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ABSTRACT 

JACQUELINE DEVON ROLL:  Mechanism and Consequence of the Hypermethylator 
Phenotype in Human Breast Cancer 

(Under the direction of William B. Coleman, Ph.D.) 
 

DNA hypermethylation events and other epimutations occur in many neoplasms, 

producing gene expression changes that contribute to neoplastic transformation, 

tumorigenesis, and tumor behavior.  Some human cancers exhibit a hypermethylator 

phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple 

genes.  To determine if a hypermethylation defect occurs in breast cancer, the expression 

profile and promoter methylation status of 66 methylation-sensitive genes were evaluated 

among 16 breast cancer cell lines.  The relationship between gene expression (assessed by 

RT-PCR and quantitative real-time PCR), promoter methylation (assessed by MSP, bisulfite 

sequencing, and 5-aza-2’deoxycytidine treatment), and the DNA methyltransferase 

machinery (total DNMT activity, DNMT1, DNMT3a, and DNMT3b proteins) were 

examined.  Unsupervised cluster analysis of the expression of methylation-sensitive genes 

revealed two groups of cell lines that possess distinct methylation signatures: (i) 

hypermethylator cell lines, and (ii) low-frequency methylator cell lines. The hypermethylator 

cell lines are characterized by high rates of concurrent methylation of nine genes (CDH1, 

CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3), whereas the low-

frequency methylator cell lines typically do not methylate these genes.  Hypermethylator cell 

lines coordinately overexpress total DNMT activity and DNMT3b protein compared to 
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normal breast cells.  In contrast, most low-frequency methylator cell lines possess DNMT 

activity and protein levels that are indistinguishable from normal. Mining of microarray 

expression data from primary breast cancers identified groups of tumors that express a 

hypermethylation signature defined by loss of gene expression of seven to nine indicator 

genes. On average, the hypermethylator breast cancers represent ~23% of tumors, with ~79% 

of hypermethylator tumors belonging to the basal subtype, and ~58-81% of all basal tumors 

exhibiting this hypermethylation defect, suggesting that the hypermethylator defect 

cosegregates with poor prognosis breast cancers. Methylation analysis of 26 primary breast 

tumors revealed extensive methylation of genes of interest among basal tumors, but low 

levels of methylation in tumors of other molecular subtypes. RNAi knockdown of DNMT3b 

in hypermethylator MDA-MB-453 and BT549 cells resulted in reexpression of methylation-

silenced indicator genes. These results strongly suggest that overexpressed DNMT3b protein 

drives aberrant methylation of a concurrent set of epigenetically-regulated genes and typifies 

a novel hypermethylator phenotype in human breast cancer.  
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INTRODUCTION 

BREAST CANCER: INCIDENCE AND MORTALITY 

Worldwide, over 1.3 million women are diagnosed with breast cancer each year, of 

which over 460,000 will die from their disease (1). The lifetime probability of developing 

breast cancer in developed countries is about 4.8%, and in developing countries the 

probability is 1.8% (1). In industrialized nations like the United States, breast cancer is the 

most frequently occurring cancer among women, with approximately 180,000 new cases 

annually (2). Breast cancer also represents the second most common cause of cancer-related 

mortality (over 40,000 deaths annually) in American women, a mortality rate that is second 

only to lung cancer (2). 

In the United States, advances in detection, therapeutic treatments, as well as a better 

understanding of how breast cancer develops, has resulted in more successful management of 

the disease. These gains have contributed to a current overall 5-year survival rate of 89% 

(Table 1) and a breast cancer mortality rate that has been in decline since 1990 (3). As with 

many cancers, the earlier stage at which breast cancer is detected, the better the outcome and 

overall survival (Table 2). The majority (77%) of breast cancers occur in women over 50 

years of age, making age an important risk factor for the development of breast cancer (1). 

However, while breast cancer is less common in women of a young age, younger women 

who develop the disease tend to have more aggressive breast cancers than older women. 

Thus, the five-year survival rate is 81% for women under 45, 85% for women aged 45-64,



 
Table 1. Expected 5-year survival rates for breast cancer, by stage1. 

 
 

 
Stage 5-year 

Survival 
0 100% 
I 100% 

IIA 92% 
IIB 81% 
IIIA 67% 
IIIB 54% 
IV 20% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Adapted from the American Cancer Society Website (www.cancer.org). 
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Table 2. Expected overall survival rates for breast cancer, by time from diagnosis1. 

 
 

 
Time Overall 

Survival 
Rate 

5 years 89% 
10 years 81% 
15 years 73% 

 
 
 
 
 
 
 
 
 
 

 
1 Adapted from the American Cancer Society Website (www.cancer.org). 
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and 86% for women aged 65 and older (1). Paradoxically, while breast cancer mortality has 

declined in Western countries, breast cancer rates have risen about 30% over the last 25 years 

(1). This may be attributable to improved screening techniques such as mammography and its 

increasingly widespread use, although the precise cause for the increasing incidence remains 

unknown. In the United States, breast cancer incidence increased sharply in the 1980s and 

continued to rise, although less rapidly, in the 1990s (3). After continuously increasing for 

more than two decades, U.S. breast cancer incidence began to decline, decreasing by 3.5% 

per year from 2001 to 2004 (1). This slight decline in incidence has been suggested by some 

to be attributable to the reduced use of hormone replacement therapy after the discovery that 

these hormones significantly raise the risk of developing breast cancer (3). While these trends 

have been closely monitored in the U.S. and around the world, debate still continues on what 

the changing trends in breast cancer incidence and mortality mean and what factors 

contribute to these rate fluctuations. 

RECOGNIZED RISK FACTORS FOR THE DEVELOPMENT OF BREAST CANCER 

The risk of developing breast cancer is not the same for all women. Currently, a 

number of risk factors are known to contribute to the development of this disease. While age 

and sex are considered the chief risk factors for breast cancer development, it is generally 

recognized that it is the combination of numerous factors, rather than a single factor, that 

drives the initiation and progression of the majority of breast tumors. These additional risk 

factors include lifetime estrogen exposure, race, family history, and environmental factors 

(carcinogen exposure, diet, smoking, exercise, and obesity), all of which are important in 

assessing a woman’s relative breast cancer risk. However, it is important to note, that while 
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having numerous risk factors increases the likelihood that a woman will develop breast 

cancer, simply having these risk factors in no way guarantees that cancer will ever develop. 

Risk Factors Related to Estrogen Exposure 

Epidemiologic studies have identified a number of risk factors for breast cancer that 

are associated with reproductive history, suggesting a role for lifetime exposure to estrogens 

in breast carcinogenesis. The importance of lifetime estrogen exposure was first suggested by 

the observation that nuns had a relatively higher incidence of breast cancer compared to 

women who bore children, an association later confirmed by scientific study (4). As more 

than two-thirds of breast cancers are fueled by estrogen at some point during the course of 

cancer progression, this association between estrogen exposure and breast cancer risk is an 

important one. For example, factors such as younger age at menarche, older age at 

menopause, infertility, having children later in life, and nulliparity, each increases a woman’s 

risk of breast cancer, while lactation decreases her risk (5).  

Exposure to environmental compounds that mimic estrogen (such as organochlorine 

pesticides) may also increase a woman’s risk of developing breast cancer (6), although there 

is some disagreement about the relative contributions of these exposures to breast cancer 

incidence (7). This observation highlights the importance of understanding the carcinogenic 

potential of these chemicals to which people in industrialized nations are commonly exposed. 

Since industrialized countries have higher incidences of breast cancer than non-industrialized 

nations, environmental exposure to chemical carcinogens may account for some of the 

incidence discrepancy between these two regions (8). For example, after studies showed that 

certain organochlorines such as PCBs, DDT, kepone, chlordane, lindane, and benzene 

hexachloride (BCH) were carcinogenic, use of these chemicals was banned in the United 
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States. However, the possible carcinogenic roles of other related chemicals that are still 

widely used (such as endosulfan, methoxychlorine, triazine, nonylphenol, phthalates, vinyl 

chloride, and bisphenol A), are under investigation, with some studies suggesting that 

exposure to these compounds may also be linked to a person’s risk of developing breast 

cancer (6). 

Diet and Exercise 

There are additional factors that may account for the higher incidence of breast cancer 

in Western countries. These include a high fat diet and/or a diet low in fruits and vegetables, 

as well as low levels of physical activity and obesity (9, 10). Evidence that a Western diet has 

a role in breast cancer development comes from studies that followed the immigration of 

Asian women (who typically have low rates of breast cancer) to Western countries. Within 

one generation, women of Asian-descent born in Western countries have breast cancer rates 

similar to those of Caucasians (11). In fact, Asian-American women born in the West have a 

breast cancer risk that is 60% higher than Asian-Americans born in the East (11). Another 

study found that women in China who ate a more Westernized diet (high in meat, white 

bread, milk, and puddings) had twice the risk of developing breast cancer compared to 

Chinese women who ate a more traditional Eastern diet (high in vegetables) (12).  

Concurrent with a high fat diet, low levels of physical activity and obesity are also linked 

with an increase in breast cancer risk (1). Obesity itself, in addition to being indicative of 

lifestyle, may contribute to breast cancer directly since fat cells can produce excess 

estrogens. Obesity is known to affect prognosis through numerous pathways, including 

associated adverse disease features and comorbidities that can interfere with treatment (13). 
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Race and Breast Cancer Risk 

Incidence data suggests that race is a major factor in the development of breast cancer 

(Table 3). In the United States, Caucasian, Hawaiian, and African-American women have the 

highest incidence of invasive breast cancer, which is approximately four times higher than 

that of Korean, American Indian, and Vietnamese women (8). Additionally, African-

American women have the highest death rate from breast cancer (Table 4) and are more 

likely to be diagnosed with a later stage of breast cancer than Caucasian women (8). Reasons 

for these ethnic differences in breast cancer incidence are likely multifactorial and may be 

attributable to socioeconomic factors, access to care, different cultural practices, dietary 

habits, and/or subtle genetic variations. 

Family History and Breast Cancer Risk 

 Family history of breast cancer is a significant risk factor for developing the disease. 

Women with an affected first-degree relative (such as a mother, sister, or daughter) have a 

two-fold to four-fold increased risk of developing breast cancer (5). The contribution of 

family history to breast cancer incidence suggests that genetic factors can play a strong role 

in the development of breast cancer.  

Several genes have now been shown to be mutated in familial forms of breast cancer. 

The elucidation of the roles genetic mutations play in heritable breast cancer was 

significantly advanced with the discovery that the BRCA1 gene was often mutated in 

individuals with family history of breast cancer (14). Similar studies later revealed the role of 

a second ‘breast cancer gene,” BRCA2, in inherited breast cancer (15). The BRCA genes are 

tumor suppressors which control cell growth and cell death via mechanisms such as DNA 
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Table 3. Breast cancer incidence for American women, by ethnicity1. 

 
 

 
Ethnicity Incidence 

(per 100,000) 
All Ethnicities 127.8 
Caucasian 132.5 
African-American 118.3 
Asian / Pacific 
Islander 

89.0 

American Indian / 
Alaskan Native 

69.8 

Hispanic 89.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

1 Adapted from National Cancer Institute, SEER Cancer Statistics Review, 2007 
(www.seer.cancer.gov). 
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Table 4. Breast cancer deaths for American women, by ethnicity1. 

 
 

Ethnicity Death Rate 
(per 100,000) 

All Ethnicities 25.5 
Caucasian 25.0 
African-American 33.8 
Asian / Pacific 
Islander 

12.6 

American Indian / 
Alaskan Native 

16.1 

Hispanic 16.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Adapted from National Cancer Institute, SEER Cancer Statistics Review, 2007 

(www.seer.cancer.gov). 
 

 

 9



damage repair. A woman with a mutated BRCA1 gene has a 65% risk of developing breast 

cancer by the age of 70, while a woman with a mutated BRCA2 gene has a 45% risk (1). 

Heritable mutations such as those in BRCA1, BRCA2, p53, and pTEN genes are responsible 

for 5-10% of all breast cancer cases, with BRCA1 and BRCA2 mutations accounting for 

approximately half of all inherited breast cancers. Women with mutations in the BRCA1 gene 

not only have an increased risk of developing breast cancer, but also of developing ovarian 

cancer (16). Women with this condition, which is known as hereditary breast ovarian cancer 

syndrome, are likely to be diagnosed at a younger age (under 50), have a family history of 

breast and/or ovarian cancer, and have bilateral cancer (independent tumors arising in both 

breasts or ovaries). Women with inherited mutations in the p53 tumor suppressor gene, such 

as those with Li-Fraumeni Syndrome, are at risk for many forms of cancer, including breast 

cancer (17). As the gene plays an integral role in cell cycle regulation, DNA repair, and 

apoptosis, mutations in p53 result in unchecked tumor growth and cellular proliferation. 

Likewise, women with inherited mutations in the PTEN gene, which is normally responsible 

for regulating cell division and apoptotic signaling, like those with Cowden syndrome, have 

increased risk of developing breast, thyroid, and/or uterine tumors (18). In fact, women with 

Cowden syndrome have a 25-50% chance of developing breast cancer in their lifetime (19). 

Other inherited mutations which lead to a significant increase in breast cancer risk include 

those including the CHEK2, ATM, NBS1, RAD50, BRIP1, and PALB2 genes (20).  

It is important to note that inherited mutations in these genes do not guarantee tumor 

development. Loss of heterozygosity (LOH), by which normal function of one copy of a gene 

is lost after the other allele was already inactivated (by mutation), explains why this is the 

case (21). Individuals born with an inherited mutation in one allele of these key genes are at a 
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higher risk of developing breast cancer because only one event is needed to inactivate the 

second allele, the so-called “second hit” of Knudson’s two hit hypothesis (22). Other factors 

are needed for tumor development beyond a single gene mutation, such as additional genetic 

or epigenetic changes at other loci, as well as lifestyle factors such as obesity, alcohol 

consumption, and smoking history. 

BREAST CANCER: NATURAL HISTORY AND PATHOGENESIS 

Natural History of Human Breast Cancer 

The majority of breast cancers are thought to arise along the anatomic boundary of 

the terminal duct-lobular unit. The primary components that make up the breast are luminal 

epithelial cells, myoepithelial cells, adipose tissue, and mammary stroma. Luminal epithelial 

cells form the inner glandular components of breast epithelial compartments, while 

myoepithelial cells reside in an outer location (23). Debate exists as to whether these 

different cell types give rise directly to different cancer types or if progenitor cells give rise 

to tumors that progress through specific paths of differentiation. However, most breast 

cancers are believed to pass through well-defined histologic stages, including a progression 

from normal to hyperplastic, hyperplasia to atypical hyperplasia, followed by ductal 

carcinoma in situ (DCIS), and finally invasive ductal carcinoma (IDC), which can 

metastasize (Figure 1). In breast hyperplasia (the first precursor lesion), epithelial cells of the 

normal breast tissue become hyperplastic, proliferating beyond what is normal. In the next 

stage, atypical breast hyperplasia, there is an atypical proliferation of breast cells, rather than 

a simple proliferation of otherwise typical breast cells. If these atypical cells accumulate  

certain genetic or epigenetic lesions that allow them to acquire neoplastic characteristics,  
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Figure 1. Histological stages associated with breast cancer development. Breast cancer 

typically evolves in a step-wise manner that is accompanied by a series of histological 

changes including: ductal hyperplasia, atypical ductal hyperplasia, DCIS, and IDC. Images 

provided by Dr. Chad A. Livasy (Department of Pathology and Laboratory Medicine, UNC). 
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they can become dysplastic, gaining abnormal characteristics which may, in turn, allow them 

to form a breast tumor. If neoplastic ductal epithelial cells have multiplied within the duct but 

have not yet breached the basement membrane, the lesion is known as a DCIS. Between 30-

50% of women whose DCIS is treated with surgery alone will go on to develop invasive 

breast cancer within 10 years (24). Approximately 62,000 cases of DCIS are diagnosed in the 

United States each year, most commonly through mammography (1). DCIS often appears in 

mammograms as a cluster of microcalcifications and is generally treated by lumpectomy 

(21). There are a number of subsets of DCIS depending on their histological appearance 

including comedo, solid, cribiform, papillary and micropapillary (21). Comedo DCIS, which 

is marked by necrosis, is generally more aggressive than other forms of the disease (21). If 

additional genetic and epigenetic changes occur, the cells may be able to breech the basement 

membrane. In this case, the lesion is known as invasive breast carcinoma and begins to 

infiltrate the surrounding breast tissue. The majority of invasive breast cancers (80%) are 

IDC in histology, while lobular carcinomas constitute 5-10%, and the remainder is divided 

into rare histologic subtypes including tubular, medullary, and mucinous (21). These invasive 

breast cancer cells can enter the blood or lymph system and metastasize to various organs 

including the lung and brain, resulting in metastatic breast cancer. 

 Clinical outcome is strongly influenced by the stage of the breast lesion at time of 

diagnosis, with the lower stage corresponding to better survival rates. The staging system 

takes into account tumor size, tumor spread to lymph nodes (known as node positivity), as 

well as distant metastasis. Stage 0 breast cancer is defined as carcinoma in situ, Stage I as a 

tumor ≤2 cm with negative axillary nodes, Stage II as tumors between 2-5 cm and/or the 
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presence of positive axillary nodes, Stage III as a tumor >5 cm and/or fixed axillary nodes, 

while Stage IV as the presence of distant metastases beyond axillary nodes (21). 

Molecular Pathogenesis of Breast Cancer 

In order for a normal breast epithelial cell to become neoplastic, a number of genetic 

and/or epigenetic changes that confer various neoplastic properties are required. Typically, 

these changes allow the cancer cell to escape normal control mechanisms that would 

typically result in cell death, that is—escape from apoptosis, self-sufficiency in growth 

signals, insensitivity to antigrowth signals, limitless reproductive potential, sustained 

angiogenesis, and the ability to invade tissue and metastasize (25). A cell may acquire these 

properties in a number of ways—genetic mutations, chromosomal changes, and epigenetic 

changes—that result in the loss of tumor suppressor gene expression and/or the 

overexpression (or inappropriate expression) of oncogenes.  

 In many instances of breast carcinogenesis, LOH explains how both alleles of a tumor 

suppressor gene become lost (or sustain ‘two hits’), resulting in both sporadic and hereditary 

breast cancers. Many sites of chromosomal deletion marked by LOH correspond to regions 

containing known tumor suppressor genes (21). Genes involved in cancer induction and 

progression often play integral roles in certain key categories: growth factor receptors, 

intracellular signaling molecules, cell cycle regulators, regulators of apoptosis, cell adhesion 

molecules, and matrix metalloproteinases (21). Growth factor receptors, such as the EGFR 

family of genes that includes the Her2/neu oncogene, encode transmembrane proteins with 

tyrosine kinase activity. Genes involved in kinase activity, which normally serve to 

phosphorylate downstream signaling targets, can become oncogenic when overexpressed or 

amplified, leading to deregulated growth and proliferation. Approximately 20-40% of breast 
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cancers have overexpression of at least one EGFR family member (21), suggesting an 

integral role for this gene family in breast carcinogenesis. Genes involved in intracellular 

signaling, such as the ras, c-myc, and c-src proto-oncogenes, have been found to play roles in 

numerous signaling pathways whose dysregulation has been implicated in breast cancer. Cell 

cycle genes, such as p53, RB, TGFβ, and numerous cyclin proteins, participate in regulating 

passage through the cell cycle. As such, any aberration in genes involved in this process can 

result in uncontrolled cell growth and neoplastic transformation. Additionally, since properly 

functioning cell cycle checkpoint regulation prevents damaged (unrepaired) DNA from being 

replicated, unchecked progression through the cell cycle can result in the generation of 

mutations and/or accumulation of mutations in abnormal cells. Similarly, apoptosis is 

normally triggered by stimuli (such as lack of growth factors, DNA damage, and p53 

expression) which prevent damaged cells from replicating. Thus, genetic or epigenetic 

changes in the genes which normally trigger apoptosis, such as bcl-2, and p73, can contribute 

to the unchecked growth and proliferation of breast cancer cells. During tumor initiation, 

neoplastic cells must circumvent normal adhesion mechanisms in order to breach the 

basement membrane and invade surrounding tissues. Thus, changes in cell adhesion 

molecules, such as cadherin family proteins, are necessary for tumor progression and 

metastasis. Typically, cell-cell and cell-matrix interactions keep cells anchored within the 

tissue normal architecture. The finding that the CDH1 (E-cadherin) gene is abnormally 

expressed in 60-70% of breast cancers, suggests an integral role for this protein in tumor 

progression (21). Similarly, extracellular proteins are important for regulating normal cell-

matrix interactions and can lead to tumor cell invasion when dysregulated, resulting in 

basement membrane degradation. This is demonstrated by the overexpression of matrix 
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metalloproteinases (MMPs) in many tumors. MMPs are found overexpressed in some 20-

80% of breast cancers (21).   

Dysregulation of genes by genetic, chromosomal, and/or epigenetic changes that 

function in any of these pathways can set the stage for breast carcinogenesis. Mutations in 

tumor suppressors like BRCA1, p53, and RB can effectively deactivate cell cycle and DNA 

repair checkpoints, leading to unrestricted cell growth and replication (21). Though some 

mutations are inherited, such as a familial BRCA1 mutation, most breast cancers occur 

spontaneously, as a result of a lifetime of accumulation of mutations. Chromosomal changes 

such as gains or losses in chromosome number (which can result in changes in gene copy 

number) and translocations (in which chromosomes are improperly rearranged) have 

important implications for tumor development (26). These aberrant chromosomal patterns 

can cause tumor suppressors to become mutated and/or deleted and oncogenes to become 

activated and/or amplified. In contrast, epigenetic mechanisms, such as DNA methylation 

and chromatin modification, are heritable changes in gene expression that do not alter the 

DNA itself. Since DNA methylation can silence gene expression, improper hypermethylation 

of tumor suppressor genes can contribute to neoplastic transformation (27). Alternatively, 

improper demethylation of proto-oncogenes can result to their activation, contributing to 

cancer induction and progression (28). Post-translational modifications to histone proteins 

(including acetylation, methylation, and ubiquitination) can also result in epigenetic changes 

in the transcriptional states of DNA within functional units of chromatin (29). Thus, 

epigenetic mechanisms can lead to dysregulation of segments of DNA resulting in the 

silencing of tumor suppressors or activation of oncogenes. 
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BREAST CANCER SUBTYPES 

Molecular Subtypes of Breast Cancer 

Breast cancer has long been known to be a heterogeneous disease. Our understanding 

of the various breast cancer subtypes and the implications that these distinctions hold for 

patient outcome has changed substantially over the last four decades and continues to evolve 

rapidly. In the late 1960s the importance of lymph node involvement (30) and tumor size (31) 

in predicting patient outcome was first recognized. With the discovery of the importance of 

estrogen receptor (ER) in determining response to endocrine therapy and the advent of the 

anti-estrogen drug tamoxifen, hormone receptor typing (which also includes progesterone 

receptor status) was added to traditional histological grading and staging of breast tumors 

(32). Microarray technology has revolutionized the traditional, histologic-based classification 

systems that were primarily concerned with tumor morphology and elucidated the value of a 

molecular-based system of breast tumor subtyping. When microarray data from 42 breast 

cancer patients was analyzed, researchers found that human breast cancers cluster into at 

least four subtypes based on expression differences in an ‘intrinsic’ gene set: an ER+ luminal 

group, and the (typically) ER- groups including a normal-like breast group, a Her2+ group, 

and a basal-like group (33). Intrinsic genes exhibit large-scale expression variations in 

tumors from different individuals, but show little expression variation within an individual 

(34). Various other molecular classifications of different datasets have revealed additional 

subtypes, including the luminal A, luminal B, luminal C, and claudin-low groups. These 

breast cancer subtypes represent clinically distinct groups which appear to possess 

differences in risk of metastasis and patient survival (35). Evidence has emerged that the 

metastatic potential of breast tumors appears to be an inherent feature of breast tumors, thus 
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metastatic potential is likely acquired earlier in cancer progression than initially believed (36, 

37). Luminal breast tumors tend to have expression of keratin proteins similar to breast duct 

epithelial cells and are generally less aggressive than ER- subtypes. However, a poorer 

prognosis luminal subset, known as luminal B (as opposed to good prognosis luminal A 

breast tumors) was subsequently identified (35). These poorer outcome luminal tumors tend 

to be higher grade and have a higher expression of proliferation genes, as compared to 

luminal A tumors (35, 38, 39). Most investigators agree that luminal A tumors represent 

approximately 40-60% of all breast cancers and tend to have the best outcome, followed by 

luminal B tumors, which account for 15-20% of breast tumors. Importantly, these ER-

positive groups generally have better outcomes than the ER-negative Her2+ subtype (which 

accounts for ~7-12% of breast cancers) or the basal subtype (which accounts for ~13-25% of 

all breast cancers) (40-43).   

