
i 

IDENTIFYING GENETIC MECHANISMS OF CARDIOMETABOLIC TRAITS AND DISEASES 
USING QUANTITATIVE SEQUENCE DATA 

 
Martin L. Buchkovich 

 
A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum in 

Bioinformatics and Computational Biology. 

 
Chapel Hill 

2015 

 
Approved by: 

Praveen Sethupathy  

Yun Li 

Gregory E. Crawford 

Terrence S. Furey 

Karen L. Mohlke 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2015 
Martin L. Buchkovich 

ALL RIGHTS RESERVED 



iii 

 
  ABSTRACT

Martin L. Buchkovich: Identifying genetic mechanisms of cardiometabolic traits and diseases 
using quantitative sequence data  

(Under the direction of Karen L. Mohlke and Terrence S. Furey)  

 

 Cardiometabolic diseases are a worldwide health concern. Genetics studies have 

identified hundreds of genetic loci associated with these diseases and other cardiometabolic risk 

factors, but gaps remain in the understanding of the biological mechanisms responsible for 

these associations. Sequence data from quantitative experiments, such as DNase-seq and 

ChIP-seq, that identify genomic regions regulating gene transcription are helping to fill these 

gaps. Allelic imbalance at heterozygous sites, or enrichment of one allele, in this data can 

indicate allelic differences in transcriptional regulation, but reference mapping biases present in 

sequence alignments prevent accurate allelic imbalance detection.  

 We describe a pipeline, AA-ALIGNER, that removes mapping biases at heterozygous 

sites and increases allelic imbalance detection accuracy in samples with any amount of 

genotype data available. When complete genotype information is not available, AA-ALIGNER 

more accurately detects allelic imbalance at imputed heterozygous sites than heterozygous 

sites predicted using the sequence data. At predicted heterozygous sites, imbalance detection 

is more accurate at common variants than other variants. Additionally, imbalance detection with 

AA-ALIGNER is robust to a variety of experimental and analytical parameters. 

 Using AA-ALIGNER, we detected evidence of allelic imbalance at 22,414 heterozygous 

sites in data from samples with relevance to cardiometabolic disease and risk factors. We have 

identified protein binding motifs for one of the imbalanced proteins at a majority of these sites, 
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and evidence that imbalance in data for this protein is associated with imbalance in data for 

other proteins. Additionally, a subset of sites of allelic imbalance are located at expression 

quantitative trait loci and/or genome-wide association loci for cardiometabolic traits and 

diseases. These sites are strong candidates to be studied experimentally and we report 

experimental evidence of allelic differences in protein binding, enhancer activity and/or the 

regulation of specific genes for a handful of these sites.   

 Using allelic imbalance detection, we have detected differences in protein binding across 

the genome providing valuable insight into mechanisms of transcriptional regulation. Focusing 

on cardiometabolic diseases and risk factors, this work demonstrates the utility of allelic 

imbalance detection in studying genetic effects on the regulation of gene transcription at 

complex disease- and trait-associated loci.   
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CHAPTER 1:  INTRODUCTION

1.1 Introduction 

Complex, cardiometabolic diseases (i.e. type 2 diabetes and coronary artery disease), 

and related traits (i.e. lipid levels) present a major public health concern worldwide1. These 

cardiometabolic phenotypes are influenced by both genetic and environmental factors. 

Understanding how genetic factors influence biological mechanisms contributing to phenotypes, 

such as gene transcription, is the first step in identifying novel, personalized treatment. While 

hundreds of genomic locations, or loci, have been associated with cardiometabolic phenotypes, 

the biological mechanisms responsible for these associations are understood for only a small 

proportion of loci. Analyzing short sequence reads from next generation sequencing 

technologies is a powerful method of studying the influence of genetic factors on biological 

mechanisms. These analyses can identify genetic variants influencing gene transcription and 

provide an important first step in bridging the gap between genetic variation and cardiometabolic 

phenotypes.  

  

1.2 Genetic variation contributes to cardiometabolic traits and diseases 

Genome-wide association studies (GWAS) are an active area of research and effective 

tool for studying genetic factors influencing cardiometabolic traits and diseases. These studies 

find statistical associations between genetics variants and the presence of disease or 

differences in trait measurements2. To date, GWAS have identified over 75 genetic loci 

significantly associated with type 2 diabetes3, 46 loci associated with coronary artery disease4, 

and over three hundred more loci associated with other cardiometabolic traits, such as lipid 

levels (HDL-C, LDL-C, triglycerides, and total cholesterol)5,6, adiponectin levels7–13, and obesity 
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(body mass index, waist-to-hip ratio, and body fat percentage)14–16. Large consortia, such as the 

Genetic Investigation of Anthropometric Traits (GIANT) consortium and the Global Lipids 

Genetics Consortium (GLGC) are actively identifying additional variants associated with 

metabolic traits. In addition, the Metabolic Syndrome in Men (METSIM) study is identifying 

variants associated with detailed phenotypic traits, including ~200 traits related to diabetes 

status, including measures of lipids, lipoprotein particles, glucose, insulin, proinsulin, free fatty 

acids, body composition, cytokines, hormones, and metabolites, most collected for 10,000 

subjects17.  

 

1.3 Genetic variants at GWAS loci likely influence gene transcription regulation  

While the variants identified by these studies can influence phenotypes by altering 

protein structure3 or influencing post transcriptional gene regulation18, a majority of variants 

(90%) are located in non-coding regions at GWAS loci and likely influence gene transcription 

regulation19. Identifying genes differentially regulated by these variants is critical for 

understanding the biological pathways influenced by these variants, and their role in disease 

susceptibility.  

Variants at GWAS loci have also been associated with the expression of nearby genes. 

Expression quantitative trait loci (eQTLs) are genetic variants that are associated with gene 

transcript levels20. Similar to GWAS, eQTL analyses utilize genotype data from individuals in a 

population, but test for associations between these genotypes and gene transcript levels rather 

than diseases and traits. As many as 12% of variants reported in the NHGRI GWAS catalog21 

are either the variant reported at an eQTL locus, or in linkage disequilibrium (LD) with the 

reported variant22. This co-occurrence of GWAS and eQTL associations provides additional 

evidence that at these loci, and possibly others, differential regulation of gene transcript levels 

may be an intermediary between genetic variants and observed differences in phenotype. 

 Genetic variation can influence the regulation of gene transcription by altering the DNA 
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binding affinity of proteins important to transcription. DNA-binding proteins often bind 

preferentially to a specific DNA sequence, or binding motif.  Sequence changes caused by 

genetic variation may result in changes in protein-DNA binding affinity and consequently alter 

the amount of DNA-bound protein. Altered binding of transcription factors can directly change 

the amount of gene transcription23. In other cases, differential binding of proteins, such as 

proteins from FOXA family, can indirectly alter gene transcription by influencing chromatin 

accessibility24, defined as accessibility of DNA for binding by transcriptional machinery, including 

transcription factors25. Likewise, other proteins, such as CTCF, are important in chromatin 

looping which controls gene transcription by bringing regulatory regions in close proximity to 

each other to promote gene transcription, or by marking the boundaries between active and 

inactive regulatory regions26. Understanding the influence of genetic variants on transcription 

binding, chromatin accessibility and chromatin looping is important for understanding their 

overall influence on gene transcription.  

While genome-wide association and eQTL studies identify genetic regions associated 

with phenotypes and gene expression, it is difficult, using only these studies, to identify the 

precise variants responsible for the associations. Groups of genetic variants that are inherited 

together, or haplotypes, are considered to be in linkage disequilibrium (LD).  Generally the 

variant with the highest significance is reported as the eQTL or GWAS marker variant, but any 

number of the variants in LD with this marker variant may be responsible for or contribute to the 

association signal. Further study of GWAS and eQTL loci is required to identify the precise 

variant(s) responsible for the association signals and elucidate their influence on gene 

transcription. 

Experimental studies are able to identify genetic variants influencing the regulation of 

gene transcription. These studies have experimentally identified the variants contributing to 

differential gene transcription at GWAS loci18,22. For example, at the low-density lipoprotein 

cholesterol (LDL-C) level-associated SORT1 locus, on chromosome 1, one of the alleles at 
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rs12740374 creates a C/EBPa binding site in a regulatory region. In mice, increased C/EBPa 

binding in this region, increases expression of the Sort1 protein, ultimately reducing LDL-C 

levels23. Like SORT1, variants altering protein binding, chromatin accessibility, and gene 

transcription continue to be reported for other loci associated with cardiometabolic phenotypes 

27–33. Experimental evidence identifying the variants regulating gene transcription at known loci 

is being discovered at a much slower rate than novel GWAS loci. Improved analytical and 

experimental techniques are necessary to identify regulatory variants at these established and 

novel loci. 

 

1.4 Next-generation sequencing data is a powerful tool in genetic studies 

Next-generation sequencing data from functional genomics experiments is a powerful 

tool in identifying variants regulating gene transcription and contributing to complex phenotypes. 

The advent of these technologies, capable of generating nucleotide sequence data for millions 

of DNA or RNA fragments34, has led to scientific advancements in genetic studies.  Whole-

genome and whole-exome studies of large populations of individuals35 continue to increase 

understanding of genetic variation and the effects of this variation on gene expression and 

complex phenotypes. Additionally, RNA-seq, in which RNA is isolated and sequenced, can be 

used for genome-wide measurement of transcription levels, and other quantitative sequence 

data, such as ChIP-seq36, FAIRE-seq37, DNase-seq38 and ATAC-seq39, can be used for 

genome-wide identification of gene transcription regulatory regions.   

In each of these quantitative sequence data experiments, DNA is isolated from targeted 

genome-wide regions and sequenced. Sequence reads are mapped to a reference genome, 

and the regions of signal enrichment are identified based on the number of mapped sequence 

reads. ChIP-seq can be used to identify the location of transcription factor binding or histone 

modifications across the genome. DNase-seq, ATAC-seq and FAIRE-seq use different assays 

to identify regions of open chromatin typically indicative of regulatory regions. In DNase-seq, the 
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DNA is digested with the DNaseI enzyme to identify DNase hypersensitive regions, while in 

FAIRE-seq DNA fragments are isolated from regions nucleosomes-depleted regions. In ATAC-

seq, the most recent open chromatin assay developed, transposase activity is used to identify 

regions of open chromatin.   

To facilitate genome-wide identification of these regulatory regions, massive amounts of 

these quantitative sequence read data have been generated. For example, the ENCyclopedia of 

DNA Elements (ENCODE) consortium has generated more than 1,640 quantitative sequence 

datasets in more than 147 different cells lines and tissues40. These data, including transcription 

factor and histone modification ChIP-seq, RNA-seq, FAIRE-seq, and DNase-seq, can be found 

in online repositories at the UCSC Genome Browser41 and the ENCODE Portal42. Likewise, the 

Roadmap Epigenomics project has generated over 2,500 datasets from 111 different cell types 

and tissues, including histone modification ChIP-seq, DNase-seq, and RNA-seq43. These data 

are available at the Human Epigenome Atlas44. Additionally the sequence data generated by 

these large consortia, as well as data generated by smaller collaborations or individual labs, are 

also available online in less specialized repositories, such as the Sequence Read Archive 

(SRA45) and the European Nucleotide Archive (ENA46).  

The available quantitative sequence data is especially useful in identifying GWAS 

variants located in genomic regions that regulate gene transcription. Several published studies 

have used these data to predict regulatory regions genome-wide by integrating ChIP-seq data 

that identify protein binding sites47,48 or histone modifications43,49, with FAIRE-seq50 or DNase-

seq19,51 that identify regions of chromatin accessibility.  Additionally, multiple bioinformatics 

tools, such as HaploReg52, RegulomeDB53 and Annovar54, have been created to annotate 

variants using quantitative sequence data and in some cases to predict the likelihood of a 

variant being in a regulatory region. Some methods also integrate RNA-seq data to identify 

direct correlations between protein binding or chromatin accessibility with gene transcription 

levels43,51,55,56. While GWAS variants are often annotated with previously predicted regulatory 
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regions, some analyses directly consider the effects of genetic variation during regulatory 

element identification. 

Allelic imbalance in quantitative sequence data can identify differences in the functional 

activity between two alleles at a variant. Allelic imbalance is indicated by a difference in the 

number of sequence reads containing each allele, or enrichment of one allele, at heterozygous 

sites in the quantitative sequence data.  Allelic imbalance analyses can identify allelic 

differences in transcription factor binding57,58, chromatin accessibility19,55,59, histone 

modifications56 and gene transcription 60–64. While allelic imbalance identification does not 

require knowledge of heterozygous sites in the sequenced sample, many studies are limited to 

samples with full, or complete, genotype information available from whole-genome sequencing. 

Allelic imbalance can also be detected in samples with limited genotype information by 

estimating the presence of variants based on populations of individuals such as HapMap65 and 

1000 Genomes35, and predicting heterozygous sites using the sequence data19,57,62,64. 

Regardless of genotype availability, sequence mapping biases introduced during sequence 

alignment can complicate and decrease accuracy of regulatory element detection, especially 

allelic imbalance identification. 

1.5 Sequence mapping biases influence regulatory element identification 

Read mapping biases occur at heterozygous sites when sequence reads containing one 

allele are more likely to map to the site than the other allele. While reads originating from a 

heterozygous site will contain one of the two alleles, reads are commonly mapped to a 

reference genome containing only a single base, the reference allele, at each heterozygous site. 

Mapping to a single allele commonly results in reference mapping biases because reads 

containing the reference allele better match the reference sequence and have a higher mapping 

quality than reads containing the non-reference allele, which are penalized for a mismatch at the 

heterozygous site. As a result, reads with non-reference allele are less likely to map correctly, 

decreasing the accuracy of sequence alignment and downstream analyses, particularly allelic 
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imbalance detection. Many commonly used alignment software, such as BWA66, MAQ67, 

Bowtie68, and STAR69, are only built to map to single-allele reference genomes while other 

software, such as GSNAP70, allows sequence mapping to multiple-allele references. Regardless 

of the software used, reference mapping biases will be introduced if reads are aligned to a 

reference containing a single allele.   

A second type of bias can influence both reference and non-reference alleles and occurs 

when reads containing one allele map to multiple genomics locations and reads containing the 

other allele map to a single location. Filtering reads based on the number of genomic locations, 

a common practice, may preferentially remove reads containing the allele that maps to multiple 

locations, resulting in mapping bias. This bias and reference mapping bias can be corrected 

during post-alignment steps, but reference mapping biases are most commonly corrected during 

sequence mapping. Current methods of correcting reference mapping biases are described 

below. 

 

1.6 Several methods have been reported to remove reference mapping biases 

Methods for correcting reference mapping biases vary and are dependent on the 

underlying data structure of the mapping software. Differences in each sequence mapping 

software determine the method of reference bias correction associated with each. Many 

commonly used alignment software, such as BWA, Bowtie, and STAR, utilize a suffix array 

during sequence mapping. A suffix array contains a list of all possible suffixes of the reference 

genome, and their corresponding positon in the genome. Traversing suffix arrays takes little 

time, resulting in very fast sequence alignment. Using compressed suffix arrays such as the 

Burrows-Wheeler transformation can also reduce the amount of computational resources 

required, making suffix array-based software desirable when considering both computational 

time and resources71. Other alignment software, such as GSNAP, and MAQ, utilize hash-tables 

to store either the genomic locations or sequence reads associated with all possible sequences 
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of length k. Using these k-mers, sequence reads can be matched to genomic locations, 

although alignments using hash tables are generally slower than alignments using suffix arrays. 

Most reference bias correction strategies can be implemented with software based on either 

suffix arrays or hash tables, although many bias correction methods have preferred the speedier 

suffix-array software.  

Five strategies to correct mapping biases include using a biased mismatch threshold19, 

variant masking72, dual reference genomes57,58,60–62,73, modified dual reference genomes57, or 

creating an extended reference genome that includes sequence containing alternate alleles64. 

Alternatively, a slight modification of software utilizing hash-tables can create allele-aware 

aligners which also correct for reference mapping biases55,56,74. Advantages and disadvantages 

of each reference mapping bias correction strategy are discussed in more detail below.  

 

1.6.1 Biased mismatch threshold 

The simplest proposed correction for the reference mapping bias is to use a biased 

mismatch threshold. To overcome the reference bias, this approach uses a stricter mismatch 

threshold for reads containing the reference allele when calculating allelic imbalance. Reads 

containing the non-reference allele are allowed an additional mismatch compared to reads 

containing the reference. For example, if reads containing the reference allele are allowed one 

mismatch then reads containing the non-reference allele are allowed to have one or two 

mismatches to account for the mismatching non-reference allele. The main advantage of this 

approach is that sequence mapping can be performed with any mapping software using a single 

reference sequence and without requiring any modifications to the reference. This approach 

overcomes mapping biases at a majority of heterozygous sites, but is at a disadvantage when 

removing bias in regions containing more heterozygous sites than the relaxed mismatch 

threshold.  In these cases, reads containing the reference allele may match perfectly and map 

to the reference while reads containing non-reference allele are not mapped at all. Additionally, 
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the extra mismatches in these reads containing the non-reference allele may cause the reads to 

map equally as well to incorrect locations, which is especially problematic when only 

considering reads mapping to a single location. 

 

1.6.2 Variant masking 

Masking known variant sites during sequence alignment is also a fairly simple strategy. 

Any bases mapping to masked variants mismatch the genome, and the reads are equally likely 

to be mapped correctly regardless of the allele present. The masked variants can be known 

heterozygous sites in the sample, or simply sites from a database of known variants, making 

this approach advantageous for removing bias in the absence of sample-specific genotype 

information. Other advantages of this approach are that only a single alignment is required per 

dataset and in many cases only a single reference genome is required to map sequences from 

multiple samples. A disadvantage of this approach, particularly when mapping samples with low 

sequencing depth, is its effect on the number of reads aligned.  Masking variants introduces 

mismatches into reads originating from the heterozygous site, and could cause reads containing 

sequencing errors to fail to map to the masked genome because of these additional 

mismatches. The reduced number of reads aligning to these sites decreases power to identify 

allelic imbalance. When masking all known variants in the absence of genotype information this 

approach also unnecessarily reduces the number of reads mapped to homozygous sites that 

have no need for bias correction.  

 

1.6.3 Dual reference genomes 

The dual reference strategy to remove reference mapping biases utilizes complete 

sample genotype information. Most often, sample genotypes are generated using whole-

genome DNA sequencing and subsequent variant calling35,75. In these cases, phased genotypes 

from the sample are used to create two haploid reference genomes representing the sequence 
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of the maternal and paternal chromosomes. Sequence reads are aligned to each reference 

separately and the alignments are merged to ensure that each sequence read is only 

represented once. In the absence of phased genotypes, each reference can contain one of the 

alleles at each known heterozygous sites identified by imputation, or simply at known variants 

sites identified within a population of individuals. When using phased genotypes, the dual 

reference strategy is particularly accurate at regions where a single read overlaps multiple 

variant sites, because the phased genomes best account for variants in LD and most accurately 

represent the sequence of the chromosome of origin. Additionally, once created, the reference 

sequence can be used to align sequences of any length, and with any alignment software.  A 

disadvantage of this strategy is the added computation time of the second sequence alignment 

and the complexity of merging the alignments to create a single consensus alignment. 

Additionally, any changes in the genotype information require recreating the dual references. 

Finally, for the most accurate bias correction, this strategy is limited to processing the small 

number of samples that also have complete genotype information from whole-genome 

sequencing. 

 

1.6.4 Modified dual reference genome 

A modified dual reference strategy extends the standard dual reference strategy to allow 

for mapping bias correction in samples lacking complete genotype information. In this method, 

an initial non-allele-aware alignment of the quantitative sequence data is used to identify 

heterozygous sites in the sequenced sample57. As with the dual reference strategy, two 

reference genomes are then created to represent each allele at these heterozygous sites and 

sequences are aligned separately to each reference. While this modified method is 

advantageous in correcting reference mapping biases at heterozygous sites without prior 

genotype knowledge, it does so at the cost of an additional alignment, bringing the total number 

of required alignments to three. Adding to this disadvantage, while the references in this 
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strategy capture both alleles at heterozygous sites, they are less successful at capturing LD and 

are not representative of the maternal and paternal chromosomes. Additionally, this method 

relies on detecting variants in the sequence data, which can be difficult, especially at sites of 

allelic imbalance76.  

 

1.6.5 Allele-aware reference creation 

Mapping bias can also be removed during a single alignment by creating an allele-aware 

reference sequence. In this strategy, reference sequence containing the non-reference allele is 

appended to the reference genome, allowing for reads to be compared to regions containing 

each allele using a single extended reference genome. An advantage of his strategy is that 

mapping biases can corrected using any sequence mapping software, a single reference 

genome, and a single alignment. A disadvantage of this approach is that reference creation 

depends directly on sequence length and the genotypes or variant information used. Any 

changes in either of these parameters require recreation of the reference sequence. 

Additionally, more computation is required to reconcile reads aligning to the normal and 

extended regions of the reference sequence. Combined with the added time required to extend 

the reference sequence, this strategy is particularly disadvantageous when mapping sequence 

reads using different allele-aware sites (i.e. heterozygous sites from different individuals) or 

sequence read lengths (i,e. sequences from different assays). 

 

1.6.6 Allele-aware aligner 

Similar to the biases mismatch, variant masking and extended reference strategies, 

allele-aware aligners can remove mapping biases with a single alignment.  Utilizing the hash 

table structure during mapping, these aligners compare sequence reads to reference sequence 

containing each of the two alleles at specified sites. These sites, can be known variants or 

heterozygous sites from the sequenced individual. While changes in the heterozygous sites and 



    

12 
 

 

sequence read length may require the reference sequence to be reprocessed before alignment, 

the actual reference sequence itself does not need to change. This is advantageous for 

reference bias correction using the same reference sequence and different sets of allele-aware 

sites, or sequence reads with varying lengths. Additionally, allele-aware aligners only require a 

single alignment, without the need for additional computation to create a consensus alignment. 

This strategy is currently limited to software utilizing hash-tables and read mapping can be 

considerably slower than the suffix array-based alternatives. The reduction in speed becomes 

disadvantageous if the computation time required for a single allele-aware alignment exceeds 

the time required for the reference creation, sequence alignment, and consensus alignment 

creation steps of other strategies. 

 

1.7 Overview of this work 

Quantitative sequence data from functional genomics experiments has been 

instrumental in understanding the regulatory mechanisms influencing gene transcription and the 

influences of genetic variation on these mechanisms and, ultimately, cardiometabolic traits and 

diseases. Despite the massive effort to generate and interpret quantitative sequence data, large 

gaps remain in the understanding of gene transcription regulation at the cardiometabolic 

phenotype-associated loci, especially at the variant level. Limited understanding of the 

contributions of genetic variants to transcriptional regulation is caused in part by reference 

mapping biases, which are present in a majority of existing analyses. Removing these mapping 

biases allows for more accurate regulatory element identification, and a clearer understanding 

of how genetic variants influence gene transcription regulatory mechanisms.  

   In Chapter 2 of this work, I investigate the effects of these reference mapping biases and 

describe a pipeline, Allele-Aware ALignments for the Investigation of GeNetic Effects on 

Regulation (AA-ALIGNER), which can be used to remove mapping biases in any quantitative 

sequence dataset. AA-ALIGNER uses an allele-aware aligner to remove reference mapping 
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bias in either the presence or absence of genotype data. In addition to sample genotype 

availability, I present a thorough exploration of how experimental conditions and analytical 

parameters influence the accuracy of allelic imbalance detection. Additionally, I describe sites of 

allelic imbalance located at inflammatory bowel disease-associated variants, demonstrating the 

utility of AA-ALIGNER in predicting allelic differences in protein binding at disease-associated 

loci.    

In Chapter 3, I expand allelic imbalance detection with AA-ALIGNER into quantitative 

sequence data from cell lines and primary cells relevant to cardiometabolic traits and diseases. I 

summarize imbalance detection in adipose and liver cell lines, and primary pancreatic islets. 

Additionally, I discuss biological insights gained from imbalance detection in 70 experiments 

from HepG2 cells. I also describe sites of allelic imbalance identified at loci associated with 

gene transcription levels and/or cardiometabolic phenotypes.  

Lastly, in Chapter 4 I summarize conclusions gained from this work and offer a glimpse 

into the future of using quantitative sequence data, specifically allelic imbalance identification, to 

understand the influence of genetic factors on cardiometabolic traits and diseases.   

   



14 

CHAPTER 2: REMOVING REFERENCE MAPPING BIASES USING LIMITED OR NO 
GENOTYPE DATA IDENTIFIES ALLELIC DIFFERENCES IN PROTEIN BINDING AT 

DISEASE-ASSOCIATED LOCI

2.1 Background1 

Genetic studies of complex traits and diseases have been increasing their focus on the 

contribution of gene transcriptional regulation. The majority of complex trait-associated variants 

are in non-coding regions 22, suggesting many contribute by altering regulatory activity. Variants 

can alter transcription factor binding affinity, subsequently affecting transcription levels of target 

genes 22. For example, the T allele of rs12740374 increases C/EBPa binding and transcription 

of SORT1, a gene influencing LDL cholesterol level 23. Identifying precisely which genetic 

variants are responsible for changing regulatory activity can be difficult. 

Quantitative short-read sequence data generated from experiments such as ChIP-seq 77, 

DNase-seq 38, FAIRE-seq 37, and ATAC-seq 39 broadly identify genomic regions that regulate 

gene transcription. Sequence information from these experiments can be used to detect allele-

specific activity in samples where heterozygous variants are present in or near a regulatory 

element. For example, an uneven distribution in the number of reads containing each allele at a 

heterozygous site, referred to as allelic imbalance, provides evidence for differential regulatory 

activity due to genetic variation. Previous studies have also used quantitative short-read data to 

correlate genetic variation in regulatory regions with nearby gene expression 55,56 and to show 

the heritability of allelic regulatory effects 56,59,78–80.  

                                                
1This chapter has been accepted for publication in BMC Medical Genomics. Citation: 
Buchkovich ML, Ekland K, Duan Q, Li Y, Mohlke KL, and Furey TS. Removing reference 
mapping biases using limited or no genotype data identifies allelic differences in protein binding 
at disease-associated loci. BMC Medical Genomics. 2015. in press. 
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Quantitative sequence data have been generated in hundreds of cell types and tissues 

by the ENCODE (Encyclopedia of DNA elements) Consortium 40 and Roadmap Epigenomics 

Project 43, offering a valuable source of genetic regulatory information. Exploration of allelic 

imbalance in this data is hindered by a lack of complete genotype information for individuals 

from which these data are derived, and the well-established alignment bias that arises when 

both alleles at a heterozygous site are not considered during alignment to a reference genome. 

Sequence reads containing the allele not represented in the reference genome are penalized as 

an additional mismatch compared to reads containing the reference allele 72, and are less likely 

to map to the correct genomic location. This can result in false detection of allelic imbalance 

favoring the reference allele, or failure to detect imbalance favoring the non-reference allele.  

Several methods for removing this alignment bias have been proposed, including masking 

known variants in the reference genome 72, aligning reads to two haplotype reference genomes 

57,58,60–62,73, using known variants with allele-aware aligners 55,56,74 or creating an extended 

reference genome that included alternate alleles 64. For these methods, full genotype 

information leads to the best results, but this data is rarely available. The performance of these 

methods using limited or no sample genotype data, compared to full genotype information has 

not been thoroughly investigated. 

To evaluate detection of altered regulatory activity due to genetic variation in quantitative 

sequence data using full, limited or no genotype information, we created a computational 

analysis pipeline, called AA-ALIGNER (Allele-Aware ALignments for the Investigation of 

GeNetic Effects on Regulation). AA-ALIGNER strategically incorporates existing, publicly 

available tools to accurately annotate regions containing heterozygous variants given varying 

levels of genotype information, including no genotypes. To remove alignment biases at 

heterozygous variants, AA-ALIGNER uses the allele-aware aligner GSNAP 70 which has been 

previously shown to remove mapping biases using complete genotype information 74. AA-

ALIGNER also attempts to correct other biases that can influence imbalance detection, such as 
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incorrect heterozygous site annotations in reference genome sequences and incorrectly 

detected imbalances due to differences in mappability between reads containing each of the 

alleles or due to PCR duplications introduced during sequencing 81. 

We demonstrate that GSNAP also removes mapping biases using partial genotype data 

or common variants allowing for accurate identification of allelic imbalances. Using AA-

ALIGNER, we determined the effect of experimental and analytical variables such as sequence 

read length, sequencing depth, number of mismatches allowed during alignment, and 

imputation quality thresholds on accurate allelic imbalance detection. Our analyses used data 

from one DNase-seq and thirteen ChIP-seq experiments generated in the GM12878 

lymphoblastoid cell line, for which both complete, sequencing-based genotype and partial, 

array-based genotype information is available. We experimentally detected differential protein 

binding at six of nine tested imbalance predictions from AA-ALIGNER for CREB1 (Cyclic-AMP 

Responsive Element Binding protein 1) binding in GM12878 ChIP-seq data, including 

imbalances at two disease-associated loci. Overall, our results provide important empirical data 

that can be used to guide the design of and interpretation of similar studies using AA-ALIGNER 

to accurately annotate heterozygous sites and detect genetically-driven changes in regulatory 

element activity. 

  

2.2 Results 

2.2.1 Overview of AA-ALIGNER 

The AA-ALIGNER pipeline is designed to maximize short-read sequence alignment 

accuracy at sites of DNA variation regardless of genotype availability. These alignments can be 

used to identify potential sites of regulatory activity, indicated by an enrichment of aligned reads 

and referred to as peaks, and of allelic imbalance at these sites (Figure 2.1). We first construct 

a sample-specific custom reference genome in a two-step process. To increase the likelihood 

that the allele in our starting reference genome matches the genotype of any sample, alleles of 
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common variants in the standard reference are modified as needed to the most common allele 

from a particular population, such as the 1000 Genomes European samples [26]. In a second 

step, all available genotype information from the sequenced sample is used to further customize 

this reference sequence such that: (i) at homozygous variants, the sample allele is present; and 

(ii) at heterozygous sites, one of the two sample alleles is present. Alternate alleles at 

heterozygous sites are recorded in a separate file during this process. When no genotype 

information is available, this alternate allele file contains all common minor alleles (MAF > 0.05) 

for the selected population.  

Next, we filter sequence reads to remove low quality sequences and align them to the 

custom reference genome using GSNAP 70, an allele-aware aligner. GSNAP takes as input the 

file containing reference and non-reference alternate alleles to equally consider alignments to 

both alleles. After alignment, we filter (i) sequences aligned to more than one genomic location; 

(ii) sequences aligned to regions underrepresented in the reference sequence (ENCODE 

blacklisted regions); and (iii) duplicate reads to correct for PCR artifacts. These final alignments 

are used to identify peaks and sites of allelic imbalance.  

When testing for imbalances, AA-ALIGNER includes predicted heterozygous sites not 

included in the initial custom reference during sequence alignment. New heterozygous sites are 

predicted based on having a minimum number of reads containing each of two alleles.  In 

addition, a minimum read threshold per allele can be applied to all heterozygous sites during 

imbalance detection to guard against incorrectly annotated heterozygous sites. While predicted 

heterozygous sites are not included in the initial reference genome customization (Figure 2.1, 

Box 1) or sequence alignment steps (Figure 2.1, Box 3), they can be added in a second round 

of reference customization and alignment if desired. 

AA-ALIGNER is designed to correct for multiple sources of bias in the data whenever 

possible. Increasing the minimum read threshold required to test for an imbalance can guard 

against incorrect heterozygous site identification. Mappability biases, where reads containing 
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one allele map uniquely while reads containing the other allele map to multiple locations and are 

filtered, may result in an artificial imbalance. AA-ALIGNER only considers reads that map 

uniquely to the same position in the genome regardless of the allele present. Post alignment 

filtering of duplicate reads corrects for biases that can arise from PCR duplication during library 

preparation. 

AA-ALIGNER allows key parameters to be specified that influence sequence alignment 

and post-alignment steps, such as imbalance detection. The minimum read threshold for each 

allele is one of these parameters. In addition, allowed mismatches can be restricted to predicted 

heterozygous sites to increase confidence in evidence for multiple alleles. By default, 

significance of allelic imbalances is determined using a standard binomial test, but the AA-

ALIGNER pipeline can be easily modified to incorporate alternative statistical methods of 

detecting imbalance. Peaks are determined here using SPP [27]. Additional details for individual 

steps can be found in the Methods. Unless otherwise indicated, the following results are based 

on alignments allowing for one mismatch, with a minimum of five reads required for each allele, 

and a nominal binomial p-value threshold of 0.01 for allelic imbalance detection. Each of these 

parameters is evaluated in detail in the following sections. 

 

2.2.2 Using GSNAP removes alignment biases at heterozygous sites 

We first evaluated the ability of GSNAP to overcome the reference alignment bias. We 

used 50 base pair (bp) CREB1 ChIP-seq reads generated in the GM12878 lymphoblastoid cell 

line by the HudsonAlpha Institute of Biotechnology as part of the ENCODE project. We created 

a custom GM12878 reference sequence based on a complete set of genotypes generated by 

the Broad Institute 83, and we created a GSNAP input file with non-reference alleles for each 

heterozygous site. To examine whether both alleles at heterozygous sites were equally 

considered during alignments, we also created a “complement” reference sequence by 

swapping the allele at each heterozygous site in the initial custom reference with the alternate 
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allele from the input file. We compared sequence alignments to these two reference sequences 

using three metrics: reads mapped to heterozygous sites; sequence enrichment peaks called at 

heterozygous sites; and sites of allelic imbalance (Table 2.1). Only 120 of the 33.6 million 

(0.0003%) reads were aligned differently between the two alignments. Manual inspection 

indicated that these discrepancies were due to GSNAP failing to remove alignment bias when 

aligning sequences to regions containing more than 5 and as many as 16 heterozygous sites. 

These 120 differences did not affect the number of peaks or the predicted sites of allelic 

imbalances identified (Table 2.1). These data demonstrate that using GSNAP, AA-ALIGNER 

overcomes the alignment bias.  

To quantify the importance of removing the alignment bias, we used the same metrics to 

compare allele-aware and non-allele-aware alignments using the same reference sequences. 

We used BWA for non-allele-aware alignments with the same alignment parameters as GSNAP. 

By considering alternate alleles, GSNAP (1.3M reads) aligned 8% more reads to heterozygous 

sites than BWA (1.2M reads; Table 2.1). As expected, GSNAP aligned a larger percentage of 

reads containing the non-reference allele compared to BWA (48% to 43%), more closely 

reflecting the expectation that each allele should be present in equal numbers of reads. 

Additionally, we aligned sequence reads to the complement reference using BWA. In contrast to 

GSNAP, we found that BWA aligned 344K (1.0%) reads differently to the complement and 

reference genomes. Greater than 54% of reads mapped to the reference allele at heterozygous 

sites in both BWA alignments (Table 2.1), demonstrating the effect of alignment bias on non-

allele-aware alignments.  

We examined, separately, the effect of biased alignments at heterozygous sites on peak 

and allelic imbalance detection. Among the top 10,000 peaks with the greatest signal 

enrichment for each alignment method, using GSNAP identified 1.6% more peaks overlapping a 

heterozygous site than BWA and predicted 32% more allelic imbalances.  Further, 54% of 

GSNAP-identified imbalances were enriched for the reference allele compared to 60% of BWA-
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identified imbalance sites (Table 2.1). Additionally, the reference allele was enriched in 82% 

(23/28) of imbalances only detected when using BWA, compared to 49% (39/79) of imbalances 

unique to GSNAP alignments. The majority of BWA imbalances favored the reference allele in 

both the standard reference and the complement reference, demonstrating the presence of 

significant alignment bias. Together, these results demonstrate that alignment biases negatively 

impact accurate sequence alignment, peak calling and allelic imbalance identification. 

 

2.2.3 AA-ALIGNER identifies sites of allelic imbalance using partial genotypes or 

common variant information 

Complete genotypes are not available for most samples. Therefore, we evaluated how 

well AA-ALIGNER reproduced allelic imbalance annotations using incomplete genotype 

information. We separately aligned the same 50 bp CREB1 ChIP-seq reads to custom 

GM12878 reference genomes derived using (i) partial genotypes determined using the 

Human1M-Duo BeadChip array and imputed using MachAdmix 84; and (ii) 1000 Genomes 

common variants (EUR, MAF>.05) to model the case of no available genotype information. 

Using allelic imbalances identified with complete genotype information to define true positive 

(TP), false positive (FP), and false negative (FN) sites, we calculated sensitivity (TP/TP+FN) 

and precision (TP/FP+TP), or positive predictive value.  

Similar numbers of imbalances were identified using all three levels of genotype 

information (Table 2.2). Interestingly, we found that when simply including common variant 

alleles (no available genotypes), we detected imbalances with similar sensitivity (>73%) and 

precision (>75%) as with partial genotype information (Table 2.2). Including alleles of common 

variants with GSNAP significantly improved alignment performance compared to BWA with no 

variant information (Table 2.3), even though neither alignment includes any information about 

the sample’s genotype. This improvement results from sites where including both alleles during 

alignment allowed for the imbalance to be detected. Of the 200 sites of imbalance detected 
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using complete genotypes, 125 were present in the partial genotypes and 141 were common 

variants. Considering only these 125 and 141 sites, we find that sensitivity is 97% and 94% with 

90% and 82.5% precision, respectively.  In stark contrast, sensitivity of detection is 33% (partial) 

and 34% (common) with 45% and 47% precision at other predicted heterozygous sites, defined 

as sites with 5 or more reads containing each allele.  

We considered whether poor performance at predicted heterozygous sites was due to 

either (i) incorrect identification of homozygous sites as heterozygous using sequencing data 76; 

or (ii) incorrect classification of balanced heterozygous sites as imbalanced due to alignment 

biases. By comparing the complete genotypes from genomic sequencing to imbalances at sites 

predicted to be heterozygous in the sequence data, we found that of the sites incorrectly 

predicted to be imbalanced, 58% (18 of 31) using partial genotypes and 83% (19 of 23) using 

common variants were not heterozygous. When using complete genotype information, AA-

ALIGNER does not report imbalances at predicted heterozygous sites. Of the imbalanced sites, 

61% (11/18) using partial genotypes and 42% (8/19) using common variants were also 

imbalanced when using complete genotypes, underscoring the difficulty in using short reads to 

detect imbalances at predicted heterozygous sites. We incorrectly detected imbalance at 13 

sites using partial genotypes and 4 sites using common variants because an increase or 

decrease in aligned reads containing one allele now caused the site to pass the significance 

threshold for imbalance.  

We tested whether a more stringent binomial p-value threshold than 0.01 would improve 

performance, by reducing errors resulting from condition (ii). As expected, a stricter threshold 

reduced the number of imbalances detected, but it also decreased sensitivity and precision 

(Table 2.4), especially at predicted heterozygous sites. Additionally, we found at predicted 

heterozygous sites the p-values of false positive imbalance sites were more significant than the 

p-values of true positives sites when using partial genotypes (Mann-Whitney U P=.003) and 

common variants (Mann-Whitney U P=.03; Figure 2.2). These data suggest that errors in 
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imbalance detection result more commonly from incorrect prediction of heterozygous sites than 

falsely calling imbalances at true heterozygous sites. 

