1, w2) ∈W ss
red, then L descends to X//G.

Lemma 2.3.2. For g of any type, if χ ∈ Λ and w ∈W , then χ− wχ ∈ Q.

Proof:

Let χ =
∑`

i=1 ai$i, for ai ∈ Z and $i fundamental weights. Let w = sir · · · si1 be a reduced

decomposition for w in terms of simple reflections. We prove the claim by induction on r. If r = 1,

we have

si1χ =
∑̀
i=1

aisi1$i =
∑̀
i=1

ai$i − ai1αi1 = χ− ai1αi1 ,

where αi1 is the corresponding simple root. Then,

wχ = sir(χ+Q) = χ− airαir +Q = χ+Q.

Let θ be the longest root of g and d be the least common multiple of the coefficients of θ in terms

of the simple roots. For every type of g, both θ and d is given in Table 2.2. It is obvious that dQ ⊂ Γ

in all cases.

Table 2.2: θ and d for each type of g
A` : θ = α1 + α2 + · · ·+ α` d = 1
B` : θ = α1 + 2α2 + 2α3 + · · ·+ 2α` d = 2
C` : θ = 2α1 + 2α2 + · · ·+ 2α`−1 + α` d = 2
D` : θ = α1 + 2α2 + · · ·+ 2α`−2 + α`−1 + α` d = 2
G2 : θ = 3α1 + 2α2 d = 6
F4 : θ = 2α1 + 3α2 + 4α3 + 2α4 d = 12
E6 : θ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 d = 6
E7 : θ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 d = 12
E8 : θ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 d = 60

The following is the main result of part one of this thesis and follows a fortiori from Corollary

2.3.3 and Lemma 2.3.2.

Theorem 2.3.3. Given χ1, χ2, χ3 ∈ X(T )++, if χ1, χ2, χ3 ∈ dΛ and χ1 + χ2 + χ3 ∈ Γ, then L

descends to X//G.

27



Remark 2.3.2. Although the proof technically only requires that χ2, χ3 ∈ dΛ and χ1 + χ2 + χ3 ∈ Γ.

The following results show that this condition as stated is not at any loss of generality. Indeed, one

would hope that the inherent symmetry of the problem would appear in the statement of the theorem.

Lemma 2.3.3. In all cases except G2 and F4 we have Γ ⊂ dΛ. If G is of type G2 or F4, then,

dΛ ⊂ Γ.

Proof:

It is clear that Γ ⊂ dΛ for all cases except of type D`, ` ≥ 4, G2, and F4. In the D` case. Since

2Q ⊂ 2Λ, it suffices to show for ` ≥ 5, that mα`−1 + nα` ∈ 2Λ when n+m is even, and for ` = 4,

that aα1 + bα3 + cα4 ∈ 2Λ when a+ b+ c is even.

For D` with ` ≥ 4, 2$`−1 − 2$` = α`−1 − α`. Moreover, 2α`−1 ∈ 2Λ since 2Q ⊂ 2Λ. Hence,

mα`−1 + nα` = (m+ n)α`−1 − n(α`−1 − α`) ∈ 2Λ

whenever m+ n is even. For ` = 4, in addition to the above, we have 2$1 − 2$3 = α1 − α3 ∈ 2Λ.

Hence

(a+ b+ c)α1 − (b+ c)(α1 − α3)− c(α3 − α4) = aα1 + bα3 + cα4 ∈ 2Λ

whenever a+ b+ c is even.

For G2 and F4, note that Λ = Q, and since dQ ⊂ Γ, we are done.

Then following slight strengthening of Theorem 2.3.3 for G2 and F4 follows immediately upon

noting that Γ is W -invariant, and hence, χ− wχ ∈ Γ for any χ ∈ Γ and any w ∈W .

Theorem 2.3.4. For G of type G2 and F4, if χ1, χ2, χ3 ∈ Γ then L descends to X//G.

Example 2.3.1. Let’s compare Theorem 2.3.3 with the few cases where explicit computations are

possible, i.e., G = SL(n) for n = 2, 3.

For SL(2), it is easy to see that the different possibilities for π(Gx) are T and {±I}. Hence, the

only case where π(Gx) is not divisible is {±I}. If for i = 1, 2, 3,

χi = bi$1
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we have for w1, w2 ∈W arbitrary

e−χ1−w1χ2−w2χ3(−I) = (−1)b1+b2+b3 .

Hence, we have descent if 2 | b1 + b2 + b3, which is equivalent to χ1 + χ2 + χ3 ∈ Q.

For the SL(3) case, a more involved computation shows that the only possibilities for π(Gx) are

T , C∗, and the three element group generated by

ζI =


ζ 0 0

0 ζ 0

0 0 ζ

 ,

where ζ is a primitive cube root of unity. The first two cases are divisible. Then, if for i = 1, 2, 3,

χi = (ai − bi)$1 + bi$2,

we have for any w1, w2 ∈W ,

e−χ1−w1χ2−w2χ3(ζI) = ζ
∑3
i=1 ai+bi .

In particular, this is trivial if 3|
∑3

i=1 ai + bi, which is again equivalent to χ1 + χ2 + χ3 ∈ Q.

2.4 A Necessary Condition

The proof of the following proposition was suggested by S. Kumar.

Theorem 2.4.1. If χ1 + χ2 + χ3 /∈ Q, then L(χ1, χ2, χ3) does not descend.

Before we prove the theorem, we consider two lemmas.

Lemma 2.4.1. If χ1 + χ2 + χ3 /∈ Q then dimH0(X,L(χ1, χ2, χ3))G = 0.

Proof:

Suppose that [V (−w0χ1) ⊗ V (−w0χ2) ⊗ V (−w0χ3)]G 6= 0, then V (χ1) is a component of

V (−w0χ2)⊗V (−w0χ3). Hence, χ1 = −w0χ2−w0χ3 +Q (cf. [18], Proposition 3.2). By Lemma 2.3.2

we know that χi − w0χi ∈ Q for i = 2, 3, so we have χ1 + χ2 + χ3 ∈ Q.
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Lemma 2.4.2. Let θχ1,χ2,χ3(N) := dim
(
H0(X,L(χ1, χ2, χ3)⊗N )G

)
for N > 0. If L(χ1, χ2, χ3)

descends, then θχ1,χ2,χ3(N) is a polynomial in N with rational coefficients.

Proof:

Note that by Borel-Weil-Bott, Hp(X,L) = 0 if p > 0. Let L̂ be the descended line bundle on

X//G. By [31], Theorem 3.2.a, we have for any N > 0, Hp(X//G, L̂N ) ∼= Hp(X,LN )G. In particular,

θχ1,χ2,χ3(N) = dim
(
H0(X,LN )G

) ∼= X (X//G, L̂N ),

where X (X//G, L̂) is the Euler-Poincarè characteristic of L̂ on X//G (cf. §1.4).

Now, recall that the first Chern class as an operator on k-cycle classes satisfies

c1(L̂N ) = Nc1(L̂),

and so the Chern character satisfies the following

ch(L̂N ) =
∑
i≥0

(1/i!)ci1(L̂N ) =
∑
i≥0

(1/i!)N ici1(L̂).

Then, by the Riemann-Roch theorem for singular varieties ([10] Corollary 18.3.1)

X (X//G, L̂N ) =

∫
X//G

ch(L̂N ) ∩ Td(X//G) =
∑
i≥0

(1/i!)N i

∫
X//G

ci1(L̂) ∩ Td(X//G).

Here, Td(X//G) ∈ A∗(X//G)Q is independent of N . To complete the proof, we only need to observe

that the sum is finite. But, Td(X//G) is in the rational extension A∗(X//G)Q of the cycle class

group. Since c1 only lowers the degree of a cycle class, it follows that ci1(L̂) ∩ Td(X//G) = 0 for

i > dim(X//G).

Corollary 2.4.1. If L(χ1, χ1, χ3) descends, then χ1 + χ2 + χ3 ∈ Q.

Proof:

First note that if χ1 + χ2 + χ3 /∈ Q then θχ1,χ2,χ3(1) = 0. For, if θχ1,χ2,χ3(1) 6= 0, then, V (χ1)

occurs in V (−w0χ1)⊗ V (−w0χ2), and so χ1 + w0χ2 + w0χ3 ∈ Q. By Lemma 2.3.2, this implies that

χ1 + χ2 + χ3 ∈ Q which is a contradiction.
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Now, assume χ1 + χ2 + χ3 /∈ Q and L descends. By the last lemma, θχ1,χ2,χ3(N) is a polynomial

in N . Since Q is finite index in Λ, there is some integer k > 1 such that jk(χ1 + χ2 + χ3) ∈ Q for all

integers j > 0. This implies (jk + 1)(χ1 + χ2 + χ3) /∈ Q for all j > 0. Thus,

0 = θ(jk+1)χ1,(jk+1)χ2,(jk+1)χ3
(1) = θχ1,χ2,χ3(jk + 1)

for all j > 0. So, θχ1,χ2,χ3(N) is a polynomial with infinitely many zeros, and so it must be that

θχ1,χ2,χ3(N) = 0 for all N . But, we assume that (X)ss 6= ∅, which means exactly that θχ1,χ2,χ3(N) 6= 0

for some N > 0. This is a contradiction.

2.5 A Counter Example to “Sufficient is Neccesary”

Let χ1 = 2ρ and χ2 = χ3 = ρ. Note that H0(X,L(2ρ, ρ, ρ)N )G ∼= [V (2Nρ)∗⊗V (Nρ)∗⊗V (Nρ)∗]G

is one dimensional since V (2Nρ)∗ is the Cartan component of V (Nρ)∗⊗V (Nρ)∗ (cf. [18] Lemma 3.1).

Then, V (Nρ)∗ has a highest weight vector φNρ of weight Nρ, i.e. φNρ is dual to the lowest weight

vector v−Nρ of V (Nρ). Thus, we have an explicit G-isomorphism V (Nρ)∗ ∼= V (Nρ) by extending

G-linearly the map φNρ 7→ v+
Nρ.

Let ψ◦ be the equivariant embedding of V (2Nρ) ↪→ V (Nρ) ⊗ V (Nρ) given by the Cartan

component, i.e., ψ◦(v+
2Nρ) = v+

Nρ ⊗ v+
Nρ. Composing ψ◦ with the isomorphism above gives ψ ∈

HomG(V (2Nρ), V (Nρ)∗ ⊗ V (Nρ)∗), i.e., G-linearly extend ψ(v+
2Nρ) = φNρ ⊗ φNρ .

Let {wiγ}, {viµ} be bases for V (2Nρ) and V (Nρ), respectively, where the basis vector viµ is taken

in weight space µ, with i indexing basis vectors within each weight space, and similarly for the wiγ .

Moreover, let {(wiγ)∗}, {(viµ)∗}, be respective dual bases for V (2Nρ)∗ and V (Nρ)∗ where the weight

space subscript indicates the weight space the vector is dual to, i.e. (v−Nρ)
∗ = φNρ. Then, applying

the usual isomorphism (V ∗ ⊗W )G ∼= HomG(V,W ) to the above, we have

ψ ↔
∑
γ,i

(wiγ)∗ ⊗ ψ(wiγ).

