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ABSTRACT 

Matthew T. Martin 

Classification of Chemicals Based on Structured Toxicity Information 

“Under the direction of Drs. David J. Dix and Ivan Rusyn” 

 

Thirty years and millions of dollars worth of pesticide registration toxicity studies, 

historically stored as hardcopy and scanned documents, have been digitized into highly 

standardized and structured toxicity data within the Toxicity Reference Database 

(ToxRefDB).  Toxicity-based classifications of chemicals were performed as a model 

application of ToxRefDB.  These endpoints will ultimately provide the anchoring toxicity 

information for the development of predictive models and biological signatures utilizing in 

vitro assay data.  Utilizing query and structured data mining approaches, toxicity profiles 

were uniformly generated for greater than 300 chemicals.  Based on observation rate, species 

concordance and regulatory relevance, individual and aggregated effects have been selected 

to classify the chemicals providing a set of predictable endpoints.  ToxRefDB exhibits the 

utility of transforming unstructured toxicity data into structured data and, furthermore, into 

computable outputs, and serves as a model for applying such data to address modern 

toxicological problems.    
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Chapter 1 

 

Literature Review 

 

 The United States Environmental Protection Agency (EPA) has identified roughly 

9,000 environmental chemicals that have been or may need to be assessed for their human 

exposure and toxicity potential (Judson et al In Press).  In order to fully assess the toxicity of 

these chemicals, the current testing paradigm requires in vivo mammalian toxicity studies 

that require thousands of animals, millions of dollars and years to complete.  In an effort to 

investigate the utility of alternative toxicity testing strategies, three large-scale efforts have 

begun to test libraries of chemicals, including pharmaceuticals, industrial chemicals and 

pesticides.  The National Institutes of Health (NIH) Chemical Genomic Center (NCGC), 

National Toxicology Program (NTP) and EPA each have research programs for generating in 

vitro assays results on hundreds if not thousands of chemicals (Collins et al 2008; Inglese et 

al 2007; NTP 2004; Dix et al 2007).  Current efforts in QSAR (quantitative structure-activity 

relationship) model development are working through chemical space and into biological 

activity and in vitro assay results to bolster predictive power (Zhu et al 2008).   

 The combination of unprecedented amounts of biological data being generated and 

the development of methods for integrating and analyzing these diverse datasets makes it 

imperative that the anchoring endpoints and adverse outcomes be just as computable and 
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biologically-relevant.  A common thread among these developing technologies and 

approaches is the need for reference toxicity information and detailed toxicity classifications 

of chemicals.   

 The amount of reference toxicity information on environmental chemicals, including 

primary studies, study reviews and summarized reports, quickly diminishes beyond pesticide 

active ingredients, Integrated Risk Information System (IRIS) chemicals, NTP nominated 

chemicals and a few other sources (Judson et al In Press).  There is little direct literature on 

detailed toxicity-based chemical classification.  However, efforts to digitize and structure the 

vast stores of open literature and unpublished industry-submitted studies will provide the 

information in a context amenable to classifying chemicals with respect to their toxicity.  The 

currently available chemical-induced toxicity databases vary widely in breadth and depth of 

information (Yang et al 2006a, 2006b; Bitsch et al 2006).  The Yang et al papers (2006a, 

2006b) summarize the available toxicity databases and places them into various categories 

based on their content and structure.  IRIS is a good example of a database that has large 

content, covering greater than 500 chemicals and multiple toxicities, but lacks the 

standardization and detailed relational structure to provide accurate and efficient read-across 

(U.S. EPA 1997).  Yang et al further describe systems that store literature citations and 

summary toxicity information such as TOXNET, which are invaluable resources for 

chemical-specific literature searches and safety assessment, but lack searchability and read-

across.  ToxML, and related Food and Drug Administration (FDA) databases, and 

REPDOSE are two examples of relational formats that currently house hundreds of 

chemicals and multiple study types in a standardized format, including controlled 

vocabularies (Yang et al 2006a; Bitsch et al 2006).  These databases primarily cover 
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pharmaceuticals and industrial chemicals, but are limited in their coverage of pesticides.  

There is no direct literature on the robust toxicity dataset produced for pesticide active-

ingredients, but through regulatory mandates many pesticides undergo a full suite of 

mammalian toxicity testing.   

 In addition to the toxicity database efforts, more chemical-centric databases and 

curation efforts have begun to identify the landscape of toxicity information associated with 

environmental chemicals (Judson et al In Press).  The EPA DSSTox program is dedicated to 

hand curated chemical structure and using the chemical structure as a link to external data 

sources (US EPA 2007; Richard 2004), which provides an invaluable resource for 

aggregating information across varying domains of information.  These chemical information 

domains are well characterized in Judson et al (In Press), and are broken down into chemical 

structure, physicochemical properties, biochemical assay data, in vivo toxicology assay data 

primary tabular and secondary tabular, in vivo toxicology test reports via URL, in vivo 

toxicology summary calls, regulatory listings, chemical categories and phenotypes.  The 

information is stored in the EPA ACToR (Aggregated Computational Toxicology Resource) 

database, which also uses chemical identity and structure as a primary link between data 

sources (Judson et al 2008).  Many of the data sources within ACToR were culled from the 

internet.   

 Web accessible toxicological data sources have been previously characterized (Felsot 

2002; Russom 2002; Junghans et al 2002; Winter 2002; Wolfgang 2002; Young 2002; 

Patterson 2002).  These internet resources range from food and drug toxicity to 

environmental and ecological toxicity.  Some of the internet sources provide fairly detailed 

summaries from cancer-related and genotoxicity studies.  However, the information from 
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these various sources is dispersed across the internet and in a wide variety of formats.  

Systems such as TOXNET, DSSTox, ACToR and PUBCHEM have made many of these 

resources available in a compiled format able to be searched based on chemical structure.   

 With existing efforts to make available, digitize and structure the toxicity information 

landscape for environmental chemicals, researchers have begun to compute with the 

compiled information for a variety of purposes.  Analysis of legacy toxicity data for 

understanding the importance of specific toxicity tests and their role in the risk assessment 

process is underway.  Reproductive toxicity study retrospective analyses have sought to 

understand the role of the second generation in hazard identification and the overall 

assessment of reproductive toxicity (Janer et al 2007a).  Additionally, retrospective analyses 

on developmental toxicity studies measuring the value of running a second species through 

developmental toxicity studies. (Janer et al 2007b).  These retrospective efforts demonstrate 

the ability to take structured toxicity information and test hypothesis through data analysis. 

