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ABSTRACT 

 
CHESTER LEE COSTALES:  Cation-selective Apical Transporters Mediate an 
Intestinal Cycling Mechanism of Metformin that Enhances its Paracellular Oral 

Absorption in Mice 
(Under the direction of Dhiren R. Thakker, Ph.D.) 

 
 
 Metformin is the most widely prescribed drug for type 2 diabetes mellitus; yet its 

in vivo mechanism of oral absorption has not been elucidated.  A pKa of 12.4 and 

logDpH6.0 of -6.13 suggest metformin is a hydrophilic cation at all physiologic pHs, 

limiting its ability to cross biological membranes.  However, metformin is well-absorbed 

with an oral bioavailability ranging from ~40-60% in man.  Previous in vitro studies 

conducted using the Caco-2 Transwell® model of intestinal absorption demonstrated 

efficient transporter-mediated metformin apical uptake and efflux and poor basolateral 

egress.  Kinetic modeling of these results suggested absorptive transport is predominantly 

paracellular, and led to the development of a novel mechanism of absorption stating that 

during oral absorption of metformin, transporter-mediated apical uptake and a lack of 

basolateral efflux leads to intestinal drug accumulation.  Changes in luminal drug 

concentration as a result of gastrointestinal transit leads to apical efflux of metformin and 

its enhanced paracellular absorption.  Studies presented in this dissertation evaluate this 

novel metformin absorption mechanism in a mouse model. 

 Gene expression of the mouse orthologs of putative human metformin 

transporters, namely organic cation transporter 1–3 (mOct1–3), multidrug and toxin 
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extrusion 1 (mMate1), and plasma membrane monoamine transporter (mPmat), was 

characterized in mouse small intestine.  Stable cell lines singly-expressing these 

transporters were generated, and metformin uptake kinetics for each transporter was 

determined.  Pentamidine, quinidine, and desipramine, were identified as pan transporter 

inhibitors and were used in subsequent mouse studies.  Absorptive transport of metformin 

in ex vivo experiments using mouse intestinal tissue was similar to results previously 

reported for Caco-2 cell monolayers, showing high transporter-mediated apical uptake 

compared to apical-to-basolateral transport.  Metformin orally co-administered with 

pentamidine demonstrated that the intestinal accumulation and absorption of metformin is 

transporter-mediated. Attenuation of metformin apical efflux in the intestine after oral 

dosing showed a decreased metformin absorption rate, suggesting an important role for 

apical efflux of metformin during its oral absorption.  Collectively, these studies provide 

strong circumstantial evidence that metformin is absorbed through the hypothesized 

mechanism, which can account for the intestinal accumulation and oral pharmacokinetics 

of metformin observed in human and animal studies. 
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Chapter 1 

INTRODUCTION 

 

1.A. INTRODUCTION 

Metformin (1,1-dimethylbiguanide) is an orally administered drug used to reduce 

blood glucose levels in patients with Type 2 diabetes mellitus, formally known as non-

insulin dependent or adult-onset diabetes.  As the first-line therapy for this global 

epidemic, metformin use is extensive with nearly 60 million prescriptions dispensed in 

2011 in the United States alone (IMS Institute for Healthcare Informatics, National 

Prescription Audit).  The biguande class of anti-diabetic drugs originated in the 1920s 

after extracts of French lilac (also known as goat’s rue), a plant used to treat diabetes 

since medieval times, was found to contain guanidine (Bailey, 1992).  Because guanidine 

was too toxic for clinical use, chemical derivatives including galegine, alkylguanidines, 

and biguanides were synthesized.  However, these drugs were largely ignored, partly due 

to the introduction of insulin therapy for Type 1 and Type 2 diabetes in the early 20th 

century.  Several biguanides, including metformin (Figure 1.1), phenformin, and 

buformin, were first reported in the literature in the 

1950s to show their glucose lowering effects (Bailey, 

1992).  Although phenformin and buformin saw 

extensive clinical use based on potent glucose lowering 
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Figure 1.2 : Major sites of pharmacologic action of metformin 

effects, both drugs were eventually withdrawn from the market due to a severe side 

effect, namely lactic acidosis.  Because the risk of lactic acidosis associated with 

metformin was lower compared to other biguanides, its use was revitalized in Europe in 

the 1970s, and the FDA approved its use in the United States in the mid-1990s.  Although 

the risk of lactic acidosis is still present with metformin therapy, it is much less common 

and typically avoidable when following generally prescribed guidelines (e.g., 

contraindicated for renal insufficiency). 

Diabetes mellitus is a group of diseases characterized by elevated glucose levels 

in the blood (e.g., fasting plasma glucose >125 mg/dl) and develops from the failure of 

the body to produce or utilize the peptide hormone, insulin.  Type 1 diabetes, previously 

called juvenile diabetes, results from the inability of the beta cells of the pancreas to 

produce insulin.  The other major and most common form of this disease is Type 2 

diabetes.  Although usually diagnosed later in life, it can occur at any age, typically 

developing in the setting of insulin resistance, where cells are unable to utilize insulin 

efficiently combined with insulin secretory defects.  

The mechanism of action of metformin exhibits tissue-specific behavior (Figure 

1.2).  For instance, in the liver, which is the generally accepted major pharmacological 

target of 

metformin, 

glucose 

production is 

reduced by 

decreased 
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hepatic gluconeogenesis.  In skeletal muscle tissue, increased metformin-mediated 

glucose uptake via an upregulation of glucose transporter 4 (GLUT4) in the plasma 

membrane helps reduce blood glucose levels (Hundal et al., 1992; Lee et al., 2011).  

Additionally, in adipose tissue, metformin decreases lipolysis, which lowers the 

concentration of free fatty acids in the plasma and attenuates insulin resistance (Bourron 

et al., 2009).  Although metformin is an insulin sensitizer, it does not increase insulin 

secretion, and therefore, hypoglycemia is rarely seen as a result of metformin 

monotherapy.   In fact, insulin secretion is reduced in the setting of metformin treatment 

(Leclerc et al., 2004).  In the small intestine, it has been proposed that blood glucose 

lowering by metformin occurs by decreased glucose absorption and increased glucose 

utilization (Wilcock and Bailey, 1991; Ikeda et al., 2000). 

In 2001, Zhou et al. identified 5’ adenosine monophosphate-activated protein 

kinase (AMPK) as the major intracellular target of metformin (Zhou et al., 2001).  

AMPK, a heterotrimeric enzyme that is well-conserved across most species, has been 

described as a cellular energy switch based on its regulatory control over a number of 

biosynthetic pathways, including glucose uptake and fatty acid oxidation.  Modulation of 

these intracellular processes are effected in response to changes in the AMP:ATP ratio.  

In low energy states, ATP-dependent processes are reduced via direct phosphorylation of 

metabolic enzymes.  While AMPK is known to mediate these processes, metformin is 

believed to activate AMPK by directly binding to various subunits of the enzyme, or 

indirectly through upstream processes such as inhibition of complex I of the respiratory 

chain in mitochondria (Owen et al., 2000).   
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1.B. METFORMIN PHARMACOKINETICS 

1.B.1 Intravenous Pharmacokinetics of Metformin 

Intravenous bolus dosing of metformin in human studies demonstrate that drug 

elimination from plasma is rapid with a terminal elimination half-life of 1.74 ± 0.11 hours 

(Pentikainen et al., 1979).  Studies by Sirtori et al. (1994) or Pentikainen et al. (1979) and 

Tucker et al. (1981) show pharmacokinetic profiles of metformin that are consistent with 

two- and three-compartment models, respectively, suggesting initial distribution of 

metformin from the central compartment to peripheral tissues.  Urinary recovery of 

unchanged metformin after intravenous dosing ranged from 78.9–99.9%, with no 

detectable metformin in the feces, suggesting that this drug is predominantly cleared via 

the kidneys.  Estimated renal and plasma clearance of 454 ± 47 and 459 ± 6 ml/min, 

respectively, were obtained after a 500 mg intravenous dose of metformin (Pentikainen et 

al., 1979).  Similar values were stated in the study by Sirtori et al. (1994) in which the 

half-life of metformin was assessed to be 1.52 ± 0.3 hours, while Tucker et al. (1981) 

reported a more prolonged terminal half-life ranging between 2.51–7.04 hours.  Since the 

renal clearance of metformin is ~5-fold higher than creatinine clearance, active tubular 

secretion was implicated as the principal mechanism of its elimination.  Analysis by two-

dimensional thin-layer chromatography of urine samples after intravenous administration 

of metformin showed no evidence of its metabolism (Pentikainen et al., 1979).  Protein 

binding of metformin is negligible based on equilibrium dialysis and ultrafiltration assays 

(Pentikainen et al., 1979; Tucker et al., 1981).  In these studies, Pentikainen et al. (1979) 

reported the volume of distribution of metformin to be 69 ± 4.5 L, whereas Tucker et al. 

(1981) estimated a higher value of 276 ± 136 L. 
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1.B.2. Oral Pharmacokinetics of Metformin 

Clinical pharmacokinetic studies show that metformin is well-absorbed, although 

incompletely (~20–30% in feces), with a reported oral bioavailability between 40–60% 

(Pentikainen et al., 1979; Tucker et al., 1981).  The Cmax of metformin ranges from ~1–3 

μg/ml with an estimated Tmax of ~2–3 hours.  Higher metformin doses of 1.0 and 1.5 

grams showed decreased bioavailabilities of 38% and 35%, respectively (Tucker et al., 

1981).  Similarly, non-linear increases in metformin Cmax and AUC with increasing oral 

doses were observed by Sambol et al. (1996).  Deconvolution analysis of metformin oral 

pharmacokinetic data suggests that its absorption is nearly complete within six hours, and 

is consistent with its absorption in the small intestine (Tucker et al., 1981).  In these three 

separate studies, the terminal rate of elimination of metformin from plasma was slower 

following oral administration compared to intravenous administration, which is indicative 

of flip-flop kinetics.  Collectively, these results suggest that the oral absorption of 

metformin is mediated by a saturable process in the intestine. 

1.B.3. Metformin Metabolism  

Although numerous studies suggest that metformin is not metabolized to any 

appreciable degree in humans (see section 1.B.1), less than 100% recovery has been 

reported during mass balance studies (Tucker et al., 1981).  This finding was inconsistent 

with data reported by Pentikainen et al. (1979), showing ~100% of [14C]metformin in 

urine as unchanged drug after intravenous administration.  Despite the lack of direct 

evidence of detectable metabolites from any clinical study, metabolism of metformin by 

rat P450 enzymes was investigated, and ~80% of the drug was recovered in in vitro 

experiments using rat liver homogenates; these data suggest possible metabolic clearance 
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mechanisms for metformin (Choi et al., 2006).  The authors also suggest that the 27% 

decrease in metformin plasma AUC in rats following its administration via the portal vein 

compared to delivery via the jugular vein was due to hepatic first pass metabolism.  A 

subsequent study also conducted in rats assessed changes in non-renal (presumably 

metabolic) clearance of metformin in the presence of cytochrome P450 inhibitors (~24–

79% lower clearance) and inducers (57% higher clearance) (Choi and Lee, 2006).  Based 

on these changes in metformin clearance in the presence of P450 modulators, the authors 

proposed that rat Cyp2C11, 2D1, and 3A1/2 were involved in metformin metabolism.  

However, it should be noted that the use of P450 inhibitors such as quinine also 

significantly decreased calculated renal clearance of metformin by ~33–59%, a process 

mediated by drug transporters (Section 1.B.4).  The effects of these specific inhibitors 

and inducers on transporter activity or expression have not been thoroughly investigated, 

although recent studies have begun to address this issue.  For example, metformin has 

been shown to decrease P-glycoprotein (P-gp) expression by downregulating the 

multidrug resistance 1 (MDR1) gene in MCF-7 breast cancer cells (Kim et al., 2011).  

Collectively, these studies investigating metformin metabolism are inconclusive, having 

failed to detect a possible metabolite or show any evidence of metabolism by specific 

P450 isozymes through in vitro experiments. 

1.B.4 Drug Transporters Involved in Metformin Disposition 

Organic cation transporter 1 (OCT1; SLC22A1) was the first OCT to be cloned 

following its identification in rat in 1994 (Grundemann et al., 1994).  In these studies, 

complementary DNA was isolated from rat kidney encoding a 556 amino acid, 12 

transmembrane domain protein that was distinct from ATP-dependent multidrug 
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Figure 1.3: Transporters involved in the disposition of 
metformin. Adapted from Zolk 2009. 

transporting proteins 

(also known as ATP-

binding cassette 

(ABC) transporters).   

OCT2 (SLC22A2) and 

OCT3 (SLC22A3) 

were subsequently 

cloned in 1996 (Okuda 

et al., 1996) and 1998 (Kekuda et al., 1998), respectively.  OCT1 is primarily expressed 

in the liver, OCT2 is shows highest expression in the kidneys, while OCT3 is more 

widespread with high expression in liver, heart, skeletal muscle, and placenta (Koepsell 

et al., 2007) (Figure 1.3; Table 1.1).  OCT3 is also known as the extraneuronal 

monoamine transporter (EMT) due to its role as a transporter of neurotransmitters such as 

dopamine, serotonin, and norepinephrine (Wu et al., 1998).  OCT1-3 are driven in an 

electrogenic manner independent of sodium and proton gradients and can translocate 

substrates across membranes in either direction.  Because they have the ability to 

transport a variety of endogenous and exogenous organic cations, these transporters are 

also described as polyspecific transporters.   

Metformin was first identified as an OCT substrate by Wang et al. (2002) through 

studies conducted in rOCT1 transfected chinese hamster ovary (CHO) cells and Oct1 

knockout mice (Wang et al., 2002).  Phenformin and buformin, two other biguanides 

evaluated in this study, showed transporter affinities that were  >7-fold higher than that of 

metformin.  Mouse studies on the tissue distribution of metformin showed an ~30-fold 
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higher accumulation of the drug in the liver of normal mice compared to Oct1 knockout 

animals, and small intestinal accumulation of metformin was ~3–7-fold higher in normal 

mice after intravenous dosing (Wang et al., 2002).  A lack of difference in kidney 

accumulation of metformin suggest the presence of other uptake transporters of 

metformin in the basolateral membrane of renal proximal tubule cells which may be 

normally expressed in kidney tubules or upregulated as a compensatory mechanism.  

Studies conducted with Oct1/Oct2 double knockout mice demonstrated increased steady-

state concentrations of the prototypical cation-selective transporter substrate, 

tetraethylammonium (TEA), providing strong evidence that Oct2 also mediates 

metformin uptake in the mouse kidney (Jonker et al., 2003). 

More recently, the plasma membrane monoamine transporter (PMAT; SLC29A4) 

was cloned in 2004 (Engel et al., 2004).  Although this transporter belongs to the 

equilibrative nucleoside transporter (ENT) family, its broad cationic substrate specificity 

yet poor ability to transport a majority of naturally occurring nucleosides and nucleobases 

suggest that it is better classified as a polyspecific organic cation transporter (Zhou et al., 

2010).  Transporter activity by PMAT showed a strong pH-dependence, where the uptake 

of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was greatly increased when the 

pH of the extracellular buffer was lowered from 7.4 to 6.6 (Xia et al., 2007).  

Furthermore, uptake activity was virtually abolished when the extracellular pH was 

increased to 8.4.  In 2007, Zhou et al. demonstrated that metformin is a substrate for 

PMAT, and that this transporter is expressed in the apical membrane of the human small 

intestine.(Zhou et al., 2007).  These results were the first evidence to identify a potential 

apical uptake transporter of metformin from the intestinal lumen using both localization 
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and functional data.  However, these data are circumstantial since direct uptake of 

metformin via these transporters in either intestinal tissue or cell-based models has not 

been demonstrated. 

The multidrug and toxin extrusion (MATE) proteins are the most recent 

transporters identified in the literature to show metformin substrate activity.  Cloned in 

2005, MATE1 (SLC47A1) was identified as the long-hypothesized mammalian 

proton/organic cation exchanger responsible for excretion of cationic toxins and 

endogenous compounds into urine and bile (Otsuka et al., 2005).  A year later, a report 

identifying and characterizing the human kidney specific MATE2-K (SLC47A2) was 

published (Masuda et al., 2006).  Uptake of metformin was first demonstrated by 

MATE2-K, and MATE1 soon thereafter, suggesting that these transporters mediate the 

apical efflux of metformin from liver and kidney cells (Masuda et al., 2006; Tanihara et 

al., 2007) (Figure 1.3). 

Parallel studies to this dissertation work in the Thakker laboratory have identified 

two additional SLC transporters showing metformin substrate activity.  Using the choline 

transporter specific inhibitor hemicholinium-3, Han et al. (2013) have shown evidence 

that the high affinity choline transporter (CHT1; SLC5A7) plays a role in the apical 

uptake of metformin in Caco-2 cell monolayers, a cellular model which mimics the 

human small intestine.  Additionally, the involvement of the serotonin transporter (SERT; 

SLC6A4) in mediating the uptake of metformin was demonstrated using a singly-

expressed serotonin transporter cell line.  Like CHT1, SERT also mediates apical uptake 

of metformin into Caco-2 cell monolayers. 
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The ABC transporters, P-gp and breast cancer resistance transporter (BCRP), 

were reported to transport metformin based on studies using pooled inside-out vesicles 

prepared from human placental tissue (Hemauer et al., 2010).  Evidence provided by 

Hemauer et al. (2010) for P-gp-mediated transport showed decreased vesicular uptake in 

the presence of the P-gp inhibitor, verapamil.  However, at the concentration used in this 

study, verapamil (200 μM) could also inhibit organic cation transporters (i.e., OCT1 = 1.2 

– 2.9 μM; OCT2 = 13.4 – 85 μM; MATE1 = 28 μM; MATE2-K = 32 μM).  KO143 (25 

nM and 1 μM) was also utilized to inhibit other ABC transporters suggesting that BCRP 

is another efflux transporter of metformin, although the inhibitory effect of this inhibitor 

on OCT- and MATE- mediated transport has not been investigated (Hemauer et al., 

2010).  However, studies by Proctor et al. (2008) using the P-gp selective inhibitor 1 μM 

GW918 showed no effect on metformin efflux from metformin preloaded Caco-2 cell 

monolayers.  Additionally, in single-pass intestinal perfusion (SPIP) studies in rats, 

effective permeability (Peff) of metformin was not affected by duodenal co-perfusion of 

400 μg/ml (~880 μM) of verapamil, suggesting that P-gp does not efficiently transport 

metformin (Song et al., 2006).  Future studies in singly-expressed P-gp or BCRP will aid 

in confirming these conflicting results. 
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Table 1.1.  Putative Transporters of Metformin 
Transporter Name Transporter 

Abbreviation 
Gene Amino Acids 

(Human / 
Mouse) 

Highest Tissue 
Expression 

Organic Cation 
Transporter 1 

OCT1/Oct1 SLC22A1 554 / 556 Liver  

Organic Cation 
Transporter 2 

OCT2/Oct2 SLC22A2 555 / 553 Kidney  

Organic Cation 
Transporter 3 

OCT3/Oct3 SLC22A3 556 / 551 Liver 
Skeletal Muscle 
Placenta 
Heart 

Plasma Membrane 
Monoamine 
Transporter 

PMAT/Pmat SLC29A4 530 / 528 Brain 
Skeletal Muscle 

Multidrug and toxin 
extrusion protein 1 

MATE1/Mate1 SLC47A1 570 / 566 Liver 
Kidney 

Multidrug and toxin 
extrusion protein 2 

MATE2-K 
/Mate2 

SLC47A2 602 / 573 Kidney 

High affinity choline 
transporter 1 

CHT1/Cht1 SLC5A7 580 / 580 Brain 

Sodium-dependent 
Serotonin Transporter 

SERT/Sert SLC6A4 630 / 630 Lung 
Placenta 
Small Intestine 

1.C. CLINICALLY OBSERVED TRANSPORTER-MEDIATED DRUG-DRUG 

INTERACTIONS (DDIS) WITH METFORMIN  

Because metformin does not undergo extensive metabolism, DDIs with 

metformin are most likely to occur when cation-selective transporter substrates are co-

administered with metformin.  The first reported interaction of this nature was with the 

histamine H2-receptor antagonist, cimetidine (Somogyi et al., 1987).  Based on prior 

research investigating the effect of cimetidine on the renal clearance of procainamide and 

its active metabolite (Somogyi et al., 1983), a process that is mediated by an active 

tubular secretion mechanism, the authors hypothesized that the elimination of metformin 

could also be reduced by cimetidine.  Metformin AUC in the presence of cimetidine was 

increased by an average of 50% in seven human subjects and the renal clearance of 
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metformin was decreased by 27% over 24 hours.  These interactions of metformin and 

procainamide were previously attributed to renally expressed OCT2 despite the authors 

acknowledging that the IC50 value of cimetidine for metformin transport (73 μM) was 

considerably higher than estimated Cmax concentrations (2.3–6.8 μM) following a 200 mg 

oral dose to patients with normal renal function (Kimura et al., 2005).  The authors 

suggested that the metformin-cimetidine interaction mediated by OCT2 played a more 

significant role in the elderly and other individuals with renal dysfunction, and elevated 

cimetidine plasma concentrations in these populations. 