Triple-Negative Breast Cancer 

Approximately 7-20% of breast cancers fall into the “triple-negative” category. This 

subset of breast cancers is characterized as ER-negative, PR-negative, and Her2-negative 

(ER-/PR-/Her2-) (44). The majority (~90%) of triple-negative breast cancers are classified as 

basal subtype (23), which is defined immunohistochemically as being ER-/PR-/Her2- and 

positive for CK5/6 and/or Her1. Basal breast tumors are so named because they tend to 

express basal cytokeratins (such as CK5/6, CK14, and CK17) and other basal markers 

including integrin, laminin, vitmentin, p-cadherin, αβcrystalline, fascin, and caveolins 1 and 

2 (45). While the majority of basal breast cancers are triple-negative, a small percentage do 

express one or more of these proteins to some degree, meaning that not all basal breast 

cancers are triple-negative and vice versa (46). Also contributing to triple-negative breast 
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cancer are tumors of the claudin-low subtype, which are almost exclusively ER-negative, 

tend to be of higher grade, and are marked by low levels of tight and adherens junction genes 

such as claudin 3 and CDH1 (47).  

Since triple-negative breast cancers typically lack normal expression of the hormone 

receptors ER and PR (which are often utilized in targeted therapy) and do not display 

amplification of Her2 (thus not treatable with trastuzumab), targeted therapeutic options are 

limited for these breast tumors. In addition to lack of targeted therapeutics, this subset of 

breast cancers tends to display aggressive phenotypic characteristics such as poor 

differentiation, high proliferation index, high mitotic index, central necrosis, a pushing 

boarder of invasion, and a stromal lymphocytic response (45, 46). These factors, combined 

with the fact that these tumors tend to have a high incidence of p53 mutations, EGFR 

overexpression, increased likelihood of BRCA1 mutation, and are associated with a younger 

age of onset, elucidate possible reasons that basal and triple-negative breast tumors have been 

linked to poor relapse-free survival and shortened overall survival times (35, 45, 48, 49). 

Basal breast cancers are known to be overrepresented in premenopausal, African-American 

women whose incidence of this subtype of breast cancer approaches 40% (compared to 

approximately 15% in all other patient groups) (40). Intriguingly, basal breast tumors are 

reported to have different metastatic characteristics compared to other breast tumors: they are 

less likely to metastasize to axillary lymph node or bone, and are more likely to spread 

hematogenously and metastasize to the brain and lungs (50). Patients with basal and/or triple-

negative cancer appear to have significantly shorter survival times after a metastatic event 

than do patients with non-triple negative metastatic breast cancers (51).  
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Currently, the only systemic therapy option to treat triple-negative and basal breast 

cancers is chemotherapy. Although triple-negative tumors show high rates of response to 

neoadjuvant therapies (particularly anthracycline-based and taxane-based chemotherapy), if 

patients do not achieve pathological complete response with treatment, they are more likely 

to have significantly poorer prognosis than patients with tumors of other molecular subtypes 

(52). This combination of aggressive tumor characteristics and lack of targeted therapeutics 

may be responsible for the disproportionately high number of breast cancer deaths 

attributable to this subtype each year, as well as the shorter overall survival times associated 

with triple-negative breast cancer (35). 

ROLE OF EPIGENETICS IN HUMAN CANCER 

DNA Methylation and Cancer 

Epigenetics has gained a principal role in cancer biology as evidence mounts that 

non-sequence altering modifications to the genome make a substantial contribution to the 

carcinogenic process (53). As opposed to genetic changes, epigenetic changes (such as 

methylation, genomic imprinting, and histone modification) are frequent and reversible (54). 

DNA methylation, which occurs at CG dinucleotides (CpGs), is one epigenetic event of 

major importance in neoplasia, as it serves as a non-mutational mechanism for inactivating 

tumor suppressors and other negative regulators of cell growth (55). Numerous genes have 

CpG-rich regions known as CpG islands (defined as ≥200 bp with ≥50% G+C content and 

≥0.6 CpGs observed/CpGs expected) (56) in their promoter sequences proximal to their 

transcriptional start sites. Such CpG islands in regulatory regions of active genes are typically 

unmethylated, while those of transcriptionally silent genes are often methylated (57).  Recent 
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evidence suggests that genes lacking typical CpG islands are also susceptible to methylation-

dependent silencing (58), adding a new importance to understanding individual CpG 

methylation events within promoters. This relationship between DNA methylation and gene 

silencing suggests that alteration of normal methylation patterns can result in the perturbation 

of gene expression.  Importantly, a substantial number of genes that are involved in the 

hallmarks of cancer (25) are subject to methylation-dependent silencing (59).  Moreover, 

epigenetic gene inactivation is believed to be at least as frequent, if not more so, than 

mutation in carcinogenesis (60-62), making the elucidation of methylation mechanisms in 

carcinogenesis an important target of further research. 

DNA methylation is catalyzed by DNA methyltransferase enzymes (DNMTs) which 

transfer methyl groups from S-adenosyl-methionine donors to the fifth carbon of a cytosine 

in a CpG dinucleotide. Two kinds of DNA methyltransferase activity are known to occur in 

vivo: (i) de novo methylation, which establishes the methylation pattern of a given DNA 

segment, and (ii) maintenance methylation, which ensures patterns are faithfully copied to 

newly replicated daughter strands. To date, five human DNA methyltransferases have been 

identified: DNMT1, DNMT2, DNMT3a, DNMT3b, and DNMT3L, although DNMT2 

(identified by sequence similarity alone) and DNMT3L possesses no recognized 

methyltransferase activity (63). De novo methylation is typically attributed to DNMT3a and 

DNMT3b, which are highly expressed during embryogenesis, but not in normal adult tissues 

(64), while maintenance methylation is usually attributed to DNMT1 because of its 

significant preference for hemi-methylated substrates (65).  However, recent findings suggest 

that the roles of individual DNMTs are not so easily delineated and evidence of cooperativity 

and partial redundancy among these enzymes has emerged (66). For example, DNMT1 has 
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been found to exhibit de novo methylation activity towards unmethylated substrates which 

surpasses that of DNMT3a and DNMT3b (65). Additionally, some studies suggest that 

DNMT3a and DNMT3b are jointly necessary for maintenance methylation of specific 

sequences (67-69).  

Several DNMT abnormalities have been detected in various cancer cell types, but 

questions persist regarding the roles of individual DNMTs in the neoplastic process, owing to 

the tissue-specific nature of many findings. Generally, cancer cells exhibit higher 

methylation capacities than their normal counterparts, but the extent of DNMT 

overexpression appears to be highly variable, with rates ranging from 4-fold to 3000-fold in 

one study alone (70). For example, DNMT1 is increased in nearly one-half of leiomyomas, 

while DNMT3a and DNMT3b are decreased in three-fourths of these tumors (71). Another 

recent study of  bladder, colorectal, renal, and pancreatic tumors demonstrated significant 

overexpression of DNMT3b, but not DNMT1 or DNMT3a (72). Thus, tissue type appears to 

determine important differences in which and to what extent individual DNMTs are 

aberrantly expressed in cancer cells.   

In an attempt to discern the roles that DNA methyltransferases play in the 

methylation abnormalities observed in human cancer, many studies have examined the effect 

of experimentally modulating DNMT levels individually or in combination. The results of 

these studies appear to be dependent upon the method of DNMT inhibition, the cell type, the 

target genes examined for methylation changes, as well as the methods of detecting DNA 

methylation changes (73, 74). Some studies, like those in bladder (75), colon (76), breast (77, 

78), and lung cancer cells (78) find that knocking down DNMT1 levels is sufficient to cause 

re-expression of methylation-silenced genes. In contrast, other studies find that decreasing 
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DNMT1 alone is insufficient and that DNMT3b must also be targeted in order for 

methylation-silenced tumor suppressors to become re-expressed (79-81). Concurrent loss of 

both DNMT1 and DNMT3b (but not individual loss) eliminates nearly all methyltransferase 

activity in colorectal cancer cells (79), indicating that these enzymes cooperatively maintain 

methylation in this tissue. DNMT3b may play a prominent role in the methylation 

abnormalities of breast cancers, as it was found to be overexpressed in a greater percentage 

of breast tumors than DNMT1 or  DNMT3a, and was significantly related to more aggressive 

tumors and poorer prognosis in patients receiving adjuvant hormone therapy (82). Such 

tumors were also more likely to be ER- and demonstrate increased proliferation, suggesting 

that overexpression of certain DNMTs may result in important differences in tumor biology. 

Regardless of whether DNMTs act alone or in concert, DNMT elevation appears to be an 

early event in carcinogenesis. For example, DNMT1 expression is low in normal colonic 

mucosa cells, elevated in premalignant polyps ~60-fold, and increased in colon cancers more 

than 200-fold (83). Importantly, DNMT activity is elevated in the early stages of colorectal 

and lung cancers, indicating that these enzymes may constitute an important biomarker for 

early detection of neoplasia (84). 

Methylator Phenotypes in Human Cancer 

The CpG island methylator phenotype (CIMP) was first used to describe a distinct 

subset of colorectal tumors that had high rates of concordant methylation of specific genes 

(85). CIMP has since been detected in many other neoplasms including: ovarian (86), bladder 

(87), prostate (87), gastric (88), hepatic (89), pancreatic (90), esophageal (91) and renal 

cancers (92), as well as leukemia, lymphoma, and neuroblastoma (93-95). While many of 

these methylator phenotypes methylate genes indicative of colorectal CIMP (MLH1, MGMT, 
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MINT1-MINT33, CDKN2A, THBS1), they also demonstrate methylation of tissue-specific 

genes, such as RIZ1 in gastric tumors (96), CALCA in leukemia (97), COX2 in liver (89), 

CACNA1G in pancreatic (90), PCDHB in neuroblastoma (95), and VHL in renal cancers (92).  

These findings suggest that tissue type is important in determining which genes are indicative 

of CIMP in a given tumor system, and implies that the definition of CIMP may vary 

somewhat between tumor systems. However, the core of the CIMP concept is that tumors 

exhibit methylation-dependent silencing of a specific panel of genes, which are lost to Type 

C (or cancer-specific) methylation rather than Type A (age-specific) methylation. Genes 

affected by Type A methylation reflect an age-dependent mechanism of expression loss—

small levels of methylation are detected in normal mucosa of younger patients and 

methylation increases with time, as a normal part of the aging process. In contrast, genes 

affected by Type C methylation become methylated in response to the carcinogenic process. 

Type C methylation is found exclusively in tumors, rather than normal mucosa, and is 

independent of age.  

In colorectal cancer, CIMP status correlates with poor prognosis in patients treated 

with surgery alone and is associated with various clinical features including: poor histologic 

grade (98), family history (99), location in the colon, and microsatellite instability status 

(100). However, patients with CIMP-positive tumors respond better to 5-flourouracil 

treatment than those with CIMP-negative tumors (98). Thus, in cases where patients receive 

both surgery and chemotherapy, CIMP status predicts better survival. As in colorectal 

cancers, CIMP status has important consequences in neuroblastoma and esophageal tumors, 

with CIMP-positive tumors predicting poor prognosis (95, 101). In neuroblastoma, CIMP-

positive tumors carry a significantly increased risk of death compared to their CIMP-negative 
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counterparts (95). A recent study of acute lymphoblastic leukemias (ALL) revealed that 

CIMP-positive patients experience significantly higher relapse and mortality rates (102). 

However, methylation abnormalities do not always correspond with bleak prognostic 

outlook. In gastric carcinomas CIMP is associated with increased survival rates (103). 

Paradoxically, these CIMP-positive gastric carcinomas exhibit increased DNMT1 protein 

levels and display poor tumor differentiation regardless of cell type of origin (104). This 

suggests not only that DNMT abnormalities might underlie the gastric CIMP phenotype but 

also that this methylation defect has an important impact on the clinicopathological 

characteristics of the tumors in question. The possible explanations that account for these 

survival differences are unknown, but may be tied to the roles of the tissue-specific CIMP 

genes which become methylated in various tumor types. 

To date, breast cancers have been examined for CIMP in a single study which failed 

to find support for a methylator phenotype amongst histologically distinct tumor classes 

(105). While researchers determined that hypermethylation of the twelve genes examined 

was frequent, they found a unimodal distribution of methylation events, rather than two 

distinct methylation classes. An important consideration of this study design is the number 

and choice of genes chosen for methylation analysis. With dozens of genes reported to be 

methylated in breast carcinogenesis and many more likely to be discovered, it is quite 

possible inclusion of additional genes would alter the findings of such an investigation.  

DNA METHYLATION AND HUMAN BREAST CANCER 

Recent evidence suggests that epigenetic mechanisms play a major role in breast 

carcinogenesis (53). In addition to contributing to widespread genetic instability (106), 
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aberrant DNA methylation contributes to the silencing of specific genes.  A number of genes 

are inactivated in breast cancer through methylation-dependent silencing (54).  Genes that 

have been determined to be directly silenced by DNA methylation in breast cancer include 

cell cycle control genes (APC, RASSF1, TFAP2A), steroid receptor genes (ESR1, RARα), 

tumor suppressor genes (CST6, PRDM2), metastasis-associated genes (CDH1, CEACAM6, 

LGALS3BP), and many others (107-109).  For example, the adenomatous polyposis coli 

(APC) gene, which exerts cell cycle control by regulating β-catenin-induced proliferation, is 

methylated in ~36-49% of primary breast tumors (110, 111).  Intriguingly, APC is often 

methylated concurrently with other biologically important genes such as RASSF1A (112). As 

the frequency of APC methylation appears to increase with tumor size and stage (113), 

methylation of this gene represents an independent marker of poor prognosis in breast cancer 

patients (114). Estrogen receptor (ESR1) is a nuclear hormone receptor that activates 

transcription of cell growth genes and is perhaps the most important methylation sensitive 

gene in terms of breast cancer prognosis. Loss of this gene is an important prognostic factor 

in breast cancer and is associated with poor differentiation, insensitivity to hormonal therapy, 

and poor clinical outcome (115). While a significant percentage of breast cancers lack 

expression of the estrogen receptor (and other steroid receptors), loss of ESR1 expression is 

usually caused by methylation (116, 117).  Cystatin M (CST6) is a protease inhibitor with 

tumor suppressor properties and known to be methylated in both breast cancer cell lines and 

primary breast tumors (58, 118). Treatment with demethylating agents results in the re-

expression of CST6 in breast cancer cell lines (119). Additionally, ectopic expression of 

CST6 suppresses neoplastic phenotype in MDA-MB-435S breast cancer cells, reducing 

proliferation, migration, and invasion (120). E-cadherin (CDH1) is a well-known suppressor 
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of invasion, as it plays a vital role in the maintenance of cell-to-cell adhesion (121). It is one 

of the most commonly methylated genes in breast cancer, with the frequency of methylation 

estimated to be ~60% for primary breast tumors and up 90% for lymph node metastases (111, 

122). Methylation of CDH1 often marks aggressive breast tumors and is associated with a 

higher incidence of metastasis, poor differentiation, and decreased patient survival (123). 

These examples illustrate the large number of genes which are reported to be silenced by 

methylation in breast cancer. Due to the cellular activities in which these genes participate, 

their aberrant methylation is likely to have a substantial impact on breast tumor biology. 

SUMMARY AND SIGNIFICANCE 

Recent studies have begun to unravel the complexities of methylation events in 

cancer, including the contributions of individual DNMTs to the methylation states of cancer 

cells as well as the concurrent methylation of specific genes that can indicate a 

hypermethylator phenotype. Strong evidence for CIMP has been found in a number of 

different tumor systems, although the genes involved and the impact of such a phenotype on 

tumor biology appears to differ by tumor type. The primary goals of this study are to 

determine if a hypermethylator phenotype exists in breast cancer, and if so, how this 

phenotype can be expected to impact patient outcome. In the following studies, we address 

basic questions related to mechanisms governing the establishment of a hypermethylator 

phenotype in breast cancer cells (including direct investigation of the methylation 

machinery), explore the consequences of decreasing DNMT transcript levels in cells with 

aberrant methylation, and strive to determine the clinicopathological relevance of such a 

hypermethylator phenotype in human breast cancer. 
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Unraveling the complexities of this hypermethylation defect in neoplastic breast 

disease holds important implications for cancer diagnosis, identification of new targets for 

therapy, and development of new strategies for clinical management.  Since aberrant 

methylation-dependent silencing is thought to be an early event in carcinogenesis, elevated 

detectable levels of methylation in genes characterizing the hypermethylator phenotype may 

constitute an important biomarker for early detection in patients developing breast tumors.  

Furthermore, the various proteins and enzymes of the DNA methylation machinery may 

represent novel targets for breast cancer therapy.  It follows that if a hypermethylator 

phenotype tumor is detected, such patients may benefit significantly from a targeted 

demethylation treatment as an adjunct to standard chemotherapeutic regimens. Epigenetic 

chemosensitization has been used to improve the efficacy of standard chemotherapeutics 

against tumor cells with known methylation defects, and evidence suggests that 

chemotherapeutic resistance can be overcome with demethylating treatment in certain cases.  

Thus, if a subset of breast cancer cells are found to possess aberrant DNA methylation and 

other epimutations that are potentially reversible, better understanding the methylation 

defects of such cells will hold promise for better diagnosis and improved treatment of such 

tumors. 
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EXPERIMENTAL PROCEDURES 

EXPERIMENTAL PROCEDURES RELATED TO EXPRESSION ANALYSIS 

Cell Lines 

 Human breast cancer cell lines BT20 (ATCC# HTB19), BT549 (HTB122), HS578T 

(HTB126), MCF7 (HTB22), MDA-MB-231 (HTB26), MDA-MB-415 (HTB128), MDA-

MB-435S (HTB129), MDA-MB-436 (HTB130), MDA-MB-453 (HTB131), MDA-MB-468 

(HTB132), SKBR3 (HTB30), and ZR-75-1 (CRL-1500) were obtained from the Tissue 

Culture Core Facility of the University of North Carolina Lineberger Comprehensive Cancer 

Center (Chapel Hill, NC). Human breast cancer cell lines HCC1937 and SUM149 were 

obtained as a kind gift from the laboratory of Dr. William K. Kaufmann (Department of 

Pathology and Laboratory Medicine, UNC School of Medicine). Likewise, human breast 

cancer cell lines SUM102 and SUM185 were a kind gift from the laboratory of Dr. Carolyn I. 

Sartor (Department of Radiation Oncology, UNC School of Medicine). The normal breast 

epithelial cell line MCF12A (CRL-10782) was obtained from the American Type Culture 

Collection (ATCC, www.atcc.org). In the figures and tables that follow, some cell lines 

names are designated using the following abbreviations: 231 (for MDA-MB-231), 415 

(MDA-MB-415), 435S (MDA-MB-435S), 436 (MDA-MB-436), 453 (MDA-MB-453), 468 

(MDA-MB-468), 1937 (HCC1937), 102 (SUM102), 149 (SUM149), 185 (SUM185), HS (for 

HS578T), SK (SKBR3), and ZR (ZR-75-1). 



Cell Culture  

Each breast cancer cell line was grown in the appropriate medium, as recommended 

by the ATCC. BT20, MCF7, and MDA-MB-231 cells were cultured in minimal essential 

medium (MEM) with Earle’s salts and the following additives: 2 mM L-glutamine, 0.1 mM 

non-essential amino acids, 1 mM sodium pyruvate, 10 μg/ml insulin (GIBCO/Invitrogen Life 

Technologies, Carlsbad, CA), 10% fetal bovine serum (Hyclone, Logan, UT), and 1% 

Antibiotic-Antimycotic (Gibco/Invitrogen Life Technologies). HS578T, MDA-MB-415, 

MDA-MB-435S, MDA-MB-436, and MDA-MB-453 cells were cultured in Dulbecco’s 

modified Eagle’s medium, supplemented with: 4 mM L-glutamine, 10 μg/ml insulin 

(GIBCO/Invitrogen Life Technologies), 10% fetal bovine serum (Hyclone), and 1% 

Antibiotic-Antimycotic (Gibco/Invitrogen Life Technologies). BT549, ZR-75-1, and 

HCC1937 cells were cultured in RPMI-1640 medium containing: 10% fetal bovine serum 

(Hyclone), and 1% Antibiotic-Antimycotic (Gibco/Invitrogen Life Technologies). MDA-

MB-468 cells were cultured in Leibovitz’s L-15 medium supplemented with: 10% fetal 

bovine serum (Hyclone), and 1% Antibiotic-Antimycotic (Gibco/Invitrogen Life 

Technologies). SKBR3 cells were cultured in McCoy’s 5A medium containing: 10% fetal 

bovine serum (Hyclone), and 1% Antibiotic-Antimycotic (Gibco/Invitrogen Life 

Technologies). MCF12A, SUM102, SUM149, and SUM185 cells were cultured in 1:1 

mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 (DMEM/F12, Gibco) 

medium supplemented with: 5% horse serum (Gibco/Invitrogen Life Technologies), and 1% 

Antibiotic-Antimycotic (Gibco/Invitrogen Life Technologies) in accordance with previous 

studies (124). Cell cultures were routinely provided with fresh growth medium, three times 

weekly. 
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Treatment with 5-aza-2’-deoxycytidine 

Cell lines selected for treatment with the demethylating agent 5-aza-2'-deoxycytidine 

(5-aza, Sigma Chemical Company, St. Louis, MO) were propagated in the appropriate 

ATCC-recommended growth medium (described above) containing 250 nM 5-aza, with 

feeding of fresh growth medium three times weekly, for a total of three weeks (58).  Two 

treatment groups were established from a single founding population of each cell line of 

interest: (i) control medium, and (ii) 5-aza containing medium. Cells were plated at an 

approximate density of 5,000 cells/cm2 in 150 mm polystyrene dishes (Corning Inc., 

Corning, NY). After three weeks of demethylating treatment, cells were allowed to recover 

for five weeks in control growth medium, with weekly subcultivations. As described 

previously (58), the concentration of 5-aza used in this study is 4-6-fold lower than 

traditional methods which allows for long-term 5-aza exposure without the typically 

encountered cytotoxic effects (125, 126).   

