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ABSTRACT

Towards Quantitative Assessment of Hl\l)\rilez;nGlglcl)nctional Brain Development in the First
Years of Life
(Under the direction of Weili Lin)

Characterizing the developmental process of human brain function is of critical
importance not only in gaining insight into its maturing architecture but also in providing
essential age-specific information for assessment and monitoring of both normal and
abnormal neurodevelopment. The recent development of non-invasive neuroimaging
techniques, particularly resting-state functional connectivity magnetic resonance imaging
(rfcMRI) has opened a window into very early functional brain development. Together
with diffusion tensor imaging (DTI), rfcMRI offers the unique opportunity to tackle a
largely unknown area — early functional brain development as well as its structural
underpinnings.

In this dissertation, both rfcMRI and DTI were utilized to delineate early brain
development. Structurally, we found that white matter fiber tracts experience most rapid
axonal development as well as myelination in the first year, followed by a much slower
but steady growth thereafter. Spatially, the central white matter tracts develop earlier
than the peripheral ones.

Functionally, by focusing on one of the most salient high-order cognitive

networks during the resting condition (absence of any goal-directed tasks) — the “default-
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mode” network, our results showed early emergence of this network in neonates,
followed by dramatic synchronization during the first year of life and an adult-like
architecture in 2yr olds regarding the core regions. Moreover, we found the anti-
correlation (competing functions) between the default network and the task positive
network is largely mediated by the frontal-parietal control system using both regional and
newly designed network-level approaches, shedding light on brain’s functional
interaction patterns at a network level. Finally, focusing on the whole brain architecture,
our results showed interesting patterns of brain’s functional organization development.
Specifically, the brain’s functional architecture develops from more anatomically sensible
to more functionally sensible; for the functional hubs, they gradually shift from sensory-
related cortices to higher-order cognitive function related cortices.

In conclusion, by focusing on neural circuit development at regional, network as
well as whole brain levels and coupling with structural elements, our results delineated
interesting and important functional circuits growth patterns and may shed light on the

potential principles guiding normal early brain functional development.
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Chapter 1

Introduction

The brain is a complex, structured and dynamic system supporting a variety of
functions, ranging from low level sensory functions to high level cognition. Yet, to a
large extent, our understanding of the brain remains rather limited. Microelectrode
recording methods have been extensively utilized in animals to obtain a wealth of data
depicting the spiking electrical activity at a single or multi-neuron level as well as the
post-synaptic input signal from a neural population (e.g. local field potential (LFP)) (1-3).
However, due to the invasive nature of this method, its application in human subjects is
largely limited. EEG (Electroencephalography), on the other hand, is non-invasive and
capable of measuring the electrical activity produced by the firing activities of the
underlying neuron population. As a result, EEG has been proved successful in
neuroscience research as well as in clinical applications (4-9), especially in the diagnosis
of epilepsy (4-7), coma (10, 11), brain death (8, 9), etc. However, the poor spatial
resolution of EEG largely prohibits region-specific interpretations of the underlying
functional activity and hence greatly restricts its domain of application.

Based on the assumption of a coupling between neuronal activity and
microcirculation and using de-oxygen hemoglobin as an endogenous contrast agent (12-
14), functional magnetic resonance imaging (fMRI) emerges as a primary tool for

neuroscience research. In particular, with its superb spatial and reasonable temporal



resolution as well as decent sensitivity to the underlying neuronal activity, it has become
the method of choice for modern functional neuroimaging studies. Since then, numerous
exciting findings regarding the localization of various specific brain functions have been
accomplished, greatly enhancing our understanding of brain’s functional topology (15-
19).

More recently, Biswal et al (20) further initiated the study of “resting state
functional connectivity MRI (rfcMRI)”, where they found that even during an “idling”
state, human brain demonstrates a “synchronized” structure that greatly resembles the
functional “activation” pattern during task states. This finding broadly opens the door to
go beyond the “localization” of certain brain function. With the development of this
method, the neuroscience community has witnessed a great resurgence of interest in the
study of the “intrinsic” organization of the brain’s functional architecture (21-25).
Among these, the most representative and seminal work is the notion of the default mode
of brain function, coined by Raichle and colleagues (26, 27) where they have identified a
set of brain regions that consistently increase activity (high cerebral blood flow) during
the resting condition. Although using PET (positron emission Tomography) in their
original study, the topology and structure of this particular network has been consistently
detected and duplicated in rfcMRI studies (22, 24, 28). Moreover, its anti-correlation
with the “task-positive” network has also been well characterized and indicated as one of
the “intrinsic” properties of the human brain organization (23). Besides the default and
the “task-positive” networks, studies have also found sets of different resting state
networks (RSNs) with distinct spatial patterns corresponding to a variety of different

functions, including motor-sensory(20), visual(29), attention(30), memory(31, 32),



among others. As a result, the brain’s “modular” structure, i.e., there are different
functional modules responsible for distinct brain functions, becomes increasingly
accepted and experimentally validated in neuroscience community.

In addition to studying the matured brain functional organization, characterizing
its corresponding developmental process is also of critical importance not only in gaining
insight into its matured architecture but also in providing essential age-specific
information for critical assessment and monitoring of both normal and abnormal
development (33-35). For example, information can be gained to potentially reveal brain
function that develops more rapidly, so as to determine when and how to intervene when
needed. More importantly, such information may also reveal the time window of
vulnerability to neurological disorders such as autism spectrum disorders (ASD) and
attention deficit/hyperactivity disorder (ADHD), which is of great clinical interest in
preventing and treating such developmental disorders. Together, the main focus of this
dissertation is to provide quantitative evaluation of brain functional and structural
development in normal pediatric subjects during the first years of life.

One of the central techniques towards such a quantitative exploration is
rfcMRI(20). This technique is uniquely suitable for assessing early brain functional
development as it is non-invasive and is conducted in the absence of any explicit task so
that subjects can be in a naturally sleeping condition. On the other hand,
neurophysiological development provides the structural basis for functional development.
Specifically, white matter fibers - the structural pathway between functional regions, will
also be studied using another important MRI technique - diffusion tensor imaging (DTI)

(36, 37). Combing these two most recent MRI techniques specialized for studying



functional and structural connectivity, respectively, we hope to pave a way towards
quantitative assessment of human brain functional development.

This dissertation is organized as follows: the first three chapters (2, 3, and 4) will
present the background information on: the acquisition of DTI and fMRI signal; the
neurophysiological underpinnings of BOLD signal and functional connectivity study; and
the structural and functional early brain development, respectively, providing both
theoretical and empirical basis for later discussion. Chapter 5 will focus on the spatial
and temporal development pattern of white matter (WM) fiber properties during the first
two years of life using DTI technique, providing the structural underpinnings of
functional connectivity development. Chapter 6 will specifically delineate the emergence
and developing pattern of the most salient and well documented “default-mode” network
during the first two years of life, primarily due to its central role during the resting state;
Chapter 7 is dedicated to the relationship between these two “competing brain networks”
— dorsal attention and default networks, and test the hypothesis of whether frontal-parietal
system mediates the interaction between the dorsal attention and default networks. In
addition, a new multivariate approach is described as an extension of this chapter to
specifically address the problem of network-level interaction, which is highly relevant
given the network-centered analysis throughout this dissertation. Going beyond specific
networks, Chapter 8 will provide a global picture of how the whole brain functional
organization develops during the first two years of life and compares it with adult
subjects aiming to reveal the underlying principles guiding development. From a

perspective of image acquisition, Chapter 9 will describe a technical improvement on one



of the techniques used in this study: a unified method for DTI experiment optimization.

Finally, Chapter 10 will present the concluding remarks and future directions.



Chapter 2
Diffusion Weighted Imaging (DWI) and Functional Magnetic

Resonance Imaging (fMRI)

Since its discovery in the 1970’s, magnetic resonance imaging (MRI) has become
a versatile tool for various clinical and research applications. Arising from the local
precession of proton assemblies, MRI provides a number of different contrast
mechanisms through the manipulation of the bulk precession using different magnetic
field combinations, which include different relaxation factors (T;/T,), susceptibility
difference, magnetization transfer contrast, flow, contrast agent, and diffusion. Among
these, diffusion weighted imaging (DWI), which is sensitive to the diffusion property of
water molecules and functional magnetic resonance imaging (fMRI) which detects the
local susceptibility changes under external sensory stimuli and/or performing cognitive
tasks, are two of the widely applied MR techniques to probe brain white matter
property/connectivity and function, respectively. In this chapter, the basic principles of
MR signal detection and the underpinnings of the above mentioned two techniques are
reviewed to provide necessary technical background for the following discussion.
2.1 General MR signal formation
2.1.1 Interaction of a proton spin with the magnetic field

The formation of MR signal relies on the interaction of a nuclear spin with an

external magnetic field, §0. Given the natural abundance, the proton in hydrogen is

selected as the primary nucleus in MR imaging. Precession, the circular motion of the



axis of a spinning body about another fixed axis caused by the presence of an external
magnetic field, is the fundamental phenomena on which MR detects signal. Specifically,
due to this circular motion, the charged spin possesses an effective current loop, which
interacts with the external field as well as produces its own magnetic field and its strength
is characterized in terms of the magnetic moment vector. This magnetic moment vector
tends to align itself along the external magnetic field through a similar precession process
and the angular frequency for this process is given by

wo =YBy (2.1
where v is a constant called the gyro magnetic ratio, which varies with nucleuses and this
precession frequency is called Larmor frequency.

At the presence of an external magnetic field, the magnetic moment vector of a
typical proton has only two possible energy states: parallel or anti-parallel. Due to the
external field, this vector tends to align itself with it but this alignment is disrupted by the
existence of thermal energy, which is millions of times larger than the quantum energy
difference between parallel and anti-parallel alignments at the normal human body
temperature. As a result, during an equilibrium state, there is only a tiny net portion of
spins that have magnetic moment vector parallel to the external filed. Specifically, this

excess is given by

. EO)O
spin excess~N — 2.2
p @2)

where N is the total number of spins present in the sample, h is the Plank’s quantum
constant and T is temperature. At a magnetic field strength of 0.3 Tesla, this spin excess
ratio is only one in a million. However, given the Avogadro numbers of protons in a few

grams of sample, we can still detect signal despite this small ratio.



In order to detect signal, spins have to be set into precession, as described above.
In MRI, this is achieved by applying another radiofrequency (rf) magnetic field for
certain amount of time to “push” the magnetic moment vector of protons away from the
longitudinal direction (the direction of the external magnetic field) so that the precessing
spins can produce a changing flux in the receiver coil hence producing signal. This rf
magnetic field is specifically tuned to be on “resonance” with the precession frequency of
protons so that the spins can get a continuously synchronized “push”. The magnetization
produced by this rf pulse experiences different relaxations thereafter which therefore
determine the signal strength that we can detect at a certain acquisition time.
2.1.2  Relaxation and Bloch Equation

Magnetization is a measure of local magnetic moment per unit volume and for a
small enough volume that the external field can be viewed as approximately uniform, it is

defined as

—_

M= %Zprotonim (2~3)

inVv
where U, is the magnetic moment for each spin. Such a volume of spins is called a spin
“isochromat” in which they are deemed to have the same phase. With the neglect of
proton interactions with their environment, a sum over the equations of motions for the

individual spins yields

dﬁ — —_—
88 = yM X By (2.4)

which can be decomposed into parallel and perpendicular components defined relative to

the static external field

dM,
dt

=0 (2.5



and

dM—) — —
DU = Y M X Bey, (2.6)

However, consideration of the interactions of spins with either their surrounding
environment or neighboring spins leads to additional terms in the above equations, which
we termed as T; and T, relaxation, respectively. Generally, through the interaction/energy
exchange with their surroundings (spin-lattice interaction, T, effect), the longitudinal
(parallel) magnetization tends to realign itself with the external field through “re-growth”
while through spin-spin interactions (T,effect) transverse magnetization tends to dephase
and decay to zero.

The re-growth rate due to the spin-lattice interaction is proportional to the
difference My — M, . The proportionality constant is just T; and is empirically

determined, which represents the inverse of the time scale of the re-growth rate:

am, 1
=, Mo — M) 27

The solution of equation 2.7 can be found as
M,(t) = M,(0)e~ Tt + My(1 — e~ /™) (2.8)
where M, is the equilibrium value.

The spin-spin interaction accounts for the decay of transverse magnetization.
Specifically, since each spin experiences different local field as a combination of the
applied field and the field of their neighboring spins, this field difference leads to phase
differences for their precession and this “fanning out” effect on phase will finally result in
a net reduction of transverse magnetization, which is simply a sum of all individual
magnetic moment vectors. As a result, the transverse magnetization differential equation
2.6 is changed by the addition of a decay rate term:

9



dM—) — R 1 —
= YM X B — M 2.9)

while in rotating reference frame, it has a standard decay-rate form:

dMyy, _ 137
D) =~ M (2.10)
with a solution of
M, (t) = M (0)e~t/™ 2.11)

In practice, in addition to the spin-spin interaction there is another source for the
dephasing effect as introduced by the external field inhomogeneity. The decay time
constant related to field inhomogeneity is often characterized as T, and the collective

effect of T, and T, produces an overall relaxation time T

1 1
T_;_E+T_2’ (2.12)

The difference between T, and T, is that T, is resulted from the internal spin-spin
interaction and is time-variant. The dephasing effect from such interaction is impossible
to recover while the T, effect is static and its induced dephasing effect is recoverable
using a specially designed sequence structure, which will be introduced later.

Combining the differential equations 2.7 and 2.9 yields the equation for
magnetization in the presence of a magnetic field and with relaxation terms:

M — yM X By + =My — M,)2 ——M, (2.13)
dt T T,

This empirical vector equation is referred to as the Bloch equation, which is one of the
most fundamental equations for MR signal detection.
2.1.3  Free Induction Decay, Spin Echo, and different contrast mechanism

Free induction decay (FID) is the simplest MRI experiment that detects a global

signal from a sample. The basic FID sequence comprises a n/2 pulse which uniformly
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rotates all protons into the transverse plane and a sampling period to collect signal
induced by the time-varying magnetic field from the freely and collectively precessing
spins. The signal from a repeated FID sequence, assuming that TR>>T;, implying that
the transverse magnetization has decayed completely by the end of any given repetition,
can be found as

M, (t,) = Mp(1 — e~TR/T)e~tn/Tz (2.14)
where TR is the time of repetition and t, is the time of signal acquisition for each
repetition (the application of /2 pulse as time zero for each repetition).

FID presents the simplest sequence structure for MR signal detection but is not
particularly useful in most practical applications. In the circumstance of field
inhomogeneity, the time constant T, as described earlier can be sufficiently small that the
1/T, dominates 1/T, and a severe signal loss may result before we acquire signal. The
case is worse in applications where we want to manipulate the signal acquisition time to
get different contrast images (e.g. spin-density weighted, T; weighted, or T, weighted)
because of this fast decay. Fortunately, this dephasing effect caused by the external field
inhomogeneity can be reversed by a well-known rf pulse sequence called “spin-echo”.
The basis of spin-echo is the application of two rf pulses: a /2 pulse (applied at time t0),
which tips all spins into the transverse plane, followed by another 7 pulse (applied after
time 7) which reverses the phase accumulation direction induced by the time-independent
field inhomogeneity. Hence after another time period of 7, the phase accumulated
during the two time period before and after the m pulse will cancel each other and forms

an “echo” at time 2t. Therefore, the signal acquired at this time - TE (time to echo) will
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only have T, effect with the T, decay recovered and the signal expression for repeated
spin echo sequence is given by
M, (TE + nTR) = My(1 — e TR/T1)e=TE/T2 (2.15)

Using the spin echo signal (2.15) as an example, we can see that the acquired MR
signal is a function of three variables: My, TR, and T; it is based on the manipulation of
these parameters that leads to numerous contrast mechanisms, of which the three most
important are spin density, T; and T,. Specifically, in order to get contrast primarily
based on MO, the T; and T, dependence of the spin echo tissue signals must be minimized.
In this case, the TR should be much longer than the longest T; and TE should be
sufficiently shorter than the shortest T, to minimize their effects, respectively. For T;
contrast, the TE should again be much shorter than the T, values to minimize its effect
but the TR should be an intermediate value comparable to the T; values of interest.
Finally, for T, weighting, TR should be much longer than T; to avoid contribution from
T; and TE should be chosen to be comparable to T, to maximize contrast. In practice,
since there is typically a positive relationship between spin density and Ty, T, value for
certain tissue types, there is always an optimal value for TR/TE to maximize
T;/T,contrast, respectively, which can be found analytically.

Besides spin density, T; and T,, there are other contrast mechanisms including
flow, magnetic susceptibility differences, magnetization transfer contrast, tissue
saturation methods, contrast enhancing agents, and diffusion, among others. The next
two sections will separately focus on (1) the contrast induced by diffusion for diffusion
weighted imaging technique; and (2) the magnetic susceptibility effect for BOLD fMRI

study to illustrate their signal formation principles.
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2.2 Diffusion Weighted Imaging (DWI)
2.2.1 Intrinsic T2 Relaxation

As described above, the intrinsic T2 relaxation results from the depahsing effect
induced by spin-spin interaction (38). The accumulated phase of a set of spins can be

approximated by the central limit theorem. At each time point, assuming that the
accumulated phase ¢, for the i" spin is independent and random over all spins following
the same Gaussian distribution and with the mean phase at each time point being zero, the
probability density function of the accumulated phase is then
N 12{¢*)
P(¢) = — (2.16)
27 <¢z >

Hence the overall magnetization from the set of spins is:

/7[ e'e " ag 2.17)
27( @
which yields
M, =M "
L =Me (2.18)

Under Brownian motion and assuming the imaging sample is homogeneous, each

spin is expected to experience a phase change once every 7, seconds. If a given spin i
experiences a local field B,, after N time steps over different local fields, its accumulated

phase is

$(N.7)==2 18,7 (2.19)
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where B, denotes the local filed around the z-axis at ;™ position. Again the average

value for the ensemble is zero, i.e., (B, )=0and (¢,)=0 yielding
N
(#(Ne)) =75 Y (B.) (2.20)

J=1

Since there is no preferred direction in the microscopic field

<Bi2:x> - <Bi27y> = <Bi2,z> = %<B2> (2.21)

in terms of a generic field magnitude B. Combining Eq.(2.20) and (2.21)
<¢f> - %72122N<BZ> (2.22)
let = N7, and combine Eq(2.22) and (2.18) to give

M, = Mo N g e (2.23)

where 7, = , which is the expected exponential decay for spin-spin relaxation.

6
7'n(B’)
Note here 73 is tissue specific in terms of the average fluctuation period, the gyro
magnetic ratio and the average local field, which reflects the spin-spin relaxation induced
by thermal dynamic interaction among spins. As mentioned in the last section, other
sources can also contribute to the loss of signal such as inhomogeneities in the external

static filed, in which case Eq(2.23) can be rewritten
M, =Me"'" (2.24)
where T; <1T, reflecting the combined effects of spin-spin relaxation of external field

inhomogeneities.

2.2.2 Diffusion Model under Diffusion Sensitive Gradient
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The spin echo method can correct for spin dephasing induced by the field
inhomogeneities experienced by different spins at different positions (static) as described
above. However, the dephasing resulting from the change of position of a given spin in
an inhomogeneous field through diffusion is more complicated and can be utilized to
generate a diffusion-weighted signal as described below.

In the presence of a non-uniform field, spins undergo Brownian motion, leading
to random changes in phase. By applying an extra gradient along a certain direction, the
signal loss due to this Brownian motion can be derived. For simplicity, we here assume a
random walk of spins in a single spatial dimension and the sensitizing gradient (G) is

applied along the same direction. A spin at the position x moves to a new position

x+& pevery 7, seconds, where u is the step size and & =*lrandomly. Therefore, the

J
spin experiences a new field B(jz,)=B(0)+ G,uz &, after j steps and the field change is

i=l
AB(jr,)=B(jr,)—B(0). After N steps, the total phase change for the spin is then

N J

¢ =2 1T AB(T,) = =Guyr, D ) %, (2.25)

j=1 =l

After some approximation, <¢f> can be approximated as
(¢7)= %quzﬁN%j = %cﬁ Wy, (2.26)
where f = N7,. Combining Eq(2.26) and (2.18)
M _(diffusion ) = M e ¢ #1670 (2.27)

The overall signal decay from both local (7>) and diffusion effects can be

obtained by combining (2.27) and (2.23)
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M, =My Te7 0P (2.28)

+

where D = x?/(27,) is the standard diffusion constant, which is usually termed as

“diffusivity” in practice. It is common to rewrite (2.28) in the form

M,=Mye """ (2.29)

where b=7"G’t' /3 is the so-called b-value for the diffusion weighted imaging

experiment. Notice here there is an extra exponential decay term induced by the
underlying diffusion sensitive gradient parameter b, which leads to the fundamental
principle of DWIL
2.2.3 Practical implementation and applications

Notice in the above derivation, only one diffusion sensitive gradient direction is
applied. In practice, multiple directions are usually applied and different techniques can
be used to reconstruct the underlying diffusion properties within an imaging voxel,
including diffusion tensor imaging (DTI) (36) and various high angular resolution
diffusion imaging (HARDI) (39) techniques. The possible improvement on these
techniques is one of the focuses of this dissertation and will be discussed in Chapter 9.

Various applications are made possible by diffusion weighted imaging in
determining the diffusion properties of both white matter (WM) and gray matter (GM)
under normal or pathological brain conditions. DTI has been extensively applied in
studying brain development and effects of aging by either investigating the local
diffusion properties (40, 41) or studying the structure of anatomical/functional networks
using tractography or connectivity mapping (42). DTI has also found wide applications in
delineating various brain pathologies such as cerebro-vascular diseases, multiple sclerosis,

Alzheimer’s and Parkinson’s disease, schizophrenia and brain tumors (43, 44). However,
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a well known limitation of DTI is its inability to depict fiber crossings, which accounts
for one-third to two-thirds of imaging voxels in the human brain’s white matter.
Subsequently, the HARDI techniques (39) such as Diffusion Spectrum Imaging (DSI) (45)
or Q-Ball Imaging (QBI) (46) have been proposed and proven to be promising in
recovering fiber crossing information. With these techniques, whole brain tractograghy is
made possible, allowing the study of structural/anatomical connection information and
providing an integrated understanding of brain functioning mechanism. Development of
various diffusion properties in WM is one of the focuses of this dissertation and will be
discussed in the Chapter 5.

2.3 Functional Magnetic Resonance Imaging (fMRI)

FMRI is based on the coupling of MR signal changes with the change of local
brain activity. The underlying mechanism is that the local susceptibility property is
modulated by the oxygenation level of the blood, which is further related to neuronal
activation.

2.3.1 Dependence of Blood Susceptibility on Oxygenation Level

Blood can be approximated as a two-compartment system consisting of both red
blood cells and plasma. With the magnetic property of plasma much like water, the
magnetic properties of the red blood cell depends on the relative concentration of
oxyhemoglobin and deoxyhemoglobin. Oxyhemoglobin is diamagnetic with no unpaired
electrons and negative susceptibility while deoxyhemoglobin is paramagnetic with
unpaired electrons and positive susceptibility. Since deoxyhemoglobin is more

paramagnetic than oxyhemoglobin, its presence will increase local inhomogeneities and

decrease T; in Eq.(2.24), leading to faster dephasing and signal drop.
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Assuming the oxygenation of the blood is dominated by the formation of

oxyhemoglobin, a model for the susceptibility of the whole blood system is given as
Zblood = HCt (YZoxy + (1 - Y)Zdeoxy ) + (1 - HCt)Zplasma (230)
where y represents susceptibility, Hct is the fraction of the volume of packed red blood

cells to the volume of the whole blood, Y is the oxygenation level. A change of AYin the

oxygenation level alters the susceptibility according to
Alblaod = _AY(/}//deoxy - Zoxy)HCt (2‘31)

When neglecting any oxygenation in blood plasma.
2.3.2  Dependence of Blood Oxygenation Level on Blood Flow
Considering both the blood flow and the cerebral “metabolic rate” or oxygen
utilization, the change of the number of deoxyhemoglobin is given by (38)
AN

= BN ooy 1+ @) = N (2.32)

deoxy deoxy

where « is the relative blood flow change and f is defined as oxygen utilization. In

terms of oxygenation level change

- AN —
/NO:1+a B Nioy _1+a ﬂ(l—Y)
l+a N, 1+«

AY =—AN,

deoxy

(2.33)

2.3.3 Practical implementation and applications

In a simple experiment where a volunteer moves his/her thumb, the blood flow
will increase in the primary motor cortex while the oxygen utilization does not change
much (S ~1) and hence AYwill increase, which decreases the local blood susceptibility
and increase MR signal as described in last section. Of course this is only a simple
example while in practice more complex imaging paradigms have been utilized to study

the activation patterns of different brain functions such as visual, attention, auditory, and
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many others (13, 18, 47). These task-related fMRI studies have proved to be very
successful in delineating various brain functions. Alternatively, Biswal et al. (20)
proposed a different approach in investigating brain function during a “resting state”,
which is termed as functional connectivity MRI (fcMRI). Since then, numerous studies
have been conducted and different resting state networks (RSN) have been identified and
studied (22, 24, 48). One exciting possibility of the “resting brain” approach is the ability
to investigate brain function of the pediatric subjects which would be otherwise
impossible given the requirement of a task.