 Using legacy toxicity information for analyzing species concordance has assisted in 

risk assessment decisions for specific tumor types and assisted in rodent to human 

extrapolation.  Gold et al (2001) characterized species concordance for 1458 chemicals that 

did or did not cause tumors in various species.  A similar approach was taken in the 

pharmaceutical industry, but with a focus on the concordance between human and animal 

toxicities with an overall conclusion supporting animal testing (Olson et al 2000). 

 Additionally, efforts to use surrogate or shorter-term in vivo endpoints to predict 

long-term outcomes have demonstrated the use of legacy toxicity information for predictive 

toxicology.  In Mathews et al (2005), gene mutation in Salmonella and in vivo micronucleus 

genetic toxicity studies showed good correlation for predicting carcinogenicity.  In Allen et al 
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(2004), specific shorter-term liver pathologies were used as forecasters of liver tumor 

formation.  These studies may be limited in their application for risk assessment or other 

regulatory toxicology applications, but are quality examples of utilizing legacy toxicity data 

in a computable manner across a relatively large set of chemicals. 

 The next step taken, as shown in the Zhu et al (2008) paper, was the incorporation of 

screening data or alternative testing data, including genomics, into predictive toxicology.  In 

Fielden et al (2002), approaches for predicting toxicity using in silico methods and 

alternative testing data was laid out for toxicologist to advance the understanding of the 

molecular basis of toxicity.  Iconix’s Drug Matrix® stored experimental information from 

genomic studies including detailed pathology and developed genomic signatures or 

classifiers predictive of toxicity (Fielden et al 2005; Fielden et al 2007) and showed promise 

in predicting toxicities of environmental chemicals (Martin et al 2007).  Importantly, the use 

of reference toxicity information was used in the development of the classifiers in all studies.  

 Similar governmental efforts to create the data management tools for storing genomic 

and phenotypic information has created the computational environments for the analysis of 

large genomic datasets with corresponding toxicity or phenotypic data.  NIEHS’s Chemical 

Effects in Biological Systems (CEBS) has been developed to store diverse biological 

information resulting from various toxicity and biological studies (Waters et al 2003).  

Systems-based toxicology in the world of drug discovery and drug safety assessment has 

begun to take hold and used as a viable approach both early in the discovery process and later 

in assessing toxicological information (Mayne et al 2006).  Some of the tools that are making 

this possible include ingenuity pathway analysis, and in Fliri et al (2005) the ingenuity 

pathway analysis tools along with other analyses demonstrated that linking in vitro assay 
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results to drug label information and adverse effect data provided mechanistic insight into 

purported toxicities and side-effects of drugs.  Similar system-based and pathway-based 

approaches for toxicity prediction to limit the high attrition rate of pharmaceuticals in the 

pipeline have produced other tools and products (Apic et al 2005).  These analytical tools 

required extensive curation of the biological literature and resulted in large databases for 

storing the information.      

 The developmental of biological databases, including the controlled vocabularies that 

enable read-across, have pushed forward the field of toxicology, but have also identified data 

gaps in both general toxicity information and the molecular basis for the toxicity.  

Furthermore, novel challenges have arisen in the field of toxicology and more broadly the 

field of biology due to the ever increasing complexity and size of generated datasets and the 

need for standardization across those datasets, whether it is traditional toxicology, genomics 

or screening data.  These challenges have given rise to the field of bioinformatics to assist in 

solving the issues and challenges by integrating computer science with biological sciences 

(Roos 2001).  The field of toxicology continues to utilize bioinformatics tools and resources, 

but there are emerging needs for further database and analytical tool development, including 

the digitization of legacy pesticide toxicity information into relational databases to make the 

information accessible to the scientific community. 

 The development of reference toxicity and detailed pathway and cellular network 

databases can provide the context for interpreting generated molecular- and cellular-level 

data.  The reference toxicity information can be thought of as a form of phenotypic anchoring 

even though the information is extrinsic to the experiments.  The importance and role of 

phenotypic anchoring for in vivo toxicogenomics studies has been well laid out (Paules 
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2003).  The fundamental principle of phenotypic anchoring has experimentally shown to 

provide clearer profiles of biological perturbation.  In Powell et al (2006), toxicity endpoints 

and protein adduct formation was used to phenotypically anchor oxidative stress gene 

expression due to acetaminophen exposures.  There are many other examples of using the 

concept of phenotypic anchoring for deriving differentially expressed genes and genomic 

classifiers predictive of the final endpoint (Fielden et al 2005).  With high-throughput and 

high-content assays being available direct phenotypic anchoring is not possible in the same 

way as in vivo experiments.  External sources of phenotypic anchoring, including reference 

toxicity information, are needed to provide the context for the in vitro experiments.  In 

general, the data generation and analysis as applied to toxicology has integrated a broad set 

of scientific disciplines and has formed a sub-discipline called computational toxicology.  

The breadth of research in the field of computational toxicology was outlined in Kavlock et 

al (2007) and further demonstrates the need for data generation and analysis consistency.        
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Chapter 2 

 

Introduction 

 

 In an order to progress toward alternative toxicity testing and novel predictive 

methods as laid out by the National Academy Sciences’ (NAS) National Research Council 

(NRC) in “Toxicity Testing in the Twenty-first Century: A Vision and a Strategy” (NRC 

2007), the scientific community must recycle existing legacy data, through digitization, in 

order to further enable the driving technologies.  Historically, the traditional toxicity studies 

performed by industry in support of pesticide registration have been used for the 

development of risk assessments on a single compound or representative group of 

compounds and can cost up to $10 million dollars per chemical.  This vast store of high 

quality guideline legacy toxicity information on hundreds of compounds has thus far been 

electronically inaccessible.  The electronic capture and structuring of pesticide toxicity 

information alone will serve as an invaluable resource for both retrospective and prospective 

scientific efforts. 

 Although an extensive body of open literature toxicity studies is available, the ability 

to automate data mining of unstructured information and extract uniform toxicity endpoints 

across a large chemical set has not been demonstrated.  Initiatives to electronically store the 

vast amounts of legacy toxicity data into databases has been characterized previously (Yang 
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et al 2006a, 2006b).  A portion of these efforts have successfully stored toxicity study 

information at varying levels of granularity in a relational format utilizing an XML standard 

(e.g., ToxML), controlled vocabularies, and/or standardized data models (e.g., REPDOSE 

(Bitsch et al 2006)).  The chemical coverage for these databases includes pharmaceuticals 

and industrial chemicals, but is limited in their coverage of pesticides.   

