# IDENTIFYING GENETIC MECHANISMS OF CARDIOMETABOLIC TRAITS AND DISEASES USING QUANTITATIVE SEQUENCE DATA

Martin L. Buchkovich

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum in Bioinformatics and Computational Biology.

Chapel Hill 2015

> Approved by: Praveen Sethupathy Yun Li

Gregory E. Crawford

Terrence S. Furey

Karen L. Mohlke

©2015 Martin L. Buchkovich ALL RIGHTS RESERVED

# ABSTRACT

Martin L. Buchkovich: Identifying genetic mechanisms of cardiometabolic traits and diseases using quantitative sequence data (Under the direction of Karen L. Mohlke and Terrence S. Furey)

Cardiometabolic diseases are a worldwide health concern. Genetics studies have identified hundreds of genetic loci associated with these diseases and other cardiometabolic risk factors, but gaps remain in the understanding of the biological mechanisms responsible for these associations. Sequence data from quantitative experiments, such as DNase-seq and ChIP-seq, that identify genomic regions regulating gene transcription are helping to fill these gaps. Allelic imbalance at heterozygous sites, or enrichment of one allele, in this data can indicate allelic differences in transcriptional regulation, but reference mapping biases present in sequence alignments prevent accurate allelic imbalance detection.

We describe a pipeline, AA-ALIGNER, that removes mapping biases at heterozygous sites and increases allelic imbalance detection accuracy in samples with any amount of genotype data available. When complete genotype information is not available, AA-ALIGNER more accurately detects allelic imbalance at imputed heterozygous sites than heterozygous sites predicted using the sequence data. At predicted heterozygous sites, imbalance detection is more accurate at common variants than other variants. Additionally, imbalance detection with AA-ALIGNER is robust to a variety of experimental and analytical parameters.

Using AA-ALIGNER, we detected evidence of allelic imbalance at 22,414 heterozygous sites in data from samples with relevance to cardiometabolic disease and risk factors. We have identified protein binding motifs for one of the imbalanced proteins at a majority of these sites,

iii

and evidence that imbalance in data for this protein is associated with imbalance in data for other proteins. Additionally, a subset of sites of allelic imbalance are located at expression quantitative trait loci and/or genome-wide association loci for cardiometabolic traits and diseases. These sites are strong candidates to be studied experimentally and we report experimental evidence of allelic differences in protein binding, enhancer activity and/or the regulation of specific genes for a handful of these sites.

Using allelic imbalance detection, we have detected differences in protein binding across the genome providing valuable insight into mechanisms of transcriptional regulation. Focusing on cardiometabolic diseases and risk factors, this work demonstrates the utility of allelic imbalance detection in studying genetic effects on the regulation of gene transcription at complex disease- and trait-associated loci. To my family, friends, and colleagues who have fostered my love of genetics and made this work possible.

#### ACKNOWLEDGEMENTS

This work is the direct result of a journey that started well before I enrolled in graduate school and subsequently became a Ph.D. candidate. Successful completion of this journey would not be possible without the aid, advice, encouragement and support of many individuals along the way. I value the friendship of all that I have encountered on this journey and take a moment here to acknowledge those who have hand a direct hand in the completion of this work.

While a paragraph is inadequate to fully acknowledge their contributions to this work, I would first like to thank and acknowledge my mentors Karen Mohlke and Terry Furey. They provided a positive environment that allowed me to engage in exciting research and fostered my growth as an individual and scientist. I would especially like to thank Karen for providing me with an abundance of opportunities to deepen my understanding of human genetics and complex phenotypes through interactions with collaborators and participation in their research. I am grateful to Terry for broadening my understanding of genomics and computational biology, by continually encouraging me to delve deep into biological questions being asked and find the most appropriate solution for answering these questions.

I would also like to acknowledge the contributions of my other committee members, Praveen Sethupathy, Yun Li, and Greg Crawford and thank them for their support and encouragement. Whether it was by advice given from miles away, during unannounced visits to their offices, or through participation in their courses, their advice, ideas, and knowledge were critical to this work.

As a member of two labs, I have been privileged to interact with many individuals, who are too many to name. I am especially thankful to members of the Mohlke and Furey labs, both past and present, as I don't know where I would be without their willingness to provide feedback

vi

on my work and share ideas. I would also like to acknowledge the many collaborators I have worked with who have expanded my horizons and pushed me to be a better researcher, as well as all others I have interacted with during my time as a graduate student. I will always be grateful for the footprints that my scientific mentors and colleagues have made in my life and will values the friendship we have made.

This work would not have been possible without the support and encouragement of many individuals outside of science. I am especially grateful for members of my family. I would specifically like to acknowledge my aunt and uncle, Karen Buchkovich-Sass and Phil Sass, who have been very supportive of my scientific pursuits and facilitated my first extended exposure to molecular biology experiments, and Nicholas Buchkovich, the first member of my immediate family to receive a Ph.D. I thank my wife's parents, Paul and Sally Baird, and would like to publically acknowledge them for the many hours of service given and miles driven to support my family as I have pursued my degree. Likewise, words cannot express enough my thanks to my parents Terry and Joan Buchkovich, for their continuous support and encouragement. They have given sacrificed much to foster my scientific career and I am sure that they would have sacrificed more had there been fewer miles between us.

Finally and most importantly, I acknowledge my wife, Jennie Buchkovich, for her love, encouragement and support. Between working the night shift and giving up her weekends to support our family to acting as a single mother when deadlines neared, her sacrifices have been great. Without them, this work would not have been possible. I cannot thank her enough and will always be grateful to have her at my side. I am also grateful for my sons Kelten and Caleb, for providing me with greater motivation to succeed, than anything else.

vii

# TABLE OF CONTENTS

| LIST OF 1                     | TABLESxii                                                                                                                                      |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF F                     | FIGURESxiii                                                                                                                                    |
| LIST OF /                     | ABBREVIATIONSxiv                                                                                                                               |
| CHAPTER                       | R 1: INTRODUCTION 1                                                                                                                            |
| 1.1 li                        | ntroduction 1                                                                                                                                  |
| 1.2 0                         | Genetic variation contributes to cardiometabolic traits and diseases                                                                           |
| 1.3 C                         | Genetic variants at GWAS loci likely influence gene transcription regulation                                                                   |
| 1.4 N                         | Next-generation sequencing data is a powerful tool in genetic studies                                                                          |
| 1.5 5                         | Sequence mapping biases influence regulatory element identification                                                                            |
| 1.6 5                         | Several methods have been reported to remove reference mapping biases                                                                          |
| 1.6.1                         | Biased mismatch threshold 8                                                                                                                    |
| 1.6.2                         | Variant masking                                                                                                                                |
| 1.6.3                         | Dual reference genomes9                                                                                                                        |
| 1.6.4                         | Modified dual reference genome10                                                                                                               |
| 1.6.5                         | Allele-aware reference creation11                                                                                                              |
| 1.6.6                         | Allele-aware aligner11                                                                                                                         |
| 1.7 (                         | Overview of this work12                                                                                                                        |
| CHAPTER<br>GENOTYI<br>DISEASE | R 2: REMOVING REFERENCE MAPPING BIASES USING LIMITED OR NO<br>PE DATA IDENTIFIES ALLELIC DIFFERENCES IN PROTEIN BINDING AT<br>-ASSOCIATED LOCI |
| 2.1 E                         | Background14                                                                                                                                   |
| 2.2 F                         | Results16                                                                                                                                      |
| 2.2.1                         | Overview of AA-ALIGNER16                                                                                                                       |
| 2.2.2                         | Using GSNAP removes alignment biases at heterozygous sites                                                                                     |

|                | 2.2.3<br>commo            | AA-ALIGNER identifies sites of allelic imbalance using partial genotypes or<br>on variant information                                                      | 20 |
|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                | 2.2.4<br>precisi          | Second alignment provides only modest improvement in sensitivity and on for incomplete genotypes                                                           | 22 |
|                | 2.2.5<br>imbala           | Shorter read length and lower sequencing depth reduce the number of nce predictions but not precision or sensitivity                                       | 23 |
|                | 2.2.6                     | Number of imbalances identified varies across factors and assays                                                                                           | 24 |
|                | 2.2.7<br>decrea           | Allowing additional alignment mismatches increases sensitivity but ses precision                                                                           | 26 |
|                | 2.2.8<br>precisi          | Requiring a minimum number of reads containing each allele increases<br>on at predicted heterozygous sites                                                 | 27 |
|                | 2.2.9<br>imbala           | Requiring higher imputation quality does not significantly improve nce identification                                                                      | 27 |
|                | 2.2.10<br>inflamr         | Allelic differences in CREB1 binding experimentally supported at natory bowel disease-associated loci and other predicted sites                            | 28 |
| 2              | .3 Di                     | scussion                                                                                                                                                   | 31 |
| 2              | .4 Co                     | onclusions                                                                                                                                                 | 35 |
| 2              | .5 M                      | ethods                                                                                                                                                     | 36 |
|                | 2.5.1                     | Genotype Data                                                                                                                                              | 36 |
|                | 2.5.2                     | Custom reference creation                                                                                                                                  | 37 |
|                | 2.5.3                     | Quantitative sequence data processing                                                                                                                      | 37 |
|                | 2.5.4                     | Identifying allelic imbalance                                                                                                                              | 38 |
|                | 2.5.5                     | Electrophoretic mobility shift assays                                                                                                                      | 39 |
| CH<br>DA<br>AS | APTER<br>TA PRE<br>SOCIAT | 3: ALLELIC IMBALANCE DETECTION IN QUANTITATIVE SEQUENCE<br>DICTS GENETIC EFFECTS ON PROTEIN BINDING AT LOCI<br>ED WITH CARDIOMETABOLIC TRAITS AND DISEASES | 54 |
| 3              | .1 Ba                     | ackground                                                                                                                                                  | 54 |
| 3              | .2 Re                     | esults                                                                                                                                                     | 56 |
|                | 3.2.1<br>cardior          | Allelic imbalance detection in quantitative sequence data from netabolic-relevant tissues                                                                  | 56 |
|                | 3.2.2<br>the nur          | Combining replicate datasets with low imbalance concordance increased mber of sites of allelic imbalance identified                                        | 57 |

|   | 3.2<br>of ii                                                                 | .3<br>mbal                                                                       | Percent of genome with 8X coverage is highly correlated with the number ances detected                                                   | 57 |
|---|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 3.2<br>alig                                                                  | 3.2.4 Changing the allele present in the reference does not change the alignment |                                                                                                                                          | 58 |
|   | 3.2                                                                          | .5                                                                               | The major allele is commonly enriched at sites of allelic imbalance                                                                      | 59 |
|   | 3.2<br>for                                                                   | .6<br>imba                                                                       | Allelic imbalance sites are in the same region as predicted binding motifs lanced proteins                                               | 59 |
|   | 3.2.7 Presence of allelic imbalance pairs is associated with presences of in |                                                                                  | Presence of allelic imbalance in one protein of established protein-protein associated with presences of imbalance in the second protein | 60 |
|   | 3.2<br>Chl                                                                   | .8<br>P-se                                                                       | Allelic imbalance in DNase-seq data coincides with allelic imbalance in eq data at a subset of allelic imbalance sites                   | 61 |
|   | 3.2                                                                          | .9                                                                               | Allelic imbalances at published eQTL loci                                                                                                | 62 |
|   | 3.2                                                                          | .10                                                                              | Allelic imbalances at cardiometabolic phenotype-associated loci                                                                          | 63 |
|   | 3.2<br>enh                                                                   | .11<br>iance                                                                     | Experimental conformation of allelic differences in protein binding and er activity at imbalanced sites                                  | 63 |
|   | 3.3                                                                          | Dis                                                                              | cussion                                                                                                                                  | 64 |
|   | 3.4                                                                          | Cor                                                                              | nclusion                                                                                                                                 | 67 |
|   | 3.5                                                                          | Me                                                                               | thods                                                                                                                                    | 68 |
|   | 3.5                                                                          | .1                                                                               | Genotype imputation                                                                                                                      | 68 |
|   | 3.5                                                                          | .2                                                                               | Sequence mapping and imbalance detection in quantitative sequence data                                                                   | 68 |
|   | 3.5                                                                          | .3                                                                               | Identifying motif occurrences                                                                                                            | 69 |
|   | 3.5                                                                          | .4                                                                               | Cell Culture                                                                                                                             | 69 |
|   | 3.5<br>anc                                                                   | .5<br>I luci                                                                     | Generation of luciferase reporter constructs, transient DNA transfection ferase reporter assays                                          | 69 |
| C | HAPT                                                                         | ER 4                                                                             | I: CONCLUSIONS                                                                                                                           | 83 |
|   | 4.1                                                                          | Intr                                                                             | oduction                                                                                                                                 | 83 |
|   | 4.2                                                                          | Ove                                                                              | erview of findings                                                                                                                       | 83 |
|   | 4.3                                                                          | Imr                                                                              | nediate impact on genetic studies of cardiometabolic phenotypes                                                                          | 84 |
|   | 4.4<br>pheno                                                                 | Lor<br>otype                                                                     | ng-term impact on researching genetic effects on cardiometabolic                                                                         | 85 |
|   | 4.5                                                                          | Stu                                                                              | dying complex, non-cardiometabolic phenotypes                                                                                            | 86 |

| 4.6                                                                              | Advantages of allelic imbalance detection                              | 86 |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----|--|
| 4.7                                                                              | Limitations of allelic imbalance detection                             | 88 |  |
| 4.8                                                                              | Allelic imbalance and population studies of quantitative sequence data | 89 |  |
| APPENDIX 1: Allelic imbalance sites referenced in text91                         |                                                                        |    |  |
| APPENDIX 2: Allelic imbalance at eQTL loci ( <i>P</i> <1.0x10 <sup>-5</sup> )108 |                                                                        |    |  |
| APPENDIX 3: Allelic imbalance at cardiometabolic trait and disease GWAS loci113  |                                                                        |    |  |
| APPENDIX 4: Cardiometabolic diseases and traits from GWAS catalog122             |                                                                        |    |  |
| REFERENCES                                                                       |                                                                        |    |  |

# LIST OF TABLES

| Table 2.1. Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA)                       | 40 |
|---------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.2 Allelic imbalance detection accuracy in alignments using partial or no genotypes compared to complete genotypes | 41 |
| Table 2.3 Precision of imbalance detection in non-allele-aware alignments                                                 | 42 |
| Table 2.4 P-value threshold influences allelic imbalance detection using partial genotypes and common variants            | 43 |
| Table 2.5  Precision of allelic imbalance detection extends to other transcription factor    ChIP-seq data                | 44 |
| Table 2.6 Alignment and base coverage statistics for ChIP-seq transcription factor and    Dnase-seq data                  | 45 |
| Table 2.7 EMSA probes for experimental validation                                                                         | 46 |
| Table 3.1 Summary of Detected Allelic Imbalances                                                                          | 71 |
| Table 3.2 Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA)                        | 72 |
| Table 3.3 Site of allelic imbalance with published evidence of eQTL ( $P$ <1.0x10 <sup>-10</sup> )                        | 73 |
| Table 3.4 Sites of allelic imbalance located at cardiometabolic disease-associated loci                                   | 74 |
| Table 3.5 Sites of allelic imbalance located at lipid trait-associated loci                                               | 75 |
| Table 2.3 Precision of imbalance detection in non-allele-aware alignments                                                 | 79 |

# LIST OF FIGURES

| Figure 2.1. Overview of AA-ALIGNER4                                                                                                    | 7 |
|----------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2.2 False positive imbalance sites have more significant p-values4                                                              | 8 |
| Figure 2.3 Read length influences sequence alignment and allelic imbalance detection at heterozygous sites4                            | 9 |
| Figure 2.4 Correlation of alignment statistics and number of imbalances detected                                                       | 0 |
| Figure 2.5 Validation of allelic imbalance detected at GWAS loci and other predicted sites                                             | 1 |
| Figure 2.6 Allelic differences in binding at sites without predicted allelic imbalance                                                 | 3 |
| Figure 3.1 Concordance between replicate datasets7                                                                                     | 7 |
| Figure 3.2 Percent of genome with 8X coverage is correlated with imbalance detection                                                   | 8 |
| Figure 3.3 Co-occupancy of binding motifs and reads from DNAse-seq and ChIP-seq experiments at allelic imbalance sites                 | 0 |
| Figure 3.4 Experimental evidence of allelic differences in protein binding and transcriptional activity at sites of allelic imbalance8 | 1 |

# LIST OF ABBREVIATIONS

| AA-ALIGNER | Allele-Aware Aligner for Investigating GeNetic Effects on Regulation |
|------------|----------------------------------------------------------------------|
| bp         | base pairs                                                           |
| ChIP       | Chromatin Immunoprecipitation                                        |
| EMSA       | Electrophoretic mobility shift assay                                 |
| ENA        | European Nucleotide Archive                                          |
| ENCODE     | ENCyclopedia of DNA Elements                                         |
| eQTL       | expression quantitative trait loci                                   |
| FAIRE      | Formaldehdye Assisted Isolation of Regulatory Elements               |
| GIANT      | Genetic Investigation of ANthropometric Traits                       |
| GLGC       | Global Lipid Genetics Consortium                                     |
| GWAS       | genome-wide association study                                        |
| HDL-C      | High-density lipoprotein cholesterol                                 |
| LD         | Linkage Disequilibrium                                               |
| LDL-C      | Low-density lipoprotein cholesterol                                  |
| SRA        | Sequence Nucleotide Archive                                          |
| T2D        | Type 2 diabetes                                                      |
| ТВР        | TATA binding protein                                                 |
| тс         | Total cholesterol                                                    |
| TG         | Triglycerides                                                        |
|            |                                                                      |

## **CHAPTER 1: INTRODUCTION**

## 1.1 Introduction

Complex, cardiometabolic diseases (i.e. type 2 diabetes and coronary artery disease), and related traits (i.e. lipid levels) present a major public health concern worldwide<sup>1</sup>. These cardiometabolic phenotypes are influenced by both genetic and environmental factors. Understanding how genetic factors influence biological mechanisms contributing to phenotypes, such as gene transcription, is the first step in identifying novel, personalized treatment. While hundreds of genomic locations, or loci, have been associated with cardiometabolic phenotypes, the biological mechanisms responsible for these associations are understood for only a small proportion of loci. Analyzing short sequence reads from next generation sequencing technologies is a powerful method of studying the influence of genetic factors on biological mechanisms. These analyses can identify genetic variants influencing gene transcription and provide an important first step in bridging the gap between genetic variation and cardiometabolic phenotypes.

# 1.2 Genetic variation contributes to cardiometabolic traits and diseases

Genome-wide association studies (GWAS) are an active area of research and effective tool for studying genetic factors influencing cardiometabolic traits and diseases. These studies find statistical associations between genetics variants and the presence of disease or differences in trait measurements<sup>2</sup>. To date, GWAS have identified over 75 genetic loci significantly associated with type 2 diabetes<sup>3</sup>, 46 loci associated with coronary artery disease<sup>4</sup>, and over three hundred more loci associated with other cardiometabolic traits, such as lipid levels (HDL-C, LDL-C, triglycerides, and total cholesterol)<sup>5,6</sup>, adiponectin levels<sup>7–13</sup>, and obesity

(body mass index, waist-to-hip ratio, and body fat percentage)<sup>14–16</sup>. Large consortia, such as the Genetic Investigation of Anthropometric Traits (GIANT) consortium and the Global Lipids Genetics Consortium (GLGC) are actively identifying additional variants associated with metabolic traits. In addition, the Metabolic Syndrome in Men (METSIM) study is identifying variants associated with detailed phenotypic traits, including ~200 traits related to diabetes status, including measures of lipids, lipoprotein particles, glucose, insulin, proinsulin, free fatty acids, body composition, cytokines, hormones, and metabolites, most collected for 10,000 subjects<sup>17</sup>.

## 1.3 Genetic variants at GWAS loci likely influence gene transcription regulation

While the variants identified by these studies can influence phenotypes by altering protein structure<sup>3</sup> or influencing post transcriptional gene regulation<sup>18</sup>, a majority of variants (90%) are located in non-coding regions at GWAS loci and likely influence gene transcription regulation<sup>19</sup>. Identifying genes differentially regulated by these variants is critical for understanding the biological pathways influenced by these variants, and their role in disease susceptibility.

Variants at GWAS loci have also been associated with the expression of nearby genes. Expression quantitative trait loci (eQTLs) are genetic variants that are associated with gene transcript levels<sup>20</sup>. Similar to GWAS, eQTL analyses utilize genotype data from individuals in a population, but test for associations between these genotypes and gene transcript levels rather than diseases and traits. As many as 12% of variants reported in the NHGRI GWAS catalog<sup>21</sup> are either the variant reported at an eQTL locus, or in linkage disequilibrium (LD) with the reported variant<sup>22</sup>. This co-occurrence of GWAS and eQTL associations provides additional evidence that at these loci, and possibly others, differential regulation of gene transcript levels may be an intermediary between genetic variants and observed differences in phenotype.

Genetic variation can influence the regulation of gene transcription by altering the DNA

binding affinity of proteins important to transcription. DNA-binding proteins often bind preferentially to a specific DNA sequence, or binding motif. Sequence changes caused by genetic variation may result in changes in protein-DNA binding affinity and consequently alter the amount of DNA-bound protein. Altered binding of transcription factors can directly change the amount of gene transcription<sup>23</sup>. In other cases, differential binding of proteins, such as proteins from FOXA family, can indirectly alter gene transcription by influencing chromatin accessibility<sup>24</sup>, defined as accessibility of DNA for binding by transcriptional machinery, including transcription factors<sup>25</sup>. Likewise, other proteins, such as CTCF, are important in chromatin looping which controls gene transcription by bringing regulatory regions in close proximity to each other to promote gene transcription, or by marking the boundaries between active and inactive regulatory regions<sup>26</sup>. Understanding the influence of genetic variants on transcription binding, chromatin accessibility and chromatin looping is important for understanding their overall influence on gene transcription.

While genome-wide association and eQTL studies identify genetic regions associated with phenotypes and gene expression, it is difficult, using only these studies, to identify the precise variants responsible for the associations. Groups of genetic variants that are inherited together, or haplotypes, are considered to be in linkage disequilibrium (LD). Generally the variant with the highest significance is reported as the eQTL or GWAS marker variant, but any number of the variants in LD with this marker variant may be responsible for or contribute to the association signal. Further study of GWAS and eQTL loci is required to identify the precise variant(s) responsible for the association signals and elucidate their influence on gene transcription.

Experimental studies are able to identify genetic variants influencing the regulation of gene transcription. These studies have experimentally identified the variants contributing to differential gene transcription at GWAS loci<sup>18,22</sup>. For example, at the low-density lipoprotein cholesterol (LDL-C) level-associated *SORT1* locus, on chromosome 1, one of the alleles at

rs12740374 creates a C/EBPa binding site in a regulatory region. In mice, increased C/EBPa binding in this region, increases expression of the Sort1 protein, ultimately reducing LDL-C levels<sup>23</sup>. Like *SORT1*, variants altering protein binding, chromatin accessibility, and gene transcription continue to be reported for other loci associated with cardiometabolic phenotypes <sup>27–33</sup>. Experimental evidence identifying the variants regulating gene transcription at known loci is being discovered at a much slower rate than novel GWAS loci. Improved analytical and experimental techniques are necessary to identify regulatory variants at these established and novel loci.

## 1.4 Next-generation sequencing data is a powerful tool in genetic studies

Next-generation sequencing data from functional genomics experiments is a powerful tool in identifying variants regulating gene transcription and contributing to complex phenotypes. The advent of these technologies, capable of generating nucleotide sequence data for millions of DNA or RNA fragments<sup>34</sup>, has led to scientific advancements in genetic studies. Whole-genome and whole-exome studies of large populations of individuals<sup>35</sup> continue to increase understanding of genetic variation and the effects of this variation on gene expression and complex phenotypes. Additionally, RNA-seq, in which RNA is isolated and sequenced, can be used for genome-wide measurement of transcription levels, and other quantitative sequence data, such as ChIP-seq<sup>36</sup>, FAIRE-seq<sup>37</sup>, DNase-seq<sup>38</sup> and ATAC-seq<sup>39</sup>, can be used for genome-wide identification of gene transcription regulatory regions.

In each of these quantitative sequence data experiments, DNA is isolated from targeted genome-wide regions and sequenced. Sequence reads are mapped to a reference genome, and the regions of signal enrichment are identified based on the number of mapped sequence reads. ChIP-seq can be used to identify the location of transcription factor binding or histone modifications across the genome. DNase-seq, ATAC-seq and FAIRE-seq use different assays to identify regions of open chromatin typically indicative of regulatory regions. In DNase-seq, the

DNA is digested with the DNasel enzyme to identify DNase hypersensitive regions, while in FAIRE-seq DNA fragments are isolated from regions nucleosomes-depleted regions. In ATAC-seq, the most recent open chromatin assay developed, transposase activity is used to identify regions of open chromatin.

To facilitate genome-wide identification of these regulatory regions, massive amounts of these quantitative sequence read data have been generated. For example, the ENCyclopedia of DNA Elements (ENCODE) consortium has generated more than 1,640 quantitative sequence datasets in more than 147 different cells lines and tissues<sup>40</sup>. These data, including transcription factor and histone modification ChIP-seq, RNA-seq, FAIRE-seq, and DNase-seq, can be found in online repositories at the UCSC Genome Browser<sup>41</sup> and the ENCODE Portal<sup>42</sup>. Likewise, the Roadmap Epigenomics project has generated over 2,500 datasets from 111 different cell types and tissues, including histone modification ChIP-seq, DNase-seq, and RNA-seq<sup>43</sup>. These data are available at the Human Epigenome Atlas<sup>44</sup>. Additionally the sequence data generated by these large consortia, as well as data generated by smaller collaborations or individual labs, are also available online in less specialized repositories, such as the Sequence Read Archive (SRA<sup>45</sup>) and the European Nucleotide Archive (ENA<sup>46</sup>).

The available quantitative sequence data is especially useful in identifying GWAS variants located in genomic regions that regulate gene transcription. Several published studies have used these data to predict regulatory regions genome-wide by integrating ChIP-seq data that identify protein binding sites<sup>47,48</sup> or histone modifications<sup>43,49</sup>, with FAIRE-seq<sup>50</sup> or DNase-seq<sup>19,51</sup> that identify regions of chromatin accessibility. Additionally, multiple bioinformatics tools, such as HaploReg<sup>52</sup>, RegulomeDB<sup>53</sup> and Annovar<sup>54</sup>, have been created to annotate variants using quantitative sequence data and in some cases to predict the likelihood of a variant being in a regulatory region. Some methods also integrate RNA-seq data to identify direct correlations between protein binding or chromatin accessibility with gene transcription levels<sup>43,51,55,56</sup>. While GWAS variants are often annotated with previously predicted regulatory

regions, some analyses directly consider the effects of genetic variation during regulatory element identification.

Allelic imbalance in quantitative sequence data can identify differences in the functional activity between two alleles at a variant. Allelic imbalance is indicated by a difference in the number of sequence reads containing each allele, or enrichment of one allele, at heterozygous sites in the quantitative sequence data. Allelic imbalance analyses can identify allelic differences in transcription factor binding<sup>57,58</sup>, chromatin accessibility<sup>19,55,59</sup>, histone modifications<sup>56</sup> and gene transcription <sup>60–64</sup>. While allelic imbalance identification does not require knowledge of heterozygous sites in the sequenced sample, many studies are limited to samples with full, or complete, genotype information available from whole-genome sequencing. Allelic imbalance can also be detected in samples with limited genotype information by estimating the presence of variants based on populations of individuals such as HapMap<sup>65</sup> and 1000 Genomes<sup>35</sup>, and predicting heterozygous sites using the sequence data<sup>19,57,62,64</sup>. Regardless of genotype availability, sequence mapping biases introduced during sequence alignment can complicate and decrease accuracy of regulatory element detection, especially allelic imbalance identification.

#### **1.5** Sequence mapping biases influence regulatory element identification

Read mapping biases occur at heterozygous sites when sequence reads containing one allele are more likely to map to the site than the other allele. While reads originating from a heterozygous site will contain one of the two alleles, reads are commonly mapped to a reference genome containing only a single base, the reference allele, at each heterozygous site. Mapping to a single allele commonly results in reference mapping biases because reads containing the reference allele better match the reference sequence and have a higher mapping quality than reads containing the non-reference allele, which are penalized for a mismatch at the heterozygous site. As a result, reads with non-reference allele are less likely to map correctly, decreasing the accuracy of sequence alignment and downstream analyses, particularly allelic

imbalance detection. Many commonly used alignment software, such as BWA<sup>66</sup>, MAQ<sup>67</sup>, Bowtie<sup>68</sup>, and STAR<sup>69</sup>, are only built to map to single-allele reference genomes while other software, such as GSNAP<sup>70</sup>, allows sequence mapping to multiple-allele references. Regardless of the software used, reference mapping biases will be introduced if reads are aligned to a reference containing a single allele.

A second type of bias can influence both reference and non-reference alleles and occurs when reads containing one allele map to multiple genomics locations and reads containing the other allele map to a single location. Filtering reads based on the number of genomic locations, a common practice, may preferentially remove reads containing the allele that maps to multiple locations, resulting in mapping bias. This bias and reference mapping bias can be corrected during post-alignment steps, but reference mapping biases are most commonly corrected during sequence mapping. Current methods of correcting reference mapping biases are described below.

#### **1.6** Several methods have been reported to remove reference mapping biases

Methods for correcting reference mapping biases vary and are dependent on the underlying data structure of the mapping software. Differences in each sequence mapping software determine the method of reference bias correction associated with each. Many commonly used alignment software, such as BWA, Bowtie, and STAR, utilize a suffix array during sequence mapping. A suffix array contains a list of all possible suffixes of the reference genome, and their corresponding positon in the genome. Traversing suffix arrays takes little time, resulting in very fast sequence alignment. Using compressed suffix arrays such as the Burrows-Wheeler transformation can also reduce the amount of computational resources required, making suffix array-based software desirable when considering both computational time and resources<sup>71</sup>. Other alignment software, such as GSNAP, and MAQ, utilize hash-tables to store either the genomic locations or sequence reads associated with all possible sequences

of length *k*. Using these *k*-mers, sequence reads can be matched to genomic locations, although alignments using hash tables are generally slower than alignments using suffix arrays. Most reference bias correction strategies can be implemented with software based on either suffix arrays or hash tables, although many bias correction methods have preferred the speedier suffix-array software.

Five strategies to correct mapping biases include using a biased mismatch threshold<sup>19</sup>, variant masking<sup>72</sup>, dual reference genomes<sup>57,58,60–62,73</sup>, modified dual reference genomes<sup>57</sup>, or creating an extended reference genome that includes sequence containing alternate alleles<sup>64</sup>. Alternatively, a slight modification of software utilizing hash-tables can create allele-aware aligners which also correct for reference mapping biases<sup>55,56,74</sup>. Advantages and disadvantages of each reference mapping bias correction strategy are discussed in more detail below.

# 1.6.1 Biased mismatch threshold

The simplest proposed correction for the reference mapping bias is to use a biased mismatch threshold. To overcome the reference bias, this approach uses a stricter mismatch threshold for reads containing the reference allele when calculating allelic imbalance. Reads containing the non-reference allele are allowed an additional mismatch compared to reads containing the reference. For example, if reads containing the reference allele are allowed one mismatch then reads containing the non-reference allele are allowed an additional mismatch compared to reads containing the reference. For example, if reads containing the reference allele are allowed one mismatch then reads containing the non-reference allele are allowed to have one or two mismatches to account for the mismatching non-reference allele. The main advantage of this approach is that sequence mapping can be performed with any mapping software using a single reference sequence and without requiring any modifications to the reference. This approach overcomes mapping biases at a majority of heterozygous sites, but is at a disadvantage when removing bias in regions containing more heterozygous sites than the relaxed mismatch threshold. In these cases, reads containing the reference allele are not mapped at all. Additionally,

the extra mismatches in these reads containing the non-reference allele may cause the reads to map equally as well to incorrect locations, which is especially problematic when only considering reads mapping to a single location.

#### 1.6.2 Variant masking

Masking known variant sites during sequence alignment is also a fairly simple strategy. Any bases mapping to masked variants mismatch the genome, and the reads are equally likely to be mapped correctly regardless of the allele present. The masked variants can be known heterozygous sites in the sample, or simply sites from a database of known variants, making this approach advantageous for removing bias in the absence of sample-specific genotype information. Other advantages of this approach are that only a single alignment is required per dataset and in many cases only a single reference genome is required to map sequences from multiple samples. A disadvantage of this approach, particularly when mapping samples with low sequencing depth, is its effect on the number of reads aligned. Masking variants introduces mismatches into reads originating from the heterozygous site, and could cause reads containing sequencing errors to fail to map to the masked genome because of these additional mismatches. The reduced number of reads aligning to these sites decreases power to identify allelic imbalance. When masking all known variants in the absence of genotype information this approach also unnecessarily reduces the number of reads mapped to homozygous sites that have no need for bias correction.

## 1.6.3 Dual reference genomes

The dual reference strategy to remove reference mapping biases utilizes complete sample genotype information. Most often, sample genotypes are generated using whole-genome DNA sequencing and subsequent variant calling<sup>35,75</sup>. In these cases, phased genotypes from the sample are used to create two haploid reference genomes representing the sequence

of the maternal and paternal chromosomes. Sequence reads are aligned to each reference separately and the alignments are merged to ensure that each sequence read is only represented once. In the absence of phased genotypes, each reference can contain one of the alleles at each known heterozygous sites identified by imputation, or simply at known variants sites identified within a population of individuals. When using phased genotypes, the dual reference strategy is particularly accurate at regions where a single read overlaps multiple variant sites, because the phased genomes best account for variants in LD and most accurately represent the sequence of the chromosome of origin. Additionally, once created, the reference sequence can be used to align sequences of any length, and with any alignment software. A disadvantage of this strategy is the added computation time of the second sequence alignment and the complexity of merging the alignments to create a single consensus alignment. Additionally, any changes in the genotype information require recreating the dual references. Finally, for the most accurate bias correction, this strategy is limited to processing the small number of samples that also have complete genotype information from whole-genome sequencing.

#### 1.6.4 Modified dual reference genome

A modified dual reference strategy extends the standard dual reference strategy to allow for mapping bias correction in samples lacking complete genotype information. In this method, an initial non-allele-aware alignment of the quantitative sequence data is used to identify heterozygous sites in the sequenced sample<sup>57</sup>. As with the dual reference strategy, two reference genomes are then created to represent each allele at these heterozygous sites and sequences are aligned separately to each reference. While this modified method is advantageous in correcting reference mapping biases at heterozygous sites without prior genotype knowledge, it does so at the cost of an additional alignment, bringing the total number of required alignments to three. Adding to this disadvantage, while the references in this

strategy capture both alleles at heterozygous sites, they are less successful at capturing LD and are not representative of the maternal and paternal chromosomes. Additionally, this method relies on detecting variants in the sequence data, which can be difficult, especially at sites of allelic imbalance<sup>76</sup>.

#### 1.6.5 Allele-aware reference creation

Mapping bias can also be removed during a single alignment by creating an allele-aware reference sequence. In this strategy, reference sequence containing the non-reference allele is appended to the reference genome, allowing for reads to be compared to regions containing each allele using a single extended reference genome. An advantage of his strategy is that mapping biases can corrected using any sequence mapping software, a single reference genome, and a single alignment. A disadvantage of this approach is that reference creation depends directly on sequence length and the genotypes or variant information used. Any changes in either of these parameters require recreation of the reference sequence. Additionally, more computation is required to reconcile reads aligning to the normal and extended regions of the reference sequence. Combined with the added time required to extend the reference sequence, this strategy is particularly disadvantageous when mapping sequence reads using different allele-aware sites (i.e. heterozygous sites from different individuals) or sequence read lengths (i.e. sequences from different assays).

## 1.6.6 Allele-aware aligner

Similar to the biases mismatch, variant masking and extended reference strategies, allele-aware aligners can remove mapping biases with a single alignment. Utilizing the hash table structure during mapping, these aligners compare sequence reads to reference sequence containing each of the two alleles at specified sites. These sites, can be known variants or heterozygous sites from the sequenced individual. While changes in the heterozygous sites and

sequence read length may require the reference sequence to be reprocessed before alignment, the actual reference sequence itself does not need to change. This is advantageous for reference bias correction using the same reference sequence and different sets of allele-aware sites, or sequence reads with varying lengths. Additionally, allele-aware aligners only require a single alignment, without the need for additional computation to create a consensus alignment. This strategy is currently limited to software utilizing hash-tables and read mapping can be considerably slower than the suffix array-based alternatives. The reduction in speed becomes disadvantageous if the computation time required for a single allele-aware alignment exceeds the time required for the reference creation, sequence alignment, and consensus alignment creation steps of other strategies.

#### 1.7 Overview of this work

Quantitative sequence data from functional genomics experiments has been instrumental in understanding the regulatory mechanisms influencing gene transcription and the influences of genetic variation on these mechanisms and, ultimately, cardiometabolic traits and diseases. Despite the massive effort to generate and interpret quantitative sequence data, large gaps remain in the understanding of gene transcription regulation at the cardiometabolic phenotype-associated loci, especially at the variant level. Limited understanding of the contributions of genetic variants to transcriptional regulation is caused in part by reference mapping biases, which are present in a majority of existing analyses. Removing these mapping biases allows for more accurate regulatory element identification, and a clearer understanding of how genetic variants influence gene transcription regulatory mechanisms.

In Chapter 2 of this work, I investigate the effects of these reference mapping biases and describe a pipeline, Allele-Aware ALignments for the Investigation of GeNetic Effects on Regulation (AA-ALIGNER), which can be used to remove mapping biases in any quantitative sequence dataset. AA-ALIGNER uses an allele-aware aligner to remove reference mapping

bias in either the presence or absence of genotype data. In addition to sample genotype availability, I present a thorough exploration of how experimental conditions and analytical parameters influence the accuracy of allelic imbalance detection. Additionally, I describe sites of allelic imbalance located at inflammatory bowel disease-associated variants, demonstrating the utility of AA-ALIGNER in predicting allelic differences in protein binding at disease-associated loci.

In Chapter 3, I expand allelic imbalance detection with AA-ALIGNER into quantitative sequence data from cell lines and primary cells relevant to cardiometabolic traits and diseases. I summarize imbalance detection in adipose and liver cell lines, and primary pancreatic islets. Additionally, I discuss biological insights gained from imbalance detection in 70 experiments from HepG2 cells. I also describe sites of allelic imbalance identified at loci associated with gene transcription levels and/or cardiometabolic phenotypes.

Lastly, in Chapter 4 I summarize conclusions gained from this work and offer a glimpse into the future of using quantitative sequence data, specifically allelic imbalance identification, to understand the influence of genetic factors on cardiometabolic traits and diseases.

# CHAPTER 2: REMOVING REFERENCE MAPPING BIASES USING LIMITED OR NO GENOTYPE DATA IDENTIFIES ALLELIC DIFFERENCES IN PROTEIN BINDING AT DISEASE-ASSOCIATED LOCI

# 2.1 Background<sup>1</sup>

Genetic studies of complex traits and diseases have been increasing their focus on the contribution of gene transcriptional regulation. The majority of complex trait-associated variants are in non-coding regions <sup>22</sup>, suggesting many contribute by altering regulatory activity. Variants can alter transcription factor binding affinity, subsequently affecting transcription levels of target genes <sup>22</sup>. For example, the T allele of rs12740374 increases C/EBPa binding and transcription of *SORT1*, a gene influencing LDL cholesterol level <sup>23</sup>. Identifying precisely which genetic variants are responsible for changing regulatory activity can be difficult.

Quantitative short-read sequence data generated from experiments such as ChIP-seq <sup>77</sup>, DNase-seq <sup>38</sup>, FAIRE-seq <sup>37</sup>, and ATAC-seq <sup>39</sup> broadly identify genomic regions that regulate gene transcription. Sequence information from these experiments can be used to detect allele-specific activity in samples where heterozygous variants are present in or near a regulatory element. For example, an uneven distribution in the number of reads containing each allele at a heterozygous site, referred to as allelic imbalance, provides evidence for differential regulatory activity due to genetic variation. Previous studies have also used quantitative short-read data to correlate genetic variation in regulatory regions with nearby gene expression <sup>55,56</sup> and to show the heritability of allelic regulatory effects <sup>56,59,78–80</sup>.

<sup>&</sup>lt;sup>1</sup>This chapter has been accepted for publication in *BMC Medical Genomics*. Citation: Buchkovich ML, Ekland K, Duan Q, Li Y, Mohlke KL, and Furey TS. Removing reference mapping biases using limited or no genotype data identifies allelic differences in protein binding at disease-associated loci. *BMC Medical Genomics*. 2015. *in press.* 

Quantitative sequence data have been generated in hundreds of cell types and tissues by the ENCODE (Encyclopedia of DNA elements) Consortium <sup>40</sup> and Roadmap Epigenomics Project <sup>43</sup>, offering a valuable source of genetic regulatory information. Exploration of allelic imbalance in this data is hindered by a lack of complete genotype information for individuals from which these data are derived, and the well-established alignment bias that arises when both alleles at a heterozygous site are not considered during alignment to a reference genome. Sequence reads containing the allele not represented in the reference genome are penalized as an additional mismatch compared to reads containing the reference allele <sup>72</sup>, and are less likely to map to the correct genomic location. This can result in false detection of allelic imbalance favoring the reference allele, or failure to detect imbalance favoring the non-reference allele. Several methods for removing this alignment bias have been proposed, including masking known variants in the reference genome <sup>72</sup>, aligning reads to two haplotype reference genomes <sup>57,58,60–62,73</sup>, using known variants with allele-aware aligners <sup>55,56,74</sup> or creating an extended reference genome that included alternate alleles <sup>64</sup>. For these methods, full genotype information leads to the best results, but this data is rarely available. The performance of these methods using limited or no sample genotype data, compared to full genotype information has not been thoroughly investigated.

To evaluate detection of altered regulatory activity due to genetic variation in quantitative sequence data using full, limited or no genotype information, we created a computational analysis pipeline, called AA-ALIGNER (Allele-Aware ALignments for the Investigation of GeNetic Effects on Regulation). AA-ALIGNER strategically incorporates existing, publicly available tools to accurately annotate regions containing heterozygous variants given varying levels of genotype information, including no genotypes. To remove alignment biases at heterozygous variants, AA-ALIGNER uses the allele-aware aligner GSNAP<sup>70</sup> which has been previously shown to remove mapping biases using complete genotype information<sup>74</sup>. AA-ALIGNER also attempts to correct other biases that can influence imbalance detection, such as

incorrect heterozygous site annotations in reference genome sequences and incorrectly detected imbalances due to differences in mappability between reads containing each of the alleles or due to PCR duplications introduced during sequencing <sup>81</sup>.

We demonstrate that GSNAP also removes mapping biases using partial genotype data or common variants allowing for accurate identification of allelic imbalances. Using AA-ALIGNER, we determined the effect of experimental and analytical variables such as sequence read length, sequencing depth, number of mismatches allowed during alignment, and imputation quality thresholds on accurate allelic imbalance detection. Our analyses used data from one DNase-seq and thirteen ChIP-seq experiments generated in the GM12878 lymphoblastoid cell line, for which both complete, sequencing-based genotype and partial, array-based genotype information is available. We experimentally detected differential protein binding at six of nine tested imbalance predictions from AA-ALIGNER for CREB1 (Cyclic-AMP Responsive Element Binding protein 1) binding in GM12878 ChIP-seq data, including imbalances at two disease-associated loci. Overall, our results provide important empirical data that can be used to guide the design of and interpretation of similar studies using AA-ALIGNER to accurately annotate heterozygous sites and detect genetically-driven changes in regulatory element activity.

# 2.2 Results

#### 2.2.1 Overview of AA-ALIGNER

The AA-ALIGNER pipeline is designed to maximize short-read sequence alignment accuracy at sites of DNA variation regardless of genotype availability. These alignments can be used to identify potential sites of regulatory activity, indicated by an enrichment of aligned reads and referred to as peaks, and of allelic imbalance at these sites (**Figure 2.1**). We first construct a sample-specific custom reference genome in a two-step process. To increase the likelihood that the allele in our starting reference genome matches the genotype of any sample, alleles of

common variants in the standard reference are modified as needed to the most common allele from a particular population, such as the 1000 Genomes European samples [26]. In a second step, all available genotype information from the sequenced sample is used to further customize this reference sequence such that: (i) at homozygous variants, the sample allele is present; and (ii) at heterozygous sites, one of the two sample alleles is present. Alternate alleles at heterozygous sites are recorded in a separate file during this process. When no genotype information is available, this alternate allele file contains all common minor alleles (MAF > 0.05) for the selected population.