To depict brain’s functional development during early brain development is the
primary focus of this dissertation and will be extensively discussed in Chapter 6-8. But
before that, the neurophysiological underpinnings of BOLD signal as well as functional
connectivity will be discussed in the next chapter to provide a link between these

techniques and the underlying neuronal activity.
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Chapter 3
Neurophysiological underpinnings of BOLD Contrast and Functional

Connectivity Study

Functional magnetic resonance imaging (fMRI) using BOLD contrast has been
one of the back-bone techniques in neuroscience for decades (14). However, till now,
how exactly neuronal activity triggers the overcompensation of blood supply which thus
leads to BOLD signal change is still partially unknown. Neuronal activity changes can
readily occur at millisecond levels within a spatial scale of hundreds of transiently
“synchronized” neurons, but the “sluggish” BOLD changes usually come after one or two
seconds and with a massive over-perfusion covering a much broader spatial territory than
the underlying neuronal activity. Why and how brain does this is still an open question.
But thanks to the active research in this field, there has already been some clues of what’s
happening during this coupling period. Moreover, there are also empirical evidence on
the coupling between neuronal activity and BOLD signal changes(49-51). The first
section of this chapter will review such mechanisms and evidences to pave the ground for
the following discussion using this technique.

Despite the fundamental role of an individual neuron/neuron population, it is
perhaps the “wiring” between them that makes human brain uniquely powerful. A single

neuron can have up to a thousand afferent/efferent connections to other neurons and there



are approximately 100 trillion of neuronal connections within the entire brain. Thus, it is
not surprising that the majority of the brain’s energy is spent to maintain this massive
communication, which facilitates efficient cooperation of different units and forms
various “functional networks” for different and complex cognitive functions. As a result,
after a long period of interest in localizing specific cognitive functions to specific brain
regions using fMRI, the new area of “functional connectivity” using low-frequency
BOLD fluctuations is gaining more attention and is also the central technique used in this
dissertation. The second section of this chapter will describe the neurophysiological
basis for functional network and BOLD-based functional connectivity. Moreover, its
applications and limitations will also be discussed.
3.1 Neuronal basis of BOLD contrast
3.1.1 Potential Mechanisms of coupling between neuronal activity, blood flow, and
energy metabolism

As described in the previous chapter, BOLD contrast is based on the
overcompensation of oxygen to the local brain regions where an increased neuronal
activity has occurred. This overcompensation is through an increase of local blood flow,
which brings two of the most important “fuels” to local brain tissue: glucose and oxygen.
PET and fMRI studies have well documented the parallel increase of blood flow and
glucose utilization in response to local increase of neuronal activity but minimal increase
in oxygen consumption (52). It is this mismatch that increases local oxygen
concentration and decreases the susceptibility effect which in turn boosts BOLD signal.
Hence two events act in concert leading to the observed BOLD signal change: the

increased blood flow and unparalleled oxygen consumption, revealing an intricate
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relationship between neuronal activity, cerebral blood flow and energy metabolism. In
this section, potential mechanisms underlying the coupling between these three parties
will be described to help understand the neuronal basis of BOLD contrast.

Although it is a general principle in brain physiology that neuronal activity is
tightly coupled with blood flow and energy metabolism, the actual cellular and molecular
mechanisms underlying this coupling are nevertheless far from being firmly established.
Intensive research has been conducted searching for potential candidates responsible for
neurovascular coupling. Thus far, those that have been identified can be classified into
two broad categories, including (a) molecules/ions that accumulate in the extracellular
space after neuronal activity and (b) neurotransmitters released by activated neuronal
pathways. However, current understanding is that the temporal and spatial resolution of
actions of potential candidates in category (a) such as H and K', released by active
neurons, can hardly explain the observed rather tight neurovascular coupling while the
second category-vasoactive neurotransmitters appear considerably better fitted for this
coupling (53, 54).

Glutamate, the predominant excitatory neurotransmitter in the brain, is believed to
play an essential role in neurovascular coupling. However, the role of glutamate on
vasomotor response is generally reported to be indirect; it is mediated by nitric oxide (NO)
that is released by the activation of postsynaptic glutamatergic neuron receptors (55).
The formation of NO in the presence of glutamate is a well established fact (56-58) and it
is through this potent vasodilator that glutamate stimulates local increase of blood flow.
In addition to neurons, astrocytes have also been reported to be involved in glutamate-

induced increases in CBF. The suggested working hypothesis is that astrocytes release
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epoxyeicosatrienoic acids in response to glutamate, which may activate smooth muscle
K" channels, increase outward K current and hyperpolarize the plasma membrane, which
in turn inhibits voltage-gated Ca®" channels and leads to arteriolar dilation (59).

As possible mechanisms for neurovascular coupling have been reviewed, the next
question is the relationship between the neuronal activity and glucose utilization. A long-
held assumption in neurometabolic coupling has been that neuronal signals released by
synaptic activity directly act on brain capillaries to increase local energy supply.
However, an alternative is recently emerging - mediation through astrocytes. Astrocytes
possess extensive end-feet surrounding intraparenchymal capillaries while at the same
time extend processes that ensheath synaptic contracts. These unique features imply that
astrocytes are ideally positioned to sense changes in synaptic activity and to couple them
with the import of glucose for metabolism, which promotes the hypothesis of a functional
“triad”, consisting of the neuropils, astrocytes and capillaries that are responsible for the
local regulation of brain energy metabolism concomitant with neuronal activity. Actually,
a detailed working model has been established for the cellular processes occurring within
this functional “triad” (60-62). In short, at glutamatergic synapses, pre-synaptically
released glutamate depolarizes postsynaptic neurons by acting at specific receptor
subtypes. However, the released glutamate is rapidly uptaken by surrounding astrocytes.
Since glutamate is co-transported with Na', this leads to an increase in intra-astrocytic
concentration of Na', which in turn leads to the activation of Na'/K'-ATPase. The
activation of Na'/K'-ATPase stimulates glycolysis and produces lactate which can be

taken up by neurons and serves as energy substrate for them. Thus this chain provides a
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potential mechanism for coupling neuronal activity with glucose utilization, within which
the astrocyte-mediated, glutamate-triggered glycolysis is the central process (60-62).

This transient lactate production through glutamate-mediated glycolysis in
response to local neuronal activity increases is consistent with experimental observations
both in laboratory animals and humans. MRS in human reveals a transient lactate peak
during activation of the visual system (63) and PET studies by Fox et al (52) observed
that oxygen consumption does not increase in parallel with blood flow and glucose
utilization in activated brain areas, raising the possibility of activity dependent glycolysis
(52).

Overall, glutamate is deemed to be a central candidate for both neurovascular and
neruometabolic coupling. Although the general picture of neurovascular coupling is still
obscure, experimental evidence supports the involvement of glutamate, among others, in
this process. For the glutamate-driven meurometabolic coupling process, there is clear
evidence on the important role of astrocytic glycolysis as an essential step. Moreover,
glutmate-mediated signaling pathways may regulate CBF and glucose utilization in
parallel rather than in series. Through glutamate receptor mediated stimulation of NO
formation in neurons/astrocytes, it leads to local vasodilation and through glutamate
transporter-mediated glycolysis, it stimulates glucose uptake into astrocytes from local
blood flow.

3.1.2 Experimental evidence of the neurophysiological basis of BOLD signal

BOLD response only measures hemodynamic changes which far lag behind the

neuronal activity, leaving many unanswered questions concerning the relationship

between them. Many studies tried to combine fMRI with EEG or optical imaging in an
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effort to reveal their relationship, but these two techniques have their own limitations that
prevent precise characterization. Optical imaging essentially also measures hemodynamic
responses and EEG suffers from poor spatial resolution and imprecise localization of the
underlying electromagnetic field.

Micro-electrode recording can precisely quantify neuronal activity at both single
neuron, multiple neurons or a neuron population level and has been used in animal
studies for decades(2, 3). Hence the combination of fMRI with microelectrodes will be
an ideal combination to reveal the relationship between BOLD signal and neuronal
activity.  Specifically, single unit (SUA) and multiple unit activity (MUA) reflect
primarily the spiking output of a specific or a small set of neurons surrounding the
electrode tip. On the other hand, local field potential (LFP) represents mostly a weighted
average of synchronized dendro-somatic components of the input signals into a neural
population within a few millimeters of the electrode tip. As a result, the combination of
fMRI with microelectrode recording can not only answer the question of whether there is
a neuronal substrate for BOLD signal but also potentially differentiate the source between
the spiking activity (SUA/MUA) and integrated dendritic activity (LFP).

Such a seminal study was performed in 2001 by Logothetis and colleagues (49)
on a monkey model using a specially designed electrophysiological measurement
technique coupled with fMRI. Their findings show that a localized increase in BOLD
contrast directly and monotonically reflects an increase in the underlying neural activity,
providing strong evidence on the neuronal basis of BOLD contrast. Moreover, in order to
better understand the neural mechanisms underlying the BOLD responses, they

separately examined spiking activity (MUA) and local field potential (LFP). They found
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that the increase in LFPs during stimulation was significantly stronger than that of MUA.
Moreover, while MUA often demonstrated adaptation by returning to baseline levels 1 or
2 seconds after stimulus presentation, LFP activity was always maintained throughout the
whole stimulus period and was better correlated with BOLD signal. In addition,
convolving neuronal activity with the neural-vascular impulse response function to
predict the BOLD signal, the average LFP response was always found to give better
estimates of the true BOLD signal than MUA. Overall, they conclude that BOLD
response seems to be better correlated with the LFPs, suggesting that BOLD activation
likely reflects the integrated input and local processing rather that the spiking output
activity, which for the first time provides empirical evidence on the neural basis of
BOLD signal. Following this, a series of studies have been performed and consistent
findings have been reported (50, 51, 64, 65).

There are also studies to directly relate the neuronal firing pattern, local field
potentials with BOLD signal in human subjects rather than in anesthetized animal models
(66, 67). Mukamel et al (66) performed such a study by recording 53 single neurons in
the Heschl’s gyrus (auditory gyrus) of two epilepsy patients who were monitored with
intracranial depth electrodes for potential surgical treatment. Signals were recorded when
the patients were watching two repetitions of a 9-min popular movie segments. FMRI
study was performed on another 11 normal subjects when they were watching the same
movie segment. Strikingly, using the “spike predictor”- convolution of averaged spiking
activity with a standard hemodynamic response function, they were able to derive a group
“activation” map from the 11 normal subjects, demonstrating robust activation around the

Heschl’s gyrus in close proximity of the electrode’s location. Moreover, by sampling the
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BOLD signal from ROIs within the Heschl’s gyrus of each subject and averaging across
subjects, they showed that this average signal was highly correlated with the spike
predictor (0.75, p<10™’ for patient 1 and 0.56, p<10™* for patient 2). This striking inter-
subject correlation between neuronal spiking activity and BOLD signal proves that
BOLD contrast can be “trusted as a faithful measure of the average firing rate of the
underlying population”.

Overall, although the exact mechanism underlying the coupling between neuronal
activity and hemodynamic response measured by BOLD signal remains partially elusive,
empirical data, however, strongly support the neuronal basis for the observed fMRI signal
hence pave the ground for its application in human functional studies.

3.2 Functional connectivity study of brain’s network organization

It is the belief that large scale networks of distributed and interconnected neuronal
populations underlie human cognition that drives the study of “functional connectivity”.
The belief comes from the reconciliation of two opposite views, namely “localizationism”
claiming that complex cognitive functions reside in specific brain regions and “globalism”
supporting the notion that they are global functions of the brain. With increasing evidence,
modern neuroscientists view cognitive function as intermediate between the two
opposing views: it is a result of an integrated process between distributed brain regions
where each deals with individual elementary functions. However, numerous issues such
as the principles guiding this organization, the dynamics of this organization at different
time scales and its pathological implications, are far from clear. This is particularly true
for human studies primarily because of the lack of non-invasive and spatially resolved

techniques targeting this problem. However, the advent of functional connectivity MRI

27



(fcMRI) brought a unique opportunity to directly study this network organization non-
invasively and gained wide-spread interest in the past decade. In this section: (1) the
basic presumptions underlying functional connectivity as well as the network
organization of the central nervous system will be reviewed and (2) the applications of rs-
fcMRI together with its limitations will be discussed.
3.2.1. The neurophysiological Basis of functional network and connectivity

The neuron is the basic constructing unit of the central nervous system. However,
it does not function as an isolated unit and is not generally considered to be the major
operational unit for cognitive function. Instead, dozens to hundreds of neurons, densely
inter-connected, form anatomically distinct minicolumns oriented perpendicular to the
surface of the cortex. Tens of such minicolumns are aggregated into a macrocolumn,
which receives synaptic inputs and sends out axonal projections as a whole. Such a
minicolumn is perceived to be a candidate unit for elementary cognitive operations (68,
69). Further, the dense short-range interconnections between a set of macrocolumns in a
local area form a neuron assembly and give rise to a local cortical area network. In the
context of functional connectivity, such a local area network, composed of neighboring
macrocolumns sharing common input and output pathways and showing a specialized
rudimentary function will be considered as the basic neruophysiological component (70).

The communications of neurons within such an assembly have been extensively
studied and the general concensus is that it is achieved through the synchronous activity
of the participating neurons (71-75), i.e., synchronized excitatory/inhibitory postsynaptic
potentials, EPSP/IPSP). Although many other aspects of neuronal interactions exist, the

temporal synchronization is considered to be one of the most important factors (76). This
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temporal synchronization or correlated activity within a neural assembly is sensitive to
shifts of functional states. Therefore, during a functional “activation”, such synchronized
activity leads to an increase in the field potential while a disruption of such
synchronization may lead to a decrease in field potential, as readily measured by
EEG/MEG (77).

The observation of connectivity, either neuroanatomical or functional, between
remote neural assemblies across the whole neocortex promotes the idea of the “network”
organization (78). The anatomical foundation of this connectivity is well documented
through both traditional histological tracing studies and contemporary DTI studies as
described in the earlier chapters. Different cortical/subcortical areas are highly inter-
connected by well-myelineated, high velocity, white matter fiber tracts. Moreover, there
is also evidence that cortical areas with similar functional attributes are preferentially
interconnected (68, 69). The anatomical connections between remote neural assemblies
provide structural basis for the communication between them which in turn make
possible the necessary functional integration to form distributed networks. However,
there is still a big gap between them. Evidence of functional coordination between remote
neural assemblies can be derived from studies directly measuring neuronal activities such
as local field potential (LFP). As described in the last section, LFP measures the
synchronous post-synaptic activity of a group of neurons from a localized volume within
several millimeters vicinity of the implanted microelectrodes. Different from single-unite
or multiple unite spiking activity, LFP is capable of revealing the synchronous dendritic
activity while obscuring the specific contributions from specific neurons.  This non-

specificity is nevertheless advantageous in cognitive function studies since the
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transmission of pulse activity from one area to another, especially when they are a
distance away, is effective only at the level of neural assemblies not that of single
neurons (68, 69). Thus, directly related to the integrated inputs at the post-synaptic
dendritic trees of the corresponding neural assembly and also to the intergral of the pulse
outputs, LFP reflects the actions exerted by cortical areas on each other through axonal
pathways. Frequently, LFP is analyzed in the frequency domain by coherence, which is a
normalized quantity between zero and one, indicating perfect relative phase
synchronization and no synchronization, respectively. As a result, large coherence values
represent a stronger correlated LFP activity (with certain phase lag) hence stronger
correlated neuronal activity between different sites of the brain. In a seminal study by
Bressler et al (79), they showed a widely distributed increased broad band
(12.5Hz~87.5Hz) coherence from sensory, motor and high-order cortical sites of
macaque monkeys when performing a visual discrimination task, without involving other
intervening sites during an extended time after stimulus presentation, strongly supporting
the coordination between multiple distributed brain regions in motor behavior.
Subsequently, a follow-up study showed that during the time of elevated coherence,
bidirectional (both feedforward and feedback) causal influences are exerted between one
site in the striate cortex and the other in inferior temporal cortex during the same task
performance (80). Moreover, a series of other studies have reported synchronizations of
LFP oscillations in the gamma frequency range (30-80 Hz). Several groups (81, 82)
reported an increased gamma-correlation between different visual areas during visual
stimuli in cat studies and others have reported different patterns of transient

synchronization within striate cortex, superior temporal cortex and motor-sensory cortex
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in monkey studies (83-86). Overall, these studies together provide strong evidence for
the coordination of distributed brain regions for specific brain network to facilitate the
performance of certain cognitive tasks. This coordination, or “binding”, is essential for
the brain to integrate otherwise “fragmentary” events at multiple locations to achieve a
unified perception and behavioral goal (79).

3.2.2 Connectivity at different spatial/time scales and corresponding detection techniques

Despite the general consensus that normal brain function relies on the
coordination between distributed but interconnected neuronal assemblies, the brain’s
network structure at different spatial and time scales are far from clear (68).

Spatially, the brain’s connectivity ranges from between remote regions through
large white matter fiber bundles to within cortical layer neuronal communication through
axon-dendrite wiring. In time, on the phylogenetic time scale of generations, the basic
pattern of anatomical connectivity of the brain is determined by the evolution of each
unique species, which forms the basis for any neurocognitive operations. On the
ontogenenic time scale of years, the modification of brain’s structural/functional
connectivity is modulated by developmental and experience based factors to achieve a
functional setting unique to each individual for neuro-cognitive functions. On a time
scale of seconds to minutes and hours, brain’s connectivity may undergo short-term
modulations responsible for the transmission of brain states to accommodate various
cognitive functions including emotion, attention, and memory. Finally, transient
coordination between neuronal populations works on a sub-second time scale to initiate

or maintain neurocognitive operations (68-70)
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From fiber bundle modulation lasting for years or even generations to transient
neuronal coordination changes occurring within a second, there is an intricate relationship
between the spatial and time scale of brain’s connectivity. Our awareness of this intricate
relationship relies on the development of different measuring and analysis methods based
on a variety of underlying physiological parameters. For example, based on the
differential diffusion properties within brain’s white matter, diffusion weighted MRI
(DWI) is able to non-invasively reveal brain’s white matter property with a great spatial
precision (36, 37). Moreover, fiber tractography made available by diffusion tensor
imaging (DTI) and high-angular resolution diffusion-imaging (HARDI) provides the
unique opportunity to look at brain’s anatomical connectivity non-invasively which has
gained wide spread interest during recent years (42). On the other extreme, single unite
recording and multiple unite recording, by directly measuring the spiking activity of one
to tens of specific neurons, provide us millisecond time resolution (>400Hz) of neuronal
activity recording, pushing forward our understanding of brain communication scheme at
a single neuron level. At a slightly slower time scale (<300Hz) and a broader spatial
resolution, LFP recording, as mentioned earlier, measures the synchronous postsynaptic
activity of a neuronal population within several millimeters vicinity, providing us
probably the most relevant functional activity information of neuronal assembly.

Despite their high spatial and temporal resolution, the applications of LFP and
single/multiple unite recording are largely prohibited in human studies because of their
invasive nature. EEG provides a non-invasive alternative, which also measures the
synchronous postsynaptic electrical activity at a similar time resolution with LFP. As a

result, EEG has been widely applied in human functional connectivity studies as well as
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clinical use especially in the case of epileptic seizures (4, 5, 9, 11, 83, 87). However, the
non-invasive nature of EEG comes with a cost. Signal recorded at a single scalp
electrode reflects not only the electrical neural activity directly beneath it, but also the
neural activity at more distant locations propagated through electromagnetic fields as
mediated by the intervening tissue and other matter, known as volume conduction. This,
together with the spatial smoothing effect of the lead field linking the intracranial
electrical activity to scalp electric fields, severally degrades the spatial resolution of EEG
signal to over centimeters, resulting in poor functional connectivity localization.

On the other hand, BOLD fMRI is a powerful neuroimaging tool to localize
various brain functions with highly resolved spatial resolution (~millimeter or sub-
millimeter with the high field scanner (>3T)). Being totally non-invasive and with high
spatial resolution, fMRI has been the primary tool for decades enabling researchers to
assign brain regions to specific cognitive function using carefully designed task
paradigms, which has fundamentally improved our understanding of the local brain
functions and will continue to do so in the future.

In the mid-1990’s, it was the observation that the correlation pattern of
spontaneous low-frequency BOLD signals within the motor-sensory system during a
resting state highly resembles the activation pattern during motor tasks that flourished
“functional connectivity” studies to investigate the functional synchronization/
coordination of distributed but interacted brain regions (20). After its inception, this new
derivative of fMRI incurs great interests among neuroscientists in uncovering the global
interaction pattern among distributed brain regions, which is potentially responsible for

different cognitive tasks such as motor control, memory, attention, etc (20, 23, 30, 32, 88).
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Among all functional networks, the “default-mode” network coined by Raichle et al (26),
which composes a set of regions that consistently increase activity during an
idling/resting state when compared with a goal-directed task state, incurs particular
interest to look into its functional relevance and more generally the “intrinsic” whole
brain organization during the resting state (25, 27).

Overall, defined as the statistical correlations between the MR signal fluctuations
in different brain areas, functional connectivity studies based on BOLD fMRI (fcMRI) —
the central technique used in this dissertation — represents a new tool in neuroimaging
analysis. The typical temporal resolution of fcMRI (around seconds) is enough for
functional connectivity at two of the four time scales mentioned earlier: (1) the
ontogenenic level, which involves functional connectivity modulation by
developmental/aging factors and (2) the seconds to minutes/hours level which explores
short-term modulations of functional connectivity responsible for smooth transition of
different brain states incurred by emotion, attention, working memory, etc. Hence,
despite the losts of sub-second temporal resolution to reveal transient connectivity
patterns, fcMRI is still capable of answering important questions regarding both the
“intrinsic” and “dynamic” properties of brain organization at different time scales.

Given the discrepany in time scale between fcMRI studies (usually <0.1Hz) and
neuronal activity (~10° Hz), one of the prerequisites for fcMRI to be interpretable is the
association between the observed correlation and the underlying neuronal activity
synchronization. Although we have demonstrated the association between neuronal
activity and BOLD signal in the previous Chapter, the association at the “connectivity”

level has not been directly illustrated, which will be discussed in the next section. In
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addition, the wvarious applications of fcMRI in detecting functional connectivity
modulation at different time scales as well as the limitations will be reviewed in the next
section.

3.2.3 The essence and limitations of fcMRI

3.2.3.1 The neuronal events underlying the slow (<0.1Hz) spontaneous BOLD
Sfluctuations

Till now, we have reviewed evidence on: (1) the tight coupling between neuronal
firing, field potentials (LFP) and BOLD signal (Section 3.1); and (2) the synchronization
of integrated neuronal activity between remote but functionally related neuronal
assemblies as revealed by LFP coherence at different frequency bands (around
12Hz~80Hz) (Section 3.2.1). The combination of these two channels of information thus
seems to provide a firm rationale for the use of BOLD signal as a means to investigate
brain’s functional connectivity. However, the observed coherent neuronal activity is at a
much shorter time scale (>10Hz) when compared with the low-frequency synchronization
of BOLD fluctuations (<0.1Hz). Without knowing what aspect of neuronal activity is
behind this low-frequency BOLD synchronization, the interpretations of fcMRI studies
might still suffer.

One seminal study by Nir et al (89) might provide some insights, however. They
combined single-unit, local field potentials (LFPs) and intracranial electrocorticograhy
(ECoG) recordings in individuals undergoing clinical monitoring during both wakeful
rest and sleeping and reported four major findings. Firstly, by filtering the single unit
firing rate modulations into three frequency bands: slow (<0.1Hz), medium (0.1-1Hz) and

fast (>1Hz), they found that the single unit activity manifested the highest and most
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significant interhemishperic correlations at low temporal frequencies (<0.1Hz, 1=0.32,
p<0.0005); Secondly, through the identical procedure, they found the same bias of
interhemispheric correlations in LFP power fluctuations (gamma-band, 40-100Hz)
toward low frequency range of <0.1Hz (r=0.43, P<0.0005). Moreover, the correlations
between spiking activity and gamma-band LFP power were significantly higher at low-
frequency range (<0.1 Hz). Thirdly, using the EcoG gamma-power measurement, they
demonstrated high spatial selectivity of spontaneous fluctuations where they showed that
interhemishperic correlations were robust within auditory cortices (r=0.61) and within
visual cortices (r=0.34), respectively, but minimal across the two functional systems
(r=0.02). Finally, they made a connection between their findings using direct neuronal
activity recording (single unit and LFP) and BOLD fluctuations by analyzing fMRI
dynamics in the same manner and showed similarity.

This study rigorously demonstrated that the synchronization of firing rate and
LFP power dynamics is dominated by low frequency (<0.1Hz) and this temporal
synchronization is highly spatially selective to be within functionally similar systems.
These findings match well with the characteristics of spontaneous BOLD fluctuation
synchronizations. Takn together with the previous observations of the tight LFP-BOLD
coupling, they provide decent evidence to the hypothesis that spontaneous modulations in
firing rate and gamma LFP power are the neuronal correlates of spontaneous fMRI
fluctuations.
3.2.3.2 “Intrinsic” or “dynamic”?-rfcMRI at a different time scales

As described above, the spontaneous modulation in the firing rate and gamma

LFP power likely reflect the neuronal correlates of spontaneous fMRI fluctuations, but
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the exact role of the correlated spontaneous fluctuations is far from clear. One view, as
mentioned in Nir et al (89), is that they serve some role in maintenance and
renormalization of synaptic contracts driven through neuroanatomical connectivity.
Although not fully validated, the hypothesis that BOLD fluctuations are “intrinsic” and
constrained by anatomic connectivity receives several lines of evidence.