With the identification of the MATE1 transporter in 2005, it was demonstrated 

that cimetidine (10 μM) was a potent inhibitor of MATE1-mediated efflux, decreasing 

TEA efflux by 45% (Otsuka et al., 2005).  Subsequent studies indicated that cimetidine is 

a good substrate for MATE1 and MATE2-K with Km values of 170 and 120 μM, 

respectively (Tanihara et al., 2007).  In a separate study, Km values for cimetidine were 

reported to be even lower, at 8 and 18 μM for MATE1 and MATE2-K, respectively, 

clearly indicating that cimetidine interactions with organic cations may in fact be due to 

inhibition of the MATE transporters (Ohta et al., 2009).  In 2009, Tsuda et al. provided 

convincing in vitro evidence to support this hypothesis when apparent Ki values of 

cimetidine were reported to be 1.1 and 7.3 for MATE1 and MATE2-K, respectively, 

which was within the estimated effective plasma concentration range for cimetidine.  

These authors also conducted in vitro basolateral-to-apical transporter experiments in 

double-transfected MDCK-hOCT2/hMATE1 cells.  Using this cell model, they showed 

that high cimetidine concentrations inhibited uptake of metformin via OCT2, whereas a 
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low cimetidine concentration reflective of normal plasma concentrations only affected 

efflux of metformin via MATE1. 

Similar to the MATE-mediated cimetidine DDI, the MATE-specific inhibitor, 

pyrimethamine (Ito et al., 2010) was investigated by co-administration with a microdose 

(100 μg) or therapeutic dose (250 mg) of metformin in a single crossover study 

(Kusuhara et al., 2011).  Metformin renal clearance was decreased by 23% and 35% with 

the microdose and therapeutic dose, respectively.  At the therapeutic dose, Cmax and AUC 

of metformin were significantly increased.  Results from this study, as well as the 

growing body of work with cimetidine suggest that DDIs with metformin and other 

organic cations that occur at the renal level are most likely due to MATE inhibition.  In 

2011, the International Transporter Consortium (ITC) published a Nature Review on 

membrane transporters in drug development which suggested the use of cimetidine to 

investigate the clinical effects of OCT2 (Giacomini et al., 2010).  Because this 

Transporter White Paper was influential in the preparation of the FDA DDI draft 

guidance, these DDI studies exemplify the importance of understanding the role of 

transporters at both apical and basolateral membranes of polarized cells that mediate drug 

disposition (FDA, 2012). 

1.D. MECHANISMS OF INTESTINAL DRUG ABSORPTION 

The small intestine is structurally complex and is well-built to serve its major 

function of nutrient absorption.  Because the gut lumen is essentially a continuum of the 

outside world, the small intestine must perform this task while also restricting the free 

passage of xenobiotics and pathogens into the systemic blood circulation.  The lumen of 

the intestine exhibits extensive folding along with the presence of finger-like projections 
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known as villi.  These features greatly increase the surface area of the intestine, allowing 

for enhanced nutrient absorption.  While the intestine comprises several layers of 

different cell types, the major barrier between the gut lumen and portal blood circulation 

is a single layer of polarized enterocytes, otherwise known as the intestinal epithelium.  

To further increase surface area and absorption, the apical membrane of these columnar-

shaped enterocytes feature microvilli.  

The polarized nature of enterocytes is due to the presence of a protein complex 

known as the tight junctions.  Although the outer leaflets of plasma membranes of 

neighboring cells were originally believed to be fused together, freeze-fracture analysis 

showed that these “kisses-in-the-dark” were actually formed by transmembrane protein 

interactions (Furuse et al., 1993; Furuse et al., 1998).  The cell-to-cell adhesions formed 

by the tight junctions are a hallmark of epithelial cells, and their functionality has been 

likened to both a gate and a fence (Schneeberger and Lynch, 2004) as they create (1) the 

distinct membranes by restricting the movement of membrane-bound proteins within the 

plasma membrane, and (2) restrict the passage of compounds through the paracellular 

space found between adjacent cells, respectively.  According to the fluid mosaic model of 

the cell membrane, proteins and other molecules embedded in the phospholipid bilayer 

can move within the plasma membrane.  However, the tight junctional proteins restrict 

the movement of molecules between the apical and basolateral membranes (Schneeberger 

and Lynch, 2004), including transporter proteins such as those responsible for the 

absorption of metformin.  Therefore, the localization of various drug transporters, which 

is partially determined by tight junction formation, clearly influences the ability of 
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Figure 1.4: Drug transport mechanisms across 
the intestinal epithelium 

transporter substrates to cross the apical and basolateral membranes in the intestine and 

other organs.  

The first transmembrane protein identified in the tight junction was occludin and 

was originally believed to be responsible for the limited transport of compounds through 

the paracellular space (Furuse et al., 1993).  However, it was later shown by the Tsukita 

laboratory that another group of four transmembrane domain proteins, the claudin family, 

was responsible for this functionality (Furuse et al., 1998).  To date, more than 20 

claudins have been identified and intracellular interactions of these proteins are known to 

possess different charge selectivities conferred by specific amino acid residues within the 

extracellular loops of claudins.  Although the physiological function of these pores are to 

regulate ion movement across epithelial and endothelial cell layers, small chemical drugs 

are able to permeate via this route. 

The major mechanisms of 

drug movement across the 

intestinal epithelium involve 

either paracellular or 

transcellular transport (Figure 

1.4) (Borchardt et al., 2006).  

Paracellular transport is typically 

restricted to small hydrophilic compounds due to the size of the paracellular space and 

the narrow pores formed by the tight junctions.  Passive diffusion through epithelial cells 

is the predominant mechanism of transport for highly lipophilic compounds, as they are 

capable of partitioning into the phospholipid bilayers of the plasma membrane.  The 
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Figure 1.5: Intestinal absorption models used 

in the current study. Adapted from Dufek 2011. 

concentration gradients formed across apical and basolateral membranes drive drug 

transport.  The transcellular process, however, is energetically unfavorable for 

hydrophilic compounds, since they must break the hydrogen bonds formed with water 

molecules in order to cross biological membranes.  Nevertheless, transcellular transport is 

possible for hydrophilic drugs that are substrates for transporters.  This carrier-mediated 

process can involve transporter proteins at both the apical or basolateral membranes of 

enterocytes to facilitate the movement of drug across membranes.  

1.D.2. Methods Used to Study Intestinal Drug Transport  

Numerous experimental 

models exist to study drug 

transport across intestinal 

epithelia.  A commonly used and 

well-established cellular model of 

intestinal transport is the Caco-2 

cell monolayer grown in 

Transwell® plates that features 

two compartments separated by a 

semi-permeable membrane support (Hidalgo et al., 1989) (Figure 1.5A).  Although these 

cells were derived from human colon carcinoma cells, they exhibit many features and 

behaviors of the small intestine.  Upon reaching cellular confluence, the Caco-2 cell 

monolayers form tight junctions and express many of the relevant drug transporters.  

Similar to the Transwell® model, the Parallel Artificial Membrane Permeability Assay 

(PAMPA) uses lipid solutions infused into porous filters to create an artificial membrane 
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that mimics biological lipid bilayers of cellular membranes.  Permeability results 

obtained from PAMPA experiments do not account for active transport mechanisms and 

therefore represent the passive diffusion component of transcellular transport.  Ex vivo 

models of intestinal absorption utilizing intestinal tissue include everted sac methods and 

Ussing-type diffusion chambers (Figure 1.5B), while the single pass intestinal perfusion 

technique is a commonly used in situ method.  In vivo techniques such as portal vein 

cannulation (Figure 1.5C), often used in rodents, enables the direct measurement of drug 

concentrations in the portal vein before the drug reaches the liver and is subjected to 

possible hepatic distribution and/or first-pass metabolism (Dufek, 2011). 

1.E. METFORMIN ABSORPTION ACROSS THE INTESTINAL EPITHELIUM 

1.E.1. Rationale for the Proposed Study 

The complex transport processes that govern the intestinal absorption of 

metformin have not been elucidated to date.  Metformin is a small (MW = 129 daltons), 

highly water-soluble drug, with a logD of -6.14 @ 6.0 (Saitoh et al., 2004).  Its pKa of 

11.5 suggests that >99.99% of metformin exists as a positively charged species at all 

physiologic pH values.  The small size and hydrophilic nature of metformin would 

suggest that it is absorbed predominantly via the paracellular space.  However, the high 

bioavailability reported for metformin belies this conjecture, and suggests the 

involvement of carrier-mediated drug transport across the intestinal epithelium. Several 

transporters, namely OCT3 and PMAT on the apical membrane, and OCT1 on the BL 

membrane, have been postulated as the transporters responsible for the intestinal 

absorption of metformin (Zhou et al., 2007; Graham et al., 2011; Zolk, 2011; Gong et al., 

2012).  However, contradictory to some published reports, including the 2010 ITC 
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Figure 1.6: Metformin uptake and transport in 
Caco-2 cell monolayers 

Transporter White Paper and the 2012 FDA Draft Guidance on Drug Interaction Studies 

(Wang et al., 2002; Jonker et al., 2003; Muller et al., 2005; Giacomini et al., 2010; FDA, 

2012; Han et al., 2013), the Thakker laboratory has convincingly shown the apical 

localization of OCT1/Oct1 in human and mouse intestinal tissue, as well as in Caco-2 cell 

monolayers (Han et al., 2013) using transporter-mediated uptake studies of the OCT1 

substrate pentamidine and confocal imaging.  These results by Han et al. (2013), 

combined with examples of other cationic drug transport studies, suggest a lack of 

polyspecific organic cation transporters on the basolateral membrane of enterocytes.   For 

example, studies in the Thakker laboratory investigating the transport properties of the 

histamine H2-receptor antagonist ranitidine across the basolateral membrane of Caco-2 

cell monolayers have shown saturable basolateral uptake of ranitidine with a Km of 66.9 

mM by a mechanism which is not mediated by TEA-sensitive transporters (i.e., OCTs or 

the carnitine organic cation tranporters (OCTNs) (Lee et al., 2002).  Subsequent studies 

showed that OCT1 is a high affinity transporter of ranitidine with a Km of 70 ± 9 μM 

providing further evidence that this transporter is not in the basolateral membrane of 

Caco-2 cell monolayers (Bourdet et al., 2005). 

Similar to results 

from studies with ranitidine 

and pentamidine, detailed 

kinetic studies in the Caco-2 

cell monolayers also 

suggested that transporters 

of metformin are present on 
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the apical membrane of these cells, whereas basolateral transporters are not involved with 

poor transport across this membrane (Proctor et al., 2008) (Figure 1.6).   In this set of 

experiments, the apical and basolateral efflux of metformin were evaluated in Caco-2 

cells pre-loaded with metformin.  Apical efflux was ~7-fold higher than basolateral 

efflux.  The addition of GW918, an inhibitor of P-gp, had no effect on metformin efflux 

suggesting that the efficient efflux across the apical membrane of Caco-2 cell monolayers 

is not mediated by this transporter.  However, the OCT inhibitor quinidine (200 μM) 

reduced metformin efflux by ~80% compared to control, while OCT substrates TEA, 

MPP+, and metformin trans-stimulated efflux.  Proctor et al. (2008) also evaluated 

metformin apical-to-basolateral transport and uptake, and determined that the apparent 

permeability (Papp) of metformin was comparable to that of the prototypical paracellular 

probe, mannitol.  A kinetic modeling approach, originally utilized to study ranitidine 

transport (Bourdet et al., 2006), was applied to data on the transport and apical uptake of 

metformin over time to estimate the relative contribution of paracellular and transcellular 

routes of transport.   In agreement with the Papp of metformin, this modeling strategy 

suggested that the apical-to-basolateral transport of metformin occurs predominantly 

(>90%) via the paracellular route.  This result was also similar to estimates of 88% 

paracellular transport reported by Saitoh et al. (2004), using data on metformin transport 

in Caco-2 cell monolayers and results from PAMPA studies to determine the relative 

contributions of these routes of transport.  Interestingly, the percent of mannitol dose 

absorbed is reported to be ~16% (Artursson and Karlsson, 1991), whereas metformin 

dose absorbed ranges from 40–60% (Graham et al., 2011).  This striking discrepancy 

between two seemingly similar compounds (e.g., small hydrophilic drugs), combined 
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Figure 1.7: Proposed Intestinal Sponge Absorption Mechanism 
of Metformin. (Proctor et al. 2008) 

with the uptake and efflux properties of metformin across the apical and basolateral 

membranes of Caco-2 cells, prompted the development of the “sponge” intestinal 

absorption mechanism of metformin, and the central hypothesis of this dissertation 

project (Figure 1.7), as stated below: 

The high intestinal accumulation of metformin is mediated by efficient apical 

uptake and efflux of this drug combined with a lack of efficient BL efflux. As an oral 

metformin dose travels distally through the gastrointestinal tract, cycling of metformin 

between the gut lumen and enterocytes augments its intestinal absorption by increasing 

access of metformin to the paracellular space, the major route by which it crosses the 

intestinal epithelium. 
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1.E.2. Specific Aims 

Because this hypothesis was developed in a static, in vitro cell culture model, yet 

suggested the involvement of changes in drug concentration due to intestinal transit, an in 

vivo-based approach was used to test this hypothesis.  Mouse was chosen as the in vivo 

model, and as such, characterization of metformin transporters in this species was 

necessary prior to conducting studies.  Therefore, the first aim of this project was to 

identify mouse intestinal transporters of metformin and determine their role in metformin 

uptake and efflux in mouse intestinal tissue.  Doing so required the generation of mouse 

transporter-expressing cell lines to characterize metformin transport by the orthologs of 

the putative human transporters of metformin.  This also enabled the identification of 

potential metformin transporter inhibitors for use in future in vivo studies. 

The second aim of this dissertation work was to demonstrate that the transporters 

identified in the first aim play a role in the intestinal absorption of metformin in mice.  

Various pharmacokinetic studies were conducted to understand the role of drug 

transporters in the intestinal absorption of metformin, and specifically to demonstrate the 

involvement of apical transporters in the high intestinal accumulation and absorption of 

metformin via the paracellular route. 

Specific Aim 1:  Identify mouse intestinal transporters of metformin and determine 

their role in metformin uptake and efflux in mouse intestinal tissue. 

A. Determine uptake and efflux of metformin in transporter-expressing cell systems. 

B. Determine the role of transporters in metformin uptake and efflux across mouse 

intestinal tissue using transporter inhibitors. 
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Specific Aim 2:  Using inhibitors of metformin transporters identified in Aim 1, 

demonstrate that apical intestinal transporters indirectly enhance metformin 

absorption via the paracellular route. 

A. Determine the portal exposure of metformin in the presence/absence of a pan 

organic cation transporter inhibitor using a portal vein cannulated mouse model. 

B. Assess systemic bioavailability of metformin in the presence/absence of 

metformin transporter inhibitors, and relate it to portal exposure. 

C. Demonstrate that increased transporter-mediated absorption of metformin is not 

transcellular, and therefore paracellular, based on the distribution of metformin in 

intestinal tissue and its absorption pharmacokinetic behavior in the 

presence/absence of inhibitors. 
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Chapter 2 

CHARACTERIZATION OF CATION-SELECTIVE TRANSPORTERS OF 
METFORMIN IN THE MOUSE SMALL INTESTINE 

 

2.A. OVERVIEW  

The high bioavailability of the orally administered anti-diabetic drug metformin, 

despite its hydrophilic nature and positive charge at all physiological pH values, suggests 

the involvement of intestinal drug transporters.  Because the mouse is a commonly used 

preclinical model for investigating metformin disposition and pharmacology, the goal of 

this study was to characterize the intestinal mouse orthologs of human putative 

metformin transporters, and evaluate their potential role in metformin uptake from the gut 

lumen.  Gene expression studies of polyspecific organic cation transporters, namely 

organic cation transporter (Oct) 1-3, plasma membrane monoamine transporter (Pmat), 

and multidrug and toxin extrusion (Mate) 1 and 2, in the mouse small intestine showed 

that mOct1 and mMate1 were highly expressed in the intestinal mucosa.  Stable cell lines 

expressing mOct1-3, mPmat, and mMate1 were generated to characterize metformin 

uptake kinetics and inhibitory potencies of a panel of transporter inhibitors toward 

metformin uptake.  Metformin was found to be a substrate for all five transporters, with 

Km values similar to those of their respective human orthologs.  However, IC50 values of 

several inhibitors for metformin uptake were significantly different from those of the 
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corresponding human orthologs.  Desipramine (10 µM) and pyrimethamine (1 µM) were 

identified as selective inhibitors of mOct1 and mMate1, respectively.  A higher 

concentration of desipramine (1 mM) was used as a pan inhibitor in ex vivo studies, and 

reduced metformin uptake by 40% from the apical side of mouse intestinal tissue.  This is 

the first report showing that cation-selective transporters at the luminal membrane of 

mouse small intestine mediate metformin uptake, and first study to characterize the 

kinetics of metformin mOct3- and Pmat-mediated uptake into the mouse intestinal tissue.  

Involvement of these transporters could explain the high oral bioavailability and dose-

dependent absorption of metformin observed in the clinic.  
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2.B. INTRODUCTION 

The biguanide, metformin, is the first-line therapy for the management of type 2 

diabetes.  In addition to its widespread use as an anti-hyperglycemic agent, it has been 

increasingly prescribed off-label to treat other diseases such as polycystic ovarian 

syndrome (Palomba et al., 2009), gestational diabetes (Wensel, 2009), and is currently 

being evaluated for its anti-cancer effects (Alimova et al., 2009; Jiralerspong et al., 2009).  

While this drug has been used in clinic for decades worldwide for increasingly varied 

indications, its mechanism of action and disposition are still under active investigation 

(Sakar et al., 2010; Kusuhara et al., 2011; Lee et al., 2011).   

Physicochemical properties of metformin (Figure 2.1), namely a pKa of 12.4 and 

predicted logD of -6.13 at pH 6.0 (Saitoh et al., 2004), suggest that it is highly water 

soluble and exists almost exclusively as a charged species at all physiological pH values.  

