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ABSTRACT 

Wei Gao 

Towards Quantitative Assessment of Human Functional Brain Development in the First 

Years of Life 

(Under the direction of Weili Lin) 

 

Characterizing the developmental process of human brain function is of critical 

importance not only in gaining insight into its maturing architecture but also in providing 

essential age-specific information for assessment and monitoring of both normal and 

abnormal neurodevelopment. The recent development of non-invasive neuroimaging 

techniques, particularly resting-state functional connectivity magnetic resonance imaging 

(rfcMRI) has opened a window into very early functional brain development. Together 

with diffusion tensor imaging (DTI), rfcMRI offers the unique opportunity to tackle a 

largely unknown area – early functional brain development as well as its structural 

underpinnings.  

In this dissertation, both rfcMRI and DTI were utilized to delineate early brain 

development.  Structurally, we found that white matter fiber tracts experience most rapid 

axonal development as well as myelination in the first year, followed by a much slower 

but steady growth thereafter.  Spatially, the central white matter tracts develop earlier 

than the peripheral ones.   

Functionally, by focusing on one of the most salient high-order cognitive 

networks during the resting condition (absence of any goal-directed tasks) – the “default-
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mode” network, our results showed early emergence of this network in neonates, 

followed by dramatic synchronization during the first year of life and an adult-like 

architecture in 2yr olds regarding the core regions. Moreover, we found the anti-

correlation (competing functions) between the default network and the task positive 

network is largely mediated by the frontal-parietal control system using both regional and 

newly designed network-level approaches, shedding light on brain’s functional 

interaction patterns at a network level.  Finally, focusing on the whole brain architecture, 

our results showed interesting patterns of brain’s functional organization development.  

Specifically, the brain’s functional architecture develops from more anatomically sensible 

to more functionally sensible; for the functional hubs, they gradually shift from sensory-

related cortices to higher-order cognitive function related cortices.  

In conclusion, by focusing on neural circuit development at regional, network as 

well as whole brain levels and coupling with structural elements, our results delineated 

interesting and important functional circuits growth patterns and may shed light on the 

potential principles guiding normal early brain functional development. 
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Chapter 1 

Introduction 

 

The brain is a complex, structured and dynamic system supporting a variety of 

functions, ranging from low level sensory functions to high level cognition.  Yet, to a 

large extent, our understanding of the brain remains rather limited.  Microelectrode 

recording methods have been extensively utilized in animals to obtain a wealth of data 

depicting the spiking electrical activity at a single or multi-neuron level as well as the 

post-synaptic input signal from a neural population (e.g. local field potential (LFP)) (1-3).  

However, due to the invasive nature of this method, its application in human subjects is 

largely limited. EEG (Electroencephalography), on the other hand, is non-invasive and 

capable of measuring the electrical activity produced by the firing activities of the 

underlying neuron population. As a result, EEG has been proved successful in 

neuroscience research as well as in clinical applications (4-9), especially in the diagnosis 

of epilepsy (4-7), coma (10, 11), brain death (8, 9), etc.  However, the poor spatial 

resolution of EEG largely prohibits region-specific interpretations of the underlying 

functional activity and hence greatly restricts its domain of application.  

Based on the assumption of a coupling between neuronal activity and 

microcirculation and using de-oxygen hemoglobin as an endogenous contrast agent (12-

14), functional magnetic resonance imaging (fMRI) emerges as a primary tool for 

neuroscience research.  In particular, with its superb spatial and reasonable temporal 
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resolution as well as decent sensitivity to the underlying neuronal activity, it has become 

the method of choice for modern functional neuroimaging studies. Since then, numerous 

exciting findings regarding the localization of various specific brain functions have been 

accomplished, greatly enhancing our understanding of brain’s functional topology (15-

19).   

More recently, Biswal et al (20) further initiated the study of “resting state 

functional connectivity MRI (rfcMRI)”, where they found that even during an “idling” 

state, human brain demonstrates a “synchronized” structure that greatly resembles the 

functional “activation” pattern during task states.  This finding broadly opens the door to 

go beyond the “localization” of certain brain function.  With the development of this 

method, the neuroscience community has witnessed a great resurgence of interest in the 

study of the “intrinsic” organization of the brain’s functional architecture (21-25).  

Among these, the most representative and seminal work is the notion of the default mode 

of brain function, coined by Raichle and colleagues (26, 27) where they have identified a 

set of brain regions that consistently increase activity (high cerebral blood flow) during 

the resting condition. Although using PET (positron emission Tomography) in their 

original study, the topology and structure of this particular network has been consistently 

detected and duplicated in rfcMRI studies (22, 24, 28).  Moreover, its anti-correlation 

with the “task-positive” network has also been well characterized and indicated as one of 

the “intrinsic” properties of the human brain organization (23).  Besides the default and 

the “task-positive” networks, studies have also found sets of different resting state 

networks (RSNs) with distinct spatial patterns corresponding to a variety of different 

functions, including motor-sensory(20), visual(29), attention(30), memory(31, 32), 
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among others. As a result, the brain’s “modular” structure, i.e., there are different 

functional modules responsible for distinct brain functions, becomes increasingly 

accepted and experimentally validated in neuroscience community.  

In addition to studying the matured brain functional organization, characterizing 

its corresponding developmental process is also of critical importance not only in gaining 

insight into its matured architecture but also in providing essential age-specific 

information for critical assessment and monitoring of both normal and abnormal 

development (33-35). For example, information can be gained to potentially reveal brain 

function that develops more rapidly, so as to determine when and how to intervene when 

needed.  More importantly, such information may also reveal the time window of 

vulnerability to neurological disorders such as autism spectrum disorders (ASD) and 

attention deficit/hyperactivity disorder (ADHD), which is of great clinical interest in 

preventing and treating such developmental disorders.  Together, the main focus of this 

dissertation is to provide quantitative evaluation of brain functional and structural 

development in normal pediatric subjects during the first years of life.   

One of the central techniques towards such a quantitative exploration is 

rfcMRI(20).  This technique is uniquely suitable for assessing early brain functional 

development as it is non-invasive and is conducted in the absence of any explicit task so 

that subjects can be in a naturally sleeping condition.  On the other hand, 

neurophysiological development provides the structural basis for functional development.  

Specifically, white matter fibers - the structural pathway between functional regions, will 

also be studied using another important MRI technique - diffusion tensor imaging (DTI) 

(36, 37).  Combing these two most recent MRI techniques specialized for studying 
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functional and structural connectivity, respectively, we hope to pave a way towards 

quantitative assessment of human brain functional development.  

This dissertation is organized as follows:  the first three chapters (2, 3, and 4) will 

present the background information on: the acquisition of DTI and fMRI signal; the 

neurophysiological underpinnings of BOLD signal and functional connectivity study; and 

the structural and functional early brain development, respectively, providing both 

theoretical and empirical basis for later discussion.  Chapter 5 will focus on the spatial 

and temporal development pattern of white matter (WM) fiber properties during the first 

two years of life using DTI technique, providing the structural underpinnings of 

functional connectivity development.  Chapter 6 will specifically delineate the emergence 

and developing pattern of the most salient and well documented “default-mode”  network 

during the first two years of life, primarily due to its central role during the resting state;  

Chapter 7 is dedicated to the relationship between these two “competing brain networks” 

– dorsal attention and default networks, and test the hypothesis of whether frontal-parietal 

system mediates the interaction between the dorsal attention and default networks. In 

addition, a new multivariate approach is described as an extension of this chapter to 

specifically address the problem of network-level interaction, which is highly relevant 

given the network-centered analysis throughout this dissertation.  Going beyond specific 

networks, Chapter 8 will provide a global picture of how the whole brain functional 

organization develops during the first two years of life and compares it with adult 

subjects aiming to reveal the underlying principles guiding development.  From a 

perspective of image acquisition, Chapter 9 will describe a technical improvement on one 
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of the techniques used in this study: a unified method for DTI experiment optimization. 

Finally, Chapter 10 will present the concluding remarks and future directions. 

 

 

 

 

 

 

 

 



Chapter 2 

Diffusion Weighted Imaging (DWI) and Functional Magnetic 

Resonance Imaging (fMRI) 

Since its discovery in the 1970’s, magnetic resonance imaging (MRI) has become 

a versatile tool for various clinical and research applications. Arising from the local 

precession of proton assemblies, MRI provides a number of different contrast 

mechanisms through the manipulation of the bulk precession using different magnetic 

field combinations, which include different relaxation factors ( ��/��� , susceptibility 

difference, magnetization transfer contrast, flow, contrast agent, and diffusion. Among 

these, diffusion weighted imaging (DWI), which is sensitive to the diffusion property of 

water molecules and functional magnetic resonance imaging (fMRI) which detects the 

local susceptibility changes under external sensory stimuli and/or performing cognitive 

tasks, are two of the widely applied MR techniques to probe brain white matter 

property/connectivity and function, respectively.  In this chapter, the basic principles of 

MR signal detection and the underpinnings of the above mentioned two techniques are 

reviewed to provide necessary technical background for the following discussion.  

2.1 General MR signal formation 

2.1.1 Interaction of a proton spin with the magnetic field 

The formation of MR signal relies on the interaction of a nuclear spin with an 

external magnetic field, ���	 .  Given the natural abundance, the proton in hydrogen is 

selected as the primary nucleus in MR imaging.  Precession, the circular motion of the 
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axis of a spinning body about another fixed axis caused by the presence of an external 

magnetic field, is the fundamental phenomena on which MR detects signal.  Specifically, 

due to this circular motion, the charged spin possesses an effective current loop, which 

interacts with the external field as well as produces its own magnetic field and its strength 

is characterized in terms of the magnetic moment vector.  This magnetic moment vector 

tends to align itself along the external magnetic field through a similar precession process 

and the angular frequency for this process is given by 


	 � ��	                                                     (2.1) 

where γ is a constant called the gyro magnetic ratio, which varies with nucleuses and this 

precession frequency is called Larmor frequency.   

At the presence of an external magnetic field, the magnetic moment vector of a 

typical proton has only two possible energy states: parallel or anti-parallel.  Due to the 

external field, this vector tends to align itself with it but this alignment is disrupted by the 

existence of thermal energy, which is millions of times larger than the quantum energy 

difference between parallel and anti-parallel alignments at the normal human body 

temperature.  As a result, during an equilibrium state, there is only a tiny net portion of 

spins that have magnetic moment vector parallel to the external filed.  Specifically, this 

excess is given by 

��� ����~�
����

���
                                               (2.2) 

where N is the total number of spins present in the sample, �� is the Plank’s quantum 

constant and T is temperature.  At a magnetic field strength of 0.3 Tesla, this spin excess 

ratio is only one in a million.  However, given the Avogadro numbers of protons in a few 

grams of sample, we can still detect signal despite  this small ratio.   
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 In order to detect signal, spins have to be set into precession, as described above.  

In MRI, this is achieved by applying another radiofrequency (rf) magnetic field for 

certain amount of time to “push” the magnetic moment vector of protons away from the 

longitudinal direction (the direction of the external magnetic field) so that the precessing 

spins can produce a changing flux in the receiver coil hence producing signal.  This rf 

magnetic field is specifically tuned to be on “resonance” with the precession frequency of 

protons so that the spins can get a continuously synchronized “push”.  The magnetization 

produced by this rf pulse experiences different relaxations thereafter which therefore 

determine the signal strength that we can detect at a certain acquisition time.  

2.1.2 Relaxation and Bloch Equation 

Magnetization is a measure of local magnetic moment per unit volume and for a 

small enough volume that the external field can be viewed as approximately uniform, it is 

defined as 

��� �
�

!
∑ μ$����%&'(') *

*) !
                                               (2.3) 

where +$���� is the magnetic moment for each spin. Such a volume of spins is called a spin 

“isochromat” in which they are deemed to have the same phase. With the neglect of 

proton interactions with their environment, a sum over the equations of motions for the 

individual spins yields 

,-���

,(
� ����� . �/0(���������                                              (2.4) 

which can be decomposed into parallel and perpendicular components defined relative to 

the static external field 

,-1

,(
� 0     (2.5) 
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and 

,-3�������

,(
�  ����� . �/0(���������                                               (2.6) 

 However, consideration of the interactions of spins with either their surrounding 

environment or neighboring spins leads to additional terms in the above equations, which 

we termed as �� and �� relaxation, respectively. Generally, through the interaction/energy 

exchange with their surroundings (spin-lattice interaction, ��  effect), the longitudinal 

(parallel) magnetization tends to realign itself with the external field through “re-growth” 

while through spin-spin interactions (��effect) transverse magnetization tends to dephase 

and decay to zero.  

 The re-growth rate due to the spin-lattice interaction is proportional to the 

difference �	 4 �5 .  The proportionality constant is just ��  and is empirically 

determined, which represents the inverse of the time scale of the re-growth rate:  

,-1

,(
�

�

�6
7�	 4 �5�                                                  (2.7) 

The solution of equation 2.7 can be found as 

�578� � �570��9(/�6 : �	71 4 �9(/�6�                                       (2.8) 

where �	 is the equilibrium value.  

The spin-spin interaction accounts for the decay of transverse magnetization. 

Specifically, since each spin experiences different local field as a combination of the 

applied field and the field of their neighboring spins, this field difference leads to phase 

differences for their precession and this “fanning out” effect on phase will finally result in 

a net reduction of transverse magnetization, which is simply a sum of all individual 

magnetic moment vectors. As a result, the transverse magnetization differential equation 

2.6 is changed by the addition of a decay rate term: 
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,-3�������

,(
�  ����� . �/0(��������� 4

�

�<
�=������                                             (2.9) 

while in rotating reference frame, it has a standard decay-rate form: 

7
,-3�������

,(
�> �  4

�

�<
�=������                                                (2.10) 

with a solution of 

�=������78� � �=������70��9(/�<                                             (2.11) 

In practice, in addition to the spin-spin interaction there is another source for the 

dephasing effect as introduced by the external field inhomogeneity. The decay time 

constant related to field inhomogeneity is often characterized as ��
>  and the collective 

effect of �� and ��
> produces an overall relaxation time ��

? 

�

�<
? �

�

�<
:

�

�<
@                                                       (2.12) 

The difference between ��
> and �� is that �� is resulted from the internal spin-spin 

interaction and is time-variant.  The dephasing effect from such interaction is impossible 

to recover while the ��
> effect is static and its induced dephasing effect is recoverable 

using a specially designed sequence structure, which will be introduced later. 

Combining the differential equations 2.7 and 2.9 yields the equation for 

magnetization in the presence of a magnetic field and with relaxation terms: 

,-���

,(
�  ����� . �/0(��������� :

�

�6
7�	 4 �5�Â 4

�

�<
�=������                         (2.13) 

This empirical vector equation is referred to as the Bloch equation, which is one of the 

most fundamental equations for MR signal detection.   

2.1.3 Free Induction Decay, Spin Echo, and different contrast mechanism 

Free induction decay (FID) is the simplest MRI experiment that detects a global 

signal from a sample. The basic FID sequence comprises a π/2 pulse which uniformly 
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rotates all protons into the transverse plane and a sampling period to collect signal 

induced by the time-varying magnetic field from the freely and collectively precessing 

spins.  The signal from a repeated FID sequence, assuming that TR>>��
?, implying that 

the transverse magnetization has decayed completely by the end of any given repetition, 

can be found as 

�=78)� � �	71 4 �9�C/�6��9(D/�<
?
                            (2.14) 

where TR is the time of repetition and 8)  is the time of signal acquisition for each 

repetition (the application of π/2 pulse as time zero for each repetition).  

 FID presents the simplest sequence structure for MR signal detection but is not 

particularly useful in most practical applications. In the circumstance of field 

inhomogeneity, the time constant ��
> as described earlier can be sufficiently small that the 

1/��
> dominates 1/�� and a severe signal loss may result before we acquire signal. The 

case is worse in applications where we want to manipulate the signal acquisition time to 

get different contrast images (e.g. spin-density weighted, �� weighted, or �� weighted) 

because of this fast decay.  Fortunately, this dephasing effect caused by the external field 

inhomogeneity can be reversed by a well-known rf pulse sequence called “spin-echo”.  

The basis of spin-echo is the application of two rf pulses: a π /2 pulse (applied at time t0), 

which tips all spins into the transverse plane, followed by another π pulse (applied after 

time E) which reverses the phase accumulation direction induced by the time-independent 

field inhomogeneity.  Hence after another time period of  E , the phase accumulated 

during the two time period before and after the π pulse will cancel each other and forms 

an “echo” at time 2E. Therefore, the signal acquired at this time - TE (time to echo) will 
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only have �� effect with the ��
> decay recovered and the signal expression for repeated 

spin echo sequence is given by 

�=7�G : ��H� � �	71 4 �9�C/�6��9�I/�<                              (2.15) 

Using the spin echo signal (2.15) as an example, we can see that the acquired MR 

signal is a function of three variables: �	, TR, and T; it is based on the manipulation of 

these parameters that leads to numerous contrast mechanisms, of which the three most 

important are spin density, ��  and �� .  Specifically, in order to get contrast primarily 

based on M0, the �� and �� dependence of the spin echo tissue signals must be minimized. 

In this case, the TR should be much longer than the longest ��  and TE should be 

sufficiently shorter than the shortest �� to minimize their effects, respectively.  For �� 

contrast, the TE should again be much shorter than the �� values to minimize its effect 

but the TR should be an intermediate value comparable to the ��  values of interest. 

Finally, for �� weighting, TR should be much longer than �� to avoid contribution from 

�� and TE should be chosen to be comparable to �� to maximize contrast.  In practice, 

since there is typically a positive relationship between spin density and  ��, �� value for 

certain tissue types, there is always an optimal value for TR/TE to maximize 

��/��contrast, respectively, which can be found analytically.   

 Besides spin density, �� and ��, there are other contrast mechanisms including 

flow, magnetic susceptibility differences, magnetization transfer contrast, tissue 

saturation methods, contrast enhancing agents, and diffusion, among others.  The next 

two sections will separately focus on (1) the contrast induced by diffusion for diffusion 

weighted imaging technique; and (2) the magnetic susceptibility effect for BOLD fMRI 

study to illustrate their signal formation principles.   
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2.2 Diffusion Weighted Imaging (DWI) 

2.2.1 Intrinsic T2 Relaxation 

As described above, the intrinsic T2 relaxation results from the depahsing effect 

induced by spin-spin interaction (38). The accumulated phase of a set of spins can be 

approximated by the central limit theorem. At each time point, assuming that the 

accumulated phase iφ for the i
th

 spin is independent and random over all spins following 

the same Gaussian distribution and with the mean phase at each time point being zero, the 

probability density function of the accumulated phase is then 
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Hence the overall magnetization from the set of spins is: 

∫
∞

∞−

−

+ = φ
φπ

φφφ dee
M

M
ii

i

)2/(

2

0
22

2
                                            (2.17) 

which yields 

2/
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i

eMM
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+ =                                                             (2.18) 

Under Brownian motion and assuming the imaging sample is homogeneous, each 

spin is expected to experience a phase change once every 2τ seconds. If a given spin i 

experiences a local field 
iB
v

, after N time steps over different local fields, its accumulated 

phase is  

∑
=

−=
N

j

jzii BN
1

2,,2),( τγτφ                                                     (2.19) 
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where 
jziB ,,
denotes the local filed around the z-axis at j

th
 position. Again the average 

value for the ensemble is zero, i.e., 0,, =jziB and iφ =0 yielding 
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Since there is no preferred direction in the microscopic field 
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in terms of a generic field magnitude B. Combining Eq.(2.20) and (2.21) 
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let 2τNt = and combine Eq(2.22) and (2.18) to give  
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where 
2

2

22

6

B
T

τγ
= , which is the expected exponential decay for spin-spin relaxation. 

Note here T2 is tissue specific in terms of the average fluctuation period, the gyro 

magnetic ratio and the average local field, which reflects the spin-spin relaxation induced 

by thermal dynamic interaction among spins. As mentioned in the last section, other 

sources can also contribute to the loss of signal such as inhomogeneities in the external 

static filed, in which case Eq(2.23) can be rewritten 

*
2/ Tt

MeM
−

+ =                                                        (2.24) 

where 2

*

2 TT < reflecting the combined effects of spin-spin relaxation of external field 

inhomogeneities.  

2.2.2 Diffusion Model under Diffusion Sensitive Gradient 
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The spin echo method can correct for spin dephasing induced by the field 

inhomogeneities experienced by different spins at different positions (static) as described 

above.  However, the dephasing resulting from the change of position of a given spin in 

an inhomogeneous field through diffusion is more complicated and can be utilized to 

generate a diffusion-weighted signal as described below.  

In the presence of a non-uniform field, spins undergo Brownian motion, leading 

to random changes in phase. By applying an extra gradient along a certain direction, the 

signal loss due to this Brownian motion can be derived. For simplicity, we here assume a 

random walk of spins in a single spatial dimension and the sensitizing gradient (G) is 

applied along the same direction. A spin at the position x moves to a new position 

µεix + every dτ seconds, where µ is the step size and 1±=iε randomly. Therefore, the 

spin experiences a new field ∑
=

+=
j

i

id GBjB
1

)0()( εµτ after j steps and the field change is 

)0()()( BjBjB dd −=∆ ττ . After N steps, the total phase change for the spin is then 

 ∑∑∑
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After some approximation, 2

iφ can be approximated as 

 
ddi tGNuG τγµτγφ /

3
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3

1 3222232222 ==                                      (2.26) 

where dNt τ= . Combining Eq(2.26) and (2.18) 

)6/(

0

3222
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eMdiffusionM

τµγ−
+ =                                            (2.27) 

The overall signal decay from both local (T2) and diffusion effects can be 

obtained by combining (2.27) and (2.23) 
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+ =                                          (2.28) 

where )2/(2

dD τµ= is the standard diffusion constant, which is usually termed as 

“diffusivity” in practice. It is common to rewrite (2.28) in the form 

bDTt
eeMM −−

+ = 2/

0
                                             (2.29) 

where 3/322 tGb γ=  is the so-called b-value for the diffusion weighted imaging 

experiment.  Notice here there is an extra exponential decay term induced by the 

underlying diffusion sensitive gradient parameter b, which leads to the fundamental 

principle of DWI. 

2.2.3  Practical implementation and applications 

Notice in the above derivation, only one diffusion sensitive gradient direction is 

applied.  In practice, multiple directions are usually applied and different techniques can 

be used to reconstruct the underlying diffusion properties within an imaging voxel, 

including diffusion tensor imaging (DTI) (36) and various high angular resolution 

diffusion imaging (HARDI) (39) techniques. The possible improvement on these 

techniques is one of the focuses of this dissertation and will be discussed in Chapter 9.  

Various applications are made possible by diffusion weighted imaging in 

determining the diffusion properties of both white matter (WM) and gray matter (GM) 

under normal or pathological brain conditions. DTI has been extensively applied in 

studying brain development and effects of aging by either investigating the local 

diffusion properties (40, 41) or studying the structure of anatomical/functional networks 

using tractography or connectivity mapping (42). DTI has also found wide applications in 

delineating various brain pathologies such as cerebro-vascular diseases, multiple sclerosis, 

Alzheimer’s and Parkinson’s disease, schizophrenia and brain tumors (43, 44). However, 
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a well known limitation of DTI is its inability to depict fiber crossings, which accounts 

for one-third to two-thirds of imaging voxels in the human brain’s white matter. 

Subsequently, the HARDI techniques (39) such as Diffusion Spectrum Imaging (DSI) (45) 

or Q-Ball Imaging (QBI) (46) have been proposed and proven to be promising in 

recovering fiber crossing information. With these techniques, whole brain tractograghy is 

made possible, allowing the study of structural/anatomical connection information and 

providing an integrated understanding of brain functioning mechanism. Development of 

various diffusion properties in WM is one of the focuses of this dissertation and will be 

discussed in the Chapter 5.  

2.3 Functional Magnetic Resonance Imaging (fMRI) 

  FMRI is based on the coupling of MR signal changes with the change of local 

brain activity. The underlying mechanism is that the local susceptibility property is 

modulated by the oxygenation level of the blood, which is further related to neuronal 

activation.  

2.3.1 Dependence of Blood Susceptibility on Oxygenation Level 

Blood can be approximated as a two-compartment system consisting of both red 

blood cells and plasma. With the magnetic property of plasma much like water, the 

magnetic properties of the red blood cell depends on the relative concentration of 

oxyhemoglobin and deoxyhemoglobin. Oxyhemoglobin is diamagnetic with no unpaired 

electrons and negative susceptibility while deoxyhemoglobin is paramagnetic with 

unpaired electrons and positive susceptibility. Since deoxyhemoglobin is more 

paramagnetic than oxyhemoglobin, its presence will increase local inhomogeneities and 

decrease 
*

2T  in Eq.(2.24), leading to faster dephasing and signal drop. 
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  Assuming the oxygenation of the blood is dominated by the formation of 

oxyhemoglobin, a model for the susceptibility of the whole blood system is given as 

plasmadeoxyoxyblood HctYYHct χχχχ )1())1(( −+−+=                          (2.30) 

where χ represents susceptibility, Hct is the fraction of the volume of packed red blood 

cells to the volume of the whole blood, Y is the oxygenation level. A change of Y∆ in the 

oxygenation level alters the susceptibility according to  

HctY oxydeoxyblood )( χχχ −∆−=∆                                     (2.31) 

When neglecting any oxygenation in blood plasma.  

2.3.2 Dependence of Blood Oxygenation Level on Blood Flow 

Considering both the blood flow and the cerebral “metabolic rate” or oxygen 

utilization, the change of the number of deoxyhemoglobin is given by (38)  

deoxydeoxydeoxy NNN −+=∆ )1/( αβ                                  (2.32) 

where α is the relative blood flow change and β is defined as oxygen utilization. In 

terms of oxygenation level change 
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2.3.3 Practical implementation and applications 

In a simple experiment where a volunteer moves his/her thumb, the blood flow 

will increase in the primary motor cortex while the oxygen utilization does not change 

much ( 1≈β ) and hence Y∆ will increase, which decreases the local blood susceptibility 

and increase MR signal as described in last section. Of course this is only a simple 

example while in practice more complex imaging paradigms have been utilized to study 

the activation patterns of different brain functions such as visual, attention, auditory, and 
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many others (13, 18, 47). These task-related fMRI studies have proved to be very 

successful in delineating various brain functions.  Alternatively, Biswal et al. (20) 

proposed a different approach in investigating brain function during a “resting state”, 

which is termed as functional connectivity MRI (fcMRI). Since then, numerous studies 

have been conducted and different resting state networks (RSN) have been identified and 

studied (22, 24, 48). One exciting possibility of the “resting brain” approach is the ability 

to investigate brain function of the pediatric subjects which would be otherwise 

impossible given the requirement of a task.  

To depict brain’s functional development during early brain development is the 

primary focus of this dissertation and will be extensively discussed in Chapter 6-8. But 

before that, the neurophysiological underpinnings of BOLD signal as well as functional 

connectivity will be discussed in the next chapter to provide a link between these 

techniques and the underlying neuronal activity.   

 

 



Chapter 3  

Neurophysiological underpinnings of BOLD Contrast and Functional 

Connectivity Study 

 

Functional magnetic resonance imaging (fMRI) using BOLD contrast has been 

one of the back-bone techniques in neuroscience for decades (14).  However, till now, 

how exactly neuronal activity triggers the overcompensation of blood supply which thus 

leads to BOLD signal change is still partially unknown.  Neuronal activity changes can 

readily occur at millisecond levels within a spatial scale of hundreds of transiently 

“synchronized” neurons, but the “sluggish” BOLD changes usually come after one or two 

seconds and with a massive over-perfusion covering a much broader spatial territory than 

the underlying neuronal activity.  Why and how brain does this is still an open question.  

But thanks to the active research in this field, there has already been some clues of what’s 

happening during this coupling period.  Moreover, there are also empirical evidence on 

the coupling between neuronal activity and BOLD signal changes(49-51).  The first 

section of this chapter will review such mechanisms and evidences to pave the ground for 

the following discussion using this technique.  

Despite the fundamental role of an individual neuron/neuron population, it is 

perhaps the “wiring” between them that makes human brain uniquely powerful.  A single 

neuron can have up to a thousand afferent/efferent connections to other neurons and there 
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are approximately 100 trillion of neuronal connections within the entire brain. Thus, it is 

not surprising that the majority of the brain’s energy is spent to maintain this massive 

communication, which facilitates efficient cooperation of different units and forms 

various “functional networks” for different and complex cognitive functions.  As a result, 

after a long period of interest in localizing specific cognitive functions to specific brain 

regions using fMRI, the new area of “functional connectivity” using low-frequency 

BOLD fluctuations is gaining more attention and is also the central technique used in this 

dissertation.  The second section of this chapter will describe the neurophysiological 

basis for functional network and BOLD-based functional connectivity. Moreover, its 

applications and limitations will also be discussed.  

3.1 Neuronal basis of BOLD contrast 

3.1.1 Potential Mechanisms of coupling between neuronal activity, blood flow, and 

energy metabolism 

As described in the previous chapter, BOLD contrast is based on the 

overcompensation of oxygen to the local brain regions where an increased neuronal 

activity has occurred.  This overcompensation is through an increase of local blood flow, 

which brings two of the most important “fuels” to local brain tissue: glucose and oxygen.  

PET and fMRI studies have well documented the parallel increase of blood flow and 

glucose utilization in response to local increase of neuronal activity but minimal increase 

in oxygen consumption (52).  It is this mismatch that increases local oxygen 

concentration and decreases the susceptibility effect which in turn boosts BOLD signal.  

Hence two events act in concert leading to the observed BOLD signal change: the 

increased blood flow and unparalleled oxygen consumption, revealing an intricate 
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relationship between neuronal activity, cerebral blood flow and energy metabolism. In 

this section, potential mechanisms underlying the coupling between these three parties 

will be described to help understand the neuronal basis of BOLD contrast.  

Although it is a general principle in brain physiology that neuronal activity is 

tightly coupled with blood flow and energy metabolism, the actual cellular and molecular 

mechanisms underlying this coupling are nevertheless far from being firmly established.  

Intensive research has been conducted searching for potential candidates responsible for 

neurovascular coupling.  Thus far, those that have been identified can be classified into 

two broad categories, including (a) molecules/ions that accumulate in the extracellular 

space after neuronal activity and (b) neurotransmitters released by activated neuronal 

pathways.  However, current understanding is that the temporal and spatial resolution of 

actions of potential candidates in category (a) such as H+ and K+, released by active 

neurons, can hardly explain the observed rather tight neurovascular coupling while the 

second category-vasoactive neurotransmitters appear considerably better fitted for this 

coupling (53, 54).  

Glutamate, the predominant excitatory neurotransmitter in the brain, is believed to 

play an essential role in neurovascular coupling.  However, the role of glutamate on 

vasomotor response is generally reported to be indirect; it is mediated by nitric oxide (NO) 

that is released by the activation of postsynaptic glutamatergic neuron receptors (55).  

The formation of NO in the presence of glutamate is a well established fact (56-58) and it 

is through this potent vasodilator that glutamate stimulates local increase of blood flow.  

In addition to neurons, astrocytes have also been reported to be involved in glutamate-

induced increases in CBF.  The suggested working hypothesis is that astrocytes release 
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epoxyeicosatrienoic acids in response to glutamate, which may activate smooth muscle 

K
+
 channels, increase outward K

+
 current and hyperpolarize the plasma membrane, which 

in turn inhibits voltage-gated Ca
2+

 channels and leads to arteriolar dilation (59).  

As possible mechanisms for neurovascular coupling have been reviewed, the next 

question is the relationship between the neuronal activity and glucose utilization.  A long-

held assumption in neurometabolic coupling has been that neuronal signals released by 

synaptic activity directly act on brain capillaries to increase local energy supply.  

However, an alternative is recently emerging - mediation through astrocytes.  Astrocytes 

possess extensive end-feet surrounding intraparenchymal capillaries while at the same 

time extend processes that ensheath synaptic contracts.  These unique features imply that 

astrocytes are ideally positioned to sense changes in synaptic activity and to couple them 

with the import of glucose for metabolism, which promotes the hypothesis of a functional 

“triad”, consisting of the neuropils, astrocytes and capillaries that are responsible for the 

local regulation of brain energy metabolism concomitant with neuronal activity.  Actually, 

a detailed working model has been established for the cellular processes occurring within 

this functional “triad” (60-62).  In short, at glutamatergic synapses, pre-synaptically 

released glutamate depolarizes postsynaptic neurons by acting at specific receptor 

subtypes.  However, the released glutamate is rapidly uptaken by surrounding astrocytes.  

