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ABSTRACT 

 

Daniel Ryan Hoer: The Role of Marine Sponges in Carbon and Nitrogen Cycles of Coral Reef 

and Nearshore Environments 

(Under the direction of Christopher S. Martens) 

 

Sponges and their microbial consortia can alter the water quality of the surrounding 

environment through animal and hosted microbial chemical transformations resulting from their 

dynamic pumping, water filtration, and respiration processes.  The goal of this dissertation was 

to quantify the role of these organisms in the cycles of carbon (C) and nitrogen (N) on reefs and 

representative environments of Florida Bay and describes five principle findings: 1) the abundant 

coral reef sponge Xestospongia muta satisfies the bulk of its respiration oxygen (O2) demand 

through uptake of dissolved organic carbon, and this species removed C in excess of O2 demand 

which is presumed to be reserved for cellular maintenance, growth, and the generation of 

reproductive materials.  2) Respiration activities in this species yielded a tremendous flux of 

dissolved inorganic nitrogen (DIN), and the rate of this N release appeared to be broadly 

conserved between Floridian and Bahamian reefs.  3) The magnitude and speciation of exhalent 

DIN from species tested in Florida Bay showed similar rates of N efflux as those on the reef, yet 

the remineralization of particulate organic matter appears to be the dominant feedstock for the 

observed N release.  4) The N released from these species represented a dominant source of N to 

a budget calculated for an offshore basin in Florida Bay (Mystery Basin).  5) Bloom conditions 

swept through Mystery Basin decimating sponge populations and water column N, and yielded 

significant and lasting changes to the chemical and ecological structure of the system.  These 
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results indicated that sponges have the capacity to alter local water quality through the observed 

C and N transformations mediated by the holobiont (sponge and associated microbiome), and 

further suggests that they can drastically impact ecosystems where their populations dominate.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

For Mom and Dad 

You told me if I kept following my dreams, I would find something that I love to do.   

You were right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 The contents of this dissertation are the product of a large, collaborative effort and could 

not have been completed successfully without the commitment of everyone involved.  I would 

first like to thank my advisor, Chris Martens, who has granted me a huge amount of freedom 

pursuing the questions addressed herein as well as provided unflagging support and 

encouragement throughout the time that we’ve worked together.  I want to thank Niels Lindquist 

for his advice, expertise, and hard work.  I am extremely grateful for the other members of my 

committee, Carol Arnosti, Robert Byrne, and Jaye Cable, all of whom have graciously opened 

their labs and offices to me and have each had a significant impact on this work.  I would like to 

thank Jim Hench for volunteering his expertise during my first ADV deployments and for 

teaching me how to perform the subsequent data processing and analysis.  Sherwood Liu, Jim 

Patten, Michael Lindemuth, and Randy Russell generously contributed their time and effort to 

ensuring the function of SEAS instrumentation (both SEASII and M-SEAS) and without their 

help the deployment and extensive use of these instruments would not have been possible.  I 

would like to express my gratitude and appreciation to collaborators at the Florida Fish and 

Wildlife Conservation Commission Southeast Regional Lab, particularly Bill Sharp and Gabe 

Delgado, who performed sponge biomass surveys, collected bloom samples, and provided 

critical logistical support to our Florida Bay sampling effort.  Field work on Conch Reef was 

supported by the staff at the National Undersea Research Center and Aquarius Reef Base who 

worked tirelessly to ensure our safety and the success of our scientific endeavors.   



vii 
 

During my time at UNC Chapel Hill, the Martens group has been replete with talented 

people who have provided assistance with all aspects of this work.  I’d like to first thank all the 

students (undergraduate and graduate) and postdocs who have helped me in the field and lab, 

particularly Meredith Kintzing, Caleb King, Tanya Witlen, Elijah Lackey, Tara Williams, 

Hansen French, Emily Davidson, and Tim Wahl, who are dependable, hard-working, and each 

contributed to the friendly and fun atmosphere that supported the completion of this project.  I 

am deeply indebted to Patrick Gibson, who was (and continues to be) a fabulous mentor and an 

even better friend.  He spent countless hours in the lab and field teaching me nearly everything I 

now know, and the careful approach to scientific questions that I inherited from our shared time 

has had a profoundly positive impact on my research.  I owe endless thanks (and a Diet Coke or 

two) to Howard Mendlovitz, who has spent an inordinate amount of time with me chasing the 

questions addressed in this dissertation, and in the process we have shared some of the most 

memorable moments of my graduate career (my first dive in the HOV Alvin, my first saturation 

mission in Aquarius, living for 4 days on a small, open-top boat in the Everglades, and “sinking” 

a houseboat, just to name a few). He and I have worked together since my earliest days and he 

continues to be a dear friend and a source of sound advice, creativity, and humor.  I’d also like to 

extend my endless gratitude to Jake Tommerdahl for being a tireless worker, a superb scientist, 

and a great friend.  He was immeasurably important to the collection and analysis of samples for 

this project, and all the datasets that I’ve presented here bear his mark in one way or another.  

We quickly developed a relaxed rapport, and could always laugh and have fun, even during the 

long days when nothing seemed to work; thanks to him, I had an unreasonably enjoyable 

graduate career.       



viii 
 

I’d like to thank my friends and family for their unending love throughout the years.  My 

family (both Hoer and Miano) provided the consistent encouragement and emotional support that 

I needed, and all have listened to me while I complain or babble about a variety of topics, many 

of which sound like nonsense, I’m sure.  My friends, particularly Brock Phillips, Ben Vollmer, 

Oliver Rose, Brady Lawrence, and Reese Wells, were critical to the preservation of my mental 

and physical health by dragging me out on daily runs or rides, and I could always count on them 

for a laugh or a smile both on and off the trails.  Finally, I’d like to thank my wife, Marissa, who 

has been an advisor, lab technician, editor, and my best friend since my first day working with 

Chris.  She has provided love and support throughout the entirety of this process and has helped 

me find perspective when I was lost.       

Support for the presented research was provided by grants from the National Science 

Foundation (NSF), NOAA’s National Undersea Research Center at the University of North 

Carolina at Wilmington, Gerace Research Center, Howard Hughes Medical Institute, and Nortek 

USA.                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................ xii 

 

LIST OF FIGURES ..................................................................................................................... xiii 

 

LIST OF SYMBOLS AND ABBREVIATIONS ....................................................................... xvii 

 

CHAPTER 1: Introduction: Sponge Impacts on Coastal Chemical Cycles ................................... 1 

 

CHAPTER 2: Majority of Respiration Demand of a Common Caribbean Sponge Met 

by Dissolved Organic Carbon Consumption .................................................................................. 8 

 

Introduction ................................................................................................................................. 8 

 

Methods ..................................................................................................................................... 10 

 

Results ....................................................................................................................................... 17 

 

Discussion ................................................................................................................................. 21 

 

CHAPTER 3: Xestospongia muta as a Significant Source of Recycled Nitrogen to 

Floridian and Bahamian Reefs ...................................................................................................... 36 

 

Introduction ............................................................................................................................... 36 

 

Methods ..................................................................................................................................... 38 

 

Results ....................................................................................................................................... 43 

 

Discussion ................................................................................................................................. 46 



x 
 

CHAPTER 4: Efflux and Speciation of Dissolved Inorganic Nitrogen (DIN) from 

Ecologically Relevant Sponge Species in Florida Bay ................................................................. 55 

 

Introduction ............................................................................................................................... 55 

 

Methods ..................................................................................................................................... 58 

 

Results ....................................................................................................................................... 64 

 

Discussion ................................................................................................................................. 67 

 

CHAPTER 5: Sponges Represent a Major Source of Recycled Nitrogen in Florida 

Bay ................................................................................................................................................ 84 

 

Introduction ............................................................................................................................... 84 

 

Methods ..................................................................................................................................... 86 

 

Results ....................................................................................................................................... 96 

 

Discussion ............................................................................................................................... 102 

 

CHAPTER 6: Impacts of a Cyanobacterial Bloom on the Sponge Population and 

Chemical Structure of an Offshore Basin in Florida Bay ........................................................... 124 

 

Introduction ............................................................................................................................. 124 

 

Methods ................................................................................................................................... 128 

 

Results ..................................................................................................................................... 134 

 

Discussion ............................................................................................................................... 142 

 

 

 



xi 
 

CHAPTER 7: Summary of Findings, Conclusion, and Future Directions ................................. 174 

 

REFERENCES ........................................................................................................................... 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF TABLES 

Table 2.1: Comparison of published directly measured in situ carbon uptake and 

respiration activity for sponge species. ......................................................................................... 31 

 

Table 4.1: Inorganic nitrogen production rates from the sampled species, including       

previously published values .......................................................................................................... 78 

 

Table 5.1: Summarized DIN concentrationss from inside and outside Mystery Basin. ............. 113 

 

Table 5.2: Total sponge biomass for hardbottom and seagrass habitats in Mystery 

Basin ........................................................................................................................................... 114 

 

Table 5.3: Nitrogen fluxes (mmol m
-2

 day
-1

) for Florida Bay.. .................................................. 115 

 

Table 5.4: The nitrogen budget for Mystery Basin calculated using the quantifications             

from Table 5.3. ............................................................................................................................ 116 

 

Table 6.1: Summarized DIN concentrations from various sites inside and outside 

Mystery Basin prior to, during, and following the bloom.. ........................................................ 154 

 

Table 6.2: Pre and post-bloom weighted mean sponge biomass across both 

hardbottom and seagrass habitats in Mystery Basin ................................................................... 155 

 
 

 

 

 

 

 

 

 



xiii 
 

LIST OF FIGURES 

Chapter 2 

Figure 2.1: Average DOC concentration in the ambient and excurrent waters of two 

Xestospongia muta (sponges 1 and 2) and the overall average. ................................................... 32 

 

Figure 2.2: Average O2 concentration in the ambient and excurrent waters of two      

Xestospongia muta (sponges 1 and 2) and the overall average.. .................................................. 33 

 

Figure 2.3: Average uptake of O2 and DOC for the tested sponges and the overall 

average.. ........................................................................................................................................ 34 

 

Figure 2.4: Average uptake fluxes of DOC, O2, and POC for the two tested sponges 

and the overall average. ................................................................................................................ 35 

 

Chapter 3 

Figure 3.1: Average NOx
-
 concentration in the ambient and excurrent waters of         

Xestospongia muta individuals tested in the Florida Keys and the Bahamas.. ............................. 52 

 

Figure 3.2: Average NH4
+
 concentration in the ambient and excurrent waters of        

Xestospongia muta individuals tested in the Florida Keys and the Bahamas. .............................. 53 

 

Figure 3.3: Average fluxes of NOx
-
 and NH4

+
 for the tested sponges from Florida and 

the Bahamas.. ................................................................................................................................ 54 

 

Chapter 4 

 

Figure 4.1: Map of Florida Bay.. .................................................................................................. 79 

 

Figure 4.2: Schematic representation of the benthic chamber utilized for determining 

sponge DIN production in situ. ..................................................................................................... 80 

 

Figure 4.3: NH4
+
 and NOx

-
 concentrations during chamber incubations. ..................................... 81 

 

Figure 4.4: Mean volume-normalized rates of DIN production for the 11 tested 

species in Florida Bay.. ................................................................................................................. 82 

 

Figure 4.5: Mean volume-normalized rates of DOC and DON production or 

consumption for the 11 tested species in Florida Bay .................................................................. 83 



xiv 
 

 

Chapter 5 

 

Figure 5.1:  ArcMap image of the study area showing the location of water quality         

collection sites as well as the areal extent of seagrass and hardbottom habitat types. ............... 117 

 

Figure 5.2: Time-series data collected at CTR with discrete collections performed                      

by peristaltic pump ...................................................................................................................... 118 

 

Figure 5. 3: Water column samples transecting Mystery Basin along the approximate     

trajectory of water transport into and out of the basin ................................................................ 119 

 

Figure 5.4: Contour plot of surveyed sponge biomass in Mystery Basin with 8 site 

IDs which were sampled during the water quality survey. ......................................................... 120 

 

Figure 5.5: Average NH4
+
, NOx

-
, and total DIN contributions from the sponge 

community in Mystery Basin. ..................................................................................................... 121 

 

Figure 5.6: Contour plots of NH4
+
, NOx

-
, and total DIN contributions from the sponge 

community in Mystery Basin. ..................................................................................................... 122 

 

Figure 5.7: Contour plot of the calculated N flux model used to determine local 

importance of N sources and sinks throughout Mystery Basin. ................................................. 123 

 

Chapter 6 

 

Figure 6.1: ArcMap image of Mystery Basin ............................................................................. 157 

 

Figure 6.2: ArcMap of recurring water quality samples.. ........................................................... 158 

 

Figure 6.3: Contour plot of September 26, 2013 chlorophyll a concentration at points           

inside and outside of Mystery Basin ........................................................................................... 159 

 

Figure 6.4: Mean chlorophyll a concentrations at all sampled sites from                          

September 26, 2013 to March 4, 2015. ....................................................................................... 160 

 

Figure 6.5: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations 

for HF1 from September 26, 2013 to March 4, 2015. ................................................................ 161 

 

Figure 6.6: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations 

for HF13 from September 26, 2013 to March 4, 2015 ............................................................... 162 



xv 
 

 

Figure 6.7: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations 

for WP96 from September 26, 2013 to March 4, 2015 .............................................................. 163 

 

Figure 6.8: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations 

for J01 from September 26, 2013 to March 4, 2015 ................................................................... 164 

 

Figure 6.9: Methodological comparison for water quality parameters (mean surface 

DIN (NOx
-
 + NH4

+
), NOx

-
, and NH4

+
) at HF1. ........................................................................... 165 

 

Figure 6.10: Comparison DIN concentrations at HF1 during and following the bloom 

with those measured prior to its onset (May 2013 and August 2012) as well as the 

median from Rabbit Key Basin (SERC Site ID: 18).. ................................................................ 166 

 

Figure 6.11: Comparison NH4
+
 concentrations at HF1 during and following the bloom 

with those measured prior to its onset (May 2013 and August 2012) as well as the 

median from Rabbit Key Basin (SERC Site ID: 18) .................................................................. 167 

 

Figure 6.12: Comparison NOx
-1

 concentrations at HF1 during and following the 

bloom with those measured prior to its onset (May 2013 and August 2012) as well as 

the median from Rabbit Key Basin (SERC Site ID: 18).. .......................................................... 168 

 

Figure 6.13: Mean DOC, TN, DON, and chlorophyll a concentrations for HF1 from 

September 26, 2013 to March 4, 2015. ....................................................................................... 169 

 

Figure 6.14: Mean DOC, TN, DON, and chlorophyll a concentrations for HF13 from 

September 26, 2013 to March 4, 2015. ....................................................................................... 170 

 

Figure 6.15: Mean DOC, TN, DON, and chlorophyll a concentrations for WP96 from 

September 26, 2013 to March 4, 2015 ........................................................................................ 171 

 

Figure 6.16: Mean DOC, TN, DON, and chlorophyll a concentrations for J01 from 

September 26, 2013 to March 4, 2015. ....................................................................................... 172 

 

Figure 6.17: Average NH4
+
, NOx

-
, and total DIN contributions from the sponge 

community in Mystery Basin ...................................................................................................... 173 

 

 

 

 



xvi 
 

Chapter 7 

 

Figure 7.1: Sample of time-series data received from simultaneous measurement of 

ambient and excurrent NOx
-
 (NO3

-
 + NO2

-
) from C. nucula collected using prototype 

MSEAS instrumentation.. ........................................................................................................... 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

LIST OF ABBREVIATIONS AND SYMBOLS 

GF/F: Glass fiber filter; ~0.7 µm nominal pore size 

DIN: Dissolved inorganic nitrogen; NH4
+
, NO2

-
, and NO3

- 

TN: Total nitrogen; all nitrogenous material which passes through a glass fiber filter (~0.7 µm 

nominal pore size; inorganic and organic compounds) 

 

DOC: Dissolved organic carbon; operationally defined as organic carbon which passes through 

glass fiber filter  

 

DON: Dissolved organic nitrogen; all nitrogenous material which passes through a glass fiber 

filter minus inorganic nitrogen (DON = TN – DIN). 

 

DOM: Dissolved organic matter, all material that passes through a glass fiber filter inclusive of 

both carbon and nitrogen  

 

HMA: High microbial abundance (sensu Hentschel et al. 2006), referring to species of sponges 

hosting large tissue microbial communities 

 

LMA: Low microbial abundance (sensu Hentschel et al. 2006), referring to species with tissue 

microbial densities similar to surrounding seawater. 

 

Δ[Analyte]: Refers to the excurrent concentration minus the ambient concentration of the stated 

analyte 

 

NOx
-
: Combined concentrations of NO3

-
 and NO2

- 

 

POC: Particulate organic carbon; operationally defined as all material which is retained on a 

glass fiber filter 

 

POM: Particulate organic matter; all material retained on a glass fiber filter inclusive of both 

carbon and nitrogen 

 

TOC: Total organic carbon; approximated as the sum of particulate and dissolved organic carbon 

(TOC = POC + DOC) 

 



1 
 

 

 

 

 

 

CHAPTER 1: 

Introduction: Sponge Impacts on Coastal Chemical Cycles 
 

Sponges are ubiquitous features of all marine environments.  They form large and 

growing populations that dominate the benthic biomass in coastal ecosystems of South Florida 

(Butler et al 1995, Peterson et al. 2006, McMurray et al 2010).  Sponges have large water 

filtering capacity, up to 50,000 times their own tissue volume each day (Weisz et al. 2008), and 

they dramatically alter the water quality of the surrounding environment through animal and 

hosted microbial chemical transformations directly associated with their pumping, water 

filtration, and respiration processes.  The large heterotrophic capacity of these organisms and 

their ability to feed on both particulate and dissolved organic matter (POM and DOM), make 

them powerful drivers of organic matter cycling in coastal systems (Yahel et al. 2003, Gibson 

2011, de Goeij et al. 2013); sponge populations in cryptic habitats on reefs are capable of 

consuming carbon (C) equivalent to the total fixed locally by primary productivity (de Geoij et 

al. 2008a).  As a result of these respiration processes, the effluent jet of filtered water exhaled 

from these organisms is often characterized by high levels of dissolved inorganic nitrogen (DIN), 

making them important sources of remineralized nitrogen (N) as well as physical and chemical 

drivers of coupling between those processes occurring near the benthos and those which occur in 

the overlying water column (e.g., Corredor et al. 1988, Lesser et al. 2006, Southwell et al. 2008).  

Understanding the effect of localized, low-level nutrient enrichment from sponge effluent plumes 

on the chemical budgets of the surrounding benthos is critical given that these areas are 

important for chemical and energy exchange in coastal marine environments.  The central goal of 
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my dissertation research was to quantify the importance of sponge-mediated C and N cycling 

processes in coral reef ecosystems and representative environments of Florida Bay where 

processes mediated by these organisms may be dominant drivers of nutrient cycling, 

productivity, and changes in water quality.  The role of these processes in the tested ecosystems 

may directly translate to other coastal environments where sponges are abundant. 

My first objective was to explore the respired C source of a common Caribbean reef 

sponge (Xestospongia muta) by determining the proportion of the metabolic oxygen (O2) demand 

that is satisfied through respiration of dissolved and particulate organic matter.  Based upon 

previous work with this species (Martens et al. unpublished data, Gibson 2011), I hypothesized 

that X. muta would satisfy the majority of its O2 demand from DOM consumption with only a 

minor contribution from POM uptake.  Sponges efficiently feed across a wide range of particle 

sizes (Reiswig 1971); however, even early studies of sponge energetics (Reiswig 1971, 1973, 

1981) revealed an apparent discrepancy between their uptake of POM and metabolic C demands 

as indicated by their rates of O2 utilzation.  Sponges, particularly high microbial abundance 

(HMA) sponges, are thought to fill this metabolic C gap through utilization of dissolved organic 

carbon (DOC) (Yahel et al. 2003; de Goeij et al. 2013).  Investigations of encrusting sponges 

commonly found in coral cavities showed that approximately 40% of the C uptake is accounted 

for by respiration; the remainder is hypothesized to be assimilated to account for rapid 

chaonocyte cell turnover in the sponge animal (de Goeij et al. 2008a, 2008b, 2009).  Improved 

understanding of the C cycling mediated by these organisms and corresponding ecosystem 

impacts is critical to understanding trajectories of coral reef change, particularly in the Caribbean 

where sponges and seaweeds are maintaining a dominant and increasing presence on the benthos.  

Increased in situ studies with non-manipulated sponges will provide further insight into the 
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native behavior of these organisms, and will serve to advance the understanding of their role in 

coral reef ecosystems.   

The product of this organic matter respiration is a large efflux of recycled N in the 

exhalent stream of sponges that has been observed to generate an ecologically relevant source of 

recycled N in coastal environments (e.g., Corredor et al. 1988, Jiménez and Ribes 2007, 

Southwell et al. 2008b, Fiore et al. 2013).  How the processes mediated by these organisms are 

conserved across environmental gradients is only beginning to be understood.  Consequently, I 

tested the degree to which the release of recycled N by the giant barrel sponge X. muta is 

conserved between the environments found on the Florida Keys reef tract and those found on the 

oligotrophic reefs of San Salvador, Bahamas.   

Many studies focus on sponge-rich reef environments that were characterized by open 

exchange with the ocean (e.g., Corredor et al. 1988, Jiménez and Ribes 2007, Southwell et al. 

2008b, Fiore et al. 2013).  Florida Bay represents a similarly sponge-rich environment as some of 

the tested reefs, yet it is characterized by a shallow water column where physical transport is 

restricted due to abundant mud shoals which subdivide the bay into discrete basins (e.g., Phlips 

et al. 1995, Boyer et al. 1997, Fourqurean and Robblee 1999).  Due to the physical restriction, 

these basins exhibit highly variable water residence times, and experience an augmented 

influence of local processes in chemical cycles (e.g., Fourqurean et al. 1993, Rudnick et al. 2005, 

Zhang and Fischer 2014).  Sponge biomass survey results from Peterson and co-workers (2006) 

showed sponges at almost 75% of their surveyed sites, with biomass contributions of over 1400 g 

sponge dry weight m
-2

; areal coverage of sponge biomass was focused on the hard-bottom areas 

along the southern edge of the bay as well as the eastern and western margins.  With this 

expansive coverage and large biomass, sponge populations almost assuredly serve a critical role 
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in remineralizing organic matter and regenerating inorganic nutrients, yet species-specific 

biomass estimates will be required in order to determine the magnitude and potential ecological 

significance of this contribution.  My objective was to determine if the sponge species found in 

the estuarine environment of Florida Bay exhibit similar behaviors to those species found on the 

reefs of the Florida Keys.  Specifically, I aimed to determine if the species in FL Bay exhibited a 

dichotomy in exhalent DIN associated with the quantity of microbial biomass living in their 

tissues (e.g., Southwell et al. 2008b), if the exhalent DIN is a result of respiration of dissolved or 

particulate organic matter (DOM or POM), and if there is a divergence in respired organic matter 

associated with the presence or absence of microbial symbionts.  I hypothesized that low 

microbial abundance species (LMA) would exhibit an effluent plume dominated by NH4
+
 and 

HMA sponges would exhibit large concentrations of NOx
-
 in their exhalent jets (Jiménez and 

Ribes 2007, Southwell et al. 2008b, Bayer et al. 2008).  Furthermore, I hypothesized that DOM 

will dominate organic matter metabolism of HMA sponges and be of negligible importance in 

LMA species (de Goeij et al. 2008; Gibson 2011).  In order to test these hypotheses, the 

speciation and magnitude of DIN flux was determined for 11 dominant species using benthic 

chamber experiments across three sites exhibiting the range of benthic environments found in 

Florida Bay.   

Bay-wide nutrient budgets constructed for this system (e.g., Rudnick et al. 1999, Boyer 

and Keller 2007) have shown that most N and P in the water column are in organic forms (Boyer 

et al. 1997, Boyer et al. 2006), and sources of these nutrients are often similarly dominated by 

organic matter (as much as 90% of influent N from the Everglades is as DON; Boyer et al. 1999, 

Childers et al. 2006).  Consequently, local recycling processes have been found to regulate the 

supply of dissolved inorganic nitrogen (DIN) in many locations (Rudnick et al. 2005, Boyer and 
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Keller 2007, Boyer et al. 2009).  For example, seagrass meadows have been shown to be 

particularly important sites of DIN generation through dissolved organic nitrogen (DON) 

remineralization (Yarbro and Carlson 2008).  While sponges exhibit a dominant presence in this 

environment (Peterson et al. 2006) and have a demonstrated ability to influence local DIN 

concentrations with their remineralization processes (e.g., Corredor et al. 1988, Southwell et al. 

2008b, Hoer 2015, this volume), the role of these organisms in Florida Bay N budgets has been 

largely unaddressed.  We chose to explore the role of sponges on the N cycle of Florida Bay in a 

sponge-rich basin in the west-central region of the bay (Mystery Basin) where DIN contributed 

from the sponge population may serve an ecological role in buffering N limitation from influent 

marine conditions from the Gulf of Mexico (Lavrentyev et al. 1998).  In order to quantify the 

role of sponges in this environment, sponge biomass was quantified through benthic surveys and 

the measured, species-specific efflux from the dominant species was applied to the surveyed 

biomass.  The resultant contribution was compared to other fluxes for Florida Bay, and we 

hypothesized that sponge efflux would be a dominant source of recycled N to the system and 

would be critical to meet the N demand from predominantly seagrasses.  Additionally, we 

hypothesized that this N budget would vary spatially based on the local contributions of various 

processes, and a simple model was constructed to evaluate the dominant processes throughout 

the tested basin.  However, the hypothesized dominance of sponge efflux on the N cycle in 

Florida Bay is subject to considerable temporal variability given the susceptibility of these 

organisms to rapid, mass mortality events (Butler et al. 1995, Peterson et al. 2006).   

Florida Bay has experienced a series of large ecological disturbances which intensified in 

the late 1980s with a mass mortality event observed in the dominant seagrass, Thalassia 

testudinum (Fourqurean and Robblee 1999).  Contemporaneously, a series of intense and 
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persistent phytoplankton blooms were observed throughout the Bay (Phlips and Badylak 1996, 

Phlips et al. 1999).  These dense blooms are hypothesized to have precipitated rapid sponge die-

offs (Butler et al. 1995, Wall et al. 2012); in two consecutive bloom events in central Florida Bay 

(1991-1992 and 1992-1993) locally dominant species (S. vesparium, Iricina sp., and Spongia sp.) 

experienced mortalities ranging from 40 to 100% (Butler et al. 1995).  Despite temporal overlap, 

a direct, causal link between blooming Synechococcus and sponge mortality remains unclear 

(Butler et al. 1995, Lynch and Phlips 2000, Peterson et al. 2006).  Yet, the ephemeral nature of 

intense blooms and their often sudden onset makes observation of such impacts difficult.  In 

early September 2013, bloom conditions were found in Mystery Basin, a small, offshore basin 

located just north of the Arsnicker Keys that was the target site of a recently constructed N 

budget.  The bloom was first noted by fishermen at locations in Rabbit Key Basin just to the 

north of Mystery Basin prior to our observations.  Site descriptions by both our group and reports 

from fishermen to the Florida Fish and Wildlife Conservation Commission indicated that the 

bloom appeared to be expanding southward from a point of origin north or northeast of Rabbit 

Key.  We had generated significant data characterizing this location prior to the onset of bloom 

conditions (extensive water quality sampling and surveyed sponge biomass) that enabled a 

unique examination of the ecosystem response of a sponge-rich basin throughout a 

cyanobacterial bloom and following its dissipation.     

The research presented in this dissertation comprises a significant contribution to the 

understanding of the role of sponges in the coastal cycles of C and N.  Particularly, we 

highlighted the ability of these organisms to represent a dominant driver in local chemical cycles, 

particularly where their populations are large.  Furthermore, these processes were tested across 

environmental gradients within Florida Bay as well as within the wider Caribbean in an effort to 
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understand how the behavior of these organisms changed in response to varying habitats.  As a 

result, the findings presented herein may have applicability to a broad suite of habitats where the 

tested sponges are found.   
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CHAPTER 2: 

Majority of Respiration Demand of a Common Caribbean Sponge Met by Dissolved 

Organic Carbon Consumption 

Introduction 

Hard coral cover has declined from an average nearing 50% to less than 10% on 

Caribbean reefs between 1977 and 2001 (Gardner et al. 2003).  Overall scleractinian cover on 

Caribbean reefs remains suppressed, with most reefs exhibiting less than 20% total cover (Green 

et al. 2008, Perry et al. 2013).  Concomitant with this decline, sponge density began increasing, 

and sponges now dominate benthic biomass on some reef ecosystems (Aronson et al. 2002, 

McMurray 2010).  Shallow water Caribbean sponge communities have large water filtering 

capacity (Corredor et al. 1988, Weisz et al. 2008) and their exhaled water carries with it the 

imprint of a wide variety of biogeochemical transformations mediated by the sponge holobiont 

(sponge animal plus associated microbial and macrofaunal communities) (Southwell et al. 2008, 

Hoffmann et al. 2009, Maldonado et al. 2012). Many sponges host vast consortia of microbes 

within their tissues (termed high microbial abundance (HMA) sponges, Hentschel et al. 2006) 

that drive diverse nutrient element transformations. In contrast, sponge species with low numbers 

of associated microorganisms (called low microbial abundance (LMA) sponges, Hentschel et al. 

2006) produce effluent with a chemical signature dominated by the products of animal-based 

metabolism (Southwell et al. 2008, Webster and Taylor 2012).  The cycling of carbon (C) and 

nitrogen (N) by HMA sponges is of critical importance for the health of reef ecosystems because 

of the large and increasing populations of this group of sponges and their large capacity to pump 
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and filter water.  The relative abundance of HMA sponges represented 50% or more of the total 

sponge biomass below 15 m water depth in 13 of 15 benthic surveys of reefs throughout the 

Caribbean between 1978 and 2011; of the 8 studies during this period reporting trending in 

sponge populations, 6 showed an increasing trend in HMA cover below 15 m (Pawlik et al. 2015 

and citations therein).     

Sponges efficiently feed across a wide range of particle sizes (Reiswig 1971); however, 

early studies of sponge energetics (Reiswig 1971, 1973, 1981) revealed an apparent discrepancy 

between their uptake of particulate organic carbon (POC) and metabolic C demands as indicated 

by their rates of oxygen (O2) uptake.  Sponges, particularly HMA sponges, are thought to fill this 

metabolic C gap through utilization of dissolved organic carbon (DOC) (Yahel et al. 2003; 

Gibson 2011).  Investigations of encrusting sponges commonly found in coral cavities showed 

that ~40% of the C uptake is accounted for by respiration; the remainder is hypothesized to be 

assimilated to account for rapid chaonocyte cell turnover in the sponge animal (de Goeij et al. 

2008a, 2008b, 2009).  At the reef scale, this process is thought to represent a C uptake rate of a 

similar magnitude as the rate C fixation due to gross primary productivity (de Goeij et al. 2013).  

Non-encrusting species of sponge have also been shown to have the capacity to utilize DOC 

(Yahel et al. 2003, Gibson 2011, and Mueller et al. 2014), but compared to cryptic species, 

evidence of DOC uptake in satisfaction of their metabolic C requirements is limited.  In this 

study we tested for direct DOC uptake and respiration by the HMA sponge Xestospongia muta 

(Demospongiae), commonly called the giant barrel sponge, to quantify the relative importance of 

DOC and POC to the metabolic C demand of a non-cryptic, non-excavating species on 

Caribbean reefs.   Sponge pumping rate as well as removal of DOC, POC, and O2 were measured 
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in situ in undisturbed individuals attached to their original substrate in order to minimize any 

physiological changes resulting from physical manipulation.           

Methods 

Study animal 

 X. muta is an important component of total benthic biomass on reefs throughout the 

Caribbean (Büttner 1996, Armstrong et al. 2006), and especially on the Florida Keys reef tract 

where it can represent as much as 65% of total sponge biomass with population densities as high 

0.2 sponges m
-2

 (Southwell et al. 2008, McMurray et al. 2008, 2010).  X. muta is an HMA 

sponge, with tissue bacterial densities of up to 8 x 10
9
 microorganisms per gram of sponge wet 

weight (Hentschel et al. 2006).  This species has been previously shown to absorb DOC (Gibson 

2011), making it an ideal candidate for exploration of the role of DOC in sponge metabolism.  In 

order to assess potential C allocation towards growth, growth rates for the tested X. muta 

individuals was calculated using the Tanaka growth rate model from McMurray et al. (2008); X. 

muta has been shown to grow relatively quickly in the Conch Reef environment, with 

particularly strong growth rates observed during the summer months (McMurray et al. 2008).  

Sample collection 

Water samples were collected in August 2011 on Conch Reef (24° 57.62’ N, 80° 26.82’ 

W) in the Florida Keys.  Conch Reef is the location of the Aquarius Reef Base (ARB), a 

saturation-diving laboratory within a Special Protection Area of the Florida Keys National 

Marine Sanctuary.  This designation assigns a no-take status and closes the area to all activities 

apart from permitted research activities.  Bottom cover is characterized by sponges, soft corals, 

and benthic macroalgae (Stokes et al. 2011) with a minor and declining contribution from hard 

corals (Gardner et al. 2003).  Two healthy-looking X. muta individuals were chosen for in situ 
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instrumentation and water sample collection.  Two large specimens were used due to limited in 

situ instrumentation as well as to maximize the temporal coverage of sampling for the tested 

sponges. This species’ large size and barrel morphology featuring a single, large osculum 

facilitated in situ instrument deployment and the collection of water samples for chemical 

analyses.  The selected individuals were 3 meters apart at a depth of ~18 meters.  The 

dimensions of the sampled sponges, henceforth referred to as sponges 1 and 2, were measured by 

divers on SCUBA in order to calculate sponge volumes without destroying the animal.  The 

presented sponge volumes were calculated using the formula Vsponge = 28.514*osculum 

diameter
2.1

 (McMurray et al. 2010), which compared well with our volumes generated using 

geometric approximations of the sponge.   

Sponge excurrent and ambient water samples were collected by divers on SCUBA 

working out of ARB from August 9 to 16, 2011.   Ambient waters near the exterior walls of the 

sponge (<20 cm from the outer wall of the sponge) and excurrent waters exiting the sponge as a 

coherent jet were collected in triplicate at each sampling period.  Ambient and excurrent samples 

were collected within 10 minutes of each other.  These temporally-paired water samples allowed 

for quantification of chemical transformations mediated by the sponge and sponge associated 

microbial consortia (Yahel et al. 2005, Southwell et al. 2008).  Samples were collected at three 

time points every day, 07:00, 12:00, and 17:00, to reflect any changes from morning to evening 

resultant from light-associated alterations in the sponge holobiont behavior as X. muta hosts 

dense populations of cyanobacteria in its ectoderm (Erwin and Thacker 2007).  Each water 

sample was simultaneously collected and filtered (Whatman GF/F; 0.7 µm nominal pore size) in 

a 60 mL polypropylene syringe connected to a 3-way polycarbonate stopcock with one arm of 

the stopcock having an in-line filter and 10 cm of small-diameter, high-density polyethylene 
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tubing that allowed sample collection with minimal disturbance to the excurrent water jet and no 

disturbance of the sponge.  A new pre-combusted, 25 mm Whatman GF/F filter was used for to 

filter each sample.  Whatman GF/Fs were selected for filtration due to their suitability for pre-

combustion and use in prior studies of DOC uptake by Caribbean sponges (e.g. Yahel et al. 2003, 

Gibson 2011).  During sample collection, the syringe, filter, and sample collection tubing were 

rinsed 3x by pulling filtered target water into the syringe and then pushing the filtered water out 

of the stopcock arm not capped with the filter and tubing.  The fourth and final water sample was 

drawn slowly into the syringe (< 2 mL sec
-1

) so as to ensure the collected samples were 

representative of the desired water mass.  Upon completion of sample collection, the stopcock 

was closed and the sample was stored in an ice bath in ARB until taken to the surface for 

transport to shore for subsampling and preservation (less than 8 hours from collection to 

preservation).  At the shore-based lab, samples were immediately divided into triplicate 

borosilicate glass scintillation vials.  Vials were first rinsed with the sample water, then were 

filled with 20mL of sample water, and 100 µL of 50% H3PO4 was added.  After the acid addition, 

the sample was stored at 4°C until analyzed.  