Despite the hydrophilic nature of metformin that implies a limited passive diffusion 

component in its oral absorption, metformin is well absorbed with a bioavailability 

ranging from 40 – 61% (Pentikainen et al., 1979; Scheen, 1996), which suggests the 

potential involvement of cation-selective drug transporters. The group of polyspecific 

organic cation transporters comprises proteins from the solute carrier (SLC) 22, SLC29, 

and SLC47 families of transporters.  Members of this group include OCT1, 2, and 3 

(SLC22A1-3), PMAT/ENT4 (SLC29A4), and MATE1 and 2 (SLC47A1-2), all of which 

have the common ability to transport structurally diverse endogenous and exogenous 

cationic compounds.  This broad substrate specificity enables these transporters to play a 

major role in the disposition of numerous drugs and toxins.  Substrate activity of 

metformin has been confirmed for human OCTs, PMAT, and the MATE transporters 
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(Kimura et al., 2005; Zhou et al., 2007; Nies et al., 2009; Proctor, 2010; Ito et al., 2012; 

Han, 2013) in single transporter-transfected cell lines. 

Two transporters, OCT3 and PMAT, have been postulated as the primary 

candidates that mediate the intestinal absorption of metformin, based on protein 

expression and their ability to transport this drug in vitro (Zhou et al., 2007; Nies et al., 

2009; Graham et al., 2011).  However, functional evidence is lacking in the literature to 

substantiate this assumption.  In this chapter, a comprehensive assessment was conducted 

to characterize metformin transporter kinetics for mouse orthologs of the putative human 

metformin transporters using singly-transfected mouse transporter expressing cell lines.  

To our knowledge, this is the first report on the kinetics of mouse Oct3– and Pmat–

mediated metformin uptake.  Additionally, preliminary studies performed in mouse 

intestinal tissue implicate apically localized cation-selective transporters in the oral 

absorption of metformin.  These findings are significant as they enhance our ability to 

interpret the in vivo pharmacokinetic (PK) and pharmacodynamic (PD) behavior of 

metformin in the mouse, a well-established and commonly employed experimental model 

of drug disposition and pharmacology. 
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2.C. METHODS 

Materials 

The CHO-K1 cell line was obtained from the American Type Culture Collection 

(Manassas, VA, USA).  Ham’s F-12 Nutrient mixture, penicillin-streptomycin-

amphotericin B solution (100X), and geneticin were obtained from Life Technologies 

(Grand Island, NY, USA).   Fetal bovine serum (FBS) was obtained from Atlanta 

Biologicals (Lawrenceville, GA, USA), and Hank’s balanced salt solution (HBSS) with 

calcium and magnesium was purchased from Cellgro (Manassas, VA, USA).  Metformin, 

quinidine, 1-methyl-4-phenyl pyridinium (MPP+), tetraethylammonium (TEA), 

desipramine, corticosterone, mitoxantrone, pyrimethamine, and D-(+) glucose were 

purchased from Sigma-Aldrich (St. Louis, MO, USA).  [14C]Metformin (107 mCi/mmol) 

was purchased from Moravek Biochemicals and Radiochemicals (Brea, CA, USA). 

Cell Culture and Generation of Stable Cell Lines 

CHO-K1 cells (ATCC® CCL-61) were transfected with plasmids containing full-

length mOct1, mOct2, mPmat (Origene, Rockville, MD, USA), mOct3, mMate1a or 

mMate2 (Open Biosystems/Thermo Scientific, Waltham, MA, USA) cDNAs by Lonza 

(Walkersville, MD, USA) nucleofection according to the manufacturer’s optimized 

protocol for this cell line (Cell Line Nucleofector Kit T: high efficiency program (U-

023)).  Co-transfection or subcloning into pcDNA3.1(+) (Invitrogen, Carlsbad, CA, 

USA) was performed for plasmids lacking appropriate selectable markers or promoters.  

婚�婜�婢�婲�婴�存�孺�孼�宂�宖�官�忆�忠�忢�忪�忾�怀�愄�愪�愬�愲�慂�慄�

桖�桘�概�榮�榰�榶�槆�槈�沢�泄�泆�泌�泠�波�涮�淄�淆�淌�淘�淚�潎�潰�潲�

for further studies.  Parental cells were grown in F-12 Nutrient Mixture (Ham’s) with 
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10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin 

B.  Culture media for transfected cell lines were supplemented with 0.25 mg/ml 

geneticin.  All cells were grown at 37ºC in a humidified atmosphere with 5% CO2. 

Quantitative Real Time-PCR (qRT-PCR) 

Total RNA was extracted from transfected cell lines or mouse intestinal mucosa 

from male C57BL/6J (Jackson Laboratories, Bar Harbor, ME, USA) using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA), and purified using the RNeasy Plus kit 

(Qiagen, Valencia, CA, USA) with slight modification.  cDNA was reverse transcribed 

by FirstStrand Synthesis supermix kit (Invitrogen, Carlsbad, CA, USA) using equal 

amounts of total RNA for each sample.  Relative mRNA levels of cation-selective 

transporters in mouse small intestine were determined using Taqman® assays validated 

for each individual transporter utilizing an Applied Biosystems 7300 RT-PCR system. 

Data were normalized to the 18s rRNA eukaryotic housekeeping gene by the 2-ΔΔC
T 

method. 

In vitro Uptake Studies in CHO Cell Lines 

Transfected and control cells were seeded into 24-well plates at a density of 

100,000 cells/cm2.  Growth medium was changed on alternate days and the day prior to 

experimentation.  Uptake experiments were conducted 5–7 days post-seeding.  Cells were 

pre-incubated with transport buffer (HBSS with 10 mM HEPES and 25 mM glucose, pH 

7.2) for 30 minutes at 37ºC.  Assays were initiated by replacing the pre-incubation buffer 

with transport buffer containing varying concentrations of [14C]metformin (0.1 μCi/ml) in 

the presence of chemical inhibitors or appropriate vehicle controls.  [14C]Metformin 

uptake was terminated by aspirating the metformin solution.  For the determination of 
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mMate1 kinetic parameters, the extracellular pH (of transport buffer) was adjusted to pH 

8.0 to increase [14C]metformin uptake.  Cells were washed 3X with 4ºC transport buffer, 

and lysed in 500 µl of 0.1 N NaOH/0.1% SDS for 4 h with shaking.  Cellular 

accumulation of [14C]metformin was determined by liquid scintillation spectrometry.  

Protein concentration was measured by the BCA protein assay (Pierce Chemical, 

Rockford, IL, USA) with bovine serum albumin as a standard. 

Metformin Transport and Uptake Studies in Mouse Intestinal Tissue 

 Male C57BL/6J mice (overnight fast) (Jackson Laboratories, Bar Harbor, ME, 

USA) were anesthetized by an intraperitoneal (IP) injection of ketamine (140 mg/kg) and 

xylazine (15 mg/kg). Intestinal tissue was excised from the proximal jejunum and 

immediately washed in 4ºC Krebs-Bicarbonate Ringer (KBR) buffer plus protease 

inhibitors.  A glass rod was gently inserted through a 2 cm intestinal segment.  The 

segment was then cut longitudinally and mounted between two halves of a diffusion 

chamber insert that was placed between two side-by-side diffusion chambers.  KBR 

buffer (37ºC) was added to each chamber for 30 minutes prior to experimentation, and 

bubbled with 95%/5% oxygen/carbon dioxide to maintain viability.  Uptake studies were 

initiated by replacing apical KBR buffer with [14C]metformin diluted in buffer.  To 

determine metformin uptake in the presence or absence of transporter inhibitors, the 

tissue was removed after the designated incubation period, washed three times with 4ºC 

KBR and dissolved with 2N NaOH.  Samples were neutralized with HCl and 

[14C]metformin concentrations were determined by liquid scintillation spectrometry. 
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Data Analyses 

For kinetic studies, uptake of [14C] metformin was evaluated in transporter-

transfected cell lines.  Nonspecific cell-associated radioactivity was determined by 

measuring drug uptake in parental cell lines.  These values were subtracted from data 

obtained from transporter-transfected cells to obtain the kinetic parameters Km and Vmax 

(Michaelis constant and maximal uptake velocity, respectively) by modeling metformin 

concentration-dependent uptake data in Winnonlin 5.3 (Pharsight, Mountain View, CA, 

USA) using equation 1. 

Equation 1: 

 

 

where V is the uptake rate in the presence of varying concentrations of metformin, S. 

Inhibitory potency (IC50) was determined for each inhibitor by fitting equation 2 

to the uptake data,  

Equation 2: 

	
1 	

 

where V is the uptake rate in the presence of the inhibitor, I, Vo is the rate in the absence 

of the inhibitor, IC50 is the inhibitor concentration required for 50% inhibition, and n is 

the Hill Coefficient.   

All data are expressed as mean ± S.D. from three measurements unless otherwise 

noted.  Statistical significance was determined by a Student’s t test.   
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2.D. RESULTS 

Expression of Mouse Cation-Selective Transporters in the Intestine of C57BL/6J 

Mice 

The expression of cation-selective transporters in mouse small intestine is shown 

in Figure 2.2.  mOct1 and notably, mMate1 were the most highly expressed genes in all 

regions of the small intestine, followed by mOct3, mMate2, and mPmat, while mOct2 

was poorly detected.  A trend showing highest gene expression in the proximal jejunum 

for all transporters was observed, except for mOct3 and mPmat which showed highest 

expression in the ileum. 

Metformin Substrate Activity for Mouse Organic Cation Transporters 

Metformin is a known substrate for human OCT1, 2, and 3, MATE1 and -2, as 

well as PMAT (Wang et al., 2002; Kimura et al., 2005; Masuda et al., 2006; Zhou et al., 

2007; Sato et al., 2008; Proctor, 2010).  To assess if the mouse orthologs of these human 

transporters show similar or different substrate activity for metformin, single transporter-

expressing CHO cell lines (i.e., mOct1-3, mPmat, and mMate1) were generated.  

Following confirmation of mouse transporter gene expression by qRT-PCR analysis, 

functional activity of the expressed transporters was determined by uptake assays of 

probe substrates (e.g., TEA).  Attempts to reproduce previously reported (Hiasa et al., 

2007) functional uptake of probe substrates by mMate2 transfected cell lines were 

unsuccessful, and thus metformin uptake kinetics for mMate2 was not evaluated in the 

present study. 

 The linear time range for initial uptake of metformin was determined by 

evaluating its time-dependent uptake up to 30 minutes (Figure 2.3A).  A single time point 
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of 5 minutes (within the linear range for uptake) was selected for all subsequent studies 

with transporter-transfected cell lines, except for studies with mOct2-expressing CHO 

cells where a shorter time of 30 seconds was required.  Metformin uptake in transporter-

transfected cell lines compared to parental cells was 3–20-fold higher, confirming 

substrate activity of metformin for the mouse orthologs of human metformin transporters 

(Figure 2.3A).  Concentration-dependent uptake of metformin was saturable in all 

transporter-transfected cell lines (Figure 2.3B).   Estimates of the Michaelis constant, Km, 

ranged from 0.3 mM for mMate1 to 4.3 for mPmat (Table 2.1), indicating that the affinity 

of metformin for each transporter was in the following rank order: mMate1 > mOct1 > 

mOct2 > mOct3 > mPmat.   

In Vitro Chemical Inhibition of Metformin Uptake 

To identify transporter-selective chemical inhibitors, the inhibitory potencies 

toward the cellular uptake of metformin were evaluated for a panel of known chemical 

inhibitors of human metformin transporters (Figure 2.1).  The prototypical cation-

selective transporter inhibitor, MPP+, inhibited metformin uptake via mOct1-3 and 

mMate1 with IC50  values  <25 μM and ~180 μM for mPmat, whereas quinidine was a 

weaker pan inhibitior with IC50  values between 120 – 760 μM for mOct2, mOct3, 

mPmat, and mMate1; IC50 for mOct1 was 29 μM.   Additionally, since previous studies in 

the Thakker laboratory demonstrated that specific concentrations of mitoxantrone (25 

μM) and corticosterone (150 μM) selectively inhibit OCT1 and OCT1-3, respectively, 

and that desipramine (200 μM) is a potent inhibitor of OCT1-3, PMAT, and MATE1, 

these chemical inhibitors were also evaluated for their inhibitory potencies towards 

mouse orthologs of the human transporters (Han, 2013) .  Mitoxantrone was less potent 
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for mOct1 than with OCT1, with an IC50 >20-fold higher (Table 2.2), while 

corticosterone (30 µM) inhibited both mOct2 and mOct3 by approximately 80%.  A low 

concentration of desipramine (10 µM) was shown to be a strong inhibitor of mOct1, 

decreasing metformin uptake by 85% (Figure 2.4).  Pyrimethamine, a selective inhibitor 

of human and mouse MATE transporters (Ito et al., 2010; Kusuhara et al., 2011), strongly 

inhibited mMate 1 at 1µM, while only weakly inhibiting mOct2 (~30%).   Desipramine, 

at a higher concentration of 1 mM, inhibited >80% of metformin uptake by all five mouse 

transporters investigated.  IC50 values of the inhibitors for each transporter are reported in 

Table 2.2. 

Metformin Uptake in Mouse Intestinal Tissue   

To provide evidence that cation-selective transporters mediate the apical uptake of 

metformin in mouse intestinal tissue, metformin uptake was evaluated utilizing an 

Ussing-type diffusion chamber.  Results showed that metformin was taken up into the 

intestinal tissue from the apical side, and that 1 mM desipramine significantly decreased 

(p < 0.01) metformin uptake in mouse intestinal tissue by 40%, a surprising finding given 

the non-specific and potent inhibition of metformin uptake (>90%) observed by 

desipramine at this concentration in singly-expressed mouse transporter cell lines (Figure 

2.5).   
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2.E. DISCUSSION  

Results in the present study provide the first direct evidence that transport of the 

anti-diabetic drug, metformin, across the apical membrane of mouse intestine is mediated 

by polyspecific organic cation transporters.  Because metformin is not subjected to 

metabolism or significant protein binding, functionally active transporters in key cellular 

membranes dictate its overall disposition and pharmacology.  The major transporters of 

metformin that facilitate its uptake into organs such as liver and kidney from the systemic 

blood circulation in humans are the OCTs, with OCT1 and OCT2 predominantly 

expressed in the liver and kidney, respectively, and OCT3 having a broader tissue 

expression (Gorboulev et al., 1997; Wu et al., 2000; Motohashi et al., 2002).  The MATE 

transporters are believed to play a substantial role in the excretion of cations from the 

kidney (MATE2) and liver (MATE1) into the urine and bile, respectively.  PMAT is also 

highly expressed in the brain and central nervous system (Engel et al., 2004; Dahlin et al., 

2007), although its role in metformin disposition remains unclear.  While studies have 

been conducted to determine the major metformin transporters in elimination organs such 

as the liver and kidney, a lack of information on the membrane localization of these 

transporters in the intestine limits our current understanding of metformin oral 

absorption.   

Although the gene expression of mouse Octs, Pmat, and Mates in the intestine has 

been reported in the literature (Alnouti et al., 2006; Lickteig et al., 2008), a 

comprehensive data set comparing the relative expression of all putative metformin 

transporters in the mouse intestine is lacking.  In agreement with previously published 

data (Alnouti et al., 2006), the present study showed that mOct1 was highly expressed in 
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the small intestine (Figure 2.2).  Surprisingly, given its relatively low expression in 

mouse enterocytes compared to other tissues (Lickteig et al., 2008), mMate1 was 

expressed at levels similar to mOct1.  mOct3, mPmat and mMate2 were also expressed in 

the mouse intestine, whereas mOct2 was poorly detected.  Although OCT3 and PMAT 

are believed to localize predominantly at the apical membrane in the human small 

intestine (Muller et al., 2005; Zhou et al., 2007), some published reports suggest the 

basolateral localization of OCT1 in human and mouse enterocytes, and in Caco-2 cell 

monolayers, a well-established model of human intestinal epithelia (Jonker et al., 2001; 

Wang et al., 2002; Muller et al., 2005).  Contrary to these reports, recent functional 

uptake data from the Thakker laboratory showed that OCT1 is localized at the apical 

membrane of mouse and human intestinal epithelia, and Caco-2 cell monolayers (Han et 

al., 2013).  In the same study, immunostaining and confocal microscopy provided visual 

evidence that substantiated the apical localization of OCT1 in Caco-2 cell monolayers, 

and in mouse (mOct1) and human small intestinal tissues.  While gene expression levels 

of transporters do not necessarily correlate to their functional protein levels, results from 

the current study suggest the likely presence of all putative metformin transporters in 

mouse intestinal tissue except for mOct2 (Figure 2.2).  Furthermore, in addition to OCT1, 

preliminary evidence in the literature suggests that OCT3 and PMAT exist at the apical 

membrane in human and/or mouse intestine.  Studies to confirm the precise polarized 

localization of Oct3, Pmat, as well as Mate1 in mouse intestine, while not a part of this 

investigation, are important in understanding the intestinal absorption mechanisms of 

metformin and other cationic drugs. 
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In addition to investigating the expression profile of metformin transporters in 

mouse intestine, an understanding of metformin uptake kinetics is beneficial for studying 

and predicting its overall disposition.  Although metformin kinetics have been 

characterized for all major human metformin transporters (Kimura et al., 2005; Tanihara 

et al., 2007; Zhou et al., 2007; Nies et al., 2009; Han, 2013) and some mouse transporters 

(Ito et al., 2012; Toyama et al., 2012), to our knowledge, metformin kinetics for mouse 

Oct3 and Pmat have not been reported.  The Km of metformin for each transporter, 

determined in single transporter-expressing CHO cells, is critical for assessing and 

understanding differences between metformin disposition in humans and the preclinical 

mouse model that is extensively used for investigating metformin PK and PD.  The Km 

values of metformin for all mouse transporters investigated were within a similar range to 

those previously reported in the literature (± 4-fold) for the human orthologs (Nies 2011) 

(Table 2.1).  It is interesting to note that metformin has a higher affinity for mOct1 

compared to mOct2 (0.7 versus 1.3 mM, respectively), which is not consistent with its 

affinity for the human orthologs of these two transporters (3.1 vs 0.6 mM, respectively) 

(Kimura et al., 2005).  This observation in mouse corroborates with recent data from 

transporter-transfected HEK293 cell lines where Km values of metformin were 1.8, 2.9, 

and 0.3 mM for mOct1, mOct2, and mMate1, respectively, (Toyama et al., 2012), and 

substantiates extrapolated results reported by Ito et al. (2011).  Although attempts to 

generate stable cell lines expressing mMate2 were unsuccessful in the present study, 

limited data in the literature characterizing cation substrate activity for mMate2 suggest 

relatively inefficient TEA uptake (Hiasa et al., 2007).  Because the sequence homology 
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between mMate2 and MATE2 is limited (45% by BLAST analysis), whether metformin 

is transported efficiently by the mouse ortholog of MATE2 remains to be determined. 

To address the lack of information from in vivo and ex vivo uptake studies to 

support intestinal transporter expression data, potential chemical inhibitors of mouse 

metformin transporters were evaluated using singly-transfected transporter cell lines.  

MPP+, a well-established pan inhibitor of human cation transporters, was found to be a 

potent inhibitor of metformin uptake by a majority of the transporters investigated in this 

study (Table 2.2A).  However, quinidine, another commonly used pan cation-selective 

transporter inhibitor, showed a lower potency for inhibition of metformin uptake by most 

mouse metformin transporters compared to their corresponding human orthologs (Table 

2.2B), with IC50 values >100 µM.  Ito et al. (2010) demonstrated that pyrimethamine was 

a strong inhibitor of mMate1-mediated TEA uptake with an IC50 of 145 nM, while IC50 

values of mOct1-2 were in the micromolar range.  Results presented in the current study 

also support the previous finding that pyrimethamine is a potent inhibitor of mMate1 but 

does not significantly inhibit mOct3 or mPmat at nanomolar concentrations.  