Since glutamate is co-transported with Na+, this leads to an increase in intra-astrocytic 

concentration of Na+, which in turn leads to the activation of Na+/K+-ATPase.  The 

activation of Na
+
/K

+
-ATPase stimulates glycolysis and produces lactate which can be 

taken up by neurons and serves as energy substrate for them.  Thus this chain provides a 
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potential mechanism for coupling neuronal activity with glucose utilization, within which 

the astrocyte-mediated, glutamate-triggered glycolysis is the central process (60-62).  

This transient lactate production through glutamate-mediated glycolysis in 

response to local neuronal activity increases is consistent with experimental observations 

both in laboratory animals and humans.  MRS in human reveals a transient lactate peak 

during activation of the visual system (63) and PET studies by Fox et al (52) observed 

that oxygen consumption does not increase in parallel with blood flow and glucose 

utilization in activated brain areas, raising the possibility of activity dependent glycolysis 

(52).  

Overall, glutamate is deemed to be a central candidate for both neurovascular and 

neruometabolic coupling.  Although the general picture of neurovascular coupling is still 

obscure, experimental evidence supports the involvement of glutamate, among others, in 

this process.  For the glutamate-driven meurometabolic coupling process, there is clear 

evidence on the important role of astrocytic glycolysis as an essential step.  Moreover, 

glutmate-mediated signaling pathways may regulate CBF and glucose utilization in 

parallel rather than in series.  Through glutamate receptor mediated stimulation of NO 

formation in neurons/astrocytes, it leads to local vasodilation and through glutamate 

transporter-mediated glycolysis, it stimulates glucose uptake into astrocytes from local 

blood flow.  

3.1.2 Experimental evidence of the neurophysiological basis of BOLD signal  

BOLD response only measures hemodynamic changes which far lag behind the 

neuronal activity, leaving many unanswered questions concerning the relationship 

between them.  Many studies tried to combine fMRI with EEG or optical imaging in an 
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effort to reveal their relationship, but these two techniques have their own limitations that 

prevent precise characterization. Optical imaging essentially also measures hemodynamic 

responses and EEG suffers from poor spatial resolution and imprecise localization of the 

underlying electromagnetic field.   

Micro-electrode recording can precisely quantify neuronal activity at both single 

neuron, multiple neurons or a neuron population level and has been used in animal 

studies for decades(2, 3).  Hence the combination of fMRI with microelectrodes will be 

an ideal combination to reveal the relationship between BOLD signal and neuronal 

activity.  Specifically, single unit (SUA) and multiple unit activity (MUA) reflect 

primarily the spiking output of a specific or a small set of neurons surrounding the 

electrode tip.  On the other hand, local field potential (LFP) represents mostly a weighted 

average of synchronized dendro-somatic components of the input signals into a neural 

population within a few millimeters of the electrode tip.  As a result, the combination of 

fMRI with microelectrode recording can not only answer the question of whether there is 

a neuronal substrate for BOLD signal but also potentially differentiate the source between 

the spiking activity (SUA/MUA) and integrated dendritic activity (LFP).  

Such a seminal study was performed in 2001 by Logothetis and colleagues (49) 

on a monkey model using a specially designed electrophysiological measurement 

technique coupled with fMRI.  Their findings show that a localized increase in BOLD 

contrast directly and monotonically reflects an increase in the underlying neural activity, 

providing strong evidence on the neuronal basis of BOLD contrast.  Moreover, in order to 

better understand the neural mechanisms underlying the BOLD responses, they 

separately examined spiking activity (MUA) and local field potential (LFP).  They found 



26 

 

that the increase in LFPs during stimulation was significantly stronger than that of MUA. 

Moreover, while MUA often demonstrated adaptation by returning to baseline levels 1 or 

2 seconds after stimulus presentation, LFP activity was always maintained throughout the 

whole stimulus period and was better correlated with BOLD signal.  In addition, 

convolving neuronal activity with the neural-vascular impulse response function to 

predict the BOLD signal, the average LFP response was always found to give better 

estimates of the true BOLD signal than MUA. Overall, they conclude that BOLD 

response seems to be better correlated with the LFPs, suggesting that BOLD activation 

likely reflects the integrated input and local processing rather that the spiking output 

activity, which for the first time provides empirical evidence on the neural basis of 

BOLD signal.  Following this, a series of studies have been performed and consistent 

findings have been reported  (50, 51, 64, 65).  

There are also studies to directly relate the neuronal firing pattern, local field 

potentials with BOLD signal in human subjects rather than in anesthetized animal models 

(66, 67). Mukamel et al (66) performed such a study by recording 53 single neurons in 

the Heschl’s gyrus (auditory gyrus) of two epilepsy patients who were monitored with 

intracranial depth electrodes for potential surgical treatment.  Signals were recorded when 

the patients were watching two repetitions of a 9-min popular movie segments. FMRI 

study was performed on another 11 normal subjects when they were watching the same 

movie segment.  Strikingly, using the “spike predictor”- convolution of averaged spiking 

activity with a standard hemodynamic response function, they were able to derive a group 

“activation” map from the 11 normal subjects, demonstrating robust activation around the 

Heschl’s gyrus in close proximity of the electrode’s location.  Moreover, by sampling the 
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BOLD signal from ROIs within the Heschl’s gyrus of each subject and averaging across 

subjects, they showed that this average signal was highly correlated with the spike 

predictor (0.75, p<10
-47

 for patient 1 and 0.56, p<10
-28

 for patient 2).  This striking inter-

subject correlation between neuronal spiking activity and BOLD signal proves that 

BOLD contrast can be “trusted as a faithful measure of the average firing rate of the 

underlying population”.  

Overall, although the exact mechanism underlying the coupling between neuronal 

activity and hemodynamic response measured by BOLD signal remains partially elusive, 

empirical data, however, strongly support the neuronal basis for the observed fMRI signal 

hence pave the ground for its application in human functional studies.  

3.2 Functional connectivity study of brain’s network organization  

It is the belief that large scale networks of distributed and interconnected neuronal 

populations underlie human cognition that drives the study of “functional connectivity”.  

The belief comes from the reconciliation of two opposite views, namely “localizationism” 

claiming that complex cognitive functions reside in specific brain regions and “globalism” 

supporting the notion that they are global functions of the brain. With increasing evidence, 

modern neuroscientists view cognitive function as intermediate between the two 

opposing views: it is a result of an integrated process between distributed brain regions 

where each deals with individual elementary functions.  However, numerous issues such 

as the principles guiding this organization, the dynamics of this organization at different 

time scales and its pathological implications, are far from clear. This is particularly true 

for human studies primarily because of the lack of non-invasive and spatially resolved 

techniques targeting this problem.  However, the advent of functional connectivity MRI 
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(fcMRI) brought a unique opportunity to directly study this network organization non-

invasively and gained wide-spread interest in the past decade. In this section: (1) the 

basic presumptions underlying functional connectivity as well as the network 

organization of the central nervous system will be reviewed and (2) the applications of rs-

fcMRI together with its limitations will be discussed.  

3.2.1. The neurophysiological Basis of functional network and connectivity  

The neuron is the basic constructing unit of the central nervous system. However, 

it does not function as an isolated unit and is not generally considered to be the major 

operational unit for cognitive function.  Instead, dozens to hundreds of neurons, densely 

inter-connected, form anatomically distinct minicolumns oriented perpendicular to the 

surface of the cortex.  Tens of such minicolumns are aggregated into a macrocolumn, 

which receives synaptic inputs and sends out axonal projections as a whole.  Such a 

minicolumn is perceived to be a candidate unit for elementary cognitive operations (68, 

69).   Further, the dense short-range interconnections between a set of macrocolumns in a 

local area form a neuron assembly and give rise to a local cortical area network.  In the 

context of functional connectivity, such a local area network, composed of neighboring 

macrocolumns sharing common input and output pathways and showing a specialized 

rudimentary function will be considered as the basic neruophysiological component (70).   

 The communications of neurons within such an assembly have been extensively 

studied and the general concensus is that it is achieved through the synchronous activity 

of the participating neurons (71-75), i.e., synchronized excitatory/inhibitory postsynaptic 

potentials, EPSP/IPSP). Although many other aspects of neuronal interactions exist, the 

temporal synchronization is considered to be one of the most important factors (76). This 
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temporal synchronization or correlated activity within a neural assembly is sensitive to 

shifts of functional states.  Therefore, during a functional “activation”, such synchronized 

activity leads to an increase in the field potential while a disruption of such 

synchronization may lead to a decrease in field potential, as readily measured by 

EEG/MEG (77).  

 The observation of connectivity, either neuroanatomical or functional, between 

remote neural assemblies across the whole neocortex promotes the idea of the “network” 

organization (78).  The anatomical foundation of this connectivity is well documented 

through both traditional histological tracing studies and contemporary DTI studies as 

described in the earlier chapters. Different cortical/subcortical areas are highly inter-

connected by well-myelineated, high velocity, white matter fiber tracts.  Moreover, there 

is also evidence that cortical areas with similar functional attributes are preferentially 

interconnected (68, 69).  The anatomical connections between remote neural assemblies 

provide structural basis for the communication between them which in turn make 

possible the necessary functional integration to form distributed networks.  However, 

there is still a big gap between them. Evidence of functional coordination between remote 

neural assemblies can be derived from studies directly measuring neuronal activities such 

as local field potential (LFP).  As described in the last section, LFP measures the 

synchronous post-synaptic activity of a group of neurons from a localized volume within 

several millimeters vicinity of the implanted microelectrodes.  Different from single-unite 

or multiple unite spiking activity, LFP is capable of revealing the synchronous dendritic 

activity while obscuring the specific contributions from specific neurons.   This non-

specificity is nevertheless advantageous in cognitive function studies since the 
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transmission of pulse activity from one area to another, especially when they are a 

distance away, is effective only at the level of neural assemblies not that of single 

neurons (68, 69).  Thus, directly related to the integrated inputs at the post-synaptic 

dendritic trees of the corresponding neural assembly and also to the intergral of the pulse 

outputs, LFP reflects the actions exerted by cortical areas on each other through axonal 

pathways.  Frequently, LFP is analyzed in the frequency domain by coherence, which is a 

normalized quantity between zero and one, indicating perfect relative phase 

synchronization and no synchronization, respectively. As a result, large coherence values 

represent a stronger correlated LFP activity (with certain phase lag) hence stronger 

correlated neuronal activity between different sites of the brain.  In a seminal study by 

Bressler et al (79), they showed a widely distributed increased broad band 

(12.5Hz~87.5Hz) coherence from sensory, motor and high-order cortical sites of 

macaque monkeys when performing a visual discrimination task, without involving other 

intervening sites during an extended time after stimulus presentation, strongly supporting 

the coordination between multiple distributed brain regions in motor behavior.   

Subsequently, a follow-up study showed that during the time of elevated coherence, 

bidirectional (both feedforward and feedback) causal influences are exerted between one 

site in the striate cortex and the other in inferior temporal cortex during the same task 

performance (80).   Moreover, a series of other studies have reported synchronizations of 

LFP oscillations in the gamma frequency range (30-80 Hz).  Several groups (81, 82) 

reported an increased gamma-correlation between different visual areas during visual 

stimuli in cat studies and others have reported different patterns of transient 

synchronization within striate cortex, superior temporal cortex and motor-sensory cortex 
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in monkey studies (83-86).  Overall, these studies together provide strong evidence for 

the coordination of distributed brain regions for specific brain network to facilitate the 

performance of certain cognitive tasks. This coordination, or “binding”, is essential for 

the brain to integrate otherwise “fragmentary” events at multiple locations to achieve a 

unified perception and behavioral goal (79).  

3.2.2 Connectivity at different spatial/time scales and corresponding detection techniques 

Despite the general consensus that normal brain function relies on the 

coordination between distributed but interconnected neuronal assemblies, the brain’s 

network structure at different spatial and time scales are far from clear (68).   

Spatially, the brain’s connectivity ranges from between remote regions through 

large white matter fiber bundles to within cortical layer neuronal communication through 

axon-dendrite wiring.  In time, on the phylogenetic time scale of generations, the basic 

pattern of anatomical connectivity of the brain is determined by the evolution of each 

unique species, which forms the basis for any neurocognitive operations.  On the 

ontogenenic time scale of years, the modification of brain’s structural/functional 

connectivity is modulated by developmental and experience based factors to achieve a 

functional setting unique to each individual for neuro-cognitive functions.  On a time 

scale of seconds to minutes and hours, brain’s connectivity may undergo short-term 

modulations responsible for the transmission of brain states to accommodate various 

cognitive functions including emotion, attention, and memory. Finally, transient 

coordination between neuronal populations works on a sub-second time scale to initiate 

or maintain neurocognitive operations (68-70)  
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From fiber bundle modulation lasting for years or even generations to transient 

neuronal coordination changes occurring within a second, there is an intricate relationship 

between the spatial and time scale of brain’s connectivity.  Our awareness of this intricate 

relationship relies on the development of different measuring and analysis methods based 

on a variety of underlying physiological parameters. For example, based on the 

differential diffusion properties within brain’s white matter, diffusion weighted MRI 

(DWI) is able to non-invasively reveal brain’s white matter property with a great spatial 

precision (36, 37).  Moreover, fiber tractography made available by diffusion tensor 

imaging (DTI) and high-angular resolution diffusion-imaging (HARDI) provides the 

unique opportunity to look at brain’s anatomical connectivity non-invasively which has 

gained wide spread interest during recent years (42).  On the other extreme, single unite 

recording and multiple unite recording, by directly measuring the spiking activity of one 

to tens of specific neurons, provide us millisecond time resolution (>400Hz) of neuronal 

activity recording, pushing forward our understanding of brain communication scheme at 

a single neuron level.  At a slightly slower time scale (<300Hz) and a broader spatial 

resolution, LFP recording, as mentioned earlier, measures the synchronous postsynaptic 

activity of a neuronal population within several millimeters vicinity, providing us 

probably the most relevant functional activity information of neuronal assembly.   

Despite their high spatial and temporal resolution, the applications of LFP and 

single/multiple unite recording are largely prohibited in human studies because of their 

invasive nature.  EEG provides a non-invasive alternative, which also measures the 

synchronous postsynaptic electrical activity at a similar time resolution with LFP.  As a 

result, EEG has been widely applied in human functional connectivity studies as well as 
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clinical use especially in the case of epileptic seizures (4, 5, 9, 11, 83, 87).  However, the 

non-invasive nature of EEG comes with a cost.  Signal recorded at a single scalp 

electrode reflects not only the electrical neural activity directly beneath it, but also the 

neural activity at more distant locations propagated through electromagnetic fields as 

mediated by the intervening tissue and other matter, known as volume conduction.  This, 

together with the spatial smoothing effect of the lead field linking the intracranial 

electrical activity to scalp electric fields, severally degrades the spatial resolution of EEG 

signal to over centimeters, resulting in poor functional connectivity localization. 

On the other hand, BOLD fMRI is a powerful neuroimaging tool to localize 

various brain functions with highly resolved spatial resolution (~millimeter or sub-

millimeter with the high field scanner (>3T)). Being totally non-invasive and with high 

spatial resolution, fMRI has been the primary tool for decades enabling researchers to 

assign brain regions to specific cognitive function using carefully designed task 

paradigms, which has fundamentally improved our understanding of the local brain 

functions and will continue to do so in the future.   

In the mid-1990’s, it was the observation that the correlation pattern of 

spontaneous low-frequency BOLD signals within the motor-sensory system during a 

resting state highly resembles the activation pattern during motor tasks that flourished 

“functional connectivity” studies to investigate the functional synchronization/ 

coordination of distributed but interacted brain regions (20).  After its inception, this new 

derivative of fMRI incurs great interests among neuroscientists in uncovering the global 

interaction pattern among distributed brain regions, which is potentially responsible for 

different cognitive tasks such as motor control, memory, attention, etc (20, 23, 30, 32, 88).  
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Among all functional networks, the “default-mode” network coined by Raichle et al (26), 

which composes a set of regions that consistently increase activity during an 

idling/resting state when compared with a goal-directed task state, incurs particular 

interest to look into its functional relevance and more generally the “intrinsic” whole 

brain organization during the resting state (25, 27).  

Overall, defined as the statistical correlations between the MR signal fluctuations 

in different brain areas, functional connectivity studies based on BOLD fMRI (fcMRI) – 

the central technique used in this dissertation – represents a new tool in neuroimaging 

analysis.  The typical temporal resolution of fcMRI (around seconds) is enough for 

functional connectivity at two of the four time scales mentioned earlier: (1) the 

ontogenenic level, which involves functional connectivity modulation by 

developmental/aging factors and (2) the seconds to minutes/hours level which explores 

short-term modulations of functional connectivity responsible for smooth transition of 

different brain states incurred by emotion, attention, working memory, etc.  Hence, 

despite the losts of sub-second temporal resolution to reveal transient connectivity 

patterns, fcMRI is still capable of answering important questions regarding both the 

“intrinsic” and “dynamic” properties of brain organization at different time scales.  

Given the discrepany in time scale between fcMRI studies (usually <0.1Hz) and 

neuronal activity (~102 Hz), one of the prerequisites for fcMRI to be interpretable is the 

association between the observed correlation and the underlying neuronal activity 

synchronization. Although we have demonstrated the association between neuronal 

activity and BOLD signal in the previous Chapter, the association at the “connectivity” 

level has not been directly illustrated, which will be discussed in the next section. In 
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addition, the various applications of fcMRI in detecting functional connectivity 

modulation at different time scales as well as the limitations will be reviewed in the next 

section.  

3.2.3 The essence and limitations of fcMRI 

3.2.3.1 The neuronal events underlying the slow (<0.1Hz) spontaneous BOLD 

fluctuations 

Till now, we have reviewed evidence on: (1) the tight coupling between neuronal 

firing, field potentials (LFP) and BOLD signal (Section 3.1); and (2) the synchronization 

of integrated neuronal activity between remote but functionally related neuronal 

assemblies as revealed by LFP coherence at different frequency bands (around 

12Hz~80Hz) (Section 3.2.1).  The combination of these two channels of information thus 

seems to provide a firm rationale for the use of BOLD signal as a means to investigate 

brain’s functional connectivity.  However, the observed coherent neuronal activity is at a 

much shorter time scale (>10Hz) when compared with the low-frequency synchronization 

of BOLD fluctuations (<0.1Hz).  Without knowing what aspect of neuronal activity is 

behind this low-frequency BOLD synchronization, the interpretations of fcMRI studies 

might still suffer.  

One seminal study by Nir et al (89) might provide some insights, however.  They 

combined single-unit, local field potentials (LFPs) and intracranial electrocorticograhy 

(ECoG) recordings in individuals undergoing clinical monitoring during both wakeful 

rest and sleeping and reported four major findings. Firstly, by filtering the single unit 

firing rate modulations into three frequency bands: slow (<0.1Hz), medium (0.1-1Hz) and 

fast (>1Hz), they found that the single unit activity manifested the highest and most 
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significant interhemishperic correlations at low temporal frequencies (<0.1Hz, r=0.32, 

p<0.0005); Secondly, through the identical procedure, they found the same bias of 

interhemispheric correlations in LFP power fluctuations (gamma-band, 40-100Hz) 

toward low frequency range of <0.1Hz (r=0.43, P<0.0005). Moreover, the correlations 

between spiking activity and gamma-band LFP power were significantly higher at low-

frequency range (<0.1 Hz). Thirdly, using the EcoG gamma-power measurement, they 

demonstrated high spatial selectivity of spontaneous fluctuations where they showed that 

interhemishperic correlations were robust within auditory cortices (r=0.61) and within 

visual cortices (r=0.34), respectively, but minimal across the two functional systems 

(r=0.02).  Finally, they made a connection between their findings using direct neuronal 

activity recording (single unit and LFP) and BOLD fluctuations by analyzing fMRI 

dynamics in the same manner and showed  similarity.  

This study rigorously demonstrated that the synchronization of firing rate and 

LFP power dynamics is dominated by low frequency (<0.1Hz) and this temporal 

synchronization is highly spatially selective to be within functionally similar systems. 

These findings match well with the characteristics of spontaneous BOLD fluctuation 

synchronizations. Takn together with the previous observations of the tight LFP-BOLD 

coupling, they provide decent evidence to the hypothesis that spontaneous modulations in 

firing rate and gamma LFP power are the neuronal correlates of spontaneous fMRI 

fluctuations. 

3.2.3.2 “Intrinsic” or “dynamic”?-rfcMRI at a different time scales 

As described above, the spontaneous modulation in the firing rate and gamma 

LFP power likely reflect the neuronal correlates of spontaneous fMRI fluctuations, but 
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the exact role of the correlated spontaneous fluctuations is far from clear. One view, as 

mentioned in Nir et al (89), is that they serve some role in maintenance and 

renormalization of synaptic contracts driven through neuroanatomical connectivity. 

Although not fully validated, the hypothesis that BOLD fluctuations are “intrinsic” and 

constrained by anatomic connectivity receives several lines of evidence.  

The first line of evidence comes from animal studies which usually involve tracer 

injections to define anatomical pathways. For example, patterns of correlated 

spontaneous fluctuations in the oculomotor system of the macaque monkey are highly 

consistent with the anatomical network revealed by retrograde tracer injections (90-92).  

Margulies et al (93) also showed correspondence between functional connectivity and 

structural connectivity for four distinct pathways revealed by tracer injection. Secondly, 

quantitative structural imaging studies such as those using DTI have also reported that a 

significant portion of variance in spontaneous connectivity can be explained by structural 

connectivity measures such as FA, number of fibers and physical fiber distance (42, 94).  

Finally, some studies have directly performed fiber tracking using the functionally 

connected ROIs as foci and qualitatively demonstrated the anatomical connections 

underlying the functional connectivity (95).  

In contrast, sets of evidence on the “dynamic” component of functional 

connectivity have also been reported, which support the notion that it reflects 

spontaneous cognitive process and will be modulated under task performance. A greater 

activity in the default-network regions is associated with more reported task-independent 

thoughts and delayed response during task performance (96). Kelly et al (97) also 

reported that task performance is positively related to the “anti-correlation” between the 
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task-negative default network and the task-positive dorsal attention network, 

underscoring the cognitive aspect of functional connectivity. Moreover, several recent 

studies also reported modulation of functional connectivity by recent task performance 

experience. More interestingly, this modulation seems to predict the future performance 

of the specific task previously performed, implying one potential important functional 

role of functional connectivity in memory consolidation and learning (98, 99).  

Combining these evidences, it is not hard to conclude that functional connectivity 

actually is capable of reflecting brain’s connectivity at different time scales: the 

ontogenetic level modulated by developmental/aging factors and the more dynamic scale 

influenced by cognitive states of the brain.  Actually, there are already numerous studies, 

including ours, which have successfully applied fcMRI to show corresponding 

developmental/aging modulations of brain’s functional connectivity either for a specific 

brain network or whole brain organization (100-102).  One thing particularly interesting 

along this direction is the ability to look at the interplay of functional and structural 

connectivity during early brain development since it is likely that they will influence each 

other during the experience-based tuning process. This area will be one of the future 

directions that we will look into.  On the other hand, the short-time scale modulation of 

functional connectivity is also extremely important to find out the cognitive relevance of 

functional connectivity and its possible role in the most fundamental aspects of brain 

function such as learning and memory, which occurs right at the time scale that fcMRI is 

able to handle.  Actually, fcMRI’s ability to reveal modulation of functional connectivity 

at these two different time scales will be explored in this dissertation in the following 

Chapters as well as in our future research.  
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3.2.3.3 Artifacts and limitations of fcMRI  

No technique comes with perfection.  The rfcMRI is also destined to be 

contaminated by different sources of noise related with both image acquisition process 

within the scanner and the physiological fluctuations inherent to human subjects.  

Confounding factors from the scanner include system noise, subject motion, and field 

inhomogeneity among others, which to some extent can be alleviated by spatial 

smoothing, averaging within ROIs, image registration and careful shimming of the 

magnetic field of the scanner, etc.  

Another more complex noise source comes from the rhythmic physiological 

process inherent to human subjects such as respiratory and cardiac motion. These sources 

of noise are of particular importance given their rhythmic nature which will inevitably 

generate artificial “correlation” between BOLD signals through similar mechanism as the 

BOLD contrast (rhythmic change of deoxygen-hemoglobin concentration).  The fact that 

these noise sources operate at a much higher frequency (around 0.3 Hz for respiratory 

cycle and 1 Hz for cardiac cycle) than that we are interested in for BOLD fluctuations 

(<0.1Hz) does not prove particularly useful.  This is due to the fact that the TR of fcMRI 

studies typically lasts for several seconds, meaning that the higher frequency noise signal 

will inevitably alias into the measured BOLD signal and is impossible to be eliminated by 

simply low-pass filtering.   

One approach for solving the problem is independent component analysis (ICA), 

which has the ability to separate different sources of information. Indeed, spatial ICA has 

been demonstrated to be useful in separating the whole brain signals into functionally 

relevant components mainly residing in the gray matter regions and noise dominated 
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components, which typically cover cerebral spinal fluid (CSF) space, white matter 

regions, large vessels or brain boundary areas (103).  Although being able to spatially 

separate different sources, the signals within the “functionally-relevant” regions are not 

free of noise since their effect can be equally expressed, if not more, through the much 

smaller arterioles within the gray matter regions.  

So besides low-pass filtering of the BOLD signal to remove the high frequency 

noise (>0.1 Hz), another common procedure typically applied in fcMRI studies is the 

regression technique to remove possible sources of noise.  Usually, signals from the 

ventricle space (CSF), white matter regions and the whole brain average signal will be 

treated as noise regressors and the signal in each voxel is orthogonalized to these sources 

through regression. These procedures have been proved to be effective in minimizing the 

influences of respiration and cardiac cycle as well as increasing the specificity of brain 

correlations. However, there are still controversies regarding the removal of global signal 

and for review on this issue, please refer to these review articles (104, 105). In our study, 

a combined strategy including low-pass filtering, ICA, and noise source regression have 

been applied to minimize the physiological artifact, which will be discussed in detail in 

Chapter 6 to 8.  

 

 

 

 

 



Chapter 4 

Early Brain Development: Structures and Functions 

 

As studies focusing on matured brain functioning are abundant, studies targeting 

at its development during very early periods, esepcially the first few years, are much 

fewer largely due to the lack of non-invasive brain imaging techniques. However, with 

the development of DTI and fcMRI, as described in previous chapters, there is currently 

great opportunity to look into this issue with these powerful and non-invasive tools. The 

central focus of this dissertation is the delineation of the functional development and 

structural underpinnings during this critical period through the application of these two 

techniques. Befroe we describe the specific findings made in our study, an overall view 

of  early brain structural and funcitonal devepment will help build a general picture.  In 

this chapter, such a general review is provided to pave the way for the following specific 

discussions.  

The brain undergoes rapid, diverse and integrated development both structurally 

and functionally starting as early as the fetus. Knickmeyer et al (106) revealed that, 

globally, the total brain volume doubles in the first year, followed by a 15% increase in 

the following year. However, this dramatic growth is not uniform for different brain 

tissues; gray matter increases about 150% in the first year while hemispheric white matter 

volume increases by only 11%. Other noticeable growth patterns are cerebellum volume 

increased by 240% in the first year, lateral ventricle volume increased by 280% in the 
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first year and a small decrease in the second; and the caudate and hippocampus increased 

by 19% and 13%, respectively in the second year of life. 

  Other studies also have investigated the maturation of neural pathways for proper 

functioning, and/or the correlates between structural and functional development. 

Gottlieb (107) distinguished between two models for this combined developmental 

process; “predetermined epigenesis” assumes that there is a unidirectional causal chain 

from genes, structural changes to psychological function while “probabilistic epigenesis” 

assumes bidirectional interactions between genes, structural brain development and 

psychological function (108). Although different theories concerning this process exist, 

the direct evidence proving any specific assumption remains highly challenging and 

demands further investigation.  

4.1 Gray and White Matter development from Human Fetus to Infant 

Starting from the third trimester of pregnancy to 2 years of age is a critical period 

for human brain development. During this time, brain undergoes rapid development 

through various processes such as neurogenesis, axonal and dendritic growth, 

synaptogenesis, cell death, axonal pruning, myelination, and gliogenesis (109).  

As early as  7-10 gestational weeks, initial cortical plate formation starts in the 

human telencephalon, followed by neuronal proliferation at 8-16 gestational weeks, 

neuronal migration at 12-20 weeks and the development of six-layered cortex (110).  

Subsequently, cortical neurons start to develop dendrites and axons, followed by rapid 

elongation of axons to their intra- and subcortical target structures accompanied by the 

establishment of synapses and hence connectivity. Redundant axonal processes that do 
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not make synaptic contacts are finally selectively eliminated which is termed “axonal 

pruning”. 

Histology-based studies also possess the potential to depict the onset and 

completion of various developmental events regarding critical white matter (WM) 

development during this period. Haynes et al (111) conducted such a study and reported 

the major developmental time lines for axonal maturation from midgestation through 

infancy.  Using anti-SMI 312, a pan-marker of neurofilaments, stained axons can be 

observed as early as 23 weeks; GAP-43, a marker of axonal growth and elongation, 

showed a high level of expression from 21-64 post-conceptional (PC) weeks and 

progressed to a lower adult-like level beyond 17 postnatal months (~1.5 postnatal year).  

In contrast, myelination begins from 54 PC weeks (~ 2.5 postnatal months) to 72-92 PC 

weeks (~6.5 postnatal months to 11.5 postnatal months).    

While knowledge gained from the above histological-based studies iss highly 

informative, the ability to probe white matter maturation process in vivo is highly 

desirable.  Diffusion tensor imaging (DTI) has recently been proved to be a powerful tool 

in depicting the underlying structural development due to its sensitivity to microscopic 

motion of water molecules.  Using this technique, an overall water content loss indicated 

by the decrease of mean trace as well as axonal growth indicated by the increase of 

fractional anisotropy (FA) during the first years of life have been reported (41). Further, 

Song et al (112) proposed that radial diffusivity ( 2/)( 32 λλλ +=⊥ ) may reflect 

myelination process and a rapid decrease of radial diffusivity in the first 12 postnatal 

months has been reported, consistent with histology studies and indicating that 

myelination may be a dominant developing process in the first year of life (40, 41).  
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For specific fiber tracts, Huang et al. (113) studied both fetal (19-20 PC weeks) 

and neonate brains delineating various degrees of maturation status of a series of white 

matter structures. Specifically, they found that the limbic fibers develop first and the 

association fibers last.  The commissural and projection fibers are forming from anterior 

to posterior part of the brain.  Other studies also suggest WM development of the central 

WM regions may be earlier than the peripheral WM regions (114). 

 4.2 Brain functional development during early infancy 

The brain undergoes continuing functional developments after birth, including 

motor coordination, vision, auditory perception, language, etc, during the first few years 

of life. Several lines of evidence suggest that even some primitive versions of “high-level” 

cognitive functions may already be present in very young pediatric subjects.  Davidson 

(115) suggested that implicit memory is robustly presented in neonates and toddlers.  

Studies have shown that the sensorimotor experiences of the fetus (116) and the voice of 

mother (117) can be memorized. Fivush and Hamond (118) showed that at 2-year-old, 

children can already retrieve much detail about a trip to the zoo while episodic memory 

starts to develop at the age of four (119).  

  Amsterdam (120) found that infants from 6 through 12 months of age demonstrate 

prolonged and repeated reaction to their mirror images as a sociable playmate.  Wariness, 

withdrawal, self-admiring and embarrassed behavior start at 14 months and has been 

observed in 75% of the children after 20 months of age.  Finally, from 20 to 24 months of 

age, the majority of subjects demonstrate recognition of their mirror images.  These 

temporal behaviors demonstrate an evolving trajectory of self-consciousness before the 

age of two, which is essential for self-projection or self-referential activity.  In addition, 
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studies on toddlers also revealed that 18- to 24-month-olds are able to use speaker’s gaze 

direction (121), affective expression (122) and other behaviors (123) as cues leading to 

speaker’s communicative purposes.  Akhtar and Tomasello (124) further proposed that 

children are able to infer the meaning of words through an understanding of people’s 

minds although here the “understanding” is narrowly limited to “a sensitivity to others’ 

referential intentions, desires and knowledge states” (125).  These primitive mental 

functions may actually act as a promising source where more sophisticated function such 

as mentalizing and “theory of mind” can be originated and developed; most normally 

developing children acquire “theory of mind” between the age of 3 and 5 years (126).   

4.3 Structural Correlates of Infant Functional Development 

The development of cognitive functions and neuroanatomical maturation process 

are intertwined. Realization of certain cognitive function relies on the building of certain 

neuroconnections/pathways while the developing of function may further strengthen the 

corresponding pathways.   