Next, we filter sequence reads to remove low quality sequences and align them to the custom reference genome using GSNAP <sup>70</sup>, an allele-aware aligner. GSNAP takes as input the file containing reference and non-reference alternate alleles to equally consider alignments to both alleles. After alignment, we filter (i) sequences aligned to more than one genomic location; (ii) sequences aligned to regions underrepresented in the reference sequence (ENCODE blacklisted regions); and (iii) duplicate reads to correct for PCR artifacts. These final alignments are used to identify peaks and sites of allelic imbalance.

When testing for imbalances, AA-ALIGNER includes predicted heterozygous sites not included in the initial custom reference during sequence alignment. New heterozygous sites are predicted based on having a minimum number of reads containing each of two alleles. In addition, a minimum read threshold per allele can be applied to all heterozygous sites during imbalance detection to guard against incorrectly annotated heterozygous sites. While predicted heterozygous sites are not included in the initial reference genome customization (**Figure 2.1, Box 1**) or sequence alignment steps (**Figure 2.1, Box 3**), they can be added in a second round of reference customization and alignment if desired.

AA-ALIGNER is designed to correct for multiple sources of bias in the data whenever possible. Increasing the minimum read threshold required to test for an imbalance can guard against incorrect heterozygous site identification. Mappability biases, where reads containing

one allele map uniquely while reads containing the other allele map to multiple locations and are filtered, may result in an artificial imbalance. AA-ALIGNER only considers reads that map uniquely to the same position in the genome regardless of the allele present. Post alignment filtering of duplicate reads corrects for biases that can arise from PCR duplication during library preparation.

AA-ALIGNER allows key parameters to be specified that influence sequence alignment and post-alignment steps, such as imbalance detection. The minimum read threshold for each allele is one of these parameters. In addition, allowed mismatches can be restricted to predicted heterozygous sites to increase confidence in evidence for multiple alleles. By default, significance of allelic imbalances is determined using a standard binomial test, but the AA-ALIGNER pipeline can be easily modified to incorporate alternative statistical methods of detecting imbalance. Peaks are determined here using SPP [27]. Additional details for individual steps can be found in the Methods. Unless otherwise indicated, the following results are based on alignments allowing for one mismatch, with a minimum of five reads required for each allele, and a nominal binomial p-value threshold of 0.01 for allelic imbalance detection. Each of these parameters is evaluated in detail in the following sections.

# 2.2.2 Using GSNAP removes alignment biases at heterozygous sites

We first evaluated the ability of GSNAP to overcome the reference alignment bias. We used 50 base pair (bp) CREB1 ChIP-seq reads generated in the GM12878 lymphoblastoid cell line by the HudsonAlpha Institute of Biotechnology as part of the ENCODE project. We created a custom GM12878 reference sequence based on a complete set of genotypes generated by the Broad Institute <sup>83</sup>, and we created a GSNAP input file with non-reference alleles for each heterozygous site. To examine whether both alleles at heterozygous sites were equally considered during alignments, we also created a "complement" reference sequence by swapping the allele at each heterozygous site in the initial custom reference with the alternate

allele from the input file. We compared sequence alignments to these two reference sequences using three metrics: reads mapped to heterozygous sites; sequence enrichment peaks called at heterozygous sites; and sites of allelic imbalance (**Table 2.1**). Only 120 of the 33.6 million (0.0003%) reads were aligned differently between the two alignments. Manual inspection indicated that these discrepancies were due to GSNAP failing to remove alignment bias when aligning sequences to regions containing more than 5 and as many as 16 heterozygous sites. These 120 differences did not affect the number of peaks or the predicted sites of allelic imbalances identified (**Table 2.1**). These data demonstrate that using GSNAP, AA-ALIGNER overcomes the alignment bias.

To quantify the importance of removing the alignment bias, we used the same metrics to compare allele-aware and non-allele-aware alignments using the same reference sequences. We used BWA for non-allele-aware alignments with the same alignment parameters as GSNAP. By considering alternate alleles, GSNAP (1.3M reads) aligned 8% more reads to heterozygous sites than BWA (1.2M reads; **Table 2.1**). As expected, GSNAP aligned a larger percentage of reads containing the non-reference allele compared to BWA (48% to 43%), more closely reflecting the expectation that each allele should be present in equal numbers of reads. Additionally, we aligned sequence reads to the complement reference using BWA. In contrast to GSNAP, we found that BWA aligned 344K (1.0%) reads differently to the complement and reference genomes. Greater than 54% of reads mapped to the reference allele at heterozygous sites in both BWA alignments (**Table 2.1**), demonstrating the effect of alignment bias on non-allele-aware alignments.

We examined, separately, the effect of biased alignments at heterozygous sites on peak and allelic imbalance detection. Among the top 10,000 peaks with the greatest signal enrichment for each alignment method, using GSNAP identified 1.6% more peaks overlapping a heterozygous site than BWA and predicted 32% more allelic imbalances. Further, 54% of GSNAP-identified imbalances were enriched for the reference allele compared to 60% of BWA-

identified imbalance sites (**Table 2.1**). Additionally, the reference allele was enriched in 82% (23/28) of imbalances only detected when using BWA, compared to 49% (39/79) of imbalances unique to GSNAP alignments. The majority of BWA imbalances favored the reference allele in both the standard reference and the complement reference, demonstrating the presence of significant alignment bias. Together, these results demonstrate that alignment biases negatively impact accurate sequence alignment, peak calling and allelic imbalance identification.

# 2.2.3 AA-ALIGNER identifies sites of allelic imbalance using partial genotypes or common variant information

Complete genotypes are not available for most samples. Therefore, we evaluated how well AA-ALIGNER reproduced allelic imbalance annotations using incomplete genotype information. We separately aligned the same 50 bp CREB1 ChIP-seq reads to custom GM12878 reference genomes derived using (i) partial genotypes determined using the Human1M-Duo BeadChip array and imputed using MachAdmix <sup>84</sup>; and (ii) 1000 Genomes common variants (EUR, MAF>.05) to model the case of no available genotype information. Using allelic imbalances identified with complete genotype information to define true positive (TP), false positive (FP), and false negative (FN) sites, we calculated sensitivity (TP/TP+FN) and precision (TP/FP+TP), or positive predictive value.

Similar numbers of imbalances were identified using all three levels of genotype information (**Table 2.2**). Interestingly, we found that when simply including common variant alleles (no available genotypes), we detected imbalances with similar sensitivity (>73%) and precision (>75%) as with partial genotype information (**Table 2.2**). Including alleles of common variants with GSNAP significantly improved alignment performance compared to BWA with no variant information (**Table 2.3**), even though neither alignment includes any information about the sample's genotype. This improvement results from sites where including both alleles during alignment allowed for the imbalance to be detected. Of the 200 sites of imbalance detected

using complete genotypes, 125 were present in the partial genotypes and 141 were common variants. Considering only these 125 and 141 sites, we find that sensitivity is 97% and 94% with 90% and 82.5% precision, respectively. In stark contrast, sensitivity of detection is 33% (partial) and 34% (common) with 45% and 47% precision at other predicted heterozygous sites, defined as sites with 5 or more reads containing each allele.

We considered whether poor performance at predicted heterozygous sites was due to either (i) incorrect identification of homozygous sites as heterozygous using sequencing data <sup>76</sup>; or (ii) incorrect classification of balanced heterozygous sites as imbalanced due to alignment biases. By comparing the complete genotypes from genomic sequencing to imbalances at sites predicted to be heterozygous in the sequence data, we found that of the sites incorrectly predicted to be imbalanced, 58% (18 of 31) using partial genotypes and 83% (19 of 23) using common variants were not heterozygous. When using complete genotype information, AA-ALIGNER does not report imbalances at predicted heterozygous sites. Of the imbalanced sites, 61% (11/18) using partial genotypes and 42% (8/19) using common variants were also imbalanced when using complete genotypes, underscoring the difficulty in using short reads to detect imbalances at predicted heterozygous sites. We incorrectly detected imbalance at 13 sites using partial genotypes and 4 sites using common variants because an increase or decrease in aligned reads containing one allele now caused the site to pass the significance threshold for imbalance.

We tested whether a more stringent binomial p-value threshold than 0.01 would improve performance, by reducing errors resulting from condition (ii). As expected, a stricter threshold reduced the number of imbalances detected, but it also decreased sensitivity and precision (**Table 2.4**), especially at predicted heterozygous sites. Additionally, we found at predicted heterozygous sites the p-values of false positive imbalance sites were more significant than the p-values of true positives sites when using partial genotypes (Mann-Whitney U P=.003) and common variants (Mann-Whitney U P=.03; **Figure 2.2**). These data suggest that errors in

imbalance detection result more commonly from incorrect prediction of heterozygous sites than falsely calling imbalances at true heterozygous sites.

In addition to a binomial test, other statistical methods of detecting allelic imbalance have been used to measure the significance of allelic imbalance  $^{62,74,81}$ . For example, a betabinomial test is commonly used to correct for inaccurate imbalance detection caused by over dispersion of the data. Using a beta-binomial test (*P*<.01) for the 50bp pair CREB1 ChIP-seq data reduced the number of sites of allelic imbalance identified by 82-83% using complete, partial or no genotype information (**Table 2.4**). Overall sensitivity and precision of imbalance detection using partial or no genotypes declined to ~50%. Sensitivity and precision remained higher at imputed heterozygous sites (partial genotype alignment) and common variants (no genotype alignment) than predicted and uncommon variants as before. This reduction in the sensitivity and precision of imbalance detection is similar to the reduction seen when using a stricter binomial p-value threshold and is likely related to the increased p-values of false positive sites reported above.

We also considered whether common variants could be annotated more accurately than rare variants due simply to how sequences were aligned to these sites. Using BWA alignments that did not include any variant information, we predicted heterozygous sites and allelic imbalances as above. If we separate these predictions into those sites that are and are not common variants, we find that the sensitivity and precision are significantly higher for common variants (**Table 2.3**), although still lower than when both alleles were included in the alignment.

# 2.2.4 Second alignment provides only modest improvement in sensitivity and precision for incomplete genotypes

Previously, Ni et al. <sup>57</sup> described a strategy for detecting allelic imbalance that first identifies heterozygous sites using an initial alignment without variant information, and then
performs a second, allele-aware alignment including the predicted variants. We tested whether a similar second alignment would boost the sensitivity and precision of allelic imbalance identification at predicted heterozygous sites. Before the second alignment, the customized reference was updated to ensure that one allele was present at each heterozygous site predicted in the initial alignment, and non-reference alleles were added to the separate variant file. Reads were then re-aligned using this updated variant file and reference, and filtered as before.

Considering the CREB1 data with partial genotype information, this second alignment identified 11 additional correct sites of allelic imbalance while eliminating 6 incorrect sites, increasing the sensitivity to 47% and precision to 58% at predicted heterozygous sites (**Table 2.2**). When using common alleles, two additional correct imbalances were found and one incorrect site eliminated, with little change in sensitivity and precision. While a second, allele-aware alignment increases accuracy at predicted heterozygous sites, these modest gains, still accompanied by a high rate of false discovery, require an additional alignment. For all other analyses, we report imbalances detected after a single alignment.

# 2.2.5 Shorter read length and lower sequencing depth reduce the number of imbalance predictions but not precision or sensitivity

Most existing ChIP-seq datasets, such as from ENCODE, contain sequence reads shorter than 50 bp. We investigated how read length affects the ability of AA-ALIGNER to identify sites of allelic imbalance by trimming the 3' end of each 50 bp CREB1 ChIP-seq sequence to create 35 bp and 20 bp reads and then aligned these as before. Trimming reduced the overall number of sequenced bases considered by 30% and 60%, respectively. The total number of aligned reads decreased by 3.7% in the 35 bp alignment and 16.7% in the 20 bp alignment, further reducing total base coverage. The number of reads overlapping heterozygous sites decreased by 31.3% and 61.9%, respectively (**Figure 2.4A**), which led to an even greater

reduction in number of identified allelic imbalances for 35 bp (106 imbalances; 47.0% reduction) and 20 bp (26 imbalances; 86.6% reduction) reads (**Table 2.2, Figure 2.3B**).

To determine whether reduced allelic imbalance detection was simply due to lower overall base coverage, we randomly sampled 70% and 40% of the 50 bp reads to match total base coverage levels for the above experiments using 35 bp and 20 bp reads. We found that the number of reads aligned to heterozygous sites decreased, as did imbalances identified, at the same rate as with the shorter reads (**Figure 2.3C**). Thus, reducing base coverage had a proportionate effect on allelic imbalance identification compared to reduction in mapping to heterozygous sites. In our original analysis using all 50 bp reads, we noted 22.5% of sites passed the threshold for the minimum number of reads required for each allele to be tested for imbalance by three reads or less (**Figure 2.3D**). As base coverage is reduced, a disproportionate number of these sites then fall below that threshold (N=5).

As expected, the overall number of predicted imbalance sites also decreased with base coverage when using complete genotypes. Compared to the imbalances detected with complete genotypes for each read length, the sensitivity of imbalance calls using partial genotypes or common variants remained greater than 69% and the precision greater than 75%. These data demonstrate that AA-ALIGNER maintains high detection accuracy using partial genotypes or common variants compared to complete genotypes with reduced base coverage.

#### 2.2.6 Number of imbalances identified varies across factors and assays

To ensure that the results from the CREB1 dataset were representative of results from other experiments, we used AA-ALIGNER to predict allelic imbalance in twelve additional transcription factor ChIP-seq datasets and one DNase-seq dataset generated in the same GM12878 cell line. ChIP-seq datasets contained between 14 and 48 million aligned reads, and most reads were 36 bp in length. Overall, we found that for all alignments, imbalance predictions were accurately replicated using incomplete genotypes at sites where both alleles

were used in the alignment. Imbalances at new heterozygous sites were again very poorly predicted (**Table 2.5**).

Although the precision of imbalance detection using partial genotypes and common variants was high across datasets, the number of imbalances detected varied greatly (minimum=0, maximum=291, median 19). Read length and sequencing depth influence the ability of AA-ALIGNER to identify sites of imbalance (Figure 2.3). We found, though, that measurements related to these characteristics (Figure 2.4A-C) were not highly correlated with the number of imbalances detected in these ChIP-seq datasets (0.43  $\geq$  Pearson R<sup>2</sup>  $\geq$  0.51). These low correlations suggest that other factors, such as the number of transcription factor binding sites (TFBS) across the genome and their overall genomic coverage also influenced imbalance detection. Alone, TFBS genomic coverage (Figure 2.4D) showed low correlation with the number of imbalances detected (Pearson  $R^2$ =.35), but measurements that considered sequencing depth, read length and genomic coverage together (Figure 2.4E-G) were highly correlated with the number of imbalances detected ( $0.78 \ge \text{Pearson R}^2 \ge 0.91$ ). These correlations suggest that the dispersion of sequence signal across the genome needs to be considered in addition to read length and sequencing depth when evaluating the potential of AA-ALIGNER to identify allelic imbalances. While there was a positive correlation between sequencing depth and signal dispersion in ChIP-seg data, the DNase-seg data, had greater sequencing depth (aligned reads) and signal dispersion (genomic coverage), but fewer sites of allelic imbalance identified than some of the ChIP-seq data. These results suggest that sequencing depth and signal dispersion influence imbalance in DNase-seg data differently and that the correlations observed in the ChIP-seq data do not extend to DNase-seq (Table 2.5).

# 2.2.7 Allowing additional alignment mismatches increases sensitivity but decreases precision

Parameters for the different steps of allelic imbalance identification vary across reported methods and can significantly affect results. Increasing allowed alignment mismatches helps overcome missing genotypes, inaccuracies in the reference genome, and errors in the sequence reads, but also results in increased erroneous sequence alignment, particularly when aligning shorter reads. We examined how this parameter affected the performance of AA-ALIGNER with limited genotype information. The 50 bp CREB1 data was processed with complete genotypes, partial genotypes, and common variant information allowing 0, 1, 2 or 3 alignment mismatches. With complete genotype information, the number of imbalances increased only slightly with greater mismatches (<4%; **Table 2.2**).

When using partial genotypes or common variants, aligning with zero mismatches reduced the number of incorrectly aligned reads compared with our default of one mismatch, but at the cost of eliminating reads containing the non-reference allele at heterozygous sites not included during alignment. This led to increased overall precision of imbalance identification, but with significant loss of sensitivity as novel variants could not be predicted (**Table 2**). Of note, the precision of imbalance detection at known variants using zero mismatches was lower than when allowing one mismatch. Allowing two or three mismatches increased the number of imbalance sites identified using incomplete genotypes by more than 29% (**Table 2.2**). The precision at variants included in the alignment did not change, but was greatly reduced at predicted variants, indicating less stringent mismatch thresholds increase the number of misaligned reads resulting in spurious predictions of heterozygous sites and allelic imbalance at these sites. We also tested whether requiring one of the mismatches to be located at the predicted heterozygous site increased sensitivity and precision compared to allowing mismatches at any site and found that results were similar in both cases (data not shown).

# 2.2.8 Requiring a minimum number of reads containing each allele increases precision at predicted heterozygous sites

To balance sensitivity and precision with incomplete genotype information, we examined the impact of changing the minimum aligned read threshold for each allele required to test for imbalanced sites. Using the 50 bp CREB1 data, we found that as the required number of aligned reads increased from 2 to 10, the number of detected imbalances decreased using any level of genotype information, as expected, with small fluctuations in the overall sensitivity of imbalance identification using incomplete genotypes (**Table 2.2**). At thresholds of 15 and 20 reads per allele, the sensitivity of detection increased at predicted heterozygous sites, boosting the overall sensitivity at these thresholds. When considering imbalances at variants with both alleles included in the alignment, precision only varied slightly, but it increased at predicted sites with higher thresholds. While for most analyses we have required at least five reads per allele, these findings suggests that for known heterozygous sites, using a lower threshold will increase the number of identified sites without compromising precision.

# 2.2.9 Requiring higher imputation quality does not significantly improve imbalance identification

For each variant on the genotyping array, imputation quality (Rsq) reflects confidence in imputation of that variant within the population of genotyped individuals. As the imputation quality of a variant site increases, our confidence in the accuracy of the genotype assigned in GM12878 also increases. Poorly-imputed variants incorrectly identified as heterozygous in GM12878 and included during alignment can lower the precision of imbalance detection using partial genotype information. Using imputation quality thresholds from 0.3 to 0.9 as a requirement of inclusion during alignment, we tested the influence of stricter thresholds on imbalance precision and sensitivity using partial genotypes. When using a higher threshold of 0.9, some variants with a quality between 0.3 and 0.9 were still predicted to be heterozygous,

increasing the precision of imbalance detection at predicted sites, but overall using a threshold of 0.9 reduced the number of false positive sites by 7 compared to 0.3 while decreasing the number of true positive sites by the same amount, resulting in a small increase in precision and decrease in sensitivity (**Table 2.2**).

# 2.2.10 Allelic differences in CREB1 binding experimentally supported at inflammatory bowel disease-associated loci and other predicted sites

The above analyses assume that imbalances detected using complete genotypes are the most accurate for comparing the effects of reduced information and parameter settings, but they do not address the functional accuracy of the imbalance prediction. Of special interest are sites previously shown to be associated with disease, especially a disease for which the GM12878 lymphoblastoid cell line is relevant. We identified 238 heterozygous sites in GM12878 that are in linkage disequilibrium (1000 Genomes EUR;  $r^2 \ge .8$ ) with one of 218 index SNPs reported for a genome wide association study (GWAS,  $P < 1.0 \times 10^{-5}$ )[31]. AA-ALIGNER predicted allelic imbalances (P < 0.01) in CREB1 binding in GM12878 at five of these disease-associated loci (**Figure 2.5A**). Two of the sites, rs2382818 (**Figure 2.5B**) and rs713875 (**Figure 2.5C**), are at loci associated with inflammatory bowel disease susceptibility <sup>86–88</sup>. CREB family proteins have previously reported links to inflammation <sup>89</sup>, B-cell lymphocytes <sup>90</sup>, and inflammatory bowel disease <sup>90</sup>.

At rs2382818, 27 reads containing the T allele and 6 reads containing the A allele were aligned using complete genotype, partial genotype, and common variant information (binomial  $P=3.2\times10^{-4}$ ; Figure 2.5B, bottom panel). The T allele of rs2382818 most often segregates with the disease risk allele A of rs2382817 [32]. Electrophoretic mobility shift assays (EMSAs) using purified CREB1, conducted in the absence of chromatin and other nuclear proteins, can experimentally test for differential binding of CREB1 to a specific DNA sequence. Multiple, independently performed EMSAs supported allelic differences in binding at rs2382818 (Figure

**2D**). A second heterozygous site is located 2 bp downstream of rs2382818. Allowing only a single mismatch during alignment prevents reads from aligning if both alleles are not considered. At this site, a peak and an allelic imbalance were only detected when using GSNAP alignments, but not BWA (**Figure 2.5B**), demonstrating the importance of using allele-aware alignments in annotating disease-associated variants. This locus has been annotated as an enhancer based on ENCODE histone modification data <sup>91</sup> and linked with the expression of nearby genes (*SLC11A1, USP37, PNKD*, and *ZNF142*) <sup>92</sup>. We used MEME-ChIP <sup>93</sup> to identify a CREB1 binding motif from the 10,000 strongest ChIP-seq peaks and searched for the presence of this motif at rs2382818 using FIMO (e <  $1.0x10^{-5}$ ) [40], but we were unable to detect the CREB1 motif at this site.

At rs713875 (*MTMR3* locus), 30 reads containing the Crohn's disease risk C allele [34] and 9 reads containing the G allele were aligned using any level of genotype information (binomial *P*=1.1x10<sup>-3</sup>; **Figure 2.5C**). Allelic differences in CREB1 binding were again supported by EMSA (**Figure 2.5D**). In this example, the imbalance was detected even when only one allele was used in the alignment. The variant rs713875 is contained within a DNaseI hypersensitive site and is predicted to function as an enhancer <sup>91</sup>. Correlation between DNaseI hypersensitivity and gene expression levels suggests that this locus may regulate nearby genes *LIF* and *TBC1D10A*, pseudogene *CTA-85E5.7*, and non-coding RNA *RP3-438O4.4* <sup>51</sup>. Of these, leukemia inhibitory factor (*LIF*) is an IL-6 cytokine believed to have both inflammatory and anti-inflammatory roles <sup>95</sup>. As with rs2382818, we were unable to detect a CREB1 binding motif at this site. For both rs713875 and rs2382818, further study would be required to show whether allelic differences in CREB1 binding alter transcription and affect inflammatory bowel disease.

We tested for allelic differences in CREB1 binding at seven additional sites that contain a CREB1 binding motif and were predicted to be imbalanced by AA-ALIGNER. These seven included rs1107479, which has been associated with mean platelet volume <sup>96</sup> and age-related macular degeneration <sup>97</sup>. Using EMSA, we detected evidence of allelic differences in protein

binding in the same direction as our predicted imbalance at 4 of the 7 sites (**Figure 2D**), for a total of 6 of 9 supported imbalances. Surprisingly, at rs1695359, we consistently detected increased protein binding for the allele predicted by our imbalance analysis to have decreased binding. Of the 6 EMSA-supported sites, only 3 were predicted to have allelic differences based on the FIMO-calculated motif score (difference>5). Of the 3 imbalance sites that were not supported by EMSA, only one (rs1695359) had a significant difference in motif binding score, and the allele with the stronger motif score demonstrated increased binding in the EMSA result, rather than the allele predicted to be enriched by imbalance detection. For comparison, we used EMSA to test 5 additional CREB1 binding locations with a heterozygous variant that fell within a CREB1 binding motif, but were not predicted as sites of allelic imbalance (*P*>.3). We found evidence of allelic differences in protein binding at two of these sites (**Figure 2.6**). For these two sites, a CREB1 motif was only predicted when the allele with stronger protein binding was present.

These data provide strong supporting evidence of allelic differences in protein binding at 6 of the 9 predicted imbalanced sites and suggest that the sequence-specific binding preferences of CREB1 influence binding at these sites. It is unclear whether the remaining three sites not supported by EMSA indicate errors in AA-ALIGNER imbalance detection, or whether these show limitations of EMSA in detecting *in vivo* allelic differences in protein binding that are dependent on chromatin context or the presence of other nuclear proteins. Likewise, it is unclear whether AA-ALIGNER failed to detect allelic imbalance at two sites with allelic differences in protein binding based on EMSA, or whether chromatin and/or other proteins compensate for reduced sequence specificity *in vivo* resulting in similar binding regardless of allele present. Overall, these EMSA results provide evidence supporting allelic differences in protein binding at individual imbalance sites detected by AA-ALIGNER.

#### 2.3 Discussion

In this study, we have demonstrated the ability of AA-ALIGNER to remove mapping biases and to identify allelic imbalance with high sensitivity and precision when using partial or no prior genotype information compared to using complete genotype information. Thoroughly testing allelic imbalance detection using three levels of genotype information provides a clear picture of the accuracy of AA-ALIGNER when using limited genotypes compared to complete genotypes.

This is the first in-depth study of allelic imbalance detection in ChIP-seq and DNase-seq data that empirically tested the effects of key aspects of these analyses including genotype availability, read length, alignment parameters, imputation parameters, and requirements for predicting heterozygous sites. Our results indicate that including any amount of genotype information, or both alleles at common variants, significantly increases accuracy of imbalance detection compared to predictions when complete genotypes are known. We clearly show that predicting heterozygous variants with these short read data is highly inaccurate, leading to false positive rates of imbalance detection greater than 50%. We used a simple metric to predict heterozygous sites, and so one could argue that more sophisticated prediction methods could improve performance. A recent study examining the accuracy of genotyping with short reads from genomic sequencing found that removing sites with strong allelic imbalance, the very sites we are trying to identify, increased genotype accuracy <sup>76</sup>. That study highlighted the difficulty of identifying heterozygous sites from ChIP-seq and DNase-seq data, especially at imbalanced sites. Taken together with our data we strongly suggest that predicted genotypes should be further validated before embarking on functional analyses.

Predicting heterozygous sites in genome sequencing data is an active area of research, and many studies have demonstrated the difficulty of calling variants in sequencing data <sup>76,81,98</sup>. In addition to the GM12878 genotype annotation used in this study, other generally more conservative annotations exist. We found that most predicted imbalances were at common

variants, and even when all common variants were included in alignments in the case of no genotypes, the true heterozygous variants and imbalances could be predicted well at these common variant sites. In contrast, the accuracy of imbalance detection at predicted heterozygous sites corresponding to rare variants is poor, even when these predicted heterozygous sites were included in a second alignment. Inaccurate imbalance detection can be caused by either i) incorrectly predicted heterozygous sites in the sequencing data (false positives) or ii) correctly predicted heterozygous sites in the sequencing data that were incorrectly annotated in the complete genotype (false negatives). Requiring more evidence to predict heterozygous site predictions contributed to inaccurate imbalance detection. These incorrect predictions may be partly due to sequencing errors, but as some are still present at high minimum read thresholds, errors in sequence mapping likely contribute to false positives. The inclusion of incorrectly annotated heterozygous sites or absence of true heterozygous sites during sequence alignment can cause erroneous read mappings to highly similar genomic regions leading to incorrect heterozygous site identification.

Interestingly, many imbalances at sites not annotated as heterozygous in the complete genotype would have been considered imbalanced in the complete genotype alignment using our criteria. This suggests that errors may exist in the complete genotype data leading to false negative imbalance predictions. Further study is needed, but these data suggest that both false positives and false negatives contribute to decreased detection accuracy at predicted variants. Thus, AA-ALIGNER outputs three sets of detected imbalance sites: i) a complete set of all imbalances identified; ii) imbalances at known or common heterozygous variants (higher confidence); and iii) imbalances at predicted rare variants (lower confidence).

We showed that simply including both alleles for common variants resulted in annotations nearly as accurate as those generated from imputed genotypes. Including information about rare variants may further increase sensitivity of imbalance detection. We only

considered imputed genotypes and common variants separately, but carefully combining information from these sources may perform better than either individually and is an area of future research.

Other tested parameters demonstrated the trade-off between sensitivity and precision based on their settings, but in most cases these parameters had little effect other than to change the number of predicted imbalanced sites. Nevertheless, these results can be used to guide the analysis of new data, and AA-ALIGNER allows for the easy specification of these parameters. For example, it may be prudent to apply different criteria when evaluating variant sites with known genotypes or that are common variants compared to those predicted to be heterozygous based solely on the short read data. For most of our results, we required a minimum of five reads per allele when testing for imbalances to prevent erroneous testing of homozygous variants. When strong evidence exists for heterozygosity, though, this requirement may be loosened or eliminated, allowing for greater sensitivity in identifying more extreme imbalances. While it is prudent to require a minimum read threshold of reads to detect imbalances at predicted heterozygous sites, this threshold precludes the identification of complete imbalance at known heterozygous sites, AA-ALIGNER users have the option to detect complete imbalance at these sites.

The lack of a comprehensive catalog of experimentally validated sites with functional allelic differences limits our ability to evaluate allelic imbalance predictions. Our study used results obtained from complete genotypes, the best-case scenario for imbalance detection, as the standard for evaluating analyses with partial genotypes and common variants. We experimentally tested for allelic differences in CREB1 binding using EMSA at nine sites with predicted allelic imbalance and five sites with no predicted imbalance. In general, EMSA results matched predicted differences in FIMO-calculated motif scores based on the presence of each of the two alleles, though we note that we were able to detect allelic imbalance and observe

differential protein binding at three sites without predicted allelic differences in motif scores. EMSAs were performed in the absence of chromatin context and other nuclear proteins, and so are limited to detecting differences in the sequence binding specificity of a protein. Despite this limitation, we detected allelic differences in CREB1 binding at 6 of 9 predicted imbalanced sites providing strong supporting evidence of allelic differences in protein binding. Further testing is required to understand the cases when EMSA results do not support predicted allelic imbalances. For example, it is unknown whether any of the 3 sites not supported by EMSA were falsely detected as imbalanced by AA-ALIGNER, or whether they failed to validate because of the limitations inherent to EMSA. Likewise, further study is needed to determine whether the two sites that AA-ALIGNER did not predict as imbalanced but that EMSA showed allelic differences in protein binding are due to limitations in AA-ALIGNER or EMSA. These results highlight the need for better experimental assays to validate allelic imbalances, and underscore the difficulty of creating comprehensive catalogs of sites with experimental evidence of differences in protein binding.

The most appropriate statistical test and significance threshold for determining imbalanced sites is not known. While the binomial test is commonly used, other statistical methods such as a beta-binomial  $^{62,99}$ , and Bayesian frameworks [25, 46] have been shown to accurately detect allelic imbalance. For our analyses, we used the more optimistic binomial test and determined significance using an uncorrected p-value threshold of 0.01. Our data indicate that stricter p-value thresholds do not significantly affect the sensitivity and precision of predictions using incomplete genotypes when compared to complete genotype annotations. Incorrectly predicted heterozygous sites often had very small p-values (25% at P<10<sup>-7</sup>), thus stricter p-values will not eliminate these false positives. Likewise, using beta-binomial p-values to correct for over dispersion and setting the same uncorrected p-value cut-off greatly reduced our power to detect allelic imbalance. Using the beta-binomial p-value, imbalance detection accuracy and precision remain significantly higher for imputed and common variants than for

predicted rare variants. Our experimental EMSA results were strongest overall for sites with lower p-values, although we did show evidence for altered binding at rs713875 (binomial  $P=1.0x10^{-3}$ ) and rs2382818 ( $P=3.2x10^{-4}$ ) but not rs72694799 ( $P=2.6x10^{-5}$ ) (**Figure 2.5D**). Sites with less statistically significant changes in allelic data may be biologically inconsequential, or the functional effects may simply be weaker but still biologically significant. Until a larger set of experimentally supported sites exists, we cannot determine which statistical test and p-value threshold best identifies biologically relevant imbalance sites. AA-ALIGNER was designed to be modular allowing for allowing for the incorporation of alternative methods for variant identification and tests for significance of imbalances.

Copy number variants (CNVs), which can have significant impacts on disease <sup>100</sup>, can cause one allele to overrepresented in the genomic DNA leading to biologically inconsequential imbalances in read data. Prior CNV information for the sequenced sample can be used to preclude imbalance detection within CNVs. Alternatively, sequence data from non-ChIP genomic input or other control experiments, when sequenced with sufficient read depth in the same sample, could be used to estimate an expected proportion of aligned reads per allele and to adjust for copy number variation within the binomial test. These control sequences could also correct for other biases that cause incorrect allelic imbalance detection in both the control and ChIP-seq data. Like genotype information, CNV data is not available for most samples. At this time, AA-ALIGNER does not specifically incorporate known CNV data, although known CNVs can easily be included as "blacklisted" regions and filtered post-alignment. Alternatively,

#### 2.4 Conclusions

Allelic imbalance analyses in quantitative sequence data from functional genomic experiments such as ChIP-seq and DNase-seq data is a powerful way to identify effects of genetic variation on gene regulation and uncover molecular mechanisms responsible for GWAS

loci in non-coding genomic regions. Reference mapping biases at heterozygous sites and a lack of genotype information for sequenced samples greatly hinder allelic imbalance detection in most public \*-seq data. Our analyses demonstrate that the AA-ALIGNER pipeline overcomes mapping biases and accurately identifies a majority of imbalance sites using only partial or no genotype information compared to complete genotype information. Additionally, we provide valuable insight into how experimental and methodological design factors effect imbalance detection.

With AA-ALIGNER, we were able to detect allelic imbalance in ChIP-seq data for a single transcription factor from a single cell line and provide supporting experimental evidence of differential protein binding at a small subset of imbalanced sites. These sites with experimental evidence included variants at two inflammatory bowel disease-associated loci. We demonstrated that mapping biases at one of these two sites prevented detection of both signal enrichment and allelic imbalance using standard analytical techniques. Existing knowledge of B-lymphocytes, regulatory regions and nearby genes suggest a plausible role for these imbalanced sites in inflammatory bowel disease-associated loci. Replicating this analysis in additional cell lines and for additional factors should continue to uncover allelic imbalance at numerous other GWAS loci, providing powerful insight into likely genetic effects on regulation.

#### 2.5 Methods

#### 2.5.1 Genotype Data

Genomic sequencing-based variants calls for GM12878 were generated by the Broad Institute. Illumina Human-1MDuo BeadChip array genotype data generated by the HusdonAlpha Institute of Biotechnology for GM12878 and 52 other ENCODE samples were obtained from the UCSC genome browser <sup>41</sup>. Autosomal genotypes for all 53 samples were imputed using MaCH-Admix <sup>84</sup> with default parameter settings and the reference panel from the 1000 Genomes

Project Phase I version 3 (2012-03-14 release). Chromosome X genotype data in the 53 samples were pre-phased using MaCH <sup>101</sup> with options --states 500 and --rounds 400 and then imputed using minimac <sup>102</sup> with options --state 10 and --rounds 10. Post-imputation filtering of variants according to Rsq was performed as previously reported <sup>103</sup>.

Common alleles (MAF > 0.05) used to derive the initial custom reference genome were based on 1000 Genomes Phase I version 3 EUR population  $^{104}$ .

#### 2.5.2 Custom reference creation

The initial European-specific reference genome was created by replacing alleles in the hg19 reference sequence with the major allele for all common variants (MAF>.05) from the 1000 Genomes EUR population. The GM12878 custom reference was created by further modifying this initial custom reference by replacing non-reference homozygous variants with the new allele, based on information from either the full genotype or partial genotype.

#### 2.5.3 Quantitative sequence data processing

Sequence fastq files (**Table 2.6**) were downloaded from the UCSC Genome browser ENCODE Project <sup>41</sup>. Sequences from each replicate were filtered with fastx\_trimmer using options `-f 1 -l 50 –Q 33` and fastq\_quality\_filter using options `-Q 33 –p 90 –q 20 –l N` where Nis the length of the reads in that dataset.

Standard GSNAP alignments were performed using the following options: --sampling=1, --terminal-threshold=10, -n 1, --query-unk-mismatch=1, --genome-unk-mismatch=1, --trimmismatch-score=0, -t 7, and -A sam. The k-mer size parameter was set based on read length: k=15 (50bp); -k=11 (35bp); -k=10 (20bp) with --basesize set to k-mer size. As we increased the number of mismatches allowed during alignment to *m*, we changed the option -m to *m* and -i to *m*+1 to disallow indels during alignment. The directory containing the GSNAP reference genome was specified with -D the genome name with -d. Alternate alleles at variant sites

based on partial genotype information or common variants were included in alignments with the –v option. BWA alignments were performed using the bwa aln command with options –n 1, –o 0, and –e 0 and bwa samse with option –n 4. When doing a second alignment, the customized reference was updated, if necessary, to contain one of the alleles at predicted heterozygous sites from the first alignment, sequences were aligned, and the alignments were filtered as before.

Reads aligned to more than one genomic location or overlapping the ENCODE blacklist regions <sup>41</sup> were filtered. Potential PCR artifacts were removed using MarkDuplicates (Picard suite) with options REMOVE\_DUPLICATES=TRUE, VALIDATION\_STRINGENCY=LENIENT, USE\_THREADING=TRUE.

To investigate the effects of reference mapping biases on peak calling, peaks were called using SPP within an Irreproducible Discovery Rate (IDR) analysis <sup>105</sup> as outlined by the ENCODE Consortium <sup>40,106</sup>. Overlaps were determined between the 10,000 peaks with the strongest signal and heterozygous sites identified by genomic sequencing (complete genotypes).

#### 2.5.4 Identifying allelic imbalance

Only sequence bases with a Phred33 base quality score greater than 30 were considered for predicting heterozygous sites or allelic imbalances. To account for mappability differences in alignments based on which of the two alleles was present, the heterozygous base in each sequence read was changed to the alternate allele and re-aligned to the genome. Only reads aligning uniquely regardless of the allele present were used to detect allelic imbalance. Significance was assessed with a binomial probability,  $b(a_1; n, 0.5)$ , where  $a_1$  represents the number of reads containing allele1 and *n* is the total number of reads at the heterozygous site and an uncorrected *p*-value threshold of 0.01. To calculate beta-binomial p-values, we first estimated parameter  $\alpha$  of the beta distribution using reference allele proportions across all sites.

A Z-statistic for each tested site was calculated the following equation:  $\frac{\hat{P}-0.5}{\sqrt{\frac{2\alpha+N}{4N(2\alpha+1)}}}$ , where  $\hat{P}$  is the

proportion of reads containing the reference allele and N is the total number of reads at the site.

### 2.5.5 Electrophoretic mobility shift assays

For each heterozygous variant examined, two sets of complementary 21-mer, biotinlabeled oligonucleotides centered on the CREB1 motif and containing one allele were synthesized by Integrated DNA Technologies. Each set was annealed to create two doublestranded probes for each variant (**Table 2.7**). EMSAs were performed according to the protocol included with the LightShift Chemiluminescent EMSA Kit (Thermo Scientific). Briefly, each reaction containing 1x binding buffer, 1 µg poly(dldC), and 200 ng of purified CREB1 protein (CreativeBiomart CREB1-26H) was incubated for 15 minutes before adding biotin-labeled probes in a total reaction volume of 20 µl and incubating for another 25 minutes. Reactions were electrophoresed on 6% DNA retardation gels (Life Technologies) in 0.5X TBE buffer (Lonza), transferred to nylon membranes (Thermo Scientific), UV cross-linked and detected with chemilluminescence (Thermo Scientific).