Desipramine (1 mM) was identified as a general inhibitor of the five mouse transporters 

of metformin.  Understanding the extent of inhibition by a chemical inhibitor at specific 

concentrations in combination with transporter expression patterns and levels in different 

organs will allow us to evaluate the contributions of individual transporters in specific 

organs to the disposition of cationic drugs.   

OCT3 and PMAT have been proposed as major transporters that mediate 

metformin uptake from the lumen of the gut into the enterocytes in humans (Graham et 

al., 2011; Zolk, 2011).  Additionally, as previously mentioned, recent studies in the 
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Thakker laboratory demonstrate that OCT1 is also localized in the apical membrane in 

Caco-2 cells, and mouse and human intestinal tissues.  However, functional uptake data 

confirming that transporters mediate the intestinal absorption of metformin are lacking in 

the literature. The inhibition of metformin apical uptake into mouse intestinal tissue by 

desipramine (Figure 2.5) provides the first direct evidence for the involvement of cation-

selective transporters in metformin uptake from the gut lumen in the mouse.  However, 

uptake inhibition of metformin by desipramine was only 40%, which was less than 

expected.  This suggests the possibility of other transporters of metformin in mouse small 

intestine which are not sensitive to desipramine.  Alternatively, interactions of metformin 

with secreted proteins found in the extracellular matrix such as mucins, which are 

negatively charged due to extensive glycosylation, or non-specific cell surface binding 

(Han, 2013) may overestimate the transporter-mediated uptake of metformin.  However, 

additional studies with selective transporter inhibitors and/or knockout animals are 

required to identify the major metformin transporters and determine their relative 

contributions to the intestinal absorption of metformin.   

 In conclusion, the data presented here indicate that transporters localized in the 

apical membrane of mouse small intestine mediate the uptake of metformin from the gut 

lumen into the enterocytes.  By defining the kinetics of metformin uptake in singly-

transfected transporter cell lines, it was shown that the affinity of metformin for specific 

cation-selective mouse transporters was similar to that observed in the corresponding 

human orthologs.  This is a critical step in being able to use mouse model for the study of 

metformin intestinal absorption as gross differences between mouse and human could 

lead to misinterpretation of data due to poor correlation.  Although metformin uptake by 
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the mouse transporters was relatively similar to uptake by the human orthologs, large 

differences were observed in the inhibitory potencies of some metformin transporter-

selective chemical inhibitors, such as quinidine and mitoxantrone.  The kinetic and 

inhibitory potency parameters determined in this study can improve our understanding of 

specific transporters that may be important contributors in the major organs of drug 

disposition in the mouse.   
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2.F. TABLES AND FIGURES 
 
Table 2.1. Uptake kinetic parameters of mouse cation-selective transporters for 
metformin 

mouse  human 

Transporter  Km  Vmax  Km  Vmax 

   mM  nmol/min/mg protein  mM 
nmol/min/mg 

protein 
OCT1  0.7 ± 0.1  4.2 ± 0.2  3.1 ± 0.31 1.75 ± 0.091

OCT2  1.3 ± 0.2  20 ± 0.1  0.6 ± 0.031 1.56 ± 0.031

OCT3  2.4 ± 0.2  21.3 ± 0.5  2.6 ± 0.21 4.51 ± 0.151

MATE1  0.3 ± 0.06  1.7 ± 0.09  0.78 ± 0.12 4.46 ± 0.592

PMAT  4.3 ± 0.8  3.8 ± 0.3  1.32 ± 0.113 16.68 ± 0.943

 
1Han 2013, 2Tanihara 2007, 3Zhou 2007 
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Table 2.2. Inhibitory potencies of organic cations for mouse and human 
transporters 
 
A) Inhibitory potencies of organic cations for mouse transporters expressed in CHO cell 

lines 

Inhibitor mOct1 IC50 mOct2 IC50 mOct3 IC50 mMate1 IC50 mPmat IC50 
  µM µM µM µM µM 

MPP+ 9.0   ±  1.4 3.1  ± 1.2 23    ± 1.1 175.9 ± 1.2 17    ± 1.8 
Quinidine 29    ±  1.2 190 ± 1.3 120  ± 1.3 760    ± 2.1 260  ± 1.6 
Corticosterone 72    ±  1.3 2.3  ± 1.3 3.1   ± 1.2       >300      >300 
Desipramine 1.2   ±  1.1 11   ± 1.3 84.3 ± 1.1 282.4 ± 1.4 39.3 ± 1.3 
Mitoxantrone 67.1 ±  1.1  260 ± 1.2 345  ± 1.2 168    ± 1.3     >1000 
Pyrimethamine 3.6   ±  1.2 3.0  ± 1.4 5.4   ± 1.3 0.087 ± 1.3 43.5 

 
B) Inhibitory potencies of organic cations for human transporters; data taken from Nies 

2011, Engel 2005, and Han 2013.  Values in ( ) indicates Km values, N.A. = not 
available. 

Inhibitor OCT1 IC50 OCT2 IC50 OCT3 IC50 MATE1 IC50 PMAT IC50 
  µM µM µM µM µM 

MPP+ 15 - 32 2.4 - 54 (47 - 83) (100) (33) 
Quinidine 5.4 - 114 7.1 - 446 14 - 124 29 25.3 
Corticosterone 7 - 22 5.4 -34 0.12 - 0.29 >20 450.5 
Desipramine 5.4 - 57 16 14 56 32.6 
Mitoxantrone 3 135 174 N.A. N.A. 
Pyrimethamine 3.8 10 N.A. 0.077 N.A. 
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A)  E)  

B)  F)     

C)  G)     

D)       

Figure 2.1. Structure of metformin and chemical inhibitors of metformin 

transporters.  A) Metformin; B) Quindine; C) Desipramine; D) Corticosterone; E) 

Mitoxantrone; F) Pyrimethamine; G) MPP+ 
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Figure 2.2. Cation-selective transporter gene expression in the small intestine of 

C57BL/6J mice.  Intestinal expression of mOct1–3, mPmat, and mMate1 in the 

duodenum, proximal jejunum, and ileum of mouse small intestine.  Data are expressed as 

levels relative to the lowest detected transporter, mOct2. 
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A) B) 

 
Figure 2.3. Kinetics of metformin uptake by mOct1–3, mMate1, and mPmat.  A) 

CHO cells stably transfected with mOct1, mOct2, mOct3, mMate1, or mPmat were 

incubated with [14C]metformin (50 µM) at 37ºC for the indicated time.  B) Uptake of 

[14C]metformin (indicated concentrations) was determined in the transfected or 

untransfected cells.  Nonspecific cell-associated radioactivity was determined by 
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measuring the compound uptake in control cells and these values were subtracted from 

values obtained in the transporter-transfected cell lines.  Data represent mean ± S.D. of 

experiments conducted in triplicate. 
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Figure 2.4. Inhibition of mOct1-, mOct2-, mOct3-, mMate1-, or mPmat-mediated 

[14C]metformin (50 µM) uptake by cationic inhibitors of these transporters in the 

respective mouse transporter-expressing CHO cell lines.  Data represent mean ± S.D. 

of experiments conducted in triplicate. 
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Figure 2.5.  Metformin apical uptake in mouse intestinal tissue in the presence or 

absence of desipramine.  Metformin (50 µM) uptake across the apical membrane of 

mouse intestinal tissue over 5 minutes in the presence (dark bar) or absence (open bar) of 

the cation-transporter inhibitor desipramine.  Data represent mean ± S.D. of experiments 

conducted in triplicate.  **p<0.01.  
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Chapter 3 

 
METFORMIN UPTAKE AND ACCUMULATION IN THE SMALL INTESTINE OF 

MOUSE IS MEDIATED BY APICALLY LOCALIZED TRANSPORTERS  
 

3.A. OVERVIEW 

Metformin transport across Caco-2 cell monolayers, as previously reported by 

Proctor et al. (2008), showed clear evidence of transporter-mediated apical uptake and 

efflux, and a lack of basolateral efflux.  In the previous chapter, using in vitro and ex vivo 

methods, intestinal mouse orthologs of putative human metformin transporters were 

characterized, and chemical inhibitors of these transporters, such as desipramine and 

quinidine were identified.  Although it is believed that transporters mediate the intestinal 

disposition of metformin, direct in vivo evidence to substantiate this speculation is 

lacking. Utilizing ex vivo and in vivo strategies, this study investigates (1) whether human 

and mouse intestinal tissues demonstrate similar kinetic behavior towards metformin as 

that observed in Caco-2 cell monolayers and (2) the role of cation-selective transporters 

in the enterocytic accumulation of orally administered metformin.  In vitro chemical 

inhibition experiments were also used in the current study to identify a cation-selective 

transporter inhibitor with a low bioavailability and consequently higher concentration in 

the small intestine so as to induce a stronger inhibitory effect.  The apical uptake 

clearance versus transport clearance of metformin showed a similar trend in mouse and 

human intestinal tissues and in Caco-2 cell monolayers, where metformin uptake was 
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high compared to its transport, suggesting rate-limiting basolateral efflux of metformin 

via the transcellular route.  Pentamidine was identified as a potent inhibitor of mouse 

organic cation transporters 1-3 (Oct1-3), plasma membrane monoamine transporter 

(Pmat), and multidrug and toxin extrusion transporter 1 (Mate1); it decreased metformin 

uptake in transporter-transfected CHO cell lines by >90% at 1 mM concentrations.  In 

metformin pre-loaded transporter-transfected cells, pentamidine inhibited metformin 

efflux via mOcts by >84% and via mPmat and mMate by 35% and 46%, respectively.  At 

3 mM, the pan cation transporter inhibitor, quinidine inhibited all transporter-mediated 

metformin efflux (except via mPmat) by >90%.  Surprisingly, desipramine (a potent 

inhibitor of metformin uptake) trans-stimulated metformin efflux via mOct1, mOct3, and 

mMate1 by ~25–50%, and via mPmat by ~900%.  In mouse intestinal tissue, basolateral 

efflux of metformin was unaffected by transporter inhibitors, quinidine and pentamidine.  

However, quinidine and pentamidine reduced the apical efflux of metformin by 33% and 

24%, respectively, although the pentamidine-mediated decrease was not statistically 

significant.  Orally administered metformin (0.65 mg/kg) in mice showed an intestinal 

accumulation as high as 25% at 15 minutes.  Oral co-administration of pentamidine (3.4 

mg/kg) reduced metformin accumulation in the promixal 9-cm region of the small 

intestine.  In control mice, accumulated metformin decreased by ~80% between 15 – 60 

minutes in the proximal region of the intestine, whereas the levels of accumulated 

metformin remained constant in pentamidine-treated animals.  These results suggest that,  
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in mice, the intestinal accumulation of metformin is mediated by apical cation-selective 

transporters.  Additionally, the interaction of metformin with transporters in the apical 

and basolateral membranes of mouse enterocytes is similar to that observed in Caco-2 

cell monolayers and in human intestinal tissue.  
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3.B. INTRODUCTION 

 The biguanide metformin is the first-line therapy for the treatment of type 2 

diabetes mellitus. The mechanisms of the anti-hyperglycemic effects of metformin vary 

in different organs.  For example, in the liver metformin induces a reduction in 

gluconeogenesis, whereas in peripheral tissues such as muscle and fat, it has been 

reported to increase glucose uptake via upregulation of glucose transporter expression in 

the plasma membrane (Hundal et al., 1992; Grisouard et al., 2010; Lee et al., 2011).  The 

intestine has also been identified as a pharmacological site of action where metformin is 

believed to reduce glucose absorption and increase glucose disposal (Caspary and 

Creutzfeldt, 1971; Wilcock and Bailey, 1991; Bailey et al., 1994; Proctor, 2010).  High 

levels of intestinal accumulation of metformin observed in both mouse and human 

intestine (Wilcock and Bailey, 1994; Bailey et al., 2008) also suggest the likelihood of 

the small intestine as a pharmacologic target and possible source of increased lactate 

production, one of metformin’s few but serious side effects. However, despite these 

reports that implicate the intestine as a pharmacological site of metformin’s effects, the 

intestinal absorption of this drug remains poorly understood.   

The oral absorption of metformin is extensive with its bioavailability reported to 

be as high as 60%, which decreases with increasing doses (Sambol et al., 1996).  Flip-

flop kinetics was also observed following oral dosing of metformin, suggesting that this 

drug exhibits rate-limiting intestinal absorption (Pentikainen et al., 1979).  Significant 

research has been conducted to understand the disposition of metformin with respect to 

elimination organs such as the liver and kidney (Wang et al., 2002; Kimura et al., 2005a; 

Kimura et al., 2005b; Kusuhara et al., 2011).  However, few reports have described the 
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mechanism of the intestinal absorption of this widely used drug.  Proctor et al. (2008) 

described studies in Caco-2 cell monolayers which showed that during absorptive 

transport, efficient transporter-mediated uptake of metformin across the apical membrane 

and poor basolateral egress was observed.   Metformin efflux across the apical membrane 

was ~7X higher than efflux across the basolateral membrane.  Additionally, kinetic 

modeling of cellular uptake and absorptive transport data indicated that metformin is 

transported predominantly via the paracellular route, as was also suggested by Nicklin et 

al. and Saitoh et al. (Nicklin et al., 1996; Saitoh et al., 2004).  Due to the small size of the 

paracellular space, transport via this route should typically account for only a small 

percentage of drug transport across the intestinal epithelial monolayer.  However, 

metformin has a high fraction of dose absorbed despite being administered in gram 

quantities daily.  This apparent discrepancy between in vitro and in vivo data was 

reconciled by proposing the “sponge” mechanism of oral absorption in which metformin 

absorption is enhanced by repeated access to the paracellular space by transporter-

mediated cycling (i.e., uptake and efflux of metformin between the gut lumen and the 

enterocytes (Figure 1.7)). 

 Transporters of the solute carrier (SLC) family, including the OCTs (SLC22A), 

MATE proteins (SLC47A), as well as PMAT (SLC29A) possess metformin transport 

activity (Kimura et al., 2005a; Kimura et al., 2005b; Masuda et al., 2006; Tanihara et al., 

2007; Zhou et al., 2007; Tzvetkov et al., 2009; Proctor, 2010).  Both PMAT and OCT3 

have been postulated as intestinal uptake transporters of metformin, yet functional data to 

support this notion thus far is speculative in nature (Zhou et al., 2007; Graham et al., 

2011; Zolk, 2011).  Additionally, based on a recent study conducted in mouse and human 
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intestinal tissues, and Caco-2 cells, OCT1 is shown to be localized in the apical 

membrane of these three systems (Han et al., 2013), and may mediate metformin uptake 

from the gut lumen. 

 The results in this current study show that, similar to observations in Caco-2 cell 

monolayers, metformin uptake, efflux across the apical membrane, and accumulation in 

mouse intestinal tissue are transporter-mediated. This important finding supports the 

novel intestinal absorption mechanism of metformin proposed by Proctor et al. (2008) 

and indicates that the mouse is an appropriate model for conducting in vivo studies that 

can assist in further elucidating the processes involved in the intestinal absorption of 

metformin.  
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3.C. METHODS 
 
Materials 

Previously generated (Chapter 2) transporter-transfected Chinese hamster ovary 

(CHO) cell lines were used.  Ham’s F-12 Nutrient mixture, penicillin-streptomycin-

amphotericin B solution (100X), and geneticin were obtained from Life Technologies 

(Grand Island, NY, USA).   Fetal bovine serum (FBS) was obtained from Atlanta 

Biologicals (Lawrenceville, GA, USA), and Hank’s balanced salt solution (HBSS) with 

calcium and magnesium was purchased from Cellgro (Manassas, VA, USA).  Metformin, 

desipramine, pentamidine, quinidine, sodium hydroxide (NaOH), sodium dodecyl sulfate 

(SDS), hydrochloric acid (HCl), and Krebs Bicarbonate Ringer (KBR) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA).  [14C]Metformin (110 mCi/mmol) was 

purchased from Moravek Biochemicals and Radiochemicals (Brea, CA, USA).  Ketamine 

(100 mg/mL) and xylazine (20 mg/ml) were purchased from Med-Vet International 

(Mettawa, IL, USA). 

Cell Culture 

Stably transfected Chinese hamster ovary (CHO) cells expressing mouse Oct1, 

Oct2, Oct3, Pmat, or Mate1 were grown in F-12 Nutrient Mixture (Ham’s) with 10% 

FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin B, and 

0.25 mg/ml geneticin.  Cells were grown at 37ºC in a 90% humidified atmosphere with 

5% CO2. Transporter-transfected cells were seeded into sterile 24-well plates (Corning 

Life Sciences, Tewksbury, MA, USA) at a density of 100,000 cells/cm2.  Growth medium 

was changed on alternate days and the day prior to experimentation.   

Metformin Uptake Studies in CHO Cell Lines 
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Uptake experiments were conducted 5–7 days post-seeding.  Cells were pre-

incubated with transport buffer (HBSS with 10 mM HEPES and 25 mM glucose, pH 7.2) 

for 30 minutes at 37ºC.  Uptake assays were initiated by replacing the pre-incubation 

buffer with 400 µl of transport buffer containing 50 µM [14C]metformin (0.1 µCi/ml) in 

the presence of pentamidine or vehicle control.  [14C]Metformin uptake was terminated 

by aspirating the metformin solution.  Cells were washed 3X with 750 µl of 4ºC transport 

buffer, and lysed in 500 µl of 0.1 N NaOH/0.1% SDS for 4 hours with shaking to ensure 

complete lysis of cells.  Cellular accumulation of [14C]metformin was measured by liquid 

scintillation spectrometry and the uptake rate was assessed at time points previously 

determined to be within the linear range (5 minutes for all transporters except for mOct2 

(30 seconds)).  Protein concentration was measured by the bicinchoninic acid (BCA) 

protein assay (Pierce Chemical, Rockford, IL) using bovine serum albumin as a standard. 

Metformin Efflux in CHO cells 

 [14C]Metformin (0.5 mM; 0.2 µCi/ml) dissolved in transport buffer was incubated 

with cells overexpressing each of the mouse transporters of metformin for 30 minutes to 

preload the cells.  Metformin solution was aspirated and the cells were washed 3X with 

ice cold transport buffer and replaced with 37ºC buffer in the presence or absence of 

inhibitors to initiate the experiment. The amount of extracellular metformin present in the 

buffer at 10 minutes was quantified by liquid scintillation spectrometry. 

Animals 

 Male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, 

ME, USA), and were 9-12 weeks of age at the time of experimentation.  The animals 

were housed according to the requirements and approved protocols of the Association for 
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Assessment and Accreditation of Laboratory Animal Care and the University of North 

Carolina at Chapel Hill Institutional Animal Care and Use Committee. The animal 

housing facility was under the supervision, care, and husbandry of the University of 

North Carolina at Chapel Hill’s Division of Laboratory Animal Medicine. All animals 

were maintained under a normal 12-hour day/night schedule. 

Patients 

Jejunal intestinal tissue, which is normally discarded following resection during 

gastric bypass surgery, was collected from an adult patient undergoing elective gastric 

bypass surgery at the University of North Carolina Hospitals at Chapel Hill (Chapel Hill, 

NC, USA). To preserve patient confidentiality and to obtain approval from the 

Biomedical Institutional Review Board (IRB), the age, gender, health, or other personal 

identifying information were not collected. The procurement of intestinal tissue from 

gastric bypass surgical patients and all investigational experiments were performed in 

accordance with the approval from the IRB of the Office of Human Research Ethics at 

the University of North Carolina at Chapel Hill and in compliance with federal 

regulations. 