One potential connector of the brain between structural and functional 

development is the process of myelination. Since myelination increases the electrical 

conduction rate along axons, its development should be correlated with improved 

information transmission and a correspondingly stronger and fast connection/pathway. To 

test this assumption, Dubois et al(127) examined both the structural and functional 

development of the visual system between 1 and 4 month old infants using DTI and 

visual event-related potentials (VEPs) and found that the apparent conduction speed, 

computed from the latency of the first positive VEP wave was significantly related with 

DTI indices such as FA and radial diffusivity, highly suggestive of the microstructural 
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correlates of infant functional development. Nevertheless, only the visual system was 

studied, additional studies are needed to discern other potential mutual dependences 

between early brain structural and functional development.   

Overall, brain undergoes rapid and important development during the critical first 

few years of life both structurally and functionally but the exact mechanisms underlying 

this development are currently poorly delineated. Towards quantitative assessment of 

early brain development, this dissertation focuses on the delineation of such mechanisms 

and the later chapters will describe the specific improvements/findings made in this 

process.  

 

 

 

 

 

 



Chapter 5 

Temporal and Spatial Developments of Axonal Maturation and 

Myelination of White Matter in the Developing Brain 

 

Brain function has been considered to primarily originate through the cerebral 

cortex which is mainly composed of gray matter (GM). However, information 

exchange/connection between various brain cortical areas are mostly fulfilled by white 

matter (WM) fibers, whose dysfunction may significantly interrupt proper brain 

functioning. Therefore, how the development of WM is coupled with brain functional 

development is extremely interesting and of importance. In this Chapter, as a first step, 

the temporal and spatial developments of WM in normal and healthy pediatric subjects in 

the first years of life are discussed based on our published paper “Temporal and Spatial 

Developments of Axonal Maturation and Myelination of White Matter in the Developing 

Brain” (40). The functional development is discussed in the next Chapter and the 

combination of the two elements will be tackled in future work.  

5.1 Introduction 

The understanding of early human brain development especially the maturation 

process of white matter is of both great scientific and clinical importance.(41, 111, 128, 

129)   Several studies have specifically focused on the development of white matter in 

pediatric subjects using MRI.  While it has been suggested that the most rapid pace of 
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maturation of white matter occurs during the first 2 years of life(129, 130), most of the 

studies to date have been carried out on either preterm babies(41, 111, 131, 132), older 

children(133, 134), or with a relatively small sample size during this critical period of 

time – from birth to 2-years of age.(128, 130, 135-138)  Therefore, information on 

normal development of white matter in very young children is insufficient.  To this end, 

quantitative assessment of the white matter in normal and healthy children during this 

critical period of time are highly desirable for the understanding of early white matter 

maturation.  

Due to its sensitivity to microscopic motion of water molecules, diffusion tensor 

imaging (DTI) has become the method of choice for the measurement of local water 

diffusion characteristics. The underlying physical mechanism is that the relative angle (θ) 

between the direction of the applied diffusion gradients and the direction of water 

diffusion determines the extent to which MR signal is altered in the presence of diffusion 

gradients; the maximum signal reduction occurs at θ=0 (parallel) whereas no signal 

change is anticipated at θ=90-degree (perpendicular).  Therefore, applying diffusion 

gradients along non-collinear directions, a tensor matrix can be used to characterize the 

directions of water diffusion.  Subsequently, the three eigenvalues ( 1λ , 2λ and 3λ ) 

obtained through matrix diagonalization of the tensor matrix can be used to derive 

diffusion indices such as the relative anisotropy (RA), fractional anisotropy (FA), and 

volume ratio (VR).  Although these indices, especially FA, have been widely employed 

to characterize diffusion anisotropy in various brain tissues, they lack the ability to 

provide more insights into the underlying micro-structural changes of white matter.  
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Recently, Song et al proposed to separate the three eigenvalues (
1λ , 

2λ and 3λ ) 

into two parameters that may have different physiological implications: parallel (
1λ ) and 

perpendicular ( 2λ and 3λ )(139-141), also known as axial diffusivity (
1|| λλ = ) and radial 

diffusivity ( 2/)( 32 λλλ +=⊥  ), respectively. With animal models of neurodegenerative 

diseases(112, 142, 143), they demonstrated that a reduction of axial diffusivity may be 

indicative of axonal injury whereas an elevation of radial diffusivity may reflect 

demyelination. Therefore, they concluded that utilizing both the axial and radial 

diffusivities may provide more specific physiological underpinnings of the 

microstructural changes in white matter than that available through FA.   

In this study, Axial and radial diffusivities together with FA were employed to 

characterize the temporal and spatial development of axonal maturation and white matter 

myelination during the critical first two years of brain development.  Rapid axonal 

growth and elongation, forming of new barriers to water mobility such as microtubules 

and myelination in white matter are likely to affect both axial and radial diffusivities in 

different ways(112, 142, 143).  Characterizing the changes of these directional 

diffusivities should shed new light on our understanding of the underlying 

microstructural development in white matter over this critical period. 

5.2 Materials and methods 

5.2.1 Subjects 

The study subjects were part of a large ongoing study of brain development in 

normal and high risk children.  Pregnant women were recruited during the second 

trimester of pregnancy from the outpatient obstetrics and gynecology clinics at UNC 

hospitals.  Exclusion criteria were the presence of abnormalities on fetal ultrasound or 



50 

 

major medical or psychotic illness in the mother.  Informed consent was obtained from 

the parents and the experimental protocols were approved by the institutional review 

board.  None of the subjects was sedated for MR imaging.  Before neonates were imaged, 

they were fed, swaddled, and fitted with ear protection.  In contrast, for the 1yr- and 2yr-

olds, the parent or a study coordinator held them and sat on a rocking chair inside the MR 

scanner until the subject fell asleep.  Headphones were put on the subject who was then 

placed in the head coil.  With these procedures, most of the subjects slept during the 

imaging examination.  We retrospectively identified 60 normal subjects including 20 

neonates (12 male and 8 female, mean age 22 ±10 days (SD)); 20 1-year-olds (8 male 

and 12 female, mean age 13 ±0.5 months) and 20 2-year-olds (10 male and 10 female, 

mean age 24 ± 0.5 months) who met the following inclusion and exclusion criteria.  

Inclusion criteria were birth between the gestational ages of 35 and 42 weeks, weight that 

was appropriate for gestational age, and the absence of major pregnancy and delivery 

complications as defined in the exclusion criteria.  Exclusion criteria included maternal 

pre-eclampsia, placental abruption, neonatal hypoxia, or any neonatal illness requiring 

greater than 1 day NICU stay, mother with HIV, any mother actively using illegal 

drugs/narcotics during pregnancy, or any chromosomal or major congenital abnormality.  

In addition, all DTI images were visually inspected and subjects with apparent motion in 

DTI images were excluded.  Finally, a board-certified neuroradiologist (JKS) reviewed 

all images to verify that there were no apparent abnormalities in the acquired MR images.   

5.2.2 MR Acquisition  

All imaging was performed on a head-only 3.0-T MR imaging unit (Allegra; 

Siemens Medical Systems, Erlangen, Germany). One image without diffusion gradients 
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together with diffusion weighted images along six gradient directions with a b-value of 

1000 smm /2 were obtained.  The acquisition was repeated 5 times for averaging. Other 

imaging parameters were: TR/TE=7500/73 ms; slice thickness=2 mm with an inter-slice 

spacing of 2mm; matrix size =64x64; and an in-plane resolution=2*2 mm
2
.  

5.2.3 Post-processing 

Diffusion weighted images were transferred off-line for post-processing using 

software developed in-house. Six elements of the diffusion tensor were determined by 

multivariate least-square fitting. Three eigenvalues and eigenvectors were obtained by 

tensor diagonalization and subsequently the axial and radial diffusivities were calculated.  

Fractional anisotropy was calculated to measure degree of anisotropy.(36, 37, 144)  

BET algorithm of the FSL (FMRIB, Oxford University, U.K.) was applied to 

exclude all voxels outside of the brain for further analysis. Subsequently, one subject in 

each age group was chosen as the template and bi-directional B-spline co-registration, 

which ensured symmetry between source images and template images.  The distance 

between knots of the 3D B-spline model was gradually decreased by half, leading to an 

increase of grid size of the 3D control point array from 5*5*5, 7*7*7, 11*11*11 and 

finally to 19*19*19.  This allowed registration of individual subjects to their 

corresponding template using the FA maps. The transformation matrices were saved for 

each individual with subsequent co-registration of the axial and radial diffusivity maps to 

the templates. After registration, mean FA maps were calculated for each age group.     

5.2.4 Region-of-Interest (ROI) Analysis 

Eight ROIs were placed on the mean FA maps for each age group by a board 

certified neuroradiologist (VJ). These ROIs include: genu of corpus callosum (GCC); 
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splenium of corpus callosum (SCC); body of corpus callosum (BCC); posterior limb of 

internal capsule (IC); cortical-spinal tract (CST); optic radiation (OR); frontal peripheral 

white matter (FPW); and posterior peripheral white matter (PPW).  These ROIs were 

chosen such that both central and peripheral white matter areas were included so as to 

assess the temporal and spatial alterations of diffusion anisotropy and directional 

diffusivities across different white matter regions. The ROI sizes varied between different 

groups owing to the changes in brain size.  For the neonate group, the number of voxels 

in each ROI ranged from 8 to 20 with a median of 10 while the ROI sizes were similar 

between the 1 and 2yrs old groups and ranged from 10 to 45 with a median of 18 voxels. 

The values of FA, and axial and radial diffusivities for each ROI were then obtained for 

each individual subject, which were then used for subsequent group analysis.  

5.2.5 Statistical Analysis 

The analysis of variance (ANOVA) for multiple comparisons with age as the 

single factor was used for statistical analyses.  A P<0.05 was considered significance. 

5.3 Results 

Representative examples of the axial and radial diffusivities and FA for the three 

age groups are shown in Fig.5.1, demonstrating the excellent image quality.  It is 

apparent that marked changes in all three parameters are seen between neonates and 1 yr 

olds while the differences between 1yr and 2yr olds are more subtle.   A direct 

comparison of the three diffusion parameters among the three age groups is shown in Fig. 

5.2 where the values represent the mean of all ROIs of each age.  Consistent with the 

reported results in the literature, FA increases as a function of age; a significant increase 

in FA is observed from neonates to 1 yr olds (p<0.0001) while the FA is comparable 
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between 1yr and 2yrs olds (p>0.05).  In contrast, both axial and radial diffusivities 

decrease with age.  Similar to that observed in FA, the major changes of axial and radial 

diffusivities occur between neonates and 1 yr olds (p<0.0001) while only the radial 

diffusivity exhibits significant reduction from 1 yr to 2 yrs olds (p=0.0014).  

 

 

Figure 5.1 Representative examples of axial diffusivity, radial diffusivity and FA from 

three subjects, one subject for each age group, are shown.  All images were scaled to the 

same window and level settings to allow a direct comparison across subjects.  It is 

apparent that both the axial and radial diffusivities decrease whereas the FA increases 

with age.  

  To further examine how white matter maturation differs with age across different 

anatomical regions, the general pattern are showed in Fig. 5.3; FA increases and both 

axial and radial diffusivities decrease with age for all ROIs.  However, there is a 

substantial variability across different anatomical regions.  Fig.5.3 provides more detailed 

analysis on anatomical locations exhibiting statistical differences among groups.   All 
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three diffusion parameters are highly significantly different between neonates and 1yr 

olds for all ROIs.  In contrast, anatomical regions exhibiting statistical changes differ 

among the three diffusion parameters between 1yr and 2yrs old groups.  For the axial 

diffusivity, only the frontal peripheral WM area (FPW) and OR show significant changes.  

Interestingly, with the exception of SCC, all ROIs exhibit significant changes for radial 

diffusivity from 1yr to 2yr olds albeit the statistical significance levels are different.  

Finally, with the exception of the FPW and SCC, the FA is statistically different between 

1 yr and 2yr olds for all remaining ROIs. 

 

Figure 5.2: The mean values of the axial diffusivity, radial diffusivity and FA from all 8 

ROIs are shown.  A significant reduction (p<0.0001) of both axial and radial diffusivities 

and elevation (p<0.0001) of FA are observed from neonates to 1 yr olds.  The changes 

from 1yr to 2yrs olds are more subtle for both axial diffusivity and FA while a significant 

reduction (p=0.0014) in radial diffusivity is observed.  The labels for left and right Y-axis 

represent the directional diffusivities and FA, respectively. Error bars indicate standard 

deviation. 

The rates of increase/decrease of diffusion parameters with age are shown in Fig. 

5.4 for different anatomical regions.  The axial and radial diffusivities and FA of 1 and 2 

yrs old groups were normalized to the corresponding values at each ROI of the neonatal 
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group.  A rapid decrease in both axial and radial diffusivities while a marked increase in 

FA are observed from neonates to 1yr olds, followed by a relatively stable axial and 

radial diffusivities and FA from 1 yr to 2yrs olds.  Comparing between axial and radial 

diffusivities, radial diffusivity reveals a much larger reduction than that of axial 

diffusivity from neonates to 1yr olds.  The reduction of axial diffusivity between neonates 

and 1yr olds ranges from almost no changes (94.5%) for CST to 76% of that at neonates 

for FPW.  In contrast, the smallest reduction of radial diffusivity is 79% (OR) and the 

largest is 44% (SCC) of that of neonates.   The most substantial increase in FA from 

neonates to 1yr olds is the FPW while the smallest is CST.      

 

Figure 5.3: Statistical comparison results overlaid on FA maps are shown.  Please note 

that the body of corpus collosum should be located in different slices but it was shown on 

the same slice for visualization.  GCC: genu of corpus callosum; SCC: splenium of 

corpus callosum; BCC: body of corpus callosum; IC: posterior limb of internal capsule; 

CST: cortical-spinal tract; OR: optic radiation; FPW: frontal peripheral white matter; and 

PPW: posterior peripheral white matter.   



 

Finally, the comparisons of the three diffusion measures at the same age but 

different anatomical areas reveal the spatial behaviors of white matter maturation (Fig. 

5.5).  This figure is shown in such a way that the values of axial diffusivity and FA are 

sorted in a descending order while the radial diffusivity is sorted in an ascending order 

based on the values of the 2yrs old group.  

group (pink line) and 2 yr group (green line) show 

group (blue line) is more variable and does not follow the same patterns as those shown 

in 1 and 2 yrs old groups.  

SCC, BCC) has the highest 

lowest in the peripheral WM

similar pattern to that of the axial diffusivity with the exception that the development of 

IC appears more advanced when compared to that of the GCC and BCC.  

Figure 5.4: Comparisons of axial diffusivity (

age.  The experimentally measured
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Finally, the comparisons of the three diffusion measures at the same age but 

different anatomical areas reveal the spatial behaviors of white matter maturation (Fig. 

.5).  This figure is shown in such a way that the values of axial diffusivity and FA are 

sorted in a descending order while the radial diffusivity is sorted in an ascending order 

based on the values of the 2yrs old group.  Generally speaking, the results f

group (pink line) and 2 yr group (green line) show a consistent trend while 
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in 1 and 2 yrs old groups.   The general trend indicates that the corpu

has the highest axial diffusivity and FA, followed by CST, OR, IC, and the 
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Finally, the comparisons of the three diffusion measures at the same age but 

different anatomical areas reveal the spatial behaviors of white matter maturation (Fig. 

.5).  This figure is shown in such a way that the values of axial diffusivity and FA are 

sorted in a descending order while the radial diffusivity is sorted in an ascending order 

the results from 1 yr 
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The general trend indicates that the corpus callosum (GCC, 
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to that of the axial diffusivity with the exception that the development of 

IC appears more advanced when compared to that of the GCC and BCC.   
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BCC: body of corpus callosum; IC: posterior limb of internal capsule; CST: cortical-

spinal tract; OR: optic radiation; FPW: frontal peripheral white matter; and PPW: 

posterior peripheral white matter. Error bars indicate standard deviation. 

5.4 Discussion 

Diffusion tensor imaging has been widely employed to assess white matter 

maturation in pediatric subjects (41, 111, 113, 114, 128-137).  However, few studies thus 

far have specifically focused on the age range investigated in our study, particularly with 

a large sample size.  In addition, most of the studies to date have mainly employed FA to 

delineate white matter maturation which may not provide the information about 

underlying microstructural changes with age.  In this study, both axial and radial 

diffusivities along with FA were employed to gain more insight into the underlying 

biological development associated with white matter maturation, namely axonal growth 

and myelination.  Consistent with the results reported in the literature(129, 130), a 

marked increased in FA from neonates to 1yr olds is observed, followed by a more subtle 

increase from 1yr to 2yr olds.   The ROI analysis offers additional details regarding the 

spatial pattern of white matter maturation.  Specifically, all 8 ROIs exhibit highly 

significant (p<0.0001) elevation of FA from neonates to 1yr olds (Fig. 5.3), indicating a 

rapid development of white matter during the first year of life.  However, with the 

exception of CST and OR which exhibit highly significant elevation of FA from 1yr to 2 

yrs olds (p<0.001), the level of statistical significance is reduced (p<0.05) in GCC, BCC, 

and PPW.  In addition, the FA values in the SCC, IC, and FPW are comparable between 

the 1 yr and 2yr groups although the physiological underpinnings for the lack of FA 

changes in SCC, IC, and FPW may differ.  It is plausible that both SCC and IC are well 



 

developed by the age of 1 yr old and thus exhibit subtle changes in FA.  In contrast, the 

FA values are about 0.3 at the FPW at 1yr and 2yrs old and thus most likely reflect the 

slow pace of white matter development in the frontal lobe from 1 to 2yr olds.  However, 

caution should be taken in interpreting these results based on FA findings alone and 

consideration should be given in the context of both axial and radial diffusivities.   

Figure 5.5: Comparisons 

across ROI but at the same age are shown

splenium of corpus callosum; B

internal capsule; CST: cortical

white matter; and PPW: posterior peripheral white matter

   In addition to FA measurements, both axial 

axonal growth and formation of new barriers

were employed in our studies to potentially provide additional insights into white matter 

development from the ages of 3wks to 2yrs old.  Haynes et al 

marker of axonal growth and elongation to analyze parietal central white matter tissues.  
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They showed a high level of GAP-43 staining from 24-64 post-conceptional (PC) weeks 

which spans through pre-  and post-natal periods, implying  rapid axonal development  

which progressed to a slower adult-like level of axonal development beyond 17 postnatal 

months (~1.5 postnatal year).  In contrast, myelination begins from 54 PC weeks (~ 2.5 

postnatal months) to 72-92 PC weeks (~6.5 postnatal months to 11.5 postnatal months), 

spanning approximately the entire first year after birth.  Together, these results suggest 

that the onset of axonal growth is earlier (pre-natal) and most rapid during the first five 

postnatal months while myelin maturation begins about 2.5months postnatally and 

continues throughout the first year of life.   Therefore, with regard to measurements of 

axial and radial diffusivities, one would expect smaller changes of axial diffusivity during 

the first year of life than the changes of radial diffusivity (myelination) since maturation 

of myelin is the dominant process during this period of life.  Indeed, Partridge et al(41) 

reported a smaller changes of 1λ  (axial diffusivity) whereas both 2λ and 3λ  (radial 

diffusivity) exhibited a marked changes in 14 preterm newborns imaged at gestational 

ages between 28 and 43 wks.  Similarly, our study (Fig. 13) demonstrates that the extent 

to which radial and axial diffusivity reduction differs during the first year of life; the axial 

diffusivity decreases to about 0.75~0.95 while radial diffusivity reduces to 0.44~0.69 of 

that in the neonate group, suggesting more rapid myelination than axonal growth from 

3wks to 1yr of age.  Our findings are thus highly consistent with that reported by Haynes 

et al. (111)   

While all of the 8 ROIs exhibit significant changes of axial and radial diffusivities 

from neonates to 1 yr olds, these same regions begin to differ with regard to how the axial 

and radial diffusivities change from 1 yr to 2 yrs of age (Fig. 5.3).  The OR and FPW 
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reveal significant changes in axial diffusivity consistent with continued axonal 

development, whereas with the exception of the SCC, the remaining 7 ROIs exhibit 

significant changes in radial diffusivity, suggesting that the myelination is the dominant 

process during the second year of life in these areas.  In addition, as mentioned 

previously, no changes in FA were observed in SCC, IC and FPW from 1 to 2 yrs old.  

Based on the FA findings, our initial interpretations, as discussed above, were that the 

SCC and IC are well developed whereas the developmental pace in FPW is slow.  

Consistent with the finding of FA, no changes in both axial and radial diffusivities were 

observed in SCC.  However, some discrepancies are observed in both IC and FPW.  Both 

axial and radial diffusivities exhibit significant changes in FPW, indicating continuing 

rapid myelination and axonal growth during this period in contradistinction to our 

original interpretation based on FA.  In addition, a significant reduction of radial 

diffusivity in IC is observed, suggesting continuing myelination.   Furthermore, although 

a significant elevation in FA is observed at the CST, GCC, BCC and PPW between 1 and 

2yrs olds, these regions only exhibit significant changes in radial but not axial diffusivity, 

suggesting that these regions are going through extensive myelination but not axonal 

growth during this period of life.  Together, these results underscore the importance of 

utilizing axial and radial diffusivities and reveal the limited specificity of solely using FA 

to characterize the development of white matter.   Nevertheless, one must note that the 

radial diffusivity measurements assume that the axons exhibit a perfect cylindrical shape 

and no contributions to the diffusivity perpendicular to the axons.  As a result, effects of 

astrocytes, microglia and cell surface molecules extended into the intersitium are ignored.  
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Our comparison of diffusion parameters using ROIs in each age group reveals the 

spatial maturation pattern of white matter.  Despite the neonatal group variability, the 

general maturation pattern begins centrally (SCC, GCC, and BCC), followed by GST, IC, 

OR and peripheral white matter (PPW and FPW) development as well as from the 

occipital (PPW) to the frontal (FPW) lobes. These findings are consistent with the results 

reported by Volpe.(145)  Interestingly, although discrepancies regarding the rates and 

anatomical locations among the three diffusion parameters are observed, the general 

spatial pattern was consistently depicted using the three diffusion parameters.    

It must be noted that Song et al(112, 142) hypothesized and subsequently 

demonstrated in animal models that a reduction of axial diffusivity was associated with 

axonal injury in mouse models.  Contrary to their conclusion, we demonstrate axial 

diffusivity decreases from the neonatal period to 2 yrs of age which clearly cannot be 

explained by axonal injury.  In addition, it has also been reported by Ashtari et al(146) 

that axial diffusivities increase and there are no changes in radial diffusivity with age.  

These authors speculated that the reduction of fiber tortuousity yields more straightened 

fibers, improving axonal fiber organization and potentially leading to an increase of axial 

diffusivity.(146)  The discrepancies between our findings and these studies can 

potentially be explained by the following factors.  First, subjects with a mean age of 16.6 

yrs old were studied by Ashtari et al which is clearly much older than our studies.   

Second, it has been documented that axonal pruning occurs resulting in refinement of the 

embryonic nervous system during early development(147).  Thus, the intermingling of 

axonal branches, the elimination of overabundant axons, and the reduction of the length 

of axons during the refinement process may potentially account for the observed 
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reduction in axial diffusivity. (148, 149)  Finally, postnatal development of the fiber 

cytoskeleton, i.e. the formation of microtubules and neurofilaments (150) may also 

contribute to the decreased axial diffusivity as new barriers form.  Therefore, it is 

plausible that the relationship between axial diffusivity and age is biphasic where a 

reduction of axial diffusivity is present during the first years of life, and followed by an 

elevation of axial diffusivity at a later age.  Specifically, axonal pruning and formation of 

new barriers may be the dominant factor resulting in the observed reduction of axial 

diffusivity.  However, once axonal pruning and cytoskeleton development reaches a 

plateau, fiber straightening may then become the dominant factor, leading to increased 

axial diffusivity at a later age.  These physiological alterations may also explain the 

gradual decreasing pattern of axial diffusivity from the central WM (i.e. different parts of 

CC) to the peripheral WM (Fig. 14a) since the central WM is more likely to have well 

organized straight fibers while axonal fibers become less organized in the more 

peripheral areas. Nevertheless, more studies with a wider age range is needed to further 

determine at what age the axial diffusivity starts to increase after birth.   

Two potential limitations associated with our study need further discussion.  First, 

six diffusion gradient directions were employed in our study.  The choice of the number 

of diffusion gradient directions reflects a compromise balance the data acquisition time 

and signal-to-noise ratio of DTI for imaging non-sedated pediatric subjects.  While the 

utilization of six diffusion gradient directions may lead to inaccuracy of the 

measurements of diffusion tensors, since an ROI approach was employed with a large 

sample size, the potential inaccuracy in tensor measurements should not affect the overall 

conclusions of our study.   Second, despite the histological correlatives reported by Song 
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et al indicating that axial and radial diffusivities may reflect axonal integrity and 

myelination, definitive physiological underpinnings of axial and radial diffusivities 

remain to be enlightened.  Therefore, although our results appear to be consistent with the 

general understanding of the white matter maturation in pediatric subjects, the 

interpretation of our results should be in the context of these limitations.    

5.5 Conclusion 

Utilizing both FA and directional diffusivities, namely axial and radial 

diffusivities, this study aimed to determine the spatial and temporal characteristics of 

white matter development in normal and healthy children from 3wks to 2 yrs of age, an 

age range that currently lacks sufficient data.  Our results demonstrate that the major 

changes of FA, and radial and axial diffusivities occur from 3 weeks to 1yr for all regions 

investigated – with elevations of FA and reductions of both axial and radial diffusivities.  

In addition, much larger reductions in radial diffusivity are observed when compared 

with those demonstrated in axial diffusivity, suggesting that myelination is the dominant 

process during the first year of life.  In contrast, the changes between 1 yr and 2 yrs olds 

are more subtle although statistical differences are observed in radial diffusivity 

suggesting a pruning process.  In addition, our results indicate that FA alone cannot 

differentiate the components of white matter maturation.  Our study reveals more insight 

into the underlying biological changes of white matter which are only obtained when all 

three diffusion parameters are interpreted together.  Finally, comparing diffusion 

parameters across different ROIs in each age group reveal that the development of white 

matter begins from center to peripheral white matter and from occipital to frontal lobes.  



Chapter 6 

 

Emergence of the brain’s default network: Evidence from two-week-old 

to 2-year-old healthy pediatric subjects 
 

Brain is a complex, structured and dynamic system facilitating various functions. 

Rather than investigating brain function in forms of isolated brain regions, studies have 

shown the indispensability of viewing the brain as an integrated system consisting of 

spatially segregated yet actively interacted regions, which essentially form “functional 

networks” (151, 152). Recent studies further show that such a network organization of 

brain persists even when subjects are lying in the scanner doing no explicit cognitive task 

other than “resting” (20, 22).  For our interest of characterizing brain development in 

pediatric subjects, resting state fMRI is particularly suitable and provides us unique 

opportunity to explore the underlying functional development trajectory for the first time.  

Brain has various specific functional networks such as motor-sensory, visual, 

language, attention, etc. However, one of the major findings in recent fMRI studies is that 

a distinct brain network – referred to as the default network (26)– is engaged during 

passive or undirected “resting” mental states. For this reason, in this chapter we first 

tackled the development of this particular network using functional connectivity MRI 

(fcMRI) to depict its developing trajectory in the first 2 years based on our published 

paper titled “Emergence of the brain’s default network: Evidence from two-week-old to 

2-year-old healthy pediatric subjects” (153).  The developing process of other networks 

and the whole brain as a comprehensive network will be discussed in following chapters.  
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6.1 Introduction 

A growing body of evidence suggests that a distinct brain network – referred to as 

the default network – is engaged during passive or undirected mental states (26). Broad 

awareness of the default network emerged when Shulman et al (154) conducted a meta-

analysis, pooling resting positron emission tomography (PET) images from 132 normal 

subjects who underwent a variety of goal-directed cognitive tasks (e.g., word reading, 

category classification, etc.). Remarkably, despite the differences in activation paradigms 

among the subjects, several brain regions consistently exhibited a higher cerebral blood 

flow (CBF) during undirected (passive) states than during cognitive task conditions. It 

was suggested that the increased brain activity (CBF) during the passive condition 

reflected ongoing thoughts and monitoring of the external environment. Subsequently, a 

series of seminal studies were conducted and reported by Gusnard, Raichle and 

colleagues which focused on the functional significance of such increased brain activity 

during resting/passive conditions (26, 155). The term “default mode of brain function” 

was thus coined by Raichle et al (26), describing the baseline state in the human brain. 

Since then, substantial efforts have been devoted to further determining the anatomical 

and functional implications of the brain’s default network using both PET and MRI 

techniques (154, 156-158).   

Remarkably, despite the utilization of different neuroimaging methods including 

PET (154, 156) and resting functional magnetic resonance imaging (rfcMRI) (157, 158), 

a consistent pattern of the main architecture of the default network has been reported 

across different studies and modalities. Specifically, these reports suggest that the default 

network consists mainly of the ventral/dorsal medial prefrontal cortex (v/d MPFC), 
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posterior cingulated cortex/retrosplenial (PCC/Rsp), inferior parietal lobule (IPL), lateral 

temporal cortex (LTC) and hippocampus regions (HF) (28). This convergence in 

anatomical representations of the brain among different neuroimaging approaches 

suggests that the default network is likely to be a distinct brain system with its own 

function, and for which dysfunction may have great impact on various brain diseases 

(159).  

While the anatomical representations of the default network are highly consistent 

in the literature, the specific functions of the default network remain controversial (21, 26, 

27, 160).  In adult studies, the default network is typically reported as an intact network 

indicating a temporally synchronized functional composition (48). However, evidence 

also suggests that the default network has specialized subsystems that converge on two 

main “hubs” – PCC/Rsp and MPFC (161). Uidden et al (161) investigated the two hubs 

of the default network and found that the interaction patterns with other networks are 

significantly different for these two hubs, suggesting functional differentiation within the 

default network. Nevertheless, to date most of the existing literature on default network 

focuses largely on adult subjects. As a result, it is difficult to determine how and when 

the default network is formed. The delineation of its developmental process not only 

offers profound scientific implications on its functional evolution during a critical time 

period when the brain undergoes tremendous development (129) but also potentially 

provides great insights into the etiology and pathophysiology of neurodevelopmental 

disorders. Fair et al (101) investigated default network in school-age children (i.e. 7-9 

years old) and found that the network is only sparsely connected in children when 

compared with adults. Fransson et al scanned pre-term infants at a gestational age of 41 
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weeks and failed to discern the default network (162). Based on these two studies, one 

would hypothesize that the default network cannot be completely discerned up to 7-9yrs 

old, assuming a monotonic developing trend.  However, subjects in Fransson et al’s 

studies were born prematurely, which made it unclear whether or not their findings are 

applicable to healthy infants. Moreover, whether the development of this particular 

network follows a monotonic pattern remains elusive without data actually covering the 

age gap. To this end, our studies aimed to reveal the temporal development of the default 

network by partially filling the age gap between Fair et al’s (101) and Fransson et al’s 

studies (162), determining the emergence of the default network as a whole as well as 

potentially discerning the presence or absence of the specialized subsystems (hubs) 

within the default network in a critical time period of brain development.   

6.2 Methods 

6.2.1 Subjects 

The study subjects were part of a large study on characterizing brain development 

in normal and high risk children (163). Informed consent was obtained from the parents 

and the experimental protocols were approved by the institutional review board. None of 

the subjects was sedated for MR imaging. Before the subjects were imaged, they were fed, 

swaddled, and fitted with ear protection. All subjects slept during the imaging 

examination.  We retrospectively identified 71 normal subjects including 20 neonates 

(9M, 24±12days (SD)); 24 1-year-olds (16M, 13±1mon) and 27 2-year-olds (17M, 25

±1mon) who met the inclusion and exclusion criteria. In addition, 15 (11M, 30±1.7yrs) 

healthy adult subjects were also recruited for comparisons with pediatric subjects. A 
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board-certified neuroradiologist (JKS) reviewed all images to verify that there were no 

apparent abnormalities in the acquired MR images.  

6.2.2 MR acquisition  

A 3D MP-RAGE sequence was used to provide anatomical images to co-register 

among subjects. The imaging parameters were as follows: repetition time (TR)=1820ms; 

echo time (TE)=4.38 ms; inversion time=1100ms; 144 slices; and voxel size = 1x1x1mm
3
.  

For the rfcMRI studies, a T2*-weighted EPI sequence was used to acquire images.  The 

imaging parameters were as follows: TR=2sec, TE=32 ms; 33 slices; and voxel size 

=4x4x4 mm
3
. This sequence was repeated 150 times so as to provide time series images.   