**Table 2.1** Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA)

|                                                    |            | GSNAP                   |                         |            | BWA                     |                         |
|----------------------------------------------------|------------|-------------------------|-------------------------|------------|-------------------------|-------------------------|
|                                                    | Standard   | Complement <sup>a</sup> | Difference <sup>b</sup> | Standard   | Complement <sup>a</sup> | Difference <sup>b</sup> |
| Reads mapped uniquely                              | 33,599,679 | 33,599,721              | 120                     | 33,543,808 | 33,547,947              | 344,942                 |
| Reads at heterozygous sites                        | 1,295,901  | 1,295,914               | 120                     | 1,197,696  | 1,186,891               | 344,942                 |
| Reference allele                                   | 675,394    | 620,517                 | -                       | 677,697    | 640,978                 | -                       |
| Non-reference allele                               | 620,507    | 675,397                 | -                       | 519,999    | 545,913                 | -                       |
| Peaks at heterozygous sites <sup>c</sup>           | 1,618      | 1,618                   | 0                       | 1,593      | 1,614                   | 87                      |
| Allelic Imbalance Sites<br>Identified <sup>d</sup> | 200        | 200                     | 0                       | 151        | 147                     | 56                      |
| Reference allele                                   | 108        | 92                      | -                       | 91         | 82                      | -                       |
| Non-reference allele                               | 92         | 108                     | -                       | 60         | 65                      | -                       |

<sup>a</sup>Alignment reference contained the non-reference allele of heterozygous sites used to create the standard reference <sup>b</sup>Differs in mapping or detection between alignments to standard and complement references <sup>c</sup>Out of 10,000 peaks with strongest signal <sup>d</sup>binomial p-value<.01

|                              | (     | Complete | а               |                 |       | Part | ial Ger         | notyne <sup>b</sup> | Imbala | nces                             |         | <u> </u> |     |       | No   | Geno            | tvne <sup>c</sup> Ir | nhalan | res                              | 71      |       |
|------------------------------|-------|----------|-----------------|-----------------|-------|------|-----------------|---------------------|--------|----------------------------------|---------|----------|-----|-------|------|-----------------|----------------------|--------|----------------------------------|---------|-------|
|                              | Total | Partial  | None            |                 | Total | T un | Knc             | wn varia            | ants   | Predic                           | ted var | iants    |     | Total |      | Knov            | vn varia             | ants   | Predic                           | ted var | iants |
| Factor/Assay                 |       |          |                 | N               | Cono  | Dree | N               | Cono                | Droo   |                                  | Cono    | Droo     | N   | Cono  | Dree | N               | Cono                 | Droo   |                                  | Sono    | Droo  |
| (Condition)                  | Nt    | Np       | IN <sub>n</sub> | IN <sub>t</sub> | Sens  | Prec | IN <sub>p</sub> | Sens                | Prec   | IN <sub>t</sub> -IN <sub>p</sub> | Sens    | Prec     | INt | Sens  | Prec | IN <sub>n</sub> | Sens                 | Prec   | IN <sub>t</sub> -IN <sub>n</sub> | Sens    | Prec  |
| CREB1 (50 bp)                | 200   | 125      | 141             | 190             | 73.0  | 76.8 | 134             | 96.8                | 90.3   | 56                               | 33.3    | 44.6     | 203 | 76.0  | 74.9 | 160             | 93.6                 | 82.5   | 43                               | 33.9    | 46.5  |
| CREB1 (35 bp)                | 106   | 70       | 81              | 104             | 73.6  | 75.0 | 74              | 97.1                | 91.9   | 30                               | 27.8    | 33.3     | 107 | 77.4  | 76.6 | 87              | 92.6                 | 86.2   | 20                               | 28.0    | 35.0  |
| CREB1 (20 bp)                | 26    | 16       | 16              | 24              | 69.2  | 75.0 | 17              | 100.0               | 94.1   | 7                                | 20.0    | 28.6     | 22  | 69.2  | 81.8 | 17              | 100.0                | 94.1   | 5                                | 20.0    | 40.0  |
| CTCF (35 bp)                 | 267   | 187      | 192             | 300             | 83.1  | 74.0 | 198             | 98.4                | 92.9   | 102                              | 47.5    | 37.3     | 298 | 85.0  | 76.2 | 210             | 97.9                 | 89.5   | 88                               | 52.0    | 44.3  |
| DNase (20 bp)                | 104   | 43       | 47              | 138             | 51.0  | 38.4 | 42              | 97.7                | 100.0  | 96                               | 18.0    | 11.5     | 144 | 51.9  | 37.5 | 55              | 97.9                 | 83.6   | 89                               | 14.0    | 9.0   |
| CREB1 (2 alns) <sup>d</sup>  | 200   | 125      | 141             | 195             | 78.5  | 80.5 | 135             | 97.6                | 90.4   | 60                               | 46.7    | 58.3     | 204 | 77.0  | 75.5 | 156             | 92.2                 | 83.3   | 48                               | 40.7    | 50.0  |
| Mismatches allowed           |       |          |                 |                 |       |      |                 |                     |        |                                  |         |          |     |       |      |                 |                      |        |                                  |         |       |
| CREB1 (0 mm)                 | 199   | 122      | 138             | 137             | 58.8  | 85.4 | 137             | 95.9                | 85.4   | 0                                | -       | -        | 160 | 63.3  | 78.8 | 160             | 91.3                 | 78.8   | 0                                | -       | -     |
| CREB1 (1m m) <sup>e</sup>    | 200   | 125      | 141             | 190             | 73.0  | 76.8 | 134             | 96.8                | 90.3   | 56                               | 33.3    | 44.6     | 203 | 76.0  | 74.9 | 160             | 93.6                 | 82.5   | 43                               | 33.9    | 46.5  |
| CREB1 (2 mm)                 | 199   | 124      | 137             | 245             | 80.4  | 65.3 | 133             | 97.6                | 91.0   | 112                              | 52.0    | 34.8     | 251 | 81.4  | 64.5 | 159             | 96.4                 | 83.0   | 92                               | 48.4    | 32.6  |
| CREB1 (3 mm)                 | 213   | 123      | 143             | 301             | 79.2  | 53.2 | 132             | 98.4                | 90.9   | 169                              | 50.0    | 23.7     | 313 | 81.7  | 52.7 | 161             | 96.4                 | 83.9   | 152                              | 47.6    | 19.7  |
| Minimum reads/allele         |       |          |                 |                 |       |      |                 |                     |        |                                  |         |          |     |       |      |                 |                      |        |                                  |         |       |
| CREB1 (2 reads)              | 301   | 178      | 199             | 486             | 73.4  | 45.5 | 187             | 97.2                | 92.5   | 299                              | 39.0    | 16.1     | 515 | 75.4  | 44.1 | 228             | 95.0                 | 82.9   | 287                              | 37.3    | 13.2  |
| CREB1 (3 reads)              | 261   | 156      | 173             | 267             | 70.1  | 68.8 | 162             | 94.9                | 91.4   | 105                              | 33.3    | 33.3     | 289 | 72.8  | 65.7 | 191             | 92.5                 | 83.8   | 98                               | 34.1    | 30.6  |
| CREB1 (4 reads)              | 230   | 142      | 159             | 218             | 71.4  | 76.0 | 148             | 95.1                | 91.2   | 70                               | 33.7    | 42.6     | 235 | 74.8  | 73.2 | 175             | 92.5                 | 84.0   | 60                               | 35.2    | 41.7  |
| CREB1 (5 reads) <sup>e</sup> | 200   | 125      | 141             | 190             | 73.0  | 76.8 | 134             | 96.8                | 90.3   | 56                               | 33.3    | 44.6     | 203 | 76.0  | 74.9 | 160             | 93.6                 | 82.5   | 43                               | 33.9    | 46.5  |
| CREB1 (6 reads)              | 198   | 122      | 136             | 174             | 70.7  | 80.5 | 130             | 96.7                | 90.8   | 44                               | 28.9    | 50.0     | 188 | 73.7  | 77.7 | 153             | 93.4                 | 83.0   | 35                               | 30.6    | 54.3  |
| CREB1 (7 reads)              | 173   | 109      | 123             | 154             | 72.8  | 81.8 | 116             | 97.2                | 91.4   | 38                               | 31.2    | 52.6     | 167 | 75.7  | 78.4 | 138             | 92.7                 | 82.6   | 29                               | 34.0    | 58.6  |
| CREB1 (8 reads)              | 157   | 100      | 111             | 141             | 72.0  | 80.1 | 107             | 97.0                | 90.7   | 34                               | 28.1    | 47.1     | 148 | 75.2  | 79.7 | 124             | 92.8                 | 83.1   | 24                               | 32.6    | 62.5  |
| CREB1 (9 reads)              | 144   | 91       | 101             | 130             | 72.2  | 80.0 | 98              | 96.7                | 89.8   | 32                               | 30.2    | 50.0     | 140 | 75.7  | 77.9 | 115             | 93.1                 | 81.7   | 25                               | 34.9    | 60.0  |
| CREB1 (10 reads)             | 124   | 80       | 88              | 117             | 74.2  | 78.6 | 88              | 96.2                | 87.5   | 29                               | 34.1    | 51.7     | 125 | 76.6  | 76.0 | 102             | 92.0                 | 79.4   | 23                               | 38.9    | 60.9  |
| CREB1 (15 reads)             | 88    | 60       | 66              | 82              | 77.3  | 82.9 | 66              | 96.7                | 87.9   | 16                               | 35.7    | 62.5     | 88  | 80.7  | 80.7 | 76              | 92.4                 | 80.3   | 12                               | 45.5    | 83.3  |
| CREB1 (20 reads)             | 63    | 47       | 52              | 64              | 84.1  | 82.8 | 53              | 97.9                | 86.8   | 11                               | 43.8    | 63.6     | 67  | 88.9  | 83.6 | 60              | 96.2                 | 83.3   | 7                                | 54.5    | 85.7  |
| Imputation Rsq thresho       | ld    |          |                 |                 |       |      |                 |                     |        |                                  |         |          |     |       |      |                 |                      |        |                                  |         |       |
| CREB1 (Rsq>.3) e             | 200   | 125      | -               | 190             | 73.0  | 76.8 | 134             | 96.8                | 90.3   | 56                               | 33.3    | 44.6     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.4)               | 200   | 122      | -               | 190             | 72.5  | 76.3 | 133             | 97.5                | 89.5   | 57                               | 33.3    | 45.6     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.5)               | 200   | 121      | -               | 187             | 72.5  | 77.5 | 129             | 98.3                | 92.2   | 58                               | 32.9    | 44.8     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.6)               | 200   | 118      | -               | 186             | 72.5  | 78.0 | 124             | 98.3                | 93.5   | 62                               | 35.4    | 46.8     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.7)               | 200   | 117      | -               | 185             | 72.0  | 77.8 | 123             | 98.3                | 93.5   | 62                               | 34.9    | 46.8     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.8)               | 200   | 104      | -               | 182             | 70.5  | 77.5 | 111             | 99.0                | 92.8   | 71                               | 39.6    | 53.5     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |
| CREB1 (Rsq>.9)               | 200   | 96       | -               | 176             | 69.5  | 79.0 | 99              | 99.0                | 96.0   | 77                               | 42.3    | 57.1     | -   | -     | -    | -               | -                    | -      | -                                | -       | -     |

Table 2.2 Allelic imbalance detection accuracy in alignments using partial or no genotypes compared to complete genotypes

<sup>a</sup>Complete genotype alignments use sequencing-based genotypes <sup>b</sup>Partial genotype alignments use array-based genotypes and imputation <sup>c</sup>No genotypes alignments use common variants (MAF>.05) from 1000 Genomes EUR <sup>d</sup>Imbalances called after a second alignment using refined genotypes; known variants are variants included in the first alignment <sup>e</sup>Condition used by default by AA-ALIGNER; N<sub>t</sub> total imbalance count, N<sub>p</sub> imbalances at imputated heterozygotes, N<sub>n</sub> imbalances at common variants, Sens, percent sensitivity, Prec, percent precision

|                             |       | GSNAP   |         |     |       |      | BV  | VA      |      |    |         |      |
|-----------------------------|-------|---------|---------|-----|-------|------|-----|---------|------|----|---------|------|
|                             | Total | MAF≥.05 | MAF<.05 |     | Total |      |     | MAF≥.05 |      |    | MAF<.05 | 5    |
| Factor/Assay (Condition)    | Nt    | Nn      | Nt-Nn   | Nt  | Sens  | Prec | Nn  | Sens    | Prec | N  | Sens    | Prec |
| CREB1 (50 bp)               | 200   | 141     | 59      | 161 | 61.5  | 76.4 | 124 | 74.5    | 84.7 | 37 | 30.5    | 48.6 |
| CREB1 (35 bp)               | 106   | 81      | 25      | 98  | 64.2  | 69.4 | 78  | 75.3    | 78.2 | 20 | 28.0    | 35.0 |
| CREB1 (20 bp)               | 26    | 16      | 10      | 22  | 50.0  | 59.1 | 16  | 68.8    | 68.8 | 6  | 20.0    | 33.3 |
| CTCF (35 bp)                | 267   | 192     | 75      | 306 | 74.9  | 65.4 | 218 | 84.4    | 74.3 | 88 | 50.7    | 43.2 |
| Dnase (20 bp)               | 104   | 47      | 57      | 116 | 24.0  | 21.6 | 25  | 34.0    | 64.0 | 91 | 15.8    | 9.9  |
| CREB1 (2 alns) <sup>a</sup> | 200   | 141     | 59      | 193 | 64.5  | 66.8 | 147 | 76.6    | 73.5 | 46 | 35.6    | 45.7 |

 Table 2.3
 Precision of imbalance detection in non-allele-aware alignments

Imbalance calls using BWA and no genotype information compared to GSNAP alignments using complete genotypes; <sup>a</sup>Heterozyogous sites identified in first alignment are used to create two haplotype references for second round of alignments. Nt total imbalance count Nn imbalances at common variants

|                                | (        | Complete   | ) <sup>a</sup> |            |                | Part  | ial Geno | otype <sup>b</sup> | Imbalar    | ices                           |         |            |     |           | No    | Genot    | type <sup>c</sup> Im | balance  | S                              |         |       |
|--------------------------------|----------|------------|----------------|------------|----------------|-------|----------|--------------------|------------|--------------------------------|---------|------------|-----|-----------|-------|----------|----------------------|----------|--------------------------------|---------|-------|
| Imbalance                      | Total    | Partial    | None           |            | Total          |       | Knov     | vn vari            | ants       | Predic                         | ted var | iants      |     | Total     |       | Kn       | own vari             | iants    | Predic                         | ted var | iants |
| <i>P</i> <.01                  | Nt       | Np         | Nn             | Nt         | Sens           | Prec  | Np       | Sens               | Prec       | N <sub>t</sub> -N <sub>p</sub> | Sens    | Prec       | Nt  | Sens      | Prec  | Nn       | Sens                 | Prec     | N <sub>t</sub> -N <sub>n</sub> | Sens    | Prec  |
| CREB1 (50 bp)                  | 200      | 125        | 141            | 190        | 73.0           | 76.8  | 134      | 96.8               | 90.3       | 56                             | 33.3    | 44.6       | 203 | 76.0      | 74.9  | 160      | 93.6                 | 82.5     | 43                             | 33.9    | 46.5  |
| CREB1 (35 bp)                  | 106      | 70         | 81             | 104        | 73.6           | 75.0  | 74       | 97.1               | 91.9       | 30                             | 27.8    | 33.3       | 107 | 77.4      | 76.6  | 87       | 92.6                 | 86.2     | 20                             | 28.0    | 35.0  |
| CREB1 (20 bp)                  | 26       | 16         | 16             | 24         | 69.2           | 75.0  | 17       | 100.0              | 94.1       | 7                              | 20.0    | 28.6       | 22  | 69.2      | 81.8  | 17       | 100.0                | 94.1     | 5                              | 20.0    | 40.0  |
| CTCF (35 bp)                   | 267      | 187        | 192            | 300        | 83.1           | 74.0  | 198      | 98.4               | 92.9       | 102                            | 47.5    | 37.3       | 298 | 85.0      | 76.2  | 210      | 97.9                 | 89.5     | 88                             | 52.0    | 44.3  |
| DNase (20 bp)                  | 104      | 43         | 47             | 138        | 51.0           | 38.4  | 42       | 97.7               | 100.0      | 96                             | 18.0    | 11.5       | 144 | 51.9      | 37.5  | 55       | 97.9                 | 83.6     | 89                             | 14.0    | 9.0   |
| <i>P</i> <.001                 |          |            |                |            |                |       |          |                    |            |                                |         |            |     |           |       |          |                      |          |                                |         |       |
| CREB1 (50 bp)                  | 114      | 67         | 74             | 108        | 65.8           | 69.4  | 69       | 95.5               | 92.8       | 39                             | 23.4    | 28.2       | 114 | 69.3      | 69.3  | 85       | 94.6                 | 82.4     | 29                             | 22.5    | 31.0  |
| CREB1 (35 bp)                  | 60       | 39         | 42             | 61         | 70.0           | 68.9  | 40       | 94.9               | 92.5       | 21                             | 23.8    | 23.8       | 62  | 71.7      | 69.4  | 47       | 92.9                 | 83.0     | 15                             | 22.2    | 26.7  |
| CREB1 (20 bp)                  | 17       | 10         | 10             | 14         | 64.7           | 78.6  | 10       | 100.0              | 100.0      | 4                              | 14.3    | 25.0       | 12  | 64.7      | 91.7  | 10       | 100.0                | 100.0    | 2                              | 14.3    | 50.0  |
| CTCF (35 bp)                   | 140      | 89         | 93             | 166        | 80.0           | 67.5  | 95       | 98.9               | 92.6       | 71                             | 47.1    | 33.8       | 162 | 81.4      | 70.4  | 103      | 97.8                 | 88.3     | 59                             | 48.9    | 39.0  |
| DNase (20 bp)                  | 43       | 8          | 11             | 62         | 32.6           | 22.6  | 8        | 100.0              | 100.0      | 54                             | 17.1    | 11.1       | 67  | 37.2      | 23.9  | 14       | 100.0                | 78.6     | 53                             | 15.6    | 9.4   |
| <i>P</i> <1.0x10 <sup>-4</sup> |          |            |                |            |                |       |          |                    |            |                                |         |            |     |           |       |          |                      |          |                                |         |       |
| CREB1 (50 bp)                  | 75       | 45         | 48             | 77         | 66.7           | 64.9  | 46       | 93.3               | 91.3       | 31                             | 26.7    | 25.8       | 79  | 68.0      | 64.6  | 56       | 91.7                 | 78.6     | 23                             | 25.9    | 30.4  |
| CREB1 (35 bp)                  | 39       | 24         | 27             | 33         | 61.5           | 72.7  | 22       | 91.7               | 100.0      | 11                             | 13.3    | 18.2       | 37  | 66.7      | 70.3  | 26       | 88.9                 | 92.3     | 11                             | 16.7    | 18.2  |
| CREB1 (20 bp)                  | 4        | 3          | 3              | 3          | 75.0           | 100.0 | 3        | 100.0              | 100.0      | 0                              | -       | -          | 3   | 75.0      | 100.0 | 3        | 100.0                | 100.0    | 0                              | -       | -     |
| CTCF (35 bp)                   | 89       | 50         | 54             | 108        | 76.4           | 63.0  | 54       | 98.0               | 90.7       | 54                             | 48.7    | 35.2       | 104 | 79.8      | 68.3  | 59       | 69.3                 | 88.1     | 45                             | 54.3    | 42.2  |
| DNase (20 bp)                  | 21       | 1          | 2              | 38         | 19.0           | 10.5  | 1        | 100.0              | 100.0      | 37                             | 15.0    | 8.1        | 38  | 19.0      | 10.5  | 2        | 100.0                | 100.0    | 36                             | 10.5    | 5.6   |
| P<1.0x10 <sup>-5</sup> (Bor    | nferroni | correction | : alpha=.0     | 5 and N=   | =5000)         |       |          |                    |            |                                |         |            |     |           |       |          |                      |          |                                |         |       |
| CREB1 (50 bp)                  | 52       | 30         | 32             | 50         | 59.6           | 62.0  | 32       | 90.0               | 84.4       | 18                             | 18.2    | 22.2       | 52  | 61.5      | 61.5  | 37       | 87.5                 | 75.7     | 15                             | 20.0    | 26.7  |
| CREB1 (35 bp)                  | 28       | 19         | 19             | 24         | 64.3           | 75.0  | 17       | 89.5               | 100.0      | 11                             | 13.3    | 18.2       | 26  | 64.3      | 69.2  | 19       | 89.5                 | 89.5     | 7                              | 11.1    | 14.3  |
| CREB1 (20 bp)                  | 2        | 1          | 1              | 1          | 50.0           | 100.0 | 1        | 100.0              | 100.0      | 0                              | -       | -          | 1   | 50.0      | 100.0 | 1        | 100.0                | 100.0    | 0                              | -       | -     |
| CTCF (35 bp)                   | 63       | 34         | 36             | 74         | 74.6           | 63.5  | 36       | 97.1               | 91.7       | 38                             | 48.3    | 36.8       | 71  | 76.2      | 67.6  | 39       | 94.4                 | 87.2     | 32                             | 51.9    | 43.8  |
| DNase (20 bp)                  | 16       | 1          | 1              | 32         | 18.8           | 9.4   | 1        | 100.0              | 100.0      | 31                             | 13.3    | 6.5        | 33  | 18.8      | 9.1   | 1        | 100.0                | 100.0    | 32                             | 13.3    | 6.2   |
| P<1.0x10-6 (Bor                | nferroni | correction | : alpha=.0     | 05 and N   | <b>1=</b> 5000 | )     |          |                    |            |                                |         |            |     |           |       |          |                      |          |                                |         |       |
| CREB1 (50 bp)                  | 44       | 24         | 25             | 42         | 59.1           | 61.9  | 27       | 91.7               | 81.5       | 15                             | 20.0    | 26.7       | 44  | 59.1      | 59.1  | 31       | 88                   | 71       | 13                             | 21.1    | 30.8  |
| CREB1 (35 bp)                  | 19       | 12         | 12             | 18         | 63.2           | 66.7  | 11       | 91.7               | 100.0      | 7                              | 14.3    | 14.3       | 20  | 63.2      | 60    | 13       | 91.7                 | 84.6     | 7                              | 14.3    | 14.3  |
| CREB1 (20 bp)                  | 2        | 1          | 1              | 1          | 50.0           | 100.0 | 1        | 100.0              | 100.0      | 0                              | -       | -          | 1   | 50        | 100   | 1        | 100                  | 100      | 0                              | -       | -     |
| CTCF (35 bp)                   | 43       | 21         | 24             | 57         | 72.1           | 54.4  | 23       | 100.0              | 91.3       | 34                             | 45.5    | 29.4       | 55  | 76.7      | 60    | 27       | 95.8                 | 85.2     | 28                             | 52.6    | 35.7  |
| DNase (20 bp)                  | 12       | 1          | 1              | 24         | 16.7           | 8.3   | 1        | 100.0              | 100.0      | 23                             | 9.1     | 4.3        | 24  | 16.7      | 8.3   | 1        | 100                  | 100      | 23                             | 9.1     | 4.3   |
| Beta-binomial                  | P<0.01   |            |                |            |                |       |          |                    |            |                                |         |            |     |           |       |          |                      |          |                                |         |       |
| CREB1 (50 bp)                  | 36       | 16         | 17             | 35         | 50.0           | 51.4  | 18       | 93.8               | 83.3       | 17                             | 15.0    | 17.6       | 36  | 50        | 50    | 22       | 88.2                 | 68.2     | 14                             | 15.8    | 21.4  |
| 20                             |          |            |                | مما بممامم |                |       | bDential |                    | and a Para |                                |         | le a a a d |     | a and the |       | . Chia a |                      | a allana |                                |         |       |

Table 2.4 P-value threshold influences allelic imbalance detection using partial genotypes and common variants

<sup>a</sup>Complete genotype alignments use sequencing-based genotypes <sup>b</sup>Partial genotype alignments use array-based genotypes and imputation <sup>c</sup>No genotypes alignments use common variants (MAF>.05) from 1000 Genome EUR; N<sub>t</sub> total imbalance count, N<sub>p</sub> imbalances at imputed heterozygotes, N<sub>n</sub> imbalances at common variants, Sens, percent sensitivity, Prec, percent precision

|                | C                                                          | Complete <sup>a</sup> |        |     |       | Partia | al Gen | otype <sup>b</sup> | mbalan | ces                            |         |       |     |      | No   | Geno | type <sup>c</sup> In | nbalanc | es                             |      |      |
|----------------|------------------------------------------------------------|-----------------------|--------|-----|-------|--------|--------|--------------------|--------|--------------------------------|---------|-------|-----|------|------|------|----------------------|---------|--------------------------------|------|------|
|                | Total Partial None Total Known variants Predicted variants |                       | riants |     | Total |        | Kno    | own vari           | ants   | Predic                         | ted var | iants |     |      |      |      |                      |         |                                |      |      |
| (Condition)    | Nt                                                         | Np                    | Nn     | Nt  | Sens  | Prec   | Np     | Sens               | Prec   | N <sub>t</sub> -N <sub>p</sub> | Sens    | Prec  | Nt  | Sens | Prec | Nn   | Sens                 | Prec    | N <sub>t</sub> -N <sub>p</sub> | Sens | Prec |
| CREB1 (50 bp)  | 200                                                        | 125                   | 141    | 190 | 73.0  | 76.8   | 134    | 96.8               | 90.3   | 56                             | 33.3    | 44.6  | 203 | 76.0 | 74.9 | 160  | 93.6                 | 82.5    | 43                             | 33.9 | 46.5 |
| CREB1 (35 bp)  | 106                                                        | 70                    | 81     | 104 | 73.6  | 75.0   | 74     | 97.1               | 91.9   | 30                             | 27.8    | 33.3  | 107 | 77.4 | 76.6 | 87   | 92.6                 | 86.2    | 20                             | 28.0 | 35.0 |
| CREB1 (20 bp)  | 26                                                         | 16                    | 16     | 24  | 69.2  | 75.0   | 17     | 100.0              | 94.1   | 7                              | 20.0    | 28.6  | 22  | 69.2 | 81.8 | 17   | 100.0                | 94.1    | 5                              | 20.0 | 40.0 |
| CTCF (35 bp)   | 267                                                        | 187                   | 192    | 300 | 83.1  | 74.0   | 198    | 98.4               | 92.9   | 102                            | 47.5    | 37.3  | 298 | 85.0 | 76.2 | 210  | 97.9                 | 89.5    | 88                             | 52.0 | 44.3 |
| Dnase (20 bp)  | 104                                                        | 43                    | 47     | 138 | 51.0  | 38.4   | 42     | 97.7               | 100.0  | 96                             | 18.0    | 11.5  | 144 | 51.9 | 37.5 | 55   | 97.9                 | 83.6    | 89                             | 14.0 | 9.0  |
| Other Factors  |                                                            |                       |        |     |       |        |        |                    |        |                                |         |       |     |      |      |      |                      |         |                                |      |      |
| EBF1 (35 bp)   | 291                                                        | 233                   | 248    | 283 | 86.6  | 89.0   | 233    | 98.3               | 98.3   | 50                             | 39.7    | 46.0  | 296 | 90.7 | 89.2 | 251  | 97.2                 | 96.0    | 45                             | 53.5 | 51.1 |
| ZNF143 (35 bp) | 90                                                         | 48                    | 53     | 103 | 70.0  | 61.2   | 55     | 100.0              | 87.3   | 48                             | 35.7    | 31.2  | 107 | 73.3 | 61.7 | 61   | 98.1                 | 85.2    | 46                             | 37.8 | 30.4 |
| ELF1 (35bp)    | 52                                                         | 29                    | 29     | 51  | 63.5  | 64.7   | 31     | 96.6               | 90.3   | 20                             | 21.7    | 25.0  | 51  | 65.4 | 66.7 | 35   | 96.6                 | 80.0    | 16                             | 26,1 | 37.5 |
| STAT5A (35 bp) | 35                                                         | 9                     | 13     | 32  | 42.9  | 46.9   | 9      | 100.0              | 100.0  | 23                             | 23.1    | 26.1  | 30  | 42.9 | 50.0 | 12   | 92.3                 | 100.0   | 18                             | 13.6 | 16.7 |
| BCL3 (35 bp)   | 19                                                         | 1                     | 1      | 7   | 15.8  | 42.9   | 1      | 100.0              | 100.0  | 6                              | 11.1    | 33.3  | 7   | 15.8 | 42.9 | 1    | 100.0                | 100.0   | 6                              | 11.1 | 33.2 |
| PAX5 (35 bp)   | 16                                                         | 10                    | 10     | 12  | 62.5  | 83.3   | 10     | 100.0              | 100.0  | 2                              | 0.0     | 0.0   | 12  | 62.5 | 83.3 | 10   | 100.0                | 100.0   | 2                              | 0.0  | 0.0  |
| POL2 (35 bp)   | 20                                                         | 8                     | 8      | 12  | 45.0  | 75.0   | 8      | 100.0              | 100.0  | 1                              | 8.3     | 25.0  | 12  | 45.0 | 75.0 | 8    | 100.0                | 100.0   | 4                              | 8.3  | 25.0 |
| C/EBPb (35 bp) | 8                                                          | 8                     | 8      | 0   | -     | -      | 0      | -                  | -      | 0                              | -       | -     | 2   | 0.0  | 0.0  | 1    | 0.0                  | 0.0     | 1                              | 0.0  | 0.0  |
| ZBTB33 (35 bp) | 7                                                          | 3                     | 3      | 5   | 24.9  | 60.0   | 3      | 100.0              | 100.0  | 2                              | 0.0     | 0.0   | 5   | 42.9 | 60.0 | 3    | 100.0                | 100.0   | 2                              | 0.0  | 0.0  |
| P300 (35 bp)   | 0                                                          | 0                     | 0      | 1   | -     | 0.0    | 0      | -                  | -      | 1                              | -       | 0.0   | 1   | -    | 0.0  | 0    | -                    | 0.0     | 1                              | -    | 0.0  |
| NFkB (28 bp)   | 0                                                          | 0                     | 0      | 0   | -     | -      | 0      | -                  | -      | 0                              | -       | -     | 0   | -    | -    | 0    | -                    | -       | 0                              | -    | -    |

Table 2.5 Precision of allelic imbalance detection extends to other transcription factor ChIP-seq data

<sup>a</sup>Complete genotype alignments use sequencing-based genotypes <sup>b</sup>Partial genotype alignments use array-based genotypes and imputation <sup>c</sup>No genotypes alignments use common variants (MAF>.05) from 1000 Genomes EUR; N<sub>t</sub> total imbalance count, N<sub>p</sub> imbalances at imputed heterozygotes, N<sub>n</sub> imbalances at common variants, Sens, percent sensitivity, Prec, percent precision

|                                              |        |      | Read (      | Counts                    |                      | Base Counts              |                           |                   |                         |  |  |  |  |  |
|----------------------------------------------|--------|------|-------------|---------------------------|----------------------|--------------------------|---------------------------|-------------------|-------------------------|--|--|--|--|--|
| ENCODE Dataset                               | Factor | Bp – | Total       | Heterozygous <sup>a</sup> | Aligned <sup>b</sup> | 1X Coverage <sup>c</sup> | 10X Coverage <sup>d</sup> | Hets <sup>e</sup> | Imbalances <sup>f</sup> |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Elf1sc631V0416101     | DNase  | 20   | 156,758,018 | 2,758,908                 | 3,135,160,360        | 1,405,991,528            | 21,124,395                | 8445              | 106                     |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Creb1sc240V0422111    | CREB1  | 50   | 33,599,679  | 1,295,901                 | 1,679,983,950        | 970,842,159              | 10,446,092                | 5282              | 200                     |  |  |  |  |  |
| wgEncodeSydhTfbsGm12878Ctcfsc15914c20Std     | CTCF   | 36   | 27,756,145  | 791,146                   | 999,221,220          | 564,722,839              | 8,555,802                 | 5402              | 267                     |  |  |  |  |  |
| wgEncodeSydhTfbsGm12878Ebf1sc137065Std       | EBF1   | 36   | 41,942,339  | 1,204,579                 | 1,509,924,204        | 953,631,250              | 7,860,098                 | 3981              | 291                     |  |  |  |  |  |
| wgEncodeSydhTfbsGm12878Znf143166181apStd     | ZNF143 | 36   | 34,120,761  | 1,005,238                 | 1,228,347,396        | 840,169,377              | 5,288,296                 | 3287              | 90                      |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Elf1sc631V0416101     | ELF1   | 36   | 24,915,146  | 779,055                   | 896,945,256          | 565,177,535              | 5,090,994                 | 2803              | 52                      |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Stat5asc74442V0422111 | STAT5a | 36   | 47,942,522  | 1,372,232                 | 1,725,930,792        | 1,076,897,191            | 3,390,070                 | 1311              | 35                      |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Bcl3V0416101          | BCL3   | 36   | 21,628,124  | 645,670                   | 778,612,464          | 588,947,638              | 1,540,684                 | 890               | 19                      |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Pax5c20               | PAX5   | 36   | 19,630,594  | 596,047                   | 706,701,384          | 540,278,004              | 1,263,550                 | 448               | 16                      |  |  |  |  |  |
| wgEncodeOpenChromChipGm12878Pol2             | POL2   | 36   | 14,908,730  | 417,043                   | 536,714,280          | 418,436,494              | 966,477                   | 325               | 12                      |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Cebpbsc150V0422111    | CEBPb  | 36   | 40,620,992  | 1,137,812                 | 1,462,355,712        | 1,029,621,494            | 783,682                   | 331               | 8                       |  |  |  |  |  |
| wgEncodeSydhTfbsGm12878NfkbTnfalggrab        | NFkB   | 28   | 19,683,073  | 432,673                   | 551,126,044          | 461,637,264              | 454,451                   | 7                 | 0                       |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878Zbtb33                | ZBTB33 | 36   | 21,413,742  | 647,263                   | 770,894,712          | 628,127,307              | 166,212                   | 122               | 7                       |  |  |  |  |  |
| wgEncodeHaibTfbsGm12878P300                  | P300   | 36   | 15,865,233  | 477,718                   | 571,148,388          | 488,303,953              | 138,015                   | 51                | 0                       |  |  |  |  |  |

### Table 2.6 Alignment and base coverage statistics for ChIP-seq transcription factor and Dnase-seq data

<sup>a</sup>Reads at heterozygous sites from complete genotypes <sup>b</sup>Reads aligned using complete genotypes <sup>c</sup>Genomic bases with at least 1 read <sup>d</sup>Genomic bases covered by at least 10 reads <sup>e</sup>Predicted heterozygous sites with at least 5 reads containing each allele <sup>f</sup>SItes with imbalance, binomial *P*<.01; Bp, base pairs

| Fig   | ure 2.5 Probes                                                                               |                 |                          |                           |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------|-----------------|--------------------------|---------------------------|--|--|--|--|--|--|--|
|       | rsID                                                                                         | Position        | Allele 1 Probe           | Allele 2 Probe            |  |  |  |  |  |  |  |
| А     | rs2382818                                                                                    | chr2:219155907  | 5'-ACCTCTCTGAAGGGCTCATTT | 5'-ACCTCTCTGATGTGCTCATTT  |  |  |  |  |  |  |  |
| В     | rs28712309                                                                                   | chr4:120375837  | 5'-GCCATTGTGACGTCACGGAAG | 5'-GCCATTGTGGCGTCACGGAAG  |  |  |  |  |  |  |  |
| С     | rs72694709                                                                                   | chr4:170533776  | 5'-TGGCGTGTGACGTCAGCGCGT | 5'-TGGCGTATGACGTCAGCGCGT  |  |  |  |  |  |  |  |
| D     | rs28711909                                                                                   | chr4:185769900  | 5'-CCACTTATGACGTAGCTTTTG | 5'-CCACTTATGACATAGCTTTTG  |  |  |  |  |  |  |  |
| Е     | rs1107479                                                                                    | chr12:57030685  | 5-TGCCAAGGACGTCACAGGCAG  | 5'-TGCCAAGGACGTCATAGGCAG  |  |  |  |  |  |  |  |
| F     | rs73177939                                                                                   | chr12:104351332 | 5'-CCTCCTGTGACCTCTTAAGAG | 5'-CCTCCTGTGACGTCTTAAGAG  |  |  |  |  |  |  |  |
| G     | rs12953558                                                                                   | chr18:76829069  | 5'-GATCGGTGACGTCATCGGGCC | 5'-CATCGGTGACGTAATCGGTCC  |  |  |  |  |  |  |  |
| Н     | rs12624512                                                                                   | chr20:62482272  | 5'-TGGGGAAGACCTCACATAGGC | 5'-TGGGGAAGACGTCACATAGGC  |  |  |  |  |  |  |  |
| Ι     | rs713875                                                                                     | chr22:30592486  | 5'-GGTGGCCAGCGTCAGCGTTTG | 5'-GGTGGCCAGGGTCAGCGTTTG  |  |  |  |  |  |  |  |
| Fig   | ure 2.6 Probes                                                                               |                 |                          |                           |  |  |  |  |  |  |  |
| А     | rs72807213                                                                                   | chr5:175816018  | 5-GAGGACAGTGATGTCGGAGGG  | 5'- GAGGACAGTGATATCGGAGGG |  |  |  |  |  |  |  |
| В     | rs9388486                                                                                    | chr6:126661154  | 5'-GCTCTCAATGACGTCAGGTAT | 5'- GCTCTCAATGACGCCAGGTAT |  |  |  |  |  |  |  |
| С     | rs274035                                                                                     | chr7:23450198   | 5'-ACCTCTAGTGATGTAAAGTCT | 5'-ACCTCTAATGATGTAAAGTCT  |  |  |  |  |  |  |  |
| D     | rs12145434                                                                                   | chr12:121454342 | 5'-CTTCATGACGTCACGTGAGAG | 5'-CTTCATGACGTCACGAGAGAG  |  |  |  |  |  |  |  |
| Е     | rs55811458                                                                                   | chr22:30592486  | 5'-GCAACTGGTGACATCATGAGA | 5'-GCAACTAGTGACATCATGAGA  |  |  |  |  |  |  |  |
| All I | All probes are labeled with biotin on the 5' end (Integrated DNA technologies- /5Biosg/ tag) |                 |                          |                           |  |  |  |  |  |  |  |

Table 2.7 EMSA probes for experimental validation



**Figure 2.1 Overview of AA-ALIGNER**. Sample genotypes or common variants are used to create a custom reference genome (1). Sequence reads are filtered to remove low quality reads (2) and aligned to the custom reference using GSNAP including alternate alleles (3). Alignments are filtered further to increase alignment quality (4) and used to detect sites of allelic imbalance (5, binomial test) and identify peaks (6). Allelic imbalance is tested at heterozygous sites included in the customized reference genome and at predicted heterozygous sites, identified based on a minimum number of mapped reads containing each of two alleles. If desired, predicted heterozygous sites can be used to update the custom reference and be included in a second alignment repeating steps 3-6.



**Figure 2.2 False positive imbalance sites have more significant p-values.** Boxplot of *P*-values at sites of allelic imbalance using complete (left), and partial (middle) genotypes and common variants (right). For the complete genotype alignment, *P*-values are further subdivided by inclusion in partial genotypes and common variants. For partial genotypes and common variant alignments, all *P*-values are displayed in addition to being divided into inclusion during alignment and predicted from the alignment, and then further divided into whether or not the sites was predicted using complete genotypes (false positive vs true positive). Subdivided groups with significant differences in *P*-value distributions (Mann Whitney U test; *P*<.01 and *P*<.001) are indicated.



Figure 2.3 Read length influences sequence alignment and allelic imbalance detection at heterozygous sites. (A) Alignment statistics for alignments of CREB1 ChIP-seq data, and when using different (B) read lengths and (C) sequence depths, plotted as percent of the 50 bp statistics. (D) Histogram of the number of reads containing the underrepresented allele at sites with significant imbalance(binomial P<.01, uncorrected) with 2 or more reads containing each allele. Vertical dashed line indicates the minimum of 5 or more reads containing each allele.



**Figure 2.4 Correlation of alignment statistics and number of imbalances detected.** The number of sites of allelic imbalance in thirteen ChIP-seq and one DNase-seq dataset compared to the (A) total number of reads aligned; (B) number of reads aligned to heterozygous sites; (C) total number of bases aligned (read length x total reads aligned); the percent of genome with greater than (D) 1X and (E) 10X coverage; (F) the number of heterozygous sites identified; (G) the average read depth at bases with 1X or more coverage; and (H) the ratio of sites with 10X coverage to 1X coverage. Pearson correlation R<sup>2</sup> values for each statistic and number of allelic imbalances are displayed for all data and only ChIP-seq data.





sites

**Figure 2.5 Validation of allelic imbalance detected at GWAS loci and other predicted sites.** (A) We detected significant allelic imbalance (binomial *P*<0.01) in CREB1 ChIP-seq sequence reads at variants at five disease- and trait-associated loci. (B) At rs2382818, sequence reads that failed to align when only single alleles were considered (top) were correctly aligned in an allele-aware alignment (bottom). The increase in aligned reads allowed for the detection of a CREB1 peak (black box) and allelic imbalance at the variant for which more reads were aligned containing the T allele than the A allele were aligned. Total sequence signal is displayed and reads are shaded based which allele they contain. (C) We detected a significantly greater proportion of reads containing the C allele of rs713875 than the G allele. (D) EMSA using purified CREB1 and labeled probes containing each allele at nine sites of allelic imbalance to test for allelic differences in binding. Alleles colored blue are predicted to bind CREB1 more strongly than alleles colored red. Allelic differences in protein binding consistent with these predictions were observed for starred (\*) variants. Only CREB1-bound probe is shown. Similar results were observed in a replicate experiment.



### Figure 2.6 Allelic differences in binding at sites without predicted allelic imbalance.

EMSA using purified CREB1 and labeled probes containing each allele at five sites with reads mapping but not significant allelic imbalance to test for allelic differences in binding. Alleles colored blue are the reference allele and alleles colored red are the other allele. Allelic differences in protein binding were detected at two sites (starred) without predicted imbalance but with predicted allelic differences in the presence of CREB1 motif. Only CREB1-bound probe is shown.

### CHAPTER 3: ALLELIC IMBALANCE DETECTION IN QUANTITATIVE SEQUENCE DATA PREDICTS GENETIC EFFECTS ON PROTEIN BINDING AT LOCI ASSOCIATED WITH CARDIOMETABOLIC TRAITS AND DISEASES

### 3.1 Background

Complex, cardiometabolic diseases such as coronary artery disease (CAD) and type 2 diabetes (T2D), present a major health concern worldwide. Genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with these diseases<sup>3,4</sup> and other cardiometabolic risk factors<sup>5,7–12,14–16,107</sup>. Around 93% of the variants located at GWAS loci are located in non-coding regions<sup>19</sup> and likely influence the transcription of one or more nearby genes. Indeed, at some of these loci, experimental studies have identified specific genetic variants with allelic differences in DNA-protein interactions, enhancer activity, and/or transcript levels of nearby genes<sup>22</sup>. For example, rs12740374, a variant associated with low-density lipoprotein cholesterol (LDL-C) plasma levels has been show to influence *SORT1* expression through allelic differences in C/EBPB protein binding<sup>23</sup>. Likewise, the T2D risk allele of rs11603334 has been shown to disrupt binding of PAX family proteins and increase transcription of the *ARAP1* promoter<sup>31</sup> and rs11257655, located in another T2D-associated locus near *CDC123/CAMK1D*, demonstrates allelic differences in FOXA1 and FOXA2 binding and enhancer activity<sup>27</sup>.

Quantitative sequence data, such as ChIP-seq and DNase-seq, can identify regions actively regulating gene transcription and, more specifically, the location of DNA-protein binding sites across the genome<sup>108</sup>. Finding overlap between these regions and GWAS variants identifies the variants likely influencing the regulation of nearby genes. While multiple variants at GWAS loci can be located in regulatory regions, not all of these variants demonstrate allelic differences in protein binding and enhancer activity. For example, two variants near *ARAP1*,

rs11603334 and rs1552224, are located in regions with regulatory evidence, but only rs11603334 has experimental evidence of allelic differences in protein binding and enhancer activity<sup>31</sup>. Quantitative sequence data can also detect specific variants with allelic differences in protein binding that potentially influence the transcript levels of nearby genes and/or cardiometabolic phenotypes. Similar numbers of sequence reads originating from heterozygous sites, are expected to contain each allele. Enrichment of one allele in quantitative sequence data, or allelic imbalance, at heterozygous sites can indicate allelic differences in protein binding or chromatin accessibility. We have shown in Chapter 2 that allelic imbalance detection in ChIPseq data identifies sites with experimental evidence of allelic differences in protein binding, including sites located at GWAS loci.

Two major limitations of allelic imbalance detection are reference mapping biases introduced during sequence alignment<sup>72</sup>, and the necessity of sample genotype data to identify and correct for these biases to accurately identify sites of allelic imbalance. We have previously described, our pipeline, AA-ALIGNER<sup>109</sup>, that uses an allele-aware aligner, GSNAP<sup>70</sup>, to remove mapping biases and identify sites of allelic imbalance. We have shown that AA-ALIGNER can accurately identify allelic imbalance using limited or no genotype information (**Chapter 2**). Additionally, we have shown that imbalance prediction accuracy is much greater at established heterozygous sites in the reference genome, than sites predicted to be heterozygous in the ChIP-seq or DNase-seq data. Likewise, when heterozygous sites are not known, imbalances are more accurately predicted at common variants (MAF>0.05) than rare variants.

Using AA-ALIGNER, we have identified sites of allelic imbalance in samples from three tissues with documented relevance to cardiometabolic phenotypes: liver<sup>110</sup>, pancreatic islets<sup>111</sup>, and adipose<sup>112</sup>. We report correlations between data characteristics and the number of imbalances detected and describe biological insights gained from imbalance detection. Using linkage disequilibrium (LD), we report allelic imbalances that are located at expression

quantitative trait loci (eQTLs) identified in liver<sup>113,114</sup>, adipose<sup>115</sup>, and islet<sup>116</sup> samples and/or cardiometabolic phenotype-associated loci<sup>21</sup>. Finally, we describe experimental evidence of allelic differences in protein binding and/or enhancer activity for variants associated with four cardiometabolic phenotype, highlighting the utility of using the allelic imbalance sites to understand gene transcription regulation at these and other loci.

#### 3.2 Results

### 3.2.1 Allelic imbalance detection in quantitative sequence data from cardiometabolicrelevant tissues

We predicted allelic differences in protein binding by detecting allelic imbalance in quantitative sequence data. Using AA-ALIGNER, we aligned sequence reads from and detected allelic imbalance in 117 publicly available ChIP-seq and DNase-seq datasets from a liver cell line (HepG2), primary human pancreatic islets from 12 individuals, and two adipose cell lines (hASC and SGBS). Together, these ChIP-seq experiments captured the binding sites of 72 proteins in one or more samples. After combining replicate datasets into a single experiment, i.e. ChIP-seq datasets for the same protein from the same sample, we tested for allelic imbalance at heterozygous sites in a total of 90 ChIP-seq experiments and 1 DNase-seq experiment. (**Table 3.1**) We detected significant allelic imbalance at 22,414 heterozygous sites (see **Appendix 1** for subset) across the genome (uncorrected binomial P<.01), with evidence of allelic imbalance detected in more than one experiment at 6,338 (28%) of these sites (**Table 3.1**). At a majority of these sites (98%), imbalance was detected for multiple transcription factors and/or DNase hypersensitivity in a single tissue. A small percentage of sites (2%) were imbalanced for the same or different experiments in multiple tissues.

# 3.2.2 Combining replicate datasets with low imbalance concordance increased the number of sites of allelic imbalance identified

For increased power to detect imbalances, we combined replicated datasets into one experiment before detecting imbalance. To examine concordance between replicate datasets, we compared the sites of allelic imbalance detected after combining datasets to sites identified in each individual dataset (**Figure 3.1**). Combining replicates identified, on average, 52% more sites of imbalance, suggesting that allelic imbalance detection is influenced directly by sequencing depth. After combining replicates, 19% of imbalances originally identified in individual replicates were no longer significant. When looking across individual replicates only a small percentage (median 14%) of imbalance sites was detected in more than one replicate. This low concordance between replicates could be influenced by sequencing depth of individual replicates, but is also likely influenced in part by variation in experimental protocols used to generate each replicate.

# 3.2.3 Percent of genome with 8X coverage is highly correlated with the number of imbalances detected

Focusing on datasets from HepG2, we further investigated the relationship between the number of allelic imbalance sites detected and characteristics of the sequence data, such as sequencing depth. We found a modest correlation between sequencing depth and the number of imbalances detected, as suggested by the combined replicate results ( $0.53 \le \text{Pearson r}^2 \le 0.59$ ; **Figure 3.2A-C**). When examining genomic coverage, we found little correlation between the percent of the genome with at least one read mapped, (1X coverage) and imbalance detection (Pearson r<sup>2</sup>=0.33; **Figure 3.2D**), but a very high correlation between the percent of the genome with 8 or more reads mapped (8X coverage) and imbalance detection (Pearson r<sup>2</sup> = 0.91; **Figure 3.2E**). Sites with 8 or more reads mapping have the minimum signal intensity

required to detect significant imbalance at heterozygous sites (**Figure 3.2F**). Metrics characterizing combinations of sequencing depth, 1X coverage and/or 8X coverage ( $0.70 \le$  Pearson r<sup>2</sup>  $\le 0.76$ ; **Figure 3.2G-H**) were more correlated with imbalance detection than sequencing depth alone, but less correlated than 8X coverage alone. Correlation values were similar when looking at all datasets and only ChIP-seq datasets, suggesting the DNase-seq and ChIP-seq data are influenced similarly by these characteristics.

#### 3.2.4 Changing the allele present in the reference does not change the alignment

We expect that in the absence of reference mapping bias, around 50% of reads at heterozygous site should contain the reference allele. Likewise, we expect that a similar number of imbalanced sites to have reference allele enrichment as non-reference allele enrichment. Large proportions of reads containing the reference allele suggest a greater number of sites with reference allele enrichment and could indicate the presence of false positives introduced by reference mapping biases. We looked for evidence of this in our data by testing for a correlation between the proportion of reads containing the reference allele at heterozygous sites and the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected. We found little correlation between the number of imbalances detected and the number of reads containing the reference allele (Pearson r<sup>2</sup>=0.27; **Figure 3.21**), although one dataset had a higher proportion of reads containing the reference allele than the others (**Figure 3.21**, **green diamond**). Over 54% of these CEBP/B ChIP-seq reads that mapped to heterozygous sites contained the reference allele, compared to the median of 50% over all datasets.