 

In addition to a binomial test, other statistical methods of detecting allelic imbalance 

have been used to measure the significance of allelic imbalance 62,74,81. For example, a beta-

binomial test is commonly used to correct for inaccurate imbalance detection caused by over 

dispersion of the data. Using a beta-binomial test (P<.01) for the 50bp pair CREB1 ChIP-seq 

data reduced the number of sites of allelic imbalance identified by 82-83% using complete, 

partial or no genotype information (Table 2.4). Overall sensitivity and precision of imbalance 

detection using partial or no genotypes declined to ~50%. Sensitivity and precision remained 

higher at imputed heterozygous sites (partial genotype alignment) and common variants (no 

genotype alignment) than predicted and uncommon variants as before. This reduction in the 

sensitivity and precision of imbalance detection is similar to the reduction seen when using a 

stricter binomial p-value threshold and is likely related to the increased p-values of false positive 

sites reported above.  

We also considered whether common variants could be annotated more accurately than 

rare variants due simply to how sequences were aligned to these sites. Using BWA alignments 

that did not include any variant information, we predicted heterozygous sites and allelic 

imbalances as above. If we separate these predictions into those sites that are and are not 

common variants, we find that the sensitivity and precision are significantly higher for common 

variants (Table 2.3), although still lower than when both alleles were included in the alignment.   

 

2.2.4 Second alignment provides only modest improvement in sensitivity and precision 

for incomplete genotypes 

 Previously, Ni et al. 57 described a strategy for detecting allelic imbalance that first 

identifies heterozygous sites using an initial alignment without variant information, and then 
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performs a second, allele-aware alignment including the predicted variants.  We tested whether 

a similar second alignment would boost the sensitivity and precision of allelic imbalance 

identification at predicted heterozygous sites. Before the second alignment, the customized 

reference was updated to ensure that one allele was present at each heterozygous site 

predicted in the initial alignment, and non-reference alleles were added to the separate variant 

file. Reads were then re-aligned using this updated variant file and reference, and filtered as 

before.  

 Considering the CREB1 data with partial genotype information, this second alignment 

identified 11 additional correct sites of allelic imbalance while eliminating 6 incorrect sites, 

increasing the sensitivity to 47% and precision to 58% at predicted heterozygous sites (Table 

2.2). When using common alleles, two additional correct imbalances were found and one 

incorrect site eliminated, with little change in sensitivity and precision. While a second, allele-

aware alignment increases accuracy at predicted heterozygous sites, these modest gains, still 

accompanied by a high rate of false discovery, require an additional alignment. For all other 

analyses, we report imbalances detected after a single alignment.  

 

2.2.5 Shorter read length and lower sequencing depth reduce the number of imbalance 

predictions but not precision or sensitivity 

Most existing ChIP-seq datasets, such as from ENCODE, contain sequence reads 

shorter than 50 bp. We investigated how read length affects the ability of AA-ALIGNER to 

identify sites of allelic imbalance by trimming the 3’ end of each 50 bp CREB1 ChIP-seq 

sequence to create 35 bp and 20 bp reads and then aligned these as before. Trimming reduced 

the overall number of sequenced bases considered by 30% and 60%, respectively. The total 

number of aligned reads decreased by 3.7% in the 35 bp alignment and 16.7% in the 20 bp 

alignment, further reducing total base coverage. The number of reads overlapping heterozygous 

sites decreased by 31.3% and 61.9%, respectively (Figure 2.4A), which led to an even greater 
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reduction in number of identified allelic imbalances for 35 bp (106 imbalances; 47.0% reduction) 

and 20 bp (26 imbalances; 86.6% reduction) reads (Table 2.2,  Figure 2.3B). 

To determine whether reduced allelic imbalance detection was simply due to lower 

overall base coverage, we randomly sampled 70% and 40% of the 50 bp reads to match total 

base coverage levels for the above experiments using 35 bp and 20 bp reads. We found that 

the number of reads aligned to heterozygous sites decreased, as did imbalances identified, at 

the same rate as with the shorter reads (Figure 2.3C).  Thus, reducing base coverage had a 

proportionate effect on allelic imbalance identification compared to reduction in mapping to 

heterozygous sites. In our original analysis using all 50 bp reads, we noted 22.5% of sites 

passed the threshold for the minimum number of reads required for each allele to be tested for 

imbalance by three reads or less (Figure 2.3D).  As base coverage is reduced, a 

disproportionate number of these sites then fall below that threshold (N=5). 

As expected, the overall number of predicted imbalance sites also decreased with base 

coverage when using complete genotypes. Compared to the imbalances detected with complete 

genotypes for each read length, the sensitivity of imbalance calls using partial genotypes or 

common variants remained greater than 69% and the precision greater than 75%. These data 

demonstrate that AA-ALIGNER maintains high detection accuracy using partial genotypes or 

common variants compared to complete genotypes with reduced base coverage. 

 

2.2.6 Number of imbalances identified varies across factors and assays  

To ensure that the results from the CREB1 dataset were representative of results from 

other experiments, we used AA-ALIGNER to predict allelic imbalance in twelve additional 

transcription factor ChIP-seq datasets and one DNase-seq dataset generated in the same 

GM12878 cell line.  ChIP-seq datasets contained between 14 and 48 million aligned reads, and 

most reads were 36 bp in length. Overall, we found that for all alignments, imbalance 

predictions were accurately replicated using incomplete genotypes at sites where both alleles 
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were used in the alignment. Imbalances at new heterozygous sites were again very poorly 

predicted (Table 2.5). 

Although the precision of imbalance detection using partial genotypes and common 

variants was high across datasets, the number of imbalances detected varied greatly 

(minimum=0, maximum=291, median 19). Read length and sequencing depth influence the 

ability of AA-ALIGNER to identify sites of imbalance (Figure 2.3). We found, though, that 

measurements related to these characteristics (Figure 2.4A-C) were not highly correlated with 

the number of imbalances detected in these ChIP-seq datasets (0.43 ≥ Pearson R2 ≥ 0.51). 

These low correlations suggest that other factors, such as the number of transcription factor 

binding sites (TFBS) across the genome and their overall genomic coverage also influenced 

imbalance detection. Alone, TFBS genomic coverage (Figure 2.4D) showed low correlation with 

the number of imbalances detected (Pearson R2=.35), but measurements that considered 

sequencing depth, read length and genomic coverage together (Figure 2.4E-G) were highly 

correlated with the number of imbalances detected (0.78 ≥ Pearson R2 ≥ 0.91). These 

correlations suggest that the dispersion of sequence signal across the genome needs to be 

considered in addition to read length and sequencing depth when evaluating the potential of AA-

ALIGNER to identify allelic imbalances. While there was a positive correlation between 

sequencing depth and signal dispersion in ChIP-seq data, the DNase-seq data, had greater 

sequencing depth (aligned reads) and signal dispersion (genomic coverage), but fewer sites of 

allelic imbalance identified than some of the ChIP-seq data. These results suggest that 

sequencing depth and signal dispersion influence imbalance in DNase-seq data differently and 

that the correlations observed in the ChIP-seq data do not extend to DNase-seq (Table 2.5).  
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2.2.7 Allowing additional alignment mismatches increases sensitivity but decreases 

precision 

Parameters for the different steps of allelic imbalance identification vary across reported 

methods and can significantly affect results. Increasing allowed alignment mismatches helps 

overcome missing genotypes, inaccuracies in the reference genome, and errors in the 

sequence reads, but also results in increased erroneous sequence alignment, particularly when 

aligning shorter reads. We examined how this parameter affected the performance of AA-

ALIGNER with limited genotype information. The 50 bp CREB1 data was processed with 

complete genotypes, partial genotypes, and common variant information allowing 0, 1, 2 or 3 

alignment mismatches. With complete genotype information, the number of imbalances 

increased only slightly with greater mismatches (<4%; Table 2.2).  

When using partial genotypes or common variants, aligning with zero mismatches 

reduced the number of incorrectly aligned reads compared with our default of one mismatch, but 

at the cost of eliminating reads containing the non-reference allele at heterozygous sites not 

included during alignment. This led to increased overall precision of imbalance identification, but 

with significant loss of sensitivity as novel variants could not be predicted (Table 2). Of note, the 

precision of imbalance detection at known variants using zero mismatches was lower than when 

allowing one mismatch. Allowing two or three mismatches increased the number of imbalance 

sites identified using incomplete genotypes by more than 29% (Table 2.2).  The precision at 

variants included in the alignment did not change, but was greatly reduced at predicted variants, 

indicating less stringent mismatch thresholds increase the number of misaligned reads resulting 

in spurious predictions of heterozygous sites and allelic imbalance at these sites. We also 

tested whether requiring one of the mismatches to be located at the predicted heterozygous site 

increased sensitivity and precision compared to allowing mismatches at any site and found that 

results were similar in both cases (data not shown).  
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2.2.8 Requiring a minimum number of reads containing each allele increases precision 

at predicted heterozygous sites 

To balance sensitivity and precision with incomplete genotype information, we examined 

the impact of changing the minimum aligned read threshold for each allele required to test for 

imbalanced sites. Using the 50 bp CREB1 data, we found that as the required number of 

aligned reads increased from 2 to 10, the number of detected imbalances decreased using any 

level of genotype information, as expected, with small fluctuations in the overall sensitivity of 

imbalance identification using incomplete genotypes (Table 2.2). At thresholds of 15 and 20 

reads per allele, the sensitivity of detection increased at predicted heterozygous sites, boosting 

the overall sensitivity at these thresholds. When considering imbalances at variants with both 

alleles included in the alignment, precision only varied slightly, but it increased at predicted sites 

with higher thresholds. While for most analyses we have required at least five reads per allele, 

these findings suggests that for known heterozygous sites, using a lower threshold will increase 

the number of identified sites without compromising precision.  

  

2.2.9 Requiring higher imputation quality does not significantly improve imbalance 

identification  

For each variant on the genotyping array, imputation quality (Rsq) reflects confidence in 

imputation of that variant within the population of genotyped individuals. As the imputation 

quality of a variant site increases, our confidence in the accuracy of the genotype assigned in 

GM12878 also increases. Poorly-imputed variants incorrectly identified as heterozygous in 

GM12878 and included during alignment can lower the precision of imbalance detection using 

partial genotype information. Using imputation quality thresholds from 0.3 to 0.9 as a 

requirement of inclusion during alignment, we tested the influence of stricter thresholds on 

imbalance precision and sensitivity using partial genotypes. When using a higher threshold of 

0.9, some variants with a quality between 0.3 and 0.9 were still predicted to be heterozygous, 
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increasing the precision of imbalance detection at predicted sites, but overall using a threshold 

of 0.9 reduced the number of false positive sites by 7 compared to 0.3 while decreasing the 

number of true positive sites by the same amount, resulting in a small increase in precision and 

decrease in sensitivity (Table 2.2).  

 

2.2.10 Allelic differences in CREB1 binding experimentally supported at inflammatory 

bowel disease-associated loci and other predicted sites 

The above analyses assume that imbalances detected using complete genotypes are 

the most accurate for comparing the effects of reduced information and parameter settings, but 

they do not address the functional accuracy of the imbalance prediction. Of special interest are 

sites previously shown to be associated with disease, especially a disease for which the 

GM12878 lymphoblastoid cell line is relevant. We identified 238 heterozygous sites in GM12878 

that are in linkage disequilibrium (1000 Genomes EUR; r2≥.8) with one of 218 index SNPs 

reported for a genome wide association study (GWAS, P<1.0x10-5)[31]. AA-ALIGNER predicted 

allelic imbalances (P<0.01) in CREB1 binding in GM12878 at five of these disease-associated 

loci (Figure 2.5A). Two of the sites, rs2382818 (Figure 2.5B) and rs713875 (Figure 2.5C), are 

at loci associated with inflammatory bowel disease susceptibility 86–88. CREB family proteins 

have previously reported links to inflammation 89, B-cell lymphocytes 90, and inflammatory bowel 

disease 90. 

At rs2382818, 27 reads containing the T allele and 6 reads containing the A allele were 

aligned using complete genotype, partial genotype, and common variant information (binomial 

P=3.2x10-4; Figure 2.5B, bottom panel). The T allele of rs2382818 most often segregates with 

the disease risk allele A of rs2382817 [32]. Electrophoretic mobility shift assays (EMSAs) using 

purified CREB1, conducted in the absence of chromatin and other nuclear proteins, can 

experimentally test for differential binding of CREB1 to a specific DNA sequence. Multiple, 

independently performed EMSAs supported allelic differences in binding at rs2382818 (Figure 
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2D). A second heterozygous site is located 2 bp downstream of rs2382818. Allowing only a 

single mismatch during alignment prevents reads from aligning if both alleles are not 

considered. At this site, a peak and an allelic imbalance were only detected when using GSNAP 

alignments, but not BWA (Figure 2.5B), demonstrating the importance of using allele-aware 

alignments in annotating disease-associated variants. This locus has been annotated as an 

enhancer based on ENCODE histone modification data 91 and linked with the expression of 

nearby genes (SLC11A1, USP37, PNKD, and ZNF142) 92. We used MEME-ChIP 93  to identify a 

CREB1 binding motif from the 10,000 strongest ChIP-seq peaks and searched for the presence 

of this motif at rs2382818 using FIMO (e < 1.0x10-5) [40], but we were unable to detect the 

CREB1 motif at this site. 

At rs713875 (MTMR3 locus), 30 reads containing the Crohn’s disease risk C allele [34] 

and 9 reads containing the G allele were aligned using any level of genotype information 

(binomial P=1.1x10-3; Figure 2.5C). Allelic differences in CREB1 binding were again supported 

by EMSA (Figure 2.5D). In this example, the imbalance was detected even when only one 

allele was used in the alignment. The variant rs713875 is contained within a DNaseI 

hypersensitive site and is predicted to function as an enhancer 91. Correlation between DNaseI 

hypersensitivity and gene expression levels suggests that this locus may regulate nearby genes 

LIF and TBC1D10A, pseudogene CTA-85E5.7, and non-coding RNA RP3-438O4.4 51. Of these, 

leukemia inhibitory factor (LIF) is an IL-6 cytokine believed to have both inflammatory and anti-

inflammatory roles 95. As with rs2382818, we were unable to detect a CREB1 binding motif at 

this site. For both rs713875 and rs2382818, further study would be required to show whether 

allelic differences in CREB1 binding alter transcription and affect inflammatory bowel disease.  

We tested for allelic differences in CREB1 binding at seven additional sites that contain 

a CREB1 binding motif and were predicted to be imbalanced by AA-ALIGNER. These seven 

included rs1107479, which has been associated with mean platelet volume 96 and age-related 

macular degeneration 97. Using EMSA, we detected evidence of allelic differences in protein 
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binding in the same direction as our predicted imbalance at 4 of the 7 sites (Figure 2D), for a 

total of 6 of 9 supported imbalances. Surprisingly, at rs1695359, we consistently detected 

increased protein binding for the allele predicted by our imbalance analysis to have decreased 

binding. Of the 6 EMSA-supported sites, only 3 were predicted to have allelic differences based 

on the FIMO-calculated motif score (difference>5). Of the 3 imbalance sites that were not 

supported by EMSA, only one (rs1695359) had a significant difference in motif binding score, 

and the allele with the stronger motif score demonstrated increased binding in the EMSA result, 

rather than the allele predicted to be enriched by imbalance detection. For comparison, we used 

EMSA to test 5 additional CREB1 binding locations with a heterozygous variant that fell within a 

CREB1 binding motif, but were not predicted as sites of allelic imbalance (P>.3). We found 

evidence of allelic differences in protein binding at two of these sites (Figure 2.6). For these two 

sites, a CREB1 motif was only predicted when the allele with stronger protein binding was 

present.  

These data provide strong supporting evidence of allelic differences in protein binding at 

6 of the 9 predicted imbalanced sites and suggest that the sequence-specific binding 

preferences of CREB1 influence binding at these sites. It is unclear whether the remaining three 

sites not supported by EMSA indicate errors in AA-ALIGNER imbalance detection, or whether 

these show limitations of EMSA in detecting in vivo allelic differences in protein binding that are 

dependent on chromatin context or the presence of other nuclear proteins. Likewise, it is 

unclear whether AA-ALIGNER failed to detect allelic imbalance at two sites with allelic 

differences in protein binding based on EMSA, or whether chromatin and/or other proteins 

compensate for reduced sequence specificity in vivo resulting in similar binding regardless of 

allele present. Overall, these EMSA results provide evidence supporting allelic differences in 

protein binding at individual imbalance sites detected by AA-ALIGNER.  
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2.3 Discussion 

In this study, we have demonstrated the ability of AA-ALIGNER to remove mapping 

biases and to identify allelic imbalance with high sensitivity and precision when using partial or 

no prior genotype information compared to using complete genotype information. Thoroughly 

testing allelic imbalance detection using three levels of genotype information provides a clear 

picture of the accuracy of AA-ALIGNER when using limited genotypes compared to complete 

genotypes.  

This is the first in-depth study of allelic imbalance detection in ChIP-seq and DNase-seq 

data that empirically tested the effects of key aspects of these analyses including genotype 

availability, read length, alignment parameters, imputation parameters, and requirements for 

predicting heterozygous sites. Our results indicate that including any amount of genotype 

information, or both alleles at common variants, significantly increases accuracy of imbalance 

detection compared to predictions when complete genotypes are known. We clearly show that 

predicting heterozygous variants with these short read data is highly inaccurate, leading to false 

positive rates of imbalance detection greater than 50%. We used a simple metric to predict 

heterozygous sites, and so one could argue that more sophisticated prediction methods could 

improve performance. A recent study examining the accuracy of genotyping with short reads 

from genomic sequencing found that removing sites with strong allelic imbalance, the very sites 

we are trying to identify, increased genotype accuracy 76. That study highlighted the difficulty of 

identifying heterozygous sites from ChIP-seq and DNase-seq data, especially at imbalanced 

sites.  Taken together with our data we strongly suggest that predicted genotypes should be 

further validated before embarking on functional analyses.  

Predicting heterozygous sites in genome sequencing data is an active area of research, 

and many studies have demonstrated the difficulty of calling variants in sequencing data 76,81,98. 

In addition to the GM12878 genotype annotation used in this study, other generally more 

conservative annotations exist. We found that most predicted imbalances were at common 
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variants, and even when all common variants were included in alignments in the case of no 

genotypes, the true heterozygous variants and imbalances could be predicted well at these 

common variant sites. In contrast, the accuracy of imbalance detection at predicted 

heterozygous sites corresponding to rare variants is poor, even when these predicted 

heterozygous sites were included in a second alignment. Inaccurate imbalance detection can be 

caused by either i) incorrectly predicted heterozygous sites in the sequencing data (false 

positives) or ii) correctly predicted heterozygous sites in the sequencing data that were 

incorrectly annotated in the complete genotype (false negatives). Requiring more evidence to 

predict heterozygous sites increased the accuracy of imbalance detection, suggesting that false 

positives in heterozygous site predictions contributed to inaccurate imbalance detection. These 

incorrect predictions may be partly due to sequencing errors, but as some are still present at 

high minimum read thresholds, errors in sequence mapping likely contribute to false positives. 

The inclusion of incorrectly annotated heterozygous sites or absence of true heterozygous sites 

during sequence alignment can cause erroneous read mappings to highly similar genomic 

regions leading to incorrect heterozygous site identification. 

Interestingly, many imbalances at sites not annotated as heterozygous in the complete 

genotype would have been considered imbalanced in the complete genotype alignment using 

our criteria. This suggests that errors may exist in the complete genotype data leading to false 

negative imbalance predictions. Further study is needed, but these data suggest that both false 

positives and false negatives contribute to decreased detection accuracy at predicted variants. 

Thus, AA-ALIGNER outputs three sets of detected imbalance sites: i) a complete set of all 

imbalances identified; ii) imbalances at known or common heterozygous variants (higher 

confidence); and iii) imbalances at predicted rare variants (lower confidence). 

We showed that simply including both alleles for common variants resulted in 

annotations nearly as accurate as those generated from imputed genotypes. Including 

information about rare variants may further increase sensitivity of imbalance detection. We only 
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considered imputed genotypes and common variants separately, but carefully combining 

information from these sources may perform better than either individually and is an area of 

future research.   

Other tested parameters demonstrated the trade-off between sensitivity and precision 

based on their settings, but in most cases these parameters had little effect other than to 

change the number of predicted imbalanced sites. Nevertheless, these results can be used to 

guide the analysis of new data, and AA-ALIGNER allows for the easy specification of these 

parameters. For example, it may be prudent to apply different criteria when evaluating variant 

sites with known genotypes or that are common variants compared to those predicted to be 

heterozygous based solely on the short read data. For most of our results, we required a 

minimum of five reads per allele when testing for imbalances to prevent erroneous testing of 

homozygous variants. When strong evidence exists for heterozygosity, though, this requirement 

may be loosened or eliminated, allowing for greater sensitivity in identifying more extreme 

imbalances. While it is prudent to require a minimum read threshold of reads to detect 

imbalances at predicted heterozygous sites, this threshold precludes the identification of 

complete imbalance at known heterozygous sites where only one allele is present, such as 

imprinted loci. When using known heterozygous sites, AA-ALIGNER users have the option to 

detect complete imbalance at these sites. 

The lack of a comprehensive catalog of experimentally validated sites with functional 

allelic differences limits our ability to evaluate allelic imbalance predictions. Our study used 

results obtained from complete genotypes, the best-case scenario for imbalance detection, as 

the standard for evaluating analyses with partial genotypes and common variants. We 

experimentally tested for allelic differences in CREB1 binding using EMSA at nine sites with 

predicted allelic imbalance and five sites with no predicted imbalance. In general, EMSA results 

matched predicted differences in FIMO-calculated motif scores based on the presence of each 

of the two alleles, though we note that we were able to detect allelic imbalance and observe 
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differential protein binding at three sites without predicted allelic differences in motif scores. 

EMSAs were performed in the absence of chromatin context and other nuclear proteins, and so 

are limited to detecting differences in the sequence binding specificity of a protein. Despite this 

limitation, we detected allelic differences in CREB1 binding at 6 of 9 predicted imbalanced sites 

providing strong supporting evidence of allelic differences in protein binding. Further testing is 

required to understand the cases when EMSA results do not support predicted allelic 

imbalances. For example, it is unknown whether any of the 3 sites not supported by EMSA were 

falsely detected as imbalanced by AA-ALIGNER, or whether they failed to validate because of 

the limitations inherent to EMSA. Likewise, further study is needed to determine whether the two 

sites that AA-ALIGNER did not predict as imbalanced but that EMSA showed allelic differences 

in protein binding are due to limitations in AA-ALIGNER or EMSA. These results highlight the 

need for better experimental assays to validate allelic imbalances, and underscore the difficulty 

of creating comprehensive catalogs of sites with experimental evidence of differences in protein 

binding.  

 The most appropriate statistical test and significance threshold for determining 

imbalanced sites is not known. While the binomial test is commonly used, other statistical 

methods such as a beta-binomial 62,99, and Bayesian frameworks [25, 46] have been shown to 

accurately detect allelic imbalance. For our analyses, we used the more optimistic binomial test 

and determined significance using an uncorrected p-value threshold of 0.01. Our data indicate 

that stricter p-value thresholds do not significantly affect the sensitivity and precision of 

predictions using incomplete genotypes when compared to complete genotype annotations. 

Incorrectly predicted heterozygous sites often had very small p-values (25% at P<10-7), thus 

stricter p-values will not eliminate these false positives. Likewise, using beta-binomial p-values 

to correct for over dispersion and setting the same uncorrected p-value cut-off greatly reduced 

our power to detect allelic imbalance. Using the beta-binomial p-value, imbalance detection 

accuracy and precision remain significantly higher for imputed and common variants than for 
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predicted rare variants. Our experimental EMSA results were strongest overall for sites with 

lower p-values, although we did show evidence for altered binding at rs713875 (binomial 

P=1.0x10-3) and rs2382818 (P =3.2x10-4) but not rs72694799 (P =2.6x10-5) (Figure 2.5D). Sites 

with less statistically significant changes in allelic data may be biologically inconsequential, or 

the functional effects may simply be weaker but still biologically significant. Until a larger set of 

experimentally supported sites exists, we cannot determine which statistical test and p-value 

threshold best identifies biologically relevant imbalance sites. AA-ALIGNER was designed to be 

modular allowing for allowing for the incorporation of alternative methods for variant 

identification and tests for significance of imbalances. 

 Copy number variants (CNVs), which can have significant impacts on disease 100, can 

cause one allele to overrepresented in the genomic DNA leading to biologically inconsequential 

imbalances in read data.  Prior CNV information for the sequenced sample can be used to 

preclude imbalance detection within CNVs. Alternatively, sequence data from non-ChIP 

genomic input or other control experiments, when sequenced with sufficient read depth in the 

same sample, could be used to estimate an expected proportion of aligned reads per allele and 

to adjust for copy number variation within the binomial test. These control sequences could also 

correct for other biases that cause incorrect allelic imbalance detection in both the control and 

ChIP-seq data. Like genotype information, CNV data is not available for most samples. At this 

time, AA-ALIGNER does not specifically incorporate known CNV data, although known CNVs 

can easily be included as “blacklisted” regions and filtered post-alignment. Alternatively, 

presence of CNVs could be experimentally tested for at AA-ALIGNER predicted imbalance sites  

  

2.4 Conclusions 

Allelic imbalance analyses in quantitative sequence data from functional genomic 

experiments such as ChIP-seq and DNase-seq data is a powerful way to identify effects of 

genetic variation on gene regulation and uncover molecular mechanisms responsible for GWAS 
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loci in non-coding genomic regions.  Reference mapping biases at heterozygous sites and a 

lack of genotype information for sequenced samples greatly hinder allelic imbalance detection in 

most public *-seq data. Our analyses demonstrate that the AA-ALIGNER pipeline overcomes 

mapping biases and accurately identifies a majority of imbalance sites using only partial or no 

genotype information compared to complete genotype information. Additionally, we provide 

valuable insight into how experimental and methodological design factors effect imbalance 

detection.  

With AA-ALIGNER, we were able to detect allelic imbalance in ChIP-seq data for a 

single transcription factor from a single cell line and provide supporting experimental evidence 

of differential protein binding at a small subset of imbalanced sites. These sites with 

experimental evidence included variants at two inflammatory bowel disease-associated loci. We 

demonstrated that mapping biases at one of these two sites prevented detection of both signal 

enrichment and allelic imbalance using standard analytical techniques. Existing knowledge of B-

lymphocytes, regulatory regions and nearby genes suggest a plausible role for these 

imbalanced sites in inflammatory bowel disease pathogenesis, highlighting the utility of 

imbalance detection in annotating disease-associated loci. Replicating this analysis in additional 

cell lines and for additional factors should continue to uncover allelic imbalance at numerous 

other GWAS loci, providing powerful insight into likely genetic effects on regulation. 

  

2.5 Methods 

2.5.1 Genotype Data 

Genomic sequencing-based variants calls for GM12878 were generated by the Broad 

Institute. Illumina Human-1MDuo BeadChip array genotype data generated by the HusdonAlpha 

Institute of Biotechnology for GM12878 and 52 other ENCODE samples were obtained from the 

UCSC genome browser 41. Autosomal genotypes for all 53 samples were imputed using MaCH-

Admix 84 with default parameter settings and the reference panel from the 1000 Genomes 



    

37 
 

 

Project Phase I version 3 (2012-03-14 release). Chromosome X genotype data in the 53 

samples were pre-phased using MaCH 101 with options --states 500 and --rounds 400 and then 

imputed using minimac 102 with options --state 10 and --rounds 10. Post-imputation filtering of 

variants according to Rsq was performed as previously reported 103.  

Common alleles (MAF > 0.05) used to derive the initial custom reference genome were 

based on 1000 Genomes Phase I version 3 EUR population 104. 

 

2.5.2 Custom reference creation 

The initial European-specific reference genome was created by replacing alleles in the 

hg19 reference sequence with the major allele for all common variants (MAF>.05) from the 

1000 Genomes EUR population. The GM12878 custom reference was created by further 

modifying this initial custom reference by replacing non-reference homozygous variants with the 

new allele, based on information from either the full genotype or partial genotype. 

 

2.5.3 Quantitative sequence data processing 

Sequence fastq files (Table 2.6) were downloaded from the UCSC Genome browser 

ENCODE Project 41. Sequences from each replicate were filtered with fastx_trimmer using 

options `-f 1 -l 50 –Q 33` and fastq_quality_filter using options `-Q 33 –p 90 –q 20 –I N` where N 

is the length of the reads in that dataset.  

Standard GSNAP alignments were performed using the following options:  --sampling=1, 

--terminal-threshold=10, -n 1, --query-unk-mismatch=1, --genome-unk-mismatch=1, --trim-

mismatch-score=0, -t 7, and -A sam. The k-mer size parameter was set based on read length:   -

k=15 (50bp); -k=11 (35bp); -k=10 (20bp) with –-basesize set to k-mer size. As we increased the 

number of mismatches allowed during alignment to m, we changed the option –m to m and –i to 

m+1 to disallow indels during alignment. The directory containing the GSNAP reference 

genome was specified with –D the genome name with –d. Alternate alleles at variant sites 
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based on partial genotype information or common variants were included in alignments with the 

–v option.  BWA alignments were performed using the bwa aln command with options –n 1, –o 

0, and –e 0 and bwa samse with option –n 4. When doing a second alignment, the customized 

reference was updated, if necessary, to contain one of the alleles at predicted heterozygous 

sites from the first alignment, sequences were aligned, and the alignments were filtered as 

before. 

Reads aligned to more than one genomic location or overlapping the ENCODE blacklist 

regions  41 were filtered. Potential PCR artifacts were removed using MarkDuplicates (Picard 

suite) with options REMOVE_DUPLICATES=TRUE, VALIDATION_STRINGENCY=LENIENT, 

USE_THREADING=TRUE.  

To investigate the effects of reference mapping biases on peak calling, peaks were 

called using SPP within an Irreproducible Discovery Rate (IDR) analysis 105 as outlined by the 

ENCODE Consortium 40,106. Overlaps were determined between the 10,000 peaks with the 

strongest signal and heterozygous sites identified by genomic sequencing (complete 

genotypes). 

 

2.5.4 Identifying allelic imbalance 

Only sequence bases with a Phred33 base quality score greater than 30 were 

considered for predicting heterozygous sites or allelic imbalances. To account for mappability 

differences in alignments based on which of the two alleles was present, the heterozygous base 

in each sequence read was changed to the alternate allele and re-aligned to the genome. Only 

reads aligning uniquely regardless of the allele present were used to detect allelic imbalance. 

Significance was assessed with a binomial probability, b(a1; n, 0.5), where a1 represents the 

number of reads containing allele1 and n is the total number of reads at the heterozygous site 

and an uncorrected p-value threshold of 0.01. To calculate beta-binomial p-values, we first 

estimated parameter α of the beta distribution using reference allele proportions across all sites.  
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A Z-statistic for each tested site was calculated the following equation: 
����.�
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, where �� is the 

proportion of reads containing the reference allele and N is the total number of reads at the site. 

 

2.5.5 Electrophoretic mobility shift assays 

For each heterozygous variant examined, two sets of complementary 21-mer, biotin-

labeled oligonucleotides centered on the CREB1 motif and containing one allele were 

synthesized by Integrated DNA Technologies. Each set was annealed to create two double-

stranded probes for each variant (Table  2.7). EMSAs were performed according to the protocol 

included with the LightShift Chemiluminescent EMSA Kit (Thermo Scientific). Briefly, each 

reaction containing 1x binding buffer, 1 µg poly(dIdC), and 200 ng of purified CREB1 protein 

(CreativeBiomart CREB1-26H) was incubated for 15 minutes before adding biotin-labeled 

probes in a total reaction volume of 20 µl and incubating for another 25 minutes.  Reactions 

were electrophoresed on 6% DNA retardation gels (Life Technologies) in 0.5X TBE buffer 

(Lonza), transferred to nylon membranes (Thermo Scientific), UV cross-linked and detected with 

chemilluminescence (Thermo Scientific). 
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Table 2.1 Allele-aware alignments with complete genotypes (GSNAP) vs no genotype 
information (BWA) 

  
GSNAP   BWA 

Standard  Complementa Differenceb  Standard Complementa Differenceb

Reads mapped uniquely 33,599,679  33,599,721 120  33,543,808 33,547,947 344,942

Reads at heterozygous sites 1,295,901  1,295,914 120  1,197,696  1,186,891 344,942

        Reference allele 675,394 620,517 - 677,697 640,978 -

        Non-reference allele 620,507 675,397 - 519,999 545,913 -

Peaks at heterozygous sitesc 1,618  1,618 0  1,593  1,614 87

Allelic Imbalance Sites 
Identifiedd 

200 200 0 151 147 56

        Reference allele 108 92 - 91 82 -

        Non-reference allele 92  108 -  60  65 -

aAlignment reference contained the non-reference allele of heterozygous sites used to create the standard reference bDiffers in 
mapping or detection between alignments to standard and complement references cOut of 10,000 peaks with strongest signal 
dbinomial p-value<.01 
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Table 2.2 Allelic imbalance detection accuracy in alignments using partial or no genotypes compared to complete genotypes 

Factor/Assay 
(Condition) 

Completea  Partial Genotypeb Imbalances   No Genotypec Imbalances 

Total Partial
 

None Total  Known variants  Predicted variants  Total 
 

Known variants  Predicted variants 

Nt  Np   Nn
 Nt Sens Prec  Np Sens Prec  Nt-Np Sens Prec  Nt Sens Prec  Nn Sens Prec  Nt-Nn Sens Prec

CREB1 (50 bp) 200 125
 

141 190 73.0 76.8 134 96.8 90.3 56 33.3 44.6 203 76.0 74.9 160 93.6 82.5 43 33.9 46.5

CREB1 (35 bp) 106 70
 

81 104 73.6 75.0 74 97.1 91.9 30 27.8 33.3 107 77.4 76.6 87 92.6 86.2 20 28.0 35.0

CREB1 (20 bp) 26 16
 

16 24 69.2 75.0 17 100.0 94.1 7 20.0 28.6 22 69.2 81.8 17 100.0 94.1 5 20.0 40.0

CTCF (35 bp) 267 187
 

192 300 83.1 74.0 198 98.4 92.9 102 47.5 37.3 298 85.0 76.2 210 97.9 89.5 88 52.0 44.3

DNase (20 bp) 104 43
 

47 138 51.0 38.4 42 97.7 100.0 96 18.0 11.5 144 51.9 37.5 55 97.9 83.6 89 14.0 9.0

CREB1 (2 alns)d 200  125   141  195 78.5 80.5  135 97.6 90.4  60 46.7 58.3  204 77.0 75.5  156 92.2 83.3  48 40.7 50.0

Mismatches allowed 
  

CREB1 (0 mm) 199  122   138  137 58.8 85.4  137 95.9 85.4  0 - -  160 63.3 78.8  160 91.3 78.8  0 - -

CREB1 (1m m)e 200 125
 

141 190 73.0 76.8 134 96.8 90.3 56 33.3 44.6 203 76.0 74.9 160 93.6 82.5 43 33.9 46.5

CREB1 (2 mm) 199 124
 

137 245 80.4 65.3 133 97.6 91.0 112 52.0 34.8 251 81.4 64.5 159 96.4 83.0 92 48.4 32.6

CREB1 (3 mm) 213  123   143  301 79.2 53.2  132 98.4 90.9  169 50.0 23.7  313 81.7 52.7  161 96.4 83.9  152 47.6 19.7

Minimum reads/allele 
  

CREB1 (2 reads)  301  178   199  486 73.4 45.5  187 97.2 92.5  299 39.0 16.1  515 75.4 44.1  228 95.0 82.9  287 37.3 13.2

CREB1 (3 reads)  261 156
 

173 267 70.1 68.8 162 94.9 91.4 105 33.3 33.3 289 72.8 65.7 191 92.5 83.8 98 34.1 30.6

CREB1 (4 reads)  230 142
 

159 218 71.4 76.0 148 95.1 91.2 70 33.7 42.6 235 74.8 73.2 175 92.5 84.0 60 35.2 41.7

CREB1 (5 reads)e 200 125
 

141 190 73.0 76.8 134 96.8 90.3 56 33.3 44.6 203 76.0 74.9 160 93.6 82.5 43 33.9 46.5

CREB1 (6 reads)  198 122
 

136 174 70.7 80.5 130 96.7 90.8 44 28.9 50.0 188 73.7 77.7 153 93.4 83.0 35 30.6 54.3

CREB1 (7 reads)  173 109
 

123 154 72.8 81.8 116 97.2 91.4 38 31.2 52.6 167 75.7 78.4 138 92.7 82.6 29 34.0 58.6

CREB1 (8 reads)  157 100
 

111 141 72.0 80.1 107 97.0 90.7 34 28.1 47.1 148 75.2 79.7 124 92.8 83.1 24 32.6 62.5

CREB1 (9 reads)  144 91
 

101 130 72.2 80.0 98 96.7 89.8 32 30.2 50.0 140 75.7 77.9 115 93.1 81.7 25 34.9 60.0

CREB1 (10 reads)  124 80
 

88 117 74.2 78.6 88 96.2 87.5 29 34.1 51.7 125 76.6 76.0 102 92.0 79.4 23 38.9 60.9

CREB1 (15 reads)  88 60
 

66 82 77.3 82.9 66 96.7 87.9 16 35.7 62.5 88 80.7 80.7 76 92.4 80.3 12 45.5 83.3

CREB1 (20 reads)  63  47   52   64 84.1 82.8  53 97.9 86.8  11 43.8 63.6  67 88.9 83.6  60 96.2 83.3  7 54.5 85.7

Imputation Rsq threshold 
  

CREB1 (Rsq>.3) e 200  125   -  190 73.0 76.8  134 96.8 90.3  56 33.3 44.6  - - -  - - -  - - -

CREB1 (Rsq>.4) 200 122
 

- 190 72.5 76.3 133 97.5 89.5 57 33.3 45.6 - - - - - - - - -

CREB1 (Rsq>.5) 200 121
 

- 187 72.5 77.5 129 98.3 92.2 58 32.9 44.8 - - - - - - - - -

CREB1 (Rsq>.6) 200 118
 

- 186 72.5 78.0 124 98.3 93.5 62 35.4 46.8 - - - - - - - - -

CREB1 (Rsq>.7) 200 117
 

- 185 72.0 77.8 123 98.3 93.5 62 34.9 46.8 - - - - - - - - -

CREB1 (Rsq>.8) 200 104
 

- 182 70.5 77.5 111 99.0 92.8 71 39.6 53.5 - - - - - - - - -

CREB1 (Rsq>.9) 200  96   -  176 69.5 79.0  99 99.0 96.0  77 42.3 57.1  - - -  - - -  - - -

aComplete genotype alignments use sequencing-based genotypes bPartial genotype alignments use array-based genotypes and imputation cNo genotypes alignments use common 
variants (MAF>.05) from 1000 Genomes EUR dImbalances called after a second alignment using refined genotypes; known variants are variants included in the first alignment 
eCondition used by default by AA-ALIGNER; Nt total imbalance count, Np  imbalances at imputated heterozygotes, Nn imbalances at common variants, Sens, percent sensitivity, Prec, 
percent precision 
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Table 2.3  Precision of imbalance detection in non-allele-aware alignments 