Thus, we have the unique (up to scaling) element of [V (2Nρ)∗ ⊗ V (Nρ)∗ ⊗ V (Nρ)∗]G given above.

Under the Borel-Weil isomorphism, this gives the G-invariant section σN . Write σN = σ1 + σ2,

where σ1 is the section corresponding to (wi2Nρ)
∗ ⊗ ψ(wi2Nρ) = (wi2Nρ)

∗ ⊗ φNρ ⊗ φNρ and σ2 is the
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section corresponding to
∑

γ<2Nρ,i(w
i
γ)∗ ⊗ ψ(wiγ).

Since semistability is constant on G-orbits, to determine the zero set of σN it suffices to con-

sider points of the form (B, g1B, g2B). Since, (wiγ)∗(v+
2Nρ) is non-zero if and only if γ = 2Nρ,

σ2(B, g1B, g2B) = 0. Then

σN (B, g1B, g2B) = σ1(B, g1B, g2B) = [e, 1]⊗ [g1, φNρ(g1v
+
Nρ)]⊗ [g2, φNρ(g2v

+
Nρ)].

Then, we have the following description:

Xss = G · {(B, g1B, g2B) | [g1v
+
Nρ]−Nρ 6= 0, and [g3v

+
Nρ]−Nρ 6= 0 for some N > 0},

where [w]µ denotes the µ-weight space component of w. In fact, using Bruhat decomposition one can

see that then Xss = G · (B,Bw0B,Bw0B) = G · (B,w0U
−B,w0U

−B).

By a past lemma, to prove that L descends it suffices to check trivial action at semistable

points x = (B,w1u1B,w2u2B) such that Gx = Tx (here, g1, g2 are again expressed in the WU−B

Bruhat decomposition.) Moreover, recall that for such x, Tx acts trivially on Lx if and only if

e2ρ+w1ρ+w2ρ|Tx ≡ 1. Since w1 = w2 = w0 for any such point, this condition is always satisfied.

2.6 Application of Descent to Tensor Product Decomposition

In this short section we provide a corollary to Theorem 2.3.3. Assume that G is of type A. In

particular, this is the case where the sufficient conditions for descent match the necessary conditions.

Recalling the lattice Γ for each type of g, we define the following set

Σ = {(χ1, χ2, χ3) ∈ X(T )3 | χ1 + χ2 + χ3 ∈ Q}.

Since Q is a lattice, it follows that Σ is also a lattice under component-wise addition.

Let {C1, . . . , Cr} be the GIT classes which are chambers, i.e. where X(L)ss = X(L)s (cf. §1.2).

Corollary 2.6.1. Let G be of type A. For j = 1, . . . ,m, function

fj(χ1, χ2, χ3) = dim[V (χ1)⊗ V (χ2)⊗ V (χ3)]G
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is a non-zero polynomial with rational coefficients on

(
(X(T )++)3 ∩ Σ

)
∩ Cj (2.11)

and 0 on Σc ∩ (X(T )++)3.

The proof follows exactly as in [17], Theorem 4.1. While the GIT chambers are not yet precisely

known, we do have the following partial description of them. Note that the following proposition

holds for any type of simple G.

Proposition 2.6.1. If Xss 6= Xs when Xss 6= ∅, then there exist w1, w2, w3 ∈ W and i = 1, . . . , n

such that

(w1λ+ w2µ+ w3ν)(xi) = 0, (2.12)

where xi ∈ t is dual to the simple root αi ∈ ∆.

Proof:

The proof here follows just as in [19], Proposition 3.5. If there is some x ∈ Xss \Xs, we must

have µL(x, δ) = 0 for some δ ∈ OPS(G). Since, Xss \Xs is G-stable, and µL(g · x, δ) = µL(x, gδg−1),

we can assume δ ∈ OPS(T ). Moreover, by the action of N(T ), we can assume that δ is G-dominant,

i.e., the derivative δ̇ ∈ t+. Since µL(x, δ) = 0, by Proposition 1.2.1 (ii), we know limt→0 δ(t) · x =: x0

is also semistable.

Now, let Gδ be the fixed point subgroup of δ under the conjugation action. Then Gδ is a connected,

Levi subgroup of G. Let ∆δ be the simple roots of Gδ and Wδ the Weyl group. Let W δ be the

set of minimal length coset representative in the cosets W/Wδ. Then, similar to as in the proof of

Proposition 3.5 in [19], the fixed point set of X under the action of Gδ is

Xδ =
⊔

w1,w2,w3∈W δ

Gδw−1
1 B/B ×Gδw−1

2 B/B ×Gδw−1
3 B/B. (2.13)

In particular, since x0 ∈ Xδ, there exist w1, w2, w3 ∈W δ such that x0 ∈ Gδw−1
1 B/B ×Gδw−1

2 B/B ×

Gδw−1
3 B/B. Take x0 = (g1w

−1
1 B, g2w

−1
2 B, g3w

−1
3 B), then by Lemma A.1.1 we know that for some

N > 0

[g1vw−1
1 Nλ ⊗ g2vw−1

2 Nµ ⊗ g3vw−1
3 Nν ]T 6= 0.
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But, the weight spaces of g1vw−1
1 Nλ ⊗ g2vw−1

2 Nµ ⊗ g3vw−1
3 Nν are of the form

w−1
1 Nλ+ w−1

2 Nµ+ w−1
3 Nν +

∑
α∈∆δ

kαα,

for kα ∈ Z. So, we must have

w−1
1 Nλ+ w−1

2 Nµ+ w−1
3 Nν ∈ ⊕α∈∆δ

Zα.

In particular, since some simple root αi ∈ ∆ is not in ∆δ, we must have

(w−1
1 Nλ+ w−1

2 Nµ+ w−1
3 Nν)(xi) = 0.

Then, (
∪rj=1 Cj

)c
⊂

⋃
w1,w2,w3∈W
i=1,...,n

Hw1,w2,w3,i, (2.14)

where {C1, . . . , Cr} are the GIT classes which are chambers and Hw1,w2,w3,i is the hyperplane in

X(T )3 defined by (w1λ + w2µ + w3ν)(xi) = 0, for w1, w2, w3 ∈ W and xi ∈ t is dual to the simple

root αi. Let us denote by {S1, . . . ,Sm} the connected components of the complement of

⋃
w1,w2,w3∈W
i=1,...,n

Hw1,w2,w3,i ⊂ X(T )3.

Then, we have the following corollary.

Corollary 2.6.2. Let G be of type A. The function fj(χ1, χ2, χ3), as given above, is a non-zero

polynomial with rational coefficients on

(
(X(T )++)3 ∩ Σ

)
∩ Sj (2.15)

and 0 on Σc ∩ (X(T )++)3.
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CHAPTER 3: NOTES ON SEMISTABILITY

In this short chapter we provide some results on semistability. In section one, we prove that

certain subvarieties of (G/B)3 can never meet the semistable locus. In section two, we provide a

counter-example to a natural question in the study of semistability.

3.1 Embedding Flag Varieties of Levi Subgroups

It is natural to ask, if for a Levi subgroup L ⊂ G, the image of the natural embedding

(L/BL)3 ↪→ (G/B)3,

meets ((G/B)3)ss, where BL = B ∩ L is the Borel subgroup of L. We have the following proposition.

Proposition 3.1.1. If L is a proper Levi subgroup of G and li ∈ L for i = 1, 2, 3, then points of the

form (l1B, l2B, l3B) ∈ (G/B)3 are never semistable.

Proof:

Suppose that (l1B, l2B, l3B) ∈ ((G/B)3)ss, then this implies that the image of the embedding

(L/BL)3 ↪→ (G/B)3 meets ((G/B)3)ss. Now, (ULw
L
0BL/BL)3 is open in (L/BL)3, where BL = B ∩L

is the Borel of L, UL is the unipotent radical of BL, and wL0 is the longest element of the Weyl group

of L. So, there must be a semistable point of the form (u1w
L
0BL, u2w

L
0BL, u3w

L
0BL), with ui ∈ UL.

Then, by Lemma A.1.1, for some N > 0,

[u1vwL0 Nχ1
⊗ u2vwL0 Nχ2

⊗ u3vwL0 Nχ3
]G 6= 0,

where vwL0 Nχi
is a non-zero vector in the corresponding extremal weight space. This implies that

all weight spaces of a non-zero, G-invariant, component are also T -invariant, i.e. are of weight zero.
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However, all weight spaces of this vector are of the form

wL0Nχ1 + wL0Nχ2 + wL0Nχ3 +
∑

α∈∆(L)

kαα,

where ∆(L) is the set of simple roots for L and kα ≥ 0 for all α. So we must have some expression of

this form equal to zero. By left multiplying such an equation by wL0 and rearranging

Nχ1 +Nχ2 +Nχ3 =
∑

α∈∆(L)

kα(−wL0 α).

Now, for each α ∈ ∆(L), (−wL0 α) is a positive root for L. In particular, the right hand side is a

positive linear combination of roots only in ∆(L). Yet, there exists some β ∈ ∆\∆(L). It is impossible

that β is a linear combination of ∆(L). On the other hand, by dominance and by observing charts

for fundamental weights in terms of simple roots [14], Table 1, one can see that Nχ1 +Nχ2 +Nχ3

has a positive coefficient for every simple root. This is a contradiction.

3.2 Embedding Flag Varieties of Subgroups of Maximal Rank

First, let S ⊂ G be a semisimple subgroup of maximal rank and BS a Borel subgroup of S such

that BS ⊂ B. In our study, the following question naturally occurred.

Question 3.2.1. Does the image of the natural embedding

(S/BS)3 ↪→ (G/B)3 (3.1)

meet the semistable locus?

The answer, in general, is no. Here we give a counter example. If the answer were yes, then we

would have existence of semistable points of a very useful form. In particular, existence of semistable

points in (S/BS)3 would aid in sharpening the descent theorem.

Consider a line bundle L(χ1, χ2, χ3) on (G/B)3, then the pull-back is the restriction and we have
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an S-equivariant map of sections

H0((G/B)3,LN )→ H0((S/BS)3,L|N(S/BS)3),

which induces

H0((G/B)3,LN )S → H0((S/BS)3,L|N(S/BS)3)S .

Composing with the inclusion of G-invariants on the left-hand side gives the map

ρ : H0((G/B)3,LN )G → H0((S/BS)3,L|N(S/BS)3)S .

Then, to prove that the embedding (3.1), in general, does not meet the ((G/B)3)ss, it suffices to

find a G and an S such that [V (Nχ1)⊗ V (Nχ2)⊗ V (Nχ3)]G 6= 0 for some N > 0 yet [VS(Nχ1)⊗

VS(Nχ2)⊗ VS(Nχ3)]S = 0 for all N .

The relationship between G and S is given by Borel-de Siebenthal theory (cf. [33], [17] Theorem

3.10). We take, as a counter example, the subalgebra of type A3 of the Lie algebra B3. This is

obtained from B3 by deleting the short root and adjoining −θ, where θ = α1 + 2α2 + 2α3 is the

highest root and {α1, α2, α3} are the simple roots for B3.