The first line of evidence comes from animal studies which usually involve tracer
injections to define anatomical pathways. For example, patterns of correlated
spontaneous fluctuations in the oculomotor system of the macaque monkey are highly
consistent with the anatomical network revealed by retrograde tracer injections (90-92).
Margulies et al (93) also showed correspondence between functional connectivity and
structural connectivity for four distinct pathways revealed by tracer injection. Secondly,
quantitative structural imaging studies such as those using DTI have also reported that a
significant portion of variance in spontaneous connectivity can be explained by structural
connectivity measures such as FA, number of fibers and physical fiber distance (42, 94).
Finally, some studies have directly performed fiber tracking using the functionally
connected ROIs as foci and qualitatively demonstrated the anatomical connections
underlying the functional connectivity (95).

In contrast, sets of evidence on the “dynamic” component of functional
connectivity have also been reported, which support the notion that it reflects
spontaneous cognitive process and will be modulated under task performance. A greater
activity in the default-network regions is associated with more reported task-independent
thoughts and delayed response during task performance (96). Kelly et al (97) also

reported that task performance is positively related to the “anti-correlation” between the
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task-negative default network and the task-positive dorsal attention network,
underscoring the cognitive aspect of functional connectivity. Moreover, several recent
studies also reported modulation of functional connectivity by recent task performance
experience. More interestingly, this modulation seems to predict the future performance
of the specific task previously performed, implying one potential important functional
role of functional connectivity in memory consolidation and learning (98, 99).

Combining these evidences, it is not hard to conclude that functional connectivity
actually is capable of reflecting brain’s connectivity at different time scales: the
ontogenetic level modulated by developmental/aging factors and the more dynamic scale
influenced by cognitive states of the brain. Actually, there are already numerous studies,
including ours, which have successfully applied fcMRI to show corresponding
developmental/aging modulations of brain’s functional connectivity either for a specific
brain network or whole brain organization (100-102). One thing particularly interesting
along this direction is the ability to look at the interplay of functional and structural
connectivity during early brain development since it is likely that they will influence each
other during the experience-based tuning process. This area will be one of the future
directions that we will look into. On the other hand, the short-time scale modulation of
functional connectivity is also extremely important to find out the cognitive relevance of
functional connectivity and its possible role in the most fundamental aspects of brain
function such as learning and memory, which occurs right at the time scale that fcMRI is
able to handle. Actually, fcMRI’s ability to reveal modulation of functional connectivity
at these two different time scales will be explored in this dissertation in the following

Chapters as well as in our future research.
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3.2.3.3 Artifacts and limitations of fcMRI

No technique comes with perfection. The rfcMRI is also destined to be
contaminated by different sources of noise related with both image acquisition process
within the scanner and the physiological fluctuations inherent to human subjects.
Confounding factors from the scanner include system noise, subject motion, and field
inhomogeneity among others, which to some extent can be alleviated by spatial
smoothing, averaging within ROIs, image registration and careful shimming of the
magnetic field of the scanner, etc.

Another more complex noise source comes from the rhythmic physiological
process inherent to human subjects such as respiratory and cardiac motion. These sources
of noise are of particular importance given their rhythmic nature which will inevitably
generate artificial “correlation” between BOLD signals through similar mechanism as the
BOLD contrast (thythmic change of deoxygen-hemoglobin concentration). The fact that
these noise sources operate at a much higher frequency (around 0.3 Hz for respiratory
cycle and 1 Hz for cardiac cycle) than that we are interested in for BOLD fluctuations
(<0.1Hz) does not prove particularly useful. This is due to the fact that the TR of fcMRI
studies typically lasts for several seconds, meaning that the higher frequency noise signal
will inevitably alias into the measured BOLD signal and is impossible to be eliminated by
simply low-pass filtering.

One approach for solving the problem is independent component analysis (ICA),
which has the ability to separate different sources of information. Indeed, spatial ICA has
been demonstrated to be useful in separating the whole brain signals into functionally

relevant components mainly residing in the gray matter regions and noise dominated
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components, which typically cover cerebral spinal fluid (CSF) space, white matter
regions, large vessels or brain boundary areas (103). Although being able to spatially
separate different sources, the signals within the “functionally-relevant” regions are not
free of noise since their effect can be equally expressed, if not more, through the much
smaller arterioles within the gray matter regions.

So besides low-pass filtering of the BOLD signal to remove the high frequency
noise (>0.1 Hz), another common procedure typically applied in fcMRI studies is the
regression technique to remove possible sources of noise. Usually, signals from the
ventricle space (CSF), white matter regions and the whole brain average signal will be
treated as noise regressors and the signal in each voxel is orthogonalized to these sources
through regression. These procedures have been proved to be effective in minimizing the
influences of respiration and cardiac cycle as well as increasing the specificity of brain
correlations. However, there are still controversies regarding the removal of global signal
and for review on this issue, please refer to these review articles (104, 105). In our study,
a combined strategy including low-pass filtering, ICA, and noise source regression have
been applied to minimize the physiological artifact, which will be discussed in detail in

Chapter 6 to 8.
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Chapter 4

Early Brain Development: Structures and Functions

As studies focusing on matured brain functioning are abundant, studies targeting
at its development during very early periods, esepcially the first few years, are much
fewer largely due to the lack of non-invasive brain imaging techniques. However, with
the development of DTI and fcMRI, as described in previous chapters, there is currently
great opportunity to look into this issue with these powerful and non-invasive tools. The
central focus of this dissertation is the delineation of the functional development and
structural underpinnings during this critical period through the application of these two
techniques. Befroe we describe the specific findings made in our study, an overall view
of early brain structural and funcitonal devepment will help build a general picture. In
this chapter, such a general review is provided to pave the way for the following specific
discussions.

The brain undergoes rapid, diverse and integrated development both structurally
and functionally starting as early as the fetus. Knickmeyer et al (106) revealed that,
globally, the total brain volume doubles in the first year, followed by a 15% increase in
the following year. However, this dramatic growth is not uniform for different brain
tissues; gray matter increases about 150% in the first year while hemispheric white matter
volume increases by only 11%. Other noticeable growth patterns are cerebellum volume

increased by 240% in the first year, lateral ventricle volume increased by 280% in the



first year and a small decrease in the second; and the caudate and hippocampus increased
by 19% and 13%, respectively in the second year of life.

Other studies also have investigated the maturation of neural pathways for proper
functioning, and/or the correlates between structural and functional development.
Gottlieb (107) distinguished between two models for this combined developmental
process; “predetermined epigenesis” assumes that there is a unidirectional causal chain
from genes, structural changes to psychological function while “probabilistic epigenesis”
assumes bidirectional interactions between genes, structural brain development and
psychological function (108). Although different theories concerning this process exist,
the direct evidence proving any specific assumption remains highly challenging and
demands further investigation.

4.1 Gray and White Matter development from Human Fetus to Infant

Starting from the third trimester of pregnancy to 2 years of age is a critical period
for human brain development. During this time, brain undergoes rapid development
through various processes such as neurogenesis, axonal and dendritic growth,
synaptogenesis, cell death, axonal pruning, myelination, and gliogenesis (109).

As early as 7-10 gestational weeks, initial cortical plate formation starts in the
human telencephalon, followed by neuronal proliferation at 8-16 gestational weeks,
neuronal migration at 12-20 weeks and the development of six-layered cortex (110).
Subsequently, cortical neurons start to develop dendrites and axons, followed by rapid
elongation of axons to their intra- and subcortical target structures accompanied by the

establishment of synapses and hence connectivity. Redundant axonal processes that do
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not make synaptic contacts are finally selectively eliminated which is termed ‘“axonal
pruning’”.

Histology-based studies also possess the potential to depict the onset and
completion of various developmental events regarding critical white matter (WM)
development during this period. Haynes et al (111) conducted such a study and reported
the major developmental time lines for axonal maturation from midgestation through
infancy. Using anti-SMI 312, a pan-marker of neurofilaments, stained axons can be
observed as early as 23 weeks; GAP-43, a marker of axonal growth and elongation,
showed a high level of expression from 21-64 post-conceptional (PC) weeks and
progressed to a lower adult-like level beyond 17 postnatal months (~1.5 postnatal year).
In contrast, myelination begins from 54 PC weeks (~ 2.5 postnatal months) to 72-92 PC
weeks (~6.5 postnatal months to 11.5 postnatal months).

While knowledge gained from the above histological-based studies iss highly
informative, the ability to probe white matter maturation process in vivo is highly
desirable. Diffusion tensor imaging (DTI) has recently been proved to be a powerful tool
in depicting the underlying structural development due to its sensitivity to microscopic
motion of water molecules. Using this technique, an overall water content loss indicated
by the decrease of mean trace as well as axonal growth indicated by the increase of

fractional anisotropy (FA) during the first years of life have been reported (41). Further,
Song et al (112) proposed that radial diffusivity ( 4, =(4, +4)/2 ) may reflect

myelination process and a rapid decrease of radial diffusivity in the first 12 postnatal
months has been reported, consistent with histology studies and indicating that

myelination may be a dominant developing process in the first year of life (40, 41).
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For specific fiber tracts, Huang et al. (113) studied both fetal (19-20 PC weeks)
and neonate brains delineating various degrees of maturation status of a series of white
matter structures. Specifically, they found that the limbic fibers develop first and the
association fibers last. The commissural and projection fibers are forming from anterior
to posterior part of the brain. Other studies also suggest WM development of the central
WM regions may be earlier than the peripheral WM regions (114).

4.2 Brain functional development during early infancy

The brain undergoes continuing functional developments after birth, including
motor coordination, vision, auditory perception, language, etc, during the first few years
of life. Several lines of evidence suggest that even some primitive versions of “high-level”
cognitive functions may already be present in very young pediatric subjects. Davidson
(115) suggested that implicit memory is robustly presented in neonates and toddlers.
Studies have shown that the sensorimotor experiences of the fetus (116) and the voice of
mother (117) can be memorized. Fivush and Hamond (118) showed that at 2-year-old,
children can already retrieve much detail about a trip to the zoo while episodic memory
starts to develop at the age of four (119).

Amsterdam (120) found that infants from 6 through 12 months of age demonstrate
prolonged and repeated reaction to their mirror images as a sociable playmate. Wariness,
withdrawal, self-admiring and embarrassed behavior start at 14 months and has been
observed in 75% of the children after 20 months of age. Finally, from 20 to 24 months of
age, the majority of subjects demonstrate recognition of their mirror images. These
temporal behaviors demonstrate an evolving trajectory of self-consciousness before the

age of two, which is essential for self-projection or self-referential activity. In addition,
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studies on toddlers also revealed that 18- to 24-month-olds are able to use speaker’s gaze
direction (121), affective expression (122) and other behaviors (123) as cues leading to
speaker’s communicative purposes. Akhtar and Tomasello (124) further proposed that
children are able to infer the meaning of words through an understanding of people’s
minds although here the “understanding” is narrowly limited to “a sensitivity to others’
referential intentions, desires and knowledge states” (125). These primitive mental
functions may actually act as a promising source where more sophisticated function such
as mentalizing and “theory of mind” can be originated and developed; most normally
developing children acquire “theory of mind” between the age of 3 and 5 years (126).

4.3 Structural Correlates of Infant Functional Development

The development of cognitive functions and neuroanatomical maturation process
are intertwined. Realization of certain cognitive function relies on the building of certain
neuroconnections/pathways while the developing of function may further strengthen the
corresponding pathways.

One potential connector of the brain between structural and functional
development is the process of myelination. Since myelination increases the electrical
conduction rate along axons, its development should be correlated with improved
information transmission and a correspondingly stronger and fast connection/pathway. To
test this assumption, Dubois et al(127) examined both the structural and functional
development of the visual system between 1 and 4 month old infants using DTI and
visual event-related potentials (VEPs) and found that the apparent conduction speed,
computed from the latency of the first positive VEP wave was significantly related with

DTI indices such as FA and radial diffusivity, highly suggestive of the microstructural
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correlates of infant functional development. Nevertheless, only the visual system was
studied, additional studies are needed to discern other potential mutual dependences
between early brain structural and functional development.

Overall, brain undergoes rapid and important development during the critical first
few years of life both structurally and functionally but the exact mechanisms underlying
this development are currently poorly delineated. Towards quantitative assessment of
early brain development, this dissertation focuses on the delineation of such mechanisms
and the later chapters will describe the specific improvements/findings made in this

process.
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Chapter 5
Temporal and Spatial Developments of Axonal Maturation and

Myelination of White Matter in the Developing Brain

Brain function has been considered to primarily originate through the cerebral
cortex which is mainly composed of gray matter (GM). However, information
exchange/connection between various brain cortical areas are mostly fulfilled by white
matter (WM) fibers, whose dysfunction may significantly interrupt proper brain
functioning. Therefore, how the development of WM is coupled with brain functional
development is extremely interesting and of importance. In this Chapter, as a first step,
the temporal and spatial developments of WM in normal and healthy pediatric subjects in
the first years of life are discussed based on our published paper “Temporal and Spatial
Developments of Axonal Maturation and Myelination of White Matter in the Developing
Brain” (40). The functional development is discussed in the next Chapter and the
combination of the two elements will be tackled in future work.

5.1 Introduction

The understanding of early human brain development especially the maturation
process of white matter is of both great scientific and clinical importance.(41, 111, 128,
129) Several studies have specifically focused on the development of white matter in

pediatric subjects using MRI. While it has been suggested that the most rapid pace of



maturation of white matter occurs during the first 2 years of life(129, 130), most of the
studies to date have been carried out on either preterm babies(41, 111, 131, 132), older
children(133, 134), or with a relatively small sample size during this critical period of
time — from birth to 2-years of age.(128, 130, 135-138) Therefore, information on
normal development of white matter in very young children is insufficient. To this end,
quantitative assessment of the white matter in normal and healthy children during this
critical period of time are highly desirable for the understanding of early white matter
maturation.

Due to its sensitivity to microscopic motion of water molecules, diffusion tensor
imaging (DTI) has become the method of choice for the measurement of local water
diffusion characteristics. The underlying physical mechanism is that the relative angle (0)
between the direction of the applied diffusion gradients and the direction of water
diffusion determines the extent to which MR signal is altered in the presence of diffusion
gradients; the maximum signal reduction occurs at 6=0 (parallel) whereas no signal
change is anticipated at 6=90-degree (perpendicular). Therefore, applying diffusion
gradients along non-collinear directions, a tensor matrix can be used to characterize the
directions of water diffusion. Subsequently, the three eigenvalues (A,, A, and 4;)
obtained through matrix diagonalization of the tensor matrix can be used to derive
diffusion indices such as the relative anisotropy (RA), fractional anisotropy (FA), and
volume ratio (VR). Although these indices, especially FA, have been widely employed
to characterize diffusion anisotropy in various brain tissues, they lack the ability to

provide more insights into the underlying micro-structural changes of white matter.
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Recently, Song et al proposed to separate the three eigenvalues (4,, 4, and A,)
into two parameters that may have different physiological implications: parallel ( 4,) and

perpendicular (4, and 4;)(139-141), also known as axial diffusivity (4, = 4,) and radial

diffusivity ( 4, =(4, +4;)/2), respectively. With animal models of neurodegenerative

diseases(112, 142, 143), they demonstrated that a reduction of axial diffusivity may be
indicative of axonal injury whereas an elevation of radial diffusivity may reflect
demyelination. Therefore, they concluded that utilizing both the axial and radial
diffusivities may provide more specific physiological underpinnings of the
microstructural changes in white matter than that available through FA.
In this study, Axial and radial diffusivities together with FA were employed to
characterize the temporal and spatial development of axonal maturation and white matter
myelination during the critical first two years of brain development. Rapid axonal
growth and elongation, forming of new barriers to water mobility such as microtubules
and myelination in white matter are likely to affect both axial and radial diffusivities in
different ways(112, 142, 143). Characterizing the changes of these directional
diffusivities should shed new light on our understanding of the underlying
microstructural development in white matter over this critical period.
5.2 Materials and methods
5.2.1 Subjects

The study subjects were part of a large ongoing study of brain development in
normal and high risk children. Pregnant women were recruited during the second
trimester of pregnancy from the outpatient obstetrics and gynecology clinics at UNC
hospitals. Exclusion criteria were the presence of abnormalities on fetal ultrasound or
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major medical or psychotic illness in the mother. Informed consent was obtained from
the parents and the experimental protocols were approved by the institutional review
board. None of the subjects was sedated for MR imaging. Before neonates were imaged,
they were fed, swaddled, and fitted with ear protection. In contrast, for the 1yr- and 2yr-
olds, the parent or a study coordinator held them and sat on a rocking chair inside the MR
scanner until the subject fell asleep. Headphones were put on the subject who was then
placed in the head coil. With these procedures, most of the subjects slept during the
imaging examination. We retrospectively identified 60 normal subjects including 20
neonates (12 male and 8 female, mean age 22 +10 days (SD)); 20 1-year-olds (8 male
and 12 female, mean age 13 £0.5 months) and 20 2-year-olds (10 male and 10 female,
mean age 24 0.5 months) who met the following inclusion and exclusion criteria.
Inclusion criteria were birth between the gestational ages of 35 and 42 weeks, weight that
was appropriate for gestational age, and the absence of major pregnancy and delivery
complications as defined in the exclusion criteria. Exclusion criteria included maternal
pre-eclampsia, placental abruption, neonatal hypoxia, or any neonatal illness requiring
greater than 1 day NICU stay, mother with HIV, any mother actively using illegal
drugs/narcotics during pregnancy, or any chromosomal or major congenital abnormality.
In addition, all DTI images were visually inspected and subjects with apparent motion in
DTI images were excluded. Finally, a board-certified neuroradiologist (JKS) reviewed
all images to verify that there were no apparent abnormalities in the acquired MR images.
5.2.2 MR Acquisition

All imaging was performed on a head-only 3.0-T MR imaging unit (Allegra;

Siemens Medical Systems, Erlangen, Germany). One image without diffusion gradients
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together with diffusion weighted images along six gradient directions with a b-value of
1000 mm* / s were obtained. The acquisition was repeated 5 times for averaging. Other
imaging parameters were: TR/TE=7500/73 ms; slice thickness=2 mm with an inter-slice
spacing of 2mm; matrix size =64x64; and an in-plane resolution=2*2 mm?®.

5.2.3 Post-processing

Diffusion weighted images were transferred off-line for post-processing using
software developed in-house. Six elements of the diffusion tensor were determined by
multivariate least-square fitting. Three eigenvalues and eigenvectors were obtained by
tensor diagonalization and subsequently the axial and radial diffusivities were calculated.
Fractional anisotropy was calculated to measure degree of anisotropy.(36, 37, 144)

BET algorithm of the FSL (FMRIB, Oxford University, U.K.) was applied to
exclude all voxels outside of the brain for further analysis. Subsequently, one subject in
each age group was chosen as the template and bi-directional B-spline co-registration,
which ensured symmetry between source images and template images. The distance
between knots of the 3D B-spline model was gradually decreased by half, leading to an
increase of grid size of the 3D control point array from 5*5*5, 7*7*7, 11*11*11 and
finally to 19*19*19. This allowed registration of individual subjects to their
corresponding template using the FA maps. The transformation matrices were saved for
each individual with subsequent co-registration of the axial and radial diffusivity maps to
the templates. After registration, mean FA maps were calculated for each age group.

5.2.4 Region-of-Interest (ROI) Analysis
Eight ROIs were placed on the mean FA maps for each age group by a board

certified neuroradiologist (VJ). These ROIs include: genu of corpus callosum (GCC);
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splenium of corpus callosum (SCC); body of corpus callosum (BCC); posterior limb of
internal capsule (IC); cortical-spinal tract (CST); optic radiation (OR); frontal peripheral
white matter (FPW); and posterior peripheral white matter (PPW). These ROIs were
chosen such that both central and peripheral white matter areas were included so as to
assess the temporal and spatial alterations of diffusion anisotropy and directional
diffusivities across different white matter regions. The ROI sizes varied between different
groups owing to the changes in brain size. For the neonate group, the number of voxels
in each ROI ranged from 8 to 20 with a median of 10 while the ROI sizes were similar
between the 1 and 2yrs old groups and ranged from 10 to 45 with a median of 18 voxels.
The values of FA, and axial and radial diffusivities for each ROI were then obtained for
each individual subject, which were then used for subsequent group analysis.
5.2.5 Statistical Analysis

The analysis of variance (ANOVA) for multiple comparisons with age as the
single factor was used for statistical analyses. A P<0.05 was considered significance.
5.3 Results

Representative examples of the axial and radial diffusivities and FA for the three
age groups are shown in Fig.5.1, demonstrating the excellent image quality. It is
apparent that marked changes in all three parameters are seen between neonates and 1 yr
olds while the differences between lyr and 2yr olds are more subtle. A direct
comparison of the three diffusion parameters among the three age groups is shown in Fig.
5.2 where the values represent the mean of all ROIs of each age. Consistent with the
reported results in the literature, FA increases as a function of age; a significant increase

in FA is observed from neonates to 1 yr olds (p<0.0001) while the FA is comparable
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between lyr and 2yrs olds (p>0.05). In contrast, both axial and radial diffusivities
decrease with age. Similar to that observed in FA, the major changes of axial and radial
diffusivities occur between neonates and 1 yr olds (p<0.0001) while only the radial

diffusivity exhibits significant reduction from 1 yr to 2 yrs olds (p=0.0014).

Radial
Diffusivity

1-year-old

Figure 5.1 Representative examples of axial diffusivity, radial diffusivity and FA from
three subjects, one subject for each age group, are shown. All images were scaled to the
same window and level settings to allow a direct comparison across subjects. It is
apparent that both the axial and radial diffusivities decrease whereas the FA increases
with age.

To further examine how white matter maturation differs with age across different
anatomical regions, the general pattern are showed in Fig. 5.3; FA increases and both
axial and radial diffusivities decrease with age for all ROIs. However, there is a
substantial variability across different anatomical regions. Fig.5.3 provides more detailed

analysis on anatomical locations exhibiting statistical differences among groups. All
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three diffusion parameters are highly significantly different between neonates and lyr
olds for all ROIs. In contrast, anatomical regions exhibiting statistical changes differ
among the three diffusion parameters between lyr and 2yrs old groups. For the axial
diffusivity, only the frontal peripheral WM area (FPW) and OR show significant changes.
Interestingly, with the exception of SCC, all ROIs exhibit significant changes for radial
diffusivity from lyr to 2yr olds albeit the statistical significance levels are different.
Finally, with the exception of the FPW and SCC, the FA is statistically different between
1 yr and 2yr olds for all remaining ROls.
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Figure 5.2: The mean values of the axial diffusivity, radial diffusivity and FA from all 8
ROIs are shown. A significant reduction (p<0.0001) of both axial and radial diffusivities
and elevation (p<0.0001) of FA are observed from neonates to 1 yr olds. The changes
from 1yr to 2yrs olds are more subtle for both axial diffusivity and FA while a significant
reduction (p=0.0014) in radial diffusivity is observed. The labels for left and right Y-axis
represent the directional diffusivities and FA, respectively. Error bars indicate standard
deviation.

The rates of increase/decrease of diffusion parameters with age are shown in Fig.
5.4 for different anatomical regions. The axial and radial diffusivities and FA of 1 and 2

yrs old groups were normalized to the corresponding values at each ROI of the neonatal
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group. A rapid decrease in both axial and radial diffusivities while a marked increase in
FA are observed from neonates to lyr olds, followed by a relatively stable axial and
radial diffusivities and FA from 1 yr to 2yrs olds. Comparing between axial and radial
diffusivities, radial diffusivity reveals a much larger reduction than that of axial
diffusivity from neonates to lyr olds. The reduction of axial diffusivity between neonates
and lyr olds ranges from almost no changes (94.5%) for CST to 76% of that at neonates
for FPW. In contrast, the smallest reduction of radial diffusivity is 79% (OR) and the
largest is 44% (SCC) of that of neonates. The most substantial increase in FA from

neonates to 1yr olds is the FPW while the smallest is CST.