6.2.3 Post-processing 

The brain extraction tool of the FSL (FMRIB, Oxford University, U.K.) was first 

applied to exclude all voxels outside of the brain.  Subsequently, rfcMRI data 

preprocessing included compensation of slice-dependent time shifts, rigid body 

correction for inter-volume head movement within runs, and spatial smoothing (6-mm 

full width at half maximum Gaussian kernel).  The first time point rfcMRI was co-

registered to the corresponding T1-weighted MP-RAGE structural images using affine 

rigid body alignment.  Image normalization for each age group was then achieved by 

choosing one subject of each age group as template and then performing intensity-based 

hammer nonlinear registration (164) on T1-weighted structural images.  Finally, the 

transformation fields from affine alignment and hammer registration steps were 

employed to bring all fMRI volume data to the template space, allowing group analysis.  

Principal component analysis (PCA) was employed for data dimension reduction 

while the infomax algorithm (165) was applied for ICA analysis on dimension reduced 
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data set to obtain a set of aggregate independent components for each age group.  The 

number of components for each age group was determined using the minimum 

description length criteria (166), which was 28, 31, 27 for neonate, 1yr and 2yr groups, 

respectively.  This group ICA was carried out using GIFT software 

(http://icatb.sourceforge.net/) proposed by Calhoun et al (167).   

6.2.4 Group Default Network Definition  

After group ICA, ICA components associated with vessels, cerebral spinal fluid 

(CSF) and possible motion artifacts were first removed.  Subsequently, template MP-

RAGE images were normalized to the Montreal Neurological Institute (MNI) EPI 

template using intensity-based HAMMER nonlinear registration (164) and the 

corresponding transformation field was then used to bring the remaining IC maps in each 

group to the MNI template space. Regional parcellation was then achieved using the 

anatomically labeled template reported by Tzourio-Mazoyer et al (168).  An automated 

approach (169) was employed to select the component(s) comprising brain regions that 

best matched with the commonly observed brain regions in the default network, including 

bilateral medial superior frontal and bilateral posterior cingulate gyrus (26, 28).  This 

approach was first applied in the adult group where the ICA component 10 (Fig. 15) 

exhibited a much higher matching score when compared with the remaining components, 

suggesting that component 10 was associated with the default network.  Indeed, the 

anatomical regions observed in 10th ICA component (Fig. 6.2 and Table 2) are highly 

consistent with that reported in the literature (28).  Subsequently, the brain regions of the 

10
th

 component of the adult group were then used as the template to identify components 

of the default network for all three pediatric groups.  In contrast to adults, there was not a 
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clear choice of the component(s) to best discern the default network in pediatric subjects 

(Fig. 6.1).  To circumvent this difficulty, we have arbitrarily chosen a matching score 

threshold based on the adult studies; the component exhibited a matching score greater 

than 1 was considered as the component reflecting the default network.  As a result, two 

components were chosen as the default network for the 1yr and 2yr old groups, 

respectively, while three components were identified for the neonates group (circles, 

Fig.6.1).  

6.2.5 Correlation/statistical Analysis 

Although PCA/ICA was done with all subjects in each age group, the mean time 

course of each ROI was separately extracted from each individual subject to construct a 

correlation matrix.  Prior to computing correlations, the mean time course was low pass 

filtered at 0.08 Hz.  Subsequently, in order to combine correlation coefficients ( r ) across 

subjects in each age group, Fisher’s Z-transform was applied for each subject and 

averaged across subjects so as to compute the mean correlation matrix for each group 

(transformed back to correlation values for analysis).  One-sample t-test (two-tailed) on 

the Fisher’s Z-transformed group mean value for each connection was performed to 

determine whether it was significantly different from zero. The false discovery rate (FDR) 

approach (170) was applied to correct for multiple comparisons, achieving the expected 

proportion of type I error to α<0.05.  In order to also investigate the connection pattern of 

each specific region with all other regions within the network, the mean connection 

strength (average of the connection values of each region with all other regions) was also 

calculated using the Fisher’s Z-transformed value and transformed back to correlation 

values for presentation.  
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6.2.6 Graphs 

To visualize the connection pattern of different regions within the default network, 

the spring embedding algorithm was applied to calculate the position of each node (ROI) 

based on the group mean correlation matrices. In these graphs, the most strongly 

connected regions were clustered near each other while weakly correlated regions would 

be placed further away from each other.  In addition, the width of the line between two 

nodes was proportional to the corresponding connection strength. Only significant 

correlations (P<0.05 after correcting for multiple comparisons) were plotted. 

 Figure 6.1  Template matching score plots for all four age groups: (a) neonates; (b) 1yr 

olds; (c) 2yr olds; and (d) adults.  X-axis is the component index and Y-axis represents 

the matching scores. Circles indicate the components selected comprising the default 

network. 

 

6.3 Results 
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Using a group independent component analysis (ICA) approach (167), an 

automated procedure (169) was employed to select the component(s) comprising brain 

regions that best matched with the commonly observed brain regions in the default 

network (28). The anatomical representations of the default networks for all groups are 

shown in Fig. 6.2; the volume ratios and mean Z scores of these anatomical regions are 

offered in Table 6.1. The corresponding surface rendering is provided in Fig.6.3. It is 

evident that the anatomical representations of the default network in adults are highly 

consistent with that reported in the literature (28). In contrast to the adult’s default 

network, the temporal and spatial evolution of the default network in pediatric subjects is 

summarized below.   
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Figure 6.2 Spatial ICA identified default network components in each age group are 

shown.  The anatomical locations of each group are labeled in the figure. Abbreviations: 

MPFC: ventral/dorsal medial prefrontal cortex; PCC: posterior cingulated 

cortex/retrosplenial; LTC: the lateral temporal lobe, HF: the hippocampus formation; IPL: 

inferior parietal lobe; PHC: parahippocampal cortex; ACC: anterior cingulate cortex; 

InfTemporal: inferior temporal cortex; SupTemproal: superior temporal cortex; 

MedParitetal: medial parietal cortex; LatParietal: lateral parietal cortex; MidFrontal: 

middle frontal cortex.   

 

A rather primitive/incomplete default network consisting of 6 brain regions is 

observed in neonates. At 1yr old, a total of 13 regions are observed with 10 of them 

covering regions consistent with that observed in adults, including v/d MPFC, PCC/Rsp, 

bilateral LTC, bilateral IPL, and HF (28). However, the remaining 3 regions have not 

been reported in adult studies, including the parietal and bilateral inferior temporal 

regions.  Similar to that observed in 1yr olds, the default network of the 2yr olds consists 

of 13 regions covering anatomical locations consistent with adults plus additional 6 

regions, including the orbital frontal, anterior cingulate cortex (ACC), right parietal, 

medial parietal, and bilateral superior temporal regions. It is worth pointing out, despite 

the temporal and spatial evolution of the default network from neonates to 2yr olds, both 

the v/d MPFC and PCC/Rsp are consistently observed across the three pediatric groups. 

In addition, the volume ratios (volume in a specific region/total intracranial volume) of 

the MPFC and PCC/Rsp are the highest in each age group but are inversely proportional 

with age (Fig. 6.2 and Table 6.1): it starts from 12.9%/11.8% (MPFC / PCC/Rsp) in 
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neonates, reduces to 4.3%/5.9% in 1yr olds, 5.6%/5.6% in 2yr olds, and 4.02%/1.8% in 

adults. The latter finding is of interest.  Although not specifically focused on the default 

network, Johnson suggested that the infant brain often employs a larger area of cortex 

than those used in adults (108), consistent with our findings.   

 

Figure 6.3 The brain’s default networks in all four age groups. Z score maps (Z>1) are 

mapped on to the template brain surface for each individual group. For the pediatric 

groups, although more than one components were chosen, they were pooled together to 

show on the same brain surface (Z scores showed here is taken as the maximum from 

different components).  

 

In order to discern the interactions among the identified brain regions of the 

default network, the averaged group correlation matrices were used for graph analysis 

after test of significance of specific connections (170). The spring embedding method 

(171) was used to depict the connection pattern of each group (Fig. 6.4a). These graphs 
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were arranged such that the most strongly connected regions were drawn close to each 

other and placed in the center of the graph and vice versa. In addition, the width of the 

connecting lines indicated the connection strengths. A summary of the mean connection 

strengths for all regions is provided in Fig.6.5a.   

Several main features regarding the temporal evolution of the default networks can be 

derived from Figs. 6.3 and 6.4. First, the connection percentage starts from 66.7% (10/15: 

10 significant connections out of 15 possible ones) in neonates, increases to 91.03% 

(71/78) in 1yr olds, levels off to 78.4% (134/171) in 2yr olds and increases to 100% in 

adults, suggesting a non-linear evolution pattern of the connectivity of the default 

network. Second, as mentioned previously, the pediatric default networks include regions 

that are consistent with the adult group as well as additional regions not observed in 

adults. Interestingly, with the exception of LTC, the former regions are typically located 

near the center of the graph while the latter regions are located a distance away from the 

center in all pediatric groups. This finding implies that the regions consistent with those 

observed in adults are more strongly connected when compared with those not observed 

in adults. The only exception of the observed weak connection, LTC, appears consistent 

with that reported by Buckner et al (28). Third, for pediatric groups, both PCC/Rsp and 

MPFC are consistently located at the center of each graph with the exception of the 

neonate group (only PCC/Rsp), implying that these two regions are most strongly 

connected with other regions. This finding is consistent with the degree of connection 

plots (Fig. 6.4b) – the ratio of the number of connections a specific region possesses to 

the total possible connections. Fourth, regarding the mean connection strength – a 

measure previously suggested to be positively correlated with functional performance 
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(172), the PCC/Rsp and MPFC reliably exhibit the highest mean connection strengths 

across all ages while the brain regions located at a distance away from the center regions 

are unexceptionally ranked with lower values (Fig. 6.5). Finally, a regression analysis 

reveals that the connection strength between these two regions is linearly (P=0.0059) 

increased as a function of age (Fig. 6.5b), although one must be cautious that there is a 

large age gap from 2yr olds to adults.  
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Figure 6.4 (a) Functional connectivity graphs for all four age groups.  The most strongly 

connected regions are clustered near each other while weakly correlated regions are 

placed further away from each other.  The width of the line between two nodes is 

proportional to the corresponding connection strength. Only significant correlations 

(P<0.05) were plotted. (b) Bar plots of the degree of connection for each node in a 

descending order (the ratio of the number of connections a specific region possesses to 

the total possible connections). See Fig.6.3 for abbreviations.  

 

 

Figure 6.5 (a) Mean connection strength of each node for all age groups.  The bars 

indicate the mean connection strength averaged over the corresponding group and red 



78 

 

asterisks represent the values of individual subjects. (b) Regression results for the 

connection between MPFC and PCC. See Fig.16 for abbreviations.  

 

Thus far, our findings consistently indicate that the PCC/Rsp and MPFC may play 

a critical role in the default network. The notion of the presence of hub regions in the 

brain has been proposed (42). Therefore, to further determine whether or not the 

PCC/Rsp and MPFC are the two potential hubs in the pediatric default networks, the 

betweenness centrality (BC) (173) – a measure of node importance in graph theory, was 

calculated for each region based on the individual network within each age group (Fig. 

6.6).   As evident in Fig. 6.6, the most elevated centrality measure for all age groups is 

the PCC/Rsp.  In addition, although smaller than the PCC/Rsp, the MPFC in 1yr and 2yr 

olds also exhibit elevated centrality measures when compared with the remaining regions.  

These results suggest that the PCC/Rsp may be the major hub of the default network 

whereas the MPFC subsequently emerges, potentially, as the secondary hub starting at 

1yr of age.   
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Figure 6.6 Betweenness centrality measures for individual ROIs of the three pediatric 

groups. (a) neonates; (b) 1-year-old; and (c) 2-year-old. See Fig.16 for abbreviations.  

 6.4 Discussion 

The temporal evolution of the default network during a critical time period when 

brain dynamically establishes axonal connections to form different networks and also 

undergoes extensive axonal pruning was investigated in this study. With the rfcMRI 

approach (20) and full-term healthy normal pediatric subjects ranging from 2wks to 2yrs 

of age, group ICA revealed the anatomical representations of the default network. 

Specifically, a primitive and incomplete default network was observed in neonates (Table 

6.1). This observation is consistent with that reported by Fransson et al where they also 

failed to detect “a direct equivalent of a default-mode network in infant brain” (162). The 

default network at 1yr-old became more complex and was intensively connected among 

different brain regions (91.03%), indicating the formation of a well synchronized default 

network at this age. In contrast, the changes of the default network from 1yr- to 2yr-olds 

were more subtle, particularly considering those regions that are commonly observed in 

the adult’s default network. All of the regions presented in 1yr olds persist in 2yr olds 

with the addition of PHC, making the architecture of the whole network more complete 

(26, 28).  To the best of our knowledge, these are the first reported results, demonstrating 

the temporal and spatial development of the default network in such a critical age period 

of normal brain development.     

One of the major findings of our study is the notion that both PCC/Rsp and MFPC 

may play a critical role in the default network. Both PCC/Rsp and MPFC are consistently 

observed in all ages (Fig. 6.2 and 6.3), exhibit the largest volume ratios (Table 6.1), are 
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located at the center of each network (Fig. 6.4), and have the largest mean connection 

strengths (Fig. 6.5). Indeed, the centrality measures revealed that the PCC/Rsp may serve 

as the main hub while the MPFC is the secondary hub which starts to emerge at 1yr of 

age (Fig. 6.6). This finding is intriguing and appears consistent with that reported in adult 

studies: it has been suggested that the MPFC and PCC/Rsp are the two hubs involved in 

different aspects of cognitive function in adults (161). Specifically, MPFC has been 

implicated to be more involved in self-referential activity, mentalizing process, self-

projection or theory of mind (155, 174-176) whereas the PCC/Rsp is more associated 

with episodic memory retrieval (177). However, translating these functions of MPFC and 

PCC/Rsp in adults to pediatric subjects is elusive. In addition, since independent 

behavioral measures were not available in our study, the observed temporal and spatial 

development of the default network cannot directly translate to functional development.  

Nevertheless, some similarities are observed between our findings and the reported 

functional development in the literature. Amsterdam (120) found that infants from 6 

through 12 months of age demonstrate prolonged and repeated reaction to their mirror 

images as a sociable playmate. Wariness, withdrawal, self-admiring and embarrassed 

behaviors start at 14 months and have been observed in 75% of the children after 20 

months of age.  From 20 to 24 months of age, the majority of subjects demonstrate 

recognition of their mirror images. These temporal behaviors demonstrate an evolving 

trajectory of self-consciousness before the age of two, which is essential for self-

projection/self-referential activity. Studies on toddlers also revealed that 18- to 24-month-

olds are able to use speaker’s gaze direction (121) and affective expression (122) as cues 

leading to speaker’s communicative purposes. Akhtar and Tomasello (124) further 
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proposed that children are able to infer the meaning of words through an understanding of 

people’s minds (125). These primitive mental functions may actually act as a promising 

source where more sophisticated function such as mentalizing about others and “theory of 

mind” can be originated and developed. Together, these findings suggest that the 

functions associated with MPFC regions undergo gradual development during the first 

years of life, which is in line with our findings: MPFC emerges as one of the hubs of the 

default network from 1yr olds.  

In contrast to MPFC, the PCC/Rsp is associated with episodic memory retrieval in 

adult studies. Therefore, the question is whether or not the observed PCC/Rsp in our 

study reflects the primitive version of memory in very young children. The appearance of 

the right occipital region and the bilateral posterior parietal/occipital area encompassing 

the PCC (termed simply as PCC in the text) in neonates may suggest the formation of 

some forms of memory (i.e., implicit memory).  Consistent with these findings, Davidson 

(115) suggested that implicit memory is robustly presented in neonates and toddlers. 

Additional studies further demonstrated that the sensorimotor experiences of the fetus 

(116) and the voice of mother (117) can be memorized. In contrast, the emergence of 

bilateral HF, bilateral IPL and PCC/Rsp starting from 1yr olds to 2yr olds forms a 

hippocampal-parietal memory network much like that defined by Vincent et al (32) in 

adults. In line with our findings, Fivush and Hamond (118) showed that 2yr olds can 

already retrieve much detail about a trip to the zoo. Together, our findings of the 

PCC/Rsp appear to be consistent with that reported in the literature and demonstrate a 

memory-related architecture in 1 and 2yr olds. 
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Despite the possible default-network related functions discussed above and the 

observed adult-like architecture of the default network in 1 and 2yr old groups, one must 

be cautious in further interpreting our results since it is highly unlikely that such young 

pediatric subjects may have the brain circuitry capable of adult-like default network 

functions. It has been suggested that the “theory of mind” emerges after age of 3 and 

episodic memory are not formed until the age of 4 (119). Therefore, although we 

observed a complete architecture of the default network in 1yr olds, its related function 

remains largely unknown. These apparent discrepancies led us to hypothesize that the 

formation of the default network may predate its functional specialization. Although not 

specifically focusing on the default network, Johnson et al also claimed that cognitive 

functions of infants often employ both larger area of cortex and also a wider range of 

interactions of brain regions that include and extend beyond those used in adults (108). 

While to directly prove or disprove this hypothesis for default network is beyond the 

scope of our study, our results may offer preliminary evidence of support in three 

different ways. First, the decreasing volume ratios of PCC/Rsp and MPFC with age 

indicate the ongoing localization of these major regions. Second, in addition to those 

brain regions that are consistently observed in adults, extra brain regions in pediatric 

groups’ default networks are also observed. Finally, the connection percentage first 

increases from 67% in neonates to more than 90% in 1yr olds and then decreases to 78% 

in 2yr olds. The latter two findings suggest a potential specialization process of removing 

redundant connections. Nevertheless, more results, particularly beyond 2yrs of age will 

be needed to further determine the temporal relation between the presence of connectivity 

and functional development. Toward this end, Fair et al (101) recently investigated the 
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development of default network on school-age children based on an ROI seeding 

approach. They found an incomplete default network with much sparser and weaker 

connections in children when compared with adults. Considering our findings of the 

disappearance of extra regions and reduction of percent connections from 1yr to 2ry olds, 

it is plausible that this reduction trend continues till the age span in their study. 

Nevertheless, one should note that this trend of reduction at some point need to be 

reversed to be consistent with the adults’ results reported here and in the literature (28), 

suggesting a potential bi-phasic instead of monotonic behavior of the development of the 

default network. Systematic studies covering the whole age span from neonates, school 

age children to adults are necessary to further investigate the temporal evolution of the 

default network. 

Two different approaches are commonly employed to discern brain functional 

connectivity, namely ROI and ICA (22, 101). Both approaches have its pros and cons.  

The ROI approach requires a priori information to place the ROIs, typically employing 

activated regions in task related studies. It allows direct comparisons between groups if 

the ROIs are identical among groups. It also offers a higher sensitivity if a ROI instead of 

a seed voxel was chosen for temporal correlation analysis.  However, this approach is 

somewhat biased and may not be able to identify new connections. In our study, using 

regions of the adult’s default network as a priori could limit our ability to determine the 

temporal and spatial evolution of this network in pediatric subjects. Therefore, the ICA 

approach is adopted in our study. However, one of the difficulties associated with ICA is 

how to objectively determine which component(s) links to the default network. To 

partially circumvent this difficulty, an automated template matching approach (169) was 
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employed here to identify components comprising the default network.  Although not 

completely eliminating the subjective nature of selecting components, this approach 

allows a more consistent means to determine ICA components and offers the ability to 

explore temporal and spatial evolution of the default networks in the developing brain. 

With the template matching procedure (169), we have identified 3, 2, and 2 “best fitted” 

components for neonates, 1yr olds and 2yr olds, respectively. As is always the case with 

the ICA approach, those components not selected for visualization/analysis may 

correspond to other functional networks.  However, we feel this exclusion is justified 

since the main focus of our study is the development of the default network.  

Finally, two additional technical issues warrant further discussion. First, since all 

of the subjects were sleeping during imaging acquisition, it is plausible that different 

depths of sleep from subject to subject may result in experimental variability.  

Nevertheless, it has been reported that resting functional connectivity appears to be 

independent of whether or not the subjects were at sleep, awake or even under anesthesia  

(91). Therefore, we do not foresee that different depths of sleep would affect the 

outcomes of our studies. Second, the rather low spatial resolution has limited our ability 

to discern small cortical structures for the default network. Specifically, Buckner et al (28) 

have separately evaluated the dorsal and ventral MPFC of the default network. This is not 

done in our study owing to the limited spatial resolution, which reflects a compromise 

between the quality of rfcMRI and the data acquisition time for imaging non-sedated 

subjects.   

6.5 Conclusions 
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With rfcMRI, we report the temporal and spatial evaluation of the default network 

in healthy normal pediatric subjects between 2wks and 2-yrs of age. A primitive and 

incomplete default network is observed in 2wk olds, followed by a marked increase in the 

number of brain regions exhibiting functional connectivity and the percent of functional 

connection at 1yr olds, and finally becoming a similar network as that reported in adults 

at 2yr olds. In addition, although the default network changes substantially among 

different age groups, PCC/Rsp is consistently observed in all age groups, among the most 

and strongest connections, and the highest centrality measure of the pediatric default 

networks, suggesting that PCC/Rsp is the main hub of the default network. In addition, 

although not as remarkable as the PCC/Rsp, the MPFC emerges as a potential secondary 

hub of the pediatric default networks starting from 1yr of age. To the best of our 

knowledge, these are the first reported results on the temporal development of the default 

network in a critical time period of brain development.    

 

Table 6.1: Anatomical regions of the default network in neonates, 1yr olds, 2yr olds, 

and adults 

Adults  Neonates 
 Region Volume 

Fraction 

Mean 

Z score 

 Region Volume 

Fraction 

Mean 

Z score 

IC
 1
 

 

MPFC  

 

0.0402 

 

2.32 

 

IC
 1
 

 

MPFC 

 

0.1287 

 

3.65 

PCC 

 

0.0183 

 

3.21 

 

Occipital R 

 

0.0167 

 

1.50 

 

HF L 

 

0.0015 

 

1.36 Parietal 

 

0.0248 

 

2.37 

 

LTC R 0.0016 

 

1.43 

 

 

Temporal L 

 

0.0066 

 

1.45 

 

LTC L 

 

0.0021 

 

1.58 

 

IC
 2
 PCC 0.1183 4.39 
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IPL R 

 

0.0067 

 

2.07 

 IC
 3
 Bilateral 

Frontal 

0.1271 3.57 

IPL L 

 

0.0097 

 

2.38 

 

   

 

1-year-old  2-year-old 

IC
 1
 

MPFC 1 

 

0.0428 

 

2.87 

IC
 1
 

MPFC 1 

 

0.0562 

 

2.58 

HF R 

 

0.0059 

 

1.91 

 

HF R 0.0041 

 

1.56 

 

HF L 

 

0.0076 

 

1.85 

 

HF L 

 

0.0043 

 

1.39 

 

LTC R 

 

0.0032 

 

1.52 

 

LTC R 

 

0.0012 

 

1.23 

 

LTC L 

 

0.0034 

 

1.42 

 

LTC L 

 

0.0023 

 

1.25 

 

PCC 1 

 

0.0048 

 

1.57 

 

PHC R 

 

0.0007 

 

1.48 

 

IC
 2

 

MPFC 2 

 

0.0063 

 

1.61 

 

PHC L 

 

0.0011 

 

1.24 

 

Inf Temporal 

R 

 

0.0013 

 

1.46 

 

PCC 1 

 

0.0084 

 

1.68 

 

Inf Temporal 

L 

 

0.0022 

 

1.38 

 

SupTemporal 

R 

 

0.0045 

 

1.63 

 

PCC 2 

 

0.0588 

 

3.03 

 

SupTemporal 

L 

 

0.0027 

 

1.44 

 

IPL R 

 

0.0057 

 

1.27 

 

ACC 

 

0.0016 

 

1.48 

 

IPL L 

 

0.0009 

 

1.08 

 

PCC 2 

 

0.0056 

 

1.59 

 

Mid Front L 0.0013 1.18 Med Parietal 

 

0.0037 

 

1.43 

 

   Lat Parietal 

R 

 

0.0012 

 

1.25 

 

   

IC
 2
 PCC 3 

 

0.0550 

 

3.07 
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   IPL R 

 

0.0105 

 

1.48 

 

   IPL L 

 

0.0096 

 

1.36 

 

   MPFC 2 

 

0.0050 

 

1.49 

 

   Orbital 

Frontal 

0.0037 1.40 

 



Chapter 7  

Evidence on the Mediating Role of Frontal Parietal System on the Anti-

correlated Default and Dorsal Attention System 

 

The previously discussed default network has been considered as a task negative 

network since it appears to be highly active during a resting condition (26).  This is in an 

obvious contrast with more well known networks which are active during the 

performance of cognitive tasks, task positive networks (178).  It has been demonstrated 

by several studies that anti-correlation between these two systems exists which may 

indicate one of the brain’s intrinsic organization principles (23).  In this Chapter, this 

anti-correlated phenomenon will be specifically tackled and the hypothesis of the 

potential mediating role of the frontal-parietal control system on this anti-correlation will 

be directly tested, aiming to answer the important question regarding the relationship 

between these three most salient networks during resting state as well as task sates (23, 

88). Moreover, as the network organization is increasingly accepted in the neuroscience 

field, there is also increasing need to design a network-level approach to specifically 

quantify the interaction strength between different brain systems.  One such newly 

developed method as well as the findings regarding the proposed hypothesis using this 

approach will also be described in the final section of this chapter.   
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Given that this mediating relationship is an unvalidated hypothesis, we started to 

first prove its validity in adult subjects based on matured brain functional structure to lay 

down the basis for following developmental studies. The question of when this mediating 

role emerges and how it develops during the first few years of life will be specifically 

tackled in future work. 

7.1 Introduction 

Normal brain functioning relies on coordinated activity among sets of distributed 

yet interacting brain regions, essentially forming networks responsible for distinct 

functions.  Among them, two “competing” systems, either increasing or decreasing 

activity depending on the presence or absence of attention-demanding tasks were 

extensively studied (26, 154, 178). The first is the dorsal attention system (DAS) 

covering regions in the frontal eye fields (FEF), intraparietal sulcus (IPS) and middle 

temporal area (MT+), which are routinely activated during performance of goal-directed 

tasks (178). The roles of DAS have been well documented and are associated with 

externally directed cognition including spatial attention, motion tracking, initiating and 

maintaining activity while awaiting a target, etc (178).   The second system comprises the 

so called “default-mode” network, including posterior cingulate cortex (PCC), inferior 

parietal lobule (IPL), medial prefrontal cortex (MPFC) and medial temporal regions 

encompassing bilateral hippocampus formation (HF).  As mentioned previously, the 

default network commonly exhibits a decreased activity during attention-demanding 

tasks (26, 154). Although there is a general consensus that this system is related to 

internally directed cognition, its exact functions are poorly defined largely due to the 

“unconstrained” nature of “resting” state from which this network is defined.  However, 



90 

 

given that numerous studies have reported activation of PCC and IPL (179-182) during 

memory-retrieval tasks and the involvement of HF regions in this system, it is highly 

likely that memory-related function is one of its key responsibilities (28, 32).  Recent 

identification of a “hippocampal-parietal” memory network exhibiting almost identical 

anatomical regions with this network further reinforces this notion (32).  In addition, the 

potential self-referential, mentalizing, and planning functions of the MPF regions further 

make this system suitable for recollecting the past and thinking about the future (21, 28, 

155).  

Recent functional connectivity magnetic resonance imaging (fcMRI) studies 

reveal that the regions within each of the two systems are highly positively correlated 

during resting state (23, 88, 91), reinforcing the notion that regions similarly modulated 

during tasks tend to exhibit synchronized activity even in the absence of tasks, consistent 

with Biswal et al’s (20) first observation of this phenomena. On the other hand, given the 

clear functional disassociation between these two “competing” systems as previously 

described, the activity between them should be disassociated. Indeed, studies did find 

“anti-correlated” activity between these two systems during the resting state (23). 

Moreover, Kelly et al (97) demonstrated that the strength of this “anti-correlation” is 

modulated by exogenous demands under continuous task performance and its strength is 

positively related with task performance, underscoring the behavioral significance of this 

anti-correlation.  

Do these two systems exhibit such opposing activity on their own or is there 

another system(s) that potentially “mediates” between these two systems or even 

regulates their activity? During sustained brain states that primarily involve one of the 
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systems, e.g, the “work on their own” hypothesis seems to work simply indicating that 

during at a certain state the system supporting “task (unconstrained thinking as a “default 

task” during resting)” performance will increase activity while the other system 

supporting irrelevant processes will decrease activity. However, our own experience 

suggest that the brain can readily alternate between such anti-posed states, i.e., the 

“activated” system can immediately become “suppressed” and vice versa when external 

stimuli or internal decisions required to do so seem to argue against the “on their own” 

hypothesis and strongly support that the brain has another resort to take into 

consideration of either the external stimuli or internal decision and in turn 

reconcile/regulate the activity of these two opposing systems to fulfill the need. Indeed, 

Vincent and colleagues (88) have looked into this issue and revealed that a “frontal 

parietal control system (FPC)” encompassing anterior prefrontal cortex (aPFC), dorsal 

lateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), insula (INS) and 

anterior inferior parietal lobule (aIPL) is “anatomically positioned to integrate 

information from these two opposing brain systems”.  In support of this, Sridharan et al 

(183) have shown that several major nodes within this system including rINS and ACC, 

exert significant causal influence to several key nodes within both the default network 

and another “central-excutive (CEN)” network, strongly supporting the potential 

mediating role of FPC.  

However, although the default network is involved in Sridharan et al’s study 

(183), their CEN network, which includes dlPFC and posterior parietal cortex (PPC), is 

largely different from the dorsal attention network.  Thus, the primary goal of this study 

is to test the hypothesis that regions within FPC mediate the anti-correlated activity of the 
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dorsal attention and default systems. Two lines of evidence will support this hypothesis. 

First, for mediation/regulation to be true across different brain states, FPC should 

selectively increase/suppress the activity of either network to facilitate  task performance 

depending on whether the task is external-attention directed (more related with DAS) or 

internal cognitive function oriented (more related with DS). Secondly, during stable 

states, for mediation to be true, removing the effect of FPC should result in significantly 

poorer anti-correlation between these two systems during any sustained state.  

We directly tested the above two hypotheses using functional connectivity 

measures based on BOLD fluctuations. Specifically, two task states, namely continuous 

finger tapping (FT) and movie watching (MW), were selected to compare with the resting 

state (RS). The two tasks were designed to engage primarily one of the two opposing 

systems, respectively, i.e. FT for dorsal attention system and MW for default system 

(besides the obvious motor and visual involvement). To do this, subjects were specially 

instructed to tap their thumb against each of the four other fingers in a sequential manner 

during FT with a frequency of around 1Hz to maintain attentional focus.  In contrast, 

subjects were told to report the contents of the movie segment after the experiment to 

engage memory-related function during the process. Visual monitoring during FT found 

good compliance with the instruction and post-experiment questionnaire showed 

moderate to high level of memory of the movie contents even a year after the experiment 

(Table.7.1), validating our study design. Hence we hypothesized that if FPC truly exerts 

mediation between the two competing systems for the performance of the specific tasks, 

it will increase connectivity with DAS and decrease connectivity with the default during 

the FT task while the opposite should be true for MW task. Secondly, if this mediation is 
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sustained during any ongoing brain states, then “removing” its effect (through the 

concept of partial correlation) should result in significantly reduced anti-correlation 

between DAS and default network during each of the examined states. In addition, in this 

project, we also aimed to design a multivariate approach to explore the network-level 

interactions and the results will be combined with those from traditional regional 

techniques to test the proposed hypothesis.  

7.2 Methods 

7.2.1 MR Acquisition  

A total of 19 healthy subjects (age 25~33, 7F, all right-handed) were recruited in 

this study. Informed consent was obtained from all participants and the experimental 

protocols were approved by the institutional review board.  All images were acquired 

using a Siemens Allegra 3T MR scanner (Siemens Medical Inc., Erlangen, Germany).  

Anatomical images were acquired using a 3D MP-RAGE sequence and these images 

were subsequently used for co-registration among subjects.  The imaging parameters 

were as follows: repetition time (TR) = 1820ms (sum of the inversion time and the 

duration of the entire 3D partition encodings for one phase encoding step); echo time (TE) 

= 4.38 ms; inversion time = 1100ms; 144 slices; and voxel size = 1x1x1mm3.  For the 

rfcMRI studies, a T2*-weighted echo-planar imaging (EPI) sequence was used with the 

following imaging parameters: TR = 2sec, TE = 32 ms; 33 slices; and voxel size = 4x4x4 

mm3.  This sequence was repeated 150 times (~5 min) for each experimental condition, 

including resting, continuous finger tapping and watching a movie clip. During the 

resting state, subjects were instructed to relax and remain still but keep eyes closed. 