Then, we have A3 as the subalgebra with root lattice Zα1 + Zα2 + Zθ. We consider s to be the

subalgebra of type A3 with simple roots

β1 = α2

β2 = α1

β3 = α2 + 2α3.

It is straightforward to check that 〈β1, β2〉〈β2, β1〉 = 1, 〈β2, β3〉〈β3, β2〉 = 1, and 〈β1, β3〉〈β3, β1〉 = 0.

Also, 〈β3, β3〉 = −2, and the A3 roots generated by this choice of simple roots are still B3 roots. Thus,

these are the simple roots of a maximal rank subalgebra of type A3.

Expressing the simple roots of B3 in terms of the simple roots of A3 gives the restriction map on
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roots:

α1 7→ β2

α2 7→ β1

α3 7→ (1/2)(β3 − β1).

For reference, we record the fundamental weights of both types. First, for B3:

ω1 = α1 + α2 + α3

ω2 = α1 + 2α2 + 2α3

ω3 = (1/2)(α1 + 2α2 + 3α3).

Second, for A3:

ν1 = (1/4)(3β1 + 2β2 + β3)

ν2 = (1/4)(2β1 + 4β2 + 2β3)

ν3 = (1/4)(β1 + 2β2 + 3β3).

Applying the restriction map to the fundamental weights we get the following.

ω1 7→ ν2

ω2 7→ ν1 + ν3

ω3 7→ ν3.

If we express a highest weight for type B3 as (a, b, c) = aω1 + bω2 + cω3, then this gives the highest

weight of the type A3 subalgebra (b, a, b+ c) = bν1 + aν2 + (b+ c)ν3. Let V (a, b, c) denote the obvious

representation. We wish to construct an example with (ai, bi, ci), i = 1, 2, 3, such that

[
V (a1, b1, c1)⊗ V (a2, b2, c2)⊗ V (a3, b3, c3)

]G 6= 0 (3.2)

however [
VS(b1, a1, b1 + c1)⊗ VS(b2, a2, b2 + c2)⊗ VS(b3, a3, b3 + c3)

]S
= 0. (3.3)

Now, recall that for Bn and λ ∈ Λ(Bn), −w0λ = λ and for A3,

−w0(aν1 + bν2 + cν3) = cν1 + bν2 + aν3.
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Hence, equation (3.2) holds if and only if V (a1, b1, c1) is a component in V (a2, b2, c2)⊗ V (a3, b3, c3).

While, equation (3.3) holds if and only if VS(b1 + c1, a1, b1) is a component of VS(b2, a2, b2 + c2)⊗

VS(b3, a3, b3 + c3).

Using [20], we then check that V (2, 1, 5) has multiplicity 4 inside V (1, 1, 2)⊗ V (1, 2, 1). However,

VS(6, 2, 1) does not occur inside VS(1, 1, 3)⊗ VS(2, 1, 3).

Since the tensor cone forms a semi-group, we have for any N > 0

[
V (N2, N1, N5)⊗ V (N1, N1, N2)⊗ V (N1, N2, N1)

]G 6= 0.

Yet, since the saturation property holds for SL(n) (cf. [15]) and 4ν1 + 4ν2 + 12ν3 ∈ Qs, we have for

any N > 0, [
VS(N1, N2, N6)⊗ VS(N1, N1, N3)⊗ VS(N2, N1, N3)

]S
= 0.

This gives the desired counter example
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CHAPTER 4: NOTATION AND PRELIMINARIES II

In this chapter, we develop the needed notation and preliminaries to understand joint work with

Shrawan Kumar found in [4], which we cover in chapters six and seven. In the first section, we

discuss diagram automorphisms, showing all such automorphisms, and constructing the root datum

of the fixed point subgroups following [28]. In sections two, we introduce the theory of principal TDS

embeddings due to Kostant in [16]. In section three, we give a brief treatment of primitive elements

in H∗(G). Last, in section four, we define the transgression map and state related theorems.

4.1 Diagram Automorphisms

The theory discussed in this section can all be found in [28]. In this section let g be a simple,

simply-lace Lie algebra of type A`, D`, or E6 with Cartan subalgebra t. For each of the corresponding

Dynkin Diagrams, there is a non-trivial automorphism σ called a diagram automorphism. In a natural

way, the diagram automorphism σ induces an automorphism on the simply-connected algebraic group

G with Lie algebra g, and hence σ also induces an automorphism on g (cf. [28] for how this is defined).

By abuse of notation, we also use σ to denote the automorphism of G and g. Let Gσ ⊂ G be the

fixed point subgroup of σ on G. If T σ is the fixed point subgroup of T , then tσ is both the Lie algebra

of T σ and the σ-fixed point subalgebra of t. Similarly, gσ is simultaneously the Lie algebra of Gσ and

the σ-fixed point subalgebra of g.

Then, we construct the root datum of Gσ. Let X(T ) be the character group of T and Λ the

weight lattice, so Λ = X(T ) as G is simply connected. Let R be the roots with basis ∆, Q be the root

lattice. For each α ∈ R, let α∨ be the co-root such that 〈α, α∨〉 = 2. Consider σ as a permutation on

R. Gσ has maximal torus T σ consisting of the σ fixed points of T . The roots of Gσ, denoted Rσ, are

given by the restriction of R to tσ. Alternatively, we can can think of Rσ as the image of R in the

quotient X(T )/(σ − 1)X(T ). For α ∈ R, we will denote by αO ∈ Rσ the image of α in the quotient

X(T )/(σ − 1)X(T ). Observe that ∆σ, the simple roots of Rσ, is the image of ∆ in Rσ.
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If O is a σ-orbit in R, write

α∨O =
∑
α∈O

α∨.

Then the co-roots of Gσ corresponding to αO ∈ ∆σ is as follows:

(i) If G is not of type A2n, then take α∨O when α has either |O| = 1 or |O| > 1 and α is orthogonal

to every root in its orbit.

(ii) If G is of type A2n, then take α∨O when α has |O| > 1 and α is orthogonal to every root in its

orbit. If |O| > 1 and 〈σα, α∨〉 6= 0, then take 2α∨O.

In what follows we let ∆∨σ denote the co-roots corresponding to ∆σ as described here. In the

following we use these rules to compute the Dynkin diagrams for types of pairs (Gσ, G), what is called

diagram folding.

4.1.1 (Cn+1, A2n+1)

We have σ as follows:

Figure 4.1: σ on A2n+1

w w w w w w w. . . . . . . . . . . .

1 2 n n+1 σ(n) σ(2) σ(1)

All orbits are size two except the (n+ 1)th node, ∆σ has one root for every orbit. Since every

root with a non-trivial orbit is orthogonal to every other root in its orbit,

∆∨σ = {α∨n+1, α
∨
i + σ(αi)

∨ | i 6= n+ 1}.

Then, for i 6= n, n+ 1, i, j ≤ n+ 1,

〈(αj)O, α∨i + σ(αi)
∨〉 =


0 |i− j| > 1

−1 |i− j| = 1
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and

〈(αj)O, α∨n+1〉 =


−1 j = n

0 o.w.

.

Also,

〈(αj)O, α∨n + σ(αn)∨〉 =


0 |i− j| > 1

−2 j = n+ 1

−1 j = n− 1

.

So, we have single bonds between all nodes for βi := (αi)O for i ≤ n−1, and the double bond between

βn := (αn)O and βn+1 := (αn+1)O, and βn+1 is the longer root. So, the diagram for (Gσ, T σ) in this

case is

Figure 4.2: Cn+1 as Gσ

w w w w w. . . . . . . . .

1 2 n-1 n n+1
〈

Hence Gσ is of type Cn+1.

4.1.2 (Bn, A2n)

We have σ as follows:

Figure 4.3: σ on A2n

w w w w w w. . . . . . . . . . . .

1 2 n σ(n) σ(2) σ(1)

All orbits are size two, so ∆σ has one root for every orbit. Although it is a priori possible that

multiple orbits are identified in ∆σ, as we cannot use [28] Lemma 10.3.2 here, we know from example

4.1.6 below that Gσ has rank n. Since all roots except n and n+ 1 are orthogonal in their orbits, we

have

∆∨σ = {2(α∨n + α∨n+1), α∨i + σ(αi)
∨ | i 6= n}.

42



Then, for i 6= n, i, j ≤ n,

〈(αj)O, α∨i + σ(αi)
∨〉 =


0 |i− j| > 1

−1 |i− j| = 1

and

〈(αj)O, 2(α∨n + α∨n+1)〉 =


−2 j = n− 1

0 j < n− 1

.

Let βi = (αi)O for 1 ≤ i ≤ n. So, we have single bonds between all nodes except the double bond

between βn and βn−1, and βn is the shorter root. So, the diagram for (Gσ, T σ) in this case is

Figure 4.4: Bn as Gσ

w w w w w. . . . . . . . .

1 2 n-2 n-1 n
〉

Hence Gσ is of type Bn.

4.1.3 (Bn−1, Dn)

We have σ as follows:

Figure 4.5: σ on Dn

w w w w w
w

. . . . . .

1 2

n - 3 n - 2

n-1

σ(n− 1) = n

All orbits are size one except the n− 1 and n nodes of size two, ∆σ has one roots for each root in

the original diagram and one root for the n− 1, n orbit, and

∆∨σ = {α∨n + α∨n−1, α
∨
i | i ≤ n− 1}.

43



Then, for i ≤ n− 1, j ≤ n,

〈(αj)O, α∨i 〉 =


0 |i− j| > 1

−1 |i− j| = 1

and

〈(αj)O, α∨n + α∨n−1〉 =


−2 j = n− 2

0 j < n− 1

.

For 1 ≤ i ≤ n− 1 let βi := (αi)O, then there are single bonds between βi βi+1 except the double bond

between βn−2 and βn−1, and βn−1 is the shorter root. So, the diagram for (Gσ, T σ) in this case is

Figure 4.6: Bn−1 as Gσ

w w w w w. . . . . . . . .

1 2 n-3 n-2 n-1
〉

Hence Gσ is of type Bn−1.

4.1.4 (G2, D4)

We have the order three σ as follows:

Figure 4.7: Order three σ on D4

w w w
w

1

2

σ(1) = 3

σ2(1) = 4

There is one orbit of size three {α1, α3, α4} and one fixed simple root {α2}, so ∆σ has two roots,

and

∆∨σ = {α∨1 + α∨3 + α∨4 , α
∨
2 }.

Then,

〈(α1)O, α
∨
2 〉 = −1
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and

〈(α2)O, α
∨
1 + α∨3 + α∨4 〉 = −3.

So, we have triple bond between β1 := (α1)O and β2 := (α2)O, and β2 is the longer root. So, the

diagram for (Gσ, T σ) in this case is

Figure 4.8: G2 and Gσ

w w
1 2

〈

Hence Gσ is of type G2.