 Pesticide manufacturers undergoing registration and reregistration of pesticide 

products and formulations through the EPA are mandated under the Federal Insecticide, 

Fungicide and Rodenticide Act (FIFRA) to meet specific data requirements, one of which is 

toxicological testing.  There are various levels of toxicological testing required based on use 

pattern, production volume and other factors.  All existing pesticides active ingredients 

registered before November 1, 1984 must be reevaluated for their effects on human health 

and the environment, due to various legislative mandates including the 1988 FIFRA 

amendments and the FIFRA and Federal Food, Drug and Cosmetic Act (FFDCA) as 

amended by the Food Quality Protection Act of 1996 (FQPA).  New pesticides active 

ingredients, meaning any ingredients introduced since 1978, have required extensive testing 

to progress from development to registration.  Specifically, food-use pesticide active 

ingredients require a complete set of in vivo mammalian oral toxicity studies due to human 

oral exposure potential.  The results of EPA's review on a chemical’s product chemistry, 

efficacy, toxicology, environmental fate and effects and exposure assessment are primarily 

summarized in Reregistration Eligibility Decision (RED) documents.  

 In order to complete the RED documents and other similar reviews, registrant-

submitted toxicity studies are reviewed by the agency for data quality and scientific content 

in Data Evaluation Records (DERs).  Each DER includes reviews on individual studies for 
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their adherence to Office of Prevention, Pesticides and Toxic Substances (OPPTS), 

OPPTS/Office of Pesticide Programs (OPP) and Organization for Economic Co-operation 

and Development (OECD) health effect guidelines that have been established in various 

forms over the years.  DERs also supply detailed study design, categorical endpoint, critical 

effect and complete dose-response information. 

 The EPA and other regulatory agencies are investigating novel approaches to predict 

toxicity in order, for instance, to reduce the number of animals required for toxicity testing, 

to increase mechanistic understanding of chemical toxicity and to carry out large scale 

screening of chemicals that have not previously been fully characterized.  All of these efforts 

require a body of high quality in vivo toxicity data in order to test and validate new 

approaches.  To assist these efforts, the EPA is developing a searchable compilation of data 

from regulatory studies and compiling this data into a database called ToxRefDB 

(Toxicological Reference Database).  The ToxRefDB effort is initially focused on entering 

subchronic rodent, developmental rat and rabbit, multigeneration reproduction rat, 

chronic/cancer rat and cancer mouse studies.  The database schema is generalized to capture 

all OPPTS, OPP, OECD mammalian toxicity guideline studies on technical grade chemicals, 

including additional study types such as 28-day neurotoxicity and developmental 

neurotoxicity studies.  Additionally, detailed taxonomical effect vocabularies have been 

developed for repeat measure effects such as clinical chemistry, hematology and urinalysis, 

for terminal target organ observations such as organ weight, gross pathology and non-

neoplastic and neoplastic pathology, and for non-organ-directed toxicity such as clinical 

signs, neurotoxicity, developmental toxicity and reproductive toxicity. 
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 An important initial application of ToxRefDB is to provide anchoring in vivo toxicity 

data  for the EPA ToxCast™ research program, which has been designed to address the 

agency’s needs for chemical prioritization by using state-of-the-art approaches in high-

throughput screening (HTS) and toxicogenomics (Dix et al 2007).  Nearly all of the ToxCast 

Phase I chemicals are food-use pesticide active ingredients and have undergone the full suite 

of mammalian toxicity tests making for an unparalleled reference set of toxicological 

information.  The complete and highly standardized dataset provided by ToxRefDB 

facilitates analysis of the ToxCast Phase I chemicals across chemical, study type, species, 

target organ and effect. 

 Finally, ToxRefDB serves as a model for other efforts to capture quantitative, tabular 

toxicology data from legacy and new studies, and to make this data useable for cross-

chemical computational toxicology analysis.    
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Chapter 3 

 

Methods 

 

Data Characteristics   

 The reviews on the registrant-submitted toxicity studies, known as Data Evaluation 

Records or DERs, were collected for roughly 400 chemicals.  The file types of the DERs 

include TIFF, Microsoft Word, Word Perfect and PDF formats, some of which are not text-

readable.  Every DER file was then indexed based on a file name convention that consisted 

of the OPP Pesticide Chemical Code (PC Code), study identification number (MRID), study 

type identification number (based on 870 series OPPTS harmonized health effect guidelines), 

species code, review identification number (TXR) and a review version code, which 

identified the review as a primary review, secondary review, supplemental review, updated 

executive summary, or a deficient review.  In total 4,620 DERs were indexed spanning 

roughly 3,000 studies.  The searchable file structure created an efficient work-flow for 

database population.  Each study assesses a single technical grade chemical’s toxicity 

potential in a single species, spanning developmental, reproduction, subchronic, chronic and 

cancer toxicities.  DER formats have changed over time, but the underlying content has 

remained consistent.  The first portion of the DER outlines the test substance, purity, 

lot/batch numbers, MRID, citation, OPPTS guideline and reviewers of the study.  The 
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executive summary captures all of the basic study design information, including species and 

strain, doses, number of animals per treatment group and any deficiencies in study protocol.  

In addition, the executive summary describes the most relevant observed effects and 

establishes the appropriate No Observed Adverse Effect Level (NOAEL) and Lowest 

Observed Adverse Effect Level (LOAEL) endpoints for the study based on the identified 

critical effects.  The next sections, which are test material and animal information, can be 

used to verify the test substance identity and purity and to provide detailed species/strain and 

husbandry information.  Full dose response information is then provided in text and tables 

under a variety of headings, which in this thesis will be referred to as ‘effect type’ and listed 

in order of appearance within most DERs.  For most DERs these are mortality, clinical signs, 

clinical chemistry, hematology, urinalysis, gross pathology, non-neoplastic pathology and 

neoplastic pathology.  For reproductive and developmental studies parental, offspring, 

reproductive, maternal and fetal effects are listed separately.  Within each effect type 

heading, ‘effect target’ (i.e., clinical parameters or target organs) results are displayed.  Some 

effect targets can be described simply as increasing or decreasing, whereas pathological 

results are presented as specific ‘effect descriptions’, e.g., hypertrophy and hyperplasia. 

Relational Model 

 In the development of ToxRefDB, a relational model approach was taken with input 

from other subject-specific database model approaches, including ToxML.  The resulting 

data model is therefore semi-hierarchical in nature: a single compound was tested in multiple 

studies; each study contained multiple treatment groups; multiple effects could be observed 

in each treatment group.  The data model was conceptualized from a chemical-centric view 

to propagate data integration and exchange across various systems and to facilitate linking of 
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the reference toxicity information to chemical-specific data generated using in vitro 

technologies.  Simplifying constraints, based on OECD/OPPTS harmonized health effect 

guidelines, identify study design parameters that must be met, ranging from the purity and 

administration methods of the test compound to the number of animals in a treatment group.  