RNA isolation from Cell Lines 

Confluent cell cultures were harvested for RNA preparation according to the method 

of Chomczynski and Sacchi (127), utilizing TRIzol Reagent (Invitrogen Life Technologies, 

Carlsbad, CA), according to the manufacturer's protocol. For cell lines subjected to 

demethylating treatment, cells were harvested for total RNA isolation after three weeks of 5-

aza treatment and at week eight, corresponding to the end of the five week recovery period. 

Cells were washed with Hank’s Balanced Salt Solution (Cellgro, Lawrence, KS) and RNA 

was isolated using 5 ml of TRIzol reagent per 150 mm polystyrene dish. After a five minute 

room temperature incubation, the cell lysate solution was collected and centrifuged at 10,000 

g for 20 minutes at 4°C.  The resulting aqueous phase was transferred into a 15 ml conical 
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tube containing 5 ml 100% isopropanol and incubated at room temperature for 10 minutes to 

precipitate the RNA. Precipitated RNA was collected by centrifugation at 10,000 g for 40 

minutes at 4°C.  Subsequently, the supernatant was removed, 10 ml of 75% ethanol was 

added, and the solution vortexed for 30 seconds. Isolated total RNA was stored at -20°C as 

an ethanol precipitate prior to use for RT-PCR. Immediately before use, RNA was 

centrifuged and re-dissolved in 200 μl RNase-treated water and quantitated by UV 

spectroscopy. 

Semi-Quantitative RT-PCR Analysis 

Sixty-six genes were selected for analysis in this study. These genes (listed in Table 

5) represent marker genes for a CpG island methylator phenotype (CIMP) in other tumor 

systems or genes that have been shown to be methylated in breast cancer (58, 90, 92, 94, 111, 

117, 118, 128-250).  Total RNA (2 μg) collected from each cell line was reverse-transcribed 

into cDNA using Superscript II Reverse Transcriptase (Invitrogen Life Technologies, 

Carlsbad, CA) and oligo(dT) as the primer, according to standard methodology. Gene-

specific oligonucleotide primers were designed using Primer3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and were synthesized by the 

UNC Oligodeoxynucleotide Synthesis Core Facility (Chapel Hill, NC) based upon the known 

cDNA sequences (Genbank, www.ncbi.nih.gov) for selected mRNAs of interest. The RT-

PCR primer sequences for gene-specific primers are given in Table 6. Verification of equal 

cDNA template concentrations between samples was accomplished using β-actin primers 

(forward 5’-AGA-GAT-GGC-CAC-GGC-TGC-TT and reverse 5’-ATT-TGC-GGT-GGA-

CGA-TGG-AG).  PCR reactions were performed in a 50 μl total volume of buffer containing 
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 Table 5. Methylation-sensitive genes. 
 
Gene 
Designation 

Gene Title Unigene 
Number 

Role in 
Carcinogenesis 

Methylated in  the following 
cancers (reference) 

ADAM23 A desintegrin and 
metallo-protease 
domain 23 

Hs.591643 Adhesion Brain (128) 

APBA1 Amyloid beta A4 
precursor protein-
binding 

Hs.592974 Adhesion Breast (129), colon (130), esophageal 
(131), gastric (132)  

APBA2 Amyloid beta A4 
precursor protein-
binding 2 

Hs.525718 Adhesion Breast (129), colon (133), esophageal 
(131), gastric (134), leukemia (135), oral 
(136), pancreatic (90) 

APC Adenomatous 
polyposis coli 

Hs.158932 Cell cycle check-point, 
proliferation 

Breast (110), head/neck (137), gastric(138) 

BARD1 BRCA1 associated 
rong domain 1 

Hs.591642 Cell growth Breast (129) 

BF B-factor Hs.69771 Unknown Breast(58) 

BRCA1 Breast cancer 1, early 
onset 

Hs.194143 DNA repair Breast/ovarian (139) 

C8ORF4 Chromosome 8, open 
reading frame 4 

Hs.591849 Regulator of Wnt-
mediated growth 

Breast (58) 

CCND2 Cyclin D2 Hs.376071 Proliferation Prostate (140), breast (141) 

CDH1 E-cadherin Hs.461086 Adhesion and 
metastasis; 
proliferation 

Breast/gastric/leukemia (142), cervical 
(143), colon (144), lung (145), 
nasopharyngeal (146), ovarian (147) , 
prostate (148), thyroid (149), renal (150)  

CDKN1A Cyclin-dependent 
kinase inhibitor 1A 

Hs.370771 G1 checkpoint; 
apoptosis 

Lung (151) 

CDKN2A Cyclin-dependent 
kinase inhibitor 2A 

Hs.512599 G1 checkpoint Bladder (152), breast (153), colon (154), 
gastric (155), head/neck (156), lung (157),  
lymphoma (158), ovarian (159), pancreatic 
(160) 

CDKN2B Cyclin-dependent 
kinase inhibitor 2B 

Hs.72901 G1 checkpoint Lymphoma (161), leukemia (162), oral 
(163), ovarian (164) 

CEACAM5 Carcinoembryonic 
antigen-related cell 
adhesion molecule 5 

Hs.220529 Adhesion;  
anti-apoptotic 

Breast (58) 

CEACAM6 Carcinoembryonic 
antigen-related cell 
adhesion molecule 6 

Hs.466814 Adhesion; 
proto-oncogene 

Breast (58) 

CST6 Cystatin E/M Hs.139389 protease inhibitor Breast (58, 118), glioma (165) 

CTCF CCCTC-binding factor Hs.368367 Cell cycle regulator Head/neck (166) 

CYP1B1 Cytochrome p450, 
family 1, subfamily B, 
polypeptide 1 

Hs.154654 Metabolizes 
procarcinogens 

Breast (167) 

DAPK1 Death-associated 
protein kinase 1 

Hs.380277 Pro-apoptotic Breast (168), gastric (169), liver (170), 
lymphoma (171), lung (172), 
uterine/ovarian (173) 

ESR1 Estrogen receptor 1 Hs.208124 Cell growth 
transcription factor 

Breast (174), cervical (176), colon (176), 
gastric (177), head/neck (137), lung (178), 
ovarian (179) 

ESR2 Estrogen receptor 2 Hs.443150 
 

Cell growth 
transcription factor 

Breast (180), prostate (181) 

G1P3 Interferon, α-inducible 
protein 6 

Hs.523847 Anti-apoptotic Breast (58) 

GADD45A Growth arrest and 
DNA-damage 
inducible, α 

Hs.80409 DNA repair Breast (182) 

GJB2 Gap junction protein β2 Hs.591234 Cell-cell signaling Breast (183), lung (184) 

GNA11 Guanine-nucleotide 
binding protein α11 

Hs.73797 Negative regulator of 
growth 

Breast (185) 

GPC3 Glypican-3 Hs.567276 Growth regulation Breast (168) 
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Table 5. Methylation-sensitive genes (continued) 
 

Gene 
Designation 

Gene Title Unigene 
Number 

Role in 
Carcinogenesis 

Methylated in the following 
cancers (reference) 

GSTP1 Glutathione s-
transferase π1 

Hs.523836 Metabolizes 
carcinogens 

Breast(142), colon (186), gastric 
(138), liver (187), lung (188), 
ovarian (179), prostate (189), renal 
(150) 

HIC1 Hypermethylated in 
cancer1 

Hs.72956 Cell cycle regulator Brain (190), breast (191), ovarian 
(192) 

HOXD11 Homeobox D11 Hs.421136 transcription factor Breast (183), melanoma (193) 

HS3ST2 Heparin sulfate 3-O-
sulfotransferase-2 

Hs.622536 Unknown Breast, colon, lung, pancreatic (194),  
esophageal (195) 

IFI27 
 
 

Interferon α-inducible 
protein 27  

Hs.532634 
 

Negative regulator of 
proliferation 

Breast (58) 
 
 

IGFBP5 Insulin-like growth 
factor binding protein 5 

Hs.369982 Growth inhibitor and 
proapoptotic 

Breast (58) 

ISG15 
 

ISG15 ubiquitin-like 
modifier  

Hs.458485 Proteosome pathway Breast (58) 

ISGF3G Interferon-stimulated 
transcription factor 3 

Hs.1706 Transcription 
regulator 

Breast (58) 

KRTHB1 Keratin, hair, basic 1 Hs.584773 Cell-cell signaling Breast (58) 

LCN2 Lipocalin 2 Hs.204238 Anti-metastatic Breast (58) 

LGALS3BP Lectin, galactoside-
binding, soluble, 3 
binding protein 

Hs.514535 Adhesion / metastasis Breast (58) 

MGMT O(6)-methylguanine-
DNA methyltransferase 

Hs.501522 DNA repair Bladder (196), breast (197), cervical 
(198), colon (186) esophageal (199), 
gastric (200), liver (201), ovarian 
(202), pancreatic (203), prostate 
(204), renal (92) 

MINT31 Methylated in tumors 
31 

N/A Unknown Breast (129), colon (205), esophageal 
(131), gastric (132), lymphoma (94), 
oral (136), pancreatic (206) 

MLH1 mutL homolog 1, colon 
cancer, nonpolyposis 
type 2  

Hs.195364 DNA repair Breast (206), colon, endometrial 
(142) gastric (138) 

MUC1 Mucin 1, cell surface 
associated 

Hs.89603 Cell signalling Breast (208) 

MYB v-myb myeloblastosis 
viral oncogene 
homolog 

Hs.531941 Transcription 
regulator 

Melanoma (209) 
 

PARP12 poly (ADP-ribose) 
poly-merase family, 
member 12  

Hs.12646 Unknown Breast (58) 

PCDHGB6 Protocadherin γ, B6 Hs.368160 Adhesion Breast (183) 

PER1 Period 1 Hs.445534 Transcription Breast (210), endometrial (211) 

PGR Progesterone receptor Hs.368072 Cell growth Breast (117), endometrial (212), 
prostate (213) 

PRDM2 PR domain-containing 
2, with ZNF domain  

Hs.371823 Transcription 
regulator 

Breast, colon, liver, lung (214) 

PRKCDBP 
 

Protein kinase C, delta 
binding protein 

Hs.434044 Unknown Breast and lung (215) 

RARα Retinoic acid receptor α Hs.137731 Growth regulation Breast (216), leukemia (217) 

RARβ Retinoic acid receptor β Hs.536687 Growth regulation bladder (218), breast (219), cervical 
(220), colon (221), head/neck (222), 
gastric (223) 

RASSF1 Ras association domain, 
family 1 isoform A 

Hs.476270 Cell cycle arrest Bladder (224), breast/ovarian (225), 
lung (226), pancreas, kidney, liver, 
cervix, prostate (227) 

RB1 Retinoblastoma 1 Hs.408528 Cell cycle regulator Brain (228), breast (197) 
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Table 5. Methylation-sensitive genes (continued) 
 

Gene 
Designation 

Gene Title Unigene 
Number 

Role in 
Carcinogenesis 

Methylated in the following 
cancers (references) 

SASH1 SAM and SH3 domain 
containing 1 

Hs.193133 Cell cycle regulator Breast (229) 

SAT Spermidine / spermine 
N1-acetyltransferase 

Hs.28491 Apoptosis Breast (58) 

SCNN1A Sodium channel, non-
voltage-gated 1α 

Hs.591047 Ion transport Breast (58) 

SERPINB5 
 

Serpin peptidase 
inhibitor, clade B, 
member 5 

Hs.55279 Pro-apoptotic Breast (230), endometrial (231), 
gastric (232), ovarian (233), pancreas 
(234), thyroid (235)   

SFN Stratifin Hs.523718 G2/M checkpoint Breast (236), lung (237), oral (238), 
ovarian (239) 

SIM1 Single-minded homolog 
1 

Hs.520293 Cell differentiation Breast (183) 

ST18 Suppression of 
tumorigenicity 

Hs.147170 Transcription 
regulator 

Breast (240) 

STK11 Serine/threonine kinase 
11 

Hs.515005 Growth regulation Cervical, colon, testicular (241), 
pancreatic (242) 

TFAP2A Transcription factor 
activator protein 2α 

Hs.519880 Cell cycle arrest, 
apoptosis 

Breast (243) 

TFF3 Trefoil factor 3 Hs.82961 Unknown Liver (244) 

THBS1 Thrombospondin 1 Hs.164226 Angiogenesis Brain (228), colon (186), esophageal 
(199) 

TMEM45A Transmembrane, 45A Hs.126598 Membrane protein Breast (58) 

TP73 Tumor protein p73 Hs.192132 DNA repair; 
apoptosis 

Colon (205), head/ neck (245), 
leukemia/ lymphoma (246), ovarian 
(247), pancreatic (203) 

WT1 Wilms tumor 1 Hs.591980 Anti-proliferative Breast (248), colon (249), ovarian 
(250) 
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Table 6. Primer sequences and reaction conditions for RT-PCR. 

 

 
Gene Forward Primer Reverse Primer Product 

Size, bp 
TM Cycles 

  
GTC-AGT-GCC-CAC-CAA-ATC-TT 

 
GCA-GTT-TCC-CTT-CTC-AGT-GC 

 
188 

  
ADAM23 62      35 
APBA1 CAG-CCC-ACG-TCA-TTA-AGG-TT TTG-CCC-AAG-GCA-GTT-ATT-TC 186 58 30 
APBA2 CAT-CCA-CTT-CTC-AAA-CTC-GG GCC-CAG-CTG-GTA-CTT-GAG-GT 345 60 30 
APC GTC-TGT-TCA-GGC-TGG-TGG-AT CTC-GAG-GAA-GGG-ATG-ATG-AA 191 60 30 
BARD1 AGC-TCG-TCA-CTG-CAG-GTG-GG TTC-CAG-ACT-TTG-CCC-TGC-CG 133 58 35 
BF GGC-AGC-AAC-AAA-AGG-AAG-AG GCA-AGT-ATT-GGG-GTC-AGC-AT 242 57 30 
BRCA1 ACA-GCT-GTG-TGG-TGC-TTC-TGT-G CAT-TGT-CCT-CTG-TCC-AGG-CAT-C 100 62 30 
C8ORF4 TTT-CAA-ACA-GGT-TGC-ACA-AA GTT-GCA-TGA-CAT-TTG-CCA-GT 229 58 30 
CCND2 TTC-CCT-GCA-GTC-TAG-CAC-CT ATT-TCT-TCT-CCC-AGC-CCT-GT 160 60 30 
CDH1 TCT-TGC-TGT-TTC-TTC-GGA-GG TGA-CTC-TGA-GGA-GTT-CAG-GG 380 60 30 
CDKN1A CAG-ACA-TTT-TAA-GAT-GGT-GG TGG-TCC-CTG-CCC-TCG-AGA-GG 268 58 35 
CDKN2A CAC-ATT-CAT-GTG-GGC-ATT-TC CTT-TGG-TTC-TGC-CAT-TTG-CT 142 62 30 
CDKN2B GCG-GAT-TTC-CAG-GGA-TAT-TT AGT-GGG-AGA-TTC-ATC-CAT-CG 138 62 35 
CEACAM5 CAT-CGT-GAA-ACC-CCA-TCT-CT TCT-GTT-GCC-AGA-CTG-GAG-TG 169 60 30 
CEACAM6 TGA-GCC-AGT-GGT-GCT-AAA-TG TGG-AAC-AAG-GAA-ACA-GAA-CCA 235 58 30 
CST6 AAG-ACC-AGG-GTC-ACT-GGA-GA CGG-GGA-CTT-ATC-ACA-TCT-GC 163 58 30 
CTCF AGC-CAG-CAT-TTG-AAC-CCT-GT CCA-GCT-TAT-AAG-GGC-TGC-TG 154 62 30 
CYP1B1 CCC-TCA-TTG-TGT-TTC-TAC-CG GGC-TAA-GTT-CTG-GGA-CAT-GAA 222 59 35 
DAPK1 CCC-CGT-CTC-ATT-CCG-TTG-TC CCC-TGG-AGG-AGG-ATT-CCC-TT 564 61 35 
ESR1 TTG-TCC-CAT-GAG-CAG-GTG-CC GTA-TGC-ATC-GGC-AAA-AGG-GC 201 58 30 
ESR2 GAT-GAG-GGG-AAA-TGC-GTA-GA GGG-ACC-ACA-TTT-TTG-CAC-TT 365 62 30 
G1P3 CTC-GCT-GAT-GAG-CTG-GTC-T TGC-TGG-CTA-CTC-CTC-ATC-CT 181 60 30 
GADD45A GCT-CCT-GCT-CTT-GGA-GAC-CG TCC-ATG-TAG-CGA-CTT-TCC-CG 162 58 30 
GJB2 CAC-AGT-ACC-ATT-TAA-TGG-GG ACC-ATG-TCA-AGC-ATA-ATG-GC 282 60 30 
GNA11 CCA-CTG-CTT-TGA-GAA-CGT-GA GCA-GGT-CCT-TCT-TGT-TGA-GG 185 60 30 
GPC3 TGC-TCT-TAC-TGC-CAG-CGA-CT GCT-TTC-CTG-CAT-TCT-TCT-GC 238 60 30 
GSTP1 GGA-GGA-CCT-CCG-CTG-CAA-AT GGA-AGG-CAA-ACT-CTG-CCT-CC 384 61 35 
HIC1 ATC-TGC-GGG-AAG-AAG-TTC-AC GCA-TCT-TCA-TGT-GGC-TGA-TG 223 58 35 
HOXD11 AAA-TGC-AAA-CGT-CCC-GTT-AC CAT-TCA-CCG-AAG-AGG-AAG-GA 181 58 35 
HS3ST2 AGT-CGG-TCC-CTG-TCA-TTG-TC TCA-CCA-AAG-GGT-CTG-TCT-CC 206 60 35 
IFI27 TCC-TCC-ATA-GCA-GCC-AAG-AT CCT-GGC-ATG-GTT-CTC-TTC-TC 221 60 35 
IGFBP5 TTC-ACA-GAC-TCT-GGC-CTC-CT TGT-GCT-ATC-CAT-GTG-GGC-TA 185 59 30 
ISG15 CAC-CTG-AAG-CAG-CAA-GTG-AG CTT-TAT-TTC-CGG-CCC-TTG-AT 228 59 30 
ISGF3G GAG-CTC-TTC-AGA-ACC-GCC-TA GGC-TCT-ACA-CCA-GGG-ACA-GA 226 62 35 
KRTHB1 TAG-GCA-CCC-CAA-CTC-AAG-TC AAG-TGG-GGG-ATC-ACA-CAG-AG 162 59 30 
LCN2 ACG-CTG-GGC-AAC-ATT-AAG-AG CGA-AGT-CAG-CTC-CTT-GGT-TC 162 59 30 
LGALS3BP ACC-AAC-AGC-TCG-AAG-AGC-AC GGT-CAT-TGC-AGA-GAG-GAA-GG 202 59 30 
MGMT ACG-AAA-TAA-AGC-TCC-TGG-GC CCA-GGG-CTG-CTA-ATT-GCT-GG 275 60 30 
MINT31 CCG-GCC-TCA-TTT-ACA-CAA-CT GCG-TTG-TTC-ACT-CCC-CTA-AG 203 60 35 
MLH1 TTG-CCC-AAA-AAC-ACA-CAC-CC 
MUC1 TCT-CTT-ACA-CAA-ACC-CAG-CA 

CCC-GGG-AAT-CTG-TAC-GAA-CC 
AGA-AGT-GTC-CGA-GAA-ATT-GG 

318 
211 

60 
56 

30 
30 

MYB GAG-ATG-GAG-GAG-TGG-TCT-GC GGT-TCG-GAT-TTG-GCT-TGT-TA 247 58 30 
PARP12 CTT-ATT-GGC-ACC-AGG-GAC-AG GTG-TCA-GAG-CAA-CAG-GCA-GA 191 59 30 
PCDHGB6 CCC-TTG-GGA-AAC-AGA-AAC-AA GGC-CTG-ATT-GAT-TTG-GAA-GA 208 60 30 
PER1 GGC-TAT-GGA-GGA-GGA-GGA-AG TTC-CCA-CTG-GTT-GGT-CTA-GC 174 62 30 
PGR CTA-CAA-ACA-CGT-CAG-TGG-GC ATA-GAA-ACG-CTG-TGA-GCT-CG 314 60 35 
PRDM2 GCG-TAA-TGG-AGA-GGA-AAC-CA ATC-TGT-ACA-GGC-CTG-GGA-TG 186 60 30 
PRKCDBP CTT-GTG-CCT-TGT-CCC-AAA-AT TTA-TTG-ATG-GTG-AGC-GCA-AG 173 58 30 
RARα TGA-CCG-CCC-ACG-CCA-CAT-GG CCT-CTG-TCA-CCA-ACC-GAG-GC 275 60 35 
RARβ CGT-AGC-ATC-AGT-GCT-AAA-GG GAC-TGA-CCC-CAC-TGT-TTT-CC 196 60 35 
RASSF1 GTG-CTG-GCT-CAC-AGT-ACA-GC GCC-AAT-TCT-CTC-AGG-CCC-CA 256 60 35 
RB1 CCC-TCC-TTA-ATT-TGG-GAA-GG TGC-CTA-ACC-CAT-AAT-GAC-CC 131 60 35 
SASH1 CTG-TCA-CCC-CTT-CAG-TGT-TT CTG-CTC-TTT-TTG-GCA-GGA-AC 215 61 35 
SSAT CCG-TGG-ATT-GGC-AAG-TTA-TT TCC-ACC-CCT-CTT-CAC-TGG-AC 217 60 30 
SCNN1A GCC-CCC-TTT-GTT-ACT-TAG-GC AAA-GAC-ACA-GGG-CAG-AGG-TG 153 60 30 
SERPINB5 TCC-ATA-GAG-GTG-CCA-GGA-GC TGG-CGG-CTT-CCT-GAT-CCA-GC 258 60 30 
SFN TTG-CAG-CTG-TTG-AGC-GCA-CC CAT-GCT-TTC-CCT-CAG-TCT-CG 268 60 30 
SIM1 TTG-CCA-ACA-CTT-CAC-CAT-GT TGG-TCT-CCT-GCT-GTC-TGA-TG 202 62 35 
ST18 GCA-CTC-ACA-AAA-GCA-CAG-GA GGA-TAC-GAG-TTG-CCA-ACG-AT 217 60 30 
STK11 TGT-GAG-GGG-TGT-TTG-GGA-GC GCG-ATG-GCG-TTT-CTC-GTG-TT 238 60 35 
TFAP2A GGA-GAC-GTA-AAG-CTG-CCA-AC 
TFF3 GAG-TGC-CTT-GGT-GTT-TCA-AG 

GGT-CGG-TGA-ACT-CTT-TGC-AT 
GGA-GCA-TGG-GAC-CTT-TAT-TC 

216 
230 

60 
60 

30 
30 

THBS1 TTC-TAC-GAG-CTG-TGG-CAA-TG TTT-CTT-GCA-GGC-TTT-GGT-CT 286 62 30 
TMEM45A GGA-GAA-CAG-CTG-GCT-AAG-GA TTC-ATA-GTG-TGG-GCA-TCC-AA 203 59 35 
TP73 GAC-CGA-AAA-GCT-GAT-GAG-GA TCA-GCT-CCA-GGC-TCT-CTT-TC 232 60 30 
WT1 CTC-CTT-GCA-CAA-ATG-GAG-GG ACA-GTA-ATT-TCA-AGC-AAC-GG 339 60 30 
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50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 0.001% gelatin, 200 μM of each 

dNTP (EasyStart Micro 50 PCR-mix-in-a-tube, Molecular BioProducts, San Diego, CA), 0.4 

μM of each primer, and 2.5 units AmpliTaq enzyme (Perkin Elmer/Cetus, Foster City, CA).  