Factor/Assay (Condition) 

GSNAP   BWA 

Total 
 

MAF≥.05 
 

MAF<.05 
 

Total 
 

MAF≥.05 
 

MAF<.05 

Nt   Nn   Nt-Nn   Nt Sens Prec   Nn Sens Prec   N Sens Prec 

CREB1 (50 bp) 200 
 

141 
 

59 
 

161 61.5 76.4 
 

124 74.5 84.7 
 

37 30.5 48.6 

CREB1 (35 bp) 106 
 

81 
 

25 
 

98 64.2 69.4 
 

78 75.3 78.2 
 

20 28.0 35.0 

CREB1 (20 bp) 26 
 

16 
 

10 
 

22 50.0 59.1 
 

16 68.8 68.8 
 

6 20.0 33.3 

CTCF (35 bp) 267 
 

192 
 

75 
 

306 74.9 65.4 
 

218 84.4 74.3 
 

88 50.7 43.2 

Dnase (20 bp) 104 
 

47 
 

57 
 

116 24.0 21.6 
 

25 34.0 64.0 
 

91 15.8 9.9 

CREB1 (2 alns)a 200   141   59   193 64.5 66.8   147 76.6 73.5   46 35.6 45.7 

Imbalance calls using BWA and no genotype information compared to GSNAP alignments using complete genotypes; aHeterozyogous sites identified in first alignment are used to 
create two haplotype references for second round of alignments.  Nt total imbalance count Nn imbalances at common variants 
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Table 2.4 P-value threshold influences allelic imbalance detection using partial genotypes and common variants 

Imbalance 

P<.01 

Completea  Partial Genotypeb Imbalances   No Genotypec Imbalances 

Total 
 
Partial 

 
None 

 
Total 

 
Known variants 

 
Predicted variants 

 
Total 

 
Known variants 

 
Predicted variants 

Nt   Np   Nn   Nt Sens Prec   Np Sens Prec 
 

Nt-Np Sens Prec   Nt Sens Prec   Nn Sens Prec   Nt-Nn Sens Prec 

CREB1 (50 bp) 200 
 

125 
 

141 
 

190 73.0 76.8 
 

134 96.8 90.3 
 

56 33.3 44.6 
 

203 76.0 74.9 
 

160 93.6 82.5 
 

43 33.9 46.5 

CREB1 (35 bp) 106 
 

70 
 

81 
 

104 73.6 75.0 
 

74 97.1 91.9 
 

30 27.8 33.3 
 

107 77.4 76.6 
 

87 92.6 86.2 
 

20 28.0 35.0 

CREB1 (20 bp) 26 
 

16 
 

16 
 

24 69.2 75.0 
 

17 100.0 94.1 
 

7 20.0 28.6 
 

22 69.2 81.8 
 

17 100.0 94.1 
 

5 20.0 40.0 

CTCF (35 bp) 267 
 

187 
 

192 
 

300 83.1 74.0 
 

198 98.4 92.9 
 

102 47.5 37.3 
 

298 85.0 76.2 
 

210 97.9 89.5 
 

88 52.0 44.3 

DNase (20 bp) 104   43   47   138 51.0 38.4   42 97.7 100.0   96 18.0 11.5   144 51.9 37.5   55 97.9 83.6   89 14.0 9.0 

P<.001 
                             

CREB1 (50 bp) 114   67   74   108 65.8 69.4   69 95.5 92.8   39 23.4 28.2   114 69.3 69.3   85 94.6 82.4   29 22.5 31.0 

CREB1 (35 bp) 60 
 

39 
 

42 
 

61 70.0 68.9 
 

40 94.9 92.5 
 

21 23.8 23.8 
 

62 71.7 69.4 
 

47 92.9 83.0 
 

15 22.2 26.7 

CREB1 (20 bp) 17 
 

10 
 

10 
 

14 64.7 78.6 
 

10 100.0 100.0 
 

4 14.3 25.0 
 

12 64.7 91.7 
 

10 100.0 100.0 
 

2 14.3 50.0 

CTCF (35 bp) 140 
 

89 
 

93 
 

166 80.0 67.5 
 

95 98.9 92.6 
 

71 47.1 33.8 
 

162 81.4 70.4 
 

103 97.8 88.3 
 

59 48.9 39.0 

DNase (20 bp) 43   8   11   62 32.6 22.6   8 100.0 100.0   54 17.1 11.1   67 37.2 23.9   14 100.0 78.6   53 15.6 9.4 

P<1.0x10-4 
                             

CREB1 (50 bp) 75   45   48   77 66.7 64.9   46 93.3 91.3   31 26.7 25.8   79 68.0 64.6   56 91.7 78.6   23 25.9 30.4 

CREB1 (35 bp) 39 
 

24 
 

27 
 

33 61.5 72.7 
 

22 91.7 100.0 
 

11 13.3 18.2 
 

37 66.7 70.3 
 

26 88.9 92.3 
 

11 16.7 18.2 

CREB1 (20 bp) 4 
 

3 
 

3 
 

3 75.0 100.0 
 

3 100.0 100.0 
 

0 - - 
 

3 75.0 100.0 
 

3 100.0 100.0 
 

0 - - 

CTCF (35 bp) 89 
 

50 
 

54 
 

108 76.4 63.0 
 

54 98.0 90.7 
 

54 48.7 35.2 
 

104 79.8 68.3 
 

59 69.3 88.1 
 

45 54.3 42.2 

DNase (20 bp) 21   1   2   38 19.0 10.5   1 100.0 100.0   37 15.0 8.1   38 19.0 10.5   2 100.0 100.0   36 10.5 5.6 

P<1.0x10-5 (Bonferroni correction: alpha=.05 and N=5000) 
                    

CREB1 (50 bp) 52   30   32   50 59.6 62.0   32 90.0 84.4   18 18.2 22.2   52 61.5 61.5   37 87.5 75.7   15 20.0 26.7 

CREB1 (35 bp) 28 
 

19 
 

19 
 

24 64.3 75.0 
 

17 89.5 100.0 
 

11 13.3 18.2 
 

26 64.3 69.2 
 

19 89.5 89.5 
 

7 11.1 14.3 

CREB1 (20 bp) 2 
 

1 
 

1 
 

1 50.0 100.0 
 

1 100.0 100.0 
 

0 - - 
 

1 50.0 100.0 
 

1 100.0 100.0 
 

0 - - 

CTCF (35 bp) 63 
 

34 
 

36 
 

74 74.6 63.5 
 

36 97.1 91.7 
 

38 48.3 36.8 
 

71 76.2 67.6 
 

39 94.4 87.2 
 

32 51.9 43.8 

DNase (20 bp) 16   1   1   32 18.8 9.4   1 100.0 100.0   31 13.3 6.5   33 18.8 9.1   1 100.0 100.0   32 13.3 6.2 

P<1.0x10-6 (Bonferroni correction: alpha=.005 and N=5000) 
                    

CREB1 (50 bp) 44   24   25   42 59.1 61.9   27 91.7 81.5   15 20.0 26.7   44 59.1 59.1   31 88 71   13 21.1 30.8 

CREB1 (35 bp) 19 
 

12 
 

12 
 

18 63.2 66.7 
 

11 91.7 100.0 
 

7 14.3 14.3 
 

20 63.2 60 
 

13 91.7 84.6 
 

7 14.3 14.3 

CREB1 (20 bp) 2 
 

1 
 

1 
 

1 50.0 100.0 
 

1 100.0 100.0 
 

0 - - 
 

1 50 100 
 

1 100 100 
 

0 - - 

CTCF (35 bp) 43 
 

21 
 

24 
 

57 72.1 54.4 
 

23 100.0 91.3 
 

34 45.5 29.4 
 

55 76.7 60 
 

27 95.8 85.2 
 

28 52.6 35.7 

DNase (20 bp) 12 
 

1 
 

1 
 

24 16.7 8.3 
 

1 100.0 100.0 
 

23 9.1 4.3 
 

24 16.7 8.3 
 

1 100 100 
 

23 9.1 4.3 

Beta-binomial P<0.01                           

CREB1 (50 bp) 36  16  17  35 50.0 51.4  18 93.8 83.3  17 15.0 17.6  36 50 50  22 88.2 68.2  14 15.8 21.4 
aComplete genotype alignments use sequencing-based genotypes bPartial genotype alignments use array-based genotypes and imputation cNo genotypes alignments use common 

variants (MAF>.05) from 1000 Genome EUR; Nt total imbalance count, Np  imbalances at imputed  heterozygotes, Nn imbalances at common variants, Sens, percent sensitivity, Prec, 

percent precision 
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Table 2.5  Precision of allelic imbalance detection extends to other transcription factor ChIP-seq data 

Factor/Assay 
(Condition) 

Completea   Partial Genotypeb Imbalances   No Genotypec Imbalances 

Total 
 

Partial 
 

None 
 

Total 
 

Known variants 
 

Predicted variants 
 

Total 
 

Known variants 
 

Predicted variants 

Nt   Np   Nn   Nt Sens Prec   Np Sens Prec   Nt-Np Sens Prec   Nt Sens Prec   Nn Sens Prec   Nt-Np Sens Prec 

CREB1 (50 bp) 200 
 

125 
 

141 
 

190 73.0 76.8 
 

134 96.8 90.3 
 

56 33.3 44.6 
 

203 76.0 74.9 
 

160 93.6 82.5 
 

43 33.9 46.5 

CREB1 (35 bp) 106 
 

70 
 

81 
 

104 73.6 75.0 
 

74 97.1 91.9 
 

30 27.8 33.3 
 

107 77.4 76.6 
 

87 92.6 86.2 
 

20 28.0 35.0 

CREB1 (20 bp) 26 
 

16 
 

16 
 

24 69.2 75.0 
 

17 100.0 94.1 
 

7 20.0 28.6 
 

22 69.2 81.8 
 

17 100.0 94.1 
 

5 20.0 40.0 

CTCF (35 bp) 267 
 

187 
 

192 
 

300 83.1 74.0 
 

198 98.4 92.9 
 

102 47.5 37.3 
 

298 85.0 76.2 
 

210 97.9 89.5 
 

88 52.0 44.3 

Dnase (20 bp) 104 
 

43 
 

47 
 

138 51.0 38.4 
 

42 97.7 100.0 
 

96 18.0 11.5 
 

144 51.9 37.5 
 

55 97.9 83.6 
 

89 14.0 9.0 

Other Factors                                                           

EBF1 (35 bp) 291 
 

233 
 

248 
 

283 86.6 89.0 
 

233 98.3 98.3 
 

50 39.7 46.0 
 

296 90.7 89.2 
 

251 97.2 96.0 
 

45 53.5 51.1 

ZNF143 (35 bp) 90 
 

48 
 

53 
 

103 70.0 61.2 
 

55 100.0 87.3 
 

48 35.7 31.2 
 

107 73.3 61.7 
 

61 98.1 85.2 
 

46 37.8 30.4 

ELF1 (35bp) 52 
 

29 
 

29 
 

51 63.5 64.7 
 

31 96.6 90.3 
 

20 21.7 25.0 
 

51 65.4 66.7 
 

35 96.6 80.0 
 

16 26,1 37.5 

STAT5A (35 bp) 35 
 

9 
 

13 
 

32 42.9 46.9 
 

9 100.0 100.0 
 

23 23.1 26.1 
 

30 42.9 50.0 
 

12 92.3 100.0 
 

18 13.6 16.7 

BCL3 (35 bp) 19 
 

1 
 

1 
 

7 15.8 42.9 
 

1 100.0 100.0 
 

6 11.1 33.3 
 

7 15.8 42.9 
 

1 100.0 100.0 
 

6 11.1 33.2 

PAX5 (35 bp) 16 
 

10 
 

10 
 

12 62.5 83.3 
 

10 100.0 100.0 
 

2 0.0 0.0 
 

12 62.5 83.3 
 

10 100.0 100.0 
 

2 0.0 0.0 

POL2 (35 bp) 20 
 

8 
 

8 
 

12 45.0 75.0 
 

8 100.0 100.0 
 

1 8.3 25.0 
 

12 45.0 75.0 
 

8 100.0 100.0 
 

4 8.3 25.0 

C/EBPb (35 bp) 8 
 

8 
 

8 
 

0 - - 
 

0 - - 
 

0 - - 
 

2 0.0 0.0 
 

1 0.0 0.0 
 

1 0.0 0.0 

ZBTB33 (35 bp) 7 
 

3 
 

3 
 

5 24.9 60.0 
 

3 100.0 100.0 
 

2 0.0 0.0 
 

5 42.9 60.0 
 

3 100.0 100.0 
 

2 0.0 0.0 

P300 (35 bp) 0 
 

0 
 

0 
 

1 - 0.0 
 

0 - - 
 

1 - 0.0 
 

1 - 0.0 
 

0 - 0.0 
 

1 - 0.0 

NFkB (28 bp) 0   0   0   0 - -   0 - -   0 - -   0 - -   0 - -   0 - - 

aComplete genotype alignments use sequencing-based genotypes bPartial genotype alignments use array-based genotypes and imputation cNo genotypes alignments use common 
variants (MAF>.05) from 1000 Genomes EUR;  Nt total imbalance count, Np  imbalances at imputed heterozygotes, Nn imbalances at common variants, Sens, percent sensitivity, Prec, 
percent precision 
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Table 2.6  Alignment and base coverage statistics for ChIP-seq transcription factor and Dnase-seq data 

Factor Bp 

Read Counts 
 

Base Counts 

ENCODE Dataset Total Heterozygousa   Alignedb 1X Coveragec 10X Coveraged Hetse Imbalancesf 

wgEncodeHaibTfbsGm12878Elf1sc631V0416101 DNase 20 156,758,018 2,758,908 
 

3,135,160,360 1,405,991,528 21,124,395 8445 106 

wgEncodeHaibTfbsGm12878Creb1sc240V0422111 CREB1 50 33,599,679 1,295,901 
 

1,679,983,950 970,842,159 10,446,092 5282 200 

wgEncodeSydhTfbsGm12878Ctcfsc15914c20Std CTCF 36 27,756,145 791,146 
 

999,221,220 564,722,839 8,555,802 5402 267 

wgEncodeSydhTfbsGm12878Ebf1sc137065Std EBF1 36 41,942,339 1,204,579 
 

1,509,924,204 953,631,250 7,860,098 3981 291 

wgEncodeSydhTfbsGm12878Znf143166181apStd ZNF143 36 34,120,761 1,005,238 
 

1,228,347,396 840,169,377 5,288,296 3287 90 

wgEncodeHaibTfbsGm12878Elf1sc631V0416101 ELF1 36 24,915,146 779,055 
 

896,945,256 565,177,535 5,090,994 2803 52 

wgEncodeHaibTfbsGm12878Stat5asc74442V0422111 STAT5a 36 47,942,522 1,372,232 
 

1,725,930,792 1,076,897,191 3,390,070 1311 35 

wgEncodeHaibTfbsGm12878Bcl3V0416101 BCL3 36 21,628,124 645,670 
 

778,612,464 588,947,638 1,540,684 890 19 

wgEncodeHaibTfbsGm12878Pax5c20 PAX5 36 19,630,594 596,047 
 

706,701,384 540,278,004 1,263,550 448 16 

wgEncodeOpenChromChipGm12878Pol2 POL2 36 14,908,730 417,043 
 

536,714,280 418,436,494 966,477 325 12 

wgEncodeHaibTfbsGm12878Cebpbsc150V0422111 CEBPb 36 40,620,992 1,137,812 
 

1,462,355,712 1,029,621,494 783,682 331 8 

wgEncodeSydhTfbsGm12878NfkbTnfaIggrab NFkB 28 19,683,073 432,673 
 

551,126,044 461,637,264 454,451 7 0 

wgEncodeHaibTfbsGm12878Zbtb33 ZBTB33 36 21,413,742 647,263 
 

770,894,712 628,127,307 166,212 122 7 

wgEncodeHaibTfbsGm12878P300 P300 36 15,865,233 477,718   571,148,388 488,303,953 138,015 51 0 

aReads at heterozygous sites from complete genotypes bReads aligned using complete genotypes cGenomic bases with at least 1 read dGenomic bases covered by at least 10 reads 
ePredicted heterozygous sites with at least 5 reads containing each allele fSItes with imbalance, binomial P<.01; Bp, base pairs 
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Table 2.7  EMSA probes for experimental validation 

Figure 2.5 Probes 

  rsID Position Allele 1 Probe Allele 2 Probe 

A rs2382818 chr2:219155907 5'-ACCTCTCTGAAGGGCTCATTT 5'-ACCTCTCTGATGTGCTCATTT 

B rs28712309 chr4:120375837 5'-GCCATTGTGACGTCACGGAAG 5'-GCCATTGTGGCGTCACGGAAG 

C rs72694709 chr4:170533776 5'-TGGCGTGTGACGTCAGCGCGT 5'-TGGCGTATGACGTCAGCGCGT 

D rs28711909 chr4:185769900 5'-CCACTTATGACGTAGCTTTTG 5'-CCACTTATGACATAGCTTTTG 

E rs1107479 chr12:57030685 5-TGCCAAGGACGTCACAGGCAG 5'-TGCCAAGGACGTCATAGGCAG 

F rs73177939 chr12:104351332 5'-CCTCCTGTGACCTCTTAAGAG 5'-CCTCCTGTGACGTCTTAAGAG 

G rs12953558 chr18:76829069 5'-GATCGGTGACGTCATCGGGCC 5'-CATCGGTGACGTAATCGGTCC 

H rs12624512 chr20:62482272 5'-TGGGGAAGACCTCACATAGGC 5'-TGGGGAAGACGTCACATAGGC 

I rs713875 chr22:30592486 5'-GGTGGCCAGCGTCAGCGTTTG 5'-GGTGGCCAGGGTCAGCGTTTG 

Figure 2.6 Probes 

A rs72807213 chr5:175816018 5-GAGGACAGTGATGTCGGAGGG 5'- GAGGACAGTGATATCGGAGGG 

B rs9388486 chr6:126661154 5'-GCTCTCAATGACGTCAGGTAT 5'- GCTCTCAATGACGCCAGGTAT 

C rs274035 chr7:23450198 5'-ACCTCTAGTGATGTAAAGTCT 5'-ACCTCTAATGATGTAAAGTCT 

D rs12145434 chr12:121454342 5'-CTTCATGACGTCACGTGAGAG 5'-CTTCATGACGTCACGAGAGAG 

E rs55811458 chr22:30592486 5'-GCAACTGGTGACATCATGAGA 5'-GCAACTAGTGACATCATGAGA 

All probes are labeled with biotin on the 5' end (Integrated DNA technologies- /5Biosq/ tag) 



    

47 
 

 

  

 

Figure 2.1 Overview of AA-ALIGNER. Sample genotypes or common variants are used to 

create a custom reference genome (1). Sequence reads are filtered to remove low quality reads 

(2) and aligned to the custom reference using GSNAP including alternate alleles (3). Alignments 

are filtered further to increase alignment quality (4) and used to detect sites of allelic imbalance 

(5, binomial test) and identify peaks (6). Allelic imbalance is tested at heterozygous sites 

included in the customized reference genome and at predicted heterozygous sites, identified 

based on a minimum number of mapped reads containing each of two alleles. If desired, 

predicted heterozygous sites can be used to update the custom reference and be included in a 

second alignment repeating steps 3-6. 
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Figure 2.2 False positive imbalance sites have more significant p-values. Boxplot of P-

values at sites of allelic imbalance using complete (left), and partial (middle) genotypes and 

common variants (right). For the complete genotype alignment, P-values are further subdivided 

by inclusion in partial genotypes and common variants. For partial genotypes and common 

variant alignments, all P-values are displayed in addition to being divided into inclusion during 

alignment and predicted from the alignment, and then further divided into whether or not the 

sites was predicted using complete genotypes (false positive vs true positive). Subdivided 

groups with significant differences in P-value distributions (Mann Whitney U test; P<.01 and 

P<.001) are indicated.  
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Figure 2.3 Read length influences sequence alignment and allelic imbalance detection at 

heterozygous sites. (A) Alignment statistics for alignments of CREB1 ChIP-seq data, and 

when using different (B) read lengths and (C) sequence depths, plotted as percent of the 50 bp 

statistics. (D) Histogram of the number of reads containing the underrepresented allele at sites 

with significant imbalance(binomial P<.01, uncorrected) with 2 or more reads containing each 

allele. Vertical dashed line indicates the minimum of 5 or more reads containing each allele. 
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Figure 2.4 Correlation of alignment statistics and number of imbalances detected. The 

number of sites of allelic imbalance in thirteen ChIP-seq and one DNase-seq dataset compared 

to the (A) total number of reads aligned; (B) number of reads aligned to heterozygous sites; (C) 

total number of bases aligned (read length x total reads aligned); the percent of genome with 

greater than (D) 1X and (E) 10X coverage; (F) the number of heterozygous sites identified; (G) 

the average read depth at bases with 1X or more coverage; and (H) the ratio of sites with 10X 

coverage to 1X coverage. Pearson correlation R2 values for each statistic and number of allelic 

imbalances are displayed for all data and only ChIP-seq data. 
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Figure 2.5 Validation of allelic imbalance detected at GWAS loci and other predicted 

sites 
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Figure 2.5 Validation of allelic imbalance detected at GWAS loci and other predicted 

sites. (A) We detected significant allelic imbalance (binomial P<0.01) in CREB1 ChIP-seq 

sequence reads at variants at five disease- and trait-associated loci. (B) At rs2382818, 

sequence reads that failed to align when only single alleles were considered (top) were 

correctly aligned in an allele-aware alignment (bottom). The increase in aligned reads 

allowed for the detection of a CREB1 peak (black box) and allelic imbalance at the variant for 

which more reads were aligned containing the T allele than the A allele were aligned. Total 

sequence signal is displayed and reads are shaded based which allele they contain. (C) We 

detected a significantly greater proportion of reads containing the C allele of rs713875 than 

the G allele. (D) EMSA using purified CREB1 and labeled probes containing each allele at 

nine sites of allelic imbalance to test for allelic differences in binding. Alleles colored blue are 

predicted to bind CREB1 more strongly than alleles colored red. Allelic differences in protein 

binding consistent with these predictions were observed for starred (*) variants. Only 

CREB1-bound probe is shown. Similar results were observed in a replicate experiment. 
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Figure 2.6  Allelic differences in binding at sites without predicted allelic imbalance. 

EMSA using purified CREB1 and labeled probes containing each allele at five sites with reads 

mapping but not significant allelic imbalance to test for allelic differences in binding. Alleles 

colored blue are the reference allele and alleles colored red are the other allele. Allelic 

differences in protein binding were detected at two sites (starred) without predicted imbalance 

but with predicted allelic differences in the presence of CREB1 motif. Only CREB1-bound probe 

is shown. 
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CHAPTER 3: ALLELIC IMBALANCE DETECTION IN QUANTITATIVE SEQUENCE DATA 
PREDICTS GENETIC EFFECTS ON PROTEIN BINDING AT LOCI ASSOCIATED WITH 

CARDIOMETABOLIC TRAITS AND DISEASES

3.1 Background 

 Complex, cardiometabolic diseases such as coronary artery disease (CAD) and type 2 

diabetes (T2D), present a major health concern worldwide. Genome-wide association studies 

(GWAS) have identified hundreds of genetic loci associated with these diseases3,4 and other 

cardiometabolic risk factors5,7–12,14–16,107. Around 93% of the variants located at GWAS loci are 

located in non-coding regions19 and likely influence the transcription of one or more nearby 

genes. Indeed, at some of these loci, experimental studies have identified specific genetic 

variants with allelic differences in DNA-protein interactions, enhancer activity, and/or transcript 

levels of nearby genes22. For example, rs12740374, a variant associated with low-density 

lipoprotein cholesterol (LDL-C) plasma levels has been show to influence SORT1 expression 

through allelic differences in C/EBPB protein binding23. Likewise, the T2D risk allele of 

rs11603334 has been shown to disrupt binding of PAX family proteins and increase 

transcription of the ARAP1 promoter31 and rs11257655, located in another T2D-associated 

locus near CDC123/CAMK1D, demonstrates allelic differences in FOXA1 and FOXA2 binding 

and enhancer activity27. 

 Quantitative sequence data, such as ChIP-seq and DNase-seq, can identify regions 

actively regulating gene transcription and, more specifically, the location of DNA-protein binding 

sites across the genome108. Finding overlap between these regions and GWAS variants 

identifies the variants likely influencing the regulation of nearby genes. While multiple variants at 

GWAS loci can be located in regulatory regions, not all of these variants demonstrate allelic 

differences in protein binding and enhancer activity. For example, two variants near ARAP1, 



    

55 
 

 

rs11603334 and rs1552224, are located in regions with regulatory evidence, but only 

rs11603334 has experimental evidence of allelic differences in protein binding and enhancer 

activity31. Quantitative sequence data can also detect specific variants with allelic differences in 

protein binding that potentially influence the transcript levels of nearby genes and/or 

cardiometabolic phenotypes. Similar numbers of sequence reads originating from heterozygous 

sites, are expected to contain each allele. Enrichment of one allele in quantitative sequence 

data, or allelic imbalance, at heterozygous sites can indicate allelic differences in protein binding 

or chromatin accessibility. We have shown in Chapter 2 that allelic imbalance detection in ChIP-

seq data identifies sites with experimental evidence of allelic differences in protein binding, 

including sites located at GWAS loci. 

 Two major limitations of allelic imbalance detection are reference mapping biases 

introduced during sequence alignment72, and the necessity of sample genotype data to identify 

and correct for these biases to accurately identify sites of allelic imbalance. We have previously 

described, our pipeline, AA-ALIGNER109, that uses an allele-aware aligner, GSNAP70, to remove 

mapping biases and identify sites of allelic imbalance. We have shown that AA-ALIGNER can 

accurately identify allelic imbalance using limited or no genotype information (Chapter 2). 

Additionally, we have shown that imbalance prediction accuracy is much greater at established 

heterozygous sites in the reference genome, than sites predicted to be heterozygous in the 

ChIP-seq or DNase-seq data. Likewise, when heterozygous sites are not known, imbalances 

are more accurately predicted at common variants (MAF>0.05) than rare variants. 

 Using AA-ALIGNER, we have identified sites of allelic imbalance in samples from three 

tissues with documented relevance to cardiometabolic phenotypes: liver110, pancreatic islets111, 

and adipose112. We report correlations between data characteristics and the number of 

imbalances detected and describe biological insights gained from imbalance detection. Using 

linkage disequilibrium (LD), we report allelic imbalances that are located at expression 
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quantitative trait loci (eQTLs) identified in liver113,114, adipose115, and islet116 samples and/or 

cardiometabolic phenotype-associated loci21. Finally, we describe experimental evidence of 

allelic differences in protein binding and/or enhancer activity for variants associated with four 

cardiometabolic phenotype, highlighting the utility of using the allelic imbalance sites to 

understand gene transcription regulation at these and other loci.   

 

3.2 Results 

3.2.1 Allelic imbalance detection in quantitative sequence data from cardiometabolic-

relevant tissues 

We predicted allelic differences in protein binding by detecting allelic imbalance in 

quantitative sequence data. Using AA-ALIGNER, we aligned sequence reads from and detected 

allelic imbalance in 117 publicly available ChIP-seq and DNase-seq datasets from a liver cell 

line (HepG2), primary human pancreatic islets from 12 individuals, and two adipose cell lines 

(hASC and SGBS).  Together, these ChIP-seq experiments captured the binding sites of 72 

proteins in one or more samples.   After combining replicate datasets into a single experiment, 

i.e. ChIP-seq datasets for the same protein from the same sample, we tested for allelic 

imbalance at heterozygous sites in a total of 90 ChIP-seq experiments and 1 DNase-seq 

experiment. (Table 3.1) We detected significant allelic imbalance at 22,414 heterozygous sites 

(see Appendix 1 for subset) across the genome (uncorrected binomial P<.01), with evidence of 

allelic imbalance detected in more than one experiment at 6,338 (28%) of these sites (Table 

3.1). At a majority of these sites (98%), imbalance was detected for multiple transcription factors 

and/or DNase hypersensitivity in a single tissue. A small percentage of sites (2%) were 

imbalanced for the same or different experiments in multiple tissues.   
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3.2.2 Combining replicate datasets with low imbalance concordance increased the 

number of sites of allelic imbalance identified 

For increased power to detect imbalances, we combined replicated datasets into one 

experiment before detecting imbalance. To examine concordance between replicate datasets, 

we compared the sites of allelic imbalance detected after combining datasets to sites identified 

in each individual dataset (Figure 3.1). Combining replicates identified, on average, 52% more 

sites of imbalance, suggesting that allelic imbalance detection is influenced directly by 

sequencing depth. After combining replicates, 19% of imbalances originally identified in 

individual replicates were no longer significant. When looking across individual replicates only a 

small percentage (median 14%) of imbalance sites was detected in more than one replicate. 

This low concordance between replicates could be influenced by sequencing depth of individual 

replicates, but is also likely influenced in part by variation in experimental protocols used to 

generate each replicate.   

 

3.2.3 Percent of genome with 8X coverage is highly correlated with the number of 

imbalances detected 

Focusing on datasets from HepG2, we further investigated the relationship between the 

number of allelic imbalance sites detected and characteristics of the sequence data, such as 

sequencing depth. We found a modest correlation between sequencing depth and the number 

of imbalances detected, as suggested by the combined replicate results (0.53 ≤ Pearson r2 ≤ 

0.59; Figure 3.2A-C). When examining genomic coverage, we found little correlation between 

the percent of the genome with at least one read mapped, (1X coverage) and imbalance 

detection (Pearson r2=0.33; Figure 3.2D), but a very high correlation between the percent of the 

genome with 8 or more reads mapped (8X coverage) and imbalance detection (Pearson r2 

=0.91; Figure 3.2E). Sites with 8 or more reads mapping have the minimum signal intensity 
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required to detect significant imbalance at heterozygous sites (Figure 3.2F).  Metrics 

characterizing combinations of sequencing depth, 1X coverage and/or 8X coverage (0.70 ≤ 

Pearson r2 ≤ 0.76; Figure 3.2G-H) were more correlated with imbalance detection than 

sequencing depth alone, but less correlated than 8X coverage alone.  Correlation values were 

similar when looking at all datasets and only ChIP-seq datasets, suggesting the DNase-seq and 

ChIP-seq data are influenced similarly by these characteristics. 

 

3.2.4 Changing the allele present in the reference does not change the alignment 

 We expect that in the absence of reference mapping bias, around 50% of reads at 

heterozygous site should contain the reference allele. Likewise, we expect that a similar number 

of imbalanced sites to have reference allele enrichment as non-reference allele enrichment. 

Large proportions of reads containing the reference allele suggest a greater number of sites 

with reference allele enrichment and could indicate the presence of false positives introduced by 

reference mapping biases. We looked for evidence of this in our data by testing for a correlation 

between the proportion of reads containing the reference allele at heterozygous sites and the 

number of imbalances detected. We found little correlation between the number of imbalances 

detected and the number of reads containing the reference allele (Pearson r2=0.27; Figure 

3.2I), although one dataset had a higher proportion of reads containing the reference allele than 

the others (Figure 3.2I, green diamond). Over 54% of these CEBP/B ChIP-seq reads that 

mapped to heterozygous sites contained the reference allele, compared to the median of 50% 

over all datasets.  

Increased mapping of reads containing the reference allele could be the result of i) 

reference mapping biases or ii) other unknown experimental or biological factors. To rule out 

reference mapping biases, we realigned the data to a complement reference genome in which 

the base at each heterozygous site is changed from the reference to the non-reference allele.  
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For this analysis, we only changed the reference at sites identified as heterozygous in HepG2 

using a genotyping array and imputation to the 1000 Genomes reference panel (see Methods). 

For comparison, we similarly aligned two other ChIP-seq datasets with 51% of reads containing 

the reference allele. For all three datasets, mapping reads to the complement genome produced 

the same alignment and had no effect on imbalance detection, indicating that AA-Aligner had 

successfully removed reference mapping biases (Table 3.2) and that other experimental and 

biological factors are likely responsible for the enrichment of reads containing the reference 

allele. 

 

3.2.5 The major allele is commonly enriched at sites of allelic imbalance 

Like reads mapping to heterozygous sites, we observed greater number of allelic 

imbalance sites (55.4%) with reference allele enrichment than non-reference allele enrichment 

in the HepG2 experiments. At 74% of these imbalanced sites the reference allele is also, the 

major, or more common, allele (allele frequency >0.5; 1000 Genome EUR) and we 

hypothesized that the increased reference allele enrichment is a function of major allele 

enrichment. Comparing the number of sites with major allele enrichment to a binomial 

distribution we found that major allele is significantly enriched (55.6% of sites) at more sites than 

expected by chance (P=1.8x10-97) . 

 

3.2.6 Allelic imbalance sites are in the same region as predicted binding motifs for 

imbalanced proteins 

We have detected allelic imbalance at sites identified as heterozygous using genotyping 

arrays and imputation and sites predicted to be heterozygous because sequence reads from 

ChIP-seq and DNase-seq contain more than one allele. These heterozygous sites identified 
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only in the sequence data may be real variants that not correctly identified by imputation 

because they are rare or unique to the sequenced individual. We have shown previously that 

imbalance detection is more accurate at the heterozygous sites identified using imputation than 

these sites predicted from the sequence data. As such, we created a high confidence set of 

imbalanced sites containing only allelic imbalances found in HepG2 data at heterozygous sites 

identified by imputation. Using protein binding motifs identified using ChIP-seq data from the 

ENCODE project117, we searched for evidence of direct protein binding to these heterozygous 

sites. Using FIMO94 and available motifs, we identified the genomic locations of protein binding 

motifs (P<1.0x10-4) for a subset (50/61) of all the proteins imbalanced in HepG2. Of sites with 

evidence of imbalance for these proteins, 80% were within 500 bp of and 15% were located 

within a predicted binding site for an imbalanced protein (Figure 3.3A), suggesting that allelic 

imbalance is often detected for proteins binding proximal to but not at the heterozygous sites.  

 

3.2.7 Presence of allelic imbalance in one protein of established protein-protein pairs is 

associated with presences of imbalance in the second protein  

We combined these high-confidence imbalance sites with heterozygous sites that have 

reads mapping but no suggestive evidence of allelic imbalance (8 or more reads mapped per 

experiment and imbalance P>0.5) to create a curated set of heterozygous sites with mapped 

reads. Of the 75,941 heterozygous sites in our curated set, 19,523 have significant imbalance 

(P≤0.01) in at least one experiment, and the remaining 56,418 have no evidence of imbalance 

(P≥0.5). We used this curated set to investigate the relationship between the imbalance 

statuses of proteins with reads mapping to the same site. 

 We hypothesize that because of interactions between proteins, the imbalance status 

(imbalanced or not imbalanced) of proteins with at least 8 reads mapping to heterozygous sites 

and a binding motif at those sites (motif protein) can influence the imbalance status of other 
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proteins with reads 8 or more reads to the same site. We tested this hypothesis by identifying all 

heterozygous sites from our curated list that have evidence of a motif protein. For each site, we 

used the imbalance status of this motif protein and each of the other mapped proteins to classify 

each protein pair at that site into one of four categories—(i) both proteins were imbalanced; (ii) 

only the motif protein was imbalanced; (iii) only the other protein was imbalanced; and (iv) 

neither protein was imbalanced. Using a Fisher’s exact test we found a statistical association 

(Bonferroni corrected for 1,892 tests; P<2.6x10-5) between the imbalance status of the two 

proteins in 15 protein-protein pairs (Figure 3.3B).   

In our test, two of the three motif protein-other protein pairs with the most significant 

associations involved both CTCF and Rad21 (CTCF-Rad21 P=2.8x10-9, Rad21-CTCF 

P=2.6x10-8), suggesting that when CTCF and RAD21 co-localize to the same region the 

imbalance status of one protein influences the other. This observation is supported by work 

demonstrating that CTCF recruits the Rad21-containing cohesin complex to DNase 

hypersensitivity sites118.  Although not reaching our threshold for significance, we also detected 

suggestive evidence that a relationship exists between CTCF and Smc3 (P=4.8x10-4), another 

cohesin subunit. 

 

3.2.8 Allelic imbalance in DNase-seq data coincides with allelic imbalance in ChIP-seq 

data at a subset of allelic imbalance sites 

 With our curated set of heterozygous sites, we next evaluated our ability to identify 

significant imbalance in ChIP-seq data using DNase-seq data. While reads from one or more 

ChIP-seq experiments mapped to 85% of sites with DNase-seq reads, DNase-seq reads only 

mapped to 11% of sites with ChIP-seq reads mapping (Figure 3.3C). Focusing only on sites 

with allelic imbalance, imbalance was detected in one or more ChIP-seq experiments at 71% of 

sites with allelic imbalance in DNase-seq reads, but imbalance was detected in DNase-seq 
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reads at only 6% of sites with imbalance in ChIP-seq experiments (Figure 3.4D). These data 

suggest that DNase-seq data frequently identifies sites of allelic imbalance in ChIP-seq data, 

does not comprehensively identify allelic imbalance in protein binding across the genome. 

These results are likely a function of the sequencing depth and broad signal dispersion of 

DNase-seq data, and we expect that increased sequencing depth would increase the ability of 

DNase-seq data to detect additional sites that are also imbalanced in the ChIP-seq data. 

 

3.2.9 Allelic imbalances at published eQTL loci 

 We searched for evidence of allelic imbalance at eQTL loci identified in in liver113,114, 

adipose115, and pancreatic islet116 samples. We considered an imbalanced site to be located at 

an eQTL locus if it was in linkage disequilibrium (LD; r2>=.7; 1000 Genomes EUR) with any of 

the 33,959 reported eQTL variants (P<=1x10-5).  Of the 22,414 sites with allelic imbalance, 167 

were located at loci with evidence of an eQTL, suggesting that differential protein binding may 

influence gene transcription at these loci (Table 3.3, Appendix 2).  