The relational model was then implemented into a table structure with established 

relationships ensuring data integrity, updateability and standardization (Figure 1).  Specific 

components of the relational data model are highlighted individually in Appendix A, B, C 

and D. 
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Figure 1.  ToxRefDB Relational Data Model   

Development of a Toxicity-based Controlled Vocabulary 

 The development of controlled vocabularies within ToxRefDB was necessary for the 

standardization of data captured across the various study types and studies performed over 
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roughly 30 years.  The non-redundant list of terms across various domains provided data 

integrity and searchability.  

 The chemical information within ToxRefDB has relied on the chemical identification 

and structural curation within EPA’s DSSTox Program (U.S. EPA 2007) and the chemical 

data management within ACToR (Aggregated Computational Toxicology Resource) (Judson 

et al In Press).  ACToR will link the toxicology data in ToxRefDB to the high-throughput 

screening (HTS) data being generated through the ToxCast program. 

 The study type vocabulary was based on the unique study types harmonized by 

OECD and OPPTS (U.S. EPA 1996).  Specific standardized terminology for study design 

was established for species/strain, method/route of administration and units for dose and 

duration.  Treatment group-related vocabularies were developed to establish the generation, 

gender, and dosing period.    

 A primary goal in reviewing the registrant-submitted toxicity studies is to establish 

NOAEL/LOAEL pairs for a variety of categorical endpoints, including systemic, offspring, 

maternal, parental, developmental and reproductive toxicity, all across the study types.  

These categorical endpoints are captured and normalized across studies at the effect level, 

enabling a direct link to the critical effects in which the NOAEL/LOAEL was derived.   

 The development of a toxicological effect vocabulary was approached in a domain-

specific manner, with clinical pathology terms being derived from existing literature, 

reproductive and developmental toxicity terminology collected from various collaborative 

resources including the International Life Sciences Institute’s (ILSI) Developmental 

Toxicology Working Group and organ pathology terms collated from the National 

Toxicology Program’s (NTP) “Pathology Code Tables” (NTP 2007).  The vocabulary then 
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underwent further standardization by mapping all synonymous terms to a single non-

redundant value.  A taxonomical approach was then taken for establishing the finalized effect 

vocabulary based on a three-tiered hierarchical model with the effect type being the top layer, 

followed by effect target and by effect description.  Examples of effect type include clinical 

chemistry, hematology, urinalysis, body weight, mortality, gross pathology, non-neoplastic 

pathology, neoplastic pathology, developmental and reproductive effects.  Subclasses of 

these types include specific target organs (e.g., liver, lung, spleen, etc.) or measured analytes 

(e.g., ALT, AST, cholesterol, etc.).  The specific combinations of effect type and target are 

then further sub-classed based on a non-redundant descriptive term (e.g., increase, decrease, 

hypertrophy, atrophy, etc.).  Specific to the organ pathology terms, each target organ has a set 

of regions, zones and cell types that characterize the site of toxicity.  A common 

representation of the data throughout the manuscript relies on the hierarchical nature of the 

vocabulary and will be represented as such with study type at the highest level, then tested 

species, followed by the combination of effect type, target and description.  Vocabularies 

were developed under a standardized and taxonomic approach.  Further groupings and 

relationships between entities have been established that begin the development of a toxicity 

endpoint-based ontology. 

Data Input 

 The ToxRefDB Data Entry Tool was developed in Microsoft Access® and provides 

the user interface for all initial data input.  Following initial quality control, discussed below, 

the data is migrated to ToxRefDB, which has been implemented using the open source 

MySQL™ platform.  The ability to utilize the legacy toxicity data entered into ToxRefDB 

requires consistent and accurate data entry.  The initial phase of data entry has consisted of a 
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series of protocols, outlined in a ToxRefDB Standard Operating Procedures (SOP) document, 

that call for mapping the toxicological information to standardized fields and vocabulary and 

extracting treatment-related effects from any given study.  Data entry priority has been 

broken down by study type, with the subchronic rodent, chronic/cancer rat and cancer mouse 

studies being entered first, followed by multigenerational rat studies and developmental rat 

and rabbit studies.  The next phase of data entry will involve the entry of additional study 

types in collaboration with OPP following completion of the initial dataset.    

Data Quality Control and Management 

 Entered studies have undergone up to 100% cross-checking, which entails having 

secondary data entry personnel validate each entered value based on the source information 

(primarily the DERs).  Internal quality control (QC) consists of continued cross-checking of 

studies by data entry personnel, systematic updates of ToxRefDB to ensure consistency 

across the studies and a tiered QC approach for the entered studies.  The tiered approach 

involves up to 10% independent QC.  Error rates greater than 2% trigger 100% QC of related 

fields or records. 

Data Output and Analysis 

 Once quality control procedures have been conducted, analytic methods can be 

applied to specific ToxRefDB outputs.  In order to ensure consistency and repeatability of 

analysis a data format output template was established and directly queried using the 

ToxRefAnalysis program, which is written in Java™.  The first column consists of 

concatenated chemical information including CAS registry number and chemical name.  The 

second column represents the effect or endpoint and is implemented primarily as a 

concatenated set of fields representing study type, species and the effect (combination effect 

 18



type, target and description) or aggregated effects (effect group name).  The final column is 

primarily the lowest observed effect level (LOEL), but can be categorical or Boolean outputs 

as well.  ToxRefAnalysis cross-tabulates the result set from ToxRefDB and can perform 

specific data manipulation functions, including distinguishing missing study results from 

negative results and filtering out effects or chemicals that do or do not meet specific 

requirements.  The resulting dataset is a matrix of chemicals in the first column and effects 

along the first row, with LOEL filled in where appropriate.  The format is highly amenable to 

statistical data analysis, including descriptive and predictive data mining algorithms. 

 In order to assess statistically significant species concordance across different effects, 

a permutation study was carried out.  For each effect, the association between chemical and 

effect for the rat and mouse study was randomly permuted one thousand times.  The cross-

species concordance for all simulations (permutations) was recorded and compared to the 

observed concordance, thus giving an estimate of the concordance due purely to chance.  

Analyses were carried out using R version 2.6.1 (Ihaka and Gentleman 1996). 
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Chapter 4 

 

Results 

 

Summary Data Characterization 

 ToxRefDB captured in vivo mammalian toxicity study information from DER 

spanning 411 pesticide active chemicals.  A subset of these chemicals is being used in the 

first phase of the ToxCast program.  The focus of this thesis was on the entire set of 

ToxRefDB chemicals; however the resulting toxicity-based classifications of chemicals have 

been applied to the ToxCast chemical set.  Furthermore, this thesis focuses on systemic 

toxicity and cancer endpoints culled from subchronic rat, chronic/cancer rat and cancer 

mouse studies, which cover 334 chemicals.  