Reactions were carried out in an Eppendorf Mastercycler Thermocycler as follows: 30-35 

cycles at 94°C for denaturing (1 minute), 58-65°C for annealing (1.5 minutes), and 72°C for 

extension (2 minutes) (Table 6).  PCR products were fractionated on 2% agarose gels 

containing 40 mM Tris-acetate/1.0 mM EDTA and visualized by ethidium bromide staining. 

Quantitative Real-time PCR Analysis 

Total RNA samples (2 μg) from cell lines of interest were DNAse treated (Promega, 

Madison, WI), purified using the Qiagen RNeasy mini-kit (Qiagen, Valencia, CA), and 

reversed transcribed using the High Capacity cDNA Archive Kit (Applied Biosystems, 

Foster City, CA) according to the manufacturer's protocol.  Real-time primers and probes for 

CDH1 (Assay ID: Hs00170423_m1), CEACAM6 (Hs00366002_m1), CST6 

(Hs00154599_m1), ESR1 (Hs00174860_m1), SCNN1A (Hs00168906_m1), and β-actin 

(Hs99999903_m1) were purchased from Applied Biosystems.  Reactions were carried out 

using TaqMan Universal PCR Master Mix (Applied Biosystems) and the following 

amplification conditions: 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 60°C 

for 1 minute. Gene expression levels were normalized using β-actin for each cell line and 

differences in gene expression were determined using the comparative Ct method described 

in the ABI Prism 7700 User Bulletin #2 (Applied Biosystems). 
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Breast Cancer Tissue Samples 

Formalin-fixed, paraffin-embedded human breast tissues were immunostained 

according to standard methods. Two tissue microarrays containing 92 and 83 invasive 

primary human breast tumors, respectively, were constructed at the Dartmouth-Hitchcock 

Medical Center (courtesy of Dr. Gregory J. Tsongalis and Dr. Wendy A. Wells, Dartmouth-

Hitchcock Medical Center, Lebanon, NH). Combined, these tissue microarrays contain 122 

luminal A-like tumors (ER+/PR+/Her2-), 30 triple-negative tumors (ER-/PR-/Her2-), 17 

Her2+ tumors (ER-/PR-/Her2+), as well as 15 unclassified (ER+/PR-/Her2-) primary breast 

tumors. Additionally, a breast cancer cell line tissue microarray was constructed at the UNC 

Anatomical Pathology Translational Core Lab (Chapel Hill, NC) containing samples of each 

of the 17 breast cancer cell lines utilized in these studies.  

Immunohistochemistry 

Tissue sections were incubated at 60°C for 30 minutes, deparaffinized using Slide 

Brite (S&S Company, Albany, GA), and incubated with 3% hydrogen peroxide in methanol 

prior to rehydration in a series of alcohol washes. Antigen retrieval was accomplished by 

steaming in citrate buffer (Dako, Inc., Carpinteria, CA) for 30 minutes. Tissues were 

incubated with a protein block (Dako, Inc.) for 10 minutes, followed by a 2 hour incubation 

with the appropriate mouse monoclonal primary antibody: anti-CEACAM6 antibody 

(Covance, Berkeley, CA) diluted 1:40, 2.5 μg anti-cystatin E/M antibody (R&D Systems, 

Minneapolis, MN), anti-DNMT3b (Imgenex, San Diego, CA) diluted 1:100, anti-E-cadherin 

(Zymed Laboratories, Carlsbad, CA) diluted 1:50, predilute anti-Her1 (Invitrogen Corp., 

Carlsbad, CA), predilute anti-HER2/neu antibody (BioGenex, San Ramon, CA), anti-

pancytokeratin (Abcam, Cambridge, MA) diluted 1:25, or anti-SCNN1A (Proteintech Group, 

 39



Chicago, IL) diluted 1:100. Subsequently, tissues were washed and incubated with a two-step 

universal secondary antibody containing a biotintylated link and streptavidin-conjugated 

horseradish peroxidase (Dako, Inc.) for 10 minutes each and counterstained in filtered 

hematoxylin. Negative control staining followed the same procedure except that tissues were 

incubated for 2 hours with Dulbecco’s phosphate buffered saline (Sigma) instead of a 

primary antibody.  

Unsupervised Cluster Analysis of Gene Expression in Cell Lines 

Expression levels for genes of interest were analyzed by RT-PCR using cDNA 

templates derived from 12 breast cancer cell lines (BT20, BT459, HS758T, MDA-MB-231, 

MDA-MB-415, MDA-MB-435S, MDA-MB-436, MDA-MB-453, MDA-MB-468, MCF7, 

SKBR3, and ZR-75-1) and normal MCF12A breast epithelial cells. RT-PCR results for 

breast cancer cell lines were expressed on a discrete scale (none, low, medium, high) relative 

to the expression levels of MCF12A cells.  Genes from the original panel of 66 that were not 

expressed in MCF12A cells (APBA2, CDKN2B, CDKN2A, GADD45A, IGFBP5, PGR, 

PRKCDBP, RB1, SERPINB5, SIM1, STK11, THBS1, TMEM45A, and WT1) were omitted 

from subsequent cluster analyses, to ensure that cancer-specific methylation events were 

captured. The expression data were mapped to a quantitative scale (0, 1, 2, 3) for clustering 

purposes.  For some analyses, a combined expression score was generated for each cell line 

by adding the quantitative RT-PCR expression levels of each of the top nine genes of 

interest. Clustering of cell lines was carried out with SAS/STAT PROC CLUSTER (SAS 

Institute, Cary, NC) using complete linkage and no squaring of distance.  Kernel density 

estimation for trimming used the 5 nearest neighbors.  
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Data-mining of Breast Cancer Gene Expression Signatures 

In order to determine if a hypermethylation signature was detectable in primary 

human breast tumors, publicly available microarray data was mined for a concurrent loss of 

expression of genes determined to define the hypermethylator phenotype in vitro. Analysis of 

microarray datasets was performed by Dr. Wendell D. Jones (Expression Analysis, Durham, 

NC). Clustering of transcripts was carried out with SAS (PROC CLUSTER) based on 

distance of the log ratio values using complete linkage with 5% trimming.  The kernel 

density estimation for trimming used the 10 nearest neighbors. After an unsupervised 

clustering analysis was carried out on a subset of tumors from the UNC microarray database, 

a rule was generated to identify individual tumors that exhibit the hypermethylation signature 

corresponding to a lack of normal expression (less than the median level of expression for the 

dataset) of at least seven of the nine genes (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, 

MYB, SCNN1A, and TFF3) that are associated with the hypermethylator phenotype. This rule 

was then applied to other mircoarray datasets, including: (i) the UNC microarray dataset at 

https://genome.unc.edu/pubsup/breastGEO/ that includes gene expression data for primary 

breast tumors analyzed in previous studies (34, 37, 251, 252), (ii) the Hess et al. dataset 

(253), (iii) the Wang et al. dataset (254), and (iv) the van de Vijver et al. dataset (255).   

EXPERIMENTAL PROCEDURES RELATED TO METHYLATION ANALYSIS 

Human Breast Tissue 

This study included analysis of 26 paraffin-embedded human primary breast tumors. 

These archival human tissues were obtained from the University of North Carolina 

Lineberger Comprehensive Cancer Center (Chapel Hill, NC) with the assistance of Dr. Chad 
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A. Livasy (Department of Pathology and Laboratory Medicine, UNC School of Medicine). 

The tumors tissues analyzed included 15 basal breast cancers, three Her2+ tumors, six 

luminal A tumors, and two luminal B tumors. Protection of patient privacy and handling of 

specimens followed strict policies of the Institutional Review Board of the University of 

North Carolina. 

DNA Isolation from Breast Cancer Cell Lines 

Genomic DNA from 2x106 cultured cells was isolated using the Puregene DNA 

Purification Kit (Gentra Systems, Minneapolis, PA).  Cells were washed with Hank’s 

Balanced Salt Solution (Cellgro, Lawrence, KS), trypsinized with 0.05% trypsin-ETDA 

(Sigma, St. Louis, MO) and pelleted at 1,000 g for 5 minutes. After excess medium was 

aspirated, cells were combined with 300 μl Cell Lysis Solution (Puregene DNA Isolation Kit, 

Gentra Systems, Minneapolis, MN), and incubated with proteinase K at 55°C, overnight. 

RNase A solution (1.5 μl) was added and samples were incubated at 37°C for five minutes 

before addition of the Protein Precipitation Solution (Gentra Systems). The lysate was 

incubated on ice for 5 minutes prior to centrifugation at 20,000 g for 5 minutes. DNA was 

precipitated with 100% isopropanol, washed in 70% ethanol and hydrated by incubation at 

65°C for 30 minutes.  Isolated DNA was stored at -20°C before use. 

DNA Isolation from Primary Human Breast Tumors 

Paraffin-embedded breast tumor specimens were microdissected using a clean razor 

blade using the H&E staining as a guide. Sections composed of ≥ 80% tumor were selected 

for microdissection, deparaffinized, and genomic DNA was isolated utilizing the QIAamp 

DNA Micro Kit (Qiagen, Inc., Valencia, CA), according to manufacturer’s instructions. 
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Slides were incubated at 56°C for 5-10 minutes before microdissection, and tissue was 

transferred to a solution containing buffer ATL (QIAamp DNA Mini Kit, Qiagen, Valencia, 

CA) and proteinase K and incubated with rocking at 56°C for 1.5 hours. DNA was 

precipitated, washed, and eluted with 35 μl of elution buffer. 

Bisulfite Modification of Breast Cancer Cell Line DNA 

Bisulfite modification of genomic DNA was performed using a procedure adapted 

from Grunau et al. (256) and provided by Dr. Randy L. Jirtle (Department of Radiation 

Oncology, Duke University Medical Center, Durham, NC).  Three micrograms of genomic 

DNA was digested with XhoI (New England Biolabs, Ipswich, MA) overnight before heat 

inactivation at 65°C for 20 minutes. Approximately 1.5 μg of DNA was denatured with 5 μl 

freshly-prepared, 3 M sodium hydroxide at 42°C for 20 minutes, and incubated with 450 μl 

of freshly prepared, saturated sodium bisulfite solution (pH 5.0) at 55°C for four hours. 

Bisulfite-modified DNA was purified with the Wizard DNA Clean-up Kit (Promega, 

Madison, WI), according to manufacturer’s instructions.  DNA was reconstituted with 50 μl 

Tris-Cl (pH 8.0) and desulfonated with 5.5 μl 3 M sodium hydroxide. DNA was precipitated 

using 40 μl of 7.5 M ammonium acetate and 300 μl of 100% ethanol at -20°C for 30 minutes. 

The resulting DNA pellet was washed with 70% ethanol and resuspended in 20 μl of 1 mM 

Tris-Cl. 

Bisulfite-converted DNA was amplified using primers directed to specific segments 

of the promoter and/or exon I region of specific genes of interest (Figs 2-10). PCR conditions 

for amplification of bisulfite converted DNA varied by gene and are given in Table 7. PCR 

products were fractionated on 2% agarose gels and visualized by ethidium bromide staining.  
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Figure 2. CpG features associated with the proximal promoter and exon 1 region of 

CDH1. Diagrams depicting the promoter and exon 1 regions of the methylation-sensitive 

gene CDH1. CpG dinucleotides are represented by vertical thin lines. The region analyzed by 

bisulfite sequencing is shown in detail and the sequence provided. 
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-82 129

…GgcaggtgaaccctcagccaatcagCGgtaCGgggggCGgtgcctcCGgggctcacctggct
gcagccaCGcaccccctctcagtggCGtCGgaactgcaaagcacctgtgagcttgCGgaagtcagtt
cagactccagccCGctccagccCGgcccGaccCGacCGcaccCGgCGcctgcccCGctC
GgCGtcccCGgccagccatggg…

-3000 0

Exon 1

CDH1
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Figure 3. CpG features associated with the proximal promoter region of CEACAM6. 

Diagrams depicting the promoter region of the methylation-sensitive gene CEACAM6. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is shown in detail and the sequence provided. 
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-3000

-274 -100

…agggCGggtCGtcctgttatggaacaggggtccaaacaagcttgcttctcagagcatcttctggggaac
tgaatataaacagaaagggaagaggaggagggacaaaagagacagaaatgagaggggaggggatagagg
attcctgaacagagacCGcacccatgacccaCGtga…

CEACAM6

0
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Figure 4. CpG features associated with the proximal promoter region of CST6. 

Diagrams depicting the promoter region of the methylation-sensitive gene CST6. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is shown in detail and the sequence provided. 
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-77 -58

…tCGagcccCGccccagctccaggcCGcgggggCGcatCGCGggCGtCGggCGggg
CGgcccagCGggtaaaagctgcgCGgcCGcaagctCGgcactcaCGgctctgagggctcCG
aCGgcactgacggccatgg…

-3000 0

CST6
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Figure 5. CpG features associated with the proximal promoter and exon 1 region of 

ESR1. Diagrams depicting the promoter and exon 1 regions of the methylation-sensitive 

gene ESR1. CpG dinucleotides are represented by vertical thin lines. The region analyzed by 

bisulfite sequencing is shown in detail and the sequence provided. 
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328 451

…cCGgtttctgagccttctgccctgCGgggacaCGgtctgcaccctgcccgCGgccaCGgaccat
gaccatgaccctccacaccaaagcatctgggatggccctactgcatcagatccaagggaaCGagctggagc
ccctgaacCGtcCGc…

Exon 1-3000

ESR1

0
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Figure 6. CpG features associated with the proximal promoter region of GNA11. 

Diagrams depicting the promoter region of the methylation-sensitive gene GNA11. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is shown in detail and the sequence provided. 
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-412 -275

…gcacctggagacccagagagCGcagCGgcCGCGtgCGCGcctcCGccacCGCGcct
gggccgagcCGagCGggacCGagCGgggcCGaaCGgagcCGagCGgagcCGagcct
ggcCGggcCGagtcCGccacattcc…

-3000

GNA11

0
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Figure 7. CpG features associated with the proximal promoter region of MUC1. 

Diagrams depicting promoter region of the methylation-sensitive gene MUC1. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is shown in detail and the sequence provided. 
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-214 0

…gggaggccagctggagaacaaaCGggtagtcagggggttgagCGattagagcccttgtaccctaccc
aggaatggttggggaggaggaggaagaggtaggaggtaggggagggggCGgggttttgtcacctgtcac
ctgctcCGgctgtgcctagggCGggCGggCGgggagtggggggacCGgtataaagCGgtagg
CGcctgtgccCGctcc…

-3000

MUC1

0
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Figure 8. CpG features associated with the proximal promoter region of MYB. Diagrams 

depicting the promoter region of the methylation-sensitive gene MYB. CpG dinucleotides are 

represented by vertical thin lines. The region analyzed by bisulfite sequencing is shown in 

detail and the sequence provided. 
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-670 -464

…gatggttgcCGcccacttgtattgaagCGtcctttgtcactaacaagttaaattagagatgttatttatttaa
gaagaaggaaaaaaaaccctagccaaacagcctatgaatacatatgctcacatcccctactcctccaactcct
aatttcccCGtctccagagggcacagttgtaaaccttgaCGaaaatccaatcttctgtgCG…

-3000

MYB

0
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Figure 9. CpG features associated with the proximal promoter region of SCNN1A. 

Diagrams depicting the promoter region of the methylation-sensitive gene SCNN1A. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is shown in detail and the sequence provided. 
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…ccagcctccttgcctgtctgCGtctaaagcccctgcccagagtcCGccttctcaggtccagtactcccag
ttcacctgccctCGggagccctccttccttCGgaaaactccCGgctctgactcctcc…

-199 -72

-3000 0

SCNN1A
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Figure 10. CpG features associated with the proximal promoter region of TFF3. 

Diagrams depicting the promoter region of the methylation-sensitive gene TFF3. CpG 

dinucleotides are represented by vertical thin lines. The region analyzed by bisulfite 

sequencing is amplified and the sequence provided. 
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-188
-76

…actcagagctgcctgtctcCGaggcCGatctgggatgaagcagcctggggctctcttgtcatgggacca
ggggtgttctgagggcttctggctgggaggctgagatggaaCGgacaccacaccctggtcctgcca…

-3000 0

TFF3
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A portion (2-5µl) of the PCR product was cloned into the pGEM-T Easy Vector system 

(Promega). Five to ten colonies were selected per gene segment and expanded in liquid 

culture. DNA was purified using the Wizard Plus Miniprep kit (Promega) and a portion was 

digested with NcoI and NdeI (New England Biolabs) in order to confirm the presence of the 

insert. Validated clones were sequenced using the universal M13R3 primer at the UNC 

Genome Analysis Facility (Chapel Hill, NC) utilizing an Applied Biosystems automated 

sequencer. The results of the methylation analysis were expressed as total methylation index 

(TMI), which corresponds to the number of methylated CpGs observed divided by the total 

number of CpGs analyzed for each sequence of interest, and is expressed as percent 

methylation (257). 

Bisulfite Modification of Primary Human Breast Tumor DNA 

Genomic DNA was bisulfite converted using the EZ DNA Methylation-Gold Kit 

(Zymo Research Corp., Orange, CA). Between 200 and 500 ng of DNA was treated with a 

conversion reagent and incubated at 98° C for 10 minutes, 53°C for 30 minutes, before a step 

cycle program consisting of 8 cycles of 53°C for six minutes and 37°C for 30 minutes. 

Samples were transferred to columns, washed, desulfonated, and eluted with 20 μl of elution 

buffer. Two microliters of converted DNA was used in subsequent MSP reactions. A portion 

of the PCR product was cloned, expanded in liquid culture, and the DNA was purified as 

described above.  

Methylation-sensitive PCR Analysis 

MSP reactions were carried out in EasyStart Micro 50 PCR-mix-in-a-tube (Molecular 

BioProducts, San Diego, CA) using bisulfite-converted DNA template (described above).  
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The primers and thermocycling conditions for CDH1, CST6, and ESR1 genes have been 

described previously (118, 258, 259).  MSP primers directed against methylated and 

unmethylated alleles of CEACAM6, GNA11, MUC1I, SCNN1A, and TFF3 and cycling 

conditions are given in Table 7. PCR products were fractionated on 2% agarose gels and 

visualized by ethidium bromide staining.  For some analyses, MSP results were converted 

from a discrete scale (unmethylated product only, both methylated and unmethylated 

products, or methylated product only) to a quantitative scale (0, 1, 2) in order to generate a 

methylation score for each cell line that reflects the combined methylation status of select 

genes of interest. 

EXPERIMENTAL PROCEDURES RELATED TO DNMT ANALYSIS 

DNA Methyltransferase Activity Analysis 

Total DNA methyltransferase activity was measured using EpiQuik DNA 

Methyltransferase Activity/Inhibition Assay Kit (Epigentek, Brooklyn, NY) as previously 

described (260), using nuclear extracts from 16 human breast cancer cell lines (BT20, 

BT549, HCC1937, HS578T, MCF7, MDA-MB-231, MDA-MB-415, MDA-MB-435S, 

MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, SUM102, SUM149, SUM185, and 

ZR-75-1) and MCF12A cells.  Nuclear extracts were isolated using the EpiQuik Nuclear 

Extraction Kit (Epigentek, Brooklyn, NY) and 3 μl of nuclear extract was added to each 

reaction well, according to manufacturer’s protocol.  The final volume of nuclear extract 

yield was used to normalize the assay results for differences in cell number.  Nuclear extracts 

were incubated with methylation substrate for one hour at 37°C, and then exposed to the  
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Table 7. MSP primers and PCR reaction conditions for select genes of interest. 
 

Gene 
Segment 

Methylated Unmethylated Product 
size 

PCR 
Conditions 

       
TM = 60°  CDH1  

 
F: GGTGAATTTTTAGTTAATTAGCGGTAC 
 
R: CATAACTAACCGAAAACGCCG 
 

 
F: GGTAGGTGAATTTTTAGTTAATTAGTGGTA 
 
R: ACCCATAACTAACCAAAAACACCA 

    211 
35 cycles 

  
174 

 
U: TM = 55°   

35 cycles 
 

M: TM = 58° 
35 cycles 

 

CEACAM6  
 
F: AGGGCGGGTCGTTTTGTTAT 
 
R: TCACGTAAATCATAAATACGATCTCT 

 
F: AGGGTGGGTTGTTTTGTTAT 
 
R: TCACATAAATCATAAATACAATCTCT 

  
135 

 
U: TM = 55°  

38 cycles 
 

M: TM = 60° 
38 cycles 

 

CST6  
 
F: TCGAGTTTCGTTTTAGTTTTAGGTC 
 
R: CATAACCGTCAATACCGTCG 
 

 
F: TGAGTTTTGTTTTAGTTTTAGGTT 
 
R: CCATAACCATCAATACCATCAA 

  
123 

 
TM = 58°   
35 cycles 

 

ESR1  
 
F: GATACGGTTTGTATTTTGTTCGC 
 
R: CGAACGATTCAAAAACTCCAACT 

 
F: GGATATGGTTTGTATTTGGTTTGT 
 
R: ACAAACAATTCAAAAACTCCAACT 
 

  
137 

 
TM = 59°  
35 cycles 

GNA11 
 
F: GATTACGGGCGTGTATTATTAC 
 
R: CCAACACTTTAAAAAACCGAAACGAA 
 

 
F: TTGGGATTATGGGTGTGTATTATTAT 
 
R: ATCCCAACACTTTAAAAAACCAAAACAAA 

  
139 

 
TM = 58°  
35 cycles 

MUC1 
 
F: GGAGGTTAGTTGGAGAATAAAC 
 
R:AACAAATAACAAATAACAAAACCCCG 
 

 
F: GGAGGTTAGTTGGAGAATAAATG 
 
R: ACAAATAACAAATAACAAAACCCCAC 

  
90 

 
TM = 58°  
35 cycles 

MYB 
 
F: TAGAGGGTATAGTTGTAAATTTTGAC 
 
R: CTCACTATCGCGAAAACGAC 
 

 
F:AGAGGGTATAGTTGTAAATTTTGATGA 
 
R:CTCCCACTCACTATCACAAAAA 

  
127 

 
TM = 53°  
35 cycles 

SCNN1A  
 
F: TTTTTTAGTTTTTTTGTTTGTTTGC 
 
R: AAAACCGAAAATTTTCCGAA 

 
F: TTAGTTTTTTTGTTTGTTTGTGT 
 
R: AAAATCAAAACCAAAAATTTTCCA 
 

  
TFF3 

 
F: TTAGAGTTGTTTGTTTTCGAGGTC 
 
R: AACAAAACCAAAATATAATATCCGTTCCA 

 
F: ATTTAGAGTTGTTTGTTTTTGAGGTTGA 
 
R: AACCAAAATATAATATCCATTCCATCTCA 

 

132 
 

TM = 59°  
35 cycles 
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capture antibody for 60 minutes and the detection antibody for 30 minutes, at room  

temperature.  Absorbance was determined using a microplate spectrophotometer at 450 nm, 

and DNMT activity (O.D./h/ml) was calculated according to the following formula: (sample 

OD - blank OD) / (sample volume x 1000), according to manufacturer’s instructions.  Results 

are given in activity units expressed relative to the activity level detected in MCF12A cells. 