Diffusion Chamber Studies using Human and Mouse Intestinal Tissues 

Intestinal Tissue Preparation 

During the standard operational procedure for a gastric bypass surgery, ~10 cm 

segment of human jejunum is surgically resected during the creation of a 

gastrojejunostomy. Following surgical resection and excision, the intestinal tissue was 

immediately placed in 500 ml of oxygenated ice cold KBR with 50% complete EDTA-

free protease inhibitor (Roche, Basel, Switzerland), and transported from the surgical 
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suite to the laboratory for experimentation. The tissue was “stripped” of the exterior 

seromusculature and serosa layers by sharp resection. The intestinal epithelium was 

mounted between two halves of a diffusion chamber insert.  The entire procedure was 

completed in <1 hour from the time the tissue was excised from the patient.  

To prepare mouse intestinal tissue for diffusion chamber studies, male C57BL/6J 

mice (Jackson Laboratories, Bar Harbor, ME) were anesthetized by an intraperitoneal 

(IP) injection of ketamine (140 mg/kg) and xylazine (15 mg/kg). Intestinal tissue was 

excised from the proximal jejunum and immediately washed in 4ºC KBR buffer with 

50% complete EDTA-free protease inhibitors (Roche, Basel, Switzerland), as described 

previously (Dufek et al., 2013).  Briefly, a glass rod was gently inserted through a 2 cm 

intestinal segment, and the intestinal tissue was cut longitudinally and mounted between 

two halves of a diffusion chamber insert. The insert was placed between two side-by-side 

diffusion chambers (Physiologic Instruments, San Diego, CA, USA) and bubbled with 

oxygen/carbon dioxide gas (95%/5%) to maintain viability.   

 For metformin transport and uptake studies, intestinal tissue segments were 

preincubated with KBR buffer (37°C) for 30 minutes and initiated by replacing the buffer 

in the apical chamber with 3 ml of 50 µM [14C]metformin (0.1 µCi/ml) diluted in KBR 

buffer in the presence of transporter inhibitors or vehicle controls.  To determine 

metformin uptake, buffer containing metformin was aspirated after the designated 

incubation period and the tissue was quickly removed, washed 3X with ice cold KBR, 

and dissolved with 2N NaOH at 50°C for 1 hour.  Samples were neutralized with 2 N 

HCl and [14C]metformin concentrations were determined by liquid scintillation 

spectrometry.  Clearance (CL) values for metformin uptake across the apical membrane 
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and transport from the apical to basolateral compartment in ex vivo studies were 

calculated using equation 3: 

CL 	  

where dX/dt represents the mass of metformin (X) accumulated or transported over time 

(t) and Co represents the initial concentration in the donor chamber.   

Metformin Efflux Studies 

 Intestinal tissue segments were preloaded with 0.5 mM [14C]metformin (0.3 

µCi/ml) in KBR buffer (37ºC) was added to each chamber for 30 minutes prior to 

initiation of efflux experiments.  [14C]Metformin was removed and the intestinal tissue 

was quickly washed 3X with 4ºC KBR buffer.  The experiment was initiated by adding 3 

ml of warm KBR buffer (37ºC) to both apical and basolateral chambers in the presence or 

absence of inhibitors (1 mM pentamidine or 200 μM quinidine).  Buffer samples (500 µl) 

from the apical and basolateral chambers were collected at designated time points with 

replenishment of equal amounts of buffer to maintain a constant volume. 

Intestinal Accumulation of Metformin in Mouse Small Intestine Upon Oral 

Administration 

[14C]Metformin (0.65 mg/kg) in 0.9% NaCl was administered with or without 

pentamidine (3.4 mg/kg to achieve an intestinal lumen concentration of 1 mM) by oral 

gavage at a volume of 10 ml/kg to overnight fasted mice.  Mice were sacrificed at 15, 30, 

and 60 minutes.  Intestinal tissue was quickly harvested, rinsed and flushed with ice cold 

phosphate buffered saline, and divided into 9 cm segments.  Each tissue segment was 
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dissolved in 2 N NaOH at 50ºC for 1 hour, neutralized with 2 N HCl, and the amount of 

[14C]metformin was determined by liquid scintillation spectrometry. 

Data Analysis 

 Significance between two test groups was determined using a Student’s t-test 

using GraphPad Prism® version 4.03 for Windows (GraphPad Software Inc., La Jolla, 

CA, USA).  All data are reported as mean ± S.D.  The criterion for a significant 

difference in values was p < 0.05. 
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3.D. RESULTS 

Apical Uptake and Absorptive Transport of Metformin in the Intestinal Tissue from 

Mice and Humans 

The absorptive (apical-to-basolateral) transport of metformin in mouse intestinal 

tissue was compared to its apical uptake clearance to determine if these processes are 

similar between human and mouse enterocytes and whether the uptake and transport 

processes in the intestinal tissues mimic those in the Caco-2 cell monolayers (Proctor et 

al., 2008). The metformin uptake and transport studies in the Caco-2 cell monolayers 

suggest that apical uptake of metformin is efficient, the egress across the basolateral 

membrane is rate-limiting, and consequently apical cellular uptake of metformin was 4.6-

fold higher than its transport into the basolateral compartment.  The transcellular route 

plays a minor role in the transport of metformin across Caco-2 cells monolayers, and 

approximately 90% of the drug traverses the monolayers via the paracellular route.  In the 

current study, a similar ratio of 4.6-fold higher metformin apical uptake versus absorptive 

transport was observed in mouse intestinal tissue, although in human intestinal tissue, the 

ratio of apical uptake to absorptive transport was 17 (Figure 3.2). 

Inhibition of Metformin Uptake in Mouse Cation-selective Transporter-transfected 

CHO Cells by Pentamidine 

 In Chapter 2, inhibitors of metformin uptake by several cation-selective 

transporters were evaluated.  However, preliminary in vivo results showed that the 

inhibitors, which were effective in attenuating uptake of metformin in an in vitro/ex vivo 

model, may not work well as in vivo inhibitors of metformin intestinal uptake/efflux 

because they may be absorbed too rapidly.  Therefore, pentamidine was considered for an 
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in vivo inhibitor of metformin intestinal uptake/efflux because of its ability to partition 

into subcellular compartments and cellular retention.  Metformin uptake into mouse 

transporter-transfected CHO cell lines was conducted in the presence of pentamidine at a 

range of concentrations (1–1000 µM) to determine the inhibitory potency of pentamidine 

towards mouse Oct transporters (Figure 3.3).  A concentration of 10 µM pentamidine 

decreased mouse Oct1-, Oct2-, and Oct3-mediated metformin uptake by 90.3 ± 0.8, 97.2 

± 2.0, and 79.4 ± 1.1%, respectively, suggesting that these mouse transporters exhibit 

greater sensitivity towards pentamidine than their human orthologs (IC50 values of 10.6 – 

16.4 µM) (Ming et al., 2009).  Pentamidine at 10 µM inhibited mPmat- and mMate1-

mediated metformin uptake by 67% and 54%, respectively.  Greater than 90% inhibition 

of all transporter-mediated metformin uptake was observed with 1 mM pentamidine. 

Inhibition of Metformin Efflux by Organic Cation Compounds in Transporter-

transfected CHO Cells and Mouse Small Intestinal Tissue 

When CHO cells that individually expressed mouse intestinal transporters Oct1-3 

were preloaded with metformin and then incubated with 1 mM pentamidine, metformin 

efflux was inhibited by >84% (Figure 3.4).  mPmat and mMate1 were less sensitive to 

pentamidine inhibition than Octs, as the inhibitor reduced metformin efflux by 35% and 

46%, respectively.  In Chapter 2, quindine and desipramine were shown to broadly inhibit 

uptake of metformin via mouse cation-selective transporters. In the current study, the 

inhibitory effects of quinidine (3 mM) on metformin efflux were comparable to that of 

pentamidine (i.e, ~80% for mOct1, mOct3, and mMate1; 68% for mOct2) with the 

exception of Pmat-mediated efflux, where no inhibition was observed.  Unexpectedly, 3 

mM desipramine, a compound previously shown to inhibit >90% metformin uptake via 
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the mouse transporters (Chapter 2) stimulated metformin efflux by approximately 25–

50% via mOct1, mOct3, and mMate1 and 900% via mPmat.  No inhibition or stimulation 

of Oct2 by desipramine was observed. 

To evaluate the ability of inhibitors to block transporter-mediated metformin 

efflux in mouse intestinal tissue, the pan inhibitors quinidine and pentamidine were 

utilized.  Desipramine was not evaluated due to the trans-stimulatory effect observed in 

the previous in vitro experiments.  Following preloading of metformin into mouse 

intestinal tissue, its efflux across the apical membrane was found to be ~6.8-fold higher 

than its basolateral efflux (Figure 3.5A).  In the presence of quinidine, the apical efflux of 

metformin decreased by 33%, with no significant difference in its basolateral efflux.  

Similar results were obtained with pentamidine, although the 24% decrease in metformin 

apical efflux in the presence of pentamidine did not reach statistical significance (Figure 

3.5B). 

Intestinal Accumulation of Orally Dosed Metformin With or Without Orally Dosed 

Pentamidine 

 The accumulation of metformin in mouse intestinal tissue after oral dosing was 

evaluated at 15, 30, and 60 minutes.  As high as 25% of the metformin dose was 

associated with intestinal tissue at the earliest time point, and decreased to ~12% by 60 

minutes (Figure 3.6).  Metformin accumulation after oral dosing in the proximal 9-cm 

segment of small intestine was reduced when pentamidine was co-administered (Figure 

3.7).  Additionally, when metformin was administered alone, drug that had accumulated  
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at 15 minutes post metformin dose had decreased by ~75% by 60 minutes, with no 

corresponding change in pentamidine-treated animals.  In the middle and distal regions of 

the small intestine, a reduction in metformin accumulation was not observed in the 

presence of pentamidine.  
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3.E. DISCUSSION  

Intestinal transporters such as OCT1, OCT3, and PMAT have been postulated as 

mediators of metformin transport across the small intestine into the portal circulation 

(Zhou et al., 2007; Graham et al., 2011; Zolk, 2011).  However, despite the speculation 

that transporters mediate the intestinal disposition of metformin, there is currently no 

direct in vivo evidence to support the involvement of cation-selective transporters in the 

intestinal absorption of metformin.  In the present study, the uptake and transport 

clearance of metformin in intestinal tissue was compared to previously reported 

observations in Caco-2 cell monolayers (Figure 3.2).  The results clearly indicate that 

metformin transport processes (i.e., efficient apical uptake and poor basolateral egress) in 

mouse and human intestinal tissues were similar to the mechanisms observed in Caco-2 

cell monolayers.  These results showed that the use of a mouse model to study the 

mechanism of intestinal absorption of metformin as proposed, based on the use of the 

Caco-2 cell monolayers, was quite appropriate.   

An important experimental approach that can demonstrate the involvement of 

transporters in oral absorption is to show that the absorptive transport is reduced by a 

known inhibitor of putative transporters implicated in the absorptive process.  In previous 

studies conducted in mouse transporter-expressing CHO cells, several inhibitors were 

identified as pan inhibitors of metformin uptake, including desipramine and quinidine 

(Chapter 2).  However, it became clear upon preliminary experimentation that these 

inhibitors may not be very effective in inhibiting the intestinal transporters in vivo 

because they may be absorbed too rapidly from the first part of the intestine (e.g. 

duodenum and anterior jejunum).  Therefore, additional in vitro experiments were 
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conducted in the current study to identify cation-selective transporter inhibitors that 

would be retained longer in the intestinal lumen or epithelium, enabling them to be 

present at higher levels in the small intestine and to produce a robust inhibitory effect 

compared to a rapidly absorbed inhibitor.  Pentamidine, a diamidine drug with two 

positive charges at physiologic pH, is used for the treatment of human African 

trypanosomiasis, pneumocystis pneumonia, and leishmaniasis, and is administered 

parenterally due to poor oral absorption.  Metformin uptake studies conducted in the 

transporter-transfected cell lines showed that pentamidine was in fact a potent inhibitor 

not only of mOct1-3, as was the case for human orthologs, but also for mPmat and 

mMate1 (Figure 3.3).  A pentamidine dose of 3.4 mg/kg (10 ml/kg), which results in an 

intestinal concentration of 1 mM required to inhibit intestinal uptake of metformin in 

mouse, was well below the reported oral LD50 value (lethal dose, 50%) of 300 mg/kg 

making this inhibitor suitable for use in in vivo studies (Pentamidine MSDS).  

Additionally, 1 mM pentamidine in the extracellular buffer was shown to trans-inhibit 

efflux of metformin from pre-loaded transporter-transfected cell lines.  This is an 

important finding given that efflux of metformin across the luminal membrane of the 

enterocytes that line the small intestine is a key feature of its intestinal absorption 

mechanism proposed by Proctor et al. (2008). 

In Chapter 2, diffusion chamber studies showed that the pan cation-transporter 

inhibitor, desipramine, attenuated apical uptake of metformin.  Interestingly, the current 

studies showed that desipramine trans-stimulated the efflux of metformin that was pre-

loaded in the mouse transporter-expressing cells, a phenomenon which can occur when 

the uptake of a competitive transporter inhibitor (i.e., substrate) increases the efflux 
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activity of a bidirectional transporter (Proctor et al., 2008).  In contrast, quinidine and 

pentamidine inhibited the efflux of preloaded metformin from CHO cell lines and mouse 

intestinal tissue (Figures 3.4 and 3.5).  Although the 25% reduction in metformin efflux 

from mouse intestinal tissue by pentamidine was not significant, it demonstrates a trend 

towards inhibition of transporter-mediated apical efflux of metformin.  Collectively, the 

ex vivo and in vitro efflux studies that show a weaker inhibitory effect of pentamidine 

(compared to quinidine) on mMate1-mediated efflux of metformin, indicate that mMate1 

potentially contributes to the apical efflux of metformin in mouse intestinal tissue.  

Assuming that mMate1 is localized in the apical membrane of the enterocytes, the above 

conclusion regarding the role of mMate1 in the efflux of metformin seems reasonable 

based on its pH-dependent activity.  Since MATE transporters are proton antiporters 

(Otsuka et al., 2005), the pH gradient in the upper region of the small intestine would 

enhance its activity as an efflux transporter.  However, further experiments using 

transporter knockdown cell lines, selective chemical inhibitors, or transporter knockout 

animals are necessary to confirm this hypothesis.  The results from the inhibition studies 

in mouse intestinal tissue and the lack of efflux inhibition of metformin across the 

basolateral membrane strongly support the findings of Han et al. (2013), which suggest 

that mOct1 is in the apical membrane of the small intestine.  These data are also in 

agreement with results from studies conducted in Caco-2 cell monolayers that showed no 

evidence of transporter-mediated basolateral efflux of metformin (Proctor et al., 2008). 

The percent of the metformin dose associated with the small intestinal tissue of 

mouse at 15 minutes was ~25% (Figure 3.6).  This finding of high metformin 

accumulation in the intestine is consistent with studies reported by Bailey et al. (2008) in 



 

76 
 

which obese type 2 diabetes patients showed 30–300  times higher concentration of 

metformin in jejunum compared to plasma (Bailey et al., 2008).   The effect of 

pentamidine on the intestinal accumulation of metformin after oral dosing is most 

prominent in the proximal region of the small intestine, where pentamidine reduced the 

accumulation by ~55% at both 15 and 30 min.  At 60 min, however, metformin 

accumulation increased by >2-fold when pentamidine was co-administered.  Because 

metformin accumulation was not measured at an earlier time point, it is conceivable that 

the maximum reduction of metformin accumulation by pentamidine is underestimated, 

since the control group shows a decline in accumulation between 15-60 minutes.  

Interestingly, pentamidine-treated mice show steady levels of metformin accumulation 

over time, suggesting that metformin efflux from the enterocytes may be inhibited.  A 

lack of reduced metformin accumulation (in the presence of pentamidine) in the lower 

region of the small intestine is not surprising given that pentamidine concentrations are 

likely to decrease further down the gastrointestinal tract.  The use of chemical inhibitors 

in in vivo studies can be challenging since the absorption kinetics of the inhibitor must be 

considered during data interpretation.  While pentamidine is poorly bioavailable, it is a 

known substrate of human OCT1 and therefore presumably, like metformin, accumulates 

in the small intestinal tissue (Ming et al., 2009).  The observed trend for higher 

accumulation of metformin in region 2 of the small intestine (Figure 3.7) in the presence 

of pentamidine can be explained by higher amounts of metformin in the gut lumen due to 

uptake inhibition in the upper portion of the intestine.  However, confirmation of this 

would require measuring the luminal concentration of metformin in the various regions of 

the intestine. 
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In summary, it has been shown that accumulation of metformin in the gut wall is 

mediated by apical cation-selective transporters combined with a lack of efficient 

basolateral egress.  Based on studies utilizing the transporter inhibitors, pentamidine and 

quinidine, cation-selective transporters also mediate the efficient efflux of metformin 

across the apical membrane of mouse small intestine.  Collectively, these studies show 

that the mouse intestine behaves similar to the Caco-2 cell monolayers in terms of apical 

uptake and efflux as well as lack of basolateral efflux. Therefore, mouse can be used to 

test the mechanism of the intestinal absorption of metformin as proposed by the “sponge 

hypothesis” mentioned in the introduction, based on the transport and uptake behavior of 

metformin in the static Caco-2 cell monolayer model.   
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3.F. FIGURES 
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Figure 3.1.  Chemical structures of A) metformin and B) pentamidine.  
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Figure 3.2.  Uptake versus transport clearance of metformin in Caco-2 cell 

monolayers, as well as mouse and human intestinal tissue.  [14C]Metformin (50 µM; 

0.1 µCi/ml) uptake (open bars) and transport (blue bars) was expressed as clearance 

values to compare the cellular uptake rate of metformin and absorptive flux.  Uptake and 

transport clearance values were calculated by normalizing the mass of metformin 

accumulated intracellularly or transported into the basolateral chamber to the initial 

concentration of metformin in the donor chamber.  Data are represented as the mean ± 

S.D. (n=3).  
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Figure 3.3.  Inhibition of transporter-mediated metformin uptake by pentamidine in 

singly-transfected CHO cells.  [14C]Metformin (50 µM; 0.1 µCi/ml) uptake into the 

cells was measured in the presence of increasing concentrations of pentamidine (open 

bars = 1 µM; blue bars = 10 µM; green bars = 100 µM; purple bars = 1000 µM). Data are 

represented as the mean ± S.D. (n=3) and expressed as % control of metformin uptake in 

the absence of pentamidine. 
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Figure 3.4.  Trans-inhibition and -activation of metformin efflux from CHO cells 

that are singly-transfected with cation transporters by pentamidine, quinidine, and 

desipramine.  [14C]Metformin (500 µM; 0.2 µCi/ml) efflux from singly-transfected CHO 

cells was measured in the presence of 1 mM pentamidine (green bars), 3 mM quinidine 

(purple bars), or 3 mM desipramine (blue bars).  Data are represented as the mean ± S.D. 