In situ samples were also collected to examine particulate organic matter (POM) uptake 

by one of the two tested barrel sponges.  POM samples were collected from the same individual 

(sponge 2) daily during the mission using a passive in situ vacuum filtration apparatus (N. 

Lindquist personal communication 2007, Monismith et al. 2010).  The system pulls water 

through a 0.7 µm GF/F (Whatman, 47 mm) using the pressure differential between the 

atmosphere and our water sampling depth.  Flow rates were controlled to draw approximately 6 

L hr
-1

 to match the sampling flow rate for water sampling by syringe.  Samples were collected 

simultaneously from ambient and excurrent water masses giving a 2 hour, time-integrated 
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sample of 13 L of filtered water.  Filters were frozen after collection in combusted foil until 

analysis.  Ambient and excurrent sample inlets were covered with a polypropylene mesh pre-

filter (pore-size: ~100 µm) to exclude particles larger than those thought to be efficiently retained 

by sponges (Reiswig 1971, Pile et al. 1996, Yahel et al. 2003).  Pre-filters were replaced daily.  

These POM samples were compared to 12 paired ambient and excurrent samples collected on 

Conch Reef using identical methodology as part of a wider survey of particulate carbon demand 

for X. muta.  The samples were collected from several haphazardly selected healthy-looking X. 

muta individuals with sampling performed over several days in July, September, and October 

2007.        

All plastics utilized in sample collection and processing (including syringes, stopcocks, 

tubing, filter holders, and collection vial lids) were composed of polypropylene, high-density 

polyethylene, or polycarbonate and all were soaked in a 0.1M HCl bath for at least 12 hours and 

rinsed 6 times with 18.2 MΩ type I water prior to use and between each sampling.    Borosilicate 

scintillation vials used for sample collection were subjected to the same washing procedure, 

followed by combustion at 450°C for >6 hours to remove any residual DOC.  Combusted 

glassware was stored in combusted foil and bagged to minimize outside contamination prior to 

use.  Filters were combusted at 450°C for >6 hrs.   

Sample Analysis 

DOC samples were analyzed using high-temperature catalytic oxidation (HTCO) and 

non-dispersive infrared spectroscopy (NDIR) using a Shimadzu TOC-L CPH/CPN organic 

carbon analyzer.  Analysis standards were diluted from a lab-prepared stock solution of 

potassium hydrogen phthalate (KHP) (Sigma-Aldrich 96148) and acidified with 100µL 50% 

H3PO4 per 20mL of prepared volume.  Lab prepared carbon standards were batch checked 
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against commercially produced stock solutions (La-Mar-Ka Chemical Company) to ensure 

accuracy.  Calibration curves were closely monitored during analysis and were remade and rerun 

if the correlation coefficient was found to be less than 0.995.  Additionally, standards were 

interspersed with samples.  Each sample or standard was transferred to duplicate, combusted 

analysis tubes to isolate instrument variability from collection variability.  Further quality control 

was ensured by reserving a single sample from each triplicate set for separate analysis to confirm 

the obtained values from the other two samples; all samples from a triplicate set were analyzed, 

yet not contemporaneously, to isolate for any variability in instrument performance.  Samples 

were bubbled with commercially-produced, CO2-free, Zero-Grade air at 80mL per minute for 10 

minutes to ensure all inorganic C and volatile organic compounds were purged prior to sample 

injection; therefore, the values obtained are most accurately characterized of Non-Purgeable 

Organic Carbon (NPOC).  We assume a negligible contribution to DOC from volatile organics, 

and henceforth the obtained values will be simply referred to as DOC. Each analysis tube was 

injected a minimum of 3 times, and a maximum of 5, depending upon whether the resultant 

peaks fell within user-provided statistical boundaries (Standard Deviation < 0.100 and 

Coefficient of Variance < 2.0%). Therefore each reported concentration represents an average of 

N=18-30 individual measurements of DOC.  The average difference between replicate 

measurements was 2.3 µmol C L
-1

 (N=224 replicate pairs), which is interpreted as the 

approximate analytical precision.   

POM samples were analyzed via flash combustion and thermal conductivity detection 

using a Carlo Erba NA 1500 elemental analyzer.  The collected filters were lyophilized to 

remove any residual water on the filter.  After lyophilization, filters were folded onto themselves 

four times and exposed to concentrated HCl vapor overnight in a closed vessel.  Acid flushed 
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filters were then dried at 80°C for one hour and pulverized.  Pulverized samples were placed into 

combusted foil boats and analyzed for C and N composition.   

In situ Instrumentation 

The water pumping speeds of the two selected X. muta were continuously measured 

between May 25 and August 17, 2011 using Nortek Vector acoustic Doppler velocimeters 

(ADVs).  The ADVs were deployed on tripod stands built to minimize sensor movement during 

field deployments and were oriented such that their sampling volumes were within the center of 

the effluent jet halfway down the interior of the oscular cavity.  The deployment locations were 

checked by divers using fluorescein dye injections to confirm placement in the center of the 

excurrent jet.  The ADVs and Aanderaa Data Instruments (AADI) SeaGuard systems were 

cabled to the ARB Life Support Buoy (LSB) that supported the ARB with air, power, and 

communications.  These data were transmitted wirelessly to onshore computers for logging and 

real-time monitoring.  The ADVs collected data in 30 second bursts, every 5 minutes, for 85 

days.  ADV data collected during DOC sample collection from August 9 to 16 was averaged 

based upon hour-long sample blocks corresponding to the dates and time periods during which 

discrete samples were collected: 07:00-08:00, 11:30-12:30, and 17:00-18:00.  Additionally, a 

nighttime sample block was generated (23:00 to 0:00) in order to assess any differences between 

daytime and nighttime behavior.  Each sampled sponge had 26 sample blocks (19 daytime, 7 

nighttime) in which data were averaged; each block of data represented 12 sampling events 

containing approximately 1000 individual measurements of vertical fluid speed.  Prior to 

averaging, the measured vertical velocities from the ADVs were “despiked” to remove spurious 

data points, which can occur as a result of measured velocities exceeding the user-defined 

nominal velocity range or reflection of Doppler pulses off of boundaries (Goring and Nikora 
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2002).  These spikes are common to ADV measurements in natural environments, and the 

despiking process was performed using the Tukey 53H method as described in Goring and 

Nikora (2002).  After removal, the data spikes were replaced by interpolating the data between 

the beginning and the end of the removed spike.  The vertical fluid speed determined by ADV 

was used to calculate a volumetric flow associated with these individuals.  This volumetric flow 

was calculated as a product of the planar area of the oscular opening and the measured vertically-

directed fluid speed (V = pAoscVexc; where V is the volumetric flux, p is the proportion of the 

oscular area characterized by a discrete jet, Aosc is the oscular area, and Vexc is the measured 

excurrent velocity).  Oscular openings for both sponges were approximately elliptical, but only a 

fraction of the measured planar area exhibits flow speeds as high as those measured via in situ 

velocimetry.  The proportion of planar area characterizing the excurrent jet was determined by 

analyzing video-recorded fluorescein dye releases across multiple X. muta oscula as described in 

Weisz et al. 2008.  The jet was characterized as the area where the dye front moved directly 

upward, and these dimensions were used to generate a percentage of the planar area of the 

osculum represented by the jet. 

To measure O2 uptake by the sponges, a Aanderaa Data Instruments (AADI) SeaGuard 

system equipped with a ten sensor, digital optode string for continuous measurements of 

dissolved oxygen (DO) was deployed simultaneously with the ADVs.  Pairs of O2 optode sensors 

were positioned to simultaneously sample ambient and effluent waters of five X. muta 

individuals, including the two that were the focus of this study’s water sampling and ADV 

monitoring, in order to determine O2 drawdown and calculate respiration rate of the sponge 

holobiont.  Depths of the five X. muta individuals ranged from 17 to 19 meters.  Each of the O2 

sensors collected DO concentrations every 30 seconds for the duration of the three month 
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deployment.  These data were treated identically to the ADV data in that they were subsampled 

in blocks based on the dates and times that discrete sample collection occurred.  In the same 

manner as the ADV data, a nighttime block was analyzed to assess the role of phototrophic 

symbionts in the oxygen cycling of X. muta.  The sample blocks for each sponge represented 

approximately 120 paired ambient and excurrent data points.     

Results 

Sponge volumes and growth rates 

The oscula of the sponges were approximately elliptical, therefore sponge volumes were 

separately calculated using the major and minor axis length in place of the osculum diameter, 

and the resultant values were averaged.  This leads to a calculated volume for sponge 1 of 150 ± 

30 L and 48 ± 5 L for sponge 2, where the uncertainties represent the range between calculated 

values from the major and minor axes.  The volumes obtained were in agreement with values 

calculated through geometric approximations of the shape of the sponge (126 L and 42 L for 

sponges 1 and 2, respectively).   

The average, observed growth rate for X. muta on Conch Reef was approximately 2000 

cm
3
 sponge

-1
 yr

-1
, determined from 104 individuals spanning a range of initial volumes 

(McMurray et al. 2008).  This average value agrees well with the calculated annual growth rate 

for our test sponges (2700 and 1800 cm
3
 sponge

-1
 yr

-1 
for sponges 1 and 2, respectively), 

determined using the Tanaka growth rate model from McMurray et al. (2008).  Assuming this  

growth rate, an average tissue density of 0.62 g cm
-3

 for X. muta (Fiore et al. 2013), and an 

average C content of X. muta tissue of 16% (Martens et al. unpublished data), we calculated a 

potential tissue generation rate for our tested sponges of 180 and 270 g C sponge
-1

 yr
-1 

for 

sponges 1 and 2, respectively (Cgrowth   = Grate*dtissue*Ctissue; where Cgrowth is the C allocated for 
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growth, Grate is the growth rate, dtissue is the tissue density, and Ctissue is the carbon content of 

sponge tissue).   

Pumping Velocity 

The two X. muta individuals showed significantly different average excurrent flow rates 

over the measured period (paired t-test).  Sponge 1 produced an average excurrent flow rate of 

5.3 ± 0.9 cm sec
-1 

(mean ± 1 SD, N = 19, P = 0.0001), and sponge 2 showed an average excurrent 

jet flow rate of 4.3 ± 0.9 cm sec
-1

 (mean ± 1 SD, N = 19, P = 0.0002).  The nighttime excurrent 

flow rates did not differ significantly from the daytime values (4.9 ± 1.4 and 4.3 ± 0.9 cm sec
-1

, 

mean ± 1 SD, sponges 1 and 2, respectively).  Video-recorded dye flow measurements 

characterized the excurrent jet in this species as approximately 40% (SD = 9, N = 21) of the 

planar area of the sponge osculum, and this proportion was applied to the analyzed individuals to 

generate volumetric fluxes (V = 0.4AoscVexc).  Additionally, the dye flow videos generated 

pumping velocities that corroborated the pumping velocities measured by ADV (N. Lindquist 

unpublished data).  Sponge 1 had a planar area of 2787 cm
2
 (jet area = 1143 cm

2
) and this 

generated an average volumetric flow rate of 6 L sec
-1

, while sponge 2 had a planar area of 929 

cm
2
 (jet area = 381 cm

2
) and an average volumetric flow rate of 2 L sec

-1
.  For sponges 1 and 2, 

these flow rates are equivalent to filtering water more than 5,000x and 3,500x their body volume 

daily.  The water pumping rates measured for X. muta agree well with previous assessments for 

this species (Weisz et al. 2008, Fiore et al. 2013) as well as for other HMA sponge species 

(Weisz et al. 2008, de Goeij et al. 2008 and citations within).    

DOC Uptake by X. muta 

The average DOC concentration in ambient water surrounding the test sponges was 89 ± 

5 µmol C L
-1

 (mean ± 1 SD) with no significant difference between sponges 1 and 2. Both X. 
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muta showed significant uptake of DOC from paired sample collections (one sample t-test versus 

0) (Figure 2.1).  Of the collected 38 ambient/excurrent pairs, 33 pairs showed DOC uptake 

greater than the 2.3 µmol C L
-1

 estimated analytical precision, 3 pairs showed an increase of 

DOC, and 2 pairs showed no significant difference.  From this dataset, four paired samples were 

detected as outliers and removed from the dataset using the modified z-score method (Mi ≥ 3.5, 

Iglewicz and Hoaglin 1993).  Sponge 1 showed a DOC uptake of 13 ± 5 µmol C L
-1

 from 

ambient water (mean ± 1 SD, Wilcoxon Signed-Rank test, N = 18,  P = 0.0002) while sponge 2, 

exhibited a DOC uptake of 12 ± 6 µmol C L
-1 

(mean ± 1 SD, Wilcoxon Signed-Rank test, N = 

16, P = 0.0006).  This yielded an average DOC uptake for the two analyzed individuals of 13 ± 5 

µmol C L
-1 

(mean ± 1 SD, Wilcoxon Signed-Rank test, N = 34, P < 0.0001).  There were no 

significant differences in DOC uptake between the two test sponges or between collection times 

(07:00, 12:00, and 17:00).    The obtained uptake values were converted to fluxes using the 

volumetric pumping rates determined by the ADV measurements and normalized to calculated 

sponge volumes.  This yields DOC uptake fluxes of 1.8 ± 0.9 mmol C hr
-1

 Lsponge
-1

 for sponge 1 

and 1.5 ± 0.8 mmol C hr
-1

 Lsponge
-1

 for sponge 2 (mean ± 1 SD).  

POC Uptake by X. muta 

Ambient POC concentrations were found to be 2.1 ± 0.7 µmol C L
-1 

(mean ± 1 SD), a 

substantially lower concentration than found for DOC.  The measured POC content represents 

only 2% of the total organic carbon (TOC; 91 ± 5 µmol C L
-1

; mean ± 1 SD) in ambient reef 

water, where TOC is defined as the sum of POC and DOC (Yahel et al. 2003).   

The sampled individual (sponge 2) showed significant uptake of POC.  A single sample 

pair was removed as an outlier (Modified Z-Score ≥ 3.5, Iglewicz and Hoaglin 1993).  The 

remaining samples showed a mean uptake of 0.43 ± 0.11 µmol C L
-1 

(mean ± 1 SD, Wilcoxon 
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Signed-Rank test, N = 4, P = 0.05).  As with the DOC, the POC values were converted to uptake 

fluxes using the volumetric flow rate and the calculated sponge volume yielding a POC uptake 

flux of 0.05 mmol C hr
-1

 Lsponge
-1

.  Comparatively, the 12 sample pairs from 2007 showed a mean 

ambient POC content that was slightly higher than was observed at the tested individuals in 2011 

(3.9 ± 1.3 µmol C L
-1

; mean ± 1 SD).  The tested sponges also retained slightly more POC from 

the filtered water (0.96 ± 0.28 µmol C L
-1

; mean ± 1 SD).   

O2 Uptake by X. muta 

The O2 concentration in the ambient water surrounding the sponges was 180 ± 10.5 µmol 

O2 L
-1 

(mean ± 1 SD), with no significant difference between the two sampled sponges.  Both 

individuals showed significant drops in O2 concentration from ambient to excurrent water masses 

(Figure 2.2).  Sponge 1 showed an average O2 uptake of 10 ± 2 µmol O2 L
-1

 (mean ± 1 SD, 

Wilcoxon signed-rank test, N = 17, P = 0.0003), and sponge 2 showed an average O2 uptake of 

10 ± 3 µmol O2 L
-1

 (mean ± 1 SD, Wilcoxon signed-rank test, N = 17, P < 0.0003).  These results 

yielded an average O2 uptake for the two sponges of 10 ± 3 µmol O2 L
-1 

(mean ± 1 SD, Wilcoxon 

signed-rank test, N = 34, P < 0.0001).  There were no significant differences among any of the 

sampled times (07:00-08:00, 11:30-12:30, 17:00-18:00, and 23:00-0:00).  Sponge 2 showed a 

single period where there was a significant reduction in pumping rate (0.9 cm sec
-1

, 75% reduced 

from the average, one-sample t-test vs. mean pumping rate, P < 0.0001) and the O2 uptake during 

this time was significantly greater than the average, (120 µmol O2 L
-1

, 10x average O2 uptake, 

one-sample t-test vs. mean O2 uptake, P < 0.0001).  This time point was detected and removed 

from the record for sponge 2 as an outlier for both DOC and DO uptake.  Including this 

anomalous point, 4 time points were removed as outliers in a similar fashion to the POC and 

DOC datasets (Modified Z-Score ≥ 3.5, Iglewicz and Hoaglin 1993).    As with the DOC and 
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POC uptake values, the O2 uptake values were also converted to fluxes using the volumetric flow 

rate and calculated volume.  Sponge 1 showed uptake of 1.3 ± 0.5 mmol O2 hr
-1

 Lsponge
-1

 and 

sponge 2 showed uptake of 1.3 ± 0.5 mmol O2 hr
-1

 Lsponge
-1 

(mean ± 1 SD).  Nighttime oxygen 

flux did not differ significantly from daytime values for either tested sponge (1.2 ± 0.4 and 1.2 ± 

0.4 mmol O2 Lsponge
-1

 hr
-1

; mean ± 1 SD; two-sample t-test, P = 0.80 and 0.70; sponges 1 and 2, 

respectively).  

Respiration balance for X. muta 

 The measured DOC uptake was greater than the measured O2 demand for both sampled 

sponges and for their average, but the observed difference was not significant for sponge 2 

(Figures 2.3 and 2.4).  Assuming a respiratory quotient of 1 (mole Crespired mole O2
-1

), the 

accumulation of non-respired C was approximately 0.6 and 0.3 mmol C hr
-1

 Lsponge
-1

 for sponges 

1 and 2, respectively.  The average non-respired C retained by these sponges equates to 

accumulating approximately 9500 g C sponge
-1

 yr
-1

 for sponge 1 and 1500 g C sponge
-1

 yr
-1

 for 

sponge 2.         

Discussion 

Our results showed that dissolved organic matter is the dominant organic C source for the 

giant barrel sponge X. muta (Table 2.1) and that metabolic O2 demand by X. muta can be 

accounted for exclusively by DOC-fueled respiration (Figure 2.3).  This lends further support to 

the growing body of direct measurements showing that C utilized by sponges and their 

associated microbial consortia for respiration and growth comes predominantly from the 

dissolved organic pool (e.g., Yahel et al. 2003, de Goeij et al. 2013, and Mueller et al. 2014).  If 

the tested individuals removed all the POC available in the ambient reef water they pumped 

through their tissues, the C obtained would only account for 25-33% of their respiratory O2 
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demand (Table 2.1).  This would generate a discrepancy between absorbed C and respiratory O2 

demand of similar magnitude to that observed by Reiswig (1981).  This disparity strongly 

suggests that these sponges utilize DOC as their primary C source.  While DOC represents a 

wide spectrum of elemental composition, structural diversity, and biological lability (Carlson 

2002, Nebbioso and Piccolo 2013), the benthic boundary waters on Conch Reef likely contain 

concentrations of labile DOC produced by abundant soft corals and macroalgae (de Goeij et al. 

2013, Mueller et al. 2014).  Organic matter sourced from the local production on the reef benthos 

has been previously implicated through analysis of δ
13

C, δ
15

N, and fatty acid biomarkers as the 

primary source of nutritive organic matter absorbed by Caribbean sponges (van Duyl et al. 

2011).  Moreover, the quantity of DOC removed by the test sponges is well within the portion of 

the measured ambient DOC pool which is assumed to represent the labile fraction on the reef (19 

± 7 µmol C L
-1

, 14 – 30% of reef DOC is considered “labile”; van Duyl and Gast 2001).  

However, without rigorous structural characterization of the DOC pool, the suggestion that 

sponges are using exclusively the labile fraction of available DOC is purely conjectural.  These 

direct measurements of predominant C uptake and utilization from the DOC rather than POC 

pool by multiple HMA species contradicts a great many previous studies indicating that POC is 

the dominant form of C utilized by sponges and that sponge growth can be limited by available 

levels of POC (reviewed by Pawlik et al. 2015).   

Our measured DOC uptake rates agree well with published values for non-manipulated 

“InEx” ΔDOC sampling (Yahel et al. 2003, Gibson 2011, Mueller et al 2014, Table 2.1).  Gibson 

(2011) measured similar DOC uptake by X. muta in a broader survey of metabolic activity of 

sponges across Conch Reef, illustrating that this behavior is likely conserved within this species 

at the reef scale and is not unique to our sampling period or individual sponges.  Low POC 
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uptake in our 2007 survey of particulate uptake in this species further suggests relatively 

conserved metabolic behavior in this species at the reef scale.  Ambient POC and ΔPOC were 

higher in 2007 than 2011, yet the tested sponges in 2007 removed the same proportion of filtered 

POC (~20%) and even at elevated ambient POC concentrations particulate removal alone is 

insufficient to account for the observed metabolic O2 demand of the tested individuals.  Our 

ΔDOC results agree with the in situ work of Mueller et al. (2014), which may indicate 

physiological similarities between X. muta and excavating species; however without normalizing 

to sponge biomass, it is difficult to further compare the observed fluxes.  Our volume-normalized 

DOC removal rates were significantly lower than those from de Goeij et al. (2008a) and lower 

than the 
13

C-labeled DOC respiration and assimilation rates of de Geoij et al. (2008b, 2013).  

Assessments of DOM uptake performed by de Goeij et al. (2008a, 2008b, 2013) employed 

chamber methodologies for which the sponges were removed from their original substrate and 

enclosed in chambers for monitoring.  This experimental manipulation potentially has large 

impacts on sponge behavior as sponges have been previously shown to be sensitive to 

environmental and physical stressors (e.g., Gerrodette and Flechsig 1979, Tompkins-MacDonald 

and Leys 2008).  Additionally, the 
13

C labeled incubations of de Goeij et al. (2008b, 2013) were 

performed with elevated concentrations of labile, diatom DOM which would be expected to 

accelerate the apparent rate of DOC uptake relative to natural composition DOC if the labile 

fraction of DOM is the primary target of sponge respiration.  The sponges tested in this study 

were undisturbed so as to remove any potentially confounding factors resultant from individual 

or environmental manipulations.  Independent of methodological differences, physiological 

differences between encrusting species studied by de Geoij et al (2008a, 2008b, 2013) and non-
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encrusting species like X. muta could also be cause for the observed disparity, but the specific 

differences between these species are unknown.     

Yahel et al. (2003) provided the only other instance in the literature of non-manipulated, 

simultaneous “InEx” ΔDOC and ΔO2 measurements on a marine sponge.  The work of Yahel and 

co-workers revealed a slight difference between DOC uptake and O2 uptake for the Red Sea 

sponge Theonella swinhoei, and their measured C and O2 fluxes are similar to those presented 

here for X. muta.  Yahel et al. (2003) attributed the observed difference between O2 and DOC 

uptake to O2 production by phototrophic symbionts of T. swinhoei.  X. muta also showed a 

discrepancy between DOC and O2 uptake (Figure 2.3), and like T. swinhoei, possesses 

phototrophic organisms in its ectoderm (Erwin and Thacker 2007).  In order to examine a 

potential role of phototrophic associates in the balance between DOC and O2 demand, nighttime 

oxygen fluxes were calculated and compared to daylight values.  Surprisingly, observed 

nighttime O2 uptake fluxes were not significantly different from daylight hours for either 

individual (nighttime O2 Flux: 1.2 ± 0.4 and 1.2 ± 0.4 mmol O2 Lsponge
-1

 hr
-1

; Daytime O2 Flux: 

1.3 ± 0.5 and 1.3 ± 0.5 mmol O2 hr
-1

 Lsponge
-1

; mean ± 1 SD; two-sample t-test, P = 0.8 and 0.7 

for sponges 1 and 2, respectively).  Assuming C uptake was also equal overnight, we 

hypothesized O2 uptake from sponge filtered water would increase in the absence of symbiont 

photosynthetic O2 production, yet this was not observed.  The absence of this increased oxygen 

uptake overnight could indicate internal consumption of photosynthetic O2 during daylight hours, 

potentially through respiration of “new” photosynthetically-fixed C by the sponge holobiont or 

through phagocytosis of microbial biomass by sponge cells.  These internal processes would go 

undetected by our “InEx” sampling because both the O2 and C being respired are sourced within 

the sponges’ tissues and not from filtered water. Minimizing the role of O2 from symbiont 
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photosynthesis in the respiration of absorbed DOC would suggest that C taken up in surplus of 

observed O2 demand is being utilized for organism growth and cell regeneration.  Future 

overnight collections of DOC and POC could further elucidate the diurnal role of photosynthesis 

in these organisms. 

The measured DOC uptake was greater than the measured O2 demand for both sampled 

sponges and for their average, but the observed difference was not significant for sponge 2 

(Figures 2.3 and 2.4).  The observed O2 demand for these sponges falls within the range of 

previously reported respiration rates of undisturbed sponges in situ.  Reiswig (1974, 1981) 

showed a range from 0.5 to 4.7 mmol O2 Lsponge
-1

 hr
-1

 for Tethya crypta and Verongia fistularis 

respectively, and Yahel et al. (2003) reported a rate of 1.38 ± 0.78 mmol O2 Lsponge
-1

 hr
-1

 for T. 

swinhoei.  Additionally, these values agree with respiration demand for an encrusting sponge, 

Halisarca caerulea, analyzed by incubations (de Goeij et al. 2008a).  de Goeij and co-workers 

(2008a) reported a large difference between observed O2 demand and observed DOC uptake in 

these incubations, indicative of only 39 - 45% of acquired organic C being respired.  The 

remaining 55 - 61% was posited to be allocated to rapid turnover and expulsion of sponge 

biomass, confirmed later as rapid turnover and shedding of choanocytes (de Goeij et al. 2009).  

X. muta showed 76 ± 13% of total C acquired could be accounted for in respiration, assuming a 

respiratory quotient of 1 (mol Crespired mol O2
-1

) (Figure 2.4).  The utilized respiratory quotient is 

a conservative estimate assuming highly labile organic matter respiration, but is subject to 

change with changes in food composition and physiological state (Maldonado et al. 2012).  A 

lack of additional information regarding effluent CO2 concentrations precludes direct calculation 

of the respiratory quotient; a value of 1 will be used in this discussion.  Considering the average 

of the two sampled individuals, the non-respired C acquired represents 0.4 mmol C Lsponge
-1

 hr
-1
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(Figure 2.4).   This calculated C accumulation rate should be considered a conservative estimate 

as it does not account for the C fixed by photoautotrophic production via associated 

microorganisms.  Nevertheless, the observed C accumulation is much less than the quantity of C 

retained by H. caerulea for choanocyte turnover and shedding (13.8 mmol C Lsponge
-1

 hr
-1

, de 

Goeij et al. 2009) which may suggest a lower rate of cell turnover and shedding in X. muta, 

particularly if C allocation for organismal growth is considered.  The growth of cryptic species 

was assumed to be zero (de Goeij et al. 2008a) whereas the same assumption cannot be made for 

X. muta which shows considerable annual growth (McMurray et al. 2008).  Sponges in cryptic 

habitats may be severely space limited and, by consequence, could be driven to allocate more 

energy towards functions other than growth, but X. muta individuals are not likely to experience 

the same degree of spatial pressure.  Nevertheless, estimated C retained for growth only accounts 

for ~3% of the observed C accumulation; in the case of sponge 1, approximately 9500 g C 

sponge
-1

 yr
-1

 of non-respired C is retained with an estimated 270 g C sponge
-1

 yr
-1 

of the total 

being allocated to organismal growth.  This reserves roughly 97% of non-respired C for other 

organismal functions such as the renewal of sponge pumping cells or the production of 

reproductive materials that are exported from the sponge.  For X. muta, reproduction involves the 

exudation of a mass of sticky mucus within which are embedded numerous small embryos that 

develop though early larval stages in mucus that spreads over substrates adjacent to the spawning 

sponge (Ritson-Williams et al. 2005, McMurray et al. 2008).          

Sponge population densities at Conch Reef increased by up to 46% from 2000 to 2006 

(McMurray et al. 2010), with X. muta among the species showing the greatest increases.  In 

2006, X. muta abundance was found to range between 0.134 and 0.227 sponge individuals m
-2

 at 

our Conch Reef study site, with the mean sponge volume being approximately 1500 cm
3
 m

-2
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(McMurray et al. 2010).  DOC removal from reef water due to X. muta would have been 

approximately 60 ± 40 mmol C m
-2

 day
-1

 in 2006, based on a range of biomass estimates by 

McMurray et al. (2010).  This population flux suggests that DOC uptake by a single species of 

sponge could be equivalent or greater than the daily DOC released by benthic photosynthesis (20 

to 50 mmol C m
-2

 day
-1

 as DOC); estimates of gross primary productivity for reef environments 

are approximately 200 – 500 mmol C m
-2

 day
-1

, with conservative evaluations suggesting 10% of 

C fixed by macroalgal photosynthesis is exuded as DOC (B. Hatcher 1990, Haas et al. 2011).  If 

all non-encrusting HMA sponge biomass on Conch Reef absorbs DOC at the same rate as X. 

muta, the total community flux is approximately 130 mmol C m
-2

 day
-1

 (using mean HMA 

biomass data from Southwell et al. 2008).  This rough estimate of C flux approaches total gross 

primary productivity for the reef, and shows that the non-encrusting HMA sponge community 

has the potential to remove DOC as efficiently as in coral cavity environments (de Goeij et al. 

2013).  The ecosystem implications of the observed sponge utilization of dissolved organic 

matter are still uncertain, yet X. muta has been shown to produce large quantities of dissolved 

inorganic nitrogen (DIN) as a result of organic matter remineralization (Corredor et al. 1988, 

Southwell et al. 2008, Fiore et al. 2013).   Both Southwell et al. (2008) and Fiore et al. (2013) 

showed that these fluxes of DIN can contribute a significant amount of N to the community 

within the near-bottom waters of the benthic boundary layer.  This bioavailable N contribution 

may result in enhanced photosynthetic production thereby increasing DOC production and 

enhancing the sponge’s primary C feedstock.  Additionally, this uptake of DOC by sponge 

populations has been hypothesized by de Goeij et al. (2013) to beneficially impact higher trophic 

levels through sponge-produced detritus, forming a putative “Sponge Loop” on reef systems.  

Our POC measurements did not provide evidence for the export of particulate C concomitant to 
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the import of DOC to confirm participation of X. muta in the sponge loop.  This disparity may be 

due to a lack of efficient export of detrital material in the excurrent jet, temporally limited POC 

collections, or to enhanced production of detritus by sponges in chamber environments rich with 

labile DOC (de Goeij et al. 2013) as compared to natural DOC composition on reefs (van Duyl 

and Gast 2001, Tanaka et al. 2011).  We also did not observe the production of detritus by X. 

muta in the more extensive POC collection campaign conducted in 2007, which argues against 

temporally-limited sampling as the cause for the lack of detrital export.  Additionally, Mueller et 

al. (2014) did not show quantitative detrital production in C. delitrix or Siphonodictyon sp. and 

could not definitively confirm their participation in this aspect of the sponge loop.  However, 

detrital production in X. muta could also be limited by allocation of retained C towards organism 

growth, although this impact was calculated and determined to be minimal, or to the production 

of reproductive materials.  X. muta has been shown to spawn twice annually, in spring and late 

summer (McMurrray et al. 2008), which may have contributed to the rates of C retention 

observed in the tested individuals.    

The presented values for C and O2 flux represent the collective impact of the sponge 

holobiont, making it difficult to establish the relative importance of animal versus microbial 

processes in organic matter transformations in X. muta tissues.  The role of associated 

microorganisms in the metabolism of DOC is suggested frequently in bulk C assessments of 

sponge metabolism, beginning with Reiswig’s work (1971, 1981), and has been further 

implicated in experiments using labeled C substrates (de Goeij et al. 2008b).  Recent work by 

Mueller et al. (2014) provides in situ evidence of DOC uptake by a non-manipulated LMA 

sponge Cliona delitrix, which would imply an enhanced role for the sponge animal in the direct 

uptake and utilization of DOC (assumed LMA at the genus level based upon Cliona varians, 
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Gloeckner et al. 2014).  It is important to note that LMA sponges are not without bacterial 

biomass in their tissues, but rather they have bacterial populations approaching seawater 

concentrations, which may still serve a functional role in the processing of DOC (Hentschel et al. 

2006).  The combination of animal and microbial processes in X. muta and other HMA sponges 

may provide a competitive advantage in oligotrophic systems by supplying metabolic access to a 

wider range of C sources than would be assessable without associated microorganisms (van Duyl 

et al. 2008, de Goeij et al. 2008b and citations therein). 

DOC represented more than 90% of the TOC removed from filtered water by the tested 

X. muta individuals, and therefore likely constitutes the dominant C source for this species.  In 

the tested individuals, 76 ± 13% of the TOC absorbed is accounted for by observed O2 demand, 

suggesting substantial assimilation, but to a much lesser degree than in the previous studies of 

cryptic species from coral cavities (e.g. de Goeij et al. 2008b). This less pronounced role of C 

assimilation during the utilization of DOC by X. muta could lead to a reduction in the detrital 

flux from cell shedding, potentially decoupling part of the “sponge loop” hypothesized by de 

Goeij et al. (2013).  The observed C cycling by X. muta serves to illustrate the fate of a large 

proportion of DOC available in reef waters; preliminary calculations suggest the X. muta 

population on Conch Reef can remove a large proportion of the DOC produced through reef 

primary productivity.  This behavior further demonstrates a symbiont-based metabolic adaptation 

that allows some sponge species to utilize a resource likely unavailable to LMA sponge species.  

Improved understanding of the C cycling mediated by these organisms and the corresponding 

ecosystem impacts is critical to understanding trajectories of coral reef change, particularly in the 

Caribbean where sponges and seaweeds are maintaining a dominant and increasing benthic 

presence.  Increased in situ studies with non-manipulated sponges will provide further insight 
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into the native behavior of these organisms, and will serve to advance the understanding of their 

role in coral reef ecosystems.     
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Table 2.1: Comparison of published directly measured in situ carbon uptake and respiration activity for sponge species (mean ± SD).  

Results of studies conducted in chambers are not included due to possible manipulation artifacts.  Listed flux measurements were 

normalized to L of sponge biomass. 

Species ΔDOC (µmol C L
-1

) 

DOC Flux 

(mmol C L
-1

 sponge hr
-1

) 

ΔPOC (µmol C L
-1

) 

POC Flux 

(mmol C L
-1

 sponge hr
-1

) 

ΔO2 (µmol C L
-1

) 

O2 Flux 

(mmol O2 L
-1

 sponge hr
-1

) 

Source 

 

Xestospongia muta 

 

12.6 ± 5.0 

1.63 ± 0.83 

 

 

0.4 ± 0.1 

0.05 ± 0.01 

 

9.9 ± 2.5 

1.28 ± 0.51 

 

This study 

Xestospongia muta  0.96 ± 0.28  This study 

(2007 samples) 

 

Teonella swinhoei 10 ± 8 

1.56 ± 1.1 

 

2.1 ± 1.0 * 

0.24 ± 0.18 * 

9 ± 5 

1.38 ± 0.78 

Yahel et al 

(2003) 

Siphonodictyon sp. 13 ± 17 

 

3 ± 1  Mueller et al 

(2014) 

 

Cliona delitrix 10 ± 12 

 

3 ± 1  Mueller et al 

(2014) 

 

 

*POC represents LvPOC, or living particulate organic matter 
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Figure 2.1: Average DOC concentration in the ambient and excurrent waters of two 

Xestospongia muta (sponges 1 and 2) and the overall average.  Error bars are 1 SE and N equals 

the number of paired ambient-excurrent water collections.  P values (Wilcoxon signed-rank test) 

indicate the level of significance of the difference between the ambient and excurrent DOC 

concentrations. 
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Figure 2.2: Average O2 concentration in the ambient and excurrent waters of two Xestospongia 

muta (sponges 1 and 2) and the overall average.  Error bars are 1 SE and N equals the number of 

averaged sample periods.  P values (Wilcoxon signed-rank test) indicate the level of significance 

of the difference between the observed difference between ambient and excurrent O2 

concentrations. 
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Figure 2.3: Average uptake of O2 and DOC for the two tested sponges and the overall average.  