® P<0.001
P<0.05

Group Comparisons

Axial diffusivity Radial diffusivity FA

Figure 5.3: Statistical comparison results overlaid on FA maps are shown. Please note
that the body of corpus collosum should be located in different slices but it was shown on
the same slice for visualization. GCC: genu of corpus callosum; SCC: splenium of
corpus callosum; BCC: body of corpus callosum; IC: posterior limb of internal capsule;
CST: cortical-spinal tract; OR: optic radiation; FPW: frontal peripheral white matter; and

PPW: posterior peripheral white matter.
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Finally, the comparisons of the three diffusion measures at the same age but
different anatomical areas reveal the spatial behaviors of white matter maturation (Fig.
5.5). This figure is shown in such a way that the values of axial diffusivity and FA are
sorted in a descending order while the radial diffusivity is sorted in an ascending order
based on the values of the 2yrs old group. Generally speaking, the results from 1 yr
group (pink line) and 2 yr group (green line) show a consistent trend while the neonate
group (blue line) is more variable and does not follow the same patterns as those shown
in 1 and 2 yrs old groups. The general trend indicates that the corpus callosum (GCC,
SCC, BCC) has the highest axial diffusivity and FA, followed by CST, OR, IC, and the
lowest in the peripheral WM area (PPW, FPW). The radial diffusivity increases follow a
similar pattern to that of the axial diffusivity with the exception that the development of

IC appears more advanced when compared to that of the GCC and BCC.
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Figure 5.4: Comparisons of axial diffusivity (a), radial diffusivity (b) and FA (c) across
age. The experimentally measured values of 1yr and 2yrs groups are normalized to that

of the neonates. GCC: genu of corpus callosum; SCC: splenium of corpus callosum;
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BCC: body of corpus callosum; IC: posterior limb of internal capsule; CST: cortical-
spinal tract; OR: optic radiation; FPW: frontal peripheral white matter; and PPW:
posterior peripheral white matter. Error bars indicate standard deviation.
5.4 Discussion

Diffusion tensor imaging has been widely employed to assess white matter
maturation in pediatric subjects (41, 111, 113, 114, 128-137). However, few studies thus
far have specifically focused on the age range investigated in our study, particularly with
a large sample size. In addition, most of the studies to date have mainly employed FA to
delineate white matter maturation which may not provide the information about
underlying microstructural changes with age. In this study, both axial and radial
diffusivities along with FA were employed to gain more insight into the underlying
biological development associated with white matter maturation, namely axonal growth
and myelination. Consistent with the results reported in the literature(129, 130), a
marked increased in FA from neonates to 1yr olds is observed, followed by a more subtle
increase from lyr to 2yr olds. The ROI analysis offers additional details regarding the
spatial pattern of white matter maturation. Specifically, all 8 ROIs exhibit highly
significant (p<0.0001) elevation of FA from neonates to lyr olds (Fig. 5.3), indicating a
rapid development of white matter during the first year of life. However, with the
exception of CST and OR which exhibit highly significant elevation of FA from 1lyr to 2
yrs olds (p<0.001), the level of statistical significance is reduced (p<0.05) in GCC, BCC,
and PPW. In addition, the FA values in the SCC, IC, and FPW are comparable between
the 1 yr and 2yr groups although the physiological underpinnings for the lack of FA

changes in SCC, IC, and FPW may differ. It is plausible that both SCC and IC are well
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developed by the age of 1 yr old and thus exhibit subtle changes in FA. In contrast, the
FA values are about 0.3 at the FPW at 1yr and 2yrs old and thus most likely reflect the
slow pace of white matter development in the frontal lobe from 1 to 2yr olds. However,
caution should be taken in interpreting these results based on FA findings alone and

consideration should be given in the context of both axial and radial diffusivities.
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Figure 5.5: Comparisons of the axial diffusivity (a), radial diffusivity (b) and FA (c)
across ROI but at the same age are shown. GCC: genu of corpus callosum; SCC:
splenium of corpus callosum; BCC: body of corpus callosum; IC: posterior limb of
internal capsule; CST: cortical-spinal tract; OR: optic radiation; FPW: frontal peripheral
white matter; and PPW: posterior peripheral white matter.

In addition to FA measurements, both axial and radial diffusivities, reflecting
axonal growth and formation of new barriers - myelination(112, 142, 143), respectively,
were employed in our studies to potentially provide additional insights into white matter
development from the ages of 3wks to 2yrs old. Haynes et al (111) utilized GAP-43, a

marker of axonal growth and elongation to analyze parietal central white matter tissues.
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They showed a high level of GAP-43 staining from 24-64 post-conceptional (PC) weeks
which spans through pre- and post-natal periods, implying rapid axonal development
which progressed to a slower adult-like level of axonal development beyond 17 postnatal
months (~1.5 postnatal year). In contrast, myelination begins from 54 PC weeks (~ 2.5
postnatal months) to 72-92 PC weeks (~6.5 postnatal months to 11.5 postnatal months),
spanning approximately the entire first year after birth. Together, these results suggest
that the onset of axonal growth is earlier (pre-natal) and most rapid during the first five
postnatal months while myelin maturation begins about 2.5months postnatally and
continues throughout the first year of life. Therefore, with regard to measurements of
axial and radial diffusivities, one would expect smaller changes of axial diffusivity during
the first year of life than the changes of radial diffusivity (myelination) since maturation

of myelin is the dominant process during this period of life. Indeed, Partridge et al(41)
reported a smaller changes of A, (axial diffusivity) whereas both A, and 4, (radial

diffusivity) exhibited a marked changes in 14 preterm newborns imaged at gestational
ages between 28 and 43 wks. Similarly, our study (Fig. 13) demonstrates that the extent
to which radial and axial diffusivity reduction differs during the first year of life; the axial
diffusivity decreases to about 0.75~0.95 while radial diffusivity reduces to 0.44~0.69 of
that in the neonate group, suggesting more rapid myelination than axonal growth from
3wks to lyr of age. Our findings are thus highly consistent with that reported by Haynes
etal. (111)

While all of the 8 ROIs exhibit significant changes of axial and radial diffusivities
from neonates to 1 yr olds, these same regions begin to differ with regard to how the axial

and radial diffusivities change from 1 yr to 2 yrs of age (Fig. 5.3). The OR and FPW
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reveal significant changes in axial diffusivity consistent with continued axonal
development, whereas with the exception of the SCC, the remaining 7 ROIs exhibit
significant changes in radial diffusivity, suggesting that the myelination is the dominant
process during the second year of life in these areas. In addition, as mentioned
previously, no changes in FA were observed in SCC, IC and FPW from 1 to 2 yrs old.
Based on the FA findings, our initial interpretations, as discussed above, were that the
SCC and IC are well developed whereas the developmental pace in FPW is slow.
Consistent with the finding of FA, no changes in both axial and radial diffusivities were
observed in SCC. However, some discrepancies are observed in both IC and FPW. Both
axial and radial diffusivities exhibit significant changes in FPW, indicating continuing
rapid myelination and axonal growth during this period in contradistinction to our
original interpretation based on FA. In addition, a significant reduction of radial
diffusivity in IC is observed, suggesting continuing myelination. Furthermore, although
a significant elevation in FA is observed at the CST, GCC, BCC and PPW between 1 and
2yrs olds, these regions only exhibit significant changes in radial but not axial diffusivity,
suggesting that these regions are going through extensive myelination but not axonal
growth during this period of life. Together, these results underscore the importance of
utilizing axial and radial diffusivities and reveal the limited specificity of solely using FA
to characterize the development of white matter. Nevertheless, one must note that the
radial diffusivity measurements assume that the axons exhibit a perfect cylindrical shape
and no contributions to the diffusivity perpendicular to the axons. As a result, effects of

astrocytes, microglia and cell surface molecules extended into the intersitium are ignored.
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Our comparison of diffusion parameters using ROIs in each age group reveals the
spatial maturation pattern of white matter. Despite the neonatal group variability, the
general maturation pattern begins centrally (SCC, GCC, and BCC), followed by GST, IC,
OR and peripheral white matter (PPW and FPW) development as well as from the
occipital (PPW) to the frontal (FPW) lobes. These findings are consistent with the results
reported by Volpe.(145) Interestingly, although discrepancies regarding the rates and
anatomical locations among the three diffusion parameters are observed, the general
spatial pattern was consistently depicted using the three diffusion parameters.

It must be noted that Song et al(112, 142) hypothesized and subsequently
demonstrated in animal models that a reduction of axial diffusivity was associated with
axonal injury in mouse models. Contrary to their conclusion, we demonstrate axial
diffusivity decreases from the neonatal period to 2 yrs of age which clearly cannot be
explained by axonal injury. In addition, it has also been reported by Ashtari et al(146)
that axial diffusivities increase and there are no changes in radial diffusivity with age.
These authors speculated that the reduction of fiber tortuousity yields more straightened
fibers, improving axonal fiber organization and potentially leading to an increase of axial
diffusivity.(146) The discrepancies between our findings and these studies can
potentially be explained by the following factors. First, subjects with a mean age of 16.6
yrs old were studied by Ashtari et al which is clearly much older than our studies.
Second, it has been documented that axonal pruning occurs resulting in refinement of the
embryonic nervous system during early development(147). Thus, the intermingling of
axonal branches, the elimination of overabundant axons, and the reduction of the length

of axons during the refinement process may potentially account for the observed
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reduction in axial diffusivity. (148, 149) Finally, postnatal development of the fiber
cytoskeleton, i.e. the formation of microtubules and neurofilaments (150) may also
contribute to the decreased axial diffusivity as new barriers form. Therefore, it is
plausible that the relationship between axial diffusivity and age is biphasic where a
reduction of axial diffusivity is present during the first years of life, and followed by an
elevation of axial diffusivity at a later age. Specifically, axonal pruning and formation of
new barriers may be the dominant factor resulting in the observed reduction of axial
diffusivity. However, once axonal pruning and cytoskeleton development reaches a
plateau, fiber straightening may then become the dominant factor, leading to increased
axial diffusivity at a later age. These physiological alterations may also explain the
gradual decreasing pattern of axial diffusivity from the central WM (i.e. different parts of
CC) to the peripheral WM (Fig. 14a) since the central WM is more likely to have well
organized straight fibers while axonal fibers become less organized in the more
peripheral areas. Nevertheless, more studies with a wider age range is needed to further
determine at what age the axial diffusivity starts to increase after birth.

Two potential limitations associated with our study need further discussion. First,
six diffusion gradient directions were employed in our study. The choice of the number
of diffusion gradient directions reflects a compromise balance the data acquisition time
and signal-to-noise ratio of DTI for imaging non-sedated pediatric subjects. While the
utilization of six diffusion gradient directions may lead to inaccuracy of the
measurements of diffusion tensors, since an ROI approach was employed with a large
sample size, the potential inaccuracy in tensor measurements should not affect the overall

conclusions of our study. Second, despite the histological correlatives reported by Song
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et al indicating that axial and radial diffusivities may reflect axonal integrity and
myelination, definitive physiological underpinnings of axial and radial diffusivities
remain to be enlightened. Therefore, although our results appear to be consistent with the
general understanding of the white matter maturation in pediatric subjects, the
interpretation of our results should be in the context of these limitations.
5.5 Conclusion

Utilizing both FA and directional diffusivities, namely axial and radial
diffusivities, this study aimed to determine the spatial and temporal characteristics of
white matter development in normal and healthy children from 3wks to 2 yrs of age, an
age range that currently lacks sufficient data. Our results demonstrate that the major
changes of FA, and radial and axial diffusivities occur from 3 weeks to lyr for all regions
investigated — with elevations of FA and reductions of both axial and radial diffusivities.
In addition, much larger reductions in radial diffusivity are observed when compared
with those demonstrated in axial diffusivity, suggesting that myelination is the dominant
process during the first year of life. In contrast, the changes between 1 yr and 2 yrs olds
are more subtle although statistical differences are observed in radial diffusivity
suggesting a pruning process. In addition, our results indicate that FA alone cannot
differentiate the components of white matter maturation. Our study reveals more insight
into the underlying biological changes of white matter which are only obtained when all
three diffusion parameters are interpreted together. Finally, comparing diffusion
parameters across different ROIs in each age group reveal that the development of white

matter begins from center to peripheral white matter and from occipital to frontal lobes.

63



Chapter 6

Emergence of the brain’s default network: Evidence from two-week-old
to 2-year-old healthy pediatric subjects

Brain is a complex, structured and dynamic system facilitating various functions.
Rather than investigating brain function in forms of isolated brain regions, studies have
shown the indispensability of viewing the brain as an integrated system consisting of
spatially segregated yet actively interacted regions, which essentially form “functional
networks” (151, 152). Recent studies further show that such a network organization of
brain persists even when subjects are lying in the scanner doing no explicit cognitive task
other than “resting” (20, 22). For our interest of characterizing brain development in
pediatric subjects, resting state fMRI is particularly suitable and provides us unique
opportunity to explore the underlying functional development trajectory for the first time.

Brain has various specific functional networks such as motor-sensory, visual,
language, attention, etc. However, one of the major findings in recent fMRI studies is that
a distinct brain network — referred to as the default network (26)— is engaged during
passive or undirected “resting” mental states. For this reason, in this chapter we first
tackled the development of this particular network using functional connectivity MRI
(fcMRI) to depict its developing trajectory in the first 2 years based on our published
paper titled “Emergence of the brain’s default network: Evidence from two-week-old to
2-year-old healthy pediatric subjects” (153). The developing process of other networks

and the whole brain as a comprehensive network will be discussed in following chapters.



6.1 Introduction

A growing body of evidence suggests that a distinct brain network — referred to as
the default network — is engaged during passive or undirected mental states (26). Broad
awareness of the default network emerged when Shulman et al (154) conducted a meta-
analysis, pooling resting positron emission tomography (PET) images from 132 normal
subjects who underwent a variety of goal-directed cognitive tasks (e.g., word reading,
category classification, etc.). Remarkably, despite the differences in activation paradigms
among the subjects, several brain regions consistently exhibited a higher cerebral blood
flow (CBF) during undirected (passive) states than during cognitive task conditions. It
was suggested that the increased brain activity (CBF) during the passive condition
reflected ongoing thoughts and monitoring of the external environment. Subsequently, a
series of seminal studies were conducted and reported by Gusnard, Raichle and
colleagues which focused on the functional significance of such increased brain activity
during resting/passive conditions (26, 155). The term “default mode of brain function”
was thus coined by Raichle et al (26), describing the baseline state in the human brain.
Since then, substantial efforts have been devoted to further determining the anatomical
and functional implications of the brain’s default network using both PET and MRI
techniques (154, 156-158).

Remarkably, despite the utilization of different neuroimaging methods including
PET (154, 156) and resting functional magnetic resonance imaging (rfcMRI) (157, 158),
a consistent pattern of the main architecture of the default network has been reported
across different studies and modalities. Specifically, these reports suggest that the default

network consists mainly of the ventral/dorsal medial prefrontal cortex (v/d MPFC),
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posterior cingulated cortex/retrosplenial (PCC/Rsp), inferior parietal lobule (IPL), lateral
temporal cortex (LTC) and hippocampus regions (HF) (28). This convergence in
anatomical representations of the brain among different neuroimaging approaches
suggests that the default network is likely to be a distinct brain system with its own
function, and for which dysfunction may have great impact on various brain diseases
(159).

While the anatomical representations of the default network are highly consistent
in the literature, the specific functions of the default network remain controversial (21, 26,
27, 160). In adult studies, the default network is typically reported as an intact network
indicating a temporally synchronized functional composition (48). However, evidence
also suggests that the default network has specialized subsystems that converge on two
main “hubs” — PCC/Rsp and MPFC (161). Uidden et al (161) investigated the two hubs
of the default network and found that the interaction patterns with other networks are
significantly different for these two hubs, suggesting functional differentiation within the
default network. Nevertheless, to date most of the existing literature on default network
focuses largely on adult subjects. As a result, it is difficult to determine how and when
the default network is formed. The delineation of its developmental process not only
offers profound scientific implications on its functional evolution during a critical time
period when the brain undergoes tremendous development (129) but also potentially
provides great insights into the etiology and pathophysiology of neurodevelopmental
disorders. Fair et al (101) investigated default network in school-age children (i.e. 7-9
years old) and found that the network is only sparsely connected in children when

compared with adults. Fransson et al scanned pre-term infants at a gestational age of 41
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weeks and failed to discern the default network (162). Based on these two studies, one
would hypothesize that the default network cannot be completely discerned up to 7-9yrs
old, assuming a monotonic developing trend. However, subjects in Fransson et al’s
studies were born prematurely, which made it unclear whether or not their findings are
applicable to healthy infants. Moreover, whether the development of this particular
network follows a monotonic pattern remains elusive without data actually covering the
age gap. To this end, our studies aimed to reveal the temporal development of the default
network by partially filling the age gap between Fair et al’s (101) and Fransson et al’s
studies (162), determining the emergence of the default network as a whole as well as
potentially discerning the presence or absence of the specialized subsystems (hubs)
within the default network in a critical time period of brain development.
6.2 Methods
6.2.1 Subjects

The study subjects were part of a large study on characterizing brain development
in normal and high risk children (163). Informed consent was obtained from the parents
and the experimental protocols were approved by the institutional review board. None of
the subjects was sedated for MR imaging. Before the subjects were imaged, they were fed,
swaddled, and fitted with ear protection. All subjects slept during the imaging
examination. We retrospectively identified 71 normal subjects including 20 neonates
(9M, 24+ 12days (SD)); 24 1-year-olds (16M, 13 £ 1mon) and 27 2-year-olds (17M, 25
1 Imon) who met the inclusion and exclusion criteria. In addition, 15 (11M, 30 £ 1.7yrs)

healthy adult subjects were also recruited for comparisons with pediatric subjects. A
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board-certified neuroradiologist (JKS) reviewed all images to verify that there were no
apparent abnormalities in the acquired MR images.
6.2.2 MR acquisition

A 3D MP-RAGE sequence was used to provide anatomical images to co-register
among subjects. The imaging parameters were as follows: repetition time (TR)=1820ms;
echo time (TE)=4.38 ms; inversion time=1100ms; 144 slices; and voxel size = 1x1xImm’.
For the rfcMRI studies, a T2*-weighted EPI sequence was used to acquire images. The
imaging parameters were as follows: TR=2sec, TE=32 ms; 33 slices; and voxel size
=4x4x4 mm’. This sequence was repeated 150 times so as to provide time series images.
6.2.3 Post-processing

The brain extraction tool of the FSL (FMRIB, Oxford University, U.K.) was first
applied to exclude all voxels outside of the brain. Subsequently, rfcMRI data
preprocessing included compensation of slice-dependent time shifts, rigid body
correction for inter-volume head movement within runs, and spatial smoothing (6-mm
full width at half maximum Gaussian kernel). The first time point rfcMRI was co-
registered to the corresponding T1-weighted MP-RAGE structural images using affine
rigid body alignment. Image normalization for each age group was then achieved by
choosing one subject of each age group as template and then performing intensity-based
hammer nonlinear registration (164) on T1-weighted structural images. Finally, the
transformation fields from affine alignment and hammer registration steps were
employed to bring all fMRI volume data to the template space, allowing group analysis.

Principal component analysis (PCA) was employed for data dimension reduction

while the infomax algorithm (165) was applied for ICA analysis on dimension reduced
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data set to obtain a set of aggregate independent components for each age group. The
number of components for each age group was determined using the minimum
description length criteria (166), which was 28, 31, 27 for neonate, 1yr and 2yr groups,
respectively. This group ICA was carried out wusing GIFT software

(http://icatb.sourceforge.net/) proposed by Calhoun et al (167).

6.2.4 Group Default Network Definition

After group ICA, ICA components associated with vessels, cerebral spinal fluid
(CSF) and possible motion artifacts were first removed. Subsequently, template MP-
RAGE images were normalized to the Montreal Neurological Institute (MNI) EPI
template using intensity-based HAMMER nonlinear registration (164) and the
corresponding transformation field was then used to bring the remaining IC maps in each
group to the MNI template space. Regional parcellation was then achieved using the
anatomically labeled template reported by Tzourio-Mazoyer et al (168). An automated
approach (169) was employed to select the component(s) comprising brain regions that
best matched with the commonly observed brain regions in the default network, including
bilateral medial superior frontal and bilateral posterior cingulate gyrus (26, 28). This
approach was first applied in the adult group where the ICA component 10 (Fig. 15)
exhibited a much higher matching score when compared with the remaining components,
suggesting that component 10 was associated with the default network. Indeed, the
anatomical regions observed in 10™ ICA component (Fig. 6.2 and Table 2) are highly
consistent with that reported in the literature (28). Subsequently, the brain regions of the
10™ component of the adult group were then used as the template to identify components

of the default network for all three pediatric groups. In contrast to adults, there was not a
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clear choice of the component(s) to best discern the default network in pediatric subjects
(Fig. 6.1). To circumvent this difficulty, we have arbitrarily chosen a matching score
threshold based on the adult studies; the component exhibited a matching score greater
than 1 was considered as the component reflecting the default network. As a result, two
components were chosen as the default network for the lyr and 2yr old groups,
respectively, while three components were identified for the neonates group (circles,
Fig.6.1).
6.2.5 Correlation/statistical Analysis

Although PCA/ICA was done with all subjects in each age group, the mean time
course of each ROI was separately extracted from each individual subject to construct a
correlation matrix. Prior to computing correlations, the mean time course was low pass
filtered at 0.08 Hz. Subsequently, in order to combine correlation coefficients ( ) across
subjects in each age group, Fisher’s Z-transform was applied for each subject and
averaged across subjects so as to compute the mean correlation matrix for each group
(transformed back to correlation values for analysis). One-sample t-test (two-tailed) on
the Fisher’s Z-transformed group mean value for each connection was performed to
determine whether it was significantly different from zero. The false discovery rate (FDR)
approach (170) was applied to correct for multiple comparisons, achieving the expected
proportion of type I error to a<0.05. In order to also investigate the connection pattern of
each specific region with all other regions within the network, the mean connection
strength (average of the connection values of each region with all other regions) was also
calculated using the Fisher’s Z-transformed value and transformed back to correlation

values for presentation.
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6.2.6 Graphs

To visualize the connection pattern of different regions within the default network,
the spring embedding algorithm was applied to calculate the position of each node (ROI)
based on the group mean correlation matrices. In these graphs, the most strongly
connected regions were clustered near each other while weakly correlated regions would
be placed further away from each other. In addition, the width of the line between two
nodes was proportional to the corresponding connection strength. Only significant

correlations (P<0.05 after correcting for multiple comparisons) were plotted.
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Figure 6.1 Template matching score plots for all four age groups: (a) neonates; (b) 1yr
olds; (c) 2yr olds; and (d) adults. X-axis is the component index and Y-axis represents
the matching scores. Circles indicate the components selected comprising the default

network.

6.3 Results
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Using a group independent component analysis (ICA) approach (167), an
automated procedure (169) was employed to select the component(s) comprising brain
regions that best matched with the commonly observed brain regions in the default
network (28). The anatomical representations of the default networks for all groups are
shown in Fig. 6.2; the volume ratios and mean Z scores of these anatomical regions are
offered in Table 6.1. The corresponding surface rendering is provided in Fig.6.3. It is
evident that the anatomical representations of the default network in adults are highly
consistent with that reported in the literature (28). In contrast to the adult’s default
network, the temporal and spatial evolution of the default network in pediatric subjects is

summarized below.
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Figure 6.2 Spatial ICA identified default network components in each age group are
shown. The anatomical locations of each group are labeled in the figure. Abbreviations:
MPFC: ventral/dorsal medial prefrontal cortex; PCC: posterior cingulated
cortex/retrosplenial; LTC: the lateral temporal lobe, HF: the hippocampus formation; IPL:
inferior parietal lobe; PHC: parahippocampal cortex; ACC: anterior cingulate cortex;
InfTemporal: inferior temporal cortex; SupTemproal: superior temporal -cortex;
MedParitetal: medial parietal cortex; LatParietal: lateral parietal cortex; MidFrontal:

middle frontal cortex.

A rather primitive/incomplete default network consisting of 6 brain regions is
observed in neonates. At lyr old, a total of 13 regions are observed with 10 of them
covering regions consistent with that observed in adults, including v/d MPFC, PCC/Rsp,
bilateral LTC, bilateral IPL, and HF (28). However, the remaining 3 regions have not
been reported in adult studies, including the parietal and bilateral inferior temporal
regions. Similar to that observed in 1yr olds, the default network of the 2yr olds consists
of 13 regions covering anatomical locations consistent with adults plus additional 6
regions, including the orbital frontal, anterior cingulate cortex (ACC), right parietal,
medial parietal, and bilateral superior temporal regions. It is worth pointing out, despite
the temporal and spatial evolution of the default network from neonates to 2yr olds, both
the v/d MPFC and PCC/Rsp are consistently observed across the three pediatric groups.
In addition, the volume ratios (volume in a specific region/total intracranial volume) of
the MPFC and PCC/Rsp are the highest in each age group but are inversely proportional

with age (Fig. 6.2 and Table 6.1): it starts from 12.9%/11.8% (MPFC / PCC/Rsp) in
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neonates, reduces to 4.3%/5.9% in 1yr olds, 5.6%/5.6% in 2yr olds, and 4.02%/1.8% in
adults. The latter finding is of interest. Although not specifically focused on the default
network, Johnson suggested that the infant brain often employs a larger area of cortex
than those used in adults (108), consistent with our findings.

Left

h
Neonates & 6
1-year-old @ ‘

Lateral Medial Lateral Medial

Figure 6.3 The brain’s default networks in all four age groups. Z score maps (Z>1) are
mapped on to the template brain surface for each individual group. For the pediatric
groups, although more than one components were chosen, they were pooled together to
show on the same brain surface (Z scores showed here is taken as the maximum from

different components).

In order to discern the interactions among the identified brain regions of the
default network, the averaged group correlation matrices were used for graph analysis
after test of significance of specific connections (170). The spring embedding method

(171) was used to depict the connection pattern of each group (Fig. 6.4a). These graphs
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were arranged such that the most strongly connected regions were drawn close to each
other and placed in the center of the graph and vice versa. In addition, the width of the
connecting lines indicated the connection strengths. A summary of the mean connection
strengths for all regions is provided in Fig.6.5a.