(n=3) and expressed as % control of metformin efflux in the absence of pentamidine. 

m
Oct

1

m
Oct

2

m
Oct

3

m
Pm

at

m
M

at
e1

0

25

50

75

100

125

150

Pentamidine
Quinidine
Desipramine

800
900

1000
1100

M
et

fo
rm

in
 E

ff
lu

x 
(%

 C
o

n
tr

o
l)



 

82 
 

A)                                            B) 

 

Figure 3.5.  Inhibition of metformin efflux from mouse intestinal tissue by quinidine 

and pentamidine.  Efflux from [14C]metformin (500 µM; 0.3 µCi/ml) pre-loaded 

intestinal tissue (30 min) was determined in the absence (open bars) or presence (red 

bars) of transporter inhibitors, A) quinidine (200 μM), or B) pentamidine (1 mM).  Data 

are represented as the mean ± S.D. (n=3) and are expressed as % of apical efflux in the 

absence of inhibitors. 
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Figure 3.6.  Total metformin accumulation in the small intestine of mouse.  Total 

accumulation  of [14C]metformin (0.65 mg/kg; 10 ml/kg; 0.3 µCi/ml) in the small 

intestinal tissue of mouse following oral administration was determined at 15, 30, and 60 

min.  Data are expressed as the total mass of metformin associated with intestinal tissue 

and as a percent of the total metformin dose administered.  Data are represented as the 

mean ± S.D. (n=3). 
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Figure 3.7.  Intestinal accumulation of metformin with and without orally co-

administered pentamidine.   Small intestinal accumulation of [14C]metformin (0.65 

mg/kg; 10 ml/kg; 0.3 µCi/ml) with and without orally co-administered pentamidine (3.4 

mg/kg) was evaluated in mouse.  Intestinal tissue was harvested at 15, 30, and 60 min.  

Each region represents a 9 cm segment of the small intestine, with region 1 being the 

most proximal segment and region 4 the most distal segment.  Data are represented as the 

mean ± S.D. (n=3). 
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Chapter 4 

 
APICAL UPTAKE AND EFFLUX TRANSPORTERS ENHANCE THE ORAL 

ABSORPTION OF METFORMIN VIA THE PARACELLULAR ROUTE: PROOF OF 
CONCEPT FOR THE NOVEL ORAL ABSORPTION MECHANISM OF 

METFORMIN 
 

4.A. OVERVIEW 

 The oral absorption of metformin is believed to occur through an intestinal 

transporter-mediated process.  Based on studies conducted with Caco-2 cell monolayers, 

Proctor et al. (2008) put forward a “sponge” mechanism for the intestinal absorption of 

metformin which proposes that intestinal transporters mediate cellular uptake and efflux 

of metformin across the apical but not the basolateral membrane, and indirectly augment 

the oral absorption of metformin via the paracellular route through increased exposure of 

metformin to the paracellular space.  The goal of the current study is to test this 

hypothesis in an in vivo mouse model. Transporter-selective chemical inhibitors, namely 

desipramine and pentamidine, when dosed orally, decreased the area under the plasma 

concentration-time curve (AUC0-6 hrs) of orally dosed metformin by ~35%.  Orally co-

administered pentamidine did not affect the pharmacokinetic concentration-time profile 

of intravenously administered metformin.  In portal vein cannulated mice, the portal and 

systemic exposures of orally dosed metformin were reduced by ~3.6-fold, with a 

corresponding 3.7-fold decrease in portal bioavailability (Fg) when pentamidine was co-

administered.  Further, pentamidine significantly reduced metformin plasma AUC when 
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its oral administration was delayed by 15 minutes after metformin oral dosing.  This 

result provided circumstantial evidence that not only the transporter-mediated uptake of 

metformin into the enterocytes, but also its transporter-mediated efflux contributed to the 

oral absorption of metformin.  Parallel studies with ranitidine, which has been shown to 

have a significant transcellular component in its intestinal absorption, showed no change 

in its pharmacokinetic profile with delayed administration of pentamidine.  The oral 

absorption of mannitol, a paracellular probe, was also unaffected by pentamidine.  These 

results, taken together, provide strong evidence for the “sponge” mechanism of the oral 

absorption of metformin, in which the oral dose of metformin is taken up into the 

intestinal epithelium, with a small percentage of the dose absorbed via the paracellular 

route. Subsequently, the metformin dose that is trapped in the enterocytes egresses into 

the lumen.  This allows some of the dose to be absorbed paracellularly, some of the dose 

to transit forward in the lumen due to intestinal motility, and some to be taken up again 

into the enterocytes.  The experimental design employed in this work provides a novel 

strategy to study the contributions of paracellular versus transcellular route for drug 

absorption in vivo.  
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4.B. INTRODUCTION 

The widely prescribed antidiabetic drug metformin is a highly hydrophilic 

compound.  As described in previous chapters, physicochemical properties of metformin 

suggest that passive diffusion through biological membranes such as the intestinal 

epithelium is an inefficient process.  However, metformin is a well-absorbed drug with an 

oral bioavailability as high as ~60%, and its dose-normalized absorption is reduced at 

higher oral doses (Pentikainen et al., 1979), suggesting that transporters may play a role 

in its oral absorption. 

Metformin shows substrate activity for a number of solute carrier (SLC) 

transporters that are classisfied as polyspecific organic cation transporters (Kimura et al., 

2005a; Kimura et al., 2005b; Masuda et al., 2006; Koepsell et al., 2007; Tanihara et al., 

2007; Zhou et al., 2007; Nies et al., 2009).  Included in this group of known metformin 

transporters are the organic cation transporters 1, 2, and 3 (OCT1-3; SLC22A1-3), the 

plasma membrane monoamine transporter (PMAT; SLC29A4), and the multidrug and 

toxin extrusion transporters 1 and 2 (MATE1-2; SLC47A1-2).  Recent results have 

identified the high affinity choline transporter (CHT; SLC5A7) and the serotonin reuptake 

transporter (SERT; SLC6A4) as additional metformin transporters (Han et al., 2012).  The 

mOcts in the sinusoidal membrane of hepatocytes mediate uptake of metformin from the 

systemic circulation into the liver cells, where metformin is known to exert its major 

pharmacologic effect of reducing gluconeogenesis.  Similarly, in renal proximal tubules, 

mOcts in the basolateral membrane mediate renal excretion, the major route of 

elimination of metformin (Wang et al., 2002).  On the apical membrane of mouse 

hepatocytes and renal cells, the proton antiporters mMate1 and mMate2 are the major 
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transporters responsible metformin efflux into the bile and urine, respectively (Ito et al., 

2010; Kusuhara et al., 2011; Ito et al., 2012).  However, the role of transporters in the 

intestinal absorption of metformin is predominantly limited to studies conducted in a 

cellular model of intestinal absorption, Caco-2 cell monolayers, which have identified  

OCT1, PMAT, SERT, and HCT as the major contributors to the luminal uptake of 

metformin (Han et al., 2012). 

In 2008, Proctor et al. proposed a novel absorption mechanism of metformin 

based on detailed kinetic studies of this drug across the apical and basolateral membranes 

of Caco-2 cell monolayers, as well as its overall transport across this cellular intestinal 

model.  In these studies, efficient apical uptake and efflux of metformin was observed 

with poor rate-limiting basolateral efflux via the transcellular route.  A three-

compartment kinetic model utilized to describe metformin permeability in the Caco-2 

Transwell® model revealed that >90% of metformin was transported across the epithelial 

monolayer via the paracellular route (Proctor et al., 2008).  These results are consistent 

with previous estimates of an 88% paracellular flux of metformin in Caco-2 cell 

monolayers (Saitoh et al., 2004), where a more simple methodology was implemented in 

which the apparent passive permeability determined in a parallel artificial membrane 

permeability assay (PAMPA) was subtracted from apparent permeability (Papp) values 

determined in Caco-2 cells.   The findings in these studies by Proctor and Saitoh are 

interesting given that paracellular absorption is generally considered inefficient, due to 

the narrow space between adjacent epithelial cells and the presence of the protein 

complex known as tight junctions.  The high oral absorption of metformin is in stark 

contrast to the 16% bioavailability of mannitol (Artursson and Karlsson, 1991), which is 
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a classic paracellular probe.  To explain the discrepancy in data between the efficient oral 

absorption of metformin in humans and its predominantly paracellular transport in vitro, 

the “sponge” mechanism of the intestinal absorption of metformin was proposed by 

Proctor et al (2008) that was consistent with the observed transport data in the Caco-2 

cell model as well as the clinical observations showing dose-dependent absorption, “flip-

flop” kinetics, and relatively flat plasma concentration versus time profile after oral 

dosing of metformin (Proctor et al., 2008).  This hypothesis stated that cation-selective 

transporters facilitate the uptake of metformin across the luminal membrane of 

enterocytes, and due to a lack of efficient basolateral efflux, metformin accumulates in 

the enterocytes.  As the dose of metformin in the intestinal lumen travels distally through 

the gastrointestinal tract, the concentration gradient across the apical membrane reverses, 

and efflux of metformin occurs through electrogenic cation transporters.  This cycling of 

metformin between the gut lumen and enterocytes increases the access of metformin to 

the paracellular space.  Therefore, the paracellular absorption of metformin is indirectly 

augmented by apical transporter-mediated uptake and accumulation of metformin and its 

subsequent transporter-mediated efflux. 

This novel intestinal absorption mechanism of metformin was based on studies in 

Caco-2 cell monolayers, which is a static system. Gastrointestinal transit of metformin is 

undoubtedly a prerequisite for the enhanced oral absorption of this drug, which could not 

be tested in the Caco-2 cell model or other cell-based static models.  Therefore, the goal 

of the current study is to test the key components of the proposed novel absorption 

mechanism of metformin in an in vivo mouse model, such as its transporter-mediated 

luminal uptake and efflux in the small intestine, and the contribution of each to the oral 
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absorption of the drug.   The transporter-mediated apical uptake and efflux of metformin, 

as well as its poor efflux across the basolateral membrane observed in the Caco-2 cell 

model were also demonstrated  in ex vivo mouse intestinal tissue in diffusion chamber 

studies (Chapter 3).  Therefore, the mouse was considered an appropriate model for 

studies designed to test the proposed absorption mechanism for metformin. The results 

show that (1) apical uptake transporters mediate the in vivo intestinal absorption of 

metformin, and (2) transporter-mediated apical efflux contributes to the enhanced 

absorption of metformin, thus providing support for the “sponge hypothesis” explaining 

the absorption mechanism of metformin. 
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4.C. METHODS 

Materials 

Metformin, desipramine, pentamidine, and ranitidine were purchased from 

Sigma-Aldrich (St. Louis, MO, USA).  [14C]Metformin (110 mCi/mmol) and 

[3H]pentamidine (500 mCi/mmol) were purchased from Moravek Biochemicals and 

Radiochemicals (Brea, CA, USA).  Sterile saline (0.9% NaCl) was purchased from Med-

Vet International (Mettawa, IL, USA). 

Animals 

Male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, 

ME, USA) and were 9-12 weeks of age at time of experimentation.  The animals were 

housed according to requirements and approved protocols of the Association for 

Assessment and Accreditation of Laboratory Animal Care and the University of North 

Carolina at Chapel Hill Institutional Animal Care and Use Committee. The animal 

housing facility was under the supervision, care, and husbandry of the University of 

North Carolina at Chapel Hill’s Division of Laboratory Animal Medicine. All animals 

were maintained under a normal 12-hour day/night schedule. 

Pharmacokinetic Studies in Conscious Mouse 

Mice were fasted overnight prior to the initiation of each study.  [14C]Metformin 

(0.65 mg/kg; 15 µCi/ml), [3H]pentamidine (3.4 mg/kg; 20 μCi/ml), or [3H]mannitol (0.1 

mg/kg; 5 μCi/ml) dissolved in 0.9% NaCl was administered by oral gavage in a volume 

of 10 ml/kg.  For metformin and mannitol studies, serial blood samples (~20 µl/sample) 

were collected from the saphenous vein at 5, 15, 30, 60, 120, 240, and 360 minutes post 

dose administration utilizing heparinized microhematocrit capillary tubes (Fisher 
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Scientific, Pittsburgh, PA, USA).  A [3H]pentamidine oral pharmacokinetic profile was 

determined by serial sampling at 5, 15, 30, 45, 60, 120, and 180 minutes.  For chemical 

inhibition studies, orally dosed metformin was co-administered with desipramine (8.0 

mg/kg) or pentamidine (3.4 mg/kg) to achieve intestinal concentrations of 3 mM and 1 

mM, respectively.  Pentamidine doses used in delayed administration were similar to 

those that were co-administered with metformin.  However, in experiments involving 

delayed administration, metformin or ranitidine and pentamidine were given as two 

separate oral doses (i.e., 0.65 mg/kg; 5 ml/kg for metformin or 1.57 mg/kg; 5 ml/kg for 

ranitidine, and 3.4 mg/kg; 5 ml/kg pentamidine 15 or 30 min post metformin 

administration).  Blood samples were collected at 5, 15, 30, 45, 60, 90, and 120 minutes.   

To determine systemic plasma concentrations of [14C]metformin (0.65 mg/kg; 5 ml/kg) 

following intravenous dosing, serial blood samples were collected from the saphenous 

vein at 5, 15, 30, 45, 60, 90, and 120 min post dose administration.  For intravenous 

studies using the transporter inhibitor pentamidine (3.4 mg/kg; 10 ml/kg), mice were 

orally dosed with inhibitor followed by an intravenous metformin dose administered at 

the estimated Tmax of pentamidine.  Plasma concentrations of [14C]metformin, 

[3H]mannitol, and [3H]pentamidine (10 μl) were quantified by liquid scintillation 

spectrometry. 

Metformin Pharmacokinetics in Portal Vein Cannulated Mouse 

Male C57BL/6J mice were anesthetized by an intraperitoneal injection of 

urethane (1.5 g/kg). The depth of anesthesia was monitored throughout the surgical 

procedure and experiment by the toe pinch reflex.  The portal vein was cannulated as 

previously described by Dufek et al. (2013).  Briefly, an abdominal midline incision was 
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made and the small intestine was gently pushed aside to expose the portal vein, which 

was cannulated by implanting a saline-filled silastic catheter (0.025” OD x 0.012” ID) 

(Braintree Scientific, Braintree, MA, USA) with a 26 gauge needle tip (Becton 

Dickinson, Franklin Lakes, NJ, USA) attached to the end into the portal vein.  The 

cannula was secured to the surrounding tissue with a micro-serrefine vascular clamp 

(FST, Foster City, CA, USA).  Following the oral administration of [14C]metformin (0.32 

mg/kg; 5 ml/kg) in the absence and presence of pentamidine (1.7 mg/kg; 5 ml/kg), portal 

blood samples were collected at 5, 15, 30, 60, and 120 minutes.  Matched systemic 

samples via the tail vein were collected from the same animal and [14C]metformin plasma 

concentrations were determined by liquid scintillation spectrometry. 

The portal bioavailability was calculated as previously described by Dufek et al. 

(2013).  Briefly, the mass of metformin absorbed (MAbsorbed) following oral 

administration was calculated according to equation 1, 

Equation 1: 

 

where MPortal is the mass of drug in the portal circulation and MSystemic is the mass of drug 

in the portal circulation returned from the systemic circulation.  The Mportal and MSystemic 

were calculated using the portal blood flow (Qportal), the area under the portal plasma 

concentration-time curve (AUCportal), and the area under the systemic plasma 

concentration-time curve (AUCsystemic) as described below. 

Equation 2: 

∗ 	 ∗  

Equation 3: 
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∗ ∗  

Plasma concentrations of metformin in the portal and systemic circulations were 

converted to blood concentrations using the blood-to-plasma ratio (RB) of metformin, 

which was calculated by spiking [14C]metformin into fresh mouse plasma or whole blood 

to obtain a final concentration of 5 μM.  Blood samples were incubated at 37°C with 

shaking for 30 minutes and then centrifuged for 10 minutes at 9000 x g at 4ºC for 10 

minutes.  [14C]metformin concentrations in the plasma samples were measured by liquid 

scintillation spectrometry.  Fg was calculated using equation 4, 

Equation 4: 

 

Ranitidine Assay 

Ranitidine was extracted from 10 μl of mouse plasma by protein precipitation 

with 100 μl of acetonitrile and 10 μl of 100 nM famotidine as an internal standard.  

Samples were vortexed for 1 minute, centrifuged at 9000 x g at 4°C for 10 minutes, and 

the supernatant was transferred to a clean tube.  Ranitidine and famotidine were 

quantified by liquid chromatography-mass spectrometry (LC-MS/MS).  The LC/MS/MS 

system comprised LC10-ADVP quaternary pumps (Shimadzu, Kyoto, Japan) that were 

fitted with a CTC-PAL autosampler (LEAP Technologies, Carrboro, NC, USA) and a 

Sciex API-4000 triplequadropole mass spectrometer (Applied Biosystems, Foster City, 

CA, USA).  The mobile phases consisted of (A) 0.1% formic acid in water and (B) 0.1% 

formic acid in methanol.  The chromatographic separation of analytes was performed 

with a linear gradient of 0–80% B at a flow rate of 0.75 mL/min over four min and a 

sample injection volume of 4 μl.  The analytical column was a Zorbax SB-C18 2.1x50 
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mm, with a 5 μm particle size (Agilent, Santa Clara, CA, USA).  The samples were 

ionized using TuroboIonSpray ion source and the positive ions were monitored at the 

following Q1/Q3 transitions (m/z): 315.15→176.2 for ranitidine and 338.40→189.0 

famotidine (internal standard).  Calibration standard curves that ranged from 1–5000 nM 

were linear (R2
 > 0.99) with accuracy ± 15% nominal and were analyzed at the beginning 

and end of the run.  The data were acquired and processed using Analyst 1.4.1 (Applied 

Biosystems, Foster City, CA, USA). 

Data Analysis 

Pharmacokinetic parameters of orally and intravenously administered metformin 

were obtained by fitting a two-compartment model to metformin plasma concentration 

versus time data after oral and intravenous administration in mice using WinNonlin 

Version 5.3 (Pharsight, Mountain View, CA, USA).  Significance was determined using a 

Student’s T-test for two treatment groups or One-Way analysis of variance (ANOVA) 

followed by a Tukey’s post-test for three groups using GraphPad Prism® version 4.03 for 

Windows (GraphPad Software Inc., La Jolla, CA, USA).  A minimum of three mice were 

used for each treatment group.  All data are reported as mean ± S.D.  The criterion for a 

significant difference in values was p<0.05.  



 

99 
 

4.D. RESULTS 

Effect of Cation-selective Transporter Inhibitors, Desipramine and Pentamidine, on 

the Oral and Intravenous Pharmacokinetics of Metformin in Conscious Mouse 

Metformin (0.65 mg/kg) was administered via oral gavage in the presence and 

absence of the pan cation-selective transporter inhibitors desipramine (8.0 mg/kg) or 

pentamidine (3.4 mg/kg) to C57BL/6J mice (Figure 4.1A).  The inhibitor doses used in 

this study were selected with the goal of achieving intestinal concentrations previously 

shown (Chapters 2 and 3) to inhibit metformin uptake by the putative mouse transporters 

of metformin (i.e., mOct1-3, mPmat, and mMate1).  Systemic plasma AUC0-6hrs of 

metformin was reduced by 37% and 33% (p<0.01) in the presence of desipramine and 

pentamidine, respectively, compared to control mice (Figure 4.1B).   Desipramine and 

pentamidine decreased the estimated maximal concentration (Cmax ) of metformin by 55% 

and 52% (p<0.01), respectively. 

To minimize the possibility of confounding  systemic effects of inhibitors, 

pentamidine, a compound with a poor oral bioavailability, was chosen for subsequent in 

vivo studies.  To determine whether orally dosed pentamidine affects metformin 

disposition at the systemic level, metformin pharmacokinetics was evaluated after 

intravenous dosing of the drug with or without concurrent oral administration of the 

inhibitor (Figure 4.2A). Following an oral dose of pentamidine (3.4 mg/kg; 10 ml/kg), 

metformin was administered intravenously 30 minutes later, which is the estimated Tmax 

of pentamidine (Figure 4.3).   There was no statistically significant difference in 

metformin AUC0-120 min, steady state volume of distribution (Vss), or clearance (CL) 

between the pentamidine-treated and the control animals (Table 1).   
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Effect of Pentamidine on Metformin Pharmacokinetics in Portal Vein Cannulated 

Mouse 

Because oral and intravenous pharmacokinetic studies in conscious mice 

suggested transporter-mediated intestinal absorption of metformin, the effect of 

pentamidine on the intestinal absorption of metformin was further investigated using a 

portal vein cannulated mouse model.  This method allows for direct measurement of the 

drug in the portal circulation as the drug traverses the intestinal epithelium so that 

involvement of other organs in the pharmacokinetics of metformin could be minimized.  .  