The difference between ΔDOC and ΔO2 was analyzed to assess stoichiometric balance between 

respiration O2 demand and DOC uptake.  Error bars are 1 SE, N equals the number of paired 

water collections and averaged O2 measurements, and P values (two-sample t-test) indicate the 

level of significance of the difference between the observed change in DOC and O2. 
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Figure 2.4: Average uptake fluxes of DOC, O2, and POC for the two tested sponges and the 

overall average.  POC was only sampled for sponge 2.  Flux calculations were performed using 

the average, volumetric pumping rate for each individual and the average uptake of DOC, O2, 

and POC. These values were then normalized to the volume of the tested sponge.  Error bars 

represent 1 SE and P values (two-sample t-test) indicate the level of significance of the 

difference between DOC and O2 fluxes. 
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CHAPTER 3: 

Xestospongia muta as a Significant Source of Recycled Nitrogen to Floridian and Bahamian 

Reefs 

Introduction 

 Declining coral cover throughout the Caribbean between 1977 and the present (Gardner 

et al. 2003, Green et al. 2008, and Perry et al. 2013) has been accompanied by a corresponding 

increase in sponges and macroalgae, and these organisms now dominate many reef environments 

(Aronson et al. 2002, McMurray et al. 2010).  Sponges actively pump water through their tissues 

as a means to gather resources from the surrounding environment and expel waste products.  As 

such, these organisms exhibit large filtration rates (Corredor et al. 1988, Weisz et al. 2008), and 

their pumping activities generate physical connectivity coupling processes occurring near the 

reef hardbottom and those in the overlying water column (e.g., Lesser 2006, Southwell et al. 

2008b, Keesing et al. 2013).  These organisms feed across a wide particle size range (Reiswig 

1971) and have been implicated in the respiration of dissolved organic matter (DOM; Yahel et al. 

2003, de Goeij et al. 2008, Hoer 2015, this volume).  As a result of these respiration processes, 

the exhalent water of marine sponges is often enriched in dissolved inorganic nitrogen (DIN) 

making sponges potentially potent local drivers of nutrient recycling. 

The efflux of remineralized nitrogen (N) observed from marine sponges contains 

ammonium (NH4
+
) and nitrate plus nitrite (NO3

-
 + NO2

-
; henceforth NOx

-
) at levels significantly 

higher than those found in surrounding seawater (e.g., Corredor et al. 1988, Jiménez and Ribes 

2007, Southwell et al. 2008b, Hoer 2015, this volume).  The speciation of DIN in sponge effluent 
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is dictated by a presence or lack of microbial processes occurring within the tissue of the tested 

sponge (Diaz and Ward 1997, Jiménez and Ribes 2007, Hoffmann et al. 2009, Hoer 2015, this 

volume).  Some sponge species host large microbial populations within their tissues, and the 

microbial consortia living within these high microbial abundance sponges (HMA sensu 

Hentschel et al. 2006) often represent as much as 40% of total sponge volume (Freeman and 

Thacker 2011).  The microbial community hosted by these sponges drives diverse nutrient 

element transformations including nitrification (Southwell et al. 2008a, Hoffmann et al. 2009, 

Fiore et al. 2013), and may provide metabolic access to a wider range of organic substrates 

(Pawlik et al. 2015 and references therein). Sponge species with low numbers of associated 

microorganisms (termed low microbial abundance, LMA, sponges, Hentschel et al. 2006) 

produce ammonium-rich effluent with a chemical signature characteristic of animal-based 

metabolism (Southwell et al. 2008b).   

The relative abundance of HMA sponges represents >50% the total sponge biomass 

below 15 m water depth on reefs throughout the Caribbean, and many reefs are characterized by 

a trend of increasing HMA sponge populations below this depth (Pawlik et al 2015).  These 

expanding populations, the ability of HMA sponges to consume a wide range of particulate and 

dissolved organic matter (POM and DOM; Yahel et al. 2003, de Goeij et al. 2013, Hoer 2015, 

this volume), and the consequent efflux of reminieralized N (Corredor et al. 1988, Southwell et 

al. 2008b, Hoer 2015, this volume) make these organisms of critical importance to the cycling of 

carbon (C) and N at the reef scale.  Yet, the extent to which the processes mediated by these 

organisms are conserved across environmental gradients is only beginning to be understood.   

In this study, we tested the degree to which the release of recycled N by the giant barrel 

sponge Xestospongia muta (Demospongiae) is conserved between the environments found on the 
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Florida Keys reef tract and those found on the oligotrophic reefs of San Salvador, Bahamas.  X. 

muta was chosen as a target species because it is a conspicuous and important component of total 

benthic biomass on reefs throughout the Caribbean (H. Büttner 1996, Armstrong et al. 2006), and 

is particularly prevalent on the Florida Keys reef tract where it can represent as much as 65% of 

total sponge biomass (Southwell et al. 2008b, McMurray et al. 2008, 2010).  Further, X. muta is 

an HMA sponge, with tissue bacterial densities approaching 8 x 10
9
 microorganisms per gram of 

sponge wet weight (Hentschel et al. 2006), and thus is expected to be able to exploit a range of 

organic substrates for nutritive gain and exhibit significant nutrient element transformations in 

both environments (Southwell et al. 2008b, Fiore et al. 2013, Hoer 2015, this volume).  This 

species has been previously shown to exhibit temporally and spatially variable DIN efflux 

(Southwell et al. 2008, Gibson 2011, Fiore et al. 2013) making it an ideal candidate for 

exploration of behavioral stability across an environmental gradient.  Sponge pumping rate and 

manipulations of DIN in filtered water were measured in situ using undisturbed individuals 

attached to their original substrate.  This in situ approach allows sponge processes to be observed 

in the absence of environmental manipulations that may impact the natural behavior of the 

animal (e.g, Gerrodette and Flechsig 1979, Tompkins-MacDonald and Leys 2008, Fan et al. 

2013).   

Methods 

Sample collection 

 Water samples were collected from X. muta individuals on Conch Reef (24°57’0.27”N, 

80°27’12.21”W) in the Florida Keys and five reef sites around the island of San Salvador, 

Bahamas (Snow Bay: 23°56’38.06"N, 74°30'24.20"W; French Bay: 23°56'59.02"N, 

74°32'8.11"W; Sandy Point: 23°56'18.50"N, 74°33'40.97"W; Hall’s Landing: 24° 0'24.31"N, 
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74°32'22.89"W; Cockburn Town: 24° 1'34.49"N, 74°31'50.65"W).  Water depth ranged from 8 

to 31 m and the sampled individuals inhabited regions that spanned a variety of environmental 

conditions from the reef flat to the outer reef wall.  X. muta is an excellent species for 

quantitative measures of sponge-mediated biogeochemical transformations and pumping velocity 

as the species is characterized by a barrel morphology featuring a large, central osculum.  This 

morphological feature facilitated non-disruptive sampling of the excurrent jet and allowed for 

precise quantifications of excurrent flow speed using the dye-front method and acoustic Doppler 

velocimetry.   

Dissolved inorganic nitrogen samples on Conch Reef were collected from the individuals 

measured in the work of Hoer (2015, this volume).  The samples discussed here were collected 

contemporaneously using identical methodology (Hoer 2015, this volume).  Site descriptions, 

morphometric measures of the tested sponges, and sampling methodologies are presented in 

detail in Hoer (2015), and therefore these will be only briefly discussed here.    Sample collection 

in San Salavador, Bahamas was performed using healthy-looking sponges which were randomly 

selected by divers on SCUBA across a depth gradient at the chosen various sites.  Prior to 

sampling, each individual was confirmed to be pumping with fluorescein dye.  Similar to the 

sponges in Florida, the dimensions of the tested individuals were measured at the time of sample 

collection in order to calculate sponge volumes without necessitating harvest of the animal.  

However, organism volumes were calculated using geometric approximations rather than the 

formula presented by McMurray and co-workers (2010).  For consistency, the sponges chosen in 

Florida were geometrically approximated and their volumes were recalculated using the full set 

of previously collected dimensions.     
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Sponge water sampling was performed by divers on SCUBA using the “InEx” method 

(Yahel et al. 2005); collections in the Florida Keys were performed from August 9 to 16, 2011 

and those on San Salvador were performed from March 2 to 9, 2013.  Temporally paired, 

triplicate samples of ambient water near the exterior walls of the sponge (<20 cm from the outer 

wall of the sponge) and excurrent waters exiting the sponge as a coherent jet were collected 

during each sampling period.  Ambient and excurrent pairs were collected within 10 minutes of 

one another, and each water sample was collected and simultaneously filtered with an in-line 

filter attached to a 60 mL polypropylene syringe by a polycarbonate stopcock.  Attached to the 

filter and syringe was a 10 cm piece of small-diameter, high density polyethylene (HDPE) tubing 

which allowed samples to be collected with minimal disturbance to the target individual. A new 

pre-combusted, 25 mm Whatman GF/F filter was used to filter each water sample; GF/Fs were 

selected for filtration due to their suitability for combustion (baking at 450°C for >6 hours) and 

use in prior studies of DIN production by Caribbean sponges (e.g. Diaz and Ward 1997, 

Southwell et al. 2008b).  During sampling, the entire collection apparatus (syringe, tubing, filter, 

and stopcock) was rinsed 3x by pulling filtered target water into the syringe, and the rinsing 

water was expelled out of the open stopcock arm.  The fourth and final sample was carefully 

drawn into the syringe (< 2 mL sec
-1

) in order to ensure that the collected sample was 

representative of the desired water mass.  Upon completion, the stopcock was closed and the 

sample was stored in an ice bath prior to subsampling and preservation (less than 8 hours from 

collection to preservation).  At the lab, samples were immediately divided for different analyses 

(NOx
-
 and NH4

+
).  Nitrate and Nitrite (NOx

-
) samples (20 mL volume) were placed into sample-

rinsed, borosilicate glass scintillation vials and frozen until subsequent analysis.  Ammonium 

(NH4
+
) samples (20 mL volume) were placed into sample-rinsed amber HDPE bottles.  
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Ammonium samples from Florida were analyzed immediately to reduce the potential impact of 

degradation on sample integrity but, due to logistical limitations, NH4
+
 samples from San 

Salvador were frozen and analyzed upon return to North Carolina.  For each time point, the 

sampled parameters were collected in triplicate for further quality assurance and control. 

All plastics utilized in sample collection and processing (including syringes, stopcocks, 

tubing, filter holders, sample bottles, and collection vial lids) were composed of polypropylene, 

HDPE, or polycarbonate and all were soaked in a 0.1M HCl bath for at least 12 hours and rinsed 

6 times with 18.2 MΩ type I water prior to use and between each sampling.    Due to limited 

access to HCl in the Bahamas, sample collection plastics were not acid washed between uses and 

were only rinsed with copious amounts of 18.2 MΩ type I water.  Borosilicate scintillation vials 

used for sample collection were subjected to the same washing procedure, followed by 

combustion at 450°C for >6 hours to remove any residual nitrogenous material.  Combusted 

glassware was stored in foil and bagged to minimize outside contamination prior to use.  Filters 

were combusted at 450°C for >6 hrs.  Amber HDPE bottles used for ammonium samples were 

acid washed and rinsed following the aforementioned protocol, and after this procedure small 

aliquots of the o-phthaladehyde working reagent was added to the bottles and allowed to react 

for 24 hours to ensure remove any residual ammonium from the sample bottle prior to use for 

standards or samples.   

Sponge pumping rates 

Sponge pumping rates were quantified using two methodologies, acoustic Doppler 

velocimetry and dye-front speed.  The tested individuals on Conch Reef were continuously 

measured between May 25 and August 17, 2011 using Nortek Vector acoustic Doppler 

velocimeters (ADVs; Hoer 2015, this volume).  Due to contemporaneous collection of DIN and 
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the DOM samples (Hoer 2015, this volume), the ADV data presented therein was utilized for 

these collections.  Detailed methodology for the deployment of instruments and the treatment of 

the resultant data (binning of sample blocks, despiking, etc.) is presented there.    Pumping rates 

were determined for the sponges sampled around San Salvador by measuring the speed at which 

pulses of fluorescein dye were ejected from the osculum of the target individual (Weisz et al. 

2008).  A diver positioned a ruler 15 cm into the osculum and release discrete puffs of dye (n ≥ 

40), measuring the time for the dye plug to travel to the rim of the sponge osculum.  The average 

time required for the puffs to traverse this distance was taken to represent the vertical velocity of 

the excurrent jet (cm sec
-1

).  Streams of dye were also released across the planar area of the 

osculum in order to determine the radial distribution of the exhalent stream velocities.      

Sample Analysis 

Ammonium analyses were performed using the method of Holmes et al. (1999).  

Sampled volumes were reacted with 5mL of o-phthaladehyde working reagent in amber, HDPE 

sample bottles and allowed to develop at room temperature for 2.5 hours.  After the incubation 

period, samples were analyzed using a Turner Designs TD-700 laboratory fluorometer equipped 

with an ammonium optical kit (Turner Designs 10-303).  The method detection limit was 

determined to be 10 nmol L
-1

 by repeated standard measurements.  Standards were prepared 

daily at the point of use by serial dilution of a purchased stock solution (Ricca Chemical 

Company 693-16), and analyzed with the prepared samples.  NOx
-
 discrete samples were 

analyzed using Spectrophotometric Elemental Analysis System (SEASII-NOx) autoanalyzers 

configured for benchtop use (Steimle et al. 2002; Adornato et al. 2005, Adornato et al. 2007 for 

detailed descriptions of similarly utilized instrumentation).  During analysis, the instrument 

measured the combined concentrations of NO3
-
 and NO2

-
, or NOx

-
 ; both NO2

-
 in the water 
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sample and NO2
-
 produced from cadmium reduction of NO3

-
 were determined 

spectrophotometrically utilizing the Griess method (Adronato et al. 2007).  The deployed 

instruments used 15 cm optical pathlengths which increased sensitivity and reduced the method 

detection limit to 25 nmol NOx
-
 L

-1
 (determined by repeated analysis of standard solutions).    

Standards for NOx
-
 measurements were prepared by dilution of a purchased stock (SPEX 

Certiprep AS-NO39-2Y and ASNO29-2Y), and analyzed daily with collected samples.   

Results 

Pumping Velocity  

The two X. muta individuals showed significantly different average excurrent flow rates 

over the measured period (paired t-test).  The sponge 1 X. muta produced an average excurrent 

flow rate of 5.3 ± 0.9 cm sec
-1 

(mean ± 1 SD, N = 19, P = 0.0001), and sponge 2 showed an 

average excurrent jet flow rate of 4.3 ± 0.9 cm sec
-1

 (mean ± 1 SD, N = 19, P = 0.0002).  Video-

recorded dye flow measurements characterized the excurrent jet in this species as approximately 

40% (SD = 9, N = 21) of the planar area of the sponge osculum, and this proportion was applied 

to the analyzed individuals to generate volumetric fluxes (V = 0.4AoscVexc; where V is the 

volumetric flux, 0.4 is the proportion of the oscular area characterized by a discrete jet, Aosc is 

the oscular area, and Vexc is the measured excurrent velocity).  Additionally, the dye flow videos 

generated pumping velocities that corroborated the velocities measured by ADV (N. Lindquist 

unpublished data).  Sponge 1 had a planar area of 2787 cm
2
 (jet area = 1143 cm

2
) and this 

generated an average volumetric flow rate of 6 L sec
-1

, while sponge 2 had a planar area of 929 

cm
2
 (jet area = 381 cm

2
) and an average volumetric flow rate of 2 L sec

-1
.  For sponges 1 and 2, 

these flow rates are equivalent to filtering water more than 5,000x and 3,500x their body volume 

daily (Sponge 1: 130 L; Sponge 2: 42 L, based on geometric approximations).     
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 The sponges measured in San Salvador had somewhat higher excurrent velocities than 

those measured on Conch Reef.  Yet, the Bahamian sponges tended to have smaller oscular 

openings and, therefore, the calculated volumetric flowrates for these organisms were 

comparable to the smaller of the two individuals sampled on Conch Reef.  The average excurrent 

flow rate was 7.7 ± 2.9 cm sec
-1 

(mean ± 1SD; n = 18 individuals), for individuals ranging from 

14 to 160 Lsponge.  For these individuals, the excurrent jet represented approximately the same 

proportion of the planar area as those in Florida, yet rough surface conditions and surge near the 

bottom clouded these results.  Consequently, the proportions from individuals measured in the 

Florida Keys were applied to these organisms when generating volumetric flow rates.  The 

average volumetric flow rate was 1.6 ± 1.0 L sec
-1 

(mean ± 1SD; n = 17 individuals) for the 

tested organisms.  The water pumping rates measured for X. muta in both environments agree 

with previous assessments for this species (Weisz et al. 2008, Fiore et al. 2013) as well as for 

other HMA sponges (Weisz et al. 2008, de Goeij et al. 2008 and citations within). 

DIN Release Rate 

 The average DIN concentrations in ambient water masses surrounding the tested sponges 

were similar at both sites, although NOx
-
 appeared to be somewhat elevated in the Florida Keys.  

Ambient NH4
+
 and NOx

-
 concentrations on Conch Reef were 0.22 ± 0.13 and 0.62 ± 0.43 µmol N 

L
-1

, respectively (mean ± 1SD; n = 36 and 27 for NH4
+
 and NOx

-
, respectively) and on San 

Salvador they were 0.15 ± 0.11 and 0.29 ± 0.21 µmol N L
-1

 for NH4
+
 and NOx

-
, respectively 

(mean ± 1SD; n = 20).  DIN release or uptake was determined as the difference between the 

concentration of the target analyte measured in ambient water and in the excurrent jet (Yahel et 

al. 2005; Δ[Analyte] = [Analyte]excurrent – [Analyte]ambient).  Therefore, only samples collected 

contemporaneously from the same individual were considered.  Of the 44 paired ambient and 
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excurrent collections of NOx
-
 concentration across the tested environments, 38 showed 

significant release of NOx
-
, 4 showed NOx

-
 uptake, and 2 showed no significant difference 

between ambient and excurrent water.  Sponges in Florida showed average NOx
-
 release of 0.55 

± 0.15 µmol N L
-1

 (mean ± 1SE; n = 27; Wilcoxon Signed-Rank test, p = 0.0004; Figure 3.1) and 

the average value for sponges in the Bahamas was slightly higher at 0.92 ± 0.15 µmol N L
-1

 

(mean ± 1SE; n = 20; Wilcoxon Signed-Rank test, p < 0.0001; Figure 3.1).  Behavior of the 

individuals with respect to NH4
+
 concentrations was slightly more variable, particularly at sites 

in the Bahamas.  However, the variability in samples from Bahamian reefs may be due to low 

concentrations found in oligotrophic waters and the extended preservation time necessitated by 

international transport (1-2 weeks from collection to analysis).  Of the 42 paired collections, 29 

showed NH4
+
 uptake, 12 showed NH4

+
 production, and 1 showed no significant difference 

between ambient and excurrent collections.  The average of these paired collections for 

individuals in Florida showed NH4
+
 uptake of 0.06 ± 0.03 µmol N L

-1
 (mean ± 1SE; n = 36; 

Wilcoxon Signed-Rank test, p = 0.0001; Figure 3.2) whereas individuals in the Bahamas showed 

no significant change from ambient waters (0.02 ± 0.04 µmol N L
-1

; mean ± 1SE; n = 20; 

Wilcoxon Signed-Rank test, p = 0.23; Figure 3.2).   

The obtained values for “InEx” (sensu Yahel et al. 2005) difference were converted to 

fluxes using the volumetric pumping rates determined from dye-flow and ADV measurements 

and then were normalized to the volume of the analyzed sponge.  For 3 individuals sampled in 

the Bahamas, pumping velocity could not be obtained (morphological issues, excessive surge, 

etc.) and therefore flux data are not presented for these organisms.  This yields average NOx
-
 

release rates of 81 ± 17 µmol NOx
-
 hr

-1
 Lsponge

-1 
for individuals in Florida (mean ± 1 SE; n = 27; 

one sample t-test vs. 0; p < 0.0001; Figure 3.3) and 66 ± 11 µmol NOx
-
 hr

-1
 Lsponge

-1
 for 
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individuals in the Bahamas (mean ± 1 SE; n = 27; one sample t-test vs. 0; p < 0.0001; Figure 

3.3).  Similarly, this calculation was performed for NH4
+
 difference and yielded an average 

uptake flux of 13 ± 6 µmol NH4
+
 hr

-1
 Lsponge

-1 
for individuals in Florida (mean ± 1 SE; n = 27; 

one sample t-test vs. 0; p = 0.04; Figure 3.3) and an average flux in the Bahamas which was not 

significantly different from zero (1.5 ± 2.7 µmol NH4
+
 hr

-1
 Lsponge

-1
; mean ± 1 SE; n = 27; one 

sample t-test vs. 0; p = 0.59; Figure 3.3).  No significant difference in DIN production or uptake 

was observed between the collection times at either location (unpaired t-test; p > 0.10).   

Discussion 

 Sponge-mediated nitrification has been shown to be a potentially important source for 

bioavailable N to organisms in a variety of environments (e.g., Corredor et al. 1988, Jiménez and 

Ribes 2007, Hoer 2015, this volume), and our observations represent further evidence of this 

process occurring in undisturbed individuals in their natural habitat (e.g., Southwell et al. 2008b, 

Gibson 2011, Fiore et al. 2013, Hoer 2015, this volume).  The average NOx
-
 fluxes measured for 

X. muta in the two tested environments (75 ± 11 µmol NOx
-
 hr

-1
 Lsponge

-1
; mean ± 1SE; n = 44) 

are in very good agreement with in situ autoanalyzer deployments conducted on this species on 

Conch Reef (80 ± 40 µmol NOx
-
 hr

-1
 Lsponge

-1
; Gibson 2011), but are lower than previously 

conducted paired syringe samplings on this species (170 ± 40 µmol NOx
-
 hr

-1
 Lsponge

-1
; Southwell 

et al. 2008b).  While the exact reason for this difference is unknown, the DIN concentrations 

measured during the work of Southwell et al. (2008b) were appreciably higher than those 

measured during our observations, and this may have contributed to the elevated efflux of NOx
-
 

calculated from their measurements.  Furthermore, discrete collection methodologies only 

provide brief (10s of minutes) observations of sponge-mediated processes and temporal 

variability in organism behavior is expected.  This temporal variability could be cause for the 
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disparity between our observations and those of Southwell et al. (2008b), and this dynamic 

behavior would be expected to cause increased uncertainty as these values are extrapolated to 

longer timescales.  However, long-term, in situ observations like those performed by Gibson 

(2011) should be a more accurate reflection of organism behavior, particularly at the timescale of 

hours and days, and the similarity of our results to these prior data is a promising indication that 

obtained discrete samples may be representative of long-term organism behavior.  Our rates of 

NOx
-
 release are also lower than those observed by Fiore et al. (2013) across a similar 

environmental gradient as was tested here.  However, Fiore and co-workers (2013) overestimated 

the volumetric flow rate through the sponges they measured by assuming the vertical excurrent 

velocity was representative of the full planar area of the osculum.  If we expand our flux by 

assuming that the excurrent velocity includes the entire planar area, our values are very similar to 

the NOx
-
 efflux measured by Fiore et al. (2013) on Rock Bottom Reef in the Cayman Islands. 

 The observed production of NOx
-
 is in stoichiometric excess of the nitrification rate that 

would be supported by NH4
+
 uptake from filtered water, which indicates direct, internal 

connectivity between the respiration of absorbed organic matter and the subsequent nitrification 

of the produced NH4
+
 (Corredor et al. 1988, Southwell et al. 2008b, Fiore et al. 2013, Hoer 2015, 

this volume).  Therefore, this respired organic matter is expected to be the primary N feedstock 

for nitrification processes mediated by these organisms.  Further, investigations of this species on 

Conch Reef indicated that the primary source of respired organic matter is from the dissolved 

pool (Hoer 2015, this volume).  This likely holds true for the sponges sampled on the 

oligotrophic environments of San Salvador, but the absence of direct quantifications preclude us 

from asserting this definitively.  Using average respired DOM by these organisms (1.3 ± 0.5 

mmol C hr
-1

 Lsponge
-1

; mean ± 1SE; Hoer 2015, this volume) we calculated that the organisms 
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also respired approximately 0.1 ± 0.04 mmol N hr
-1

 Lsponge
-1 

(mean ± 1SE), using the average 

C:N content of DOM in the surface ocean (C:N ~ 13.6; Benner 2002). This estimated quantity of 

oxidized dissolved organic N is remarkably close to the quantity of released DIN (0.062 ± 0.013 

mmol DIN hr
-1

 Lsponge
-1

; mean ± 1SE), further implicating it as the probable feedstock for the 

released inorganic nitrogen.  This rapid remineralization of dissolved organic matter may 

represent an ecologically relevant source of DIN on nutrient-poor reefs by rapidly recycling 

nutrients bound in organic compounds into more bioavailable inorganic forms (e.g., Diaz and 

Ward 1997, Ribes et al. 2005, de Goeij et al. 2013).                               

We observed no significant difference between the rate of NOx
-
 production in the Florida 

Keys and that calculated for sponges in the Bahamas (unpaired t-test; n = 44 collections; p = 

0.49; Figures 3.1 and 3.3).  However, individuals in Florida were observed to utilize more NH4
+
 

from filtered water than organisms tested on Bahamian reefs (Figures 3.2 and 3.3).  The observed 

similarity between the rates of DIN release measured in the tested environments was unexpected 

given the metabolic reliance of these organisms on organic matter from the dissolved pool and 

the presumed increase in the recalcitrant fraction of this pool on San Salvador reefs as compared 

to those in Florida.  A significant proportion of reef DOM is considered to be biological labile 

(30%; van Duyl and Gast 2001), however, the sampled reef waters of San Salvador are 

consistently bathed in oceanic water with a DOM signature that is likely characterized by a 

reduced contribution of bioavailable compounds (Benner 2002, Carlson 2002, Nebbioso and 

Piccolo 2013).  This posited decrease in DOM bioavailability was predicted to reduce the rate 

that the tested sponges could release reminieralized N.  The lack of this hypothesized disparity 

may indicate that the DOM pool is characterized by similar compounds in both environments, or 

that sponges have metabolic access to compounds to which they are exposed, including those 
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regularly exposed to open oceanic water.  However, the suggestions regarding the fraction of the 

DOM pool utilized by the sponge community are purely conjectural.  Future work describing the 

ability of sponges to respire DOM on oligotrophic reefs, and molecular characterization of 

available DOM in these environments may provide some insight into these hypotheses.  

The similarity between the results in these two environments contrasts with the results of 

Fiore and co-workers (2013) that showed profound differences between fluxes observed on 

Conch Reef and those on Lee Stocking Island, Bahamas.  The X. muta individuals they sampled 

on Conch Reef showed a broad trend of NOx
-
 uptake and measurements for sponges on 

Bahamian reefs exhibited significant NOx
-
 efflux (Fiore et al. 2013); NOx

-
 uptake accounted for 

27% of all their measured flux and 67% of their flux measurements in the Florida Keys.  Uptake 

of NOx
-
 was observed in 4 of the 44 total collections performed during our assessments, and 

these events represented approximately 9% of our total observations and ~15% of observations 

in the Florida Keys.  The sparse occurrence of these events in our dataset may be indicative of 

reduced temporal variability in the dominant microbial process occurring within the tissue of the 

host sponge relative to observations of Fiore et al. (2013). Yet, neither the degree of temporal 

variability nor the dominance of NOx
-
 absorption from ambient water seen in the work of Fiore et 

al. (2013) was observed in our measurements , nor was it observed in long-term in situ 

deployments of autoanalyzers on X. muta in this environment (Gibson 2011).  Fiore et al. (2013) 

also noted a much higher flux of NH4
+
 than NOx

-
 for many of the sampled sponges, which was 

not observed in any of the 22 individuals that we tested across a similar environmental gradient 

(Figures 3.1, 3.2, and 3.3).  However, the highlighted differences do not preclude the occurrence 

of temporal variability of the magnitude presented by Fiore et al. (2013), particularly given the 

demonstrated ability for these organisms to mediate processes that consume NOx
-
 (i.e. 
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denitrification; Gibson 2011).  Rather, this disparity raises questions as to what environmental or 

organismal factors precipitated this drastic change between the observed DIN fluxes in this 

species, and what facilitated a dominant presence of N reduction pathways.  All NOx
-
 uptake 

events in our tested individuals occurred in specimens sampled on Conch Reef, yet these events 

did not occur contemporaneously in both tested organisms, indicating the potential for an 

individualized organism alteration in the absence of a clear environmental trigger.  Interestingly, 

at the time of these apparent shifts in the N metabolism of the holobiont, sponge pumping rate 

and respiration oxygen demand were no different than those at other times during the record, and 

syringe collected dissolved organic matter showed a clear signal of normative uptake (Hoer 

2015, this volume). 

Nevertheless, our results indicate the potential for X. muta to represent a large source of 

remineralized N on both Floridian and Bahamian reefs.  The lack of difference between the 

observed N release rates in these locations indicates the potential for nitrification behavior in this 

species to be somewhat conserved across a variety of environments.  This conservation may 

allow the use of N release rates calculated in these environments to predict the impact of these 

organisms on reefs throughout the Caribbean.  Yet, given previously presented environmental 

variability, this idea warrants future exploration.  The net DIN (NOx
-
 + NH4

+
) efflux from the 

tested organisms was 62 ± 13 µmol DIN hr
-1

 Lsponge
-1

, which at the measured range of densities of 

X. muta on Conch Reef (1.3 – 2.8 L m
-2

; McMurray et al. 2010, Gibson 2011) equates to a DIN 

flux of 1.9 ± 0.4 mmol N m
-2

 day
-1

 to 4.1 ± 0.9 mmol N m
-2

 day
-1

 from this species alone.  DIN 

areal fluxes from this species are comparable to previously calculated values from sponge 

communities in the Caribbean and Mediterranean (e.g. Diaz and Ward 1997, Jiménez and Ribes 

2007) and are higher than what was observed in Florida Bay and the western coast of Australia 
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(Hoer 2015, this volume; Keesing et al. 2013).  On Caribbean reefs, this sponge-mediated efflux 

of DIN may benefit benthic algal biomass which dominates reef primary productivity (Hatcher 

1990).  Rates of net primary production on the reef benthos range between 200 and 500 mmol C 

m
-2

 day
-1

 (Hatcher 1990), and this primary productivity drives an N demand of 13 – 33 mmol N 

m
-2

 day
-1

, assuming the C:N ratio of a dominant macroalgal species (Dictyota sp., C:N ~15; 

Beach et al. 2006, Silbiger 2009).  Based on these approximations, a single sponge species can 

supply between 6 and 30% of the areal N demand from net primary productivity.  Assuming all 

sponge biomass surveyed by Southwell et al. (2008b) releases DIN at the rate of X. muta, the 

sponge associated N efflux could account for as much as half of the estimated N demand (3.6 

Lsponge m
-2

; 5.4 ± 1.1 mmol N m
-2

 day
-1

).  Therefore, it is plausible that these organisms represent 

a significant source or recycled N on reefs where populations of these sponges are large, 

particularly in the oligotrophic marine conditions of San Salvador.  Furthermore, as sponge 

populations expand in habitats throughout the Caribbean (Aronson et al. 2002, McMurray et al. 

2010), a concomitant increase in the contribution of DIN from these organisms would be 

expected.  This is especially true given the N release rates calculated here as well as in other 

studies (e.g., Corredor et al. 1988, Southwell et al. 2008b, Hoer 2015 this volume), and the 

potential for these rates to be conserved under varying environmental conditions.  
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Figure 3.1: Average NOx
-
 concentration in the ambient and excurrent waters of Xestospongia 

muta individuals tested in the Florida Keys and the Bahamas.  Error bars are ± 1SE and n equals 

the number of paired ambient-excurrent collections.  P values (Wilcoxon signed-rank test) 

indicate the level of significance between the ambient and excurrent NOx
-
 concentrations. 
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Figure 3.2: Average NH4
+
 concentration in the ambient and excurrent waters of Xestospongia 

muta individuals tested in the Florida Keys and the Bahamas.  Error bars are ± 1SE and n equals 

the number of paired ambient-excurrent collections.  P values (Wilcoxon signed-rank test) 

indicate the level of significance between the ambient and excurrent NH4
+
 concentrations. 
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Figure 3.3: Average fluxes of NOx
-
 and NH4

+
 for the tested sponges from Florida and the 

Bahamas.  Flux calculations were performed using the average, volumetric pumping rate for 

each individual and the average uptake or production of NOx
-
 and NH4

+
.   These values were 

then normalized to the volume of the tested sponge and averaged for each tested site.  Error bars 

represent ±1SE, n represents the number of paired collections, and asterisks (*) over the 

displaced column represents significance of the flux (one-sample t-test vs. 0).   
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CHAPTER 4: 
 

Efflux and Speciation of Dissolved Inorganic Nitrogen (DIN) from Ecologically Relevant 

Sponge Species in Florida Bay 

 

Introduction 

Florida Bay is a lagoonal estuary whose western boundary is open to the Gulf of Mexico; 

it is bordered on the north by peninsular Florida and on the south and east by the Florida Keys 

archipelagic island chain.  The bay is a shallow (< 3 m water depth), oligotrophic system and 

dissolved organic matter represents the majority of water column nitrogen (N) and phosphorus 

(P) (Boyer et al. 1997, Boyer et al. 2006).  N supply to the bay is similarly dominated by organic 

matter with as much as 90% of sourced N from the Everglades entering as dissolved organic 

nitrogen (Boyer et al. 1999, Childers et al. 2006).  This dominant presence of organic nutrients 

suggests an exceedingly important role of the microbial loop or other means of organic matter 

remineralization in the sourcing of inorganic nutrients to photosynthetic organisms (Yarbro and 

Carlson 2008).  The extensive seagrass beds throughout Florida Bay have been highlighted as 

potentially important sites of dissolved organic nitrogen (DON) remineralization (Yarbro and 

Carlson 2008).  Sponges, known as an important source for dissolved inorganic nitrogen (DIN) 

derived from particulate and dissolved organic matter (e.g., Corredor et al. 1988, Jiménez and 

Ribes 2007, and Southwell et al. 2008b) are also abundant components of benthic biomass 

(Peterson et al. 2006).  The restricted oceanic exchange in this environment allows local 

processes to dominate chemical cycling (e.g. Fourqurean et al. 1999, Peterson et al. 2006, Zhang 
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and Fischer 2014) and these systems may be characterized by an enhanced, yet previously 

unaddressed, importance of sponge recycling processes.     

 An extensive survey of sponge biomass in Florida Bay revealed their near ubiquitous 

presence with populations with densities between 0.02 and 22 individuals m
-2

 at more than 70% 

of 207 sites surveyed (Peterson et al. 2006).  Their abundant presence (Peterson et al. 2006) and 

efficiency as filter feeders (e.g. Reiswig 1971, Weisz et al. 2008) make the sponge population a 

dominant benthic heterotroph in this ecosystem.  The grazing pressure from sponges is enhanced 

by the ability to source metabolic substrates from both dissolved organic matter (DOM) as well 

as particulate organic matter (POM) (e.g., Resiwig 1974, van Duyl et al. 2008, Pawlik et al. 

2015).  As a result of this dietary plasticity, the sponge community may represent an important 

pathway for DOM remineralization in Florida Bay, given the metabolic reliance of some sponges 

on DOM in reef ecosystems (de Goeij et al. 2008, Mueller et al. 2014, Hoer 2015, this volume) 

and the large sourcing of dissolved organics to this environment from the Everglades wetlands 

(e.g., Fourqurean et al. 1999, Boyer et al. 2006, Childers et al. 2006).          

Sponges feed by actively pumping large volumes of water through their tissues with their 

exhalent jet being expelled into the overlying water column.  As a result, they are important 

physical and chemical drivers of coupling between processes occurring near the benthos and 

those in the water column (e.g., Lesser 2006, Southwell et al. 2008a, Keesing et al. 2013).  