DNA Methyltransferase Protein Analysis 

Nuclear extracts were assayed for individual DNMT proteins of interest (DNMT1, 

DNMT3a, or DNMT3b) using the Epiquik DNMT1, DNMT3a, and DNMT3b assay kits, 

respectively (Epigentek).  Protein standards of known concentration (30 ng, 20 ng, 10 ng, and 

2 ng) were included to generate a standard curve.  The amount of DNMT protein was 

calculated as follows: DNMT protein (ng/ml) = (Sample OD - blank OD / standard slope) x 

sample dilution, according to the manufacturer’s instructions, and are expressed relative to 

the protein levels of MCF12A cells.   

RNA-interference Mediated Knockdown of DNMT3b 

In order to determine if knockdown of DNMT3b protein induces re-expression of 

methylated genes in hypermethylator cell lines, shRNA was employed to target the 

overexpressed DNMT3b protein associated with the hypermethylation defect. PLVTHM 

plasmid containing DNMT3b-specific oligos for shRNA were a kind gift from the laboratory 

of Dr. P.P. Jagodzinski (Poznan University of Medical Sciences, Poznan, Poland). The 

construction of the shRNA was described previously (261). The PLVTHM plasmid was 

reconstituted in 50 μl Tris-EDTA (TE) buffer (pH 8.0) then centrifuged at 700 g for 2 

minutes. Three microliters of plasmid were used to transform 50 μl of JM109 cells according 
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to conventional methods. Five to ten colonies were selected, expanded in liquid culture, and 

the DNA was purified using the Wizard Plus Miniprep kit (Promega). Diagnostic restriction 

enzyme digest using FspI and NdeI (New England Biolabs) produced one 8,041 nucleotide 

fragment and a 3,044 nucleotide fragment, confirming the plasmid size of 11,085 

nucleotides.  

Transfection of Human Breast Cancer Cell Lines 

One microgram of PLVTHM plasmid was digested with SalI and XbaI (New England 

Biolabs) at 37°C for 2.5 hours before use in transfection, producing one 3,857 nucleotide 

fragment and a 7,228 nucleotide fragment. The linearized section of the plasmid (3,857 

nucleotides), containing the H1 promoter, shRNA sequence, and GFP tag, was confirmed by 

gel electrophoresis. MDA-MB-453 and BT549 cells were grown in a six-well polystyrene 

plate to 80% confluency in 1 ml of medium, according to ATCC recommendations. In a 1.5 

ml tube, 7.5 μl of TransIT-LT1 Transfection reagent (Mirus, Madison, WI) was added to 250 

μl of Opti-MEM serum free medium (Gibco/Invitrogen Life Technologies), mixed by 

pipetting, and incubated at room temperature for 15 minutes. One microgram of DNA was 

added to the dilute TransIT and incubated at room temperature for 20 minutes. The 

TransIT/DNA complex was added dropwise to the wells. After 48 hours the presence of 

GFP+ cells was assessed. Clonal selection of GFP+ cells was accomplished using 3 mm 

sterile cloning discs saturated in 0.25% trypsin (Gibco) to select and isolate clones of interest. 

Verification of DNMT3B Knockdown 

Western blots were performed by Dr. Ashley G. Rivenbark (UNC Lineberger 

Comprehensive Cancer Center, Department of Biochemistry and Biophysics, UNC School of 
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Medicine). For analysis of DNMT3b protein levels, MDA-MB-453 breast cancer cells 

transfected with scrambled or RNAi constructs were lysed with 1x phosphate buffered saline 

containing 0.1 mM phenylmethanesulphonylfluoride (PMSF), 1 ug/ml pepstain A, leupeptin, 

and aprotinin, 5 μg/ml phosphatase inhibitor cocktail, 1 mM β-glycerol phosphate, 1 mM 

sodium orthovanadate, and 0.1% Triton X-100.  The anti-DNMT3b mouse monoclonal 

antibody was obtained from Imgenex (San Diego, CA) and used at a dilution of 1:500.  

Protein lysates were resolved on 8% SDS-PAGE gels, followed by transfer onto 

polyvinylidene difluoride (PVDF) membranes (Millipore; Billerica, MA).  PVDF membranes 

were incubated with the primary antibody for 2 hours at room temperature in Tris-Buffered 

Saline Tween-20 (TBST) containing 5% milk and 0.05% sodium azide. Subsequently 

membranes were washed with TBST 3 times for 5 minutes, and then incubated with a sheep 

anti-mouse (1:5000) horseradish peroxidase-conjugated secondary antibody (GE Healthcare; 

Piscataway, NJ) in TBST containing 5% milk for 1 hour at room temperature. The 

membranes were washed with TBST 3 times for 5 minutes, and bound primary antibody was 

detected using ECL-Plus substrate (GE Healthcare; Piscataway, NJ). 

Assessment of Target Genes 

For RT-PCR analysis of target gene expression in DNMT3b-knockdown cells, RNA 

was isolated as previously described (above) from MDA-MB-453 and BT549 cells for each 

of the following treatments: parental control (untreated) cells, scrambled control shRNA, and 

DNMT3b-targeted shRNA. Total RNA (2 μg) collected from each cell line was reverse-

transcribed into cDNA using Superscript II Reverse Transcriptase (Invitrogen Life 

Technologies, Carlsbad, CA) and oligo(dT) as the primer, as previously described and the 
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expression levels of target genes (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, and/or 

SCNN1A) were assessed by semi-quantitative RT-PCR (PCR conditions, Table 6). 

STATISTICAL ANALYSIS 

The values for the mean and S.E.M. were calculated using the statistical function of 

KaleidaGraph Version 3.5 (Synergy Software, Essex Junction, VT).  Statistical significance 

was determined using an unpaired t-test (KaleidaGraph).  Error bars depicted represent 

S.E.M.  P values for correlation coefficients (R values) were calculated using VasserStats 

Significance of Correlation Coefficient Calculator (http://faculty.vassar.edu/lowry/rsig.html).  

The Bayesian analysis was performed as described previously (262) and the percentage of 

correct assignments, as well as sensitivity, specificity, and positive and negative predictive 

values were calculated. 
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RESULTS 

EXPRESSION OF METHYLATION-SENSITIVE GENES AMONG HUMAN BREAST CANCER CELL 
LINES AND PRIMARY BREAST TUMORS 

Semi-quantitative RT-PCR was performed on a panel of 66 methylation-sensitive 

genes in each of 12 breast cancer cell lines (BT20, BT549, HS578T, MCF7, MDA-MB-231, 

MDA-MB-415, MDA-MB-435S, MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, 

and ZR-75-1), as well as the normal breast epithelial cell line MCF12A (Figure 11).  

Epigenetically-regulated genes that are predictive of the CpG island methylator phenotype 

(CIMP) in other tumor systems, as well as genes known to be aberrantly methylated in breast 

cancer, were selected for expression analysis (Table 5). In instances where RT-PCR 

expression was detectable, levels of expression for each gene in the breast cancer cell lines 

were scored relative to the levels of expression in MCF12A cells: low (detectable, but 

<MCF12A), normal (equivalent to MCF12A), or high (>MCF12A).  A number of patterns of 

gene expression were observed (Figure 12). Some genes lacked differential expression, 

including those expressed in the majority of breast cancer cell lines (such as BARD1, 

CDKN1A, and CEACAM5), while others lacked expression in the majority of cell lines 

examined (such as ADAM23, ESR2, and ST18). Other genes (APBA2, C8orf4, CDKN2B, 

CDKN2A, GADD45A, IGFBP5, PARP12, PGR, PRKCDBP, RB1, SERPINB5, SIM1, 

STYK11, THBS1, TMEM45A, and WT1) were not expressed in MCF12A cells and were  



Figure 11. Expression analysis of methylation-sensitive genes in human breast cancer 

cell lines.  Representative agarose gels of RT-PCR products from CST6, CDH1, CEACAM6, 

ESR1, and SCNN1A.  The source of cDNA template is identified for each lane. Normal breast 

epithelial MCF12A cells represent the positive control cell line. β-actin  was amplified as a 

positive control. 
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Figure 12. Expression analysis of 66 methylation-sensitive genes in a panel of 12 breast 

cancer cell lines. Heatmap showing RT-PCR results from 66 methylation-sensitive genes 

examined for differential expression among 12 breast cancer cell lines and the non-neoplastic 

breast epithelial cell line MCF12A. For instances of detectable expression, results were 

scored relative to the expression level of MCF12A cells. Red boxes indicate genes with high 

level expression (compared to MCF12A), yellow boxes indicate those with normal level 

expression (similar to MCF12A), green boxes indicate low level expression (compared to 

MCF12), and black boxes indicate instances of no detectable gene expression. 
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therefore excluded from further analysis (n=16 genes) in order to ensure that only cancer-

specific methylation was reflected in the dataset. Quantitative real-time PCR was performed 

on a subset of epigenetically-regulated genes (n=5) to confirm the RT-PCR expression results 

(Figure 13).  This analysis revealed a statistically significant correlation (R=0.76, p<0.0001) 

between the quantitative real-time PCR and RT-PCR results.  The gene expression results for 

the remaining 48 genes with detectable expression in MCF12A cells from the 12 breast 

cancer cells of interest were subjected to an unsupervised cluster analysis (MUC1 and TFF3 

were not included in this analysis). This analysis indentified two distinct groups of six cell 

lines that differ in their expression of methylation-sensitive genes: cluster I is composed of 

cell lines  that express a putative hypermethylator phenotype (MDA-MB-436, BT549, MDA-

MB-453, MDA-MB-435S, HS578T, and MDA-MB-231), and cluster II consists of cell lines 

that express a putative low-frequency methylator phenotype (ZR-75-1, MDA-MB-468, 

SKBR3, BT20, MDA-MB-415, and MCF7) (Figure 14).  The separation of these two groups 

is driven predominately by the differential expression of nine methylation-sensitive genes 

(CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3), which are 

largely unexpressed by the cell lines in cluster I (putative hypermethylator group), and 

typically expressed by the cell lines in cluster II (putative low-frequency methylator group) 

(Figure 14). As these nine genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, 

SCNN1A and TFF3) are excellent predictors of methylator status in the panel of breast cancer 

cell lines, they were termed indicator genes for the purposes of the subsequent analyses. 

We next analyzed the expression of these nine indicator genes in four additional 

breast cancer cell lines—HCC1937, SUM102, SUM149, and SUM185. With the exception  
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Figure 13. Hypermethylator cell lines lack expression of methylation-sensitive genes. 

Quantitative real-time PCR results for CST6, SCNN1A, CDH1, CEACAM6, and ESR1. Black 

bars correspond to hypermethylator cell lines, cross-hatched bars correspond to low-

frequency methylator cell lines, and the white bar (far right) corresponds to MCF12A (index 

control cell line).  The expression level of each gene is depicted relative to that of MCF12A 

cells.  Error bars represent S.E.M.  Instances of no detectable level of quantitative real-time 

PCR expression are indicated by an asterisk (*).   
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Figure 14. Expression analysis of methylation-sensitive genes in human breast cancer 

cell lines reveals two distinct clusters. Unsupervised cluster analysis for the 48 

methylation-sensitive genes that are expressed at a detectable level in MCF12A cells.  The 12 

breast cancer cell lines group into two distinct clusters, one cluster corresponding to 

hypermethylator cell lines and a second cluster corresponding to low-frequency methylator 

cell lines. Orange boxes indicate high levels of expression (compared to MCF12A), red 

boxes indicate normal levels of expression, black boxes indicate low levels of expression, 

and green boxes indicate instances of no detectable expression. 
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of SUM185 (which has been classified as Her2+), these cell lines have been reported to be 

basal-like (263, 264). RT-PCR expression of these breast cancer cell lines revealed that 

SUM102 cells were most similar to other hypermethylator cell lines, expressing only 2 of the 

9 genes at normal levels (Figure 15). SUM149 cells lacked expression of 5 genes of interest, 

SUM185 lacked expression of 3, and HCC1937 lacked expression of 4 such genes.  

Predictive Value of Nine Indicator Genes in Determining Methylator Status 

A Bayesian analysis was performed to evaluate the value of each gene for predicting 

correctly which of the two clusters a given cell line was sorted (Table 8).  Nine genes 

emerged as excellent individual indicators (predictors) of cluster assignment, having correct 

assignment values of 67% or greater: CDH1 (CA= 83%), CEACAM6 (92%), CST6 (67%), 

ESR1 (75%), GNA11 (67%), MUC1 (67%) MYB (67%), SCNN1A (92%) and TFF3 (67%).  

These genes individually display excellent sensitivity (range: 63-100%) and specificity 

(range: 63-86%). Furthermore, these genes display good positive predictive value (range: 50-

83%) and negative predictive value (range: 50-100%).  Cell lines of the hypermethylator 

phenotype frequently do not express these genes (5/6 hypermethylator cell lines express ≤ 0-

2 genes at normal levels) (Figure 15).  In contrast, the cell lines belonging to the low-

frequency methylator group frequently express the majority of these genes at normal levels, 

with low-frequency methylator cell lines retaining some level of expression of at least 6 of 9 

genes (Figure 15).   

A cell line tissue microarray was constructed containing the 16 breast cancer cell 

lines (BT20, BT549, HCC1937, HS578T, MCF7, MDA-MB-231, MDA-MB-415, MDA-

MB-435S, MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, SUM102, SUM149,  
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Figure 15. Expression analysis of select genes among breast cancer cell lines. RT-PCR 

results for nine methylation-sensitive genes of interest in a panel of 16 breast cancer cell 

lines. Gene expression levels are expressed relative to that of MCF12A cells. Yellow boxes 

indicate the same level of expression as MCF12A, red boxes indicate high level expression, 

green boxes indicate low level expression, and black boxes indicate no expression relative to 

MCF12A cells. 
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Table 8. Bayesian values for methylation-sensitive genes of interest1. 

 
 

 

Gene Correct 
Assignment 

Sensitivity Specificity Positive 
Predictive 

Value 

Negative 
Predictive 

Value 
 CEACAM6 0.92 1.00 0.86 0.83 1.00 
 CDH1 0.83 0.83 0.83 0.83 0.83 
 CST6 0.67 0.75 0.63 0.50 0.83 
 ESR1 0.75 1.00 0.67 0.50 1.00 
 SCNN1A 0.92 1.00 0.86 0.83 1.00 
 TFF3 0.67 0.67 0.67 0.67 0.67 
 MYB 0.67 0.67 0.67 0.67 0.67 
 GNA11 0.67 0.63 0.75 0.83 0.50 
 MUC1 0.67 0.63 0.75 0.83 0.50 

 
 

1 Bayesian analysis reflects the ability of a given gene to correctly predict the methylator 
(hypermethylator versus low-frequency methylator) status of a given cell line. 
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SUM185, and ZR-75-1) and the normal breast cell line MCF12. Six of these cell lines were 

previously characterized as hypermethylators (BT549, HS578T, MDA-MB-231, MDA-MB-

435S, MDA-MB-436, and MDA-MB-453) and six were previously characterized as low-

frequency methylators (BT20, MCF7, MDA-MB-415, MDA-MB-468, SKBR3, and ZR-75-

1). The others (HCC1937, SUM102, SUM149, and SUM185) have been classified 

differently by different investigators. SUM102 cells are reported to be basal-like (263, 265), 

while SUM149 cells have been reported to be basal-like (263, 264, 266) and also to be 

isolated from a patient with inflammatory breast cancer (267, 268). SUM185 cells are 

reported to be Her2+ (269) or luminal-like (266), while HCC1937 (which are Her2- and 

BRCA1 defective) have been classified as basal-like (266, 270) or as a luminal/basal 

intermediate cell type (271). Given that the ER and PR status of these cell lines have been 

previously reported, the cell line TMA was stained for Her2, Her1, and cytokeratin 5/6, and 

the results scored to facilitate classification of the cell lines. Cell lines that were 

ER+/PR+/Her2- were classified as luminal A, cell lines which were ER+/PR+/Her2+ were 

classified as luminal B, cell lines which were ER-/Pr-/Her2+ were classified as Her2+, and 

cell lines that were ER-/PR-/Her2- with positive staining of either Her1 and/or cytokeratin 

5/6 were classified as basal-like, in keeping with previous studies (40). The results of the 

immunohistochemical analysis are shown in Table 9. Of the six hypermethylator cell lines, 

five display a basal-like IHC signature, while none of the low-frequency methylators 

appeared basal-like, suggesting a substantial overlap between the hypermethylator cell lines 

and the basal-like subtype. The majority of low-frequency methylators were luminal A-like.  
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Table 9. IHC analysis of breast cancer cell lines. 

 
 

 
Cell Line 

 
ER1

 
PR1

 
Her2+

 
Her1 

 
Cyto 5/6

 
Designation2

 
Subtype3

 MDA-MB-436 - - - + Low  HM  Basal 
 BT549 - - Low + -  HM  Basal 
 MDA-MB-453 - + + - Low  HM  Her2 
 MDA-MB-435S - - - - Low  HM  Basal 
 Hs578T - - - Low -  HM  Basal 
 MDA-MB-231 - - - + Low  HM  Basal 
 SUM102 - - - + +  HM  Basal 
 SUM149 + - - + Low  HM  Luminal A 
 SUM185 - - - Low Low  HM  Basal 
 HCC1937 Low - - + -  HM  Luminal A 
 ZR751 + + Low - Low  LFM  Luminal A 
 MDA-MB-468 Low - + + Low  LFM  Luminal B 
 SKBR3 - - + - -  LFM  Her2 
 BT20 + - - + Low  LFM  Luminal A 
 MDA-MB-415 Low - Low - Low  LFM  Luminal A 
 MCF7 + + - - Low  LFM  Luminal A 
 MCF12 + + - Low Low  Normal4  Normal 

 
 
1 ER and PR designations were determined from ATCC factsheet for each cell line or the SUM cell line 
fact sheet (263). 
 
2 HM= hypermethylator, LFM= low frequency methylator, designations are based on expression of 9 
indicator genes. 
 
3 Basal = ER-/PR-/Her2- and either Her1 or Cytokeratin 5/6 positive; Her2+ = ER-/PR-/Her2+;  
Luminal A = ER+/PR+/Her2-; Luminal B = ER+/PR+/Her2+ 
 
4 MCF12A is a normal non-neoplastic breast cell line (256). 
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Two of the basal-like cell lines (SUM102 and SUM185) had a basal-like 

immunohistochemical signature, while SUM149 and HCC1937 exhibited a more luminal A-

like immunostaining pattern (Table 9). 

mRNA-based Expression Analysis of Indicator Genes in Primary Human Breast Tumors 

In order to determine if the putative hypermethylator phenotype occurs in primary 

breast cancers as well as breast cancer cell lines, microarray gene expression data from 91 

primary breast tumors from the UNC Microarray Database (34, 37, 251, 252) were analyzed 

for expression of the nine genes (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, 

SCNN1A, and TFF3) whose loss characterizes the hypermethylator phenotype among breast 

cancer cell lines.  Unsupervised cluster analysis of these data identified three strong clusters 

(Figure 16).  Of the 91 tumors included in this database, 90 clustered successfully and one 

was excluded from further analysis (due to the 5% trimming guideline). The 90 breast 

cancers in this analysis which clustered reflect the following molecular classification: 33/90 

(37%) luminal A, 24/90 (27%) basal-like, 17/90 (19%) Her2+, and 16/90 (18%) luminal B.  

Three major clusters emerged from this analysis (designated A-C). Cluster B is composed of 

21 tumors (23% of all the tumors in the dataset) that express a hypermethylation signature, 

characterized by low expression of at least seven of the nine genes analyzed. Strikingly, 

100% (21/21) of these putative hypermethylator tumors are of the basal subtype, and this 

hypermethylator cluster contains 88% (21/24) of all basal tumors in the dataset. This 

observation suggests that expression of the hypermethylator phenotype represents a major 

biological property of basal-like breast cancers.  As shown in Figure 16, Cluster A (n=51) is 

composed primarily of luminal A and luminal B breast tumors (65% and 29%, respectively),  
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Figure 16. Microarray analysis of 91 primary breast tumors reveals significant overlap 

between basal breast cancers and neoplasms expressing a hypermethylation signature. 

Unsupervised cluster analysis of microarray expression data from the UNC microarray 

database for nine indicator genes. Cluster analysis performed by Dr. Wendell Jones 

(Expression Analysis, Durham, NC). Red indicates high level expression, green designates 

low level expression, and black indicates normal expression levels for genes of interest. 

Cluster B represents the putative hypermethylator cluster and exhibits concurrent 

downregulation of the selected genes. Tumors in cluster A are predominately of the luminal 

A and luminal B subtypes, tumors in cluster B are predominately of the basal subtype, while 

tumors in cluster C are predominately of the Her2+ subtype. 
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with one basal and two Her2+ tumors also within this cluster. Cluster C (n=19) is composed 

primarily of Her2+ breast tumors (16/19, 84%), but also contains 2 basal and 1 luminal B 

breast tumor(s) (Figure 16).  The results of this unsupervised cluster analysis led to 

development of a rule that was used to classify breast cancers based upon their gene 

expression patterns in subsequent analyses of microarray datasets. This rule classifies a 

tumor as a hypermethylator if it expresses at least seven of the nine indicator genes at levels 

less than the median for the dataset. When this rule is applied to the training set, it captures 

25/90 (28%) tumors as hypermethylators, a group which includes the original 21 

hypermethylator tumors. 

 When the rule was applied to an expanded UNC dataset containing 272 tumors, a 

similar pattern was detected, demonstrating significant overlap between tumors expressing a 

hypermethylation signature and tumors of the basal subtype (Figure 17). The 272 breast 

cancers in this analysis reflect the following molecular classification: 103/272 (38%) tumors 

are of the basal subtype, 68/272 (25%) are luminal A, 49/272 (18%) are luminal B, 37/272 

(14%) are Her2+, and 15/272 (6%) are classified as claudin-low. In this expanded analysis, a 

large group of hypermethylator tumors is discernable (Figure 17). This group of 

hypermethylator tumors is composed of 80 (29%) tumors that express a hypermethylation 

signature (expression scores lower than the mean for at least 7 of 9 indicator genes).  

Strikingly, 81% (65/80) of these putative hypermethylator tumors are of the basal subtype, 

and this putative hypermethylator group contains 63% (65/103) of all basal-like tumors in the 

dataset (Table 10). Fifteen non-basal tumors were classified as hypermethylators, including, 

1/80 (1%) of luminal B tumors group with the hypermethylators, as do 1/80 (1%) Her2+  
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Figure 17. Microarray analysis of 272 primary breast tumors suggests a linkage 

between basal breast tumors and the hypermethylator phenotype. Supervised analysis of 

microarray expression data from the UNC microarray database for nine indicator genes. 