4.1.5 (F4, E6)

Figure 4.9: σ on E6

w w w w w
w

1 3

4

σ(3) = 5 σ(1) = 6

2

There are two orbits of size two {α1, α6} and {α3, α5}, and the fixed roots α2 and α4. So, Dσ has

four roots corresponding to (α1)O, . . . , (α4)O. and

∆∨σ = {α∨1 + α∨6 , α
∨
3 + α∨5 α

∨
2 , α

∨
4 | i ≤ n− 1}.

Then, the non-zero inner products are

〈(α4)O, α
∨
2 〉 = 〈(α2)O, α

∨
4 〉 = −1,

〈(α3)O, α
∨
4 〉 = −1, 〈(α4)O, α

∨
3 + α∨5 〉 = −2,

and

〈(α3)O, α
∨
1 + α∨6 〉 = 〈(α1)O, α

∨
3 + α∨5 〉 = −1.
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So, we have single bonds between all nodes except the double bond between (α3)O and (α4)O, and

(α4)O is the longer root. To label the roots of Gσ in a convenient manner, let β1 = (α2)O, β2 = (α4)O,

β3 = (α5)O and β4 = (α6)O. So, the diagram for (Gσ, T σ) in this case is

Figure 4.10: F4 as Gσ

w w w w
1 2 3 4

〉

Hence Gσ is of type F4.

4.1.6 Example G = SL(2n+ 1)

Let us explicitly look at the case of SL(2n+1). This is the group of determinant one automorphisms

of C2n+1 in the standard basis {ei}2n+1
i=1 . Then, the maximal torus is

T = {diag(a1, . . . , a2n+1) | a1 · · · a2n+1 = 1},

and the Borel subgroup B is upper triangular matrices. We consider the following involution of

SL(2n+ 1)

σ(A) = E−1(At)−1E,

where

E =


0 0 J

0 2 0

J 0 0


and J is the n×n anti-identity. It is routine to check that σ is a diagram automorphism of SL(2n+1).

Moreover, since A fixes the bilinear form determined by E if and only if AtEA = E, we see this

condition is equivalent to A = E−1(At)−1E = σ(A). In particular,SL(2n + 1)σ is the subgroup

SO(2n+ 1) stabilizing the symmetric bilinear form associated to E.

4.2 Principal TDS Embeddings

Let g be a simple Lie algebra over C of rank ` and t a fixed Cartan subalgebra. An element

X ∈ g is said to be nilpotent if ad(X) is a nilpotent linear transformation, where ad : g→ End(g) is
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the adjoint representation ad(X)(Y ) = [X,Y ] (alternatively one can use the image of X under any

representation). An example of a nilpotent element is any Xα ∈ gα where α ∈ R+ and gα is the root

subspace of α.

Now if G is a group with g as its Lie algebra, using the properties of Ad(g) listed in section 1.1,

we have for any g ∈ G and any X,Y ∈ G,

(ad(X))NY = [Ad(g)(X), · · · , [Ad(g)(X), Y ] · · · ] = Ad(g) · ad(X)N (Ad(g−1)(Y )).

In particular, Ad(g)(X) is nilpotent when X is nilpotent. If we let N be the collection of all nilpotent

elements in g, then we see that N is Ad(G)-stable. Moveover, it follows from [16], Lemma 5.4, that

N is exactly the Ad(G) orbit of b. There is a unique open orbit in N , and any element in this open

orbit is called principal nilpotent. Then, the following is due to Kostant ([16], Theorem 5.3).

Theorem 4.2.1. For α ∈ R+, let Xα ∈ gα, i.e., such that b =
⊕

α∈R+ CXα. Then,

X =
∑
α∈R+

aαXα ∈ b

is a principal nilpotent if and only if aα 6= 0 for every simple root α ∈ ∆.

Now, let sl2 be the Lie algebra of traceless 2× 2 matrices over C with the standard basis

E =

0 1

0 0

 , F =

0 0

1 0

 and H =

1 0

0 −1

 .

In this case, E is the principal nilpotent of sl2. We have the following definition.

Definition 4.2.1. A Lie algebra embedding ϕ : sl2 → g (or its image) is called a principal TDS if

ϕ(E) is a principal nilpotent element of g.

It follows from [16], Corollary 3.7, that all principal TDS are Ad(G)-conjugates. That is, if

ϕ′ : sl2 → g is another principal TDS, then, there exists a g ∈ G such that

ϕ′ = Adg · ϕ. (4.1)

Now, a principal TDS embedding defines an action of sl2 on g by the adjoint representation
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of ϕ(sl2), i.e., g becomes a representation of sl2. Recall that the irreducible representations of sl2

correspond to nonnegative integers n such that n is the highest weight. Moreover, the irreducible sl2

representation of highest weight n has dimension n+ 1 (cf. [14], §7.2). Then, we decompose g into

irreducible sl2 components:

g = V1 ⊕ V2 ⊕ · · · ⊕ V`,

labeling them so that

n1 ≤ · · · ≤ n`, where ni = dimVi. (4.2)

By the identity (4.1), we see that the decomposition of g with respect to another principal TDS ϕ′

looks like

g =
(
Adg · V1

)
⊕
(
Adg · V2

)
⊕ · · · ⊕

(
Adg · V`

)
.

Then, by [16] Corollaries 5.3 and 8.7 for (i) & (ii), and by any table of exponents for (iii), we

have the following.

Proposition 4.2.1. (i) ` = rank of g.

(ii) Each ni is an odd integer 2mi + 1. Moreover,

m1 ≤ m2 ≤ · · · ≤ m`

are the exponents of g.

(iii) Except when g is of type D`, with ` even, each Vi is an isotypical component (in particular,

uniquely determined) for the principal TDS ϕ, i.e., m1 < m2 < · · · < m`.

When g is of type D`, with ` even, the exponents are

1, 3, 5, · · · , `− 3, `− 1, `− 1, `+ 1, · · · , 2`− 3. (4.3)

Hence, the isotypical component for the highest weight 2`− 2 is a direct sum of two copies of the

irreducible module Vsl2(2`− 2) with highest weight 2`− 2.
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4.3 Primitive Elements

Let G be the simple, connected group with simple Lie algebra g. Let the singular cohomology

of G be considered with complex coeffcicients, i.e., H∗(G) := H∗(G,C). The multiplication map

G × G → G induces a graded homomorphism on cohomology ∆ : H∗(G) → H∗(G) ⊗ H∗(G). In

particular, this is a co-mulitplication map making H∗(G) a Hopf Algebra.

Then, an element x ∈ H∗(G) is called a primitive element if ∆(x) = 1⊗ x+ x⊗ 1. Since ∆ is a

graded homomorphism, the collection of primitive elements in H∗(G) forms a graded subspace which

we denote by P (g). Note, e.g. by [7], Theorem 15.1, that H∗(G) does not depend on the isogeny

type of G, so the notation P (g) is justified.

Now, let G0 be a maximal compact subgroup of G. We can identify ∧(g∗) with the left invariant,

C-valued forms on G0, and hence identify ∧(g∗)g with the bi-invariant forms on G0. Then, ∧(g∗)g ∼=

H∗dR(G0,C), where the latter denotes the de Rham cohomology of G0, follows from the fact that

each de Rham cohomology class on a compact, connected Lie group has exactly one bi-invariant

representative (cf. [7], Theorem 12.1). Moreover, by the de Rham Theorem H∗dR(G0,C) ∼= H∗(G0,C).

Lastly, since G0 is a deformation retract of G, we have H∗(G0,C) ∼= H∗(G). In summary, we have a

canonical isomorphism

∧ (g∗)g ∼= H∗(G). (4.4)

A Hopf algebra structure is naturally defined on ∧(g∗)g (cf. [21] §10.3.1). It is a tedious but routine

computation to check that isomorphsim (4.4) respects co-multiplication, and is thus an isomorphism

of Hopf algebras. In particular, we will consider P (g) ⊂ ∧(g∗)g.

Then, we have the following useful facts on primitive elements (cf. [21] Proposition 10.12 and

Threom 10.2); the latter is well known as the Hopf-Kozul-Samelson Theorem.

Proposition 4.3.1. All primitive elements of ∧(g∗)g occur in odd degrees.

Theorem 4.3.1. The space of primitive elements P (g) ⊂ ∧(g∗)g generates the algebra ∧(g∗)g.

In addition, for any d ≥ 1, let Pd be the subspace of P (g) of (homogeneous) degree d elements.

Then, it is well known that

dimPd = #{1 ≤ i ≤ ` | ni = d}, (4.5)

where ni’s are the dimensions of irreducible components of g under the principal-sl2 action.
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In particular, if g is not of type D` (with ` even), then

dimPd ≤ 1 (4.6)

and Pd is of dimension 1 if and only if d is equal to one of the n′is. If g is of type D` (with ` even),

dimPd ≤ 1 if d 6= 2`− 1, and dimP2`−1 = 2. (4.7)

4.4 The Transgression Map

Here we give a description of the transgression map. The transgression map is originally due to

the work of H. Cartan in [5]. However, we follow the treatment given buy E. Meinrenken in [21].

Let g∗[k] be the graded Lie algebra that has non-zero elements only in degree −k. Then, the Weil

Algebra of g, denoted Wg, is the Koszul algebra for g∗[−1]. In practice, we have

Wg = S(g∗)⊗ ∧(g∗), (4.8)

where S denotes the symmetric algebra and ∧ denotes the exterior algebra. Equation (4.8) requires

some additional explanation. In particular, the Weil algebra is a graded algebra with a degree one

differential d. To each µ ∈ g∗ we have a degree one element µ ∈ g∗[−1] = S1(g∗), and a degree

two element dµ ∈ g∗[−2] = ∧1(g∗) of the Weil algebra. Set µ̂ = dµ − d∧µ ∈ Wg, where, d∧ is the

differential on ∧(g∗) used to define the Lie algebra cohomology of g∗. Then, the collection of µ and µ̂,

for all µ ∈ g∗, generate Wg.

Now, we have two different naturally defined actions of g on Wg. Namely, for each X ∈ g, we

have the contraction operation, denoted i(X), which is a degree −1 operator, and the Lie derivative,

denoted L(X), which is a degree 0 operator. The Lie derivative is the tensor product of the extensions

of the co-adjoint representation of g to S(g∗) and ∧(g∗). The contraction operator i(X) is defined on

degree one generators by i(X)(µ) = µ(X) and on degree two generators by

i(X)dµ = L(X)µ.

Then, we define the invariant subspace of the Weil algebra, denoted (Wg)g, to be the subspace of
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Wg annihilated by L(X) for all X ∈ g. Also, define the basic subspace of Wg, denoted (Wg)bas, to

be the subspace of (Wg)g annihilated by i(X) for all X ∈ g. It follows from basic properties (cf. [21]

§6.6) of contraction and Lie derivatives that the differential d preserves both (Wg)g and (Wg)bas.

Then, we have the following proposition (cf. [21], Theorem 6.2 and Proposition 6.9).

Proposition 4.4.1. (Wg)bas = (S(g∗))g, where S(g∗) is the symmetric algebra in the generators µ̂.

Moreover, (Wg)
g with the restriction of the Weil differential, is an acyclic differential algebra.