We identified two sites of allelic imbalance at eQTL loci that also have evidence of an 

association with cardiometabolic diseases. At rs12091564, we detected enrichment of the C 

allele over the T allele in multiple factors in HepG2 (CREB1, MYBL2, NR2F2, and TBP). This 

variant also has reported associations with NOTCH2NL transcription in islets116 (P=2.7x10-6) 

and coronary artery disease risk119 (risk allele C; P=2.0x10-7). At rs13356762, we detected 

enrichment of the G allele over the T allele in TAF1 reads from HepG2 cells. This variant is also 

associated with C5orf35 in islets116 (P=2.5x10-8) and type 2 diabetes risk119 (risk allele A; 

P=4.0x10-6). At this same locus, rs185220 (G allele enrichment over A allele) is also associated 

with C5orf35 expression in islets but fell just below our LD threshold (r2 = 0.68) with the type 2 

diabetes-associated variant (Table 3.3, Appendix 2, Appendix 3). 
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3.2.10 Allelic imbalances at cardiometabolic phenotype-associated loci 

 We expanded our search outside of eQTL loci and looked for evidence of allelic 

imbalance at loci associated with cardiometabolic traits and disease (Appendix 4).  We 

detected allelic imbalance at 199 of the 66,513 variants located at cardiometabolic genome-

wide association loci reported in the NHGRI catalog (LD r2>=.7; genome-wide significance 

P<=5x10-8) (Appendix 3). Of these sites, 5 were located at coronary artery disease-associated 

loci, 11 at type 2 diabetes loci, and 47 at loci associated with lipid levels (HDL-C, LDL-C, 

triglycerides, and total cholesterol) (Table 3.4, Table 3.5). Of note, we detected allelic 

imbalance at two sites, rs6713419 and rs10184004, located near COBLL1 and GRB14, and in 

LD with variants associated with both type 2 diabetes risk and triglyceride levels. Evidence of 

allelic imbalance at this and other GWAS loci suggest that differential protein binding at 

imbalanced sites is contributing to cardiometabolic disease risk and trait measurements. 

 

3.2.11 Experimental conformation of allelic differences in protein binding and enhancer 

activity at imbalanced sites  

 Four of the imbalanced sites located at GWAS loci also have experimental evidence 

demonstrating allelic differences in protein binding and/or enhancer activity (Figure 3.4A). At 

rs4969182 near PGS1, we detected enrichment of the A allele in data for 6 proteins including 

FOXA1 and FOXA2. Experimentally, this same allele shows increased binding of FOXA1 and 

FOXA2 to the A allele, as well as increased enhancer activity33. Likewise at rs4846913, near 

GALNT2, we predicted allelic imbalance in 5 datasets and the enriched allele demonstrated 

increased protein binding to C/EBPb and enhancer activity120. The enriched allele at 

rs62102718 near PEPD, also has experimentally validated allelic differences in protein 

binding121.  
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Finally, we tested rs6813195 for allelic differences in enhancer activity in MIN6, mouse 

insulinoma, cells using a dual luciferase assay and observed increase enhancer activity for the 

allele predicted to have increased binding of FOXA2 in human islets (Figure 3.4B). Together 

these experimental data highlight the utility of using allelic imbalance detection to predict allelic 

differences in protein binding and transcriptional activity at cardiometabolic phenotype-

associated loci. 

3.3 Discussion 

Allelic imbalance detection in quantitative sequence data is a powerful tool for 

understanding genetic effects on the regulation of gene transcription. We used AA-ALIGNER to 

detect allelic imbalance in ChIP-seq and DNase-seq data generated in cell lines and primary 

cells from tissues playing a role in cardiometabolic phenotypes. Imbalance detection in these 

samples has provided not only biological insights into the regulation of gene transcription at 

specific cardiometabolic GWAS loci, but also more general insights into protein binding at 

imbalanced sites. 

 We found evidence of allelic imbalance at hundreds of loci associated with 

cardiometabolic traits and diseases. While these imbalanced sites may be located at GWAS loci 

by chance, it is likely that many of them are playing an active role in regulating the transcription 

of nearby genes and influencing the associated phenotype. For example, LD data suggests that 

at two variants near GRB14, rs6713419 and rs10184004, the alleles predicted to have 

increased MAFK binding are on the same haplotype as the alleles associated with both 

increased triglyceride levels and type 2 diabetes risk. This effect is likely mediated by changes 

in gene transcription, and GBR14, which binds to the insulin receptor and negatively regulates 

insulin signaling122, is a strong candidate target. Differential protein binding could influence 

GRB14 transcription and ultimately insulin signaling, although experimental validation is needed 

to confirm differential protein binding and GRB14 transcription. Allelic differences in enhancer 
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activity have been experimentally observed, however, at three other sites with allelic imbalance, 

and we are confident that future experimental testing will produce similar evidence for additional 

imbalanced sites. As the GRB14 locus demonstrates, predicted imbalances can provide a 

starting hypothesis for these experiments and expedite experimental exploration of gene 

transcription regulation at GWAS loci. 

 In addition to GWAS loci, we also found allelic imbalance at sites associated with gene 

expression. One variant with allelic imbalance, rs12091564 is associated with allelic differences 

in NOTCH2NL transcription in islets as well as coronary artery disease risk. The Notch signaling 

plays a role in cardiovascular disease123, making it plausible that differential regulations of 

NOTCH2NL by rs12091564 influences coronary artery disease risk. Two other imbalance sites, 

rs13356762 and rs185220 are associated with C5orf35 expression and T2D. This gene 

encodes SETD9 and although it is unclear what role this protein might play in T2D risk, our 

allelic imbalance results provide a candidate variant to test for differences in regulatory activity. 

We have additionally identified allelic imbalance at eQTLs outside of GWAS loci that may not be 

immediately applicable in understanding the genetic effects on cardiometabolic phenotypes, but 

could be important for understanding genetic effects on gene transcription in general.       

 In addition to providing candidate regulatory variants for experimental study, our 

analyses have provided us with some insights into the mechanics of protein binding at sites of 

allelic imbalance. First, we observed enrichment of reads containing the major allele at more 

imbalanced sites than expected by chance, suggesting that variants promoting increased 

protein binding may be evolutionarily favored, or conversely, variants disrupting binding 

disfavored. Second, we have used allelic imbalance to perform a preliminary exploration of the 

binding relationship of proteins co-localized to the same heterozygous site. We found evidence 

of an association between the presence of imbalance in CTCF and cohesin subunits Rad21 and 

SMC. This finding is supported by other work demonstrating CTCF, Rad21, and SMC co-
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localization in HepG2 cells124 and a direct interaction between CTCF and Rad21118 . While our 

analysis offers preliminary evidence of direct binding relationships between proteins, it is 

important to note that it may be limited by many factors such as accuracy of binding motif 

locations, sequencing depth, and ChIP-seq data availability. 

 Data availability is one of the greatest limiting factors of imbalance detection. Our 

analyses were particularly limited by the small number of ChIP-seq samples generated in 

pancreatic islets and adipose tissue. It is likely that in these tissues we were unable to detect 

allelic imbalance at many sites influencing gene transcription at cardiometabolic GWAS loci. We 

were limited further because allelic imbalance detection can only be done at heterozygous sites. 

Even with the abundance of data from a liver cell line, we failed to detect allelic imbalance at 

sites with documented allelic differences in protein binding in liver because these sites are 

homozygous in HepG2 cells23,27,30. Despite this limitation, allelic imbalance detection is very 

useful even in only a single dataset.  Analyzing quantitative sequence data from more than one 

individuals would help to overcome this limitation, but analyzing large numbers of ChIP-seq 

datasets in multiple individuals can be resource prohibitive. 

 DNase-seq data can identify the binding sites of many transcription factors in a single 

assay and is an attractive option for identifying protein binding sites in a population of 

individuals125. While we detected allelic imbalance in ChIP-seq data at a majority of sites 

imbalanced in DNase-seq data, we only predicted a small fraction of sites imbalanced in ChIP-

seq data using DNase-seq data. DNase-seq has a more disperse signal than most ChIP-seq 

data and requires a much deeper sequencing depth to achieve the same signal intensity found 

in ChIP-seq data with fewer reads. As signal intensity was highly correlated with imbalance 

detection, it is likely that with greater sequencing depth DNase-seq data would be able to 

identify a greater proportion of ChIP-seq imbalances. Protein binding to DNA creates a localized 

site of protection from DNase-seq reads, or footprints125. Reduced DNase-seq read coverage in 
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footprints further limits imbalance detection in DNase-seq data at heterozygous sites directly 

bound by protein. Additionally, the number of cells required to generate adequate sequencing 

depth with DNase-seq can be prohibitive when using a limited number of primary cells. ATAC-

seq, similar to DNase-seq, requires fewer cells and may reduce this limitation, but further study 

is needed to assess the efficiency and accuracy of allelic imbalance in that data. 

 We have limited our analyses to ChIP-seq and DNase-seq data generated in a single 

liver cell line, pancreatic islet samples from 12 individuals, and two adipose cell lines. Additional 

protein ChIP-seq and DNase-seq data exists for other liver and pancreatic cell lines as well as 

primary cells and samples from these tissues. Additionally, RNA-seq, FAIRE-seq and histone 

modification ChIP-seq are also available for samples from these and other samples related to 

cardiometabolic phenotypes. As we expand allelic imbalance identification into this additional 

data, we expect to find additional evidence of allelic imbalance at cardiometabolic phenotype-

associated loci and gain further insight into transcriptional activity at these loci. 

  

3.4 Conclusion 

 In conclusion, we have identified allelic imbalance in ChIP-seq and DNase-seq data at 

thousands of genomic sites. These imbalances, which predict allelic differences in protein 

binding were identified in cultures of cell lines or primary cells from liver, pancreas, and adipose 

tissues and can provide direct insight into gene transcription regulation at cardiometabolic 

phenotype-associated loci. The hundreds of allelic imbalance sites we have identified at eQTL 

and/or GWAS loci may influence gene transcription at these loci and are prime candidates for 

future experimental analyses. We have documented allelic imbalance at sites for which allelic 

differences in protein binding and/or enhancer activity have been experimentally observed, 

including novel evidence of allelic differences in enhancer activity of at rs6813195. This study 

provides not only thousands of candidate regulatory sites with predicted allelic differences in 
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protein binding, but also examples of the biological insights into transcription that can be gained 

from examining these sites.  

 

3.5 Methods 

3.5.1 Genotype imputation 

Genotypes for HepG2, generated by the HudsonAlpha Institute of Biotechnology using 

the Illumina Human-1MDuo BeadChip array, were download from the UCSC genome browser41. 

We imputed autosomal genotypes for HepG2 and 52 other samples from the ENCODE project 

using MaCH-Admix84 with default parameter settings and the reference panel from the 1000 

Genomes Project Phase I version 3 (2012-03-14 release). Chromosome X genotype data was 

first pre-phased using MaCH101 with options --states 500 and --rounds 400 and then imputed 

using minimac102 with options --state 10 and --rounds 10. Imputation quality Rsq was used to 

filter variants post imputation as previously reported103. 

3.5.2 Sequence mapping and imbalance detection in quantitative sequence data 

ChIP-seq and DNase-seq data from the ENCODE consortium40 was downloaded from 

the UCSC genome browser41 and data from other sources was obtained from the short read 

archive (SRA)69 . Sequence reads were filtered and aligned, the alignments processed, and 

allelic imbalance detected using AA-ALIGNER as previously described, but with a few 

modifications. Before alignment we filtered sequences using TagDust126 and the following 

parameters `-q –f 0.001 -s` to remove known adapter sequences. Rather than using 

MarkDuplicates (Picard Tools127) to reduce PCR artifacts, we only align the 5 reads with highest 

quality when a datasets contains more than 5 reads with same sequence.  

Sequences from primary islets samples, hASC, and SGBS were aligned to a major allele 

reference sequence created by changing bases of hg19 at common variants to match the major 
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allele. (1000 Genomes EUR MAF>.05).  Data from HepG2 cells were aligned to a HepG2-

specific reference genome created by changing each base in the major allele reference to 

match the allele with the highest predicted dosage at imputed variants. 

 

3.5.3 Identifying motif occurrences 

We searched for occurrences of transcription factor binding motifs previously identified 

using ChIP-seq data117 within the regions ±500 bp  of sites of allelic imbalance. We looked for 

motif occurrences in two sets of sequences, one containing the reference allele and the other 

containing the non-reference allele, using the motif scanner FIMO94 with the parameters `--max-

strand –max-stored-scores 1000000 –no-qvalue`. 

 

3.5.4 Cell Culture 

Mouse derived insulinoma MIN6 cells were cultured in DMEM (Sigma), supplemented 

with 10% FBS, 1 mM sodium pyruvate, 0.1 mM β-mercaptoethanol and maintained at 37°C with 

5% CO2. 

 

3.5.5 Generation of luciferase reporter constructs, transient DNA transfection and 

luciferase reporter assays 

To test the allele specific transcriptional activity, we PCR-amplified a 201 bp fragment 

(chr4: 153520425-153520625) surrounding the SNP rs6813195 (Forward primer: 

GGGAGAGGAAGCAAGTAAACAAG, reverse primer: CAGGCAATCTGTCCACCTC) from DNA 

of individuals homozygous for both major and minor alleles. Restriction sites for KpnI and XhoI 

were added to primers during amplification, and the resulting PCR products were digested with 

KpnI and XhoI and cloned in both orientations into the multiple cloning sites of the minimal 
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promoter-containing firefly luciferase reporter vector pGL4.23 (Promega, Madison, WI). 

Fragments are designated as ‘forward’ or ‘reverse’ based on their orientation with respect to the 

genome.  Three to six independent clones for each allele for each' orientation were isolated,  

Approximately 200,000 MIN6 cells per well were seeded in 24-well plates. At 80% 

confluency, cells were co-transfected with luciferase constructs (250 ng per well) and Renilla 

control reporter vector (phRL-TK, Promega) (80 ng per well) using Lipofectamine LTX 

(Invitrogen). Transfected cells were incubated at 37°C with 5% CO2 for 48 hours then lysed with 

passive lysis buffer (Promega), and luciferase activity was measured using the Dual-luciferase 

assay system (Promega).  To control for transfection efficiency, raw values for firefly luciferase 

activity were divided by raw Renilla luciferase activity values, and fold change was calculated as 

normalized luciferase values divided by pGL4.23 minimal promoter empty vector control values. 

Data are reported as the fold change in mean (± SE) relative luciferase activity per allele. A two-

sided t-test was used to compare luciferase activity between alleles.  
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Table 3.1 Summary of Detected Allelic Imbalances 

 
Samples by Tissue Type 

  All Samples Liver Pancreatic Islets Adipose 

Samples 15 
 

1 12 2 

Total Experiments 91 
 

70 17 4 

ChIP-seq datasets 90 69 17 4 

DNase-seq datasets 1 1 0 0 

Sites with allelic imbalancea 22,414 
 

21,308 1,074 75 

Sites with imbalance in  >= 1 experimenta 6,338 
  

6,292 157 21 

A sample is a cell line or primary cell isolated from a single individual. DNase-seq datasets from 
the same sample or ChIP-seq datasets for the same protein from the same sample are 
represented as a single experiment. aFor some sites allelic imbalance was detected in samples 
from more than one tissue classification 
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Table 3.2 Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA) 

  

C/EBPB   CREB1   TAF1 

Standard Complementa    Standard Complementa    Standard Complementa  

Reads mapped uniquely 34,806,038 34,806,038   48,939,432 48,939,435   23,565,876 23,565,876 

Reads at heterozygous sites 833,781 833,781 
 

1,613,584 1,613,587 
 

1,197,696 1,186,891 

        Reference allele 457,433 376,348 
 

822,922 790,665 
 

312,267 288,331 

        Non-reference allele 376,348 457,433 
 

790,662 822,922 
 

288,331 312,267 

Allelic Imbalance Sites Identifiedb 778 778 
 

1204 1204 
 

310 310 

        Reference allele 418 360 
 

695 509 
 

187 123 

        Non-reference allele 360 418   509 695   123 187 

aAlignment reference contained the non-reference allele of heterozygous sites identified by imputation bImbalances at known 
heterozygous sites (binomial p-value<.01) 
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Table 3.3 Site of allelic imbalance with published evidence of eQTL (P<1.0x10-10 ) 

Imbalanced 
Variant Position 

Enriched 
Allele Imbalanced Protein(s) Other Allele eQTL Genes 

rs1494813 chr1:45957290 C (L) MXI1 T (I) CCDC163P116 

rs12127787 chr1:89458761 C (L) CREB1,USF1b, USF2b, YY1 T (I) GBP3116 

rs61844237 chr1:245133662 G (L) DNASE C (I) EFCAB2116 

rs1554612 chr2:48827497 C (L) CTCF,FOXA2,RAD21 T (A) STON1115 

rs2070063 chr2:64862055 A (L) MAFK G (A) SERTAD2115 

rs2364723 chr2:178126546 C (L) MBD4 G (L) NFE2L2114 

rs9841194 chr3:125635739 T (L) POL2 C (I) LOC100125556116 

rs7661077 chr4:7219889 C (L) C/EBPB T (L) SORCS2114 

rs10030238 chr4:141808805 A (L) HNF4G G (A) RNF150115 

rs2227426 chr4:155493171 G (L) POL2 A (L) C9orf66114 

rs3195676 chr5:34008100 C (L) BHLHE40, MAX,TAF1 T (A) AMACR115 

rs185220 chr5:56205357 G (L) DNASE A (I) C5orf35116 

rs3132555a chr6:31082910 G (L) RAD21 C (I) CDSN116 

rs3094209a chr6:31089982 G (L) C/EBPB A (I) CDSN116 

rs9271092 chr6:32576296 A (L) RAD21 G (I) HLA-DRB1116 

rs9271093  chr6:32576341 G (L) CTCF A (I) HLA-DRB1, HLA-DRA, 
HLA-DRB5116 

rs9271094 chr6:32576347 G (L) CTCF C (I) HLA-DRB1116 

rs9271096 chr6:32576426 A (L) CTCF G (I) HLA-DRB1116 

rs539298 chr6:160770360 G (L)  BHLHE40,C/EBPB,CREB1,DNASE,ELF1, 
HNF4A, HNF4G, JUND,MAX,MYBL2,NFIC, 
NR2F2,P300, POL2,RAD21 

A (L) SLC22A3113 

rs8200 chr7:75696606 G (L) POL2 C (L) AKs022137114 

rs6985299 chr8:71613079 T (L) MAX C (I) XK92116 

rs11985375 chr8:71613472 G (L) CREB1,MAX A (I) XK92116 

rs17141322 chr10:17604700 A (I) PDX1 C (I) ST8SIA6116 

rs9787897 chr11:74659302 T (L) FOXA2 A (I) XRRA1116 

rs567956 chr11:74659779 C (L) POL2 T (I) XRRA1116 

rs2165163 chr11:74660143 C (L) DNASE,MAX G (I) XRRA1116 

rs933462 chr12:9103665 G (L) HDAC2 T (A) KLRG1115 

rs9925556 chr16:2880105 T (L) FOXA2,DNASE C (L) ZG16B114 

rs1981760 chr16:50723074 C (L) EZH2 T (L) CARD15114 

rs16949649 chr17:49230308 T (L) C/EBPB C (A) NME1115 

rs2598414 chr17:74067099 C (L) BHLHE40 T (A) SRP68115 

rs2376585 chr17:76417883 T (L) CEBPA,CTCF,DNASE,FOXA1, 
FOXA1,MAX,NR2F2, ZBTB33,ZEB1 

C (A) DNAH17115 

rs8101689 chr19:30185697 A (L) HDAC2 G (A) C19orf12115 

rs1343703 chr19:49955155 G (I) FOXA2 (L) ARID3Ab C (L) NOP17114 

rs562954 chr20:48092076 G (L) CEPBP A (L) AK055386,KCNB1114 

rs4828057 chrX:100006043 A (I) MAFB C (A) SYTL4115 

Variants with allelic imbalance and a reported association with gene expression (P<1x10-10) are shown.  aVariant is in perfect LD 
(r2=1) with the eQTL variant rs3130981 bProtein is enriched for the other allele rather than enriched allele. Allelic imbalance and 
eQTLs were identified in (A) adipose tissue, (I) pancreatic islets, or (L) liver tissues  
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Table 3.4 Sites of allelic imbalance located at cardiometabolic disease-associated loci 

  
Allelic Imbalance 

 
Disease Association 

Locus Imbalanced Variant Position 
Enriched 

Allele Imbalanced Protein(s) 
Other 
Allele 

 
Disease Reported Varianta LD r2b Couplingc 

Risk 
Allele

MIA3 rs4846770 chr1:222795569 G (L)CEBPD C   CAD rs17465637128,129 0.95 G,C C 

HCG27 rs6921948 chr6:31171257 A (I)FOXA2 C   CAD rs3869109130 0.73 C,G G 

YP17A1,CNNM2,NT5C2 
chr10:104692633 chr10:104692633 A (L)CEBPA C   CAD rs12413409128,131,1320.94 C,G G 

chr10:104952499 chr10:104952499 C (L)DNASE T  CAD rs12413409128,131,1320.94 C,G G 

ADAMTS7 rs11856536 chr15:79094325 A (L)HDAC2 G   CAD rs3825807128 0.98 A,A A 

RBMS1,ITGB8 
rs6706545 chr2:161181478 A (L)C/EBPB, FOXA2 T 

 
T2D rs7593730133 0.98 A,C C 

rs10929982 chr2:161236277 T (L)C/EBPB C   T2D rs7593730 0.77 T,C C 

COBLL1,GRB14 
rs6713419 chr2:165508300 T (L)MAFK C 

 
T2D rs3923113134,135 0.97 T,A A 

rs10184004 chr2:165508389 C (L)MAFK T   T2D rs3923113 0.85 C,A A 

TMEM154 rs6813195 chr4:153520475 C (I)FOXA2 T   T2D rs6813195135 - - C 

CDC123,CAMK1D rs34428576 chr10:12281111 A 
(L)CEBPA,C/EBPB,CEBPD,CREB1,DNASE,
FOXA1, HDAC2,HNF4A, JUND, MAX, 
NFIC,NR2F2,P300,RAD21, ZBTB7A 

G 
 
T2D rs12779790136 0.72 A,G G 

HHEX rs4933736 chr10:94471595 T (L)FOXA2 C   T2D rs5015480136–140 0.74 C,C C 

FITM2,RHDML,HNF4A 
rs4812816 chr20:42930872 C (L)MAZ A 

 
T2D rs6017317141 0.74 A,G G 

rs6065723 chr20:42956922 C (L)MAFF,MAFK T   T2D rs6017317 0.77 T,G G 

SL30A8 rs35859536 chr8:118191475 C (I)PDX1 T  T2D rs3802177135,139 0.99 C,G G 

GLIS3 rs57884925 chr9:4285119 C (L)MAFK G  T2D rs7041847135,141 0.93 G,A A 

aFor associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shown. b Linkage Disequilibrium r2 was calculated for EUR 
samples in 1000 Genomes Phase1v3 cAllele coupling calculated in 1000 Genomes EUR samples written as: imbalanced variant allele, reported variant allele. (I) for islets and (L) for 
liver indicates the tissue containing the imbalance. CAD, coronary artery disease; T2D, type 2 diabetes 
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Table 3.5 Sites of allelic imbalance located at lipid trait-associated loci  

 
Allelic Imbalance 

 
Trait Association 

Locus 
Imbalanced 
Variant Position 

Enriched 
Allele Imbalanced Factor(s) 

Other 
Allele   Trait Reported Varianta LD r2bAllele Couplingc 

Inc. 
Alleled

LDLRAP1, TMEM57 rs9438904 chr1:25756860 T (L)YY1 C 
  LDL-C rs12027135107,142 0.98 C,T T 

  TC rs12027135107,142 0.98 C,T T 

ANGPTL1 

rs17361251 chr1:178520577 A 
(L)CEBPA,C/EBPB,CEBPD,FOXA1,FOXA2,HNF4A,HNF4G 
,MAX,NFIC,NR2F2,P300,SP1,ZBTB7A 

C   HDL-C rs4650994107 1.00 C,G G 

rs17276513 chr1:178520604 A 
(L)CEBPA,C/EBPB,DNASE,FOXA1,FOXA2,HDAC2,HNF4A, 
HNF4G,MAX,NR2F2,SP1,P300,ZBTB7A 

T 
 
HDL-C rs4650994 0.99 T,G G 

rs17276527 chr1:178520680 A 
(L)CREB1,DNASE,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G, 
NFIC,MAX,P300,SP1,ZEB1 

G   HDL-C rs4650994 1.00 G,G G 

GALNT2 rs4846913 chr1:230294715 A (I)MAFB (L)CEBPA,C/EBPB,CEBPD,NR2F2 C 
  HDL-C rs4846914107,142–144 1.00 A,A A 

  TG rs4846914107,142,143 1.00 C,G G 

IRF2BP2 

rs526936 chr1:234852204 A (I)FOXA2 (L)POL2e G 
  LDL-C rs514230107,142 0.92 A,T T 

 
TC rs514230107,142 0.92 A,T T 

rs556107 chr1:234853059 C (L)HEY1 T  
LDL-C rs514230 0.93 T,T T 

  TC rs514230 0.93 T,T T 

APOB rs1367117 chr2:21263900 G (L)MAX,HEY1 A 
  LDL-C rs1367117107,142 - - A 

  TC rs1367117107,142 - - A 

APOB 

rs312983 chr2:21378580 A (L)FOXA1 C 
 
LDL-C rs562338145,146 0.72 C,G G 

rs312984 chr2:21378778 C (L)ARID3A,FOXA1,FOXA2,HNF4A,MAX,NFIC, RAD21,ZEB1 T 
 
LDL-C rs562338 0.73 T,G G 

rs312985 chr2:21378805 A 
(L)CREB1,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G,MYBL2, 
NRSF,P300,SP1,ZEB1 

G 
 
LDL-C rs562338 0.73 G,G G 

rs1652418 chr2:21388456 T (L)MAZ,SMC3,RAD21 C 
 
LDL-C rs562338 0.72 C,G G 

rs544039 chr2:21398985 C (L)CTCF,RAD21 A   LDL-C rs562338 0.71 A,G G 

GCKR 

rs1260326 chr2:27730940 C (L)CTCF T  
TC rs1260326107,142,143,147,148 - - T 

 
TG rs1260326107,142 - - T 

rs780095 chr2:27741105 G (L)FOXA1 A  
TC rs1260326 0.81 A,T T 

 
TG rs1260333 0.98 A,T T 

rs780094 chr2:27741237 C (L)C/EBPB,FOXA2,MAFK*,MAX,NR2F2,NRSF,ZEB1 T  
TC rs1260326 0.91 T,T T 

  TG rs780094143,146,149,150 - - T 

EHBP1 

rs2136737 chr2:62969310 G (L)FOXA2,HNF4A* C 
 
LDL-C rs2710642107 0.77 G,A A 

rs1553832 chr2:63013515 G (L)BHLHE40 C 
 
LDL-C rs2710642 0.80 C,A A 

rs56373728 chr2:63095792 G (L)POL2 A 
 
LDL-C rs2710642 0.93 A,A A 

rs2710642 chr2:63149557 G (L)POL2 A   LDL-C rs2710642 - - A 

aFor associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shls 2-own. c Linkage Disequilibrium r2 was calculated for EUR 
samples in 1000 Genomes Phase1v3 bAllele coupling calculated in 1000 Genomes EUR samples written as Imbalanced variant allele, Reported variant allele. cThe increasing  allele is 
associated with higher trait levels. dInc. allele is associated with increase in trait measurement. dIndicates factor is enriched for other allele rather than enriched allele. (I) for islets and (L) for 
liver indicates the tissue containing the imbalance. HDL-C, high density lipoprotien cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol 
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Table 3.5 cont'd. Sites of allelic imbalance located at lipid trait-associated loci 

s Allelic Imbalance 
 

Trait Association 

Locus 
Imbalanced 
Variant Position 

Enriched 
Allele Imbalanced Factor(s) 

Other 
Allele  Trait Reported Varianta LD r2b Allele Couplingc 

Inc. 
Alleled 

COBLL1, GRB4 
rs6713419 chr2:165508300 T (L)MAFK C 

 
TG rs10195252142 0.87 T,T T 

rs10184004 chr2:165508389 C (L)MAFK T   TG rs10195252 0.99 C,T T 

FN1 

rs1250240 chr2:216295014 G (L)POL2 A 
 
LDL-C rs1250229107 0.84 G,C C 

rs1250241 chr2:216295312 A (L)POL2 T 
 
LDL-C rs1250229 0.84 A,C C 

rs1250244 chr2:216297796 C (L)FOXA2,POL2 G 
 
LDL-C rs1250229 0.86 C,C C 

rs1250258 chr2:216300185 T (L)NFIC,POL2 C 
 
LDL-C rs1250229 0.93 T,C C 

rs1250259 chr2:216300482 A (L)NR2F2 T   LDL-C rs1250229 0.94 A,C C 

GSK3B rs6800622 chr3:119580678 C (L)MAFK A   HDL-C rs6805251107 0.98 A,T T 

PP1R3B rs6984305 chr8:9178268 T (L)CTCF A 

  HDL-C rs9987289107,142 0.80 T,G G 

 
LDL-C rs9987289107,142 0.80 T,G G 

  TC rs9987289107,142 0.80 G,T G 

ABCA1 rs4149269 chr9:107647121 G (L)POL2 A  HDL-C rs4149268 0.98 A,C C 

ZNF259,APOA1, 
APOC3,APOA4, 
APOA5,BUD13 

rs180351 chr11:116607641 T (L)CTCF C   TG rs603446151 0.91 C,C C 

UBASH3B rs11218752 chr11:122552600 C (L)CTCF T 
  HDL-C rs7941030107,142 0.81 T,C C 

  TC rs7941030107,142 0.81 T,C C 

CETP rs12720926 chr16:56998918 A (L)DNASE G   HDL-C rs1532624150,152 0.94 G,A A 

DPEP3 

rs7199443 chr16:67841129 G (L)MAX T 
 
HDL-C rs255049153 0.72 G,G G 

rs7196789 chr16:67927124 C (L)YY1 T 
 
HDL-C rs255049 0.77 T,G G 

rs1134760 chr16:67964203 C (L)POL2 T 
 
HDL-C rs255049 0.81 C,G G 

rs20549 chr16:67969930 G (L)POL2 A 
 
HDL-C rs255049 0.81 G,G G 

rs1109166 chr16:67977382 C 
(L)CREB1, HNF4A,HNF4G,FOXA1, 
FOXA2,NR2F2 

T   HDL-C rs255049 0.84 C,G G 

MPP3 

rs17742347 chr17:41846468 C (L)POL2 T 
 
TG rs8077889107 0.90 T,C C 

rs17674998 chr17:41879544 A (L)ZBTB33 G 
 
TG rs8077889 0.99 G,C C 

rs9901676 chr17:41911818 T (L)EZH2 C   TG rs8077889 0.92 C,C C 

PGS1 
rs4969182 chr17:76393030 T (L)C/EBPB,FOXA1,FOXA2,MAX,MYBL2,NR2F2 C 

 
HDL-C rs4129767107,142 0.96 C,A A 

rs4969183 chr17:76393372 A (L)BHLHE40 G   HDL-C rs4129767 0.96 G,A A 

INSR 
rs10410204 chr19:7224350 C (L)FOXA1,FOXA2 T 

 
TG rs7248104107 0.98 T,G G 

rs7248104 chr19:7224431 A (L)FOXA1,FOXA2,MAX,NR2F2,YY1 G   TG rs7248104 - - G 

PEPD rs62102718 chr19:33891013 A (L)HNF4G T 
  HDL-C rs731839107 0.76 A,A A 

  TG rs731839107 0.76 A,A A 

SPTLC3 rs1321940 chr20:12959885 G (L)FOXA1 A   LDL-C rs364585107 0.99 G,G G 
aFor associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shown. c Linkage Disequilibrium r2 was calculated for EUR samples 
in 1000 Genomes Phase1v3 bAllele coupling calculated in 1000 Genomes EUR samples written as Imbalanced variant allele, Reported variant allele. cThe increasing  allele is associated with 
higher trait levels. dInc. allele is associated with increase in trait measurement. dIndicates factor is enriched for other allele rather than enriched allele. (I) for islets and (L) for liver indicates the 
tissue containing the imbalance. HDL-C, high density lipoprotien cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol 
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Figure 3.1 Concordance between replicate datasets. Concordance between allelic 

imbalance detection in combined and individual replicate ChIP-seq datasets for the same 

protein from the same sample or DNase-seq datasets from the same sample. n represents the 

number of sites of allelic imbalance in the individual and replicate datasets. 
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Figure 3.2 Percent of genome with 8X coverage is correlated with imbalance detection. . 

Measures of sequencing depth (A-C), genomic coverage (D-F), and combinations of 

measurements from both groups (G-I) are plotted vs the number of sites of allelic imbalance 

detected. Each circle represents on dataset. Pearson correlation R2 values when considering 

only ChIP-seq datasets and all datasets are displayed. 
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Figure 3.3 Co-occupancy of binding motifs and reads from DNAse-seq and ChIP-seq experiments at allelic imbalance sites. 
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Figure 3.3 Co-occupancy of binding motifs and reads from DNAse-seq and ChIP-seq experiments at allelic imbalance sites. 

(A) Transcription factor binding motifs were located near allelic imbalance sites and the distance to the nearest motif of an imbalance 

factor was calculated. (B) Comparing the imbalance status (imbalanced or not) of proteins with reads mapping to and a binding motif 

overlapping heterozygous sites (row) and other factors with reads mapping to the same site (column), we tested for association 

between the imbalance status of the two proteins. Cells are shaded by Fisher exact test P-values and pairs reaching significance at a 

Bonferroni correct P-value (P<2.6x10-5) are outlined in red.  Co-occurrence of DNase-seq and ChIP-seq reads at (C) heterozygous 

sites or (D) imbalanced sites.  
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Figure 3.4. Experimental evidence of allelic differences in protein binding and transcriptional activity at sites of allelic 

imbalance.  
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Figure 3.4 Experimental evidence of allelic differences in protein binding and transcriptional activity at sites of allelic 

imbalance. (A) At cardiometabolic GWAS loci, we detected allelic imbalance at four sites for which the enriched allele has been 

observed to have increased binding in an electrophoretic mobility shift assay (EMSA) and/or increased enhancer activity in a dual 

luciferase assay. Proteins with evidence of a supershift are listed. (B) The C allele of rs6813195 displayed increased enhancer 

activity over the T allele in both the forward and reverse orientations in MIN6 cells. Error bars represent the standard error of mean 

across 3-6 biological replicates per allele in each orientaion. *P<.05 **P<.001 
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CHAPTER 4: CONCLUSIONS

4.1 Introduction 

In this work, I have described the detection of allelic imbalances in quantitative sequence 

data and demonstrated how these analyses provide insights about the regulation of gene 

transcription, particularly at cardiometabolic phenotype-associated loci.  Here I provide a brief 

summary highlighting important findings and discuss the impact of these findings on 

cardiometabolic disease risk factor research, as well as research focused on other complex 

phenotypes. I discuss the advantages and limitations of allelic imbalance detection, and the role 

of imbalance detection in population studies utilizing quantitative sequence data.   

 

4.2 Overview of findings 

Chapter 2 describes our allele-aware alignment pipeline, AA-ALIGNER, and evaluated 

the impact of common analytical and experimental decisions on pipeline performance. Most 

importantly, we demonstrated that under a variety of conditions and in multiple datasets, AA-

ALIGNER removes mapping biases and accurately identifies allelic imbalance even when 

limited or no sample genotypes are available. We also reported that allelic imbalance detection 

is much more accurate at sites identified as heterozygous during imputation than at sites 

predicted to be heterozygous solely from the sequence data. Surprisingly, this increased 

accuracy was observed when we predicted heterozygous sites at common variants compared to 

uncommon or rare variants. The accuracy of imbalance detection at imputed heterozygous sites 

and common sites remained high across a variety of parameters such as read length, number of 
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mismatches allowed, number of reads required to be predicted as heterozygous, and imputation 

quality Rsq threshold. These results allowed us to expand, with confidence, allelic imbalance 

detection in samples directly relevant to cardiometabolic phenotypes, but lacking complete 

genotype information. 

Chapter 3 discusses imbalance detection in samples from a liver cell line, primary 

pancreatic islet cells, and two adipose cell lines. In 91 experiments from these samples, we 

detected over 22,000 sites of allelic imbalance, and 29% of these sites have evidence of 

imbalance in multiple experiments. Only considering sites with evidence of imbalance for a 

protein with binding motifs available, we found evidence of a binding motif within 500 bp of the 

imbalanced site at 80% of sites, suggesting that these imbalanced factors are binding at or near 

sites of allelic imbalance. A subset of sites of allelic imbalance are located at an eQTL locus, a 

cardiometabolic phenotype-associated locus, or in a few cases both, suggesting that differential 

protein binding at these sites may be influencing gene transcription and the studied phenotype. 

We document experimental data that confirms these connections at a handful of sites, 

supporting the hypothesis that imbalanced sites at other loci are strong candidates for 

experimental testing.   

 

4.3 Immediate impact on genetic studies of cardiometabolic phenotypes 

Our findings have immediate implications on current research on the genetic factors 

underlying cardiometabolic diseases and traits. Primarily, our imbalance detections have 

identified over 300 sites of allelic imbalance at GWAS loci, effectively identifying the same 

number of candidate variants to test experimentally for allelic differences in protein binding, 

enhancer activity, and gene transcription. At the HHEX locus, previously studied in our lab, 

initial efforts to identify candidate variants based on their location in open chromatin regions and 

transcription factor ChIP-seq peaks failed to identify variants with allelic differences in protein 
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binding and enhancer activity. One variant, rs4933736, was not selected as a candidate in this 

initial survey, but has evidence of allelic imbalance in our data and is now a top candidate at this 

locus.  

Second, we have identified over 160 sites of imbalance with a reported association to 

gene expression, but not cardiometabolic phenotypes. Though an association has not been 

reported in the GWAS catalog, some of the genes at these eQTLs may play a role in 

cardiometabolic phenotypes, making these sites of allelic imbalance good candidates for 

experimental testing. For example, rs2364723 which is associated with NFE2L2 transcript levels 

has also been reported to be associated with triglyceride levels154 in a study not included in the 

GWAS catalog. While it is not feasible to experimentally test over 400 candidate variants at 

eQTL or GWAS loci in the short term, allelic imbalance detection has reduce the number of 

candidate variants compared to the thousands of variants in LD at cardiometabolic GWAS loci. 

Chapter 3 describes allelic imbalance in only a subset of samples (liver, pancreatic 

islets, and adipose) that are related to cardiovascular disease. Quantitative sequence data has 

also been generated in other tissues such as skeletal muscle, brain and heart with known 

connections to cardiometabolic traits and diseases.  Identifying allelic imbalance in these other 

samples would immediately provide additional candidate variants and further insight into gene 

transcription at GWAS loci. 

 

4.4 Long-term impact on researching genetic effects on cardiometabolic phenotypes 

While these sites of allelic imbalance provide an immediate contribution to research 

studying previously identified cardiometabolic GWAS loci, they will continue to provide new 

contributions in the future. As novel eQTL and GWAS loci are discovered, sites of allelic 

imbalance offer compelling candidate variants to test for experimental testing and have the 
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potential to greatly expedite experimental characterization of these loci. Additionally, as more 

examples of predicted allelic imbalance are discovered at sites demonstrating experimentally 

observed allelic differences in regulatory activity, allelic imbalance detection may begin to play a 

more prominent role in genetic studies. I anticipate that greater effort will be placed in 

generating quantitative sequence data in additional samples with relevance to cardiometabolic 

traits and diseases. One further use of this strategy would apply to quantitative sequence data 

generated from tissue samples from individuals with genotype and phenotype data. Integrating 

these data can identify genotype-phenotype associations that are mediated by gene regulatory 

regions, an idea discussed briefly near the end of this chapter. 