Gene expression patterns for individual tumors were analyzed to determine the number of 

genes that were expressed at a level less than the median for the dataset. Tumors with ≥7 

genes below the median expression level were classified as hypermethylators. Microarray 

data mining analysis was performed by Dr. Wendell Jones (Expression Analysis, Durham, 

NC). Tumors with no genes underexpressed are shown on the left and those with 9 genes 

underexpressed are shown on right. Red indicates high level expression, green designates low 

level expression, and black indicates normal expression levels for the genes of interest. The 

original training set of 91 primary breast tumors was excluded from this set. The 

hypermethylator cluster is magnified. This cluster exhibits concurrent downregulation of 

genes indicative of the hypermethylator phenotype and is predominately composed of basal-

like tumors. 
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Table 10. Microarray analysis of primary breast tumors  

 
 

Dataset1 Number of 
Tumors 

Total % HM2 Composition of HM3 % of basals 
that are HM 

 Expanded UNC 272 80/272 (29%) 65/80 (81%) basal 
1/80 (1%) LB 

1/80 (1%) Her2+ 
13/80 (16%) CL 

65/103 (63%) 

 Hess et al. 133 33/133 (25%) 26/33 (79%) basal 
4/33 (12%) Her2+ 
2/33 (6%) LA/B 
1/33 (3%) NL 

26/32 (81%) 

 Wang et al. 295 59/295 (20%) 44/59 (75%) basal 
12/59 (20%) LA/B 
3/59 (5%) Her2+ 

44/76 (58%) 

 Van de Vijver et  al. 246 48/246 (20%) 39/48 (81%) basal 
7/48 (15%) LA/B 
2/48 (4%) Her2+ 

39/66 (59%) 

 Total 946 220/946 (23%) 174/220 (79%) basal 
22/220 (10%) LA/B 
6/220 (3%) Her2+ 
13/220 (6%) CL 
1/220 (0.4%) NL 

174/277 (63%)

 
 
1 References for the datasets as follow: UNC microarray dataset (which does not contain the 91 training set) 
from (34, 37, 251, 252); the Hess et al. dataset (253), Wang et al. dataset (254); and the van de Vijver et al. 
dataset (255).  
 
2 HM = hypermethylators. 
 
3 Subtypes abbreviated as follows: luminal A (LA), luminal B (LB), claudin-low (CL), normal-like (NL).  
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tumors, and 13/80 (16%) claudin-low tumors.  

A second microarray dataset containing 133 primary breast tumors was obtained from 

Hess et al. (253) and subjected to tumor sorting using the hypermethylator rule in order to 

determine if the relationship between the hypermethylator signature and basal breast tumors 

was consistent among various datasets. Tumors in this dataset included 30/133 (23%) 

luminal A, 39/133 (29%) luminal B, 32/133 (24%) basal, 20/133 (15%) Her2+, and 12/133 

(9%) normal-like primary breast tumors. Of these 133 tumors, 33 (25%) exhibited a 

hypermethylator gene expression signature characterized by lower than median expression of 

at least 7 indicator genes (Figure 18, Table 10). Of these 33 hypermethylator tumors, 26 

(79%) were basal-like, 4/33 (12%) Her2+, 1/33 (3%) luminal A, 1/33 (3%) luminal B, and 

1/33 (3%) were normal-like (Figure 18). Consistent with the results obtained with the UNC 

dataset, the vast majority (26/32, 81%) of basal tumors within this dataset exhibit the 

hypermethylator signature (Table 10).  

A third microarray dataset composed of 295 primary breast tumors (254) was 

analyzed to identify tumors that express the hypermethylator signature. This dataset consists 

of: 171/295 (58%) luminal A/B, 76/295 (26%) basal, 36/295 (12%) Her2+, and 12/295 (4%) 

normal-like tumors. A subset of tumors were classified hypermethylators (Figure 19), 

reflecting 59/295 (20%) tumors contained in the dataset (Table 10). Of these hypermethylator 

breast tumors, the majority are of the basal subtype: 44/59 (75%) of hypermethylator tumors 

are basal, while 12/59 (20%) are luminal A/B and 3/59 (5%) are of the Her2+ subtype. 

Furthermore, the majority of basal tumors (44/76, 59%) contained in this dataset were 

classified as hypermethylators (Table 10). 
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Figure 18. Microarray analysis of 133 primary breast tumors suggests a linkage 

between basal breast tumors and the hypermethylator phenotype. Supervised analysis of 

microarray expression data from Hess et al. (253) for nine indicator genes. Gene expression 

patterns for individual tumors were analyzed to determine the number of genes that were 

expressed at a level less than the median for the dataset. Tumors with ≥7 genes below the 

median expression level were classified as hypermethylators. Microarray data mining 

analysis was performed by Dr. Wendell Jones (Expression Analysis, Durham, NC). Tumors 

were sorted in accordance with the hypermethylator rule developed by the UNC database 

analysis. Red indicates high level expression, green designates low level expression, and 

black indicates normal expression levels for genes of interest. 
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Figure 19. Microarray analysis of 295 primary breast tumors suggests a linkage 

between basal breast tumors and the hypermethylator phenotype. Analysis of 

microarray expression data from Wang et al. (254) for nine indicator genes. Gene expression 

patterns for individual tumors were analyzed to determine the number of genes that were 

expressed at a level less than the median for the dataset. Tumors with ≥7 genes below the 

median expression level were classified as hypermethylators. Microarray data mining 

analysis was performed by Dr. Wendell Jones (Expression Analysis, Durham, NC). Tumors 

were sorted in accordance with the hypermethylator rule developed by the UNC database 

analysis. Red indicates high level expression, green designates low level expression, and 

black indicates normal expression levels for genes of interest. The hypermethylator cluster is 

magnified. This cluster exhibits concurrent downregulation of genes indicative of the 

hypermethylator phenotype and is composed predominately of basal-like tumors. 
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Figure 20. Microarray analysis of 246 primary breast tumors suggests a linkage 

between basal breast tumors and the hypermethylator phenotype. Supervised analysis of 

microarray expression data from van de Vijver et al. (255) for nine indicator genes. Gene 

expression patterns for individual tumors were analyzed to determine the number of genes 

that were expressed at a level less than the median for the dataset. Tumors with ≥7 genes 

below the median expression level were classified as hypermethylators. Microarray data 

mining analysis was performed by Dr. Wendell Jones (Expression Analysis, Durham, NC). 

Tumors were sorted in accordance with the hypermethylator rule developed by the UNC 

database analysis. Red indicates high level expression, green designates low level expression, 

and black indicates normal expression levels for genes of interest. The hypermethylator 

cluster is magnified.  
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A fourth microarray dataset, consisting of 246 primary breast tumors (255), was 

mined to identify hypermethylator tumors. The breast tumors in this dataset include in this 

dataset were: 143/246 (58%) luminal A/B, 66/246 (27%) basal, and 37/246 (15%) Her2+.  

Application of the rule revealed that a subset of tumors 48/246 (20%) from this dataset 

classify as hypermethylators (Figure 20). Of these hypermethylator tumors, the majority are 

of the basal subtype: 39/48 (81%) are basal, while 7/48 (15%) are luminal A/B, and 2/48 

(4%) are of the Her2+ subtype (Table 10).  Once again, the majority of basal tumors (39/66, 

59%) within the dataset were classified as hypermethylators, suggesting that a significant 

majority of basal breast cancers can be expected to exhibit the hypermethylation signature.  

In total, microarray data from 942 primary breast tumors was analyzed to determine if 

hypermethylator breast tumors occurred in vivo. We found that 220/946 (23%) of all tumors 

examined displayed a hypermethylator signature (defined as having 7 or more indicator 

genes with expression levels below the median) (Table 10). Of hypermethylator tumors, the 

majority 174/220 (79%) were basal, while 22/220 (10%) were luminal A/B, 6/220 (3%) were 

Her2+, 13/220 (6%) were claudin-low, and 1/220 (0.4%) were normal-like (Table 10). This 

finding suggests a large degree of correspondence between basal-like tumors and 

hypermethylator breast tumors. In fact, of all basal tumors examined, 174/277 (63%) were 

also hypermethylators. 

Immunohistochemical Analysis of Primary Human Breast Tumors 

Two tissue microarrays comprised of 137 tumors with known ER, PR, and Her2 

status were analyzed for CDH1, CEACAM6, CST6, and SCNN1A protein expression. Of 

these primary breast tumors, 96 were classified as luminal A (ER+/PR+/Her2-), 23 were 

basal-like (ER-/PR-/Her2-), and 18 were Her2+ (ER-/PR-/Her2+). In general, luminal A and 
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Her2+ tumors retained expressed of a majority of these four proteins at normal levels, while 

basal tumors were more likely to have decreased expression of one or more of these genes 

(Figure 21). Of the basal-like tumors, 21/23 (91%) lost normal protein expression of at least 

two protein products, with 11/23 (48%) of basal-like tumors exhibiting diminished or lost 

expression of 3-4 of these proteins (Figure 22). In contrast, only 1/18 (6%) Her2+ and 27/96 

(28%) luminal A tumors lost expression of 3-4 protein products (Figure 22). Average 

expression scores were calculated for each protein of interest for each of the three groups: 

basal, Her2+, and luminal A (Figure 23). This revealed that CEACAM6 is the protein 

product most often lost by basal-like tumors, with an average expression score of 0.83 

compared to 1.61 for Her2+ and 1.80 for luminal tumors. In fact, tumors of the basal-like 

subtype had a trend toward lower expression scores, on average, for each protein compared 

to either Her2+ or luminal A breast tumors (Figure 23).  

METHYLATION ANALYSIS OF A SUBSET OF BREAST CANCER CELL LINES AND PRIMARY 
HUMAN BREAST TUMORS 

Methylation Analysis of Breast Cancer Cell Lines 

To confirm that lack of gene expression of known methylation-sensitive genes among 

breast cancer cell lines reflects true methylation-dependent epigenetic silencing, a number of 

methods were employed to assess gene promoter methylation: (i) methylation-specific PCR 

(MSP), (ii) bisulfite sequencing, and (iii) response to 5-aza-2’-deoxycytidine (5-aza) 

treatment.  MSP analysis of nine genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, 

MYB, SCNN1A, and TFF3) that are differentially expressed between hypermethylator and 

low-frequency methylator cell lines revealed differences in the methylation status of specific  
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Figure 21. Basal breast tumors lack expression of protein products of select 

methylation-sensitive genes of interest, but show increased DNMT3b expression. 

Representative immunohistochemistry for five protein products of interest (CEACAM6, 

CDH1, CST6, SCNN1A, and DNMT3b) in tumors of the basal, Her2+, and luminal A 

subtypes at 20X magnification. Positive control staining is represented by cytokeratin 18 

(CK18). 
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Figure 22. Loss of protein expression corresponding to methylation-sensitive genes in 

primary breast tumors. Percentage of tumors of each subtype lacking expression of gene 

products corresponding to 4/4 genes of interest (CEACAM6, CDH1, CST6, and SCNN1A), 

3/4, 2/4, 1/4, or 0/4 genes, respectively. The results for basal tumors are shown in red, Her2+ 

tumors are shown in green, and luminal A tumors are shown in blue. 
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Figure 23. Expression of the protein products corresponding to select methylation-

sensitive genes of interest vary by tumor type. Protein expression score is based on 

immunohistochemical analysis of primary human breast tumors of various subtypes: 23 basal 

tumors (shown in red bars), 18 Her2+ tumors (green bars), and 96 luminal A tumors (blue 

bars). Protein expression was scored on a discrete scale with 4 = high expression, 3 = average 

level expression, 2 = low expression, 1 = weak but detectable expression, and 0 = no 

detectable expression. Statistical significance is indicated by asterisk, where * corresponds to 

p<0.05 and ** corresponds to p<0.009. 
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CpGs within regulatory regions of each gene promoter, in accordance with the methylator 

status of given cell line.  The relationship between gene promoter methylation (as assessed 

by MSP) and loss of gene expression is strong across all hypermethylator cell lines for the 

genes examined. For example, the hypermethylator cell lines express SCNN1A at 

undetectable or diminished levels (Figure 15), and MSP analysis of this gene revealed that 

5/6 (83%) of these cell lines produce only a methylated MSP product, while MSP analysis of 

SCNN1A in MDA-MB-231 cells produced both unmethylated and methylated products.  

Conversely, all of the low-frequency methylator cell lines (of which 5/6, 83% express 

SCNN1A at normal levels) produced an unmethylated SCNN1A MSP product, and only two 

of these cell lines (BT20 and MDA-MB-468) produced a detectable methylated MSP product 

(Figure 24).  Methylated MSP products were detected for at least 55% (5/9) of the genes 

examined in each of the hypermethylator cell lines, with 4/6 hypermethylator cell lines 

exhibiting detectable methylation at 7 or more of the 9 genes.  In contrast, unmethylated 

MSP products were detected for at least 89% (8/9) of the genes examined in each of the low-

frequency methylator cell lines, with 67% (4/6) of low-frequency methylator cell lines 

exhibiting unmethylated products for each of the genes examined (Figure 24). 

Selected MSP products were sequenced to examine the methylation status of a greater 

number of CpGs within regulatory regions of selected genes of interest and to evaluate 

promoter methylation for genes that produced both unmethylated and methylated MSP 

products in some of the cell lines examined.  The results of the bisulfite sequencing analysis 

supports a direct association between gene promoter methylation and gene expression status 

in this panel of methylation-sensitive genes (Figure 25).  For example, hypermethylator cell  
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Figure 24. Hypermethylator cell lines exhibit high levels of gene-specific methylation.  

MSP results for 16 breast cancer cell lines and MCF12A for each of nine genes of interest. 

Red boxes indicate the presence of a methylated MSP product (even in cases where both 

methylated and unmethylated products were present), white boxes indicate the presence of an 

unmethylated MSP product only. Hs578T cells are abbreviated as Hs, ZR-75-1 cells as ZR, 

and SKBR3 cells as SK. 
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Figure 25. CDH1 is differentially methylated between hypermethylator and low-

frequency methylator cell lines. Summary of bisulfite sequencing for breast cancer cell 

lines of MSP products for CDH1. Methylated CpGs are designated by closed circles, 

unmethylated CpGs are designated by open circles for MDA-MB-435S, BT20, and MDA-

MB-231 cell lines (5 replicates each). M = methylated MSP product, U = unmethylated MSP 

product. 
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line MDA-MB-435S lacks detectable expression of CDH1 (Figure 15) and MSP shows that 

the CDH1 promoter is methylated (Figure 24).  Bisulfite sequencing of the intervening CpGs 

within the MSP product demonstrated that the majority of CpGs in this region of the CDH1 

promoter are methylated (TMI = 95%) (Figure 25).  Sequencing of the same region of the 

CDH1 promoter in low-frequency methylator BT20 cells (which express CDH1) revealed 

that all 19 CpGs are unmethylated (TMI = 0%).  Additionally, bisulfite sequencing of the 

CDH1 promoter in hypermethylator MDA-MB-231 cells (which display low level expression 

of CDH1 and exhibit both a methylated and unmethylated CDH1 MSP product) revealed that 

the methylated PCR product is highly methylated (TMI = 84%), while the unmethylated PCR 

product is sparsely methylated (TMI = 4%) (Figure 25).  One explanation for instances where 

MSP analysis for a cell line produces both a methylated and an unmethylated product is that 

these cells possess one unmethylated and one methylated allele.  

Six hypermethylator cell lines (BT549, HS578T, MDA-MB-231, MDA-MB-435S, 

MDA-MB-436, and MDA-MB-453) were treated with the demethylating agent 5-aza-2’-

deoxycytidine (5-aza), and changes in methylation and expression patterns for five genes 

(CEACAM6, CDH1, CST6, ESR1, SCNN1A) were examined.  Representative RT-PCR results 

are shown in Figure 26. Whereas these genes are not expressed in the majority of 

hypermethylator cell lines (Figure 15), treatment with 5-aza results in robust expression in 

each case (Figure 26).  Bisulfite sequencing of CDH1 and ESR1 confirmed that promoter 

demethylation following 5-aza treatment coincided with gene expression for these genes 

(Figures 27-28). For example, specific CpGs within the promoter region of the ESR1 gene 

are 75% methylated at control levels which decreases to 42% methylation during the three  
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Figure 26. Hypermethylator cell lines are 5-aza responsive. Representative agarose gels 

of RT-PCR products for CST6, SCNN1A, CDH1, CEACAM6, and ESR1 demonstrating 5-aza 

induction of gene expression in hypermethylator cell lines.  RT-PCR results using cDNA 

template from untreated (-) and 5-aza treated (+) are shown.  
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Figure 27. Methylation analysis of CDH1 in Hs578T cells. A 435 bp segment (containing 

22 CpGs) within the CpG island proximal to the CDH1 promoter was selected for bisulfite 

analysis in hypermethylator cell line Hs578T. The majority of the demethylation / 

remethylation events in response to the demethylating agent 5-aza-2’-deoxycytidine occur 

within a cluster of three CpGs (shown center). Red balls designate significantly methylated 

CpGs (>75%), blue balls designate significantly unmethylated CpGs (<25%), and yellow 

balls designated partially methylated CpGs (50%). Results shown are averages of 5-8 

replicates for each condition. 
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Figure 28. Methylation analysis of ESR1 in MDA-MB-435s cells.  A 491 bp segment 

(containing 18 CpGs) within the CpG island proximal to the ESR1 promoter was selected for 

bisulfite analysis in the hypermethylator cell line MDA-MB-435s. The majority of the 

demethylation / remethylation events in response to the demethylating agent 5-aza-2’-

deoxycytidine occur within two clusters of three and two CpGs, respectively (shown center). 

Red balls designate significantly methylated CpGs (>75%), blue balls designate significantly 

unmethylated CpGs (<25%), and yellow balls designated partially methylated CpGs (50%). 

Results shown are averages of 5-8 replicates for each condition. 
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week 5-aza treatment period, indicating effective demethylation. Additionally this same 

region begins to remethylate after treatment is withdrawn, resulting in a TMI of 67% by 

week 8 (Figure 28). 

Methylation Analysis of Primary Human Breast Tumors 

Twenty-six primary breast tumors (15 basal-like, 8 luminal A/B, and 3 Her2+) were 

utilized for MSP analysis of the nine genes found to be indicative of a hypermethylator 

phenotype in the microarray studies (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, 

SCNN1A, and TFF3). MSP analysis of these nine genes that are differentially expressed 

between hypermethylator and low-frequency methylator tumors revealed differences in the 

methylation status of specific CpGs within regulatory regions of each gene promoter (Figure 

29). Methylated MSP products were detected for at least 67% (6/9) of the genes analyzed in 

each of the basal breast cancers examined. Among this cohort of basal tumors, 80% (12/15) 

met the criteria for the hypermethylator tumor category (detectable methylation at 7 or more 

of the 9 indicator genes). In contrast 0% (0/11) of non-basal tumors were hypermethylators, 

indicating a strong correlation between the hypermethylator phenotype and basal-like breast 

tumors (Figure 29). For example, basal tumors B03, B07, and B09 produced methylated 

MSP products for each of the nine of the genes analyzed (Figure 29). In contrast, 

unmethylated MSP products were detected for at least 66% (6/9) of the genes examined in 

each of the luminal A/B and Her2+ tumors, with 91% (10/11) of these non-basal tumors 

exhibiting only 1-2 methylated products out of the nine examined (Figure 29).  

Selected MSP products were sequenced to examine the methylation status of a greater 

number of CpGs within regulatory regions of selected genes of interest and to evaluate  
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Figure 29. Basal breast tumors exhibit high levels of concurrent gene-specific 

methylation of epigenetically-regulated genes of interest.  Red boxes indicate presence of 

a methylated MSP product (even when an unmethylated product was also detected), white 

boxes indicate presence of an unmethylated MSP product only. Primary breast tumors of the 

basal-like subtype are designated B01-B15, Her2+ as H01-H03, or luminal A/B as L01-L08. 

Tumors L01-L06 are luminal A, while tumors L07 and L08 are of the luminal B subtype. 
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promoter methylation for genes that produced both unmethylated and methylated MSP 

products. Representative bisulfite sequencing results are shown for CDH1, CST6, and 

GNA11 for six basal-like and three non-basal (one Her2+, one luminal A, and one luminal B) 

breast tumors (Figures 30-32). Bisulfite sequencing of the 19 CpGs spanning the region 82 

bp upstream of the promoter to 129 bp into exon 1 of CDH1 reveals extensive promoter 

methylation among basal tumors, with TMIs ranging from 92-97% (Figure 30). In contrast, 

TMIs for the three non-basal tumors range from a low of 9% to 50%, revealing many fewer 

methylation events in the promoter region of this gene among these tumors (Figure 30). 

These six basal-like tumors also exhibit extensive methylation of the promoter region of the 

CST6 and GNA11 genes, while the luminal or Her2+ tumors examined do not (Figures 31-

32). Similar results were seen for each of the other six indicator genes (CEACAM6, ESR1, 

MUC1, MYB, SCNN1A and TFF3) examined by bisulfite sequencing. For example, the 

region analyzed in the promoter region of CEACAM6 included four CpGs and had a TMI of 

100% in all six basal tumors examined, and remained completely unmethylated (TMI = 0%) 

in the luminal A/B and Her2+ tumors subject to bisulfite analysis. The ESR1 gene was 

substantially methylated in 6/6 basal tumors (ranging from 71%-100% TMI), but 

substantially unmethylated in the three non-basal tumors examined (0-29% TMI). In the 5/6 

basal tumors where MUC1 exhibited methylation, sequencing reveals partial methylation, 

with TMIs ranging from 50-58%. However in the three non-basal tumors, MUC1 exhibited 

0-5% methylation. Similar trends were seen in the rest of the genes examined, with extensive 

promoter methylation (ranging from 50%-100% TMI) of basal tumors and less frequent 

methylation (TMIs ranging from 0%-29%) for non-basal tumors breast tumors. 
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Figure 30. Basal breast tumors exhibit extensive methylation of CpGs within the CDH1 

promoter. Summary of bisulfite sequencing results for the CDH1 gene in primary breast 

tumors. 100% methylated CpGs are represented by red balls, CpGs where the majority 

(>50%) of clones were methylated are represented in yellow, CpG sites where clones were 

<50% methylated are represented in green, and 100% unmethylated CpG sites are shown in 

blue. CpG sites that fall within the MSP primers are delineated by the vertical lines. 

Methylation status is representative of 3-5 sequenced clones. The Total Methylation Index 

(TMI) for each tumor analyzed was calculated based on intervening CpGs only. 
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Figure 31. Basal breast tumors exhibit extensive methylation of CpGs within the CST6 

promoter. Summary of bisulfite sequencing results for the CST6 gene in primary breast 

tumors. 100% methylated CpGs are represented by red balls, CpGs where the majority 

(>50%) of clones were methylated are represented in yellow, CpG sites where clones were 

<50% methylated are represented in green, and 100% unmethylated CpG sites are shown in 

blue. CpG sites that fall within the MSP primers are delineated by the vertical lines. 

Methylation status is representative of 3-5 sequenced clones. The Total Methylation Index 

(TMI) for each tumor analyzed was calculated based on intervening CpGs only. 
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Figure 32. Basal breast tumors exhibit extensive methylation of CpGs within the 

GNA11 promoter. Summary of bisulfite sequencing results for the GNA11 gene in primary 

breast tumors. 100% methylated CpGs are represented by red balls, CpGs where the majority 

(>50%) of clones were methylated are represented in yellow, CpG sites where clones were 

<50% methylated are represented in green, and 100% unmethylated CpG sites are shown in 

blue. CpG sites that fall within the MSP primers are delineated by the vertical lines. 