Now, there is a canonically defined, g-equivariant (with respect to both contraction and Lie

operators), morphism of graded differential algebras

π : Wg→ ∧(g∗).

Restricting to the invariant subspaces (i.e., just with respect to Lie differentiation) we have a morphism

of differential algebras

π : (Wg)g → (∧(g∗))g.

The differential d∧ is trivial on (∧(g∗))g since (∧(g∗))g ∼= H∗(g), where the former is the Lie algebra

cohomology of g (cf. [21] § 6.13, 6.8 and Proposition 6.11). In particular, since π is a morphism of

differential algebras, π(dx) = 0 for any x ∈Wg such that dx ∈ (Wg)g.

We have the following definition/proposition the the transgression map τ ([21] Proposition 6.17)

Proposition 4.4.2. There is a well-defined linear map,

τ : (S+g∗)g → (∧g∗)g

such that τ(p) = π(C), where C ∈ (Wg)g is any odd element such that dC = p. If p has degree r,

then τ(p) has degree 2r − 1.

Since we have stated all the necessary theory, let us prove the existence of such a C and that

τ is well-defined. For existence, consider p ∈ (Sg∗)g = (Wg)bas, since (Wg)bas ⊂ (Wg)g and, by

Proposition 4.4.1, (Wg)g is acyclic, there must be some C ∈ (Wg)g such that dC = p. To see

that τ is well-defined, it suffices to show that if d(C1 − C2) = 0, then π(C1 − C2) = 0. Again,

since (Wg)g is acyclic, d(C1 − C2) = 0 implies that C1 − C2 = dC ′ for some C ′ ∈ (Wg)g. Then,
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π(C1 − C2) = π(dC ′) = 0.

Also, note that in the proof of Theorem 2.2.1 we give a definition of τ in terms of a basis for g.

Finally, we have the following important theorem originially due to H. Cartan (cf. [5], [21]).

Theorem 4.4.1. The kernel of τ is (S+(g∗)g) · (S+(g∗)g) and the image of τ is P (g).
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CHAPTER 5: DIAGRAM AUTOMORPHISMS & GIT

Let g be a simple, simply-laced Lie algebra over C and let G be the connected, simply-connected

complex algebraic group with Lie algebra g. Let σ be a diagram automorphism of g and let k = gσ be

the fixed subalgebra. The, k is a simple Lie algebra again of type discussed in the previous chapter.

Let K = Gσ be the fixed-point subgroup of G with Lie algebra k. Recall the construction of root

datum for gσ as given in the previous chapter.

We have the following main result of this section.

Theorem 5.0.2. The canonical map φ : R(G) → R(K) is surjective, where R(G) denotes the

representation ring of G (over Z).

In particular, the canonical map K//Ad K → G//Ad G, between the GIT quotients, is a closed

embedding.

Before proving this theorem, we must develop some useful lemmas. Let Λ+(g) ⊂ t∗ (resp.

Λ+(k) ⊂ t∗k ) be the set of dominant integral weights for the root system of g (resp. k) and let

X(TK)+ ⊂ Λ+(k) be the submonoid of dominant characters for the group K, i.e., X(TK)+ is the set

of characters of the maximal torus TK = T σ (with Lie algebra tk) of K which are dominant with

respect to the group K. Let {ν1, . . . , ν`k} be the fundamental weights of k, where `k = rank(k), and

recall {$1, . . . , $`} are the fundamental weights of g. Observe that since G is simply-connected,

X(T )+ = Λ+(g). Moreover, under the restriction map ρ : t∗ → t∗k ,

ρ(Λ+(g)) = X(TK)+. (5.1)

To see this, let X(TK) be the character lattice of K (similarly for X(T ) = Λ(g)). Then, by

Springer’s original construction of X(TK) [28], the restriction ρ : Λ(g)→ X(TK) is surjective. Further,

from the description of the coroots of k as in [28], ρ(Λ+(g)) ⊂ Λ+(k). Thus, we have

ρ(Λ+(g)) ⊂ Λ+(k) ∩X(TK) = X(TK)+.
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Conversely, in all cases except for g of type A2n, by Lemma 5.0.2, ρ(Λ+(g)) = Λ+(k) ⊃ X(TK)+, so

equation (5.1) holds in these cases. When g is of type A2n, again by Lemma 5.0.2,

ρ(Λ+(g)) =
(
⊕n−1
i=1 Z+νi

)
⊕ 2Z+νn,

and

X(TK) = ρ(Λ(g)) =
(
⊕n−1
i=1 Zνi

)
⊕ 2Zνn.

From this again, we see that (5.1) is satisfied. This proves (5.1) in all cases.

For any λ ∈ Λ+(g), let V (λ) be the irreducible G-module with highest weight λ. Similarly,

for µ ∈ X(TK)+, let W (µ) be the irreducible K-module with highest weight µ. We denote the

fundamental representations V ($i) of g by Vi and W (νj) of k by Wj .

Lemma 5.0.1. For any λ ∈ Λ+(g), W (ρ(λ)) has multiplicity one in V (λ) as a k-module. (Observe

that by 5.1, ρ(λ) ∈ X(TK)+.)

Proof: Note that the Borel subalgebra bk of k is contained in the Borel subalgebra b of g. So,

if vλ is the highest weight vector of V (λ) (of weight λ), then vλ remains a highest weight vector of

weight ρ(λ) in V (λ) for the action of k. Hence, W (ρ(λ)) ⊂ V (λ).

Multiplicity one is clear from the weight consideration.

We next prove two facts unique to our context. For any simple root α, we denote the corresponding

coroot by α∨. We follow the indexing convention as in section 4.1.

Lemma 5.0.2. (a) If G is not of type A2n or E6, then ρ($i) = νi for 1 ≤ i ≤ `k := rank(k).

(b) If G is of type A2n, then ρ($i) = ρ($2n−i+1) = νi for 1 ≤ i ≤ n− 1, and ρ($n) = ρ($n+1) =

2νn.

(c) If G is of type E6, ρ($1) = ρ($6) = ν4; ρ($2) = ν1; ρ($3) = ρ($5) = ν3; ρ($4) = ν2.

Proof: (a) It suffices to show

〈ρ($i), β
∨
j 〉 = δi,j , for 1 ≤ i, j ≤ `k. (5.2)

In this case, we have (cf. 4.1)

β∨j =
∑

α∨k ,
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where the summation runs over the orbit of αj under σ. For 1 ≤ j ≤ `k, no αk is in the σ-orbit of αj

for any 1 ≤ k ≤ `k. Thus, the equation (5.2) follows.

(b) When G is of type A2n, by section 4.1,

β∨j =


α∨j + α∨2n−j+1, for j ≤ n− 1,

2α∨n + 2α∨n+1, for j = n.

So, for 1 ≤ i ≤ 2n,

〈ρ($i), β
∨
j 〉 =


〈$i, α

∨
j 〉+ 〈$i, α

∨
2n−j+1〉, for j ≤ n− 1,

2〈$i, α
∨
n〉+ 2〈$i, α

∨
n+1〉, for j = n.

=


δi,j + δi,2n−j+1, for j ≤ n− 1,

2δi,n + 2δi,n+1, for j = n.

From this (b) follows.

(c) Following the indexing convention as in section 4.1, we get that

β∨1 = α∨2 , β
∨
2 = α∨4 , β

∨
3 = α∨3 + α∨5 , β

∨
4 = α∨1 + α∨6 .

Thus,

ρ($1) = ρ($6) = ν4,

ρ($2) = ν1,

ρ($3) = ρ($5) = ν3,

ρ($4) = ν2.
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5.1 Proof of Theorem 5.0.2

Let {µ1, . . . , µN} ⊂ X(TK)+ be a set of semigroup generators of X(TK)+. Then, the classes

{[W (µj)]}1≤j≤N generate the Z-algebra R(K), where [W (µj)] ∈ R(K) denotes the class of the

irreducible K-module W (µj) (cf. [25], Theorem 3.12).

We proceed separately for each of the five cases depending on the type of (g, k).

Case I (A2n+1, Cn+1):

By Lemmas 5.0.2 and 5.0.1, for 1 ≤ j ≤ n+ 1, Wj ⊂ Vj (as k-modules). Recall that V1
∼= W1

∼=

C2n+2 (so W1 = V1) and Vj = ∧jV1 for all 1 ≤ j ≤ 2n+ 1. Also, for 2 ≤ j ≤ n+ 1, Wj is given as the

kernel of the surjective k-equivariant contraction map ∧jW1 → ∧j−2W1. Hence, for 2 ≤ j ≤ n+ 1, in

R(k) (where R(k) is the representation ring of k), by [11], Theorem 17.5,

[Wj ] + [∧j−2W1] = [∧jW1].

Thus,

φ([V1]) = [W1], and φ([Vj ])− φ([Vj−2]) = [Wj ], for 2 ≤ j ≤ n+ 1,

where V0 is interpreted as the trivial one dimensional module C. Thus, the class [Wj ] of each

fundamental representation lies in the image of φ, and hence φ is surjective.

Case II. (A2n, Bn):

By Lemmas 5.0.2 and 5.0.1, for 1 ≤ j ≤ n− 1, Wj ⊂ Vj and W (2νn) ⊂ Vn (as k-modules). Recall

that V1
∼= W1

∼= C2n+1 (so W1 = V1), and Vj = ∧jV1 for all 1 ≤ j ≤ 2n. Also, Wj = ∧jW1 for

1 ≤ j ≤ n− 1 and W (2νn) = ∧nW1 (see, e.g., [11], Theorem 19.14). Thus, as k-modules,

Wj = Vj , j ≤ n− 1; W (2νn) = Vn.

Thus,

[W1], . . . , [Wn−1], [W (2νn)] ∈ Image φ.
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By Lemma 5.0.2 (b) and the identity (5.1), X(TK)+ is generated (as a semigroup) by {ν1, . . . , νn−1, 2νn}.

Hence, φ is surjective in this case.

Case III. (Dn, Bn−1):

Recall that V1
∼= C2n and W1

∼= C2n−1. By Lemmas 5.0.2 and 5.0.1, for 1 ≤ j ≤ n− 1, Wj ⊂ Vj

(as k-modules). Since W1 ⊂ V1 (as k-modules), we get (as k-modules):

V1 = W1 ⊕ C.

Thus, for 1 ≤ k ≤ n− 2, as k-modules,

Vk = ∧kV1 = ∧k(W1 ⊕ C) ∼= (∧kW1)⊕ (∧k−1W1) = Wk ⊕Wk−1,

where the first equality is by [11], Theorem 19.2; W0 is interpreted as the one dimensional trivial

module and the last equality is from the proof of Case II.

Since Wn−1 ⊂ Vn−1 as k-modules, and both being spin representations have the same dimension

2n−1 (see, e.g., [12], Section 6.2.2), we get Vn−1 = Wn−1. Therefore,

φ([Vk]) = [Wk] + [Wk−1] for 1 ≤ k ≤ n− 2, and φ([Vn−1]) = [Wn−1].

In particular, each of [W1], . . . , [Wn−1] lies in the image of φ, proving the surjectivity of φ in this case.