Increased mapping of reads containing the reference allele could be the result of i) reference mapping biases or ii) other unknown experimental or biological factors. To rule out reference mapping biases, we realigned the data to a complement reference genome in which the base at each heterozygous site is changed from the reference to the non-reference allele.
For this analysis, we only changed the reference at sites identified as heterozygous in HepG2 using a genotyping array and imputation to the 1000 Genomes reference panel (see **Methods**). For comparison, we similarly aligned two other ChIP-seq datasets with 51% of reads containing the reference allele. For all three datasets, mapping reads to the complement genome produced the same alignment and had no effect on imbalance detection, indicating that AA-Aligner had successfully removed reference mapping biases (**Table 3.2**) and that other experimental and biological factors are likely responsible for the enrichment of reads containing the reference allele.

#### 3.2.5 The major allele is commonly enriched at sites of allelic imbalance

Like reads mapping to heterozygous sites, we observed greater number of allelic imbalance sites (55.4%) with reference allele enrichment than non-reference allele enrichment in the HepG2 experiments. At 74% of these imbalanced sites the reference allele is also, the major, or more common, allele (allele frequency >0.5; 1000 Genome EUR) and we hypothesized that the increased reference allele enrichment is a function of major allele enrichment. Comparing the number of sites with major allele enrichment to a binomial distribution we found that major allele is significantly enriched (55.6% of sites) at more sites than expected by chance (P=1.8x10<sup>-97</sup>).

# 3.2.6 Allelic imbalance sites are in the same region as predicted binding motifs for imbalanced proteins

We have detected allelic imbalance at sites identified as heterozygous using genotyping arrays and imputation and sites predicted to be heterozygous because sequence reads from ChIP-seq and DNase-seq contain more than one allele. These heterozygous sites identified only in the sequence data may be real variants that not correctly identified by imputation because they are rare or unique to the sequenced individual. We have shown previously that imbalance detection is more accurate at the heterozygous sites identified using imputation than these sites predicted from the sequence data. As such, we created a high confidence set of imbalanced sites containing only allelic imbalances found in HepG2 data at heterozygous sites identified by imputation. Using protein binding motifs identified using ChIP-seq data from the ENCODE project<sup>117</sup>, we searched for evidence of direct protein binding to these heterozygous sites. Using FIMO<sup>94</sup> and available motifs, we identified the genomic locations of protein binding motifs (P<1.0x10<sup>-4</sup>) for a subset (50/61) of all the proteins imbalanced in HepG2. Of sites with evidence of imbalance for these proteins, 80% were within 500 bp of and 15% were located within a predicted binding site for an imbalanced protein (**Figure 3.3A**), suggesting that allelic imbalance is often detected for proteins binding proximal to but not at the heterozygous sites.

# 3.2.7 Presence of allelic imbalance in one protein of established protein-protein pairs is associated with presences of imbalance in the second protein

We combined these high-confidence imbalance sites with heterozygous sites that have reads mapping but no suggestive evidence of allelic imbalance (8 or more reads mapped per experiment and imbalance *P*>0.5) to create a curated set of heterozygous sites with mapped reads. Of the 75,941 heterozygous sites in our curated set, 19,523 have significant imbalance ( $P \le 0.01$ ) in at least one experiment, and the remaining 56,418 have no evidence of imbalance ( $P \ge 0.5$ ). We used this curated set to investigate the relationship between the imbalance statuses of proteins with reads mapping to the same site.

We hypothesize that because of interactions between proteins, the imbalance status (imbalanced or not imbalanced) of proteins with at least 8 reads mapping to heterozygous sites and a binding motif at those sites (motif protein) can influence the imbalance status of other

proteins with reads 8 or more reads to the same site. We tested this hypothesis by identifying all heterozygous sites from our curated list that have evidence of a motif protein. For each site, we used the imbalance status of this motif protein and each of the other mapped proteins to classify each protein pair at that site into one of four categories—(i) both proteins were imbalanced; (ii) only the motif protein was imbalanced; (iii) only the other protein was imbalanced; and (iv) neither protein was imbalanced. Using a Fisher's exact test we found a statistical association (Bonferroni corrected for 1,892 tests; P<2.6x10<sup>-5</sup>) between the imbalance status of the two proteins in 15 protein-protein pairs (**Figure 3.3B**).

In our test, two of the three motif protein-other protein pairs with the most significant associations involved both CTCF and Rad21 (CTCF-Rad21 P=2.8x10<sup>-9</sup>, Rad21-CTCF P=2.6x10<sup>-8</sup>), suggesting that when CTCF and RAD21 co-localize to the same region the imbalance status of one protein influences the other. This observation is supported by work demonstrating that CTCF recruits the Rad21-containing cohesin complex to DNase hypersensitivity sites<sup>118</sup>. Although not reaching our threshold for significance, we also detected suggestive evidence that a relationship exists between CTCF and Smc3 (P=4.8x10<sup>-4</sup>), another cohesin subunit.

# 3.2.8 Allelic imbalance in DNase-seq data coincides with allelic imbalance in ChIP-seq data at a subset of allelic imbalance sites

With our curated set of heterozygous sites, we next evaluated our ability to identify significant imbalance in ChIP-seq data using DNase-seq data. While reads from one or more ChIP-seq experiments mapped to 85% of sites with DNase-seq reads, DNase-seq reads only mapped to 11% of sites with ChIP-seq reads mapping (**Figure 3.3C**). Focusing only on sites with allelic imbalance, imbalance was detected in one or more ChIP-seq experiments at 71% of sites with allelic imbalance in DNase-seq reads, but imbalance was detected in DNase-seq

reads at only 6% of sites with imbalance in ChIP-seq experiments (**Figure 3.4D**). These data suggest that DNase-seq data frequently identifies sites of allelic imbalance in ChIP-seq data, does not comprehensively identify allelic imbalance in protein binding across the genome. These results are likely a function of the sequencing depth and broad signal dispersion of DNase-seq data, and we expect that increased sequencing depth would increase the ability of DNase-seq data to detect additional sites that are also imbalanced in the ChIP-seq data.

#### 3.2.9 Allelic imbalances at published eQTL loci

We searched for evidence of allelic imbalance at eQTL loci identified in in liver<sup>113,114</sup>, adipose<sup>115</sup>, and pancreatic islet<sup>116</sup> samples. We considered an imbalanced site to be located at an eQTL locus if it was in linkage disequilibrium (LD;  $r^2$ >=.7; 1000 Genomes EUR) with any of the 33,959 reported eQTL variants (*P*<=1x10<sup>-5</sup>). Of the 22,414 sites with allelic imbalance, 167 were located at loci with evidence of an eQTL, suggesting that differential protein binding may influence gene transcription at these loci (**Table 3.3**, **Appendix 2**).

We identified two sites of allelic imbalance at eQTL loci that also have evidence of an association with cardiometabolic diseases. At rs12091564, we detected enrichment of the C allele over the T allele in multiple factors in HepG2 (CREB1, MYBL2, NR2F2, and TBP). This variant also has reported associations with *NOTCH2NL* transcription in islets<sup>116</sup> (*P*=2.7x10<sup>-6</sup>) and coronary artery disease risk<sup>119</sup> (risk allele C; *P*=2.0x10<sup>-7</sup>). At rs13356762, we detected enrichment of the G allele over the T allele in TAF1 reads from HepG2 cells. This variant is also associated with *C5orf35* in islets<sup>116</sup> (*P*=2.5x10<sup>-8</sup>) and type 2 diabetes risk<sup>119</sup> (risk allele A; *P*=4.0x10<sup>-6</sup>). At this same locus, rs185220 (G allele enrichment over A allele) is also associated with *C5orf35* expression in islets but fell just below our LD threshold (r<sup>2</sup> = 0.68) with the type 2 diabetes-associated variant (**Table 3.3, Appendix 2, Appendix 3**).

#### 3.2.10 Allelic imbalances at cardiometabolic phenotype-associated loci

We expanded our search outside of eQTL loci and looked for evidence of allelic imbalance at loci associated with cardiometabolic traits and disease (**Appendix 4**). We detected allelic imbalance at 199 of the 66,513 variants located at cardiometabolic genomewide association loci reported in the NHGRI catalog (LD  $r^2$ >=.7; genome-wide significance P<=5x10<sup>-8</sup>) (**Appendix 3**). Of these sites, 5 were located at coronary artery disease-associated loci, 11 at type 2 diabetes loci, and 47 at loci associated with lipid levels (HDL-C, LDL-C, triglycerides, and total cholesterol) (**Table 3.4**, **Table 3.5**). Of note, we detected allelic imbalance at two sites, rs6713419 and rs10184004, located near *COBLL1* and *GRB14*, and in LD with variants associated with both type 2 diabetes risk and triglyceride levels. Evidence of allelic imbalance at this and other GWAS loci suggest that differential protein binding at imbalanced sites is contributing to cardiometabolic disease risk and trait measurements.

# 3.2.11 Experimental conformation of allelic differences in protein binding and enhancer activity at imbalanced sites

Four of the imbalanced sites located at GWAS loci also have experimental evidence demonstrating allelic differences in protein binding and/or enhancer activity (**Figure 3.4A**). At rs4969182 near *PGS1*, we detected enrichment of the A allele in data for 6 proteins including FOXA1 and FOXA2. Experimentally, this same allele shows increased binding of FOXA1 and FOXA2 to the A allele, as well as increased enhancer activity<sup>33</sup>. Likewise at rs4846913, near *GALNT2*, we predicted allelic imbalance in 5 datasets and the enriched allele demonstrated increased protein binding to C/EBPb and enhancer activity<sup>120</sup>. The enriched allele at rs62102718 near *PEPD*, also has experimentally validated allelic differences in protein binding<sup>121</sup>.

Finally, we tested rs6813195 for allelic differences in enhancer activity in MIN6, mouse insulinoma, cells using a dual luciferase assay and observed increase enhancer activity for the allele predicted to have increased binding of FOXA2 in human islets (**Figure 3.4B**). Together these experimental data highlight the utility of using allelic imbalance detection to predict allelic differences in protein binding and transcriptional activity at cardiometabolic phenotype-associated loci.

### 3.3 Discussion

Allelic imbalance detection in quantitative sequence data is a powerful tool for understanding genetic effects on the regulation of gene transcription. We used AA-ALIGNER to detect allelic imbalance in ChIP-seq and DNase-seq data generated in cell lines and primary cells from tissues playing a role in cardiometabolic phenotypes. Imbalance detection in these samples has provided not only biological insights into the regulation of gene transcription at specific cardiometabolic GWAS loci, but also more general insights into protein binding at imbalanced sites.

We found evidence of allelic imbalance at hundreds of loci associated with cardiometabolic traits and diseases. While these imbalanced sites may be located at GWAS loci by chance, it is likely that many of them are playing an active role in regulating the transcription of nearby genes and influencing the associated phenotype. For example, LD data suggests that at two variants near *GRB14*, rs6713419 and rs10184004, the alleles predicted to have increased MAFK binding are on the same haplotype as the alleles associated with both increased triglyceride levels and type 2 diabetes risk. This effect is likely mediated by changes in gene transcription, and *GBR14*, which binds to the insulin receptor and negatively regulates insulin signaling<sup>122</sup>, is a strong candidate target. Differential protein binding could influence *GRB14* transcription and ultimately insulin signaling, although experimental validation is needed to confirm differential protein binding and *GRB14* transcription. Allelic differences in enhancer

activity have been experimentally observed, however, at three other sites with allelic imbalance, and we are confident that future experimental testing will produce similar evidence for additional imbalanced sites. As the *GRB14* locus demonstrates, predicted imbalances can provide a starting hypothesis for these experiments and expedite experimental exploration of gene transcription regulation at GWAS loci.

In addition to GWAS loci, we also found allelic imbalance at sites associated with gene expression. One variant with allelic imbalance, rs12091564 is associated with allelic differences in *NOTCH2NL* transcription in islets as well as coronary artery disease risk. The Notch signaling plays a role in cardiovascular disease<sup>123</sup>, making it plausible that differential regulations of *NOTCH2NL* by rs12091564 influences coronary artery disease risk. Two other imbalance sites, rs13356762 and rs185220 are associated with *C5orf35* expression and T2D. This gene encodes *SETD9* and although it is unclear what role this protein might play in T2D risk, our allelic imbalance results provide a candidate variant to test for differences in regulatory activity. We have additionally identified allelic imbalance at eQTLs outside of GWAS loci that may not be immediately applicable in understanding the genetic effects on cardiometabolic phenotypes, but could be important for understanding genetic effects on gene transcription in general.

In addition to providing candidate regulatory variants for experimental study, our analyses have provided us with some insights into the mechanics of protein binding at sites of allelic imbalance. First, we observed enrichment of reads containing the major allele at more imbalanced sites than expected by chance, suggesting that variants promoting increased protein binding may be evolutionarily favored, or conversely, variants disrupting binding disfavored. Second, we have used allelic imbalance to perform a preliminary exploration of the binding relationship of proteins co-localized to the same heterozygous site. We found evidence of an association between the presence of imbalance in CTCF and cohesin subunits Rad21 and SMC. This finding is supported by other work demonstrating CTCF, Rad21, and SMC co-

localization in HepG2 cells<sup>124</sup> and a direct interaction between CTCF and Rad21<sup>118</sup>. While our analysis offers preliminary evidence of direct binding relationships between proteins, it is important to note that it may be limited by many factors such as accuracy of binding motif locations, sequencing depth, and ChIP-seq data availability.

Data availability is one of the greatest limiting factors of imbalance detection. Our analyses were particularly limited by the small number of ChIP-seq samples generated in pancreatic islets and adipose tissue. It is likely that in these tissues we were unable to detect allelic imbalance at many sites influencing gene transcription at cardiometabolic GWAS loci. We were limited further because allelic imbalance detection can only be done at heterozygous sites. Even with the abundance of data from a liver cell line, we failed to detect allelic imbalance at sites with documented allelic differences in protein binding in liver because these sites are homozygous in HepG2 cells<sup>23,27,30</sup>. Despite this limitation, allelic imbalance detection is very useful even in only a single dataset. Analyzing quantitative sequence data from more than one individuals would help to overcome this limitation, but analyzing large numbers of ChIP-seq datasets in multiple individuals can be resource prohibitive.

DNase-seq data can identify the binding sites of many transcription factors in a single assay and is an attractive option for identifying protein binding sites in a population of individuals<sup>125</sup>. While we detected allelic imbalance in ChIP-seq data at a majority of sites imbalanced in DNase-seq data, we only predicted a small fraction of sites imbalanced in ChIP-seq data using DNase-seq data. DNase-seq has a more disperse signal than most ChIP-seq data and requires a much deeper sequencing depth to achieve the same signal intensity found in ChIP-seq data with fewer reads. As signal intensity was highly correlated with imbalance detection, it is likely that with greater sequencing depth DNase-seq data would be able to identify a greater proportion of ChIP-seq imbalances. Protein binding to DNA creates a localized site of protection from DNase-seq reads, or footprints<sup>125</sup>. Reduced DNase-seq read coverage in

footprints further limits imbalance detection in DNase-seq data at heterozygous sites directly bound by protein. Additionally, the number of cells required to generate adequate sequencing depth with DNase-seq can be prohibitive when using a limited number of primary cells. ATACseq, similar to DNase-seq, requires fewer cells and may reduce this limitation, but further study is needed to assess the efficiency and accuracy of allelic imbalance in that data.

We have limited our analyses to ChIP-seq and DNase-seq data generated in a single liver cell line, pancreatic islet samples from 12 individuals, and two adipose cell lines. Additional protein ChIP-seq and DNase-seq data exists for other liver and pancreatic cell lines as well as primary cells and samples from these tissues. Additionally, RNA-seq, FAIRE-seq and histone modification ChIP-seq are also available for samples from these and other samples related to cardiometabolic phenotypes. As we expand allelic imbalance identification into this additional data, we expect to find additional evidence of allelic imbalance at cardiometabolic phenotypeassociated loci and gain further insight into transcriptional activity at these loci.

#### 3.4 Conclusion

In conclusion, we have identified allelic imbalance in ChIP-seq and DNase-seq data at thousands of genomic sites. These imbalances, which predict allelic differences in protein binding were identified in cultures of cell lines or primary cells from liver, pancreas, and adipose tissues and can provide direct insight into gene transcription regulation at cardiometabolic phenotype-associated loci. The hundreds of allelic imbalance sites we have identified at eQTL and/or GWAS loci may influence gene transcription at these loci and are prime candidates for future experimental analyses. We have documented allelic imbalance at sites for which allelic differences in protein binding and/or enhancer activity have been experimentally observed, including novel evidence of allelic differences in enhancer activity of at rs6813195. This study provides not only thousands of candidate regulatory sites with predicted allelic differences in

protein binding, but also examples of the biological insights into transcription that can be gained from examining these sites.

### 3.5 Methods

#### 3.5.1 Genotype imputation

Genotypes for HepG2, generated by the HudsonAlpha Institute of Biotechnology using the Illumina Human-1MDuo BeadChip array, were download from the UCSC genome browser<sup>41</sup>. We imputed autosomal genotypes for HepG2 and 52 other samples from the ENCODE project using MaCH-Admix<sup>84</sup> with default parameter settings and the reference panel from the 1000 Genomes Project Phase I version 3 (2012-03-14 release). Chromosome X genotype data was first pre-phased using MaCH<sup>101</sup> with options --states 500 and --rounds 400 and then imputed using minimac<sup>102</sup> with options --state 10 and --rounds 10. Imputation quality Rsq was used to filter variants post imputation as previously reported<sup>103</sup>.

#### 3.5.2 Sequence mapping and imbalance detection in quantitative sequence data

ChIP-seq and DNase-seq data from the ENCODE consortium<sup>40</sup> was downloaded from the UCSC genome browser<sup>41</sup> and data from other sources was obtained from the short read archive (SRA)<sup>69</sup>. Sequence reads were filtered and aligned, the alignments processed, and allelic imbalance detected using AA-ALIGNER as previously described, but with a few modifications. Before alignment we filtered sequences using TagDust<sup>126</sup> and the following parameters `-q –f 0.001 -s` to remove known adapter sequences. Rather than using MarkDuplicates (Picard Tools<sup>127</sup>) to reduce PCR artifacts, we only align the 5 reads with highest guality when a datasets contains more than 5 reads with same sequence.

Sequences from primary islets samples, hASC, and SGBS were aligned to a major allele reference sequence created by changing bases of hg19 at common variants to match the major

allele. (1000 Genomes EUR MAF>.05). Data from HepG2 cells were aligned to a HepG2specific reference genome created by changing each base in the major allele reference to match the allele with the highest predicted dosage at imputed variants.

#### 3.5.3 Identifying motif occurrences

We searched for occurrences of transcription factor binding motifs previously identified using ChIP-seq data<sup>117</sup> within the regions ±500 bp of sites of allelic imbalance. We looked for motif occurrences in two sets of sequences, one containing the reference allele and the other containing the non-reference allele, using the motif scanner FIMO<sup>94</sup> with the parameters `--max-strand –max-stored-scores 1000000 –no-qvalue`.

#### 3.5.4 Cell Culture

Mouse derived insulinoma MIN6 cells were cultured in DMEM (Sigma), supplemented with 10% FBS, 1 mM sodium pyruvate, 0.1 mM  $\beta$ -mercaptoethanol and maintained at 37°C with 5% CO<sub>2</sub>.

# 3.5.5 Generation of luciferase reporter constructs, transient DNA transfection and luciferase reporter assays

To test the allele specific transcriptional activity, we PCR-amplified a 201 bp fragment (chr4: 153520425-153520625) surrounding the SNP rs6813195 (Forward primer: GGGAGAGGAAGCAAGTAAACAAG, reverse primer: CAGGCAATCTGTCCACCTC) from DNA

of individuals homozygous for both major and minor alleles. Restriction sites for KpnI and XhoI were added to primers during amplification, and the resulting PCR products were digested with KpnI and XhoI and cloned in both orientations into the multiple cloning sites of the minimal

promoter-containing firefly luciferase reporter vector pGL4.23 (Promega, Madison, WI). Fragments are designated as 'forward' or 'reverse' based on their orientation with respect to the genome. Three to six independent clones for each allele for each' orientation were isolated,

Approximately 200,000 MIN6 cells per well were seeded in 24-well plates. At 80% confluency, cells were co-transfected with luciferase constructs (250 ng per well) and *Renilla* control reporter vector (phRL-TK, Promega) (80 ng per well) using Lipofectamine LTX (Invitrogen). Transfected cells were incubated at 37°C with 5% CO<sub>2</sub> for 48 hours then lysed with passive lysis buffer (Promega), and luciferase activity was measured using the Dual-luciferase assay system (Promega). To control for transfection efficiency, raw values for firefly luciferase activity were divided by raw *Renilla* luciferase activity values, and fold change was calculated as normalized luciferase values divided by pGL4.23 minimal promoter empty vector control values. Data are reported as the fold change in mean (± SE) relative luciferase activity per allele. A two-sided *t*-test was used to compare luciferase activity between alleles.

|                                                      | _           | Sample    | es by Tissue T  | уре     |
|------------------------------------------------------|-------------|-----------|-----------------|---------|
|                                                      | All Samples | Liver Par | ncreatic Islets | Adipose |
| Samples                                              | 15          | 1         | 12              | 2       |
| Total Experiments                                    | 91          | 70        | 17              | 4       |
| ChIP-seq datasets                                    | 90          | 69        | 17              | 4       |
| DNase-seq datasets                                   | 1           | 1         | 0               | 0       |
| Sites with allelic imbalance <sup>a</sup>            | 22,414      | 21,308    | 1,074           | 75      |
| Sites with imbalance in >= 1 experiment <sup>a</sup> | 6,338       | 6,292     | 157             | 21      |

A sample is a cell line or primary cell isolated from a single individual. DNase-seq datasets from the same sample or ChIP-seq datasets for the same protein from the same sample are represented as a single experiment. <sup>a</sup>For some sites allelic imbalance was detected in samples from more than one tissue classification

|                                                 | C/         | EBPB                    | C          | REB1                    | TAF1       |                         |  |
|-------------------------------------------------|------------|-------------------------|------------|-------------------------|------------|-------------------------|--|
|                                                 | Standard   | Complement <sup>a</sup> | Standard   | Complement <sup>a</sup> | Standard   | Complement <sup>a</sup> |  |
| Reads mapped uniquely                           | 34,806,038 | 34,806,038              | 48,939,432 | 48,939,435              | 23,565,876 | 23,565,876              |  |
| Reads at heterozygous sites                     | 833,781    | 833,781                 | 1,613,584  | 1,613,587               | 1,197,696  | 1,186,891               |  |
| Reference allele                                | 457,433    | 376,348                 | 822,922    | 790,665                 | 312,267    | 288,331                 |  |
| Non-reference allele                            | 376,348    | 457,433                 | 790,662    | 822,922                 | 288,331    | 312,267                 |  |
| Allelic Imbalance Sites Identified <sup>b</sup> | 778        | 778                     | 1204       | 1204                    | 310        | 310                     |  |
| Reference allele                                | 418        | 360                     | 695        | 509                     | 187        | 123                     |  |
| Non-reference allele                            | 360        | 418                     | 509        | 695                     | 123        | 187                     |  |

# Table 3.2 Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA)

<sup>a</sup>Alignment reference contained the non-reference allele of heterozygous sites identified by imputation <sup>b</sup>Imbalances at known heterozygous sites (binomial p-value<.01)

| Imbalanced    |                   | Enriched   | 1                                                                                                    |               |                                                   |
|---------------|-------------------|------------|------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------|
| Variant       | Position          | Allele     | Imbalanced Protein(s)                                                                                | Other Allele  | eQTL Genes                                        |
| rs1494813     | chr1:45957290     | С          | (L) MXI1                                                                                             | Т             | (I) CCDC163P <sup>116</sup>                       |
| rs12127787    | chr1:89458761     | С          | (L) CREB1,USF1 <sup>b</sup> , USF2 <sup>b</sup> , YY1                                                | Т             | (I) GBP3 <sup>116</sup>                           |
| rs61844237    | chr1:245133662    | G          | (L) DNASE                                                                                            | С             | (I) EFCAB2 <sup>116</sup>                         |
| rs1554612     | chr2:48827497     | С          | (L) CTCF,FOXA2,RAD21                                                                                 | Т             | (A) STON1 <sup>115</sup>                          |
| rs2070063     | chr2:64862055     | Α          | (L) MAFK                                                                                             | G             | (A) SERTAD2 <sup>115</sup>                        |
| rs2364723     | chr2:178126546    | С          | (L) MBD4                                                                                             | G             | (L) NFE2L2 <sup>114</sup>                         |
| rs9841194     | chr3:125635739    | Т          | (L) POL2                                                                                             | С             | (I) LOC100125556 <sup>116</sup>                   |
| rs7661077     | chr4:7219889      | С          | (L) C/EBPB                                                                                           | Т             | (L) SORCS2 <sup>114</sup>                         |
| rs10030238    | chr4:141808805    | А          | (L) HNF4G                                                                                            | G             | (A) RNF150 <sup>115</sup>                         |
| rs2227426     | chr4:155493171    | G          | (L) POL2                                                                                             | А             | (L) C9orf66 <sup>114</sup>                        |
| rs3195676     | chr5:34008100     | С          | (L) BHLHE40, MAX,TAF1                                                                                | т             | (A) AMACR <sup>115</sup>                          |
| rs185220      | chr5:56205357     | G          | (L) DNASE                                                                                            | А             | (I) C5orf35 <sup>116</sup>                        |
| rs3132555ª    | chr6:31082910     | G          | (L) RAD21                                                                                            | С             | (I) CDSN <sup>116</sup>                           |
| rs3094209ª    | chr6:31089982     | G          | (L) C/EBPB                                                                                           | А             | (I) CDSN <sup>116</sup>                           |
| rs9271092     | chr6:32576296     | А          | (L) RAD21                                                                                            | G             | (I) HLA-DRB1 <sup>116</sup>                       |
| rs9271093     | chr6:32576341     | G          | (L) CTCF                                                                                             | А             | (I) HLA-DRB1, HLA-DRA,<br>HLA-DRB5 <sup>116</sup> |
| rs9271094     | chr6:32576347     | G          | (L) CTCF                                                                                             | С             | (I) HLA-DRB1 <sup>116</sup>                       |
| rs9271096     | chr6:32576426     | А          | (L) CTCF                                                                                             | G             | (I) HLA-DRB1 <sup>116</sup>                       |
| rs539298      | chr6:160770360    | G          | (L) BHLHE40,C/EBPB,CREB1,DNASE,ELF1,<br>HNF4A, HNF4G, JUND,MAX,MYBL2,NFIC,<br>NR2F2,P300, POL2,RAD21 | A             | (L) <i>SLC22A3</i> <sup>113</sup>                 |
| rs8200        | chr7:75696606     | G          | (L) POL2                                                                                             | С             | (L) AKs022137 <sup>114</sup>                      |
| rs6985299     | chr8:71613079     | Т          | (L) MAX                                                                                              | С             | (I) XK92 <sup>116</sup>                           |
| rs11985375    | chr8:71613472     | G          | (L) CREB1,MAX                                                                                        | А             | (I) XK92 <sup>116</sup>                           |
| rs17141322    | chr10:17604700    | А          | (I) PDX1                                                                                             | С             | (I) ST8SIA6 <sup>116</sup>                        |
| rs9787897     | chr11:74659302    | Т          | (L) FOXA2                                                                                            | А             | (I) XRRA1 <sup>116</sup>                          |
| rs567956      | chr11:74659779    | С          | (L) POL2                                                                                             | Т             | (I) XRRA1 <sup>116</sup>                          |
| rs2165163     | chr11:74660143    | С          | (L) DNASE,MAX                                                                                        | G             | (I) XRRA1 <sup>116</sup>                          |
| rs933462      | chr12:9103665     | G          | (L) HDAC2                                                                                            | Т             | (A) <i>KLRG1</i> <sup>115</sup>                   |
| rs9925556     | chr16:2880105     | Т          | (L) FOXA2,DNASE                                                                                      | С             | (L) ZG16B <sup>114</sup>                          |
| rs1981760     | chr16:50723074    | С          | (L) EZH2                                                                                             | т             | (L) CARD15 <sup>114</sup>                         |
| rs16949649    | chr17:49230308    | Т          | (L) C/EBPB                                                                                           | С             | (A) <i>NME1</i> <sup>115</sup>                    |
| rs2598414     | chr17:74067099    | С          | (L) BHLHE40                                                                                          | Т             | (A) SRP68 <sup>115</sup>                          |
| rs2376585     | chr17:76417883    | Т          | (L) CEBPA,CTCF,DNASE,FOXA1,<br>FOXA1 MAX NR2F2_ZBTB33 ZEB1                                           | С             | (A) <i>DNAH17</i> <sup>115</sup>                  |
| rs8101689     | chr19:30185697    | А          | (L) HDAC2                                                                                            | G             | (A) C19orf12 <sup>115</sup>                       |
| rs1343703     | chr19:49955155    | G          | (I) FOXA2 (L) ARID3A <sup>b</sup>                                                                    | С             | (L) NOP17 <sup>114</sup>                          |
| rs562954      | chr20:48092076    | G          | (L) CEPBP                                                                                            | А             | (L) AK055386,KCNB1 <sup>114</sup>                 |
| rs4828057     | chrX:100006043    | А          | (I) MAFB                                                                                             | С             | (A) SYTL4 <sup>115</sup>                          |
| Varianta with | allalia imbalanaa | and a rang | vited approximation with going oversesion (D<1v10-                                                   | 10) are chown | a) (oright is in portact ID                       |

Table 3.3 Site of allelic imbalance with published evidence of eQTL (P<1.0x10<sup>-10</sup>)

Variants with allelic imbalance and a reported association with gene expression (P<1x10<sup>-10</sup>) are shown. <sup>a</sup>Variant is in perfect LD ( $r^2$ =1) with the eQTL variant rs3130981 <sup>b</sup>Protein is enriched for the other allele rather than enriched allele. Allelic imbalance and eQTLs were identified in (A) adipose tissue, (I) pancreatic islets, or (L) liver tissues

|                             |                    |                 |                    | Allelic Imbalance                                                                                    | Disease Association |         |                                  |                    |          |                  |
|-----------------------------|--------------------|-----------------|--------------------|------------------------------------------------------------------------------------------------------|---------------------|---------|----------------------------------|--------------------|----------|------------------|
| Locus                       | Imbalanced Variant | t Position      | Enricheo<br>Allele | d<br>Imbalanced Protein(s)                                                                           | Other<br>Allele     | Disease | Reported Variant <sup>a</sup>    | LD r <sup>2b</sup> | Coupling | Risk<br>° Allele |
| MIA3                        | rs4846770          | chr1:222795569  | G                  | (L)CEBPD                                                                                             | С                   | CAD     | rs17465637 <sup>128,129</sup>    | 0.95               | G,C      | С                |
| HCG27                       | rs6921948          | chr6:31171257   | А                  | (I)FOXA2                                                                                             | С                   | CAD     | rs3869109 <sup>130</sup>         | 0.73               | C,G      | G                |
|                             | chr10:104692633    | chr10:104692633 | А                  | (L)CEBPA                                                                                             | С                   | CAD     | rs12413409 <sup>128,131,13</sup> | <sup>2</sup> 0.94  | C,G      | G                |
| TF 17A 1, CININI/2, IN 15C2 | chr10:104952499    | chr10:104952499 | С                  | (L)DNASE                                                                                             | Т                   | CAD     | rs12413409 <sup>128,131,13</sup> | <sup>2</sup> 0.94  | C,G      | G                |
| ADAMTS7                     | rs11856536         | chr15:79094325  | А                  | (L)HDAC2                                                                                             | G                   | CAD     | rs3825807 <sup>128</sup>         | 0.98               | A,A      | Α                |
| PRMS1 ITCR8                 | rs6706545          | chr2:161181478  | А                  | (L)C/EBPB, FOXA2                                                                                     | Т                   | T2D     | rs7593730 <sup>133</sup>         | 0.98               | A,C      | С                |
| KBINIST, IT GB0             | rs10929982         | chr2:161236277  | Т                  | (L)C/EBPB                                                                                            | С                   | T2D     | rs7593730                        | 0.77               | T,C      | С                |
| COBU 1 CPR14                | rs6713419          | chr2:165508300  | Т                  | (L)MAFK                                                                                              | С                   | T2D     | rs3923113 <sup>134,135</sup>     | 0.97               | T,A      | А                |
| COBLET, GRB 14              | rs10184004         | chr2:165508389  | С                  | (L)MAFK                                                                                              | Т                   | T2D     | rs3923113                        | 0.85               | C,A      | Α                |
| TMEM154                     | rs6813195          | chr4:153520475  | С                  | (I)FOXA2                                                                                             | Т                   | T2D     | rs6813195 <sup>135</sup>         | -                  | -        | С                |
| CDC123,CAMK1D               | rs34428576         | chr10:12281111  | A                  | (L)CEBPA,C/EBPB,CEBPD,CREB1,DNASE<br>FOXA1, HDAC2,HNF4A, JUND, MAX,<br>NFIC,NR2F2,P300,RAD21, ZBTB7A | ,<br>G              | T2D     | rs12779790 <sup>136</sup>        | 0.72               | A,G      | G                |
| HHEX                        | rs4933736          | chr10:94471595  | Т                  | (L)FOXA2                                                                                             | С                   | T2D     | rs5015480 <sup>136–140</sup>     | 0.74               | C,C      | С                |
| EITM2 RHDMI HNE44           | rs4812816          | chr20:42930872  | С                  | (L)MAZ                                                                                               | А                   | T2D     | rs6017317 <sup>141</sup>         | 0.74               | A,G      | G                |
|                             | rs6065723          | chr20:42956922  | С                  | (L)MAFF,MAFK                                                                                         | Т                   | T2D     | rs6017317                        | 0.77               | T,G      | G                |
| SL30A8                      | rs35859536         | chr8:118191475  | С                  | (I)PDX1                                                                                              | Т                   | T2D     | rs3802177 <sup>135,139</sup>     | 0.99               | C,G      | G                |
| GLIS3                       | rs57884925         | chr9:4285119    | С                  | (L)MAFK                                                                                              | G                   | T2D     | rs7041847 <sup>135,141</sup>     | 0.93               | G,A      | А                |

#### Table 3.4 Sites of allelic imbalance located at cardiometabolic disease-associated loci

<sup>a</sup>For associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shown <sup>b</sup> Linkage Disequilibrium r<sup>2</sup> was calculated for EUR samples in 1000 Genomes Phase1v3 <sup>c</sup>Allele coupling calculated in 1000 Genomes EUR samples written as: imbalanced variant allele, reported variant allele. (I) for islets and (L) for liver indicates the tissue containing the imbalance. CAD, coronary artery disease; T2D, type 2 diabetes

|               |                       |                 |                    | Allelic Imbalance                                                                 | Trait Association |       |                                          |                           |         |                                            |  |
|---------------|-----------------------|-----------------|--------------------|-----------------------------------------------------------------------------------|-------------------|-------|------------------------------------------|---------------------------|---------|--------------------------------------------|--|
| Locus         | Imbalanceo<br>Variant | d<br>Position   | Enricheo<br>Allele | l<br>Imbalanced Factor(s)                                                         | Other<br>Allele   | Trait | Reported Variant <sup>a</sup>            | LD r <sup>2b</sup> Allele | Couplin | Inc.<br>g <sup>c</sup> Allele <sup>d</sup> |  |
|               | 457-0000000           |                 | -                  | (1))()///                                                                         | ~                 | LDL-C | rs12027135 <sup>107,142</sup>            | 0.98                      | C,T     | т                                          |  |
| LDLRAPT, TMEN | 157159438904          | CHF1:25756860   | I                  |                                                                                   | C                 | тс    | rs12027135 <sup>107,142</sup>            | 0.98                      | C,T     | Т                                          |  |
|               | rs17361251            | chr1:178520577  | A                  | (L)CEBPA,C/EBPB,CEBPD,FOXA1,FOXA2,HNF4A,HNF4G<br>,MAX,NFIC,NR2F2,P300,SP1,ZBTB7A  | С                 | HDL-C | rs4650994 <sup>107</sup>                 | 1.00                      | C,G     | G                                          |  |
| ANGPTL1       | rs17276513            | chr1:178520604  | A                  | (L)CEBPA,C/EBPB,DNASE,FOXA1,FOXA2,HDAC2,HNF4A,<br>HNF4G,MAX,NR2F2,SP1,P300,ZBTB7A | т                 | HDL-C | rs4650994                                | 0.99                      | T,G     | G                                          |  |
|               | rs17276527            | chr1:178520680  | A                  | (L)CREB1,DNASE,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G,<br>NFIC,MAX,P300,SP1,ZEB1           | G                 | HDL-C | rs4650994                                | 1.00                      | G,G     | G                                          |  |
| CALNTO        | ro 1916012            | abr1:020004715  | •                  |                                                                                   | 6                 | HDL-C | rs4846914 <sup>107,142-144</sup>         | 1.00                      | A,A     | Α                                          |  |
| GALN12        | 184646913             | CHI1.230294715  | A                  | (I)MAFB (L)CEBPA,C/EBPB,CEBPD,NR2F2                                               | C                 | TG    | rs4846914 <sup>107,142,143</sup>         | 1.00                      | C,G     | G                                          |  |
|               | mE26026               | obr1:024950004  | ٨                  |                                                                                   | 0                 | LDL-C | rs514230 <sup>107,142</sup>              | 0.92                      | A,T     | Т                                          |  |
|               | 18526936              | CHI 1.234652204 | A                  | (I)FUXAZ (L)PULZ                                                                  | G                 | тс    | rs514230 <sup>107,142</sup>              | 0.92                      | A,T     | Т                                          |  |
| IRF2BP2       |                       |                 | 0                  |                                                                                   | -                 | LDL-C | rs514230                                 | 0.93                      | T,T     | Т                                          |  |
|               | rs556107              | CNF1:234853059  | C                  | (L)HEY1                                                                           | I                 | тс    | rs514230                                 | 0.93                      | T,T     | Т                                          |  |
|               |                       |                 | -                  |                                                                                   |                   | LDL-C | rs1367117 <sup>107,142</sup>             | -                         | -       | Α                                          |  |
| APOB          | rs1367117             | chr2:21263900   | G                  | (L)MAX,HEY1                                                                       | A                 | тс    | rs1367117 <sup>107,142</sup>             | -                         | -       | А                                          |  |
|               | rs312983              | chr2:21378580   | А                  | (L)FOXA1                                                                          | С                 | LDL-C | rs562338 <sup>145,146</sup>              | 0.72                      | C,G     | G                                          |  |
|               | rs312984              | chr2:21378778   | С                  | (L)ARID3A,FOXA1,FOXA2,HNF4A,MAX,NFIC, RAD21,ZEB1                                  | Т                 | LDL-C | rs562338                                 | 0.73                      | T,G     | G                                          |  |
| APOB          | rs312985              | chr2:21378805   | А                  | (L)CREB1,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G,MYBL2,<br>NRSF,P300,SP1,ZEB1               | G                 | LDL-C | rs562338                                 | 0.73                      | G,G     | G                                          |  |
|               | rs1652418             | chr2:21388456   | т                  | (L)MAZ,SMC3,RAD21                                                                 | С                 | LDL-C | rs562338                                 | 0.72                      | C,G     | G                                          |  |
|               | rs544039              | chr2:21398985   | С                  | (L)CTCF,RAD21                                                                     | А                 | LDL-C | rs562338                                 | 0.71                      | A,G     | G                                          |  |
|               |                       | ab-0-07700040   | 0                  |                                                                                   | т                 | ТС    | rs1260326 <sup>107,142,143,147,148</sup> | -                         | -       | Т                                          |  |
|               | IS1200320             | chr2:27730940   | U                  | (L)CTCF                                                                           | I                 | TG    | rs1260326 <sup>107,142</sup>             | -                         | -       | Т                                          |  |
| CCKP          | ro790005              | obr2:27741105   | C                  |                                                                                   | ^                 | тс    | rs1260326                                | 0.81                      | A,T     | Т                                          |  |
| GCKK          | 15760095              | CIII2.27741105  | G                  | (L)FOXAT                                                                          | A                 | TG    | rs1260333                                | 0.98                      | A,T     | Т                                          |  |
|               | rs780094              | chr2·27741237   | C                  | (L)C/EBPB EOX42 MAEK* MAX NR2E2 NRSE ZEB1                                         | т                 | тс    | rs1260326                                | 0.91                      | T,T     | Т                                          |  |
|               | 137 00094             | CIII2.27741237  | U                  |                                                                                   | 1                 | TG    | rs780094 <sup>143,146,149,150</sup>      | -                         | -       | Т                                          |  |
|               | rs2136737             | chr2:62969310   | G                  | (L)FOXA2,HNF4A*                                                                   | С                 | LDL-C | rs2710642 <sup>107</sup>                 | 0.77                      | G,A     | Α                                          |  |
| EHBP1         | rs1553832             | chr2:63013515   | G                  | (L)BHLHE40                                                                        | С                 | LDL-C | rs2710642                                | 0.80                      | C,A     | А                                          |  |
| 2.78.1        | rs56373728            | chr2:63095792   | G                  | (L)POL2                                                                           | А                 | LDL-C | rs2710642                                | 0.93                      | A,A     | А                                          |  |
|               | rs2710642             | chr2:63149557   | G                  | (L)POL2                                                                           | Α                 | LDL-C | rs2710642                                | -                         | -       | Α                                          |  |

### Table 3.5 Sites of allelic imbalance located at lipid trait-associated loci

<sup>a</sup>For associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shls 2-own <sup>c</sup> Linkage Disequilibrium r<sup>2</sup> was calculated for EUR samples in 1000 Genomes Phase1v3 <sup>b</sup>Allele coupling calculated in 1000 Genomes EUR samples written as Imbalanced variant allele, Reported variant allele. <sup>c</sup>The increasing allele is associated with higher trait levels. <sup>d</sup>Inc. allele is associated with increase in trait measurement. <sup>d</sup>Indicates factor is enriched for other allele rather than enriched allele. (I) for islets and (L) for liver indicates the tissue containing the imbalance. HDL-C, high density lipoprotien cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol

| S Allelic Imbalance Trait Association        |            |                  |         |                                             |          | tion       |                                                     |                    |                 |                                    |
|----------------------------------------------|------------|------------------|---------|---------------------------------------------|----------|------------|-----------------------------------------------------|--------------------|-----------------|------------------------------------|
|                                              | Imbalanced |                  | Enriche | d                                           | Othe     | r          |                                                     |                    |                 | Inc.                               |
| Locus                                        | Variant    | Position         | Allele  | Imbalanced Factor(s)                        | Allele   | Trait      | Reported Variant <sup>a</sup>                       | LD r <sup>20</sup> | Allele Coupling | g <sup>c</sup> Allele <sup>a</sup> |
| COBLL1, GRB4                                 | rs6713419  | chr2:165508300   | Т       | (L)MAFK                                     | C        | TG         | rs10195252 <sup>142</sup>                           | 0.87               | T,T             | T                                  |
|                                              | rs10184004 | chr2:165508389   | C       | (L)MAFK                                     | <u> </u> | TG         | rs10195252                                          | 0.99               | C,T             | T                                  |
|                                              | rs1250240  | chr2:216295014   | G       | (L)POL2                                     | A        | LDL-(      | Crs1250229 <sup>107</sup>                           | 0.84               | G,C             | С                                  |
|                                              | rs1250241  | chr2:216295312   | A       | (L)POL2                                     | Т        | LDL-(      | Crs1250229                                          | 0.84               | A,C             | С                                  |
| FN1                                          | rs1250244  | chr2:216297796   | С       | (L)FOXA2,POL2                               | G        | LDL-(      | Crs1250229                                          | 0.86               | C,C             | С                                  |
|                                              | rs1250258  | chr2:216300185   | Т       | (L)NFIC,POL2                                | С        | LDL-(      | Crs1250229                                          | 0.93               | T,C             | С                                  |
|                                              | rs1250259  | chr2:216300482   | A       | (L)NR2F2                                    | Т        | LDL-(      | Crs1250229                                          | 0.94               | A,C             | С                                  |
| GSK3B                                        | rs6800622  | chr3:119580678   | С       | (L)MAFK                                     | Α        | HDL-       | Crs6805251 <sup>107</sup>                           | 0.98               | A,T             | Т                                  |
|                                              |            |                  |         |                                             |          | HDL-       | Crs9987289 <sup>107,142</sup>                       | 0.80               | T,G             | G                                  |
| PP1R3B                                       | rs6984305  | chr8:9178268     | Т       | (L)CTCF                                     | А        | LDL-(      | Crs9987289 <sup>107,142</sup>                       | 0.80               | T,G             | G                                  |
|                                              |            |                  |         |                                             |          | TC         | rs9987289 <sup>107,142</sup>                        | 0.80               | G,T             | G                                  |
| ABCA1                                        | rs4149269  | chr9:107647121   | G       | (L)POL2                                     | Α        | HDL-       | Crs4149268                                          | 0.98               | A,C             | С                                  |
| ZNF259,APOA1,<br>APOC3,APOA4,<br>APOA5,BUD13 | rs180351   | chr11:11660764   | 1 T     | (L)CTCF                                     | С        | TG         | rs603446 <sup>151</sup>                             | 0.91               | C,C             | С                                  |
|                                              | ro11019750 | obr11:122552600  |         |                                             | т        | HDL-       | Crs7941030 <sup>107,142</sup>                       | 0.81               | T,C             | С                                  |
| UDASHJD                                      | 1511210/02 | CHI 11.122002000 |         |                                             | I        | TC         | rs7941030 <sup>107,142</sup>                        | 0.81               | T,C             | С                                  |
| CETP                                         | rs12720926 | chr16:56998918   | А       | (L)DNASE                                    | G        | HDL-       | Crs1532624 <sup>150,152</sup>                       | 0.94               | G,A             | Α                                  |
|                                              | rs7199443  | chr16:67841129   | G       | (L)MAX                                      | Т        | HDL-       | Crs255049 <sup>153</sup>                            | 0.72               | G,G             | G                                  |
|                                              | rs7196789  | chr16:67927124   | С       | (L)YY1                                      | Т        | HDL-       | Crs255049                                           | 0.77               | T,G             | G                                  |
|                                              | rs1134760  | chr16:67964203   | С       | (L)POL2                                     | Т        | HDL-       | Crs255049                                           | 0.81               | C,G             | G                                  |
| DILIS                                        | rs20549    | chr16:67969930   | G       | (L)POL2                                     | А        | HDL-       | Crs255049                                           | 0.81               | G,G             | G                                  |
|                                              | rs1109166  | chr16:67977382   | С       | (L)CREB1, HNF4A,HNF4G,FOXA1,<br>FOXA2,NR2F2 | Т        | HDL-       | Crs255049                                           | 0.84               | C,G             | G                                  |
|                                              | rs17742347 | chr17:41846468   | С       | (L)POL2                                     | Т        | TG         | rs8077889 <sup>107</sup>                            | 0.90               | T,C             | С                                  |
| MPP3                                         | rs17674998 | chr17:41879544   | А       | (L)ZBTB33                                   | G        | TG         | rs8077889                                           | 0.99               | G,C             | С                                  |
|                                              | rs9901676  | chr17:41911818   | Т       | (L)EZH2                                     | С        | TG         | rs8077889                                           | 0.92               | C,C             | С                                  |
| D004                                         | rs4969182  | chr17:76393030   | Т       | (L)C/EBPB,FOXA1,FOXA2,MAX,MYBL2,NR2F2       | 2 C      | HDL-       | Crs4129767 <sup>107,142</sup>                       | 0.96               | C,A             | Α                                  |
| PGST                                         | rs4969183  | chr17:76393372   | А       | (L)BHLHE40                                  | G        | HDL-       | Crs4129767                                          | 0.96               | G,A             | Α                                  |
|                                              | rs10410204 | chr19:7224350    | С       | (L)FOXA1,FOXA2                              | Т        | TG         | rs7248104 <sup>107</sup>                            | 0.98               | T,G             | G                                  |
| INSR                                         | rs7248104  | chr19:7224431    | А       | (L)FOXA1,FOXA2,MAX,NR2F2,YY1                | G        | TG         | rs7248104                                           | -                  | -               | G                                  |
| PEPD                                         | rs62102718 | chr19:33891013   | А       | (L)HNF4G                                    | т        | HDL-<br>TG | Crs731839 <sup>107</sup><br>rs731839 <sup>107</sup> | 0.76<br>0.76       | A,A<br>A.A      | A<br>A                             |
| SPTLC3                                       | rs1321940  | chr20:12959885   | G       | (L)FOXA1                                    | А        | LDL-(      | C rs364585 <sup>107</sup>                           | 0.99               | G.G             | G                                  |
|                                              |            |                  | -       |                                             |          |            |                                                     | 2.00               | -,-             | -                                  |

### Table 3.5 cont'd. Sites of allelic imbalance located at lipid trait-associated loci

<sup>a</sup>For associations with more than one reported variant the variant in highest linkage disequilibrium with the imbalance site is shown <sup>c</sup>Linkage Disequilibrium r<sup>2</sup> was calculated for EUR samples in 1000 Genomes Phase1v3 <sup>b</sup>Allele coupling calculated in 1000 Genomes EUR samples written as Imbalanced variant allele, Reported variant allele. <sup>c</sup>The increasing allele is associated with higher trait levels. <sup>d</sup>Inc. allele is associated with increase in trait measurement. <sup>d</sup>Indicates factor is enriched for other allele rather than enriched allele. (I) for islets and (L) for liver indicates the tissue containing the imbalance. HDL-C, high density lipoprotien cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol



**Figure 3.1 Concordance between replicate datasets.** Concordance between allelic imbalance detection in combined and individual replicate ChIP-seq datasets for the same protein from the same sample or DNase-seq datasets from the same sample. n represents the number of sites of allelic imbalance in the individual and replicate datasets.