Although they are distributed non-uniformly, sponges have the potential to represent the most 

important source of recycled N in Florida Bay, particularly considering previously measured 

rates of DIN release from two ecologically important species in this system, C. nucula and 

Ircinia sp. (Corredor et al. 1988, Diaz and Ward 1997, Southwell et al. 2008b).  The fluxes of 

remineralized N that have been observed from sponge communities in tropical and temperate 
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ecosystems are characterized by both ammonium (NH4
+
) and nitrate plus nitrite (NO3

-
 + NO2

-
; 

NOx
-
) (e.g., Corredor et al. 1988, Jiménez and Ribes 2007, and Southwell et al. 2008b).  The 

speciation of DIN in sponge effluent is known to be dictated by occurance or absence of 

microbial processes within the sponge tissues (Diaz and Ward 1997, Jiménez and Ribes 2007, 

Hoffmann et al. 2009).  Large microbe populations live within the tissue of high microbial 

abundance (HMA) sponges (Hentschel et al. 2006), often representing as much as 40% of total 

sponge tissue volume (Freeman and Thacker 2011).  Microbial metabolism occurring within 

HMA sponges drives diverse nutrient element transformations, including nitrification (Southwell 

et al. 2008a, Hoffmann et al. 2009), potentially providing increased diversity in metabolically 

accessible organic matter (Pawlik et al. 2015 and references therein). Conversely, sponge species 

with low numbers of associated microorganisms (termed low microbial abundance (LMA) 

sponges, Hentschel et al. 2006) produce ammonium-rich effluent with a chemical signature 

characteristic of animal-based metabolism (Southwell et al. 2008b).   

Many studies reporting DIN release by sponges (e.g. Corredor et al. 1988, Jiménez and 

Ribes 2007, Hoffmann et al. 2009) utilize methodologies that involve significant physical 

disturbances of the sponge animal or altered environmental conditions.  This experimental 

manipulation may have large impacts on sponge behavior as they have been previously shown to 

be sensitive to environmental and physical stressors (e.g., Gerrodette and Flechsig 1979, 

Tompkins-MacDonald and Leys 2008).  Here we present the results of in situ, underwater DIN 

flux measurements from undisturbed individuals representing 11 important species (Peterson et 

al. 2006) found in typical “hardground” areas of Florida Bay.  The flux measurements were 

made by briefly enclosing untouched sponges representing each of these species attached to their 

original substrate in well-oxygenated chambers.  The results allow a quantitative assessment of 
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their potential role in nitrogen cycling in Florida Bay.  We hypothesize a continued 

differentiation between the speciation of DIN in exhalent waters of LMA and HMA sponges, 

with NH4
+
 and NOx

-
 dominating their respective exhalent jets (Jiménez and Ribes 2007, 

Southwell et al. 2008b, Bayer et al. 2008).  We also sought to quantify the relative importance of 

dissolved and particulate organic matter for sponge metabolism in Florida Bay, and further 

hypothesize that DOM should be an important metabolic substrate for HMA sponges and be of 

negligible importance in LMA sponges (Southwell et al. 2008b, de Goeij et al. 2008; Gibson 

2011).  We hypothesize that the sponge community has the potential to be an important driver of 

local chemical cycling that will be an important factor in balancing the N budget in Florida Bay.        

Methods 

Sample Sites 

 Three shallow sites (water depth < 3m) which exemplify varying environments that can 

be found within the Florida Bay ecosystem were sampled.  The first site was a dock located at 

Florida Fish and Wildlife Conservation (FWC) Commission South Florida Regional Laboratory 

in Marathon, FL (Site ID: FWC Dock, 24°42’45.31” N, 81°5’54.89” W).  The dock site was 

conveniently assessable and is characterized by a thin (approximately 20 cm) layer of carbonate 

mud overlying Pleistocene limestone, and is densely populated with benthic macroalgae.  The 

dock itself is stabilized by a rock jetty that has been colonized by a variety of boring and 

encrusting sponge species, primarily Chondrilla nucula, with minimal contribution from non-

boring and non-encrusting species.  It has a large oceanic influence due to its proximity to an 

opening in the Florida Keys island chain between Marathon and Big Pine Key, which results in 

high currents during tidal exchanges with the ocean and corresponding fluctuations in water 

quality parameters (D. Hoer unpublished data).  The second site was located within a semi-
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protected cove 13 km northeast of the FWC dock site (Site ID: Burnt Point, 24°45’24.6” N, 

80°58’55.0” W).  The Burnt Point site has a thinner veneer of carbonate mud (5 to 10 cm) 

overlying the limestone than the dock site, and a diverse sponge population that included large 

populations of non-boring and non-encrusting species such as Ircinia campana and Spongia spp., 

in addition to seagrasses and macroalgae.  This site had a lower degree of tidal connectivity with 

the ocean, partially due to sheltering land projections and a greater distance from the nearest 

passage to the ocean.  The third site is a small offshore basin, 13 km north of Long Key, FL, 

located within the Everglades National Park boundaries (Site ID: Mystery Basin, 24°56’36.6” N, 

80°49’32.8” W) and almost completely isolated by an outer rim of shallow banks that shoal 

during low tides (Figure 4.1).  The Mystery Basin site featured the thinnest veneer of carbonate 

sand and mud overlying the limestone hard-bottom averaging less than 5 cm thickness, and was 

characterized by a diverse population of sponges including large populations of Sphesiospongia 

vesparium and Ircinia variabilis.  The shoals forming the outer rim of the basin restrict water 

exchange with the surrounding areas (Peterson et al. 2006) and are covered by seagrasses rooted 

in carbonate mud. 

Sample Collection and Chamber methodology 

 Eleven sponge species were examined in this study: Haliclona sp., Halichondria 

melanodocia, Cinachyrella sp., S. vesparium, I. variabilis, I.campana, Spongia graminea, 

Spongia Barbara, Geodia gibberosa, and C. nucula.  These species were chosen as they 

dominate sponge biomass at our studied sites and the whole of Florida Bay (Peterson et al. 2006, 

B. Peterson personal communication, January, 2011).  Many of the sponge species that inhabit 

FL Bay are characterized by a multitude of small, diffuse oscula, each of which would 

necessitate individual measurements via the “InEx” method described by Yahel et al. (2005).  
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Consequently, a chamber incubation method was developed to determine fluxes and chemical 

speciation of released DIN.  A simple benthic chamber was constructed from a 20L 

polypropylene drinking water jug with its bottom removed.  The bottom edge of the modified jug 

was weighted with a fabric skirt filled with lead beads.  The resulting chamber could be placed 

directly over a target sponge, still attached to the surrounding substrate, without touching the 

tested animal.  The final chamber volume was 16.5 L after modifications, sufficiently small to 

allow observation of DIN concentration increases over periods of 30 to 150 minutes which could 

be used to calculate net DIN fluxes.  The chamber (Figure 4.2) had inlets in place for water 

sample collection, air introduction from a SCUBA regulator, and an optical probe (HACH 

LDO101) for monitoring dissolved oxygen concentration in the chamber in real time.  Using 

pumping function confirmed by fluorescein dye as a proxy for fitness, healthy sponge individuals 

were randomly selected by divers on SCUBA.  After a targeted individual was confirmed to be 

pumping, the sponge was isolated from the surrounding substrate by slipping slit-collared 

polypropylene plastic sheet around the base of the sponge to seal off sediment contact with water 

inside the chamber.  An ambient water sample was collected, ambient dissolved oxygen 

concentration was noted, and then the chamber was carefully lowered over the individual.  

Triplicate samples were taken every 30 minutes for 2.5 hours, and the chamber oxygen 

concentration was monitored constantly with air being slowly bubbled into the chamber 

whenever the oxygen concentration fell below 75% of ambient levels.  One-way check valves 

were put in place to ensure that gas was able to escape during bubbling, and to allow ambient 

water inflow during sample collection. After the final sample was collected, the chamber was 

removed and the sponge was again checked with dye to ensure continued pumping activity.  The 

sponge was then harvested for volume determination; sponge volumes were measured by water 
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displacement, with each sponge being measured 3 times for quality control.  A minimum of 3 

replicate individuals per species were analyzed to ensure reproducibility of any observed 

phenomenon, and 3 chamber replicates without a sponge were performed to observe any 

environmentally mediated phenomena in the absence of a sponge.  Chamber experiments were 

performed during field excursions in May, July, and September 2013 and July 2014.   

 Samples were collected in triplicate 60 mL polypropylene syringes connected to 

polycarbonate stopcocks, which interfaced syringes directly to the outlet on the chamber.  

Samples were filtered in situ using pre-combusted, 25 mm Whatman GF/Fs that were plumbed 

in-line during sampling.  Whatman GF/Fs were selected for sample filtration and POM collection 

due to their ability to be combusted prior to use and in order to coordinate with other reports of 

carbon and nitrogen cycling by Caribbean sponges (e.g., Diaz and Ward 1997, Yahel et al. 2003, 

Southwell et al. 2008b).  Prior to sample collection, the syringe, filter, and connected fittings 

were rinsed once with sample water.  Sample rinses were limited in order to minimize dilution of 

chamber water with ambient water introduced as sample was drawn out of the chamber.  

Syringes were immediately placed in an ice bath for transport to shore for subsampling and 

preservation (less than 8 hours from collection to preservation or analysis). 

 Upon return to shore, samples were immediately divided for dissolved inorganic nitrogen 

(DIN; NH4
+
 and NO2

-
+NO3

-
 (NOx

-
)) as well as dissolved organic matter (total nitrogen (TN), and 

dissolved organic carbon (DOC)); DON was determined as the TN content less DIN.  Dissolved 

organic matter samples were placed into three replicate borosilicate glass scintillation vials.  

Vials were rinsed with sample, filled with 20mL of sample water, and 100 µL of 50% H3PO4 

was added.  After the acid addition, the sample was stored at 4°C until subsequent analysis.  

Nitrate and Nitrite (NOx
-
) samples (20 mL volume) were placed into sample-rinsed, borosilicate 
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glass scintillation vials and frozen until subsequent analysis.  Ammonium (NH4
+
) samples (20 

mL volume) were placed into sample-rinsed amber HDPE bottles.  Ammonium samples were 

analyzed immediately to reduce the potential impact of degradation on sample integrity.  For 

each time point, the sampled parameters were collected in triplicate for quality assurance and 

control. 

Particulate organic matter samples were collected from ambient water masses at our 3 

study sites in order to assess the availability of particulate C and N.  POM samples were 

collected daily at one or more of the sites during each of three field excursions (May, July, and 

September 2013) at three time points, 08:00, 12:00, and 16:00, in an attempt to estimate any 

diurnal variability in particulate loading.  Mystery Basin and FWC Dock sites were sampled 

during May 2013, Burnt Point was sampled during July 2013, and the FWC Dock was sampled 

during September 2013.  The FWC Dock site was sampled during 2 field seasons (May and 

September 2013) to assess long term variability.  Peristaltic pumps were set up to pump ambient 

water (from approximately 30 cm off the bottom) through high-density polyethylene tubing to a 

shipboard 0.7 µm GF/F (Whatman, 47 mm).  Flow rates were set to 20 mL min
-1

 by adjusting 

pump speeds at the beginning of each filter collection to ensure accurate collections.  Samples 

were collected to give a 3 hour, time-integrated sample of 3.6 L of filtered water.  Sample inlets 

were covered with a mesh pre-filter (polypropylene; pore size ≈ 100 µm) to exclude particles 

larger than those thought to be efficiently retained by sponges (Reiswig 1971, Yahel et al. 2003).  

Pre-filters were replaced daily.     

 All plastics utilized in sample collection and processing (including the incubation 

chamber, benthic isolation plastic, syringes, stopcocks, tubing, filter holders, and collection vial 

lids) were composed of polypropylene, high-density polyethylene, or polycarbonate and all were 
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soaked in a 0.1 mol L
-1

 HCl bath for >12 hours and triple rinsed with 18.2 MΩ type I water prior 

to use, and between each sampling in the case of sample collection plastics.    Borosilicate 

scintillation vials used for sample collection were subjected to the same washing procedure, 

followed by combustion at 450°C for > 6 hours to remove any residual DOC.  Combusted 

glassware was stored in combusted foil and bagged to minimize outside contamination prior to 

use.  Utilized filters were combusted at 450°C for >6 hrs and stored in combusted foil.  Amber 

HDPE sample bottles used for ammonium samples were acid washed and rinsed following the 

aforementioned protocol.  Additionally, small aliquots of the o-phthaladehyde working reagent 

were added to HDPE bottles and allowed to react for 24 hours to ensure remove any residual 

ammonium from the sample bottle prior to use for standards or samples.   

Sample Analysis 

Ammonium analyses were performed by fluorescence using the method of Holmes et al. 

(1999).  Immediately after subsampling, 20mL volumes were reacted with 5mL of o-

phthaladehyde working reagent in 30 mL amber, HDPE sample bottles for 2.5 hours.  After the 

incubation period, samples were analyzed using a Turner Designs TD-700 laboratory 

fluorometer with an ammonium fluorescence optical kit (Turner Designs 10-303).  The method 

detection limit of the utilized method was 10 nmol L
-1

, determined by repeated standard 

measurements.  Standards were prepared daily in reacted sample bottles by serial dilution of a 

purchased stock solution (Ricca Chemical Company 693-16), and analyzed with the prepared 

samples.  Nitrate plus nitrite (NOx
-
) samples were analyzed using Spectrophotometric Elemental 

Analysis System (SEASII-NOx) autoanalyzers (Adornato et al. 2005 and references therein) 

configured for bench-top use.  NOx
-
 analysis with SEASII was accomplished with cadmium 

reduction of nitrate to nitrite followed by detection methodology based on the Griess Reaction.  
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The method detection limit for this protocol was 25 nmol L
-1

, and was determined by repeated 

analysis of standard solutions.      

DOC and TN samples were analyzed simultaneously with a Shimadzu TOC-L/TNM-L 

organic carbon and total nitrogen analyzer.  Samples were analyzed using high-temperature 

catalytic oxidation (HTCO) and subsequent detection of DOC via non-dispersive infrared 

spectroscopy (NDIR) and TN with chemiluminescence.  The carbon values obtained are more 

accurately characterized as values of Non-Purgeable Organic Carbon (NPOC) due to the purging 

of volatile organics by vigorously bubbling during instrumental analysis.  We assume a 

negligible contribution to DOC from volatile organics, and henceforth the obtained values will 

be simply referred to as DOC. 

POM samples were analyzed via flash combustion and total conductivity detection using 

a Carlo Erba NA 1500 elemental analyzer.  The collected filters were lyophilized to remove any 

residual water on the filter.  After lyophilization, filters were folded onto themselves four times 

and exposed to concentrated HCl vapor in a closed vessel overnight.  Acid flushed filters were 

then dried at 80°C for one hour and pulverized.  Pulverized samples were placed into combusted 

foil boats and analyzed for C and N composition. 

Results 

Dissolved inorganic nitrogen flux 

DIN concentrations in the sponge incubation chambers increased linearly with time 

during each experiment, and did not appear to diminish towards the end of the experiments 

(Figure 4.3).  Therefore, rates of DIN release (mol Lsponge
-1 

hr
-1

) could be directly calculated as 

the linear regression of the concentration time-series data and the sponge volume measurements 

made after each incubation experiment.  The significance of the calculated rate for each chamber 
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incubation was determined from one-way analysis of variance (ANOVA) of the linear trend in 

concentration over time, as well as the significance of the average calculated release rate for a 

given species (mol Lsponge
-1 

hr
-1

) versus zero (one-way t-test vs. 0).  Significant rates of DIN 

release noted in Figure 4.4 fulfilled both criteria at the 95% confidence interval.  The reported N 

release rate for each species represents the average of the volume-normalized slopes from each 

of the replicate chambers.  Errors in these measures were calculated based upon the deviation 

between replicates in the volume-normalized rate of N release (N = 3 - 5).  Calculated rates of 

DIN release from replicate chambers for each species were checked against one another for 

quality control, and outliers were detected and removed from the dataset using the modified z-

score method (Mi ≥ 3.5, Iglewicz and Hoaglin 1993); this quality control led to the removal of 6 

of the 96 measurements of DIN release.  The control chambers performed without sponge 

biomass showed no significant linear trend in DIN over the sampled time period (ANOVA, p = 

0.7 and p = 0.4 for NOx
-
 and NH4

+
 respectively), and therefore any trend observed in the 

chambers containing sponge was determined to be the result of the sponge holobiont (sponge 

animal and associated microbial biomass).  

Seven of the 11 sampled species exhibited significant trends in either NH4
+ 

or NOx
-
 over 

time (ANOVA, p < 0.05) and significance of the calculated rate of N release (one-sample t-test 

versus 0, p < 0.05) (Figure 4.4).  Five of these 7 generated significant, mean rates of N release 

(one-way t-test versus 0; p ≤ 0.05) indicative of NOx
- 
production, with C. nucula and G. 

gibberosa showing the highest nitrification rates per liter of sponge biomass.  NOx
-
 release rates 

ranged from 25 ± 7.6 to 170 ± 37 µmol NOx
-
 hr

-1
 Lsponge

-1
 with an average of 44 ± 13 µmol NOx

-
 

hr
-1

 Lsponge
-1

 across all sampled species and chambers (Mean ± 1 SE; Table 4.1). Significant 

ammonium release was characteristic of only two species, Haliclona sp.and S. vesparium, which 
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showed rates of 52 ± 7 and 9 ± 2.2 µmol NH4
+
 hr

-1
 Lsponge

-1
, respectively.  Ammonium release 

rates averaged 14 ± 5 µmol NH4
+
 hr

-1
 Lsponge

-1
 across all species and chambers (Table 4.1). 

Dissolved organic matter fluxes 

 Two of the eleven sampled species exhibited a significant linear trend in DOC 

concentration over the chambered period (ANOVA, p < 0.05), and none of the species exhibited 

significant DON uptake or production at the 95% confidence level.  DOC concentrations 

significantly decreased in the presence of G. gibberosa and S. barbara, suggesting significant 

uptake rate for both species (Figure 4.5 1.0 ± 0.17 and 0.22 ± 0.07 mmol C hr
-1 

Lsponge
-1

 for G. 

gibberosa and S. barbara, respectively; mean ± 1 SE; one sample t-test versus 0, p < 0.05).  The 

observed trends were best characterized by linear fits, however exponential models were also 

tested (de Goeij et al. 2008a and de Goeij and van Duyl et al. 2007), with no significant 

improvement in uncertainties.  Rates of change in dissolved organic matter were subject to the 

same quality control procedures as the DIN release rates, which lead to the removal of 7 apparent 

outliers from the total of 96 measurements of DOC and DON change.  The reported values 

represent the average of replicate chambers and the associated deviation between tested 

individuals.   

Particulate organic matter loading                 

 The average POC content at each site was 14 ± 1, 23 ± 5, and 8 ± 1 µmol C L
-1

 (mean ± 1 

SE, N = 35, 10, and 16) for FWC Dock, Mystery Basin, and Burnt Point respectively.  The 

average PON content at the tested sites was 2.3 ± 0.3, 3.2 ± 0.6, and 1.2 ± 0.1 µmol N L
-1

 (mean 

± 1 SE, N = 35, 10, and 16) for FWC Dock, Mystery Basin, and Burnt Point respectively.  There 

was no significant variability observed at the FWC Dock site when comparing the different 
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months sampled (paired t-test, P > 0.05) nor was there significant diurnal variability at any of the 

tested sites (paired t-test, P > 0.05).       

Discussion 

 Seven of the 11 chambered species exhibited significant DIN efflux (one-sample t-test 

vs. 0, P < 0.05, Figure 4.4), with the largest rates of DIN production occuring as accumulations 

of NOx
-
, similar to the observations of Diaz and Ward (1997).  Three of the tested species were 

determined to be LMA sponges (Haliclona sp.: Sipkema et al. 2009; H. melanodocia: Weisz et 

al. 2008; Cinachyrella sp.: genus level distinction based on Gloeckner et al. 2014), while the 

remaining 8 were classified as HMA sponges (S. vesparium: Weisz et al. 2008; Ircinia sp.: genus 

level distinction based on Gloeckner et al. 2014; Spongia sp.: genus level distinction based on 

Ereskovsky et al. 2005 and included references; H. lachne; Ereskovsky et al. 2004; G. gibberosa: 

genus level distinction, Hoffmann et al. 2009; C. nucula: Hill et al. 2006).  The chosen species 

provided further evidence of the differences in the speciation of effluent DIN between HMA and 

LMA sponges (Jiménez and Ribes 2007, Southwell et al. 2008b, Bayer et al. 2008; Figure 4.4). 

Haliclona sp. was the only sampled LMA species to exhibit significant flux of DIN (one-sample 

t-test vs. 0, P < 0.05), while H. melanodocia approached statistical significance (P = 0.06).  DIN 

release rates associated with these species was of modest magnitude, as compared to some HMA 

individuals, and was exclusively NH4
+
 (Table 4.1, Figure 4.4).  This production of ammonium is 

likely due to respiration processes and ammonification of organic matter mediated by the sponge 

animal (Diaz and Ward 1997).  The mesohyl, or internal tissue between the outer body and inner 

cavity, of LMA sponges is characterized by a microbial community whose abundance and 

diversity is much lower than that of HMA species and approaches the community found in 
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seawater (Hentschel et al. 2006).  As a result, the exhaled water mass carries with it a dominant 

signature of sponge-animal metabolism rather than microbial processes.   

The incubated HMA species exhibited significant production of DIN, primarily in the 

form of NOx
-
; five of the 8 sampled HMA sponges exhibited DIN release in the form of NO2

-
 + 

NO3
-
, and only S. vesparium exhibited a significant production of ammonium (Table 4.1, Figure 

4.4).  The produced NOx
-
 is likely the result of microbially mediated nitrification occurring 

within the tissue of the sponges (e.g. Bayer et al. 2008 and citations within, Hoffmann et al. 

2009, Schläppy et al. 2010).  The spectrum of nitrification rates observed in the tested species 

agrees with the wide range results of other incubation-style measurements for variety of sponges 

in the Caribbean and Mediterranean Seas (Jiménez and Ribes 2007, Southwell et al. 2008b, 

Schläppy et al. 2010).  The rates of nitrification observed for C. nucula are in good agreement 

with a previous assessment of this species by Diaz and Ward (1997), but are much higher than 

reported by Corredor et al. (1988) (Table 4.1).  This discrepancy is likely due to alleviating the 

inhibiting effects of chamber volume observed in the work of Corredor and co-workers (1988) 

through the use of a larger incubation vessel (16.5L vs 2.25L) (Diaz and Ward 1997).  Our 

oxygenation of the vessel to maintain consistent O2 concentrations, or our slightly shorter 

incubation times could have also played a role (Diaz and Ward 1997).  The oxygenation of the 

chamber allowed respiration to continue without initiating hypoxic stress, but allowed continual 

carbon dioxide (CO2) addition via respiration.  This added CO2 likely reduced the pH of the 

chamber considerably over the course of the incubation (Gibson 2011), but the impact of this 

reduced pH on the behavior or the holobiont is unknown and warrants future examination.  The 

chamber inhibition discussed by Diaz and Ward (1997) was likely a factor for other, larger 

species examined in the present study (e.g., Spongia spp., S. vesparium, H. melanodocia), and 
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therefore the observed rates for these species should be considered underestimates of their DIN 

release due to the size of the chamber relative to the sponge.  In addition to chamber effects, our 

calculated nitrification rates are probably underestimated due to the potential for microbial 

utilization of nitrite and nitrate produced within the chamber (Diaz and Ward 1997).   

Our results for G. gibberosa are much lower than the results Hoffmann et al. (2009) 

obtained using a Geodia species common to the North Atlantic.  This difference is most likely 

due to the amended ammonium prior to their incubation (12 µmol L
-1

 NH4
+
; Hoffmann et al. 

2009).  The resultant initial chamber NH4
+
 concentration was an order of magnitude larger than 

the ambient NH4
+
 measured at the start time of our chambers, significantly increasing the 

available DIN feedstock for nitrification, and thereby likely enhancing the nitrification rate.   

S. vesparium is an oddity among HMA sponges as it produces exclusively NH4
+
 and 

yields the lowest volume-normalized DIN efflux of all the sampled species (Figure 4.4).  S. 

vesparium has previously been shown to behave in marked contrast to other HMA species in 

both DIN speciation and elevated pumping rates (Southwell et al. 2008a, Weisz et al. 2008).  

There have been several conflicting reports (e.g., Poppell et al. 2014 and Gloeckner et al. 2014) 

about the microbial density (low versus high community density) within the tissues of this 

putative HMA species, subsequent to the initial classification by Weisz et al. (2008).  Poppell et 

al. (2014) refuted the previous HMA designation (Weisz et al. 2008) and classified S. vesparium 

as a LMA species based on scanning electron microscopy of samples collected on the bay side of 

Summerland Key, Florida.  Altering the classification of S. vesparium could help to rectify 

aforementioned idiosyncrasies for this species such as the observed production of NH4
+
 versus 

NOx
-
 (this study, Southwell et al. 2008a), and its accelerated pumping rate relative to other HMA 

species (Weisz et al. 2008).  Conversely, Gloeckner et al. (2014) corroborated the previous 
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designation of Weisz et al. (2008) and determined S. vesparium to be a HMA species based on 

transmission electron microscopy of samples collected off Exuma Cay, Bahamas.  The 

environmental conditions in these studies differ considerably, and minor microbial community 

variability has been previously shown within a species found across different environments 

(Taylor et al. 2005).  Yet, the differences between the results of Gloeckner et al. (2014) and 

Poppell et al. (2014) are much greater than those presented by Taylor et al. (2005), which 

complicates an attempt to attribute the observed differences to environmental variables.  

Nevertheless, it is plausible that S. vesparium exhibits a greater degree of plasticity than has been 

previously recognized in sponge-microbe symbioses, and this possibility should be considered in 

the context of the apparent dichotomy in effluent N from LMA and HMA sponges.  The 

environmental conditions for our tested S. vesparium closely resemble those presented by 

Poppell and co-workers (2014), and may have contributed to the apparent differences between 

the behavior of this species as compared to other HMA species.         

The ammonification rates determined for I. campana differ significantly from the results 

of Southwell et al. (2008b), yet there is no significant difference between the nitrification rates 

(Table 4.1).  The difference in ammonium production may be due methodological deviations or 

to variable rates of ammonium oxidation mediated by the holobiont under contrasting 

environmental conditions.  Southwell and co-workers used small sponge cuttings in shore-based 

incubations, a different experimental approach than the in situ incubations with whole, attached 

individuals in the current study.  Sponges are sensitive to physical and environmental stressors, 

with changes in environmental conditions significantly altering the function of the sponge-

microbe holobiont (e.g. Fan et al. 2013); this effect would be particularly pronounced in HMA 

sponges whose DIN production is thought to be largely influenced by the activity of their hosted 
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microbial consortia.  Additionally, variable ammonium excretion with relatively constant NOx 

production has been shown to occur during seasonal transitions in an HMA sponge native to the 

Mediterranean (Bayer et al. 2008).   Large differences in the factors hypothesized to precipitate 

this change (temperature, salinity, dissolved oxygen, and ammonium availability) can be found 

when comparing the sites tested in Southwell et al. (2008b) to those in FL Bay (e.g. Boyer et al. 

1999, Stokes et al. 2011); this environmental divergence may contribute to the observed 

intraspecific variability in ammonium oxidation.   

The sponges that hosted active nitrifying bacteria (those with significant, positive release 

of NOx
-
) had a greater total DIN production than those without active populations of nitrifiers in 

their tissues (all other species, two-sample t-test, N = 6, P < 0.05), where total DIN released was 

taken as the sum of the produced NH4
+
 and NOx

-
.  We hypothesize that this increase in total DIN 

efflux is a result of the slower pumping rates in HMA sponges hosting active, nitrifying microbes 

relative to other sponges.  The reduced pumping rate increases tissue residence time in these 

individuals, and this increased residence time, coupled with the high surface area to volume ratio 

of the aquiferous structures in HMA sponges (Weisz et al. 2008), may serve to enhance the rate 

of nitrification in these sponges.  To test this hypothesis, the pumping rates for species thought to 

host active nitrifiers (C. nucula, H. lachne, and S. barbara) were compared to those species, both 

HMA and LMA, without evidence for actively nitrifying microbes in their tissues (S. vesparium, 

I. variabilis, H. melanodocia, Haliclona sp., and Cinachyrella sp.).  Pumping rates were 

determined by video-recording fluorescein dye movement as it is released in the excurrent jet of 

sponge oscula (N. Lindquist unpublished data, methodology following Weisz et al. 2008).  The 

pumping rate was found to be significantly slower for species hosting active nitrifying 

populations than that for those species without (two-sample t-test, N = 7, P = 0.04; N. Lindquist 
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unpublished data).  While the available data are limited, they preliminarily indicate that the 

increased tissue residence time of filtered water may allow for increased chemical exchange and 

reaction of dissolved constituents in species thought to be hosting active nitrifying microbes.  

Further exploration of this hypothesis may help to elucidate the mechanism behind the subtle 

differences observed between sponge species.       

The observed DIN release at our Florida Bay sites suggest that sponges may be important 

agents of N cycling, particularly in benthic environments with large populations of HMA 

sponges (Diaz and Ward 1997).  These ubiquitous holobionts represent sites of rapid organic 

matter remineralization potentially able to generate localized hotspots of elevated DIN 

concentrations and altered NH4 to NOx ratios (Diaz and Ward 1997, Ribes et al. 2005).  Because 

the largest reservoirs of N in Florida Bay are present as particulate and dissolved organic matter 

(Boyer et al. 2006), this newly identified source of recycled, bioavailable DIN should be 

ecologically important, especially in the western areas of Florida Bay where N is thought to be 

limiting to primary production (Fourqurean et al. 1993, Phlips et al. 1999).  Inorganic N 

production by these species is dependent upon heterotrophic conversion of amino nitrogen from 

respired organic compounds to NH4
+
 coupled to subsequent nitrification yielding NOx

- 
(Corredor 

et al. 1988).  The accumulation of NOx
-
 does not appear to trail ammonium production in those 

species hosting nitrifying populations (Figure 4.3), thereby providing further evidence for rapidly 

coupled ammonification of organic matter and nitrification within sponge tissues which has been 

observed in non-incubation sampling (Southwell et al. 2008b).  Due to the different metabolic 

capabilities demonstrated by sponges in other environments (e.g., Resiwig 1974, van Duyl et al. 

2008, Pawlik et al. 2015), we hypothesized that the tested sponges would exhibit divergent 

behavior in their organic matter preference with HMA species consuming primarily DOM and 
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LMA species feeding primarily from POM, as has been demonstrated in other environments.  

Surprisingly, observed DOM utilization was minimal.  G. gibberosa showed a DOC uptake rate 

that was similar to other HMA species found on reefs (e.g., Yahel et al. 2003, de Goeij et al. 

2008, Hoer 2015, this volume) while S. barbara was much lower (Figure 4.5.  The tested G. 

gibberosa individuals were often found with macroalgal epibionts which were gently removed 

prior to incubation.  Macroalgae is recognized to release a significant proportion of 

photosynthetically fixed C as DOC into the surrounding water (Haas et al. 2011).  The close 

association of this species with a source of fresh DOM could contribute to the observed DOC 

uptake as it is regularly exposed to a labile C source.  Similarly, C. nucula is commonly found in 

Florida Bay within seagrass beds, often growing attached to seagrass leaves, and as a result 

would be expected to be consistently exposed to labile C exuded by the seagrasses (Ziegler and 

Benner 1999); the tested individuals suggested the ability of this species to utilize DOC, yet the 

observed flux was not significant at 95% confidence level (Trend: ANOVA; p = 0.06; average 

DIN release rate: one sample t-test vs. 0; p = 0.06).  The potential for HMA sponges to feed from 

both the particulate and dissolved pools, and the regular exposure of these species to labile DOC 

either from neighboring or epibiotic primary producers may predispose these species to fulfill 

their metabolic C demand from the labile pool of exuded C.  Conversely, S. barbara does not 

exhibit a direct association with a DOM source, and why this behavior was observed in this 

species and not others tested is unknown.  This species was shown to have the slowest 

volumetric pumping rate of any of the tested species (N. Lindquist unpublished data), which 

would generate increased tissue residence times, potentially rendering the available DOM more 

accessible to the sponge holobiont (Weisz et al. 2008).       
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This notable lack of feeding from the dissolved organics, coupled with the observed large 

rates of DIN production suggests that the dominant sponge species in Florida Bay feed primarily 

on POM.  The apparent absence of DOM uptake by the HMA sponges tested in this environment 

may suggest either the lack of sponge-hosted microbial communities to feed on dissolved 

organics or a degree of dietary plasticity which allows the same species in different locations to 

shift food sources depending upon availability or palatability.  Gibson (2011) did not observe 

DOC uptake in S. vesparium on ocean-side reefs of the Keys, confirming our observations, but 

there is no further evidence in the literature to confirm or refute the observed behavior in the 

remainder of the tested species.   Despite being classified as an oligotrophic system (Childers et 

al. 2006, Boyer et al. 2006), POM availability in Florida Bay is relatively high as compared to 

that observed on the neighboring reef tract; the ambient POC and PON concentrations at our 

tested sites were significantly higher than has been observed on the reef side of the Florida Keys 

archipelago (Trussel et al. 2006, Hoer 2015, this volume; two sample t-test, P < 0.0001).  In 

addition to the elevated abundance observed in Florida Bay relative to the reef, the POM 

measured at our sites exhibited a C:N ratio that was not significantly different from Redfield (6.5 

± 0.1; mean ± 1 SE; one sample t-test; P > 0.5), indicating that it represented primarily living 

planktonic biomass or freshly produced detrital material (Tanaka et al. 2011).  The elemental 

signature of active and abundant photosynthetic biomass found in ambient POM may suggest a 

particulate pool with a high degree of palatability for sponges that have been shown to feed 

somewhat selectively on live planktonic biomass (Yahel et al. 2005, Hanson et al. 2009).  This 

putative contribution of freshly produced POM and the elevated abundance of particulates may 

contribute to the decreased reliance on DOM by sponges in Florida Bay as opposed to reef 

ecosystems.  The availability of fresh detrital material and live planktonic biomass would be 
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expected to vary seasonally (Phlips et al 1999), and sponges may alter their nutritive dependence 

on DOM as the availability of POM waxes and wanes temporally.  Further sampling of these 

species under seasonally different POM loads or in different environments will be required to 

test this hypothesis.  

A stoichiometric imbalance exists between ambient PON content and the quantity of 

produced DIN for many of the tested species; at the most extreme, ambient PON available at the 

site represented a third of the produced DIN.  This imbalance is likely due to an underestimation 

of the ingested organic matter, both dissolved and particulate, by the tested sponges (Jiménez and 

Ribes 2007).   The observed imbalance could be due to consumption of organic matter fixed by 

photosymbionts internal to sponge tissue or due to consumption of sponge associated microbes 

by the sponge animal (Jiménez and Ribes 2007 and references therein).  While both of these 

processes likely contribute minimally to the overall budget of the tested species (Jiménez and 

Ribes 2007), they are not responsible for the imbalance observed with the LMA species H. 

melanodocia and Haliclona sp., neither of which harbors significant microbial consortia or 

photosymbionts (Erwin and Thacker 2007, Gloeckner et al. 2014).  The most parsimonious 

explanation for the observed imbalance is methodological limitations.  The POM collections 

represent the ambient concentrations at the benthos of the sampled site.  Without intermediate 

sampling specific to each incubation, the rate at which the sponges consume the available POM 

is unknown.  Additionally, the seal between our incubation chambers and the plastic sheeting 

covering the benthos likely allowed some introduction of ambient water periodically throughout 

the experiment due to influent ambient water replacing collected sample volumes or due to 

displacement and subsequent replacement associated with air additions to maintain oxygen 

content.  The signal of dilution from influent ambient water is not seen in the DIN plots (Figure 
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4.3), but chamber DIN enrichment was relatively extreme, such that dilution from ambient water 

would likely be within the uncertainty of the method.  Similarly, even a small uptake of DON 

would account for this imbalance (less than 20% of ambient DON), and influent ambient water 

may have diluted the observed change in dissolved organics.  Nevertheless, the results presented 

here, utilizing a method which involves minimal disturbance of the target organism, represent 

further evidence of large DIN flux from sponge communities which are in agreement with past 

studies of sponge-recycled N (Diaz and Ward 1997, Southwell et al. 2008a,b).   