 

4.5 Studying complex, non-cardiometabolic phenotypes 

We have focused our analyses on cardiometabolic traits and disease, but sites of allelic 

imbalance also play an important role in studying other phenotypes. As shown by the 

experimental data at Crohn’s disease loci presented in Chapter 2, allelic imbalance sites occur 

at GWAS loci for and in tissues relevant to other traits and diseases. A wealth of data exists for 

samples relevant to other complex traits and disease. In particular, quantitative sequence data 

has been generated in bulk for the lymphoblastoid cell line (LCL) GM12878, and data has also 

been generated for more than 70 other LCLs. As we have shown, allelic imbalance sites 

detected in data generated from these samples are particularly useful in studying diseases 

related to the immune system and inflammation.  

  

4.6 Advantages of allelic imbalance detection 

A common method of regulatory variant prediction is to identify variants overlapping 

peaks from one or more quantitative sequence datasets. While powerful in identifying variants in 
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regulatory regions this method does not identify which of these variants demonstrate allelic 

differences in regulatory activity. Allelic imbalance detection can predicts allelic differences in 

regulatory activity, specifically protein-DNA binding, providing strong evidence of allelic effects 

on regulation. Allelic imbalance detection directly interrogates genetic effects on quantitative 

sequence data providing strong evidence of potential allelic differences in regulatory activity 

than the simple overlap analyses.     

A second, common method of identifying variants with allelic differences in 

transcriptional regulation is to identify eQTLs. These analyses identify groups of variant in LD 

with each other that are associated with gene expression, but in most cases cannot distinguish 

which variant(s) in the group are responsible for the association. Together with allelic imbalance 

detection, which has the advantage of predicting which variants have evidence of allelic 

differences in protein binding, these analyses provide evidence of the effects of individual 

variants on gene transcription regulation. Imbalance detection in ChIP-seq or DNase-seq data 

cannot directly detect allelic differences in gene regulation.  However, if non-coding variants and 

coding variants are in linkage disequilibrium with each other, allelic imbalance can be detected 

in ChIP-seq or DNase-seq and RNA-seq from the same sample to infer a direct relationship 

between imbalances in regulatory regions and the transcript levels of genes. This combined 

analysis can be powerful, especially in the absence of other eQTL evidence, to detect allelic 

differences in gene transcription regulation in as little as two quantitative sequence datasets 

from a single sample. An advantage of this approach is that allelic imbalance detection is able to 

detect subtle differences between alleles that eQTL analyses do not have the power to detect 

due to variability between samples. 
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4.7 Limitations of allelic imbalance detection 

Along with these advantages, there are multiple limitations in allelic imbalance detection 

analyses. While allelic imbalance can indicate allelic effects on gene regulatory regions, they do 

not necessarily indicate allelic differences in gene transcript levels. Compensatory mechanisms 

can correct for imbalances and maintain gene transcript levels. Cell homeostasis limits the 

application of allelic imbalance detection in identifying genetic variants influencing complex 

diseases and traits through the regulation of gene transcription. 

Another current limitation is the availability of sufficient quantitative sequence data. 

While many datasets exist for some samples such as GM12878 and HepG2, other samples, 

particular primary cells and tissues, have quantitative sequence data available for very few 

transcription factors and histone modifications. This limitation is especially apparent in Chapter 

3, because very little data exists for pancreatic islets and adipose tissue likely due to limited 

availability of human pancreatic islet cells and difficulty performing some quantitative 

sequencing assays on adipose cells. Additionally, the choice of protein or histone modifications 

examined in ChIP-seq experiments varies widely between samples and depends in large part 

on the preferences of investigators generating the data. 

The largest limitation of imbalance detection is directly connected to its advantages. 

Allelic imbalance can only be detected at heterozygous sites. While allelic imbalance can predict 

differences in DNA-protein binding using data from a single individual, the analysis is limited to 

finding imbalance at heterozygous sites in that individual. In Chapter 3, we used predominately 

data from HepG2 to study cardiometabolic disease and traits due to the large number of 

transcription factors studied in that one cell line. As a result, we failed to detect imbalances at 

many variants that have published evidence of allelic differences in protein binding because 

they are homozygous in HepG2. To overcome this limitation, quantitative sequence data must 
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be generated from multiple people with different genetic backgrounds. As the sample size 

increases a greater proportion of variants are able to be tested for imbalance, but at some point 

the population becomes more akin to that used for eQTL analyses and allelic imbalance 

detection is not as advantageous as at low sample sizes55,56. 

Overall, allelic imbalance detection is limited by the number of experiments required to 

be performed in individuals with diverse genetic backgrounds. Perfectly comprehensive 

imbalance detection requires the generation of ChIP-seq data for each individual transcription 

factor in samples of the same tissue from a population large enough to find at least one 

individual that is heterozygous for each variant. Studying multiple tissues further increases the 

number of ChIP-seq experiments required, and generating data on this scale is currently not 

feasible. DNase-seq and ATAC-seq  can identify allelic differences in binding of multiple 

proteins reducing the number of ChIP-seq experiments requires. Our data, however, suggests 

that the sequence depth of currently available DNase-seq experiments is not deep enough for 

comprehensive detection of imbalances in ChIP-seq data. Further study is needed to determine 

if deeper sequencing of DNase-seq data can truly allow for more comprehensive imbalance 

detection and limit the number of ChIP-seq experiments required. 

 

4.8 Allelic imbalance and population studies of quantitative sequence data 

Like phenotype data or gene expression data, associations can be detected between 

genotypes and non-RNA-seq quantitative sequence data if the data is available for enough 

individuals in a study population. For example, associations between genotype and DNase 

hypersensitivity (ds-QTL) 55, histone modification56, and Pol2 binding56 have been reported using 

expression and genotype data from LCLs. Additionally, joint ds-QTL and eQTL analyses in 

these samples have identified genetic variants that simultaneously affect DNase hypersensitivity 

and gene expression 55. There is no phenotype information for the LCL samples, preventing any 
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testing for phenotypic associations. In studies like this, allele-aware alignment of the sequence 

data is critical, because reference mapping biases could introduce artificial associations or 

obscure real associations. AA-ALIGNER is particularly well suited for confidently removing 

these mapping biases when using imputed genotypes for study participants. 

Until quantitative sequence data exists for a large number of individuals in study 

populations, allelic imbalance detection will play an important role in understanding the genetic 

effects on gene regulation. Even in the presence of these large populations, allelic imbalance 

detection will still have the power to interrogate genetic effects on transcription regulation at the 

level of individual samples and detect subtle changes not able to be detected by association 

testing. Additionally, quantitative sequence data at heterozygous sites found in multiple 

individuals can be combined to increase overall sequencing depth and power to detect 

significant imbalance.  

In conclusion, allelic imbalance detection in quantitative sequence data is a powerful tool 

for studying genetic effects on the regulation of gene transcription at cardiometabolic 

phenotype-associated loci.  Using allelic imbalance detection, we have identified many 

candidate variants to be tested experimentally for allelic differences in protein binding, 

enchancer activity, and gene transcription regulation. As more quantitative sequence data is 

generated and analyzed, imbalance detection will continue to play an important role in 

identifying additional variants likely influencing gene transcription at cardiometabolic and other 

complex trait- and disease-associated loci. 

 

 

 



    

91 
 

 

 APPENDIX 1: Allelic imbalance sites referenced in text  

Enriched 
 

Other 
 

Variant 
Sourceb Variant Position Sample Protein/Assay Allele Reads  Allele Reads P-valuea 

rs9438904 chr1:25756860 HepG2 YY1 C 8 T 0 0.00781 imputed 

rs3795688 chr1:26560481 HepG2 CTCF A 83 C 52 0.00956 imputed 

rs1494813 chr1:45957290 HepG2 MXI1 C 8 T 0 0.00781 imputed 

rs9793263 chr1:46722389 HepG2 MAFK G 34 A 2 1.94E-08 imputed 

rs3862273 chr1:48251342 HepG2 YY1 T 9 G 0 0.00391 imputed 

rs17125090 chr1:63988904 HepG2 MXI1 A 25 G 7 0.0021 imputed 

rs17125090 chr1:63988904 HepG2 MAX A 90 G 28 8.91E-09 imputed 

rs2301054 chr1:64107028 HepG2 HDAC2 A 8 G 0 0.00781 imputed 

rs2301054 chr1:64107028 HepG2 HNF4A A 31 G 9 0.00068 imputed 

rs12021623 chr1:66153586 HepG2 HNF4G C 19 A 5 0.00661 imputed 

rs942849 chr1:84427499 HepG2 JUND G 9 A 0 0.00391 imputed 

rs11161503 chr1:85462582 HepG2 EZH2 C 8 G 0 0.00781 imputed 

rs11161505 chr1:85462665 HepG2 EZH2 T 8 G 0 0.00781 imputed 

rs2268667 chr1:85793746 HepG2 FOXA1 G 12 A 1 0.00342 imputed 

rs2177461 chr1:85861976 HepG2 ZBTB33 G 9 C 0 0.00391 imputed 

rs12127787 chr1:89458761 HepG2 USF1 T 102 C 6 1.25E-23 imputed 

rs12127787 chr1:89458761 HepG2 USF2 T 23 C 1 2.98E-06 imputed 

rs12127787 chr1:89458761 HepG2 CREB1 C 33 T 12 0.00246 imputed 

rs12127787 chr1:89458761 HepG2 YY1 C 30 T 11 0.00432 imputed 

rs10858091 chr1:109935578 HepG2 SIN3AK20 C 11 T 1 0.00635 imputed 

rs10858091 chr1:109935578 HepG2 TCF12 C 8 T 0 0.00781 imputed 

rs10858091 chr1:109935578 HepG2 HEY1 C 24 T 6 0.00143 imputed 

rs2140924 chr1:109935775 HepG2 CREB1 A 19 C 4 0.0026 imputed 

rs573491 chr1:110026891 HepG2 TAF1 T 31 G 9 0.00068 imputed 

rs2781553 chr1:110026989 HepG2 YY1 G 11 T 0 0.00098 imputed 

rs839605 chr1:120217524 HepG2 CTCF C 68 A 1 2.37E-19 imputed 

rs639761 chr1:120217558 HepG2 CTCF G 131 A 2 1.64E-36 imputed 

rs639761 chr1:120217558 HepG2 CEBPA G 8 A 0 0.00781 imputed 

rs639761 chr1:120217558 HepG2 CEBPB G 9 A 0 0.00391 imputed 

rs639761 chr1:120217558 HepG2 CREB1 G 8 A 0 0.00781 imputed 

rs639761 chr1:120217558 HepG2 RAD21 G 13 A 1 0.00183 imputed 

rs640195 chr1:120217650 HepG2 CTCF T 172 A 2 1.27E-48 imputed 

rs640195 chr1:120217650 HepG2 ARID3A T 10 A 0 0.00195 imputed 

rs640195 chr1:120217650 HepG2 CEBPB T 8 A 0 0.00781 imputed 

rs640195 chr1:120217650 HepG2 CREB1 T 8 A 0 0.00781 imputed 

rs12091564 chr1:145395604 HepG2 TBP C 303 T 145 6.60E-14 imputed 

rs12091564 chr1:145395604 HepG2 MYBL2 C 14 T 1 0.00098 imputed 

rs12091564 chr1:145395604 HepG2 CREB1 C 16 T 3 0.00443 imputed 

rs12091564 chr1:145395604 HepG2 NR2F2 C 17 T 3 0.00258 imputed 

rs6677420 chr1:150946490 HepG2 MAX A 9 G 0 0.00391 imputed 

rs6674171 chr1:154491683 HepG2 MAFF A 12 G 1 0.00342 imputed 

rs6674171 chr1:154491683 HepG2 MAFK A 33 G 8 0.00011 imputed 

rs2236869 chr1:169535196 HepG2 FOXA1 G 17 T 4 0.0072 imputed 

rs2281007 chr1:171111351 HepG2 CEBPA G 14 A 2 0.00418 imputed 

rs17361251 chr1:178520577 HepG2 FOXA2 A 34 C 0 1.16E-10 imputed 

rs17361251 chr1:178520577 HepG2 CEBPD A 8 C 0 0.00781 imputed 

rs17361251 chr1:178520577 HepG2 CEBPB A 31 C 0 9.31E-10 imputed 

rs17361251 chr1:178520577 HepG2 MAX A 14 C 1 0.00098 imputed 

rs17361251 chr1:178520577 HepG2 ZBTB7A A 11 C 1 0.00635 imputed 

rs17361251 chr1:178520577 HepG2 FOXA1 A 46 C 0 2.84E-14 imputed 

rs17361251 chr1:178520577 HepG2 NR2F2 A 11 C 0 0.00098 imputed 

rs17361251 chr1:178520577 HepG2 SP1 A 14 C 0 0.00012 imputed 

rs17361251 chr1:178520577 HepG2 NFIC A 8 C 0 0.00781 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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Sourceb Variant Position Sample Protein/Assay Allele Reads Allele Reads P-valuea 

rs17361251 chr1:178520577 HepG2 HNF4G A 33 C 0 2.33E-10 imputed 

rs17361251 chr1:178520577 HepG2 CEBPA A 22 C 0 4.77E-07 imputed 

rs17361251 chr1:178520577 HepG2 P300 A 26 C 1 4.17E-07 imputed 

rs17361251 chr1:178520577 HepG2 HNF4A A 77 C 0 1.32E-23 imputed 

rs17276513 chr1:178520604 HepG2 FOXA2 A 44 T 0 1.14E-13 imputed 

rs17276513 chr1:178520604 HepG2 CEBPB A 31 T 0 9.31E-10 imputed 

rs17276513 chr1:178520604 HepG2 MAX A 13 T 0 0.00024 imputed 

rs17276513 chr1:178520604 HepG2 DNASE A 13 T 0 0.00024 imputed 

rs17276513 chr1:178520604 HepG2 ZBTB7A A 8 T 0 0.00781 imputed 

rs17276513 chr1:178520604 HepG2 FOXA1 A 42 T 0 4.55E-13 imputed 

rs17276513 chr1:178520604 HepG2 NR2F2 A 11 T 0 0.00098 imputed 

rs17276513 chr1:178520604 HepG2 SP1 A 16 T 0 3.05E-05 imputed 

rs17276513 chr1:178520604 HepG2 HDAC2 A 12 T 0 0.00049 imputed 

rs17276513 chr1:178520604 HepG2 CEBPA A 9 T 0 0.00391 imputed 

rs17276513 chr1:178520604 HepG2 P300 A 26 T 1 4.17E-07 imputed 

rs17276513 chr1:178520604 HepG2 HNF4G A 21 T 0 9.54E-07 imputed 

rs17276513 chr1:178520604 HepG2 HNF4A A 81 T 0 8.27E-25 imputed 

rs17276527 chr1:178520680 HepG2 FOXA2 A 53 G 0 2.22E-16 imputed 

\rs17276527 chr1:178520680 HepG2 MAX A 12 G 0 0.00049 imputed 

rs17276527 chr1:178520680 HepG2 DNASE A 13 G 0 0.00024 imputed 

rs17276527 chr1:178520680 HepG2 FOXA1 A 61 G 1 2.73E-17 imputed 

rs17276527 chr1:178520680 HepG2 ZEB1 A 12 G 0 0.00049 imputed 

rs17276527 chr1:178520680 HepG2 SP1 A 12 G 0 0.00049 imputed 

rs17276527 chr1:178520680 HepG2 NFIC A 9 G 0 0.00391 imputed 

rs17276527 chr1:178520680 HepG2 HDAC2 A 9 G 0 0.00391 imputed 

rs17276527 chr1:178520680 HepG2 P300 A 23 G 0 2.38E-07 imputed 

rs17276527 chr1:178520680 HepG2 HNF4G A 9 G 0 0.00391 imputed 

rs17276527 chr1:178520680 HepG2 CREB1 A 12 G 0 0.00049 imputed 

rs17276527 chr1:178520680 HepG2 HNF4A A 59 G 0 3.47E-18 imputed 

rs2488400 chr1:197702225 HepG2 FOXA2 G 9 C 0 0.00391 imputed 

rs2201601 chr1:213031448 HepG2 YY1 G 27 C 9 0.00393 imputed 

rs11120067 chr1:213094557 HepG2 CTCF A 22 G 4 0.00053 imputed 

rs9970073 chr1:214156165 HepG2 MAX A 57 G 1 4.09E-16 imputed 

rs340879 chr1:214156514 HepG2 RAD21 T 11 C 0 0.00098 imputed 

rs4846770 chr1:222795569 HepG2 CEBPD G 10 C 0 0.00195 imputed 

rs12077115 chr1:225924711 HepG2 CEBPA A 9 G 0 0.00391 imputed 

rs12040438 chr1:229718258 HepG2 BHLHE40 T 9 C 0 0.00391 imputed 

rs4846913 chr1:230294715 HepG2 CEBPD A 11 C 1 0.00635 imputed 

rs4846913 chr1:230294715 HepG2 CEBPB A 57 C 21 5.57E-05 imputed 

rs4846913 chr1:230294715 HepG2 NR2F2 A 35 C 15 0.0066 imputed 

rs4846913 chr1:230294715 HepG2 CEBPA A 17 C 2 0.00073 imputed 

rs4846913 chr1:230294715 HI81 MAFB C 21 A 5 0.00249 common 

rs526936 chr1:234852204 HI32 FOXA2 A 38 G 17 0.00646 common 

rs526936 chr1:234852204 HepG2 POL2 G 48 A 22 0.00255 imputed 

rs556107 chr1:234853059 HepG2 HEY1 C 22 T 6 0.00372 imputed 

rs2066381 chr1:240995427 HI32 PDX1 A 24 G 6 0.00143 common 

rs61844237 chr1:245133662 HepG2 DNASE G 80 C 43 0.00108 imputed 

rs2291426 chr1:245134114 HepG2 CREB1 A 23 C 6 0.00232 imputed 

rs4020081 chr1:245209045 HepG2 FOXA1 C 104 T 62 0.00139 imputed 

rs4020081 chr1:245209045 HepG2 P300 C 15 T 2 0.00235 imputed 

rs4020081 chr1:245209045 HepG2 CREB1 C 28 T 3 4.65E-06 imputed 

rs4020082 chr1:245209134 HepG2 FOXA1 A 58 G 25 0.00038 imputed 

rs6759670 chr2:950291 HepG2 RAD21 C 18 A 1 7.63E-05 imputed 

rs34122754 chr2:9884076 HepG2 CTCF C 8 G 0 0.00781 imputed 

rs4669449 chr2:9884205 HepG2 EZH2 G 8 A 0 0.00781 imputed 

rs4669888 chr2:12980514 HepG2 CEBPB G 14 A 1 0.00098 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs4669888 chr2:12980514 HepG2 CEBPA G 8 A 0 0.00781 imputed 

rs633808 chr2:20957592 HepG2 TCF12 G 8 T 0 0.00781 imputed 

rs1367117 chr2:21263900 HepG2 MAX G 8 A 0 0.00781 imputed 

rs1367117 chr2:21263900 HepG2 HEY1 G 29 A 10 0.00338 imputed 

rs312983 chr2:21378580 HepG2 FOXA1 A 22 C 3 0.00016 imputed 

rs312984 chr2:21378778 HepG2 FOXA2 C 62 T 33 0.00383 imputed 

rs312984 chr2:21378778 HepG2 MAX C 9 T 0 0.00391 imputed 

rs312984 chr2:21378778 HepG2 RAD21 C 12 T 0 0.00049 imputed 

rs312984 chr2:21378778 HepG2 FOXA1 C 174 T 71 3.72E-11 imputed 

rs312984 chr2:21378778 HepG2 ZEB1 C 15 T 3 0.00754 imputed 

rs312984 chr2:21378778 HepG2 NFIC C 24 T 6 0.00143 imputed 

rs312984 chr2:21378778 HepG2 ARID3A C 15 T 1 0.00052 imputed 

rs312984 chr2:21378778 HepG2 HNF4A C 31 T 6 4.13E-05 imputed 

rs312985 chr2:21378805 HepG2 NRSF A 10 G 0 0.00195 imputed 

rs312985 chr2:21378805 HepG2 FOXA2 A 94 G 42 9.67E-06 imputed 

rs312985 chr2:21378805 HepG2 MYBL2 A 20 G 6 0.00936 imputed 

rs312985 chr2:21378805 HepG2 FOXA1 A 224 G 99 2.80E-12 imputed 

rs312985 chr2:21378805 HepG2 ZEB1 A 15 G 2 0.00235 imputed 

rs312985 chr2:21378805 HepG2 SP1 A 29 G 3 2.56E-06 imputed 

rs312985 chr2:21378805 HepG2 HDAC2 A 23 G 7 0.00522 imputed 

rs312985 chr2:21378805 HepG2 P300 A 42 G 20 0.00715 imputed 

rs312985 chr2:21378805 HepG2 HNF4G A 20 G 3 0.00049 imputed 

rs312985 chr2:21378805 HepG2 CREB1 A 15 G 3 0.00754 imputed 

rs312985 chr2:21378805 HepG2 HNF4A A 44 G 10 3.39E-06 imputed 

rs1652418 chr2:21388456 HepG2 MAZ T 8 C 0 0.00781 imputed 

rs1652418 chr2:21388456 HepG2 RAD21 T 60 C 28 0.00085 imputed 

rs1652418 chr2:21388456 HepG2 SMC3 T 15 C 2 0.00235 imputed 

rs386643898 chr2:21398985 HepG2 CTCF C 8 A 0 0.00781 imputed 

rs386643898 chr2:21398985 HepG2 RAD21 C 21 A 2 6.60E-05 imputed 

rs7572949 chr2:24162018 HepG2 CEBPB T 12 C 0 0.00049 imputed 

rs36101491 chr2:24387532 HepG2 CTCF T 368 C 197 5.73E-13 imputed 

rs36101491 chr2:24387532 HepG2 RAD21 T 89 C 47 0.0004 imputed 

rs36101491 chr2:24387532 HepG2 ZBTB7A T 10 C 0 0.00195 imputed 

rs17046192 chr2:24461334 HepG2 ZBTB7A A 8 G 0 0.00781 imputed 

rs17046192 chr2:24461334 HepG2 FOXA1 A 40 G 15 0.00102 imputed 

rs11676939 chr2:24479057 HepG2 CEBPB C 11 T 1 0.00635 imputed 

rs72803210 chr2:24615710 HepG2 MAFK A 18 G 0 7.63E-06 imputed 

rs77421503 chr2:24625676 HepG2 MAX C 10 G 0 0.00195 imputed 

rs10460551 chr2:24627074 HepG2 HDAC2 C 8 T 0 0.00781 imputed 

rs7580081 chr2:25097072 HepG2 CEBPB C 18 G 1 7.63E-05 imputed 

rs11684202 chr2:25887558 HepG2 RAD21 G 9 A 0 0.00391 imputed 

rs2011616 chr2:27302561 HepG2 HDAC2 G 9 A 0 0.00391 imputed 

rs2580759 chr2:27432500 HepG2 CTCF G 11 T 1 0.00635 imputed 

rs11608 chr2:27435374 HepG2 YY1 G 42 A 16 0.00086 imputed 

rs1141313 chr2:27460968 HepG2 POL2 G 9 A 0 0.00391 imputed 

rs1260326 chr2:27730940 HepG2 CTCF C 9 T 0 0.00391 imputed 

rs780095 chr2:27741105 HepG2 FOXA1 G 25 A 6 0.00088 imputed 

rs780094 chr2:27741237 HepG2 NRSF C 8 T 0 0.00781 imputed 

rs780094 chr2:27741237 HepG2 FOXA2 C 24 T 5 0.00055 imputed 

rs780094 chr2:27741237 HepG2 CEBPB C 9 T 0 0.00391 imputed 

rs780094 chr2:27741237 HepG2 MAX C 16 T 2 0.00131 imputed 

rs780094 chr2:27741237 HepG2 FOXA1 C 31 T 10 0.00145 imputed 

rs780094 chr2:27741237 HepG2 ZEB1 C 12 T 1 0.00342 imputed 

rs780094 chr2:27741237 HepG2 NR2F2 C 24 T 4 0.00018 imputed 

rs780094 chr2:27741237 HepG2 MAFK T 22 C 6 0.00372 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs3749147 chr2:27851918 HepG2 MXI1 G 34 A 13 0.00309 imputed 

rs1919128 chr2:27801759 HepG2 BHLHE40 A 8 G 0 0.00781 imputed 

rs3749147 chr2:27851918 HepG2 TAF1 G 94 A 38 1.19E-06 imputed 

rs3749147 chr2:27851918 HepG2 CEBPD G 10 A 0 0.00195 imputed 

rs3749147 chr2:27851918 HepG2 MAX G 59 A 32 0.00611 imputed 

rs3749147 chr2:27851918 HepG2 ELF1 G 28 A 6 0.0002 imputed 

rs3749147 chr2:27851918 HepG2 DNASE G 35 A 10 0.00025 imputed 

rs3749147 chr2:27851918 HepG2 ZBTB7A G 13 A 1 0.00183 imputed 

rs3749147 chr2:27851918 HepG2 NR2F2 G 18 A 3 0.00149 imputed 

rs3749147 chr2:27851918 HepG2 YY1 G 133 A 86 0.00182 imputed 

rs3749147 chr2:27851918 HepG2 POL2 G 71 A 32 0.00015 imputed 

rs3749147 chr2:27851918 HepG2 GABP G 58 A 15 4.09E-07 imputed 

rs162330 chr2:38319496 HepG2 CEBPB C 14 A 2 0.00418 imputed 

rs2881327 chr2:46641955 HepG2 MAX G 17 A 3 0.00258 imputed 

rs2881327 chr2:46641955 HepG2 FOXA1 G 25 A 5 0.00032 imputed 

rs2881327 chr2:46641955 HepG2 HNF4G G 8 A 0 0.00781 imputed 

rs1554612 chr2:48827497 HepG2 CTCF C 67 T 23 3.80E-06 imputed 

rs1554612 chr2:48827497 HepG2 FOXA2 C 11 T 0 0.00098 imputed 

rs1554612 chr2:48827497 HepG2 RAD21 C 42 T 20 0.00715 imputed 

rs72800719 chr2:54280195 HepG2 CTCF G 33 C 14 0.00794 imputed 

rs10192403 chr2:54313507 HepG2 FOXA1 C 8 T 0 0.00781 imputed 

rs62165172 chr2:55736237 HepG2 FOXA2 G 10 A 0 0.00195 imputed 

rs782599 chr2:55847423 HepG2 CTCF T 31 C 11 0.00289 imputed 

rs782599 chr2:55847423 HepG2 FOXA1 T 8 C 0 0.00781 imputed 

rs2136737 chr2:62969310 HepG2 FOXA2 G 12 C 1 0.00342 imputed 

rs2136737 chr2:62969310 HepG2 HNF4A C 8 G 0 0.00781 imputed 

rs1553832 chr2:63013515 HepG2 BHLHE40 G 12 C 1 0.00342 imputed 

rs368327833 chr2:63095792 HepG2 POL2 G 9 A 0 0.00391 imputed 

rs2710642 chr2:63149557 HepG2 POL2 G 11 A 1 0.00635 imputed 

rs2070063 chr2:64862055 HepG2 MAFK A 32 G 13 0.00661 imputed 

rs35125132 chr2:65041562 HepG2 EZH2 T 8 G 0 0.00781 imputed 

rs11890701 chr2:70360457 HI32 PDX1 T 19 A 3 0.00086 common 

rs7582417 chr2:70367861 HepG2 POL2 A 14 G 0 0.00012 imputed 

rs386647116 chr2:70368391 HepG2 CEBPB A 9 G 0 0.00391 imputed 

rs11692018 chr2:70369154 HepG2 POL2 A 33 C 12 0.00246 imputed 

rs11692018 chr2:70369154 HepG2 NFIC A 12 C 0 0.00049 imputed 

rs12713688 chr2:70369503 HepG2 MXI1 G 17 C 3 0.00258 imputed 

rs12713688 chr2:70369503 HepG2 MAX G 46 C 22 0.0049 imputed 

rs12713688 chr2:70369503 HepG2 HEY1 G 17 C 4 0.0072 imputed 

rs4338986 chr2:70376574 HepG2 HEY1 C 18 A 4 0.00434 imputed 

rs10469966 chr2:73752368 HepG2 CEBPB G 9 A 0 0.00391 imputed 

rs62150376 chr2:83295262 HepG2 FOXA1 T 31 C 5 1.29E-05 imputed 

rs62150376 chr2:83295262 HepG2 HDAC2 T 14 C 1 0.00098 imputed 

rs62150376 chr2:83295262 HepG2 HNF4G T 11 C 1 0.00635 imputed 

rs2241883 chr2:88424066 HepG2 POL2 T 35 C 8 4.19E-05 imputed 

rs13431601 chr2:102873713 HepG2 EZH2 G 8 A 0 0.00781 imputed 

rs2276561 chr2:113956371 HepG2 MAX G 16 C 2 0.00131 imputed 

rs2305133 chr2:113956821 HepG2 CTCF C 129 G 76 0.00026 imputed 

rs2305133 chr2:113956821 HepG2 BHLHE40 C 9 G 0 0.00391 imputed 

rs2305133 chr2:113956821 HepG2 RAD21 C 52 G 21 0.00037 imputed 

rs931472 chr2:113969948 HepG2 DNASE C 21 T 2 6.60E-05 imputed 

rs1049137 chr2:113975110 HepG2 POL2 G 8 A 0 0.00781 imputed 

rs2289897 chr2:113977454 HepG2 CEBPB A 8 G 0 0.00781 imputed 

rs4849176 chr2:113977936 HepG2 POL2 C 16 T 3 0.00443 imputed 

rs4849178 chr2:113982608 HepG2 FOXA1 A 8 G 0 0.00781 imputed 

rs2166421 chr2:113990242 HepG2 FOXA1 C 26 T 4 5.95E-05 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs2166421 chr2:113990242 HepG2 HNF4A C 11 T 1 0.00635 imputed 

rs7421852 chr2:113990261 HepG2 FOXA1 A 20 G 6 0.00936 imputed 

rs10206269 chr2:113990393 HepG2 HNF4A A 12 C 1 0.00342 imputed 

rs4849181 chr2:113991970 HepG2 CTCF G 47 A 16 0.00012 imputed 

rs7564909 chr2:129504503 HepG2 CEBPB A 10 T 0 0.00195 imputed 

rs6758916 chr2:129531820 HepG2 MAFK T 19 A 4 0.0026 imputed 

rs1010241 chr2:135154312 HepG2 BHLHE40 A 8 C 0 0.00781 imputed 

rs62168897 chr2:135717997 HepG2 POL2 C 13 T 2 0.00739 imputed 

rs34272267 chr2:150536025 HepG2 CEBPB C 42 G 9 3.39E-06 imputed 

rs6706545 chr2:161181478 HepG2 FOXA2 A 16 T 1 0.00027 imputed 

rs6706545 chr2:161181478 HepG2 CEBPB A 9 T 0 0.00391 imputed 

rs10929982 chr2:161236277 HepG2 CEBPB T 14 C 0 0.00012 imputed 

rs73029563 chr2:165008166 HepG2 CEBPB C 8 G 0 0.00781 imputed 

rs13004226 chr2:165080678 HepG2 MAFK C 77 G 37 0.00023 imputed 

rs6713419 chr2:165508300 HepG2 MAFK T 8 C 0 0.00781 imputed 

rs10184004 chr2:165508389 HepG2 MAFK C 25 T 1 8.05E-07 imputed 

rs6754950 chr2:170630370 HepG2 ZBTB33 A 13 G 0 0.00024 imputed 

rs7579463 chr2:171253722 HepG2 CTCF A 44 C 13 4.71E-05 imputed 

rs7579463 chr2:171253722 HepG2 RAD21 A 43 C 20 0.00515 imputed 

rs2364723 chr2:178126546 HepG2 MBD4 C 8 G 0 0.00781 imputed 

rs13427277 chr2:188075497 HepG2 CTCF A 8 G 0 0.00781 imputed 

rs840601 chr2:188159887 HepG2 TCF7L2 A 9 G 0 0.00391 imputed 

rs696092 chr2:188210214 HepG2 MAFK A 42 G 17 0.00155 imputed 

rs1355521 chr2:188307747 HepG2 CEBPB G 13 A 0 0.00024 imputed 

rs10201618 chr2:188326949 HepG2 USF1 C 27 A 6 0.00032 imputed 

rs8176547 chr2:188340349 HepG2 POL2 G 12 T 1 0.00342 imputed 

rs8176547 chr2:188340349 HepG2 MAFK G 27 T 6 0.00032 imputed 

rs8176546 chr2:188340396 HepG2 POL2 T 16 C 2 0.00131 imputed 

rs8176546 chr2:188340396 HepG2 MAFK T 32 C 10 0.00094 imputed 

rs938929 chr2:198780860 HepG2 RAD21 G 9 A 0 0.00391 imputed 

rs12991600 chr2:202337236 HepG2 MAFK G 19 A 2 0.00022 imputed 

rs6745050 chr2:204691538 HepG2 MAFK T 48 C 19 0.00052 imputed 

rs6747951 chr2:206829310 HepG2 MAX G 17 C 4 0.0072 imputed 

rs6747951 chr2:206829310 HepG2 FOXA1 G 11 C 1 0.00635 imputed 

rs1250240 chr2:216295014 HepG2 POL2 G 25 A 9 0.00904 imputed 

rs1250241 chr2:216295312 HepG2 POL2 A 35 T 14 0.0038 imputed 

rs1250244 chr2:216297796 HepG2 FOXA2 C 11 G 0 0.00098 imputed 

rs1250244 chr2:216297796 HepG2 POL2 C 68 G 23 2.52E-06 imputed 

rs1250258 chr2:216300185 HepG2 POL2 T 47 C 23 0.00558 imputed 

rs1250258 chr2:216300185 HepG2 NFIC T 12 C 1 0.00342 imputed 

rs1250259 chr2:216300482 HepG2 NR2F2 A 8 T 0 0.00781 imputed 

rs10171839 chr2:219051314 HepG2 MAX G 11 A 1 0.00635 imputed 

rs13062 chr2:219260651 HepG2 CTCF A 15 C 3 0.00754 imputed 

rs13062 chr2:219260651 HepG2 MAX A 14 C 2 0.00418 imputed 

rs13062 chr2:219260651 HepG2 ZEB1 A 11 C 1 0.00635 imputed 

rs13423632 chr2:232079116 HepG2 MAX C 21 T 5 0.00249 imputed 

rs16827879 chr2:232092301 HepG2 CTCF T 64 C 34 0.00319 imputed 

rs16827879 chr2:232092301 HepG2 RAD21 T 89 C 55 0.00577 imputed 

rs4477910 chr2:234643737 HepG2 FOXA2 T 27 A 0 1.49E-08 imputed 

rs4477910 chr2:234643737 HepG2 FOXA1 T 30 A 0 1.86E-09 imputed 

rs4477910 chr2:234643737 HepG2 NR2F2 T 8 A 0 0.00781 imputed 

rs4477910 chr2:234643737 HepG2 HNF4A T 9 A 0 0.00391 imputed 

rs77438791 chr2:239035642 HepG2 MBD4 G 8 A 0 0.00781 imputed 

rs4401206 chr2:241796905 HepG2 MXI1 G 35 A 15 0.0066 imputed 

rs4401206 chr2:241796905 HepG2 USF1 G 76 A 32 2.76E-05 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs4401206 chr2:241796905 HepG2 CEBPD G 8 A 0 0.00781 imputed 

rs4401206 chr2:241796905 HepG2 MAX G 213 A 120 3.91E-07 imputed 

rs4401206 chr2:241796905 HepG2 DNASE G 66 A 29 0.00019 imputed 

rs4401206 chr2:241796905 HepG2 RAD21 G 12 A 1 0.00342 imputed 

rs4401206 chr2:241796905 HepG2 YY1 G 17 A 3 0.00258 imputed 

rs4401206 chr2:241796905 HepG2 P300 G 26 A 9 0.00599 imputed 

rs4401206 chr2:241796905 HepG2 HNF4G G 25 A 4 0.0001 imputed 

rs4401206 chr2:241796905 HepG2 CREB1 G 24 A 5 0.00055 imputed 

rs4401206 chr2:241796905 HepG2 HNF4A G 54 A 27 0.0036 imputed 

rs10933641 chr2:241813788 HepG2 MAX C 57 T 27 0.0014 imputed 

rs10933641 chr2:241813788 HepG2 DNASE C 35 T 15 0.0066 imputed 

rs10933641 chr2:241813788 HepG2 POL2 C 35 T 8 4.19E-05 imputed 

rs10206101 chr2:241835543 HepG2 ZEB1 C 60 A 13 2.31E-08 imputed 

rs10206101 chr2:241835543 HepG2 JUND C 9 A 0 0.00391 imputed 

rs10206101 chr2:241835543 HepG2 HNF4G C 8 A 0 0.00781 imputed 

rs10206101 chr2:241835543 HepG2 FOSL2 C 11 A 1 0.00635 imputed 

rs10933517 chr2:241836338 HepG2 DNASE C 16 T 1 0.00027 imputed 

rs10933517 chr2:241836338 HepG2 RAD21 C 9 T 0 0.00391 imputed 

rs4675858 chr2:241840558 HepG2 CEBPB A 8 G 0 0.00781 imputed 

rs4417704 chr2:241846573 HepG2 CTCF G 20 A 3 0.00049 imputed 

rs4417704 chr2:241846573 HepG2 MAX G 8 A 0 0.00781 imputed 

rs4417704 chr2:241846573 HepG2 RAD21 G 12 A 1 0.00342 imputed 

rs62186584 chr2:241853621 HepG2 CREB1 C 15 T 2 0.00235 imputed 

rs9653611 chr2:243006956 HepG2 EZH2 G 11 C 0 0.00098 imputed 

rs60533128 chr2:243028088 HepG2 P300 G 9 A 0 0.00391 imputed 

rs58906257 chr2:243028248 HepG2 TBP C 18 T 2 0.0004 imputed 

rs58906257 chr2:243028248 HepG2 MAX C 30 T 4 6.16E-06 imputed 

rs58906257 chr2:243028248 HepG2 DNASE C 20 T 3 0.00049 imputed 

rs58906257 chr2:243028248 HepG2 POL2 C 95 T 12 3.49E-17 imputed 

rs58906257 chr2:243028248 HepG2 SP1 C 8 T 0 0.00781 imputed 

rs58906257 chr2:243028248 HepG2 HEY1 C 28 T 8 0.00119 imputed 

rs58906257 chr2:243028248 HepG2 HDAC2 C 25 T 5 0.00032 imputed 

rs58906257 chr2:243028248 HepG2 HNF4A C 10 T 0 0.00195 imputed 

rs58906257 chr2:243028248 HepG2 MAFK C 14 T 1 0.00098 imputed 

rs57603292 chr2:243028537 HepG2 FOXA1 A 9 G 0 0.00391 imputed 

rs59191623 chr2:243028595 HepG2 RAD21 A 10 G 0 0.00195 imputed 

rs990284 chr3:104972 HepG2 FOXA2 A 18 G 2 0.0004 imputed 

rs990284 chr3:104972 HepG2 FOXA1 A 39 G 11 9.02E-05 imputed 

rs990284 chr3:104972 HepG2 P300 A 11 G 1 0.00635 imputed 

rs7640929 chr3:27513944 HepG2 CEBPA A 10 C 0 0.00195 imputed 

rs75016701 chr3:42091501 HepG2 FOXA1 G 28 A 9 0.00256 imputed 

rs78607708 chr3:42096955 HepG2 FOXA2 G 50 A 15 1.57E-05 imputed 

rs78607708 chr3:42096955 HepG2 CEBPB G 60 A 26 0.00032 imputed 

rs78607708 chr3:42096955 HepG2 FOXA1 G 53 A 15 4.12E-06 imputed 

rs78607708 chr3:42096955 HepG2 CEBPA G 42 A 13 0.00011 imputed 

rs78607708 chr3:42096955 HepG2 P300 G 23 A 4 0.00031 imputed 

rs3774750 chr3:50208406 HepG2 MAX G 13 C 2 0.00739 imputed 

rs2233474 chr3:50388607 HepG2 DNASE C 30 A 11 0.00432 imputed 

rs7639267 chr3:52568805 HepG2 HEY1 T 8 G 0 0.00781 imputed 

rs1108842 chr3:52720080 HepG2 SIN3AK20 C 25 A 7 0.0021 imputed 

rs1108842 chr3:52720080 HepG2 TAF1 C 75 A 39 0.00096 imputed 

rs1108842 chr3:52720080 HepG2 CREB1 C 91 A 58 0.00853 imputed 

rs2710323 chr3:52815905 HepG2 FOXA2 C 12 T 1 0.00342 imputed 

rs2710323 chr3:52815905 HepG2 BHLHE40 C 11 T 0 0.00098 imputed 

rs66815886 chr3:64703394 HepG2 BHLHE40 T 8 G 0 0.00781 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs6800622 chr3:119580678 HepG2 MAFK C 16 A 2 0.00131 imputed 