During the finger tapping condition, subjects were instructed to lie still with eyes closed 
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while continuously touching the thumb to each finger in a sequential manner using only 

the dominant hand.  In addition, subjects were also instructed to maintain a consistent 

pace (~1Hz) of finger tapping throughout the entire scan. Each subject was visually 

monitored during the scan.  For the movie watching task, the movie clip contain shallow 

sea scenes with a variety of animal activities. Subjects were told to report what they saw 

in the movie after the experiment and a questionnaire was filled by each subject 1 year 

after the study and most of them reported moderate to high memory scores suggesting 

strong memory function involvement during the task (Table 7.1).    

Table.7.1 Reported scores indicating the level of memory of the movie contents.  

0-10: with 0 indicating no memory at all and 10 perfect memory of every detail. 

Scores of the 16 subjects involved in analysis are reported. 

Sub_1  5 Sub_2 5.5 Sub_3 2.5 Sub_4 6 

Sub_5  2.5 Sub_6 5 Sub_7 2 Sub_8 4 

Sub_9  3 Sub_10 4 Sub_11 7 Sub_12 5 

Sub_13  3 Sub_14 5 Sub_15 6 Sub_16 4 

Mean: 4.34 SD: 1.45     

 

7.2.2 Preprocessing 

The brain extraction tool of the FSL (FMRIB, Oxford University, U.K.) was first 

applied to exclude voxels outside of the brain.  Subsequently, rfcMRI data went through 

several preprocessing steps including compensating slice-dependent time shifts, rigid 

body correction for inter-volume movement, and spatial smoothing (6-mm full width at 

half maximum Gaussian kernel).  Nuisance sources of variance (white matter, CSF and 

the mean global signal) were removed using regression technique. Three subjects were 

excluded from the subsequent analysis because of excessive head motion during the scan. 
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For the remaining 16 subjects, images of the first ten time points were excluded to allow 

magnetization reaching a steady state. The first available set of rfcMRI images was co-

registered to the corresponding T1-weighted MP-RAGE structural images using affine 

rigid body alignment.  T1-weighted structural images were then spatially normalized with 

the Montreal Neurological Institute (MNI) EPI template using intensity-based HAMMER 

nonlinear registration (164).  The transformation fields from affine alignment and 

HAMMER registration were employed to normalize rfcMRI volume data from all 

subjects to the template space, allowing group analysis of rfcMRI.  

7.2.3 Functional network definition  

A total of five functional networks were defined in our study, including the default, 

dorsal attention (DA), frontal parietal control (FPC), motor-sensory and visual networks.  

All of these networks were constructed based on the published MNI coordinates of the 

major regions within each network (88) (Table.7.2).  For each coordinate, a sphere with a 

size of ~2cm
3
 was defined around the predefined center to define an ROI.  Overall, there 

are 6, 9, 6, 6, and 5 nodes within the DA, default, FPC, V and MS networks (altogether 

32 nodes), respectively.  

7.2.4 Network analysis  

The defined ROIs within each network were used throughout the subsequent 

analysis and the mean time course was extracted from each ROI to construct a 32*32 

correlation matrix for each subject. After fisher-Z transform and averaging across group, 

mean matrices were obtained for each of the three examined states, which were then used 

to test the across-state differences. Specifically, for between-network comparison, 

interactions among region pairs from any two networks (one from each ) were 
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concatenated to form a vector and compared across states (resting vs finger tapping; and 

resting vs movie watching) using nonparametric krusk-wallis test. FDR (170) method 

was used to correct for multiple comparisons and significant between-network was 

defined as p<0.05 after correction. The same procedure was also done for all within-

network comparisons.  

Table.7.2 MNI coordinates of regions of interest within five predefined networks 

 
Dorsal Attention 

(DA) 

lMT+: (-45, -69, -2) 
rMT+: (50, -69, -3) 

lIPS: (-27, -52, 57) 

rIPS: (24, -56, 55) 
lFEF: (-25, -8, -50) 

rFEF: (27, -8, -50) 

 

Visual 

(V) 

lCal: (-8, -72, 4) 
rCal: (16, -67, 5) 

lCS: (-5, -96, 12) 

rCS: (18, -96, 12) 
lLO: (-23, -89, 12); 

rLO: (37, -85, 13);  
 

 

 
Frontal Parietal 

Control (FPC) 

 
laPFC: (-36, 57, 9) 

raPFC: (34, 52, 10) 

ACC: (3, 31, 27) 
laIPL: (-52, -49, 47) 

raIPL: (52, -46, 46) 
ldlPFC: (-50, 20, 34) 

rdlPFC: (46, 14, 43) 

lINS: (-31, 21, -1) 
rINS: (31, 22, -2) 

 

 

Motor-

Sensory 

(MS) 

 
lPreC: (-41, -4, 54) 
rPreC: (42, -13, 53) 

lPoC: (-45, -26, 54) 
rPoC: (49, -27, 53) 

SMA: (6, -5, 54) 

 

 

Default  

 

lHF: (-21, -15, -14) 
rHF: (24, -19, -21) 

vmPFC: (0, 51, -7) 

PCC: (1, -55, 17) 
lpIPL: (-47, -71, 29) 
rpIPL: (50, -64, 27) 

  

 

To test the mediation effect of FPC on the two opposing systems: DA and default, 

partial correlation analysis was performed. Specifically, for each subject, partial 

correlations between pairs of regions within the two systems (one from each) are 

calculated by regressing out the effect of all signals within FPC. After fisher-Z transform 

of both the original correlation values and the partial correlation values, the differences 

were then taken and averaged across different pairs of regions as an indicator of the 

mediating effect from FPC for that subject.  As a result, for each sustained state, we have 

a N*1 vector (N: number of subjects) quantifying the mediation effect of FPC on the two 

opposing systems. This procedure is repeated by using MS and V as regressor networks 
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to calculate the mediating effects from these two reference networks. Finally, statistical 

comparison between the mediating effect across different networks as well as the same 

network across different states was done using the same nonparametric kruskwallis test.  

 

 Figure 7.1 ROI selections for five predefined networks. 

 

7.3 Results 

To explore the relationship between DAS, default and FPC, corresponding 

networks were constructed based on published coordinates of ROIs withing each network 
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(Fig.7.1) (88). Specifically, DAS was constructed to include nodes within bilateral IPS, 

FEF and MT+; default within PCC, MPFC, bilateral posterior IPL (pIPL) and HF; and 

FPC within anterior cingualte cortex (ACC), bilateral aPFC, dorsolateral prefrontal cortex 

(dlPFC), anterior insula (aINS), and anterior inferior parietal lobule (aIPL). In addition, 

given the apparent involvement of the motor-sensory (MS) and visual system (V) during 

either of the two tasks, the corresponding networks were defined to include nodes 

centered on bilateral precentral gyrus (PreC), postcentral gyrus (PoC), supplementary 

motor-sensory cortex (SMA) and bilateral calcarine (Cal), cuneus (CS), and lateral 

occipital (LO), respectively. 

To test the first hypothesis, regional correlation matrices were constructed for 

each individual subject respectively using the BOLD fluctuations obtained during each of 

the three examined states (RS, FT and MW). Individual matrices were then fisher-Z 

transformed and averaged to get a group mean correlation matrix for each of the three test 

states. A two-tailed t test was conducted to test the significance of each connection at the 

level of p=0.05 after correcting for multiple comparisons using FDR (170).  

The resulting significant correlation matrix for RS and FT states are presented in 

Fig.7.2. It is immediately clear that during resting state, regions within every network are 

highly synchronized (85.7% significant, within black boxes) consistent with most 

previous findings indicating high interaction between functionally similar regions (22-24, 

48, 157), but the connections between networks are much sparser (12.8% significant) 

implying great functional disassociation between different systems. However, during FT, 

although the within-network interaction pattern remains qualitatively similar, the 

between-network interaction pattern dramatically changes (Fig.7.2). To find out the 
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significant changes at network level between the two states, for each pair of networks, the 

vector of corresponding mean interaction values obtained during RS and FT was 

compared using nonparametric one way ANOVA and significant changes were defined at 

p=0.05 level after FDR correction (170). Six pairs of networks significantly changed their 

interactions at network level including DA-MS, DA-DF, FPC-DA, FPC-DF, FPC-MS, 

and V-MS, the results are shown in the bottom row of Fig.7.2. Note the same network-

level comparison was done for each within-network connection vector but no significant 

changes were detected.  

 

Figure 7.2 The between-network interaction changes during finger tapping (FT). Top row: 

the significant correlation map during the two states; Bottom row: significant between-

network interaction changes. Within each comparasion, the bar to the left is during 

resting state and the one on the right is during finger tapping. 

 

As shown in Fig.7.2, interaction between DA and the actual “task performer”-the 

MS significantly increased (p=0.0000512) reflecting the increased attentional control 
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during the task, which is expected. Moreover, DA and DF becomes significantly more 

anti-correlated (p=0.0000456), which is consistent with previous reporting of increased 

anti-correlation during attention demanding tasks (97). However, most intriguing results 

come from the interaction changes associated with FPC and the two opposing systems: it 

significantly increases connection strength with DA system (p=0.006) while significantly 

decreasing connection strength with DF system (p=0.00087), which is exactly as 

hypothesized, strongly indicating its role in regulating the activity of both DA and DF to 

achieve the task goal. In support to this role, FPC is also observed to increase direct 

interaction with MS (p=0.0000556, Fig.7.2). Besides, although none of the regional 

interactions reaches statistical significance during either state, the interaction between 

MS and V at network level get significantly disrupted during FT (p=0.006).  

As the FT task validates the hypothesis that FPC will increase DAS activity (more 

positively correlated) while “suppressing” default activity (more anti-correlated) during 

attention demanding tasks, we move on to the next task which is assumed to be more 

related to the default network activity due to apparent memory function involvement. An 

dentical procedure was implemented to compare between RS and MW states and the 

results are shown in Fig.7.3. While the pattern of minimal within-network changes but 

dramatic between-network changes still hold for this state, the significant changes 

associated with between network interactions is largely different, which include FPC-DA, 

FPC-DF, and DA-V. From Fig.7.3, it is apparent that FPC largely reverses its positive 

interaction pattern with DAS and becomes predominantly negatively correlated during 

MW (p<0.00001) while at the same time it enhances its positive correlation with default 

(p=0.0034), which is again highly consistent with our hypothesis. Besides these changes, 
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the interaction between DA and V significantly increases (p=0.000441), likely reflecting 

certain level of attentional budget during the task performance.  Note also in this state, 

although DA and DF seem to be more anti-correlated comparing with resting, this change 

does not reach statistical significance.  

To further test the hypothesis that FPC mediates the anti-correlation during each 

stable brain states, we used the partial correlation technique, which perfectly suits our 

purpose since it is defined as the correlation between two variables after regressing out 

the effect of another set of variables. To do this, we calculated the partial correlation 

between each pair of regions across DAS and default (one from each) by regressing out 

signals within FPC network and the resulting between network correlation strengths were 

compared against those from ordinary correlation using nonparametric one way ANOVA 

to test significant differences. Besides, reference results were obtained by repeating the 

same procedure but using MS and V network as corresponding repressor.  

 

Figure 7.3 The between-network interaction changes during movie watching (MW). Top 

row: the significant correlation map during the two states; Bottom row: significant 
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between-network interaction changes. Within each comparasion, the bar to the left is 

during resting state and the one on the right is during movie watching. 

Results from all three states are presented in Fig.7.4 where we can observe that 

the effect of FPC on the anti-correlation between DAS and default is apparent: the 

“removal” of FPC effect results in significant reduction of the anti-correlation for all 

three brain states (RS: p=0.0005; FT: p<10
-10

; MW: p=0.0078).  Moreover, its effect is 

significantly stronger than that of V for all three states. Actually, V failed to show any 

significant mediation effect for any states. In addition, during resting state, FPC is the 

only network that shows significant mediation effect on this anti-correlation.  During 

both finger tapping and movie watching, MS also shows significant mediation effect, but 

it is significantly weaker than that of FPC during FT while comparable to that of FPC 

during MW.  Finally, comparing FPC’s mediation effect across the three states reveals 

that it is during finger tapping that FPC demonstrates the strongest mediation effect (RS 

vs FT: p<10
-5

; MV vs FT: p=0.0000414).  
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Figure7.4 The mediation effects of FPC on the interaction between DA and DF. Left 

column: the effect of removing FPC effects on the interaction between DA and DF; Right 

column: the comparison of mediating effects of FPC, MS and V on the interaction 

between DA and DF.  

7.4 Discussion 

Our results show two lines of evidence on the mediating role of the frontal 

parietal system (FPC) between the anti-correlated default and dorsal attention system 

(DAS).  Across different task states, the two opposing systems are differentially regulated 

by FPC to facilitate task performance, depending on the “affinity” of the task to either 

system. During stable states, the anti-correlation is largely mediated by FPC, especially 

during the resting state, our results show that this anti-correlation is largely and 

exclusively mediated by FPC.  

Although the cognitive control role of almost all regions within the FPC system 

has been reported in numerous studies (184, 185), the direct relationship between FPC 

and the other two most salient networks - the DAS and default - has not been 

systematically studied. Recently, Sridharna et al (183) performed a highly related study 

reporting that major nodes within the FPC system, particularly the rINS, exert strong 

causal influence on key nodes of the default and another executive networks during both 

external attention directed tasks and resting, clearly supporting the mediating role of FPC 

regions. However, the executive network (including dlPFC and PPC) in their study is 

largely different from the dorsal attention network. Actually, the dlFPC included in their 

executive network is included in FPC system in this study, which is consistent with its 
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primary role in cognitive control and other studies reporting synchronized activity of this 

region with the other regions in FPC (88, 185).   

Besides this difference in network definition, our results extended the previous 

finding of the mediating role of FPC from three aspects. First, by choosing two 

functionally different tasks primarily associated with one of the two opposing systems, 

respectively, our results showed differential regulation of the two opposing systems 

depending on specific task requirement.  During controlled finger tapping where more 

externally directed attention is needed, FPC increased connectivity with DAS to facilitate 

task performance (DAS also increases connectivity with MS) while becoming more 

disassociated with default to suppress its “irrelevant activity.”  On the other hand, during 

movie watching where it is more related with default network function (186, 187), FPC 

becomes significantly more connected with the default while more anti-correlated with 

the DAS. Secondly, our results indicate that the mediation role of FPC is more a network 

level function. As shown in Fig.7.5, where all the significant interactions (between 

regions from paris of networks detected to significantly change interaction across states) 

were shown across different states, we can see that during finger tapping, except ACC, all 

other regions (at least unilateral) are involved in “mediating” between DA and default 

system although bilateral INS seems to be more extensively involved (5 out of 15 with 

DA and 11 out of 20 with default), which, from this point, is in line with Sridharna et al’s 

(183) finding of the important mediating role of INS during attention demanding tasks. 

Moreover, during movie watching, essentially all regions are involved in the mediating 

effort between FPC-DA and FPC-default. Interestingly INS largely disappears except two 

connections with DA system, lINS-lFEF, and lINS-rFEF. Together with ldlPFC-lFEF and 
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ldlPFC-rFEF, these are the only 4 (out of 25) positive connections between FPC and DA 

during this state, likely indicating the attentional budget needed for movie watching given 

the apparent eye movement control function of FEF. Overall, our results indicate that 

FPC exerts its mediating role based on coordinated activity of most of its member regions 

under different task conditions suggesting the network level nature of this mediation. 

Finally, the partial correlation analysis by regressing out the influence of FPC directly 

proves FPC’s significant mediating effect during each sustained state.  

The prefrontal cortex (PFC, including both aPFC and dlPFC) has been widely 

reported to increase activity in response to increased cognitive load in a variety of goal-

directed tasks supporting its critical role in flexible maintenance of different control 

demanding behaviors and particularly aPFC, the most anterior part of the frontal lobe, has 

been suggested as the “apex of the executive system underlying decision-making” (184, 

185, 188, 189) . Moreover, INS and ACC are commonly observed to be activated by a 

variety of cognitive control process, particularly those involving conflict monitoring, 

information integration and response selection (190-192). Finally, the aIPL region has 

been reported to increase activity during role transition in stimulus-response association 

task (193) as well as tasks involving control of spatial attention (194).  All these functions 

suggest that regions within FPC are perfectly suited to exert regulation on other 

functional modules for successful implementation of goal-directed behaviors. The 

selective “switching on and off” of the two opposing networks observed in this study, 

however, not only proves that this network is capable of co-activating with dorsal 

attention system to accomplish attention-demanding tasks, as consistent with the 

previously mentioned findings, but also shows its flexible role in coping with the default 
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system while “suppressing” the DAS for primarily internally directed process.  This task-

selective, differential regulating pattern shows the mediating role of FPC with more 

liability.  

The observation that FPC exerts its mediating role on a network level, together 

with the other two observations reinforces the increasingly accepted notion that brain is 

intrinsically organized into distinct networks. First, during resting state, each network is 

highly synchronized internally (85.8%) while minimal between-network interactions 

exist (12.8%). Secondly, across different states, no significant with-network difference is 

detected while the between-network interaction changes (again on network-level) largely 

account for the transition (Fig.7.2 and 7.3). These salient and stable network organization 

patterns further support the ongoing effort to look at brain function on large system level 

during both resting and task performance and calls for specifically designed network-

level based techniques to further study brain interaction between large, distributed, 

systems.

 

Figure 7.5 Significant connections between pairs of networks that have been detected to 

significantly change their interaction pattern across different states. Red: significant 

positive connections; Blue: significant negative connections.  
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At the system level, the intriguing selective regulation pattern showed in this 

study seems to suggest that these three systems (FPC, DA and default) form a functional 

“triad” with FPC at the apex regulating the two branches. This is essentially consistent 

with the “top-down” control theory (195) during volitional shifts of attention contingent 

on current task requirements.  Another parallel mechanism is “bottom-up” capture of 

attention, but this is not applicable at the context of this study since there were no salient 

stimulus and the task was fulfilled largely through purposeful control. On the other 

branch, however, the default network seems to work alone based on the current 

observation. However, other networks such as the emotional network may be a potential 

candidate since previous studies have shown an emotional processing component within 

major nodes of the default network including MPFC (155) and precuneus (196),  A recent 

study by Pallesen et al (197) further shows that the default network activity decreases to a 

less extent during processing of  negatively charged emotional stimuli when compared to 

positively charged stimuli, indicating the involvement of the default network in emotional 

processing (197). Another possibility regarding the emotional network, however, is that it 

is also directly mediated by the frontal parietal network and if so, this will have important 

clinical implications for emotional disorders such as depression. There are studies 

implying this (198, 199) and further studies directly investigating this issue using 

specifically designed paradigms are needed.  

7.5 Extension: A Multivariate Approach for Quantifying Network-level Interactions      

As extensively discussed in the previous sections, the brain’s interaction and 

mediation seem to be largely on a network level underscoring the importance of 

developing a network-level based approach to quantify and compare the interactions 
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between networks.  Although using regional approaches such as described above, 

important information regarding interactions between networks can be obtained, such 

regional approaches lack the capability to directly quantify the interaction strength 

between two networks as a whole.  Although this question is not the focus in the previous 

sections in this chapter, it will be the central topic in this section. Our aim is to develop a 

multivariate approach to directly quantify the interaction between two sets of regions 

(networks) as well as possible mediations between them.  

Previously Fox et al and Kelly et al (23, 97) investigated the interaction between 

brain networks, but one of the potential limitations is the means through which brain 

network interaction was derived.  Commonly, an averaged temporal signal of all pre-

defined brain regions within each network was obtained first and a correlation between 

two mean time courses was employed to quantitatively discern the interaction of the two 

networks (97, 200).  That is, these previous studies assume that the mean time course 

represents the temporal characteristics of all brain regions within the specific network and 

simplify the multivariate nature of network correlation to a univariate problem. Although 

facilitating theoretical interpretation and utilizing a straightforward computation, this 

simplification is prone to information loss and/or even becomes untenable when the 

homogeneity assumption (i.e., the mean time course can faithfully represent the overall 

information in a given network) is violated.   Furthermore, these approaches cannot be 

generalized to investigate the interactions of multiple networks, the potential mediation of 

other brain networks to a pair of networks, and perturbations of network-network 

interactions beyond the resting state.   
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To address these limitations, we aimed to develop a framework capable of 

discerning brain functional network interaction based on the canonical correlation 

analysis (CCA) (201).  In this framework, the network-level correlation and partial 

correlation will be individually defined and integrated to tackle the problem of network 

interaction. 

7.5.1 Multivariate Network Correlation Using Canonical Correlation Analysis (CCA) 

To quantify the network level interaction, a canonical correlation measure 

between two multivariate vectors was used.  Canonical correlation analysis (201) has 

been widely employed to measure the association between multivariate variables: 

T

mxxX ],...,[ 1=  and T

nyyY ],...,[ 1= . Particularly, for two random variables, the 

canonical correlation is identical to the Pearson’s correlation. The key idea of CCA is to 

maximize the correlation between two linear combinations of X  and Y denoted by 

xwxwxwU T

mm =++= ...111
 and yvyvyvU T

nn =++= ...112
, respectively.  The canonical 

correlation equals the largest eigenvalue of the matrix of yxyyxyxx CCCC 11 −−
(or xyxxyxyy CCCC 11 −−

).  

The likelihood ratio test was used to determine the significance of this network-level 

canonical correlation coefficient (
xyNCC ). Note the value of 

xyNCC  is between 0 and 1 

with 0 indicating no dependence and 1 indicating full dependence between these two sets 

of variables.  

In this study, before CCA, principle component analysis (PCA) was applied to 

sets of variables within different network.  Given the moderate size of human brain 

functional networks (~10 regions within each network), the primary purpose of this step 

is not to reduce dimension but rather orthogonalize the information within each network 

to avoid correlated regressors.  Moreover, by selecting a fixed number of principal 
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components for each network, this step can also eliminate the potential bias of different 

number of regions in different network in CCA calculation and therefore facilitate the 

comparison between the network-level interactions.  

7.5.2 Network Partial Correlation to Detect Mediation 

Partial correlation is a measure of correlation between two random variables, 

while controlling for a set of other variables. With partial correlation, one could 

determine what the correlation would be if the influence from the “mediator” has been 

removed.  For univariate statistics, partial correlation 
zxy /ρ between two random variables 

x and y controlling for another set of independent covariate T

pzzZ ],...,[ 1= can be 

computed as the Pearson’s correlation between the residuals 
xε and

yε from two linear 

regression equations:  

xZxx εβ ++= 10              
                             [7.1] 

yZyy εβ ++= 20
                                 [7.2] 

For the mediation analysis, 
zxy /ρ  denotes the correlation remained between x and 

y when all mediating effects of Z are removed and the differences between the ordinary 

correlation 
xyρ and 

zxy /ρ , represent the amount of mediation Z  exerts on the relation 

between x and y .  

Since the primary focus of this study was to depict correlation between two sets of 

variables, the above computational procedures need to be generalized to accommodate 

the multivariate property of this problem.  For two sets of multivariate vectors

T

mxxX ],...,[ 1=  and T

nyyY ],...,[ 1= , and another set of independent covariates
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T

pzzZ ],...,[ 1= , influences from which will be removed, Eq. 7.1 and Eq. 7.2 can be 

written as: 

xEZXX +Β+= 10
                                           [7.3] 

yEZYY +Β+= 20                                           
[7.4]

       
 

where 
xE and 

yE  are  the residual vectors of X and Y, respectively, after regressing on 

the variable set of Z. Subsequently, the canonical correlation coefficient of 
xE and

yE  can 

be calculated, representing the partial correlation 
ZXYNPC /

between the two sets of 

variables (networks) X and Y. The differences of 
ZXYXY NPCNCC /− thus represent the 

mediation effects of Z on the relation between X and Y, similar to the concept of 

univariate mediation analysis.   

Specifically, in this study, network partial correlation was calculated between the 

DA and default by controlling for FPC to directly test its mediating effect at network 

level. Similarly, the MS and V network was also used as regressors to calculate the 

reference mediation effect.  

7.5.3 Statistical Analysis 

A re-sampling method was developed to test statistical significance of network 

level interaction for each pair of networks, including the network canonical correlation 

( XYNCC ), and the network partial canonical correlation (
ZXYNPC /

).  Specifically, a set 

of reference regions were selected from whole brain based on the notion of brain’s sparse 

interaction pattern, i.e. depending on different brain states, there will be different subsets 

of regions demonstrating minimal interactions. As a result this subset of least-interacted 

regions will be suitable to serve as reference to generate a null distribution of the 
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network-level interactions.  In this study, based on the 90ROI segmentation of the whole 

brain template (168), we selected a set of 15 reference regions as the subset that 

demonstrates the minimal average correlation strengths (absolute value).  Subsequently, 

this set of reference regions were randomly distributed to 2 networks with 6 and 9 regions 

(equal to largest possible combination of number of regions in the five defined networks) 

and the network-level interactions were calculated 1000 times to generate the null 

distribution for each interaction. Note this whole process is done for each subject, and the 

obtained p-value (based on appearance ratio) for each interaction were combined across 

subjects to give a group p-value using Fisher’s method (202, 203). Same procedure was 

done for each of the three states examined.  

To visualize the network-level interaction patterns, the spring-embedding method 

was employed to reveal the interaction among the five predefined brain networks during 

each cognitive state (171).  Specifically, the spring-embedding approach places strongly 

interacted networks closer together and vice versa.  The width of edges corresponds to 

the strengths of interactions. Moreover, the statistical grouping of the set of interaction 

values during each state were also achieved using the Tukey’s test at 05.0=α  (204) to 

facilitate the classification of individual values into different categories such as the higher 

and lower.   

7.5.4 Results and Discussion 

The significant network-level interaction pattern is shown in Fig.7.6. During the 

resting state, only three significant connections exist with FPC at the center connecting 

with DA, DF, and V while MS is left alone.  This sparse network-level interaction pattern 

is consistent with the observation of dominant within-network interactions as shown 
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using regional techniques (Fig.7.2).  Moreover, in line with the mediation role of the FPC 

between DA and DF, FPC demonstrates a significant connection with both of them.  

As we have anticipated, an increase in network-level interaction was observed 

during finger tapping when compared with resting (Fig.7.2).  There are 7 significant 

inter-network interactions during finger tapping when compared with only 3 during the 

resting state.  The FPC now demonstrates a significant interaction with MS, which is 

consistent with the observed increasing FPC-MS interaction using regional approaches 

(Fig.7.2).  Actually, the appearance of significant connections between DA and DF as 

well as DA and MS are all in line with the increased between-network interaction in the 

previous section (Fig.7.2).  In contrast, no significance interactions for FPC-V and DA-V 

were observed using a regional approach, yet a network-level approach demonstrates 

significant interactions among them, demonstrating the advantage of using network-level 

approaches to directly quantify their interaction strength.  In addition, using Tukey’s test, 

the interaction between FPC-DA, FPC-DF, DA-MS are statistically stronger (p<0.05, red 

asterisks) than all other interactions during finger tapping,, which reinforces the 

importance of these three interactions in accomplishing the finger tapping task, which has 

been extensively discussed above.  

The network-level interaction pattern during movie watching seems to be 

intermediate between resting and finger tapping, which is again expected given the 

correlation maps in Fig.7.2 and 7.3.  Consistently, the FPC-DA and FPC-DF still show 

significant interaction and statistically higher than others. Other interactions include DA-

MS, FPC-MS, and FPC-V, indicate significant interactions between higher order 
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attention/control systems and both sensory systems during the composite movie watching 

task.  

 

Figure 7.6 Network-level interaction patterns during all three states. Pink asterisks: 

significantly stronger interaction comparing with others in the same graph. All 

connections shown here are statistically significant.   

 

Finally, in order to directly test the mediation role of FPC on the two opposing 

systems- DA and DF, we calculated the network-level partial correlation between DA 

and DF using FPC as control set of variables (the other two systems-MS and V are also 

used as controllers for comparison with FPC).  The result is shown in Fig.7.7, where the 

pattern is strikingly similar as those using regional techniques (Fig.7.4): FPC 

demonstrates significant mediation effects during every single state (RS: p=0.0012; FT: 

p=.0377; MW: p=0.0105) and is the only network showing such effect during resting.  In 

contrast, V fails to show any significant mediation effect during any state. Although MS 
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shows significant effects during FT (p=0.0141) and MW (p=0.0430), its effect is 

significantly weaker that that of FPC (p=0.0442) during MW.  Overall, the evidence from 

both regional technique and network-level approaches strongly support the mediating role 

of FPC on the two opposing system: DA and DF.  

 

 

Figure 7.7 Exploring the mediation effects of FPC on the interaction between DA and DF 

based on the network-level approach. Top row: the effect of removing FPC effects on the 

interaction between DA and DF; Bottom row: the comparison of mediating effects of 

FPC, MS and V on the interaction between DA and DF.  

 

In conclusion, the newly developed multivariate approach successfully reveals the 

network-level interaction pattern during three different states and the converging findings 

of both approaches strongly indicate the mediating role of FPC between the two opposing 

systems: DA and DF. Future research will continue to look into the application of this 

network-level approach on developmental as well as disease studies.  



Chapter 8 

Development of Whole Brain Functional Organization in the First Two 

Years of Life 

 

Exploring brain functional development/interaction of specific networks was 

discussed in the previous Chapters.  In this Chapter, we will shift our focus to 

characterize whole brain networks, aiming to provide a systematic delineation of different 

aspects of brain development including inter-regional connectivity, modular structure, 

functional hubs as well as graph theoretical measures such as local/ global efficiency and 

small-worldness.  

8.1 Introduction 

Understanding of whole brain functional organization is essential in revealing the 

underlying mechanisms of how it works.  Specifically, characterizing its developmental 

process can potentially gain insight into its matured architecture.  Recent advance of 

neuroimaing techniques, particularly the resting-state functional connectivity MRI 

(rfcMRI) (20), greatly facilitates the investigation of brain’s functional organization. 

Instead of focusing on a specific function elicited by certain task as traditional fMRI does, 

rfcMRI detects the intrinsic temporal synchronization when the brain is not engaged in 

any explicit task, i.e., “idling”, and has been increasingly recognized as a powerful tool to 

study intrinsic brain organization.  The essence of rfcMRI lies on the fact that highly 
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temporally correlated regions during the resting state resemble the activated regions 

during task performance.  In other words, rfcMRI provides unique information of how 

the brain is intrinsically and spontaneously organized (20). Ever since its emergence, 

exciting progress has been made in adult studies, greatly improving our understanding of 

the whole brain functional architecture. For example, Salvador et al (205) first looked at 

the whole brain functional network during the resting state and described the system as an 

anatomically sensible small-world (206) with both high global and local efficiency. 

Damoiseaux et al (22) detected a consistent set of networks utilizing an independent 

component analysis approach (ICA), revealing the sub-system organization of the whole 

brain network. Similarly, other studies have (207, 208) investigated the modularity 

structure of the whole brain network.  There are also studies exploring significant 

modulations of whole brain organization during aging (100) and under various 

pathologies including schizophrenia (209), Alzheimer’s (210) etc, underscoring the 

usefulness and importance of rfcMRI in studying the brain’s functional organization.  

The application of rfcMRI in brain development is also emerging. Both Fair et al 

(211) and Supekar et al (212) compared school-age children (i.e. 7-9 years old) with 

adults and reported converging evidence on the increasing of long-range connections and 

decreasing of short-range connections. Moreover, using the graphic theory approach, they 

found similar small-world property shared by the children and adults even under dramatic 

organization changes.  While these findings are exciting and greatly improve our 

understanding of brain’s functional development, whether these findings can be 

generalized to an earlier developmental phase, especially the first few years of life, is yet 

to be answered. The importance of the first few years of life, especially the first two years 



118 

 

in brain development is unparalleled (33). Most neurophisiological events including 

neruogensis, synaptic formation, axonal elongation, and myelination have been well 

documented to undergo the trunk of their development during this time although each of 

them has a unique time course which may extend well into early adulthood (40, 213-217). 

As a result, the importance of characterizing brain’s functional development during this 

critical developmental period can not be over emphasized. 

Previously, we have separately looked into the development of several specific 

functional networks, including motor-sensory, visual(29) and the “default” network(102) 

during this critical first two year period.  The general picture of whole brain organization 

change remains poorly characterized.  In this study, based on a large population (n=167) 

of pediatric subjects with an age spaning from 2 weeks to 2-year-old, we aimed to reveal 

the large scale brain organization changes during this poorly studied but critical period.  