**Figure 3.2 Percent of genome with 8X coverage is correlated with imbalance detection.** . Measures of sequencing depth (A-C), genomic coverage (D-F), and combinations of measurements from both groups (G-I) are plotted vs the number of sites of allelic imbalance detected. Each circle represents on dataset. Pearson correlation R<sup>2</sup> values when considering only ChIP-seq datasets and all datasets are displayed.



Figure 3.3 Co-occupancy of binding motifs and reads from DNAse-seq and ChIP-seq experiments at allelic imbalance sites.

# Figure 3.3 Co-occupancy of binding motifs and reads from DNAse-seq and ChIP-seq experiments at allelic imbalance sites.

(A) Transcription factor binding motifs were located near allelic imbalance sites and the distance to the nearest motif of an imbalance factor was calculated. (B) Comparing the imbalance status (imbalanced or not) of proteins with reads mapping to and a binding motif overlapping heterozygous sites (row) and other factors with reads mapping to the same site (column), we tested for association between the imbalance status of the two proteins. Cells are shaded by Fisher exact test P-values and pairs reaching significance at a Bonferroni correct P-value (P<2.6x10<sup>-5</sup>) are outlined in red. Co-occurrence of DNase-seq and ChIP-seq reads at (C) heterozygous sites or (D) imbalanced sites.

|         |            |     | Allelic Imbalance                          | EN                | ISA                | Luciferase |               |
|---------|------------|-----|--------------------------------------------|-------------------|--------------------|------------|---------------|
| Locus   | SNP        | AII | . Protein(s)                               | Allele            | Protein            | Allele     | Disease/Trait |
| PGS1    | rs4969182  | Т   | (L) CEBPB, FOXA1, FOXA2, MAX, MYBL2, NR2F2 | <b>T</b> ↑        | FOXA <sup>33</sup> | T ↑        | HDL-C,TG      |
| GALNT2  | rs4846913  | А   | (I) MAFB (L) CEBPA, CEBPB, CEBPD, NR2F2    | A↑                | CEBPB              | A↑         | HDL-C, TG     |
| PEPD    | rs62102718 | Α   | (L) HNF4G                                  | A ↑ <sup>12</sup> | <sup>21</sup> –    | -          | HDL-C, TG     |
| TMEM154 | rs6813195  | С   | (I) FOXA2                                  | -                 | -                  | C↑         | T2D           |



Figure 3.4. Experimental evidence of allelic differences in protein binding and transcriptional activity at sites of allelic imbalance.

Figure 3.4 Experimental evidence of allelic differences in protein binding and transcriptional activity at sites of allelic imbalance. (A) At cardiometabolic GWAS loci, we detected allelic imbalance at four sites for which the enriched allele has been observed to have increased binding in an electrophoretic mobility shift assay (EMSA) and/or increased enhancer activity in a dual luciferase assay. Proteins with evidence of a supershift are listed. (B) The C allele of rs6813195 displayed increased enhancer activity over the T allele in both the forward and reverse orientations in MIN6 cells. Error bars represent the standard error of mean across 3-6 biological replicates per allele in each orientaion. \*P<.05 \*\*P<.001

#### **CHAPTER 4: CONCLUSIONS**

# 4.1 Introduction

In this work, I have described the detection of allelic imbalances in quantitative sequence data and demonstrated how these analyses provide insights about the regulation of gene transcription, particularly at cardiometabolic phenotype-associated loci. Here I provide a brief summary highlighting important findings and discuss the impact of these findings on cardiometabolic disease risk factor research, as well as research focused on other complex phenotypes. I discuss the advantages and limitations of allelic imbalance detection, and the role of imbalance detection in population studies utilizing quantitative sequence data.

#### 4.2 Overview of findings

Chapter 2 describes our allele-aware alignment pipeline, AA-ALIGNER, and evaluated the impact of common analytical and experimental decisions on pipeline performance. Most importantly, we demonstrated that under a variety of conditions and in multiple datasets, AA-ALIGNER removes mapping biases and accurately identifies allelic imbalance even when limited or no sample genotypes are available. We also reported that allelic imbalance detection is much more accurate at sites identified as heterozygous during imputation than at sites predicted to be heterozygous solely from the sequence data. Surprisingly, this increased accuracy was observed when we predicted heterozygous sites at common variants compared to uncommon or rare variants. The accuracy of imbalance detection at imputed heterozygous sites and common sites remained high across a variety of parameters such as read length, number of

mismatches allowed, number of reads required to be predicted as heterozygous, and imputation quality Rsq threshold. These results allowed us to expand, with confidence, allelic imbalance detection in samples directly relevant to cardiometabolic phenotypes, but lacking complete genotype information.

Chapter 3 discusses imbalance detection in samples from a liver cell line, primary pancreatic islet cells, and two adipose cell lines. In 91 experiments from these samples, we detected over 22,000 sites of allelic imbalance, and 29% of these sites have evidence of imbalance in multiple experiments. Only considering sites with evidence of imbalance for a protein with binding motifs available, we found evidence of a binding motif within 500 bp of the imbalanced site at 80% of sites, suggesting that these imbalanced factors are binding at or near sites of allelic imbalance. A subset of sites of allelic imbalance are located at an eQTL locus, a cardiometabolic phenotype-associated locus, or in a few cases both, suggesting that differential protein binding at these sites may be influencing gene transcription and the studied phenotype. We document experimental data that confirms these connections at a handful of sites, supporting the hypothesis that imbalanced sites at other loci are strong candidates for experimental testing.

# 4.3 Immediate impact on genetic studies of cardiometabolic phenotypes

Our findings have immediate implications on current research on the genetic factors underlying cardiometabolic diseases and traits. Primarily, our imbalance detections have identified over 300 sites of allelic imbalance at GWAS loci, effectively identifying the same number of candidate variants to test experimentally for allelic differences in protein binding, enhancer activity, and gene transcription. At the *HHEX* locus, previously studied in our lab, initial efforts to identify candidate variants based on their location in open chromatin regions and transcription factor ChIP-seq peaks failed to identify variants with allelic differences in protein

binding and enhancer activity. One variant, rs4933736, was not selected as a candidate in this initial survey, but has evidence of allelic imbalance in our data and is now a top candidate at this locus.

Second, we have identified over 160 sites of imbalance with a reported association to gene expression, but not cardiometabolic phenotypes. Though an association has not been reported in the GWAS catalog, some of the genes at these eQTLs may play a role in cardiometabolic phenotypes, making these sites of allelic imbalance good candidates for experimental testing. For example, rs2364723 which is associated with *NFE2L2* transcript levels has also been reported to be associated with triglyceride levels<sup>154</sup> in a study not included in the GWAS catalog. While it is not feasible to experimentally test over 400 candidate variants at eQTL or GWAS loci in the short term, allelic imbalance detection has reduce the number of candidate variants compared to the thousands of variants in LD at cardiometabolic GWAS loci.

Chapter 3 describes allelic imbalance in only a subset of samples (liver, pancreatic islets, and adipose) that are related to cardiovascular disease. Quantitative sequence data has also been generated in other tissues such as skeletal muscle, brain and heart with known connections to cardiometabolic traits and diseases. Identifying allelic imbalance in these other samples would immediately provide additional candidate variants and further insight into gene transcription at GWAS loci.

#### 4.4 Long-term impact on researching genetic effects on cardiometabolic phenotypes

While these sites of allelic imbalance provide an immediate contribution to research studying previously identified cardiometabolic GWAS loci, they will continue to provide new contributions in the future. As novel eQTL and GWAS loci are discovered, sites of allelic imbalance offer compelling candidate variants to test for experimental testing and have the

potential to greatly expedite experimental characterization of these loci. Additionally, as more examples of predicted allelic imbalance are discovered at sites demonstrating experimentally observed allelic differences in regulatory activity, allelic imbalance detection may begin to play a more prominent role in genetic studies. I anticipate that greater effort will be placed in generating quantitative sequence data in additional samples with relevance to cardiometabolic traits and diseases. One further use of this strategy would apply to quantitative sequence data generated from tissue samples from individuals with genotype and phenotype data. Integrating these data can identify genotype-phenotype associations that are mediated by gene regulatory regions, an idea discussed briefly near the end of this chapter.

### 4.5 Studying complex, non-cardiometabolic phenotypes

We have focused our analyses on cardiometabolic traits and disease, but sites of allelic imbalance also play an important role in studying other phenotypes. As shown by the experimental data at Crohn's disease loci presented in **Chapter 2**, allelic imbalance sites occur at GWAS loci for and in tissues relevant to other traits and diseases. A wealth of data exists for samples relevant to other complex traits and disease. In particular, quantitative sequence data has been generated in bulk for the lymphoblastoid cell line (LCL) GM12878, and data has also been generated for more than 70 other LCLs. As we have shown, allelic imbalance sites detected in data generated from these samples are particularly useful in studying diseases related to the immune system and inflammation.

#### 4.6 Advantages of allelic imbalance detection

A common method of regulatory variant prediction is to identify variants overlapping peaks from one or more quantitative sequence datasets. While powerful in identifying variants in

regulatory regions this method does not identify which of these variants demonstrate allelic differences in regulatory activity. Allelic imbalance detection can predicts allelic differences in regulatory activity, specifically protein-DNA binding, providing strong evidence of allelic effects on regulation. Allelic imbalance detection directly interrogates genetic effects on quantitative sequence data providing strong evidence of potential allelic differences in regulatory activity than the simple overlap analyses.

A second, common method of identifying variants with allelic differences in transcriptional regulation is to identify eQTLs. These analyses identify groups of variant in LD with each other that are associated with gene expression, but in most cases cannot distinguish which variant(s) in the group are responsible for the association. Together with allelic imbalance detection, which has the advantage of predicting which variants have evidence of allelic differences in protein binding, these analyses provide evidence of the effects of individual variants on gene transcription regulation. Imbalance detection in ChIP-seq or DNase-seq data cannot directly detect allelic differences in gene regulation. However, if non-coding variants and coding variants are in linkage disequilibrium with each other, allelic imbalance can be detected in ChIP-seq or DNase-seq and RNA-seq from the same sample to infer a direct relationship between imbalances in regulatory regions and the transcript levels of genes. This combined analysis can be powerful, especially in the absence of other eQTL evidence, to detect allelic differences in gene transcription regulation in as little as two quantitative sequence datasets from a single sample. An advantage of this approach is that allelic imbalance detection is able to detect subtle differences between alleles that eQTL analyses do not have the power to detect due to variability between samples.

#### 4.7 Limitations of allelic imbalance detection

Along with these advantages, there are multiple limitations in allelic imbalance detection analyses. While allelic imbalance can indicate allelic effects on gene regulatory regions, they do not necessarily indicate allelic differences in gene transcript levels. Compensatory mechanisms can correct for imbalances and maintain gene transcript levels. Cell homeostasis limits the application of allelic imbalance detection in identifying genetic variants influencing complex diseases and traits through the regulation of gene transcription.

Another current limitation is the availability of sufficient quantitative sequence data. While many datasets exist for some samples such as GM12878 and HepG2, other samples, particular primary cells and tissues, have quantitative sequence data available for very few transcription factors and histone modifications. This limitation is especially apparent in **Chapter 3**, because very little data exists for pancreatic islets and adipose tissue likely due to limited availability of human pancreatic islet cells and difficulty performing some quantitative sequencing assays on adipose cells. Additionally, the choice of protein or histone modifications examined in ChIP-seq experiments varies widely between samples and depends in large part on the preferences of investigators generating the data.

The largest limitation of imbalance detection is directly connected to its advantages. Allelic imbalance can only be detected at heterozygous sites. While allelic imbalance can predict differences in DNA-protein binding using data from a single individual, the analysis is limited to finding imbalance at heterozygous sites in that individual. In **Chapter 3**, we used predominately data from HepG2 to study cardiometabolic disease and traits due to the large number of transcription factors studied in that one cell line. As a result, we failed to detect imbalances at many variants that have published evidence of allelic differences in protein binding because they are homozygous in HepG2. To overcome this limitation, quantitative sequence data must

be generated from multiple people with different genetic backgrounds. As the sample size increases a greater proportion of variants are able to be tested for imbalance, but at some point the population becomes more akin to that used for eQTL analyses and allelic imbalance detection is not as advantageous as at low sample sizes<sup>55,56</sup>.

Overall, allelic imbalance detection is limited by the number of experiments required to be performed in individuals with diverse genetic backgrounds. Perfectly comprehensive imbalance detection requires the generation of ChIP-seq data for each individual transcription factor in samples of the same tissue from a population large enough to find at least one individual that is heterozygous for each variant. Studying multiple tissues further increases the number of ChIP-seq experiments required, and generating data on this scale is currently not feasible. DNase-seq and ATAC-seq can identify allelic differences in binding of multiple proteins reducing the number of ChIP-seq experiments requires. Our data, however, suggests that the sequence depth of currently available DNase-seq experiments is not deep enough for comprehensive detection of imbalances in ChIP-seq data. Further study is needed to determine if deeper sequencing of DNase-seq data can truly allow for more comprehensive imbalance detection and limit the number of ChIP-seq experiments required.

# 4.8 Allelic imbalance and population studies of quantitative sequence data

Like phenotype data or gene expression data, associations can be detected between genotypes and non-RNA-seq quantitative sequence data if the data is available for enough individuals in a study population. For example, associations between genotype and DNase hypersensitivity (ds-QTL) <sup>55</sup>, histone modification<sup>56</sup>, and Pol2 binding<sup>56</sup> have been reported using expression and genotype data from LCLs. Additionally, joint ds-QTL and eQTL analyses in these samples have identified genetic variants that simultaneously affect DNase hypersensitivity and gene expression <sup>55</sup>. There is no phenotype information for the LCL samples, preventing any

testing for phenotypic associations. In studies like this, allele-aware alignment of the sequence data is critical, because reference mapping biases could introduce artificial associations or obscure real associations. AA-ALIGNER is particularly well suited for confidently removing these mapping biases when using imputed genotypes for study participants.

Until quantitative sequence data exists for a large number of individuals in study populations, allelic imbalance detection will play an important role in understanding the genetic effects on gene regulation. Even in the presence of these large populations, allelic imbalance detection will still have the power to interrogate genetic effects on transcription regulation at the level of individual samples and detect subtle changes not able to be detected by association testing. Additionally, quantitative sequence data at heterozygous sites found in multiple individuals can be combined to increase overall sequencing depth and power to detect significant imbalance.

In conclusion, allelic imbalance detection in quantitative sequence data is a powerful tool for studying genetic effects on the regulation of gene transcription at cardiometabolic phenotype-associated loci. Using allelic imbalance detection, we have identified many candidate variants to be tested experimentally for allelic differences in protein binding, enchancer activity, and gene transcription regulation. As more quantitative sequence data is generated and analyzed, imbalance detection will continue to play an important role in identifying additional variants likely influencing gene transcription at cardiometabolic and other complex trait- and disease-associated loci.

|              |                    |            |              | Enri        | iched      | 0       | ther                    |                      | Variant             |
|--------------|--------------------|------------|--------------|-------------|------------|---------|-------------------------|----------------------|---------------------|
| Variant      | Position           | Sample     | Protein/As:  | say Allele  | Reads      | Allele  | Reads                   | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs9438904    | chr1:25756860      | HepG2      | YY1          | С           | 8          | Т       | 0                       | 0.00781              | imputed             |
| rs3795688    | chr1:26560481      | HepG2      | CTCF         | А           | 83         | С       | 52                      | 0.00956              | imputed             |
| rs1494813    | chr1:45957290      | HepG2      | MXI1         | С           | 8          | Т       | 0                       | 0.00781              | imputed             |
| rs9793263    | chr1:46722389      | HepG2      | MAFK         | G           | 34         | А       | 2                       | 1.94E-08             | imputed             |
| rs3862273    | chr1:48251342      | HepG2      | YY1          | Т           | 9          | G       | 0                       | 0.00391              | imputed             |
| rs17125090   | chr1:63988904      | HepG2      | MXI1         | А           | 25         | G       | 7                       | 0.0021               | imputed             |
| rs17125090   | chr1:63988904      | HepG2      | MAX          | А           | 90         | G       | 28                      | 8.91E-09             | imputed             |
| rs2301054    | chr1:64107028      | HepG2      | HDAC2        | А           | 8          | G       | 0                       | 0.00781              | imputed             |
| rs2301054    | chr1:64107028      | HepG2      | HNF4A        | А           | 31         | G       | 9                       | 0.00068              | imputed             |
| rs12021623   | chr1:66153586      | HepG2      | HNF4G        | С           | 19         | А       | 5                       | 0.00661              | imputed             |
| rs942849     | chr1:84427499      | HepG2      | JUND         | G           | 9          | А       | 0                       | 0.00391              | imputed             |
| rs11161503   | chr1:85462582      | HepG2      | EZH2         | С           | 8          | G       | 0                       | 0.00781              | imputed             |
| rs11161505   | chr1:85462665      | HepG2      | EZH2         | Т           | 8          | G       | 0                       | 0.00781              | imputed             |
| rs2268667    | chr1:85793746      | HepG2      | FOXA1        | G           | 12         | А       | 1                       | 0.00342              | imputed             |
| rs2177461    | chr1:85861976      | HepG2      | ZBTB33       | G           | 9          | С       | 0                       | 0.00391              | imputed             |
| rs12127787   | chr1:89458761      | HepG2      | USF1         | Т           | 102        | С       | 6                       | 1.25E-23             | imputed             |
| rs12127787   | chr1:89458761      | HepG2      | USF2         | Т           | 23         | С       | 1                       | 2.98E-06             | imputed             |
| rs12127787   | chr1:89458761      | HepG2      | CREB1        | С           | 33         | Т       | 12                      | 0.00246              | imputed             |
| rs12127787   | chr1:89458761      | HepG2      | YY1          | С           | 30         | Т       | 11                      | 0.00432              | imputed             |
| rs10858091   | chr1:109935578     | HepG2      | SIN3AK20     | С           | 11         | Т       | 1                       | 0.00635              | imputed             |
| rs10858091   | chr1:109935578     | HepG2      | TCF12        | С           | 8          | Т       | 0                       | 0.00781              | imputed             |
| rs10858091   | chr1:109935578     | HepG2      | HEY1         | С           | 24         | Т       | 6                       | 0.00143              | imputed             |
| rs2140924    | chr1:109935775     | HepG2      | CREB1        | А           | 19         | С       | 4                       | 0.0026               | imputed             |
| rs573491     | chr1:110026891     | HepG2      | TAF1         | Т           | 31         | G       | 9                       | 0.00068              | imputed             |
| rs2781553    | chr1:110026989     | HepG2      | YY1          | G           | 11         | Т       | 0                       | 0.00098              | imputed             |
| rs839605     | chr1:120217524     | HepG2      | CTCF         | С           | 68         | А       | 1                       | 2.37E-19             | imputed             |
| rs639761     | chr1:120217558     | HepG2      | CTCF         | G           | 131        | А       | 2                       | 1.64E-36             | imputed             |
| rs639761     | chr1:120217558     | HepG2      | CEBPA        | G           | 8          | А       | 0                       | 0.00781              | imputed             |
| rs639761     | chr1:120217558     | HepG2      | CEBPB        | G           | 9          | А       | 0                       | 0.00391              | imputed             |
| rs639761     | chr1:120217558     | HepG2      | CREB1        | G           | 8          | А       | 0                       | 0.00781              | imputed             |
| rs639761     | chr1:120217558     | HepG2      | RAD21        | G           | 13         | А       | 1                       | 0.00183              | imputed             |
| rs640195     | chr1:120217650     | HepG2      | CTCF         | Т           | 172        | А       | 2                       | 1.27E-48             | imputed             |
| rs640195     | chr1:120217650     | HepG2      | ARID3A       | Т           | 10         | А       | 0                       | 0.00195              | imputed             |
| rs640195     | chr1:120217650     | HepG2      | CEBPB        | Т           | 8          | А       | 0                       | 0.00781              | imputed             |
| rs640195     | chr1:120217650     | HepG2      | CREB1        | Т           | 8          | А       | 0                       | 0.00781              | imputed             |
| rs12091564   | chr1:145395604     | HepG2      | TBP          | С           | 303        | Т       | 145                     | 6.60E-14             | imputed             |
| rs12091564   | chr1:145395604     | HepG2      | MYBL2        | С           | 14         | Т       | 1                       | 0.00098              | imputed             |
| rs12091564   | chr1:145395604     | HepG2      | CREB1        | С           | 16         | Т       | 3                       | 0.00443              | imputed             |
| rs12091564   | chr1:145395604     | HepG2      | NR2F2        | С           | 17         | Т       | 3                       | 0.00258              | imputed             |
| rs6677420    | chr1:150946490     | HepG2      | MAX          | А           | 9          | G       | 0                       | 0.00391              | imputed             |
| rs6674171    | chr1:154491683     | HepG2      | MAFF         | А           | 12         | G       | 1                       | 0.00342              | imputed             |
| rs6674171    | chr1:154491683     | HepG2      | MAFK         | А           | 33         | G       | 8                       | 0.00011              | imputed             |
| rs2236869    | chr1:169535196     | HepG2      | FOXA1        | G           | 17         | Т       | 4                       | 0.0072               | imputed             |
| rs2281007    | chr1:171111351     | HepG2      | CEBPA        | G           | 14         | А       | 2                       | 0.00418              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | FOXA2        | А           | 34         | С       | 0                       | 1.16E-10             | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | CEBPD        | А           | 8          | С       | 0                       | 0.00781              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | CEBPB        | А           | 31         | С       | 0                       | 9.31E-10             | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | MAX          | А           | 14         | С       | 1                       | 0.00098              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | ZBTB7A       | Α           | 11         | С       | 1                       | 0.00635              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | FOXA1        | А           | 46         | С       | 0                       | 2.84E-14             | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | NR2F2        | А           | 11         | С       | 0                       | 0.00098              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | SP1          | А           | 14         | С       | 0                       | 0.00012              | imputed             |
| rs17361251   | chr1:178520577     | HepG2      | NFIC         | А           | 8          | С       | 0                       | 0.00781              | imputed             |
| Only imbalar | nces sites at eQTL | or cardion | netabolic GW | AS loci ar  | e shown.   | abinomi | al P-value <sup>b</sup> | Heterozygous         | sites were          |
| imputed, con | nmon variants (MA  | ⊦>.05 100  | UG EUR) or   | predicted t | trom the s | sequenc | e data                  |                      |                     |

# **APPENDIX 1: Allelic imbalance sites referenced in text**

|              |                   |            |              | Enri        | ched     | _     | Other                     |                      | Variant             |
|--------------|-------------------|------------|--------------|-------------|----------|-------|---------------------------|----------------------|---------------------|
| Variant      | Position          | Sample     | Protein/As   | say Allele  | Reads    | Alle  | le Reads                  | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs17361251   | chr1:178520577    | HepG2      | HNF4G        | Α           | 33       | С     | 0                         | 2.33E-10             | imputed             |
| rs17361251   | chr1:178520577    | HepG2      | CEBPA        | А           | 22       | С     | 0                         | 4.77E-07             | imputed             |
| rs17361251   | chr1:178520577    | HepG2      | P300         | А           | 26       | С     | 1                         | 4.17E-07             | imputed             |
| rs17361251   | chr1:178520577    | HepG2      | HNF4A        | А           | 77       | С     | 0                         | 1.32E-23             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | FOXA2        | А           | 44       | Т     | 0                         | 1.14E-13             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | CEBPB        | А           | 31       | Т     | 0                         | 9.31E-10             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | MAX          | А           | 13       | Т     | 0                         | 0.00024              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | DNASE        | А           | 13       | Т     | 0                         | 0.00024              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | ZBTB7A       | А           | 8        | Т     | 0                         | 0.00781              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | FOXA1        | А           | 42       | Т     | 0                         | 4.55E-13             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | NR2F2        | А           | 11       | Т     | 0                         | 0.00098              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | SP1          | А           | 16       | Т     | 0                         | 3.05E-05             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | HDAC2        | А           | 12       | Т     | 0                         | 0.00049              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | CEBPA        | А           | 9        | Т     | 0                         | 0.00391              | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | P300         | А           | 26       | Т     | 1                         | 4.17E-07             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | HNF4G        | Α           | 21       | Т     | 0                         | 9.54E-07             | imputed             |
| rs17276513   | chr1:178520604    | HepG2      | HNF4A        | Α           | 81       | Т     | 0                         | 8.27E-25             | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | FOXA2        | А           | 53       | G     | 0                         | 2.22E-16             | imputed             |
| \rs17276527  | chr1:178520680    | HepG2      | MAX          | А           | 12       | G     | 0                         | 0.00049              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | DNASE        | Α           | 13       | G     | 0                         | 0.00024              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | FOXA1        | А           | 61       | G     | 1                         | 2.73E-17             | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | ZEB1         | А           | 12       | G     | 0                         | 0.00049              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | SP1          | А           | 12       | G     | 0                         | 0.00049              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | NFIC         | А           | 9        | G     | 0                         | 0.00391              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | HDAC2        | А           | 9        | G     | 0                         | 0.00391              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | P300         | А           | 23       | G     | 0                         | 2.38E-07             | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | HNF4G        | А           | 9        | G     | 0                         | 0.00391              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | CREB1        | А           | 12       | G     | 0                         | 0.00049              | imputed             |
| rs17276527   | chr1:178520680    | HepG2      | HNF4A        | А           | 59       | G     | 0                         | 3.47E-18             | imputed             |
| rs2488400    | chr1:197702225    | HepG2      | FOXA2        | G           | 9        | С     | 0                         | 0.00391              | imputed             |
| rs2201601    | chr1:213031448    | HepG2      | YY1          | G           | 27       | С     | 9                         | 0.00393              | imputed             |
| rs11120067   | chr1:213094557    | HepG2      | CTCF         | А           | 22       | G     | 4                         | 0.00053              | imputed             |
| rs9970073    | chr1:214156165    | HepG2      | MAX          | А           | 57       | G     | 1                         | 4.09E-16             | imputed             |
| rs340879     | chr1:214156514    | HepG2      | RAD21        | Т           | 11       | С     | 0                         | 0.00098              | imputed             |
| rs4846770    | chr1:222795569    | HepG2      | CEBPD        | G           | 10       | С     | 0                         | 0.00195              | imputed             |
| rs12077115   | chr1:225924711    | HepG2      | CEBPA        | А           | 9        | G     | 0                         | 0.00391              | imputed             |
| rs12040438   | chr1:229718258    | HepG2      | BHLHE40      | Т           | 9        | С     | 0                         | 0.00391              | imputed             |
| rs4846913    | chr1:230294715    | HepG2      | CEBPD        | А           | 11       | С     | 1                         | 0.00635              | imputed             |
| rs4846913    | chr1:230294715    | HepG2      | CEBPB        | А           | 57       | С     | 21                        | 5.57E-05             | imputed             |
| rs4846913    | chr1:230294715    | HepG2      | NR2F2        | А           | 35       | С     | 15                        | 0.0066               | imputed             |
| rs4846913    | chr1:230294715    | HepG2      | CEBPA        | А           | 17       | С     | 2                         | 0.00073              | imputed             |
| rs4846913    | chr1:230294715    | HI81       | MAFB         | С           | 21       | А     | 5                         | 0.00249              | common              |
| rs526936     | chr1:234852204    | HI32       | FOXA2        | А           | 38       | G     | 17                        | 0.00646              | common              |
| rs526936     | chr1:234852204    | HepG2      | POL2         | G           | 48       | А     | 22                        | 0.00255              | imputed             |
| rs556107     | chr1:234853059    | HepG2      | HEY1         | С           | 22       | Т     | 6                         | 0.00372              | imputed             |
| rs2066381    | chr1:240995427    | HI32       | PDX1         | А           | 24       | G     | 6                         | 0.00143              | common              |
| rs61844237   | chr1:245133662    | HepG2      | DNASE        | G           | 80       | С     | 43                        | 0.00108              | imputed             |
| rs2291426    | chr1:245134114    | HepG2      | CREB1        | А           | 23       | С     | 6                         | 0.00232              | imputed             |
| rs4020081    | chr1:245209045    | HepG2      | FOXA1        | С           | 104      | Т     | 62                        | 0.00139              | imputed             |
| rs4020081    | chr1:245209045    | HepG2      | P300         | С           | 15       | Т     | 2                         | 0.00235              | imputed             |
| rs4020081    | chr1:245209045    | HepG2      | CREB1        | С           | 28       | Т     | 3                         | 4.65E-06             | imputed             |
| rs4020082    | chr1:245209134    | HepG2      | FOXA1        | А           | 58       | G     | 25                        | 0.00038              | imputed             |
| rs6759670    | chr2:950291       | HepG2      | RAD21        | С           | 18       | А     | 1                         | 7.63E-05             | imputed             |
| rs34122754   | chr2:9884076      | HepG2      | CTCF         | С           | 8        | G     | 0                         | 0.00781              | imputed             |
| rs4669449    | chr2:9884205      | HepG2      | EZH2         | G           | 8        | А     | 0                         | 0.00781              | imputed             |
| rs4669888    | chr2:12980514     | HepG2      | CEBPB        | G           | 14       | А     | 1                         | 0.00098              | imputed             |
| Only imbalar | ces sites at eQTL | or cardion | netabolic GV | VAS loci ar | e shown. | abino | mial P-value <sup>b</sup> | Heterozvaous         | sites were          |

imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data

|             |               |        |              | Enri        | ched     | 0      | Other   |                      | Variant |
|-------------|---------------|--------|--------------|-------------|----------|--------|---------|----------------------|---------|
| Variant     | Position      | Sample | Protein/A    | ssay Allele | Reads    | Allele | e Reads | P-value <sup>a</sup> | Sourceb |
| rs4669888   | chr2:12980514 | HepG2  | CEBPA        | G           | 8        | А      | 0       | 0.00781              | imputed |
| rs633808    | chr2:20957592 | HepG2  | TCF12        | G           | 8        | Т      | 0       | 0.00781              | imputed |
| rs1367117   | chr2:21263900 | HepG2  | MAX          | G           | 8        | А      | 0       | 0.00781              | imputed |
| rs1367117   | chr2:21263900 | HepG2  | HEY1         | G           | 29       | А      | 10      | 0.00338              | imputed |
| rs312983    | chr2:21378580 | HepG2  | FOXA1        | А           | 22       | С      | 3       | 0.00016              | imputed |
| rs312984    | chr2:21378778 | HepG2  | FOXA2        | С           | 62       | Т      | 33      | 0.00383              | imputed |
| rs312984    | chr2:21378778 | HepG2  | MAX          | С           | 9        | Т      | 0       | 0.00391              | imputed |
| rs312984    | chr2:21378778 | HepG2  | RAD21        | С           | 12       | Т      | 0       | 0.00049              | imputed |
| rs312984    | chr2:21378778 | HepG2  | FOXA1        | С           | 174      | т      | 71      | 3.72E-11             | imputed |
| rs312984    | chr2:21378778 | HepG2  | ZEB1         | C           | 15       | т      | 3       | 0.00754              | imputed |
| rs312984    | chr2:21378778 | HepG2  | NFIC         | С           | 24       | Т      | 6       | 0.00143              | imputed |
| rs312984    | chr2:21378778 | HepG2  | ARID3A       | С           | 15       | т      | 1       | 0.00052              | imputed |
| rs312984    | chr2:21378778 | HepG2  | HNF4A        | С           | 31       | т      | 6       | 4.13E-05             | imputed |
| rs312985    | chr2:21378805 | HepG2  | NRSF         | A           | 10       | G      | 0       | 0.00195              | imputed |
| rs312985    | chr2:21378805 | HepG2  | FOXA2        | A           | 94       | G      | 42      | 9.67E-06             | imputed |
| rs312985    | chr2:21378805 | HepG2  | MYBL2        | A           | 20       | G      | 6       | 0.00936              | imputed |
| rs312985    | chr2:21378805 | HepG2  | FOXA1        | А           | 224      | G      | 99      | 2.80E-12             | imputed |
| rs312985    | chr2:21378805 | HepG2  | ZFB1         | A           | 15       | G      | 2       | 0 00235              | imputed |
| rs312985    | chr2:21378805 | HepG2  | SP1          | A           | 29       | G      | 3       | 2 56E-06             | imputed |
| rs312985    | chr2:21378805 | HenG2  | HDAC2        | A           | 23       | G      | 7       | 0.00522              | imputed |
| rs312985    | chr2:21378805 | HepG2  | P300         | A           | 42       | G      | 20      | 0.00715              | imputed |
| rs312985    | chr2:21378805 | HenG2  | HNF4G        | A           | 20       | G      |         | 0 00049              | imputed |
| rs312985    | chr2:21378805 | HenG2  | CRFB1        | A           | 15       | G      | 3       | 0.00754              | imputed |
| rs312985    | chr2:21378805 | HenG2  | HNF4A        | Δ           | 44       | G      | 10      | 3.39E-06             | imputed |
| rs1652418   | chr2:21388456 | HenG2  | MAZ          | Т           | 8        | C      | 0       | 0.002 00             | imputed |
| rs1652418   | chr2:21388456 | HenG2  |              | Ť           | 60       | C      | 28      | 0.00085              | imputed |
| rs1652418   | chr2:21388456 | HenG2  | SMC3         | Ť           | 15       | C      | 20      | 0.00235              | imputed |
| rs386643898 | chr2:21398985 | HenG2  | CTCE         | Ċ           | 8        | Δ      | 0       | 0.00200              | imputed |
| rs386643898 | chr2:21398985 | HenG2  | RAD21        | C           | 21       | Δ      | 2       | 6.60E-05             | imputed |
| rs7572949   | chr2:24162018 | HenG2  | CEBPB        | Т           | 12       | C      | 0       | 0.0002 00            | imputed |
| rs36101491  | chr2:24387532 | HenG2  | CTCF         | Ť           | 368      | C      | 197     | 5 73E-13             | imputed |
| rs36101491  | chr2:24387532 | HenG2  | RAD21        | Ť           | 89       | C      | 47      | 0.0004               | imputed |
| rs36101491  | chr2:24387532 | HenG2  | 7BTB74       | т<br>Т      | 10       | C<br>C | -,<br>0 | 0.0004               | imputed |
| re170/6102  | chr2:24007002 | HonG2  | ZBTB7A       | Δ           | 8        | G      | 0       | 0.00100              | imputed |
| re17046102  | chr2:24401334 | HonG2  | EOYA1        | A           | 40       | G      | 15      | 0.00701              | imputed |
| rs11676030  | chr2:24401334 | HenG2  | CERPR        | Ċ           | 40<br>11 | т      | 1       | 0.00102              | imputed |
| rs72803210  | chr2:24475037 | HonG2  | MAEK         | <u>ہ</u>    | 18       | Ģ      | 0       | 7.63E-06             | imputed |
| re77/21503  | chr2:24625676 | HonG2  | ΜΔΥ          | C C         | 10       | G      | 0       | 0.00105              | imputed |
| re10460551  | chr2:24627074 | HonG2  |              | C           | 8        | т      | 0       | 0.00100              | imputed |
| rs7580081   | chr2:25007072 | HonG2  | CERDR        | C           | 18       | Ģ      | 1       | 7.63E-05             | imputed |
| rs1168/202  | chr2:25887558 | HonG2  |              | G           | 0        | Δ      | 0       | 0.002-00             | imputed |
| rs2011616   | chr2:27302561 | HonG2  |              | G           | 9        | Δ      | 0       | 0.00301              | imputed |
| rs2580750   | chr2:27/32500 | HonG2  | CTCE         | G           | 11       | T      | 1       | 0.00531              | imputed |
| rs11608     | chr2:27432300 | HopG2  |              | G           | 11       | л<br>Л | 16      | 0.00035              | imputed |
| ro1141212   | ohr2:27455574 | Hop C2 |              | G           | 42       | ~      | 10      | 0.00080              | imputed |
| rs1260326   | chr2:27730040 | HopG2  | FULZ<br>CTCE | G           | 9        | А<br>Т | 0       | 0.00391              | imputed |
| ro790005    | chr2:27741105 |        |              | C           | 9<br>25  | 1      | 0       | 0.00391              | imputed |
| ro790004    | ohr2:27741103 | Hop C2 |              | G           | 25       | T      | 0       | 0.00088              | imputed |
| ro790004    | chi2.27741237 |        | EOVA2        | C           | 24       | т<br>Т | 0       | 0.00761              | imputed |
| 18780094    | chi2.27741237 | HepGZ  |              | C           | 24       | т<br>Т | 5       | 0.00055              | imputed |
| 15/00094    | chr2.27741237 |        |              |             | 9<br>16  | т      | 0       | 0.00391              | imputed |
| ro780004    | ohr2.21141231 | HonCo  |              |             | 01<br>24 | т<br>Т | ۲<br>10 | 0.00131              | imputed |
| ro720004    | chr2.27741237 | HopC2  |              |             | 10       | т<br>Т | 10      | 0.00140              | imputed |
| 15/00094    | ohr2.27741227 |        |              |             | 12       | т<br>Т | ۱<br>۸  | 0.00342              | imputed |
| 15/00094    | ohr2:27741237 |        |              | С<br>т      | 24       | і<br>С | 4       | 0.00018              | imputed |
| 15780094    | cnr2:2//4123/ | неры2  | WAFK         | I           | 22       | U      | 6       | 0.00372              | imputed |