rs2976742 chr3:125417021 HepG2 CTCF C 23 T 0 2.38E-07 imputed 

rs12695470 chr3:125635718 HepG2 DNASE A 8 C 0 0.00781 imputed 

rs12695470 chr3:125635718 HepG2 POL2 A 9 C 0 0.00391 imputed 

rs9841194 chr3:125635739 HepG2 POL2 T 13 C 2 0.00739 imputed 

rs12497980 chr3:125636117 HepG2 MXI1 G 10 A 0 0.00195 imputed 

rs12497980 chr3:125636117 HepG2 MAX G 49 A 15 2.44E-05 imputed 

rs4377449 chr3:125642330 HepG2 USF1 G 22 A 0 4.77E-07 imputed 

rs9826071 chr3:125648165 HepG2 CTCF T 95 C 53 0.0007 imputed 

rs9826071 chr3:125648165 HepG2 RAD21 T 24 C 7 0.00333 imputed 

rs17523380 chr3:125802874 HepG2 RAD21 T 8 C 0 0.00781 imputed 

rs2939820 chr3:128127643 HepG2 CTCF G 25 A 3 2.74E-05 imputed 

rs4683799 chr3:139210258 HI87 NKX2_2 G 24 C 4 0.00018 common 

rs11714980 chr3:167452991 HepG2 ZBTB7A T 9 C 0 0.00391 imputed 

rs58575091 chr3:186545319 HepG2 CHD2 T 15 C 2 0.00235 imputed 

rs4689909 chr4:4643276 HepG2 HEY1 G 8 A 0 0.00781 imputed 

rs7661077 chr4:7219889 HepG2 CEBPB C 15 T 3 0.00754 imputed 

rs11932616 chr4:26063055 HepG2 CTCF C 59 T 1 1.06E-16 imputed 

rs11932616 chr4:26063055 HepG2 RAD21 C 20 T 0 1.91E-06 imputed 

rs78578320 chr4:68566689 HepG2 DNASE G 20 A 5 0.00408 imputed 

rs28653581 chr4:68567025 HepG2 DNASE G 89 T 49 0.00084 imputed 

rs4075927 chr4:79575058 HepG2 USF1 G 24 A 3 4.92E-05 imputed 

rs4075927 chr4:79575058 HepG2 BHLHE40 G 8 A 0 0.00781 imputed 

rs45499402 chr4:89043634 HepG2 FOXA1 G 24 C 5 0.00055 imputed 

rs6841731 chr4:89228928 HepG2 MAFK A 21 G 2 6.60E-05 imputed 

rs2869930 chr4:89242372 HepG2 FOXA2 G 14 C 1 0.00098 imputed 

rs2869930 chr4:89242372 HepG2 FOXA1 G 22 C 3 0.00016 imputed 

rs77826206 chr4:95613564 HepG2 MAFK T 8 C 0 0.00781 imputed 

rs10030238 chr4:141808805 HepG2 HNF4G A 11 G 1 0.00635 imputed 

rs6813195 chr4:153520475 HI101 FOXA2 C 33 T 13 0.00453 common 

rs2227426 chr4:155493171 HepG2 POL2 G 12 A 1 0.00342 imputed 

rs6846466 chr4:166424428 HI101 FOXA2 T 16 C 3 0.00443 common 

rs28641985 chr4:189376705 HepG2 SRF A 52 G 0 4.44E-16 imputed 

rs28641985 chr4:189376705 HepG2 FOXA2 A 20 G 0 1.91E-06 imputed 

rs28641985 chr4:189376705 HepG2 ELF1 A 29 G 0 3.73E-09 imputed 

rs28641985 chr4:189376705 HepG2 FOXA1 A 13 G 1 0.00183 imputed 

rs28641985 chr4:189376705 HepG2 POL2 A 29 G 1 5.77E-08 imputed 

rs28641985 chr4:189376705 HepG2 HEY1 A 13 G 0 0.00024 imputed 

rs28641985 chr4:189376705 HepG2 CREB1 A 8 G 0 0.00781 imputed 

rs28641985 chr4:189376705 HepG2 MAFK A 8 G 0 0.00781 imputed 

rs31490 chr5:1344458 HepG2 CEBPB A 8 G 0 0.00781 imputed 

rs835158 chr5:14873254 HepG2 CEBPB G 8 C 0 0.00781 imputed 

rs10941891 chr5:21391789 HepG2 CTCF G 38 C 0 7.28E-12 imputed 

rs10941891 chr5:21391789 HepG2 RAD21 G 24 C 0 1.19E-07 imputed 

rs10941891 chr5:21391789 HepG2 SMC3 G 9 C 0 0.00391 imputed 

rs3195676 chr5:34008100 HepG2 TAF1 C 46 T 23 0.00762 imputed 

rs3195676 chr5:34008100 HepG2 BHLHE40 C 11 T 1 0.00635 imputed 

rs3195676 chr5:34008100 HepG2 MAX C 27 T 10 0.00763 imputed 

rs13356762 chr5:56110992 HepG2 TAF1 G 20 T 6 0.00936 imputed 

rs2548663 chr5:56172778 HepG2 CEBPB G 8 A 0 0.00781 imputed 

rs185220 chr5:56205357 HepG2 DNASE G 41 A 7 6.24E-07 imputed 

rs252923 chr5:56205662 HepG2 YY1 G 9 T 0 0.00391 imputed 

rs33321 chr5:56206073 HepG2 HEY1 G 17 T 4 0.0072 imputed 

rs16876512 chr5:78407261 HepG2 TCF12 T 8 C 0 0.00781 imputed 

rs1643635 chr5:79928216 HepG2 MBD4 G 9 A 0 0.00391 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
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rs10168 chr5:79950403 HepG2 MAX C 9 T 0 0.00391 imputed 

rs10168 chr5:79950403 HepG2 DNASE C 42 T 8 1.16E-06 imputed 

rs386689494 chr5:79961675 HepG2 MAFK C 8 T 0 0.00781 imputed 

rs1677645 chr5:79964419 HepG2 CEBPB C 14 T 2 0.00418 imputed 

rs226198 chr5:81573992 HepG2 USF1 C 10 T 0 0.00195 imputed 

rs226198 chr5:81573992 HepG2 MAX C 79 T 33 1.64E-05 imputed 

rs4869419 chr5:92567539 HepG2 SRF A 8 G 0 0.00781 imputed 

rs10070197 chr5:95241868 HepG2 CEBPB C 14 T 2 0.00418 imputed 

rs1458017 chr5:95251346 HepG2 HEY1 A 11 G 1 0.00635 imputed 

rs261973 chr5:95869427 HepG2 MAFK T 11 C 1 0.00635 imputed 

rs730870 chr5:125874993 HepG2 FOXA1 G 135 A 64 5.34E-07 imputed 

rs192231 chr5:140248539 HepG2 CTCF C 42 T 8 1.16E-06 imputed 

rs192231 chr5:140248539 HepG2 RAD21 C 38 T 5 2.50E-07 imputed 

rs13160685 chr5:149822331 HepG2 CEBPB A 26 G 9 0.00599 imputed 

rs1039438 chr5:156476770 HepG2 P300 G 22 A 7 0.00813 imputed 

rs9328078 chr6:1979522 HepG2 CEBPB C 8 A 0 0.00781 imputed 

rs12195826 chr6:2565752 HepG2 FOXA2 G 24 A 6 0.00143 imputed 

rs7739320 chr6:3054146 HepG2 DNASE C 78 T 24 7.68E-08 imputed 

rs12203636 chr6:3064249 HepG2 MYBL2 A 11 G 0 0.00098 imputed 

rs12203636 chr6:3064249 HepG2 MAX A 24 G 4 0.00018 imputed 

rs12203636 chr6:3064249 HepG2 ZEB1 A 15 G 3 0.00754 imputed 

rs12203636 chr6:3064249 HepG2 POL2 A 61 G 17 5.66E-07 imputed 

rs12203636 chr6:3064249 HepG2 HEY1 A 37 G 11 0.00022 imputed 

rs12196777 chr6:3064523 HepG2 DNASE C 48 T 11 1.24E-06 imputed 

rs12665605 chr6:3067003 HepG2 POL2 G 13 A 2 0.00739 imputed 

rs12663589 chr6:3069057 HepG2 POL2 C 34 T 13 0.00309 imputed 

rs9504915 chr6:6749069 HepG2 YY1 A 13 G 2 0.00739 imputed 

rs9393818 chr6:10967918 HepG2 BHLHE40 T 8 G 0 0.00781 imputed 

rs2295602 chr6:11005842 HepG2 BHLHE40 T 8 C 0 0.00781 imputed 

rs3798713 chr6:11008622 HepG2 FOXA1 G 56 C 12 6.21E-08 imputed 

rs3798713 chr6:11008622 HepG2 HNF4A G 8 C 0 0.00781 imputed 

rs953413 chr6:11012859 HepG2 FOXA2 G 58 A 23 0.00013 imputed 

rs953413 chr6:11012859 HepG2 FOXA1 G 115 A 48 1.59E-07 imputed 

rs953413 chr6:11012859 HepG2 NR2F2 G 26 A 5 0.00019 imputed 

rs953413 chr6:11012859 HepG2 P300 G 39 A 18 0.00751 imputed 

rs56190003 chr6:11088533 HepG2 HEY1 T 17 C 2 0.00073 imputed 

rs13362715 chr6:11088630 HepG2 POL2 C 13 T 0 0.00024 imputed 

rs13362715 chr6:11088630 HepG2 HEY1 C 14 T 0 0.00012 imputed 

rs9379687 chr6:24721787 HepG2 MXI1 C 24 A 5 0.00055 imputed 

rs9379687 chr6:24721787 HepG2 BHLHE40 C 26 A 9 0.00599 imputed 

rs9379687 chr6:24721787 HepG2 MAX C 95 A 49 0.00016 imputed 

rs9379687 chr6:24721787 HepG2 HEY1 C 29 A 8 0.00075 imputed 

rs9379687 chr6:24721787 HepG2 CREB1 C 18 A 4 0.00434 imputed 

rs1165176 chr6:25830298 HepG2 FOXA1 A 28 G 5 6.62E-05 imputed 

rs1165183 chr6:25836380 HepG2 POL2 G 19 A 5 0.00661 imputed 

rs198853 chr6:26104096 HepG2 TBP C 71 T 20 7.25E-08 imputed 

rs198853 chr6:26104096 HepG2 SRF C 9 T 0 0.00391 imputed 

rs198853 chr6:26104096 HepG2 RXRA C 19 T 5 0.00661 imputed 

rs198853 chr6:26104096 HepG2 MYBL2 C 70 T 36 0.00124 imputed 

rs198853 chr6:26104096 HepG2 POL2 C 165 T 96 2.31E-05 imputed 

rs198853 chr6:26104096 HepG2 HEY1 C 98 T 52 0.00022 imputed 

rs9380049 chr6:28048535 HepG2 HEY1 A 37 G 10 9.85E-05 imputed 

rs9380049 chr6:28048535 HepG2 HDAC2 A 8 G 0 0.00781 imputed 

rs9380049 chr6:28048535 HepG2 CREB1 A 24 G 6 0.00143 imputed 

rs9380050 chr6:28048538 HepG2 HEY1 A 38 G 11 0.00014 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs9380050 chr6:28048538 HepG2 HDAC2 A 9 G 0 0.00391 imputed 

rs9380050 chr6:28048538 HepG2 HNF4G A 8 G 0 0.00781 imputed 

rs9380050 chr6:28048538 HepG2 CREB1 A 22 G 5 0.00151 imputed 

rs2281588 chr6:28072602 HepG2 CTCF G 45 A 14 6.53E-05 imputed 

rs2281588 chr6:28072602 HepG2 GABP G 77 A 39 0.00053 imputed 

rs2281588 chr6:28072602 HepG2 CREB1 G 24 A 8 0.007 imputed 

rs17711801 chr6:28092307 HepG2 SP2 C 43 G 18 0.00187 imputed 

rs17711801 chr6:28092307 HepG2 GABP C 37 G 17 0.00907 imputed 

rs9380056 chr6:28104476 HepG2 ZEB1 C 10 T 0 0.00195 imputed 

rs9380056 chr6:28104476 HepG2 POL2 C 34 T 14 0.00552 imputed 

rs9380057 chr6:28104634 HepG2 MAX G 45 T 10 2.06E-06 imputed 

rs9380057 chr6:28104634 HepG2 ELF1 G 33 T 13 0.00453 imputed 

rs9380057 chr6:28104634 HepG2 DNASE G 29 T 8 0.00075 imputed 

rs9380057 chr6:28104634 HepG2 YY1 G 23 T 5 0.00091 imputed 

rs9380057 chr6:28104634 HepG2 POL2 G 53 T 20 0.00014 imputed 

rs9380057 chr6:28104634 HepG2 GABP G 197 T 54 2.66E-20 imputed 

rs9380057 chr6:28104634 HepG2 HEY1 G 33 T 10 0.00061 imputed 

rs9380057 chr6:28104634 HepG2 CREB1 G 40 T 14 0.00054 imputed 

rs9380057 chr6:28104634 HepG2 HNF4A G 19 T 3 0.00086 imputed 

rs9357065 chr6:28129580 HepG2 SIN3AK20 T 10 C 0 0.00195 imputed 

rs9357065 chr6:28129580 HepG2 TAF1 T 31 C 2 1.31E-07 imputed 

rs9357065 chr6:28129580 HepG2 MBD4 T 9 C 0 0.00391 imputed 

rs9357065 chr6:28129580 HepG2 MAX T 46 C 1 6.82E-13 imputed 

rs9357065 chr6:28129580 HepG2 DNASE T 47 C 1 3.48E-13 imputed 

rs9357065 chr6:28129580 HepG2 RAD21 T 10 C 0 0.00195 imputed 

rs9357065 chr6:28129580 HepG2 ZEB1 T 13 C 0 0.00024 imputed 

rs9357065 chr6:28129580 HepG2 YY1 T 14 C 0 0.00012 imputed 

rs9357065 chr6:28129580 HepG2 POL2 T 128 C 2 1.25E-35 imputed 

rs9357065 chr6:28129580 HepG2 EZH2 T 9 C 0 0.00391 imputed 

rs9357065 chr6:28129580 HepG2 SRF T 21 C 2 6.60E-05 imputed 

rs9357065 chr6:28129580 HepG2 CEBPD T 9 C 0 0.00391 imputed 

rs9357065 chr6:28129580 HepG2 CEBPB T 15 C 0 6.10E-05 imputed 

rs9357065 chr6:28129580 HepG2 ELF1 T 28 C 0 7.45E-09 imputed 

rs9357065 chr6:28129580 HepG2 ZBTB7A T 9 C 0 0.00391 imputed 

rs9357065 chr6:28129580 HepG2 NR2F2 T 12 C 1 0.00342 imputed 

rs9357065 chr6:28129580 HepG2 GABP T 160 C 1 1.11E-46 imputed 

rs9357065 chr6:28129580 HepG2 HEY1 T 74 C 0 1.06E-22 imputed 

rs13201769 chr6:30756066 HepG2 CTCF A 8 G 0 0.00781 imputed 

rs13201769 chr6:30756066 HepG2 NR2F2 A 13 G 2 0.00739 imputed 

rs13201769 chr6:30756066 HepG2 SP1 A 8 G 0 0.00781 imputed 

rs3132555 chr6:31082910 HepG2 RAD21 G 13 C 1 0.00183 imputed 

rs1042149 chr6:31082960 HepG2 CTCF G 20 A 4 0.00154 imputed 

rs386579266 chr6:31089982 HepG2 CEBPB G 8 A 0 0.00781 imputed 

rs6921948 chr6:31171257 HI101 FOXA2 A 27 C 3 8.43E-06 common 

rs813115 chr6:31620020 HepG2 DNASE G 35 A 11 0.00054 imputed 

rs813115 chr6:31620020 HepG2 NRSF G 12 A 1 0.00342 imputed 

rs813115 chr6:31620020 HepG2 GABP G 16 A 3 0.00443 imputed 

rs4348358 chr6:32399092 HepG2 MAFK G 75 A 42 0.00293 predicted 

rs9268606 chr6:32400070 HepG2 CTCF G 11 A 0 0.00098 imputed 

rs9271092 chr6:32576296 HepG2 RAD21 A 8 G 0 0.00781 imputed 

rs9271093 chr6:32576341 HepG2 CTCF G 11 A 0 0.00098 imputed 

rs9271094 chr6:32576347 HepG2 CTCF G 15 C 0 6.10E-05 imputed 

rs9271096 chr6:32576426 HepG2 CTCF A 9 G 0 0.00391 imputed 

rs17843603 chr6:32620241 HepG2 BHLHE40 G 12 A 0 0.00049 imputed 

rs1063349 chr6:32627906 HepG2 HNF4A T 15 C 0 6.10E-05 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
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rs386699568 chr6:32627923 HepG2 HNF4A A 16 G 0 3.05E-05 imputed 

rs9274535 chr6:32634620 HepG2 RFX5 T 174 C 42 2.77E-20 predicted 

rs35721478 chr6:33725129 HepG2 FOXA2 T 8 C 0 0.00781 imputed 

rs35721478 chr6:33725129 HepG2 FOXA1 T 19 C 0 3.81E-06 imputed 

rs206936 chr6:34302869 HepG2 POL2 A 8 G 0 0.00781 imputed 

rs6912971 chr6:34355658 HepG2 MAFK G 9 C 0 0.00391 imputed 

rs9469779 chr6:34393845 HepG2 MXI1 A 26 G 8 0.00294 imputed 

rs9469779 chr6:34393845 HepG2 TAF1 A 87 G 51 0.00275 imputed 

rs9469779 chr6:34393845 HepG2 MAX A 66 G 27 6.47E-05 imputed 

rs9469779 chr6:34393845 HepG2 POL2 A 126 G 49 5.24E-09 imputed 

rs9469779 chr6:34393845 HepG2 ELF1 A 78 G 42 0.0013 imputed 

rs9469779 chr6:34393845 HepG2 HEY1 A 96 G 43 8.12E-06 imputed 

rs7757900 chr6:34398879 HepG2 CEBPD T 8 C 0 0.00781 imputed 

rs9368813 chr6:34399814 HepG2 BHLHE40 C 8 T 0 0.00781 imputed 

rs12192544 chr6:46620252 HepG2 EZH2 C 9 G 0 0.00391 imputed 

rs283080 chr6:118606000 HepG2 RAD21 A 12 C 1 0.00342 imputed 

rs7770081 chr6:133089569 HepG2 CTCF T 99 G 44 4.89E-06 imputed 

rs12211701 chr6:133119757 HepG2 DNASE G 17 C 2 0.00073 imputed 

rs9493446 chr6:133125643 HepG2 MAFK T 22 C 5 0.00151 imputed 

rs9493450 chr6:133135807 HepG2 POL2 T 263 C 117 5.00E-14 imputed 

rs9493450 chr6:133135807 HepG2 HEY1 T 164 C 65 4.72E-11 imputed 

rs6937795 chr6:137291281 HI88 NKX2_2 A 25 C 9 0.00904 common 

rs6937795 chr6:137291281 HI32 PDX1 C 19 A 4 0.0026 common 

rs6917676 chr6:137291296 HI88 NKX2_2 T 16 G 3 0.00443 common 

rs6917676 chr6:137291296 HI32 PDX1 G 21 T 6 0.00592 common 

rs11155000 chr6:139099401 HepG2 TCF7L2 C 9 T 0 0.00391 imputed 

rs539298 chr6:160770360 HepG2 MAX G 23 A 1 2.98E-06 imputed 

rs539298 chr6:160770360 HepG2 DNASE G 14 A 0 0.00012 imputed 

rs539298 chr6:160770360 HepG2 RAD21 G 12 A 1 0.00342 imputed 

rs539298 chr6:160770360 HepG2 POL2 G 24 A 1 1.55E-06 imputed 

rs539298 chr6:160770360 HepG2 HNF4G G 34 A 3 1.23E-07 imputed 

rs539298 chr6:160770360 HepG2 MYBL2 G 9 A 0 0.00391 imputed 

rs539298 chr6:160770360 HepG2 BHLHE40 G 15 A 0 6.10E-05 imputed 

rs539298 chr6:160770360 HepG2 CEBPB G 16 A 0 3.05E-05 imputed 

rs539298 chr6:160770360 HepG2 ELF1 G 22 A 1 5.72E-06 imputed 

rs539298 chr6:160770360 HepG2 NR2F2 G 44 A 2 3.08E-11 imputed 

rs539298 chr6:160770360 HepG2 NFIC G 8 A 0 0.00781 imputed 

rs539298 chr6:160770360 HepG2 JUND G 8 A 0 0.00781 imputed 

rs539298 chr6:160770360 HepG2 P300 G 32 A 3 4.18E-07 imputed 

rs539298 chr6:160770360 HepG2 CREB1 G 20 A 3 0.00049 imputed 

rs539298 chr6:160770360 HepG2 HNF4A G 41 A 1 1.96E-11 imputed 

rs9505962 chr6:169726667 HepG2 RAD21 T 69 C 41 0.00972 imputed 

rs73069540 chr7:26904770 HepG2 HDAC2 T 8 C 0 0.00781 imputed 

rs10281169 chr7:36922825 HepG2 CTCF A 25 G 2 5.65E-06 imputed 

rs10281169 chr7:36922825 HepG2 RAD21 A 11 G 1 0.00635 imputed 

rs8200 chr7:75696606 HepG2 POL2 G 17 C 3 0.00258 imputed 

rs10953284 chr7:77169782 HepG2 DNASE G 17 C 0 1.53E-05 imputed 

rs10953284 chr7:77169782 HepG2 HNF4G G 14 C 0 0.00012 imputed 

rs10953284 chr7:77169782 HepG2 CEBPB G 16 C 1 0.00027 imputed 

rs10953284 chr7:77169782 HepG2 HNF4A G 26 C 1 4.17E-07 imputed 

rs705379 chr7:94953895 HepG2 DNASE G 10 A 0 0.00195 imputed 

rs776745 chr7:99291337 HepG2 FOXA1 G 32 T 12 0.00366 imputed 

rs6962760 chr7:141465363 HI32 FOXA2 T 19 C 4 0.0026 common 

rs11783893 chr8:2100976 HepG2 CTCF C 8 G 0 0.00781 imputed 

rs35382339 chr8:8559255 HepG2 CTCF A 21 G 2 6.60E-05 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs35382339 chr8:8559255 HepG2 DNASE G 17 A 4 0.0072 imputed 

rs6984305 chr8:9178268 HepG2 CTCF T 46 A 16 0.00018 imputed 

rs11777082 chr8:39797703 HepG2 BHLHE40 A 8 G 0 0.00781 imputed 

rs2279128 chr8:71581559 HepG2 BHLHE40 T 30 G 10 0.00222 imputed 

rs6985299 chr8:71613079 HepG2 MAX T 20 C 6 0.00936 imputed 

rs11985375 chr8:71613472 HepG2 MAX G 35 A 7 1.51E-05 imputed 

rs11985375 chr8:71613472 HepG2 CREB1 G 23 A 6 0.00232 imputed 

rs10810299 chr9:14964272 HepG2 POL2 A 10 C 0 0.00195 imputed 

rs34428576 chr10:12281111 HepG2 MAX G 12 A 0 0.00049 imputed 

rs34428576 chr10:12281111 HepG2 DNASE G 8 A 0 0.00781 imputed 

rs34428576 chr10:12281111 HepG2 RAD21 G 11 A 0 0.00098 imputed 

rs34428576 chr10:12281111 HepG2 CEBPD G 18 A 0 7.63E-06 imputed 

rs34428576 chr10:12281111 HepG2 CEBPB G 120 A 0 1.50E-36 imputed 

rs34428576 chr10:12281111 HepG2 ZBTB7A G 14 A 0 0.00012 imputed 

rs34428576 chr10:12281111 HepG2 FOXA1 G 14 A 0 0.00012 imputed 

rs34428576 chr10:12281111 HepG2 NR2F2 G 11 A 0 0.00098 imputed 

rs34428576 chr10:12281111 HepG2 NFIC G 8 A 0 0.00781 imputed 

rs34428576 chr10:12281111 HepG2 JUND G 11 A 0 0.00098 imputed 

rs34428576 chr10:12281111 HepG2 HDAC2 G 14 A 0 0.00012 imputed 

rs34428576 chr10:12281111 HepG2 CEBPA G 57 A 0 1.39E-17 imputed 

rs34428576 chr10:12281111 HepG2 P300 G 15 A 0 6.10E-05 imputed 

rs34428576 chr10:12281111 HepG2 CREB1 G 13 A 0 0.00024 imputed 

rs34428576 chr10:12281111 HepG2 HNF4A G 12 A 0 0.00049 imputed 

rs1414395 chr10:13334136 HepG2 CEBPB T 14 G 2 0.00418 imputed 

rs4747275 chr10:16552472 HepG2 MAFK G 17 A 2 0.00073 imputed 

rs17141322 chr10:17604700 HI32 PDX1 A 19 C 4 0.0026 common 

rs16916563 chr10:63507642 HepG2 FOXA2 G 11 A 0 0.00098 imputed 

rs4933736 chr10:94471595 HepG2 FOXA2 T 8 C 0 0.00781 imputed 

rs11190179 chr10:101365313 HepG2 CEBPB G 17 A 0 1.53E-05 imputed 

rs2295776 chr10:102295629 HepG2 BHLHE40 G 8 T 0 0.00781 imputed 

rs2495758 chr10:102321900 HepG2 CTCF C 275 G 3 1.47E-77 imputed 

rs2495758 chr10:102321900 HepG2 MAX C 28 G 0 7.45E-09 imputed 

rs2495758 chr10:102321900 HepG2 DNASE C 14 G 1 0.00098 imputed 

rs2495758 chr10:102321900 HepG2 RAD21 C 153 G 0 1.75E-46 imputed 

rs2495758 chr10:102321900 HepG2 YY1 C 15 G 0 6.10E-05 imputed 

rs2495758 chr10:102321900 HepG2 CHD2 C 8 G 0 0.00781 imputed 

rs2495758 chr10:102321900 HepG2 ELF1 C 25 G 0 5.96E-08 imputed 

rs2495758 chr10:102321900 HepG2 CREB1 C 22 G 2 3.59E-05 imputed 

rs112699822 chr10:104692633 HepG2 CEBPA A 8 C 0 0.00781 imputed 

rs1926032 chr10:104829469 HepG2 CTCF C 17 T 3 0.00258 imputed 

rs10510007 chr10:116636721 HepG2 CEBPB G 11 A 0 0.00098 imputed 

rs10835531 chr11:1516110 HI101 FOXA2 A 20 G 6 0.00936 common 

rs538954 chr11:65756808 HepG2 ZBTB7A C 8 T 0 0.00781 imputed 

rs12288023 chr11:67421341 HepG2 CEBPB T 20 C 0 1.91E-06 imputed 

rs613128 chr11:68638058 HepG2 MAX G 11 T 0 0.00098 imputed 

rs514833 chr11:68657734 HepG2 CTCF C 32 T 0 4.66E-10 imputed 

rs514833 chr11:68657734 HepG2 DNASE C 10 T 0 0.00195 imputed 

rs514833 chr11:68657734 HepG2 RAD21 C 23 T 0 2.38E-07 imputed 

rs514833 chr11:68657734 HepG2 ZBTB33 C 16 T 0 3.05E-05 imputed 

rs629426 chr11:68671104 HepG2 YY1 G 23 A 6 0.00232 imputed 

rs9787897 chr11:74659302 HepG2 FOXA2 T 9 A 0 0.00391 imputed 

rs567956 chr11:74659779 HepG2 POL2 C 9 T 0 0.00391 imputed 

rs2165163 chr11:74660143 HepG2 MAX C 69 G 40 0.00704 imputed 

rs2165163 chr11:74660143 HepG2 DNASE C 28 G 8 0.00119 imputed 

rs4944968 chr11:74724276 HepG2 DNASE C 12 G 1 0.00342 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 



    

102 
 

 

        Enriched   Other   Variant 
Sourceb Variant Position Sample Protein/Assay Allele Reads Allele Reads P-valuea 

rs3781884 chr11:113217364 HepG2 CTCF G 17 A 0 1.53E-05 imputed 

rs180351 chr11:116607641 HepG2 CTCF T 82 C 15 2.38E-12 imputed 

rs7109649 chr11:116943544 HepG2 FOXA2 T 27 C 6 0.00032 imputed 

rs7109649 chr11:116943544 HI87 NKX2_2 T 21 C 6 0.00592 common 

rs11218752 chr11:122552600 HepG2 CTCF C 11 T 1 0.00635 imputed 

rs57246949 chr11:129476625 HepG2 CEBPB G 10 A 0 0.00195 imputed 

rs2534721 chr12:6580144 HepG2 DNASE C 89 A 56 0.00766 imputed 

rs933462 chr12:9103665 HepG2 HDAC2 G 8 T 0 0.00781 imputed 

rs2417257 chr12:13444717 HepG2 CTCF C 8 T 0 0.00781 imputed 

rs2239182 chr12:48255411 HepG2 FOXA1 C 15 T 2 0.00235 imputed 

rs4509811 chr12:58335142 HepG2 CEBPD A 8 G 0 0.00781 imputed 

rs11612569 chr12:101800809 HepG2 CEBPB A 10 G 0 0.00195 imputed 

rs869916 chr12:103244013 HepG2 HNF4A T 23 G 5 0.00091 imputed 

rs4764939 chr12:103522952 HepG2 HNF4A C 8 T 0 0.00781 imputed 

rs12828810 chr12:121152017 HepG2 CTCF G 15 T 2 0.00235 imputed 

rs7139079 chr12:121415293 HepG2 POL2 A 9 G 0 0.00391 imputed 

rs2258287 chr12:121454313 HepG2 USF1 A 38 C 3 1.05E-08 imputed 

rs2258287 chr12:121454313 HepG2 POL2 A 31 C 7 0.00012 imputed 

rs1154513 chr12:122391963 HI32 FOXA2 A 15 G 3 0.00754 common 

rs12864047 chr13:74796108 HepG2 HNF4G C 11 T 1 0.00635 imputed 

rs9302064 chr13:95966851 HepG2 FOXA1 A 48 C 12 3.18E-06 imputed 

rs9302064 chr13:95966851 HepG2 JUND A 17 C 4 0.0072 imputed 

rs1010461 chr14:21153788 HepG2 POL2 C 16 A 3 0.00443 imputed 

rs17109371 chr14:25429892 HepG2 ATF3 C 10 T 0 0.00195 imputed 

rs10138510 chr14:25430134 HepG2 ZBTB33 G 8 A 0 0.00781 imputed 

rs76138569 chr14:25512157 HepG2 MAFK C 53 T 27 0.00487 imputed 

rs1769591 chr14:34378886 HepG2 FOXA1 G 96 A 59 0.00369 imputed 

rs11624787 chr14:53288450 HepG2 FOXA2 C 11 G 0 0.00098 imputed 

rs11624787 chr14:53288450 HepG2 CEBPB C 9 G 0 0.00391 imputed 

rs11624787 chr14:53288450 HepG2 FOXA1 C 22 G 0 4.77E-07 imputed 

rs11624787 chr14:53288450 HepG2 P300 C 12 G 0 0.00049 imputed 

rs11624787 chr14:53288450 HepG2 HNF4A C 11 G 0 0.00098 imputed 

rs17090719 chr14:94846661 HepG2 MBD4 T 9 C 0 0.00391 imputed 

rs17090719 chr14:94846661 HepG2 POL2 T 79 C 0 3.31E-24 imputed 

rs17090719 chr14:94846661 HepG2 HEY1 T 13 C 0 0.00024 imputed 

rs2034652 chr15:40802768 HepG2 CEBPB A 8 G 0 0.00781 imputed 

rs8036737 chr15:40874256 HepG2 MAFK G 8 A 0 0.00781 imputed 

rs8042519 chr15:45996341 HepG2 CTCF C 14 G 0 0.00012 imputed 

rs11857380 chr15:58712203 HepG2 FOXA1 G 15 T 0 6.10E-05 imputed 

rs7178540 chr15:62380132 HI87 MAFB G 22 A 7 0.00813 common 

rs11854147 chr15:75052771 HepG2 FOXA1 T 77 C 36 0.00014 imputed 

rs11072502 chr15:75052820 HepG2 FOXA1 G 82 A 34 9.69E-06 imputed 

rs11072506 chr15:75052994 HepG2 POL2 A 176 G 113 0.00025 imputed 

rs11072506 chr15:75052994 HepG2 HNF4A A 8 G 0 0.00781 imputed 

rs11857695 chr15:75165751 HepG2 JUND T 28 G 1 1.12E-07 imputed 

rs11857695 chr15:75165751 HepG2 CREB1 T 58 G 16 9.67E-07 imputed 

rs7175950 chr15:78236353 HepG2 POL2 A 11 G 0 0.00098 imputed 

rs11856536 chr15:79094325 HepG2 HDAC2 A 8 G 0 0.00781 imputed 

rs4932370 chr15:91404705 HI102 NKX6_1 G 24 A 8 0.007 common 

rs9925556 chr16:2880105 HepG2 DNASE T 9 C 0 0.00391 imputed 

rs9925556 chr16:2880105 HepG2 FOXA1 T 21 C 1 1.10E-05 imputed 

rs149597 chr16:11343942 HepG2 POL2 G 15 C 1 0.00052 imputed 

rs243330 chr16:11350991 HepG2 POL2 C 18 T 2 0.0004 imputed 

rs243329 chr16:11352313 HepG2 BHLHE40 A 8 T 0 0.00781 imputed 

rs376374 chr16:11370616 HepG2 MAX A 10 G 0 0.00195 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs11640295 chr16:11390728 HepG2 POL2 G 25 C 6 0.00088 imputed 

rs11640295 chr16:11390728 HepG2 HEY1 G 20 C 6 0.00936 imputed 

rs7189239 chr16:11402515 HepG2 MXI1 T 8 C 0 0.00781 imputed 

rs7189239 chr16:11402515 HepG2 MAX T 30 C 3 1.40E-06 imputed 

rs7189239 chr16:11402515 HepG2 ZEB1 T 15 C 2 0.00235 imputed 

rs7189239 chr16:11402515 HepG2 POL2 T 15 C 1 0.00052 imputed 

rs7189239 chr16:11402515 HepG2 HDAC2 T 13 C 1 0.00183 imputed 

rs7189239 chr16:11402515 HepG2 HNF4A T 44 C 17 0.00073 imputed 

rs8059989 chr16:12185746 HepG2 MAFK T 26 C 9 0.00599 imputed 

rs9925009 chr16:12186352 HepG2 P300 A 8 T 0 0.00781 imputed 

rs4780465 chr16:12707523 HepG2 TEAD4 T 12 C 1 0.00342 imputed 

rs4780465 chr16:12707523 HepG2 MBD4 T 8 C 0 0.00781 imputed 

rs4780465 chr16:12707523 HepG2 DNASE T 24 C 8 0.007 imputed 

rs4780465 chr16:12707523 HepG2 POL2 T 26 C 4 5.95E-05 imputed 

rs4780465 chr16:12707523 HepG2 BHLHE40 T 17 C 3 0.00258 imputed 

rs4780465 chr16:12707523 HepG2 NR2F2 T 24 C 6 0.00143 imputed 

rs4780465 chr16:12707523 HepG2 P300 T 35 C 15 0.0066 imputed 

rs4780465 chr16:12707523 HepG2 HNF4A T 29 C 7 0.00031 imputed 

rs1560104 chr16:12708208 HepG2 MAX C 14 T 0 0.00012 imputed 

rs1560104 chr16:12708208 HepG2 POL2 C 28 T 9 0.00256 imputed 

rs1560104 chr16:12708208 HepG2 CEBPD C 9 T 0 0.00391 imputed 

rs11075256 chr16:15187912 HepG2 MXI1 G 18 C 4 0.00434 imputed 

rs11075256 chr16:15187912 HepG2 TAF1 G 13 C 2 0.00739 imputed 

rs11075256 chr16:15187912 HepG2 MAX G 50 C 19 0.00024 imputed 

rs11075256 chr16:15187912 HepG2 POL2 G 60 C 24 0.00011 imputed 

rs11075256 chr16:15187912 HepG2 SP2 G 9 C 0 0.00391 imputed 

rs11075256 chr16:15187912 HepG2 HEY1 G 17 C 3 0.00258 imputed 

rs7194098 chr16:20464350 HepG2 POL2 C 10 G 0 0.00195 imputed 

rs7194098 chr16:20464350 HepG2 SRF C 9 G 0 0.00391 imputed 

rs9937581 chr16:20473903 HepG2 MAFK G 56 A 0 2.78E-17 imputed 

rs9937581 chr16:20473903 HepG2 MAFF G 18 A 1 7.63E-05 imputed 

rs1394678 chr16:20491058 HepG2 CTCF C 8 T 0 0.00781 imputed 

rs62032983 chr16:23653343 HepG2 ELF1 T 12 C 0 0.00049 imputed 

rs62032983 chr16:23653343 HepG2 CREB1 T 8 C 0 0.00781 imputed 

rs181203 chr16:28512371 HepG2 EZH2 A 8 C 0 0.00781 imputed 

rs62034319 chr16:28532188 HepG2 HDAC2 T 11 G 1 0.00635 imputed 

rs2106480 chr16:28537971 HepG2 DNASE T 35 C 15 0.0066 imputed 

rs2106480 chr16:28537971 HepG2 CEBPB T 44 C 20 0.00369 imputed 

rs2106480 chr16:28537971 HepG2 FOXA1 T 45 C 19 0.00156 imputed 

rs2106480 chr16:28537971 HepG2 P300 T 44 C 18 0.0013 imputed 

rs2106480 chr16:28537971 HepG2 HNF4A T 52 C 27 0.00655 imputed 

rs62034351 chr16:28565489 HepG2 DNASE G 62 A 25 9.06E-05 imputed 

rs62034351 chr16:28565489 HepG2 POL2 G 80 A 40 0.00033 imputed 

rs62034351 chr16:28565489 HepG2 HEY1 G 57 A 13 1.03E-07 imputed 

rs7191618 chr16:28565667 HepG2 MAX C 55 G 29 0.00604 imputed 

rs7191618 chr16:28565667 HepG2 DNASE C 50 G 21 0.00077 imputed 

rs7191618 chr16:28565667 HepG2 RAD21 C 13 G 1 0.00183 imputed 

rs743590 chr16:28608230 HepG2 MAX G 18 A 3 0.00149 imputed 

rs743590 chr16:28608230 HepG2 YY1 G 13 A 0 0.00024 imputed 

rs743590 chr16:28608230 HepG2 POL2 G 25 A 7 0.0021 imputed 

rs62031562 chr16:28609329 HepG2 POL2 A 21 T 4 0.00091 imputed 

rs7187776 chr16:28857645 HepG2 HNF4G A 8 G 0 0.00781 imputed 

rs7187776 chr16:28857645 HepG2 HEY1 A 25 G 6 0.00088 imputed 

rs7187776 chr16:28857645 HepG2 CREB1 A 104 G 47 4.03E-06 imputed 

rs62037367 chr16:28874547 HepG2 CREB1 C 27 G 5 0.00011 imputed 

rs7198606 chr16:28875122 HepG2 SRF T 8  G 0 0.00781 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs7198606 chr16:28875122 HepG2 SP2 T 59 G 27 0.00073 imputed 