Inter-regional connectivity development as well as organization changes revealed by 

modular structure(218), functional hubs, as well as global graph theoretical metrics 

including local efficiency, global efficiency and small-worldness (206) will be 

individually tackled to provide a systematic exploration of whole brain development 

during this earliest phase of postnatal brain development.  

8.2 Methods 

8.2.1 Subjects and Image Acquisition  

The study subjects were part of a large study on characterizing brain development 

in normal and high risk children (163). Informed consent was obtained from the parents 

and the experimental protocols were approved by the institutional review board. None of 

the subjects was sedated for MR imaging. Before the subjects were imaged, they were fed, 
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swaddled, and fitted with ear protection. All subjects slept during the imaging 

examination.  We retrospectively identified 167 normal subjects including 61 neonates 

(33M, 21±11days (SD)); 60 1-year-olds (35M, 13±1mon) and 46 2-year-olds (24M, 24

±1mon) who met the inclusion and exclusion criteria (supporting materials). In addition, 

19 (12M, 25~33yrs) healthy adult subjects were also recruited for comparisons with 

pediatric subjects. A board-certified neuroradiologist (JKS) reviewed all images to verify 

that there were no apparent abnormalities in the acquired MR images.  

A 3D MP-RAGE sequence was used to provide anatomical images to co-register 

among subjects. The imaging parameters were as follows: repetition time (TR)=1820ms; 

echo time (TE)=4.38 ms; inversion time=1100ms; 144 slices; and voxel size = 

1x1x1mm3.  For the rfcMRI studies, a T2*-weighted EPI sequence was used to acquire 

images.  The imaging parameters were as follows: TR=2sec, TE=32 ms; 33 slices; and 

voxel size =4x4x4 mm
3
. This sequence was repeated 150 times so as to provide time 

series images.   

8.2.2 Preprocessing 

The preprocessing includes standard steps including exclusion of voxels outside 

of the brain using FSL (FMRIB, Oxford University, U.K.), time shift, motion correction, 

and spatial smoothing (6-mm full width at half maximum Gaussian kernel).  Three adult 

subjects were excluded from the subsequent analysis because of excessive head motion 

during the scan. Nuisance signals from ventricle, white-matter, and global signal were 

regressed out using linear regression.  The first 10 time points of the rfcMRI data were 

excluded to allow T1 to reach equilibrium condition.  Subsequently, rfcMRI data of the 

first available time point was co-registered to the corresponding T1-weighted MP-RAGE 
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structural images using rigid body alignment.  For within-group registration, independent 

T1 Images from a longitudinal data set scanned at neonate, 1yr and 2yr olds were selected 

as templates for corresponding pediatric groups and intensity-based HAMMER nonlinear 

registration (164) was performed to warp each individual subject to its template space. 

After that, the pediatric images were normalized to MNI space using 4D HAMMER 

registration between the three longitudinal data sets and the MNI template.  The reason 

for using a longitudinal dataset as templates was the higher registration accuracy in 

registering them with a common template, which is achieved by 4D HAMMER 

registration which takes into account the longitudinal correlation information.  

Subsequently, the transformation fields from rigid alignment and two-step HAMMER 

registration were employed to bring all fMRI volume data to MNI template space, 

allowing group analysis. Whole brain region of interest (ROI) definition was then 

achieved using anatomical templates defined by Tzourio-Mazoyer et al (168), which 

divides the whole brain into 90 cortical and sub-cortical regions.  

8.2.3 Inter-regional Correlation Analysis 

The mean time course of each ROI was separately extracted from each individual 

subject to construct a 90*90 correlation matrix which was then fisher-Z transformed and 

averaged across subjects to compute the mean correlation matrix for each group. To 

explore the inter-regional connection development with age, the connection strength 

vector for each inter-regional connection composed of all individual subjects was 

compared across consecutive age groups using one-way ANOVA. Significant changes 

were defined using a threshold p=0.05 after FDR multiple comparisons correction(170).  

In addition, for each connection within each age group, two-way t-test was performed to 



121 

 

calculate a p-value indicating the significance level of the particular connection to be 

different from zero. This p-value was used as a measure to threshold the correlation 

matrix to get sparse matrix, which will be described in next section. 

In order to test the relationship between connectivity change and anatomical distance, the 

Euclidian distance between the centers of each ROI was computed to represent the 

distance between each pair of regions.   

8.2.4 Modularity analysis 

To detect the modular structure of the whole brain networks, each correlation 

matrix must be thresholded to create an adjacency matrix, the element of which will 

either be nonzero, if the corresponding connection exceeds the threshold; or 0, if it does 

not. In this study, we chose to use the p-value associated with all connections as a 

threshold measure to create the adjacency matrix.  Clearly the choice of threshold will 

have major effect on the topology of the resulting network: conservative thresholds will 

produce sparsely connected graphs, which might induce “isolated” nodes and falsely 

eliminates “true” connections while more lenient thresholds will generate densely 

connected graphs, which might include “spurious” connections and approache a random 

graph. As a result, the adoption of any single threshold will inevitably raise the concern 

of possible bias associated with this unique value.  Thus in this study, we thresholded 

each matrix repeatedly over a range of costs K (total number of existing edges within a 

graph G over the maximum possible number of edges) to avoid such bias. The minimum 

of this range was chosen to be a fairly stringent value of K=0.1 (100), i.e. 10% of the 

maximum number of edges, to minimize the number of spurious edges. Another 15 

increasingly more lenient cost thresholds were subsequently evaluated at a step-wise 
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fashion with a step size of 0.01 to achieve a maximum threshold of 0.25 representing a 

compromise between dense connection and randomness.  

For modularity detection, we applied the weighted version of the spectral 

algorithm proposed by Newman (218, 219), which finds the optimal division of the 

whole network so that maximum interactions are within modules while minimal 

interactions are between modules, which collectively define a statistically “surprising” 

network structure.  At each cost, the optimal modular structure was detected and the 

solutions were compared across different costs and the results are shown in Fig.8.1, 

where the number of modules, the modularity scores and the difference between 

consecutive costs (number of regions that were put into different modules) are presented.  

As shown, for all age groups, the modularity scores decline as the cost increases as the 

network approaches randomness. However, clearly the modular structure is reasonably 

consistent between consecutive costs (red line), particularly within the high-lighted costs 

(yellow), the modular structures are identical. So the modular structure resulting from 

these “identical” cost thresholds were reported in this study. Specifically, they were [0.19, 

0.20] for neonates, [0.18, 0.21] for 1yr olds, [0.15, 0.18] for 2yr olds, and [0.13, 0.20] for 

adults.  

In addition, spring embedding (171), which iteratively reposition each node 

within the whole graph so that most strongly connected nodes will be put closer to each 

other and vice versa, was applied using the leading cost within the “identical” zone (0.19 

for neonates, 0.18 for 1yr olds, 0.15 for 2yr olds, and 0.13 for adults) to visualize the 

whole brain network architecture and validates the findings using modular detection. 

Using other costs within the zone produces similar results.  
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Figure.8.1 Modularity detection comparison at different costs. Bars indicate the number 

of regions that are assigned to different modules compared with the previous threshold 

(against the right axis). Red lines show the modularity score (against the left axis). 

Yellow bars indicate those costs that show identical modularity detections, which are 

then shown in the result section.  

 

8.2.5 Hubs Detection using Betweenness Centrality 

For all graph theoretical analysis including betweeness centrality and small-world 

metrics as described in the next section, we use a binary adjacency matrix. Betweenness 

centrality, defined as the fraction of shortest paths between any pair of nodes that travel 

through the node of interest, characterizes the importance of a particular node in the 

whole network traffic and nodes with high centrality measures may serve as “relay 

centers” or hubs of information integration. The betweenness centrality is defined as: 
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where QO( is the total number of shortest paths between node s and t within the whole 

graph and QO(7�� is the total number of shortest paths that pass through node i. N: number 

of nodes within the graph.  

In this study, the betweenness centrality for each node is calculated using all cost 

thresholds within the “identical zone” defined by same modular structures as described 

previously. The result showed high level of consistency as shown in Fig.8.2, and the 

results based on the first cost within the “identical zone” (0.19 for neonates, 0.18 for 1yr 

olds, 0.15 for 2yr olds, and 0.13 for adults) are reported in the result section. The hubs are 

defined as those nodes demonstrating relatively high centrality measures 

(�J*>mean+SD).  

8.2.6 Small-worldness metrics 

Three graph-theoretical metrics, namely local efficiency (LE), global efficiency 

(GE), and small-worldness (SW) are calculated to explore the economic properties of the 

whole brain network.  

Specifically, the clustering coefficient introduced by Watts and Strogatz (206) is a 

measure of local efficiency which quantifies the information transfer efficiency within 

the immediate neighborhood of node i: 
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                               (8.2) 

where NbZ
is the number of nodes within subgraph Gi constituted by the immediate 

neighbors of node i.  The local efficiency of the whole graph is then obtained by 

averaging across all nodes.  
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Figure 8.2 Consistency of betweenness centrality measures across the identified costs 

range. 

The harmonic mean of the inverse of the minimum path length between each pair 

of nodes within the network, Lij, represents the efficiency of parallel information 

transformation within graph G and is a measure of global efficiency (220):  
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where N is the number of nodes within network G. The average minimum path length of 

the whole graph itself is defined as the “characteristic path length”.   

A small-world network, according to Watts and Strogatz (206), should have 

characteristic path length comparable to a regular graph and clustering coefficient greater 

than a random graph. Hence by calculating the ratio of clustering coefficient gh
gh&i),'j

k  

and characteristic path length 
g�

g�&i),'j
k between the network of interest and a random 

network (degree reserved), the small-worldness is defined as the ratio of the two ratios 

with a value above 1 indicating the existence of small-world property.  

In this study, correlation matrix from individual subjects of each age group were 

thresholded (based on correlation strength) to construct networks at costs ranging from 

0.01 to 0.50 at a step size of 0.01 and corresponding small-world metrics as described 

above are calculated at each cost for each subject.  

8.3 Results 

8.3.1 Inter-regional Functional Connectivity Development 

For each individual subject, a whole brain correlation matrix (90*90) was 

constructed using regionally averaged spontaneous BOLD fluctuations based on 

anatomical templates defined by Tzouro-Mazoyer et al (168).  In order to detect 

developmental changes within the global functional architecture, connectivity between 

each pair of region (altogether 4005 pairs) was compared across age groups using the 

correlation strength vector (fisher-Z transformed) composed of all subjects within each 

age group.  One way ANOVA was applied for testing significance and a threshold of 

p=0.05 after multiple comparisons correction (FDR) (170) was chosen to define 

significant changes with age.  The significant difference matrix along with the 
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visualization of the increasing (red) and decreasing (blue) connections in corresponding 

partial-transparent brain volume are presented in Fig.8.3. Altogether, there are 634 

connections (634/4005=15.83%) showing significant increase and 922 connections 

(922/4005=23.02%) showing significant decrease in connectivity strength during the first 

year of life, which cover broadly the whole brain demonstrating the most dynamic and 

wide-spread functional development during the critical first postnatal year.  In great 

contrast to the extensive changes during the first year, the second year witnesses a 

dramatically slower development: there are 75 connections (1.87%) increasing and 67 

connections (1.67%) decreasing during this year.  Qualitatively, the increasing/decreasing 

connections seem to reside mainly in the posterior/frontal part of the brain, respectively, 

although a significant portion of increasing connections is between frontal and posterior 

regions (Fig.8.3).  Finally, comparing 2yr olds with adults, 457 connections (11.41%) 

significantly increase strength and 393 connections (9.81%) significantly decrease 

strength, which again extensively cover the whole brain.  Overall, it is clear that brain 

undergoes the most extensive reshaping during the first year of life while during the 

second year the rate dramatically slows down.  However, tacking together the massive 

changes between 2yr olds and adults and previous reporting of significant changes 

between school-aged children and adults (211, 212), this reshaping process, although 

considerably slower than the first year, is likely to be steadily continued till adulthood.  
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Figure.8.3 Inter-regional connection changes across each age span (red: increasing 

connections; blue: decreasing connections). 

 

8.3.2 Connectivity Development in Relation to Anatomical Distance 

As has long been observed, the developmental process features reduction of 

strength among short-distance connections and strengthening among long-distance 

connections (211, 212), which suggests a simultaneous specialization of neighboring 

regions and integration of remote regions during development.  However, most previous 

fcMRI studies focused on the change between children and adults while in this study, this 

trend is validated and extended to the first two postnatal years. As shown in Fig.8.4, 

between each age span, connections decreasing with age (blue dots) consistently 

demonstrate shorter anatomical distances; on the other hand, connections increasing with 
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age (red dots) are collectively associated with longer anatomical distances (p<10
-10

 from 

neonates to 1yr olds, p<10
-5

 for 1yr to 2yr olds and p<10
-9

 for 2yr olds to adults).  

 

 

Figure.8.4 Connectivity Development in Relation to Anatomical Distance 

 

8.3.3 Connectivity Development in Relation to Different Anatomical Divisions 

In order to explore the differential development pattern within different 

anatomical divisions, the whole brain regions were classified into frontal (24 regions), 

parietal (18), temporal (8), occipital (14), limbic (14) and sub-cortical (12) divisions 

based on that proposed by Tzourio-Mazoyer et al (168). A detailed list of regions in each 

sub-group can be found in Table.8.1.  As shown in Fig.8.5, the frontal (24%), parietal 

(31%), and sub-cortical (30%) divisions mainly experience specialization during the first 

year of life while the other divisions including temporal (32%), occipital (31%) and 

limbic (30%) are dominated by synchronization.  With the minimal changes occurred 

during the second year, the differential increasing/decreasing pattern within each lobe is 
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not as obvious.  Finally, from 2yr olds to adults, the frontal (34%), limbic (20%) and sub-

cortical (24%) are dominated by specialization while parietal (13%), temporal (29%), and 

occipital (15%) are mainly synchronizing.  In addition to the differential developmental 

pattern within each division, there are considerable differences among between-division 

connections (as shown in Fig.8.6).  These connections are of importance and characterize 

how different anatomical divisions change their interaction pattern to form more 

functionally sensible modules responsible for the emerging and complex cognitive 

functions.  As a result, these between-division developmental patterns, as well as those 

within divisions, will be discussed together with the functional modular structure changes 

in the following section.  

8.3.4 Development of the Functional Modular Architecture  

The exploration of modular structures at different ages can potentially answer the 

critical question of how the whole brain is organized at different developmental periods. 

The modular structure was detected based on a spectral optimization model (218, 219) 

using the sparse connectivity matrix derived from each age group and the results are 

presented in Fig.8.7. In this figure, the most significant 405 connections (cost 10%) for 

each age group were also visualized to aid interpretation.  A list of region abbreviations 

(in the figure) is presented in Table.8.2 and the detailed list of regions in each module for 

each age group is presented in Table.8.3.  
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Figure.8.5 Connectivity Development in Relation to Different Anatomical Divisions-

within divisions 
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Figure 8.6 Connectivity Development in Relation to Different Anatomical Divisions-

between divisions. 

The neonatal brain is broadly divided into four major modules which show clear 

anatomical division constraints.  One module (21 regions) covers mainly regions in the 

frontal division (19 out of 21), and is therefore designated the frontal module.  The 
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module (19 regions) including central regions of bilateral pre- and post central gyri, 

supplementary motor area, and paracentral lobule, as well as most parietal lobe regions 

and limbic regions of mid- and post cingulate cortex is designated as the parietal-limbic 

module.  The module (25 regions) covering mainly the occipital lobe (14 regions) and 

temporal lobe (8 regions) is referred to as the occipital-temporal module.  Finally, the 

module (25 regions) containing all sub-cortical regions (12) as well as other surrounding 

frontal, parietal and temporal regions (13) is called the sub-cortical-centered module.  

Overall, neonates demonstrate a more anatomically sensible modular organization 

characterized by local and neighboring regional clusters constrained by anatomical 

divisions.  

From neonates to 1yr olds, the parietal-limbic module remains almost identical 

with only the left superior marginal and bilateral angular gyri added, providing a full 

coverage of the parietal lobe.  However, other modules undergo extensive reorganization 

including both segregation and integration.  Firstly, the frontal module now divides into 

two with the more dorsal part forming a separate module (11 regions) and the orbital part 

merging together with mostly temporal regions forming a integrated orbital-frontal-

temporal module (24 regions).  The segregation between the dorsal and orbital parts of 

the frontal lobe can actually be predicted by the inter-regional connectivity changing 

patterns shown in Fig.8.3 where there are extensive decreasing connections (blue arrow) 

while no increasing connections between them (red arrow 1).  Moreover, consistent with 

these decreasing, the frontal division is dominated by specialization (24% decreasing vs 

10% increasing) as shown in Fig.8.3.  Similarly, the integration between orbital frontal 

and temporal regions can also be traced back to the synchronizing process between them 
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as shown in Fig.8.3 (red arrow 2) and in Fig.8.6 where a dominant synchronization trend 

is observed between the frontal and temporal lobe (33% increasing vs 8% decreasing).  

Secondly, the occipital-temporal module now also separates with most temporal regions 

merged with orbital frontal regions, leaving an intact module covering solely occipital 

regions (14 regions).  This segregation is also supported by both the dominant 

specializing process between temporal and occipital divisions (36% decreasing vs 7% 

increasing, Fig.8.6) and the self-synchronization process within the occipital division (31% 

increasing vs 21% decreasing, Fig.5).  Finally, eight sub-cortical regions plus bilateral 

hippocampus are segregated from the surrounding frontal, parietal and temporal regions 

in the sub-cortical-centered module and forms two separate modules (10 and 9 regions, 

respectively), which are then termed as sub-cortical module and “mixed” modules, 

respectively.  Overall, the first year witnesses dramatic segregations within the frontal 

lobe, between the occipital lobe and temporal lobe, between sub-cortical regions and 

surrounding regions, as well as integration between orbital frontal lobe and temporal lobe 

regions (among others, e.g. amygdala).  

The reorganization occurring during the second year is far less dramatic as 

consistent with the minimal connectivity changes (Fig.8.3) during this period. However, a 

closer observation of the actual changes indicates that there are important ongoing fine-

tuning processes.  There is also intermediate structure emerging during this period which 

is likely the steping-stone towards more mature modules.  First, the right opercular 

inferior frontal gyrus is separated from the “mixed” module and integrated into the 

dorsal-frontal module, making both modules totally left-right symmetric.  Moreover, the 

bilateral parahippocampal gyri and amgdala now separate from the orbital-frontal-
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temporal module and merge into the sub-cortical module (where all other sub-cortical 

regions as well as bilateral hippocampus are already there), making both of the modules 

more functionally sensible.  Except the parietal-limbic module (22 regions), these five 

regions (out of 90-22=68 regions) are the only changes taking place during the second 

year since the intact occipital module formed in 1yr olds remains identical at this time.  

Although minimal, these fine tuning processes, actually make the modular structure more 

functionally sensible.  Finally, the comprehensive parietal-limbic module now separates 

into two modules: one that still covers broadly the central, medial parietal as well as 

limbic regions (14) while the lateral surface of the parietal lobe including 

superior/inferior parietal, supramarginal, and angular gyri (8 regions) are separated and 

form a module of its own. This is intriguing given the fact that these regions, together 

with the limbic regions (posterior cingulate cortex) and medial parietal regions 

(precuneus) also separate from the parietal-limbic module and integrate with dorsal 

frontal regions to form a salient frontal-cingulate-parietal module in adults.  This makes 

the separation of the eight regions during the second year an intermediate structure 

between pediatric subjects and adults.  Together with other possible changes in later life, 

this might act as steping-stones towards the maturd modular structure observed in adults.   

Finally, the modular structure in adults is more consistent with known functional 

relationships (Fig.8.7).  A central module (bilateral pre- and post- central gyri, 

supplementary motor area, and paracentral lobule) focuses on motor-sensory controls (20, 

22, 29). A comprehensive occipital-temporal module possibly deals with multiple sensory 

modalities including visual, auditory, olfactory and memory (32, 47, 221, 222).  A stand-

alone orbitofrontal module likely involvses in affective decision making/rewarding 
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mechanism (223).  A comprehensive cortical-subcortical module consistent with the 

basal gangalia-cortical network mediates motivation and emotion drive and integrates 

information for goal-guided behavior (224).  In addition to these, the most salient module, 

as mentioned above, is the frontal-cingulate-parietal module that spans across the 

anterior-posterior brain, which includes regions within superior medial frontal, posterior 

cingulate, precuneus, inferior parietal lobule as well as angular gyri among other frontal 

and parietal regions.  This module is qualitatively very similar to the recently defined 

“default-mode” network (21, 26-28), indicating that the matured brain architecture 

features such higher-order cognitive function directed modules. More importantly, the 

long-range integration between frontal and posterior regions of the brain revealed by this 

composite module is only observed in the adult group, indicating the important 

integration process occurring after 2yr olds and consistent with the notion that brain 

grows from “local to distributed” (211, 212).  
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Figure.8.7 Development of the Functional Modular Architecture. Nodes are colored 

according to different modules and the most significant 405 (10%) connections were also 

visualized to aid interpretation.  

 

8.3.5 Development of the Functional Modular Architecture Revealed by Spring 

Embedding 

In addition to modular structure detection, we used another visualization 

technique, namely spring embedding (171), to qualitatively examine and validate the 

organizational relationship among the 90 whole brain regions.  Spring embedding 

iteratively optimizes the position of each node within the whole graph according to their 
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connection strengths so that regions with stronger connections will be put closer to each 

other and vice versa.  As a result, we would expect nodes within a functional module to 

be put together as a “cluster” while nodes within different modules will be scattered. The 

same sparse correlation matrices used in modular structure detection were used in this 

analysis and the results are presented in Fig.8.8 where all nodes are labeled in colors 

consistent with the modular detection results (Fig.8.7) and the most significant 405 

connections are also visualized to aid interpretation.  

As expected, the spring embedding plots nicely put each individual module as a 

“closely connected cluster” while different modules are generally well separated. This 

consistent finding with the modular results reinforces the notion that whole brain system 

is organized into age-specific modules which experience dramatic reorganization during 

early brain development before reaching a matured architecture.   
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Figure 8.8 Development of the Functional Modular Architecture Revealed by Spring 

Embedding. Nodes were similarly colored as those in Figure 8.7. 

 

8.3.6 Emergence and Development of Functional Hubs during Development 

The notion of hubs in a functional brain system has long been held which may 

potentially act as relay centers to facilitate efficient information transformation and 

integration (207).  In this study, the role of each node was characterized using 

betweenness centrality (173, 225), which measures the relative importance of 

corresponding node in achieving global maximal efficiency. The potential “hubs” were 

defined as those that demonstrate the highest centrality measures (>mean+SD).  

The bar plots of all regional centrality measures are presented in Fig.8.9 (red: 

hubs) and the visualization of the defined hubs in actual brain space is presented in 

Fig.8.10.  As shown, left insula and right middle occipital regions are the two major hubs 

in neonates with others covering pre-central, hippocampus, middle cingulate, etc.  In 1yr 

olds, left insula together with bilateral SMA regions show highest centrality measures 

which then evolves to left SMA and bilateral fusiform in 2yr olds. Together, there is 

reasonable continuity in the hub evolution; it gradually changes from insula/middle 

occipital to SMA/insula and SMA/fusiform regions across the first two years of life.  

Moreover, there is a general trend of middle to posterior region bias for the hub locations 

among pediatric subjects as obvious in Fig.8 while no frontal regions are classified as 

hubs for all three pediatric groups except for the left inferior orbitofrontal region in 2yr 

olds.   However, the emergence of one region in 2yr olds does suggest a trend of the 

emergence of the hub role in frontal lobe.  Indeed, with right posterior cingulate as the 
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strongest hub in adults (Fig.8.9), there are altogether 5 frontal regions also subserving 

hub roles.  This finding is consistent with the role of this lobe in integrating information, 

decision making and other complex cognitive behaviors in matured brain (226).  

 

Figure 8.9 The bar plots of all regional centrality measures. Hubs were highlighted in red. 
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Figure 8.10 Visualization of the defined hubs in brain space. 

 

8.3.7 Development of Small-world Properties  

Many studies (100, 227, 228) have reported the small-world characteristic of the 

matured brain functional system.  However, when the small-world property emerges and 

how it evolves with age, particularly during the first two years of life, are not known.  

Moreover, as described above, considerable changes occur in inter-regional connections, 

modular organizations, as well as hub distribution during the first two years of life.  The 

natural next question is whether these changes are expressed in small-world properties, 

which measures the economic property of the entire brain network as a whole.  In this 

section, we examined three commonly used small-world metrics including local 

efficiency (LE) and global efficiency (GE), which quantify the information transferring 

efficiency at a local neighboring subgraph and the whole network level(220), respectively, 
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and the small-worldness measure (SW) (206).  A small-world network is characterized by 

a higher LE than random network as well as a higher GE than regular (lattice) network.  

In this case, the small-worldness indicator (SW) will have a value greater than 1. 

As shown in Fig.8.11, both the LE and GE curves for all 4 examined age groups 

are between the corresponding curves of random and regular network for most cost 

values (except of extremely low/high costs in which case the network is likely either un-

connected or full of spurious random connections), indicating the presence of the small-

world property for all brain networks.  This finding is further supported in Fig.8.11c, 

where the direct indicator-SW is shown. All networks demonstrate SW values above 1 

across the whole cost span.  As this observation essentially tells us that the whole brain 

functional network demonstrates the small-world property immediately after birth and 

throughout development, we are also interested in the development of this property with 

age.  As shown in Fig.8.11, comparing 1yr olds with neonates, the LE measure is 

significantly higher at cost ranging from 0.03~0.19; the GE is significantly higher at cost 

ranging from 0.04~0.47; and the SW measure is significantly higher at cost ranging from 

0.08~0.19, suggesting a significant improvement of small-world properties during the 

first year of life at both local and global level, which is consistent with the observation of 

extensive inter-regional connection changes during this period as shown in Fig.8.3.  

Given the minimal inter-regional connection changes, we would expect minimal changes 

in small-worldness properties during the second year of life.  As shown in Fig.8.11, no 

significant changes are observed for any metric.  However, even with similarly extensive 

inter-regional changes as those in the first year, the time period between 2yr olds and 

adults still witnesses no significant changes in small-world properties.  This finding is 
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consistent with the previous findings comparing children with adults (211, 212) where 

results were reported that even though brain undergoes considerable inter-regional 

connection changes the global small-world property is minimally changed.  The findings 

in this study extend this “plateau” pattern to 1 yr olds.  

 

Figure 8.11 Development of global efficiency, local efficiency and small-worldness. 

 

8.4 Discussion 

Brain’s functional organization is of paramount importance in understanding the 

underlying mechanisms of how it works.  To our knowledge, this is the first study to 

characterize the evolution of whole brain organization during the first critical two years 

of life. We systematically investigated the brain functional connectivity development in 

terms of its inter-regional connections, modular organizations, as well as graph-

theoretical metrics to depict the growth patterns of both local and global parameters 

during this critical period.  The main findings of this study are: (1) brain’s inter-regional 

connections undergo the most extensive reshaping (both synchronization and 

specialization) during the first year of life, followed by dramatically slower changes; (2) 
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the decreasing of short-range connections and increasing of long-range connections are 

observed across each age span; (3) neonatal brain demonstrates a largely anatomically 

constrained modular organization and experiences drastic reorganization during the first 

year of life which features extensive segregation/integration associated with frontal lobe 

regions, followed by a “fine-tuning” during the second year and finally achieves a more 

functionally sensible modular structure in adults; (4) the top functional hubs emerge at 

insula/middle occipital regions in neonates, shift to insula/SMA in 1yr olds and 

SMA/fusiform in 2yr olds, and finally  move to the posterior cingulate/frontal regions in 

adults; (5) local efficiency, global efficiency and small-worldness measures exhibit 

significant improvement during the first year of life while they show minimal changes 

despite of considerable underlying reorganizations beyond 1yr of age. Taken together, 

these findings provide new insights into very early postnatal development of whole brain 

organization.  

8.4.1 Development of Inter-regional Connections 

The massive inter-regional connection development with both synchronization 

and specialization during the first year of life has two important implications, including  

the obviously critical role of first year in the brain’s overall functional development and 

the surprisingly high level of functional connectivity in neonates (the whole brain 

correlation matrix is provided in Fig.8.12).  Taking together with the well-defined 

modular structure at this age, these results suggest high level prenatal functional 

development.  These findings are not surprising if considering the fact that axons undergo 

a period of rapid elongation and establish extensive synapses/connectivity to their intra- 

and subcortical targets from midgestation through infancy (111).  On the other hand, if 
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the temporal synchronization dose comprise of functional information, we would expect 

some sort of functional capability in the prenatal brain.  Indeed, studies have shown that 

most fetuses begin to respond inconsistently to sound by moving or kicking as early as 

25-27 gestation weeks (229). This finding fits nicely with Standley’s claim in one of his 

1998 papers, “newborn is not a blank state waiting to be filled as previously thought, but 

is an avid and experienced learner equipped with the beginning discriminations and 

memory of language, emotional response, and awareness of cause/effect relationships” 

(229).  

 

Figure.8.12 Group mean correlation matrix of all 4 age groups 

 

Regarding the critical first postnatal year, numerous studies, mostly from 

structural aspects, have provided solid evidence on its essential role in the overall brain 

development (33, 213-217).  Actually, most relevant neural development events 

including synaptic formation, axonal elongation, pruning and myelination demonstrate a 

consistent developmental trend as characterized by rapid growth during the first postnatal 

year before continuing at a much slower but steady pace thereafter (40, 213-217), which 
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fits nicely with the functional connectivity observed this study. These different neural 

developmental processes are likely the underlying neural substrates for the observed 

functional connectivity development.  More specifically, synaptic formation, 

establishment of both short and long-range axonal connections, and myelination likely 

underlie the functional synchronization while the synaptic pruning process explains 

functional specialization between different regions (108, 230).  

As mentioned above, although different processes experience the trunk of their 

development during the first year of life, they are also well documented to extend further 

into development.  For example, synaptic formation is documented to undergo substantial 

growth staring from midgestation throughout the first two postnatal years (231, 232) 

while myelination and synaptic pruning continues to grow to reach the adult level utill 

young adulthood (232-238). Collectively, these processes determined by genes and 

influenced by environmental factors, are likely the neural substrates for all of the 

observed inter-regional functional connectivity changes across each age span.  We 

believe that the observed massive changes during the first year are most likely dominated 

by the genetically determined maturation of the neural substrates. However, it is 

generally believed that as age grows, experience will gradually exert more influence on 

the selective strengthening and weakening of different functional pathways through the 

interaction with these neural substrates.  Therefore, the much slower but steady changes 

occurred after 1yr old are likely subject to the combined effects of both factors (108, 230). 

Finally, the observed decreasing of short-range connections and increasing of long-range 

connections are in line with previous findings by both Fair et al (211) and Supekar et al 

(212). They showed similar functional segregation between regions close in anatomical 
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space and integration between regions further away when comparing children with adults. 

The findings in this study extend their observations to the very early postnatal period.    

8.4.2 Development of Whole Brain Modular Structure and Hubs 

As the growth pattern of inter-regional functional connectivity validates the 

previous anatomical findings, the exploration of the brain’s modular structure/hubs and 

their evolution with age will provide us unique perspectives into brain’s functional 

organization and reorganization.   