Only imbalances sites at eQTL or cardiometabolic GWAS loci are shown. <sup>a</sup>binomial P-value <sup>b</sup>Heterozygous sites were imputed, common variants (MAF>.05 1000G EUR) or predicted from the sequence data

|              |                                         |                         |            | Enri       | iched                  |                           | Other     |                      | Variant             |
|--------------|-----------------------------------------|-------------------------|------------|------------|------------------------|---------------------------|-----------|----------------------|---------------------|
| Variant      | Position                                | Sample                  | Protein/As | say Allele | Reads                  | Alle                      | ele Reads | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs3749147    | chr2:27851918                           | HepG2                   | MXI1       | G          | 34                     | Α                         | 13        | 0.00309              | imputed             |
| rs1919128    | chr2:27801759                           | HepG2                   | BHLHE40    | А          | 8                      | G                         | 0         | 0.00781              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | TAF1       | G          | 94                     | А                         | 38        | 1.19E-06             | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | CEBPD      | G          | 10                     | А                         | 0         | 0.00195              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | MAX        | G          | 59                     | А                         | 32        | 0.00611              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | ELF1       | G          | 28                     | А                         | 6         | 0.0002               | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | DNASE      | G          | 35                     | А                         | 10        | 0.00025              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | ZBTB7A     | G          | 13                     | А                         | 1         | 0.00183              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | NR2F2      | G          | 18                     | А                         | 3         | 0.00149              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | YY1        | G          | 133                    | А                         | 86        | 0.00182              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | POL2       | G          | 71                     | А                         | 32        | 0.00015              | imputed             |
| rs3749147    | chr2:27851918                           | HepG2                   | GABP       | G          | 58                     | А                         | 15        | 4.09E-07             | imputed             |
| rs162330     | chr2:38319496                           | HepG2                   | CEBPB      | С          | 14                     | А                         | 2         | 0.00418              | imputed             |
| rs2881327    | chr2:46641955                           | HepG2                   | MAX        | G          | 17                     | А                         | 3         | 0.00258              | imputed             |
| rs2881327    | chr2:46641955                           | HepG2                   | FOXA1      | G          | 25                     | А                         | 5         | 0.00032              | imputed             |
| rs2881327    | chr2:46641955                           | HepG2                   | HNF4G      | G          | 8                      | А                         | 0         | 0.00781              | imputed             |
| rs1554612    | chr2:48827497                           | HepG2                   | CTCF       | С          | 67                     | т                         | 23        | 3.80E-06             | imputed             |
| rs1554612    | chr2:48827497                           | HepG2                   | FOXA2      | С          | 11                     | т                         | 0         | 0.00098              | imputed             |
| rs1554612    | chr2:48827497                           | HepG2                   | RAD21      | С          | 42                     | т                         | 20        | 0.00715              | imputed             |
| rs72800719   | chr2:54280195                           | HepG2                   | CTCF       | G          | 33                     | С                         | 14        | 0.00794              | imputed             |
| rs10192403   | chr2:54313507                           | HepG2                   | FOXA1      | C          | 8                      | Т                         | 0         | 0.00781              | imputed             |
| rs62165172   | chr2:55736237                           | HepG2                   | FOXA2      | G          | 10                     | A                         | 0         | 0.00195              | imputed             |
| rs782599     | chr2:55847423                           | HepG2                   | CTCF       | Т          | 31                     | С                         | 11        | 0.00289              | imputed             |
| rs782599     | chr2:55847423                           | HepG2                   | FOXA1      | Т          | 8                      | Ċ                         | 0         | 0.00781              | imputed             |
| rs2136737    | chr2.62969310                           | HepG2                   | FOXA2      | G          | 12                     | c                         | 1         | 0.00342              | imputed             |
| rs2136737    | chr2.62969310                           | HepG2                   | HNF4A      | Ċ          | 8                      | G                         | 0         | 0.00781              | imputed             |
| rs1553832    | chr2.63013515                           | HepG2                   | BHI HE40   | Ğ          | 12                     | c                         | 1         | 0.00342              | imputed             |
| rs368327833  | 3 chr2:63095792                         | HepG2                   | POL2       | G          | 9                      | A                         | 0         | 0.00391              | imputed             |
| rs2710642    | chr2:63149557                           | HepG2                   | POL2       | G          | 11                     | Α                         | 1         | 0.00635              | imputed             |
| rs2070063    | chr2:64862055                           | HepG2                   | MAFK       | A          | 32                     | G                         | 13        | 0.00661              | imputed             |
| rs35125132   | chr2:65041562                           | HepG2                   | EZH2       | Т          | 8                      | G                         | 0         | 0.00781              | imputed             |
| rs11890701   | chr2:70360457                           | HI32                    | PDX1       | Т          | 19                     | А                         | 3         | 0.00086              | common              |
| rs7582417    | chr2:70367861                           | HepG2                   | POL2       | А          | 14                     | G                         | 0         | 0.00012              | imputed             |
| rs386647116  | 6 chr2:70368391                         | HepG2                   | CEBPB      | А          | 9                      | G                         | 0         | 0.00391              | imputed             |
| rs11692018   | chr2:70369154                           | HepG2                   | POL2       | А          | 33                     | С                         | 12        | 0.00246              | imputed             |
| rs11692018   | chr2:70369154                           | HepG2                   | NFIC       | А          | 12                     | С                         | 0         | 0.00049              | imputed             |
| rs12713688   | chr2:70369503                           | HepG2                   | MXI1       | G          | 17                     | С                         | 3         | 0.00258              | imputed             |
| rs12713688   | chr2:70369503                           | HepG2                   | MAX        | G          | 46                     | С                         | 22        | 0.0049               | imputed             |
| rs12713688   | chr2:70369503                           | HepG2                   | HEY1       | G          | 17                     | С                         | 4         | 0.0072               | imputed             |
| rs4338986    | chr2:70376574                           | HepG2                   | HEY1       | С          | 18                     | А                         | 4         | 0.00434              | imputed             |
| rs10469966   | chr2:73752368                           | HepG2                   | CEBPB      | G          | 9                      | А                         | 0         | 0.00391              | imputed             |
| rs62150376   | chr2:83295262                           | HepG2                   | FOXA1      | Т          | 31                     | С                         | 5         | 1.29E-05             | imputed             |
| rs62150376   | chr2:83295262                           | HepG2                   | HDAC2      | Т          | 14                     | С                         | 1         | 0.00098              | imputed             |
| rs62150376   | chr2:83295262                           | HepG2                   | HNF4G      | Т          | 11                     | С                         | 1         | 0.00635              | imputed             |
| rs2241883    | chr2:88424066                           | HepG2                   | POL2       | Т          | 35                     | С                         | 8         | 4.19E-05             | imputed             |
| rs13431601   | chr2:102873713                          | HepG2                   | EZH2       | G          | 8                      | А                         | 0         | 0.00781              | imputed             |
| rs2276561    | chr2:113956371                          | HepG2                   | MAX        | G          | 16                     | С                         | 2         | 0.00131              | imputed             |
| rs2305133    | chr2:113956821                          | HepG2                   | CTCF       | С          | 129                    | G                         | 76        | 0.00026              | imputed             |
| rs2305133    | chr2:113956821                          | HepG2                   | BHLHE40    | С          | 9                      | G                         | 0         | 0.00391              | imputed             |
| rs2305133    | chr2:113956821                          | HepG2                   | RAD21      | С          | 52                     | G                         | 21        | 0.00037              | imputed             |
| rs931472     | chr2:113969948                          | HepG2                   | DNASE      | С          | 21                     | Т                         | 2         | 6.60E-05             | imputed             |
| rs1049137    | chr2:113975110                          | HepG2                   | POL2       | G          | 8                      | А                         | 0         | 0.00781              | imputed             |
| rs2289897    | chr2:113977454                          | HepG2                   | CEBPB      | А          | 8                      | G                         | 0         | 0.00781              | imputed             |
| rs4849176    | chr2:113977936                          | HepG2                   | POL2       | С          | 16                     | Т                         | 3         | 0.00443              | imputed             |
| rs4849178    | chr2:113982608                          | HepG2                   | FOXA1      | А          | 8                      | G                         | 0         | 0.00781              | imputed             |
| rs2166421    | chr2:113990242                          | HepG2                   | FOXA1      | C          | 26                     | T                         | 4         | 5.95E-05             | imputed             |
| imputed. con | ices sites at eQTL<br>nmon variants (MA | or cardion<br>F>.05 100 | OG EUR) or | predicted  | e snown.<br>from the s | onia <sup></sup><br>Seaue | ence data | neterozygous         | sites were          |
|            |                |        |               | Enrich    | ed      | Ot     | her   |                      | Variant             |
|------------|----------------|--------|---------------|-----------|---------|--------|-------|----------------------|---------------------|
| Variant    | Position       | Sample | Protein/Assay | Allele Re | ads     | Allele | Reads | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs2166421  | chr2:113990242 | HepG2  | HNF4A         | С         | 11      | Т      | 1     | 0.00635              | imputed             |
| rs7421852  | chr2:113990261 | HepG2  | FOXA1         | А         | 20      | G      | 6     | 0.00936              | imputed             |
| rs10206269 | chr2:113990393 | HepG2  | HNF4A         | А         | 12      | С      | 1     | 0.00342              | imputed             |
| rs4849181  | chr2:113991970 | HepG2  | CTCF          | G         | 47      | А      | 16    | 0.00012              | imputed             |
| rs7564909  | chr2:129504503 | HepG2  | CEBPB         | А         | 10      | Т      | 0     | 0.00195              | imputed             |
| rs6758916  | chr2:129531820 | HepG2  | MAFK          | Т         | 19      | А      | 4     | 0.0026               | imputed             |
| rs1010241  | chr2:135154312 | HepG2  | BHLHE40       | А         | 8       | С      | 0     | 0.00781              | imputed             |
| rs62168897 | chr2:135717997 | HepG2  | POL2          | С         | 13      | т      | 2     | 0.00739              | imputed             |
| rs34272267 | chr2:150536025 | HepG2  | CEBPB         | C         | 42      | G      | 9     | 3.39E-06             | imputed             |
| rs6706545  | chr2:161181478 | HepG2  | FOXA2         | A         | 16      | Т      | 1     | 0.00027              | imputed             |
| rs6706545  | chr2:161181478 | HepG2  | CEBPB         | A         | 9       | Т      | 0     | 0.00391              | imputed             |
| rs10929982 | chr2:161236277 | HepG2  | CEBPB         | Т         | 14      | C      | 0     | 0.00012              | imputed             |
| rs73029563 | chr2.165008166 | HenG2  | CEBPB         | C         | 8       | G      | 0     | 0.00781              | imputed             |
| rs13004226 | chr2:165080678 | HenG2  | MAFK          | C         | 77      | G      | 37    | 0.00023              | imputed             |
| rs6713419  | chr2:165508300 | HenG2  | MAFK          | т         | 8       | C      | 0     | 0.00781              | imputed             |
| rs10184004 | chr2:165508389 | HenG2  | MAFK          | Ċ         | 25      | т      | 1     | 8 05E-07             | imputed             |
| rs6754950  | chr2.170630370 | HenG2  | ZBTB33        | A         | 13      | G      | 0     | 0.00024              | imputed             |
| rs7579463  | chr2:171253722 | HenG2  | CTCF          | Δ         | 44      | C      | 13    | 4 71E-05             | imputed             |
| rs7579463  | chr2:171253722 | HenG2  |               | Δ         | 43      | C      | 20    | 0.00515              | imputed             |
| rs2364723  | chr2:178126546 | HenG2  | MBD4          | C         | ч0<br>8 | G      | 20    | 0.00313              | imputed             |
| rs13427277 | chr2:188075497 | HenG2  | CTCE          | Δ         | 8       | G      | 0     | 0.00781              | imputed             |
| rs840601   | chr2:188159887 | HenG2  | TCE7I 2       | Δ         | a       | G      | 0     | 0.00701              | imputed             |
| re606002   | chr2:188210214 | HonG2  | MAEK          | Δ         | 12      | G      | 17    | 0.00051              | imputed             |
| rc1355521  | chr2:188307747 | HopC2  |               | 6         | 12      | ^      | 0     | 0.00133              | imputed             |
| rc10201618 | chr2:188326040 | HopC2  |               | C C       | 27      | ~      | 6     | 0.00024              | imputed             |
| rc8176547  | chr2.100320949 | HonG2  |               | G         | 12      | A<br>T | 1     | 0.00032              | imputed             |
| rc8176547  | chr2:188340340 | HopC2  |               | G         | 27      | т<br>Т | 6     | 0.00042              | imputed             |
| rc8176546  | chr2:188340306 | HonG2  |               | т         | 16      | с<br>Г | 0     | 0.00032              | imputed             |
| rc8176546  | chr2:188340306 | HonG2  |               | т         | 32      | C<br>C | 10    | 0.00131              | imputed             |
| ro022020   | chr2:100340390 | Hop C2 |               | r<br>C    | 0       | ^      | 10    | 0.00094              | imputed             |
| ro12001600 | chi2.190700000 | HepGZ  |               | G         | 10      | A<br>^ | 0     | 0.00391              | imputed             |
| ro6745050  | ohr2:20/601529 | HepGZ  |               | с<br>т    | 19      | A<br>C | 10    | 0.00022              | imputed             |
| 150745050  | chi2.204091556 | HepGZ  |               |           | 40      | C      | 19    | 0.00052              | imputed             |
| 150747951  | chr2:206629310 | HepG2  |               | G         | 17      | C      | 4     | 0.0072               | imputed             |
| 150747951  | chr2:216205014 | HepG2  |               | G         | 25      |        | 1     | 0.00035              | imputed             |
| rs1250240  | chi2.216295014 | HepG2  | POL2          | G<br>A    | 20      | A<br>T | 9     | 0.00904              | imputed             |
| 181250241  | chi2.210295512 |        | POLZ          | A         | 30      |        | 14    | 0.0038               | imputed             |
| 181250244  | chr2:216297796 | HepG2  | FUXAZ         |           | 11      | G      | 0     |                      | imputed             |
| 181250244  | Chr2:216297796 | HepG2  | POL2          |           | 00      | G      | 23    | 2.52E-06             | imputed             |
| 181250258  | Chr2:216300185 | HepG2  | POL2          | 1<br>-    | 47      |        | 23    | 0.00558              | imputed             |
| rs1250258  | CNr2:216300185 | HepG2  | NFIC          |           | 12      | C<br>T | 1     | 0.00342              | imputed             |
| 191250259  | Chr2:216300482 | HepG2  | NRZFZ         | A         | 8       | 1      | 0     | 0.00781              | imputed             |
| rs10171839 | cnr2:219051314 | HepG2  | MAX           | G         | 11      | A      | 1     | 0.00635              | imputed             |
| rs13062    | chr2:219260651 | HepG2  |               | A         | 15      | C      | 3     | 0.00754              | imputed             |
| rs13062    | chr2:219260651 | HepG2  | MAX           | A         | 14      | C      | 2     | 0.00418              | imputed             |
| rs13062    | chr2:219260651 | HepG2  | ZEB1          | A         | 11      | C<br>T | 1     | 0.00635              | imputed             |
| rs13423632 | chr2:232079116 | HepG2  | MAX           | C<br>T    | 21      |        | 5     | 0.00249              | imputed             |
| rs16827879 | chr2:232092301 | HepG2  | CICF          | <br>_     | 64      | C      | 34    | 0.00319              | imputed             |
| rs16827879 | chr2:232092301 | HepG2  | RAD21         | T         | 89      | С      | 55    | 0.00577              | imputed             |
| rs4477910  | chr2:234643737 | HepG2  | FOXA2         | Г<br>     | 27      | A      | 0     | 1.49E-08             | imputed             |
| rs4477910  | chr2:234643737 | HepG2  | FOXA1         | T<br>     | 30      | A      | 0     | 1.86E-09             | imputed             |
| rs4477910  | chr2:234643737 | HepG2  | NR2F2         |           | 8       | A      | 0     | 0.00781              | imputed             |
| rs4477910  | chr2:234643737 | HepG2  | HNF4A         | 1         | 9       | A      | 0     | 0.00391              | imputed             |
| rs77438791 | chr2:239035642 | HepG2  | MBD4          | G         | 8       | A      | 0     | 0.00781              | imputed             |
| rs4401206  | chr2:241796905 | HepG2  | MXI1          | G         | 35      | A      | 15    | 0.0066               | imputed             |
| rs4401206  | chr2:241796905 | HepG2  | USF1          | G         | 76      | A      | 32    | 2.76E-05             | imputed             |

|             |                |        |            | Enri       | iched | 0      | ther   |                      | Variant             |
|-------------|----------------|--------|------------|------------|-------|--------|--------|----------------------|---------------------|
| Variant     | Position       | Sample | Protein/As | say Allele | Reads | Allele | Reads  | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs4401206   | chr2:241796905 | HepG2  | CEBPD      | G          | 8     | А      | 0      | 0.00781              | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | MAX        | G          | 213   | А      | 120    | 3.91E-07             | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | DNASE      | G          | 66    | А      | 29     | 0.00019              | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | RAD21      | G          | 12    | А      | 1      | 0.00342              | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | YY1        | G          | 17    | А      | 3      | 0.00258              | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | P300       | G          | 26    | A      | 9      | 0.00599              | imputed             |
| rs4401206   | chr2:241796905 | HepG2  | HNF4G      | G          | 25    | А      | 4      | 0.0001               | imputed             |
| rs4401206   | chr2·241796905 | HepG2  | CRFB1      | G          | 24    | A      | 5      | 0 00055              | imputed             |
| rs4401206   | chr2·241796905 | HepG2  | HNF4A      | G          | 54    | A      | 27     | 0.0036               | imputed             |
| rs10933641  | chr2:241813788 | HenG2  | MAX        | C          | 57    | т      | 27     | 0.0014               | imputed             |
| rs10933641  | chr2:241813788 | HepG2  | DNASE      | c          | 35    | Ť      | 15     | 0.0066               | imputed             |
| rs10933641  | chr2:241813788 | HenG2  | POI 2      | C          | 35    | т      | 8      | 4 19E-05             | imputed             |
| rs10206101  | chr2:241835543 | HenG2  | 7FB1       | C          | 60    | Δ      | 13     | 2.31E-08             | imputed             |
| rs10206101  | chr2:241835543 | HenG2  |            | C          | q     | Δ      | 0      | 0.00391              | imputed             |
| rs10206101  | chr2:241835543 | HenG2  | HNE4G      | C          | 8     | Δ      | 0      | 0.00001              | imputed             |
| rs10206101  | chr2:241835543 | HenG2  |            | C C        | 11    | Δ      | 1      | 0.00701              | imputed             |
| rs10933517  | chr2:241836338 | HenG2  |            | C          | 16    | т      | 1      | 0.000000             | imputed             |
| re10033517  | chr2:241030330 | HonG2  |            | C C        | 0     | т<br>Т | 0      | 0.00021              | imputed             |
| rs/675858   | chr2:241030330 | HonG2  | CERDR      | Δ          | 8     | G      | 0      | 0.00391              | imputed             |
| rs4073030   | chr2:241040550 | HonG2  |            | G          | 20    | ۵<br>۸ | 3      | 0.00781              | imputed             |
| rs4417704   | chr2:241040373 | HopG2  | MAY        | G          | 20    | ~      | 0      | 0.00049              | imputed             |
| rs4417704   | chr2:241040373 | HonG2  |            | G          | 12    | ~      | 1      | 0.00781              | imputed             |
| ro62196594  | ohr2:241040373 |        |            | C          | 12    | T      | י<br>ר | 0.00342              | imputed             |
| 1502100304  | chr2:241053021 |        |            | C          | 10    | r<br>C | 2      | 0.00235              | imputed             |
| 159053011   | chr2:243000950 | HepGZ  |            | G          | 0     | ر<br>۱ | 0      | 0.00098              | imputed             |
| 1800333120  | chr2:243020000 | HepG2  | P300       | G          | 10    | A<br>T | 0      | 0.00391              | imputed             |
| roE9006257  | chr2:243020240 |        |            | C<br>C     | 10    | і<br>т | 2      |                      | imputed             |
| 1858906257  | chr2:243028248 | HepG2  |            |            | 30    | 1<br>- | 4      | 0.16E-06             | imputed             |
| 1858906257  | Chr2:243028248 | HepG2  | DNASE      |            | 20    | ו<br>ד | 3      | 0.00049              | imputed             |
| r\$58906257 | cnr2:243028248 | HepG2  | POL2       | 0          | 95    | 1<br>- | 12     | 3.49E-17             | imputed             |
| rs58906257  | cnr2:243028248 | HepG2  | SP1        | C          | 8     | 1<br>- | 0      | 0.00781              | imputed             |
| r\$58906257 | cnr2:243028248 | HepG2  | HEYI       | 0          | 28    | 1<br>- | 8      | 0.00119              | imputed             |
| rs58906257  | chr2:243028248 | HepG2  | HDAC2      | C          | 25    | 1<br>- | 5      | 0.00032              | imputed             |
| rs58906257  | chr2:243028248 | HepG2  | HNF4A      | C          | 10    | -      | 0      | 0.00195              | imputed             |
| rs58906257  | chr2:243028248 | HepG2  | MAFK       | C          | 14    | I      | 1      | 0.00098              | imputed             |
| rs5/603292  | chr2:243028537 | HepG2  | FOXA1      | A          | 9     | G      | 0      | 0.00391              | imputed             |
| rs59191623  | chr2:243028595 | HepG2  | RAD21      | A          | 10    | G      | 0      | 0.00195              | imputed             |
| rs990284    | chr3:104972    | HepG2  | FOXA2      | A          | 18    | G      | 2      | 0.0004               | imputed             |
| rs990284    | chr3:104972    | HepG2  | FOXA1      | A          | 39    | G      | 11     | 9.02E-05             | imputed             |
| rs990284    | chr3:104972    | HepG2  | P300       | A          | 11    | G      | 1      | 0.00635              | imputed             |
| rs7640929   | chr3:27513944  | HepG2  | CEBPA      | A          | 10    | С      | 0      | 0.00195              | imputed             |
| rs75016701  | chr3:42091501  | HepG2  | FOXA1      | G          | 28    | A      | 9      | 0.00256              | imputed             |
| rs78607708  | chr3:42096955  | HepG2  | FOXA2      | G          | 50    | A      | 15     | 1.57E-05             | imputed             |
| rs78607708  | chr3:42096955  | HepG2  | CEBPB      | G          | 60    | А      | 26     | 0.00032              | imputed             |
| rs78607708  | chr3:42096955  | HepG2  | FOXA1      | G          | 53    | А      | 15     | 4.12E-06             | imputed             |
| rs78607708  | chr3:42096955  | HepG2  | CEBPA      | G          | 42    | А      | 13     | 0.00011              | imputed             |
| rs78607708  | chr3:42096955  | HepG2  | P300       | G          | 23    | А      | 4      | 0.00031              | imputed             |
| rs3774750   | chr3:50208406  | HepG2  | MAX        | G          | 13    | С      | 2      | 0.00739              | imputed             |
| rs2233474   | chr3:50388607  | HepG2  | DNASE      | С          | 30    | А      | 11     | 0.00432              | imputed             |
| rs7639267   | chr3:52568805  | HepG2  | HEY1       | Т          | 8     | G      | 0      | 0.00781              | imputed             |
| rs1108842   | chr3:52720080  | HepG2  | SIN3AK20   | С          | 25    | А      | 7      | 0.0021               | imputed             |
| rs1108842   | chr3:52720080  | HepG2  | TAF1       | С          | 75    | А      | 39     | 0.00096              | imputed             |
| rs1108842   | chr3:52720080  | HepG2  | CREB1      | С          | 91    | А      | 58     | 0.00853              | imputed             |
| rs2710323   | chr3:52815905  | HepG2  | FOXA2      | С          | 12    | Т      | 1      | 0.00342              | imputed             |
| rs2710323   | chr3:52815905  | HepG2  | BHLHE40    | С          | 11    | Т      | 0      | 0.00098              | imputed             |
| rs66815886  | chr3:64703394  | HepG2  | BHLHE40    | Т          | 8     | G      | 0      | 0.00781              | imputed             |

| Variant     Position     Sample     Protein/Assay     Allele Reads     Neutree     Source*       rs280622     ch3:11958074     ch3:11958074     ch3:11958074     ch3:12563718     HepG2     DNASE     A     B     C     0     0.00781     imputed       rs289870     ch3:125635718     HepG2     POL2     A     B     C     0     0.00781     imputed       rs8841149     ch3:12563573     HepG2     POL2     T     13     C     2     0.00791     imputed       rs8426776     ch3:125636117     HepG2     MX1     G     4     0     4.776-07     imputed       rs828671     ch3:125648165     HepG2     RD21     T     4     C     0     0.00781     imputed       rs8286701     ch3:125840274     HepG2     RD21     T     8     C     0     0.00781     imputed       rs8286701     ch3:125840274     HepG2     ZD17     T     8     C     0     0.00781     imputed       rs83875001 <th></th> <th></th> <th></th> <th></th> <th>Enri</th> <th>ched</th> <th>Ot</th> <th>her</th> <th></th> <th>Variant</th>                                                                                                                                                                                                                                                                                                                                    |            |                |        |               | Enri   | ched  | Ot     | her   |                      | Variant             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--------|---------------|--------|-------|--------|-------|----------------------|---------------------|
| research     HepG2     MAFK     C     16     A     2     0.00131     imputed       rs2297642     chr3:1256435718     HepG2     DNASE     A     B     C     0     0.388-07     imputed       rs12898470     chr3:125635718     HepG2     POL2     A     9     C     0     0.00739     imputed       rs1249780     chr3:125635718     HepG2     POL2     T     13     C     0     0.00739     imputed       rs1249780     chr3:125642317     HepG2     VIX     G     22     A     0     4.77E-07     imputed       rs4287807     chr3:125648165     HepG2     RD21     T     24     C     7     0.00331     imputed       rs828071     chr3:125648165     HepG2     RAD21     T     24     C     7     0.00331     imputed       rs8286701     chr3:125645319     HepG2     CTCF     G     24     A     3     2.74E-05     imputed       rs8468900     chr3:125645319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Variant    | Position       | Sample | Protein/Assay | Allele | Reads | Allele | Reads | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs2976742     chr:125417021     HepG2     CTCF     C     23     T     0     2.38E-170     imputed       rs12695470     chr:312563573     HepG2     POL2     A     9     C     0     0.00781     imputed       rs8941194     chr:312563573     HepG2     POL2     T     13     C     2     0.00791     imputed       rs8941194     chr:312563617     HepG2     DXX1     G     19     A     0     0.00195     imputed       rs8477449     chr:312563617     HepG2     DXX1     G     49     A     15     2.44E-05     imputed       rs847749     chr:3125648165     HepG2     CTCF     T     95     C     53     0.0071     imputed       rs8463799     chr:3125648165     HepG2     CTCF     G     25     A     3     2.74E-07     imputed       rs8463799     chr:3125648165     HepG2     ZTFF     9     C     0     0.00781     imputed       rs8463790     chr:442603055 <td>rs6800622</td> <td>chr3:119580678</td> <td>HepG2</td> <td>MAFK</td> <td>С</td> <td>16</td> <td>А</td> <td>2</td> <td>0.00131</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                  | rs6800622  | chr3:119580678 | HepG2  | MAFK          | С      | 16    | А      | 2     | 0.00131              | imputed             |
| rs12898470   chr3:12583778   HepC2   DNASE   A   8   C   0   0.00731   imputed     rs12894114   chr3:12583739   HepC2   POL2   T   13   C   2   0.00739   imputed     rs1249780   chr3:125836117   HepC2   XI1   G   10   A   0   0.00139   imputed     rs4377449   chr3:125643166   HepC2   CTCF   T   95   C   53   0.0007   imputed     rs9826071   chr3:125644166   HepC2   CTCF   T   24   C   7   0.00331   imputed     rs9826372   chr3:125824764   HepC2   CTCF   G   25   A   3   2.74E-05   imputed     rs9826371   chr3:125824764   HepC2   CTCF   G   25   A   3   2.74E-05   imputed     rs9253920   chr3:1268245319   HepC2   CTDF   C   0   0.00781   imputed     rs8453930   chr3:136826535   HepC2   CDFC   C   59   1   1.06E-16   imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs2976742  | chr3:125417021 | HepG2  | CTCF          | С      | 23    | Т      | 0     | 2.38E-07             | imputed             |
| rs1289470   ch:3:125635718   HegG2   POL2   T   13   C   0   0.00739   imputed     rs841194   ch:3:125636117   HegG2   MX1   G   10   A   0   0.00195   imputed     rs12497980   ch:3:125636117   HegG2   USF1   G   22   4   0   4.77E-07   imputed     rs826071   ch:3:125643165   HegG2   CAD21   T   24   C   7   0.00331   imputed     rs826071   ch:3:12561268   HegG2   CAD21   T   8   C   0   0.00331   imputed     rs826370   ch:3:128127643   HegG2   CAD21   T   8   C   0   0.00311   imputed     rs86857001   ch:3:139210284   HegG2   ZBTB7A   P   C   0   0.00311   imputed     rs86857001   ch:3:18643789   HegG2   ZBTB7A   P   C   0   0.00311   imputed     rs86857001   ch:3:18643789   HegG2   CBCP   T   1   0.0674   imputed   rs11332616   ch:4:420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs12695470 | chr3:125635718 | HepG2  | DNASE         | А      | 8     | С      | 0     | 0.00781              | imputed             |
| rs8841194     ch:2125635733     HepG2     POL2     T     13     C     2     0.00739     imputed       rs12497980     ch:3125636117     HepG2     MAX     G     49     A     15     2.44E-05     imputed       rs4377449     ch:3125648165     HepG2     CTCF     T     95     C     53     0.0007     imputed       rs828071     ch:3125648165     HepG2     CTCF     T     80     0.000781     imputed       rs828302     ch:3128127643     HepG2     CTCF     G     2.5     A     3     2.74E-05     imputed       rs82837001     ch:313812764     HepG2     CTCF     G     2.5     A     3     2.74E-05     imputed       rs86857001     ch:318646319     HepG2     CTDF     G     2.0     0.00391     imputed       rs86857001     ch:318646319     HepG2     CEBP8     C     15     T     3     0.00741     imputed       rs8693001     ch:42603055     HepG2     DNASE <t< td=""><td>rs12695470</td><td>chr3:125635718</td><td>HepG2</td><td>POL2</td><td>А</td><td>9</td><td>С</td><td>0</td><td>0.00391</td><td>imputed</td></t<>                                                                                                                                                                                                                                                                                                           | rs12695470 | chr3:125635718 | HepG2  | POL2          | А      | 9     | С      | 0     | 0.00391              | imputed             |
| rs12497980   chr3:125638117   HepC2   MXI   G   10   A   0   0.0018   imputed     rs12497980   chr3:125643105   HepC2   USF1   G   22   A   0   4.77E-07   imputed     rs9826071   chr3:125643105   HepC2   CTCF   T   95   C   53   0.0007   imputed     rs8282071   chr3:125842744   HepC2   RAD21   T   8   C   0   0.00181   common     rs8483799   chr3:128127643   HepC2   ZBTF7A   T   9   C   0   0.00391   imputed     rs8463799   chr3:167432764   HepC2   ZBTF7A   T   9   C   0   0.00754   imputed     rs8675001   chr3:16843769   HepC2   CTCF   C   59   T   1   1.06E-16   imputed     rs76763007   chr4:42063055   HepC2   CTCF   C   59   T   1   1.06E-16   imputed     rs78673206   HepC2   DNASE   G   20   A   5   0.000754   imputed <td>rs9841194</td> <td>chr3:125635739</td> <td>HepG2</td> <td>POL2</td> <td>Т</td> <td>13</td> <td>С</td> <td>2</td> <td>0.00739</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs9841194  | chr3:125635739 | HepG2  | POL2          | Т      | 13    | С      | 2     | 0.00739              | imputed             |
| rs1249780   chr:312564317   HepG2   MAX   G   4.9   A   15   2.4.8-05   imputed     rs4377449   chr:3125643165   HepG2   CTCF   T   95   C   53   0.0007   imputed     rs9826071   chr:3125643165   HepG2   RAD21   T   24   C   7   0.00331   imputed     rs253280   chr:312502474   HepG2   CTCF   G   25   A   3   2.74-05   imputed     rs263820   chr:3139210258   H87   NKX_2_2   G   24   C   0   0.0031   imputed     rs58575010   chr:316454519   HepG2   ZBTB7A   T   9   C   0   0.00754   imputed     rs11932616   chr:42603055   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs11932616   chr:42603055   HepG2   CTCF   C   59   T   1   1.00E-16   imputed     rs1932616   chr:42603055   HepG2   SDASE   G   20   A   3   0.00754 <td>rs12497980</td> <td>chr3:125636117</td> <td>HepG2</td> <td>MXI1</td> <td>G</td> <td>10</td> <td>А</td> <td>0</td> <td>0.00195</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs12497980 | chr3:125636117 | HepG2  | MXI1          | G      | 10    | А      | 0     | 0.00195              | imputed             |
| rs4377449   chr3:125642330   HepG2   USF1   G   22   A   0   4.77E-07   imputed     rs9826071   chr3:125648166   HepG2   RAD21   T   24   C   7   0.00333   imputed     rs9726070   chr3:1252648166   HepG2   RAD21   T   24   C   0   0.00331   imputed     rs938620   chr3:12527641   HepG2   CTCF   G   25   A   3   2.74E-05   imputed     rs95875091   chr3:185276391   HepG2   ZETB7A   T   9   C   0   0.00235   imputed     rs4689709   chr4:463276   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs1171932616   chr4:25063055   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs2675327   chr4:25063055   HepG2   DNASE   G   20   T   0   1.91E-06   imputed     rs4075927   chr4:7957058   HepG2   DNASE   G   20   7   0.000781   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs12497980 | chr3:125636117 | HepG2  | MAX           | G      | 49    | А      | 15    | 2.44E-05             | imputed             |
| rs9826071   chr3125648165   HepG2   CTCF   T   95   C   53   0.0007   imputed     rs9826071   chr312580287   HepG2   RAD21   T   24   C   7   0.0033   imputed     rs253380   chr312580274   HepG2   CTCF   G   2.5   A   3   2.74E-05   imputed     rs4883799   chr3138210258   H807   T   9   C   0   0.00391   imputed     rs58575091   chr316454319   HepG2   CHP1   8   A   0   0.00754   imputed     rs58575091   chr32696305   HepG2   CEPF   C   5   T   3   0.00754   imputed     rs783182   chr426063055   HepG2   RAD21   C   20   T   0   1.91E-06   imputed     rs7837820   chr426063055   HepG2   RAD21   C   20   T   0.000781   imputed     rs7837820   chr426063055   HepG2   RAD21   C   20   A   3   4.92E-05   imputed     rs4075927 <td>rs4377449</td> <td>chr3:125642330</td> <td>HepG2</td> <td>USF1</td> <td>G</td> <td>22</td> <td>А</td> <td>0</td> <td>4.77E-07</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs4377449  | chr3:125642330 | HepG2  | USF1          | G      | 22    | А      | 0     | 4.77E-07             | imputed             |
| rs8826071     chr:31252380     chr:31252380     chr:31252382     chr:31252383     chr:32653333     chr:32653335     chr:32653363     chr:32653363 <td>rs9826071</td> <td>chr3:125648165</td> <td>HepG2</td> <td>CTCF</td> <td>Т</td> <td>95</td> <td>С</td> <td>53</td> <td>0.0007</td> <td>imputed</td> | rs9826071  | chr3:125648165 | HepG2  | CTCF          | Т      | 95    | С      | 53    | 0.0007               | imputed             |
| rs17523380   chr3125802874   HepG2   RAD21   T   8   C   0   0.00781   imputed     rs2893820   chr313821028   HB7   MKX2_2   C   Z   A   3   2.74E-05   imputed     rs8483790   chr313821028   HB7   MKX2_2   C   4   0.000381   imputed     rs81714980   chr3186545319   HepG2   ZETB7A   T   9   C   0   0.007381   imputed     rs8489909   chr4.4843276   HepG2   CEBPB   C   15   T   3   0.007581   imputed     rs11932616   chr4.26063055   HepG2   CTCF   C   20   A   5   0.00408   imputed     rs4075927   chr4.36566688   HepG2   DNASE   G   20   A   5   0.00408   imputed     rs4459402   chr4.36943634   HepG2   FOXA1   G   24   A   3   4.92E-05   imputed     rs4549402   chr4.39643634   HepG2   FOXA1   G   24   C   5   0.000781   imputed <td>rs9826071</td> <td>chr3:125648165</td> <td>HepG2</td> <td>RAD21</td> <td>т</td> <td>24</td> <td>C</td> <td>7</td> <td>0.00333</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                              | rs9826071  | chr3:125648165 | HepG2  | RAD21         | т      | 24    | C      | 7     | 0.00333              | imputed             |
| rs2939820   chr3:128127643   HepG2   CTCF   G   25   A   3   2.74E-05   imputed     rs4683799   chr3:1674299   HehG2   ZETB7A   9   C   0   0.00331   imputed     rs86575091   chr3:1674299   HepG2   CHD2   T   15   C   2   0   0.00331   imputed     rs7661077   chr3:174890   HepG2   CHD2   T   15   T   3   0.00754   imputed     rs11932616   chr4:26063055   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs28578320   chr4:8656668   HepG2   DNASE   G   20   A   5   0.00048   imputed     rs28578320   chr4:86567025   HepG2   DNASE   G   88   A   0   0.00781   imputed     rs4075927   chr4:79575058   HepG2   FOXA1   G   24   C   5   0.00018   imputed     rs8641731   rh4:89242372   HepG2   FOXA1   G   24   C   3   0.000751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs17523380 | chr3:125802874 | HepG2  | RAD21         | Т      | 8     | С      | 0     | 0.00781              | imputed             |
| rs4683799   chr3:139210258   HiB7   NKX2_2   G   24   C   4   0.00018   common     rs117/14980   chr3:165475091   HepG2   ZBTB7A   T   9   C   0   0.00391   imputed     rs68675091   chr3:1865475091   HepG2   ZBTB7A   T   9   C   0   0.002781   imputed     rs7661077   chr4:27018059   HepG2   CEBPB   C   15   T   3   0.00754   imputed     rs11322616   chr4:26053055   HepG2   CTCF   C   20   A   5   0.000408   imputed     rs2865381   chr4:85054055   HepG2   DNASE   G   20   A   5   0.00048   imputed     rs4075927   chr4:8505402   HepG2   DNASE   G   24   A   3   4.92E-05   imputed     rs4059402   chr4:8042372   HepG2   FOXA1   G   24   A   3   4.92E-05   imputed     rs2869303   chr4:8924372   HepG2   FOXA2   G   14   C   1   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs2939820  | chr3:128127643 | HepG2  | CTCF          | G      | 25    | А      | 3     | 2.74E-05             | imputed             |
| rs11714980   chr3:167452991   HepG2   ZBTB7A   T   9   C   0   0.00391   imputed     rs56875091   chr3:186454319   HepG2   CHD2   T   15   C   2   0.00235   imputed     rs688909   chr4:464326   HepG2   CEBPB   C   15   T   3   0.00754   imputed     rs11932616   chr4:26063055   HepG2   CTCF   C   90   T   1   1.06E-16   imputed     rs78578320   chr4:68566689   HepG2   DNASE   G   20   A   5   0.000084   imputed     rs4075927   chr4:79575058   HepG2   BHLHE40   G   8   A   0   0.000781   imputed     rs4049402   chr4:8924384   HepG2   FOXA1   G   24   C   5   0.00058   imputed     rs2869930   chr4:89242372   HepG2   FOXA2   G   14   C   1   0.00018   imputed     rs2869930   chr4:8924372   HepG2   FOXA2   G   14   C   1   0.00163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs4683799  | chr3:139210258 | HI87   | NKX2 2        | G      | 24    | С      | 4     | 0.00018              | common              |
| rs58575091   chr3:186545319   HepG2   CHD2   T   15   C   2   0.00235   imputed     rs4689090   chr4:4643276   HepG2   HEPG2   HEY1   G   8   A   0   0.00781   imputed     rs7661077   chr4:25063055   HepG2   CCFF   C   59   T   1   1.06E-16   imputed     rs11932616   chr4:26063055   HepG2   RAD21   C   20   T   0   1.91E-06   imputed     rs7875820   chr4:68566698   HepG2   DNASE   G   89   T   49   0.00084   imputed     rs4075927   chr4:79575058   HepG2   DNASE   G   89   T   49   0.000781   imputed     rs4075927   chr4:79575058   HepG2   FOXA1   G   24   C   5   0.000781   imputed     rs4075927   chr4:39243272   HepG2   FOXA1   G   22   C   3   0.000781   imputed     rs286930   chr4:38242372   HepG2   FOXA1   G   22   C   3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs11714980 | chr3:167452991 | HepG2  | ZBTB7A        | Т      | 9     | C      | 0     | 0.00391              | imputed             |
| rs4689909   chr4:4643276   HepG2   HEY1   G   8   A   0   0.00781   imputed     rs7661077   chr4:46432765   HepG2   CEBPB   C   15   T   3   0.00754   imputed     rs11932616   chr4:26063055   HepG2   CTCF   C   20   T   0   1.91E-06   imputed     rs78578320   chr4:68567025   HepG2   DNASE   G   20   A   5   0.00048   imputed     rs84075927   chr4:79575058   HepG2   DNASE   G   8   A   0   0.00781   imputed     rs4075927   chr4:39043634   HepG2   FOXA1   G   24   A   3   4.92E-05   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.000781   imputed     rs28641931   chr4:9613564   HepG2   PALX   T   8   C   0   0.00781   imputed     rs77826206   chr4:9613564   HepG2   PALX   T   8   C   0   0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs58575091 | chr3:186545319 | HepG2  | CHD2          | т      | 15    | C      | 2     | 0.00235              | imputed             |
| rs7661077   chr4:7219889   HepG2   CEBPB   C   15   T   3   0.00754   imputed     rs11932616   chr4:2603055   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs11932616   chr4:2603055   HepG2   DNASE   G   20   A   5   0.00408   imputed     rs2665381   chr4:68567025   HepG2   DNASE   G   89   T   49   0.00084   imputed     rs4075927   chr4:79575058   HepG2   DNASE   G   8   A   0   0.00751   imputed     rs45499402   chr4:89043634   HepG2   FOXA1   G   24   C   5   0.00055   imputed     rs266930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00161   imputed     rs286930   chr4:89242372   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs2864985   chr4:14180805   HepG2   MAFK   T   8   0   0.00432   imputed <td>rs4689909</td> <td>chr4:4643276</td> <td>HepG2</td> <td>HEY1</td> <td>G</td> <td>8</td> <td>A</td> <td>0</td> <td>0.00781</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs4689909  | chr4:4643276   | HepG2  | HEY1          | G      | 8     | A      | 0     | 0.00781              | imputed             |
| rs11932616   chr4:26063055   HepG2   CTCF   C   59   T   1   1.06E-16   imputed     rs11932616   chr4:266063055   HepG2   DNASE   G   20   T   0   1.91E-06   imputed     rs28653581   chr4:68567025   HepG2   DNASE   G   89   T   49   0.00084   imputed     rs4075927   chr4:79575058   HepG2   BHLHE40   G   8   A   0   0.00781   imputed     rs45499402   chr4:89243824   HepG2   FOXA1   G   24   C   5   0.00098   imputed     rs2869303   chr4:8924372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs2869303   chr4:14180805   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs28641985   chr4:15561354   HepG2   POL2   G   12   A   1   0.00433   common     rs28641985   chr4:155493171   HepG2   POL2   G   0   44E-16   imputed <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs7661077  | chr4:7219889   | HepG2  | CEBPB         | С      | 15    | т      | 3     | 0.00754              | imputed             |
| rs11932616   chr4:26063055   HepG2   RAD21   C   20   T   0   1.91E-06   imputed     rs78578320   chr4:68566689   HepG2   DNASE   G   20   A   5   0.00408   imputed     rs4075927   chr4:79575058   HepG2   DNASE   G   89   T   49   0.00084   imputed     rs4075927   chr4:79575058   HepG2   BHLHE40   G   8   A   0   0.00781   imputed     rs40475927   chr4:89242372   HepG2   FOXA1   G   24   A   3   4.92E-05   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs10030238   chr4:14180805   HepG2   MAFK   T   8   C   0   0.00342   imputed     rs28641985   chr4:153520475   H101   FOXA2   C   33   T   13   0.00443   common     rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs11932616 | chr4:26063055  | HepG2  | CTCF          | C      | 59    | Т      | 1     | 1.06E-16             | imputed             |
| rs78578320   chr4:88566689   HepG2   DNASE   G   20   A   5   0.00408   imputed     rs28653581   chr4:68567025   HepG2   DNASE   G   89   T   49   0.00048   imputed     rs4075927   chr4:79575058   HepG2   BILHE40   G   8   A   0   0.00781   imputed     rs4075927   chr4:79575058   HepG2   FOXA1   G   24   C   5   0.00055   imputed     rs4269930   chr4:89243272   HepG2   FOXA1   G   22   C   3   0.000781   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs286930   chr4:164248   H101   FOXA2   C   33   T   13   0.00432   common     rs2861395   chr4:155493171   HepG2   SRF   A   52   G   0   4.44E-16 </td <td>rs11932616</td> <td>chr4:26063055</td> <td>HepG2</td> <td>RAD21</td> <td>c</td> <td>20</td> <td>T</td> <td>0</td> <td>1.91E-06</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                         | rs11932616 | chr4:26063055  | HepG2  | RAD21         | c      | 20    | T      | 0     | 1.91E-06             | imputed             |
| rs2865381   chr4:68567025   HepG2   DNASE   G   89   T   49   0.00084   imputed     rs4075927   chr4:79575058   HepG2   USF1   G   24   A   3   4.92E-05   imputed     rs45499402   chr4:79075058   HepG2   FXA   G   2   6.60E-05   imputed     rs45499402   chr4:89024324   HepG2   FXA   A   21   G   2   6.60E-05   imputed     rs2669930   chr4:89242372   HepG2   FXA1   G   22   3   0.000781   imputed     rs2669930   chr4:89242372   HepG2   FXA1   G   22   3   0.000781   imputed     rs2669303   chr4:89242372   HepG2   FXA1   G   20   0.00781   imputed     rs26804305   chr4:180805   HepG2   PAFK   T   8   C   0   0.00781   imputed     rs2841945   chr4:1808076705   HepG2   POL2   G   12   A   1   0.00443   common     rs28641985   chr4:189376705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs78578320 | chr4.68566689  | HepG2  | DNASE         | G      | 20    | A      | 5     | 0.00408              | imputed             |
| rs4075927   chri:79575058   HepC2   USF1   G   24   A   3   4.92E-05   imputed     rs4075927   chri:79575058   HepC2   BILHE40   G   8   A   0   0.00781   imputed     rs45499402   chri:89043634   HepC2   FOXA1   G   24   C   5   0.00055   imputed     rs2869930   chri:89242372   HepC2   FOXA2   G   14   C   1   0.00098   imputed     rs2869930   chri:489242372   HepC2   FOXA1   G   22   C   3   0.000781   imputed     rs28641935   chri:1803605   HepC2   FOXA2   C   33   T   13   0.00453   common     rs28641985   chri:155493171   HepC2   POL2   G   12   A   1   0.00433   common   rs28641985   chri:189376705   HepC2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chri:189376705   HepC2   FOXA2   A   20   G   1   1.91E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rs28653581 | chr4:68567025  | HepG2  | DNASE         | G      | 89    | Т      | 49    | 0.00084              | imputed             |
| rs4075927   chi4:79575058   HepG2   ENLHE40   G   B   A   0   0.00781   imputed     rs40475927   chi4:79575058   HepG2   FOXA1   G   24   C   5   0.00055   imputed     rs6841731   chi4:89242372   HepG2   FOXA1   G   22   6.60E-05   imputed     rs2869930   chi4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs2869930   chi4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs28691905   chi4:155020475   HI101   FOXA2   C   33   0.00453   common     rs28641985   chi4:163520475   HI101   FOXA2   T   16   C   3   0.00443   common     rs28641985   chi4:189376705   HepG2   EFF   A   52   G   0   1.91E-06   imputed     rs28641985   chi4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs4075927  | chr4.79575058  | HepG2  | USF1          | G      | 24    | A      | 3     | 4 92E-05             | imputed             |
| rs45499402   chr4:89043634   HepG2   FOXA1   G   24   C   5   0.00055   imputed     rs6459402   chr4:89242828   HepG2   MAFK   A   21   G   2   6.60E-05   imputed     rs2669930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00076   imputed     rs2669930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.000781   imputed     rs27826206   chr4:95613564   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs6813195   chr4:1543937615   HepG2   POL2   G   12   A   1   0.00432   common     rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   3.73E-09   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs4075927  | chr4.79575058  | HepG2  | BHI HE40      | G      | 8     | A      | 0     | 0.00781              | imputed             |
| rs8841731   chr4:89228928   HepG2   MAFK   A   21   G   2   6.60E-05   imputed     rs2869930   chr4:89242372   HepG2   FOXA2   G   14   C   1   0.00098   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs77826206   chr4:9561364   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs10030238   chr4:141808805   HepG2   POL2   G   12   A   1   0.00435   common     rs2227426   chr4:155493171   HepG2   POL2   G   12   A   1   0.00432   common     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.0024   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs45499402 | chr4.89043634  | HepG2  | FOXA1         | G      | 24    | C      | 5     | 0.00055              | imputed             |
| Rosential   RepCi POXA2   G   1   0.00098   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.00016   imputed     rs2869930   chr4:89242372   HepG2   FOXA1   G   22   C   3   0.000781   imputed     rs77826206   chr4:495613664   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs6813195   chr4:153520475   HII01   FOXA2   C   33   T   13   0.00453   common     rs28641985   chr4:153520475   HEpG2   FOXA2   T   16   C   3   0.00443   common     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0.00183   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0.00024   imputed     rs28641985   chr4:189376705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs6841731  | chr4:89228928  | HenG2  | MAFK          | A      | 21    | G      | 2     | 6.60E-05             | imputed             |
| https://size/12/14/16/14/16/14/14/14/14/14/14/14/14/14/14/14/14/14/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs2869930  | chr4:89242372  | HenG2  | FOXA2         | G      | 14    | C<br>C | 1     | 0.00098              | imputed             |
| TS77826206   chr4:195613564   HepG2   MAFK   T   8   C   0   0.00781   imputed     rs77826206   chr4:141408805   HepG2   HNF4G   A   11   G   1   0.00635   imputed     rs6816466   chr4:153520475   H1101   FOXA2   C   33   T   13   0.00443   common     rs2227426   chr4:166424428   H1101   FOXA2   T   16   C   3   0.00443   common     rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   3.73E-08   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0   0.0024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs2869930  | chr4.89242372  | HepG2  | FOXA1         | G      | 22    | C<br>C | 3     | 0.00016              | imputed             |
| rs10030238   chr4:141808805   HepG2   HNF4G   A   11   G   1   0.00635   imputed     rs6813195   chr4:153520475   HI101   FOXA2   C   33   T   13   0.00435   common     rs2227426   chr4:155493171   HepG2   POL2   G   12   A   1   0.00435   common     rs28641985   chr4:16424428   HI101   FOXA2   T   16   C   3   0.00442   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0 <t< td=""><td>rs77826206</td><td>chr4.95613564</td><td>HepG2</td><td>MAFK</td><td>Т</td><td>8</td><td>C<br/>C</td><td>0</td><td>0.00781</td><td>imputed</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                    | rs77826206 | chr4.95613564  | HepG2  | MAFK          | Т      | 8     | C<br>C | 0     | 0.00781              | imputed             |
| rs6813195   chr4:153520475   H101   FOXA2   C   33   T   13   0.00453   common     rs2227426   chr4:155493171   HepG2   POL2   G   12   A   1   0.00342   imputed     rs6846466   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   0   0.0024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs10030238 | chr4:141808805 | HepG2  | HNF4G         | A      | 11    | G      | 1     | 0.00635              | imputed             |
| rs222742   christis5493171   HepG2   POL2   G   12   A   1   0.00342   imputed     rs2827426   chr4:165493171   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs1041891   chr5:14873254   HepG2   CEBPB   A   8   G   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs6813195  | chr4:153520475 | HI101  | FOXA2         | C      | 33    | Т      | 13    | 0.00453              | common              |
| rs6846466   chr4:166424428   H101   FOXA2   T   16   C   3   0.00443   common     rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   0   0.0024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs2227426  | chr4:155493171 | HepG2  | POL2          | G      | 12    | A      | 1     | 0.00342              | imputed             |
| rs28641985   chr4:189376705   HepG2   SRF   A   52   G   0   4.44E-16   imputed     rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   ELF1   A   29   G   0   3.73E-09   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.0024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr5:14873254   HepG2   CEBPB   G   8   C   0 <td< td=""><td>rs6846466</td><td>chr4:166424428</td><td>HI101</td><td>FOXA2</td><td>Т</td><td>16</td><td>С</td><td>3</td><td>0.00443</td><td>common</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                        | rs6846466  | chr4:166424428 | HI101  | FOXA2         | Т      | 16    | С      | 3     | 0.00443              | common              |
| rs28641985   chr4:189376705   HepG2   FOXA2   A   20   G   0   1.91E-06   imputed     rs28641985   chr4:189376705   HepG2   ELF1   A   29   G   0   3.73E-09   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   0   0.00024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs10941891   chr5:21391789   HepG2   CTCF   G   38   C   0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs28641985 | chr4:189376705 | HepG2  | SRF           | A      | 52    | G      | 0     | 4.44E-16             | imputed             |
| rs28641985   chr4:189376705   HepG2   ELF1   A   29   G   0   3.73E-09   imputed     rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs385158   chr5:14873254   HepG2   CEBPB   G   8   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs28641985 | chr4:189376705 | HepG2  | FOXA2         | A      | 20    | G      | 0     | 1.91E-06             | imputed             |
| rs28641985   chr4:189376705   HepG2   FOXA1   A   13   G   1   0.00183   imputed     rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   PEL2   A   29   G   0   0.00183   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs31490   chr5:134473254   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs31991   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs28641985 | chr4:189376705 | HepG2  | FLF1          | A      | 29    | G      | 0     | 3 73E-09             | imputed             |
| rs28641985   chr4:189376705   HepG2   POL2   A   29   G   1   5.77E-08   imputed     rs28641985   chr4:189376705   HepG2   HEY1   A   13   G   0   0.00024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs31490   chr5:1344458   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs31941   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs28641985 | chr4:189376705 | HepG2  | FOXA1         | A      | 13    | G      | 1     | 0.00183              | imputed             |
| rs28641985   chr4:189376705   HepG2   HEY1   A   13   G   0   0.00024   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs31490   chr5:1344458   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs835158   chr5:14873254   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs19941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00763 <td>rs28641985</td> <td>chr4:189376705</td> <td>HepG2</td> <td>POL2</td> <td>A</td> <td>29</td> <td>G</td> <td>1</td> <td>5.77E-08</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                | rs28641985 | chr4:189376705 | HepG2  | POL2          | A      | 29    | G      | 1     | 5.77E-08             | imputed             |
| rs28641985   chr4:189376705   HepG2   CREB1   A   8   G   0   0.00781   imputed     rs28641985   chr4:189376705   HepG2   MAFK   A   8   G   0   0.00781   imputed     rs31490   chr5:1344458   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs31490   chr5:134473254   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs30941891   chr5:21391789   HepG2   CECF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rs28641985 | chr4:189376705 | HepG2  | HEY1          | A      | 13    | G      | 0     | 0.00024              | imputed             |
| rs28641985   chr4:189376705   HepG2   MAFK   A   8   G   0   0.00781   imputed     rs31490   chr5:1344458   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs835158   chr5:14873254   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs10941891   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   MAX   C   27   T   10   0.00763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs28641985 | chr4:189376705 | HepG2  | CREB1         | A      | 8     | G      | 0     | 0.00781              | imputed             |
| rs31490   chr5:1344458   HepG2   CEBPB   A   8   G   0   0.00781   imputed     rs835158   chr5:14873254   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs10941891   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   MAX   C   27   T   10   0.00763   imputed     rs13356762   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rs28641985 | chr4:189376705 | HepG2  | MAFK          | A      | 8     | G      | 0     | 0.00781              | imputed             |
| rs835158   chr5:14873254   HepG2   CEBPB   G   8   C   0   0.00781   imputed     rs10941891   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00763   imputed     rs3195676   chr5:54110992   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs13356762   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781 <td>rs31490</td> <td>chr5:1344458</td> <td>HepG2</td> <td>CEBPB</td> <td>A</td> <td>8</td> <td>G</td> <td>0</td> <td>0.00781</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs31490    | chr5:1344458   | HepG2  | CEBPB         | A      | 8     | G      | 0     | 0.00781              | imputed             |
| rs10941891   chr5:21391789   HepG2   CTCF   G   38   C   0   7.28E-12   imputed     rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00635   imputed     rs3195676   chr5:34008100   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs31356762   chr5:56110992   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs835158   | chr5:14873254  | HepG2  | CEBPB         | G      | 8     | C      | 0     | 0.00781              | imputed             |
| rs10941891   chr5:21391789   HepG2   RAD21   G   24   C   0   1.19E-07   imputed     rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00635   imputed     rs3195676   chr5:34008100   HepG2   MAX   C   27   T   10   0.00763   imputed     rs31356762   chr5:56110992   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs13356762   chr5:56110992   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   CEBPB   G   41   A   7   6.24E-07   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781 <td>rs10941891</td> <td>chr5:21391789</td> <td>HepG2</td> <td>CTCF</td> <td>G</td> <td>38</td> <td>C</td> <td>0</td> <td>7.28E-12</td> <td>imputed</td>                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs10941891 | chr5:21391789  | HepG2  | CTCF          | G      | 38    | C      | 0     | 7.28E-12             | imputed             |
| rs10941891   chr5:21391789   HepG2   SMC3   G   9   C   0   0.00391   imputed     rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00635   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00763   imputed     rs3195676   chr5:34008100   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs31356762   chr5:56110992   HepG2   CEBPB   G   8   A   0   0.00761   imputed     rs2548663   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   VY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs10941891 | chr5:21391789  | HepG2  | RAD21         | G      | 24    | C<br>C | 0     | 1 19E-07             | imputed             |
| rs3195676   chr5:34008100   HepG2   TAF1   C   46   T   23   0.00762   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00635   imputed     rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00763   imputed     rs3195676   chr5:34008100   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs3356762   chr5:56110992   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs2548663   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:5620562   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs16876512   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs10941891 | chr5:21391789  | HepG2  | SMC3          | G      | 9     | C<br>C | 0     | 0.00391              | imputed             |
| rs3195676   chr5:34008100   HepG2   BHLHE40   C   11   T   1   0.00635   imputed     rs3195676   chr5:34008100   HepG2   MAX   C   27   T   10   0.00763   imputed     rs3195676   chr5:56110992   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs2548663   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:56205662   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs16876512   chr5:78407261   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs1643635   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs3195676  | chr5:34008100  | HepG2  | TAF1          | C      | 46    | Т      | 23    | 0.00762              | imputed             |
| rs3195676   chr5:34008100   HepG2   MAX   C   27   T   10   0.00763   imputed     rs13356762   chr5:56110992   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs2548663   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:56205662   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs16876512   chr5:78407261   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs1643635   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391   imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs3195676  | chr5:34008100  | HepG2  | BHLHE40       | C      | 11    | Т      | 1     | 0.00635              | imputed             |
| rs13356762   chr5:56110992   HepG2   TAF1   G   20   T   6   0.00936   imputed     rs2548663   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:56205662   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs16876512   chr5:78407261   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs1643635   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391   imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs3195676  | chr5:34008100  | HepG2  | MAX           | C      | 27    | Т      | 10    | 0.00763              | imputed             |
| rs2548663   chr5:56172778   HepG2   CEBPB   G   8   A   0   0.00781   imputed     rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:56205662   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   HEY1   G   17   T   4   0.0072   imputed     rs16876512   chr5:78407261   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs1643635   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391   imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs13356762 | chr5:56110992  | HepG2  | TAF1          | G      | 20    | T      | 6     | 0.00936              | imputed             |
| rs185220   chr5:56205357   HepG2   DNASE   G   41   A   7   6.24E-07   imputed     rs252923   chr5:56205662   HepG2   YY1   G   9   T   0   0.00391   imputed     rs33321   chr5:56206073   HepG2   HEY1   G   17   T   4   0.0072   imputed     rs16876512   chr5:78407261   HepG2   TCF12   T   8   C   0   0.00781   imputed     rs1643635   chr5:79928216   HepG2   MBD4   G   9   A   0   0.00391   imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rs2548663  | chr5:56172778  | HenG2  | CEBPB         | G      | -*    | A      | 0     | 0.00781              | imputed             |
| rs252923 chr5:56205662 HepG2 YY1 G 9 T 0 0.00391 imputed<br>rs33321 chr5:56206073 HepG2 HEY1 G 17 T 4 0.0072 imputed<br>rs16876512 chr5:78407261 HepG2 TCF12 T 8 C 0 0.00781 imputed<br>rs1643635 chr5:79928216 HepG2 MBD4 G 9 A 0 0.00391 imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs185220   | chr5:56205357  | HepG2  | DNASE         | G      | 41    | A      | 7     | 6.24F-07             | imputed             |
| rs33321 chr5:56206073 HepG2 HEY1 G 17 T 4 0.0072 imputed<br>rs16876512 chr5:78407261 HepG2 TCF12 T 8 C 0 0.00781 imputed<br>rs1643635 chr5:79928216 HepG2 MBD4 G 9 A 0 0.00391 imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs252923   | chr5:56205662  | HepG2  | YY1           | G      |       | Т      | 0     | 0.00391              | imputed             |
| rs16876512 chr5:78407261 HepG2 TCF12 T 8 C 0 0.00781 imputed<br>rs1643635 chr5:79928216 HepG2 MBD4 G 9 A 0 0.00391 imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs33321    | chr5:56206073  | HepG2  | HEY1          | G      | 17    | Т      | 4     | 0.0072               | imputed             |
| rs1643635 chr5:79928216 HepG2 MBD4 G 9 A 0 0.00391 imputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs16876512 | chr5:78407261  | HepG2  | TCF12         | T      |       | C      | 0     | 0.00781              | imputed             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs1643635  | chr5:79928216  | HepG2  | MBD4          | G      | 9     | A      | 0     | 0.00391              | imputed             |