Both the portal and systemic AUC0-120 min of metformin decreased by ~3.6-fold (p<0.05) 

in the presence of 1 mM pentamidine (Figure 4.4A/B; Table 4.2).  The calculated Fg in 

control and pentamidine-treated mice also decreased by 3.7-fold from 1.04 ± 0.51 to 0.28 

± 0.25, respectively.  These calculations were based on the experimentally determined 

blood-to-plasma ratio of 0.70 ± 0.04 and a previously reported portal blood flow rate in 

mouse of 1.45 ml/min (Davies and Morris, 1993).  The results from the study in 

conscious animals and in portal vein cannulated mice showed that cation-selective uptake 

transporters contributed to increased metformin absorption after oral dosing. 

Pharmacokinetic Behavior of Metformin and Ranitidine Following Delayed 

Administration of Pentamidine 

To assess the role of transporter-mediated intestinal apical efflux of metformin in 

the oral absorption of the drug, metformin was administered via oral gavage to allow 

accumulation in the small intestinal tissue.  At 15 or 30 minutes post-metformin dose, 

pentamidine or saline was orally administered (Figure 4.6A/B).  A statistically significant 

decrease of 27% (p<0.05) in metformin AUC0-120 min was observed with the 15 minute 
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delayed inhibitor dose while no change was associated with the 30 minute delayed dose 

(Figure 4.6C). The Cmax of metformin was reduced from 133 to 89 ng/ml (33% decrease) 

after delayed pentamidine administration compared to control, although this did not reach 

statistical significance.  Additionally, a flattened metformin oral plasma concentration-

time profile was observed after administration of pentamidine (15 and 30 min delay), 

indicating a decreased but sustained rate of absorption of metformin.   

The effect of a delayed pentamidine dose on the oral absorption of ranitidine was 

also evaluated.  Both paracellular and transcellular routes of absorption appear to 

contribute nearly equally to transport of ranitidine across Caco-2 cell monolayers at 

concentrations ranging from 0.1–2 mM (Bourdet et al., 2006).  Because the basolateral 

egress of ranitidine occurs via passive diffusion it was hypothesized that blocking the 

efflux (if any) of ranitidine by delayed administration of pentamidine would have no 

effect on ranitidine absorption. As expected, ranitidine pharmacokinetic profile was 

unaltered with no statistically significant changes in rantidine AUC0-120 min (Figure 4.7) 

upon delayed oral dosing of pentamidine. 

Effect of Pentamidine on Paracellular Absorption of Mannitol 

The oral pharmacokinetics of mannitol (0.1 mg/kg), a paracellular probe, was 

evaluated with or without co-administration of pentamidine to investigate effects of the 

inhibitor on paracellular transport.  Co-administration of pentamidine showed no 

statistically significant change in mannitol AUC0-60 min or plasma concentration at any of 

the individual time points (Figure 4.8).   
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4.E. DISCUSSION 

The oral absorption of metformin is assumed to be transporter-mediated, yet 

evidence for such an absorption mechanism has been lacking.  In Chapter 3, it was 

demonstrated that the pan cation-selective transporter inhibitor, pentamidine, reduced the 

in vivo intestinal accumulation of metformin in mice when orally co-administered with 

metformin.  Here it is shown for the first time that inhibitors of cation-selective 

transporters reduce the intestinal absorption of orally co-administered metformin (Figure 

4.1).  Collectively, these data clearly suggest that apical intestinal cation-selective 

transporters increase the oral absorption of metformin through a process that involves 

intestinal accumulation. 

Oral pharmacokinetic studies conducted with mMate1 knockout mice and 

mOct1/2 double knockout mice have shown an ~4-fold increase in metformin systemic 

AUC compared to control animals (Tsuda et al., 2009; Higgins et al., 2012).  The 

significant increase in Vss of metformin in mOct1/2 double knockout mice and not in 

mMate1 knockout animals was presumably due to differences in transporter localization, 

with mOct1 and mOct2 mediating basolateral uptake of metformin from blood, and 

mMate1 mediating its efflux on the apical membrane of both kidney and liver cells.  

Since these studies demonstrate the importance of transporters on the pharmacokinetics 

and tissue accumulation of metformin, the potential effects of pentamidine on 

intravenously administered metformin disposition was investigated.  In the current study, 

intravenously administered metformin in the presence of pentamidine showed no 

significant change in AUC or Vss of metformin, indicating that cation-selective 

transporters in the liver or kidney were not inhibited after an oral dose of pentamidine.  
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Furthermore, an oral pharmacokinetic study of pentamidine showed (Figure 4.2) that 

systemic concentrations of this inhibitor were lower than the levels required to 

substantially inhibit mouse metformin transporters, with the exception of mOct2 (Chapter 

3).  To explicitly show that the transporter inhibitory effects of pentamidine occur at the 

intestinal level, a portal vein cannulated mouse model was employed.  This method 

clearly demonstrated a significant decrease in the portal and systemic exposure of 

metformin upon co-administration of pentamidine (Figure 4.4), with a corresponding 3.7-

fold reduction in the calculated Fg, suggesting the involvement of intestinal transporters 

in the oral absorption of metformin. 

In the absence of co-administered pentamidine, the Fg of metformin in portal vein 

cannulated mice was 1.04 ± 0.51, which was comparable to a systemic bioavailability (F) 

of 1.04 that was calculated from metformin AUC values derived from a two compartment 

model fit to intravenous and oral metformin pharmacokinetic data.  The absolute oral F 

was ~2-fold higher than the reported F in humans (~40–60%), suggesting possible 

enterohepatic recirculation of metformin.   

Orally administered metformin is known to accumulate within the enterocytes of 

the small intestine in both human and mouse (Wilcock and Bailey, 1994; Bailey et al., 

2008) as was seen in the studies described in Chapter 3.  As per the “sponge hypothesis”, 

the accumulated metformin would efflux across the apical membrane and then get 

absorbed via the paracellular route rather than getting absorbed transcellularly by passage 

across the basolateral membrane.  To test this component of the hypothesis, a study was 

designed where orally administered metformin was allowed to accumulate within the 

enterocytes for 15 min before oral administration of the transporter inhibitor, pentamidine 
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(15 min is the time point at which highest intestinal accumulation of metformin was 

observed; Chapter 3).  It is important to note that the basolateral egress of metformin was 

not affected by pentamidine in metformin preloaded mouse intestinal tissue (Chapter 3).  

Several different hypothetical pharmacokinetic profiles of metformin can be conceived 

for this dosing regimen of metformin and pentamidine, which would reveal the 

mechanism of absorption of intestinally accumulated metformin (Figure 4.5).  (1) If 

accumulated metformin is not apically effluxed, and therefore crosses the basolateral 

membrane by a pentamidine-insensitive process, no change in the oral profile of 

metformin the metformin plus pentamidine group is expected (Figure 4.5A).  (2) Even if 

metformin is effluxed via apical transporters, it could still be absorbed transcellularly.  If 

apical efflux of metformin is followed by subsequent re-uptake into the enterocytes, an 

increase in its rate of absorption is expected when pentamidine is co-administered (i.e., 

shorter Tmax) (Figure 4.5B).  (3) Additionally, if metformin efflux is extensive and the 

apical transporters attenuate metformin absorption in the absence of inhibitor, 

pentamidine would cause an increase in systemic AUC (Figure 4.5C).  (4) Finally, 

accumulated metformin could be apically effluxed and absorbed paracellularly as its 

major route of absorption.  In this case, the co-administration of an apical efflux inhibitor 

would slow the absorption rate (Figure 4.5D). 

In the present study, the results provide strong evidence for the apical efflux of 

metformin followed by its paracellular absorption in mouse intestine.  A 15 minute 

delayed administration of pentamidine decreased the Cmax of metformin by 33% and 

generated a flattened and virtually indistinguishable Tmax (Figure 4.6A).  These data 

suggest that pentamidine reduces the apical efflux and therefore absorption rate of 
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metformin across mouse intestinal tissue.  It is possible that there is a small degree of 

mixing of pentamidine with unabsorbed metformin in the intestinal lumen, which could 

also reduce the absorption of metformin via inhibition of its apical uptake.  

Administration of pentamidine 30 minutes after metformin oral dosing also resulted in a 

flattening of the oral profile of metformin, although there was no change in systemic 

plasma AUC by the inhibitor treatment (Figure 4.6B/C).  This finding is consistent with 

the inhibition of apical efflux of metformin and not its apical uptake, since all of the 

accumulated metformin in the small intestine would be absorbed, although at a slower 

rate according to this model. 

Compartmental analysis of transport and accumulation of ranitidine shows that 

this drug traverses Caco-2 cell monolayers by paracellular and transcellular mechanisms 

(Bourdet et al., 2006).  Bourdet et al. reported that ranitidine is a substrate of OCT1 as 

well as the efflux transporter P-glycoprotein (P-gp) at the apical membrane of Caco-2 

cells (Bourdet et al., 2006; Bourdet and Thakker, 2006).  Inhibition of mOct1 by 

pentamidine had no effect on ranitidine pharmacokinetics as this drug is capable of 

crossing the basolateral membrane either by passive diffusion (pKa = 8.2) or an unknown 

efflux mechanism, independent of cation-selective transporters (Figure 4.7). 

Because these data support at least partial absorption of metformin via the 

paracellular route, the effect of pentamidine on the oral absorption of a classic 

paracellular marker, mannitol, was also evaluated.  A significant change in the systemic 

plasma AUC0-60 min of mannitol in the presence of pentamidine was not observed over the 

first hour.  Interestingly, a dramatic increase in plasma concentrations of mannitol was 

seen at later time points (≤ 90 minutes) in animals treated with pentamidine (data not 
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shown).  This high rate of mannitol absorption corresponds with the small intestinal 

transit time of approximately1 hr, and the time at which the oral doses would reach the 

large intestine in mouse (Hamada et al., 1999).  Krugliak et al. reported varying rates of 

mannitol absorption along the gastrointestinal tract of rat, with >5-fold higher mannitol 

permeability in the colon compared to jejunum (Krugliak et al., 1994).  This was 

attributed to the large amount of water re-absorption in the colon, leading to paracellular 

transport of mannitol by convective forces.  Because metformin absorption occurs 

predominantly within the small intestine, the potential effects of pentamidine on 

increased colonic absorption of the paracellular marker, mannitol, should not influence 

the paracellular absorption of metformin. 

The use of pentamidine as an inhibitor of polyspecific organic cation transporters 

allowed us to evaluate the role of efflux transporters in the oral absorption of metformin.  

However, the experiments conducted in this study were not designed to evaluate the 

contributions of individual transporters.  Given that both mOct1 and mMate1 are highly 

expressed in the mouse small intestine (see Chapter 2), they are the primary candidates 

that need to be investigated in future studies related to the intestinal absorption of 

metformin.  As with ranitidine, the efflux of organic cations via electrogenic transporters, 

such as the Octs is energetically unfavorable since they require a large concentration 

gradient to overcome the negative resting potential of the enterocytes (Koepsell et al., 

2007).  However, based on the findings of this study and previous reports demonstrating 

high intestinal accumulation of metformin in human and mouse intestine (Chapter 3; 

(Wilcock and Bailey, 1994; Bailey et al., 2008), a large concentration gradient very likely 

exists.  Maximum theoretical concentrations of metformin in the small intestinal lumen 
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following clinically relevant doses can range from ~15–25 mM (500–850 mg metformin / 

250 ml of water).  As the metformin dose in the lumen travels along the gastrointestinal 

tract, the luminal concentration would decrease while the intracellular metformin 

concentration in the enterocytes would remain high.  In addition to mOct1, mMate1 is a 

very likely candidate to facilitate egress of metformin across the apical membrane, based 

on gene expression data (Chapter 2).  The precise membrane localization of mMate1 in 

the small intestine has not been elucidated but future studies with transporter specific 

inhibitors or gene knockout/knockdown studies could confirm this.  If mMate1 is indeed 

on the apical membrane of enterocytes, the presence of a proton gradient, particularly in 

the upper small intestine would help facilitate metformin efflux, as MATE transporters 

are proton antiporters (Otsuka et al., 2005).  While these transporters are plausible 

mediators of metformin efflux in the mouse intestine, known species differences in 

transporter expression suggest that the relative roles of individual transporters in the 

intestinal absorption of metformin are likely to be dissimilar between mouse and humans.  

Bourdet reported high levels of OCT3 mRNA in the human small intestine compared to 

OCT1 and OCT2 (Bourdet, 2005), which may also play a role in metformin absorption.  

It is not within the scope of the current set of experiments to show evidence of any 

specific efflux transporter that may play a role in metformin intestinal absorption in 

humans.  Rather, inhibition of all putative transporters of metformin in mouse intestine 

via a pan inhibitor provides proof-of-concept that apical efflux of metformin enhances its 

paracellular absorption. 

In summary, the current studies show that (1) cation-selective transporters at the 

apical membrane of the mouse intestine mediate both the uptake and efflux of metformin, 
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which together facilitate the intestinal accumulation of this orally administered drug, and 

(2) apical efflux of metformin that is accumulated in the enterocytes enhances its 

paracellular absorption across the intestinal epithelium.  These studies also provide a 

relevant strategy to address paracellular versus transcellular absorption of intestinally 

accumulated drugs in an in vivo system.  This strategy can be applied to the study of 

metformin in a clinical setting or to understand the mechanism of intestinal absorption of 

other drugs. 
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TABLES AND FIGURES 

Table 4.1.  Oral and intravenous pharmacokinetic parameters of metformin 

A) Oral pharmacokinetic parameters of metformin 

 

 

 

 

 

 

 

B) Intravenous pharmacokinetic parameters of metformin 

 

 

 

 
 
 
 

 

 

 

  

Parameter Metformin Metformin 

+ Pentamidine 

Metformin  

+ Desipramine 

PO Dose (mg/kg) 0.65 0.65 0.65 

AUC (min*ng/ml) 16149 10789 10108 

CL/F (ml/min) 0.77 1.04 1.18 

V/F (ml) 34.6 68.6 108.9 

Tmax 28.2 36.2 32.7 

Cmax 152.0 77.7 74.8 

Parameter Metformin Metformin + Pentamidine 

IV Dose (mg/kg) 0.65 0.65 

AUC (min*ng/ml) 15477 13232 

Co (ng/ml) 1178 986 

CL (ml/min) 0.84 0.98 

Vss (ml) 21.3 20.1 
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Table 4.2. Portal and systemic exposure of metformin with or without co-

administered pentamidine 

 AUC0-120 min (min*ng/ml) 
Metformin Metformin + Pentamidine 

Average S.D. Average S.D. 

Portal Exposure 16464 6916 4496 2742 

Systemic Exposure 8560 3980 2372 903 



 

 

 

Figure 4.1.  Metformin AUC with and without co-administered transporter inhibitors.  A) Plasma concentration-time profile of 

[14C]metformin (0.65 mg/kg; 15 μCi/ml), with co-administered pentamidine (3.4 mg/kg) or desipramine (8.0 mg/kg) versus time.  B) 

AUC0-6hrs of metformin, metformin + pentamidine, and metformin + desipramine.  Serial saphenous vein blood samples were collected 

at 5, 15, 30, 60, 120, 240, and 360 min.  Data are represented as the mean ± S.D. with a minimum of 3 mice/group.  **p<0.01 
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Figure 4.2.  Plasma concentration versus time profile for pentamidine after oral 

administration.  Pharmacokinetic profile of [3H]pentamidine (3.4 mg/kg; 20 μCi/ml 

administered to mice via oral gavage.  Blood samples were collected at 5, 15, 30, 60, 120, 

and 180 min from the saphenous vein.  Plasma concentrations of pentamidine were 

determined by liquid scintillation spectrometry.  Data are represented as the mean ± S.D. 

of 3 mice. 
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Figure 4.3. Systemic disposition of metformin with and without co-administered pentamidine.  A) Plasma concentration-time 

profile following [14C]metformin (0.65 mg/kg; 15 μCi/ml) intravenous bolus dose 30 min after a pentamidine (3.4 mg/kg) or saline 

oral dose.  B) AUC0-120 min of metformin with or without co-administration of pentamidine.  Serial saphenous vein blood samples were 

collected at 2, 5, 15, 30, 60, 90, and 120 min. Data are represented as the mean ± S.D. with a minimum of 3 mice/group.  
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Figure 4.4. Effect of pentamidine on metformin absorption into the portal and 

systemic circulation of portal vein cannulated mice.  A) Metformin portal and 

systemic plasma concentration-time profiles in urethane-anesthetized mice following 

[14C]metformin (0.32 mg/kg; 30 μCi/ml) with and without co-administered pentamidine 

(1.7 mg/kg).  B) Portal and systemic AUC0-120min of metformin with and without 

pentamidine.  Data are represented as the mean ± S.D. with a minimum of 3 mice/group.  

*p<0.05.   
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Figure 4.5.  Hypothetical changes in metformin pharmacokinetics after delayed administration of pentamidine.  Expected 

profile changes with (Red) and without (Blue) delayed pentamidine administration when A) apical efflux transporters are not involved 

in intestinal absorption of metformin, B) apical transporters efflux metformin followed by its apical uptake and transcellular 

absorption, C) apical efflux transporters reduce metformin absorption through the transcellular route, and D) apical efflux transporters 

enhance metformin absorption through the paracellular route. 
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Figure 4.6. Metformin plasma concentration versus time profile after oral dosing of metformin with or without delayed 

administration of pentamidine. Plasma concentration-time profile following a [14C]metformin (0.65 mg/kg; 15 μCi/ml; 5 ml/kg) 

dose and subsequent oral pentamidine (3.4 mg/kg; 5 ml/kg) administration at A) 15 minutes post-metformin dose or B) 30 minutes 

post-metformin dose.  C) Metformin AUC0-120 min after delayed pentamidine or saline administration.  Serial saphenous vein blood 

samples were collected at 5, 15, 30, 45, 60, 90, and 120 min.  Data are represented as the mean ± S.D. with a minimum of 3 

mice/group.  *p<0.05. 
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Figure 4.7. Oral ranitidine pharmacokinetic profile after delayed pentamidine administration.  A) Plasma concentration-time 

profile following a ranitidine (1.57 mg/kg; 5 ml/kg) dose and subsequent oral pentamidine (3.4 mg/kg; 5 ml/kg) administration at 15 

min post-ranitidine dose.  B) Ranitidine AUC0-120 min after delayed pentamidine or saline administration.  Serial saphenous blood 

samples were collected at 5, 15, 30, 45, 60, 90, and 120 min.  Data are represented as the mean ± S.D. with a minimum of 3 

mice/group. 
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Figure 4.8.  Oral mannitol pharmacokinetic profile with and without co-

administered pentamidine.  Plasma concentration-time profile following a [3H]mannitol 

(0.1 mg/kg; 5 μCi/ml) oral dose with and without pentamidine (3.4 mg/kg).  Serial 

saphenous blood samples were collected at 5, 15,30, 45, and 60 min.  Data are 

represented as the mean ± S.D. with a minimum of 3 mice/group.   
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Chapter 5 

 
CONCLUSIONS 

 

The overarching goal of the research conducted in this dissertation project was to 

further our understanding on the intestinal absorption mechanisms of the anti-

hyperglycemic drug, metformin, in an in vivo system.  Metformin is the most widely 

prescribed drug for the treatment of type 2 diabetes, a disease that has reached global 

epidemic levels.  Despite the fact that this orally administered drug is well-absorbed and 

used by millions of patients, the fact remains that the mechanism by which the drug is so 

well-absorbed is not known.  The unique chemical structure of the drug, with two 

guanidine groups on a very small carbon skeleton (the drug has only four carbons and 

five nitrogens in it structure), with permanent charge and logDpH6.0 at –6.13, has led to a 

unique transport behavior of the compound.  It is taken up into the enterocytes or Caco-2 

cells across the apical membrane efficiently by transporters, but it is not able to cross the 

basolateral membrane due to the lack of appropriate efflux transporters in this membrane.  