 ToxRefDB enabled analysis to be performed along toxicologically relevant axes, 

including by chemical, NOAEL/LOAEL, categorical endpoint, effect, aggregated effect 

group, study type and species.  Study duration, dosing methods, data quality, guideline 

adherence and gender were additional parameters for filtering or analyses.  Initial analysis 

was performed to assess regulatory relevance, commonality across chemicals, consistency 

across study types and species concordance.  By looking across all chronic/cancer rat, cancer 

mouse and subchronic rat studies, 31,427 effects were assigned to 4,431 different treatment 

groups in a total of 831 studies (Table 1). 
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  Chemicals Studies Treatment 
Groups 

Treatment 
Groups w/ 

Effects 
Effectsa Critical 

Effectsb

Total 334 831 9,466 4,431 31,427 4,865 
Subchronic Rat 236 251 2,179 1,370 11,796 1,739 

Chronic/Cancer Rat 281 300 4,228 1,721 12,215 1,822 
Cancer Mouse 266 280 3,059 1,340 7,416 1,304 

(a) - Total number of effect type, target, and description combinations assigned to any treatment group 
(b) - Effects that are criteria for establishing the systemic LOAEL 

Table 1.  ToxRefDB Summary Statistics   

 With individual effects being represented as a combination of study type, species, 

effect type, effect target and effect description, analyses at varying levels of this effect 

taxonomy focused downstream analysis.  Of the 31,427 effects 1,287 unique effects were 

observed, of which 601 were deemed critical effects in at least a single study.  In order to 

begin to characterize the chemicals based on these effects, the distribution of effects by effect 

type enabled comparisons and honed in on the most relevant classes of effects (Figure 2).  

The distribution of critical effects revealed that non-neoplastic pathologies predominate 

systemic endpoint selection based on the high percentage of NOAELs/LOAELs driven by 

non-neoplastic pathology.  This demonstrates the regulatory relevance of this class of 

endpoints.  Treatment-related changes in body weight also contribute significantly to 

systemic endpoint criteria.  However, systemic LOAELs were established based solely on 

body weight changes in 73 studies primarily at the high dose or maximum tolerated dose 

(MTD).  Observation rates were similar across study type and species with the exception of 

the clinical chemistry, hematology and neoplastic pathology, which were not routinely 

assessed due to study design or guideline requirements.  Therefore, study design constraints 

limited the ability to provide cross-species or cross-study classifications for clinical 

chemistry, hematology and neoplastic pathology.  Additional factors, including high rates of 

body weight changes and corresponding organ weight changes were consequences of study 
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design due to guideline requirements of testing up to the MTD in the chronic/cancer studies 

and using the subchronic study to establish the MTD.  Of the chemicals that caused 

neoplastic lesions in the rat or mouse chronic/cancer studies, 35% caused neoplastic lesions 

in both rat and mouse.  We define the percentage of chemicals that cause an effect in both rat 

and mouse over the total that cause the effect in only the rat or mouse the “species 

concordance” for that endpoint.  Species concordance for non-neoplastic pathology was 68% 

and consistency between the subchronic and chronic/cancer rat study was 74%. 

 

Figure 2.  Distribution of Effects by Type 
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Observation rate analysis of 334 chemicals across cancer mouse, chronic/cancer rat and 
subchronic rat studies.  % Observed is represented by the colored bars and is calculated as 
the percentage of chemicals with the observed effect type across the three studies.  The dark 
blue bars indicate the critical effects that derived the systemic NOAEL/LOAEL endpoint, 
whereas the light blue represents all other effects.  Non-neoplastic pathology critical effects 
are observed at the highest rate across all three study types. 
  
 Non-neoplastic pathology drove systemic endpoint selection, i.e., NOAEL/LOAEL 

levels, while neoplastic pathology results inherently inform regulatory cancer classification.  

The distribution of these pathological responses for the same 334 chemicals across target 

organ characterized the regulatory relevance, observation rate and identified organs that were 

further investigated for specific pathological effects (Figure 3).  Greater than 50% of the 

chemicals caused a treatment-related pathological response in the liver and greater than 30% 

in the rat kidney.  This observation made these organs obvious toxicologically-relevant 

targets and prime candidates for exploring individual effects.  Target organ pathology 

observation rates were similar across study type and species and only the liver and kidney 

effects were conserved across species as a pathological target at greater than 30%, a rate 

comparable to neoplastic lesions across all targets. 
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Figure 3.  Distribution of Effects by Type 
Target organ pathology observation rate analysis of 334 chemicals across cancer mouse, 
chronic/cancer rat and subchronic rat studies.  % Observed is represented by the colored bars 
and is calculated as the percentage of chemicals with the observed pathology across various 
target organs.  The dark blue bars indicate the critical effects that derived the systemic 
NOAEL/LOAEL endpoint, whereas the light blue represents all other effects.  Liver and 
kidney pathology effects are observed at the highest rate and are among the most prevalent 
and sensitive targets for establishing endpoints. 
  
 Specific, individual effect descriptions that relate to highly detailed pathological 

outcomes would provide classifications with the highest biological specificity.  Limitations 

of classifying chemicals based solely on specific individual effects was apparent from our 

data as evidenced by there being only 12 detailed pathology-related effects that were 

observed in greater than 10% of the chemicals (Table 2). In addition to low observation rates, 

biases based on study design and pathology nomenclature limited the overall ability to 

compare chemical toxicities when individual effects were used.  Liver hypertrophy is the 
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only common effect across both species. Related or near-synonymous terms, such as liver 

adenoma, combined adenoma/carcinoma and carcinoma, would be more informative if 

grouped together.  In order address the limitations of classifying chemicals based on specific 

individual effects, biologically-related groupings of effects were derived.  Grouping or 

aggregating effects in a non-arbitrary, biologically-driven manner inherently increased 

observation rates while maintaining the ability to draw biologically relevant conclusions. 