|             |                             |        |             | Enri       | iched   | 0      | ther     |                      | Variant             |
|-------------|-----------------------------|--------|-------------|------------|---------|--------|----------|----------------------|---------------------|
| Variant     | Position                    | Sample | Protein/Ass | say Allele | Reads   | Allele | Reads    | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs10168     | chr5:79950403               | HepG2  | MAX         | С          | 9       | Т      | 0        | 0.00391              | imputed             |
| rs10168     | chr5:79950403               | HepG2  | DNASE       | С          | 42      | Т      | 8        | 1.16E-06             | imputed             |
| rs386689494 | chr5:79961675               | HepG2  | MAFK        | С          | 8       | Т      | 0        | 0.00781              | imputed             |
| rs1677645   | chr5:79964419               | HepG2  | CEBPB       | С          | 14      | Т      | 2        | 0.00418              | imputed             |
| rs226198    | chr5:81573992               | HepG2  | USF1        | С          | 10      | Т      | 0        | 0.00195              | imputed             |
| rs226198    | chr5:81573992               | HepG2  | MAX         | С          | 79      | Т      | 33       | 1.64E-05             | imputed             |
| rs4869419   | chr5:92567539               | HepG2  | SRF         | А          | 8       | G      | 0        | 0.00781              | imputed             |
| rs10070197  | chr5:95241868               | HepG2  | CEBPB       | С          | 14      | Т      | 2        | 0.00418              | imputed             |
| rs1458017   | chr5:95251346               | HepG2  | HEY1        | А          | 11      | G      | 1        | 0.00635              | imputed             |
| rs261973    | chr5:95869427               | HepG2  | MAFK        | Т          | 11      | С      | 1        | 0.00635              | imputed             |
| rs730870    | chr5:125874993              | HepG2  | FOXA1       | G          | 135     | A      | 64       | 5.34E-07             | imputed             |
| rs192231    | chr5:140248539              | HepG2  | CTCF        | C          | 42      | т      | 8        | 1.16E-06             | imputed             |
| rs192231    | chr5:140248539              | HepG2  | RAD21       | C          | 38      | т      | 5        | 2.50E-07             | imputed             |
| rs13160685  | chr5.149822331              | HepG2  | CEBPB       | A          | 26      | G      | 9        | 0.00599              | imputed             |
| rs1039438   | chr5 <sup>.</sup> 156476770 | HepG2  | P300        | G          | 22      | A      | 7        | 0.00813              | imputed             |
| rs9328078   | chr6 <sup>.</sup> 1979522   | HepG2  | CEBPB       | c          | 8       | A      | 0        | 0.00781              | imputed             |
| rs12195826  | chr6:2565752                | HepG2  | FOXA2       | G          | 24      | A      | 6        | 0.00143              | imputed             |
| rs7739320   | chr6:3054146                | HenG2  | DNASE       | Ĉ          | 78      | т      | 24       | 7 68E-08             | imputed             |
| rs12203636  | chr6:3064249                | HenG2  | MYRI 2      | Δ          | 11      | G      | 0        | 0 00098              | imputed             |
| rs12203636  | chr6:3064249                | HenG2  | MAX         | Δ          | 24      | G      | 4        | 0.00018              | imputed             |
| rs12203030  | chr6:3064249                | HenG2  | 7EB1        | Δ          | 15      | G      | 3        | 0.00010              | imputed             |
| rs12203636  | chr6:3064249                | HenG2  |             | Δ          | 61      | G      | 17       | 5.66E-07             | imputed             |
| rs12203030  | chr6:3064249                | HenG2  |             | Δ          | 37      | G      | 11       | 0.0002-07            | imputed             |
| rs12106777  | chr6:3064523                | HonG2  |             | Ċ          | 18      | т      | 11       | 1.24E-06             | imputed             |
| rs12665605  | chr6:3067003                | HopC2  |             | G          | 12      | л<br>Л | 2        | 0.00730              | imputed             |
| rs12663580  | chr6:3060057                | HonG2  |             | C C        | 34      | T      | 13       | 0.007.39             | imputed             |
| rc0504015   | chr6:6740060                | HopC2  | VV1         | ^          | 12      | G      | 2        | 0.00309              | imputed             |
| rc0303818   | chr6:10067018               | HopC2  |             | T          | 15<br>Q | G      | <u>2</u> | 0.00733              | imputed             |
| rs2205602   | chr6:11005842               | HopC2  |             | Т          | 0<br>0  | C C    | 0        | 0.00781              | imputed             |
| rs2708713   | chr6:11003042               | HopG2  |             | G          | 56      | C      | 12       | 6.21E.08             | imputed             |
| rc3708713   | chr6:11008622               | HopG2  |             | G          | 20      | C      | 0        | 0.212-00             | imputed             |
| rc053/13    | chr6:11012850               | HopG2  |             | G          | 58      | ^      | 23       | 0.00781              | imputed             |
| ro052413    | ohr6:11012009               |        | FOXA2       | G          | 115     | A<br>^ | 20       | 1 505 07             | imputed             |
| ro052413    | child. 11012009             | HepGZ  |             | G          | 110     | A<br>^ | 40<br>E  | 1.59E-07             | imputed             |
| 18953413    | chr6:11012059               | HepGZ  |             | G          | 20      | A      | 0<br>10  | 0.00019              | imputed             |
| 15953413    | child. 11012009             | HepGZ  |             | G          | 39      | A      | 10       | 0.00751              | imputed             |
| 1850190003  | chilo. 11066555             | HepG2  |             |            | 17      |        | 2        | 0.00073              | imputed             |
| rs13362715  | chr6:11088620               | HepGZ  |             | C          | 13      | т<br>Т | 0        | 0.00024              | imputed             |
| 1813302715  | chilo. 1 1000030            | HepG2  |             |            | 14      | 1      | 0        | 0.00012              | imputed             |
| 159379007   | chilo.24/21/0/              | HepG2  |             |            | 24      | A      | 5        | 0.00055              | imputed             |
| 189379687   | cnro:24721787               | HepG2  |             |            | 20      | A      | 9<br>40  | 0.00599              | imputed             |
| 159379007   | chilo.24/21/0/              | HepG2  |             |            | 95      | A      | 49       | 0.00016              | imputed             |
| 189379687   | cnro:24721787               | HepG2  |             |            | 29      | A      | 8        | 0.00075              | imputed             |
| rs9379687   | CNr6:24721787               | HepG2  | CREBI       | C          | 18      | A      | 4        | 0.00434              | imputed             |
| rs1165176   | CNr6:25830298               | HepG2  | FUXA1       | A          | 28      | G      | 5        | 6.62E-05             | imputed             |
| rs1165183   | chr6:25836380               | HepG2  | POL2        | G          | 19      | A      | 5        | 0.00661              | imputed             |
| rs198853    | Chr6:26104096               | HepG2  | IBP         | C          | /1      | 1<br>- | 20       | 7.25E-08             | imputed             |
| rs198853    | Chr6:26104096               | HepG2  | SRF         | C          | 9       | 1<br>- | 0        | 0.00391              | imputed             |
| rs198853    | chr6:26104096               | HepG2  | RXRA        | C          | 19      | 1<br>- | 5        | 0.00661              | imputed             |
| rs198853    | chr6:26104096               | HepG2  | MYBL2       | C          | 70      | -      | 36       | 0.00124              | imputed             |
| rs198853    | chr6:26104096               | HepG2  | POL2        | C          | 165     | <br>   | 96       | 2.31E-05             | imputed             |
| rs198853    | cnr6:26104096               | HepG2  | HEY1        | C          | 98      | I      | 52       | 0.00022              | imputed             |
| rs9380049   | cnr6:28048535               | HepG2  | HEY1        | A          | 37      | G      | 10       | 9.85E-05             | imputed             |
| rs9380049   | cnr6:28048535               | HepG2  | HDAC2       | A          | 8       | G      | 0        | 0.00781              | imputed             |
| rs9380049   | cnr6:28048535               | HepG2  | CREB1       | A          | 24      | G      | 6        | 0.00143              | imputed             |
| rs9380050   | cnr6:28048538               | HepG2  | HEY1        | A          | 38      | G      | 11       | 0.00014              | imputed             |

|             |                            |        |            | Enri       | iched   | C      | Other    |                      | Variant             |
|-------------|----------------------------|--------|------------|------------|---------|--------|----------|----------------------|---------------------|
| Variant     | Position                   | Sample | Protein/As | say Allele | Reads   | Allele | e Reads  | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs9380050   | chr6:28048538              | HepG2  | HDAC2      | А          | 9       | G      | 0        | 0.00391              | imputed             |
| rs9380050   | chr6:28048538              | HepG2  | HNF4G      | А          | 8       | G      | 0        | 0.00781              | imputed             |
| rs9380050   | chr6:28048538              | HepG2  | CREB1      | А          | 22      | G      | 5        | 0.00151              | imputed             |
| rs2281588   | chr6:28072602              | HepG2  | CTCF       | G          | 45      | А      | 14       | 6.53E-05             | imputed             |
| rs2281588   | chr6:28072602              | HepG2  | GABP       | G          | 77      | А      | 39       | 0.00053              | imputed             |
| rs2281588   | chr6:28072602              | HepG2  | CREB1      | G          | 24      | А      | 8        | 0.007                | imputed             |
| rs17711801  | chr6:28092307              | HepG2  | SP2        | С          | 43      | G      | 18       | 0.00187              | imputed             |
| rs17711801  | chr6:28092307              | HepG2  | GABP       | С          | 37      | G      | 17       | 0.00907              | imputed             |
| rs9380056   | chr6:28104476              | HepG2  | ZEB1       | С          | 10      | Т      | 0        | 0.00195              | imputed             |
| rs9380056   | chr6:28104476              | HepG2  | POL2       | С          | 34      | т      | 14       | 0.00552              | imputed             |
| rs9380057   | chr6:28104634              | HepG2  | MAX        | G          | 45      | Т      | 10       | 2.06E-06             | imputed             |
| rs9380057   | chr6:28104634              | HepG2  | ELF1       | G          | 33      | т      | 13       | 0.00453              | imputed             |
| rs9380057   | chr6:28104634              | HepG2  | DNASE      | G          | 29      | т      | 8        | 0.00075              | imputed             |
| rs9380057   | chr6 <sup>.</sup> 28104634 | HepG2  | YY1        | G          | 23      | т      | 5        | 0.00091              | imputed             |
| rs9380057   | chr6 <sup>.</sup> 28104634 | HepG2  | POL2       | G          | 53      | т      | 20       | 0.00014              | imputed             |
| rs9380057   | chr6:28104634              | HepG2  | GABP       | Ğ          | 197     | Ť      | <u> </u> | 2 66F-20             | imputed             |
| rs9380057   | chr6:28104634              | HepG2  | HFY1       | G          | 33      | T      | 10       | 0 00061              | imputed             |
| rs9380057   | chr6:28104634              | HenG2  | CREB1      | G          | 40      | т      | 14       | 0.00054              | imputed             |
| rs9380057   | chr6:28104634              | HenG2  | HNF4A      | G          | 19      | Ť      | 3        | 0.00086              | imputed             |
| rs9357065   | chr6:28129580              | HenG2  | SIN3AK20   | т          | 10      | Ċ      | 0        | 0.00195              | imputed             |
| rs9357065   | chr6:28129580              | HenG2  |            | Ť          | 31      | C C    | 2        | 1.31E-07             | imputed             |
| rs9357065   | chr6:28129580              | HenG2  | MBD4       | Ť          | q       | C      | 0        | 0.00391              | imputed             |
| rs9357065   | chr6:28129580              | HenG2  | ΜΔΥ        | т<br>Т     | 46      | ĉ      | 1        | 6.82E-13             | imputed             |
| re0357065   | chr6:28120580              | HonG2  |            | т<br>Т     | 40      | c      | 1        | 3.48E-13             | imputed             |
| rs9357065   | chr6:28129580              | HenC2  |            | т          | 10      | c      | 0        | 0.00105              | imputed             |
| rs0357065   | chr6:28129580              | HonG2  |            | т<br>Т     | 13      | C      | 0        | 0.00133              | imputed             |
| rs9357065   | chr6:28129580              | HenC2  |            | т          | 1/      | c      | 0        | 0.00024              | imputed             |
| rs0357065   | chr6:28120580              | HopC2  |            | т<br>Т     | 128     | C      | 2        | 1 255 35             | imputed             |
| rs0357065   | chr6:28129580              | HopG2  |            | т<br>Т     | 120     | c      | 2        | 0.00301              | imputed             |
| 159337003   | chr6:20129300              | Hop C2 |            | т<br>Т     | 9<br>21 | C      | 0        | 6.605.05             | imputed             |
| rs0357065   | chr6:28129580              | HopG2  |            | T T        | 21      | C      | 2        | 0.0000-000           | imputed             |
| 159337003   | chir6:20129500             |        | CEBPD      | T T        | 9<br>15 | C<br>C | 0        | 6 105 05             | imputed             |
| 159337003   | chil0.20129300             | HepGZ  |            | т<br>Т     | 10      | C      | 0        | 0.10E-03             | imputed             |
| 189357065   | child.20129500             | HepGZ  |            | і<br>Т     | 20      | C      | 0        | 7.45E-09             | imputed             |
| 189357065   | child.20129500             | HepGZ  |            | і<br>Т     | 10      | C      | 1        | 0.00391              | imputed             |
| 189357065   | child.20129300             | HepG2  |            | і<br>т     | 160     | C      | 1        |                      | imputed             |
| 189357065   | chilo.20129560             | HepG2  | GABP       | 1<br>-     | 100     | C      | 1        | 1.11E-40             | imputed             |
| 159357065   | chr6:28129580              | HepG2  | HETT       | 1          | 74      |        | 0        | 1.06E-22             | imputed             |
| 1913201769  | Chr6:30756066              | HepGZ  |            | A          | 8       | G      | 0        | 0.00781              | imputed             |
| 1913201769  | Chr6:30756066              | HepGZ  | NRZFZ      | A          | 13      | G      | 2        | 0.00739              | imputed             |
| rs13201769  | CNr6:30756066              | HepG2  | SP1        | A          | 8       | G      | 0        | 0.00781              | imputed             |
| 183132555   | Chr6:31082910              | HepGZ  | RADZI      | G          | 13      | C<br>A | 1        | 0.00183              | imputed             |
| rs1042149   | CNr6:31082960              | HepG2  | CICF       | G          | 20      | A      | 4        | 0.00154              | imputed             |
| rs386579266 | chr6:31089982              | HepG2  | CEBPB      | G          | 8       | A      | 0        | 0.00781              | imputed             |
| rs6921948   | chr6:311/125/              | HI101  | FOXA2      | A          | 27      | C      | 3        | 8.43E-06             | common              |
| rs813115    | chr6:31620020              | HepG2  | DNASE      | G          | 35      | A      | 11       | 0.00054              | imputed             |
| rs813115    | chr6:31620020              | HepG2  | NRSF       | G          | 12      | A      | 1        | 0.00342              | imputed             |
| rs813115    | chr6:31620020              | HepG2  | GABP       | G          | 16      | A      | 3        | 0.00443              | imputed             |
| rs4348358   | chr6:32399092              | HepG2  | MAFK       | G          | 75      | A      | 42       | 0.00293              | predicted           |
| rs9268606   | chr6:32400070              | HepG2  | CTCF       | G          | 11      | A      | 0        | 0.00098              | imputed             |
| rs9271092   | chr6:32576296              | HepG2  | RAD21      | A          | 8       | G      | 0        | 0.00781              | imputed             |
| rs9271093   | chr6:32576341              | HepG2  | CTCF       | G          | 11      | A      | 0        | 0.00098              | imputed             |
| rs9271094   | chr6:32576347              | HepG2  | CTCF       | G          | 15      | С      | 0        | 6.10E-05             | imputed             |
| rs9271096   | chr6:32576426              | HepG2  | CTCF       | A          | 9       | G      | 0        | 0.00391              | imputed             |
| rs17843603  | chr6:32620241              | HepG2  | BHLHE40    | G          | 12      | A      | 0        | 0.00049              | imputed             |
| rs1063349   | chr6:32627906              | HepG2  | HNF4A      | Т          | 15      | С      | 0        | 6.10E-05             | imputed             |

|             |                             |        |               | Enr        | iched      | 0      | ther  |                      | Variant             |
|-------------|-----------------------------|--------|---------------|------------|------------|--------|-------|----------------------|---------------------|
| Variant     | Position                    | Sample | Protein/As    | say Allele | Reads      | Allele | Reads | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs386699568 | 3 chr6:32627923             | HepG2  | HNF4A         | А          | 16         | G      | 0     | 3.05E-05             | imputed             |
| rs9274535   | chr6:32634620               | HepG2  | RFX5          | Т          | 174        | С      | 42    | 2.77E-20             | predicted           |
| rs35721478  | chr6:33725129               | HepG2  | FOXA2         | Т          | 8          | С      | 0     | 0.00781              | imputed             |
| rs35721478  | chr6:33725129               | HepG2  | FOXA1         | Т          | 19         | С      | 0     | 3.81E-06             | imputed             |
| rs206936    | chr6:34302869               | HepG2  | POL2          | А          | 8          | G      | 0     | 0.00781              | imputed             |
| rs6912971   | chr6:34355658               | HepG2  | MAFK          | G          | 9          | С      | 0     | 0.00391              | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | MXI1          | А          | 26         | G      | 8     | 0.00294              | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | TAF1          | А          | 87         | G      | 51    | 0.00275              | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | MAX           | А          | 66         | G      | 27    | 6.47E-05             | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | POL2          | А          | 126        | G      | 49    | 5.24E-09             | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | ELF1          | А          | 78         | G      | 42    | 0.0013               | imputed             |
| rs9469779   | chr6:34393845               | HepG2  | HEY1          | А          | 96         | G      | 43    | 8.12E-06             | imputed             |
| rs7757900   | chr6:34398879               | HepG2  | CEBPD         | т          | 8          | С      | 0     | 0.00781              | imputed             |
| rs9368813   | chr6:34399814               | HepG2  | BHLHE40       | С          | 8          | Т      | 0     | 0.00781              | imputed             |
| rs12192544  | chr6:46620252               | HepG2  | EZH2          | C          | 9          | G      | 0     | 0.00391              | imputed             |
| rs283080    | chr6:118606000              | HepG2  | RAD21         | Ā          | 12         | C      | 1     | 0.00342              | imputed             |
| rs7770081   | chr6:133089569              | HepG2  | CTCF          | т          | 99         | G      | 44    | 4.89E-06             | imputed             |
| rs12211701  | chr6 <sup>.</sup> 133119757 | HepG2  | DNASE         | G          | 17         | Ċ      | 2     | 0 00073              | imputed             |
| rs9493446   | chr6 <sup>.</sup> 133125643 | HepG2  | MAFK          | Т          | 22         | Ċ      | 5     | 0 00151              | imputed             |
| rs9493450   | chr6:133135807              | HenG2  | POL2          | т          | 263        | C      | 117   | 5.00E-14             | imputed             |
| rs9493450   | chr6:133135807              | HepG2  | HEY1          | Ť          | 164        | C      | 65    | 4 72F-11             | imputed             |
| rs6937795   | chr6:137291281              | HI88   | NKX2 2        | A          | 25         | C      | 9     | 0 00904              | common              |
| rs6937795   | chr6:137291281              | HI32   |               | C          | 19         | A      | 4     | 0.0026               | common              |
| rs6917676   | chr6:137291296              | HI88   | NKX2 2        | т          | 16         | G      | 3     | 0.00443              | common              |
| rs6917676   | chr6:137201206              | HI32   |               | G          | 21         | т      | 6     | 0.00440              | common              |
| rs11155000  | chr6:139099401              | HenG2  | TCF7L2        | C          | 9          | Ť      | 0     | 0.00391              | imputed             |
| rs530208    | chr6:160770360              | HenG2  | MAX           | G          | 23         | Δ      | 1     | 2 985-06             | imputed             |
| rs539298    | chr6:160770360              | HenG2  | DNASE         | G          | 14         | Δ      | 0     | 0.00012              | imputed             |
| rs530208    | chr6:160770360              | HenG2  |               | G          | 12         | Δ      | 1     | 0.00012              | imputed             |
| rs530208    | chr6:160770360              | HenG2  |               | G          | 24         | Δ      | 1     | 1 55E-06             | imputed             |
| rs530208    | chr6:160770360              | HenG2  | HNE4G         | G          | 34         | Δ      | 3     | 1.33E-00             | imputed             |
| rs530208    | chr6:160770360              | HenG2  | MYBL2         | G          | a<br>a     | Δ      | 0     | 0.00391              | imputed             |
| rs530208    | chr6:160770360              | HonG2  |               | G          | 15         | Δ      | 0     | 6 10E-05             | imputed             |
| re530208    | chr6:160770360              | HonG2  | CERDR         | G          | 16         | Δ      | 0     | 3.05E-05             | imputed             |
| rs530208    | chr6:160770360              | HonG2  |               | G          | 22         | Δ      | 1     | 5.00E-05             | imputed             |
| rs530208    | chr6:160770360              | HenG2  |               | G          | 22         | Δ      | 2     | 3.08E-11             | imputed             |
| rs530208    | chr6:160770360              | HonC2  |               | G          | тт<br>0    | ^      | 2     | 0.002-11             | imputed             |
| rs530208    | chr6:160770360              | HonG2  |               | G          | o<br>Q     | ^      | 0     | 0.00781              | imputed             |
| rs530208    | chr6:160770360              | HonG2  | 2000<br>2010D | G          | 30         | ^      | 3     | 4 195 07             | imputed             |
| roE20209    | chr6:160770360              |        |               | C          | 20         | ^      | 2     | 4.102-07             | imputed             |
| rs530208    | chr6:160770360              | HonG2  |               | G          | 20         | A<br>^ | 3     | 1 065 11             | imputed             |
| rs0505062   | chr6:160726667              | HonG2  |               | т          | -+ I<br>60 | C C    | 1     | 0.00072              | imputed             |
| ro72060540  | ohr7:26004770               |        |               | т<br>Т     | 09         | C<br>C | 41    | 0.00972              | imputed             |
| ro10281160  | chi7.20904770               | HepGZ  |               | 1          | 0          | C      | 0     |                      | imputed             |
| ro10201109  | chi7.30922025               | HepG2  |               | A          | 20         | G      | 2     | 0.00E-00             | imputed             |
| ro8200      | chi7.30922623               | HepG2  |               | A          | 11         | G      | 1     | 0.00035              | imputed             |
| 150200      | chi7.75090000               | HepGZ  |               | G          | 17         | C<br>C | 0     | 1.525.05             | imputed             |
| ro10052204  | chi7.77160702               | HepG2  |               | G          | 17         | C      | 0     | 1.53E-05             | imputed             |
| 1810953284  | chr7:77169782               | HepG2  | HNF4G         | G          | 14         | C      | 0     | 0.00012              | imputed             |
| 1910953284  | chr7:77169782               | HepG2  | CEBPB         | G          | 10         |        | 1     | 0.00027              | imputed             |
| 1510953284  | chr7://169/82               | HepG2  |               | G          | 26         |        | 1     | 4.1/E-U/             | imputed             |
| 15/053/9    | 01117.94903890              |        | DINASE        | G          | 10         | A<br>T | 10    | 0.00195              | imputed             |
| 15//0/45    | chi7:99291337               | перG2  |               | G<br>-     | 32         |        | 12    | 0.00366              | imputed             |
| 150902760   | cnr7:141465363              |        |               |            | 19         |        | 4     | 0.0026               | common              |
| 1511783893  | cnr8:2100976                | HepG2  |               | C          | 8          | G      | U     | 0.00781              | imputed             |
| rs35382339  | cnr8:8559255                | HepG2  | CICE          | A          | 21         | G      | 2     | 6.60E-05             | imputed             |

|                        |                  |        |               | Enri   | ched    | Ot     | her    |                      | Variant             |
|------------------------|------------------|--------|---------------|--------|---------|--------|--------|----------------------|---------------------|
| Variant                | Position         | Sample | Protein/Assay | Allele | Reads   | Allele | Reads  | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs35382339             | chr8:8559255     | HepG2  | DNASE         | G      | 17      | А      | 4      | 0.0072               | imputed             |
| rs6984305              | chr8:9178268     | HepG2  | CTCF          | Т      | 46      | А      | 16     | 0.00018              | imputed             |
| rs11777082             | chr8:39797703    | HepG2  | BHLHE40       | А      | 8       | G      | 0      | 0.00781              | imputed             |
| rs2279128              | chr8:71581559    | HepG2  | BHLHE40       | Т      | 30      | G      | 10     | 0.00222              | imputed             |
| rs6985299              | chr8:71613079    | HepG2  | MAX           | Т      | 20      | С      | 6      | 0.00936              | imputed             |
| rs11985375             | chr8:71613472    | HepG2  | MAX           | G      | 35      | А      | 7      | 1.51E-05             | imputed             |
| rs11985375             | chr8:71613472    | HepG2  | CREB1         | G      | 23      | А      | 6      | 0.00232              | imputed             |
| rs10810299             | chr9:14964272    | HepG2  | POL2          | А      | 10      | С      | 0      | 0.00195              | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | MAX           | G      | 12      | А      | 0      | 0.00049              | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | DNASE         | G      | 8       | А      | 0      | 0.00781              | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | RAD21         | G      | 11      | А      | 0      | 0.00098              | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | CEBPD         | G      | 18      | А      | 0      | 7.63E-06             | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | CEBPB         | G      | 120     | А      | 0      | 1.50E-36             | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | ZBTB7A        | G      | 14      | A      | 0      | 0.00012              | imputed             |
| rs34428576             | chr10.12281111   | HepG2  | FOXA1         | G      | 14      | A      | 0      | 0.00012              | imputed             |
| rs34428576             | chr10:12281111   | HepG2  | NR2F2         | G      | 11      | A      | 0      | 0.00098              | imputed             |
| rs34428576             | chr10.12281111   | HepG2  | NFIC          | G      | 8       | A      | 0      | 0.00781              | imputed             |
| rs34428576             | chr10.12281111   | HenG2  |               | G      | 11      | A      | 0      | 0.00098              | imputed             |
| rs34428576             | chr10:12281111   | HenG2  | HDAC2         | G      | 14      | Δ      | Õ      | 0.00012              | imputed             |
| rs34428576             | chr10:12281111   | HenG2  | CEBPA         | G      | 57      | Δ      | 0      | 1 39E-17             | imputed             |
| rs34428576             | chr10:12281111   | HenG2  | P300          | G      | 15      | Δ      | 0      | 6 10E-05             | imputed             |
| rs34428576             | chr10:12281111   | HenG2  | CREB1         | G      | 13      | Δ      | 0      | 0.00024              | imputed             |
| rs34428576             | chr10:12281111   | HenG2  |               | G      | 12      | Δ      | 0      | 0.00024              | imputed             |
| rs1414395              | chr10:12201111   | HenG2  | CEBPB         | т      | 14      | G      | 2      | 0.00043              | imputed             |
| rs4747275              | chr10:16552472   | HenG2  |               | G      | 17      | Δ      | 2      | 0.00073              | imputed             |
| rs17141322             | chr10:17604700   | HI32   |               | Δ      | 10      | Ċ      | 4      | 0.00075              | common              |
| re16016563             | chr10:63507642   | HonC2  | FOXA2         | G      | 11      | Δ      | -<br>- | 0.0020               | imputed             |
| re/033736              | chr10:04471505   | HonG2  | FOXA2         | т      | 8       | C C    | 0      | 0.00000              | imputed             |
| re11100170             | chr10:101365313  | HonG2  | CERPR         | G      | 17      | Δ      | 0      | 1 53E-05             | imputed             |
| rs2205776              | chr10:101303513  | HopG2  |               | G      | 17<br>Q | л<br>т | 0      | 0.00781              | imputed             |
| rs2405758              | chr10:102295029  | HopG2  |               | C      | 275     | G      | 2      |                      | imputed             |
| rs2495758              | chr10:102321900  | HopC2  | MAY           | c      | 215     | G      | 0      | 7.455.00             | imputed             |
| rs2495758              | chr10:102321900  | HopG2  |               | C      | 20      | G      | 1      | 0.00008              | imputed             |
| rs2495758              | chr10:102321900  | HopG2  |               | C      | 153     | G      | 0      | 1 755 46             | imputed             |
| ro2405759              | chi 10.102321900 | Hop C2 |               | C      | 155     | C      | 0      | 6 10E 05             | imputed             |
| 152495756<br>ro2405759 | chi 10.102321900 | HepGZ  |               | C      | 15      | G      | 0      | 0.10E-05             | imputed             |
| ro2405759              | ohr10:102321900  |        |               | C      | 0<br>25 | G      | 0      |                      | imputed             |
| ro2405759              | ohr10:102321900  |        |               | C      | 20      | G      | 0      | 3.90E-06             | imputed             |
| 152490706              | chi 10.102321900 | HepGZ  |               | ۰<br>۱ | 22      | G      | 2      | 3.59E-05             | imputed             |
| 19112099022            | obr10:104092033  | HepG2  | CEBPA         | A      | 0<br>17 | С<br>т | 0      | 0.00761              | imputed             |
| ro10510007             | chi 10.104029409 | HepG2  |               | C      | 17      | 1      | 3      | 0.00256              | imputed             |
| ro10925521             | chi 10.110030721 |        |               | G<br>^ | 20      | A<br>C | 0      | 0.00096              | inputed             |
| 1810635551             | chill.1510110    |        |               | A      | 20      | G      | 0      | 0.00936              | common              |
| 15538954               | CHITT:05/50808   | HepG2  |               |        | 8       |        | 0      |                      | imputed             |
| IS12288023             | Chr11:07421341   | HepG2  | CEBPB         |        | 20      |        | 0      | 1.91E-06             | imputed             |
| rs613128               | CNF11:68638058   | HepG2  | MAX           | G      | 11      | 1<br>- | 0      | 0.00098              | imputed             |
| rs514833               | CNF11:68657734   | HepG2  |               | C      | 32      | 1<br>- | 0      | 4.66E-10             | imputed             |
| rs514833               | CNF11:68657734   | HepG2  | DNASE         | C      | 10      | 1<br>- | 0      | 0.00195              | imputed             |
| rs514833               | Chr11:68657734   | HepG2  | RAD21         | C      | 23      | 1<br>- | 0      | 2.38E-07             | imputed             |
| rs514833               | chr11:68657734   | HepG2  | ZB1B33        | С      | 16      | 1      | 0      | 3.05E-05             | imputed             |
| rs629426               | cnr11:68671104   | HepG2  | YY1           | G      | 23      | A      | 6      | 0.00232              | imputed             |
| 189/8/89/              | cnr11:74659302   | HepG2  | FUXA2         | I<br>O | 9       | A<br>T | U      | 0.00391              | imputed             |
| rs56/956               | cnr11:/4659//9   | HepG2  | POL2          | C      | 9       | I      | 0      | 0.00391              | imputed             |
| rs2165163              | cnr11:/4660143   | HepG2  | MAX           | C      | 69      | G      | 40     | 0.00704              | imputed             |
| rs2165163              | chr11:74660143   | HepG2  | DNASE         | C      | 28      | G      | 8      | 0.00119              | imputed             |
| rs4944968              | chr11:74724276   | HepG2  | DNASE         | С      | 12      | G      | 1      | 0.00342              | imputed             |