One of the most intriguing findings here is the extensive reorganization process 

during the first postnatal year, especially the prefrontal cortex (PFC). Human PFC 

comprises between a quarter to a third of the entire cortex and is anatomically and 

functionally heterogeneous.  The PFC is usually subdivided into dorsal-lateral PFC (DL-

PFC), medial PFC (MPFC) and orbitofrontal cortex (OFC) in adult studies (223). As all 

PFC regions are generally involved in “executive” functions (EF), there is a general 

consensus that the DL-PFC deals more with the “pure” cognitive aspects of EF in abstract 

reasoning and problem solving while MPFC and OFC, especially OFC is more involved 

in affective or emotionally related decision making (223). Historically, PFC is believed to 

be one of the latest parts of the brain to develop and it is not functional until about 4-7 

years of age (239) or even later (240).  However, the findings in this study clearly suggest 

a much earlier development within PFC. It starts from an intact module covering all PFC 

regions in neonates.  Subsequently, there is a clear segregation of OFC from other DL-

PFC and MPFC regions. Moreover, the OFC seems to get integrated with other regions 

(including amgdala and temporal, frontal regions) to form a composite module during the 

first year of life.  The active segregation of two major divisions of PFC likely indicates 
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functional specialization between the two sub-divisions. Actually, numerous studies have 

proved the incorrectness of the historical view of very late PFC development. PFC 

functions start to emerge probably during the second half of the first postnatal year (223, 

241), which is consistent with the findings in this study.  Specifically, Grossmann et al 

(242) have recently reported that even at the age of five months, infants actively recruit 

the DL-PFC regions when engage in a joint attention task with another person, strongly 

supporting the development of DL-PFC in executive functions during this period.  On the 

other hand, lesion studies in rhesus monkeys conducted by Goursaud and Bachevalier 

(243) have proved that neonatal lesions (10~15 days postnatal) in OFC resulted in weaker 

infant-mother attachment when compared with controls assessed at a age of 11 months, 

clearly supporting the role of OFC in the quality and/or strength of social attachment 

relationship building. In addition, the integration of OFC with other regions especially 

amygdala and parahippocampal regions observed in this study supports the behavioral 

findings of attachment formation in infants with their mother (244). Moreover, in human 

studies, protracted and increasingly more severe social self-regulation deficits with age 

have been seen in children with early damage to the PFC, including OFC (243, 245).  

Collectively, the findings of extensive segregation/integration process within PFC 

observed in this study are consistent with previous findings of corresponding cognitive 

functional/behavioral development and strongly support the notion of early PFC 

development during the first postnatal year.  

After the drastic reorganization occurred during the first year, results in this study 

reveal a “fine-tuning” process during the second year. Except for the segregation of the 

lateral parietal regions from the parietal-limbic module, only 5 out of 68 regions are 
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classified into different modules comparing to 1yr olds.  Again, this process appears far 

from random given that the changes make the modules more symmetric as well as more 

functionally sensible.  The appearance of an intermediate structure – the lateral parietal 

module, as described in the result section, is intriguing since this seems to correspond 

well with the developmental process by formation of intermediate structures.  Actually, 

looking at the development of the modular structures across the whole age span examined 

in this study, it reveals several interesting patterns. First, the primary motor-sensory 

system (including bilateral pre- and post-central and SMA) is within one module ever 

since neonates and remains so utill adulthood. However, through the age of 1 year old, 

they are extensively interconnected with other lateral/medial parietal regions as well as 

limbic regions and are classified into a big composite module. In 2yr olds, the lateral 

parietal regions separate out demonstrating certain level of specialization. Finally in 

adults this system becomes much more specialized and forms a “stand-alone” module 

representing a distinct function underlying it, supporting the importance of specialization 

for functional maturation.  On the other hand, although the DL-PFC and OFC are 

segregated during the first year of life and remains so during the second year, it is only in 

adults that frontal lobe establishes extensive connections with posterior cingulate as well 

as parietal regions and forms the most salient frontal-cingulate-parietal module, simiar to 

the “default-mode” network (26, 28).  Given the higher order cognitive functions 

subserved by the default network (26-28, 155), this observation is consistent with the 

notion that these higher order cognitive functions do not mature at the early childhood 

and continue to develop utill adulthood (226).  Actually, the observation here is 

consistent with one of our previous findings (102) where we specifically evaluated the 
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development of the default network using independent component analysis (ICA). In that 

study, the default networks in all three pediatric groups (neonates, 1yr and 2yr olds) are 

classified into two independent components covering the frontal and parietal part, 

respectively.  It is only in the adult group, do these two components merge together to 

form an intact “default network”. The converging observation from both ICA and 

modular detection here strongly supports that the integration of frontal lobe and cingulte, 

parietal regions to form an intact module occurs after the age of two.  

In addition to the modular structure, the betweenness centrality measure also 

reveals potential “hubs” within the whole brain network.  The findings in this study 

suggest that the major hubs evolve from insula/occipital regions in neonates, SMA/insula 

in 1yr olds to SMA/fusiform areas in 2yr olds, demonstrating an important evolution 

trend as well as reasonable continuity during the developmental process.  The insula 

cortex, locating between the temporal lobe and frontal lobe, possesses abundant 

connections with temporal cortex, SMA, primary motor-sensory cortex, cingulated area 

and amgdala.  It specializes in many different functions, including motor control, 

auditory processing, speech production, as well as autonomic functions (246). Our 

finding of bilateral insula regions being among the major hubs in neonates is in line with 

its “miscellaneous” nature. More importantly, it has long been known that this area is the 

first cortex to differentiate and develop in fetus beginning from 6 weeks after conception 

(246, 247), providing the structural basis for its hub role immediately after birth as 

observed here.  Subsequently, the hubs gradually transform to the SMA area in 1yr olds, 

which suggest the central role of motor-related function during this year.  This finding is 

not surprising given the abundant evidence of major improvement in motor skills 
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occurring during this period.  For example, target-directed reaching to grasp marks the 

development of the third postnatal month (248).  Hand-to-hand transfer occurs around 6 

months of age (249).   This developemtn does not contradict with the significant frontal 

lobe development as described above since most of the mentioned behaviors represent 

functional coordination among motor, sensory, and association circuits including those in 

frontal lobe, especially for those target-directed behaviors such as inhibitory control over 

reflexive behaviors occurring around the same 3 month of age (248).  In 2yr olds, besides 

SMA, fusiform areas also appear among the top hubs, indicating dramatic development 

involved in visual function.  This finding is again consistent with one of our previous 

studies suggesting that motor-sensory networks undergo rapid development during the 

first year of life followed by similar development in the visual network that are more 

prominent in the second year of life (29).  Taken together, the hubs detected during the 

first two year of life are consistent with the dramatic motor and visual related function 

development during this period of time (29, 33).   

Comparing pediatric subjects with adults, it is apparent that the major hubs among 

the pediatric groups are more involved with basic motor (SMA), visual (right-occipital, 

fusiform) and control (insula) functions, while the hubs in adults, the posterior cingulate 

and inferior frontal, deals more with high-order cognitive functions  such as episodic 

memory, referential activity and decision making (175, 179, 181, 226).  This finding 

suggests a gradual shift of brain’s most important regions from sensory processing to 

cognitive processing, which is in line with the developmental time course of these 

functions.  Regarding the hubs detected in adult group, Hagmann et al (42) conducted an 

extensive structural connectivity study, where they found that “the spatial distribution of 
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ROIs with high betweenness centrality shows high centrality for regions of medial cortex 

such as the precuneus and posterior cingulate cortex, as well as for portions of medial 

orbitofrontal cortex, inferior and superior parietal cortex, as well as portions of frontal 

cortex.” Their findings are highly consistent with our results (Fig.9), suggesting strong 

structural basis for the detected “functional hubs” in this study. 

8.4.3 Development of Small-world Properties 

Finally, our results show that starting from neonates, the brain exhibits a small-

world network organization, which reinforces the important role of prenatal functional 

development (33). Significant improvement of small-world properties is observed during 

the first year of life, which is consistent with the most extensive inter-regional 

connectivity changes (Fig.1) as well as modular structure reorganizations (Fig.5). 

However, after 1-year-old, the small world property shows minimal changes utill 

adulthood. Surprising as this result seems to be, it is to some extent consistent with the 

previous findings comparing school age children with adults (211, 212) where they also 

failed to observe significant small-world property changes.  Our results extend this 

“plateau” period to the end of 1-year-old, suggesting that even though brain undergoes 

extensive inter-regional connection changes as well as dramatic modular structure 

changes after the first year, its global small world property gets neither improved nor 

disturbed but rather remains stable.  Given the fact that local clustering is already one of 

the features in neonates and the establishment of most long-range connections are done 

before 1-year-old (250-252), this finding seems to reflect the facts that small-worldness is 

not sensitive to organization changes once these two elements are both met.  On the other 
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hand, this reinforces the important role of the first year in global brain development, both 

structurally and functionally.    

 

Table 8.1 List of regions in anatomical sub-divisions 

Frontal  Superior frontal gyrus 

Middle frontal gyrus 

Inferior opercular frontal gyrus  

Inferior triangular frontal gyrus  

Superior medial frontal gyrus 

Paracentral lobule 

Superior orbital frontal gyrus 

Superior medial orbital frontal 

gyrus 

Middle orbital frontal gyrus 

Inferior orbital frontal gyrus 

Rectus gyrus 

Olfactory gyrus 

Occipital Superior occipital gyrus 

Middle occipital gyrus 

Inferior occipital gyrus 

Cuneus 

Calcarine cortex 

Lingual gyrus 

Fusiform gyrus 

Parietal Superior parietal gyrus 

Inferior parietal gyrus 

Angular gyrus 

Supramarginal gyrus 

precuneus 

Precentral gyrus 

Postcentral gyrus 

Supplementary motor area 

Rolandic operculum 

Limbic Temporal pole: superior 

temporal gyrus 

Temporal pole: middle temporal 

gyurs 

Anterior cingualte cortex 

Median cingulate cortex 

Posterior cingulated cortex 

Hippocampus 

Parahippocampal gyrus 

 Temporal Superior temporal gyrus 

Middle temporal gyurs 

Inferior temporal gyrus 

Heschl gyrus 

Sub-cortical Amygdala 

Caudate nucleus 

Putamen 

Pallidum 

Thalamus 

Insula 

 

 

 

 

Table 8.2 Abbreviations of regions  

Frt-S Superior frontal gyrus Temp-S Superior temporal gyrus 

Frt-M Middle frontal gyrus Temp-M Middle temporal gyurs 

Frt-I-Op Inferior opercular frontal gyrus  Temp-I Inferior temporal gyrus 

Frt-I-T Inferior triangular frontal gyrus  Heshl Heschl gyrus 

Frt-S-M Superior medial frontal gyrus Occpt-S Superior occipital gyrus 

ParaC Paracentral lobule Occpt-M Middle occipital gyrus 

Frt-S-Ob Superior orbital frontal gyrus Occpt-I Inferior occipital gyrus 



154 

 

Frt-M-O Superior medial orbital frontal gyrus Cuneus Cuneus 

Frt-M-Ob Middle orbital frontal gyrus Calcarine Calcarine cortex 

Frt-I-Ob Inferior orbital frontal gyrus Lingual Lingual gyrus 

Rectus Rectus gyrus Fusiform Fusiform gyrus 

Olfactory Olfactory gyrus Temp-P-S Temporal pole: superior 

temporal gyrus 

Prt-S Superior parietal gyrus Temp-P-M Temporal pole: middle 

temporal gyurs 

Prt-I Inferior parietal gyrus Cg-A Anterior cingualte cortex 

Angular Angular gyrus Cg-M Median cingulate cortex 

SMargl Supramarginal gyrus Cg-P Posterior cingulated cortex 

Precuneus precuneus Hpcmp Hippocampus 

PreC Precentral gyrus ParaHpcmp Parahippocampal gyrus 

PosC Postcentral gyrus Amygdala Amygdala 

SMA Supplementary motor area Caudate Caudate nucleus 

Rolandic Rolandic operculum Putamen Putamen 

Pallidum Pallidum Thalamus Thalamus 

  Insula Insula 

    

 

 

 

Table 8.3.1 Regions in different modules-neonates 

                    Frontal       Parietal-Limbic 

Frt-S-R 

Frt-S-L 

Frt-S-Ob-R 

Frt-S-Ob-L 

Frt-M-R 

Frt-M-L 

Frt-M-Ob-R 

Frt-M-Ob-L 

Frt-I-Op-L 

Frt-I-T-R 

Frt-I-T-L 

Frt-I-Ob-R 

Frt-I-Ob-L 

Frt-S-M-R 

Frt-S-M-L 

Frt-M-O-R 

Frt-M-O-L 

Rectus-R 

Rectus-L 

Cg-A-R 

Cg-A-L 

PreC-R 

PreC-L 

SMA-R 

SMA-L 

Cg-M-R 

Cg-M-L 

Cg-P-R 

Cg-P-L 

PostC-R 

PostC-L 

Prt-S-R 

Prt-S-L 

Prt-I-R 

Prt-I-L 

SMargl-R 

Precuneus-R 

Precuneus-L 

ParaC-R 

ParaC-L 

         Occipital-temporal   Sub-cortical-centered 

PrHpcmp-R 

PrHpcmp-L 

Calcarine-R 

Calcarine-L 

Cuneus-R 

Cuneus-L 

Lingual-R 

Lingual-L 

Occpt-S-R 

Occpt-S-L 

Occpt-M-R 

Occpt-I-L 

Fusiform-R 

Fusiform-L 

SMargl-L 

Angular-R 

Angular-L 

Temp-S-L 

Temp-M-R 

Temp-M-L 

Temp-P-M-L 

Temp-I-R 

Frt-I-Op-R 

Rolandic-R 

Rolandic-L 

Olfactory-R 

Olfactory-L 

Insula-R 

Insula-L 

Hpcmp-R 

Hpcmp-L 

Amygdala-R 

Amygdala-L 

Putamen-R 

Putamen-L 

Pallidum-R 

Pallidum-L 

Thalamus-R 

Thalamus-L 

Heschl-R 

Heschl-L 

Temp-S-R 

Temp-P-S-R 

Temp-P-S-L 
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Occpt-M-L 

Occpt-I-R 

Temp-I-L Caudate-R 

Caudate-L 

Temp-P-M-R 

 

 

 

Table 8.3.2 Regions in different modules-1-year-old 

Dorsal Frontal Orbital-frontal-temporal       Parietal-Limbic 

Frt-S-R 

Frt-S-L 

Frt-M-R 

Frt-M-L 

Frt-I-Op-L 

Frt-I-T-R 

Frt-I-T-L 

Frt-S-M-R 

Frt-S-M-L 

Cg-A-R 

Cg-A-L 

 Frt-S-Ob-R  

 Frt-S-Ob-L  

 Frt-M-Ob-R  

 Frt-M-Ob-L  

 Frt-I-Ob-R  

 Frt-I-Ob-L  

 Olfactory-R  

 Olfactory-L  

 Frt-M-O-R  

 Frt-M-O-L  

 Rectus-R  

 Rectus-L  

 PrHpcmp-R  

 PrHpcmp-L  

 Amygdala-R  

 Amygdala-L  

 Temp-P-S-R  

 Temp-P-S-L  

 Temp-M-R  

 Temp-M-L  

 Temp-P-M-R  

 Temp-P-M-L  

 Temp-I-R  

 Temp-I-L  

 PreC-R  

 PreC-L  

 SMA-R  

 SMA-L  

 Cg-M-R  

 Cg-M-L  

 Cg-P-R  

 Cg-P-L  

 PostC-R  

 PostC-L  

 Prt-S-R  

 Prt-S-L  

 Prt-I-R  

 Prt-I-L  

 SMargl-R  

 SMargl-L  

 Angular-R  

 Angular-L  

 Precuneus-R  

 Precuneus-L  

 ParaC-R  

 ParaC-L  

Occipital Sub-cortical Mixed  

 Calcarine-R  

 Calcarine-L  

 Cuneus-R  

 Cuneus-L  

 Lingual-R  

 Lingual-L  

 Occpt-S-R  

 Occpt-S-L  

 

 Occpt-M-R  

 Occpt-M-L  

 Occpt-I-R  

 Occpt-I-L  

 Fusiform-R  

 Fusiform-L  

 Hpcmp-R  

 Hpcmp-L  

 Caudate-R  

 Caudate-L  

 Putamen-R  

 Putamen-L  

 Pallidum-R  

 Pallidum-L  

 Thalamus-R  

 Thalamus-L  

  Frt-I-Op-R  

 Rolandic-R  

 Rolandic-L  

 Insula-R  

 Insula-L  

 Heschl-R  

 Heschl-L  

 Temp-S-R  

 Temp-S-L  

 

 

 

 

Table 8.3.3 Regions in different modules-2-year-old 

Dorsal Frontal Orbital-frontal-temporal Parietal-Limbic Lateral Parietal 

Frt-S-R 

Frt-S-L 

Frt-M-R 

Frt-M-L 

Frt-I-Op-L 

Frt-I-Op-R 

Frt-I-T-R 

Frt-I-T-L 

Frt-S-M-R 

Frt-S-M-L 

Cg-A-R 

Cg-A-L 

 Frt-S-Ob-R  

 Frt-S-Ob-L  

 Frt-M-Ob-R  

 Frt-M-Ob-L  

 Frt-I-Ob-R  

 Frt-I-Ob-L  

 Olfactory-R  

 Olfactory-L  

 Frt-M-O-R  

 Frt-M-O-L  

 Rectus-R  

 Rectus-L  

 Temp-P-S-R  

 Temp-P-S-L  

 Temp-M-R  

 Temp-M-L  

 Temp-P-M-R  

 Temp-P-M-L  

 Temp-I-R  

 Temp-I-L  

 PreC-R  

 PreC-L  

 SMA-R  

 SMA-L  

 Cg-M-R  

 Cg-M-L  

 Cg-P-R  

 Cg-P-L  

 PostC-R  

 PostC-L  

 Precuneus-R  

 Precuneus-L  

 Prt-S-R  

 Prt-S-L  

 Prt-I-R  

 Prt-I-L  

 SMargl-R  

 SMargl-L  

 Angular-R  

 Angular-L  
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 ParaC-R  

 ParaC-L 
  

 

Occipital            Sub-cortical           Mixed  

 Calcarine-R  

 Calcarine-L  

 Cuneus-R  

 Cuneus-L  

 Lingual-R  

 Lingual-L  

 Occpt-S-R  

 Occpt-S-L  

 

 Occpt-M-R  

 Occpt-M-L  

 Occpt-I-R  

 Occpt-I-L  

 Fusiform-R  

 Fusiform-L  

 Hpcmp-R  

 Hpcmp-L  

 Caudate-R  

 Caudate-L  

 Putamen-R  

 Putamen-L  

 Pallidum-R  

 Pallidum-L  

 Thalamus-R  

 Thalamus-L  

PrHpcmp-R  

 PrHpcmp-L  

 Amygdala-R  

 Amygdala-L  

 

      Rolandic-R  

      Rolandic-L  

      Insula-R  

      Insula-L  

      Heschl-R  

      Heschl-L  

      Temp-S-R  

      Temp-S-L  

 

 

 

 

Table 8.3.4 Regions in different modules-Adults 

Frontal-Cingulate-Parietal     Occipital-temporal    Sub-Cortical-Cortical 

 Frt-S-R  

 Frt-S-L  

 Frt-M-R  

 Frt-M-L  

 Frt-I-Op-R  

 Frt-I-Op-L  

 Frt-I-T-R  

 Frt-I-T-L  

 Frt-S-M-R  

 Frt-S-M-L  

 Cg-P-R  

 Cg-P-L  

 Prt-S-R  

 Prt-S-L  

 Prt-I-R  

 Prt-I-L  

 SMargl-L  

 Angular-R  

 Angular-L  

 Precuneus-R  

 Precuneus-L  

 Hpcmp-R  

 Hpcmp-L  

 PrHpcmp-R  

 PrHpcmp-L  

 Amygdala-R  

 Amygdala-L  

 Calcarine-R  

 Calcarine-L  

 Cuneus-R  

 Cuneus-L  

 Lingual-R  

 Lingual-L  

 Occpt-S-R  

 Occpt-S-L  

 

 Occpt-M-R  

 Occpt-M-L  

 Occpt-I-R  

 Occpt-I-L  

 Fusiform-R  

 Fusiform-L  

 Temp-P-S-L  

 Temp-M-R  

 Temp-M-L  

 Temp-P-M-R  

 Temp-P-M-L  

 Temp-I-R  

 Temp-I-L  

 

 Rolandic-R  

 Rolandic-L  

 Insula-R  

 Insula-L  

 Cg-A-R  

 Cg-A-L  

 Cg-M-R  

 Cg-M-L  

 SMargl-R  

 Caudate-R  

 Caudate-L  

 Putamen-R  

 Putamen-L  

 Pallidum-R  

 Pallidum-L  

 Thalamus-R  

 Thalamus-L  

 Heschl-R  

 Heschl-L  

 Temp-S-R  

 Temp-S-L  

 

Central         Orbital-Frontal   

 PreC-R  

 PreC-L  

 SMA-R  

 SMA-L  

 PostC-R  

 PostC-L  

 ParaC-R  

 ParaC-L  

  Frt-S-Ob-R  

 Frt-S-Ob-L  

 Frt-M-Ob-R  

 Frt-M-Ob-L  

 Frt-I-Ob-R  

 Frt-I-Ob-L  

 Olfactory-R  

 Olfactory-L  

 

 Frt-M-O-R  

 Frt-M-O-L  

 Rectus-R  

 Rectus-L  

 Temp-P-S-R  

 

  

 

 



Chapter 9 

A Unified Optimization Approach for Diffusion Tensor Imaging 

Technique 

 

Diffusion weighted imaging techniques including DTI and various HARDI 

methods demand a much higher signal-to-noise ratio (SNR) than that of conventional MR 

imaging sequences in order to provide accurate diffusion measures for quantitative 

evaluation of the underlying diffusion property and tractography. Therefore, extensive 

effort has been devoted to optimizing the experimental design of these techniques (253-

258). In this Chapter, we present a unified DTI optimization approach based on our 

published paper “A Unified Optimization Approach for Diffusion Tensor Imaging 

Technique” (259), which partly resolve the problem of an overall optimal design of DTI 

experiment. Further optimization of HARDI techniques for better resolving the crossing 

fiber orientations are also extremely important and deserve further work.  

9.1 Introduction 

Diffusion tensor imaging (DTI) has become an invaluable non-invasive imaging 

tool to provide insights into the microstructural integrity of white matter.  While its 

clinical utility has largely been demonstrated, DTI demands a much higher signal-to-

noise ratio (SNR) than that of conventional MR imaging sequences in order to provide 

accurate and quantitative diffusion measures.   Therefore, extensive effort has been 
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devoted to optimizing DTI (37), in an attempt to improve the accuracy and precision of 

tensor estimation.  These optimizations include the choices of imaging parameters (253-

258, 260-263), the approaches through which tensors are estimated (36, 264, 265), and 

the design of diffusion gradient directions (266-268).  While intriguing results have been 

reported, demonstrating the improved tensor estimations using these optimization 

approaches, all of the existing approaches thus far have separately optimized different 

aspects of DTI such as imaging parameters or gradient directions alone.  Given the fact 

that all aspects of a DTI experiment, including image acquisition as well as methods for 

tensor calculations will affect the accuracy of tensor estimates, it is thus highly desirable 

to having a unified approach where the essential aspects of DTI are optimized 

simultaneously.  In addition, one of the main assumptions of the existing optimization 

procedures is that all tensors are uniformly distributed in a sphere.  While this assumption 

is valid for most of the applications, in some cases, i.e. in the pediatric brain, only the 

major white matter fibers are well myelinated, leading to a non-uniform distribution of 

these major fibers (Fig.9.1).  As a result, a uniformly distributed diffusion gradient 

scheme may no longer be the most efficient scheme to provide accurate measures of 

tensors.  Recently, Peng and Arfanakis (269) proposed an approach where the prior 

directional information of selected fiber tracts was incorporated in the design of the 

diffusion gradient orientations.   A significant reduction of the standard deviation of FA 

was obtained with their approach, underscoring the importance of considering the prior 

information.  Nonetheless, similar to other existing DTI optimization approaches, only 

the design of the gradient directions was considered. 



 

In this study, we 

optimizes most of the essential

separation/duration, TE, read

or without considering the prior information of fiber distributions.  In addition, the means 

through which tensors are calcu

Monte-Carlo simulations were performed to evaluate the performance of the proposed 

method.  Simulation results demonstrate that our approach provides similar results to that 

reported in the literature when fibers are uniformly distributed 

existing methods when fibers are not uniformly distributed.
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In this study, we propose a unified optimization approach that simultaneously 

most of the essential imaging parameters, including gradient 

separation/duration, TE, read-out time, and b-values, and gradient orientations either with 

or without considering the prior information of fiber distributions.  In addition, the means 

through which tensors are calculated is also considered in the optimization procedures.  

Carlo simulations were performed to evaluate the performance of the proposed 

method.  Simulation results demonstrate that our approach provides similar results to that 

re when fibers are uniformly distributed while outperforming

existing methods when fibers are not uniformly distributed.

Figure 9.1. Examples of fiber distribution patterns in a neonate (a) and a 2

(b) are shown.  Fiber orientations are obtained using voxels with a FA larger than 0.3 in 

week old neonate and 0.4 in the 2-year old baby based on a 6 direction DTI 

experiment and visualized on a sphere representing the 3D directions. Color codes 

represent number of fibers in a specific orientation block (40 span in azimuth angle and 2

unified optimization approach that simultaneously 

imaging parameters, including gradient 

values, and gradient orientations either with 

or without considering the prior information of fiber distributions.  In addition, the means 

lated is also considered in the optimization procedures.  

Carlo simulations were performed to evaluate the performance of the proposed 

method.  Simulation results demonstrate that our approach provides similar results to that 

while outperforming the 

existing methods when fibers are not uniformly distributed. 

 

Figure 9.1. Examples of fiber distribution patterns in a neonate (a) and a 2-year old baby 

obtained using voxels with a FA larger than 0.3 in 

year old baby based on a 6 direction DTI 

experiment and visualized on a sphere representing the 3D directions. Color codes 

span in azimuth angle and 20 
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In this section, the formulation of the optimization criteria, the optimization 

procedures, and the information on simulation/evaluation parameters are provided. 

9.2.1 Design criteria 

Assuming the SNR is moderately high, a Gaussian distribution instead of the 

Rican distribution (270) can be employed to model MR signal.  With a pulsed gradient 

spin echo experiment, the MR signal with the diffusion tensor and weighting matrix can 

be written as: 

0 0exp( )TS S br D r η= − + ,                                           (9.1) 

where S  is the measured signal, 0S  is the expected baseline signal intensity, r  is the unit 

vector representing one gradient direction, and b  is the scalar value of gradient 

weighting strength.  Moreover,  η  represents Gaussian noise with a zero mean and a 

variance of 2

ησ  and 0D  represents (262) the true tensor.  Taking the logarithm of both 

sides of Eq. (9.1) leads to      )
)

~
(

1ln()ln())
~

(ln( 00

bS
rDbrSbS t η

++−= .  Subsequently, 

taking Taylor expansion of the last term and neglecting the higher order terms, we can 

obtain: 

                 (9.2) 

where  
S

η
ε =  and )exp( 00 rDbrSS T−= . 

Thus, ln( )S  is approximately normally distributed with a mean of 
0 0ln( ) TS br D r−  and 

variance 
2

2

2

S

η
ε

σ
σ =  for moderate to large ησ/S  (271, 272).   Eq. (9.2) can be 

rewritten using a matrix formulation as: 

0 0ln( ) ln( ) ,TS S br D r ε= − +
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 Y X β ε= ⋅ +
rr r

,                                                        (9.3) 

where 1 2[log( ), log( ),....log( )]T

nY S S S=
r

% % %  represents the measured signal intensities, n is the 

total number of acquisitions at each voxel and 

0 0 11 0 12 0 13 0 22 0 23 0 33[log( ), ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ]TS D D D D D Dβ =
r

.  In addition, the i-th row of the 

design matrix X
r

 has the form of ),2,,2,2,,1( 2

332

2

23121

2

1 iiiiiiiiiiiiiii rbrrbrbrrbrrbrb −−−−−− . 

The unbiased least squares (LS) estimator of  β
r

 is YXXX TT

LS

r
1)(

~ −=β , and its 

corresponding covariance matrix is  

1 1( ) ( )( )
LS

T T TX X X X X Xβ ε
− −=∑ ∑                                     (9.4) 

where ∑ε is the covariance matrix of ε.  Assuming the signal intensities are independent, 

2

1 1

2
1 1 1

( ) ( )( )
( )

LS

n n n
T T T

i i i i i i

i i i

X X X X X X
S b

η
β

σ− −

= = =

= ⋅∑ ∑ ∑ ∑
% .                            (9.5) 

By defining 
2 2 2

1 1 2 1 3 2 2 3 3[ , 2 , 2 , , 2 , ]T

i i i i i i i i i i i i i i i iZ b r b r r b r r b r b r r b r= − − − − − −  

and ])(,)(,)(,)(,)(,)[( 330230220130120110 DDDDDD=θ , Eq. (9.5) can be written as 

2

1 1

2
1 1 10

( ) ( exp( 2 ))( )
LS

n n n
T T T T

i i i i i i i

i i i

X X X X Z X X
S

η
β

σ
θ− −

= = =

= ⋅ −∑ ∑ ∑ ∑
                      (9.6) 

It should be noted that the same procedures can be used to derive criteria for weighted 

least squares estimation (36, 272) as outlined in Appendix B. 

9.2.2 Incorporating imaging parameters 

In the previous section, we derived the design criteria for tensor estimation.  In 

this section, procedures on how imaging parameters can be integrated into Eq. (9.6) will 

be outlined.   A sequence structure (Fig.9.2) similar to that illustrated in Alexander and 

Barker (258) was employed in our study, although slight modifications were made to 
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accommodate our optimization process.  The durations of the 90
0
 and 180

0
 pulses were 

P90 and P180, respectively, δ was the diffusion gradient duration, ∆ was the time interval 

between diffusion gradients, and R and RH were the readout time before and after the 

echo, respectively.  Assuming a fixed image resolution, RH would be fixed and 

independent of other parameters.  Four time intervals, τ1, τ2, τ3, and τ4 were included.  

The durations of these four time intervals along with P90 and P180 were considered fixed 

based on the hardware constraints and were independent of other imaging parameters. 

The echo time TE was then defined as 

TE=P90/2+ τ1+∆+δ + τ4+ R ,                                                   (9.7) 

and the applied b-value was given by 

222 gtb γδ⋅= ,                                                        (9.8) 

where γ is the gyro-magnetic ratio, g is the gradient strength, 
3

δ
−∆=t  is the “effective” 

diffusion time under the assumption of rectangular gradient pulses and the Gaussian 

density function of particle displacements (273). 

We assume that the expected baseline intensity S0 is given by 

)2/exp(00 TTEPS −= ,                                               (9.9) 

and 

2/1)( HRRSNR +∝ ,                                                 (9.10) 

where P0 depends on the intrinsic signal of the tissue (spin density).  If we further assume 

that the underlying noise is constant, then the SNR can be incorporated into 0S  as 

follows: 

2/1

00 ))(2/exp( HRRTTEPS +−= .                                        (9.11) 



163 

 

Substituting Eq. (9.11) in Eq. (9.6) yields 

2
1 1 10

2
1 1 1

exp( 2 / 2)( )
( ) ( ) ( exp( 2 ))( )

LS

n n n
T T T TH
i i i i i i i

i i i

P TE T R R
X X X X Z X Xβ

η

θ
σ

− − −

= = =

− +
= ⋅ −∑ ∑ ∑ ∑ .    (9.12) 

Notice the gradient directions are represented in the X and Z matrices.  This 

formulation incorporates most of the important imaging parameters together with the LS 

approach for tensor estimation and diffusion gradient directions.  The trace of LSβ∑  was 

then used as the cost function for the following optimization procedures. The main 

justification for the use of Eq. (9.12) as the cost function for subsequent optimization is 

due the fact that the main goal of our study is to improve the accuracy and precision of 

tensor estimates which can be characterized by the bias and covariance of the estimated 

DT.  Therefore, it is common in the field of experimental design to choose the covariance 

matrix of the estimated DT when the bias of the estimated DT is small (274, 275).  

Nevertheless, although the trace of the covariance matrix is used in our approach, other 

measures such as the determinant or smallest eigenvalue are also eligible for this purpose.  

 

Figure 9.2. The pulsed-gradient spin-echo (PGSE) sequence diagram is shown. 
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9.2.3 Optimization 

The incorporation of fiber orientations into the optimization processes for DTI 

imaging parameters, gradient directions, and LS tensor estimation is one of the main 

motives of the present study.   Once the values of ∆ and R are chosen, the values of δ, TE 

and b-values can be calculated according to P90, P180, HR , τ1, τ2, τ3, and τ4.  By further 

choosing the gradient direction vectors and incorporating the tensor field information, the 

covariance matrices represented by Eq. (9.12) can be fully determined, allowing the 

minimization of the cost function – the trace of covariance matrix. 

A simulated annealing algorithm (276) was used to minimize the cost function.  