Several main features regarding the temporal evolution of the default networks can be
derived from Figs. 6.3 and 6.4. First, the connection percentage starts from 66.7% (10/15:
10 significant connections out of 15 possible ones) in neonates, increases to 91.03%
(71/78) in lyr olds, levels off to 78.4% (134/171) in 2yr olds and increases to 100% in
adults, suggesting a non-linear evolution pattern of the connectivity of the default
network. Second, as mentioned previously, the pediatric default networks include regions
that are consistent with the adult group as well as additional regions not observed in
adults. Interestingly, with the exception of LTC, the former regions are typically located
near the center of the graph while the latter regions are located a distance away from the
center in all pediatric groups. This finding implies that the regions consistent with those
observed in adults are more strongly connected when compared with those not observed
in adults. The only exception of the observed weak connection, LTC, appears consistent
with that reported by Buckner et al (28). Third, for pediatric groups, both PCC/Rsp and
MPFC are consistently located at the center of each graph with the exception of the
neonate group (only PCC/Rsp), implying that these two regions are most strongly
connected with other regions. This finding is consistent with the degree of connection
plots (Fig. 6.4b) — the ratio of the number of connections a specific region possesses to
the total possible connections. Fourth, regarding the mean connection strength — a

measure previously suggested to be positively correlated with functional performance
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(172), the PCC/Rsp and MPFC reliably exhibit the highest mean connection strengths
across all ages while the brain regions located at a distance away from the center regions
are unexceptionally ranked with lower values (Fig. 6.5). Finally, a regression analysis
reveals that the connection strength between these two regions is linearly (P=0.0059)
increased as a function of age (Fig. 6.5b), although one must be cautious that there is a

large age gap from 2yr olds to adults.
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Figure 6.4 (a) Functional connectivity graphs for all four age groups. The most strongly
connected regions are clustered near each other while weakly correlated regions are
placed further away from each other. The width of the line between two nodes is
proportional to the corresponding connection strength. Only significant correlations
(P<0.05) were plotted. (b) Bar plots of the degree of connection for each node in a
descending order (the ratio of the number of connections a specific region possesses to

the total possible connections). See Fig.6.3 for abbreviations.
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Figure 6.5 (a) Mean connection strength of each node for all age groups. The bars

indicate the mean connection strength averaged over the corresponding group and red
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asterisks represent the values of individual subjects. (b) Regression results for the

connection between MPFC and PCC. See Fig.16 for abbreviations.

Thus far, our findings consistently indicate that the PCC/Rsp and MPFC may play
a critical role in the default network. The notion of the presence of hub regions in the
brain has been proposed (42). Therefore, to further determine whether or not the
PCC/Rsp and MPFC are the two potential hubs in the pediatric default networks, the
betweenness centrality (BC) (173) — a measure of node importance in graph theory, was
calculated for each region based on the individual network within each age group (Fig.
6.6). As evident in Fig. 6.6, the most elevated centrality measure for all age groups is
the PCC/Rsp. In addition, although smaller than the PCC/Rsp, the MPFC in lyr and 2yr
olds also exhibit elevated centrality measures when compared with the remaining regions.
These results suggest that the PCC/Rsp may be the major hub of the default network
whereas the MPFC subsequently emerges, potentially, as the secondary hub starting at

lyr of age.
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Figure 6.6 Betweenness centrality measures for individual ROIs of the three pediatric
groups. (a) neonates; (b) 1-year-old; and (c) 2-year-old. See Fig.16 for abbreviations.
6.4 Discussion

The temporal evolution of the default network during a critical time period when
brain dynamically establishes axonal connections to form different networks and also
undergoes extensive axonal pruning was investigated in this study. With the rfcMRI
approach (20) and full-term healthy normal pediatric subjects ranging from 2wks to 2yrs
of age, group ICA revealed the anatomical representations of the default network.
Specifically, a primitive and incomplete default network was observed in neonates (Table
6.1). This observation is consistent with that reported by Fransson et al where they also
failed to detect “a direct equivalent of a default-mode network in infant brain” (162). The
default network at 1yr-old became more complex and was intensively connected among
different brain regions (91.03%), indicating the formation of a well synchronized default
network at this age. In contrast, the changes of the default network from 1yr- to 2yr-olds
were more subtle, particularly considering those regions that are commonly observed in
the adult’s default network. All of the regions presented in lyr olds persist in 2yr olds
with the addition of PHC, making the architecture of the whole network more complete
(26, 28). To the best of our knowledge, these are the first reported results, demonstrating
the temporal and spatial development of the default network in such a critical age period
of normal brain development.

One of the major findings of our study is the notion that both PCC/Rsp and MFPC
may play a critical role in the default network. Both PCC/Rsp and MPFC are consistently

observed in all ages (Fig. 6.2 and 6.3), exhibit the largest volume ratios (Table 6.1), are
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located at the center of each network (Fig. 6.4), and have the largest mean connection
strengths (Fig. 6.5). Indeed, the centrality measures revealed that the PCC/Rsp may serve
as the main hub while the MPFC is the secondary hub which starts to emerge at lyr of
age (Fig. 6.6). This finding is intriguing and appears consistent with that reported in adult
studies: it has been suggested that the MPFC and PCC/Rsp are the two hubs involved in
different aspects of cognitive function in adults (161). Specifically, MPFC has been
implicated to be more involved in self-referential activity, mentalizing process, self-
projection or theory of mind (155, 174-176) whereas the PCC/Rsp is more associated
with episodic memory retrieval (177). However, translating these functions of MPFC and
PCC/Rsp in adults to pediatric subjects is elusive. In addition, since independent
behavioral measures were not available in our study, the observed temporal and spatial
development of the default network cannot directly translate to functional development.
Nevertheless, some similarities are observed between our findings and the reported
functional development in the literature. Amsterdam (120) found that infants from 6
through 12 months of age demonstrate prolonged and repeated reaction to their mirror
images as a sociable playmate. Wariness, withdrawal, self-admiring and embarrassed
behaviors start at 14 months and have been observed in 75% of the children after 20
months of age. From 20 to 24 months of age, the majority of subjects demonstrate
recognition of their mirror images. These temporal behaviors demonstrate an evolving
trajectory of self-consciousness before the age of two, which is essential for self-
projection/self-referential activity. Studies on toddlers also revealed that 18- to 24-month-
olds are able to use speaker’s gaze direction (121) and affective expression (122) as cues

leading to speaker’s communicative purposes. Akhtar and Tomasello (124) further
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proposed that children are able to infer the meaning of words through an understanding of
people’s minds (125). These primitive mental functions may actually act as a promising
source where more sophisticated function such as mentalizing about others and “theory of
mind” can be originated and developed. Together, these findings suggest that the
functions associated with MPFC regions undergo gradual development during the first
years of life, which is in line with our findings: MPFC emerges as one of the hubs of the
default network from 1yr olds.

In contrast to MPFC, the PCC/Rsp is associated with episodic memory retrieval in
adult studies. Therefore, the question is whether or not the observed PCC/Rsp in our
study reflects the primitive version of memory in very young children. The appearance of
the right occipital region and the bilateral posterior parietal/occipital area encompassing
the PCC (termed simply as PCC in the text) in neonates may suggest the formation of
some forms of memory (i.e., implicit memory). Consistent with these findings, Davidson
(115) suggested that implicit memory is robustly presented in neonates and toddlers.
Additional studies further demonstrated that the sensorimotor experiences of the fetus
(116) and the voice of mother (117) can be memorized. In contrast, the emergence of
bilateral HF, bilateral IPL and PCC/Rsp starting from lyr olds to 2yr olds forms a
hippocampal-parietal memory network much like that defined by Vincent et al (32) in
adults. In line with our findings, Fivush and Hamond (118) showed that 2yr olds can
already retrieve much detail about a trip to the zoo. Together, our findings of the
PCC/Rsp appear to be consistent with that reported in the literature and demonstrate a

memory-related architecture in 1 and 2yr olds.
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Despite the possible default-network related functions discussed above and the
observed adult-like architecture of the default network in 1 and 2yr old groups, one must
be cautious in further interpreting our results since it is highly unlikely that such young
pediatric subjects may have the brain circuitry capable of adult-like default network
functions. It has been suggested that the “theory of mind” emerges after age of 3 and
episodic memory are not formed until the age of 4 (119). Therefore, although we
observed a complete architecture of the default network in 1yr olds, its related function
remains largely unknown. These apparent discrepancies led us to hypothesize that the
formation of the default network may predate its functional specialization. Although not
specifically focusing on the default network, Johnson et al also claimed that cognitive
functions of infants often employ both larger area of cortex and also a wider range of
interactions of brain regions that include and extend beyond those used in adults (108).
While to directly prove or disprove this hypothesis for default network is beyond the
scope of our study, our results may offer preliminary evidence of support in three
different ways. First, the decreasing volume ratios of PCC/Rsp and MPFC with age
indicate the ongoing localization of these major regions. Second, in addition to those
brain regions that are consistently observed in adults, extra brain regions in pediatric
groups’ default networks are also observed. Finally, the connection percentage first
increases from 67% in neonates to more than 90% in lyr olds and then decreases to 78%
in 2yr olds. The latter two findings suggest a potential specialization process of removing
redundant connections. Nevertheless, more results, particularly beyond 2yrs of age will
be needed to further determine the temporal relation between the presence of connectivity

and functional development. Toward this end, Fair et al (101) recently investigated the
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development of default network on school-age children based on an ROI seeding
approach. They found an incomplete default network with much sparser and weaker
connections in children when compared with adults. Considering our findings of the
disappearance of extra regions and reduction of percent connections from lyr to 2ry olds,
it is plausible that this reduction trend continues till the age span in their study.
Nevertheless, one should note that this trend of reduction at some point need to be
reversed to be consistent with the adults’ results reported here and in the literature (28),
suggesting a potential bi-phasic instead of monotonic behavior of the development of the
default network. Systematic studies covering the whole age span from neonates, school
age children to adults are necessary to further investigate the temporal evolution of the
default network.

Two different approaches are commonly employed to discern brain functional
connectivity, namely ROI and ICA (22, 101). Both approaches have its pros and cons.
The ROI approach requires a priori information to place the ROIs, typically employing
activated regions in task related studies. It allows direct comparisons between groups if
the ROIs are identical among groups. It also offers a higher sensitivity if a ROI instead of
a seed voxel was chosen for temporal correlation analysis. However, this approach is
somewhat biased and may not be able to identify new connections. In our study, using
regions of the adult’s default network as a priori could limit our ability to determine the
temporal and spatial evolution of this network in pediatric subjects. Therefore, the ICA
approach is adopted in our study. However, one of the difficulties associated with ICA is
how to objectively determine which component(s) links to the default network. To

partially circumvent this difficulty, an automated template matching approach (169) was
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employed here to identify components comprising the default network. Although not
completely eliminating the subjective nature of selecting components, this approach
allows a more consistent means to determine ICA components and offers the ability to
explore temporal and spatial evolution of the default networks in the developing brain.
With the template matching procedure (169), we have identified 3, 2, and 2 “best fitted”
components for neonates, 1yr olds and 2yr olds, respectively. As is always the case with
the ICA approach, those components not selected for visualization/analysis may
correspond to other functional networks. However, we feel this exclusion is justified
since the main focus of our study is the development of the default network.

Finally, two additional technical issues warrant further discussion. First, since all
of the subjects were sleeping during imaging acquisition, it is plausible that different
depths of sleep from subject to subject may result in experimental variability.
Nevertheless, it has been reported that resting functional connectivity appears to be
independent of whether or not the subjects were at sleep, awake or even under anesthesia
(91). Therefore, we do not foresee that different depths of sleep would affect the
outcomes of our studies. Second, the rather low spatial resolution has limited our ability
to discern small cortical structures for the default network. Specifically, Buckner et al (28)
have separately evaluated the dorsal and ventral MPFC of the default network. This is not
done in our study owing to the limited spatial resolution, which reflects a compromise
between the quality of rfcMRI and the data acquisition time for imaging non-sedated
subjects.

6.5 Conclusions
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With rfcMRI, we report the temporal and spatial evaluation of the default network
in healthy normal pediatric subjects between 2wks and 2-yrs of age. A primitive and
incomplete default network is observed in 2wk olds, followed by a marked increase in the
number of brain regions exhibiting functional connectivity and the percent of functional
connection at 1yr olds, and finally becoming a similar network as that reported in adults
at 2yr olds. In addition, although the default network changes substantially among
different age groups, PCC/Rsp is consistently observed in all age groups, among the most
and strongest connections, and the highest centrality measure of the pediatric default
networks, suggesting that PCC/Rsp is the main hub of the default network. In addition,
although not as remarkable as the PCC/Rsp, the MPFC emerges as a potential secondary
hub of the pediatric default networks starting from lyr of age. To the best of our
knowledge, these are the first reported results on the temporal development of the default

network in a critical time period of brain development.

Table 6.1: Anatomical regions of the default network in neonates, 1yr olds, 2yr olds,

and adults
Adults Neonates
Region Volume | Mean Region Volume | Mean
Fraction | Z score Fraction | Z score
MPFC 0.0402 2.32 MPFC 0.1287 3.65
PCC 0.0183 3.21 Occipital R 0.0167 1.50
HF L 0.0015 1.36 Parietal 0.0248 2.37
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LTCR 0.0032 1.52 LTCR 0.0012 1.23
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Chapter 7
Evidence on the Mediating Role of Frontal Parietal System on the Anti-

correlated Default and Dorsal Attention System

The previously discussed default network has been considered as a task negative
network since it appears to be highly active during a resting condition (26). This is in an
obvious contrast with more well known networks which are active during the
performance of cognitive tasks, task positive networks (178). It has been demonstrated
by several studies that anti-correlation between these two systems exists which may
indicate one of the brain’s intrinsic organization principles (23). In this Chapter, this
anti-correlated phenomenon will be specifically tackled and the hypothesis of the
potential mediating role of the frontal-parietal control system on this anti-correlation will
be directly tested, aiming to answer the important question regarding the relationship
between these three most salient networks during resting state as well as task sates (23,
88). Moreover, as the network organization is increasingly accepted in the neuroscience
field, there is also increasing need to design a network-level approach to specifically
quantify the interaction strength between different brain systems. One such newly
developed method as well as the findings regarding the proposed hypothesis using this

approach will also be described in the final section of this chapter.



Given that this mediating relationship is an unvalidated hypothesis, we started to
first prove its validity in adult subjects based on matured brain functional structure to lay
down the basis for following developmental studies. The question of when this mediating
role emerges and how it develops during the first few years of life will be specifically
tackled in future work.

7.1 Introduction

Normal brain functioning relies on coordinated activity among sets of distributed
yet interacting brain regions, essentially forming networks responsible for distinct
functions. Among them, two “competing” systems, either increasing or decreasing
activity depending on the presence or absence of attention-demanding tasks were
extensively studied (26, 154, 178). The first is the dorsal attention system (DAS)
covering regions in the frontal eye fields (FEF), intraparietal sulcus (IPS) and middle
temporal area (MT+), which are routinely activated during performance of goal-directed
tasks (178). The roles of DAS have been well documented and are associated with
externally directed cognition including spatial attention, motion tracking, initiating and
maintaining activity while awaiting a target, etc (178). The second system comprises the
so called “default-mode” network, including posterior cingulate cortex (PCC), inferior
parietal lobule (IPL), medial prefrontal cortex (MPFC) and medial temporal regions
encompassing bilateral hippocampus formation (HF). As mentioned previously, the
default network commonly exhibits a decreased activity during attention-demanding
tasks (26, 154). Although there is a general consensus that this system is related to
internally directed cognition, its exact functions are poorly defined largely due to the

“unconstrained” nature of “resting” state from which this network is defined. However,
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given that numerous studies have reported activation of PCC and IPL (179-182) during
memory-retrieval tasks and the involvement of HF regions in this system, it is highly
likely that memory-related function is one of its key responsibilities (28, 32). Recent
identification of a “hippocampal-parietal” memory network exhibiting almost identical
anatomical regions with this network further reinforces this notion (32). In addition, the
potential self-referential, mentalizing, and planning functions of the MPF regions further
make this system suitable for recollecting the past and thinking about the future (21, 28,
155).

Recent functional connectivity magnetic resonance imaging (fcMRI) studies
reveal that the regions within each of the two systems are highly positively correlated
during resting state (23, 88, 91), reinforcing the notion that regions similarly modulated
during tasks tend to exhibit synchronized activity even in the absence of tasks, consistent
with Biswal et al’s (20) first observation of this phenomena. On the other hand, given the
clear functional disassociation between these two ‘“competing” systems as previously
described, the activity between them should be disassociated. Indeed, studies did find
“anti-correlated” activity between these two systems during the resting state (23).
Moreover, Kelly et al (97) demonstrated that the strength of this “anti-correlation” is
modulated by exogenous demands under continuous task performance and its strength is
positively related with task performance, underscoring the behavioral significance of this
anti-correlation.

Do these two systems exhibit such opposing activity on their own or is there
another system(s) that potentially “mediates” between these two systems or even

regulates their activity? During sustained brain states that primarily involve one of the
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systems, e.g, the “work on their own” hypothesis seems to work simply indicating that
during at a certain state the system supporting “task (unconstrained thinking as a “default
task” during resting)” performance will increase activity while the other system
supporting irrelevant processes will decrease activity. However, our own experience
suggest that the brain can readily alternate between such anti-posed states, i.e., the
“activated” system can immediately become “suppressed” and vice versa when external
stimuli or internal decisions required to do so seem to argue against the “on their own”
hypothesis and strongly support that the brain has another resort to take into
consideration of either the external stimuli or internal decision and in turn
reconcile/regulate the activity of these two opposing systems to fulfill the need. Indeed,
Vincent and colleagues (88) have looked into this issue and revealed that a “frontal
parietal control system (FPC)” encompassing anterior prefrontal cortex (aPFC), dorsal
lateral prefrontal cortex (dIPFC), anterior cingulate cortex (ACC), insula (INS) and
anterior inferior parietal lobule (alPL) is ‘“anatomically positioned to integrate
information from these two opposing brain systems”. In support of this, Sridharan et al
(183) have shown that several major nodes within this system including rINS and ACC,
exert significant causal influence to several key nodes within both the default network
and another “central-excutive (CEN)” network, strongly supporting the potential
mediating role of FPC.

However, although the default network is involved in Sridharan et al’s study
(183), their CEN network, which includes dIPFC and posterior parietal cortex (PPC), is
largely different from the dorsal attention network. Thus, the primary goal of this study

is to test the hypothesis that regions within FPC mediate the anti-correlated activity of the
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dorsal attention and default systems. Two lines of evidence will support this hypothesis.
First, for mediation/regulation to be true across different brain states, FPC should
selectively increase/suppress the activity of either network to facilitate task performance
depending on whether the task is external-attention directed (more related with DAS) or
internal cognitive function oriented (more related with DS). Secondly, during stable
states, for mediation to be true, removing the effect of FPC should result in significantly
poorer anti-correlation between these two systems during any sustained state.

We directly tested the above two hypotheses using functional connectivity
measures based on BOLD fluctuations. Specifically, two task states, namely continuous
finger tapping (FT) and movie watching (MW), were selected to compare with the resting
state (RS). The two tasks were designed to engage primarily one of the two opposing
systems, respectively, i.e. FT for dorsal attention system and MW for default system
(besides the obvious motor and visual involvement). To do this, subjects were specially
instructed to tap their thumb against each of the four other fingers in a sequential manner
during FT with a frequency of around 1Hz to maintain attentional focus. In contrast,
subjects were told to report the contents of the movie segment after the experiment to
engage memory-related function during the process. Visual monitoring during FT found
good compliance with the instruction and post-experiment questionnaire showed
moderate to high level of memory of the movie contents even a year after the experiment
(Table.7.1), validating our study design. Hence we hypothesized that if FPC truly exerts
mediation between the two competing systems for the performance of the specific tasks,
it will increase connectivity with DAS and decrease connectivity with the default during

the FT task while the opposite should be true for MW task. Secondly, if this mediation is
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sustained during any ongoing brain states, then “removing” its effect (through the
concept of partial correlation) should result in significantly reduced anti-correlation
between DAS and default network during each of the examined states. In addition, in this
project, we also aimed to design a multivariate approach to explore the network-level
interactions and the results will be combined with those from traditional regional
techniques to test the proposed hypothesis.
7.2 Methods
7.2.1 MR Acquisition

A total of 19 healthy subjects (age 25~33, 7F, all right-handed) were recruited in
this study. Informed consent was obtained from all participants and the experimental
protocols were approved by the institutional review board. All images were acquired
using a Siemens Allegra 3T MR scanner (Siemens Medical Inc., Erlangen, Germany).
Anatomical images were acquired using a 3D MP-RAGE sequence and these images
were subsequently used for co-registration among subjects. The imaging parameters
were as follows: repetition time (TR) = 1820ms (sum of the inversion time and the
duration of the entire 3D partition encodings for one phase encoding step); echo time (TE)
= 4.38 ms; inversion time = 1100ms; 144 slices; and voxel size = 1xIx1mm3. For the
rfcMRI studies, a T2*-weighted echo-planar imaging (EPI) sequence was used with the
following imaging parameters: TR = 2sec, TE = 32 ms; 33 slices; and voxel size = 4x4x4
mm3. This sequence was repeated 150 times (~5 min) for each experimental condition,
including resting, continuous finger tapping and watching a movie clip. During the
resting state, subjects were instructed to relax and remain still but keep eyes closed.

During the finger tapping condition, subjects were instructed to lie still with eyes closed
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while continuously touching the thumb to each finger in a sequential manner using only
the dominant hand. In addition, subjects were also instructed to maintain a consistent
pace (~1Hz) of finger tapping throughout the entire scan. Each subject was visually
monitored during the scan. For the movie watching task, the movie clip contain shallow
sea scenes with a variety of animal activities. Subjects were told to report what they saw
in the movie after the experiment and a questionnaire was filled by each subject 1 year
after the study and most of them reported moderate to high memory scores suggesting

strong memory function involvement during the task (Table 7.1).

Table.7.1 Reported scores indicating the level of memory of the movie contents.
0-10: with 0 indicating no memory at all and 10 perfect memory of every detail.
Scores of the 16 subjects involved in analysis are reported.

Sub 1 5 Sub 2 5.5 Sub 3 2.5 Sub 4 6
Sub 5 2.5 Sub 6 5 Sub 7 2 Sub 8 4
Sub 9 3 Sub 10 4 Sub 11 7 Sub 12 5
Sub 13 3 Sub 14 5 Sub 15 6 Sub 16 4
Mean: 4.34 SD: 1.45

7.2.2 Preprocessing

The brain extraction tool of the FSL (FMRIB, Oxford University, U.K.) was first
applied to exclude voxels outside of the brain. Subsequently, rfcMRI data went through
several preprocessing steps including compensating slice-dependent time shifts, rigid
body correction for inter-volume movement, and spatial smoothing (6-mm full width at
half maximum Gaussian kernel). Nuisance sources of variance (white matter, CSF and
the mean global signal) were removed using regression technique. Three subjects were

excluded from the subsequent analysis because of excessive head motion during the scan.
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For the remaining 16 subjects, images of the first ten time points were excluded to allow
magnetization reaching a steady state. The first available set of rfcMRI images was co-
registered to the corresponding T1-weighted MP-RAGE structural images using affine
rigid body alignment. T1-weighted structural images were then spatially normalized with
the Montreal Neurological Institute (MNI) EPI template using intensity-based HAMMER
nonlinear registration (164). The transformation fields from affine alignment and
HAMMER registration were employed to normalize rfcMRI volume data from all
subjects to the template space, allowing group analysis of rfcMRI.
7.2.3 Functional network definition
A total of five functional networks were defined in our study, including the default,
dorsal attention (DA), frontal parietal control (FPC), motor-sensory and visual networks.
All of these networks were constructed based on the published MNI coordinates of the
major regions within each network (88) (Table.7.2). For each coordinate, a sphere with a
size of ~2cm® was defined around the predefined center to define an ROL Overall, there
are 6, 9, 6, 6, and 5 nodes within the DA, default, FPC, V and MS networks (altogether
32 nodes), respectively.
7.2.4 Network analysis

The defined ROIs within each network were used throughout the subsequent
analysis and the mean time course was extracted from each ROI to construct a 32*32
correlation matrix for each subject. After fisher-Z transform and averaging across group,
mean matrices were obtained for each of the three examined states, which were then used
to test the across-state differences. Specifically, for between-network comparison,

interactions among region pairs from any two networks (one from each ) were
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concatenated to form a vector and compared across states (resting vs finger tapping; and
resting vs movie watching) using nonparametric krusk-wallis test. FDR (170) method
was used to correct for multiple comparisons and significant between-network was
defined as p<0.05 after correction. The same procedure was also done for all within-

network comparisons.

Table.7.2 MNI coordinates of regions of interest within five predefined networks

IMT+: (45, 69, -2) ICal: (-8, 72, 4)
. IMT+: (50, -69, -3) . rCal: (16, -67, 5)
Dorsal  Attention pg. (27, .52, 57 Visual g, (-5,-96,12)

(DA) rIPS: (24, -56, 55) \2 rCS: (18, -96, 12)
IFEF: (-25, -8, -50) ILO: (-23, -89, 12);
rFEF: (27, -8, -50) rLO: (37, -85, 13);
laPFC: (-36, 57, 9) 1PreC: (-41, -4, 54)
fgffb@;‘fg;)m) Motor-  tPreC: (42, -13, 53)
15,54 IPoC: (45, -26, 54)
. laIPL: (-52, -49, 47) Sensory
Frontal Parietal tPoC: (49, -27, 53)
rontal arietal  ,1py: (52, -46, 46) MS) SMA: (6, -5, 54)
Control (FPC) 1dIPFC: (-50, 20, 34) e
rdIPFC: (46, 14, 43)
1INS: (31,21, -1)
rINS: (31, 22, -2)
IHF: (-1, -15, -14)
rHF: (24, -19, 21
Default ( )

vmPFC: (0, 51, -7)
PCC: (1,-55,17)
IpIPL: (-47, -71, 29)
rpIPL: (50, -64, 27)

To test the mediation effect of FPC on the two opposing systems: DA and default,
partial correlation analysis was performed. Specifically, for each subject, partial
correlations between pairs of regions within the two systems (one from each) are
calculated by regressing out the effect of all signals within FPC. After fisher-Z transform
of both the original correlation values and the partial correlation values, the differences
were then taken and averaged across different pairs of regions as an indicator of the
mediating effect from FPC for that subject. As a result, for each sustained state, we have
a N*1 vector (N: number of subjects) quantifying the mediation effect of FPC on the two

opposing systems. This procedure is repeated by using MS and V as regressor networks
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to calculate the mediating effects from these two reference networks. Finally, statistical
comparison between the mediating effect across different networks as well as the same

network across different states was done using the same nonparametric kruskwallis test.