Case IV. (D4, G2):

The two fundamental representations W1 and W2 have respective dimensions 7 and 14 ([11],

Section 22.3). On the other hand, V1 is eight dimensional and V2 = ∧2V1. Since ρ($1) = ν1 (by

Lemma 5.0.2), by Lemma 5.0.1 we get W1 ⊂ V1 (as k-modules). So, we have the decomposition (as

k-modules):

V1 = W1 ⊕ C.

Thus, as k-modules,

V2 = ∧2V1 = ∧2(W1 ⊕ C) ∼=
(
∧2 W1

)
⊕W1.
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But, ∧2W1
∼= W2 ⊕W1 ([11], Section 22.3). Hence, as k-modules,

V2 = W2 ⊕W⊕2
1 .

This gives

φ([V1]) = [W1] + 1 and φ([V2]) = [W2] + 2[W1],

which proves the surjectivity of φ in this case.

Case V. (E6, F4):

By Lemma 5.0.2(c), we see that ρ is surjective with kernel given by {a$1 +b$3−b$5−a$6 | a, b ∈

Z}. Considering the images of $i under ρ, we have as k-modules (by Lemmas 5.0.2(c) and 5.0.1),

W1 ⊂ V2,

W2 ⊂ V4,

W3 ⊂ V3, V5,

W4 ⊂ V1, V6.

Using [27], Tables 44 and 47 or [20], we obtain

dim(W1) = 52, dim(V2) = 78,

dim(W2) = 1274, dim(V4) = 2925,

dim(W3) = 273, dim(V3) = dim(V5) = 351,

dim(W4) = 26, dim(V1) = dim(V6) = 27.

Along with the fundamental k-modules, there are only three other irreducible k-modules of dimensions

at most 1651 ([27], Table 44, or [20]). These are dim(W (2ν4)) = 324, dim(W (ν1 + ν4)) = 1053, and

dim(W (2ν1)) = 1053.

Let Uk denote an arbitrary k-module of dimension k. Considering the dimensions, we get (as
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k-modules):

V1 = V6 = W4 ⊕ C,

V2 = W1 ⊕ U26,

V3 = V5 = W3 ⊕ U78,

V4 = W2 ⊕ U1651.

Now, U26 must be either W4 or the trivial module C26, and U78 must be some combination of W4,

W1 and C. Since φ([V1]) − 1 = [W4], this implies that [W4], [W1] and [W3] are in the image of φ.

(We remark that [27] gives F4 ⊂ E6 branching, but we continue without these results for clarity and

completeness.)

Using appropriate tensor product decompositions in [20], we get

[W (2ν4)] = [W4]2 − [W3]− [W1]− [W4]− 1, (5.3)

[W (ν1 + ν4)] = [W1][W4]− [W3]− [W4], (5.4)

[W (2ν1)] = [W1]2 − [W2]− [W (2ν4)]− [W1]− 1. (5.5)

Since W2 appears in V4 as a k-submodule exactly once by Lemma 5.0.1, from the above identities, we

get that [W2] lies in the image of φ if W (2ν1) is not a component of V4. In fact, we prove below that

2ν1 is not a k-weight of V4 at all.

In order that 2ν1 be a k-weight of V4, we should have 2ν1 = µ|tk , where µ is a weight of V4. This is

only possible if there exists a weight of V4 of the form µ = a$1 + 2$2 + b$3 − b$5 − a$6, for some

a, b ∈ Z. We claim this is impossible. Indeed, all weights of V4 are of the form $4−
∑6

i=1 diαi, where

di ∈ Z+. If such µ existed, then by [3], Planche V,

∑6
i=1 diαi = $4 − µ

= $4 + a($6 −$1)− 2$2 + b($5 −$3)

= (2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6) + (a/3)(−2α1 − α3 + α5 + 2α6)

−2(α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6) + (b/3)(−α1 − 2α3 + 2α5 + α6),

from which we immediately see a contradiction since the α2 coefficient is −1.

This completes the proof in this last case and hence the proof of the first part of Theorem 2.2.2 is

completed.
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To prove that η : K//Ad K → G//Ad G is a closed embedding, it suffices to show that the

induced map between the affine coordinate rings η∗ : C[G//Ad G]→ C[K//Ad K] is surjective. But,

by [25], Theorem 3.5, there is a functorial isomorphism

C⊗Z R(G)→ C[G//Ad G],

and similarly we have an isomorphism

C⊗Z R(K)→ C[K//Ad K].

From this the surjectivity of η∗ follows from the surjectivity of R(G) → R(K). This proves the

theorem.
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CHAPTER 6: REDUCTION OF HITCHIN’S CONJECTURE

In this section, building upon Theorem 5.0.2, we give the proof for the reduction of the validity of

Hitchin’s conjecture to the simply-laced, simple Lie algebras. Recall the notation and defintion of

chapters 4 and 5. Fix a principal TDS. Then, N. Hitchin made the following conjecture.

Conjecture 6.0.1. Let g be any simple Lie algebra. For any primitive element ω ∈ Pd ⊂ ∧d(g∗)g,

there exists an irreducible sub-module Vω ⊂ g of dimension d with respect to the principal TDS action

such that

ω|∧d(Vω) 6= 0.

Remark 6.0.1. (a) When g is not of type D` (with ` even), given ω ∈ Pd, there exists a unique

irreducible submodule V of dimension d in g. This can be seen by Proposition 4.2.1 and by consulting

a table of exponents of g. Thus, Vω is uniquely determined.

If g is of type D` (with ` even), unless d = 2` − 1, given ω ∈ Pd, there is a unique irreducible

submodule V of dimension d in g. Thus, again Vω is uniquely determined (for d 6= 2`− 1).

(b) A different choice of principal TDS results in the irreducible submodules being equal to Adg ·V ,

for some g ∈ G, and some irreducible submodule V for the original principal TDS (cf. Proposition

4.2.1). But, since we are only considering forms ω ∈ ∧d(g∗)g (which are by definition AdG-invariant),

ω|∧d(Adg·V ) 6= 0 if and only if ω|∧d(V ) 6= 0.

Now, we come to the main results of part two of this dissertation (cf. [4]).

Theorem 6.0.1. If Hitchin’s conjecture is valid for any simply-laced simple Lie algebra g, then it is

valid for any simple Lie algebra.

More precisely, if Hitchin’s conjecture is valid for g of type (A2`−1;A2`;D4;E6), then it is valid

for g of type (C`;B`;G2;F4) respectively.

Proof: Let k be a non simply-laced simple Lie algebra. Then, there exists a simply-laced simple

Lie algebra g together with a diagram automorphism σ (i.e., an automorphism σ of g induced from a

diagram automorphism of its Dynkin diagram) such that k is the σ-fixed point gσ of g. Moreover,
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given k, we can choose g to be of type given in the statement of the theorem (cf. §4.1). In particular,

we never need to take g of type D` except D4.

Choose a Borel subalgebra b of g and a Cartan subalgebra t ⊂ b such that they both are stable

under σ. let ∆ = {α1, . . . , α`} ⊂ t∗ be the set of simple roots of g, where ` is the rank of g. Since σ

keeps b and t stable, σ permutes the simple roots. Let {β̃1, . . . , β̃`k} be a set of simple roots taken

exactly one simple root from each orbit of σ in ∆. Then, the fixed subalgebra bk := bσ is a Borel

subalgebra of k, tk := tσ is a Cartan subalgebra of k and {β1, . . . , β`k} is the set of simple roots of k,

where βi := β̃i|tk (cf. [28]). In particular, `k is the rank of k.

For any 1 ≤ n ≤ `k, choose a nonzero element xn ∈ g
β̃n

, where g
β̃n

is the root space of g

corresponding to the root β̃n. Define

yn =

ord(σ)∑
i=1

σi(xn),

where ord(σ) is the order of σ (which is 2 except when g is of type D4 and k is of type G2, in which

case it is 3). If β̃n is fixed by σ, then σ acts trivially on g
β̃n

(cf. [28]), hence yn is never zero. Of

course, yn ∈ k and, in fact, yn ∈ kβn . Define the element y ∈ k by

y =

`k∑
n=1

yn.

By [16], Theorem 5.3, y is a principal nilpotent element of k and hence there exists a principal

TDS in k:

ϕ : sl2 → k such that ϕ(X) = y.

Moreover, since

y =

`k∑
n=1

ord(σ)∑
i=1

σi(xn),

again using [16], Theorem 5.3, we get that y is a principal nilpotent of g as well. Hence, ϕ is a

principal TDS of g also. Decompose g under the adjoint action of sl2 via ϕ:

g = V1 ⊕ · · · ⊕ V`k ⊕ V`k+1 ⊕ · · · ⊕ V`,
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where V1 ⊕ · · · ⊕ V`k is a decomposition of k.

Take a primitive element ωd ∈ Pd(k) ⊂ ∧d(k∗)k, where Pd(k) is the space of primitive elements for k.

By (subsequent) Theorem 6.0.2 , the canonical restriction map ∧d(g∗)→ ∧d(k∗) induces a surjection

Pd(g)→ Pd(k), for any d > 0.

Take a preimage ω̃d ∈ Pd(g) of ωd. By remarks 6.0.1, there exists a unique irreducible sl2-submodule

Vωd of k of dimension d. Further, there exists a unique irreducible sl2-submodule Vω̃d ⊂ g of dimension

d. (For any k not of type G2, the uniqueness of Vω̃d follows since we have chosen g not of type D`;

for k of type G2, Pd(k) is nonzero if and only if d = 3, 11 (cf. equations (4.5)- (4.7). Again, for these

values of d, dimPd(D4) = 1.) Hence, Vωd = Vω̃d . Assuming the validity of Hitchin’s conjecture for g,

we get that ω̃d|∧d(Vω̃d ) 6= 0. Hence,

ωd|∧d(Vωd ) = ω̃d|∧d(Vω̃d ) 6= 0.

This proves the theorem.

We give the Lie algebra analogue of Theorem 5.0.2 as a corollary.

Corollary 6.0.1. The canonical restriction map

S(g∗)g → S(k∗)k

is surjective.

Proof: By [30], section 6.4, for any connected semisimple algebraic group H over C, the restriction

map

r : C[H//Ad H] ∼= C[H]H → C[TH ]WH (6.1)

is an isomorphism of C-algebras, where TH ⊂ H is a maximal torus and WH is the Weyl group of H.

Similarly, by Chevalley’s restriction Theorem, the restriction map

ro : C[h]H → C[th]
WH (6.2)
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is a graded algebra isomorphism, where h (resp. th) is the Lie algebra of H (resp. TH). Thus, to

prove the corollary, it suffices to show that the canonical restriction map

β∗o : C[t]W → C[tk]
WK

is surjective,where W (resp. WK) is the Weyl group of G (resp. K). Since β∗o is a graded algebra

homomorphism induced from the C∗-equivariant map βo : tk/WK → t/W (where the C∗-action is the

standard homothety action), it suffices to show that the tangent map between the Zariski tangent

spaces at 0:

(dβo)0 : T0(tk/WK)→ T0(t/W )

is injective. Also, to see that this injectivity is sufficient, note that t/W and tk/WK are affine spaces

by another theorem of Chevalley (cf. [6]). Let T anal denote the analytic tangent space. Then, the

canonical map

T analx (X)→ Tx(X)

is an isomorphism for any algebraic variety X and any point x ∈ X.