Study 
Type Species Effect Type Effect 

Target Effect Description % Observed 

Chronic mouse Pathology (Non-neoplastic) Liver Hypertrophy 25% 
Chronic rat Pathology (Non-neoplastic) Liver Hypertrophy 25% 
Chronic mouse Pathology (Neoplastic) Liver Adenoma 21% 
Chronic mouse Pathology (Non-neoplastic) Liver Necrosis 16% 

Chronic mouse Pathology (Neoplastic) Liver Adenoma/Carcinoma 
Combined 14% 

Chronic rat Pathology (Non-neoplastic) Kidney Nephropathy 14% 
Chronic mouse Pathology (Non-neoplastic) Liver Pigmentation 14% 
Chronic rat Pathology (Non-neoplastic) Liver Vacuolization 12% 
Chronic mouse Pathology (Neoplastic) Liver Carcinoma 11% 
Chronic rat Pathology (Non-neoplastic) Thyroid Hyperplasia 11% 
Chronic rat Pathology (Neoplastic) Thyroid Adenoma 10% 
Chronic rat Pathology (Non-neoplastic) Liver Eosinophilic Focus 10% 

Table 2.  Individual Pathology Effects Observed in Greater than 10% of Chemicals   

Extending Cancer Classification to Proliferative Lesions 

 Classifying chemicals based on carcinogenic potential is limited to a small set of 

target organs or broadly classed across target organs as a carcinogen.  In order to increase the 

observation rates across target organ cancer classifications were extended to include all 

proliferative lesions.  In general, only neoplastic lesions are considered indicative of 

carcinogenic potential, but including non-neoplastic pathologies related to proliferation 

provides a conservative schema for assessing and predicting carcinogenic potential.  For 

tumor responses, aggregating effects based solely on neoplastic pathology for each target 
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organ increased classification beyond individual mouse liver tumor effects as shown in Table 

2, but remained limited to mouse liver and rat thyroid neoplasia based on an initial >10% 

observation rate cutoff.  Extending the cancer-related classifications to comprise of all 

proliferative lesions increased the number of target organs classified and included liver, 

kidney, thyroid, lung and testes.  A simulation study was performed to assess if the 

concordance between rat and mouse occurs at a rate greater than chance across both 

neoplastic and proliferative classifications (Figure 4).  Beyond increasing the overall 

observation rate, extending chemical cancer classifications to include proliferative lesions 

significantly increased species concordance. 

  

Figure 4.  Simulation Study Analysis of Species Concordance 
Extending cancer classification to include proliferative lesions increases both observation 
rate and species concordance.  Simulation study using 1000 permutations were performed to 
compare 279 rat and 260 mouse chronic/cancer study results for neoplastic and proliferative 
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lesions across the liver and kidney.  The simulated empirical density (frequency) based on 
random alignment of rat and mouse observed rates provides the distribution of concordance 
expected by chance, whereas the observed concordance is shown with the blue arrow.  The 
single asterisk (p<0.01) and double asterisk (p<0.001) define statistically significant species 
concordance. 
 
Toxicity Endpoint and Cancer Progression Schema 

 Study type, species and dose are examples of attributes and properties that are 

inherent to the database structure, whereas the relationships between effects are not.  Specific 

biological processes have been well laid out with respect to disease progression, including 

cancer formation (Hanahan and Weinberg 2000).  Although the toxicity data stored in 

ToxRefDB did not provide molecular insight into cancer progression, effects captured in the 

database provided key events involved in the progression of a pathological response leading 

to tumor formation and cancer.  Figure 5 conceptualizes the endpoint progression scoring 

along both an endpoint and cancer progression continuum for which each chemical was 

assigned. 

   

Figure 5.  Endpoint Progression Continuum for Ordinal Scoring 
Systemic toxicity and cancer progression is illustrated as an endpoint progression continuum.  
The progression begins with no observed pathology at a given target organ, then to clinical 
chemistry changes that are pertinent to the target organ, followed by non-neoplastic non-
proliferative pathology, including hypertrophy, atrophy, necrosis and inflammation.  
Progression of these endpoints up to this point is driven by observation rate decline and 
increasing toxicological relevance.  The continuum then progresses toward proliferative 
lesions and is broken down into three categories: proliferation (cell proliferation and 
hyperplasia); pre-neoplastic lesions (foci and hyperplastic nodules); neoplastic (tumors). 
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 Endpoint progression scoring reduced the possible classifications from thousands of 

individual effects to a set of target organs with associated ordinal scores.  The distribution of 

endpoint progression for liver and kidney characterized target level effects without requiring 

pathology calls along the entire continuum (Figure 6).  For example, resmethrin caused 

treatment-related increases in hyperplastic nodules in the liver, but did not progress to tumor 

formation.  In contrast, metaldehyde caused treatment-related increases in liver tumors, but 

was not identified as causing any preneoplastic lesions such as hyperplastic nodules or foci, 

which can be assumed to have occurred as a precursor event to liver tumor formation.  

Individual or even aggregated effect classifications may miss the associations that these and 

many other chemicals may have, but endpoint progression scores develop and maintain these 

associations throughout the analysis.  Tumor formation does not necessarily require pre-

neoplastic lesions.  However, in order to generalize to all target organs and tumor types the 

order of proliferation to pre-neoplastic to neoplastic was used. 
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Figure 6.  Endpoint Progression Scoring Distribution for Liver and Kidney 
Based on endpoint progression, 334 chemicals were scored across 279 rat chronic/cancer and 
260 mouse cancer studies for liver and kidney pathology.  The chemicals are scored based on 
the maximum value across the target organ.  For instance, if a chemical causes only liver 
hypertrophy then the chemical would be assigned a 2 for non-neoplastic pathology, whereas 
if the chemical causes hypertrophy and hyperplasia the chemical would be assigned a 3 for 
proliferation.  Clinical chemistry is target specific, with analytes being labeled by target 
organ, e.g., ALT for liver and urea nitrogen for kidney. 
        
Potency Ranking 

 Relative potency across the observed effects provided insight into the sensitivity and 

relevance of the endpoint and a categorical approach to chemical classification.  To derive 

non-arbitrary dosing intervals, lowest observed doses (mg/kg/day) for body weight changes 

were analyzed and separated into equivalent quintile bins (data not shown).  The resulting 

bins, ≤15, ≤50, ≤150, ≤500 and >500 mg/kg/day, were then applied to all endpoints.  For 

instance, a chemical that caused liver hypertrophy at 5 mg/kg/day would be assigned a 5, at 

25 mg/kg/day a 4 and so on.  If the effect was not observed then a zero was assigned.  
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Potency rankings were used to filter out high-dose effects and to compare across effects.  For 

example, a chemical could be deemed negative for liver weight increase if it was observed at 

greater than 500 mg/kg/day or if no corresponding liver pathology was observed at or below 

the observed dose level.   