N\

rMT+ | IpIPL

PCC

IdIPFC

Figure 7.1 ROI selections for five predefined networks.

7.3 Results
To explore the relationship between DAS, default and FPC, corresponding

networks were constructed based on published coordinates of ROIs withing each network
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(Fig.7.1) (88). Specifically, DAS was constructed to include nodes within bilateral IPS,
FEF and MT+; default within PCC, MPFC, bilateral posterior IPL (pIPL) and HF; and
FPC within anterior cingualte cortex (ACC), bilateral aPFC, dorsolateral prefrontal cortex
(dIPFC), anterior insula (aINS), and anterior inferior parietal lobule (alPL). In addition,
given the apparent involvement of the motor-sensory (MS) and visual system (V) during
either of the two tasks, the corresponding networks were defined to include nodes
centered on bilateral precentral gyrus (PreC), postcentral gyrus (PoC), supplementary
motor-sensory cortex (SMA) and bilateral calcarine (Cal), cuneus (CS), and lateral
occipital (LO), respectively.

To test the first hypothesis, regional correlation matrices were constructed for
each individual subject respectively using the BOLD fluctuations obtained during each of
the three examined states (RS, FT and MW). Individual matrices were then fisher-Z
transformed and averaged to get a group mean correlation matrix for each of the three test
states. A two-tailed t test was conducted to test the significance of each connection at the
level of p=0.05 after correcting for multiple comparisons using FDR (170).

The resulting significant correlation matrix for RS and FT states are presented in
Fig.7.2. It is immediately clear that during resting state, regions within every network are
highly synchronized (85.7% significant, within black boxes) consistent with most
previous findings indicating high interaction between functionally similar regions (22-24,
48, 157), but the connections between networks are much sparser (12.8% significant)
implying great functional disassociation between different systems. However, during FT,
although the within-network interaction pattern remains qualitatively similar, the

between-network interaction pattern dramatically changes (Fig.7.2). To find out the
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significant changes at network level between the two states, for each pair of networks, the
vector of corresponding mean interaction values obtained during RS and FT was
compared using nonparametric one way ANOVA and significant changes were defined at
p=0.05 level after FDR correction (170). Six pairs of networks significantly changed their
interactions at network level including DA-MS, DA-DF, FPC-DA, FPC-DF, FPC-MS,
and V-MS, the results are shown in the bottom row of Fig.7.2. Note the same network-
level comparison was done for each within-network connection vector but no significant

changes were detected.
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Figure 7.2 The between-network interaction changes during finger tapping (FT). Top row:
the significant correlation map during the two states; Bottom row: significant between-
network interaction changes. Within each comparasion, the bar to the left is during

resting state and the one on the right is during finger tapping.

As shown in Fig.7.2, interaction between DA and the actual “task performer”-the

MS significantly increased (p=0.0000512) reflecting the increased attentional control
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during the task, which is expected. Moreover, DA and DF becomes significantly more
anti-correlated (p=0.0000456), which is consistent with previous reporting of increased
anti-correlation during attention demanding tasks (97). However, most intriguing results
come from the interaction changes associated with FPC and the two opposing systems: it
significantly increases connection strength with DA system (p=0.006) while significantly
decreasing connection strength with DF system (p=0.00087), which is exactly as
hypothesized, strongly indicating its role in regulating the activity of both DA and DF to
achieve the task goal. In support to this role, FPC is also observed to increase direct
interaction with MS (p=0.0000556, Fig.7.2). Besides, although none of the regional
interactions reaches statistical significance during either state, the interaction between
MS and V at network level get significantly disrupted during FT (p=0.006).

As the FT task validates the hypothesis that FPC will increase DAS activity (more
positively correlated) while “suppressing” default activity (more anti-correlated) during
attention demanding tasks, we move on to the next task which is assumed to be more
related to the default network activity due to apparent memory function involvement. An
dentical procedure was implemented to compare between RS and MW states and the
results are shown in Fig.7.3. While the pattern of minimal within-network changes but
dramatic between-network changes still hold for this state, the significant changes
associated with between network interactions is largely different, which include FPC-DA,
FPC-DF, and DA-V. From Fig.7.3, it is apparent that FPC largely reverses its positive
interaction pattern with DAS and becomes predominantly negatively correlated during
MW (p<0.00001) while at the same time it enhances its positive correlation with default

(p=0.0034), which is again highly consistent with our hypothesis. Besides these changes,
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the interaction between DA and V significantly increases (p=0.000441), likely reflecting
certain level of attentional budget during the task performance. Note also in this state,
although DA and DF seem to be more anti-correlated comparing with resting, this change
does not reach statistical significance.

To further test the hypothesis that FPC mediates the anti-correlation during each
stable brain states, we used the partial correlation technique, which perfectly suits our
purpose since it is defined as the correlation between two variables after regressing out
the effect of another set of variables. To do this, we calculated the partial correlation
between each pair of regions across DAS and default (one from each) by regressing out
signals within FPC network and the resulting between network correlation strengths were
compared against those from ordinary correlation using nonparametric one way ANOVA
to test significant differences. Besides, reference results were obtained by repeating the

same procedure but using MS and V network as corresponding repressor.
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Figure 7.3 The between-network interaction changes during movie watching (MW). Top

row: the significant correlation map during the two states; Bottom row: significant
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between-network interaction changes. Within each comparasion, the bar to the left is
during resting state and the one on the right is during movie watching.

Results from all three states are presented in Fig.7.4 where we can observe that
the effect of FPC on the anti-correlation between DAS and default is apparent: the
“removal” of FPC effect results in significant reduction of the anti-correlation for all
three brain states (RS: p=0.0005; FT: p<10"%; MW: p=0.0078). Moreover, its effect is
significantly stronger than that of V for all three states. Actually, V failed to show any
significant mediation effect for any states. In addition, during resting state, FPC is the
only network that shows significant mediation effect on this anti-correlation. During
both finger tapping and movie watching, MS also shows significant mediation effect, but
it is significantly weaker than that of FPC during FT while comparable to that of FPC
during MW. Finally, comparing FPC’s mediation effect across the three states reveals
that it is during finger tapping that FPC demonstrates the strongest mediation effect (RS

vs FT: p<10”; MV vs FT: p=0.0000414).
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Figure7.4 The mediation effects of FPC on the interaction between DA and DF. Left
column: the effect of removing FPC effects on the interaction between DA and DF; Right
column: the comparison of mediating effects of FPC, MS and V on the interaction
between DA and DF.

7.4 Discussion

Our results show two lines of evidence on the mediating role of the frontal
parietal system (FPC) between the anti-correlated default and dorsal attention system
(DAS). Across different task states, the two opposing systems are differentially regulated
by FPC to facilitate task performance, depending on the “affinity” of the task to either
system. During stable states, the anti-correlation is largely mediated by FPC, especially
during the resting state, our results show that this anti-correlation is largely and
exclusively mediated by FPC.

Although the cognitive control role of almost all regions within the FPC system
has been reported in numerous studies (184, 185), the direct relationship between FPC
and the other two most salient networks - the DAS and default - has not been
systematically studied. Recently, Sridharna et al (183) performed a highly related study
reporting that major nodes within the FPC system, particularly the rINS, exert strong
causal influence on key nodes of the default and another executive networks during both
external attention directed tasks and resting, clearly supporting the mediating role of FPC
regions. However, the executive network (including dIPFC and PPC) in their study is
largely different from the dorsal attention network. Actually, the dIFPC included in their

executive network is included in FPC system in this study, which is consistent with its
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primary role in cognitive control and other studies reporting synchronized activity of this
region with the other regions in FPC (88, 185).

Besides this difference in network definition, our results extended the previous
finding of the mediating role of FPC from three aspects. First, by choosing two
functionally different tasks primarily associated with one of the two opposing systems,
respectively, our results showed differential regulation of the two opposing systems
depending on specific task requirement. During controlled finger tapping where more
externally directed attention is needed, FPC increased connectivity with DAS to facilitate
task performance (DAS also increases connectivity with MS) while becoming more
disassociated with default to suppress its “irrelevant activity.” On the other hand, during
movie watching where it is more related with default network function (186, 187), FPC
becomes significantly more connected with the default while more anti-correlated with
the DAS. Secondly, our results indicate that the mediation role of FPC is more a network
level function. As shown in Fig.7.5, where all the significant interactions (between
regions from paris of networks detected to significantly change interaction across states)
were shown across different states, we can see that during finger tapping, except ACC, all
other regions (at least unilateral) are involved in “mediating” between DA and default
system although bilateral INS seems to be more extensively involved (5 out of 15 with
DA and 11 out of 20 with default), which, from this point, is in line with Sridharna et al’s
(183) finding of the important mediating role of INS during attention demanding tasks.
Moreover, during movie watching, essentially all regions are involved in the mediating
effort between FPC-DA and FPC-default. Interestingly INS largely disappears except two

connections with DA system, IINS-IFEF, and IINS-rFEF. Together with 1dIPFC-IFEF and

104



IdIPFC-rFEF, these are the only 4 (out of 25) positive connections between FPC and DA
during this state, likely indicating the attentional budget needed for movie watching given
the apparent eye movement control function of FEF. Overall, our results indicate that
FPC exerts its mediating role based on coordinated activity of most of its member regions
under different task conditions suggesting the network level nature of this mediation.
Finally, the partial correlation analysis by regressing out the influence of FPC directly
proves FPC’s significant mediating effect during each sustained state.

The prefrontal cortex (PFC, including both aPFC and dIPFC) has been widely
reported to increase activity in response to increased cognitive load in a variety of goal-
directed tasks supporting its critical role in flexible maintenance of different control
demanding behaviors and particularly aPFC, the most anterior part of the frontal lobe, has
been suggested as the “apex of the executive system underlying decision-making” (184,
185, 188, 189) . Moreover, INS and ACC are commonly observed to be activated by a
variety of cognitive control process, particularly those involving conflict monitoring,
information integration and response selection (190-192). Finally, the alPL region has
been reported to increase activity during role transition in stimulus-response association
task (193) as well as tasks involving control of spatial attention (194). All these functions
suggest that regions within FPC are perfectly suited to exert regulation on other
functional modules for successful implementation of goal-directed behaviors. The
selective “switching on and off” of the two opposing networks observed in this study,
however, not only proves that this network is capable of co-activating with dorsal
attention system to accomplish attention-demanding tasks, as consistent with the

previously mentioned findings, but also shows its flexible role in coping with the default
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system while “suppressing” the DAS for primarily internally directed process. This task-
selective, differential regulating pattern shows the mediating role of FPC with more
liability.

The observation that FPC exerts its mediating role on a network level, together
with the other two observations reinforces the increasingly accepted notion that brain is
intrinsically organized into distinct networks. First, during resting state, each network is
highly synchronized internally (85.8%) while minimal between-network interactions
exist (12.8%). Secondly, across different states, no significant with-network difference is
detected while the between-network interaction changes (again on network-level) largely
account for the transition (Fig.7.2 and 7.3). These salient and stable network organization
patterns further support the ongoing effort to look at brain function on large system level
during both resting and task performance and calls for specifically designed network-
level based techniques to further study brain interaction between large, distributed,

systems.
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Figure 7.5 Significant connections between pairs of networks that have been detected to
significantly change their interaction pattern across different states. Red: significant
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At the system level, the intriguing selective regulation pattern showed in this
study seems to suggest that these three systems (FPC, DA and default) form a functional
“triad” with FPC at the apex regulating the two branches. This is essentially consistent
with the “top-down” control theory (195) during volitional shifts of attention contingent
on current task requirements. Another parallel mechanism is “bottom-up” capture of
attention, but this is not applicable at the context of this study since there were no salient
stimulus and the task was fulfilled largely through purposeful control. On the other
branch, however, the default network seems to work alone based on the current
observation. However, other networks such as the emotional network may be a potential
candidate since previous studies have shown an emotional processing component within
major nodes of the default network including MPFC (155) and precuneus (196), A recent
study by Pallesen et al (197) further shows that the default network activity decreases to a
less extent during processing of negatively charged emotional stimuli when compared to
positively charged stimuli, indicating the involvement of the default network in emotional
processing (197). Another possibility regarding the emotional network, however, is that it
is also directly mediated by the frontal parietal network and if so, this will have important
clinical implications for emotional disorders such as depression. There are studies
implying this (198, 199) and further studies directly investigating this issue using
specifically designed paradigms are needed.

7.5 Extension: A Multivariate Approach for Quantifying Network-level Interactions

As extensively discussed in the previous sections, the brain’s interaction and
mediation seem to be largely on a network level underscoring the importance of

developing a network-level based approach to quantify and compare the interactions
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between networks. Although using regional approaches such as described above,
important information regarding interactions between networks can be obtained, such
regional approaches lack the capability to directly quantify the interaction strength
between two networks as a whole. Although this question is not the focus in the previous
sections in this chapter, it will be the central topic in this section. Our aim is to develop a
multivariate approach to directly quantify the interaction between two sets of regions
(networks) as well as possible mediations between them.

Previously Fox et al and Kelly et al (23, 97) investigated the interaction between
brain networks, but one of the potential limitations is the means through which brain
network interaction was derived. Commonly, an averaged temporal signal of all pre-
defined brain regions within each network was obtained first and a correlation between
two mean time courses was employed to quantitatively discern the interaction of the two
networks (97, 200). That is, these previous studies assume that the mean time course
represents the temporal characteristics of all brain regions within the specific network and
simplify the multivariate nature of network correlation to a univariate problem. Although
facilitating theoretical interpretation and utilizing a straightforward computation, this
simplification is prone to information loss and/or even becomes untenable when the
homogeneity assumption (i.e., the mean time course can faithfully represent the overall
information in a given network) is violated. ~Furthermore, these approaches cannot be
generalized to investigate the interactions of multiple networks, the potential mediation of
other brain networks to a pair of networks, and perturbations of network-network

interactions beyond the resting state.
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To address these limitations, we aimed to develop a framework capable of
discerning brain functional network interaction based on the canonical correlation
analysis (CCA) (201). In this framework, the network-level correlation and partial
correlation will be individually defined and integrated to tackle the problem of network
interaction.

7.5.1 Multivariate Network Correlation Using Canonical Correlation Analysis (CCA)

To quantify the network level interaction, a canonical correlation measure
between two multivariate vectors was used. Canonical correlation analysis (201) has
been widely employed to measure the association between multivariate variables:

X =[x,,..x,]" and Y =[y,,.,yp,]" . Particularly, for two random variables, the

canonical correlation is identical to the Pearson’s correlation. The key idea of CCA is to
maximize the correlation between two linear combinations of X and Y denoted by

U=wx +..+w,x, =wxand U,=vy +..+v,y, =v'y, respectively. The canonical

correlation equals the largest eigenvalue of the matrix of C,/C,,C,/C, (or C,,C, C.C, ).

The likelihood ratio test was used to determine the significance of this network-level

canonical correlation coefficient (NCC ). Note the value of NCC , is between 0 and 1

with 0 indicating no dependence and 1 indicating full dependence between these two sets
of variables.

In this study, before CCA, principle component analysis (PCA) was applied to
sets of variables within different network. Given the moderate size of human brain
functional networks (~10 regions within each network), the primary purpose of this step
is not to reduce dimension but rather orthogonalize the information within each network

to avoid correlated regressors. Moreover, by selecting a fixed number of principal
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components for each network, this step can also eliminate the potential bias of different
number of regions in different network in CCA calculation and therefore facilitate the
comparison between the network-level interactions.
7.5.2 Network Partial Correlation to Detect Mediation

Partial correlation is a measure of correlation between two random variables,
while controlling for a set of other variables. With partial correlation, one could
determine what the correlation would be if the influence from the “mediator” has been

removed. For univariate statistics, partial correlation p_,_between two random variables

x and Y controlling for another set of independent covariate Z :[zl,...,zp]r can be

computed as the Pearson’s correlation between the residuals ¢, and ¢ from two linear
regression equations:

x=x,+pZ+¢, [7.1]

y=y,+ BZ +¢, [7.2]

For the mediation analysis, p . denotes the correlation remained between x and

y when all mediating effects of Z are removed and the differences between the ordinary

correlation p and p _, represent the amount of mediation Z exerts on the relation

between xand ).

Since the primary focus of this study was to depict correlation between two sets of
variables, the above computational procedures need to be generalized to accommodate
the multivariate property of this problem. For two sets of multivariate vectors

X =[x,,.,x,]" and Y =[y,,.,y,]" , and another set of independent covariates
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Z =[zl,...,zp]T , influences from which will be removed, Eq. 7.1 and Eq. 7.2 can be
written as:

X=X,+BZ+E, [7.3]

Y=Y,+B,Z+E, [7.4]

where E and E are the residual vectors of X and Y, respectively, after regressing on

the variable set of Z. Subsequently, the canonical correlation coefficient of £ and £, can

be calculated, representing the partial correlation NPC between the two sets of

XYz

variables (networks) X and Y. The differences of NCC ,, — NPC thus represent the

XYz
mediation effects of Z on the relation between X and Y, similar to the concept of
univariate mediation analysis.

Specifically, in this study, network partial correlation was calculated between the
DA and default by controlling for FPC to directly test its mediating effect at network
level. Similarly, the MS and V network was also used as regressors to calculate the
reference mediation effect.
7.5.3 Statistical Analysis

A re-sampling method was developed to test statistical significance of network
level interaction for each pair of networks, including the network canonical correlation

(NCC ,, ), and the network partial canonical correlation ( NPC ). Specifically, a set

XY /Z
of reference regions were selected from whole brain based on the notion of brain’s sparse
interaction pattern, i.e. depending on different brain states, there will be different subsets
of regions demonstrating minimal interactions. As a result this subset of least-interacted

regions will be suitable to serve as reference to generate a null distribution of the
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network-level interactions. In this study, based on the 90ROI segmentation of the whole
brain template (168), we selected a set of 15 reference regions as the subset that
demonstrates the minimal average correlation strengths (absolute value). Subsequently,
this set of reference regions were randomly distributed to 2 networks with 6 and 9 regions
(equal to largest possible combination of number of regions in the five defined networks)
and the network-level interactions were calculated 1000 times to generate the null
distribution for each interaction. Note this whole process is done for each subject, and the
obtained p-value (based on appearance ratio) for each interaction were combined across
subjects to give a group p-value using Fisher’s method (202, 203). Same procedure was
done for each of the three states examined.

To visualize the network-level interaction patterns, the spring-embedding method
was employed to reveal the interaction among the five predefined brain networks during
each cognitive state (171). Specifically, the spring-embedding approach places strongly
interacted networks closer together and vice versa. The width of edges corresponds to
the strengths of interactions. Moreover, the statistical grouping of the set of interaction
values during each state were also achieved using the Tukey’s test at o =0.05 (204) to
facilitate the classification of individual values into different categories such as the higher
and lower.

7.5.4 Results and Discussion

The significant network-level interaction pattern is shown in Fig.7.6. During the
resting state, only three significant connections exist with FPC at the center connecting
with DA, DF, and V while MS is left alone. This sparse network-level interaction pattern

is consistent with the observation of dominant within-network interactions as shown
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using regional techniques (Fig.7.2). Moreover, in line with the mediation role of the FPC
between DA and DF, FPC demonstrates a significant connection with both of them.

As we have anticipated, an increase in network-level interaction was observed
during finger tapping when compared with resting (Fig.7.2). There are 7 significant
inter-network interactions during finger tapping when compared with only 3 during the
resting state. The FPC now demonstrates a significant interaction with MS, which is
consistent with the observed increasing FPC-MS interaction using regional approaches
(Fig.7.2). Actually, the appearance of significant connections between DA and DF as
well as DA and MS are all in line with the increased between-network interaction in the
previous section (Fig.7.2). In contrast, no significance interactions for FPC-V and DA-V
were observed using a regional approach, yet a network-level approach demonstrates
significant interactions among them, demonstrating the advantage of using network-level
approaches to directly quantify their interaction strength. In addition, using Tukey’s test,
the interaction between FPC-DA, FPC-DF, DA-MS are statistically stronger (p<0.05, red
asterisks) than all other interactions during finger tapping,, which reinforces the
importance of these three interactions in accomplishing the finger tapping task, which has
been extensively discussed above.

The network-level interaction pattern during movie watching seems to be
intermediate between resting and finger tapping, which is again expected given the
correlation maps in Fig.7.2 and 7.3. Consistently, the FPC-DA and FPC-DF still show
significant interaction and statistically higher than others. Other interactions include DA-

MS, FPC-MS, and FPC-V, indicate significant interactions between higher order
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attention/control systems and both sensory systems during the composite movie watching

task.
Porsal-Attention
#rontal-Parietal #otor-Sensory
Wefault
Wisual
Resting
@isual
W/isual
#Fiontal-Parietal
* Motgr-Sensory
* | .
Darsat="¥fention * %* ohrontal ParleEll
@efault Dorsal-gttentlon
®efault Motor-SEnsory

Finger Tapping Movie Watching

Figure 7.6 Network-level interaction patterns during all three states. Pink asterisks:
significantly stronger interaction comparing with others in the same graph. All

connections shown here are statistically significant.

Finally, in order to directly test the mediation role of FPC on the two opposing
systems- DA and DF, we calculated the network-level partial correlation between DA
and DF using FPC as control set of variables (the other two systems-MS and V are also
used as controllers for comparison with FPC). The result is shown in Fig.7.7, where the
pattern is strikingly similar as those using regional techniques (Fig.7.4): FPC
demonstrates significant mediation effects during every single state (RS: p=0.0012; FT:
p=.0377; MW: p=0.0105) and is the only network showing such effect during resting. In

contrast, V fails to show any significant mediation effect during any state. Although MS
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shows significant effects during FT (p=0.0141) and MW (p=0.0430), its effect is

significantly weaker that that of FPC (p=0.0442) during MW. Overall, the evidence from

both regional technique and network-level approaches strongly support the mediating role

of FPC on the two opposing system: DA and DF.
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Figure 7.7 Exploring the mediation effects of FPC on the interaction between DA and DF

based on the network-level approach. Top row: the effect of removing FPC effects on the

interaction between DA and DF; Bottom row: the comparison of mediating effects of

FPC, MS and V on the interaction between DA and DF.

In conclusion, the newly developed multivariate approach successfully reveals the

network-level interaction pattern during three different states and the converging findings

of both approaches strongly indicate the mediating role of FPC between the two opposing

systems: DA and DF. Future research will continue to look into the application of this

network-level approach on developmental as well as disease studies.

115



Chapter 8
Development of Whole Brain Functional Organization in the First Two

Years of Life

Exploring brain functional development/interaction of specific networks was
discussed in the previous Chapters. In this Chapter, we will shift our focus to
characterize whole brain networks, aiming to provide a systematic delineation of different
aspects of brain development including inter-regional connectivity, modular structure,
functional hubs as well as graph theoretical measures such as local/ global efficiency and
small-worldness.

8.1 Introduction

Understanding of whole brain functional organization is essential in revealing the
underlying mechanisms of how it works. Specifically, characterizing its developmental
process can potentially gain insight into its matured architecture. Recent advance of
neuroimaing techniques, particularly the resting-state functional connectivity MRI
(rfcMRI) (20), greatly facilitates the investigation of brain’s functional organization.
Instead of focusing on a specific function elicited by certain task as traditional fMRI does,
rfcMRI detects the intrinsic temporal synchronization when the brain is not engaged in
any explicit task, i.e., “idling”, and has been increasingly recognized as a powerful tool to

study intrinsic brain organization. The essence of rfcMRI lies on the fact that highly



temporally correlated regions during the resting state resemble the activated regions
during task performance. In other words, rfcMRI provides unique information of how
the brain is intrinsically and spontaneously organized (20). Ever since its emergence,
exciting progress has been made in adult studies, greatly improving our understanding of
the whole brain functional architecture. For example, Salvador et al (205) first looked at
the whole brain functional network during the resting state and described the system as an
anatomically sensible small-world (206) with both high global and local efficiency.
Damoiseaux et al (22) detected a consistent set of networks utilizing an independent
component analysis approach (ICA), revealing the sub-system organization of the whole
brain network. Similarly, other studies have (207, 208) investigated the modularity
structure of the whole brain network. There are also studies exploring significant
modulations of whole brain organization during aging (100) and under various
pathologies including schizophrenia (209), Alzheimer’s (210) etc, underscoring the
usefulness and importance of rfcMRI in studying the brain’s functional organization.

The application of rfcMRI in brain development is also emerging. Both Fair et al
(211) and Supekar et al (212) compared school-age children (i.e. 7-9 years old) with
adults and reported converging evidence on the increasing of long-range connections and
decreasing of short-range connections. Moreover, using the graphic theory approach, they
found similar small-world property shared by the children and adults even under dramatic
organization changes. While these findings are exciting and greatly improve our
understanding of brain’s functional development, whether these findings can be
generalized to an earlier developmental phase, especially the first few years of life, is yet

to be answered. The importance of the first few years of life, especially the first two years
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in brain development is unparalleled (33). Most neurophisiological events including
neruogensis, synaptic formation, axonal elongation, and myelination have been well
documented to undergo the trunk of their development during this time although each of
them has a unique time course which may extend well into early adulthood (40, 213-217).
As a result, the importance of characterizing brain’s functional development during this
critical developmental period can not be over emphasized.