Field surveys from Peterson and co-workers (2006) showed sponges at almost 75% of the 

sites analyzed, with biomass contributions of over 1400 g sponge dry weight m
-2

; areal coverage 

of sponges was focused on the hard-bottom areas along the southern edge of the bay as well as 

the eastern and western margins.  Using our species-specific rates of DIN production and the 

surveyed biomass from Peterson et al. (2006) of the 11 incubated species, preliminary estimates 

of areal recycled N fluxes from the sponge community were calculated.  The eastern and 

southwestern margins hosted the largest values of sponge-community DIN production, as 

predicted by the aforementioned peaks in sponge population density (Peterson et al. 2006).  The 

largest calculated flux of recycled N was found at a site in the northeastern corner of the bay, and 

it represented an N source of 640 ± 140 µmol N hr
-1

 m
-2

.  This flux of remineralized N is roughly 

comparable to previous estimates of DIN contribution from the sponge community on Caribbean 

reefs (Corredor et al. 1988, Diaz and Ward 1997, Southwell et al. 2008b), and many of the 

calculated fluxes exceed other sources of remineralized N in the system (15 ± 11 µmol N hr
-1

 m
-

2
; Yarbro and Carlson 2008).  Yet, this N source had significant spatial heterogeneity and its role 

in N budgets will be highly dependent upon spatial scale variations in the sponge community, so 

this estimate should be considered preliminary and viewed cautiously.  Nevertheless, our results 
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reflect the considerable capacity for N recycling mediated by natural sponge communities in 

Florida Bay.  While the areal flux is patchy and largely dependent upon community composition 

and density, the recycled N flux associated with sponge biomass has the potential to rival all 

other sources of DIN to the shallow Florida Bay water column, and thus may provide a large 

proportion of the photosynthetic N requirement of the expansive sea grass population.  With the 

expansive coverage and large biomass, sponge populations almost assuredly serve a critical role 

in remineralizing organic matter and regenerating inorganic nutrients on a local scale in Florida 

Bay, yet species-specific biomass estimates will be required in order to determine the magnitude 

and potential ecological significance of this contribution.   
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Table 4.1: Inorganic nitrogen production rates from the sampled species, including previously 

published values.  Reported values are normalized to sponge volume and represent the mean ± 1 

SE.  Approximate sponge volumes were calculated for Corredor et al. (1988) and Diaz and Ward 

(1997) based on a volume to dry-weight ratio calculated from C. nucula individuals used in 

chamber incubations (N. Lindquist et al. unpublished). 

 

Species 

 

 

N 

 

NH4
+
 Flux 

(µmol L
-1

 sponge hr
-1

) 

 

NOx
-
 Flux 

(µmol L
-1

 sponge hr
-1

) 

 

Source 

 

Control 

 

3 

 

-0.9 ± 0.2 

 

-0.9 ± 3 

 

This study 

Haliclona sp. 3 50 ± 7 ‡ 0.3 ± 0.8 This study 

H. melanodocia 3 40 ± 10 -0.7 ± 1 This study 

Cinachyrella sp. 3 -5 ± 2 10 ± 1 This study 

S. vesparium 4 9 ± 2 ‡ -0.9 ± 0.1 This study 

I. variabilis 4 40 ± 10 10 ± 20 This study 

I. campana 5 10 ± 6 60 ± 20 ‡ This study 

I. campana  220 ± 50 90 ± 20 Southwell et al. (2008b) 

S. graminea 5 30 ± 10 30 ± 8 This study 

S. Barbara 5 4 ± 5 50 ± 4 ‡ This study 

H. lachne 5 -2 ± 1 80 ± 20 ‡ This study 

G. gibberosa 4 1 ± 1 120 ± 40 ‡ This study 

C. nucula 4 -5 ± 6 170 ± 40 ‡ This study 

C. nucula   --- 30 ± 7 Corredor et al. (1988) 

C. nucula  --- Minimum: 50 ± 10 

Maximum: 130 ± 130 

 

Diaz and Ward (1997) 

‡ Indicates calculated fluxes with both trend significance in chambered concentration over time (one way ANOVA) and  

significance of average DIN production (one-way t-test vs. 0, P ≤ 0.05).   
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Figure 4.1: Map of Florida Bay.  Squares indicate locations where chamber experiments were 

performed. 
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Figure 4.2: Schematic representation of the benthic chamber utilized for determining sponge 

DIN production in situ.  A. Oxygen optical probe with cable to surface datalogger; B. syringe 

outlet for discrete sample collection; C. enclosed sponge individual; D. polypropylene benthic 

chamber; E. SCUBA cylinder for aerating the chamber; F. Plastic sheeting for isolating sponge 

individual from the surrounding benthos.  The inlet through which the chamber was aerated 

formed a ring around the base of the chamber. 
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Figure 4.3: NH4
+
 and NOx

-
 concentrations during chamber incubations.  Values represent the 

change in concentration over chambered time, normalized to sponge volume (µmol L
-1

 Lsponge
-1

).  

A. C. nucula; B. G. gibberosa; C. S. vesparium; D. S. barbara; E. Haliclona sp.; F. H. 

melanodocia. 
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Figure 4.4: Mean volume-normalized rates of DIN production for the 11 tested species in Florida 

Bay.  Error bars represent 1 SE and asterisks (*) indicate significance for both the linear 

regression of concentration versus incubation time (ANOVA; p < 0.05) as well as for the average 

release rate of replicate individuals (one-sample t-test versus 0; p < 0.05).     
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Figure 4.5: Mean volume-normalized rates of DOC and DON production or consumption for the 

11 tested species in Florida Bay.  Error bars represent 1 SE and asterisks (*) indicate significance 

for both the linear regression of concentration versus incubation time (ANOVA; p < 0.05) as 

well as for the average release rate of replicate individuals (one-sample t-test versus 0; p < 0.05). 
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CHAPTER 5: 

Sponges Represent a Major Source of Recycled Nitrogen in Florida Bay 

 

Introduction 

 Florida Bay is an estuarine ecosystem bounded on the north by the Everglades wetlands, 

the south and east by the Florida Keys, and open to the Gulf of Mexico along the western 

boundary.  The bay is uniformly shallow (< 3 m depth) and the water column is clear and 

oligotrophic (e.g., Boyer et al. 2006).  Benthic communities are characterized by diverse sponges 

(e.g., Peterson et al. 2006), octocorals, small hard corals, seagrasses (primarily Thalassia 

testudinum, Halodule wrightii, and Syringodium filiforme; Zieman et al. 1989), and macroalgae 

(calcareous green algae, including Halimeda spp. and Penicillus spp., and red drift algae, 

predominantly Laurencia spp.; Stevely et al. 2010).  Primary productivity is dominated by 

extensive seagrass meadows, and shows a trend of increasing phosphorus (P) limitation eastward 

of the broadly marine conditions in western Florida Bay where nitrogen (N) can be limiting 

(Fourqurean et al. 1993, Lavrentyev et al. 1998).   

Bay-wide nutrient budgets constructed for this system (e.g., Rudnick et al. 1999, Boyer 

and Keller 2007) have shown that most N and P in the water column is in organic forms (Boyer 

et al. 1997, Boyer et al. 2006), and sources of these nutrients are often similarly dominated by 

organic matter (as much as 90% of influent N from the Everglades is as DON; Boyer et al. 1999, 

Childers et al. 2006).  Consequently, local recycling processes have been found to regulate the 

supply of dissolved inorganic nitrogen (DIN) in many locations (Rudnick et al. 2005, Boyer and 
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Keller 2007, Boyer et al. 2009).  Furthermore, carbonate mud banks subdivide the bay into 

discrete basins which restrict physical exchange and leads to an enhanced role of local processes 

in chemical cycles (e.g. Fourqurean et al. 1993, Yarbro and Carlson 2008, Zhang and Fischer 

2014).  The extensive seagrass beds throughout Florida Bay have been highlighted as potentially 

important sites of dissolved organic nitrogen (DON) remineralization (Yarbro and Carlson 

2008).  Sponges have also been shown to be important sources of recycled N through 

remineralization of dissolved and particulate organic matter in this and other environments (e.g., 

Corredor et al. 1988, Southwell et al. 2008b, Hoer 2015, this volume), yet the role of these 

organisms in Florida Bay N budgets has been largely unaddressed.      

 Extensive biomass surveys conducted throughout Florida Bay showed sponge 

populations at 70% of 207 sites, with densities up to 22 individuals m
-2

 (Peterson et al. 2006).  

The communities of these organisms are distributed heterogeneously throughout the bay and 

elevated sponge biomass and population densities were observed in the hardbottom habitats of 

the southern-central and western regions (Peterson et al. 2006).  These organisms have the 

potential to represent an important source of recycled N to Florida Bay, particularly considering 

the DIN release rates shown in 11 species common to this system (Hoer 2015, this volume) and 

results from locally important species in other environments (C. nucula and Ircinia sp.; Corredor 

et al. 1988, Diaz and Ward 1997, Southwell et al. 2008b).  Furthermore, using sponge biomass 

data from the surveys conducted by Peterson et al. (2006), Hoer and co-workers (2015) showed 

the potential for a recycled N flux of 15.3 ± 3.3 mmol N m
-2

 day
-1

 at a C. nucula dominated site 

in the northeastern corner of the bay.  Despite the magnitude of this source of recycled N, it may 

serve little ecological function for local primary producers in the northeastern portion of the bay 

as it is often severely P limited (Fourqurean et al. 1993, Lavrentyev et al. 1998) and this excess 
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DIN supply may serve to further exacerbate this limitation.  Consequently, we chose to test the 

hypothesized role of the sponge community in Florida Bay N cycling in a sponge-rich site in 

west central Florida Bay where the contributed DIN may buffer N limitation from influent 

marine conditions.                   

An offshore basin was selected which was thought to be analogous to important sponge-

rich sites throughout the bay as a whole.  Similar to other basins in the bay, the restricted water 

exchange at the selected site was hypothesized to allow local processes to dominate nutrient 

cycling and, coupled with abundant sponge biomass, should improve the capability to quantify 

the importance of recycled N from these organisms in the overall nutrient budget. We tested the 

role of sponges by calculating the potential DIN contribution from these organisms through 

biomass surveys and species-specific DIN release rates (Hoer 2015, this volume), and compared 

its magnitude to other sources and sinks of N in this system.  We hypothesized that the efflux of 

DIN associated with the sponge community in this system would be a dominant source of 

recycled N and would be of critical importance to meet the N demand from predominantly 

seagrass primary productivity.  Additionally, we hypothesized that the magnitude and relative 

importance of sponge efflux and other sources and sinks would vary spatially as a result of 

varying sponge biomass and sponge community composition (i.e. relative abundance of 

particular species), and these would contribute to locally visible changes in the quantity and 

speciation of water column DIN.                          

Methods 

Study area 

 The role of sponges in the N budget of Florida Bay was tested in a shallow basin (Site ID: 

Mystery Basin; 24° 56’ 36.6” N, 80° 49’ 32.8” W) located within the boundaries of the 
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Everglades National park, approximately 13 km north of Long Key, Florida.  It is in the west, 

central portion of Florida Bay (Boyer et al. 1997, Gibson et al. 2008) which tends towards 

marine conditions due to a dominant role of influent water from the Gulf of Mexico and more 

minor contribution from Everglades discharge (Fourqurean et al. 1993, Boyer et al. 1997, 

Rudnick et al. 1999).  The tested site is within ~10 km of 5 long-term (1991-2008) monitoring 

sites within the Southeast Environmental Research Center (SERC) water quality monitoring 

network (SERC-FIU WQMN Program) which provided historical nutrient data for the 

surrounding geographic area.  The central basin is characterized by a thin veneer (< 5 cm) of 

carbonate sediment overlying the Pleistocene limestone hardground and is populated by a 

population of sponges, octocorals, small hard corals, seagrasses, and macroalgae common to the 

Florida Bay ecosystem.  Based on preliminary site visits, the sponge community was roughly 

analogous to other sponge-rich sites throughout Florida Bay (Peterson et al. 2006); abundant 

sponge biomass was heterogeneously distributed on the benthos and composed of a variety of 

different sizes and species.  Mystery Basin is approximately elliptical (major axis: ~3 km, minor 

axis: ~2 km, Figure 5.1) and has  a < 2 m water column that is almost completely isolated from 

surrounding basins by seagrass-covered carbonate mud banks that shoal during low tides.  The 

bank-attenuated water exchange leads to a basin residence time between 4 and 7 days (Martens 

et al. unpublished), which is approximately similar to the residence time of Rabbit Key Basin 

located immediately to the north (Cosby et al. 2005).   

Water column DIN and TN 

Water samples were taken at a total of 34 sites in and around Mystery Basin (Figure 5.1) 

in August 2012 and May 2013 by divers on SCUBA.  At each site, a water sample was collected 

in a 60 mL polypropylene syringe and filtered in-line at the point of collection.  The filter 
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(Whatman GF/F; ~0.7 µm nominal pore size) and 10 cm of small-diameter, high-density 

polyethylene tubing were attached to one arm of a polycarbonate 3-way stopcock which was 

fitted directly to the syringe; the stopcock allowed isolation of collected water or discharge 

through the open third arm during rinsing.  The length of attached tubing helped minimize 

contamination by allowing the collecting diver to be positioned down-current from the sampled 

water. A new pre-combusted, 25 mm GF/F was used for the filtration of each water sample.  

GF/Fs were selected due to their suitability for pre-combustion and use in prior studies of 

nutrient concentrations in Florida Bay (e.g. Boyer et al. 1997, Boyer et al. 2006, Gibson et al. 

2008).  During sample collection, the syringe, filter, and tubing were rinsed 3x with filtered 

target water and the rinsing volume was discharged.  The fourth volume was slowly drawn into 

the syringe (< 2 mL sec
-1

) to ensure the collection was representative of the desired water mass, 

and the attached stopcock was closed to prevent accidental sample loss.  The sample was 

returned the surface and stored in a dark ice bath until transport to shore for subsampling and 

preservation (less than 8 hours from collection to processing or analysis).  Samples were 

immediately divided for DIN (NH4
+
 and NO2

-
+NO3

-
 (henceforth NOx

-
)) as well as total dissolved 

nitrogen (TN) analyses upon return to the laboratory.  TN samples (20 mL volume) were put in 

sample-rinsed borosilicate glass scintillation vials; 100 µL of 50% H3PO4 was added, and the 

vials were stored at 4°C until subsequent analysis; DON was determined as the TN content less 

DIN.  Nitrate and nitrite (NOx
-
) samples (20 mL volume) were placed into sample-rinsed, 

borosilicate glass scintillation vials and immediately frozen and stored at -20°C until analysis.  

Ammonium (NH4
+
) samples (20 mL volume) were placed into sample-rinsed amber HDPE 

bottles.  Ammonium samples were analyzed immediately to reduce the potential impact of 
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degradation on sample integrity.  For each location, the sampled parameters were collected in 

triplicate for quality assurance and control. 

Another site inside Mystery Basin (Site ID: CTR; 24° 56' 30.84" N, 80° 49' 58.80" W; 

Figure 5.1) was intensively sampled over a 3 day period (May 18-20, 2013).  During this time, a 

boat remained anchored at CTR, discrete water collections were performed using peristaltic 

pumps, and water column NOx
-
 was analyzed in situ, in real-time via two deployed 

Spectrophotometric Elemental Analysis System (SEASII-NOx) autoanalyzers (Steimle et al. 

2002; Adornato et al. 2005, Adornato et al. 2007 for detailed descriptions of similarly deployed 

instrumentation).  The SEASII instruments obtained time-series NOx
-
 concentrations at different 

depths, 0.1 and 1.0 m above bottom (mab), in order to compare concentrations near the benthos 

with those near the surface.  During analysis, each instrument sampled water from its respective 

depth and measured the combined concentrations of NO3
-
 and NO2

-
, or NOx

-
 ; both NO2

-
 in the 

water column and NO2
-
 produced from cadmium reduction of NO3

-
 were determined 

spectrophotometrically utilizing the Griess method (Adronato et al. 2007).  The instruments used 

15 cm optical pathlengths which increased sensitivity and reduced the method detection limit to 

25 nmol NOx
-
 L

-1
 (determined by repeated analysis of standard solutions).  Both SEASII-NOx 

autoanalyzers were calibrated prior to and following deployment and the accuracy of each 

instrument was checked daily with standards introduced in situ by divers on SCUBA.   Buffer 

solution and pre-mixed sulfanilamide/N(1-napthyl)ethylenediamine dihydrochloride reagents 

were attached to the instruments in darkened compounding bags (VitalMix 9316 and 9318) and 

these were prepared and replaced daily.   

In addition to in situ time-series data, peristaltic pumps were set up during the May 2013 

sampling mission to collect ambient water from two locations near the boat; one sample inlet 
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was positioned near the bottommost SEASII-NOx instrument which allowed discrete 

confirmation of in situ data.  Inlets were approximately 15 cm above bottom and target water 

was pumped through black HDPE tubing for shipboard collection.  Sampling was performed four 

times daily, 08:00, 12:00, 17:00, and 22:00, in order to quantify any diurnal variability in water 

quality parameters.  The pumps ran constantly to prevent stagnation in the tubing and flow rates 

were set to 20 mL min
-1

 by adjusting pump speeds at the beginning of each sampled time to 

ensure accuracy in the delivered volumes.  Samples were filtered using in-line, 47mm Whatman 

GF/Fs that were replaced and sample-rinsed prior to each collection.  Samples for DIN and TN 

were collected and stored in a dark ice bath until transport to shore for analysis or further 

preservation (less than 24 hours from collection to shore-based processing).  

Plastics which were used in sample collection and processing (peristaltic pump tubing, 

HDPE sample tubing, syringes, stopcocks, filter holders, and collection vial lids) were all were 

soaked in a 0.1 mol L
-1

 HCl bath for >12 hours and triple rinsed with 18.2 MΩ type I water prior 

to use and between each sampling.    Scintillation vials used for sample collection were acid 

washed and combusted at 450°C for >6 hours to remove any residual organic matter.  

Combusted glassware was stored wrapped in foil and bagged to minimize contamination prior to 

use.  Filters were combusted at 450°C for >6 hrs and stored in combusted foil.  Amber HDPE 

sample bottles used for ammonium samples were acid washed and rinsed following the 

aforementioned protocol.  Following the wash procedure, small aliquots of o-phthaladehyde 

working reagent were added to the bottles and allowed to react for 24 hours so as to ensure 

removal of any residual ammonium from the container.  Prior to their use, the pre-treatment 

solution was rinsed away by triple rinsing with 18.2 MΩ type I water to ensure no residual 

reagent remained prior to sample or standard addition.   
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Sample Analysis 

Ammonium analyses were performed using the method of Holmes et al. (1999).  

Sampled volumes were reacted with 5mL of o-phthaladehyde working reagent in amber, HDPE 

sample bottles and allowed to develop at room temperature for 2.5 hours.  After the incubation 

period, samples were analyzed using a Turner Designs TD-700 laboratory fluorometer equipped 

with an ammonium optical kit (Turner Designs 10-303).  The method detection limit was 

determined to be 10 nmol L
-1

 by repeated standard measurements.  Standards were prepared 

daily at the point of use by serial dilution of a purchased stock solution (Ricca Chemical 

Company 693-16), and analyzed with the prepared samples.  Nitrate plus nitrite (NOx
-
) discrete 

samples were analyzed using SEASII-NOx autoanalyzers configured for bench-top use.  As with 

in situ analyses, NOx
-
 was measured using 15 cm pathlengths and cadmium reduction of NO3

-
 to 

NO2
-
 followed by detection based on the Griess reaction.  Standards for benchtop and in situ 

NOx
-
 measurements were prepared by dilution of a purchased stock (SPEX Certiprep AS-NO39-

2Y and ASNO29-2Y), and analyzed daily with collected samples.  TN samples were analyzed 

with a Shimadzu TOC-L/TNM-L organic carbon and total nitrogen analyzer, which employs 

high temperature catalytic oxidation (HTCO) for analysis of aqueous organic matter.  Calibration 

curves were prepared from lab prepared stock solutions and were closely monitored during 

analysis.  Standards were remade and rerun if the correlation coefficient was found to be less 

than 0.995, and standards were interspersed within samples to provide additional quality control.   

Survey methodology 

 Sponge habitat in Mystery Basin was divided into two types, hardbottom and seagrass, 

and the areal extent of both was identified and quantified using satellite images from ArcMap 

(ESRI; Figure 5.1).  Brief field surveys of points along established boundaries were subsequently 
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conducted to confirm their accuracy.  Following field confirmation, a geo-referenced computer 

generated grid of approximately 400, 100m x 100m squares was overlaid on the image of 

Mystery Basin and 59 sites were selected, randomly stratified by habitat type (39 hardbottom, 20 

seagrass).  The geographic coordinates of each site were defined as the centroid of the selected 

square.  The surveys were completed from July 13, 2012 through August 20, 2013.  Due to the 

observed spatial heterogeneity and variable organism size, a combination of sampling methods 

(belt transects and quadrats) was used to efficiently and accurately quantify the benthic 

community.  At each chosen site, three 25m x 2m non-overlapping transects were established 

randomly by divers using SCUBA.  For each transect divers identified, counted, and measured 

the dimensions (length (L), width (W), and height (H)) of all sponge biomass that was greater 

than 10 cm in its largest dimension.  Sponges smaller than 10 cm were identified, counted, and 

measured within four 1 m
2 

quadrats equidistantly spaced along the length of the transect.   

Sponge identifications were performed to the lowest taxonomic level possible and those which 

could not be identified in the field were photographed and collected for later identification in the 

lab.  In each quadrat, seagrass and macroalgal distribution was also quantified using the Braun-

Blanquet cover assessment method (Braun-Blanquet 1972).  A score (0-6) was assigned to each 

species occurring within the quadrat based on its spatial coverage (Braun-Blanquet 1972, 

Fourqurean et al. 2001).    

 Species-specific, volumetric biomass was first estimated using morphometric 

measurements collected during field surveys and roughly approximating their geometry as a 

rectangular prism (V = L x W x H).  This estimate was subsequently converted to a more 

accurate, displacement-based volume using direct measurements; a subset of the surveyed taxa 

was chosen for volume determination based on abundance, hypothesized ecological importance, 
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or geometric complexity.  Harvested individuals representative of the chosen taxa were placed in 

a water-filled container (19 L or 95 L, depending on sponge dimensions) and displacement was 

measured to the nearest milliliter.  This process was replicated for 10 to 30 individuals to ensure 

a robust quantification and to characterize the spectrum of organism sizes observed in Mystery 

Basin.  A regression was fit to the data using calculated volume (L x W x H) as the independent 

variable and measured displacement as the dependent variable.  This process allowed more 

accurate species-specific biomass quantifications to be determined with the morphometric 

measurements obtained from field surveys.  Regressions were typically linear, yet non-linear fits 

were also tested for improvement in the modeled trend.  Those species that were not harvested 

for displacement were approximated using the most morphologically similar taxa for which a 

regression was derived.                  

N sourcing to Mystery Basin 

The N contribution from the sponge community was calculated using surveyed sponge 

biomass and species-specific estimates of DIN release rate from 11 sponge species from Florida 

Bay (Hoer 2015, this volume).  The areal flux of recycled N from each species (jsponge; mmol N 

m
-2

 day
-1

) was calculated as: 

jsponge =  
(Vsponge × Nsponge)

A
 

Where Vsponge is the total surveyed volume of a sponge species in liters (Lsponge), Nsponge is the 

calculated DIN release rate for that species (µmol N day
-1

 Lsponge
-1

; Hoer 2015, this volume), and 

A is the total area of Mystery Basin (both habitat types; m
2
).  The sum of the fluxes from all 

species in the sponge population was expanded to A to determine the total N flux to Mystery 

Basin (mol N day
-1

).  Quantitative estimates of other important fluxes of N to and from the 
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system (sediment-water exchange, rainfall, Everglades discharge, groundwater flux, N2 fixation, 

and denitrification) were obtained through a review of published information on this region.  

 N demand from primary productivity 

The demand from seagrasses represents the majority of photosynthetic N uptake in 

Florida Bay (Zieman et al. 1989, Fourqurean and Robblee 1999).  Thalassia testudinum 

dominated seagreass populations on the western margin of the bay, representing approximately 

90% of total biomass, with Halodule wrightii and Syringodium filiforme representing the 

remaining 10% (Zieman et al. 1989, Fourqurean and Robblee 1999).   Thick seagrass meadows 

in this region drive primary productivity at a rate of approximately 2.3 g dry weight m
-2

 day
-1

 for 

Thalassia alone (Zieman et al. 1989), and this value was used to approximate benthic 

productivity for this species along the seagrass-covered shoals of Mystery Basin.  With this rate 

assigned to Thalassia, the contributions of each of the other important species (Halodule and 

Syringodium) to overall seagrass biomass were obtained from the Braun-Blanquet rapid 

assessments performed during the sponge biomass surveys and these proportions were used to 

calculate primary productivity relative to Thalassia.  Species-specific C:N ratios (Fourqurean et 

al. 1992, Sprigger Bank, FCE LTER Data, J. Fourqurean 2011) were used in conjunction with 

the calculated productivity to obtain a photosynthetic N demand that was appropriately weighted 

for the local seagrass community.     

Florida Bay is widely considered an oligotrophic system (Fourqurean et al. 1993, Boyer 

et al. 2006) and phytoplankton primary productivity in this environment is approximately 

equivalent to that found in the open ocean (J. Boyer, personal communication).  Therefore, net 

primary productivity values (mg C m
-3

 day
-1

) from the surface (1 to 5 m depth) and 20 m stations 

of the Bermuda Atlantic Time-Series were averaged from 1989 to 2011 (bats_production.dat; 
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batsftp.bios.edu).  BATS was selected as it provided a long time record of primary productivity 

data in the surface ocean that agreed with modeled and experimental results offshore of the 

Florida Keys (Yoder et al. 1983, Hofmann and Ambler 1988, Fiechter and Mooers 2007).  The 

resultant average productivity was multiplied by the mean water depth in Mystery Basin (1.5 m; 

Martens et al. unpublished data), and then converted to N demand using Redfield stoichiometry 

(C/N ~ 6.6; Redfield 1958). 

In order to analyze the local importance of various fluxes in the N budget of this basin, a 

simple model was constructed and evaluated at each surveyed site: 

Nflux = jsponge + jnew + jsed + (jsg x BBCA) - (jwcpp + jdenitrification + (jsgpp x BBCA) 

where the flux at a given location (Nflux; mmol N m
-2

 day
-1

) is equal to the sum of the sources of 

N (sponges (jsponge), “new” N (e.g. rainfall, Everglades, N2 fixation; jnew), sediment-water 

exchange (jsed), and flux from seagrass sediments (jsg)) minus the N demand from removal 

processes (water column primary productivity (jwcpp), denitrification (jdenitrification), and seagrass 

primary productivity (jsgpp)).  Both seagrass related fluxes (jsg and jsgpp) were scaled to local cover 

in order to reflect an enhanced importance of these processes in more seagrass-rich habitats.  

This calculation was performed with a factor derived from the Braun-Blanquet density (BBCA) 

that was proportional to surveyed seagrass cover; densities (Di; Fourqurean et al. 2001) between 

0 and 0.1 were assigned a BBCA value of 0 (~0% cover), 0.1 < Di ≤ 1 was assigned a value of 

0.05 (~5% cover), 1 < Di ≤ 2 was assigned a value of 0.25 (~25% cover), 2 < Di ≤ 3 was 

assigned a value of 0.5 (~50% cover), 3 < Di ≤ 4 was assigned a value of 0.75 (~75% cover), and 

Di > 4 was assigned a value of 1 (~100% cover).   
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Results 

Water column DIN and TN 

 The water quality survey of Mystery Basin yielded a range of DIN values across varying 

benthic environments (Figure 5.1; Table 5.1).  Total DIN (NH4
+
 + NOx

-
) concentrations outside 

the boundaries of Mystery Basin (HF8-14; 2.0 ± 0.9 µmol N L
-1

; mean ± 1SD; N = 7 sites) were 

on average the same as concentrations inside the basin for all collected sites and times (2.0 ± 1.3 

µmol N L
-1

; mean ± 1SD; N = 28 sites), yet the collected samples exhibited a high degree of 

spatial and temporal variability.  Samples collected at hardbottom sites had higher concentrations 

of all DIN species (NH4
+
, NOx

-
, and total DIN) than those collected over seagrasses (unpaired t-

test; p < 0.02), and the observed DIN concentrations were significantly elevated in May 2013 

relative to observations in August 2012 (3.6 ± 1.5 and 1.5 ± 0.5 µmol N L
-1 

for 2013 and 2012, 

respectively; mean ± 1SD; unpaired t-test; p < 0.01).  NH4
+
 was the dominant species of DIN 

found at all sampled locations, both inside and outside Mystery Basin (Inside: N = 28 paired 

collections; Wilcoxon signed rank test; p < 0.001; Outside: N = 7 paired collections; Wilcoxon 

signed rank test; p < 0.01).   

The SEASII-NOx instruments deployed at CTR yielded a 24 hour time-series of NOx
-
 

from May 19 to 20 that comprised a total of ~13000 individual concentration measurements 

showing high NOx
-
 concentrations inside the basin (Figure 5.2).  Inconsistent power delivery 

corrupted the first 24 hours of the deployment but these problems were solved by the morning of 

May 19 and the instruments ran virtually uninterrupted until extraction on May 20.  The average 

concentration at 0.1 mab was 3.8 ± 0.7 µmol NOx
-
 L

-1
 and 3.0 ± 0.5 µmol NOx

-
 L

-1 
at 1.0 mab 

(mean ± 1SD).  These time-series measurements were in agreement with discrete water 
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collections performed during the same time period (Figure 5.2) and the overall average from 

discrete NOx
-
 collections at CTR (2.6 ± 0.9 µmol NOx

-
 L

-1
; mean ± 1SD; N = 16; Table 5.1).   

The water quality survey in May 2013 generated a profile across the center of the basin 

connecting the presumed influent and effluent points (water mass flow in this area moves 

roughly N to S; Cosby et al. 2005, Martens et al. unpublished data).   The transect, from HF10 to 

HF7 (Figure 5.3), showed low DIN water at HF10 and HF14 near the entry into Mystery Basin 

from Rabbit Key Basin to the north-northwest (Total DIN: 0.93 ± 0.04 and 1.8 ± 0.2 µmol N L
-1

 

for HF10 and HF14, respectively), DIN content increased upon entering Mystery Basin at HF5 

(2.5 ± 0.1 µmol N L
-1

), further increasing DIN content in central Mystery Basin near HF1 and 

CTR (5.5 ± 0.1 and 5.0 ± 1.7 µmol N L
-1

 for HF1 and CTR, respectively), and low DIN water at 

HF4 and HF7 on the south-southeast shoal (1.7 ± 0.2 and 2.2 ± 0.2 µmol N L
-1

 for HF4 and HF7, 

respectively; Figure 5.3).  Site HF10 was located inside Rabbit Key Basin and its water column 

DIN concentration was not significantly different than that observed in Rabbit Key Basin over 

the historical duration of SERC sampling in this location (SERC Site ID: 18; unpaired t-test; p > 

0.5).  Conversely, the average water column DIN concentration observed inside Mystery Basin 

(all sites inside the basin; August 2012 and May 2013 collections) was significantly higher than 

the average DIN concentration observed in Rabbit Key Basin (unpaired t-test; p < 0.01) as well 

as 2 other nearby SERC sites over their sampled duration (Site IDs: 27 and 28; Sprigger Bank 

and Old Dan Bank; unpaired t-test; p < 0.05).       

Total nitrogen concentrations were only measured during the May 2013 sample 

collections and ranged from 56 ± 10 µmol N L
-1

 inside Mystery Basin (HF1-6 and CTR) to 45 ± 

2 µmol N L
-1

 outside (HF8-14; mean ± 1SD), excluding two sites that were determined to be 

outliers (HF7 and HF10; 250 ± 80 and 210 ± 60 µmol N L
-1

, respectively; mean ± 1SE).  DON 
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represented the majority of available N in all sampled locations, but the calculated DON 

concentration did not differ between sites inside and sites outside the basin (unpaired t-test; p > 

0.05).  Inorganic N represented a larger proportion of TN inside the basin as compared to outside 

(8.3 ± 2.2% inside and 5.0 ± 1.8% outside; mean ± 1SD; N = 21 and 6; unpaired t-test; p < 

0.005).       

Sponge survey 

 Sponges were found at 57 of the 60 surveyed sites across Mystery Basin and appeared to 

be the dominant heterotrophic biomass among the surveyed benthos.  Population densities 

ranged from 0.08 to 21 individuals m
-2

 with biomass (volumetric displacement; Lsponge) 

averaging 0.70 ± 0.13 Lsponge m
-2

, and as high as 4.4 Lsponge m
-2 

(Figure 5.4, Table 5.2).  The 

observed sponge density at the surveyed sites agreed with previous bay-wide quantifications 

(Peterson et al. 2006) and provided confirmation of the assumption that the tested site is 

representative of sponge-rich sites throughout the bay.  The total sponge biomass for each survey 

technique (transects and quadrats) was determined for each species in Mystery Basin by taking 

the average of the surveyed displacement (Lsponge m
-2

) across both surveyed strata and assessing 

that value across the areal extent both habitats (Ahardbottom + Aseagrass; m
2
).  The total biomass for 

each species was represented by weighted mean of the surveyed results from quadrats and 

transects which were evaluated separately (e.g., S. vesparium biomass (10
6
 Lsponge) was found to 

be 2.0 ± 0.42, 0.034 ± 0.007, and 1.9 ± 0.38 for the quadrats, transects, and the weighted mean, 

respectively; mean ± 1SE; Table 5.2).  When calculating the weighted mean, the biomass from 

each survey technique was weighted based upon the area surveyed using that methodology (12 

m
2
 for quadrats and 150 m

2
 for transects at each assessed location); the error of the weighted 

mean was calculated by the method of Baker and Nissim (1963).  The error in all measures 
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(transects, quadrats, and weighted mean) was extrapolated to the scale of the basin using the 

method of C. Krebs (1999).  The transect data was not included in the weighted mean for small 

species which never satisfied the criteria for detection via this methodology (>10 cm in the 

largest dimension; Cinachyrella sp., C. nucula, A. viridis, Hyritios sp., and Clione sp.).  

Conversely, the weighted mean calculated for the species detected in belt transects reflects both 

utilized survey methodologies (Table 5.2); at some point during their lifetime these organisms 

would be small enough to be counted in quadrats and therefore using this method did not 

preclude their detection and these were included in the corresponding weighted mean.  The 

sponge population was diverse and included contributions from 23 identifiable species; 

approximately 1% of the surveyed biomass was not readily identifiable during field surveys.  

The observed sponge community was primarily composed of 6 species: Sphesiospongia 

vesparium, Ircinia variabilis, Geodia gibberosa, Cinachyrella sp., Haliclona magnifica, and 

Halichondria melanodocia (Table 5.2).  These represented roughly 97% of surveyed biomass, 

with S. vesparium, I. variabilis, and G. gibberosa making up approximately 94% of the total 

(Table 5.2).  Sponges were found to be heterogeneously distributed across the tested site; 

hardbottom habitats, particularly those in the eastern half of Mystery Basin exhibited the largest 

sponge biomass, and minimal sponge contributions were observed from seagrass sites (Figure 

5.4).  

 The results of the Braun-Blanquet cover assessment (BBCA) were used to calculate 

species density (D) for surveyed seagrass biomass following the method of Fourqurean and co-

workers (2001).  Seagrass was found at 55 of the 59 surveyed sites (D ≥ 0.1; Fourqurean et al. 

2001); Thalassia testudinum was encountered at all sites where seagrass was found.  The other 

two observed species, Halodule wrightii and Syringodium filiforme, were found at 66% and 14% 
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of the surveyed sites, respectively, and typically exhibited much lower densities than Thalassia.  