Methylation status is representative of 3-5 sequenced clones. The Total Methylation Index 

(TMI) for each tumor analyzed was calculated based on intervening CpGs only. 
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Correlation of Gene Expression and Promoter Methylation  

To examine the relationship between gene expression status and promoter 

methylation for each of the nine indicator genes, an expression score and a methylation score 

were generated for each cell line.  These scores reflect the combined relative expression and 

the combined relative methylation status for these genes of interest (CEACAM6, CDH1, 

CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) for a given cell line.  A strong 

inverse correlation (R=0.82, p=0.0003) exists between these two parameters: cell lines with 

low expression scores tend to have higher methylation scores, and those with high expression 

scores tend to have low methylation scores (Figure 33).  Hypermethylator cell lines exhibit 

an average expression score of 5.5 + 1.5, while low-frequency methylator cell lines exhibit 

an average expression score of 15.2 + 0.8.  This difference in average expression scores 

between the two groups was significant (p=0.0005).  Likewise hypermethylator cell lines 

produced an average methylation score that was significantly higher than that of the low-

frequency methylator cell lines (8.2 + 0.7 versus 3.8 + 0.6, p=0.0007). These results suggest 

that the loss of gene expression observed in hypermethylator cell lines is a direct 

consequence of aberrant promoter methylation for the genes of interest. Interestingly, the 

scores of the basal-like cell lines are similar to those of the hypermethylators, with an 

average expression score of 9.0 + 1.9, and an average methylation score of 7.8 + 1.1. When 

these basal-like cell lines are included in the hypermethylator group, the average expression 

score is 6.9 + 1.2, significantly lower than that of the low-frequency group (p=0.0001). 

Similarly, when the basal-like cell lines are included in the hypermethylator group, the 

methylation score becomes 8.0 + 0.6, still significantly different from that of the low  
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Figure 33. Gene expression status correlates with promoter methylation status among 

breast cancer cell lines.  Association between RT-PCR expression and MSP methylation 

status of nine genes of interest for 16 breast cancer cell lines. Hypermethylator cell lines 

(black triangles) and low-frequency methylator cell lines (white triangles) demonstrate a 

statistically significant relationship between gene expression status and promoter methylation 

status. MCF12A is shown in pale blue. Expression scores are generated based on the number 

of genes a given cell line expresses at normal levels (via RT-PCR), and methylation scores 

are calculated based on the MSP results for a given cell in genes of interest. 
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frequency methylators (p=0.0003). While the methylation score of these basal-like cell lines 

is nearly equivalent to that of the six hypermethylators alone (7.8 versus 8.2, respectively), 

the expression score of the basal cells is somewhat higher than the six hypermethylator cell 

lines (9.0 versus 5.5, respectively). This suggests that while the expression of indicator genes 

is more common among these basal-like lines, it is still less than the levels of low-frequency 

methylator cells. Additionally, these basal-like cell lines reflect methylation levels that are 

quite comparable to hypermethylators, suggesting that they may be expected to have the 

same methylation defects as hypermethylator cell lines.  

RESULTS RELATED TO DNMT ANALYSIS 

In order to determine if the high levels of methylation displayed by the 

hypermethylator cell lines in the concurrent silencing of the nine epigenetically-regulated 

indicator genes was due to a defect in methylation machinery, we examined the three 

functional human DNMT enzymes (DNMT1, DNMT3a, and DNMT3b) in these cells. We 

also examined the total DNMT activity in hypermethylator cell lines in comparison to both 

low frequency methylators and the non-neoplastic breast cell line MCF12, in order to 

determine if certain aberrations in the methylation machinery may account for the different 

methylation signatures between these two subsets of breast cancer cell lines. 

DNMT Analysis of Breast Cancer Cell Lines 

Hypermethylator cell lines exhibit total DNMT activity levels that are higher than that 

of low-frequency methylator cell lines and non-neoplastic MCF12A cells (Figure 34A).   

 132



Figure 34. DNA methyltransferase activity and enzyme levels are aberrant in 

hypermethylator cell lines.  Results from triplicate determination of total DNMT activity 

and individual DNMT protein assays are shown. Hypermethylator cell lines are represented 

by black bars, low-frequency methylators are represented by cross-hatched bars, and 

MCF12A cells are represented by a white bar. Error bars represent S.E.M. One unit of 

DNMT activity or DNMT protein level corresponds to the equivalent amount of activity or 

protein expressed in MCF12A cells. (A) Total DNMT enzymatic activity; (B) DNMT1 

protein; (C) DNMT3a protein; and (D) DNMT3b protein. 
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Each of the hypermethylator cell lines exhibit DNMT activity levels that are ≥1.7-fold higher 

than that of MCF12A cells (Figure 34A), whereas 5/6 (83%) low-frequency methylator cell 

lines (MDA-MB-468, SKBR3, BT20, MDA-MB-415, and MCF7) exhibit DNMT activity 

levels that are ≤1.4-fold that of MCF12A cells (Figure 34A).  The average DNMT activity 

level for the hypermethylator cell lines (2.9 + 0.6) is greater than that of the low-frequency 

methylator cell lines (1.4 + 0.5), but the difference does not reach significance (p=0.095, 

NS).  This is due to the level of DNMT activity in ZR-75-1 cells (3.8 + 0.2), which is much 

higher than MCF12A cells, making it unlike the other five cell lines in the low-frequency 

methylator group. When ZR-75-1 cells are excluded, the average DNMT activity level of the 

low-frequency methylator group becomes indistinguishable from that of MCF12A cells and 

significance emerges between the total DNMT activity levels of the hypermethylator and 

low-frequency methylator groups (p=0.027).  

No significant differences were detected for DNMT1 or DNMT3a protein levels 

between hypermethylator cell lines, the low-frequency methylator cell lines, and MCF12A 

cells (Figure 34B-C).  The average DNMT1 protein level for the hypermethylator cell lines 

(0.8 + 0.15) and the low-frequency methylator cell lines (0.88 + 0.29) are indistinguishable 

from those of MCF12A cells (p=0.82, NS) (Figure 34B). MDA-MB-415 cells overexpress 

DNMT1 (2.3-fold compared to MCF12A), but the other cell lines exhibit a DNMT1 protein 

level of 1.3-fold or lower regardless of their methylation status (Figure 34B).  Likewise, the 

average DNMT3a protein level for the hypermethylator cell lines (1.24 + 0.17) and the low-

frequency methylator cell lines (1.39 + 0.2) are indistinguishable from that of MCF12A cells 

(p=0.59, NS) (Figure 34C).  In contrast to DNMT1 and DNMT3a, the average DNMT3b 

protein levels for the hypermethylator cell lines are much higher (2.5 + 0.67) than those of 
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the low-frequency methylator cell lines (1.5 + 0.64) (Figure 34D), but this difference was not 

statistically significant.  Among the hypermethylator cell lines, 5/6 (83%) express ≥1.7-fold 

MCF12A levels of DNMT3b protein.  In contrast, among the low-frequency methylator cell 

lines, only ZR-75-1 cells (which also display high DNMT activity) exhibit an elevated level 

of DNMT3b protein level expression (Figure 34D).  While ZR-75-1 cells display elevated 

DNMT3b protein and total DNMT activity, they fail to silence the methylation-sensitive 

genes that are methylated in the hypermethylator phenotype cell lines. Thus, ZR-75-1 cells 

are more similar to the low-frequency methylator cell lines with respect to gene expression 

and methylation of the six indicator genes.  When the cell line ZR-75-1 is excluded from the 

low-frequency methylator group, the average DNMT3b protein level for the low-frequency 

methylator cells is 0.91-fold that of MCF12A cells, approaching significance when compared 

to the hypermethylator cell lines (p=0.069).   

A correlation analysis was performed to identify significant relationships between 

DNMT protein levels and DNMT activity among the hypermethylator and low-frequency 

methylator cell lines.  No significant association was found between DNMT activity and 

DNMT1 or DNMT3a protein levels (R<0.3, NS).  However, a strong association (R=0.79, 

p=0.0007) between DNMT activity and DNMT3b protein levels was observed (Figure 35).  

The correlation coefficients for the relationship between DNMT3b protein and DNMT 

activity for both hypermethylator cell lines (0.71, p=0.0036), and the low-frequency 

methylator cell lines (R=0.90, p=0.0028) were statistically significant. This observation 

suggests that DNMT3b significantly contributes to total DNMT activity among breast cancer 

cell lines.  Consistent with this suggestion, in cell lines with DNMT activity ≥1.8-fold higher  
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Figure 35. DNMT activity levels in breast cancer cell lines correlate with DNMT3b 

expression.  Association between DNMT total activity and DNMT3b protein levels for 12 

breast cancer cell lines and MCF12A cells.  Hypermethylator cell lines (black triangles), low-

frequency methylator cell lines (white triangles), and MCF12A cells (black circle) 

demonstrate a statistically significant relationship between DNMT total activity and 

DNMT3b protein levels. 
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than MCF12A cells (n=7), 86% (6/7) exhibit elevated (≥1.7-fold higher than MCF12A) 

DNMT3b levels. With the exception of ZR-75-1 cells, all of these cell lines belong to the 

hypermethylator group (MDA-MB-436, BT549, MDA-MB-453, HS578T, and MDA-MB-

231).  Significant associations were recognized between DNMT activity and the additive 

values of (i) DNMT1 and DNMT3b (R=0.74, p=0.002), (ii) DNMT3a and DNMT3b 

(R=0.74, p=0.002), and (iii) DNMT1, DNMT3a, and DNMT3b (R=0.70, p=0.004).  

However, these relationships primarily reflect the contribution of DNMT3b to DNMT 

activity rather than a true additive effect of the various DNMT enzymes.  These findings 

combine to demonstrate significant correlation between hypermethylator status, elevated total 

DNMT activity, and overexpression of DNMT3b protein. 

DNMT3b Protein Analysis Primary Human Breast Tumors 

We examined the DNMT3b protein expression in the 137 primary breast tumors 

which were included in the TMA analyzed above. Basal tumors on average have a slightly 

higher expression score for DNMT3b (2.70 + 0.17) compared to both Her2+ (2.22 + 0.24) 

and luminal A (2.35 + 0.09) breast tumors. This immunohistochemical analysis revealed that, 

while detectable overexpression of DNMT3b protein by IHC was rare, 3/23 (13%) of basal 

tumors exhibited very high expression of DNTM3b, compared to 1/96 luminal (1%) and 0/18 

(0%) of Her2+ tumors.  

DNMT Activity and DNMT3b Protein Analysis of Basal-like Breast Cancer Cell Lines 

Basal-like breast cancer cell lines SUM102 and SUM185 and luminal A-like 

SUM149 and HCC1937 cell lines were assessed for the total DNMT activity as well as 

DNMT3b protein levels to determine how this subset of cell lines compared to the 
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hypermethylator cell lines in respect to DNMT-based abnormalities. Analysis of the total 

DNMT activity in these four breast cancer cell lines revealed elevated total activity in each 

cell line, compared to that of MCF12A cells: SUM102 cells exhibit 2.8-fold higher total 

DNMT activity than MCF12A cells, SUM149 cells exhibit 7.9-fold higher total activity, 

SUM185 cells exhibit 19.4-fold elevated total activity, while HCC1937 exhibit total activity 

levels that were 13.5-fold higher than MCF12A cells (Figure 36A). Subsequent DNMT3b 

protein analysis revealed elevated DNMT3b protein in each of these cell lines: SUM102 cells 

exhibit DNMT3b protein levels that are 5.4-fold higher than MCF12A, SUM149 cells exhibit 

14.3-fold higher DNMT3b protein, SUM185 exhibit 9.4-fold increased DNMT3b protein, 

while HCC1937 cells exhibit DNMT3b protein levels that are 7.1-fold higher than non-

neoplastic MCF12A cells (Figure 36B). When we include these cell lines in our analysis we 

see a strong correlation between DNMT3b protein and total DNMT activity in a panel of 16 

breast cancer cell lines (Figure 36C) persists, as described previously (R=0.73, p=0.0004). 

DNMT3B Knockdown of Hypermethylator Cell Lines 

In order to determine if overexpression of DNMT3b protein is directly responsible for 

methylation-dependant silencing of the genes associated with the hypermethylation signature, 

we treated MDA-MB-453 and BT549 cells with GFP-tagged shRNA targeted to DNMT3b. 

The RNA-interference construct employed was previously utilized to knockdown DNMT3b 

expression in MCF7 cells (261). Populations of GFP+ MDA-MB-453 and BT549 cells were 

established following transfection. These cell populations were utilized to examine 

expression of the methylation-sensitive genes which were not expressed in these cell lines. A 

pure GFP+ cell population was not isolated during these experiments due to the lack of a  
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Figure 36. DNMT analysis of basal-like cell lines. Basal-like cell lines shown in grey bars 

and triangles, hypermethylators shown in black triangles, low-frequency methylators shown 

in white triangles, and MCF12A shown in blue triangles and white bars. Average activity / 

DNMT3b level for hypermethylators is shown by red dashed lines, while average levels for 

low-frequency methylators is shown by blue dashed lines. (A) Total DNMT activity; (B) 

DNMT3b protein analysis; (C) DNMT activity correlates with DNMT3b protein. 
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positive selectable marker on the pLVTHM vector construct. These cell populations were 

found to be composed of ~75% GFP+ cells for the MDA-MB-453 cell populations and ~85% 

GFP+ cells for the BT549 cell populations. GFP+ cells exhibited various features distinct 

from non-transfected control cells, including a decreased growth rate and a higher proportion 

of cells that are larger, but otherwise morphologically similar to the parental tumor cell line. 

In contrast, MDA-MB-453 and BT549 cells that were transfected with the control scrambled 

sequence vector exhibited none of these features. Western blot analysis revealed that the 

shRNA-transfected population of MDA-MB-453 cells contained detectably lower levels of 

DNMT3b protein compared to either the parental or scrambled control MDA-MB-453 cells, 

suggesting effective shRNA-mediated knockdown (Figure 37). The hypermethylator cell line 

MDA-MB-453 lacks expression of CEACAM6, CST6, ESR1, MUC1, and SCNN1A, and 

expresses GNA11 at very low levels (compared to normal MCF12A cells) (Figure 15). RT-

PCR analysis revealed that stable RNAi-mediated knockdown of DNMT3b in MDA-MB-453 

cells results in reexpression or increased expression of all six genes (Figure 38). In the case 

of CEACAM6, CST6, ESR1, and GNA11, the DNMT3b knockdown cells express these genes 

at levels equal to or slightly higher than MCF12A cells (Figure 38). Methylated genes MUC1 

and SCNN1A were also expressed after DNMT3b knockdown, but at levels slightly lower 

than normal (Figure 38). These results demonstrate that diminished levels of DNMT3b 

results in reexpression of these methylation-sensitive genes in hypermethylator MDA-MB-

453 cells, and suggest strongly that CEACAM6, CST6, ESR1, GNA11, MUC1, and SCNN1A 

are gene targets for epigenetic regulation by DNMT3b. The hypermethylator cell line BT549 

lacks expression of CEACAM6, CDH1, CST6, ESR1, GNA11, and SCNN1A. RT-PCR  
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Figure 37. Western analysis of shRNA-transfected MDA-MB-453 cells reveals evidence 

of effective knockdown of DNMT3b protein. Western analysis of DNMT3b protein in 

MDA-MB-453 cells treated with shRNA targeted to DNMT3b reveals lower levels of 

detectable protein. The molecular weight of the DNMT3b protein is approximately 110 kDa. 

Templates loaded as follows: lane 1, parental MDA-MB-453 cells (control); lane 2, MDA-

MB-453 scrambled control; lane 3, MDA-MB-453 knockdown. There is a detectable 

knockdown of shRNA-transfected MDA-MB-453 cells, but no change in the level of MDA-

MB-453 cells transfected with the scrambled control. β-actin blot is shown. 
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Figure 38. RNA-interference mediated knockdown of DNMT3b restores expression of 

methylated genes in MDA-MB-453 cells. Agarose gels showing RT-PCR products for six 

indicator genes which lack normal expression in the hypermethylator cell line MDA-MB-

453. Templates loaded as follows: lane 1, molecular size standard; lane 2, no template 

(negative control); lane 3, parental MDA-MB-453 cells (control); lane 4, MDA-MB-453 

scrambled control; lane 5, MDA-MB-453 knockdown; lane 6, MCF12A (non-neoplastic 

index cell line). MDA-MB-453 cells lack expression of CEACAM6, CST6, ESR1, MUC1, 

and SCNN1A, while expressing GNA11 at low levels (compared to MCF12A). RNAi-treated 

MDA-MB-453 cells (lane 5) exhibit re-expression or induced expression of these genes. β-

actin was amplified as a positive control. 
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analysis showed that RNAi-mediated knockdown of DNMT3b in BT549 cells results in the 

reexpression of five of these six genes (Figure 39). Thus, these results indicate that 

overexpression of DNMT3b significantly contributes to the methylation defect exhibited by 

hypermethylator cell lines which, in turn, results in the concurrent methylation of multiple 

genes.  
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Figure 39. RNA-interference mediated knockdown of DNMT3b restores expression of 

methylated genes in BT549 cells. Agarose gels showing RT-PCR products for six indicator 

genes which lack normal expression in the hypermethylator cell line BT549. Templates 

loaded as follows: lane 1, molecular size standard; lane 2, no template (negative control); 

lane 3, parental BT549 cells (control); lane 4, BT549 scrambled control; lane 5, BT549 

knockdown; lane 6, MCF12A (non-neoplastic index cell line). BT549 cells lack expression 

of CEACAM6, CST6, ESR1, MUC1, and SCNN1A, while expressing GNA11 at low levels 

(compared to MCF12A). RNAi-treated BT549 cells (lane 5) exhibit re-expression or induced 

expression of these genes. β-actin was amplified as a positive control. 
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DISCUSSION 

THE CHALLENGE OF POOR-PROGNOSIS BREAST CANCER 

The inherent heterogeneity associated with breast cancer makes determination of 

tumor characteristics that greatly impact patient outcome (such as aggressiveness, ability to 

metastasize, response to various chemotherapeutic agents) difficult or impossible, especially 

at the time of initial diagnosis. Given that a number of different genetic, chromosomal, and 

epigenetic changes contribute to the development of breast cancer, every tumor is 

intrinsically complex and potentially distinct. Because the aberrant cells that give rise to 

these tumors accumulate numerous molecular changes during neoplastic transformation and 

tumorigenesis, the response to treatment and eventual progression for a given tumor is 

determined by the combined influence of numerous genes (and other factors). Thus, 

understanding the molecular mechanisms that affect numerous genes concurrently may hold 

the key for better clinical management of breast cancer. 

Recent advances in our understanding of the gene expression patterns that 

characterize different classes of breast cancer and the links between gene expression, tumor 

behavior, and patient outcome promise to provide better prognostication for individual 

patients, as well as guides for clinicians in choosing appropriate treatment strategies (33, 35, 

37). The development of targeted therapies for some subsets of breast cancer (such as ER+ 

and Her2+ breast tumors) has greatly reduced the cancer burden and mortality rates 

associated with these breast tumors, and extended the life expectancy for many women. 



While these advances have improved breast cancer treatment, several classes of tumors 

remain difficult to treat effectively. Tumors types that lack targeted therapies (such as basal 

breast cancer) are more difficult to treat and clinicians are left with cytotoxic 

chemotherapeutics as the only means of treatment. As a result, these tumors account for a 

disproportionate number of breast cancer deaths each year. Thus, there is an urgent need not 

only for better targeted treatment strategies, but also for an improved understanding of the 

molecular basis of these poor-prognosis breast tumors in order to improve the long-term 

outcome of women with these tumors. Better understanding, rapid identification, and 

improved treatment of basal-like tumors will result in substantial alleviation of the overall 

breast cancer burden since the poorest outcome tumors account for a large portion of breast 

cancer deaths. 

Challenges of Basal Breast Cancer 

Women with triple negative (ER-/PR-/Her2-) breast cancer, of which basal tumors 

make up a large subset, are among those with the poorest overall survival rates (35, 40, 50). 

Breast tumors of the basal subtype make up ~25% of all breast cancers and tend to display 

more aggressive tumor characteristics, such as increased size, rapid tumor growth, increased 

rate of metastasis to other organ sites, higher incidence of relapse, and lower overall patient 

survival (40, 49, 272, 273). The genetic and epigenetic events that lead to development of 

these cancers is incompletely understood, and, represents the focus of much scientific inquiry 

in the hopes of uncovering the molecular basis of these neoplasms (46). In addition to 

possessing a number of aggressive characteristics, basal breast cancers have been reported to 

exhibit a number of unique features that are not well understood. For example, basal breast 

cancer appears to occur at a higher incidence in pre-menopausal African-American women 
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(compared either pre-menopausal Caucasians or post-menopausal women of either ethnicity), 

complicating the understanding of incidence of this subtype (40). In fact, a recent study of 

148 Nigerian women with breast cancer revealed that 59% of these women had basal-like 

breast cancer, a rate more than double what would be expected (reviewed in 46). Although 

the true cause remains unclear, the factors that account for this overrepresentation of poor-

prognosis basal tumors in women of African ancestry may include genetic predisposition, 

environmental factors, cultural practices, socioeconomic factors (access to care), or a 

combination of all of these. Additionally, several studies have reported findings that seem to 

indicate that basal breast cancers may metastasize in unique ways, being less likely to 

metastasize to the bone than the viscera, and having higher rates of brain metastases 

compared to metastatic breast cancers of other subtypes (46, 50, 274). Better understanding 

of the unusual features of basal-like breast cancer may lead to the development of new 

therapies and more rapid molecular diagnostics. 

Current Treatment Options for Basal Breast Cancer 

Basal breast tumors display a general resistance to most currently available targeted 

treatment options for breast cancer, including hormonal therapies (as they are typically ER- 

and PR-), as well as trastuzumab (as they are typically Her2-). Whereas numerous studies 

have shown that basal-like breast cancers generally respond well to preoperative 

chemotherapy (52, 275), patients who do not achieve pathologic complete response with such 

treatment face a higher likelihood of relapse than patients with breast cancers representing 

the  other molecular subtypes. Additionally, basal breast cancers tend to be highly 

proliferative (46), which may partially explain this tendency towards initial response to 

treatment followed by relapse. The higher proliferation rates of these tumors may result in 

 153



more rapid death of a high percentage of tumor cells after drug treatment, but leaving a few 

resistant tumor cells which could cause to eventual relapse. The genetic instability exhibited 

by many basal breast cancers may also confer an increased likelihood toward development of 

resistance to whichever treatment regime is administered (46). For example, many basal 

breast cancers are p53 mutant. The p53 status of these breast cancers impact significantly on 

drug treatment, since p53 mutant tumors have been reported to be resistant to certain 

anthracycline-based chemotherapeutic regimens (276). 

Currently a number of signaling molecules are under investigation as potential targets 

for basal-like breast cancers. For example, EGFR signaling has been inhibited successfully in 

other cancers and EGFR is frequently overexpressed in basal-like breast cancers (46). 

However the development of an IHC-based assay that accurately measures EGFR protein 

levels has proven difficult to achieve (277), slowing the progress on this front. Drugs that 

target the growth factor receptor c-KIT (such as imatinib) are already used to treat many 

cancers. However, c-kit is only expressed by ~30% of basal breast cancers, limiting the 

potential usefulness of imatinib. Furthermore, imatinib was found to have no activity against 

metastatic breast cancers in a recent phase II clinical trail (278). Many other signaling targets 

are currently under investigation for development of drugs for use against breast 

malignancies, including inhibitors of Ras, Raf, MEK, MTOR, and Src (46), but until the 

unique mechanisms underlying basal breast cancer are better understood, progress in treating 

these malignancies will be incremental at best.  
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IDENTIFICATION OF A HYPERMETHYLATOR PHENOTYPE IN HUMAN BREAST CANCER  

Identification of a Novel Hypermethylation Signature 

Our findings suggest that a hypermethylator phenotype occurs in a subset of human 

breast tumors, and, like methylator phenotypes in other tumor systems, this subset of breast 

tumors tends to methylate tissue-specific genes more often than ‘classical’ colorectal CIMP 

genes (such as the MINT gene family and hMLH1). In breast cancer, this hypermethylator 

signature is defined by concurrent methylation of numerous genes of interest, including 

CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3. This 

hypermethylation defect corresponds to elevated DNMT activity secondary to 

overexpression of DNMT3b protein. The CpG island methylator phenotype (CIMP) was first 

used to describe a distinct subset of colorectal tumors that display high rates of concordant 

methylation of specific genes (85).  Subsequently, similar epimutational phenomena have 

been described in a wide range of neoplasms (86-95). In our study, we examined not only 

genes with conventionally defined CpG islands, but also those with atypical CpG features 

(such as CEACAM6), which have recently been reported as epigenetically-regulated despite 

lacking typical CpG islands (58). Thus, we use the term “hypermethylator phenotype” rather 

than “CpG island methylator phenotype” to describe the hypermethylation defect in breast 

cancer cell lines since the targets of aberrant methylation are not restricted to genes with 

large CpG islands.  