Previously, we have separately looked into the development of several specific
functional networks, including motor-sensory, visual(29) and the “default” network(102)
during this critical first two year period. The general picture of whole brain organization
change remains poorly characterized. In this study, based on a large population (n=167)
of pediatric subjects with an age spaning from 2 weeks to 2-year-old, we aimed to reveal
the large scale brain organization changes during this poorly studied but critical period.
Inter-regional connectivity development as well as organization changes revealed by
modular structure(218), functional hubs, as well as global graph theoretical metrics
including local efficiency, global efficiency and small-worldness (206) will be
individually tackled to provide a systematic exploration of whole brain development
during this earliest phase of postnatal brain development.

8.2 Methods
8.2.1 Subjects and Image Acquisition

The study subjects were part of a large study on characterizing brain development
in normal and high risk children (163). Informed consent was obtained from the parents
and the experimental protocols were approved by the institutional review board. None of

the subjects was sedated for MR imaging. Before the subjects were imaged, they were fed,
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swaddled, and fitted with ear protection. All subjects slept during the imaging

examination. We retrospectively identified 167 normal subjects including 61 neonates
(33M, 21 T11days (SD)); 60 1-year-olds (35M, 13 ilmon) and 46 2-year-olds (24M, 24

T Imon) who met the inclusion and exclusion criteria (supporting materials). In addition,
19 (12M, 25~33yrs) healthy adult subjects were also recruited for comparisons with
pediatric subjects. A board-certified neuroradiologist (JKS) reviewed all images to verify
that there were no apparent abnormalities in the acquired MR images.

A 3D MP-RAGE sequence was used to provide anatomical images to co-register
among subjects. The imaging parameters were as follows: repetition time (TR)=1820ms;
echo time (TE)=4.38 ms; inversion time=1100ms; 144 slices; and voxel size =
IxIxImm3. For the rfcMRI studies, a T2*-weighted EPI sequence was used to acquire
images. The imaging parameters were as follows: TR=2sec, TE=32 ms; 33 slices; and
voxel size =4x4x4 mm’. This sequence was repeated 150 times so as to provide time
series images.

8.2.2 Preprocessing

The preprocessing includes standard steps including exclusion of voxels outside
of the brain using FSL (FMRIB, Oxford University, U.K.), time shift, motion correction,
and spatial smoothing (6-mm full width at half maximum Gaussian kernel). Three adult
subjects were excluded from the subsequent analysis because of excessive head motion
during the scan. Nuisance signals from ventricle, white-matter, and global signal were
regressed out using linear regression. The first 10 time points of the rfcMRI data were
excluded to allow T1 to reach equilibrium condition. Subsequently, rfcMRI data of the

first available time point was co-registered to the corresponding T1-weighted MP-RAGE
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structural images using rigid body alignment. For within-group registration, independent
T1 Images from a longitudinal data set scanned at neonate, 1yr and 2yr olds were selected
as templates for corresponding pediatric groups and intensity-based HAMMER nonlinear
registration (164) was performed to warp each individual subject to its template space.
After that, the pediatric images were normalized to MNI space using 4D HAMMER
registration between the three longitudinal data sets and the MNI template. The reason
for using a longitudinal dataset as templates was the higher registration accuracy in
registering them with a common template, which is achieved by 4D HAMMER
registration which takes into account the longitudinal correlation information.
Subsequently, the transformation fields from rigid alignment and two-step HAMMER
registration were employed to bring all fMRI volume data to MNI template space,
allowing group analysis. Whole brain region of interest (ROI) definition was then
achieved using anatomical templates defined by Tzourio-Mazoyer et al (168), which
divides the whole brain into 90 cortical and sub-cortical regions.
8.2.3 Inter-regional Correlation Analysis

The mean time course of each ROI was separately extracted from each individual
subject to construct a 90*90 correlation matrix which was then fisher-Z transformed and
averaged across subjects to compute the mean correlation matrix for each group. To
explore the inter-regional connection development with age, the connection strength
vector for each inter-regional connection composed of all individual subjects was
compared across consecutive age groups using one-way ANOVA. Significant changes
were defined using a threshold p=0.05 after FDR multiple comparisons correction(170).

In addition, for each connection within each age group, two-way t-test was performed to
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calculate a p-value indicating the significance level of the particular connection to be
different from zero. This p-value was used as a measure to threshold the correlation
matrix to get sparse matrix, which will be described in next section.
In order to test the relationship between connectivity change and anatomical distance, the
Euclidian distance between the centers of each ROI was computed to represent the
distance between each pair of regions.
8.2.4 Modularity analysis

To detect the modular structure of the whole brain networks, each correlation
matrix must be thresholded to create an adjacency matrix, the element of which will
either be nonzero, if the corresponding connection exceeds the threshold; or 0, if it does
not. In this study, we chose to use the p-value associated with all connections as a
threshold measure to create the adjacency matrix. Clearly the choice of threshold will
have major effect on the topology of the resulting network: conservative thresholds will
produce sparsely connected graphs, which might induce “isolated” nodes and falsely

29

eliminates “true” connections while more lenient thresholds will generate densely
connected graphs, which might include “spurious” connections and approache a random
graph. As a result, the adoption of any single threshold will inevitably raise the concern
of possible bias associated with this unique value. Thus in this study, we thresholded
each matrix repeatedly over a range of costs K (total number of existing edges within a
graph G over the maximum possible number of edges) to avoid such bias. The minimum
of this range was chosen to be a fairly stringent value of K=0.1 (100), i.e. 10% of the

maximum number of edges, to minimize the number of spurious edges. Another 15

increasingly more lenient cost thresholds were subsequently evaluated at a step-wise
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fashion with a step size of 0.01 to achieve a maximum threshold of 0.25 representing a
compromise between dense connection and randomness.

For modularity detection, we applied the weighted version of the spectral
algorithm proposed by Newman (218, 219), which finds the optimal division of the
whole network so that maximum interactions are within modules while minimal
interactions are between modules, which collectively define a statistically “surprising”
network structure. At each cost, the optimal modular structure was detected and the
solutions were compared across different costs and the results are shown in Fig.8.1,
where the number of modules, the modularity scores and the difference between
consecutive costs (number of regions that were put into different modules) are presented.
As shown, for all age groups, the modularity scores decline as the cost increases as the
network approaches randomness. However, clearly the modular structure is reasonably
consistent between consecutive costs (red line), particularly within the high-lighted costs
(yellow), the modular structures are identical. So the modular structure resulting from
these “identical” cost thresholds were reported in this study. Specifically, they were [0.19,
0.20] for neonates, [0.18, 0.21] for 1yr olds, [0.15, 0.18] for 2yr olds, and [0.13, 0.20] for
adults.

In addition, spring embedding (171), which iteratively reposition each node
within the whole graph so that most strongly connected nodes will be put closer to each
other and vice versa, was applied using the leading cost within the “identical” zone (0.19
for neonates, 0.18 for lyr olds, 0.15 for 2yr olds, and 0.13 for adults) to visualize the
whole brain network architecture and validates the findings using modular detection.

Using other costs within the zone produces similar results.
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Figure.8.1 Modularity detection comparison at different costs. Bars indicate the number
of regions that are assigned to different modules compared with the previous threshold
(against the right axis). Red lines show the modularity score (against the left axis).
Yellow bars indicate those costs that show identical modularity detections, which are

then shown in the result section.

8.2.5 Hubs Detection using Betweenness Centrality

For all graph theoretical analysis including betweeness centrality and small-world
metrics as described in the next section, we use a binary adjacency matrix. Betweenness
centrality, defined as the fraction of shortest paths between any pair of nodes that travel
through the node of interest, characterizes the importance of a particular node in the
whole network traffic and nodes with high centrality measures may serve as “relay

centers” or hubs of information integration. The betweenness centrality is defined as:

1

BW,; = N(N-1)

Pst (i)
Teiet 8.1)
st
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where Py, is the total number of shortest paths between node s and t within the whole
graph and P, (i) is the total number of shortest paths that pass through node i. N: number
of nodes within the graph.

In this study, the betweenness centrality for each node is calculated using all cost
thresholds within the “identical zone” defined by same modular structures as described
previously. The result showed high level of consistency as shown in Fig.8.2, and the
results based on the first cost within the “identical zone” (0.19 for neonates, 0.18 for 1yr
olds, 0.15 for 2yr olds, and 0.13 for adults) are reported in the result section. The hubs are
defined as those nodes demonstrating relatively high centrality measures
(BW;>mean+SD).

8.2.6 Small-worldness metrics

Three graph-theoretical metrics, namely local efficiency (LE), global efficiency
(GE), and small-worldness (SW) are calculated to explore the economic properties of the
whole brain network.

Specifically, the clustering coefficient introduced by Watts and Strogatz (206) is a
measure of local efficiency which quantifies the information transfer efficiency within

the immediate neighborhood of node i:

. 1 1
Ejocal() = mi‘.j,kecig (3.2)

where Ng, is the number of nodes within subgraph Gi constituted by the immediate

neighbors of node i. The local efficiency of the whole graph is then obtained by

averaging across all nodes.
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Figure 8.2 Consistency of betweenness centrality measures across the identified costs
range.
The harmonic mean of the inverse of the minimum path length between each pair
of nodes within the network, Lij, represents the efficiency of parallel information

transformation within graph G and is a measure of global efficiency (220):

1 1
Eglobal = oy ZizieG 1, (8.3)
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where N is the number of nodes within network G. The average minimum path length of
the whole graph itself is defined as the “characteristic path length”.
A small-world network, according to Watts and Strogatz (206), should have

characteristic path length comparable to a regular graph and clustering coefficient greater

than a random graph. Hence by calculating the ratio of clustering coefficient Cl/ Clrang
ranaom

and characteristic path length Cp/ CPrand between the network of interest and a random
ranaom

network (degree reserved), the small-worldness is defined as the ratio of the two ratios
with a value above 1 indicating the existence of small-world property.

In this study, correlation matrix from individual subjects of each age group were
thresholded (based on correlation strength) to construct networks at costs ranging from
0.01 to 0.50 at a step size of 0.01 and corresponding small-world metrics as described
above are calculated at each cost for each subject.

8.3 Results
8.3.1 Inter-regional Functional Connectivity Development

For each individual subject, a whole brain correlation matrix (90*90) was
constructed using regionally averaged spontaneous BOLD fluctuations based on
anatomical templates defined by Tzouro-Mazoyer et al (168). In order to detect
developmental changes within the global functional architecture, connectivity between
each pair of region (altogether 4005 pairs) was compared across age groups using the
correlation strength vector (fisher-Z transformed) composed of all subjects within each
age group. One way ANOVA was applied for testing significance and a threshold of
p=0.05 after multiple comparisons correction (FDR) (170) was chosen to define

significant changes with age. The significant difference matrix along with the
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visualization of the increasing (red) and decreasing (blue) connections in corresponding
partial-transparent brain volume are presented in Fig.8.3. Altogether, there are 634
connections (634/4005=15.83%) showing significant increase and 922 connections
(922/4005=23.02%) showing significant decrease in connectivity strength during the first
year of life, which cover broadly the whole brain demonstrating the most dynamic and
wide-spread functional development during the critical first postnatal year. In great
contrast to the extensive changes during the first year, the second year witnesses a
dramatically slower development: there are 75 connections (1.87%) increasing and 67
connections (1.67%) decreasing during this year. Qualitatively, the increasing/decreasing
connections seem to reside mainly in the posterior/frontal part of the brain, respectively,
although a significant portion of increasing connections is between frontal and posterior
regions (Fig.8.3). Finally, comparing 2yr olds with adults, 457 connections (11.41%)
significantly increase strength and 393 connections (9.81%) significantly decrease
strength, which again extensively cover the whole brain. Overall, it is clear that brain
undergoes the most extensive reshaping during the first year of life while during the
second year the rate dramatically slows down. However, tacking together the massive
changes between 2yr olds and adults and previous reporting of significant changes
between school-aged children and adults (211, 212), this reshaping process, although

considerably slower than the first year, is likely to be steadily continued till adulthood.
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Figure.8.3 Inter-regional connection changes across each age span (red: increasing

connections; blue: decreasing connections).

8.3.2 Connectivity Development in Relation to Anatomical Distance

As has long been observed, the developmental process features reduction of
strength among short-distance connections and strengthening among long-distance
connections (211, 212), which suggests a simultaneous specialization of neighboring
regions and integration of remote regions during development. However, most previous
fcMRI studies focused on the change between children and adults while in this study, this
trend is validated and extended to the first two postnatal years. As shown in Fig.8.4,
between each age span, connections decreasing with age (blue dots) consistently

demonstrate shorter anatomical distances; on the other hand, connections increasing with
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age (red dots) are collectively associated with longer anatomical distances (p<10"° from

neonates to 1yr olds, p<107 for 1yr to 2yr olds and p<10~ for 2yr olds to adults).
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Figure.8.4 Connectivity Development in Relation to Anatomical Distance

8.3.3 Connectivity Development in Relation to Different Anatomical Divisions

In order to explore the differential development pattern within different
anatomical divisions, the whole brain regions were classified into frontal (24 regions),
parietal (18), temporal (8), occipital (14), limbic (14) and sub-cortical (12) divisions
based on that proposed by Tzourio-Mazoyer et al (168). A detailed list of regions in each
sub-group can be found in Table.8.1. As shown in Fig.8.5, the frontal (24%), parietal
(31%), and sub-cortical (30%) divisions mainly experience specialization during the first
year of life while the other divisions including temporal (32%), occipital (31%) and
limbic (30%) are dominated by synchronization. With the minimal changes occurred

during the second year, the differential increasing/decreasing pattern within each lobe is
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not as obvious. Finally, from 2yr olds to adults, the frontal (34%), limbic (20%) and sub-
cortical (24%) are dominated by specialization while parietal (13%), temporal (29%), and
occipital (15%) are mainly synchronizing. In addition to the differential developmental
pattern within each division, there are considerable differences among between-division
connections (as shown in Fig.8.6). These connections are of importance and characterize
how different anatomical divisions change their interaction pattern to form more
functionally sensible modules responsible for the emerging and complex cognitive
functions. As a result, these between-division developmental patterns, as well as those
within divisions, will be discussed together with the functional modular structure changes
in the following section.
8.3.4 Development of the Functional Modular Architecture

The exploration of modular structures at different ages can potentially answer the
critical question of how the whole brain is organized at different developmental periods.
The modular structure was detected based on a spectral optimization model (218, 219)
using the sparse connectivity matrix derived from each age group and the results are
presented in Fig.8.7. In this figure, the most significant 405 connections (cost 10%) for
each age group were also visualized to aid interpretation. A list of region abbreviations
(in the figure) is presented in Table.8.2 and the detailed list of regions in each module for

each age group is presented in Table.8.3.
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Figure.8.5 Connectivity Development in Relation to Different Anatomical Divisions-

within divisions
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Figure 8.6 Connectivity Development in Relation to Different Anatomical Divisions-
between divisions.
The neonatal brain is broadly divided into four major modules which show clear
anatomical division constraints. One module (21 regions) covers mainly regions in the
frontal division (19 out of 21), and is therefore designated the frontal module. The
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module (19 regions) including central regions of bilateral pre- and post central gyri,
supplementary motor area, and paracentral lobule, as well as most parietal lobe regions
and limbic regions of mid- and post cingulate cortex is designated as the parietal-limbic
module. The module (25 regions) covering mainly the occipital lobe (14 regions) and
temporal lobe (8 regions) is referred to as the occipital-temporal module. Finally, the
module (25 regions) containing all sub-cortical regions (12) as well as other surrounding
frontal, parietal and temporal regions (13) is called the sub-cortical-centered module.
Overall, neonates demonstrate a more anatomically sensible modular organization
characterized by local and neighboring regional clusters constrained by anatomical
divisions.

From neonates to 1yr olds, the parietal-limbic module remains almost identical
with only the left superior marginal and bilateral angular gyri added, providing a full
coverage of the parietal lobe. However, other modules undergo extensive reorganization
including both segregation and integration. Firstly, the frontal module now divides into
two with the more dorsal part forming a separate module (11 regions) and the orbital part
merging together with mostly temporal regions forming a integrated orbital-frontal-
temporal module (24 regions). The segregation between the dorsal and orbital parts of
the frontal lobe can actually be predicted by the inter-regional connectivity changing
patterns shown in Fig.8.3 where there are extensive decreasing connections (blue arrow)
while no increasing connections between them (red arrow 1). Moreover, consistent with
these decreasing, the frontal division is dominated by specialization (24% decreasing vs
10% increasing) as shown in Fig.8.3. Similarly, the integration between orbital frontal

and temporal regions can also be traced back to the synchronizing process between them
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as shown in Fig.8.3 (red arrow 2) and in Fig.8.6 where a dominant synchronization trend
is observed between the frontal and temporal lobe (33% increasing vs 8% decreasing).
Secondly, the occipital-temporal module now also separates with most temporal regions
merged with orbital frontal regions, leaving an intact module covering solely occipital
regions (14 regions). This segregation is also supported by both the dominant
specializing process between temporal and occipital divisions (36% decreasing vs 7%
increasing, Fig.8.6) and the self-synchronization process within the occipital division (31%
increasing vs 21% decreasing, Fig.5). Finally, eight sub-cortical regions plus bilateral
hippocampus are segregated from the surrounding frontal, parietal and temporal regions
in the sub-cortical-centered module and forms two separate modules (10 and 9 regions,
respectively), which are then termed as sub-cortical module and “mixed” modules,
respectively. Overall, the first year witnesses dramatic segregations within the frontal
lobe, between the occipital lobe and temporal lobe, between sub-cortical regions and
surrounding regions, as well as integration between orbital frontal lobe and temporal lobe
regions (among others, e.g. amygdala).

The reorganization occurring during the second year is far less dramatic as
consistent with the minimal connectivity changes (Fig.8.3) during this period. However, a
closer observation of the actual changes indicates that there are important ongoing fine-
tuning processes. There is also intermediate structure emerging during this period which
is likely the steping-stone towards more mature modules. First, the right opercular
inferior frontal gyrus is separated from the “mixed” module and integrated into the
dorsal-frontal module, making both modules totally left-right symmetric. Moreover, the

bilateral parahippocampal gyri and amgdala now separate from the orbital-frontal-
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temporal module and merge into the sub-cortical module (where all other sub-cortical
regions as well as bilateral hippocampus are already there), making both of the modules
more functionally sensible. Except the parietal-limbic module (22 regions), these five
regions (out of 90-22=68 regions) are the only changes taking place during the second
year since the intact occipital module formed in 1yr olds remains identical at this time.
Although minimal, these fine tuning processes, actually make the modular structure more
functionally sensible. Finally, the comprehensive parietal-limbic module now separates
into two modules: one that still covers broadly the central, medial parietal as well as
limbic regions (14) while the Ilateral surface of the parietal lobe including
superior/inferior parietal, supramarginal, and angular gyri (8 regions) are separated and
form a module of its own. This is intriguing given the fact that these regions, together
with the limbic regions (posterior cingulate cortex) and medial parietal regions
(precuneus) also separate from the parietal-limbic module and integrate with dorsal
frontal regions to form a salient frontal-cingulate-parietal module in adults. This makes
the separation of the eight regions during the second year an intermediate structure
between pediatric subjects and adults. Together with other possible changes in later life,
this might act as steping-stones towards the maturd modular structure observed in adults.
Finally, the modular structure in adults is more consistent with known functional
relationships (Fig.8.7). A central module (bilateral pre- and post- central gyri,
supplementary motor area, and paracentral lobule) focuses on motor-sensory controls (20,
22, 29). A comprehensive occipital-temporal module possibly deals with multiple sensory
modalities including visual, auditory, olfactory and memory (32, 47, 221, 222). A stand-

alone orbitofrontal module likely involvses in affective decision making/rewarding
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mechanism (223). A comprehensive cortical-subcortical module consistent with the
basal gangalia-cortical network mediates motivation and emotion drive and integrates
information for goal-guided behavior (224). In addition to these, the most salient module,
as mentioned above, is the frontal-cingulate-parietal module that spans across the
anterior-posterior brain, which includes regions within superior medial frontal, posterior
cingulate, precuneus, inferior parietal lobule as well as angular gyri among other frontal
and parietal regions. This module is qualitatively very similar to the recently defined
“default-mode” network (21, 26-28), indicating that the matured brain architecture
features such higher-order cognitive function directed modules. More importantly, the
long-range integration between frontal and posterior regions of the brain revealed by this
composite module is only observed in the adult group, indicating the important
integration process occurring after 2yr olds and consistent with the notion that brain

grows from “local to distributed” (211, 212).
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2-year-old

Figure.8.7 Development of the Functional Modular Architecture. Nodes are colored
according to different modules and the most significant 405 (10%) connections were also

visualized to aid interpretation.

8.3.5 Development of the Functional Modular Architecture Revealed by Spring
Embedding

In addition to modular structure detection, we used another visualization
technique, namely spring embedding (171), to qualitatively examine and validate the
organizational relationship among the 90 whole brain regions. Spring embedding

iteratively optimizes the position of each node within the whole graph according to their

137



connection strengths so that regions with stronger connections will be put closer to each
other and vice versa. As a result, we would expect nodes within a functional module to
be put together as a “cluster” while nodes within different modules will be scattered. The
same sparse correlation matrices used in modular structure detection were used in this
analysis and the results are presented in Fig.8.8 where all nodes are labeled in colors
consistent with the modular detection results (Fig.8.7) and the most significant 405
connections are also visualized to aid interpretation.

As expected, the spring embedding plots nicely put each individual module as a
“closely connected cluster” while different modules are generally well separated. This
consistent finding with the modular results reinforces the notion that whole brain system
is organized into age-specific modules which experience dramatic reorganization during
early brain development before reaching a matured architecture.

Pallidum-L
Pallidum-R
halamus-L

2-year-old
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Figure 8.8 Development of the Functional Modular Architecture Revealed by Spring

Embedding. Nodes were similarly colored as those in Figure 8.7.

8.3.6 Emergence and Development of Functional Hubs during Development

The notion of hubs in a functional brain system has long been held which may
potentially act as relay centers to facilitate efficient information transformation and
integration (207). In this study, the role of each node was characterized using
betweenness centrality (173, 225), which measures the relative importance of
corresponding node in achieving global maximal efficiency. The potential “hubs” were
defined as those that demonstrate the highest centrality measures (>mean+SD).

The bar plots of all regional centrality measures are presented in Fig.8.9 (red:
hubs) and the visualization of the defined hubs in actual brain space is presented in
Fig.8.10. As shown, left insula and right middle occipital regions are the two major hubs
in neonates with others covering pre-central, hippocampus, middle cingulate, etc. In lyr
olds, left insula together with bilateral SMA regions show highest centrality measures
which then evolves to left SMA and bilateral fusiform in 2yr olds. Together, there is
reasonable continuity in the hub evolution; it gradually changes from insula/middle
occipital to SMA/insula and SMA/fusiform regions across the first two years of life.
Moreover, there is a general trend of middle to posterior region bias for the hub locations
among pediatric subjects as obvious in Fig.8 while no frontal regions are classified as
hubs for all three pediatric groups except for the left inferior orbitofrontal region in 2yr
olds. However, the emergence of one region in 2yr olds does suggest a trend of the

emergence of the hub role in frontal lobe. Indeed, with right posterior cingulate as the
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strongest hub in adults (Fig.8.9), there are altogether 5 frontal regions also subserving
hub roles. This finding is consistent with the role of this lobe in integrating information,

decision making and other complex cognitive behaviors in matured brain (226).
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Figure 8.9 The bar plots of all regional centrality measures. Hubs were highlighted in red.
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Figure 8.10 Visualization of the defined hubs in brain space.

8.3.7 Development of Small-world Properties

Many studies (100, 227, 228) have reported the small-world characteristic of the
matured brain functional system. However, when the small-world property emerges and
how it evolves with age, particularly during the first two years of life, are not known.
Moreover, as described above, considerable changes occur in inter-regional connections,
modular organizations, as well as hub distribution during the first two years of life. The
natural next question is whether these changes are expressed in small-world properties,
which measures the economic property of the entire brain network as a whole. In this
section, we examined three commonly used small-world metrics including local
efficiency (LE) and global efficiency (GE), which quantify the information transferring

efficiency at a local neighboring subgraph and the whole network level(220), respectively,
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and the small-worldness measure (SW) (206). A small-world network is characterized by
a higher LE than random network as well as a higher GE than regular (lattice) network.
In this case, the small-worldness indicator (SW) will have a value greater than 1.

As shown in Fig.8.11, both the LE and GE curves for all 4 examined age groups
are between the corresponding curves of random and regular network for most cost
values (except of extremely low/high costs in which case the network is likely either un-
connected or full of spurious random connections), indicating the presence of the small-
world property for all brain networks. This finding is further supported in Fig.8.11c,
where the direct indicator-SW is shown. All networks demonstrate SW values above 1
across the whole cost span. As this observation essentially tells us that the whole brain
functional network demonstrates the small-world property immediately after birth and
throughout development, we are also interested in the development of this property with
age. As shown in Fig.8.11, comparing lyr olds with neonates, the LE measure is
significantly higher at cost ranging from 0.03~0.19; the GE is significantly higher at cost
ranging from 0.04~0.47; and the SW measure is significantly higher at cost ranging from
0.08~0.19, suggesting a significant improvement of small-world properties during the
first year of life at both local and global level, which is consistent with the observation of
extensive inter-regional connection changes during this period as shown in Fig.8.3.
Given the minimal inter-regional connection changes, we would expect minimal changes
in small-worldness properties during the second year of life. As shown in Fig.8.11, no
significant changes are observed for any metric. However, even with similarly extensive
inter-regional changes as those in the first year, the time period between 2yr olds and

adults still witnesses no significant changes in small-world properties. This finding is
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consistent with the previous findings comparing children with adults (211, 212) where
results were reported that even though brain undergoes considerable inter-regional
connection changes the global small-world property is minimally changed. The findings

in this study extend this “plateau” pattern to 1 yr olds.
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Figure 8.11 Development of global efficiency, local efficiency and small-worldness.