rs7198606 chr16:28875122 HepG2 CREB1 T 31 G 10 0.00145 imputed 

rs11864750 chr16:28875204 HepG2 NR2F2 A 8 T 0 0.00781 imputed 

rs4072402 chr16:28937259 HepG2 CTCF C 10 T 0 0.00195 imputed 

rs2303222 chr16:31085470 HepG2 POL2 C 29 T 10 0.00338 imputed 

rs1981760 chr16:50723074 HepG2 EZH2 C 9 T 0 0.00391 imputed 

rs12720926 chr16:56998918 HepG2 DNASE A 29 G 9 0.00166 imputed 

rs7199443 chr16:67841129 HepG2 MAX G 21 T 1 1.10E-05 imputed 

rs7196789 chr16:67927124 HepG2 YY1 T 71 C 38 0.00203 imputed 

rs1134760 chr16:67964203 HepG2 POL2 C 11 T 1 0.00635 imputed 

rs20549 chr16:67969930 HepG2 POL2 G 62 A 31 0.00171 imputed 

rs1109166 chr16:67977382 HepG2 FOXA2 C 63 T 29 0.00051 imputed 

rs1109166 chr16:67977382 HepG2 HNF4G C 41 T 19 0.00622 imputed 

rs1109166 chr16:67977382 HepG2 FOXA1 C 86 T 47 0.00091 imputed 

rs1109166 chr16:67977382 HepG2 NR2F2 C 101 T 44 2.49E-06 imputed 

rs1109166 chr16:67977382 HepG2 CREB1 C 26 T 7 0.00132 imputed 

rs1109166 chr16:67977382 HepG2 HNF4A C 78 T 41 0.00089 imputed 

rs35223604 chr16:70052345 HepG2 CTCF C 25 G 8 0.00455 imputed 

rs4985407 chr16:70285901 HepG2 CTCF G 78 A 39 0.0004 imputed 

rs4985407 chr16:70285901 HepG2 SIN3AK20 G 17 A 1 0.00014 imputed 

rs4985407 chr16:70285901 HepG2 MAX G 116 A 31 9.39E-13 imputed 

rs4985407 chr16:70285901 HepG2 DNASE G 75 A 22 6.07E-08 imputed 

rs4985407 chr16:70285901 HepG2 YY1 G 49 A 16 5.08E-05 imputed 

rs4985407 chr16:70285901 HepG2 POL2 G 54 A 24 0.0009 imputed 

rs4985407 chr16:70285901 HepG2 CHD2 G 12 A 1 0.00342 imputed 

rs4985407 chr16:70285901 HepG2 BHLHE40 G 15 A 3 0.00754 imputed 

rs4985407 chr16:70285901 HepG2 ELF1 G 31 A 8 0.00029 imputed 

rs4985407 chr16:70285901 HepG2 GABP G 40 A 19 0.00864 imputed 

rs4985407 chr16:70285901 HepG2 CREB1 G 52 A 19 0.00011 imputed 

rs8052763 chr16:75251659 HepG2 HNF4A C 8 G 0 0.00781 imputed 

rs12923290 chr16:78079956 HepG2 YY1 G 15 A 2 0.00235 imputed 

rs12923290 chr16:78079956 HepG2 NRSF G 434 A 290 9.74E-08 imputed 

rs12921945 chr16:78080133 HepG2 YY1 T 16 G 3 0.00443 imputed 

rs12921945 chr16:78080133 HepG2 NRSF T 322 G 182 4.64E-10 imputed 

rs12923626 chr16:78080139 HepG2 YY1 C 16 A 3 0.00443 imputed 

rs12923626 chr16:78080139 HepG2 NRSF C 288 A 143 2.52E-12 imputed 

rs386792435 chr16:78080141 HepG2 YY1 G 16 T 3 0.00443 imputed 

rs386792435 chr16:78080141 HepG2 NRSF G 280 T 130 9.91E-14 imputed 

rs12923218 chr16:78080274 HepG2 NRSF G 27 C 6 0.00032 imputed 

rs4888731 chr16:78080418 HepG2 NRSF G 11 A 1 0.00635 imputed 

rs12448415 chr16:87871096 HepG2 POL2 G 15 A 2 0.00235 imputed 

rs12931876 chr16:87874182 HepG2 CTCF T 13 C 1 0.00183 imputed 

rs34508683 chr16:87876375 HepG2 POL2 C 15 T 3 0.00754 imputed 

rs34508683 chr16:87876375 HepG2 EZH2 C 8 T 0 0.00781 imputed 

rs28609922 chr16:87876631 HepG2 MAX A 45 C 13 3.01E-05 imputed 

rs28609922 chr16:87876631 HepG2 BHLHE40 A 23 C 6 0.00232 imputed 

rs28609922 chr16:87876631 HepG2 P300 A 8 C 0 0.00781 imputed 

rs71391360 chr16:87877313 HepG2 POL2 G 13 C 1 0.00183 imputed 

rs4843270 chr16:87878072 HepG2 CTCF A 14 C 2 0.00418 imputed 

rs4843270 chr16:87878072 HepG2 POL2 A 18 C 0 7.63E-06 imputed 

rs386793901 chr16:87878076 HepG2 POL2 A 15 G 0 6.10E-05 imputed 

rs4843718 chr16:87878476 HepG2 CREB1 A 10 G 0 0.00195 imputed 

rs35459492 chr16:87878883 HepG2 POL2 G 11 C 1 0.00635 imputed 

rs876985 chr16:87882124 HepG2 P300 C 17 T 4 0.0072 imputed 

rs747687 chr17:775334 HepG2 ZBTB33 G 8  C 0 0.00781 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs78601373 chr17:776345 HepG2 MAFK C 25 T 0 5.96E-08 imputed 

rs78601373 chr17:776345 HepG2 MAFF C 13 T 0 0.00024 imputed 

rs507506 chr17:7118322 HepG2 RAD21 G 28 A 11 0.00948 imputed 

rs2017365 chr17:7122624 HepG2 MAX G 14 A 1 0.00098 imputed 

rs62066869 chr17:20059342 HepG2 DNASE A 54 C 26 0.00232 imputed 

rs2526479 chr17:20130221 HepG2 CTCF G 140 T 93 0.00251 imputed 

rs2526479 chr17:20130221 HepG2 MAX G 13 T 0 0.00024 imputed 

rs1453559 chr17:38020419 HepG2 MXI1 C 8 T 0 0.00781 imputed 

rs1453559 chr17:38020419 HepG2 DNASE C 9 T 0 0.00391 imputed 

rs1453559 chr17:38020419 HepG2 BHLHE40 C 9 T 0 0.00391 imputed 

rs12936231 chr17:38029120 HepG2 CTCF G 35 C 0 5.82E-11 imputed 

rs12936231 chr17:38029120 HepG2 RAD21 G 41 C 0 9.09E-13 imputed 

rs12936231 chr17:38029120 HepG2 ARID3A G 14 C 1 0.00098 imputed 

rs386796961 chr17:38072247 HepG2 POL2 G 8 T 0 0.00781 imputed 

rs7224129 chr17:38075426 HepG2 POL2 G 17 A 4 0.0072 imputed 

rs4065275 chr17:38080865 HepG2 CTCF G 43 A 2 5.89E-11 imputed 

rs4065275 chr17:38080865 HepG2 DNASE A 17 G 3 0.00258 imputed 

rs4065275 chr17:38080865 HepG2 RAD21 G 15 A 2 0.00235 imputed 

rs8076131 chr17:38080912 HepG2 CTCF A 28 G 2 8.68E-07 imputed 

rs8076131 chr17:38080912 HepG2 RAD21 A 24 G 5 0.00055 imputed 

rs8076131 chr17:38080912 HepG2 HEY1 G 9 A 0 0.00391 imputed 

ss56891470 chr17:41438468 HI32 POL2 T 73 C 34 0.00021 predicted 

rs12938996 chr17:41438674 HI32 POL2 A 81 G 50 0.00851 predicted 

rs17742347 chr17:41846468 HepG2 POL2 C 19 T 4 0.0026 imputed 

rs17674998 chr17:41879544 HepG2 ZBTB33 A 8 G 0 0.00781 imputed 

rs9901676 chr17:41911818 HepG2 EZH2 T 9 C 0 0.00391 imputed 

rs12948653 chr17:46259254 HepG2 CTCF A 24 C 8 0.007 imputed 

rs16949649 chr17:49230308 HepG2 CEBPB T 8 C 0 0.00781 imputed 

rs6503905 chr17:57287454 HepG2 ELF1 A 15 G 1 0.00052 imputed 

rs6503905 chr17:57287454 HepG2 CREB1 A 21 G 6 0.00592 imputed 

rs8076760 chr17:61920497 HepG2 MAX T 32 C 6 2.43E-05 imputed 

rs8076760 chr17:61920497 HepG2 TCF12 T 9 C 0 0.00391 imputed 

rs8076760 chr17:61920497 HepG2 CHD2 T 113 C 52 2.33E-06 imputed 

rs8076760 chr17:61920497 HepG2 GABP T 91 C 44 6.43E-05 imputed 

rs6808 chr17:62400575 HepG2 CREB1 C 8 G 0 0.00781 imputed 

rs12936766 chr17:62408949 HepG2 CEBPB G 19 C 3 0.00086 imputed 

rs4968721 chr17:62409586 HepG2 FOXA2 G 17 C 1 0.00014 imputed 

rs4968721 chr17:62409586 HepG2 FOXA1 G 26 C 8 0.00294 imputed 

rs4968721 chr17:62409586 HepG2 JUND G 25 C 4 0.0001 imputed 

rs4968721 chr17:62409586 HepG2 P300 G 17 C 3 0.00258 imputed 

rs4366742 chr17:64212242 HepG2 POL2 T 21 C 5 0.00249 imputed 

rs8064837 chr17:64242703 HepG2 SRF G 8 C 0 0.00781 imputed 

rs2598414 chr17:74067099 HepG2 BHLHE40 C 9 T 0 0.00391 imputed 

rs4969182 chr17:76393030 HepG2 FOXA2 T 30 C 4 6.16E-06 imputed 

rs4969182 chr17:76393030 HepG2 MAX T 13 C 2 0.00739 imputed 

rs4969182 chr17:76393030 HepG2 MYBL2 T 10 C 0 0.00195 imputed 

rs4969182 chr17:76393030 HepG2 CEBPB T 12 C 1 0.00342 imputed 

rs4969182 chr17:76393030 HepG2 FOXA1 T 71 C 1 3.09E-20 imputed 

rs4969182 chr17:76393030 HepG2 NR2F2 T 11 C 0 0.00098 imputed 

rs4969183 chr17:76393372 HepG2 BHLHE40 A 9 G 0 0.00391 imputed 

rs2376585 chr17:76417883 HepG2 CTCF T 12 C 0 0.00049 imputed 

rs2376585 chr17:76417883 HepG2 FOXA2 T 97 C 36 1.19E-07 imputed 

rs2376585 chr17:76417883 HepG2 MAX T 34 C 15 0.0094 imputed 

rs2376585 chr17:76417883 HepG2 DNASE T 68 C 20 2.77E-07 imputed 

rs2376585 chr17:76417883 HepG2 ZEB1 T 18  C 3 0.00149 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs2376585 chr17:76417883 HepG2 FOXA1 T 211 C 101 4.52E-10 imputed 

rs2376585 chr17:76417883 HepG2 NR2F2 T 31 C 12 0.0054 imputed 

rs2376585 chr17:76417883 HepG2 CEBPA T 44 C 15 0.0002 imputed 

rs2376585 chr17:76417883 HepG2 ZBTB33 T 17 C 1 0.00014 imputed 

rs62078747 chr17:80055206 HepG2 MXI1 C 10 G 0 0.00195 imputed 

rs62078747 chr17:80055206 HepG2 MAX C 29 G 9 0.00166 imputed 

rs59251877 chr17:80056498 HepG2 MAX G 65 A 30 0.00042 imputed 

rs59251877 chr17:80056498 HepG2 JUND G 8 A 0 0.00781 imputed 

rs7225637 chr17:80059758 HepG2 TAF1 G 8 A 0 0.00781 imputed 

rs7225637 chr17:80059758 HepG2 ELF1 G 42 A 15 0.00046 imputed 

rs11658040 chr17:80059891 HepG2 MAX C 30 T 11 0.00432 imputed 

rs11658040 chr17:80059891 HepG2 DNASE C 33 T 14 0.00794 imputed 

rs11658040 chr17:80059891 HepG2 HNF4A C 17 T 0 1.53E-05 imputed 

rs9908277 chr17:80060829 HepG2 MXI1 T 41 C 16 0.00126 imputed 

rs9908277 chr17:80060829 HepG2 MAX T 197 C 107 2.74E-07 imputed 

rs9894129 chr17:80075700 HepG2 MAX A 25 G 4 0.0001 imputed 

rs9894129 chr17:80075700 HepG2 CEBPB A 29 G 11 0.00643 imputed 

rs9894129 chr17:80075700 HepG2 HDAC2 A 12 G 1 0.00342 imputed 

rs9894129 chr17:80075700 HepG2 HNF4A A 22 G 3 0.00016 imputed 

rs9916649 chr17:80075739 HepG2 FOXA2 G 8 A 0 0.00781 imputed 

rs9916649 chr17:80075739 HepG2 MAX G 32 A 10 0.00094 imputed 

rs9916649 chr17:80075739 HepG2 RXRA G 19 A 4 0.0026 imputed 

rs9916649 chr17:80075739 HepG2 BHLHE40 G 14 A 0 0.00012 imputed 

rs9916649 chr17:80075739 HepG2 SP1 G 27 A 9 0.00393 imputed 

rs9916649 chr17:80075739 HepG2 CREB1 G 17 A 3 0.00258 imputed 

rs7218075 chr17:80076808 HepG2 FOXA2 C 11 G 1 0.00635 imputed 

rs7218075 chr17:80076808 HepG2 POL2 C 8 G 0 0.00781 imputed 

rs62079996 chr17:80076862 HepG2 FOXA1 A 20 G 4 0.00154 imputed 

rs6502065 chr17:80095642 HepG2 CEBPB C 22 T 2 3.59E-05 imputed 

rs182498 chr18:21079363 HepG2 RAD21 C 8 T 0 0.00781 imputed 

rs4800162 chr18:21117419 HepG2 FOXA1 G 13 T 0 0.00024 imputed 

rs12607673 chr18:50906636 HepG2 CTCF T 46 C 18 0.00062 imputed 

rs12607674 chr18:50906642 HepG2 CTCF T 38 C 15 0.00219 imputed 

rs34589926 chr18:50906676 HepG2 CTCF G 29 T 6 0.00012 imputed 

rs7256735 chr19:2169121 HI88 NKX2_2 T 29 G 8 0.00075 common 

rs10410204 chr19:7224350 HepG2 FOXA2 C 21 T 0 9.54E-07 imputed 

rs10410204 chr19:7224350 HepG2 FOXA1 C 48 T 1 1.78E-13 imputed 

rs7248104 chr19:7224431 HepG2 FOXA2 A 89 G 3 5.24E-23 imputed 

rs7248104 chr19:7224431 HepG2 MAX A 38 G 2 1.49E-09 imputed 

rs7248104 chr19:7224431 HepG2 YY1 A 12 G 0 0.00049 imputed 

rs7248104 chr19:7224431 HepG2 FOXA1 A 113 G 3 6.27E-30 imputed 

rs7248104 chr19:7224431 HepG2 NR2F2 A 9 G 0 0.00391 imputed 

rs7259455 chr19:11253310 HepG2 DNASE C 61 T 13 1.39E-08 imputed 

rs2303696 chr19:18548884 HepG2 DNASE C 8 T 0 0.00781 imputed 

rs8103622 chr19:18572834 HepG2 CTCF C 118 T 63 5.29E-05 imputed 

rs8101689 chr19:30185697 HepG2 HDAC2 A 9 G 0 0.00391 imputed 

rs62102718 chr19:33891013 HepG2 HNF4G A 15 T 1 0.00052 imputed 

rs55792845 chr19:37498685 HI87 NKX2_2 C 27 T 3 8.43E-06 common 

rs296368 chr19:48372298 HepG2 RAD21 T 71 C 42 0.00815 imputed 

rs1343703 chr19:49955155 HI32 FOXA2 G 29 C 8 0.00075 common 

rs1343703 chr19:49955155 HepG2 ARID3A C 31 G 12 0.0054 imputed 

rs39714 chr19:54693682 HI87 NKX2_2 C 20 G 6 0.00936 common 

rs36624 chr19:54693868 HI87 NKX2_2 C 34 T 13 0.00309 common 

rs34541537 chr19:58912737 HepG2 CREB1 C 55  T 18 1.69E-05 imputed 

rs35138622 chr19:58912788 HepG2 CREB1 C 88  A 26 4.59E-09 imputed 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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rs35117909 chr19:58912906 HepG2 CREB1 G 37 A 15 0.00319 imputed 

rs11878203 chr19:58920050 HepG2 DNASE G 42 A 13 0.00011 imputed 

rs11697620 chr20:3150165 HepG2 CTCF C 21 T 1 1.10E-05 imputed 

rs11697620 chr20:3150165 HepG2 MAX C 12 T 1 0.00342 imputed 

rs1321940 chr20:12959885 HepG2 FOXA1 G 67 A 37 0.00423 imputed 

rs13042787 chr20:17436571 HepG2 BHLHE40 T 8 C 0 0.00781 imputed 

rs6111720 chr20:17868623 HepG2 CEBPD T 8 C 0 0.00781 imputed 

rs6060266 chr20:33733078 HI34 CTCF C 42 T 16 0.00086 common 

rs4812816 chr20:42930872 HepG2 MAZ C 8 A 0 0.00781 imputed 

rs6065723 chr20:42956922 HepG2 MAFK C 24 T 5 0.00055 imputed 

rs6065723 chr20:42956922 HepG2 MAFF C 8 T 0 0.00781 imputed 

rs6073534 chr20:43365504 HepG2 USF1 C 25 T 7 0.0021 imputed 

rs6073538 chr20:43379264 HepG2 DNASE C 8 A 0 0.00781 imputed 

rs386814838 chr20:48092076 HepG2 CEBPB G 12 A 1 0.00342 imputed 

rs6068599 chr20:52259618 HepG2 TBP C 13 T 0 0.00024 imputed 

rs6068599 chr20:52259618 HepG2 CTCF C 9 T 0 0.00391 imputed 

rs6068599 chr20:52259618 HepG2 MBD4 C 12 T 0 0.00049 imputed 

rs6068599 chr20:52259618 HepG2 MAX C 15 T 0 6.10E-05 imputed 

rs6068599 chr20:52259618 HepG2 RAD21 C 8 T 0 0.00781 imputed 

rs6068599 chr20:52259618 HepG2 ZEB1 C 13 T 0 0.00024 imputed 

rs6068599 chr20:52259618 HepG2 POL2 C 32 T 0 4.66E-10 imputed 

rs6068599 chr20:52259618 HepG2 ARID3A C 13 T 0 0.00024 imputed 

rs6068599 chr20:52259618 HepG2 MAFK C 8 T 0 0.00781 imputed 

rs6068599 chr20:52259618 HepG2 MYBL2 C 11 T 0 0.00098 imputed 

rs6068599 chr20:52259618 HepG2 NR2F2 C 10 T 0 0.00195 imputed 

rs6068599 chr20:52259618 HepG2 FOXA1 C 10 T 0 0.00195 imputed 

rs6068599 chr20:52259618 HepG2 HEY1 C 19 T 0 3.81E-06 imputed 

rs6068599 chr20:52259618 HepG2 NFIC C 9 T 0 0.00391 imputed 

rs6068599 chr20:52259618 HepG2 HDAC2 C 10 T 0 0.00195 imputed 

rs6068599 chr20:52259618 HepG2 P300 C 23 T 0 2.38E-07 imputed 

rs6068599 chr20:52259618 HepG2 CREB1 C 8 T 0 0.00781 imputed 

rs2041278 chr20:52268995 HepG2 FOXA2 G 27 T 10 0.00763 imputed 

rs2832245 chr21:30554634 HI32 FOXA2 C 30 T 7 0.00019 common 

rs6000200 chr22:36612258 HI32 PDX1 C 31 G 12 0.0054 common 

rs4828057 chrX:100006043 HI81 MAFB A 20   C 5 0.00408 common 

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. abinomial P-value bHeterozygous sites were 
imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data 
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APPENDIX 2: Allelic imbalance at eQTL loci (P<1.0x10-5) 

Variant Position 
Enr. 
Allele Imbalanced Protein/Assay 

Other 
Allele Gene(s) 

rs1494813 chr1:45957290 C (L) MXI1 T (I) CCDC163P 

rs9793263 chr1:46722389 G (L) MAFK A (A) C1orf190 

rs17125090 chr1:63988904 A (L) MAX,MXI1 G (I) ITGB3BP 

rs11161503 chr1:85462582 C (L) EZH2 G (I) MCOLN3 

rs11161505 chr1:85462665 T (L) EZH2 G (I) MCOLN3 

rs12127787 chr1:89458761 T (L) CREB1*,USF1,USF2,YY1* C (I) GBP3 

rs10858091 chr1:109935578 C (L) HEY1,SIN3AK20,TCF12 T (I) MYBPHL,SYPL2 

rs2140924 chr1:109935775 A (L) CREB1 C (I) MYBPHL,SYPL2 

rs573491 chr1:110026891 T (L) TAF1 G (I) SYPL2 

rs2781553 chr1:110026989 G (L) YY1 T (I) SYPL2 

rs12091564 chr1:145395604 C (L) CREB1,MYBL2,NR2F2,TBP T (I) NOTCH2NL 

rs2201601 chr1:213031448 G (L) YY1 C (I) NCRNA00292 

rs11120067 chr1:213094557 A (L) CTCF G (I) NCRNA00292 

rs61844237 chr1:245133662 G (L) DNASE C (I) EFCAB2 

rs2291426 chr1:245134114 A (L) CREB1 C (I) EFCAB2 

rs4020081 chr1:245209045 C (L) CREB1,FOXA1,P300 T (I) EFCAB2 

rs4020082 chr1:245209134 A (L) FOXA1 G (I) EFCAB2 

rs6759670 chr2:950291 C (L) RAD21 A (I) LOC339822 

rs34122754 chr2:9884076 C (L) CTCF G (I) GRHL1 

rs4669449 chr2:9884205 G (L) EZH2 A (I) GRHL1 

rs633808 chr2:20957592 G (L) TCF12 T (I) C2orf43 

rs36101491 chr2:24387532 T (L) CTCF,RAD21,ZBTB7A C (I) C2orf84 

rs17046192 chr2:24461334 A (L) FOXA1,ZBTB7A G (I) C2orf84 

rs11676939 chr2:24479057 C (L) CEBPB T (I) C2orf84 

rs72803210 chr2:24615710 A (L) MAFK G (I) C2orf84 

rs77421503 chr2:24625676 C (L) MAX G (I) C2orf84 

rs10460551 chr2:24627074 C (L) HDAC2 T (I) C2orf84 

rs2011616 chr2:27302561 G (L) HDAC2 A (A) KHK 

rs162330 chr2:38319496 C (L) CEBPB A (L) CYP1B1 

rs1554612 chr2:48827497 C (L) CTCF,FOXA2,RAD21 T (A) STON1 (L) STON1 

rs2070063 chr2:64862055 A (L) MAFK G (A) SERTAD2 

rs2241883 chr2:88424066 T (L) POL2 C (L) ARHGAP5,FABP1,TIGD2 

rs2276561 chr2:113956371 G (L) MAX C (I) LOC654433 

rs2305133 chr2:113956821 C (L) BHLHE40,CTCF,RAD21 G (I) LOC654433 

rs931472 chr2:113969948 C (L) DNASE T (I) LOC654433 

rs1049137 chr2:113975110 G (L) POL2 A (I) LOC654433 

 Tissues are designated by (L) liver113,114, (I) islets116, (A) adipose115. *indicates sequence reads are enriched for other allele rather than enriched allele (Enr. Allele)  
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Variant Position 
Enr. 
Allele Imbalanced Protein/Assay 

Other 
Allele Gene(s) 

rs2289897 chr2:113977454 A (L) CEBPB G (I) LOC654433 

rs4849176 chr2:113977936 C (L) POL2 T (I) LOC654433 

rs4849178 chr2:113982608 A (L) FOXA1 G (I) LOC654433 

rs2166421 chr2:113990242 C (L) FOXA1,HNF4A T (I) LOC654433 

rs7421852 chr2:113990261 A (L) FOXA1 G (I) LOC654433,PAX8 

rs10206269 chr2:113990393 A (L) HNF4A C (I) LOC654433,PAX8 

rs4849181 chr2:113991970 G (L) CTCF A (I) LOC654433,PAX8 

rs2364723 chr2:178126546 C (L) MBD4 G (L) NFE2L2 

rs938929 chr2:198780860 G (L) RAD21 A (I) PLCL1 

rs12991600 chr2:202337236 G (L) MAFK A (A) TRAK2 

rs10171839 chr2:219051314 G (L) MAX A (A) ARPC2 

rs13062 chr2:219260651 A (L) CTCF,MAX,ZEB1 C (A) SLC11A1 

rs13423632 chr2:232079116 C (L) MAX T (I) HTR2B 

rs16827879 chr2:232092301 T (L) CTCF,RAD21 C (I) HTR2B 

rs77438791 chr2:239035642 G (L) MBD4 A (I) ESPNL 

rs10206101 chr2:241835543 C (L) FOSL2,HNF4G,JUND,ZEB1 A (I) C2orf54 

rs10933517 chr2:241836338 C (L) DNASE,RAD21 T (I) C2orf54 

rs990284 chr3:104972 A (L) FOXA1,FOXA2,P300 G (L) CHL1 

rs3774750 chr3:50208406 G (L) MAX C (A) MST1R 

rs2233474 chr3:50388607 C (L) DNASE A (A) CYB561D2 

rs2976742 chr3:125417021 C (L) CTCF T (I) LOC100125556 

rs12695470 chr3:125635718 A (L) DNASE,POL2 C (I) LOC100125556 

rs9841194 chr3:125635739 T (L) POL2 C (I) LOC100125556 

rs12497980 chr3:125636117 G (L) MAX,MXI1 A (I) LOC100125556 

rs4377449 chr3:125642330 G (L) USF1 A (I) LOC100125556 

rs9826071 chr3:125648165 T (L) CTCF,RAD21 C (I) LOC100125556 

rs17523380 chr3:125802874 T (L) RAD21 C (I) LOC100125556 

rs2939820 chr3:128127643 G (L) CTCF A (L) HSS00171311 

rs7661077 chr4:7219889 C (L) CEBPB T (L) SORCS2 

rs78578320 chr4:68566689 G (L) DNASE A (I) GNRHR 

rs28653581 chr4:68567025 G (L) DNASE T (I) GNRHR 

rs10030238 chr4:141808805 A (L) HNF4G G (A) RNF150 

rs2227426 chr4:155493171 G (L) POL2 A (L) C9orf66 

rs6846466 chr4:166424428 T (I) FOXA2 C (I) MIR578 

rs28641985 chr4:189376705 A (L) CREB1,ELF1,FOXA1,FOXA2,HEY1,MAFK,POL2,SRF G (I) LOC401164 

rs10941891 chr5:21391789 G (L) CTCF,RAD21,SMC3 C (I) GUSBP1 

rs3195676 chr5:34008100 C (L) BHLHE40,MAX,TAF1 T (A) AMACR 

rs13356762 chr5:56110992 G (L) TAF1 T (I) C5orf35 

rs2548663 chr5:56172778 G (L) CEBPB A (I) C5orf35 

rs185220 chr5:56205357 G (L) DNASE A (I) C5orf35 

 Tissues are designated by (L) liver113,114, (I) islets116, (A) adipose115. *indicates sequence reads are enriched for other allele rather than enriched allele (Enr. Allele)  
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Variant Position 
Enr. 
Allele Imbalanced Protein/Assay 

Other 
Allele Gene(s) 

rs252923 chr5:56205662 G (L) YY1 T (I) C5orf35 

rs33321 chr5:56206073 G (L) HEY1 T (I) C5orf35 

rs1643635 chr5:79928216 G (L) MBD4 A (I) DHFR 

rs10168 chr5:79950403 C (L) DNASE,MAX T (I) DHFR 

rs386689494 chr5:79961675 C (L) MAFK T (I) DHFR 

rs1677645 chr5:79964419 C (L) CEBPB T (I) DHFR 

rs226198 chr5:81573992 C (L) MAX,USF1 T (I) ATP6AP1L 

rs730870 chr5:125874993 G (L) FOXA1 A (L) HSS00124116 

rs192231 chr5:140248539 C (L) CTCF,RAD21 T (I) VTRNA1-2 

rs7739320 chr6:3054146 C (L) DNASE T (I) LOC401233 

rs12203636 chr6:3064249 A (L) HEY1,MAX,MYBL2,POL2,ZEB1 G (I) LOC401233 

rs12196777 chr6:3064523 C (L) DNASE T (I) LOC401233 

rs12665605 chr6:3067003 G (L) POL2 A (I) LOC401233 

rs12663589 chr6:3069057 C (L) POL2 T (I) LOC401233 

rs9379687 chr6:24721787 C (L) BHLHE40,CREB1,HEY1,MAX,MXI1 A (A) FAM65B 

rs198853 chr6:26104096 C (L) HEY1,MYBL2,POL2,RXRA,SRF,TBP T (L) HFE 

rs13201769 chr6:30756066 A (L) CTCF,NR2F2,SP1 G (A) IER3 

rs3132555 chr6:31082910 G (L) RAD21 C (I) CDSN 

rs1042149 chr6:31082960 G (L) CTCF A (I) PSORS1C1 

rs386579266 chr6:31089982 G (L) CEBPB A (I) CDSN 

rs9271092 chr6:32576296 A (L) RAD21 G (I) HLA-DQA1,HLA-DRB1 

rs9271093 chr6:32576341 G (L) CTCF A (I) HLA-DQB1,HLA-DRA, HLA-DRB1, 
HLA-DRB5 

rs9271094 chr6:32576347 G (L) CTCF C (I) HLA-DQA1,HLA-DRB1 

rs9271096 chr6:32576426 A (L) CTCF G (I) HLA-DQA1,HLA-DRB1 

rs17843603 chr6:32620241 G (L) BHLHE40 A (I) HLA-DQA1,HLA-DQB1, HLA-DRB1 

rs1063349 chr6:32627906 T (L) HNF4A C (I) HLA-DQA1,HLA-DQB1, HLA-DRB1 

rs386699568 chr6:32627923 A (L) HNF4A G (I) HLA-DQA1,HLA-DQB1, HLA-DRB1 

rs9274535 chr6:32634620 T (L) RFX5 C (I) HLA-DQB1,HLA-DRA, HLA-DRB1, 
HLA-DRB5 

rs12192544 chr6:46620252 C (L) EZH2 G (L) SLC25A27 

rs9493450 chr6:133135807 T (L) HEY1,POL2 C (A) SNORD100 

rs11155000 chr6:139099401 C (L) TCF7L2 T (A) CCDC28A 

rs539298 chr6:160770360 G (L) BHLHE40,CEBPB,CREB1,DNASE,ELF1,HNF4A,HNF4G,JUND,MAX,MYBL2,NFIC, 
NR2F2,P300,POL2,RAD21 

A (L) SLC22A3 

rs8200 chr7:75696606 G (L) POL2 C (L) AK022137 

rs10953284 chr7:77169782 G (L) CEBPB,DNASE,HNF4A,HNF4G C (L) PTPN12 

rs776745 chr7:99291337 G (L) FOXA1 T (I) CYP3A5 

rs6962760 chr7:141465363 T (I) FOXA2 C (I) FLJ40852 

rs11783893 chr8:2100976 C (L) CTCF G (I) MYOM2 

rs2279128 chr8:71581559 T (L) BHLHE40 G (I) XKR9 

 Tissues are designated by (L) liver113,114, (I) islets116, (A) adipose115. *indicates sequence reads are enriched for other allele rather than enriched allele (Enr. Allele)  
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Variant Position 
Enr. 
Allele Imbalanced Protein/Assay 

Other 
Allele Gene(s) 

rs6985299 chr8:71613079 T (L) MAX C (I) XKR9 

rs11985375 chr8:71613472 G (L) CREB1,MAX A (I) XKR9 

rs10810299 chr9:14964272 A (L) POL2 C (I) LOC389705 

rs1414395 chr10:13334136 T (L) CEBPB G (A) PHYH 

rs4747275 chr10:16552472 G (L) MAFK A (I) C1QL3 

rs17141322 chr10:17604700 A (I) PDX1 C (I) ST8SIA6 

rs10510007 chr10:116636721 G (L) CEBPB A (A) KIAA1600 

rs10835531 chr11:1516110 A (I) FOXA2 G (I) LOC338651 

rs538954 chr11:65756808 C (L) ZBTB7A T (L) NM_032325,NM_174952 

ds613128 chr11:68638058 G (L) MAX T (I) MRPL21 

rs514833 chr11:68657734 C (L) CTCF,DNASE,RAD21,ZBTB33 T (I) MRPL21 

rs629426 chr11:68671104 G (L) YY1 A (I) MRPL21 

rs9787897 chr11:74659302 T (L) FOXA2 A (I) XRRA1 

rs567956 chr11:74659779 C (L) POL2 T (I) XRRA1 

rs2165163 chr11:74660143 C (L) DNASE,MAX G (I) XRRA1 

rs4944968 chr11:74724276 C (L) DNASE G (I) XRRA1 

rs3781884 chr11:113217364 G (L) CTCF A (I) TTC12 

rs2534721 chr12:6580144 C (L) DNASE A (I) TAPBPL 

rs933462 chr12:9103665 G (L) HDAC2 T (A) KLRG1 

rs2239182 chr12:48255411 C (L) FOXA1 T (L) CASKIN2 

rs4509811 chr12:58335142 A (L) CEBPD G (I) XRCC6BP1 

rs1010461 chr14:21153788 C (L) POL2 A (A) RNASE4 

rs1769591 chr14:34378886 G (L) FOXA1 A (L) EGLN3 

rs11624787 chr14:53288450 C (L) CEBPB,FOXA1,FOXA2,HNF4A,P300 G (L) STYX 

rs2034652 chr15:40802768 A (L) CEBPB G (I) C15orf57,MRPL42P5 

rs8036737 chr15:40874256 G (L) MAFK A (I) C15orf57,MRPL42P5 

rs7175950 chr15:78236353 A (L) POL2 G (I) LOC645752 

rs9925556 chr16:2880105 T (L) DNASE,FOXA1 C (L) NM_145252 

rs11075256 chr16:15187912 G (L) HEY1,MAX,MXI1,POL2,SP2,TAF1 C (L) RRN3 

rs62032983 chr16:23653343 T (L) CREB1,ELF1 C (I) DCTN5 

rs2303222 chr16:31085470 C (L) POL2 T (L) VKORC1 

rs1981760 chr16:50723074 C (L) EZH2 T (L) CARD15 

rs35223604 chr16:70052345 C (L) CTCF G (I) EXOSC6 

rs4985407 chr16:70285901 G (L) BHLHE40,CHD2,CREB1,CTCF,DNASE, ELF1,GABP,MAX,POL2,SIN3AK20,YY1 A (I) EXOSC6 

rs876985 chr16:87882124 C (L) P300 T (A) SLC7A5 

rs5689147 chr17:41438468 T (I) POL2 C (I) NBR2 

rs12938996 chr17:41438674 A (I) POL2 G (I) NBR2 

rs12948653 chr17:46259254 A (L) CTCF C (A) HOXB5 

rs16949649 chr17:49230308 T (L) CEBPB C (A) NME1 (L) NME1 

rs8076760 chr17:61920497 T (L) CHD2,GABP,MAX,TCF12 C (I) FTSJ3 

Tissues are designated by (L) liver113,114, (I) islets116, (A) adipose115. *indicates sequence reads are enriched for other allele rather than enriched allele (Enr. Allele) 
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Variant Position 
Enr. 
Allele Imbalanced Protein/Assay 

Other 
Allele Gene(s) 