Toxicity-based Classification of Chemicals 

 With identified target organs, extended effect classes, aggregation of systemic 

toxicity and cancer effects, toxicity-based endpoints were curated based on toxicological 

relatedness, biological relevance, observation rate, regulatory relevance and potency.  Across 

rat and mouse studies and various target organs, a subset of endpoints were selected as 

examples of diverse toxicities and included individual and aggregated effects used for the 

final classification of the chemical set (Figure 7).  Interestingly, the rate of tumorigens and 

multisite tumorigens were similar between rat and mouse studies, even though target organ-

specific tumorigenicity observation rates demonstrated wide variation between species.  The 

selected endpoints along with target organ-specific endpoint progression scores provided 

uniform characterization of the chemical set at varying levels of toxicological order.     
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Figure 7.  Rat and Mouse Toxicity Endpoints Suitable for Prediction 
Selected toxicity endpoints from chronic/cancer rat and cancer mouse studies across 283 and 
256 chemicals, respectively, derived from individual and aggregated effects. 
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Chapter 5 

 

Discussion, Conclusions and Future Directions 

 

Discussion 

 Chemical toxicity prediction and subsequent validation have not only been limited by 

the number of input parameters, but by the anchoring endpoints the model or system was 

developed to replace or predict.  Historically, anchoring endpoints and phenotypes have been 

high-level Boolean classifications, e.g., carcinogen or non-carcinogen (Benigni 1991, 

Benigni and Zito 2004).  Efforts to classify chemicals based on species-specific and target 

organ phenotypic outcomes from open literature and governmental study reports have 

required manual collation that is not easily updated and has been limited in endpoint and 

chemical coverage (Richard and Williams 2003; Richard 2004).  Many of the predictive 

methods assess a chemical’s potential to perturb distinct biological processes, whereas these 

high-level chemical classifications have often been influenced by external factors, including 

exposure scenarios, risk assessment processes and risk management decisions, thus 

distancing the classification from the biologically-relevant toxicity potential of a chemical.  

Ideally, chemical prioritization and risk assessment factors would only subsequently 

influence the interpretation and application of the predicted outcomes.         
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 Pesticide active ingredients have robust toxicity profiles and are opportune datasets 

for the advancement of predictive toxicology.  By uniformly reviewing toxicity information, 

DERs present the full-breadth of toxicity information for a single study and summarize 

treatment-related effects.  DERs also contribute to risk assessments and human cancer 

classifications that begin to identify only the most sensitive or relevant endpoints of concern.  

Therefore, DERs provide much of the information that goes into chemical safety assessment 

without losing toxicologically-relevant effects and endpoints screened out in the risk 

assessment process.   

 ToxRefDB is the tool for digitizing, storing and structuring the immense amounts of 

toxicity data in an updateable, searchable and analyzable manner.  The development of a 

standardized vocabulary gave the ability to read-across study types, species and chemicals, 

thus transforming the manner in which toxicity profiles can be generated.  Given a class of 

compounds or a large set of studies, consistencies and relationships between chemicals or 

studies can be analyzed in a matter of minutes.  In a research application, ToxRefDB can 

generate toxicity profiles across hundreds of compounds and multiple study types for 

chemical classification in the ToxCast program.       

 The framework for reducing greater than 31,000 effects across 334 chemicals into 

relevant and predictable chemical classifications relied on a combination of measurable 

factors, including observation or incidence rate, regulatory relevance or critical effect 

analysis, consistency across study type and species concordance.  The effect taxonomy, i.e., 

study type, species, effect type, target and description, permitted analysis at various levels of 

granularity.  Summary results of effect type and effect target observation rates and regulatory 

relevance identified pathology, and more specifically liver, kidney, thyroid, lung, adrenal 

 33



gland and testis, as predictable endpoints based on an initial 10% observation rate cutoff.  

The cutoff was established based on an estimated frequency level required for predicting 

endpoints with high specificity and sensitivity, but was only used as an initial filter.  

Endpoints of interest, such as rat liver tumorigenicity, were included despite less than 10% 

observation rate based on regulatory relevance or other factors.   

 Following effect type and effect target analysis, effect description or individual effect 

analysis identified a small subset of predictable endpoints, but also demonstrated the 

limitations of classifying chemicals at such a descriptive level.  For some effects or sets of 

effects it was logical to step up the taxonomy to the effect target level and classify chemicals 

based on target organ pathology.  However, this approach decreases the biological specificity 

and potentially collapses hundreds of effects into a single endpoint.  An example approach of 

developing biologically-driven groups of effects was the extension of cancer classification 

beyond tumorigenicity to include all proliferative pathology, which not only increased 

observation rates but also species concordance.  The increased species concordance further 

demonstrated that shared proliferative responses across species better characterized a 

chemical’s toxicity potential and began to distinguish between species-specific susceptibility 

for tumor formation and mode-of-action or pharmacokinetic differences.  Other factors, such 

as pathology nomenclature changes over time (Wolf and Mann 2005), may also explain why 

extending neoplastic lesions to proliferative lesions increases species concordance, but 

because many of the rat and mouse chronic/cancer studies were run in conjunction with each 

other nomenclature bias should be minimal.  Nonetheless, the approach provides an example 

of aggregating individual effects to create powerful cancer-related endpoints that would 

otherwise not be possible for target organs such as the kidney.            
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 Toxicity-based classification of chemicals is limited to a small subset of target 

organs, including the liver, kidney, thyroid, testis and lung, and may only apply to a single 

species.  The notion of endpoint progression addresses limitations in individual effect 

classification due to pathology nomenclature, study design, dose spacing and reporting across 

the above target organs and extends target organ toxicity to an ordinal designation that 

broadens the target organs classified.  Overlaying potency information onto all endpoints 

provides additional categorical data in the form of dosing intervals facilitating cross-chemical 

and cross-endpoint comparisons.  Potency rankings can also begin to distinguish high-dose 

and secondary effects versus sensitive target organ-specific effects.               

 Utilizing the endpoint selection framework, a subset of all observed effects has been 

identified as anchoring chronic systemic toxicity and cancer endpoints for Phase I of the 

ToxCast program.  A combination of chemical classifications based on individual effects, 

aggregated effects and organ-level endpoint progression encompass systemic and cancer 

effects with observation rates that ensure predictability along with biologically-relevant 

endpoints that enable application and biological verification of generated prediction models.   

Conclusions  

 Unparalleled amounts of legacy toxicity information on pesticides have been captured 

in a structured format, which provides a platform for repeated and updated chemical 

characterization and classification.  The ability to search and filter across 30 years worth of 

toxicity data required extensive amounts of data normalization, annotation and curation and 

was made possible through the development of a robust standardized vocabulary spanning 

most fields and data elements within ToxRefDB.  Application of structured toxicity 

information to the classification of large chemical sets, e.g., ToxCast Phase I chemicals, 
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required further data processing using manual and automated structured data mining 

approaches.  Based on specific requirements, including observation rates and regulatory 

relevance, an endpoint selection framework was applied to the complete dataset and in turn 

created a manageable set of endpoints for which the chemical set was classified.  Whether the 

analyses of ToxRefDB data represent retrospective, modeling, or research applications, 

ToxRefDB serves as a resource for scientists, risk assessors and regulators to begin to look 

across a larger landscape of chemical and toxicity space.   