A fourth species, Halophila engelmanni, was observed in a single quadrat, yet exhibited a 

density less than the threshold assigned for determining the presence/absence of seagrass (D ≥ 

0.1; Fourqurean et al. 2001).  The density of Thalassia encountered during surveys was greater 

than that of both Halodule and Syringodium combined, with the exception of a single site on the 

southwest shoal where Halodule was dominant.  At the 20 sites in defined seagrass habitats 

cumulative density was 75-100% cover (D > 4); Thalassia composed approximately 81% of this 

cumulative cover and Halodule and Syringodium contributed 17% and 2%, respectively.  These 

relative abundances were used to calculate seagrass N demand. 

 Macroalgae was also found to be abundant throughout Mystery Basin, particularly in 

hardbottom sites where it often comprised the majority of surveyed macrophyte biomass.  The 

observed macroalgae was dominated by red drift algae, predominantly Laurencia sp., with more 

minor contributions from calcareous green algae (Halimeda sp. and Penicillus sp.).  Densities 

(Di) were calculated for macroalgae in order to compare with seagrasses.  At 27 of the 59 

surveyed sites, the sum of macroalgal species densities (ΣDmacroalgae) was greater than the sum of 

seagrass densities (ΣDseagrass), and all of these sites were located in hardbottom habitats.  Of these 

27, 23 were dominated by red drift algae and the remaining 4 by calcareous green algae.  Further, 

at most of these sites (23 of 27), the dominant type of algae (red drift, calcareous green) 

represented more than 50% of the total observed algae; at all sites, the dominant organism 

represented >40% of the total.  Sites dominated by red drift algae demonstrated greater areal 

coverage (25-75% of quadrat area) than sites dominated by calcareous green algae (≤ 5%, one 

site showed ~25% coverage), yet due to the ephemeral biomass contribution resultant from the 

mobility of red drift algae, these quantifications are subject to considerable uncertainty.                       
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N budget for Mystery Basin 

 The available, species-specific DIN release rates represented approximately 97% of the 

surveyed biomass in Mystery Basin (Hoer 2015, this volume); those species without 

quantifications of DIN release were excluded from the N budget.  The areal flux of N from the 

sponge community was 0.59 ± 0.28 mmol N m
-2

 day
-1

 (mean ± 1SE; Section I, Table 5.3; Figure 

5.5), which was assessed over the area of all habitat types (A) yielding a total N contribution 

from the sponge community of 2900 ± 1400 mol N day
-1

 (mean ± 1SE; Section I, Table 5.4).  

The magnitude and speciation of the recycled N flux from the sponge community was spatially 

heterogeneous and largely dependent upon the quantity of sponge biomass and community 

composition (Figure 5.6).      

The N flux from sediment-water exchange in seagrass beds (0.36 ± 0.27 mmol N m
-2

 day
-

1
; Table 5.3; Yarbro and Carlson 2008) was applied exclusively to the seagrass environments, 

and the flux from “bare” sediments (0.04 ± 0.01 mmol N m
-2

 day
-1

; Table 5.3; Capone et al. 

1992) was applied to the hardbottom habitats (Section I, Table 5.4).  The remaining quantified N 

sources (Section II, Table 5.3) were applied to the full areal extent of Mystery Basin to obtain the 

estimated N loading for each of these processes (summarized in Section II, Table 5.4).  Benthic 

denitrification was thought to roughly balance with N2 fixation in Florida Bay (Kemp and 

Cornwell 2001), and this assumption was applied to our tested site and presented budget.  This 

generalized pattern was not directly quantified for Mystery Basin and is subject to considerable 

spatial and temporal variability (Kemp and Cornwell 2001; Boyer and Keller 2007), and 

therefore represents a slight uncertainty in the budget.        

The areal estimates of N demand from seagrasses was expanded to the area of seagrass 

habitats whereas N demand from water column primary productivity was expanded to the full 
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area of Mystery Basin (Section III, Table 5.4).  The total calculated N demand from primary 

productivity is approximately 4.2 ± 0.4 mmol N m
-2

 day
-1

 (Section III, Table 5.3); most of the N 

demand associated with primary productivity is from seagrasses (4.1 ± 0.4 mmol N m
-2

 day
-1

) 

and a minor contribution from phytoplankton (0.1 ± 0.07 mmol N m
-2

 day
-1

; Section III, Table 

5.3).  The approximate N demand for primary productivity agrees with remote sensing 

measurements in the dense seagrasses on the Grand Bahama Banks (3.5 ± 1.3 mmol N m
-2

 day
-1

; 

mean ± 1 SE; Dierssen et al. 2010) and macrophyte-dominated systems (5 ± 2 mmol N m
-2

 day
-1

; 

mean ± 1 SE; reviewed by Gattuso et al. 1998).  The surveyed ecosystems of Gattuso et al. 

(1998) span a broad geographic range from the Chesapeake Bay (USA) to tropical reefs in the 

Pacific Ocean, and due to its more panoptic view of N demand from benthic primary 

productivity it may not be as representative of the conditions in Florida Bay. Estimates of N 

demand from primary productivity do not include a contribution from the surveyed macroalgae, 

and therefore represent an underestimation of this N uptake, particularly in hardbottom habitats.     

The spatial variability in the constructed N budget (Figure 5.7) shows the local 

importance of N demand along the shoaling, seagrass beds and dominant DIN sourcing 

throughout the central hardbottom habitat.  The modeled N fluxes ranged from net uptake of 3.4 

± 0.4 mmol m
-2

 day
-1

 (mean ± 1SD) in dense seagrass with minimal sponge coverage to net 

sources of 3.0 ± 1.0 mmol m
-2

 day
-1

 (mean ± 1SD) in sponge-rich hardbottom sites where 

demand from photosynthesis was minimal.           

Discussion  

 Our results showed that the collective efflux from the sponge community is the largest of 

the estimated sources of N in Mystery Basin (Tables 5.3 and 5.4).  Sponge recycled N 

represented 45 ± 24 % of the N sources to the tested site or roughly half of the calculated 
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demand from primary productivity (Table 5.4).  Localized, site-specific quantifications of sponge 

community flux were the largest source of N at 60% of the surveyed locations within the basin.  

The calculated, average flux from the sponge community in Mystery Basin (0.59 ± 0.28 mmol N 

m
-2

 day
-1

; Table 5.3) should be considered a minimum estimate; N release rates were not known 

for 3% of the surveyed population, and the sponge communities living on the shallow shoals 

bordering the tested site were potentially underestimated during biomass surveys.  These 

seagrass-covered banks frequently harbored large populations of C. nucula, a species that is 

often found growing attached to seagrass blades (e.g. Corredor et al. 1988, Diaz and Ward 1997, 

Stevely et al. 2010).  Despite direct observations of these populations, the shoaling habitats were 

exceedingly difficult to survey quantitatively as there is only a thin layer of water overlying the 

top of the grasses (<0.2 m water depth).  The inability to accurately quantify this C. nucula 

population likely led to an underestimation of community DIN flux given the large nitrification 

rate observed in this species (Corredor et al. 1988, Diaz and Ward 1997, Hoer 2015, this 

volume).   

Nevertheless, these results support the conclusions of previous work in other 

environments which showed the potential for the sponge community to supply a large proportion 

of water column DIN, particularly near the benthos (e.g., Corredor et al. 1988, Southwell et al. 

2008; Keesing et al. 2013).  The calculated flux is of similar magnitude as that observed on the 

western coast of Australia (0.35 to 0.63 mmol m
-2

 day
-1

; Keesing et al. 2013), but is lower than 

the average flux from other selected communities in the Caribbean and Mediterranean (e.g. 

Corredor et al. 1988, Jiménez and Ribes 2007, Southwell et al. 2008).  The differences between 

the average areal fluxes observed for this and other systems are most likely due to varying 

sponge community density and its species composition.  With the exception of a single site, all 
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sites surveyed in Mystery Basin exhibited smaller sponge biomass than that found during a 

survey of Conch Reef in the Florida Keys performed by Southwell and co-workers (2008), and 

the average benthic sponge cover in Mystery Basin was much lower than the 7-20% areal 

coverage observed in other environments (Corredor et al. 1988, Jiménez and Ribes 2007).  

However, Mystery Basin represents a larger area than previously tested sites, and the average 

sponge community flux does not accurately represent the range of values found, rather the 

calculated flux was heterogeneously distributed throughout our tested site.  Localized peaks in 

DIN efflux (~3.5 ± 0.9 mmol N m
-2

 day
-1

; Figure 5.6) were of the same magnitude as values 

calculated from lower biomass densities found at sites in the Caribbean and Mediterranean (0.12 

to 1.5 mmol N m
-2

 day
-1

, Diaz and Ward 1997; ~2.5 mmol N m
-2

 day
-1

, Jiménez and Ribes 

2007).   

Furthermore, the observed peaks in sponge community DIN efflux in this environment 

often did not collocate with sponge biomass maxima (Figures 5.4 and 5.6) due to variable 

community composition and the correspondingly variable rates of DIN production dependent on 

the constituent species.   Locally elevated sponge biomass in Mystery Basin was often 

characterized by dominant populations of S. vesparium, which contributed very little DIN per 

unit of sponge biomass, and peaks in DIN flux were associated with large G. gibberosa 

populations, which exhibit a high rate of DIN production as NOx
-
 (Hoer 2015, this volume).  

Similarly, the sponge communities tested in previous work were dominated by large populations 

of species that produced large quantities of DIN per unit biomass (Xestospongia muta, Southwell 

et al. 2008; C. nucula, Corredor et al. 1988, Diaz and Ward 1997).  Assuming G. gibberosa 

populations in Mystery Basin approached the density of X. muta on Conch Reef (2.3 Lsponge m
-2

; 

Southwell et al. 2008), the N flux from this species alone (6.6 ± 2.2 mmol N m
-2

 day
-1

) would 
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represent nearly double the maximum N sourced from native sponge assemblages observed in 

our tested site and would approach the magnitude of estimates by Diaz and Ward (1997) and 

Jiménez and Ribes (2007).  While the constituent species in Florida Bay have the capacity to 

generate benthic fluxes on the scale of that in other environments, the role of these organisms in 

the broader Florida Bay ecosystem will be locally variable based upon community size as well as 

species composition.  Quantifying their impact on the N cycle will necessitate high spatial 

resolution in sponge biomass quantifications.  

We hypothesized that sponge recycled N led to locally elevated DIN concentrations 

which were observed during water quality surveys within Mystery Basin, and we contend that 

the impact of sponge N recycling was amplified as a result of the shallow water column and 

bank-attenuated physical exchange with surrounding water masses.  The hypothesized local 

impacts of the sponge population were particularly pronounced in May 2013 samples transecting 

Mystery Basin along the approximate trajectory of advective transport from HF10 to HF7 

(Figure 5.3).  These transecting points also reflect the predicted local importance of modeled N 

sources and sinks to overall water column DIN (Figure 5.7).  Specifically, the largest quantified 

flux of N to the system is from sponge-mediated organic matter remineralization which is 

greatest in the central basin (Figure 5.7); corresponding samples exhibited elevated DIN 

concentrations (HF1, HF2, HF3, CTR; Figure 5.3).  By contrast, locations where N demand from 

primary productivity is expected to be great (shoaling seagrass habitats; Figure 5.7) showed low 

water column DIN concentrations (HF10, HF14, HF4, HF4; Figure 5.3).  When physical mixing 

and exchange with surrounding basins is expected to be at a minimum, it is possible that the 

nutrient demand at these shoaling locations may be partially satisfied by pulsed input of DIN-
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enriched water from seiching of the basin water volume in response to tidal or wind-driven 

mixing.    

Significant seasonality was observed in water column DIN at the tested site.  Sites 

sampled in August 2012 had markedly lower concentrations than similar sites sampled in May 

2013.  Temporal variability in water column DIN was previously observed at a broader scale in 

Florida Bay (e.g., Boyer et al. 1999) with DIN concentration peaks occurring during the winter 

dry season in the western and central regions.  The May samples represent the end of the dry 

season (November through May) and August nears the middle of the rainy season (June through 

October).  Conditions during the dry season would be expected to increase water retention within 

the basin environments of Florida Bay due to reduced advective mixing, whereas the rainy 

season would be expected to accelerate flushing (Cosby et al. 2005, Shank et al. 2011).  

Furthermore, the August 2012 rainy season may have created anomalously high flow due to the 

recent completion and testing of the C-111 spreader (completed Spring 2012; US Army Corps of 

Engineers; UNESCO 2013).  The C-111 spreader is part of the broader Everglades restoration 

plan and is designed to increase freshwater delivery to Taylor Slough.  It is possible that the 

restored flow to Taylor Slough and elevated precipitation during the rainy season further 

enhanced freshwater delivery to the Everglades as compared to that prior to the completed 

project, which may elevate the wet/dry seasonality of processes in Florida Bay.  Further 

seasonality could be resultant from seasonal shifts in wind direction and speed (Phlips et al. 

1999), where windier periods would contribute to enhanced water column mixing or could 

introduce water from surrounding environments.  The wind speed and direction near Mystery 

Basin (NOAA National Data Buoy Center; Site ID: LONF1) during May 2013 and August 2012 
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sample collections were not significantly different, and that may indicate a reduced role of wind 

in generating the observed seasonality.     

The shoal-damped exchange in this system yielded moderate water retention relative to 

other basins in Florida Bay (Cosby et al. 2005); modeled advective flux based on May 2013 data 

yielded a residence time (τadvection) between 4 and 7 days for this site (C. Martens et al. 

unpublished data).  Conversely, species-specific sponge pumping rates conservatively produced 

a system filtration time (the time for the water volume to be filtered by the sponge community; 

τsponge) of 8 hrs (N. Lindquist et al. unpublished data).  With these respective residence times, the 

same modeled parcel of water would be expected to be filtered over a dozen times by the sponge 

population while within Mystery Basin.  This filtering and the associated heterotrophic processes 

mediated by the sponge would be minimally expected to exert significant grazing pressure on 

overlying water (Peterson et al. 2006).  We contend that this rapid water column overturn by 

sponges in conjunction with a slowly exchanging water column with surrounding environments 

would produce locally detectable changes in water quality based on quantified N sourcing 

resultant from sponge-mediated chemical transformations.  If water residence time in Mystery 

Basin was elevated due to the dry season conditions, the locally elevated concentrations observed 

in May 2013 lend support the hypothesis that elevated water residence time can lead to enhanced 

DIN contribution from the sponge community.  Conversely, the lower DIN concentrations 

observed during the rainy season (August 2012) could be illustrative of decreased water retention 

in the basin as a consequence of more rapid flushing or enhanced mixing with surrounding water 

masses.  Enhanced flushing could simultaneously lower water residence time in Mystery Basin 

as well as increase physical delivery of water to seagrass-covered shoals, which dominate local 

N demand, thereby further depleting water column DIN.  The impact of this posited, enhanced 
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delivery of water to the shoals would be amplified during this time as seagrass primary 

productivity in Florida Bay is at a maximum in July and August (Fourqurean et al. 2001), and 

corresponding N demand would be expected to peak contemporaneously.  Therefore, we 

hypothesize that May 2013 represents conditions that approximate the peak DIN concentrations 

in the basin, and therefore enhanced the visibility of the impact from local processes, whereas 

samples from August 2012 represent a local concentration minima reflecting enhanced mixing 

and diminished visibility of local impacts.                                   

The speciation of water column DIN did not directly correlate with that predicted for  

effluent N from the sponge community at the points of collection (e.g., Figure 5.7), yet an 

increasing contribution from NOx
-
 to total DIN was observed at sites within Mystery Basin 

(Figure 5.3).  Reduced N has been shown to characterize the majority of water column DIN in 

the wider Florida Bay (e.g., Lavrentyev et al. 1998, Boyer et al. 1999, Gardner et al. 2009), and 

continuation of this trend at sites in Mystery Basin is not unexpected given that the quantified N 

sources to this environment were presumed to be largely as NH4
+
 (roughly 60% of total N input 

is as NH4
+
).  Yet by contrast, 60% of DIN from the sponge community is thought to be exuded 

as NOx
-
 (Figure 5.5) and this enhanced delivery of oxidized N may contribute to the observed 

difference between the tested basin and the surrounding water masses.  Nevertheless, the 

hypothesized local impact of sponge efflux on the speciation of water column DIN was not 

directly observed.  None of the collected samples directly co-located with a presumed peak in 

sponge NOx
-
 or NH4

+
 efflux, and substantial dilution or chemical transformations likely occurred 

between the point of release from the organism and sample collection. Furthermore, it is possible 

that the observed spatial variability in sponge community flux may contribute to local hotspots 

for other N transformations in the water column and surrounding sediments, particularly those 
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which may be accelerated in the presence of elevated DIN concentrations (nitrification, 

dissimilatory nitrate reduction to ammonium, denitrification).  These additional chemical 

processes would further complicate efforts to attribute water column DIN speciation to the 

sponge community at a given location.   

The recycled N from the sponge community represents an ecologically relevant source of 

DIN in this environment, given that it is an important N recycling pathway for the conversion of 

organic nutrients to more bioavailable inorganic forms.  Most of the N in and around Mystery 

Basin is in organic form, similar to the wider Florida Bay ecosystem (Boyer et al. 1997), yet 

within the tested basin, DIN comprises a larger fraction of water column TN (8.3% inside as 

compared to 5.0% outside) potentially due to sponge remineralization processes.  Further, this 

input of recycled N from sponges may be of particular importance at sites along the western 

margin of Florida Bay which experience levels of N limitation as compared to the majority of the 

bay where primary productivity is P limited (Fourqurean et al. 1993, Lavrentyev et al. 1998).  

The presence of a semi-diurnal tidal signal in Mystery Basin (approximately 0.2 m range; 

Martens et al. unpublished data) which occurred in phase with a nearby coastal gauge (NOAA 

tide gauge Vaca Key, FL; ID: 8723970) provided an indication of oceanic influence and 

potential P input; influx along the margin with the Gulf of Mexico is presumed to be among the 

largest sources of P to Florida Bay (Rudnick et al. 1999, Fourqurean and Robblee 1999 and 

citations within).  Yet, without direct assessments of P in Mystery Basin, the role of DIN from 

the sponge community in altering the local stoichiometric ratios of nutrient elements remains 

purely conjectural.   

The calculated budget represents best estimates of a variety of contributing processes 

occurring simultaneously, and provides a means to comparatively analyze the potential 
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importance of a newly quantified flux of recycled N.  With the addition of sponge recycled N, 

the calculated budget shows approximate balance within the uncertainty of the quantified sources 

and sinks to Mystery Basin (Table 5.4), but this balance should be viewed cautiously due to 

unknown local applicability of the various estimates of nutrient input.  The flux of N from 

groundwater discharge utilized in the budget (Table 5.3) was based upon an average seepage 

rates for basins in the middle of FL Bay and interstitial DIN concentrations from eastern sites 

near the Florida Keys (Corbett et al. 1999).  We consider this rate of seepage plausible for 

Mystery Basin as similar rates have been observed directly north in Rabbit Key Basin (Corbett et 

al. 2000), but the N content of the seeped groundwater in this area is unknown and potentially 

lower than is found nearer to the Florida Keys island chain.  Nevertheless, the recycled N input 

from sponge flux conservatively generates twice the DIN input that is associated with the 

theoretical maximum “new” input from groundwater discharge (Tables 5.3 and 5.4).  

Additionally, the local flux of N from the Everglades is subject to similar uncertainty, as it was 

obtained from a bay-wide estimate of TN discharge assessed evenly across the spatial extent of 

FL Bay (2220 km
2
; Rudnick et al. 1999).  This value most likely represents an overestimation of 

the N contributed from this source to the tested site because the magnitude and chemical 

composition would be expected to change significantly due to dilution and chemical 

transformations occurring as it is transported from the point of introduction. The TN contribution 

from the Everglades is mostly as organic compounds (Rudnick et al. 1999), which is 

hypothesized to be an important feedstock for sponge-mediated remineralization processes (Hoer 

2015, this volume). 

Furthermore, the exclusion of macroalgal primary productivity represents a considerable 

source of uncertainty in the quantified uptake flux at sites where primary productivity of these 
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organisms outweighed that of seagrasses (27 of 59 surveyed sites).  At these locations the 

macroalgal biomass was dominated by red drift algae (primarily Laurencia sp.), and this biomass 

is notably ephemeral due to its susceptibility to physical transport, which contributes to 

significant uncertainties in the quantified biomass (Madden et al. 2009).  Conversely, the 

contribution of the most abundant attached species (calcareous green algae) at these sites was 

significantly lower and represented typically ≤ 5% coverage, even at locations where its 

populations dominated.  As a result of the uncertainty areal contribution of the dominant 

macroalgal taxa, the contribution of these organisms to the calculated N demand is excluded.  

Improved quantifications of these drifting organisms would greatly improve the accuracy of the 

N uptake from photosynthesis.    

 The N contribution from the sponge community is expected to exhibit significant 

temporal variability.  Similar to the other N fluxes from the literature, the rate of DIN release 

from the sponge population exhibits short-term temporal variability on the scale of days to weeks 

(Southwell et al. 2008, Gibson 2011, Hoer 2015, this volume) which is not directly accounted for 

in the presented budget.  The utilized species-specific N release rates were collected over many 

months, and therefore may represent a degree of this temporally dynamic behavior (Hoer 2015, 

this volume), yet the nature of this variability for the tested species is unknown.  Furthermore, 

Florida Bay ecosystems are also subject to dramatic long-term variability as a result of near-total 

eradication of the sponge population during phytoplankton blooms (Butler et al. 1995, Peterson 

et al. 2006, Stevely et al. 2010) including a 2013-14 event that occurred in Mystery Basin and the 

surrounding areas.  These blooms, which have become a recurring phenomenon in Florida Bay 

(Fourqurean and Robblee 1999), have the potential to quickly decimate dominant sponge 

populations which, based upon our estimates of their N contribution, should significantly alter 
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the nutrient budget of surrounding waters, particularly basins with limited exchange across 

shallow shoals.  Nevertheless, our results further indicate a potentially dominant role of sponge 

populations in the N budget of shallow coastal ecosystems, and the spatially heterogeneous 

sponge biomass within Florida Bay may contribute to some of the variability observed in water 

column DIN at the ecosystem scale.  Additional comparative assessments with other 

environments within the bay with differing sponge densities and community compositions could 

provide evidence as to the importance of recycled DIN to the overall N budgets in this 

ecosystem.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Table 5.1: Summarized DIN determinations from various sites within and surrounding Mystery 

Basin (Figure 5.1).  N species concentrations (NOx
-
, NH4

+
, total DIN, and TN) are in µmol N L

-1 

and represent the mean ± 1SD. 

Date Collections (n) NOx
-
 NH4

+
 DIN TN Hardbottom/Seagrass 

August 2012 16 0.5 ± 0.2 1.1 ± 0.3 1.6 ± 0.5  Hardbottom 

August 2012 5 0.4 ± 0.1 0.5 ± 0.4 1.0 ± 0.5  Seagrass 

May 2013 CTR (SEASII; n 

≈ 7300) 

3.0 ± 0.5    Hardbottom (1.0 mab) 

May 2013 CTR (SEASII; n 

≈ 6100) 

3.8 ± 0.7    Hardbottom (0.1 mab) 

May 2013 CTR (n = 16) 2.6 ± 0.9  2.2 ± 0.9 4.8 ± 1.3 54 ± 8 Hardbottom 

May 2013 3 1.7 ± 0.3 2.9 ± 0.7 4.5 ± 0.9 60 ± 12 Hardbottom 

May 2013 3 0.6 ± 0.3  1.6 ± 0.7 2.1 ± 0.4 65 ± 22 Seagrass 

May 2013 3 0.8 ± 0.5 2.1 ± 0.5 2.9 ± 0.8 44 ± 2 Hardbottom; Outside 

MB* 

May 2013 4 0.4 ± 0.1 1.1 ± 0.3 1.4 ± 0.4 45 ± 2 Seagrass; Outside MB* 

*MB = Mystery Basin 
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Table 5.2: Total sponge biomass across both hardbottom and seagrass habitats in Mystery Basin 

(10
3
 Lsponge).  Values are shown for each utilized survey methodology (belt transect and 1 m

2
 

quadrat) and represent the mean ± 1SE in the calculated displacement.  † indicate species which 

have measured DIN production rates and ‡ indicate species which were too small to be measured 

in transects and these data were excluded from the corresponding weighted mean. 

Species Transect Biomass 

(10
3
 Lsponge) 

Quadrat Biomass 

(10
3 

Lsponge) 

Weighted Mean 

(10
3 

Lsponge) 

S. vesparium † 2000 ± 410 34 ± 7.1 1900 ± 380 

I. variabilis † 1000 ± 220 78 ± 18 930 ± 210 

G. gibberosa † 510 ± 123 130 ± 10 480 ± 120 

Cinachyrella sp.†‡ 0 58 ± 5.4 58 ± 0.40 

Haliclona magnifica  34 ± 8.5 25 ± 3.7 33 ± 7.8 

Halichondria melanodocia † 24 ± 8.0 94 ± 5.4 29 ± 7.4 

Unidentified sponges  27 ± 13  42 ± 11 28 ± 12 

Spongia sp. † 12 ± 3.7 9.3 ± 4.2 12 ± 3.4 

Dysidea etheria 11 ± 3.2 19 ± 3.7 12 ± 3.0 

Tedania ignis 9.9 ± 2.6 8.1 ± 1.9 9.7 ± 2.4 

Hippospongia lachne † 7.7 ± 2.5 1.9 ± 1.9 7.2 ± 2.3 

Lissodendoryx stigmata 5.7 ± 1.5 3.6 ± 1.3 5.5 ± 1.4 

C. nucula †‡ 0 5.1 ± 1.3  5.1 ± 0.1 

Amphimedon viridis‡ 0 4.3 ± 2.8 4.3 ± 0.21   

Haliclona sp. †  2.4 ± 0.98 27 ± 2.4 4.2 ± 0.92 

Hyritios sp. ‡ 0 2.2 ± 0.54 2.2 ± 0.04 

I. strobilina 1.6 ± 0.82 0 1.5 ± 0.76 

Tectitethya crypta 1.4 ± 0.70 2.3 ± 1.4  1.4 ± 0.66 

Callyspongia sp.  0.49 ± 0.37 5.0 ± 0.77 0.83 ± 0.34 

I. campana† 0.70 ± 0.70 0 0.65 ± 0.65 

Aaptos lithophaga 0.61 ± 0.45 0 0.56 ± 0.42 

Ircinia sp.  0 5.8 ± 4.5 0.43 ± 0.33 

Niphates erecta 0.19 ± 0.12 1.0 ± 0.57 0.25 ± 0.12 

Clione sp. ‡ 0 0.24 ± 0.24 0.24 ± 0.02 

Total biomass 3600 ± 500 560 ± 27 3500 ± 450 
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Table 5.3: Nitrogen fluxes (mmol m
-2

 day
-1

) for Florida Bay.  Sponge recycled N was 

determined from Mystery Basin biomass surveys and species-specific N release rates (Hoer 

2015, this volume).  The remaining fluxes were calculated based upon published quantifications 

from Florida Bay or analogous environments (“Bare” Sediment; Great Barrier Reef, Australia).  

Reported values represent the mean ± 1SE.   

I. Recycled N Sources in FL 

Bay 

 

mmol N m
-2

 day
-1

 

 

References 

Sponge DIN Flux (Mystery 

Basin Biomass) 

0.59 ± 0.28 This Study 

Sediment-Water Flux (Diffusive; 

Seagrass Beds)  

0.36 ± 0.27 Yarbro and Carlson (2008) 

Sediment-Water Flux (Diffusive; 

“Bare” Sediment) 

0.04 ± 0.01  Capone et al. (1992) 

Total Recycled N Inputs 0.99 ± 0.39   

II. New N Inputs to FL Bay   

Rainfall ~ 0.06 Prospero et al. (1996) 

Everglades ~ 0.12 Boyer and Keller (2007);  

Rudnick et al. (1999) 

Groundwater Discharge < 0.3 ± 0.05  Boyer and Keller (2007); 

Corbett et al. (1999) 

N2 Fixation (Benthic Algae) ~ 0.1 Boyer and Keller (2007) 

Total New N Inputs 0.57 ± 0.06  

III. N Demand – FL Bay Net 

Primary Productivity 

  

Seagrasses (90% Thalassia sp.) 4.1 ± 0.4 Zieman et al. (1989); 

Fourqurean et al. (2002); 

FCE LTER, Fourqurean J. 

(2011) 

Phytoplankton 0.1 ± 0.07 BATS NPP (0-20m Water 

Depth, Averaged from 1989-

2011); Boyer personal 

communication 

Minimum Total N Demand 4.2 ± 0.4   

IV. Nitrogen Loss from FL Bay   

Benthic Denitrification ~ 0.1 Kemp and Cornwell (2001) 
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Table 5.4: The nitrogen budget for Mystery Basin calculated using the quantifications from 

Table 5.3.  The areal nutrient fluxes were assessed across the appropriate habitat types (see 

Figure 5.1).  Reported values represent the mean ± 1SE.   

I. Recycled N Sources in 

Mystery Basin 

 

mol N day
-1

 

 

References 

Sponge DIN Flux (Mystery 

Basin Biomass) 

2900 ± 1400 This Study 

Sediment-Water Flux (Diffusive; 

Seagrass Beds)  

680 ± 510 Yarbro and Carlson (2008) 

Sediment-Water Flux (Diffusive; 

“Bare” Sediment) 

130 ± 30 Capone et al. (1992) 

Total Recycled N Inputs 3700 ± 1500   

II. New N Inputs to Mystery 

Basin 

  

Rainfall ~ 300 Prospero et al. (1996) 

Everglades ~ 400 Boyer and Keller (2007);  

Rudnick et al. (1999) 

Groundwater Discharge < 1500 ± 250  Boyer and Keller (2007); 

Corbett et al. (1999) 

N2 Fixation (Benthic Algae) ~ 500 Boyer and Keller (2007) 

Total New N Inputs 2700 ± 250  

III. N Demand – Mystery Basin 

Net Primary Productivity 

  

Seagrasses (90% Thalassia sp.) 8000 ± 800 Zieman et al. (1989); 

Fourqurean et al. (2002); 

FCE LTER, Fourqurean J. 

(2011) 

Phytoplankton 510 ± 370 BATS NPP (0-20m Water 

Depth, Averaged from 1989-

2011); Boyer personal 

communication 

Minimum Total N Demand 8510 ± 880   

IV. Nitrogen Loss from 

Mystery Basin 

  

Benthic Denitrification  ~ 500 Kemp and Cornwell (2001) 

 



117 
 

 

Figure 5.1:  ArcMap image of the study area showing the location of water quality collection 

sites as well as the areal extent of seagrass and hardbottom habitat types.  White circles indicate 

collections performed during August 2012 and labeled black squares were sampled in May 2013.  

SEASII-NOx instrumentation was deployed at CTR during May 2013. 
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Figure 5.2: Time-series data collected at CTR with discrete collections performed by peristaltic 

pump.  Discrete collections represent the mean ± 1SE.  Breaks in the data record are indicative of 

gaps where the instrument is programmed to obtain a new optical reference or instrument 

maintenance. 
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Figure 5.3: Water column samples transecting Mystery Basin along the approximate trajectory 

of water transport into and out of the basin.  Proximate site characterization is listed below the 

site IDs and each point represents the mean of the sampled parameter.  Error bars indicate ± 1 

SE.   
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Figure 5.4: Contour plot of surveyed sponge biomass in Mystery Basin with 8 site IDs which 

were sampled during the water quality survey. 
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Figure 5.5: Average NH4
+
, NOx

-
, and total DIN contributions from the sponge community in 

Mystery Basin.  DIN fluxes are separated by species and arranged in descending order of 

biomass contribution (largest to smallest; from left to right): A. S. vesparium; B. I. variabilis; C. 

G. gibberosa; D. Cinachyrella sp.; E. H. melanodocia; F.  All surveyed species.  Error bars are ± 

1 SE. 
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Figure 5.6: Contour plots of NH4
+
, NOx

-
, and total DIN contributions from the sponge 

community in Mystery Basin.  Site IDs and locations are shown for 8 points sampled during the 

water quality survey.
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Figure 5.7: Contour plot of the calculated N flux model used to determine local importance of N 

sources and sinks throughout Mystery Basin.   
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CHAPTER 6: 

Impacts of a Cyanobacterial Bloom on the Sponge Population and Chemical Structure of 

an Offshore Basin in Florida Bay 

 

Introduction 

Florida Bay is an estuarine lagoon between peninsular Florida and the Florida Keys 

archipelagic island chain.  The shallow water column (< 3 m water depth) is generally 

oligotrophic (e.g., Boyer et al. 2006) and is compartmentalized into multiple small basins by a 

series of shoaling carbonate mud banks that reduce physical exchange between neighboring 

environments (e.g., Phlips et al. 1995, Boyer et al. 1997, Fourqurean and Robblee 1999).  Shoal-

attenuated water exchange between these basins generates highly variable water residence times 

throughout the bay, thus augmenting the influence of local processes in chemical cycles (e.g., 

Fourqurean et al. 1993, Rudnick et al. 2005, Zhang and Fischer 2014).  The benthic community 

is characterized by a variety of macrofauna (sponges, octocorals, and small hard corals) and 

macrophytes (seagrasses and macroalgae).  Seagrasses (primarily Thalassia testudinum, 

Halodule wrightii, and Syringodium filiforme) usually dominate primary productivity throughout 

the Florida Bay ecosystem (Zieman et al. 1989) and thereby drive nutrient demand.  Dense 

seagrass meadows in the eastern portion of the bay are phosphorus (P) limited however, there is 

evidence for nitrogen (N) limitation in the western portion of the bay, which is characterized by 

marine conditions through exposure to the open Gulf of Mexico (Fourqurean et al. 1993, 

Lavrentyev et al. 1998).  Sponges dominated by Spheciospongia vesparium, Ircinia sp., and 

Chondrilla nucula (Peterson et al. 2006; Hoer 2015, this volume) are also a common feature 
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throughout the bay (Chiappone and Sullivan 1994, Butler et al. 1995).  Sponges can serve a 

variety of functions, and where biomass is high, provide important habitat for juvenile organisms 

(Butler et al. 1995), exert large grazing pressure on water column productivity (Officer et al. 

1982, Peterson et al. 2006), and contribute a large quantity of recycled, dissolved inorganic 

nitrogen (DIN) to the overlying water (Corredor et al. 1988, Southwell et al. 2008, Hoer 2015, 

this volume).  The recycled N from these and other dominant organisms (e.g., seagrasses; Yarbro 

and Carlson 2008) may be particularly important source of DIN to the water column as local 

recycling processes have been found to regulate the supply of bioavailable N in many locations 

(Rudnick et al. 2005, Boyer et al. 2009, Hoer 2015, this volume).       

Florida Bay has experienced a series of ecological disturbances that intensified in the late 

1980s (Fourqurean and Robblee 1999) and have continued into the present (Berry et al. 2015).  

These changes have the potential to profoundly shift the trophic structure of the bay as a whole 

towards water column productivity and away from the currently dominant role of seagrasses 

(Chasar et al. 2006).  Widespread Thalassia mortality was observed throughout the ecosystem in 

the late 1980s and early 1990s with pronounced impacts in the western and north-central regions 

(Robblee et al. 1991).  The losses of seagrass biomass, including the root structure, led to 

sediment destabilization and a consequent increase in turbidity (Hall et al. 1999), while the decay 

of dead tissue and resuspended sediments likely enhanced local nutrient loading (Fourqurean et 

al. 1993, Boyer et al. 1999, Peterson et al. 2002).  Contemporaneously, intense phytoplankton 

blooms were observed throughout the bay, exhibited extremely high cell densities (>10
6
 cells 

mL
-1

), and often persisted for many months at a time (Phlips and Badylak 1996, Phlips et al. 