 

rs2598414 chr17:74067099 C (L) BHLHE40 T (A) SRP68 

rs2376585 chr17:76417883 T (L) CEBPA,CTCF,DNASE,FOXA1,FOXA2, MAX,NR2F2,ZBTB33,ZEB1 C (I) DNAH17 

rs8101689 chr19:30185697 A (L) HDAC2 G (I) C19orf12 

rs1343703 chr19:49955155 C (L) ARID3A (I) FOXA2* G (L) NOP17 

rs34541537 chr19:58912737 C (L) CREB1 T (I) ZNF584 

rs35138622 chr19:58912788 C (L) CREB1 A (I) ZNF584 

rs35117909 chr19:58912906 G (L) CREB1 A (I) ZNF584 

rs11878203 chr19:58920050 G (L) DNASE A (I) ZNF584 

rs11697620 chr20:3150165 C (L) CTCF,MAX T (A) ProSAPiP1 

rs6111720 chr20:17868623 T (L) CEBPD C (L) ADRBK1,AP4M1,ATP2B1, CAPN10, 
CORO1B,GIPC1,LZTR1,PIAS3, 
SLC39A13,TAF6,WHSC2,WIZ 

rs386814838 chr20:48092076 G (L) CEBPB A (L) AK055386,Contig29707,KCNB1 

rs2832245 chr21:30554634 C (I) FOXA2 T (I) RWDD2B 

rs6000200 chr22:36612258 C (I) PDX1 G (A) APOL2 

rs4828057 chrX:100006043 A (I) MAFB C (A) SYTL4 

 Tissues are designated by (L) liver113,114, (I) islets116, (A) adipose115. *indicates sequence reads are enriched for other allele rather than enriched allele (Enr. Allele)  
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APPENDIX 3: Allelic imbalance at cardiometabolic trait and disease GWAS loci 

Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

TMEM57, 
LDLRAP1 

rs9438904 chr1:25756860 C (L) YY1 T Total Cholesterol rs12027135 0.98 T,A A 

LDL cholesterol rs12027135 0.98 T,A A 

LEPR rs12021623 chr1:66153586 C (L) HNF4G A C-reactive protein rs4420065 0.90 C,T C 

DDAH1 
rs2268667 chr1:85793746 G (L) FOXA1 A Serum dimethylarginine levels  rs1884139 0.90 G,G T 

rs2177461 chr1:85861976 G (L) ZBTB33 C Serum dimethylarginine levels rs1884139 0.97 G,G T 

PHGDH 

rs839605 chr1:120217524 C (L) CTCF A Blood metabolite levels rs1163251 0.98 C,C T 

rs639761 chr1:120217558 G (L) CEBPA,CEBPB,CREB1,CTCF,RAD21 A Blood metabolite levels rs1163251 0.97 G,C T 

rs640195 chr1:120217650 T (L) ARID3A,CEBPB,CREB1,CTCF,RAD21 A Blood metabolite levels rs1163251 0.98 T,C T 

rs483180 chr1:120267505 G (L) HDAC2 C Metabolite levels rs478093 0.99 C,G G 

 Metabolic traits rs477992 0.99 C,G A 

F5, SELP rs2236869 chr1:169535196 G (L) FOXA1 T Activated partial thromboplastin time rs6028 0.90 T,T C 

FMO3 rs2281007 chr1:171111351 G (L) CEBPA A Blood metabolite levels rs7061710 0.79 G,G C 

ANGPTL1 

rs17361251 chr1:178520577 A (L) 
CEBPA,CEBPB,CEBPD,FOXA1,FOXA2,HNF4A, 
HNF4G,MAX,NFIC,NR2F2,P300,SP1,ZBTB7A 

C HDL cholesterol rs4650994 1.00 A,A G 

rs17276513 chr1:178520604 A (L) 
CEBPA,CEBPB,DNASE,FOXA1,FOXA2,HDAC2, 
HNF4A,HNF4G,MAX,NR2F2,P300,SP1,ZBTB7A 

T HDL cholesterol rs4650994 0.99 A,A G 

rs17276527 chr1:178520680 A (L) 
CREB1,DNASE,FOXA1,FOXA2,HDAC2,HNF4A, 
HNF4G,MAX,NFIC,P300,SP1,ZEB1 

G HDL cholesterol rs4650994 1.00 A,A G 

PROX1 

rs9970073 chr1:214156165 A (L) MAX G 
 

Fasting glucose-related traits 
(interaction with BMI) 

rs340874 0.73 G,C - 

Fasting glucose-related traits rs340874 0.73 G,C C 

rs340879 chr1:214156514 T (L) RAD21 C Fasting glucose-related traits 
(interaction with BMI) 

rs340874 0.77 C,C - 

Fasting glucose-related traits rs340874 0.77 C,C C 

MIA3 
rs4846770 chr1:222795569 G (L) CEBPD C Myocardial infarction (early onset) rs17465637 0.95 G,C C 

Coronary heart disease rs17465637 0.95 G,C C 

GALNT2 

rs4846913 chr1:230294715 A (L) CEBPA,CEBPB,CEBPD,NR2F2 (I) MAFB C HDL cholesterol rs2144300 1.00 A,T T 

Triglycerides rs4846914 1.00 A,A G 

Metabolite levels rs10127775 1.00 A,T - 

IRF2BP2, 
TOMM20 

rs526936 chr1:234852204 A (L) POL2 (I) FOXA2 G Total Cholesterol rs514230 0.92 A,T A 

LDL cholesterol rs514230 0.92 A,T A 

rs556107 chr1:234853059 C (L) HEY1 T Total Cholesterol rs514230 0.93 T,T A 

LDL cholesterol rs514230 0.93 T,T A 

TRIB2 rs4669888 chr2:12980514 G (L) CEBPA,CEBPB A Pericardial fat rs10198628 0.98 A,A - 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

APOB 

rs1367117 chr2:21263900 G (L) HEY1,MAX A Total Cholesterol rs1367117 1.00 - A 

LDL cholesterol rs1367117 1.00 - A 

Lipid metabolism phenotypes rs1367117 1.00 - - 

rs312983 chr2:21378580 A (L) FOXA1 C LDL cholesterol rs562338 0.72 C,G G 

Lipid metabolism phenotypes rs312985 0.99 C,G - 

rs312984 chr2:21378778 C (L) ARID3A,FOXA1,FOXA2,HNF4A,MAX,NFIC, 
RAD2,ZEB1 

T LDL cholesterol rs562338 0.73 T,G G 

Lipid metabolism phenotypes rs312985 1.00 T,G - 

rs312985 chr2:21378805 A (L) 
CREB1,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G, 
MYBL2,NRSF,P300,SP1,ZEB1 

G LDL cholesterol rs562338 0.73 G,G G 

Lipid metabolism phenotypes rs312985 1.00 - - 

rs1652418 chr2:21388456 T (L) MAZ,RAD21,SMC3 C LDL cholesterol rs515135 0.72 C,C T 

Lipid metabolism phenotypes rs312985 0.99 C,G - 

rs544039 chr2:21398985 C (L) CTCF,RAD21 A LDL cholesterol rs515135 0.71 A,C T 

Lipid metabolism phenotypes rs506585 1.00 A,A - 

ADCY3, 
POMC 

rs7580081 chr2:25097072 C (L) CEBPB G Body mass index rs6545814 0.94 G,A G 

Obesity rs10182181 0.73 G,A G 

SLC5A6 

rs2580759 chr2:27432500 G (L) CTCF T Blood metabolite levels rs1395 0.71 T,A A 

rs11608 chr2:27435374 G (L) YY1 A Blood metabolite levels rs1395 0.88 A,A A 

rs1141313 chr2:27460968 G (L) POL2 A Blood metabolite levels rs1395 0.91 A,A A 

GCKR 

rs1260326 chr2:27730940 C (L) CTCF T Triglycerides-Blood Pressure (TG-
BP) 

rs780093 0.91 T,T A 

Metabolic syndrome rs780094 0.91 T,T A 

Waist Circumference - Triglycerides 
(WC-TG) 

rs780093 0.91 T,T A 

Palmitoleic acid (16:1n-7) plasma 
levels 

rs780093 0.91 T,T - 

Fasting glucose-related traits 
(interaction with BMI) 

rs780094 0.91 T,T - 

Serum albumin level rs1260326 1.00 - T 

Two-hour glucose challenge rs1260326 1.00 - T 

Hypertriglyceridemia rs1260326 1.00 - T 

Lipid metabolism phenotypes rs1260326 1.00 - - 

Fasting insulin-related traits rs780094 0.91 T,T C 

Blood metabolite levels rs1260326 1.00 - T 

Metabolite levels rs1260326 1.00 - - 

Non-albumin protein levels rs1260326 1.00 - C 

Metabolic traits rs1260326 1.00 - A 

Fasting insulin-related traits 
(interaction with BMI) 

rs780094 0.91 T,T - 

C-reactive protein rs1260326 1.00 - T 

Triglycerides rs1260326 1.00 - T 

* indicates other allele is enriched rather than enriched allele (Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

GCKR 
(cont’d) 

rs1260326 
(cont’d) 

chr2:27730940 C (L) CTCF T Blood metabolite ratios rs1260326 1.00 - T 

Total Cholesterol rs1260326 1.00 - T 

Fasting glucose-related traits rs780094 0.91 T,T C 

rs780095 chr2:27741105 G (L) FOXA1 A Triglycerides-Blood Pressure (TG-
BP) 

rs780093 0.88 A,T A 

Metabolic syndrome rs780094 0.86 A,T A 

Waist Circumference - Triglycerides 
(WC-TG) 

rs780093 0.88 A,T A 

Palmitoleic acid (16:1n-7) plasma 
levels 

rs780093 0.88 A,T - 

Fasting glucose-related traits 
(interaction with BMI) 

rs780094 0.86 A,T - 

Serum albumin level rs1260326 0.81 A,T T 

Two-hour glucose challenge rs1260326 0.81 A,T T 

Hypertriglyceridemia rs1260326 0.81 A,T T 

Lipid metabolism phenotypes rs1260326 0.81 A,T - 

Fasting insulin-related traits rs780094 0.86 A,T C 

Non-albumin protein levels rs1260326 0.81 A,T C 

Metabolite levels rs1260326 0.81 A,T - 

Blood metabolite levels rs1260326 0.81 A,T T 

Fasting insulin-related traits 
(interaction with BMI) 

rs780094 0.86 A,T ? 

Metabolic traits rs780094 0.86 A,T T 

C-reactive protein rs780094 0.86 A,T A 

Triglycerides rs1260333 0.98 A,A C 

Blood metabolite ratios rs1260326 0.81 A,T T 

Total Cholesterol rs1260326 0.81 A,T T 

Fasting glucose-related traits rs780094 0.86 A,T C 

rs780094 chr2:27741237 C (L) CEBPB,FOXA1,FOXA2,MAFK,MAX,NR2F2, 
NRSF,ZEB1 

T C-reactive protein rs780094 1.00 - A 

Metabolic syndrome rs780094 1.00 - A 

Metabolic traits rs780094 1.00 - T 

Fasting insulin-related traits 
(interaction with BMI) 

rs780094 1.00 - - 

Fasting glucose-related traits 
(interaction with BMI) 

rs780094 1.00 - - 

Fasting insulin-related traits rs780094 1.00 - C 

Fasting glucose-related traits rs780094 1.00 - C 

Triglycerides rs780094 1.00 - T 

Waist Circumference - Triglycerides 
(WC-TG) 

rs780093 0.98 T,T A 

Triglycerides-Blood Pressure (TG-
BP) 

rs780093 0.98 T,T A 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

GCKR 
(cont’d) 

rs780094 
(cont’d) 

chr2:27741237 C (L) CEBPB,FOXA1,FOXA2,MAFK,MAX,NR2F2, 
NRSF,ZEB1 

T Palmitoleic acid (16:1n-7) plasma 
levels 

rs780093 0.98 T,T - 

Two-hour glucose challenge rs1260326 0.91 T,T T 

Hypertriglyceridemia rs1260326 0.91 T,T T 

Lipid metabolism phenotypes rs1260326 0.91 T,T ? 

Non-albumin protein levels rs1260326 0.91 T,T C 

Metabolite levels rs1260326 0.91 T,T - 

Blood metabolite levels rs1260326 0.91 T,T T 

Blood metabolite ratios rs1260326 0.91 T,T T 

Total Cholesterol rs1260326 0.91 T,T T 

Serum albumin level rs1260326 0.91 T,T T 

C2orf16 
rs1919128 chr2:27801759 A (L) BHLHE40 G Waist Circumference - Triglycerides 

(WC-TG) 
rs1919128 1.00 - A 

CCDC121 
rs3749147 chr2:27851918 G (L) 

CEBPD,DNASE,ELF1,GABP,MAX,MXI1,NR2F2, 
POL2,TAF1,YY1,ZBTB7A 

A Waist Circumference - Triglycerides 
(WC-TG) 

rs3749147 1.00 - C 

EHBP1 

rs2136737 chr2:62969310 C (L) FOXA2,HNF4A G LDL cholesterol rs2710642 0.77 G,A G 

rs1553832 chr2:63013515 G (L) BHLHE40 C LDL cholesterol rs2710642 0.80 C,A G 

rs56373728 chr2:63095792 G (L) POL2 A LDL cholesterol rs2710642 0.93 A,A G 

rs2710642 chr2:63149557 G (L) POL2 A LDL cholesterol rs2710642 1.00 - G 

ALMS1, 
NAT8, 
TPRKB, 
DUSP11 

rs10469966 chr2:73752368 G (L) CEBPB A 
 

Metabolite levels rs9309473 0.89 G,A G 

Blood metabolite levels rs10469966 1.00 - A 

Metabolic traits rs13391552 0.80 G,G A 

Intergenic rs62150376 chr2:83295262 T (L) FOXA1,HDAC2,HNF4G C Hypertension rs10496289 0.93 C,C - 

ACMSD rs62168897 chr2:135717997 C (L) POL2 T Blood metabolite levels rs6430553 0.74 C,C T 

FIGN rs73029563 chr2:165008166 C (L) CEBPB G Blood pressure rs1446468 0.90 C,T T 

GRB14, 
COBLL1 
 

rs6713419 chr2:165508300 T (L) MAFK C  type 2 diabetes rs3923113 0.97 C,C A 

Triglycerides rs10195252 0.87 C,C C 

rs10184004 chr2:165508389 C (L) MAFK T  type 2 diabetes rs3923113 0.85 T,C A 

Triglycerides rs10195252 0.99 T,C C 

CTLA4 
rs6745050 chr2:204691538 T (L) MAFK C Type 1 diabetes rs3087243 0.88 C,G A 

Type 1 diabetes autoantibodies rs3087243 0.88 C,G A 

UGT1A 

rs4477910 chr2:234643737 T (L) FOXA1,FOXA2,HNF4A,NR2F2 A Blood metabolite levels rs887829 0.74 A,C T 

Metabolite levels rs887829 0.74 A,C T 

Metabolic traits rs887829 0.74 A,C T 

AGXT 

rs4401206 chr2:241796905 G (L) CEBPD,CREB1,DNASE,HNF4A,HNF4G,MAX, 
MXI1,P300,RAD21,USF1,YY1 

A Blood metabolite levels rs4675874 0.83 G,A A 

rs10933641 chr2:241813788 C (L) DNASE,MAX,POL2 T Blood metabolite levels rs4675874 0.86 C,A A 

rs4675858 chr2:241840558 A (L) CEBPB G Blood metabolite levels rs4675874 0.98 A,A A 

rs4417704 chr2:241846573 G (L) CTCF,MAX,RAD21 A Blood metabolite levels rs4675874 0.75 G,A A 

rs62186584 chr2:241853621 C (L) CREB1 T Blood metabolite levels rs4675874 0.72 C,A A 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

SLC4A7 
rs7640929 chr3:27513944 A (L) CEBPA C Diastolic blood pressure rs13082711 0.89 C,T T 

Blood pressure rs13082711 0.89 C,T T 

GNL3 

rs7639267 chr3:52568805 T (L) HEY1 G Adiponectin levels rs2590838 0.70 G,G G 

rs1108842 chr3:52720080 C (L) CREB1,SIN3AK20,TAF1 A Adiponectin levels rs1108842 1.00 - C 

rs2710323 chr3:52815905 C (L) BHLHE40,FOXA2 T Adiponectin levels rs1108842 0.80 T,A C 

GSK3B rs6800622 chr3:119580678 C (L) MAFK A HDL cholesterol rs6805251 0.98 C,C T 

ADIPOQ rs58575091 chr3:186545319 T (L) CHD2 C Adiponectin levels rs266717 0.80 T,C C 

STX18, 
MSX1 

rs4689909 chr4:4643276 G (L) HEY1 A Congenital heart disease rs870142 0.98 G,C A 

ANXA3 rs4075927 chr4:79575058 G (L) BHLHE40,USF1 A Non-albumin protein levels rs10007186 0.95 G,T  

ABCG2 rs45499402 chr4:89043634 G (L) FOXA1 C Serum uric acid levels rs2231142 1.00 G,G T 

PPM1K 

rs6841731 chr4:89228928 A (L) MAFK G Blood metabolite levels rs1440581 0.89 G,T T 

Metabolite levels rs1440581 0.89 G,T ? 

rs2869930 chr4:89242372 G (L) FOXA1,FOXA2 C Blood metabolite levels rs10022462 1.00 G,C T 

TMEM154 rs6813195 chr4:153520475 C (I) FOXA2 T  type 2 diabetes rs6813195 1.00 - C 

TERT 
rs31490 chr5:1344458 A (L) CEBPB G Serum prostate-specific antigen 

levels 
rs401681 0.89 A,T C 

ANKH rs835158 chr5:14873254 G (L) CEBPB C Blood metabolite levels rs835154 0.76 C,G A 

BHMT, 
BHMT2 

rs16876512 chr5:78407261 T (L) TCF12 C Blood metabolite levels rs16876394 0.86 C,T T 

Metabolite levels rs17823642 0.83 C,C C 

ELL2 
 

rs10070197 chr5:95241868 C (L) CEBPB T Serum total protein level rs3777200 0.99 T,C T 

rs1458017 chr5:95251346 A (L) HEY1 G Serum total protein level rs3777200 0.81 G,C T 

ELOVL2 

rs2295602 chr6:11005842 T (L) BHLHE40 C Blood metabolite levels rs4713169 0.87 T,G C 

rs3798713 chr6:11008622 G (L) FOXA1,HNF4A C Blood metabolite levels rs4713169 0.83 G,G C 

rs953413 chr6:11012859 G (L) FOXA1,FOXA2,NR2F2,P300 A Blood metabolite levels rs4713169 0.88 G,G C 

rs56190003 chr6:11088533 T (L) HEY1 C Blood metabolite levels rs4713169 0.94 T,G C 

rs13362715 chr6:11088630 C (L) HEY1,POL2 T Metabolite levels rs3798722 0.75 C,A - 

Metabolic traits rs9393903 0.79 C,G A 

Blood metabolite ratios rs9393915 0.85 C,C T 

SLC17A3 
 

rs1165176 chr6:25830298 A (L) FOXA1 G Cardiovascular disease risk factors rs11754288 0.78 G,G A 

Blood metabolite levels rs2762353 0.86 G,G A 

Blood metabolite ratios rs1185567 0.88 G,G A 

rs1165183 chr6:25836380 G (L) POL2 A Cardiovascular disease risk factors rs11754288 0.78 G,G A 

Blood metabolite levels rs2762353 0.86 G,G A 

Blood metabolite ratios rs1185567 0.87 G,G A 

HCG27, 
HLA-C 

rs6921948 chr6:31171257 A (I) FOXA2 C Coronary heart disease rs3869109 0.73 A,A G 

BAT2, BAT5

rs813115 chr6:31620020 G (L) DNASE,GABP,NRSF A Diastolic blood pressure rs805303 1.00 A,G G 

Systolic blood pressure rs805303 1.00 A,G G 

Hypertension rs805303 1.00 A,G G 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

MHC 
rs4348358 chr6:32399092 G (L) MAFK A Type 1 diabetes rs9268645 1.00 G,C - 

rs9268606 chr6:32400070 G (L) CTCF A Type 1 diabetes rs9268645 1.00 G,C - 

SLC35F1, 
C6orf204, 
PLN 

rs283080 chr6:118606000 A (L) RAD21 C Cardiac structure and function rs89107 0.79 C,G G 

Intergenic rs73069540 chr7:26904770 T (L) HDAC2 C Type 1 diabetes rs7804356 0.95 C,T - 

PON-1 rs705379 chr7:94953895 G (L) DNASE A Paraoxonase activity rs854572 0.84 G,C  

PPP1R3B 

rs6984305 chr8:9178268 T (L) CTCF A Fasting glucose-related traits 
(interaction with BMI) 

rs4841132 0.80 T,G - 

HDL cholesterol rs9987289 0.80 T,G A 

Metabolite levels rs4841132 0.80 T,G - 

HDL Cholesterol - Triglycerides 
(HDLC-TG) 

rs9987289 0.80 T,G A 

Fasting insulin-related traits 
(interaction with BMI) 

rs4841132 0.80 T,G - 

C-reactive protein rs9987289 0.80 T,G A 

Total Cholesterol rs9987289 0.80 T,G - 

LDL cholesterol rs9987289 0.80 T,G T 

IDO1 rs11777082 chr8:39797703 A (L) BHLHE40 G Blood metabolite levels rs2160860 0.88 G,A A 

CDC123, 
CAMK1D 

rs34428576 chr10:12281111 G (L) CEBPA,CEBPB,CEBPD,CREB1,DNASE, 
FOXA1,HDAC2,HNF4A,JUND,MAX,NFIC,NR2F2,P
300, RAD21,ZBTB7A 

A  type 2 diabetes rs12779790 0.72 G,A G 

c10orf107, 
TMEM26, 
RTKN2, 
RHOBTB1, 
ARID5B 

rs16916563 chr10:63507642 G (L) FOXA2 A Diastolic blood pressure rs1530440 0.92 G,C T 

HHEX rs4933736 chr10:94471595 T (L) FOXA2 C  type 2 diabetes rs1111875 0.74 C,C G 

HIF1AN, 
SEC31B, 
NDUFB8, 
WNT8B, 
SCD 

rs2295776 chr10:102295629 G (L) BHLHE40 T Palmitoleic acid (16:1n-7) plasma 
levels 

rs11190604 0.96 G,A - 

rs2495758 chr10:102321900 C (L) 
CHD2,CREB1,CTCF,DNASE,ELF1,MAX,RAD21,Y
Y1 

G Palmitoleic acid (16:1n-7) plasma 
levels 

rs11190604 0.98 C,A - 

CYP17A1, 
AS3MT, 
CNNM2, 
NT5C2 

- chr10:104692633 A (L) CEBPA C Blood pressure rs11191548 0.83 C,T T 

Coronary heart disease rs12413409 0.94 C,G - 

Systolic blood pressure rs11191548 0.83 C,T T 

rs1926032 chr10:104829469 C (L) CTCF T Blood pressure rs11191548 0.76 C,T T 

Systolic blood pressure rs11191548 0.76 C,T T 

ACY3 rs12288023 chr11:67421341 T (L) CEBPB C Serum metabolite levels rs12288023 1.00 - C 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

ZNF259, 
APOA1, 
APOC3, 
APOA4, 
APOA5, 
BUD13 

rs180351 chr11:116607641 T (L) CTCF C Triglycerides rs603446 0.91 T,T T 

UBASH3B 
rs11218752 chr11:122552600 C (L) CTCF T HDL cholesterol rs7941030 0.81 C,T G 

Total Cholesterol rs7941030 0.81 C,T G 

PAH  rs869916 chr12:103244013 T (L) HNF4A G Blood metabolite levels rs1498694 1.00 G,A A 

ASCL1 rs4764939 chr12:103522952 C (L) HNF4A T C-reactive protein rs10745954 0.87 C,A A 

ACADS 

rs12828810 chr12:121152017 G (L) CTCF T Metabolite levels rs2014355 0.91 T,T T 

Blood metabolite levels rs2066938 1.00 T,A A 

Metabolic traits rs2066938 1.00 T,A G 

HNF1A rs7139079 chr12:121415293 A (L) POL2 G C-reactive protein rs7310409 0.82 A,G A 

OASL rs2258287 chr12:121454313 A (L) POL2,USF1 C Cardiovascular disease risk factors rs3213545 0.72 C,G A 

WDR66  rs1154513 chr12:122391963 A (I) FOXA2 G Blood metabolite levels rs493519 0.94 G,C T 

Intergenic rs12864047 chr13:74796108 C (L) HNF4G T Sudden cardiac arrest rs12429889 0.78 T,T - 

ABCC4  rs9302064 chr13:95966851 A (L) FOXA1,JUND C Blood metabolite levels rs9302065 0.99 C,G A 

SERPINA1 rs17090719 chr14:94846661 T (L) HEY1,MBD4,POL2 C Metabolite levels rs1303 0.75 T,T - 

CSK, ULK3 rs11857695 chr15:75165751 T (L) CREB1,JUND G Diastolic blood pressure rs6495122 0.70 T,C A 

ADAMTS7 rs11856536 chr15:79094325 A (L) HDAC2 G Coronary heart disease rs3825807 0.98 A,A A 

FURIN, FES 
rs4932370 chr15:91404705 G (I) NKX6 A Diastolic blood pressure rs2521501 0.71 A,T T 

Systolic blood pressure rs2521501 0.71 A,T T 

ACSM5,  
ACSM2A 

rs7194098 chr16:20464350 C (L) POL2,SRF G Blood metabolite levels rs11647589 0.89 C,A A 

rs9937581 chr16:20473903 G (L) MAFF,MAFK A Blood metabolite levels rs1394678 0.80 G,C T 

rs1394678 chr16:20491058 C (L) CTCF T Blood metabolite levels rs1394678 1.00 - T 

IL27 

rs181203 chr16:28512371 A (L) EZH2 C Type 1 diabetes rs4788084 0.73 A,C G 

rs62034319 chr16:28532188 T (L) HDAC2 G Type 1 diabetes rs4788084 0.99 T,C G 

rs2106480 chr16:28537971 T (L) CEBPB,DNASE,FOXA1,HNF4A,P300 C Type 1 diabetes rs4788084 1.00 T,C G 

rs62034351 chr16:28565489 G (L) DNASE,HEY1,POL2 A Type 1 diabetes rs4788084 0.79 G,C G 

rs7191618 chr16:28565667 C (L) DNASE,MAX,RAD21 G Type 1 diabetes rs4788084 0.89 C,C G 

rs743590 chr16:28608230 G (L) MAX,POL2,YY1 A Type 1 diabetes rs4788084 0.74 G,C G 

rs62031562 chr16:28609329 A (L) POL2 T Type 1 diabetes rs4788084 0.71 A,C G 

SH2B1 

rs7187776 chr16:28857645 A (L) CREB1,HEY1,HNF4G G Body mass index rs7498665 0.71 A,A G 

Obesity rs7498665 0.71 A,A G 

rs62037367 chr16:28874547 C (L) CREB1 G Body mass index rs7498665 1.00 C,A G 

Obesity rs7498665 1.00 C,A G 

rs7198606 chr16:28875122 T (L) CREB1,SP2,SRF G Body mass index rs7498665 1.00 T,A G 

Obesity rs7498665 1.00 T,A G 

rs11864750 chr16:28875204 A (L) NR2F2 T Body mass index rs7498665 0.99 A,A G 

Obesity rs7498665 0.99 A,A G 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

RABEP2, 
SH2B1 

rs4072402 chr16:28937259 C (L) CTCF T Obesity rs7184597 0.85 C,C T 

CETP rs12720926 chr16:56998918 A (L) DNASE G Lipid metabolism phenotypes rs1532624 0.94 A,C - 

HDL cholesterol rs1532624 0.94 A,C C 

Blood metabolite levels rs1800775 0.75 A,C A 

Triglycerides rs1800775 0.75 A,C C 

Lipid traits rs1800775 0.75 A,C A 

EDC4, 
LCAT 

rs7199443 chr16:67841129 G (L) MAX T Metabolic syndrome rs8060686 0.88 T,T T 

rs7196789 chr16:67927124 T (L) YY1 C Metabolic syndrome rs8060686 0.97 C,T T 

 HDL cholesterol rs2271293 0.71 C,G A 

rs1134760 chr16:67964203 C (L) POL2 T Metabolic syndrome rs8060686 0.95 T,T T 

rs20549 chr16:67969930 G (L) POL2 A Metabolic syndrome rs8060686 0.95 A,T T 

rs1109166 chr16:67977382 C (L) CREB1,FOXA1,FOXA2,HNF4A,HNF4G,NR2F2 T Metabolic syndrome rs8060686 0.92 T,T T 

Intergenic rs8052763 chr16:75251659 C (L) HNF4A G Type 1 diabetes rs7202877 0.74 C,T G 

SLC7A5 
 

rs12448415 chr16:87871096 G (L) POL2 A Blood metabolite levels rs8051149 0.73 G,A A 

rs12931876 chr16:87874182 T (L) CTCF C Blood metabolite levels rs8051149 0.78 C,A A 

rs34508683 chr16:87876375 C (L) EZH2,POL2 T Blood metabolite levels rs8051149 0.99 C,A A 

rs28609922 chr16:87876631 A (L) BHLHE40,MAX,P300 C Blood metabolite levels rs8051149 0.99 A,A A 

rs56722741 chr16:87877313 G (L) POL2 C Blood metabolite levels rs8051149 0.99 G,A A 

rs4843270 chr16:87878072 A (L) CTCF,POL2 C Blood metabolite levels rs8051149 0.99 A,A A 

rs4843715 chr16:87878076 A (L) POL2 G Blood metabolite levels rs8051149 1.00 A,A A 

rs4843718 chr16:87878476 A (L) CREB1 G Blood metabolite levels rs8051149 0.99 A,A A 

rs35459492 chr16:87878883 G (L) POL2 C Blood metabolite levels rs8051149 1.00 G,A A 

ORMDL3 rs1453559 chr17:38020419 C (L) BHLHE40,DNASE,MXI1 T Type 1 diabetes rs2290400 0.85 T,T C 

rs12936231 chr17:38029120 G (L) ARID3A,CTCF,RAD21 C Type 1 diabetes rs2290400 0.87 C,T C 

rs1031460 chr17:38072247 G (L) POL2 T Type 1 diabetes rs2290400 0.86 G,T C 

rs7224129 chr17:38075426 G (L) POL2 A Type 1 diabetes rs2290400 0.92 A,T C 

rs4065275 chr17:38080865 G (L) CTCF,DNASE,RAD21 A Type 1 diabetes rs2290400 0.86 G,T C 

rs8076131 chr17:38080912 A (L) CTCF,HEY1,RAD21 G Type 1 diabetes rs2290400 0.73 A,T C 

MPP3 rs17742347 chr17:41846468 C (L) POL2 T Triglycerides rs8077889 0.90 C,A C 

rs17674998 chr17:41879544 A (L) ZBTB33 G Triglycerides rs8077889 0.99 A,A C 

rs9901676 chr17:41911818 T (L) EZH2 C Triglycerides rs8077889 0.92 T,A C 

C17orf71 rs6503905 chr17:57287454 A (L) CREB1,ELF1 G Circulating myeloperoxidase levels  rs6503905 1.00 - A 

PGS1 rs4969182 chr17:76393030 T (L) CEBPB,FOXA1,FOXA2,MAX,MYBL2,NR2F2 C HDL cholesterol rs4129767 0.96 C,A G 

rs4969183 chr17:76393372 A (L) BHLHE40 G HDL cholesterol rs4129767 0.96 G,A G 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 
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Locus Variant Position 
Enr. 

Allele  Imbalanced Proteins 
Other 
Allele Trait 

Reported 
Variant 

LD 
(r2)a Coupling 

Risk. 
Allele 

CCDC57  

rs62078747 chr17:80055206 C (L) MAX,MXI1 G Blood metabolite levels rs4625783 0.78 G,C T 

rs59251877 chr17:80056498 G (L) JUND,MAX A Blood metabolite levels rs4625783 0.76 A,C T 

rs7225637 chr17:80059758 G (L) ELF1,TAF1 A Blood metabolite levels rs4625783 0.82 A,C T 

rs11658040 chr17:80059891 C (L) DNASE,HNF4A,MAX T Blood metabolite levels rs4625783 0.82 T,C T 

rs9908277 chr17:80060829 T (L) MAX,MXI1 C Blood metabolite levels rs4625783 0.83 C,C T 

rs9894129 chr17:80075700 A (L) CEBPB,HDAC2,HNF4A,MAX G Blood metabolite levels rs4625783 0.94 G,C T 

rs9916649 chr17:80075739 G (L) BHLHE40,CREB1,FOXA2,MAX,RXRA,SP1 A Blood metabolite levels rs4625783 0.94 A,C T 

rs7218075 chr17:80076808 C (L) FOXA2,POL2 G Blood metabolite levels rs4625783 0.93 G,C T 

rs62079996 chr17:80076862 A (L) FOXA1 G Blood metabolite levels rs4625783 0.92 G,C T 

rs6502065 chr17:80095642 C (L) CEBPB T Blood metabolite levels rs4625783 0.98 T,C T 

AP3D1, 
DOT1L, 
SF3A2 

rs7256735 chr19:2169121 T (I) NKX2 G Myocardial infarction rs3803915 0.95 T,C C 

INSR 
rs10410204 chr19:7224350 C (L) FOXA1,FOXA2 T Triglycerides rs7248104 0.98 C,A A 

rs7248104 chr19:7224431 A (L) FOXA1,FOXA2,MAX,NR2F2,YY1 G Triglycerides rs7248104 1.00 - A 

ISYNA1  
rs2303696 chr19:18548884 C (L) DNASE T Blood metabolite levels rs4808136 0.80 T,G A 

rs8103622 chr19:18572834 C (L) CTCF T Blood metabolite levels rs4808136 0.92 C,G A 

PEPD 

rs62102718 chr19:33891013 A (L) HNF4G T Adiponectin levels rs731839 0.76 A,A G 

HDL cholesterol rs731839 0.76 A,A G 

Triglycerides rs731839 0.76 A,A G 

SULT2A1 rs296368 chr19:48372298 T (L) RAD21 C Blood metabolite levels rs182420 0.84 C,C T 

SPTLC3 

rs1321940 chr20:12959885 G (L) FOXA1 A Blood metabolite levels rs4814176 0.99 G,C T 

Blood metabolite ratios rs4814176 0.99 G,C T 

LDL cholesterol rs364585 0.99 G,G A 

EDEM2 rs6060266 chr20:33733078 C (I) CTCF T Protein C levels rs6120849 0.96 T,C T 

FITM2, 
R3HDML, 
HNF4A 

rs4812816 chr20:42930872 C (L) MAZ A Type 2 diabetes rs6017317 0.74 C,T G 

rs6065723 chr20:42956922 C (L) MAFF,MAFK T Type 2 diabetes rs6017317 0.77 C,T G 

* indicates other allele is enriched rather than enriched allele(Enr. Allele), aR2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases 
risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown 

 

 



    

122 
 

 

APPENDIX 4: Cardiometabolic diseases and traits from GWAS catalog 

Activated partial thromboplastin time Fasting plasma glucose 

Adiponectin levels Fat body mass 

Adiposity Glycemic control in type 1 diabetes (HbA1c) 

Anthropometric traits Glycemic traits 

Apolipoprotein Levels HDL cholesterol 

&beta;2-Glycoprotein I (&beta;2-GPI) plasma levels HDL Cholesterol - Triglycerides (HDLC-TG) 

Blood metabolite levels Heart failure 

Blood metabolite ratios Hypertension 

Blood pressure Hypertension (young onset) 

Blood pressure (age interaction) Hypertriglyceridemia 

Blood pressure measurement (cold pressor test) Hypertrophic cardiomyopathy 

Blood pressure measurement (high sodium and potassium intervention) Insulin-related traits 

Blood pressure measurement (high sodium intervention) Insulin resistance/response 

Blood pressure measurement (low sodium intervention) LDL cholesterol 

Blood pressure (response to antihypertensive medication) LDL (oxidized) 

Blood pressure variability Lipid metabolism phenotypes 

Body mass index Lipid traits 

Body mass index and cholesterol (psychopharmacological treatment) Lipopolysaccharide induced cytokine levels 

Body mass index and fat mass Lipoprotein diameter 

Body mass (lean) Lp (a) levels 

Cardiac hypertrophy Metabolic syndrome 

Cardiac muscle measurement Metabolic syndrome (bivariate traits) 

Cardiac structure and function Metabolic traits 

Cardiac Troponin-T levels Metabolite levels 

Cardiovascular disease risk factors Myocardial infarction 
Cardiovascular event reduction in the elderly at risk for vascular disease 
(statin therapy interaction) Myocardial infarction (early onset) 

Cardiovascular heart disease in diabetics Natriuretic peptide levels 

Cholesterol NHDL cholesterol 

Cholesterol and Triglycerides Non-albumin protein levels 

Total Cholesterol Obesity 

Coronary artery calcification Obesity and blood pressure 

Coronary artery calcification (smoking interaction) Obesity (early onset extreme) 

Coronary artery disease Obesity (extreme) 

Coronary artery disease or ischemic stroke Obesity-related traits 

Coronary artery disease or large artery stroke Palmitic acid (16:0) plasma levels 

Coronary heart disease Palmitoleic acid (16:1n-7) plasma levels 

Coronary heart disease in familial hypercholesterolemia Paraoxonase activity 

Coronary restenosis Pericardial fat 

Circulating myeloperoxidase levels (plasma) Peripartum cardiomyopathy 

Circulating myeloperoxidase levels (serum) Peripheral artery disease 

Congenital heart disease Plasma cystastin c levels in acute coronary syndrome 

C-reactive protein 
Plasma omega-6 polyunsaturated fatty acid levels 
(dihomo-gamma-linolenic acid) 

C-reactive protein levels 
Plasma omega-6 polyunsaturated fatty acid leve;(linoleic 
acid) 

Diabetes (gestational) 
Plasma omega-6 polyunsaturated fatty acid levels 
(adrenic acid) 

Diabetes (incident) 
Plasma omega-6 polyunsaturated fatty acid levels 
(dihomo-gamma-linolenic acid) 

Diabetes related insulin traits 
Plasma omega-6 polyunsaturated fatty acid levels 
(linoleic acid) 

Diastolic blood pressure Proinsulin levels 

Dilated cardiomyopathy Protein C levels 

Fasting glucose-related traits Soluble leptin receptor levels 

Fasting glucose-related traits (interaction with BMI) Serum albumin level 

Fasting insulin (interaction) Serum dimethylarginine levels (symmetric) 

Fasting insulin-related traits Serum metabolite levels 

Fasting insulin-related traits (interaction with BMI) Serum prostate-specific antigen levels 
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Serum protein levels (sST2) Type 2 diabetes and other traits 

Serum total protein level Type 2 diabetes (dietary heme iron intake interaction) 

Serum uric acid levels Type 2 diabetes nephropathy 

Subcutaneous adipose tissue Type 2 diabetes (young onset) and obesity 

Sudden cardiac arrest Vascular constriction 

Systolic blood pressure 
Visceral adipose tissue/subcutaneous adipose tissue 
ratio 

Triglycerides Visceral fat 

Triglycerides-Blood Pressure (TG-BP) Waist circumference 

Two-hour glucose challenge Waist circumference and related phenotypes 

Type 1 diabetes Waist circumference (sex interaction) 

Type 1 diabetes autoantibodies Waist Circumference - Triglycerides (WC-TG) 

Type 2 diabetes Waist-hip ratio 

Type 2 diabetes and 6 quantitative traits Waist-to-hip circumference ratio (interaction) 

Type 2 diabetes and gout Waist to hip ratio (sex interaction) 
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