Future Directions 

 Upon completion of data entry and quality control, similar endpoint selection 

processes will be applied to the multigeneration reproductive and prenatal developmental 

study data to determine a set of anchoring endpoints to predict using HTS and genomic data 

generated through the ToxCast research program.  In addition to expanding the toxicity 

coverage to other study types, ToxCast Phase I non-pesticides or chemicals without DERs 

will undergo a full literature search and literature review process to fill the data gaps where 

studies are available.  Upon review, the studies will be entered into ToxRefDB.  A formal 

QA/QC process, as described in the methods section, will be performed on all entered studies 

and will provide the necessary review for eventual public release of the data.  A staged public 

release of the data stored within ToxRefDB is planned following internal EPA review.  The 

initial phase will consist of providing the final outputs, e.g., matrix of chemicals and 

associated effects and endpoints, directly or through database management systems such as 

EPA’s ACToR.  The initial phase is to include the chronic, cancer and reproductive 

endpoints.  The second phase will include the release of developmental toxicity and revisions 

of previously released endpoints in the final matrix format.  The third phase would be the 
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availability of the entire database for detailed searching, possibly through the development of 

a web-based query tool. 

 This novel application of ToxRefDB for the purpose of classifying chemicals 

demonstrates the ability to transform unstructured information into structured data and to 

transform structured data into computable data.  The next step for the generated toxicity 

profiles is the anchoring of the endpoints to HTS and genomic data generated within the 

ToxCast research program.  Many machine learning and predictive algorithms will be used 

along with novel methods that apply to the diverse dataset of biochemical, molecular, and 

cell-based assay data (Kavlock et al In press).  Additionally, the structured information can 

be reformatted into computable outputs specific to other analyses.  Retrospective analyses 

across the major study types are being performed to assess the value of entire studies or 

components of a study.  For example, rat and rabbit prenatal developmental toxicity studies 

are mandated through FQPA and an analysis of the value of both species is being assessed in 

reference to its regulatory impact.  Multigeneration reproductive toxicity studies have 

traditionally gone through two generations and the value of the second generation is being 

assessed for its regulatory impact and the analysis may also influence study design changes 

in subsequent guideline studies. 

 Beyond ToxRefDB and the initial anchoring to HTS and genomic data, there is a 

need to address data analysis and interpretation issues due to chemical metabolism and 

bioactivation.  As observed in much of the traditional toxicity study results, species 

concordance is limited and the lack of concordance can be highly attributed to 

pharmacokinetic (PK) and pharmacodynamic (PD) differences between species (Henderson 

1996).  One piece of the PK/PD species differences is the capability to biotransform the 

 37



parent compound to its active metabolite.  With biotransformation required for various 

compounds to demonstrate their toxicities, in vitro assays without metabolic capabilities have 

the potential to miss the relevant activities associated with adverse outcomes observed in 

vivo.  Metabolism prediction and metabolic study data can be used to assist in identifying 

chemicals that require metabolic activation.  However, running all potential active 

metabolites for even 300 chemicals through assays that do not have or have limited metabolic 

capability would require vast financial resources and chemical procurement may not even be 

possible.  Since most screening programs have been limited primarily to testing parent 

compounds and only a few metabolites, incorporating metabolic activation into the analysis 

process, that is linking assay data to in vivo outcomes, can be performed from three different 

views: chemistry, biology and informatics.  Using chemistry to predict potential metabolites 

or supply known active metabolites can help identify and filter out negative assay results 

possibly due to a lack of metabolic activation, but is limited in its application of further 

developing the predictions using only parent compound assay data.  A biology-centric 

approach would involve comparing in vitro assay results across similar targets that do and do 

not have metabolic capacity.  The approach would also use assay data, e.g., genomic data on 

phase I and II metabolism enzymes, to act as surrogates for understanding the metabolism of 

the parent compound.  Other approaches for using in vitro screening data to predict human 

drug metabolism have been performed or proposed (Jolivette and Elkins 2007).  The final 

biological piece would be to use the anchoring endpoints derived from ToxRefDB and 

current parent-metabolite pairs being tested within in vitro assays to provide reference cases.  

Understanding the biology will ultimately assist in interpreting the data, but may be limited 

in its scalability and applicability across all 300 chemicals and beyond due to the amount of 
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rigorous scientific inquiry for each potential case.  An informatic-centered approach would 

involve utilizing prediction algorithms to tease out assays, with or without metabolic 

capacity, that provide the greatest predictability and therefore could be applied to all 

chemicals and endpoints.  The greatest limitation with such an approach is that potentially 

valuable and highly informative assays results may be deemed irrelevant due to the lack of 

direct predictability for any given endpoint.   

 An obvious solution is to integrate the approaches and information derived from these 

approaches to bolster the final prediction models.  Modeling and systems biology approaches 

integrating SAR models and biological data from HTS experiments have been proposed 

(Bugrim et al 2004), but the application to toxicity prediction models and high-throughput 

analysis has yet to be demonstrated.  The testable hypothesis is that incorporating chemical 

and biological information into the analysis process will enable and strengthen prediction of 

toxicities caused by active metabolites and for which only the parent chemical was tested. 

 Initially, the prediction models will be used to prioritize further toxicity testing for 

chemicals in which little to no toxicity data exist.  Beyond chemical prioritization, the vast 

amount of data being digitized and generated may have application to hazard and risk 

assessment.  Biochemical, molecular, cellular and model organism data can be placed into 

the context of mode-of-action (MOA) and human relevancy frameworks as described in 

Meek et al (2003) and Dellarco and Baetcke (2005).  In conjunction with detailed toxicity 

data from ToxRefDB, in vitro assay and model organism data can assist in identifying key 

events leading to adverse outcomes in a systematic and transparent fashion.  Additionally, the 

diversity of cell types, both rodent and human, could be used to inform species extrapolation 

and human relevancy.  Addressing the role of metabolism on interpreting in vitro assay and 
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extending the assay data and resulting prediction models to the risk assessment arena will 

move toxicology toward a more predictive and mechanistic science. 
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APPENDIX A 

Chemical Component of Relational Data Model 
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APPENDIX B 

Study Design Component of Relational Data Model 
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APPENDIX C 

Treatment Group Component of Relational Data Model 
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APPENDIX D 

Treatment-related Effect Component of Relational Data Model 
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