A previous study that examined methylation patterns of primary breast tumors in 

search of a hypermethylator phenotype found frequent but essentially equally distributed 

methylation events at 12 genes among different histologic subsets of neoplasms (105).  The 

authors concluded that a CpG island methylator phenotype does not occur in breast cancer. 
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The difference in conclusions about the existence of a hypermethylator phenotype in breast 

cancer between the current study and the earlier published report is likely attributable to the 

number and choice of genes examined in the two studies. The previous study did not examine 

many of the genes that we found to be highly predictive of a hypermethylator phenotype 

(CEACAM6, CST6, GNA11, MUC1, MYB, SCNN1A, and TFF3), but did include several 

genes (including GSTP1, RARβ, RB, and others) which we found to be less useful for 

predicting the hypermethylator phenotype in breast cancer. Thus, our results are consistent 

with the previous findings: when the set of genes analyzed by Bae et al (105) are used as 

criteria for detecting a methylator phenotype, no distinct hypermethylator phenotype is 

detectible.  It is only through a survey of numerous methylation-sensitive genes that evidence 

for a hypermethylator phenotype emerges.   

The subset of human breast cancer cell lines and primary breast tumors determined in 

our study to express a hypermethylator phenotype are characterized by concurrent 

methylation-dependent silencing of a number of genes, including a specific set of genes with 

excellent predictive power (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, 

SCNN1A, and TFF3) that are involved in a wide range of neoplastic processes.  E-cadherin 

(CDH1) is a well-known suppressor of invasion and metastasis that functions in the 

maintenance of cell-cell adhesion (121).  Methylation of CDH1 (estimated to occur in 40-

90% of breast tumors) is associated with lymph node metastasis, loss of differentiation, and 

ER negativity in primary breast cancers (111, 115, 279). CDH1 and ESR1 are frequently 

concurrently methylated in breast tumors (115), a relationship also supported by the results of 

the present study.  CEACAM6 is a tumor-related gene that is involved in adhesion, migration, 

invasion, metastasis, apoptosis, and chemoresistance (280, 281), although the implications of 
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CEACAM6 loss in breast cancers are not well understood. The majority of what is known 

about the role of this gene in cancer comes from studies of tumors in which CEACAM6 is 

overexpressed, which tends to correspond to more aggressive cancer phenotypes, including 

those of the colorectum (282) and pancreas (283). Cystatin M (CST6) is a recognized breast 

cancer tumor suppressor gene (284) that was recently reported to be silenced due to promoter 

hypermethylation in numerous breast cancer cell lines, as well as primary breast tumors (58, 

118).  CST6 is estimated to be methylated in ~27% of primary and ~67% of metastatic breast 

cancers (285). A cysteine protease inhibitor, CST6 is involved in regulation of signaling 

molecules, extracellular matrix components, kinases, phosphatases, and transcription factors 

(286). ESR1, which is silenced by methylation in the majority of estrogen-negative breast 

tumors (115), is a very important methylation-sensitive gene in breast carcinogenesis, 

holding important implications for sensitivity to hormone therapy and clinical outcome. 

ESR1 is a nuclear hormone receptor which can activate transcription of cell growth genes. 

While many breast cancers are fueled by estrogen, some become estrogen-independent and 

can proliferate even in the absence of this hormone. Such ER- cancers tend to have worse 

prognosis than ER+ breast tumors, in part because they are unresponsive to anti-estrogen 

therapy. Loss of ESR1 gene expression is an important prognostic factor in breast cancer and 

is associated with poor differentiation, insensitivity to hormonal therapy, and poor clinical 

outcome (115). While a significant percentage of breast cancers lack expression of the 

estrogen receptor (and other steroid receptors), loss of ESR1 expression is only rarely due to 

deletion or mutation (287). Rather, methylation-dependent silencing of the ESR1 gene is 

responsible for the loss of expression in as many as 46% of breast tumors (116, 117).  

GNA11, a guanine nucleotide binding protein, is involved in gonadotropin-releasing hormone 
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receptor signaling, which in turn, negatively regulates cell growth in normal settings (185). In 

cases where GNA11 expression is lost, as is the case in ~63% of breast cancers (185), 

aberrant cell growth can proceed unchecked, contributing significantly to neoplastic 

potential. The protein products of MUC1, a transmembrane mucin, are generally highly 

expressed in breast cancer tissue, and as such, serve as markers for tumor progression and 

metastasis in epithelial cancers, with high expression correlating with malignant potential 

(208, 288, 289). Paradoxically, other studies have correlated MUC1 overexpression with 

lower grade tumors as well as ER-positivity, both of which would suggest MUC1 expression 

may be an indicator of better outcome breast tumors (290). Previous studies demonstrated 

that hypomethylation of a specific tandem repeat sequence within the MUC1 gene is 

necessary for its overexpression (291) and that MUC1 gene expression is further 

epigenetically regulated by DNA methylation and histone H3K9 modification (208). The 

primary function of mucins (including MUC1) is in hydrating and lubricating the epithelium. 

However, these proteins have also been implicated in regulation of growth factor signaling 

and cell adhesion (292). MYB, an oncogene which promotes cell cycle progression and is 

targeted by estrogen signaling, is generally expressed in ER+ breast tumors and generally not 

expressed by ER- tumors (293). As MYB appears to be required for proliferation of certain 

ER+ breast cancer cell lines (294), it is paradoxical that it is not expressed in 

hypermethylator breast cancer cells, yet breast tumors that express the hypermethylation 

defect (and that are MYB negative) are more likely to be highly proliferative and have very 

poor prognosis. The role of ion transport gene SCNN1A in breast carcinogenesis is not well 

understood, although its epigenetic regulation in MCF7 cells has previously been noted (58). 

In general, sodium content of cancerous breast epithelium is higher than its normal 
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counterpart, and recent studies have shown a correlation between increased sodium content 

and increased breast tumor invasion. As such, there is some evidence that proliferation of 

breast tumors can be prevented by treatment with inhibitors to SCNN1A and its family 

members (295). Paradoxically, SCNN1A is generally not expressed in hypermethylator 

tumors which also tend to be of poor prognosis, suggesting that sodium concentration may 

not be what is driving the proliferation of these breast cancers. In pulmonary 

adenocarcinomas high expression of SCNN1A is associated with a good prognosis (296), 

while in testicular germ cell tumors SCNN1A overexpression corresponds to tumors that are 

less differentiated (297). Thus, tissue type and context appear to be important for determining 

whether SCNN1A expression correlates with better or worse prognosis. TFF3 is a trefoil 

peptide which functions to guard the luminal epithelium from injury and is involved in 

repairing damage and preventing inflammation. TFF3 has been reported to be overexpressed 

in ER+ breast tumors and can be upregulated by estrogen (292). As such, TFF3 is recognized 

to contribute to a luminal epithelial signature and is associated with well-differentiated, low-

grade breast tumors (292). These methylation-sensitive indicator genes function in a wide 

variety of aspects of the normal biology of the breast epithelium. Therefore, concurrent 

methylation-dependent silencing of multiple genes in neoplastic breast epithelium (as 

observed in hypermethylator cell lines) is likely to significantly contribute to tumor biology 

and behavior. 

DNMT Abnormalities Associated with the Hypermethylator Phenotype 

The results of the current studies suggest that the mechanism that accounts for the 

hypermethylator phenotype in human breast cancer cell lines is related to elevated DNMT 

activity secondary to overexpression of DNMT3b. The hypermethylator cell lines exhibit 
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aberrantly increased DNMT activity (and overexpress DNMT3b) and display 

correspondingly high rates of methylation-dependent gene silencing compared to both low-

frequency methylator cells and non-neoplastic breast cells. Consistent with the suggestion 

that overexpression of DNMT3b results in a hypermethylation defect in these cells, RNAi-

mediated knockdown of DNMT3b results in the expression of methylation-silenced genes. 

These results are in agreement with those of other recent studies, in which DNMT3b 

overexpression was implicated in the methylation abnormalities of breast cancers (82) and 

other cancers (298).  Tumor cells exhibiting DNMT3b overexpression would be expected to 

exhibit aberrant gene expression patterns related to primary DNA methylation events (gene 

silencing) and secondary gene expression changes. One study showed that breast tumors that 

overexpress DNMT3b are more likely to be ESR1-negative, display increased proliferation, 

and be associated with poor patient prognosis (82). These observations are supported by our 

findings. Thus, it seems reasonable to expect that aberrant expression of DNMT3b protein 

may produce significant differences in tumor biology for breast tumors of the 

hypermethylator phenotype.  In addition to the hypermethylator cell lines which had elevated 

DNMT3b protein and total DNMT activity, one low-frequency methylator cell line (ZR-75-

1) exhibited overexpressed DNMT3b and high levels of total DNMT activity. However ZR-

75-1 cells retain expression of a number of epigenetically-regulated genes, making it 

functionally similar to other low-frequency methylator cell lines. A number of explanations 

may account for this apparent discrepancy: ZR-75-1 cells may methylate other 

epigenetically-regulated genes which were not surveyed in the present study. Alternatively, 

ZR-75-1 cells may possess the same functional defect in the DNMT machinery as cells of the 
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hypermethylator phenotype but express additional repressor proteins which block the 

methylation capacity of the overabundant DNMT3b protein.   

Based upon results of our in vitro studies, we posited that a subset of primary breast 

cancers may express a hypermethylator phenotype characterized by expression of a 

hypermethylator signature of multiple methylation-sensitive genes. Further, we speculated 

that these tumors would have distinct characteristics reflecting important differences in tumor 

biology/behavior and patient outcome.  This is the case in colorectal cancer, where CIMP 

status is associated with various clinical features (98-100). CIMP-positive neuroblastomas, 

esophageal tumors, and leukemias tend to have poorer prognosis and are associated with 

significantly higher relapse and mortality rates (95, 101, 102).  The protective and tumor 

suppressor-like normal functions of the genes CDH1, CST6, ESR1, GNA11, and TFF3 would 

suggest that concurrent loss of these methylation-sensitive genes in hypermethylator tumors 

might drive neoplastic transformation, progression, and invasion. However, because 

hypermethylator cells also silence genes which act as oncogenes (MYB) and genes whose 

overexpression is known to correlate with poor prognosis in some tumors (CEACAM6, 

MUC1, and SCNN1A), predicting hypermethylator behavior is more complex. In fact, our 

microarray data mining studies revealed that the hypermethylator phenotype is a fundamental 

biological property of the majority of basal breast cancers, a poor prognosis molecular 

subtype of breast cancer. It is tempting to hypothesize that some of the aggressive features of 

basal tumors may be due to the concurrent methylation-dependent silencing of tumor 

suppressors such as CDH1, CST6, ESR1, GNA11, TFF3 and others.  

DNMT3b Knockdown in Hypermethylator Phenotype Cell Lines 

Given that our in vitro studies showed that hypermethylator cell lines are 
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characterized by high levels of DNMT activity which correlate with overexpression of 

DNMT3b protein, we decided to target this protein by shRNA in order to determine if 

reducing DNMT3b levels in hypermethylator cells would result in the reexpression of 

methylation-sensitive genes. DNMT3b is one of two catalytically active DNMT enzymes that 

are chiefly responsible for de novo methylation in human cells, and as such, would be 

capable of catalyzing the aberrant methylation that characterizes the hypermethylator 

phenotype. Previous studies have implicated DNMT3b in breast carcinogenesis, finding that 

DNMT3b is the methyltransferase enzyme overexpressed in the greatest percentage of breast 

tumors, and is likely to be overexpressed in aggressive, poor-prognosis, ER- tumors (82). 

Our findings that basal breast tumors tend to exhibit methylation defects and expression 

signatures of the hypermethylator phenotype are consistent with the implications of this 

previous study. 

RNA interference-mediated knockdown of DNMT3b in the hypermethylator cell 

lines MDA-MB-453 and BT549, resulted in the reexpression of methylation-silenced 

indicator genes (Figure 38-39). This strongly suggests that the methylation defect of 

hypermethylator cells which causes extensive concordant methylation-dependent silencing of 

a specific subset of genes is mediated by aberrant DNMT3b expression. Further, knockdown 

of DNMT3b alleviates this defect, allowing for the reexpression of improperly silenced 

genes. Overexpression of DNMT3b has been reported in MCF7 breast cancer cells, where it 

was determined that RNAi knockdown of DNMT3b also resulted in promoter demethylation 

and reexpression of CXCL12 (261). However, adding complexity to the issue is the detection 

of six transcriptional variants of DNMT3b (DNMT3b1-DNMT3b6) which result from 

alternative pre-mRNA splicing (67). Overexpression of transcript variant DNMT3b1 (but not 
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DNMT3a) promoted colon tumor formation in mouse models and resulted in the methylation 

and silencing of the tumor suppressors Sfrp2, Sfrp4, and Sfrp5 (299). Another study showed 

that RNAi-mediated knockdown of alternative splice variant ΔDNMT3b4 resulted in the 

promoter demethylation and reexpression of the RASSF1A tumor suppressor in lung cancer 

cells (300). However, ΔDNMT3b4 targeting was shown to have promoter specific and tissue 

specific effects — while knockdown of ΔDNMT3b4 resulted in reexpression of RASSF1A in 

lung cancer cells, it did not result in the reexpression of tumor suppressor, p16INK4A. 

Additionally, knockdown of ΔDNMT3b4 resulted in an increase, rather than decrease, in 

RASSF1A promoter methylation in bronchial epithelial cells (300). Thus, the effects of 

overexpressed DNMT3b appear to be both target and tissue specific. Interestingly, a recent 

study linked DNMT3b overexpression in liver tissues with both age and sex. In this study, 

DNMT3b was found to be expressed at significantly higher levels in older individuals as 

compared to younger ones, and in women as compared to men, indicating that both age and 

gender influence the methylation machinery (301). While the exact mechanisms responsible 

for these trends remain unknown, there is some evidence that hormones can affect DNMT 

expression (302-304). Hormones can interact with transcription factors known to regulate 

DNMT expression, such as c-Jun, fos, Sp1, and Sp3 (305-307). These observations may 

explain, to some extent, why women might be at an increased risk of developing tumors 

related to aberrant DNMT3b expression. 

IDENTIFICATION OF A HYPERMETHYLATOR PHENOTYPE AMONG A SUBSET OF PRIMARY 
HUMAN BREAST TUMORS 

Our findings suggest that breast cancer cells that express the hypermethylation defect 

tend to be ER-, suggesting that the hypermethylator phenotype cosegregates with a subset of 
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breast cancers that tend to have poor prognosis (308).  A number of molecular subtypes of 

breast cancer have been described (including luminal A, luminal B, HER2+, and basal-like), 

and these different subtypes correlate with important differences in tumor biology, clinical 

behavior, and patient survival (33, 35).  Luminal A and luminal B tumors are ER-positive 

and respond better to treatment resulting in better long-term patient outcome compared to the 

ER-negative basal-like and HER2+ subtypes (33).  Our microarray data mining analysis of 

primary breast cancer gene expression suggests that the hypermethylation defect observed in 

breast cancer cell lines can also be identified in primary tumors.  Preliminary investigation of 

a limited dataset (n=91 tumors) identified a strong cluster of tumors that express the 

hypermethylator signature (Figure 16), with low levels of expression of the nine genes of 

interest (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3).  

Strikingly, all of the tumors in this cluster were classified as basal-like, and 88% of the basal-

like tumors in the dataset expressed the hypermethylation signature. Subsequent investigation 

of additional datasets reflected many consistent trends. In total, the additional microarray 

datasets contained expression information on 946 primary breast tumors. Our analysis 

revealed a strong hypermethylator group in each dataset which was predominately basal-like 

(75-81%) in molecular subtype. On average, 68% (range 59-81%) of all basal breast tumors 

exhibited a hypermethylator signature characterized by lack of normal expression of at least 

7 of 9 indicator genes. Thus, the majority of hypermethylator breast tumors are basal-like, 

and the majority of basal tumors are hypermethylators. In agreement with these relationships, 

our methylation analysis reveal that 80% of basal tumors were hypermethylators, with 

detectable promoter methylation of at least 7 of 9 indicator genes. Thus, it appears that this 

hypermethylation defect may be a fundamental property of many basal breast cancers, a 
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clinical subtype of particular importance given their overall poor survival outcomes (35, 43, 

50, 272). For the first time, this finding suggests the presence of a breast cancer 

hypermethylator phenotype in vivo. This strong correlation between hypermethylator 

signature and the basal subset suggests that the hypermethylation defect is a novel and 

fundamental feature of basal-like breast cancer. While the majority of hypermethylator 

tumors are of the basal subset, the rare instances of luminal or Her2+ breast cancers that are 

also hypermethylators may represent cases where tumors otherwise expected to be of good-

prognosis actually result in poor prognosis and shorter survival than what would be predicted 

based on their molecular subtype.  

IMPLICATIONS FOR HYPERMETHYLATOR BREAST CANCER ON THE TREATMENT OF POOR-
PROGNOSIS BREAST CANCER 

Targeting the Hypermethylator Defect for Improved Therapeutics 

DNA methylation is a reversible process, making the existence of methylation defects 

within tumor cells an enticing target for therapeutic intervention. Such “epigenetic therapy” 

would seek to target genes which are inappropriately methylated in cancer cells (such as 

tumor suppressors) and restore their expression (309). Restoration of tumor suppressor gene 

expression could result in apoptosis of tumor cells or sensitize them to cell killing by 

chemotherapeutic agents. When this concept was tested in MCF7 breast cancer cells, it was 

discovered that treatment of these cancer cells with demethylating agents prior to 

chemotherapy enhanced cell killing (310).  Clinical trials are now underway which will 

examine this combined effect of demethylating drugs and cytotoxic agents (311). Our studies 

showed that treatment with the demethylating agent 5-aza resulted in the reexpression of 

genes silenced by methylation in hypermethylator cell lines. This suggests that the genes 
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inappropriately targeted by methylation in hypermethylator cell lines, particularly the tumor 

suppressors CDH1, CST6, ESR1, GNA11, and TFF3, should be achievable with 

demethylating agents that are already on the market and in clinical use (such as Vidaza). 

Hypermethylator tumor cells also exhibit overexpression of DNMT3b, which 

suggests another candidate for therapeutic intervention in breast tumors with this defect. We 

have shown that targeted inhibition of DNMT3b via RNAi in MDA-MB-453 and BT549 

cells results in promoter demethylation and reexpression of indicator genes (Figures 38-39). 

Thus, if targeted alleviation of overexpression of this protein could be achieved in primary 

breast tumors of the of hypermethylator phenotype, it would be expected to result in the 

reexpression of tumor suppressor genes CDH1, CST6, ESR1, GNA11, and TFF3. This, in 

turn, may prime hypermethylator tumors for cell killing via apoptosis or by sensitization to 

chemotherapeutics. One means of this would be targeting DNMT3b with small molecule 

inhibitors in hypermethylator tumors, lowering DNMT3b levels and, by extension, 

reexpressing methylated tumor suppressors. Demethylating agents already in use (such as 5-

aza) may actually work in this way, by combating the effects of overabundant DNMT3b 

protein. 

Additional Implications of the Hypermethylation Defect 

While our studies demonstrate a role for DNMT3b overexpression in breast 

carcinogenesis, the mechanism that accounts for DNMT3b overexpression in 

hypermethylator cells remains unknown. Recent studies have implicated microRNAs (miRs) 

in the regulation of DNMT3b, specifically members of the miR29a and/or miR148 families 

(312, 313). These small, noncoding RNAs are known to regulate gene expression by binding 

to the 3’-UTR of target mRNAs and blocking translation or inducing mRNA degradation 
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(314). Recent studies have implicated miRs in carcinogenesis and revealed that miRs tend to 

be expressed at lower levels in tumor cells then normal cells (312). The miR29 family 

(consisting of miR29a, 29b, and 29c) is known to directly target DNMT3b, and miR29 

expression is inversely correlated with DNMT3b expression in lung cancers (312). 

Additionally, enforced expression of miR29 in lung cancer cells in vitro resulted in the 

reestablishment of normal methylation patterns, including the expression of methylated 

tumor suppressors FHIT and WWOX, and inhibited tumorigenicity (312). However, another 

study revealed that the expression of ~10% of miRs was regulated by DNA methylation 

(315). This observation raises the possibility that miRs might contribute to methylation 

abnormalities (via DNMT3b modulation), which may in turn regulate miR expression. 

Further studies are needed to elucidate the mechanisms underlying this complex system.  

Another possible mechanism of DNMT3b overexpression may be naturally-occurring genetic 

polymorphisms. New evidence suggests that genetic polymorphisms may play a role in 

aberrant DNMT expression. A single base C  T transition located -149 bp from the 

transcriptional start site of DNMT3b has recently been reported, and was found to confer a 

two-fold increase in the risk of developing lung cancer (316). This polymorphism may result 

in increase DNMT3b activity, and has been associated with decreased survival in patients 

with small-cell carcinoma of the head and neck (317). Thus, various mechanisms may 

account for the aberrant expression of DNMT3b which characterizes cells of the 

hypermethylator phenotype; further studies should elucidate our understanding of this 

complex system which increasingly appears central to carcinogenesis. 
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SUMMARY AND SIGNIFICANCE 

The results of this study suggest that a novel hypermethylator phenotype is detectable 

in breast cancer (both in vitro and in vivo), and that this phenotype can be expected to 

significantly impact patient outcome, with hypermethylator breast tumors being among those 

with the worst prognosis. Hypermethylator breast cancer cells tend to exhibit concurrent 

downregulation of numerous methylation sensitive genes, typified by expression loss of at 

least seven of the following nine genes: CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, 

MYB, SCNN1A, and TFF3. Additionally, methylation of these specific genes appears to be 

attributable to overexpressed DNMT3b protein within these cells, as RNAi-mediated 

knockdown of DNMT3b in hypermethylator cells restores normal expression of previously 

methylated genes. More investigation is needed to determine what causes the dysregulation 

of the methylation machinery in these cells that results in aberrantly overexpressed DNMT3b 

protein. Unraveling the complexities of this hypermethylation defect in neoplastic breast 

disease holds important implications for cancer diagnosis, identification of new targets for 

therapy, and development of new strategies for clinical management. Since aberrant 

methylation-dependent silencing is thought to be an early event in carcinogenesis, elevated 

detectable levels of methylation in genes characterizing the hypermethylator phenotype may 

constitute an important biomarker for early detection in patients developing hypermethylator 

breast tumors. Furthermore, the various proteins and enzymes of the DNA methylation 

machinery (such as overabundant DNMT3b) may represent novel targets for breast cancer 

therapy for women with hypermethylator breast tumors. Such patients may benefit 

significantly from a targeted demethylation treatment as an adjunct to standard 

chemotherapeutic regimens.  
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