The optimization procedures are described below. 

a) Setting values of P90, P180, RH, τ1, τ2, τ3, and τ4 according to the hardware 

limitations (P90=0.005s; P180=0.004s; τ1, τ2, τ3, and τ4 =0; Gradient Strength: 40 

mT/m; readout time after echo=0.0338s according to our 3.0-T MR imaging unit 

(Allegra; Siemens Medical Systems, Erlangen, Germany)). T2 was set to be 0.08s. 

b) Initializing values of ∆, R and gradient direction vectors which were represented 

by Nx3 (N: number of gradient directions) matrix and were independently 

simulated from the standard Gaussian distribution. 

c) Calculating the values of δ, TE and b-value, respectively. 

d) Calculating the covariate matrix as in Eq. (9.12) for each prior DT and then 

summing the trace of matrices for all DTs in the corresponding tensor field as the 

cost function values. 

e) Updating values of ∆, R and gradient direction vectors according to the random-

walk Metropolis algorithm. 
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f) Repeating the steps c)-e) until the stopping criteria were met. 

g) After optimization, the values of ∆, R, δ, TE, b-value and gradient direction 

vectors that provided the minimal cost function values (minimum×(1+5%)) were 

defined as the optimal values.  Detailed descriptions of the simulated annealing 

algorithm are given in Appendix A. 

9.2.4 Simulation 

In this section, parameters for Monte Carlo simulation and how simulated DW 

images were obtained are provided. 

Prior-Knowledge of fiber directions 

Three different fiber distributions as represented by the corresponding tensor 

fields were simulated as prior information:  I) CONE1 – fibers orientated in 1 cone area 

(50 tensors orderly oriented within a diverging angle of 200); II) CONE3 – fibers 

orientated in 3 well separated cone-like areas (50 tensors in each cone and the diverging 

angle for each cone was 20
0
); and III) UNIF – uniformly distributed fibers (100 tensors 

with random orientations) (Fig.9.3).  In each of the tensor fields, a “rice-shaped” 

diffusion tensor ),,( 221 λλλdiagD =  with 
129

1 107.1 −−×= smλ  and 

129

22 102.0 −−×== smλλ  was selected and different fiber orientations were generated 

using a rotation around the z axis ),(),,(),( 221 φαλλλφα RdiagRD T= , where ),( φαR  

represents the rotation matrix defined by azimuth angle α  and elevation angle φ . 

Three different imaging acquisition schemes were tested, including DIFF6 – 

M=1/N=6; DIFF12 – M=2/N=12, and DIFF30 – M=5/N=30 for each prior tensor field 

where M and N are the numbers of b=0 and diffusion weighted images (b>0), 

respectively. 
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Figure 9.3. Simulations of three different fiber distributions, including (a) a single fiber 

cone area with 50 fibers, (b) three fiber cone areas with 50 fibers in each cone and (c) the 

uniform fiber case with 100 randomly distributed fiber orientations. 

 

Reconstruction 

The expected baseline signal intensity 0S  was computed from Eq. (9.11) 

assuming a constant spin density P0.  The “ideal” DW signals were then calculated from

0 0exp( )TS S br D r= −
 for each of the corresponding prior tensor fields.  Constant 

complex noise with independent real and imaginary parts each with a normal distribution 

( 2/0/ =σµ ) was added to   0S  and S  separately and the magnitude was then 

calculated to obtain the synthetic measurement for the baseline image intensity and 

diffusion weighted image intensity, respectively.  By assuming a constant noise level, 

four different 0P  levels [250, 450, 600, 800] were tested to simulate different SNRs.  

Finally, DTs were reconstructed using LS estimation.  This process was repeated 100 

times for each experimental setting.   

Performance indices 
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To assess the performance of the proposed optimization procedures, the bias ( )(DB ) 

and the standard deviations (σ(D)) of the tensor elements, the standard deviation of 

reconstructed FA ( )(FAσ ) and Mean Angular Difference (MAD) (277) of the 

reconstructed principle eigenvectors were employed.   Detailed information on these four 

parameters is provided below. 

• )(DB : In each experimental setting, the square error of each DT element was 

calculated by subtracting the estimated values from the true tensor elements. The 

square errors of the six independent elements were then added together and 

averaged over all trials and all experimental settings to obtain a scalar value at 

each SNR and b-value to assess the accuracy of tensor estimation. 

• )(Dσ : Standard deviations of the six independent elements across 100 trials were 

summed together and averaged over all experimental settings to assess the 

precision of tensor estimation. 

• )(FAσ : Standard deviations of FA values across 100 trials were averaged over all 

experimental settings to assess the precision of FA estimation. 

• MAD:  The MAD was calculated using the following formula (Landman et al., 

2007) for each experimental setting:  )(cos
1

1

1

tri

N

i

PEVPEV
N

MAD •= ∑
=

−
 where 

N=100 for 100 trials, iPEV  is the reconstructed principle eigenvector of each 

experimental setting and trPEV is the “true” principle eigenvector. 

9.3 Evaluation of optimal imaging parameters and gradient directions 

For each optimization set, an optimal b-value range was obtained as outlined in 

the optimization section together with the corresponding ∆, R, δ and TE values.  To 
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validate this optimal b-value range, a series of 11 different b-values (Appendix A) 

together with the corresponding ∆, R, δ, TE and gradient directions were tested through 

the reconstruction process to produce performance indices at each specific b-value, which 

provided the comparison across different b-values and hence the validation of the 

proposed optimal ranges. 

In order to determine the performance of the optimal gradient directions in the 

presence of prior knowledge of the tenor fields, a direct comparison was made between 

the optimized diffusion gradient directions obtained using the proposed approach and the 

conventional gradient scheme based on the minimal energy method as proposed by Jones 

et al (254).  For each comparison, the prior tensor field was considered as the “true tensor 

field.”  To ensure a fair compassion between the proposed and the conventional scheme, 

all imaging parameters including b-value were kept identical.  The four performance 

indices as outlined above were employed to compare the two optimization approaches of 

diffusion gradient directions.  In addition, an improvement ratio (performance of the 

proposed optimization scheme/performance of the conventional scheme) was also 

calculated. 

In order to further assess the directional sensitivity of the proposed gradient 

scheme, another synthetic tensor field which consisted of 10000 uniformly distributed 

“test samples” on the sphere was also simulated.  The proposed optimization and 

conventional schemes were used to perform reconstruction at a specific b-value based on 

this “true” tensor field so that their directional performance can be compared. 

9.4 Results 

9.4.1 Optimal ∆, R , TE, and b-value 
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Fig. 9.4 shows the optimal b-value ranges for all combinations of tensor fields and 

gradient directions.  In the UNIF case, the optimal b-value ranges between 0.7
29 /10 ms×

and 1.0
29 /10 ms×  independent of the number of diffusion gradient directions, consistent 

with that reported by Alexander and Barker (258) for one fiber case.  In contrast, the 

optimal ranges become both wider and higher for CONE3 and CONE1.   

 

Figure 9.4. Optimal b-value ranges defined by the proposed scheme. CONE1: one cone 

area; CONE3: three cone areas; and UNIF: uniform fiber case. DIFF6: M/N=1/6, DIFF12: 

M/N=2/12, DIFF30: M/N=5/30. 

 

Table 9.1 lists the optimal values of ∆, R, and TE (rounded to ms) at the optimal b-value 

(rounded at 0.1 
29 /10 ms× ) which corresponds to the lowest cost function value (the 

center of the optimal range) of all three prior fiber distributions. It is evident that the 

optimal parameters are rather stable for each prior tensor distribution independent of the 
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M/N.  In order to better compare our approach and that reported by Alexander and Barker 

(258), the optimal values calculated based on their approach are listed in parentheses at 

the same b-values for comparison. It is immediately apparent that the optimal ∆, R, and 

TE are consistent between both approaches.   

The four performance indices with DIFF6 and CONE1 for different SNR are 

shown in Fig.9.5.  The two dotted lines indicate the ranges of the optimal b-values as 

shown in Fig.9.4.  With the exception of σ(FA), the optimal b-value ranges coincide with 

the “valley” of the )(DB , )(Dσ and MAD curves, demonstrating the effectiveness of the 

proposed optimization approach which yields reduced biases and SD of tensors and 

improved accuracy of the estimates of tensor directions.  However, the optimal b-value 

range for FA appears slightly higher than that obtained using the proposed optimization 

approach.  This finding is reasonable since our optimization criteria are based on the 

variance properties of the six independent tensor elements rather than FA, and a more 

specific criterion may be needed if one is particularly interested in FA estimation.  

Similar findings were also reported by Alexander and Barker (258) where they showed 

that the optimal b-value for FA estimation is higher than that for fiber orientation 

estimation.   
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Figure 9.5 Results of the four performance indices: Bias of D- )(DB , standard deviation 

of D- )(Dσ , standard deviation of FA - )(FAσ and mean angular difference-MAD for 

DIFF6 and CONE1.  X-axis represents b-value in
29 /10 ms , y-axis represents the 

corresponding performance indices values.  Red lines indicate the optimal b-value ranges 

defined by the proposed optimization scheme. 

9.4.2 Optimal diffusion gradient directions 

Fig.9.6 demonstrates the diffusion gradient directions using the conventional and the 

proposed optimization schemes, respectively.  As expected, the conventional scheme 

results in a highly uniform coverage of the entire sphere (Fig. 9.6a).  However, the 

gradient scheme using the proposed method shows a very different pattern especially in 

CONE1 (Fig. 9.6b) and CONE3 (Fig. 9.6c), respectively.  In CONE1, the optimized 

gradient directions exhibit an orderly pattern around the direction of the prior tensor field 

(red points).  Similarly, although the gradient directions spread out, they maintain an 

orderly pattern around the three tensor fields (red points) in CONE3.  Finally, the 

optimized diffusion gradient directions for UNIF (Fig. 9.6d) using our approach resemble 
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that obtained using the conventional scheme (Fig. 9.6a); the gradient directions are 

uniformly distributed across the sphere. 
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Figure 9.6. Diffusion gradient orientations are shown for the conventional scheme (a) and 

the proposed optimization scheme in CONE1 (b), CONE3 (c) and UNIF (d), respectively.  

Red points represent the center directions of the predefined fiber distributions (CONE1 

and CONE2).  Green points are the orientations of the diffusion gradients. In each panel, 

the diffusion gradient directions are plotted on a spherical coordinate with azimuth angle 

θ  (X-axis) ranging from π−  to π  and elevation angle ϕ  (Y-axis) from 0 to 2/π .  

 

9.4.3 Comparison of Optimal and Conventional Gradient direction schemes 

The improvement ratios (proposed/conventional schemes) for all four 

performance indices in CONE1 (Fig. 9.7a), CONE3 (Fig. 9.7b) and UNIF (Fig. 9.7c) 

conditions with P0=450 (which corresponds to a SNR~30 in our simulation) are shown.  

The proposed optimization scheme substantially reduces the bias (B(D)) and standard 

deviation (σ(D)) of the tensors by ~40% - 60% and ~20-30%, respectively within the 

optimal b-value range (red lines) for CON1 (Fig. 9.7a).  It appears that these 

improvements are independent of the number of diffusion gradients.  In contrast, 

although the proposed scheme remains superior to that of conventional approach, the 

extent to which σ(FA) and MAD are improved depends on the number of diffusion 

gradients.   Specifically, the largest improvement is observed with DIFF6 (~50%), 

followed by DIFF12 and DIFF30 for σ(FA) at a b-value of 1.2x10
9
s/m

2
.   For MAD, a 

comparable performance is observed between the optimized and the conventional 

schemes with DIFF6 while a 30% improvement is observed for DIFF12 and DIFF30, 

suggesting that it is imperative to employ more than 6 diffusion gradient directions in 

order to obtain an accurate estimate of tensor directions.  Comparing to CONE1, the 
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degree of improvements for CONE3 is reduced for both B(D) and σ(D) (Fig. 7b).  In 

addition, the improvement is minimal for )(FAσ  and MAD (within 5%).  Finally, the 

performance is comparable for all four measures between the proposed and conventional 

schemes in UNIF condition (Fig 9.7c).   

 

 

Figure 9.7 Improvement ratios of the four performance indices are shown for CONE1 (a), 

CONE3, and UNIF (c), respectively, where P0=450.  X-axis represents b-value in

29 /10 ms  and Y-axis represents the performance indices values.  Dashed red lines 
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indicate the rages of optimal b-value using the proposed optimization approach.  Blue 

crosses, green asterisks, and red filled circles represent DIFF6, DIFF12, and DIFF30, 

respectively.   

 Figure 9.8 Comparison of the directional sensitivity of different schemes (M/N=1/6, b-

value=1*109 s/m2, P0=450) are shown for conventional scheme (a) and the proposed 

optimization approach for CONE1 (b), CONE3 (c), and UNIF (d), respectively.  In each 

panel, the first row shows the spatial distribution of )(DB and the second row is )(Dσ . 

Red points represent the center of the prior fiber distribution (CONE1 or CONE3).  In 

each panel, the performance values are plotted on a spherical coordinate with azimuth 

angle θ  (X-axis) ranging from π−  to π  and elevation angle ϕ  (Y-axis) from 0 to 2/π .  

 

The comparison of directional sensitivity between all three different fiber 

distributions is shown in Fig 9.8 for DIFF6.  As expected, the directional dependence of 
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both bias and precision of tensors are apparent for all schemes.  A decreased bias as well 

as standard deviation of the tensors are observed using the proposed scheme for both 

CONE1 (Fig. 9.8b) and CONE3 (Fig. 9.8c), suggesting that the optimized diffusion 

gradient scheme offers a better estimate of the tensors around the fiber distributions.  

Nevertheless, it is not surprising that both the bias and standard deviations of the tensors 

are increased away from the cones.  Finally, Fig. 9.8d exhibits no obvious improvements 

between the proposed and the conventional scheme since both schemes are optimized for 

a uniform fiber distribution. Similar patterns were observed for both DIFF12 and DIFF30. 

9.5 Discussion 

Most of the existing optimization methods for DTI have separately considered 

different aspects of a DTI experiment, including either sequence parameters such as 

gradient duration/separation, read-out time, TE, and b-values (253-258), diffusion 

gradient orientations (266-269), or the post-processing schemes for tensor estimations (36, 

264, 278).  While these approaches have yielded improvements on the parameters that 

were targeted to be optimized, they are prone, potentially, to be trapped in local minima 

when the cross-talk effects are difficult to be dealt with.  Therefore, an approach capable 

of simultaneously optimizing most of the essential aspects of a DTI experiment is highly 

desirable.  In this study, we proposed a unified optimization approach for DTI to 

simultaneously consider imaging parameters, fiber distributions and methods through 

which tensors are calculated.  To the best of our knowledge, this is the first reported 

approach that offers the ability to simultaneously consider most of the important aspects 

of DTI experiments in the optimization processes.  Specifically, with the simulated 

annealing algorithm (Appendix A), the proposed approach simultaneously optimizes 
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different parameters in image acquisition (gradient duration/separation, read-out time, TE, 

and b-values), tensor estimation, and diffusion gradient directions by considering the 

prior knowledge of tensor fields while minimizing the cross-talk between all parameters 

so as to enhance the probability of finding the global minimum.  Our results show that 

compared with the conventional scheme (254), the proposed optimization approach 

substantially reduces the biases and standard deviations of tensor estimations as well as 

the standard deviations of FA and MAD when a non-uniform fiber distribution prior is 

assumed, particularly in the CONE1 condition. In addition, our results also demonstrate 

that a higher and wider range of b-values can be employed without compromising the 

accuracy and precision of tensor estimates when the information of fiber distribution is 

considered in the design of diffusion gradient orientations.  Finally, an extension of our 

approach is provided in Appendix B where the weighted least squares approach is 

employed for tensor estimates, demonstrating the flexibility of the proposed approach in 

adapting different post-processing schemes for tensor estimation.  

Table 9.1 
 CONE1 CONE3 UNIF 

 DIFF

6 

DIFF1

2 

DIFF3

0 

DIFF

6 

DIFF1

2 

DIFF3

0 

DIFF

6 

DIFF1

2 

DIFF3

0 

B(
29 /10 ms ) 

1.1 1.2 1.2 1.0 1.0 1.0 0.8 0.8 0.8 

TE (ms) 51 

(51) 

52 

(53) 

52 

(53) 

50 

(50) 

50 

(50) 

50 

(50) 

46 

(46) 

46 

(46) 

46 

(46) 

∆  (ms) 27 

(28) 

28 

(28) 

28 

(28) 

27 

(27) 

27 

(27) 

27 

(27) 

25 

(25) 

25 

(25) 

25 

(25) 

R (ms) <0.0
1 

(0.4) 

0.01 
(1.2) 

<0.01 
(1.2) 

0.1 
(1.1) 

<0.01 
(1.1) 

<0.01 
(1.1) 

<0.0
1 

(0.2) 

<0.01 
(0.2) 

0.01 
(0.2) 

Table 9.1 Optimal values of ∆ , R, TE at the optimal b-value corresponding to the 

minimal cost function values (the center of the optimal range) of all three prior fiber 
distributions 
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9.5.1 Optimal b values 

With the assumption that fibers are uniformly distributed, Alexander and Barker 

(258) evaluated a series of different b-values in an attempt to identify the optimal b-value 

ranges for tensor estimation.  They found that b-values ranging between 0.7 and 1.0 

29 /10 ms× were optimal for fiber direction estimates in one-fiber case, consistent with 

the optimal range of b-values obtained using our approach in the UNIF experimental 

setting (Fig. 9.4).  However, the optimal ranges of b-values change when the prior 

information of non-uniform fiber distributions was incorporated in the design of the 

diffusion gradients.   Specifically, the optimal ranges of b-values become higher and 

wider for both CONE3 ([0.8, 1.2] 
29 /10 ms× ) and CONE1 ([0.9, 1.5] 

29 /10 ms× ). 

These findings suggest that by incorporating the prior information of tensor fields for 

optimizing the diffusion gradient directions, a higher and wider range of b-values can be 

used without compromising accuracy and precision, potentially facilitating diffusion 

spectrum imaging (279) where high b-values are needed. 

9.5.2 Optimal gradient directions 

It is evident that the optimized gradient schemes using the proposed approach for 

non-uniform fiber distributions (CONE1 and CONE3) (Fig. 9.6) exhibit a very different 

pattern when compared with that of using the conventional approach (Fig. 9.6) (254).  

With our approach, the optimized diffusion gradient directions appear to be more 

symmetrically distributed around the direction of the fibers (Figs. 9.6b and 9.6c). This 

pattern is particularly apparent in CONE1 (Fig. 9.6b) where the diffusion gradients (green 

points) tend to align themselves in two lines covering evenly in the elevation dimension 

while spanning throughout the whole range of the azimuth dimension. With these 
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optimized gradient direction arrangements, the accuracy ( )(DB ) and precision ( )(Dσ ) of 

tensor estimates together with the estimated FAs ( )(FAσ ) and fiber orientations (MAD) 

are substantially improved when compared to that obtained using the conventional 

approach where a uniformly distributed tensor field was assumed (Fig. 9.7).  

Nevertheless, the improvement ratios decrease as the number of cones increases (Figs. 

9.7a vs. 9.7b). This finding is not surprising since as the number of cones increased, it 

would eventually approach a uniform distribution and the advantages of incorporating 

prior information would be diminished (Fig. 9.7c).   

It is worth pointing out that some of the optimized diffusion gradient directions 

using our approach appear to be very close to each other, particularly for DIFF30 (Fig. 

9.6)  in both CONE1 and CONE3.  Although it is plausible that the imperfection of the 

proposed optimization approach leads to the observed pattern of the diffusion gradient 

orientations, the most likely explanation may be the utilization of the LS approach for 

tensor estimation in our study.  The LS approach does not account for the noise variance 

and assumes equal variance.  We have also performed the same optimization processes 

with the exception that WLS was employed for tensor estimates (Appendix B).  The 

results demonstrate that the previously observed clustered pattern using the LS approach 

no longer existed (result not shown), supporting the notation that the assumption of equal 

variance for LS accounts for the clustered diffusion gradient directions. 

9.5.3 Comparisons with an optimization approach incorporating prior information  

Peng and Arfanakis (269) have recently proposed an approach to optimize 

diffusion gradient directions by taking into account the prior information of the fiber 

orientations.  However, unlike our proposed approach considering most of the essential 
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aspects of a DTI experiment, only the )(FAσ  was employed as the criterion for 

optimization in their approach.  Specifically, they considered fibers oriented within a 30
0
 

cone along the z-axis, which is similar to the CONE1 condition in our studies, allowing a 

direct comparison between our and Peng and Arfanakis’ approaches.  Fig. 9.9 shows the 

improvement ratios of the four performance indices for Peng and Arfanakis’ approach 

over the conventional scheme (Fig. 9.9a) and our over Peng and Arfanakis’ schemes (Fig. 

9b), respectively.  Since their approach specifically optimized FA measurements, it is not 

surprising that )(FAσ  is less than 1 with the exception of the lowest b-values evaluated 

when compared with those obtained using the conventional approach.  In contrast, a 

much poorer performance for MAD is observed using Peng and Arfanakis’ approach than 

that of using the conventional scheme.   The performance for both B(D) and σ(D) is 

largely dependent on the b-values; Peng and Arfanakis’ approach outperforms the 

conventional approach for b ~> 1.2 
29 /10 ms×  or otherwise is worse than the 

conventional approach.   Comparing the improvement ratios between our and Peng and 

Arfanakis’ approaches (Fig. 9.9b), it is evident that with the exception of )(FAσ where a 

comparable performance is observed, our approach outperforms that proposed by Peng 

and Arfanakis for the remaining three performance indices, underscoring the importance 

of optimizing the essential aspects of DTI experiments simultaneously and demonstrating 

the effectiveness of our approach. 
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Figure 9.9 Ratios of the four performance indices between Peng and Arfanakis’ over the 

conventional approaches (a) and the proposed over Peng and Arfanakis’ approaches are 

shown, respectively, where results using M/N=1/6 and CONE1 are shown. X-axis 

represents b-value in
29 /10 ms  and Y-axis represents the ratios of performance index 

values.   

One of the major findings of our study is that the prior tensor information can be 

employed for the optimization of different gradient orientations so as to improve the 

accuracy of tensor estimates.  While the directional distribution of white matter is most 

likely to be uniformly distributed throughout the entire sphere in adults, the directional 

distribution in very young pediatric subjects may have preferential directions and is non-

uniform (Fig. 9.1).  Under this condition, the prior tensor information should be 

considered in the optimization of the diffusion gradient directions.  This can potentially 

be accomplished by building a fiber distribution atlas for each age group and from which 

the proposed optimization approach can be applied to form an optimal set of imaging 

parameters for each age group.  By the same token, in the case when a specific WM tract 

is of interest, our optimization approach can again be applied to improve the accuracy of 

the DT estimates of the specific fiber tracts.  
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Another advantage of our approach is the flexibility of incorporating different DT 

post-processing approaches into the optimization framework.  This flexibility is 

important considering different estimation methods may become necessary in different 

conditions. For example, in the case of a low SNR ratio, the Gaussian assumption of MR 

signal will no longer hold.   The expectation of such a “log Rician” distribution could 

deviate from the real signal intensity, which may lead to systematic biases using the least 

square estimates (Salvador et al. 2005).  In this case, either weighted least square (WLS) 

estimation (Basser et al., 1994, Zhu et al., 2007) or maximum likelihood estimation of the 

Rician model  (280), (281) can be applied to minimize or correct for this distortion.   As 

demonstrated in Appendix B, the proposed optimization framework can be easily adapted 

to the WLS approach by modifying the covariance matrix of the estimated DT, 

demonstrating the potential wide applicability of the proposed approaches. 

Finally, while the proposed approach enables the simultaneous optimization of a 

variety of imaging and DTI parameters, including gradient duration/separation, read-out 

time, TE, b-value and diffusion gradient directions, these parameters do not include all 

aspects of a DTI experiment.  Both theoretic analysis and experimental tests have been 

performed to study the effects of the number of diffusion-encoding gradient directions 

(282) (283) (277) (284), the ratio of M (base line image) and N (diffusion weighted 

images) (263) and the size/shape of imaging voxels (285).  Although it is feasible to 

potentially incorporate these additional parameters into a more generalized optimization 

framework, further studies will be needed. 

 



Chapter 10  

Conclusions and Future Directions 

             

               The study of human brain functional development is of paramount importance 

not only in improving our understanding of the functional mechanisms underlying the 

mature brain but also providing essential age-specific information for critical assessment 

and monitoring of both normal and abnormal brain development (33-35).  The primary 

goals of this dissertation are to delineate the functional development trajectory during the 

critical first two years’ of life and the growth pattern of a variety of different measures 

ranging from regional interactions to global economic properties as well as the structural 

underpinnings.  

               Structurally, we found that WM exhibits a rapid growth during the first year 

followed by a much slower but steady growth during the second year of life, supporting 

the essential role of the first postnatal year in structural brain development.  Moreover, 

we found that WM development starts from the central part of the brain (corpus callosum) 

and gradually propagates to peripheral regions, revealing an interesting spatial pattern of 

structural development.  These significant WM developments during the first two years 

of life build or strengthen necessary short-/long-range structural connections between 

different brain regions and provide structural basis for functional development, especially 

connectivity development.  
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               Functionally, by focusing on one of the most important networks - the “default-

mode” network, we demonstrated interesting developmental trajectories regarding both 

its anatomical covering and functional wiring.  Specifically, we found that a primitive 

default network emerges in neonates but this network covers only the hub regions of the 

typical adult default network (among other “non-typical” default regions) and is only 

sparsely connected.  Till 1-year-old, the network becomes much more extensive and 

demonstrates an almost full coverage of all default network regions.  In contrast, the 

default network at 2 years of age becomes similar to  that in adults.  A consistent pattern 

for all 3 age groups is the involvement of “non-typical” regions in this network, including 

occipital/parietal regions in neonates, parietal/superior temporal/anterior cingulate 

regions in 1yr olds and parietal/inferior temporal regions in 2yr olds, which is consistent 

with the notion that infant brain often employs a larger area of cortex than those used in 

adults in performing similar tasks (108) and reinforces the importance of functional 

specialization to achieve matured functional architecture.  Another important finding is 

the demonstration of the potential hubs of the default network – MPFC and PCC – even 

in pediatric subjects.  As functional roles of the hubs in adult mature default network are 

well documented, the observation of these two hubs in such young pediatric subjects is 

more elusive but potentially implies early development of their corresponding functions, 

which is consistent with the previous reports regarding the development of “self-

awareness” (120) as well as episodic memory functions (115, 118).  

           Going beyond specific networks and focusing on the functional development at the 

whole brain level offers an overall picture depicting the global functional growth pattern.  

In this project, extensive inter-regional connection development involving both 
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synchronization and specialization, dramatic modular structure reorganization, shifts of 

hub regions, as well as significant improvement of small-world properties are observed 

during the critical first year.  However, the second year witnesses much fewer functional 

changes but still demonstrates important consolidating, fine-tuning, as well as “bridging” 

roles through the emergence of intermediate structures. Finally, the adult functional 

organization is more consistent with the known brain functions. Summarizing the 

findings from this whole brain developmental examination reveals that the brain develops 

from more locally clustered to more remotely integrated, from more anatomically 

constrained to more functionally sensible, and from more sensory-function-directed to 

more cognitive-function-oriented, implying important principles underlying global 

functional brain development.  

              Another important finding in this dissertation is the documentation of the 

mediating role of the frontal-parietal system on the anti-correlation between two 

opposing systems: the default and the dorsal attention systems.  Converging evidence on 

this role was derived from regional interactions as well as network level interactions 

based on the newly developed multivariate approach, strongly supporting the importance 

of this mediating role in both the maintenance of specific brain state as well as successful 

transition to different task states.  Although this exploration was done in adult subjects, 

future study is on schedule to examine the developmental process of this mediating role 

during early years of life.   

                 The interplay of structural and functional development is another important 

area that deserves future efforts. Different models for the combined developmental 

process have been proposed including “predetermined epigenesis”, which assumes that 
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there is a unidirectional causal chain from genes, structural changes to psychological 

function and “probabilistic epigenesis”, which assumes bidirectional interactions between 

genes, structural brain development and psychological function (108).  These are 

questions of central importance to understand the brain development principles.  With our 

unique pediatric data, we are granted a great opportunity to tackle this problem. Our 

preliminary results (not shown) seem to suggest that their mutual dependence declines as 

age grows on a system level.  Future efforts are definitely needed to tackle this problem 

in more depth and details to delineate the interesting interplay between these two 

channels during development.  

         Another interesting question regarding the effects of gene or environment on the 

functional brain development is also of great interest and future efforts will also be 

dedicated to reveal their specific contributions to functional connectivity development 

during early years of life using genetically related twin subjects.   
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Appendix A 

Simulated Annealing for Optimal DTI Parameters 

 

The simulated annealing (SA) method is suitable for optimization problems of 

large scales, especially when the desired global minimum is hidden among many local 

extremes.  The specific elements of the SA algorithm are listed below: 

a) Generator of random changes 

∆ and R:  ∆ and R were taken as the square of two numbers A and B setting to 

random walk to avoid negative b-values at each step.  Random numbers choosing from a 

standard Gaussian distribution scaled by 10
-3 

were added to every A and B, respectively, 

at each step. 

Gradient directions: All 3D vectors of the diffusion gradient directions were first 

transferred to a spherical coordinate so that each diffusion gradient direction corresponds 

to two elements: azimuth angle theta and elevation angle phy.  At each step, a random 

number choosing from a scaled standard Gaussian distribution was independently added 

to each of these two angles of every diffusion gradient direction.  For better performance 

against local minima, the scale factor S (the magnitude of each random number) 

depended on the current temperature T, i.e., if T>=1000, S=0.001*T and if T<1000, 

S=0.001.  After random walk of each step, these directional vectors in the spherical 

coordinate were transferred back to the Cartesian coordinate for cost function evaluation. 

b) The acceptance-rejection algorithm 

The Metropolis-Hastings algorithm (286, 287) was applied for decision making 

on acceptance or rejection.  Specifically, the system altered its configuration from energy 
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1E  to 2E  according to the probability )/)(exp( 12 TEEp −−= .  If 12 EE < , then the 

system always accepted 2E , otherwise the system accepted 2E  with a probability 1<p .  

The probability )/)(exp( 12 TEEp −−=  became smaller as T increased. 

c) Cost function 

The cost functions were the sum of the trace of every covariance matrix resulted 

from each knownθ , ∑ ∑
=

n

i

iLS
Tr

1

)( β . 

d) Default settings 

Initial ∆and R : 0.01 ms 

Initial gradient directions: 3D vectors with random entries choosing from a standard 

Gaussian distribution but normalized to be unit vectors; 

Initial temperature: 2000 Kelvin ; 

Stop temperature: 10-18 Kelvin; 

Stop energy (value of cost function): infinitely small; 

Cooling schedule: 0.98*T (current temperature); 

Maximum number of consecutive rejections: 1000; 

Maximum number of tries within one temperature: 1000; 

Prior informationθ was derived from the predefined tensor field; 

e) Recording of parameters and cost function values: A term referred to as 

“E_best” was used to track the most minimal cost function value.  After each run, the cost 

function value was compared to the current E_best and if this value was less than the 

current E_best, this value was recorded together with the random-walk parameters that 

result in this value.  However, we only kept the latest 10000 sets of values and defined 
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the optimal ranges of each parameter based on this set.  After optimization, a series of 11 

different b-values corresponding to the 1st, 1000
th

, till 10000
th

 at a 1000 interval of the 

recorded 10000 b-values (sorted) were chosen to evenly cover the whole sampled b-value 

range and used for optimal b-value range testing. 
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Appendix B 

Derivation of Design Criteria for Weighted Least Square Estimation 

 

Although we only presented results with the LS estimation method, our 

optimization scheme can be applied with different estimation methods if proper design 

criteria can be established accordingly. In this section, the derivation of the design criteria 

for WLS estimation is provided. 

The WLS estimator of β
r

 is 
1

( )
T T

WLS X X X Yε εβ −= ∑ ⋅ ∑ ⋅
r

%  and its covariance 

matrix is given by 

2

1 1 1

2
1

( )
( ) ( )

WLS

n
T T

i i

i

S b
X X X Xβ ε

ησ
− − −

=

∑ = ∑ = ∑
%

.                                                               (B1) 

Again by defining 
2 2 2

1 1 2 1 3 2 2 3 3[ , 2 , 2 , , 2 , ]T

i i i i i i i i i i i i i i i iZ b r b r r b r r b r b r r b r= − − − − − −  

and ])(,)(,)(,)(,)(,)[( 330230220130120110 DDDDDD=θ , Eq. (B1) can be written as 

2

1

2
10

( exp(2 ))
WLS
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η
β

σ
θ −

=

∑ = ⋅ ∑                                                                                (B2) 

The incorporation of other imaging parameters follows the same deduction as that 

for LS estimation as described in the Method section, which resulted in the following 

expression: 

2
10

2
1

exp( 2 / 2)( )
(( ) exp(2 ))

n
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WLS i i i

i
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