1999).  Generally, these blooms consisted of rapidly growing populations of cyanobacteria 

(Synechococcus) or diatoms (Phlips et al. 1999), both of which have been shown to satisfy their 
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photosynthetic N requirements through uptake of nitrate (NO3
-
) and ammonium (NH4

+
) 

(Mulholland and Lomas 2008).  Blooming populations of cyanobacteria have been shown to 

reduce water column DIN (NOx
-
 + NH4

+
) to near trace concentrations as a result their large 

autotrophic N draw-down (Lindell et al. 2005).  These blooms have become a recurring feature 

in Florida Bay and their persistence may exacerbate the loss of seagrasses through bottom-water 

hypoxia, toxin production, and shading of benthic macrophytes (Phlips and Badylak 1996, Phlips 

et al. 1999).  Furthermore, these dense blooms are hypothesized to have precipitated rapid 

sponge die-offs (Butler et al. 1995, Wall et al. 2012); in two consecutive bloom events in central 

Florida Bay (1991-1992 and 1992-1993) locally dominant species (S. vesparium, Iricina sp., and 

Spongia sp.) experienced mortalities ranging from 40 to 100% (Butler et al. 1995).  Yet, despite 

temporal overlap, a direct, causal link between blooming Synechococcus and sponge mortality 

remains unknown (Butler et al. 1995, Lynch and Phlips 2000, Peterson et al. 2006).  

Substantial loss of sponge biomass has the potential to generate cascading ecosystem 

impacts due to the sudden absence of the ecological and biogeochemical contributions from 

these organisms (Butler et al. 1995, Peterson et al. 2006, Hoer 2015, this volume).  In addition to 

the lost contribution to ecosystem processes, the decaying biomass from the decimated sponge 

population may serve as important source of recycled nutrients, potentially generating local 

eutrophication.  Decaying biomass of fish killed during blooms of the toxic dinoflagellate 

Karenia brevis can supply quantities of regenerated nutrients that are capable of providing 

significant N and P to the blooming organisms, thereby contributing to increased bloom duration 

(Vargo et al. 2008, Vargo 2009, Killberg-Thoreson et al. 2014).  While fish mortality has not 

been noted during Synechococcus blooms in Florida Bay (Butler et al. 1995, Lynch and Phlips 

2000), mass sponge mortality has the potential to provide a similar magnitude of regenerated 



127 
 

nutrients, and consequently enhance bloom intensity and longevity by lending nutritive support 

to blooming cyanobacteria.  Yet, the ephemeral nature of intense blooms and their often sudden 

onset makes observation of such impacts difficult.  In early September 2013, during an ongoing 

investigation of the role of sponges in Florida Bay N cycling, bloom conditions were found in 

Mystery Basin, a small, offshore basin located just north of the Arsnicker Keys (Site ID: HF1; 

Figure 6.2).  The bloom was first noted by fishermen at locations in Rabbit Key Basin just to the 

north of Mystery Basin, prior to our observations (W. Sharp, personal communication).  Site 

descriptions by both our group and reports from fishermen to the Florida Fish and Wildlife 

Conservation Commission indicated that the bloom appeared to be expanding southward from a 

point of origin north or northeast of Rabbit Key.  We had generated significant data 

characterizing this location prior to the onset of bloom conditions (extensive water quality 

sampling and surveyed sponge biomass; Hoer 2015, this volume) that enabled a unique 

examination of the ecosystem response of a sponge-rich basin throughout a cyanobacterial bloom 

and following its dissipation.   

The primary objective of this study was to quantify how the sponge community of 

Mystery Basin was impacted by bloom conditions and how the basin’s water chemistry and the 

biogeochemical role of sponges may have changed following return to a more typical water 

column plankton community.  We hypothesized that the bloom would result initially in 

significant sponge mortality as well as a large reduction in ambient DIN concentrations due to 

the sudden increase of photosynthetic N demand.  We predicted that the massive quantity of 

destroyed sponge biomass would quickly decay and generate a sustained injection of recycled 

nutrients, potentially contributing to the intensity or longevity of the bloom.  We expected 

dissolved organic matter (dissolved organic carbon and dissolved organic nitrogen) to peak 
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during bloom maxima as a result of exuded photosynthate from actively expanding 

cyanobacteria populations, and predicted that these values would quickly return to pre-bloom 

concentrations due to heterotrophic remineralization and physical export. Additionally, we 

hypothesized that after cessation of the bloom, water column DIN would stabilize at a 

concentration significantly lower than pre-bloom conditions as a result of the functional absence 

of the sponge community.  This ecosystem disturbance provided a unique opportunity to observe 

the in situ evolution of bloom conditions in a previously studied location, the timing of impacts 

on the benthic community and the overall impacts of these changes.  The results of these 

measurements provide information that is critical to understanding and predicting the array of 

responses of similar sponge-rich environments in Florida Bay to future bloom events.   

Methods 

Water quality samples 

 Immediately upon discovery of bloom conditions in Mystery Basin, water quality 

samples were collected from sites previously sampled during pre-bloom surveys (September 26, 

2013; HF1-HF13; Hoer 2015, this volume; Figure 6.1).  At each site, triplicate water samples 

were collected through an in-line filter using 60 mL polypropylene syringes.  The in-line filter 

(Whatman GF/F; ~0.7 µm nominal pore size) and 10 cm of small-diameter, high-density 

polyethylene tubing were attached to one arm of a polycarbonate 3-way stopcock which was 

fitted directly to the syringe; the stopcock allowed isolation of collected water or discharge 

through the open third arm during rinsing.  The length of attached tubing helped minimize 

contamination by allowing the collecting diver to be positioned down-current from the sampled 

water. A new pre-combusted, GF/F was used for the filtration of each water sample.  The 

diameter of the utilized GF/F (25 or 47 mm) was selected depending upon the bloom conditions 
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at the sampled site; dense bloom conditions necessitated a larger diameter filter to increase the 

filterable volume prior to clogging.  GF/F material was selected due to its suitability for pre-

combustion and similar use in prior studies of nutrient concentrations in Florida Bay (e.g. Boyer 

et al. 1997, Boyer et al. 2006, Gibson et al. 2008).  During sample collection, the syringe, filter, 

and tubing were rinsed 3x with filtered target water and the rinsing volume was discharged.  The 

fourth volume was slowly drawn into the syringe (< 2 mL sec
-1

) to ensure the collection was 

representative of the desired water mass, and the attached stopcock was closed to prevent 

accidental sample loss.  The sample was returned the surface and stored in a dark ice bath until 

transport to shore for subsampling and preservation (less than 8 hours from collection to 

processing or analysis).  At the shore lab samples were immediately split for DIN (NH4
+
 and 

NO2
-
+NO3

-
 (henceforth NOx

-
)) as well as total dissolved nitrogen (TN) analyses; DON was 

determined as the TN content less DIN.  TN samples (20 mL volume) were put in sample-rinsed 

borosilicate glass scintillation vials; 100 µL of 50% H3PO4 was added, and the vials were stored 

at 4°C until subsequent analysis.  Nitrate plus nitrite (NOx
-
) samples (20 mL volume) were 

placed into sample-rinsed, borosilicate glass scintillation vials and frozen.  Ammonium (NH4
+
) 

samples (20 mL volume) were placed into sample-rinsed amber HDPE bottles.  Ammonium 

concentrations were determined immediately to reduce the potential impact of degradation on 

sample integrity.  For each location, the sampled parameters were measured in triplicate for 

quality assurance and control.  Used GF/F filters were wrapped in foil and frozen to be analyzed 

for chlorophyll a concentration.   

 Following this initial collection when the bloom was detected, recurring water quality 

samples were gathered at four locations across a north/south transect running from a presumed 

control site on the bay side of Long Key (Site ID: J01, 24° 49' 54.30" N, 80° 48' 44.82" W) to a 
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site in the center of Mystery Basin (Site ID: HF1, 24° 56' 30.42" N, 80° 49' 31.80" W; Figure 

6.2).  Two sites were sampled between the northern and southern endpoints: one immediately 

south of the carbonate mud bank which defines the southern sill of Mystery Basin (Site ID: 

HF13, 24° 55' 27.00" N, 80° 48' 52.08" W), and the second, which was 2 km due south of this 

southern edge (Site ID: WP96, 24° 54' 30.36" N, 80° 48' 49.14" W; Figure 6.2).  The north-south 

transect was selected due to the presumed southward expansion of bloom conditions from a 

presumed point of origin in the north-central region of Florida Bay.  Samples were collected 

weekly from October 7 to November 26, 2013.  By November 26
th

, bloom conditions appeared 

to have receded and, as a result, sampling continued with collections being performed every third 

week from November 26, 2013 to March 13, 2014.  Logistical limitations prevented sampling 

from March 13 to July 29, 2014, at which point recurring collections resumed with surface 

samples being collected every six weeks from July 29, 2014 to March 4, 2015.  Sampling was 

concluded March 4, 2015 because water column nutrient concentrations at impacted sites 

appeared to be at a steady state.  In total, the bloom sampling campaign collected 90 bottles from 

each of the 4 sites, spanning 17 months.         

At each site, unfiltered water samples were collected from the surface and immediately 

above the bottom in triplicate, 125 mL amber HDPE bottles.  Surface water was collected 

approximately 10 cm below the water surface by reaching over the gunnel of the boat, and water 

at depth was collected by a diver using SCUBA. Sample bottles were rinsed three times with 

target water, filled, and capped.  Rinses were also performed in triplicate at depth by allowing 

the bottle to fill and voiding it with air from the collecting diver’s secondary air supply.  

Collected water was immediately frozen shipboard using dry ice and shipped overnight to the 

University of North Carolina for filtration and analysis.  On the day of arrival in North Carolina, 
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the samples were thawed, vacuum filtered (47mm Whatman GF/F), and split into separate vials 

for NOx
-
, NH4

+
, DOC, and TN analyses.  NOx

-
 samples (20 mL volume) were preserved in 

sample-rinsed, borosilicate glass scintillation vials and frozen at -20°C until analysis.  DOC/TN 

samples (20 mL volume) were placed in sample-rinsed borosilicate glass scintillation vials, 100 

µL of 50% H3PO4 was added, and the vials were stored at 4°C until analysis.  NH4
+
 samples (20 

mL volume) were collected in duplicate from each field bottle and placed into sample-rinsed 

amber HDPE vials.  Used 47mm GF/Fs were reserved, wrapped in foil which had been baked at 

450°C for >6 hours (henceforth, pre-combusted), and frozen at -80°C for subsequent acetone 

extraction of chlorophyll a and fluorescent measurement (US EPA Method 445.0; Arar and 

Collins 1997).  The collected NH4
+
 samples were analyzed the day of arrival to ensure sample 

quality, whereas DOC/TN and NOx
-
 samples were stored after filtration and analyzed within 48 

h. 

The large differences observed between pre-bloom (May 2013) and post-bloom water 

column DIN concentrations lead to concerns regarding the potential for methodological error 

introduced by transporting samples frozen versus immediate filtration and analysis or 

preservation in the field.  In order to examine this possibility, samples were collected at HF1 

over a 4 day period in July 2014 by syringe using in-line filtration in situ as in the first bloom 

collections (September 26, 2013) and pre-bloom water quality surveys (Hoer 2015, this volume).  

During this time, one set of samples was also collected using 125 mL amber HDPE bottles 

providing direct comparison between the utilized sampling methods.  Samples collected using 

HDPE bottles were vacuum filtrated in the field, the ammonium was analyzed the day of 

collection, and NOx and DOC/TN samples were preserved for analysis upon return to North 

Carolina.  Two weeks following these collections (July 29, 2014), a water sample was obtained 
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using the outlined technique for recurring collections and shipped frozen to NC which provided 

additional comparability between sampling methodologies. 

All glassware and plastics which were used in sample collection and processing (HDPE 

bottles, filter holders, filtration tubing, scintillation vial lids, etc.) were soaked in a 0.1 mol L
-1

 

HCl bath for >12 hours and triple rinsed with 18.2 MΩ type I water prior to use and between 

each sampling.  The amber HDPE sample bottles used for ammonium samples were treated with 

small aliquots of o-phthaladehyde working reagent following the acid wash procedure.  This 

added volume of reagent was allowed to react for 24 hours to ensure removal of any residual 

ammonium from the container, and the pre-treatment solution was rinsed away by triple rinsing 

with 18.2 MΩ type I water immediately prior to use for standards or samples. Scintillation vials 

used for sample collection were acid washed by the above procedure and baked at 450°C for >6 

hours to remove any residual organic matter.  This combusted glassware was stored wrapped in 

pre-combusted foil and bagged to minimize contamination prior to use.  Filters were baked at 

450°C for >6 hrs and stored in pre-combusted foil.   

Sample analysis 

Ammonium analyses were performed using the method of Holmes et al. (1999).  

Sampled volumes were reacted with 5mL of o-phthaladehyde working reagent in amber, HDPE 

bottles and allowed to develop at room temperature for 2.5 hours.  After the incubation period, 

samples were analyzed using a Turner Designs TD-700 laboratory fluorometer equipped with an 

ammonium optical kit (Turner Designs 10-303).  The method detection limit was determined to 

be 10 nmol L
-1

 by repeated standard measurements.  Standards were prepared daily at the point 

of use by serial dilution of a purchased stock solution (Ricca Chemical Company 693-16), and 

analyzed with the prepared samples.  Nitrate plus nitrite (NOx
-
) samples were analyzed using 
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SEASII-NOx autoanalyzers configured for bench-top use (Steimle et al. 2002, Adornato et al. 

2005, Adornato et al. 2007 for detailed descriptions of similarly utilized instrumentation).  NOx
-
 

was measured using a 15 cm pathlength and cadmium reduction of NO3
-
 to NO2

-
 followed by 

detection based on the Griess reaction.  The method detection limit was calculated as 25 nmol 

NOx
-
 L

-1
, and was determined by repeated analysis of standard solutions.  Standards were 

prepared daily by dilution of a purchased stock (SPEX Certiprep AS-NO39-2Y and ASNO29-

2Y), and analyzed with collected samples.  DOC/TN samples were analyzed with a Shimadzu 

TOC-L/TNM-L organic carbon and total nitrogen analyzer, which employs high temperature 

catalytic oxidation (HTCO) for analysis of aqueous organic matter.  Calibration curves were 

prepared from lab prepared stock solutions and were closely monitored during analysis.  Lab 

prepared carbon standards were batch checked against commercially produced stock solutions 

(La-Mar-Ka Chemical Company) to ensure accuracy.  Standards were remade and rerun if the 

correlation coefficient was found to be less than 0.995, and standards were interspersed within 

samples to provide additional quality control. 

Post-bloom sponge survey 

 An abbreviated sponge biomass survey was conducted in April 2014 to determine the 

extent of damage to the previously observed sponge community following the dissipation of 

bloom conditions (Hoer 2015, this volume).  Fifteen (10 hardbottom, 5 seagrass) of the 59 

previously surveyed sites were randomly selected to be reassessed, and methodologically 

identical surveys were conducted at the chosen sites.  As in the pre-bloom surveys, three 25m x 

2m non-overlapping transects were established randomly by divers using SCUBA.  For each 

transect, divers identified, counted, and measured the dimensions (length (L), width (W), and 

height (H)) of all sponge biomass that was greater than 10 cm in its largest dimension.  Sponges 
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smaller than 10 cm were identified, counted, and measured within four 1 m
2 

quadrats 

equidistantly spaced along the length of the transect.   Sponge identifications were performed to 

the lowest taxonomic level possible and those that could not be identified in the field were 

photographed and collected for later identification in the lab.  The volumetric displacement of 

the surveyed sponge biomass was determined using previously derived relationships between the 

morphometric measurements obtained in the field and lab-measured water displacement (Hoer 

2015, this volume).  In each quadrat, seagrass and macroalgal distribution was also quantified 

using the Braun-Blanquet cover assessment method (Braun-Blanquet 1972).  A score (0-6) was 

assigned to each species occurring within the quadrat based on its spatial coverage (Braun-

Blanquet 1972, Fourqurean et al. 2001).  

Post-bloom N sourcing from sponges 

 The N contribution from the sponge community was recalculated using the updated 

sponge biomass to test the impact on sponge sourced N as compared to pre-bloom 

determinations (Hoer 2015, this volume).  The areal N flux from the sponge community was 

calculated using the same pre-bloom method and the sum of the fluxes from contributing species 

was expanded to the area of Mystery Basin to determine the total N flux from sponges (mol N 

day
-1

; Hoer 2015, this volume).       

Results 

Water quality samples: chlorophyll a 

Samples collected on September 26, 2013 showed elevated chlorophyll a concentrations 

at sites north of central Mystery Basin (HF9 and HF10; 21 ± 1 and 19 ± 1 µg L
-1

, respectively; 

mean ± 1SE; Figure 6.3) and inside the basin near the eastern shoal (HF3; 19 ± 2 µg L
-1

; mean ± 

1SE).  The observed concentrations decreased moving south and west across the basin (Figure 
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6.3).  Chlorophyll a concentrations peaked during the first of the recurring collections (October 

7, 2013) and the highest concentrations were observed at sites outside Mystery Basin (HF13 and 

WP96; Figure 6.4).  The concentration of chlorophyll a during these maxima were similar to 

those found during previously observed Florida Bay Synechococcus blooms (22, 25, 33 µg L
-1

 

for HF1, HF13, and WP96, respectively; 20-40 µg L
-1

, Phlips et al. 1999); flow cytometry 

implicated Synechococcus as the blooming taxon (A. Corcoran et al. unpublished data).  The 

trend observed in Synechococcus cell counts was closely correlated with measured chlorophyll a 

concentrations and supported the use of chlorophyll a as a proxy for cyanobacterial biomass; 

water column concentration maxima of Synechococcus cells and chlorophyll a occurred 

contemporaneously (October 7, 2013; 22-33 µg chlorophyll a L
-1 

and 16-21 x 10
6
 cells mL

-1
 at 

impacted sites; A. Corcoran et al. unpublished data) and exhibited similar declining trajectories 

as they decreased to background concentrations which corresponded to measured values for both 

parameters at the controls site J01 (0.2-0.3 µg chlorophyll a L
-1 

and 10 x 10
4
 cells mL

-1
; A. 

Corcoran et al. unpublished data).  Chlorophyll a was uniformly low at the control site (Site ID: 

J01), exhibiting concentrations less than 1 µg L
-1 

(Figure 6.4).  The concentrations at J01 were 

likely below the limit of detection for the utilized method due to the low volume of sample 

filtered (125 mL), so the absolute concentrations measured near background levels should be 

viewed cautiously.  Despite this analytical limitation, the chlorophyll a concentrations at the 

control site are representative of normative conditions in the oligotrophic waters of Florida Bay 

(e.g, Phlips et al. 1999, Armitage et al. 2011), and are in agreement with a long-term dataset 

collected at a nearby SERC water quality monitoring site (SERC ID: 28; SERC-FIU WQMN 

Program).  Following peak conditions, concentrations at HF13 and WP96 quickly decreased to 

the background by late October 2013, whereas elevated chlorophyll a concentrations persisted at 
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HF1 until late November 2013 (Figure 6.4).   “Bloom” and “post-bloom” conditions were 

defined for each site based on the measured chlorophyll a concentration; bloom conditions were 

defined as time during the sampled period where chlorophyll concentrations were elevated 

relative to the control site, and the bloom was considered to have left a site (i.e., post-bloom) 

when concentrations of chlorophyll returned to background levels for two consecutive 

samplings.    

Water quality samples: DIN 

 The first water quality samples taken during the bloom (September 26, 2013) showed a 

range of initial responses to increased phytoplankton populations; water column DIN decreased 

at all sampled sites relative to pre-bloom conditions (Hoer 2015, this volume), yet the magnitude 

of the difference varied considerably.  Using chlorophyll a concentrations as a proxy for 

phytoplankton biomass, sites with high concentrations of cyanbacteria (chlorophyll a >10 µg L
-1

; 

HF3, HF5, HF9, HF10) exhibited water column DIN that ranged from values below the limit of 

detection (< 0.04 µmol N L
-1

) to 0.1 µmol N L
-1

.  Interestingly, phytoplankton biomass at HF1 

was considerably elevated during the first sampling (8 ± 1 µg L
-1

; mean ± 1SE), yet the DIN 

concentration remained near 1 µmol N L
-1

, the vast majority of which was as NH4
+
 (0.9 µmol 

NH4
+
 L

-1
).  Even moderately increasing phytoplankton biomass (1 – 6 µg L

-1
) was observed to be 

coupled with decreasing DIN concentrations, and the magnitude of this decrease was largely 

proportional to the degree to which chlorophyll a was elevated.   

Water column DIN decreased significantly as the bloom progressed, eventually dropping 

NH4
+
 and NOx

-
 concentrations to levels well below 200 nmol L

-1
 at all bloom impacted sites 

(Figures 6.5, 6.6, and 6.7).  Conversely, the control site exhibited no significant change in DIN 

over the sampled time period (Table 6.1; Figure 6.8).  There was no significant difference 
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between collections performed at the surface and those at depth for any of the sampled dates or 

sites, and therefore data were averaged to yield single mean concentrations which were taken to 

be representative of the whole water column at each site.  Further, no significant difference was 

observed between the two methods of collection (syringe versus 125 mL HDPE bottles; July 

2014), nor was there a difference between the comparative samples collected in early July and 

when samples were collected 2 weeks later and shipped to NC on dry ice (Figure 6.9).  Total 

DIN concentrations at impacted sites during bloom conditions were 0.34 ± 0.34, 0.55 ± 0.52, and 

0.46 ± 0.11 µmol N L
-1

 for HF1, HF13, and WP96, respectively (mean ± 1SD; Table 6.1).  

Average bloom DIN concentrations at HF1 and HF13 were elevated by including samples 

collected at the very beginning of the bloom (September 26, 2013) which were taken when 

phytoplankton biomass was still expanding at both sites, as evidenced by chlorophyll a (Figures 

6.5 and 6.6); excluding the collection from that date yields average bloom concentrations of 0.23 

± 0.22 and 0.25 ± 0.11 for HF1 and HF13, respectively (mean ± 1SD).   

As the bloom conditions dissipated at impacted locations, total DIN concentrations 

increased nearly ten-fold (Figures 6.5, 6.6, and 6.7), but concentrations inside Mystery Basin 

remained slightly lower than those observed during pre-bloom collections (Site ID: HF1; Table 

6.1; Figures 6.10, 6.11, and 6.12).  The average total DIN concentration in Mystery Basin 

following the bloom (November 26, 2013 to March 4, 2015) was 1.1 ± 0.5 µmol N L
-1

 (mean ± 

1SD; Table 6.1), which was significantly lower than the conditions during May 2013 collections 

performed at HF1 and nearby CTR (5.5 ± 0.2 and 4.8 ± 1.3 µmol N L
-1

, respectively; Table 6.1; 

unpaired t-test, p < 0.0001).  CTR is included for comparative purposes because pre-bloom 

sampling at HF1 was limited, the two sites are in close proximity to one another, and are very 

similar in terms of water depth and benthic cover.  In Mystery Basin the average post-bloom 
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concentrations of total DIN and both measured DIN species (NOx
-
, NH4

+
) were significantly 

lower than the average of all values measured at sites within Mystery Basin during May 2013 

(Table 6.1; Figures 6.10, 6.11, and 6.12; unpaired t-test; p < 0.001), and also significantly lower 

than the average NOx from the August 2012 water quality survey (0.5 ± 0.2 µmol N L
-1

; Table 

6.1; Figure 6.11; unpaired t-test; p < 0.05).  Conversely, there was no significant difference 

between the average post-bloom NH4
+
 and total DIN concentrations and those measured during 

the August 2012 water quality survey (Table 6.1; Figures 6.10 and 6.11).  The substantial 

decrease in water column NOx
-
 concentration inside Mystery Basin following the bloom is 

evidenced by the large decrease in the ratio of NOx
-
:NH4

+
; prior to the bloom, sites inside the 

basin had a NOx
-
:NH4

+
 ratio of 0.62 ± 0.34 (mean ± 1SD; n = 28; August 2012 and May 2013 

collections) and this ratio fell to 0.17 ± 0.06 at HF1 following the bloom (mean ± 1SD; n = 13).   

The total DIN concentrations measured inside Mystery Basin following the bloom were 

not significantly different than the median concentration observed in Rabbit Key Basin from 

1991 to 2008 (SERC Site ID 18; 0.8 ± 0.4 µmol N L
-1

; median ± 1 MAD; unpaired t-test; p = 

0.7; SERC-FIU WQMN Program; Figure 6.10), nor did they differ from the observations made 

during the pre-bloom survey at sites HF10 and HF14 which were presumed to be characteristic 

of influent water from Rabbit Key Basin (Hoer 2015, this volume).   

Water quality samples: DOC, TN, and DON 

 DOC, TN, and DON (DON = TN – DIN) also showed a marked response to bloom 

conditions, with peak concentrations occurring simultaneously with peak chlorophyll a (Figures 

6.13, 6.14, and 6.15) followed by a rapid resumption of pre-bloom conditions following the 

decline of the bloom (Hoer 2015, this volume).  DOC reached >1000 µmol C L
-1 

at impacted 

sites (Figures 6.13, 6.14, and 6.15) with mean concentrations under bloom conditions averaging 
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between 750 and 1000 µmol C L
-1

 (Table 6.1).  Nitrogenous material (TN and DON) responded 

similarly, although the increase in TN during the bloom was relatively minor, yet post-bloom TN 

concentrations were significantly lower than pre-bloom values measured at all sites inside 

Mystery Basin (unpaired t-test; p < 0.0001; Table 6.1).  The control site (J01) exhibited little 

change in DOC and TN over the measured period (Figure 6.16) and remained relatively low as 

compared to values measured at impacted sites (Table 6.1).     

Post-bloom sponge survey 

 During sample collections shortly following the onset of bloom conditions (September 

26, 2013), significant sponge mortality was observed at impacted sites both inside and outside 

Mystery Basin (N. Lindquist and D. Hoer, personal observations).  Similar to pre-bloom 

quantifications, a weighted mean volumetric displacement was obtained for each site and species 

by weighting the biomass values measured by each survey technique (transects and quadrats) by 

the area surveyed using that methodology (12 m
2
 for quadrats and 150 m

2
 for transects at each 

assessed location; Hoer 2015, this volume).  The average of the resultant weighted mean biomass 

for each species (Lsponge m
-2

) was then calculated from all 15 surveyed sites and expanded to the 

full areal extent of Mystery Basin in order to generate an estimate of the surviving sponge 

community (Table 6.2).  The error of the weighted mean was calculated by the method of Baker 

and Nissim (1963), and extrapolated to the scale of the basin using the method of C. Krebs 

(1999).     

Based on these estimates, we calculated that total sponge biomass in Mystery Basin fell 

by approximately 99% as compared to pre-bloom populations (Table 6.2).  Surveys conducted at 

14 of the 15 chosen sites showed a drastic reduction in sponge biomass relative to communities 

observed prior to the bloom; sites which hosted as much as 3.1 ± 1.9 Lsponge m
-2

 (Hoer 2015, this 
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volume) had only 0.02 ± 0.01 Lsponge m
-2 

of surviving biomass following bloom dissipation and 

the remaining community was dominated by sparsely populated, small individuals.  A total of 4 

sponges that were large enough to be detected in the belt transects were found across all tested 

sites following the bloom (>10 cm in the largest dimension), yet at the same 15 sites, 1178 

sponges which satisfied this criteria were observed prior to the bloom (Hoer 2015, this volume). 

The species which were top contributors to the sponge community before the bloom (S. 

vesparium, Ircinia variabilis, Geodia gibberosa, Cinachyrella sp., and Haliclona magnifica) 

were largely absent from post-bloom surveys, and the remaining organisms were dominated by 

different species whose populations were only moderately impacted by elevated phytoplankton 

concentrations (Cinachyrella sp., Chondrilla nucula¸ Haliclona sp., H. magnifica, and Aaptos 

lithophaga; Table 6.2).  With the exception of A. lithophaga that showed no significant change, 

all species showed a reduction in their calculated biomass, and these reductions ranged from 45 

to 100% loss of the pre-bloom population (Table 6.2; Wilcoxon signed-rank test; p < 0.001).  

The dominant 5 surviving species represented almost 99% of the calculated total biomass, and 

Cinachyrella sp. alone represented nearly 87% (Table 6.2).  Sites outside Mystery Basin 

exhibited similar sponge mortality, yet the magnitude of community destruction is unknown due 

to a lack of pre-bloom quantifications; subjective assessments at these sites were obtained during 

the bloom by tagging individuals which were presumed to represent dominant taxa at these sites 

(S. vesparium and I. variabilis; HF13 and WP96), and subsequently monitoring the tagged 

individuals during recurring water quality sampling; all tagged individuals died and decayed 

prior to decline of bloom conditions.  Prior to the bloom, sponge taxa presumed to have dense 

microbial consortia living within their tissues (high microbial abundance or HMA sensu 

Hentschel et al. 2006) represented approximately 95% of the estimated sponge biomass whereas 
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species with tissue microbes at approximately seawater concentrations (low microbial abundance 

LMA; Hentschel et al. 2006) and those with unknown microbial density represented 2 and 3% 

respectively (Table 6.2).  Conversely, the sponge community was dominated by LMA species 

(94% of the estimated biomass) following the bloom, with minor contributions from HMA 

species and those with unknown microbial density (4 and 2%, respectively; Table 6.2).  

Approximately 96% of the biomass lost to bloom-mediated sponge mortality was estimated to be 

HMA species (Table 6.2).       

In contrast to the sponge community, macrophyte biomass showed a minimal response to 

bloom conditions.  As with surveys conducted prior to the bloom, post-bloom Braun-Blanquet 

cover assessment data were used to calculate species density (Di; Fourqurean et al. 2001) for 

comparative assessment to pre-bloom values.  Seagrasses were found at all 15 surveyed sites (Di 

≥ 0.1; Fourqurean et al. 2001) with Thalassia testudinum dominating discovered biomass at all 

tested locations.  As in pre-bloom surveys, only two other species were found in any abundance 

(Halodule wrightii and Syringodium filforme); Halodule was found at 66% of the surveyed sites, 

whereas Syringodium was observed in several quadrats, yet had a calculated density which never 

exceeded the threshold for determining the presence or absence of seagrasses (Di ≥ 0.1; 

Fourqurean et al. 2001).  For each of the post-bloom surveyed sites, the cumulative seagrass 

density was not significantly different than the surveys conducted prior to the bloom (paired t-

test; p > 0.6).  Similarly, macroalagal biomass showed no significant change between pre and 

post-bloom surveys (paired t-test; p > 0.5), and exhibited a continued dominance of calcareous 

green, primarily Halimeda sp. and Penicillus sp., and non-calcareous red algae, largely 

Laurencia sp.   
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Post-bloom N sourcing from sponges 

 Rates of DIN release were previously quantified for 4 of the 10 sponge taxa found in 

post-bloom surveys, representing approximately 95% of the surveyed biomass (Cinachyrella sp., 

Haliclona sp., C. nucula¸ and H. melanodocia; Hoer 2015, this volume); the species without 

quantified DIN release were excluded from the calculation of N sourcing.  The surviving sponge 

population contributed 4 ± 1 µmol N m
-2

 day
-1 

(mean ± 1SE; Figure 6.17), which represents a 

99% reduction from the 590 ± 280 µmol N m
-2

 day
-1

 contributed by the pre-bloom population 

(mean ± 1SE; Hoer 2015, this volume).  A minimal change to the calculated N contribution from 

the surviving sponge population (5 ± 1 µmol N m
-2

 day
-1

; mean ± 1SE) occurs if we assume the 

unquantified 5% of surveyed biomass released DIN at a rate equal to the highest quantified rate 

for a survivor taxon (Haliclona sp.; 75 ± 7 µmol N Lsponge
-1

 hr
-1

; Hoer 2015, this volume). 

Assessing the areal flux from the surviving community (4 ± 1 µmol N m
-2

 day
-1

) over the 

calculated area of Mystery Basin yielded 20 ± 6 mol N day
-1

 (mean ± 1SE) as a conservative 

estimate of the total N contributed by the post-bloom sponge population.        

Discussion 

Significant sponge biomass and water column chemistry changes were documented 

during and following a phytoplankton bloom in Mystery Basin.  As planktonic biomass 

increased, water column N content decreased to near trace concentrations at impacted sites and 

slowly recovered over approximately 4 months following dissipation of the blooming 

cyanobacteria (Figures 6.5, 6.6, and 6.7).  The apparent introduction of bloom conditions from 

the north-northeast (Figure 6.3) corresponds with previous observations suggesting that blooms 

in the west central region of Florida Bay are typically sourced from north-central locations and 

are often coincident with a seasonal shift in the dominant wind direction (Phlips et al. 1999).   
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Near total mortality of sponge biomass was observed in Mystery Basin and surrounding 

sites during surveys conducted following the dissipation of bloom conditions (Table 6.2).  Mass 

loss of multiple sponge species has been previously reported following cyanobacterial blooms in 

Florida Bay (e.g., Butler et al. 1995, Lynch and Phlips 2000, Wall et al. 2012) however, our 

extensive pre-bloom biomass surveys of the native sponge population created a unique 

opportunity to directly observe the community transition after the bloom had receded.  HMA 

species appeared to be more severely impacted by elevated cyanobacterial populations than 

LMA sponges (Table 6.2).  Yet, neither the underlying mechanism that led to the observed mass 

sponge mortality nor the source of the differential response between HMA and LMA species is 

definitively known.  A prevailing hypothesis based on previous studies is that the exceptionally 

high concentration of cells in the water column during blooms leads to mechanical blockage of 

sponge aquiferous canals, which in turn quickly contributes to a cessation in pumping and 

eventually leads to tissue necrosis or organismal death (Butler et al. 1995, Lynch and Phlips 

2000, Wall et al. 2012).  Observed bloom conditions were characterized by exceedingly dense 

Synechococcus cell populations (16-21 x 10
6
 cells mL

-1
 at impacted sites; A. Corcoran et al. 

unpublished data) which vastly increased particulate loading and potentially mediated clogging 

and mortality of the sponge population; cell concentrations in Mystery Basin were more than 

triple those observed during previous blooms (5 x 10
6
 cells mL

-1
; Phlips et al. 1999) and those 

tested during laboratory experiments (Phlips and Lynch 2000).  The hypothesized clogging of 

pumping structures within the sponge may be supported by observations of a shift in the 

Synechococcus community during cyanobacterial bloom development towards chain-forming 

organisms whose cells are coated in mucilage (Berry et al. 2015).  The extracellular 

polysaccharide coating increases cellular stickiness, which may increase the ability for these 
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organisms to adhere to the flagellated choanocyte cells within the organism and consequently 

slow or halt filtration.  Physical obstruction may be enhanced in HMA species as they possess 

denser, more complex aquiferous structures than their LMA counterparts (Weisz et al. 2008), and 

this increased surface area to volume ratio of internal structures may raise their susceptibility to 

clogging.  Conversely, no significant change was observed in macrophyte biomass following 

dissipation of blooming cyanobacteria.  The brevity of the bloom (~2 month duration, Figure 

6.4) likely reduced the long-term impacts on seagrasses which are generally thought be 

associated with harmful algal blooms (Phlips and Badylak 1996, Phlips et al. 1999).           

In addition to the near complete eradication of sponge biomass, drastic changes in water 

quality occurred during and following the bloom.  Dissolved organic matter (DOC and DON) 

concentrations showed a marked response to bloom conditions, with peak concentrations for 

both correlated with the observed chlorophyll a maxima followed by rapid restoration of pre-

bloom conditions that followed the reduction in cyanobacterial abundance (Figures 6.13, 6.14, 

and 6.15).  Rapid DOM production is expected from active and abundant phytoplankton 

populations (e.g., Baines and Pace 1991, Biddanda and Benner 1997, Engel et al. 2011).  The 

organic matter in the collected samples displayed a relatively high C:N ratio (DOC:DON >15) 

during peak bloom conditions indicative of increased rates of N-poor polysaccharide release as 

available N became depleted (e.g., Norrman et al. 1995, Biersmith and Benner 1998, Engel et al. 

2011).  Physical export, phytoplankton utilization, and bacterial degradation most likely 

dominated the removal of the produced DOM from the sampled region during the bloom and as 

it waned (Carlson 2002).  Assessment of the relative importance of each process was 

complicated by the fact that the time between collections was typically greater than the water 

residence time in Mystery Basin.  However, on timescales of 4 to 7 days, bacterial 
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remineralization and direct phytoplankton utilization of the labile fraction of the produced DOM 

may have been significant during the bloom with physical export dominating following bloom 

cessation (Norrman et al. 1995, Zubkov et al. 2003, Weinbauer et al. 2011).       