Consider the commutative diagram:

tk/WK
βo
> t/W

TK/WK

exp
∨

β
> T/W,

exp
∨

where TK ⊂ K is the maximal torus with Lie algebra tk and β : TK/WK → T/W is the canonical

map. Since TK , T are tori, exp is a local isomorphism in the analytic category. In particular, there

exist open subsets (in the analytic topology) 0 ∈ Uk ⊂ tk/WK , 0 ∈ U ⊂ t/W, 1 ∈ VK ⊂ TK/WK and

1 ∈ V ⊂ T/W such that βo(UK) ⊂ U and exp|Uk
: Uk → VK is an analytic isomorphism and so is

exp|U : U → V . Since, by Theorem 5.0.2 and the isomorphism (6.1), β is a closed embedding,

(dβ)1 : T anal1 (TK/WK) ∼= T1(TK/WK)→ T anal1 (T/W ) ' T1(T/W )

is injective and hence so is T0(tk/WK)→ T0(t/W ). This proves the corollary.

As a consequence of Corollary 6.0.1, we get the following.
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Theorem 6.0.2. With the notation and assumptions as in Theorem 5.0.2, the canonical restriction

map γ : H∗(G)→ H∗(K) is surjective. Moreover, this induces a surjective (graded) map

γo : P (g)→ P (k),

where P (g) ⊂ H∗(G) is the subspace of primitive elements.

Proof: From the definition of coproduct, it is easy to see that the following diagram is commuta-

tive:

H∗(G)
∆G

> H∗(G)⊗H∗(G)

H∗(K)

γ
∨

∆K
> H∗(K)⊗H∗(K).

γ⊗γ
∨

Thus, γ takes P (g) to P (k).

Let h be a reductive Lie algebra. For any v ∈ h, define the derivation i(v) : S(h∗)→ S(h∗) given

by i(v)(f) = f(v), for f ∈ h∗. Further, define an algebra homomorphism λ : S(h∗)→ ∧even(h∗) by

λ(f) = df , for f ∈ h∗ = S1(h∗), where d : ∧1(h∗) = h∗ → ∧2(h∗) is the standard differential in the Lie

algebra cochain complex ∧•(h∗). Now, define the transgression map (cf. §4.4).

τ = τh : S+(h∗)h → ∧+(h∗)h, τ(p) =
∑
j

e∗j ∧ λ(i(ej)p),

for p ∈ S+(h∗)h, where {ej} is a basis of h and {e∗j} is the dual basis of h∗.

By a result of Cartan (cf. [5], Théorème 2 and [21]), τ factors through

S+(h∗)h/(S+(h∗)h) · (S+(h∗)h)

to give an injective map

τ̄ : S+(h∗)h/(S+(h∗)h) · (S+(h∗)h)→ ∧+(h∗)h
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with image precisely equal to the space of primitive elements P (h). From the definition of τ , it is

easy to see that the following diagram is commutative:

S+(g∗)g
τg
> ∧+(g∗)g

S+(k∗)k
∨

τk
> ∧+(k∗)k,

∨

where the vertical maps are the canonical restriction maps. By using Corollary 6.0.1, this proves

that P (g) surjects onto P (k). Since P (k) generates ∧∗(k∗)k ∼= H∗(K) as an algebra, we get that γ is

surjective. This proves the theorem.
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APPENDIX A: TOWARD SEMISTABILITY AND STABILITY

In this appendix, we provide some additional characterizations of when points are semistable or

stable. Up to this point, none of these are particularly useful in explicitly determining the semistable

locus, but our hope is that useful criterion can be developed from these results in the future. In

section one, we take a direct approach. In section two, we restrict to G = SL(n) and identify (G/B)3

with a subvariety of products of grassmanians to obtain an alternative characterization of semistability

and stability.

A.1 Direct Approach

Lemma A.1.1. (B, g2B, g3B) ∈ (G/B)3 is semistable with respect to L(λ)�L(µ)�L(ν) if and only

if v+
Nλ ⊗ g2v

+
Nµ ⊗ g3v

+
Nν has a non-zero G-invariant component.

Proof: Assume (B, g2B, g3B) is semistable. By definition (B, g2B, g3B) is semistable if and only

if there is

σ ∈ H0((G/B)3,L(Nλ) � L(Nµ) � L(Nν))G

∼=
[
H0(G/B,L(Nλ))⊗H0(G/B,L(Nµ))⊗H0(G/B,L(Nν))

]G
such that σ(B, g2B, g3B) 6= 0 for some N > 0. The Borel-Weil isomorphism is G-equivariant, so

[
V (Nλ)∗ ⊗ V (Nµ)∗ ⊗ V (Nν)∗

]G ∼= [H0(G/B,L(Nλ))⊗H0(G/B,L(Nµ))⊗H0(G/B,L(Nν))
]G

under the map with diagonal action on all tensor products.

If v+
Nλ⊗g2v

+
Nµ⊗g3v

+
Nν has a nonzero G-invariant component, then there must be some G-invariant

element in ∑
αi ⊗ βi ⊗ γi ∈

[
V (Nλ)∗ ⊗ V (Nµ)∗ ⊗ V (Nν)∗

]G
.

The previous statement follows since if α is not a G-invariant dual element, then for some g, gα lives

in some weight space λ 6= 1. Choose some t ∈ T such that λ(t) 6= 1 and consider

α(v) = α(g−1t−1v) = λ(t)(gα)(v) = λ(t)α(g−1v) = λ(t)α(v).
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This shows that every non-G-invariant dual element vanishes on G-invariants. On the other hand,

there must be some dual element that is non-vanishing on every G-invariant.

Define regular functions α̃i, β̃i, γ̃i : G → C by α̃i(g) = αi(gv
+
Nλ), and similarly for others.

Observe that α̃i(gb) = αi(gbv
+
Nλ) = eNλ(b)αi(gv

+
Nλ) = eNλ(b)α̃i(g). So, these functions define

elements of H0(G/B,L(Nλ)) by [g, α̃i(g)]. We define σ ∈ H0(G/B,L(Nλ)) ⊗H0(G/B,L(Nµ)) ⊗

H0(G/B,L(Nν)) by

σ(h1B, h2, B, h3) =
∑

[h1, α̃i(h1)]⊗ [h2, β̃i(h2)]⊗ [h3, β̃i(h3)].

Then, σ is the image of
∑
αi ⊗ βi ⊗ γi under the G-equivariant Borel-Weil isomorphism. Hence, σ

must also be G-equivariant.

To show that σ(B, g1B, g2B) 6= 0 it suffices to show that σ defines a non-vanishing section σ∗ of

the pull-back bundle π∗(L) = G3×C over G3 via the natural quotient. For (e, g1, g2) ∈ G3 lying over

(B, g1B, g2B)

σ∗(1, g1, g2) =
∑
α̃i(1)⊗ β̃i(g2)⊗ β̃i(g3)

=
∑
αi ⊗ βi ⊗ βi(v+

Nλ ⊗ g1v
+
Nµ ⊗ g2v

+
Nν) 6= 0

Conversely, given a G-invariant section σ nonvanishing at (B, g1B, g2B), there is some
∑

i(αi ⊗

βi ⊗ γi) ∈
[
V (Nλ)∗ ⊗ V (Nµ)∗ ⊗ V (Nν)∗

]G
corresponding to σ under the Borel-Weil isomorphism.

Hence

0 6=
∑

αi ⊗ βi ⊗ βi(v+
Nλ ⊗ g1v

+
Nµ ⊗ g2v

+
Nν)

Clearly, v+
Nλ ⊗ g1v

+
Nµ ⊗ g2v

+
Nν must have a nonzero G-invariant component.

A.2 Embedding in Grassmanians for G = SL(n)

We now restrict to the case when G = SL(n). Let Ei = C〈e1, . . . , ei〉 be the standard i-dimensional

subspace of Cn, where {e1, . . . , en} is the standard basis of Cn. G acts naturally on Ei, consider the

following G-equivariant embedding. G/B ↪→
∏n−1
k=1 Grk(Cn), given by

gB 7→ (gE1, gE2, . . . , gEn−1).
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Injectivity is apparent since for any g1, g2 with the same image, g−1
1 g2 will fix the flag E1 ⊂ E2 ⊂

· · · ⊂ En−1, and hence will live in B.

This induces the G-equivariant embedding j : (G/B)3 ↪→
∏3
i=1

∏n−1
ki=1 Grki(Cn). Now, for any k

we have the Plücker embedding Grk(Cn) ↪→ P(∧kCn) given by

span(v1, . . . , vk) 7→ [v1 ∧ · · · ∧ vk].

For some a ∈ Z>0 we also have the Veronese embedding P(∧kCn) ↪→ P(Syma(∧kCn)) given by

[v1 ∧ · · · ∧ vk] 7→ [(v1 ∧ · · · ∧ vk)a],

where the latter denotes the a-th symmetric power. Given any 3(n − 1)-tuple of akii ∈ Z>0, by

composing products of these two embeddings we get the following embedding

(G/B)3 ↪→
3∏
i=1

n−1∏
ki=1

P(Syma
ki
i (∧kiCn)),

given by in the (i, ki)-th image coordinate

(g1B, g2B, g3B) 7→ [(gie1 ∧ gie2 ∧ · · · ∧ gieki)
a
ki
i ].

If we follow this with a Segre embedding, we get

φ : (G/B)3 ↪→ P
[
⊗3
i=1 ⊗n−1

ki=1Syma
ki
i (∧kiCn)

]
,

given by

(g1B, g2B, g3B) 7→

[(g1e1)a
1
1 ⊗ · · · ⊗ (gie1 ∧ gie2 ∧ · · · ∧ gieki)a

ki
i ⊗ · · · ⊗ (g3e1 ∧ g3e2 ∧ · · · ∧ g3en−1)a

n−1
3 ].

Now, on the other hand, given three regular, dominant weights, we have the standard embedding

ψ : (G/B)3 ↪→ P
[
V (χ1)⊗ V (χ2)⊗ V (χ3)

]
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given by (g1B, g2B, g3B) 7→ [g1v
+
χ1
⊗ g2v

+
χ2
⊗ g3v

+
χ3

].

Now, if χ1 =
∑n−1

k1=1 a
k1
1 $k1 , χ2 =

∑n−1
k2=1 a

k2
2 $k2 , and χ3 =

∑n−1
k3=1 a

k3
3 $k3 , then

V (χ1) ⊂ ⊗n−1
k1=1Syma1k1(∧k1Cn)

with highest weight vector

v+
χ1

= e
a11
1 ⊗ (e1 ∧ e2)a

2
1 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)a

n−1
1

and similarly for V (χ2) and V (χ3). Thus, as G-modules we have

V (χ1)⊗ V (χ2)⊗ V (χ3) ⊂ ⊗3
i=1 ⊗n−1

ki=1 Syma
ki
i (∧kiCn),

which gives the G-equivariant embedding

i : P
[
V (χ1)⊗ V (χ2)⊗ V (χ3)

]
⊂ P

[
⊗3
i=1 ⊗n−1

ki=1Syma
ki
i (∧kiCn)

]
.