When a high concentration builds up inside the cell, the drug is able to egress across the 

apical membrane via some of the bidirectional SLC transporters.  Because of a very 

inefficient transport of metformin across the basolateral membrane, over 90% of the 

absorptive transport of the drug is via the paracellular route.  These findings were 

synthesized to propose a novel mechanism of intestinal absorption for metformin by 

Proctor et al. (2008), which is coined as the “sponge hypothesis”.  This hypothesis 
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proposed that efficient apical uptake of metformin via transporters and poor basolateral 

efflux leads to accumulation of metformin in the enterocytes with a small percent of the 

drug being absorbed via the paracellular route.  The accumulated metformin is effluxed 

across the apical membrane by bidirectional transporters, and the drug in the lumen goes 

through the same cycle again.  This leads to overall improved efficiency of paracellular 

absorption of metformin, thus making it possible to have >60% oral bioavailability 

despite over 90% of its absorptive transport being paracellular.  

The specific studies conducted in this body of work were designed with the major 

objective of testing a novel absorption mechanism as proposed above by the Thakker 

laboratory (Proctor et al., 2008).  Although this absorption hypothesis was supported by 

human data from numerous clinical studies reported in the literature, the mechanism was 

conceptualized based on the transport properties of metformin in the Caco-2 Transwell® 

model, which is a static system.  However, key components of the proposed mechanism 

of the intestinal absorption of metformin clearly involve dynamic changes in drug 

concentration within the lumen of the small intestine due to drug uptake into enterocytes 

as well as gastrointestinal transit.  Therefore, the critical step in ultimately testing this 

hypothesis was to employ an in vivo model which would enable the evaluation of 

intestinal absorption of metformin and the role of drug transporters in this process. 

The mouse model was chosen for in vivo pharmacokinetic studies to evaluate the 

contribution of apical drug transporters in the oral absorption of metformin.  The use of 

this rodent model provides several advantages, including the availability of transporter 

knockout animals, several diabetic mouse models, as well as previous pharmacokinetic 

studies in mice reported in the literature to serve as a guide for the current research.  
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Because the mechanism of absorption of orally administered metformin includes the 

critical role of cation-selective transporters to facilitate metformin movement across the 

apical membrane of enterocytes, the first major step was to characterize the transporters 

found in mouse intestine.  This was necessary, not so much because the role of each 

transporter in the intestinal absorption of metformin was to be determined (this is a 

subject of a separate dissertation project being pursued by Kevin Han in the Thakker 

Laboratory), but to enable the identification of pan-transporter inhibitors of metformin 

apical transport and the design of critical experiments that would test the role of 

transporter-mediated apical uptake and efflux in enhancing the paracellular absorption of 

metformin.  The transporters of metformin in humans, which have been uncovered over 

the course of more than a decade of research in the field of organic cation transporters 

(OCTs) are the OCTs, multidrug and toxin extrusion (MATE) proteins, and plasma 

membrane monoamine transporter (PMAT).  The kinetic behavior of metformin toward 

these transporters that are capable of translocating metformin across cellular membranes 

has been extensively studied (Kimura et al., 2005a; Kimura et al., 2005b; Masuda et al., 

2006; Tanihara et al., 2007; Zhou et al., 2007).  However, at the outset of this project, the 

kinetic behavior of metformin towards the mouse orthologs of the putative human 

metformin transporters was not reported in the literature.   

To address this gap in knowledge, stable cell lines singly-expressing mOct1–3, 

mMate1, or mPmat transporters were generated (Chapter 2).  These cells were used to 

characterize metformin uptake kinetics in vitro and identify chemical inhibitors of 

metformin transporters that can be employed as pharmacologic tools in subsequent 

experiments in this dissertation project, with the purpose of implicating transporters in 
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the intestinal absorption of metformin.  Through this set of in vitro experiments, several 

chemical inhibitors of the mouse metformin transporters, mOct1–3, mMate1, or mPmat 

were investigated, which led to the identification of the pan inhibitors desipramine, 

quinidine, and pentamidine. 

 The second series of experiments were conducted to characterize metformin 

transport across the intestinal epithelium of mouse (Chapter 3).  Specific features of 

metformin transport in Caco-2 cell monolayers that were incorporated into the sponge 

hypothesis, such as transporter-mediated metformin intestinal accumulation and efflux, 

were evaluated in an ex vivo model.  Metformin accumulation in the enterocytes that line 

the small intestine has been shown in human, mouse, and in Caco-2 cell monolayers 

(Wilcock and Bailey, 1994; Bailey et al., 2008; Proctor et al., 2008).  Drug accumulation 

is expected during oral absorption when rate-limiting processes at the basolateral 

membrane of the intestinal epithelium slow the egress of drug into the portal blood 

circulation.  Studies conducted in Caco-2 cell monolayers identified a saturable 

transporter-mediated uptake process at the apical membrane, which was inhibited by 

classic organic cation substrates and inhibitors such as quinidine and 1-methyl-4-

phenylpyridinium (MPP+) (Proctor et al., 2008).  Implementing Ussing-type diffusion 

chambers allowed the evaluation of transporter-mediated processes at the apical 

membrane of mouse intestinal tissue.  Ex vivo studies using mouse intestinal tissues 

showed similar transport properties of metformin to those seen in Caco-2 cell monolayer 

studies.  The choice of appropriate concentrations of both metformin and transporter 

inhibitors in these studies was only possible due to the in vitro characterization of 

metformin uptake kinetics and transporter inhibitors in Chapter 2.  The data obtained 
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from diffusion chamber studies were supported by results from in vivo intestinal 

accumulation experiments involving co-administration of metformin and pentamidine.  

Decreased accumulation of metformin in the upper small intestine in the presence of the 

pan-transporter inhibitor is consistent with the absorption kinetics of pentamidine.  After 

establishing a role for the apical uptake transporters of mouse in the intestinal 

accumulation of metformin, the role of apical efflux of accumulated metformin from 

intestinal tissue was assessed in the diffusion chamber system.  Again, by first employing 

the previously generated transporter-expressing cell lines, the ability of various organic 

cationic compounds to trans-inhibit the apical efflux of metformin that had been pre-

loaded into cells was evaluated.  This strategy not only enabled the identification of 

potent inhibitors of metformin apical efflux, but also provided insight into the mechanism 

of inhibition by different compounds.  For instance, desipramine, which was identified as 

a pan uptake inhibitor, showed the ability to trans-stimulate metformin efflux via 4 of the 

5 transporters evaluated (mOct1, mOct3, mPmat, and mMate1, but not mOct2) 

suggesting substrate activity of desipramine for those transporters, and therefore a 

competitive mechanism of inhibition.  Utilizing desipramine as an efflux inhibitor was 

therefore ruled out, as desipramine-mediated inhibition of metformin efflux would only 

occur after achieving sufficient intracellular accumulation of desipramine, a process that 

would first increase metformin efflux through a trans-stimulatory effect. 

 The last and most critical phase of this research project was to understand the role 

of intestinal transporters of metformin in its in vivo biopharmaceutic and pharmacokinetic 

behavior in a mouse model (Chapter 4).  First, the cation-selective transporter inhibitors, 

desipramine and pentamidine, were evaluated for their ability to decrease the intestinal 
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absorption of metformin.  Both inhibitors, although likely acting through different 

mechanisms, showed similar abilities to decrease the intestinal absorption of metformin 

when orally co-administered.  This result provided evidence that intestinal transporters 

play a critical role in enhancing metformin absorption after oral dosing.  Because the oral 

absorption of desipramine is extensive compared to pentamidine, it was hypothesized that 

its intestinal concentration would decline rapidly and therefore decrease its utility as an 

effective intestinal transporter inhibitor.  Additionally, desipramine showed a clear trans-

stimulatory effect in metformin pre-loaded transporter-transfected cell lines, again 

suggesting that it would be a poor inhibitor in vivo.  In contrast to desipramine, 

pentamidine was a potent inhibitor of metformin uptake and efflux in in vitro and ex vivo 

studies.  To rule out the possible effects of transporter inhibitors on the systemic 

disposition of metformin, including alterations in its distribution or elimination, the effect 

of an orally dosed transporter inhibitor on intravenously administered metformin was 

evaluated.  Results from this study showed no effect of the inhibitor on the 

pharmacokinetic profile of metformin.  To definitively demonstrate that a transporter-

mediated process in the intestine was responsible for the observed increased systemic 

exposure of metformin, a portal vein cannulated mouse was used.  Data from this set of 

experiments showing a ~75% reduction in portal bioavailability of metformin by co-

administered pentamidine provided clear evidence of the involvement of intestinal 

transporters in metformin disposition.  Lastly, the contribution of metformin efflux 

transporters in the apical membrane of the enterocytes to the intestinal absorption of the 

drug was investigated by using a novel approach.  Pentamidine was previously shown to 

trans-inhibit metformin efflux in vitro in non-polarized transporter-transfected CHO cells, 



 

128 
 

while inhibition of basolateral efflux of metformin was not observed in ex vivo studies 

using mouse intestinal tissues (Chapter 3).  Hence, an experimental approach was 

designed to inhibit apical efflux of metformin that was accumulated in the intestine, and 

then investigate the effect of this inhibition on the oral absorption of metformin.  In this 

approach, metformin was dosed orally to mice, and then pentamidine was dosed at 

defined time intervals after the metformin dosing.  Results from delayed pentamidine 

dosing studies showed a reduction in the rate of metformin absorption, evidenced by a 

decreased metformin AUC and a flattened Cmax after pentamidine administration.  

Delayed pentamidine experiments evaluating ranitidine absorption, which is known to 

have a substantial transcellular absorption component, showed no difference between 

delayed saline and pentamidine treated animals.  Because these results suggest an apical 

efflux and subsequent paracellular absorption mechanism for metformin, the oral 

absorption of mannitol, a molecule used to assess paracellular transport across epithelial 

monolayers, was also assessed with and without pentamidine.  Mannitol absorption in the 

small intestine was not affected by co-administered pentamidine.  Collectively, these 

results provided strong circumstantial evidence that not only do metformin efflux 

transporters enhance the intestinal absorption of metformin in vivo, but they do so by 

augmenting paracellular absorption of metformin across the intestinal epithelium. 

 The series of in vitro, ex vivo, and in vivo studies reported in Chapters 2, 3, and 4, 

provided proof of concept that metformin uptake and efflux leading to metformin 

intestinal accumulation plays a critical role in the efficient absorption of metformin by 

enhancing access to the paracellular space.  The strategy of addressing the various 

components of the “sponge” mechanism was necessary because the direct inhibition of 
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paracellular transport is not experimentally feasible.  The development of these studies 

led to the design of a novel experimental method to indirectly assess the contribution of 

paracellular absorption through the inhibition of apical drug efflux.  This method may be 

applied to in vivo studies aimed at understanding the absorption mechanism of other 

compounds involving apical efflux.  While the goal of this work was to test the overall 

mechanism of oral absorption of metformin, future in vivo studies using selective 

transporter inhibitors or knockout animals will identify major transporters of metformin 

in the intestine.  These proposed studies will clarify the importance of individual 

transporters in the absorption of metformin and highlight the risk of potential drug-drug 

interactions. 

Elucidation of the intestinal absorption mechanism of metformin and its 

transporter-mediated accumulation in enterocytes impacts our understanding of the 

proposed metformin pharmacology in the intestine and observed metformin 

pharmacology in the liver.  The intestine has been directly implicated in the glucose 

lowering effect mediated by metformin by reducing the oral absorption of glucose 

(Bailey et al., 2008).  Seemingly contradictory reports demonstrate increased glucose 

uptake via the rapid translocation of the glucose transporter 2 (GLUT2) to the apical 

membrane of the small intestine in the presence of metformin (Walker et al., 2005).  

However, anaerobic glucose metabolism is higher in the enterocytes in the presence of 

metformin and may offset the increase in cellular glucose uptake (Wilcock and Bailey, 

1990; Bailey et al., 1992; Cuber et al., 1994).   Thus, understanding the contribution of 

drug transporters to metformin accumulation may also help in elucidating the role of the 

intestine in metformin’s most serious side effect, lactic acidosis.  Additionally, a first-
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pass pharmacodynamic effect has been demonstrated in rats dosed with metformin via 

various routes of administration (Stepensky et al., 2002).  The greatest pharmacodynamic 

effect was observed when a steady input of metformin was delivered to the liver through 

the portal vein, suggesting the slow rate of intestinal absorption enhances the efficacy of 

this anti-hyperglycemic.   Furthermore, recent studies in the Thakker laboratory have 

shown that adverse gastrointestinal side-effects, such as diarrhea and nausea commonly 

associated with the initiation of metformin therapy, are likely related to the inhibition of 

the serotonin transporter, elevated serotonin in the gut lumen, and consequently increased 

gastrointestinal motility (Han, 2013).  Because these side-effects has been reported to 

occur in ~50% of patients, and causes ~6% to eventually discontinue therapy (BMS, 

2009) and nearly 60 million metformin prescriptions are filled per year in the United 

States alone, the new knowledge gained from this dissertation work has the potential to 

positively affect the tolerability of metformin in a substantial number of individuals. 

In addition to the direct pharmacologic effects mediated by the intestine, potential 

drug-drug interactions may occur within the small intestine.  While interactions in the 

systemic circulation are generally associated with increased drug exposure and toxicity, 

intestinal drug interactions may lead to decreased drug efficacy.  Alternatively, reduced 

intestinal absorption of a drug could increase its intestinal exposure which may also have 

negative local effects.  The most well-known interaction of metformin occurs with 

cimetidine (Somogyi et al., 1987), although there are conflicting interpretations of the 

mechanism of this interaction.  In particular, OCT2 is generally considered the 

transporter protein involved in the metformin-cimetidine interaction (Giacomini et al., 

2010; FDA, 2012), yet new evidence strongly suggests that this interaction likely 
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involves the renal transporters MATE1 and/or MATE2-K that mediate the apical efflux 

of metformin into urine (Matsushima et al., 2009; Tsuda et al., 2009; Ito et al., 2012).  

Although no intestinal drug interactions with cimetidine have been reported, it is possible 

that cimetidine-mediated decreased absorption of metformin is masked by the wide 

therapeutic window of metformin that results in increased dosing of metformin when its 

desired pharmacodynamic effects are not attained.  Additionally, a reduction in the 

metformin oral absorption due to interactions with cimetidine may not be observed 

because of decreased metformin distribution and/or clearance rates resulting in increased 

metformin plasma concentration.  Future studies conducted with and without co-

administered cimetidine to determine metformin bioavailability (measure total metformin 

elimination in urine), or studies conducted in portal vein cannulated animals would allow 

more direct assessment of absorbed metformin and would clearly address the possible 

masking of the effects of co-administered cimetidine.  While this example of a drug 

interaction involving metformin transporters demonstrates the effects of decreased 

transporter function, polymorphisms that code for reduced protein expression or function 

may also lead a decrease in the oral absorption of metformin.  In fact, a growing body of 

work has identified several OCT1 and MATE polymorphisms that affect the disposition 

and pharmacology of metformin (Shu et al., 2007; Wang et al., 2008; Becker et al., 

2009a; Becker et al., 2009b). 

 Using this dissertation work as a guide, clinical studies can be designed to 

confirm the intestinal absorption of metformin in humans.  In vivo pharmacokinetic 

experiments in this dissertation work showed that transporter inhibitors decreased the 

intestinal absorption of a low dose (0.65 mg/kg) of metformin that generates a luminal 



 

132 
 

concentration of 0.5 mM (Chapter 4).  However, no decrease in oral absorption of this 

drug was observed at a higher dose (3.5 mg/kg) that resulted in ~8 mM intestinal 

concentrations (data not reported).  This was likely due to the inability of the transporter 

inhibitors to decrease metformin uptake that would occur at maximal velocity (i.e., 

transporter saturation) at the higher dose (Km values for mouse transporters range from 

0.3–4.3 mM; Chapter 2).  Although an inhibitory effect was not observed under these 

conditions, transporters would nonetheless aid in the accumulation of metformin into 

enterocytes.  To address whether transporters play a role in the intestinal absorption of 

metformin at clinically relevant doses, identifying inhibitors such as non-competitive or 

mechanism-based inhibitors is necessary, as either of these two inhibitor types would 

decrease the maximal velocity of metformin transporters.   Alternatively, taking 

advantage of known transporter polymorphisms and their associated reduced function 

may prove to be a useful approach.  However, unless the major intestinal transporter(s) of 

metformin is inactivated, changes in the pharmacokinetic behavior of this drug are not 

likely to be observed due to compensation by secondary transporters.  Nevertheless, 

clinical studies analogous to the mouse in vivo studies conducted in Chapter 4 could be 

designed with microdosing strategies, similar to those conducted with pyrimethamine to 

implicate MATE1 and MATE2-K in metformin renal efflux (Kusuhara et al., 2011).  

Although the possible effect of pyrimethamine on the oral absorption of metformin was 

not discussed by the authors, a statistically significant decrease in the fraction of dose 

excreted in urine from 77.7 to 64.5% over 24 hours at a 100 μg metformin dose was 

observed, whereas at a therapeutic dose of 250 mg, no difference was seen in the 

presence and absence of inhibitor.  While the pyrimethamine dose was selective for renal 
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MATE tranporters, the intestinal concentrations achieved in the Kusuhara study was 

above those required for metformin transporter inhibition in the intestine (Ito et al., 

2012).  In addition to the effects of other drugs on metformin disposition and 

pharmacology, the effect of metformin on the absorption of other cationic drugs cannot 

be ignored.  The high dose leading to the high concentration achieved in the small 

intestinal lumen is well above the Km of metformin for cation-selective transporters.  This 

has the obvious potential to decrease intestinal absorption of OCT, PMAT, and MATE 

transporter substrates.  Alternatively, drugs that may be effluxed across the apical 

membrane by any of the metformin transporters during intestinal absorption are at risk of 

higher than expected drug absorption when metformin is co-administered due to the high 

intestinal accumulation of metformin.  Clinical studies can easily test for this possible 

interaction by administering a high dose of metformin prior to the oral administration of 

the victim drug while monitoring for increased plasma concentrations. 

In summary, the studies conducted in this dissertation research have significantly 

enhanced our current understanding of the oral absorption of metformin.  The findings 

presented here provide evidence that the intestinal absorption of metformin is mediated 

by apical transporters with limited transport across the basolateral membrane due to the 

cationic nature of metformin and the lack of an efficient basolateral transporter.  

Additionally, through in vivo inhibition studies in mouse, strong circumstantial evidence 

is provided to support the sponge mechanism of metformin intestinal absorption which 

suggests high drug accumulation followed by the efflux of metformin across the apical 

membrane that enhances its paracellular absorption.  Future clinical studies utilizing the 

approaches developed within this project will confirm the intestinal absorption 
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mechanism of metformin in humans which will help in understanding the oral absorption 

mechanisms of other hydrophilic drugs and serve as a guide in the generation of future 

metformin-based therapies. 
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