Water column DIN at HF1 recovered to the pre-bloom conditions measured in August 

2012 approximately 4 months after phytoplankton biomass returned to background 

concentrations (Figure 6.5).  There was a large difference between the post-bloom concentrations 

of all DIN species and those measured during May 2013 (Figures 6.10, 6.11, and 6.12), but this 

large N reduction was not observed in comparative assessments with August 2012 values (Table 

6.2, Figures 6.10, 6.11, and 6.12).  The diminished effect on the overall concentration of DIN 

was unexpected, given the large contribution to the water column DIN reservoir from the sponge 

community estimated in an N budget (45 ± 24 %; Hoer 2015, this volume).  There was only a 

small difference in the NOx
-
 concentrations from August 2012 and those following the bloom 

(Table 6.2, Figure 6.11) that we could hypothesize to be due to the loss in sponge biomass.  

However, we only have limited pre-bloom DIN data with which to compare.  The destruction of 

the pre-bloom sponge community should be associated with a consequent loss of a large source 

of NOx
-
 contributed by these organisms; 60% of the total, pre-bloom DIN contributed by sponges 

was as NOx
-
 while the surviving community contributed less than 1% of this quantity (Figure 

6.17; Hoer 2015, this volume).  The absence of a strong seasonal N signal in the post-bloom 

dataset (specifically, a dry-season elevation in water column N loading) may also be indicative 

of the missing DIN from sponge recycling processes, however, the lack of a long pre-bloom time 

series of nutrient concentrations precludes this from being asserted definitively.  The highly 

elevated DIN concentrations observed in May 2013 were associated with increased water 

retention during the dry season, a factor that was thought to enhance the visibility and thus the 
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spatial heterogeneity of N sources and sinks (Hoer 2015, this volume).  Minimally, the reduced 

sponge presence has significantly reduced the heterotrophic pressure exerted by the pre-bloom 

community (Peterson et al. 2006) and increased the filtration time for Mystery Basin (time for a 

modeled parcel of water to be filtered by a member of the sponge community) from 8 hrs to 36 

days (N. Lindquist unpublished data).  The reduced grazing (filtration) potential of the surviving 

sponge community may increase the susceptibility of this environment to future cyanobacterial 

blooms or allow for the presence of an elevated standing crop of phytoplankton biomass 

(Peterson et al. 2006).   

  The return to background phytoplankton concentrations in Mystery Basin lagged that 

observed at other sites which experienced bloom conditions (HF13, WP96; Figure 6.4), and this 

retained cyanobacterial population also delayed water column DIN recovery to higher normal 

concentrations at HF1 (Figure 6.4).  The restricted physical exchange observed at this site could 

have been responsible for the retention of bloom conditions within Mystery Basin; reduced rates 

of water turnover have been proposed as a mechanism for accumulating elevated standing 

cyanobacterial populations and enhancing bloom susceptibility (Phlips et al. 1999, Cloern 2001).   

The high intensity of the retained bloom at HF1 (>8 µg L
-1

; Figure 6.4) raises questions 

regarding the sustaining source of N and P concentrations.  We propose that the accelerated 

resupply of nutrient elements derived from the large quantity of decaying sponge material in 

Mystery Basin served as an additional mechanism that enhanced the retention of high density 

bloom conditions at HF1 relative to the other tested sites (Figure 6.4).  Sponges were destroyed 

at both sampled sites outside Mystery Basin, yet at HF1 the entirety of the decay process was 

spatially restricted due to the inability to export the rotting sponge tissue over the shoaling 

perimeter of the basin.  An extreme stench associated with rotting animal tissue was easily 
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detected during the initial month of the bloom and was noted by FWC researchers that collected 

water quality samples (W. Sharp, G. Delgado, personal communication).  The decay and 

remineralization of rotting sponge biomass was likely focused within Mystery Basin because 

other, less enclosed sites lacked the physical isolation and therefore presented reduced barriers to 

physical export.  Based on tagged individuals at the sampling sites, it took less than 3 weeks 

from initial physiological deterioration to full organismal death and decay to a spicule skeleton 

(W. Sharp personal communication) therefore we will assume that nutrients sourced from 

decaying sponge biomass were injected slowly over the entire decay period rather than as a 

sudden pulse of material.  We hypothesize that the moderately elevated ammonium 

concentrations observed at HF1 shortly after bloom conditions appeared in Mystery Basin 

(September 26, 2013; approximately 0.9 µmol NH4
+
 L

-1
) were the result of remineralized 

nutrients from dead sponge biomass which began to decay prior to the onset of peak bloom 

conditions. Additionally, a visible peak in DOM observed at HF1 on October 30, 2013 (Figure 

6.13) may be due to organic matter efflux from decaying sponge biomass, which fits within the 

assumed timeline for sponge death and decay as a result of the phytoplankton bloom.  This DOM 

peak occurs in the absence of contemporaneously elevated chlorophyll a thus removing 

increased primary productivity as a potentially causative agent.  Similar DOM elevation is 

observed at HF13 (Figure 6.14) and to a lesser degree at WP96 (Figure 6.15), perhaps resulting 

from locally important degradation by-products (both sponge and dead Synechococcus biomass) 

or due to DOM export from Mystery Basin (physical transport generally runs north to south; 

Cosby et al. 2005).  The proximity of HF13 to Mystery Basin made physical export a particularly 

important factor to consider as the DOM signature is significantly different at this location as 
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compared to WP96 despite the apparent similarity in photosynthetic biomass (Figures 6.14 and 

6.15).             

In order to determine the potential for nutrient element release through decaying sponge 

biomass, the N content of the two most abundant species prior to the bloom (S. vesparium and I. 

variabilis; Table 6.2) was calculated using species-specific sponge densities as well as tissue N 

content (4.7 and 7.5% N for S. vesparium and I. variabilis, respectively; Martens et al. 

unpublished data).  The eradication of these two species represented 82% of the total sponge 

biomass lost during the die-off (Table 6.2).  The decomposition of S. vesparium contributed 

approximately 150 ± 14 µmol N L
-1

 while I. variabilis liberated 68 ± 7 µmol N L
-1 

(mean ± 

1SE).  Assuming this rate of release is conserved for the remaining 18% of biomass lost, the 

estimated total N introduction from decaying sponge biomass is 260 ± 20 µmol N L
-1

 (mean ± 

1SE) distributed across the 3 week decay period (approximately 12 ± 1 µmol N L
-1

 day
-1

 if 

assumed to be released evenly over time).  The decay of sponge tissue may also represent an 

important source of P to blooming cyanobacteria.  Sponges have been observed to retain 

particularly large quantities of P from filtered water, specifically HMA sponges whose microbial 

consortia have been shown to sequester P as polyphosphate (Zhang et al. 2015).  Similar to N 

release, potential P liberation through sponge decay was calculated using the proportion of P in 

HMA sponge tissue (~0.32 ± 0.03% dry weight; Zhang et al. 2015) and the dry weight of 

destroyed HMA sponge biomass estimated using the densities of representative species (S. 

vesparium and I. variabilis; Table 6.2).  The decaying HMA tissue was estimated to produce 

approximately 7.1 ± 0.1 µmol P L
-1

 (mean ± 1SE; 0.34 ± 0.01 µmol P L
-1

 day
-1

).  At locations 

where the sponge population was most dense (~4 Lsponge m
-2

; Hoer 2015, this volume), these 
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organisms may be able to provide a similar source of regenerated N and P as that expected from 

decaying fish biomass during dinoflagellate blooms (Killberg-Threson et al. 2014).     

The estimated values of nutrient resupply from remineralized sponge tissue were 

compared to estimated nutrient demand from the blooming cyanobacterial community.  These 

were approximated using the cellular N and P quota for Synechococcus (20-50 fg N cell
-1

 and 0.5 

– 3.3 fg P cell
-1

; Bertilsson et al. 2011) and the concentration of these cells in the water column 

during peak bloom and background conditions (approximately 16 x 10
6
 and 10 x 10

4
 cells mL

-1
, 

respectively; A. Corcoran et al. unpublished data).  The estimated N and P required to generate 

the observed increase in cell concentration during peak bloom conditions (23-57 µmol N L
-1

 and 

0.3 – 1.7 µmol P L
-1

) greatly exceeded the potential supply from measured pre-bloom DIN, yet is 

approximately equal to the total measured N reservoir during pre-bloom collections (May 2013; 

Table 6.1). Despite the demonstrated ability of Synechococcus to uptake organic nitrogen to 

satisfy cellular N requirements (Zubkov et al. 2003), it seems unlikely that the entirety of water 

column organic N in this environment was available to these organisms, given the range of 

compounds represented by the DOM pool.  Limiting conditions were expected for total P 

availability (e.g., Boyer et al. 2006 and citations therein), but the lack of direct measurements of 

local P concentrations precluded any definitive statement regarding the pre-bloom availability of 

this nutrient.  Assuming the cyanobacterial population that was retained beyond what was 

observed at HF13 and WP96 renewed the entirety of its biomass daily, it would require a 

maximum uptake rate of 0.9 to 13 µmol N L
-1

 day
-1

 and 0.01 to 0.99 µmol P L
-1

 day
-1

.  The 

nutrient demand associated with these retained populations is well within the quantity of 

nutrients estimated to be resupplied through sponge biomass decay (12 ± 1 µmol N L
-1

 day
-1

 and 

0.34 ± 0.01 µmol P L
-1

 day
-1

).    
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We hypothesize that the remineralized nutrients from decaying sponge tissue at HF1 

would be rapidly incorporated into blooming biomass as a means for the cyanobacteria to fill the 

apparent gap between water column availability and their estimated nutrient demand.  The 

presumed time-dependent release of this material would have created a long-term supply of N 

and P that could have served as a mechanism for maintaining necessary nutrient concentrations 

to support residual bloom conditions observed within Mystery Basin.  However, the available 

data do not allow us to distinguish the recycled nutrients resulting from sponge decay versus 

those sourced from internal nutrient recycling mediated by remineralization of dead 

Synechococcus biomass as well as viral lysis of heterotrophic bacteria within the bloom 

(Weinbauer et al. 2011).  While these processes were likely occurring simultaneously throughout 

the duration of the bloom, the latter two would be expected to occur at sufficiently rapid rates 

within the water column to be similarly effective agents of nutrient regeneration (in both organic 

and inorganic forms) in regions of open exchange as in the shoal-attenuated water column of a 

basin (Norrman et al. 1995, Zubkov et al. 2003, Weinbauer et al. 2011).  Conversely, sponge 

tissue is likely less bioavailable to the bloom-stimulated heterotrophic bacterial community on 

short timescales, and therefore, nutrient resupply from decomposing sponge biomass would be 

expected to be drastically enhanced as a result of the shoal-attenuated exchange present in 

Mystery Basin.   

In order to assess the possibility that simple physical restriction can maintain high 

intensity bloom conditions in this region of Florida Bay, four sites were selected within the 

SERC water quality monitoring network and examined to determine how rapidly normative 

chlorophyll a concentrations reestablished following a high magnitude bloom event.  These 

events were identified during the 1991 to 2008 data records as times when the measured 
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chlorophyll a concentration was greater than 8 µg L
-1

, which represents the concentration that 

was measured during times of active bloom in Mystery Basin (Figure 6.4).  SERC stations 18, 

19, 20, and 28 (Rabbit Key Basin, Twin Key Basin, Peterson Keys, and Old Dan Bank, 

respectively; SERC-FIU WQMN Program) were selected because these had previously-modeled 

water residence times (τ) which was approximately similar to that measured for Mystery Basin 

(median τ < 10 days; Cosby et al. 2005) and were all within a region of Florida Bay which had 

approximately similar environmental conditions for planktonic biomass (south-central; Phlips et 

al. 1995).  Restricting the assessed sites to a zone of similar influence was important in order to 

analyze sites where phytoplankton biomass was subject to approximately similar environmental 

conditions as those that were experienced during the bloom in Mystery Basin (Phlips et al. 

1999).  In order to reflect bloom conditions with nutrient demand roughly equivalent to those 

observed at the tested site, bloom duration at each location was determined as the interval 

between the time when chlorophyll a first rose above 8 µg L
-1 

until it fell below the threshold 

value; the start and end dates for the noted blooms are subject to uncertainty given the monthly 

sample collection interval at these sites (SERC-FIU WQMN Program).  There are abundant 

examples of long-term blooms in Florida Bay (>6 month prior to resumption of oligotrophic 

conditions; e.g., Butler et al. 1995, Phlips et al. 1999), however, we chose to focus on the most 

intense bloom events in this region as these would create the highest demand for water column 

nutrients and may not be sustainable by internal nutrient recycling alone.  Neither the Peterson 

Keys nor Old Dan Bank locations (Site IDs: 20 and 28, respectively) exhibited any bloom events 

which exceeded the threshold value while both Rabbit Key Basin and Twin Key Basin (Site IDs 

18 and 19, respectively; directly north and east of Mystery Basin) had two events which 

exceeded the 8 µg L
-1

 threshold and lasted between 20 and 38 days (SERC-FIU WQMN 
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Program).  Calculated identically to those from the SERC sites, the bloom durations at HF1, 

HF13, and WP96 were 50, 23, and 14 days, respectively (Figure 6.4).  Therefore, historical 

analysis for basins near Mystery Basin supports the hypothesis that simply increasing site 

residence time relative to a freely exchanged water column may increase planktonic standing 

stock and susceptibility to blooms (Phlips et al. 1999), but it is insufficient to produce blooms 

which match the intensity or duration of that within Mystery Basin.  

A comparison of the analyzed SERC sites to those surveyed by Peterson and co-workers 

(2006) during a bay-wide assessment of sponge biomass allowed the relative sponge cover to be 

determined for each water quality monitoring location from the nearest sites with a surveyed 

sponge community.  When determining the nearest quantified sites, care was taken to select 

those within the same basin as the water quality station (i.e., Rabbit Key Basin and Twin Key 

Basin).  The sites within Rabbit Key Basin had relatively low sponge biomass (5 surveyed sites; 

median: 5 g m
-2

; maximum: 41 g m
-2

), and sites in twin Key Basin had somewhat higher sponge 

cover (8 surveyed sites; median: 25 g m
-2

; maximum: 88 g m
-2

).  The approximate sponge 

biomass at these sites was much lower than what was observed in Mystery Basin (assuming 

density of the dominant species S. vesparium; 59 surveyed sites; median: 61 g m
-2

; maximum: 

740 g m
-2

).  Sponge mortality at either of these sites would be expected to yield significantly 

lower quantities of reminieralized nutrients due to reduced sponge cover, and may have had led 

to the observed difference in retention times for high-intensity blooms.  Undoubtedly the success 

of the observed Synechococcus bloom in Mystery Basin was due to a plurality of factors.  

However, we hypothesize that the sustained intensity of the bloom was due in part to the nutrient 

amendment supplied by decaying sponge biomass, and that this source of remineralized nutrients 
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may have an important role in controlling or enhancing phytoplankton blooms in sponge-rich 

environments. 

The changes observed in the Mystery Basin and surrounding waters provided important 

information about how sponge-rich areas within Florida Bay may respond to and possibly 

modulate recurring bloom phenomena.  Significant impacts were observed in both water column 

DIN and the sponge population of Mystery Basin during and following the observed bloom 

conditions, but there was minimal discernable evidence for a reduced source of DIN from the 

sponge community.  However, we believe that the stored nutrients released from the tissues of 

the decaying sponges contributed significantly to the intensity and longevity of the 2013-14 

bloom.  Sponge mortality may not only increase the susceptibility of an impacted environment to 

future blooms through lost top-down pressure, but also contribute to the intensity or longevity of 

the bloom that occurs simultaneously with the die-off.      
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Table 6.1: Summarized DIN concentrations from various sites within and surrounding Mystery Basin (Figure 6.1) prior to, during, 

and following the bloom.  Both C and N species (NOx
-
, NH4

+
, total DIN, and TN) are in µmol L

-1
 and represent the mean ± 1SD. † 

indicates data from Hoer (2015) and ‡ indicates data from Hoer (unpublished). 

Date Sites (n) NOx
-
 NH4

+
 DIN DOC TN Pre/During/Post Bloom 

August 2012 21 0.5 ± 0.2†  1.0 ± 0.4† 1.5 ± 0.5†   Pre-Bloom 

May 2013 CTR (SEASII; 

n ≈ 7300) 

3.0 ± 0.5†     Pre-Bloom 

May 2013 CTR (SEASII; 

n ≈ 6100) 

3.8 ± 0.7†     Pre-Bloom 

May 2013 CTR (n = 16) 2.6 ± 0.9†  2.2 ± 0.9† 4.8 ± 1.3† 540 ± 50‡ 54 ± 8† Pre-Bloom; Inside MB* 

May 2013 7 1.1 ± 0.7† 2.2 ± 1.0† 3.3 ± 1.5† 610 ± 70‡ 62 ± 14† Pre-Bloom; Inside MB* 

May 2013 7 0.6 ± 0.4† 1.5 ± 0.6† 2.0 ± 0.9† 570 ± 60‡ 45 ± 2† Pre-Bloom; Outside MB* 

Nov. 2013 – Mar. 2015 13 0.17 ± 0.09 0.96 ± 0.39 1.1 ± 0.5 470 ± 140 34 ± 9 Post-Bloom; HF1 

Oct. 2013 – Mar. 2015 17 0.17 ± 0.09 1.0 ± 0.4 1.2 ± 0.5 410 ± 170 31 ± 11 Post-Bloom; HF13 

Oct. 2013 – Mar. 2015 17 0.33 ± 0.20 0.95 ± 0.31 1.3 ± 0.4 360 ± 190 29 ± 12 Post-Bloom; WP96 

Oct. 2013 – Mar. 2015 19 0.28 ± 0.23 0.58 ± 0.46 1.2 ± 0.48 190 ± 130 15 ± 10 Control; J01 

Sep. 2013 – Nov. 2013 7 0.09 ± 0.04 0.24 ± 0.33 0.34 ± 0.34 750 ± 380 47 ± 19 Bloom; HF1 

Sep. 2013 – Oct. 2013 3 0.13 ± 0.04 0.42 ± 0.53 0.55 ± 0.52 890 ± 240 59 ± 5 Bloom; HF13 

Oct. 2013 2 0.28 ± 0.06 0.18 ± 0.09 0.46 ± 0.11 1000 ± 220 59 ± 10 Bloom; WP96 

*MB = Mystery Basin 
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Table 6.2: Pre and post-bloom weighted mean sponge biomass across both hardbottom and seagrass habitats in Mystery Basin (10
3 

Lsponge) with their associated microbial abundance (HMA versus LMA, sensu Henstschel et al. 2006).  Pre-bloom values are from Hoer 

(2015, this volume).  † indicates species which have calculated N flux (Hoer 2015, this volume) and ‡ indicate species which were too 

small to be measured in transects and these data were excluded from their weighted mean. Italicized entries for microbial abundance 

indicate a genus level distinction and the superscripted letter indicates the literature source. 
a 
Gloeckner et al. 2014; 

b 
Hoffmann et al. 

2009; 
c 
Sipkema et al. 2009; 

d 
Weisz et al. 2008; 

e 
Ereskovsky et al. 2005; 

f 
Ereskovsky et al. 2004; 

g 
Hill et al. 2006; 

h 
Reiswig 1974.  

Species Microbial Abundance Weighted Mean Biomass 

(Pre-Bloom; 10
3 

Lsponge) 

Weighted Mean Biomass 

(Post-Bloom; 10
3
 Lsponge) 

Percent Decline 

S. vesparium † HMA
a
 1900 ± 380 0 100% 

I. variabilis † HMA
a
 930 ± 210 0 100% 

G. gibberosa † HMA
b
 480 ± 120 0 100% 

Cinachyrella sp. †‡ LMA
a 

58 ± 0.40 32 ± 1.0 45% 

Haliclona magnifica  LMA
c 

33 ± 7.8 0.88 ± 0.39 97% 

Halichondria melanodocia † LMA
d 

29 ± 7.4 0.22 ± 0.20 99% 

Unidentified sponges  Unknown 28 ± 12 0.21 ± 0.13 99% 

Spongia sp. † HMA
e 

12 ± 3.4 0 100% 

Dysidea etheria LMA
a 

12 ± 3.0 0.03 ± 0.03 99% 

Tedania ignis LMA
a 

9.7 ± 2.4 0 100% 

Hippospongia lachne † HMA
f 

7.2 ± 2.3 0 100% 

Lissodendoryx stigmata Unknown 5.5 ± 1.4 0.03 ± 0.03 99% 

C. nucula †‡ HMA
g 

 5.1 ± 0.1 1.52 ± 0.07 70% 

Amphimedon viridis‡ LMA
a 

4.3 ± 0.21   0 100% 

Haliclona sp. †  LMA
c 

4.2 ± 0.92 1.45 ± 0.57 65% 

Hyritios sp. ‡ Unknown 2.2 ± 0.04 0 100% 

I. strobilina HMA
a
 1.5 ± 0.76 0 100% 

Tectitethya crypta LMA
h 

 1.4 ± 0.66 0 100% 
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Species Microbial Abundance Weighted Mean Biomass 

(Pre-Bloom; 10
3 

Lsponge) 

Weighted Mean Biomass 

(Post-Bloom; 10
3
 Lsponge) 

Percent Decline 

Callyspongia sp.  LMA
a 

0.83 ± 0.34 0.04 ± 0.02 95% 

I. campana† HMA
a 

0.65 ± 0.65 0 100% 

Aaptos lithophaga Unknown 0.56 ± 0.42 0.59 ± 0.59 +5% 

Ircinia sp.  HMA
a 

0.43 ± 0.33 0 100% 

Total biomass  3500 ± 450 37 ± 1.4 99% 
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Figure 6.1: ArcMap image of Mystery Basin showing the location of water quality collections 

that were performed immediately following the discovery of bloom conditions at this location 

(September 26, 2013). 
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Figure 6.2: ArcMap of recurring water quality samples.  HF1 represents the center of the target 

basin and J01 represented the control site just north of Long Key, Florida.  The inset shows the 

position of the target area relative to broader Florida Bay.   
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Figure 6.3: Contour plot of September 26, 2013 chlorophyll a concentration at points inside and 

outside of Mystery Basin.  Sites HF1, HF2, HF3, HF4, and HF5 are all within the boundaries of 

Mystery Basin.     
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Figure 6.4: Mean chlorophyll a concentrations at all sampled sites from September 26, 2013 to March 4, 2015 (see Figure 6.2 for 

relative site locations).  Error bars indicate ± 1SE.   
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Figure 6.5: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations for HF1 from September 26, 2013 to March 4, 

2015 (see Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.6: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations for HF13 from September 26, 2013 to March 4, 

2015 (see Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.7: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations for WP96 from September 26, 2013 to March 4, 

2015 (see Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.8: Mean DIN (NOx
-
 + NH4

+
), NOx

-
, NH4

+
, and chlorophyll a concentrations for J01 from September 26, 2013 to March 4, 

2015 (see Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.9: Methodological comparison for water quality parameters (mean surface DIN (NOx
-
 + NH4

+
), NOx

-
, and NH4

+
) at HF1.  

This illustrates data from conventionally collected samples (frozen and shipped on dry ice) and syringe collected samples which were 

filtered and processed in the field.  Data at the far right (July 29, 2014) represents a conventional collection whereas the preceding 

samples (July 14 to 18, 2014) represent field processed collections.  Error bars are ± 1 SE. 



166 
 

 

Figure 6.10: Comparison DIN concentrations at HF1 during and following the bloom with those measured prior to its onset (May 

2013 and August 2012) as well as the median from Rabbit Key Basin (SERC Site ID: 18).  Error bars represent ± 1SE and ± 1MAD 

for Mystery Basin and Rabbit Key Basin values, respectively. 
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Figure 6.11: Comparison NH4
+
 concentrations at HF1 during and following the bloom with those measured prior to its onset (May 

2013 and August 2012) as well as the median from Rabbit Key Basin (SERC Site ID: 18).  Error bars represent ± 1SE and ± 1MAD 

for Mystery Basin and Rabbit Key Basin values, respectively. 
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Figure 6.12: Comparison NOx
-1

 concentrations at HF1 during and following the bloom with those measured prior to its onset (May 

2013 and August 2012) as well as the median from Rabbit Key Basin (SERC Site ID: 18).  Error bars represent ± 1SE and ± 1MAD 

for Mystery Basin and Rabbit Key Basin values, respectively. 
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Figure 6.13: Mean DOC, TN, DON, and chlorophyll a concentrations for HF1 from September 26, 2013 to March 4, 2015 (see Figure 

6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.14: Mean DOC, TN, DON, and chlorophyll a concentrations for HF13 from September 26, 2013 to March 4, 2015 (see 

Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.15: Mean DOC, TN, DON, and chlorophyll a concentrations for WP96 from September 26, 2013 to March 4, 2015 (see 

Figure 6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.16: Mean DOC, TN, DON, and chlorophyll a concentrations for J01 from September 26, 2013 to March 4, 2015 (see Figure 

6.2 for relative site locations).  Error bars are ± 1 SE. 
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Figure 6.17: Average NH4
+
, NOx

-
, and total DIN contributions from the sponge community in 

Mystery Basin.  DIN fluxes are separated by species and arranged in descending order of 

biomass contribution (largest to smallest; from left to right): A. Cinachyrella sp.; B. C. nucula; 

C. Haliclona sp.; D. H. melanodocia; E. All surveyed species.  Error bars are ± 1 SE. 
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CHAPTER 7: 

Summary of Findings, Conclusion, and Future Directions 

 

 

This dissertation investigated the role of sponges in the cycling of carbon (C) and 

nitrogen (N) in carefully selected reef and Florida Bay environments and found that these 

fascinating organisms are capable of dominating the transformations and resupply of these 

elements to surrounding waters. The research focused on collecting data needed to test 

hypotheses largely through in situ measurements with undisturbed organisms so as to avoid any 

physiological changes resultant from sponge manipulation.      

The giant barrel sponge X. muta was observed to satisfy the majority of its metabolic C 

demand from dissolved organic carbon (DOC).  The quantity of DOC removed by this species 

and the size of its population on Conch Reef suggest that it has a large role in the C cycling in 

this environment.  This organism retained a considerable proportion of absorbed DOC in excess 

of apparent respiration demand, which we hypothesize to be allocated to cellular maintenance 

and repair.  However, we observed no export of particulate or mucosal organic matter from the 

organism to confirm its participation in the putative “sponge loop” (de Goeij et al. 2013).  

Additionally, the exhalent water from this species contains high concentrations of dissolved 

inorganic nitrogen (DIN) as a result of the observed respiration processes as well as chemical 

transformations mediated by the dense microbial consortia hosted in its tissues. The rate of DIN 

efflux observed in the Florida Keys was found to be very similar to that observed on the 

oligotrophic reefs of the Bahamas, indicating that this process may be conserved within the 
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species.  Furthermore, the estimated contribution of respired organic N appears to fill the N gap 

observed between absorbed and exported DIN.  This rapid remineralization of dissolved organic 

matter may represent an ecologically relevant source of DIN on nutrient-poor reefs by rapidly 

recycling nutrients bound in organic compounds into more bioavailable inorganic forms (e.g., 

Diaz and Ward 1997, Ribes et al. 2005, de Goeij et al. 2013).  

Results of investigations of DIN release from X. muta and evidence from a variety of 

sponge species in the Caribbean and other environments (e.g., Corredor et al. 1988, Jiménez and 

Ribes 2007, Southwell et al. 2008b, Keesing et la. 2013) led to the central hypothesis that sponge 

respiration would be the dominant N source supplying the photosynthetic-associated demand by 

primary producers in the shallow, estuarine environment of Florida Bay.  Organic-bound nutrient 

elements have a dominant role in this ecosystem (e.g., Boyer et al. 1997, Boyer et al. 2006), and 

by consequence, local recycling processes are expected to regulate the supply of inorganic 

nutrients in many locations (Rudnick et al. 2005, Boyer and Keller 2007, Boyer et al. 2009).  

Further, the shallow water column of this environment (typically < 3m water depth) and 

restricted physical exchange driven by the carbonate mud banks which compartmentalize this 

environment should improve our capability to quantify the importance of recycling processes, 

particularly those mediated by sponges.  My research sites in Florida Bay were selected on the 

basis of habitat type, sponge abundance, and physical isolation that could emphasize the role of 

sponges.   

The speciation and magnitude of effluent DIN from ecologically relevant sponge species 

was assessed using in situ benthic chambers.  The rates of DIN release from sponge species 

common to Florida Bay were of the same magnitude as species observed in other coastal 

ecosystems (e.g, Corredor et al. 1988, Southwell et al. 2008b, Gibson 2011).  This provided 
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further indication that these organisms have a capacity for driving local nutrient cycling in 

sponge-rich environments throughout the coastal ocean.  In order to quantify the role of sponge 

recycled N in the budget of Florida Bay, an offshore basin (Mystery Basin) which was thought to 

be analogous to important sponge-rich sites throughout the bay as a whole was selected.  Similar 

to other basins in the bay, the restricted water exchange at the selected site was hypothesized to 

allow local processes to dominate nutrient cycling.  This restricted exchange, coupled with 

abundant sponge biomass, was thought to improve our capability to quantify the importance of 

recycled N from these organisms in the overall nutrient budget.  The species-specific estimates 

of sponge effluent DIN generated from benthic chambers were used in conjunction with biomass 

surveys conducted within Mystery Basin to illustrate the relative importance of the sponge 

community and its ability to supply ample DIN to satisfy the majority of local photosynthetic N 

demand.  I was able quantitatively demonstrate that observed C and N transformations are 

largely dependent upon the size and composition of the sponge community, and that the efflux of 

recycled N to the tested system represented the largest single source of DIN and approximately 

half of the inorganic N contributed to the water column.  The dependence of this N flux on the 

structure and composition of the sponge community was hypothesized to predispose it to 

temporal instability given the susceptibility of these organisms to sudden mortality events in this 

environment (e.g., Butler et al. 1995, Peterson et al. 2006).    

We observed a phytoplankton bloom that developed at our Mystery Basin study site, 

bloom that occurred simultaneously with the decimation of the vast majority of the sponge 

population.  High microbial abundance (HMA) species appeared to be more severely impacted 

by elevated cyanobacterial populations than low microbial abundance (LMA) sponges.  

However, neither the underlying mechanism which led to the observed mass sponge mortality 
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nor the source of the differential response between HMA and LMA species is definitively 

known.  A prevailing hypothesis based on previous studies is that the exceptionally high 

concentration of cells in the water column during blooms leads to mechanical blockage of 

sponge aquiferous canals, which in turn quickly contributes to a cessation in pumping and 

eventually leads to tissue necrosis or organismal death (Butler et al. 1995, Lynch and Phlips 

2000, Wall et al. 2012).  Physical obstruction may be enhanced in HMA species as they possess 

denser, more complex aquiferous structures than their LMA counterparts (Weisz et al. 2008), and 

this increased surface area to volume ratio of internal structures may raise their susceptibility to 

clogging.  Blooming cyanobacteria in Mystery Basin were also associated with a rapid reduction 

in water column DIN to near trace concentrations, followed by a slow recovery to normative 

conditions that were not significantly different than pre-bloom values.  The lack of a drastic shift 

in water column DIN concentrations was surprising given the mortality of the sponge community 

and previously quantified contribution of N from these organism.  However, pre-bloom nutrient 

data for this location was temporally limited, and therefore the overall change to the long-term 

nature of the N cycle is unknown.  Furthermore, we hypothesized that the decaying sponge 

biomass sourced from the observed die-off generated a considerable quantity of remineralized 

nutrients, potentially enhancing bloom density and duration.  This source of recycled nutrients is 

not without precedent as the decaying biomass of fish killed during blooms of the toxic 

dinoflagellate Karenia brevis can supply quantities of regenerated nutrients that are capable of 

providing significant N and phosphorus (P) to the blooming organisms, thereby contributing to 

increased bloom duration (Vargo et al. 2008, Vargo 2009, Killberg-Thoreson et al. 2014).  While 

fish mortality has not been noted during Synechococcus blooms in Florida Bay (Butler et al. 
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1995, Lynch and Phlips 2000), we calculated that the mass mortality of sponge biomass has the 

potential to provide a similar magnitude to regenerated nutrients.     

The tested sponges have the capacity to alter local water quality through the observed C 

and N transformations mediated by the holobiont (sponge and associated microbiome), and the 

quantification of these processes across environmental gradients further suggests that sponges 

play a large role in ecosystems where their populations dominate.  The potential stability of these 

organismal processes in varying environments may aid in the future incorporation of these 

organisms and their effluent into nutrient budgets of sponge-rich ecosystems throughout the 

Caribbean.  Evidence from the natural, sponge exclusion event generated by mass organism 

mortality provides evidence for how sponge-rich areas within Florida Bay may respond to and 

possibly modulate recurring bloom phenomena.  These results have implications for the 

management of blooms in sponge rich areas as the presence of these organisms may not only 

apply top-down pressure regulating cyanobacterial populations (Officer et al. 1982, Peterson et 

al. 2006), but their mortality may fuel explosive expansion of their populations. 

Future Directions 

 Much of the data presented in this dissertation represents the work of conventional, 

campaign style sampling.  However, the dominance of campaign-collected samples in this work 

belies the contemporaneous effort and progress made incorporating in situ instrumentation into 

measurements being made in the sampled environments.  The ability to make continuous in situ 

measurements of environmental phenomena affords resolution and data quality that is impossible 

to match with discrete sampling.  In the future, research in the coastal ocean and, more broadly, 

in field sciences will rely on these techniques.  The use of these instruments has provided 

corroborating evidence to the nitrate plus nitrite (NOx
-
) release rates observed in chambered C. 
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nucula (Miniature Spectrophotometric Elemental Analysis System; MSEAS, USF-COT; Figure 

7.1).  Yet the ability to expand the efflux from a singular sponge oscula to the dozens of diffuse 

oscula on an individual organisms and then to the hundreds of individual organisms per square 

meter of benthos is only beginning to be understood.  Furthermore, with the increasing 

availability of low-cost, small, and powerful electronics, the ability to make in situ measurements 

will increase rapidly with the development of sensors and autoanalyzers built by the scientists 

who intend to deploy them. 

 The future of the Florida Bay ecosystem is changing rapidly, particularly as the progress 

on the Comprehensive Everglades Restoration Plan (CERP) continues with the goal of restoring 

the ecological, hydraulic and water quality regime of the Everglades.  Freshwater discharge from 

the Everglades will increase (as it is thought to have with the spring 2012 completion of the C-

111 spreader diverting freshwater into Taylor Slough; US Army Corps of Engineers; UNESCO 

2013), and so too will the role that this freshwater input has on the ecosystem as a whole.  The 

rapidity with which this input returns may lead to unknown ecosystem response, as the system 

has evolved under the pressure of steadily reducing freshwater discharge (by as much as 60%) 

during the past century (Madden et al. 2009 and citations therein).  The “return” of the 

freshwater endmember of this estuarine ecosystem may increase input of dissolved organic 

matter (DOM) from the Everglades, potentially enhancing the role of nutrient recycling 

processes like those mediated by sponges, particularly in basins near the outflow of Taylor 

Slough.  Furthermore, if DOM loading increases with increasing freshwater input there may be a 

shift in the sponge community metabolism towards a reliance on dissolved organics rather than 

the particulates, assuming the community possesses the dietary plasticity to quickly respond to 

changes in the composition of nutritive organic matter.   
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 This dissertation provides evidence of the role of sponge communities in the coastal 

cycles of C and N, which has implications for sponge-rich environments globally.  The large role 

of these organisms as demonstrated herein and elsewhere coupled with the trend towards 

increasing anthropogenic change in the coastal zone, necessitates a furthered understanding of 

the response of sponges to environmental change as the future structure of C and N cycling in 

these environments may depend on these organisms.              
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Figure 7.1: Sample of time-series data received from simultaneous measurement of ambient and 

excurrent NOx
-
 (NO3

-
 + NO2

-
) from C. nucula collected using prototype MSEAS 

instrumentation.  The period marked “intercalibration” indicates when the inlets were sampling 

the same, ambient water mass, which is followed by separation of the sampling streams into 

ambient and excurrent water.  Due to the small size of oscula on C. nucula individuals, excurrent 

represents water near the oscula of several C. nucula individuals. 
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