Then, the following proposition is immediate.

Proposition A.2.1. With the notation as above, i ◦ ψ = φ.

Let V = ⊗3
i=1 ⊗

n−1
ki=1 Syma

ki
i (∧kiCn) and W = V (χ1)⊗ V (χ2)⊗ V (χ3).

Lemma A.2.1. φ∗OP(V )(1) = L(χ1, χ2, χ3).

Proof:

First, Since, the tautological bundle on P(V ) pulls back to the tautological bundle on P(W ), we

see that i∗OP(V )(1) = OP(W )(1). Hence, it suffices to observe that ψ∗(OP(W )(1)) = L(χ1, χ2, χ3) and

this is well known.

The following proposition is a generalization of [23], §4.4, and [32].

Proposition A.2.2. Consider the same notation as above. Then,

(L1
1, . . . , L

n−1
1 , L1

2, . . . , L
n−1
2 , L1

3, . . . , L
n−1
3 ) ∈

3∏
i=1

n−1∏
ki=1

Grki(C
n)
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is stable, or semistable, with respect to the embedding determined by χ1, χ2, χ3 as above if and only if

∑n−1
j=1 a

j
1

(
dim(F )j − n dim(Lj1 ∩ F )

)
+ aj2

(
dim(F )j − n dim(Lj2 ∩ F )

)

+aj3
(

dim(F )j − n dim(Lj3 ∩ F )
)
> 0,

(A.1)

for every non-zero, proper subspace F of Cn, with ≥ 0 for the statement on semistability.

Proof:

We will proceed by proving this formula for the embedding of the product of Grassmanians. In

particular, we consider Grk(Cn) ↪→ P(Syma(∧kCn)). On basis vectors, this embedding looks like

span(ei1 , . . . , eik) 7→ [(ei1 ∧ · · · ∧ eik)a] = [pai1,...,ik ], where pi1,...,ik = ei1 ∧ · · · ∧ eik . Let Ok(1) on

Grk(Cn) be the pull-back of OP(V )(1) via this embedding. Then, Ok(1) is a G-linearized line bundle

over Grk(Cn).

Now, consider σ(t) = diag(tr1 , . . . , trn) and observe the diagonalized action of σ(t) on the natural

basis for Syma(∧k(Cn))

σ(t) · (pi11,...,i1kpi21,...,i2k · · · pia1 ,...,iak) = t

∑a
j=1(r

i
j
1
+···+r

i
j
k

)
(pi11,...,i1k

pi21,...,i2k
· · · pia1 ,...,iak),

where we take ij1 < · · · < ijk.

For any L ∈ Grk(Cn), take pi11,...,i1k
(L) to be the coefficient of pi11,...,i1k

for the image of L under the

Plücker embedding. Then using Proposition 2.3 of [23],

µOk(1)(L, σ) = max{−
a∑
j=1

(r
ij1

+ · · · r
ijk

) | pi11,...,i1k(L)pi21,...,i2k
(L) · · · pia1 ,...,iak(L) 6= 0}. (A.2)

Let L(n+1) = Cn, L(n) = {xn = 0}, . . . , L(i,i+1,...,n) = {xi = xi+1 = · · · = xn = 0}, . . . ,

L(1,...,n) = {0}. For each L ∈ Grk(Cn), there exist unique integers α1 < · · · < αk such that

dim(L ∩ L(αi+1,...,n)) = i, and dim(L ∩ L(αi,αi+1,...,n)) = i− 1.

The definition of {α1, . . . , αk} requires that for each i = 1, . . . , k, there is a point qi ∈ L such that

qi ∈ L(αi+1,...,n) \ L(αi,...,n).
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Since there are k of these, we see that

L = span(q1, . . . , qn).

If we assume that σ(t) is such that r1 > · · · > rn, then σ(t) · Cqi = Ceαi + tβC(
∑

j<αi
bjej), where

β > 0 and bj could be zero. Thus

lim
t→0

σ(t) · L = Ceα1 + Ceα2 + · · ·+ Ceαk =: L0.

Then, µOk(1)(L, σ) = µOk(1)(L0, σ), so it suffices to compute the latter. But pi1,...,ik(L0) 6= 0 if and

only if ij = αj for all j. Thus, by equation (A.2)

µOk(1)(L, σ) = −a
∑k

i=1 rαi

= −a
∑n

i=1

[
dim(L ∩ L(i+1,...,n))− dim(L ∩ L(i,i+1,...,n))

]
ri

= −a
[
krn +

∑n
i=2 dim(L ∩ L(i,i+1,...,n))(ri−1 − ri)

]

= −akrn + a
∑n

i=2 dim(L ∩ L(i,i+1,...,n))(ri − ri−1).

(A.3)

By, the same justification used in §4.4 of [23], we conclude that this formula must also hold for

σ(t) of the form r1 ≥ r2 ≥ · · · ≥ rn.

Then, take a point ~L := (L1
1, . . . , L

n−1
1 , L1

2, . . . , L
n−1
2 , L1

3, . . . , L
n−1
3 ) ∈

∏3
i=1

∏n−1
ki=1 Grki(Cn) and

χ1, χ2, χ3 as above with associated embedding φ (taken on the product of Grassmannians), and let

O(1) be the pullback of OP(V )(1) under the embedding

n−1∏
ki=1

Grki(C
n) ↪→ P(V )

determined by χ1, χ2, χ3. Then by equation (A.3) and Proposition 1.2.1 (iii), we have

µO(1)(~L, σ) =

3∑
s=1

n−1∑
j=1

(
− ajsjrn + ajs

n∑
i=2

dim(Ljs ∩ L(i,i+1,...,n))(ri − ri−1)
)

(A.4)
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Now, the subset of Zn with r1 ≥ · · · ≥ rn and
∑n

i=1 ri = 0 is Q≥0-spanned by the extremal σp,

p = 1, . . . , n− 1, of the form

(n− p) = r1 = · · · = rp ≥ rp+1 = · · · = rn = −p.

Since the equation (A.4) is a linear function on the ri’s, it follows that µO(1)(~L, σ) > 0 or ≥ 0 for any

sigma of the form r1 ≥ · · · ≥ rn if and only if the corresponding inequality holds for the all extremal

σp. So, we calculate equation (A.4) for the extremal σp.

µO(1)(~L, σp) =

3∑
s=1

n−1∑
j=1

ajs
(
pj − n dim(Ljs ∩ L(p+1,...,n))

)
(A.5)

On the other hand, every δ ∈ OPS(G) is conjugate to σ ∈ OPS(T ) of the form r1 ≥ · · · ≥ rn and

µO(1)(~L, gσg−1) = µO(1)(g−1 · ~L, σ). Moreover, dim(g−1Ljs ∩ L(i,i+1,...,n)) = dim(Ljs ∩ gL(i,i+1,...,n)).

Thus, µO(1)(~L, δ) > 0, or ≥ 0, for all δ ∈ OPS(G) if and only if

3∑
s=1

n−1∑
j=1

ajs
(
pj − n dim(Ljs ∩ gL(p+1,...,n))

)
> 0,

or ≥ 0, for every p = 1, . . . , n− 1 and every g ∈ G. Noting that any proper, non-zero, subspace of

dimension p is obtainable as a G translate of L(p+1,...,n), we have that ~L is stable or semistable if and

only if
3∑
s=1

n−1∑
j=1

ajs
(

dim(F )j − n dim(Ljs ∩ F )
)
> 0,

or ≥ 0, for every proper, non-zero, subspace F ⊂ Cn.

Now, if j : (G/B)3 ↪→
∏3
i=1

∏n−1
ki=1 Grki(Cn) is as described above, by lemma (A.2.1) and recalling

the definition of O(1) given in the proof of the previous proposition, j∗O(1) = φ∗OP(V )(1) =

L(χ1, χ2, χ3). Thus, for x ∈ (G/B)3,

µL(x, δ) = µφ
∗OP(V )(1)(x, δ) = µj

∗O(1)(x, δ) = µO(1)(j(x), δ).

In particular, we have the following corollary.
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Corollary A.2.1. (B, g1B, g2B) ∈ ((G/B)3)s, or ((G/B)3)ss, if and only if

∑n−1
j=1 a

j
1

(
dim(F )j − n dim(Ej ∩ F )

)
+ aj2

(
dim(F )j − n dim(g1Ej ∩ F )

)

+aj3
(

dim(F )j − n dim(g2Ej ∩ F )
)
> 0,

(A.6)

with ≥ 0 for ((G/B)3)ss, for every proper, non-zero, subspace F ⊂ Cn.

If we let

xj = dim(F )j − n dim(Ej ∩ F )

yj = dim(F )j − n dim(g1Ej ∩ F )

zj = dim(F )j − n dim(g2Ej ∩ F ),

then the expression (A.6) is simply

n−1∑
j=1

aj1xj + aj2yj + aj3zj .

In particular, since the set of possible xj , yj , zj is a finite list of integer values, this criterion for

stabiliy/semistability says that ((G/B)3)ss 6= ((G/B)3)s implies (χ1, χ2, χ3) lies in a finite union of

hyperplanes in ((X(T ))++)3.

Example A.2.1. Let’s see what this condition is when G = SL(2). Then, dim(F ) = 1 and

x1, y1, z1 = 1,−1, with the former exactly when giE1 = F , i = 0, 1, 2 (take g0 = e). If there are any

semistable points, then these will certainly occur off the diagonal where giE1 6= gjE1 for i 6= j, so

semistable points exist if and only if

a1 + a2 − a3 ≥ 0

a1 − a2 + a3 ≥ 0

−a1 + a2 + a3 ≥ 0.

WLOG we can assume that a1 ≥ a2 ≥ a3, in which case the first two inequalities are irrelevant. Thus,
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L(a1, a2, a3) has a semistable point if and only if

a1 ≤ a2 + a3.

Now, because the saturation property holds for SL(n) (cf. [15]), L(a1, a2, a3) has a semistable point

if and only if [V (2a1)⊗ V (2a2)⊗ V (2a3)]G 6= 0. Thus, V (2a1) is a component in V (2a2)⊗ V (2a3) if

and only if the inequality above holds. But, the above inequality is equivalent to

2a2 − 2a3 ≤ 2a1 ≤ 2a2 + 2a3.

This is the Clebsch-Gordon condition.

Now, note that giE1 = gjE1 if and only if giB = gjB. We know that the diagonal (B,B,B) is never

semistable. So we cannot have x1 = y1 = z1 = −1 corresponding to a semistable point. Also, if we

have any two of x1, y1, z1 taking −1 corresponding to a semistable point, then when the corresponding

expressions are set to zero, we get the same equations as above. Thus, the three inequalities given

above is a full condition for stability or semistability. In particular, ((G/B)3)ss 6= (G/B)3)s if and

only if one of these attains zero.
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