8.4 Discussion

Brain’s functional organization is of paramount importance in understanding the
underlying mechanisms of how it works. To our knowledge, this is the first study to
characterize the evolution of whole brain organization during the first critical two years
of life. We systematically investigated the brain functional connectivity development in
terms of its inter-regional connections, modular organizations, as well as graph-
theoretical metrics to depict the growth patterns of both local and global parameters
during this critical period. The main findings of this study are: (1) brain’s inter-regional
connections undergo the most extensive reshaping (both synchronization and

specialization) during the first year of life, followed by dramatically slower changes; (2)
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the decreasing of short-range connections and increasing of long-range connections are
observed across each age span; (3) neonatal brain demonstrates a largely anatomically
constrained modular organization and experiences drastic reorganization during the first
year of life which features extensive segregation/integration associated with frontal lobe
regions, followed by a “fine-tuning” during the second year and finally achieves a more
functionally sensible modular structure in adults; (4) the top functional hubs emerge at
insula/middle occipital regions in neonates, shift to insula/SMA in lyr olds and
SMA/fusiform in 2yr olds, and finally move to the posterior cingulate/frontal regions in
adults; (5) local efficiency, global efficiency and small-worldness measures exhibit
significant improvement during the first year of life while they show minimal changes
despite of considerable underlying reorganizations beyond lyr of age. Taken together,
these findings provide new insights into very early postnatal development of whole brain
organization.
8.4.1 Development of Inter-regional Connections

The massive inter-regional connection development with both synchronization
and specialization during the first year of life has two important implications, including
the obviously critical role of first year in the brain’s overall functional development and
the surprisingly high level of functional connectivity in neonates (the whole brain
correlation matrix is provided in Fig.8.12). Taking together with the well-defined
modular structure at this age, these results suggest high level prenatal functional
development. These findings are not surprising if considering the fact that axons undergo
a period of rapid elongation and establish extensive synapses/connectivity to their intra-

and subcortical targets from midgestation through infancy (111). On the other hand, if
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the temporal synchronization dose comprise of functional information, we would expect
some sort of functional capability in the prenatal brain. Indeed, studies have shown that
most fetuses begin to respond inconsistently to sound by moving or kicking as early as
25-27 gestation weeks (229). This finding fits nicely with Standley’s claim in one of his
1998 papers, “newborn is not a blank state waiting to be filled as previously thought, but
is an avid and experienced learner equipped with the beginning discriminations and
memory of language, emotional response, and awareness of cause/effect relationships”

(229).

il
2-year-old

Figure.8.12 Group mean correlation matrix of all 4 age groups

Regarding the critical first postnatal year, numerous studies, mostly from
structural aspects, have provided solid evidence on its essential role in the overall brain
development (33, 213-217). Actually, most relevant neural development events
including synaptic formation, axonal elongation, pruning and myelination demonstrate a
consistent developmental trend as characterized by rapid growth during the first postnatal

year before continuing at a much slower but steady pace thereafter (40, 213-217), which
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fits nicely with the functional connectivity observed this study. These different neural
developmental processes are likely the underlying neural substrates for the observed
functional connectivity development. More specifically, synaptic formation,
establishment of both short and long-range axonal connections, and myelination likely
underlie the functional synchronization while the synaptic pruning process explains
functional specialization between different regions (108, 230).

As mentioned above, although different processes experience the trunk of their
development during the first year of life, they are also well documented to extend further
into development. For example, synaptic formation is documented to undergo substantial
growth staring from midgestation throughout the first two postnatal years (231, 232)
while myelination and synaptic pruning continues to grow to reach the adult level utill
young adulthood (232-238). Collectively, these processes determined by genes and
influenced by environmental factors, are likely the neural substrates for all of the
observed inter-regional functional connectivity changes across each age span. We
believe that the observed massive changes during the first year are most likely dominated
by the genetically determined maturation of the neural substrates. However, it is
generally believed that as age grows, experience will gradually exert more influence on
the selective strengthening and weakening of different functional pathways through the
interaction with these neural substrates. Therefore, the much slower but steady changes
occurred after 1yr old are likely subject to the combined effects of both factors (108, 230).
Finally, the observed decreasing of short-range connections and increasing of long-range
connections are in line with previous findings by both Fair et al (211) and Supekar et al

(212). They showed similar functional segregation between regions close in anatomical
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space and integration between regions further away when comparing children with adults.
The findings in this study extend their observations to the very early postnatal period.
8.4.2 Development of Whole Brain Modular Structure and Hubs

As the growth pattern of inter-regional functional connectivity validates the
previous anatomical findings, the exploration of the brain’s modular structure/hubs and
their evolution with age will provide us unique perspectives into brain’s functional
organization and reorganization.

One of the most intriguing findings here is the extensive reorganization process
during the first postnatal year, especially the prefrontal cortex (PFC). Human PFC
comprises between a quarter to a third of the entire cortex and is anatomically and
functionally heterogeneous. The PFC is usually subdivided into dorsal-lateral PFC (DL-
PFC), medial PFC (MPFC) and orbitofrontal cortex (OFC) in adult studies (223). As all
PFC regions are generally involved in “executive” functions (EF), there is a general
consensus that the DL-PFC deals more with the “pure” cognitive aspects of EF in abstract
reasoning and problem solving while MPFC and OFC, especially OFC is more involved
in affective or emotionally related decision making (223). Historically, PFC is believed to
be one of the latest parts of the brain to develop and it is not functional until about 4-7
years of age (239) or even later (240). However, the findings in this study clearly suggest
a much earlier development within PFC. It starts from an intact module covering all PFC
regions in neonates. Subsequently, there is a clear segregation of OFC from other DL-
PFC and MPFC regions. Moreover, the OFC seems to get integrated with other regions
(including amgdala and temporal, frontal regions) to form a composite module during the

first year of life. The active segregation of two major divisions of PFC likely indicates

147



functional specialization between the two sub-divisions. Actually, numerous studies have
proved the incorrectness of the historical view of very late PFC development. PFC
functions start to emerge probably during the second half of the first postnatal year (223,
241), which is consistent with the findings in this study. Specifically, Grossmann et al
(242) have recently reported that even at the age of five months, infants actively recruit
the DL-PFC regions when engage in a joint attention task with another person, strongly
supporting the development of DL-PFC in executive functions during this period. On the
other hand, lesion studies in rhesus monkeys conducted by Goursaud and Bachevalier
(243) have proved that neonatal lesions (10~15 days postnatal) in OFC resulted in weaker
infant-mother attachment when compared with controls assessed at a age of 11 months,
clearly supporting the role of OFC in the quality and/or strength of social attachment
relationship building. In addition, the integration of OFC with other regions especially
amygdala and parahippocampal regions observed in this study supports the behavioral
findings of attachment formation in infants with their mother (244). Moreover, in human
studies, protracted and increasingly more severe social self-regulation deficits with age
have been seen in children with early damage to the PFC, including OFC (243, 245).
Collectively, the findings of extensive segregation/integration process within PFC
observed in this study are consistent with previous findings of corresponding cognitive
functional/behavioral development and strongly support the notion of early PFC
development during the first postnatal year.

After the drastic reorganization occurred during the first year, results in this study
reveal a “fine-tuning” process during the second year. Except for the segregation of the

lateral parietal regions from the parietal-limbic module, only 5 out of 68 regions are
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classified into different modules comparing to lyr olds. Again, this process appears far
from random given that the changes make the modules more symmetric as well as more
functionally sensible. The appearance of an intermediate structure — the lateral parietal
module, as described in the result section, is intriguing since this seems to correspond
well with the developmental process by formation of intermediate structures. Actually,
looking at the development of the modular structures across the whole age span examined
in this study, it reveals several interesting patterns. First, the primary motor-sensory
system (including bilateral pre- and post-central and SMA) is within one module ever
since neonates and remains so utill adulthood. However, through the age of 1 year old,
they are extensively interconnected with other lateral/medial parietal regions as well as
limbic regions and are classified into a big composite module. In 2yr olds, the lateral
parietal regions separate out demonstrating certain level of specialization. Finally in
adults this system becomes much more specialized and forms a “stand-alone” module
representing a distinct function underlying it, supporting the importance of specialization
for functional maturation. On the other hand, although the DL-PFC and OFC are
segregated during the first year of life and remains so during the second year, it is only in
adults that frontal lobe establishes extensive connections with posterior cingulate as well
as parietal regions and forms the most salient frontal-cingulate-parietal module, simiar to
the “default-mode” network (26, 28). Given the higher order cognitive functions
subserved by the default network (26-28, 155), this observation is consistent with the
notion that these higher order cognitive functions do not mature at the early childhood
and continue to develop utill adulthood (226). Actually, the observation here is

consistent with one of our previous findings (102) where we specifically evaluated the
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development of the default network using independent component analysis (ICA). In that
study, the default networks in all three pediatric groups (neonates, 1yr and 2yr olds) are
classified into two independent components covering the frontal and parietal part,
respectively. It is only in the adult group, do these two components merge together to
form an intact “default network”. The converging observation from both ICA and
modular detection here strongly supports that the integration of frontal lobe and cingulte,
parietal regions to form an intact module occurs after the age of two.

In addition to the modular structure, the betweenness centrality measure also
reveals potential “hubs” within the whole brain network. The findings in this study
suggest that the major hubs evolve from insula/occipital regions in neonates, SMA/insula
in lyr olds to SMA/fusiform areas in 2yr olds, demonstrating an important evolution
trend as well as reasonable continuity during the developmental process. The insula
cortex, locating between the temporal lobe and frontal lobe, possesses abundant
connections with temporal cortex, SMA, primary motor-sensory cortex, cingulated area
and amgdala. It specializes in many different functions, including motor control,
auditory processing, speech production, as well as autonomic functions (246). Our
finding of bilateral insula regions being among the major hubs in neonates is in line with
its “miscellaneous” nature. More importantly, it has long been known that this area is the
first cortex to differentiate and develop in fetus beginning from 6 weeks after conception
(246, 247), providing the structural basis for its hub role immediately after birth as
observed here. Subsequently, the hubs gradually transform to the SMA area in 1yr olds,
which suggest the central role of motor-related function during this year. This finding is

not surprising given the abundant evidence of major improvement in motor skills
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occurring during this period. For example, target-directed reaching to grasp marks the
development of the third postnatal month (248). Hand-to-hand transfer occurs around 6
months of age (249). This developemtn does not contradict with the significant frontal
lobe development as described above since most of the mentioned behaviors represent
functional coordination among motor, sensory, and association circuits including those in
frontal lobe, especially for those target-directed behaviors such as inhibitory control over
reflexive behaviors occurring around the same 3 month of age (248). In 2yr olds, besides
SMA, fusiform areas also appear among the top hubs, indicating dramatic development
involved in visual function. This finding is again consistent with one of our previous
studies suggesting that motor-sensory networks undergo rapid development during the
first year of life followed by similar development in the visual network that are more
prominent in the second year of life (29). Taken together, the hubs detected during the
first two year of life are consistent with the dramatic motor and visual related function
development during this period of time (29, 33).

Comparing pediatric subjects with adults, it is apparent that the major hubs among
the pediatric groups are more involved with basic motor (SMA), visual (right-occipital,
fusiform) and control (insula) functions, while the hubs in adults, the posterior cingulate
and inferior frontal, deals more with high-order cognitive functions such as episodic
memory, referential activity and decision making (175, 179, 181, 226). This finding
suggests a gradual shift of brain’s most important regions from sensory processing to
cognitive processing, which is in line with the developmental time course of these
functions. Regarding the hubs detected in adult group, Hagmann et al (42) conducted an

extensive structural connectivity study, where they found that “the spatial distribution of
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ROIs with high betweenness centrality shows high centrality for regions of medial cortex
such as the precuneus and posterior cingulate cortex, as well as for portions of medial
orbitofrontal cortex, inferior and superior parietal cortex, as well as portions of frontal
cortex.” Their findings are highly consistent with our results (Fig.9), suggesting strong
structural basis for the detected “functional hubs” in this study.
8.4.3 Development of Small-world Properties

Finally, our results show that starting from neonates, the brain exhibits a small-
world network organization, which reinforces the important role of prenatal functional
development (33). Significant improvement of small-world properties is observed during
the first year of life, which is consistent with the most extensive inter-regional
connectivity changes (Fig.1) as well as modular structure reorganizations (Fig.5).
However, after 1-year-old, the small world property shows minimal changes utill
adulthood. Surprising as this result seems to be, it is to some extent consistent with the
previous findings comparing school age children with adults (211, 212) where they also
failed to observe significant small-world property changes. Our results extend this
“plateau” period to the end of 1-year-old, suggesting that even though brain undergoes
extensive inter-regional connection changes as well as dramatic modular structure
changes after the first year, its global small world property gets neither improved nor
disturbed but rather remains stable. Given the fact that local clustering is already one of
the features in neonates and the establishment of most long-range connections are done
before 1-year-old (250-252), this finding seems to reflect the facts that small-worldness is

not sensitive to organization changes once these two elements are both met. On the other
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hand, this reinforces the important role of the first year in global brain development, both

structurally and functionally.

Table 8.1 List of regions in anatomical sub-divisions

Frontal Superior frontal gyrus Occipital Superior occipital gyrus
Middle frontal gyrus Middle occipital gyrus
Inferior opercular frontal gyrus Inferior occipital gyrus
Inferior triangular frontal gyrus Cuneus
Superior medial frontal gyrus Calcarine cortex
Paracentral lobule Lingual gyrus
Superior orbital frontal gyrus Fusiform gyrus
Superior medial orbital frontal
gyrus

Middle orbital frontal gyrus
Inferior orbital frontal gyrus
Rectus gyrus

Olfactory gyrus
Parietal Superior parietal gyrus Limbic Temporal pole: superior

Inferior parietal gyrus temporal gyrus

Angular gyrus Temporal pole: middle temporal

Supramarginal gyrus gyurs

precuneus Anterior cingualte cortex

Precentral gyrus Median cingulate cortex

Postcentral gyrus Posterior cingulated cortex

Supplementary motor area Hippocampus

Rolandic operculum Parahippocampal gyrus
Temporal Superior temporal gyrus Sub-cortical Amygdala

Middle temporal gyurs Caudate nucleus

Inferior temporal gyrus Putamen

Heschl gyrus Pallidum

Thalamus
Insula

Table 8.2 Abbreviations of regions
Frt-S Superior frontal gyrus Temp-S Superior temporal gyrus
Frt-m Middle frontal gyrus Temp-M Middle temporal gyurs
Frt-1-Op Inferior opercular frontal gyrus Temp-I Inferior temporal gyrus
Frt-I-T Inferior triangular frontal gyrus Heshl Heschl gyrus
Frt-S-M Superior medial frontal gyrus Occpt-S Superior occipital gyrus
ParaC Paracentral lobule Occpt-M Middle occipital gyrus
Frt-S-Ob Superior orbital frontal gyrus Occpt-I Inferior occipital gyrus
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Frt-m-0O Superior medial orbital frontal gyrus  Cuneus

Frt-M-Ob  Middle orbital frontal gyrus Calcarine
Frt-1-Ob Inferior orbital frontal gyrus Lingual
Rectus Rectus gyrus Fusiform
Olfactory  Olfactory gyrus Temp-P-S
Prt-S Superior parietal gyrus Temp-P-M
Prt-1 Inferior parietal gyrus Cg-A
Angular Angular gyrus Cg-M
SMargl Supramarginal gyrus Cg-P
Precuneus precuneus Hpcmp
PreC Precentral gyrus ParaHpcmp
PosC Postcentral gyrus Amygdala
SMA Supplementary motor area Caudate
Rolandic Rolandic operculum Putamen
Pallidum Pallidum Thalamus
Insula

Cuneus

Calcarine cortex

Lingual gyrus

Fusiform gyrus
Temporal pole: superior
temporal gyrus
Temporal pole: middle
temporal gyurs

Anterior cingualte cortex
Median cingulate cortex
Posterior cingulated cortex
Hippocampus
Parahippocampal gyrus
Amygdala

Caudate nucleus
Putamen

Thalamus

Insula

Table 8.3.1 Regions in different modules-neonates

Frontal

Frt-S-R
Frt-S-L
Frt-S-Ob-R
Frt-S-Ob-L
Frt-M-R
Frt-M-L
Frt-M-Ob-R
Frt-M-Ob-L
Frt-1-Op-L
Frt-I-T-R
Frt-I-T-L

Frt-1-Ob-R
Frt-1-Ob-L
Frt-S-M-R
Frt-S-M-L
Frt-M-O-R
Frt-M-O-L
Rectus-R
Rectus-L
Cg-A-R
Cg-A-L

Occipital-temporal

PrHpcmp-R
PrHpcmp-L
Calcarine-R
Calcarine-L
Cuneus-R
Cuneus-L
Lingual-R
Lingual-L
Occpt-S-R
Occpt-S-L
Occpt-M-R

Occpt-I-L
Fusiform-R
Fusiform-L
SMargl-L
Angular-R
Angular-L
Temp-S-L
Temp-M-R
Temp-M-L
Temp-P-M-L
Temp-I-R

Parietal-Limbic

PreC-R
PreC-L
SMA-R
SMA-L
Cg-M-R
Cg-M-L
Cg-P-R
Cg-P-L
PostC-R
PostC-L

Prt-S-R
Prt-S-L
Prt-I-R
Prt-I-L
SMargl-R
Precuneus-R
Precuneus-L
ParaC-R
ParaC-L

Sub-cortical-centered

Frt-1-Op-R
Rolandic-R
Rolandic-L
Olfactory-R
Olfactory-L
Insula-R
Insula-L
Hpcmp-R
Hpcmp-L
Amygdala-R
Amygdala-L

Putamen-R
Putamen-L
Pallidum-R
Pallidum-L
Thalamus-R
Thalamus-L
Heschl-R
Heschl-L
Temp-S-R
Temp-P-S-R
Temp-P-S-L




Occpt-M-L
Occpt-I-R

Temp-I-L

Caudate-R
Caudate-L

Temp-P-M-R

Table 8.3.2 Regions in different modules-1-year-old

Dorsal Frontal

Frt-S-R
Frt-S-L
Frt-M-R
Frt-M-L
Frt-1-Op-L
Frt-I-T-R
Frt-I-T-L
Frt-S-M-R
Frt-S-M-L
Cg-A-R
Cg-A-L

Occipital

Calcarine-R
Calcarine-L
Cuneus-R
Cuneus-L
Lingual-R
Lingual-L
Occpt-S-R
Occpt-S-L

Occpt-M-R
Occpt-M-L
Occpt-I-R
Occpt-I-L
Fusiform-R
Fusiform-L

Orbital-frontal-temporal

Frt-S-Ob-R
Frt-S-Ob-L
Frt-M-Ob-R
Frt-M-Ob-L
Frt-I-Ob-R
Frt-I-Ob-L
Olfactory-R
Olfactory-L
Frt-M-O-R
Frt-M-O-L
Rectus-R
Rectus-L
Sub-cortical
Hpcmp-R
Hpcmp-L
Caudate-R
Caudate-L
Putamen-R
Putamen-L
Pallidum-R
Pallidum-L

Thalamus-R
Thalamus-L

Parietal-Limbic

PrHpcmp-R PreC-R
PrHpcmp-L PreC-L
Amygdala-R SMA-R
Amygdala-L SMA-L
Temp-P-S-R Cg-M-R
Temp-P-S-L Cg-M-L
Temp-M-R Cg-P-R
Temp-M-L Cg-P-L
Temp-P-M-R PostC-R
Temp-P-M-L PostC-L
Temp-I-R Prt-S-R
Temp-I-L
Mixed
Frt-1-Op-R
Rolandic-R
Rolandic-L
Insula-R
Insula-L
Heschl-R
Heschl-L
Temp-S-R
Temp-S-L

Prt-S-L
Prt-1-R
Prt-1-L
SMargl-R
SMargl-L
Angular-R
Angular-L
Precuneus-R
Precuneus-L
ParaC-R
ParaC-L

Table 8.3.3 Regions in different modules-2-year-old

Dorsal Frontal

Frt-S-R
Frt-S-L
Frt-M-R
Frt-M-L
Frt-1-Op-L
Frt-1-Op-R
Frt-I-T-R
Frt-1-T-L
Frt-S-M-R
Frt-S-M-L
Cg-A-R
Cg-A-L

Orbital-frontal-temporal

Frt-S-Ob-R
Frt-S-Ob-L
Frt-M-Ob-R
Frt-M-Ob-L
Frt-1-Ob-R
Frt-I-Ob-L
Olfactory-R
Olfactory-L
Frt-M-O-R
Frt-M-O-L
Rectus-R
Rectus-L

Temp-P-S-R
Temp-P-S-L
Temp-M-R
Temp-M-L
Temp-P-M-R
Temp-P-M-L
Temp-I-R
Temp-I-L

Parietal-Limbic

PreC-R
PreC-L
SMA-R
SMA-L
Cg-M-R
Cg-M-L
Cg-P-R
Cg-P-L
PostC-R
PostC-L
Precuneus-R
Precuneus-L

Lateral Parietal
Prt-S-R
Prt-S-L
Prt-I1-R
Prt-I-L
SMargl-R
SMargl-L
Angular-R
Angular-L

155



ParaC-R

ParaC-L
Occipital Sub-cortical Mixed
Calcarine-R Occpt-M-R Hpcmp-R PrHpcmp-R Rolandic-R
Calcarine-L Occpt-M-L Hpcmp-L PrHpcmp-L Rolandic-L
Cuneus-R Occpt-I-R Caudate-R Amygdala-R Insula-R
Cuneus-L Occpt-I-L Caudate-L Amygdala-L Insula-L
Lingual-R Fusiform-R  Putamen-R Heschl-R
Lingual-L Fusiform-L  Putamen-L Heschl-L
Occpt-S-R Pallidum-R Temp-S-R
Occpt-S-L Pallidum-L Temp-S-L
Thalamus-R
Thalamus-L
Table 8.3.4 Regions in different modules-Adults
Frontal-Cingulate-Parietal Occipital-temporal Sub-Cortical-Cortical
Frt-S-R Cg-P-R Hpcmp-R Occpt-M-R Rolandic-R Putamen-R
Frt-S-L Cg-P-L Hpcmp-L Occpt-M-L Rolandic-L Putamen-L
Frt-M-R Prt-S-R PrHpcmp-R Occpt-I-R Insula-R Pallidum-R
Frt-M-L Prt-S-L PrHpcmp-L Occpt-I-L Insula-L Pallidum-L
Frt-1-Op-R Prt-I-R Amygdala-R Fusiform-R Cg-A-R Thalamus-R
Frt-1-Op-L Prt-I-L Amygdala-L Fusiform-L Cg-A-L Thalamus-L
Frt-I-T-R SMargl-L Calcarine-R Temp-P-S-L Cg-M-R Heschl-R
Frt-I-T-L Angular-R Calcarine-L Temp-M-R Cg-M-L Heschl-L
Frt-S-M-R Angular-L Cuneus-R Temp-M-L SMargl-R Temp-S-R
Frt-S-M-L Precuneus-R Cuneus-L Temp-P-M-R Caudate-R Temp-S-L
Precuneus-L Lingual-R Temp-P-M-L Caudate-L
Lingual-L Temp-I-R
Occpt-S-R Temp-I-L
Occpt-S-L
Central Orbital-Frontal
PreC-R Frt-S-Ob-R Frt-M-O-R
PreC-L Frt-S-Ob-L Frt-M-O-L
SMA-R Frt-M-Ob-R Rectus-R
SMA-L Frt-M-Ob-L Rectus-L
PostC-R Frt-1-Ob-R Temp-P-S-R
PostC-L Frt-1-Ob-L
ParaC-R Olfactory-R
ParaC-L Olfactory-L
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Chapter 9
A Unified Optimization Approach for Diffusion Tensor Imaging

Technique

Diffusion weighted imaging techniques including DTI and various HARDI
methods demand a much higher signal-to-noise ratio (SNR) than that of conventional MR
imaging sequences in order to provide accurate diffusion measures for quantitative
evaluation of the underlying diffusion property and tractography. Therefore, extensive
effort has been devoted to optimizing the experimental design of these techniques (253-
258). In this Chapter, we present a unified DTI optimization approach based on our
published paper “A Unified Optimization Approach for Diffusion Tensor Imaging
Technique” (259), which partly resolve the problem of an overall optimal design of DTI
experiment. Further optimization of HARDI techniques for better resolving the crossing
fiber orientations are also extremely important and deserve further work.

9.1 Introduction

Diffusion tensor imaging (DTI) has become an invaluable non-invasive imaging
tool to provide insights into the microstructural integrity of white matter. While its
clinical utility has largely been demonstrated, DTI demands a much higher signal-to-
noise ratio (SNR) than that of conventional MR imaging sequences in order to provide

accurate and quantitative diffusion measures. = Therefore, extensive effort has been



devoted to optimizing DTI (37), in an attempt to improve the accuracy and precision of
tensor estimation. These optimizations include the choices of imaging parameters (253-
258, 260-263), the approaches through which tensors are estimated (36, 264, 265), and
the design of diffusion gradient directions (266-268). While intriguing results have been
reported, demonstrating the improved tensor estimations using these optimization
approaches, all of the existing approaches thus far ha