|            |                             |        |             | Enr       | iched    | 0      | ther          |                      | Variant             |
|------------|-----------------------------|--------|-------------|-----------|----------|--------|---------------|----------------------|---------------------|
| Variant    | Position                    | Sample | Protein/Ass | ay Allele | Reads    | Allele | Reads         | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs3781884  | chr11:113217364             | HepG2  | CTCF        | G         | 17       | А      | 0             | 1.53E-05             | imputed             |
| rs180351   | chr11:116607641             | HepG2  | CTCF        | Т         | 82       | С      | 15            | 2.38E-12             | imputed             |
| rs7109649  | chr11:116943544             | HepG2  | FOXA2       | Т         | 27       | С      | 6             | 0.00032              | imputed             |
| rs7109649  | chr11:116943544             | HI87   | NKX2 2      | т         | 21       | С      | 6             | 0.00592              | common              |
| rs11218752 | chr11:122552600             | HepG2  | CTCF        | С         | 11       | Т      | 1             | 0.00635              | imputed             |
| rs57246949 | chr11:129476625             | HepG2  | CEBPB       | G         | 10       | A      | 0             | 0.00195              | imputed             |
| rs2534721  | chr12:6580144               | HepG2  | DNASE       | C         | 89       | А      | 56            | 0.00766              | imputed             |
| rs933462   | chr12.9103665               | HepG2  | HDAC2       | G         | 8        | Т      | 0             | 0.00781              | imputed             |
| rs2417257  | chr12.13444717              | HenG2  | CTCF        | C         | 8        | т      | 0             | 0.00781              | imputed             |
| rs2239182  | chr12:48255411              | HenG2  | FOXA1       | C         | 15       | т      | 2             | 0.00235              | imputed             |
| rs4509811  | chr12:58335142              | HenG2  | CEBPD       | A         | .0       | G      | 0             | 0.00281              | imputed             |
| rs11612569 | chr12:101800809             | HenG2  | CEBPB       | Δ         | 10       | G      | 0             | 0.00195              | imputed             |
| rs860016   | chr12:103244013             | HenG2  |             | т         | 23       | G      | 5             | 0.00100              | imputed             |
| rs/76/030  | chr12:103522052             | HonG2  |             | Ċ         | 20       | т      | 0             | 0.00001              | imputed             |
| rc12222210 | chr12:100022002             | HopC2  |             | G         | 15       | т      | 2             | 0.00701              | imputed             |
| rs7130070  | chr12:121152017             | HopG2  |             | ۵<br>۸    | 15       | C I    | 2             | 0.00233              | imputed             |
| ro2250207  | ohr12:121415295             | Hop C2 |             | ~         | 9<br>20  | C      | 2             | 1 055 09             | imputed             |
| 152250207  | ohr12.121454313             | Hop C2 |             | ~         | 21       | C      | 7             | 0.00012              | imputed             |
| 152230207  | chi 12.121404010            | перод  | FOLZ        | A<br>^    | 15       | C      | 1             | 0.00012              | impuleu             |
| 151154513  | chi 12.122391903            |        |             | A         | CI<br>44 | G<br>T | 3             | 0.00754              | common              |
| 1512864047 | chr13:74796108              | HepG2  | HNF4G       |           | 11       |        | 10            | 0.00635              | imputed             |
| 19302064   | Chr13:95966851              | HepG2  | FUXAT       | A         | 48       |        | 12            | 3.18E-06             | imputed             |
| rs9302064  | CNF13:95966851              | HepG2  | JUND        | A         | 17       | C      | 4             | 0.0072               | imputed             |
| rs1010461  | chr14:21153788              | HepG2  | POL2        | C         | 16       | A      | 3             | 0.00443              | imputed             |
| rs1/1093/1 | chr14:25429892              | HepG2  | AIF3        | C         | 10       | 1      | 0             | 0.00195              | imputed             |
| rs10138510 | chr14:25430134              | HepG2  | ZBTB33      | G         | 8        | A      | 0             | 0.00781              | imputed             |
| rs76138569 | chr14:25512157              | HepG2  | MAFK        | С         | 53       | Т      | 27            | 0.00487              | imputed             |
| rs1769591  | chr14:34378886              | HepG2  | FOXA1       | G         | 96       | A      | 59            | 0.00369              | imputed             |
| rs11624787 | chr14:53288450              | HepG2  | FOXA2       | С         | 11       | G      | 0             | 0.00098              | imputed             |
| rs11624787 | chr14:53288450              | HepG2  | CEBPB       | С         | 9        | G      | 0             | 0.00391              | imputed             |
| rs11624787 | chr14:53288450              | HepG2  | FOXA1       | С         | 22       | G      | 0             | 4.77E-07             | imputed             |
| rs11624787 | chr14:53288450              | HepG2  | P300        | С         | 12       | G      | 0             | 0.00049              | imputed             |
| rs11624787 | chr14:53288450              | HepG2  | HNF4A       | С         | 11       | G      | 0             | 0.00098              | imputed             |
| rs17090719 | chr14:94846661              | HepG2  | MBD4        | Т         | 9        | С      | 0             | 0.00391              | imputed             |
| rs17090719 | chr14:94846661              | HepG2  | POL2        | Т         | 79       | С      | 0             | 3.31E-24             | imputed             |
| rs17090719 | chr14:94846661              | HepG2  | HEY1        | Т         | 13       | С      | 0             | 0.00024              | imputed             |
| rs2034652  | chr15:40802768              | HepG2  | CEBPB       | А         | 8        | G      | 0             | 0.00781              | imputed             |
| rs8036737  | chr15:40874256              | HepG2  | MAFK        | G         | 8        | А      | 0             | 0.00781              | imputed             |
| rs8042519  | chr15:45996341              | HepG2  | CTCF        | С         | 14       | G      | 0             | 0.00012              | imputed             |
| rs11857380 | chr15:58712203              | HepG2  | FOXA1       | G         | 15       | Т      | 0             | 6.10E-05             | imputed             |
| rs7178540  | chr15:62380132              | HI87   | MAFB        | G         | 22       | А      | 7             | 0.00813              | common              |
| rs11854147 | chr15:75052771              | HepG2  | FOXA1       | Т         | 77       | С      | 36            | 0.00014              | imputed             |
| rs11072502 | chr15:75052820              | HepG2  | FOXA1       | G         | 82       | А      | 34            | 9.69E-06             | imputed             |
| rs11072506 | chr15:75052994              | HepG2  | POL2        | А         | 176      | G      | 113           | 0.00025              | imputed             |
| rs11072506 | chr15:75052994              | HepG2  | HNF4A       | А         | 8        | G      | 0             | 0.00781              | imputed             |
| rs11857695 | chr15:75165751              | HepG2  | JUND        | Т         | 28       | G      | 1             | 1.12E-07             | imputed             |
| rs11857695 | chr15:75165751              | HepG2  | CREB1       | Т         | 58       | G      | 16            | 9.67E-07             | imputed             |
| rs7175950  | chr15:78236353              | HepG2  | POL2        | А         | 11       | G      | 0             | 0.00098              | imputed             |
| rs11856536 | chr15:79094325              | HepG2  | HDAC2       | А         | 8        | G      | 0             | 0.00781              | imputed             |
| rs4932370  | chr15 <sup>.</sup> 91404705 | HI102  | NKX6 1      | G         | 24       | A      | 8             | 0.007                | common              |
| rs9925556  | chr16:2880105               | HepG2  | DNASE       | T         | 9        | C      | 0             | 0 00391              | imputed             |
| rs9925556  | chr16:2880105               | HenG2  | FOXA1       | T         | 21       | č      | 1             | 1 10F-05             | imputed             |
| rs149597   | chr16:11343942              | HepG2  | POL2        | G         | 15       | č      | 1             | 0 00052              | imputed             |
| rs243330   | chr16:11350001              | HepG2  | POL2        | C         | 18       | т      | י<br>2        | 0 000/               | imputed             |
| rs243320   | chr16:11352312              | HenC2  |             | Δ         | ۱0<br>و  | т<br>Т | <u>د</u><br>٥ | 0.0004               | imputed             |
| re376274   | chr16:11270616              | HonCo  | MAY         | ~ ~       | 10       | G      | 0             | 0.00701              | imputed             |
| 153/03/4   | 0110.113/0010               | inep62 | IVIAA       | н         | 10       | 9      | U             | 0.00195              | imputeu             |

|              |                             |            |             | Enric           | hed      |        | Other                       |                                         | Variant             |
|--------------|-----------------------------|------------|-------------|-----------------|----------|--------|-----------------------------|-----------------------------------------|---------------------|
| Variant      | Position                    | Sample     | Protein/A   | ssay Allele F   | Reads    | Alle   | le Reads                    | P-value <sup>a</sup>                    | Source <sup>b</sup> |
| rs11640295   | chr16:11390728              | HepG2      | POL2        | G               | 25       | С      | 6                           | 0.00088                                 | imputed             |
| rs11640295   | chr16:11390728              | HepG2      | HEY1        | G               | 20       | С      | 6                           | 0.00936                                 | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | MXI1        | Т               | 8        | С      | 0                           | 0.00781                                 | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | MAX         | Т               | 30       | С      | 3                           | 1.40E-06                                | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | ZEB1        | Т               | 15       | С      | 2                           | 0.00235                                 | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | POL2        | Т               | 15       | С      | 1                           | 0.00052                                 | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | HDAC2       | Т               | 13       | С      | 1                           | 0.00183                                 | imputed             |
| rs7189239    | chr16:11402515              | HepG2      | HNF4A       | Т               | 44       | С      | 17                          | 0.00073                                 | imputed             |
| rs8059989    | chr16:12185746              | HepG2      | MAFK        | Т               | 26       | С      | 9                           | 0.00599                                 | imputed             |
| rs9925009    | chr16:12186352              | HepG2      | P300        | А               | 8        | Т      | 0                           | 0.00781                                 | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | TEAD4       | Т               | 12       | С      | 1                           | 0.00342                                 | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | MBD4        | Т               | 8        | С      | 0                           | 0.00781                                 | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | DNASE       | Т               | 24       | С      | 8                           | 0.007                                   | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | POL2        | Т               | 26       | С      | 4                           | 5.95E-05                                | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | BHLHE40     | ) Т             | 17       | С      | 3                           | 0.00258                                 | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | NR2F2       | Т               | 24       | С      | 6                           | 0.00143                                 | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | P300        | Т               | 35       | С      | 15                          | 0.0066                                  | imputed             |
| rs4780465    | chr16:12707523              | HepG2      | HNF4A       | Т               | 29       | С      | 7                           | 0.00031                                 | imputed             |
| rs1560104    | chr16:12708208              | HepG2      | MAX         | С               | 14       | Т      | 0                           | 0.00012                                 | imputed             |
| rs1560104    | chr16:12708208              | HepG2      | POL2        | С               | 28       | Т      | 9                           | 0.00256                                 | imputed             |
| rs1560104    | chr16:12708208              | HepG2      | CEBPD       | С               | 9        | Т      | 0                           | 0.00391                                 | imputed             |
| rs11075256   | chr16:15187912              | HepG2      | MXI1        | G               | 18       | С      | 4                           | 0.00434                                 | imputed             |
| rs11075256   | chr16:15187912              | HepG2      | TAF1        | G               | 13       | С      | 2                           | 0.00739                                 | imputed             |
| rs11075256   | chr16:15187912              | HepG2      | MAX         | G               | 50       | С      | 19                          | 0.00024                                 | imputed             |
| rs11075256   | chr16:15187912              | HepG2      | POL2        | G               | 60       | Ċ      | 24                          | 0.00011                                 | imputed             |
| rs11075256   | chr16:15187912              | HepG2      | SP2         | G               | 9        | Č      | 0                           | 0.00391                                 | imputed             |
| rs11075256   | chr16 <sup>.</sup> 15187912 | HepG2      | HFY1        | G               | 17       | Ċ      | 3                           | 0.00258                                 | imputed             |
| rs7194098    | chr16:20464350              | HenG2      | POL2        | C               | 10       | G      | 0                           | 0.00195                                 | imputed             |
| rs7194098    | chr16:20464350              | HepG2      | SRF         | C               | .0       | G      | 0                           | 0.00391                                 | imputed             |
| rs9937581    | chr16:20473903              | HenG2      | MAFK        | G               | 56       | A      | 0                           | 2 78E-17                                | imputed             |
| rs9937581    | chr16:20473903              | HepG2      | MAFF        | G               | 18       | A      | 1                           | 7.63E-05                                | imputed             |
| rs1394678    | chr16:20491058              | HepG2      | CTCF        | C               | 8        | Т      | 0                           | 0.00781                                 | imputed             |
| rs62032983   | chr16:23653343              | HepG2      | FIF1        | T               | 12       | Ċ      | 0                           | 0 00049                                 | imputed             |
| rs62032983   | chr16:23653343              | HepG2      | CRFB1       | Ť               | 8        | Ĉ      | 0                           | 0.00781                                 | imputed             |
| rs181203     | chr16:28512371              | HepG2      | F7H2        | Â               | 8        | Ĉ      | 0                           | 0.00781                                 | imputed             |
| rs62034319   | chr16:28532188              | HepG2      | HDAC2       | Т               | 11       | G      | 1                           | 0.00635                                 | imputed             |
| rs2106480    | chr16:28537971              | HenG2      | DNASE       | Ť               | 35       | C<br>C | 15                          | 0.0066                                  | imputed             |
| rs2106480    | chr16:28537971              | HepG2      | CEBPB       | Ť               | 44       | Ĉ      | 20                          | 0.00369                                 | imputed             |
| rs2106480    | chr16:28537971              | HepG2      | FOXA1       | Ť               | 45       | Ĉ      | 19                          | 0.00156                                 | imputed             |
| rs2106480    | chr16:28537971              | HenG2      | P300        | Ť               | 44       | c      | 18                          | 0.0013                                  | imputed             |
| rs2106480    | chr16:28537971              | HepG2      | HNF4A       | Ť               | 52       | č      | 27                          | 0.00655                                 | imputed             |
| rs62034351   | chr16:28565489              | HenG2      | DNASE       | G               | 62       | A      | 25                          | 9.06E-05                                | imputed             |
| rs62034351   | chr16:28565489              | HenG2      | POL2        | G               | 80       | A      | 40                          | 0.00033                                 | imputed             |
| rs62034351   | chr16:28565489              | HenG2      | HEY1        | G               | 57       | Δ      | 13                          | 1.03E-07                                | imputed             |
| rs7191618    | chr16:28565667              | HenG2      | MAX         | C               | 55       | G      | 29                          | 0.00604                                 | imputed             |
| rs7191618    | chr16:28565667              | HenG2      | DNASE       | C               | 50       | G      | 20                          | 0.00077                                 | imputed             |
| rs7191618    | chr16:28565667              | HenG2      | RAD21       | C               | 13       | G      | 1                           | 0.00183                                 | imputed             |
| rs743590     | chr16:28608230              | HenG2      | MAX         | G               | 18       | Δ      | 3                           | 0.00149                                 | imputed             |
| rs743590     | chr16:28608230              | HenG2      | VV1         | G               | 13       | Δ      | 0                           | 0.00140                                 | imputed             |
| rs743590     | chr16:28608230              | HenG2      |             | G               | 25       | Δ      | 7                           | 0.00024                                 | imputed             |
| rs62031562   | chr16:28609329              | HenG2      | POL2        | Δ               | 21       | т      | 4                           | 0.0021                                  | imputed             |
| rs7187776    | chr16:28857645              | HenG2      |             | Δ               | 21       | Ġ      | -<br>-                      | 0.00001                                 | imputed             |
| rs7187776    | chr16:28857645              | HenG?      | HEV1        | Δ               | 25       | Ģ      | 6                           | 0 00088                                 | imputed             |
| rs7187776    | chr16:28857645              | HenG2      | CRFR1       | Δ               | 104      | G      | 47                          | 4 03E-06                                | imputed             |
| rs62037367   | chr16:28874547              | HenG2      | CREB1       | C C             | 27       | G      |                             |                                         | imputed             |
| rs7198606    | chr16:28875122              | HenG2      | SRF         | т               | 21       | G      | 0                           | 0.00781                                 | imputed             |
| Only imbalar | ices sites at eQTI          | or cardion | netabolic G | WAS loci are    | shown    | abino  | mial P-value <sup>b</sup> H | eterozvaous                             | sites were          |
| imputed, con | nmon variants (MA           | F>.05 100  | 0G EUR) c   | or predicted fr | om the s | seque  | nce data                    | , , , , , , , , , , , , , , , , , , , , |                     |

|             |                 |        |              | Eni      | riched   | 0      | ther     |                      | Variant             |
|-------------|-----------------|--------|--------------|----------|----------|--------|----------|----------------------|---------------------|
| Variant     | Position        | Sample | Protein/Assa | y Allele | e Reads  | Allele | Reads    | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs7198606   | chr16:28875122  | HepG2  | SP2          | Т        | 59       | G      | 27       | 0.00073              | imputed             |
| rs7198606   | chr16:28875122  | HepG2  | CREB1        | Т        | 31       | G      | 10       | 0.00145              | imputed             |
| rs11864750  | chr16:28875204  | HepG2  | NR2F2        | А        | 8        | Т      | 0        | 0.00781              | imputed             |
| rs4072402   | chr16:28937259  | HepG2  | CTCF         | С        | 10       | Т      | 0        | 0.00195              | imputed             |
| rs2303222   | chr16:31085470  | HepG2  | POL2         | С        | 29       | Т      | 10       | 0.00338              | imputed             |
| rs1981760   | chr16:50723074  | HepG2  | EZH2         | С        | 9        | Т      | 0        | 0.00391              | imputed             |
| rs12720926  | chr16:56998918  | HepG2  | DNASE        | А        | 29       | G      | 9        | 0.00166              | imputed             |
| rs7199443   | chr16:67841129  | HepG2  | MAX          | G        | 21       | Т      | 1        | 1.10E-05             | imputed             |
| rs7196789   | chr16:67927124  | HepG2  | YY1          | Т        | 71       | С      | 38       | 0.00203              | imputed             |
| rs1134760   | chr16:67964203  | HepG2  | POL2         | С        | 11       | Т      | 1        | 0.00635              | imputed             |
| rs20549     | chr16:67969930  | HepG2  | POL2         | G        | 62       | А      | 31       | 0.00171              | imputed             |
| rs1109166   | chr16:67977382  | HepG2  | FOXA2        | С        | 63       | Т      | 29       | 0.00051              | imputed             |
| rs1109166   | chr16:67977382  | HepG2  | HNF4G        | C        | 41       | т      | 19       | 0.00622              | imputed             |
| rs1109166   | chr16:67977382  | HepG2  | FOXA1        | C        | 86       | Т      | 47       | 0.00091              | imputed             |
| rs1109166   | chr16.67977382  | HepG2  | NR2F2        | C        | 101      | Т      | 44       | 2 49E-06             | imputed             |
| rs1109166   | chr16:67977382  | HepG2  | CREB1        | c        | 26       | T      | 7        | 0.00132              | imputed             |
| rs1109166   | chr16.67977382  | HepG2  | HNF4A        | C        | 78       | Т      | 41       | 0 00089              | imputed             |
| rs35223604  | chr16:70052345  | HepG2  | CTCF         | c        | 25       | G      | 8        | 0.00455              | imputed             |
| rs4985407   | chr16:70285901  | HenG2  | CTCF         | G        | 78       | Δ      | 39       | 0 0004               | imputed             |
| rs4985407   | chr16:70285901  | HenG2  | SIN3AK20     | G        | 17       | Δ      | 1        | 0 00014              | imputed             |
| rs4985407   | chr16:70285901  | HenG2  | MAX          | G        | 116      | Δ      | 31       | 9.39E-13             | imputed             |
| rs4985407   | chr16:70285901  | HenG2  |              | G        | 75       | Δ      | 22       | 6.07E-08             | imputed             |
| re/085/07   | chr16:70285901  | HonG2  | VV1          | G        | 10       | Δ      | 16       | 5.08E-05             | imputed             |
| re/085/07   | chr16:70285001  | HonG2  |              | G        | 43<br>54 | ^      | 24       |                      | imputed             |
| rc4085407   | chr16:70285001  | HonC2  |              | G        | 12       | ~      | 24       | 0.0003               | imputed             |
| rc4085407   | chr16:70285001  | HonG2  |              | G        | 12       | ^      | 3        | 0.00342              | imputed             |
| rs4905407   | chr16:70285001  | HonG2  |              | G        | 21       | ^      | 2<br>Q   | 0.00734              | imputed             |
| rs4905407   | chr16:70285001  | HonG2  |              | G        | 40       | ^      | 10       | 0.00029              | imputed             |
| ro4095407   | chi 10.70203901 |        |              | G        | 40<br>50 | A<br>^ | 19       | 0.00004              | imputed             |
| ro2052762   | chi 10.70203901 | HepGZ  |              | G        | 52       | A      | 19       | 0.00011              | imputed             |
| 150052703   | chi 10.75251059 |        |              | C        | 0<br>15  | G<br>^ | 0        | 0.00761              | imputed             |
| rs12022290  | chi 10.76079950 | HepG2  |              | G        | 61       | A      | 2        | 0.00235              | imputed             |
| 1912923290  | chi 10.76079950 | HepG2  | NKOF<br>XX4  | G        | 434      | A      | 290      | 9.74E-06             | imputed             |
| 1912921945  | chi 10.70000133 | HepG2  |              | і<br>т   | 200      | G      | ۍ<br>۲۵۵ |                      | imputed             |
| 1912921945  | chr16:78080133  | HepG2  | NRSF         |          | 322      | G      | 182      | 4.64E-10             | imputed             |
| 1912923626  | chr10:78080139  | HepG2  |              |          | 10       | A      | 3        | 0.00443              | imputed             |
| 1512923626  | Chr16:78080139  | HepG2  | NRSF         | C        | 288      | A<br>T | 143      | 2.52E-12             | imputed             |
| rs386792435 | Chr16:78080141  | HepG2  | YY1<br>NDOE  | G        | 16       |        | 3        | 0.00443              | imputed             |
| rs386792435 | Chr16:78080141  | HepG2  | NRSF         | G        | 280      |        | 130      | 9.91E-14             | imputed             |
| rs12923218  | chr16:78080274  | HepG2  | NRSF         | G        | 27       | C<br>A | 6        | 0.00032              | imputed             |
| rs4888731   | Chr16:78080418  | HepG2  | NRSF         | G        | 11       | A      | 1        | 0.00635              | imputed             |
| rs12448415  | Chr16:87871096  | HepG2  | POLZ         | G        | 15       | A      | 2        | 0.00235              | imputed             |
| rs12931876  | chr16:87874182  | HepG2  |              | I        | 13       | C<br>T | 1        | 0.00183              | imputed             |
| rs34508683  | chr16:87876375  | HepG2  | POL2         | C        | 15       | 1<br>- | 3        | 0.00754              | imputed             |
| rs34508683  | chr16:8/8/63/5  | HepG2  | EZH2         | C        | 8        | I      | 0        | 0.00781              | imputed             |
| rs28609922  | chr16:87876631  | HepG2  | MAX          | A        | 45       | С      | 13       | 3.01E-05             | imputed             |
| rs28609922  | chr16:87876631  | HepG2  | BHLHE40      | A        | 23       | С      | 6        | 0.00232              | imputed             |
| rs28609922  | chr16:87876631  | HepG2  | P300         | A        | 8        | С      | 0        | 0.00781              | imputed             |
| rs71391360  | chr16:87877313  | HepG2  | POL2         | G        | 13       | С      | 1        | 0.00183              | imputed             |
| rs4843270   | chr16:87878072  | HepG2  | CTCF         | A        | 14       | С      | 2        | 0.00418              | imputed             |
| rs4843270   | chr16:87878072  | HepG2  | POL2         | A        | 18       | C      | 0        | 7.63E-06             | imputed             |
| rs386793901 | chr16:87878076  | HepG2  | POL2         | A        | 15       | G      | 0        | 6.10E-05             | imputed             |
| rs4843718   | chr16:87878476  | HepG2  | CREB1        | A        | 10       | G      | 0        | 0.00195              | imputed             |
| rs35459492  | chr16:87878883  | HepG2  | POL2         | G        | 11       | С      | 1        | 0.00635              | imputed             |
| rs876985    | chr16:87882124  | HepG2  | P300         | С        | 17       | Т      | 4        | 0.0072               | imputed             |
| rs747687    | chr17:775334    | HepG2  | ZBTB33       | G        | 8        | С      | 0        | 0.00781              | imputed             |

|             |                |        |               | Enric  | hed      | Ot     | her     |                      | Variant             |
|-------------|----------------|--------|---------------|--------|----------|--------|---------|----------------------|---------------------|
| Variant     | Position       | Sample | Protein/Assay | Allele | Reads    | Allele | Reads   | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs78601373  | chr17:776345   | HepG2  | MAFK          | С      | 25       | Т      | 0       | 5.96E-08             | imputed             |
| rs78601373  | chr17:776345   | HepG2  | MAFF          | С      | 13       | Т      | 0       | 0.00024              | imputed             |
| rs507506    | chr17:7118322  | HepG2  | RAD21         | G      | 28       | А      | 11      | 0.00948              | imputed             |
| rs2017365   | chr17:7122624  | HepG2  | MAX           | G      | 14       | А      | 1       | 0.00098              | imputed             |
| rs62066869  | chr17:20059342 | HepG2  | DNASE         | А      | 54       | С      | 26      | 0.00232              | imputed             |
| rs2526479   | chr17:20130221 | HepG2  | CTCF          | G      | 140      | Т      | 93      | 0.00251              | imputed             |
| rs2526479   | chr17:20130221 | HepG2  | MAX           | G      | 13       | Т      | 0       | 0.00024              | imputed             |
| rs1453559   | chr17:38020419 | HepG2  | MXI1          | С      | 8        | Т      | 0       | 0.00781              | imputed             |
| rs1453559   | chr17:38020419 | HepG2  | DNASE         | С      | 9        | Т      | 0       | 0.00391              | imputed             |
| rs1453559   | chr17:38020419 | HepG2  | BHLHE40       | С      | 9        | Т      | 0       | 0.00391              | imputed             |
| rs12936231  | chr17:38029120 | HepG2  | CTCF          | G      | 35       | С      | 0       | 5.82E-11             | imputed             |
| rs12936231  | chr17:38029120 | HepG2  | RAD21         | G      | 41       | С      | 0       | 9.09E-13             | imputed             |
| rs12936231  | chr17:38029120 | HepG2  | ARID3A        | G      | 14       | С      | 1       | 0.00098              | imputed             |
| rs386796961 | chr17:38072247 | HepG2  | POL2          | G      | 8        | Т      | 0       | 0.00781              | imputed             |
| rs7224129   | chr17:38075426 | HepG2  | POL2          | G      | 17       | А      | 4       | 0.0072               | imputed             |
| rs4065275   | chr17:38080865 | HepG2  | CTCF          | G      | 43       | А      | 2       | 5.89E-11             | imputed             |
| rs4065275   | chr17:38080865 | HepG2  | DNASE         | А      | 17       | G      | 3       | 0.00258              | imputed             |
| rs4065275   | chr17:38080865 | HepG2  | RAD21         | G      | 15       | A      | 2       | 0.00235              | imputed             |
| rs8076131   | chr17:38080912 | HepG2  | CTCF          | A      | 28       | G      | 2       | 8.68E-07             | imputed             |
| rs8076131   | chr17:38080912 | HepG2  | RAD21         | A      | 24       | G      | 5       | 0.00055              | imputed             |
| rs8076131   | chr17:38080912 | HepG2  | HEY1          | G      | 9        | Ā      | 0       | 0.00391              | imputed             |
| ss56891470  | chr17.41438468 | HI32   | POL2          | Т      | 73       | С      | 34      | 0.00021              | predicted           |
| rs12938996  | chr17:41438674 | HI32   | POL2          | A      | 81       | G      | 50      | 0.00851              | predicted           |
| rs17742347  | chr17.41846468 | HepG2  | POL2          | С      | 19       | Т      | 4       | 0.0026               | imputed             |
| rs17674998  | chr17:41879544 | HepG2  | 7BTB33        | Ā      | 8        | G      | 0       | 0.00781              | imputed             |
| rs9901676   | chr17:41911818 | HepG2  | E7H2          | Т      | 9        | c      | 0       | 0.00391              | imputed             |
| rs12948653  | chr17:46259254 | HepG2  | CTCF          | A      | 24       | C<br>C | 8       | 0.007                | imputed             |
| rs16949649  | chr17.49230308 | HepG2  | CEBPB         | Т      | 8        | Ċ      | 0       | 0.00781              | imputed             |
| rs6503905   | chr17:57287454 | HepG2  | FLF1          | A      | 15       | G      | 1       | 0 00052              | imputed             |
| rs6503905   | chr17:57287454 | HepG2  | CRFB1         | A      | 21       | G      | 6       | 0.00592              | imputed             |
| rs8076760   | chr17:61920497 | HepG2  | MAX           | Т      | 32       | C      | 6       | 2.43E-05             | imputed             |
| rs8076760   | chr17:61920497 | HepG2  | TCF12         | т      | 9        | C<br>C | 0       | 0.00391              | imputed             |
| rs8076760   | chr17.61920497 | HepG2  | CHD2          | Т      | 113      | Ċ      | 52      | 2 33E-06             | imputed             |
| rs8076760   | chr17:61920497 | HepG2  | GABP          | т      | .10      | C<br>C | 44      | 6 43E-05             | imputed             |
| rs6808      | chr17:62400575 | HepG2  | CRFB1         | Ċ      | 8        | G      | 0       | 0.00781              | imputed             |
| rs12936766  | chr17.62408949 | HepG2  | CEBPB         | G      | 19       | c      | 3       | 0.00086              | imputed             |
| rs4968721   | chr17:62409586 | HepG2  | FOXA2         | G      | 17       | C<br>C | 1       | 0.00014              | imputed             |
| rs4968721   | chr17:62409586 | HenG2  | FOXA1         | G      | 26       | C<br>C | 8       | 0.00294              | imputed             |
| rs4968721   | chr17:62409586 | HenG2  |               | G      | 25       | C<br>C | 4       | 0.0001               | imputed             |
| rs4968721   | chr17:62409586 | HenG2  | P300          | G      | 17       | C<br>C | 3       | 0.00258              | imputed             |
| rs4366742   | chr17:64212242 | HepG2  | POL2          | Т      | 21       | C<br>C | 5       | 0.00249              | imputed             |
| rs8064837   | chr17.64242703 | HepG2  | SRF           | G      | 8        | C<br>C | 0       | 0.00781              | imputed             |
| rs2598414   | chr17:74067099 | HenG2  | BHI HE40      | C<br>C | 9        | т      | 0       | 0.00391              | imputed             |
| rs4969182   | chr17:76393030 | HenG2  | FOXA2         | т      | 30       | Ċ      | 4       | 6 16E-06             | imputed             |
| rs4969182   | chr17:76393030 | HenG2  | MAX           | т      | 13       | C      | 2       | 0.00739              | imputed             |
| rs4969182   | chr17:76393030 | HenG2  | MYBL2         | т<br>Т | 10       | C<br>C | 0       | 0.00195              | imputed             |
| rs4969182   | chr17:76393030 | HenG2  | CEBPB         | т      | 10       | C      | 1       | 0.00342              | imputed             |
| rs4060182   | chr17:76393030 | HenG2  | FOXA1         | т<br>Т | 71       | C      | 1       | 3 09E-20             | imputed             |
| rs4969182   | chr17:76393030 | HenG2  | NR2F2         | т      | 11       | C      | 0       | 0.00098              | imputed             |
| rc/060183   | chr17:76303372 | HonG2  |               | Δ      | 0        | G      | 0       | 0.000000             | imputed             |
| rs2376585   | chr17.76417883 | HepG2  | CTCF          | Т      | 12       | c      | 0       | 0.00031              | imputed             |
| rs2376585   | chr17:76417883 | HenG2  | FOXA2         | т      | 07       | C<br>C | 36      | 1 10 - 07            | imputed             |
| re2376585   | chr17:76/17882 | HenC2  | MAX           | т<br>Т | 31<br>31 | Č      | 15      | 0 000/               | imputed             |
| rs2376585   | chr17:76417882 | HenC?  |               | т<br>Т | 62       | C<br>C | 20      | 2 77⊑_∩7             | imputed             |
| re2376585   | chr17:76/17882 | HenC2  | 7EB1          | т<br>т | 10       | Č      | 20<br>2 | 0 001/0              | imputed             |
| 132310000   | 01117.70417003 | riepuz |               | 1      | 10       | 0      | 3       | 0.00149              | inputeu             |

|            |                             |        |               | Enric    | hed      | 0      | ther     |                      | Variant             |
|------------|-----------------------------|--------|---------------|----------|----------|--------|----------|----------------------|---------------------|
| Variant    | Position                    | Sample | Protein/Assay | Allele F | Reads    | Allele | Reads    | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs2376585  | chr17:76417883              | HepG2  | FOXA1         | Т        | 211      | С      | 101      | 4.52E-10             | imputed             |
| rs2376585  | chr17:76417883              | HepG2  | NR2F2         | Т        | 31       | С      | 12       | 0.0054               | imputed             |
| rs2376585  | chr17:76417883              | HepG2  | CEBPA         | Т        | 44       | С      | 15       | 0.0002               | imputed             |
| rs2376585  | chr17:76417883              | HepG2  | ZBTB33        | Т        | 17       | С      | 1        | 0.00014              | imputed             |
| rs62078747 | chr17:80055206              | HepG2  | MXI1          | С        | 10       | G      | 0        | 0.00195              | imputed             |
| rs62078747 | chr17:80055206              | HepG2  | MAX           | С        | 29       | G      | 9        | 0.00166              | imputed             |
| rs59251877 | chr17:80056498              | HepG2  | MAX           | G        | 65       | А      | 30       | 0.00042              | imputed             |
| rs59251877 | chr17.80056498              | HepG2  | JUND          | G        | 8        | А      | 0        | 0 00781              | imputed             |
| rs7225637  | chr17 <sup>.</sup> 80059758 | HepG2  | TAF1          | G        | 8        | A      | 0        | 0.00781              | imputed             |
| rs7225637  | chr17:80059758              | HenG2  | FI F1         | G        | 42       | A      | 15       | 0.00046              | imputed             |
| rs11658040 | chr17:80059891              | HenG2  | MAX           | C.       | 30       | т      | 11       | 0.00432              | imputed             |
| rs11658040 | chr17:80050801              | HenG2  |               | C        | 33       | т      | 14       | 0.00794              | imputed             |
| re11658040 | chr17:80050801              | HonG2  |               | C C      | 17       | т<br>Т | 0        | 1 53E-05             | imputed             |
| ro0009277  | obr17:00060920              |        |               | т        | 11       | C I    | 16       | 0.00126              | imputed             |
| ro000277   | chi 17.00000029             |        |               | т<br>Т   | 107      | C      | 10       | 2 745 07             | imputed             |
| 159900277  | chi 17.00000029             | HepGZ  |               | 1        | 197      | C<br>C | 107      | 2.740-07             | imputed             |
| 139094129  | chi 17.000/5/00             |        |               | ~        | 20       | G      | 4        | 0.0001               | imputed             |
| 159894129  | chr17:80075700              | HepG2  |               | A        | 29       | G      | 11       | 0.00643              | imputed             |
| 159894129  |                             | HepG2  | HDAC2         | A        | 12       | G      | 1        | 0.00342              | imputed             |
| rs9894129  | cnr1/:80075700              | HepG2  | HNF4A         | A        | 22       | G      | 3        | 0.00016              | imputed             |
| rs9916649  | cnr1/:80075739              | HepG2  | FOXA2         | G        | 8        | A      | 0        | 0.00781              | imputed             |
| rs9916649  | chr17:80075739              | HepG2  | MAX           | G        | 32       | A      | 10       | 0.00094              | imputed             |
| rs9916649  | chr17:80075739              | HepG2  | RXRA          | G        | 19       | A      | 4        | 0.0026               | imputed             |
| rs9916649  | chr17:80075739              | HepG2  | BHLHE40       | G        | 14       | A      | 0        | 0.00012              | imputed             |
| rs9916649  | chr17:80075739              | HepG2  | SP1           | G        | 27       | А      | 9        | 0.00393              | imputed             |
| rs9916649  | chr17:80075739              | HepG2  | CREB1         | G        | 17       | А      | 3        | 0.00258              | imputed             |
| rs7218075  | chr17:80076808              | HepG2  | FOXA2         | С        | 11       | G      | 1        | 0.00635              | imputed             |
| rs7218075  | chr17:80076808              | HepG2  | POL2          | С        | 8        | G      | 0        | 0.00781              | imputed             |
| rs62079996 | chr17:80076862              | HepG2  | FOXA1         | А        | 20       | G      | 4        | 0.00154              | imputed             |
| rs6502065  | chr17:80095642              | HepG2  | CEBPB         | С        | 22       | Т      | 2        | 3.59E-05             | imputed             |
| rs182498   | chr18:21079363              | HepG2  | RAD21         | С        | 8        | Т      | 0        | 0.00781              | imputed             |
| rs4800162  | chr18:21117419              | HepG2  | FOXA1         | G        | 13       | Т      | 0        | 0.00024              | imputed             |
| rs12607673 | chr18:50906636              | HepG2  | CTCF          | т        | 46       | С      | 18       | 0.00062              | ,<br>imputed        |
| rs12607674 | chr18:50906642              | HepG2  | CTCF          | т        | 38       | С      | 15       | 0.00219              | ,<br>imputed        |
| rs34589926 | chr18:50906676              | HepG2  | CTCF          | G        | 29       | Т      | 6        | 0 00012              | imputed             |
| rs7256735  | chr19.2169121               | HI88   | NKX2 2        | т        | 29       | G      | 8        | 0.00075              | common              |
| rs10410204 | chr19.7224350               | HenG2  | FOXA2         | Ċ        | 21       | Т      | 0        | 9.54E-07             | imputed             |
| rs10410204 | chr19.7224350               | HenG2  | FOXA1         | C.       | 48       | т      | 1        | 1 78E-13             | imputed             |
| rs7248104  | chr10:7224000               | HenG2  | FOXA2         | Δ        | 80       | G      | 3        | 5.24E-23             | imputed             |
| re7248104  | chr10:7224401               | HenC2  | MAX           | Δ        | 28       | G      | 2        |                      | imputed             |
| rs7248104  | chr19.7224431               | HenG2  | YY1           | Δ        | 12       | G      | <u>ک</u> | 0 00040              | imputed             |
| re72/2104  | chr10.7224401               | HenC2  | FOXA1         | Δ        | 112      | C<br>C | 2        | 6 27 = 20            | imputed             |
| ro7249404  | chr10.7224431               | HopC2  |               | ^        | 113      | G      | о<br>О   | 0.211-30             | imputed             |
| 131240104  | ohr10.1224431               | HonCo  |               | ~<br>C   | 5        | т      | 10       |                      | imputed             |
| 131203400  | on 19.11203310              |        | DNASE         |          |          | י<br>ד | 13       | 1.390-08             | imputed             |
| 182303696  | chr10:18548884              | HepG2  | DINASE        |          | ŏ<br>110 | ו<br>ד | 0        |                      | imputed             |
| 150103022  | chr19:18572834              | HepG2  |               |          | 0118     |        | 63       | 5.29E-05             | imputed             |
| 158101689  | cnr19:30185697              | HepG2  | HDAC2         | A        | 9        | G      | 0        | 0.00391              | imputed             |
| rs62102718 | cnr19:33891013              | HepG2  | HNF4G         | A        | 15       | <br>_  | 1        | 0.00052              | Imputed             |
| rs55792845 | chr19:37498685              | HI87   | NKX2_2        | C        | 27       | Т      | 3        | 8.43E-06             | common              |
| rs296368   | chr19:48372298              | HepG2  | RAD21         | Т        | 71       | С      | 42       | 0.00815              | imputed             |
| rs1343703  | chr19:49955155              | HI32   | FOXA2         | G        | 29       | С      | 8        | 0.00075              | common              |
| rs1343703  | chr19:49955155              | HepG2  | ARID3A        | С        | 31       | G      | 12       | 0.0054               | imputed             |
| rs39714    | chr19:54693682              | HI87   | NKX2_2        | С        | 20       | G      | 6        | 0.00936              | common              |
| rs36624    | chr19:54693868              | HI87   | NKX2_2        | С        | 34       | Т      | 13       | 0.00309              | common              |
| re3/5/1537 | chr19:58912737              | HepG2  | CREB1         | С        | 55       | Т      | 18       | 1.69E-05             | imputed             |
| 1334341337 |                             |        |               |          |          |        |          |                      |                     |

|             |                    |            |                | Enric    | hed    | Ot       | her                     |                      | Variant             |
|-------------|--------------------|------------|----------------|----------|--------|----------|-------------------------|----------------------|---------------------|
| Variant     | Position           | Sample     | Protein/Assay  | Allele   | Reads  | Allele   | Reads                   | P-value <sup>a</sup> | Source <sup>b</sup> |
| rs35117909  | chr19:58912906     | HepG2      | CREB1          | G        | 37     | А        | 15                      | 0.00319              | imputed             |
| rs11878203  | chr19:58920050     | HepG2      | DNASE          | G        | 42     | А        | 13                      | 0.00011              | imputed             |
| rs11697620  | chr20:3150165      | HepG2      | CTCF           | С        | 21     | Т        | 1                       | 1.10E-05             | imputed             |
| rs11697620  | chr20:3150165      | HepG2      | MAX            | С        | 12     | Т        | 1                       | 0.00342              | imputed             |
| rs1321940   | chr20:12959885     | HepG2      | FOXA1          | G        | 67     | А        | 37                      | 0.00423              | imputed             |
| rs13042787  | chr20:17436571     | HepG2      | BHLHE40        | Т        | 8      | С        | 0                       | 0.00781              | imputed             |
| rs6111720   | chr20:17868623     | HepG2      | CEBPD          | Т        | 8      | С        | 0                       | 0.00781              | imputed             |
| rs6060266   | chr20:33733078     | HI34       | CTCF           | С        | 42     | Т        | 16                      | 0.00086              | common              |
| rs4812816   | chr20:42930872     | HepG2      | MAZ            | С        | 8      | А        | 0                       | 0.00781              | imputed             |
| rs6065723   | chr20:42956922     | HepG2      | MAFK           | С        | 24     | Т        | 5                       | 0.00055              | imputed             |
| rs6065723   | chr20:42956922     | HepG2      | MAFF           | С        | 8      | Т        | 0                       | 0.00781              | imputed             |
| rs6073534   | chr20:43365504     | HepG2      | USF1           | С        | 25     | Т        | 7                       | 0.0021               | imputed             |
| rs6073538   | chr20:43379264     | HepG2      | DNASE          | С        | 8      | А        | 0                       | 0.00781              | imputed             |
| rs38681483  | 8 chr20:48092076   | HepG2      | CEBPB          | G        | 12     | А        | 1                       | 0.00342              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | TBP            | С        | 13     | Т        | 0                       | 0.00024              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | CTCF           | С        | 9      | Т        | 0                       | 0.00391              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | MBD4           | С        | 12     | Т        | 0                       | 0.00049              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | MAX            | С        | 15     | Т        | 0                       | 6.10E-05             | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | RAD21          | С        | 8      | Т        | 0                       | 0.00781              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | ZEB1           | С        | 13     | Т        | 0                       | 0.00024              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | POL2           | С        | 32     | Т        | 0                       | 4.66E-10             | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | ARID3A         | С        | 13     | Т        | 0                       | 0.00024              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | MAFK           | С        | 8      | Т        | 0                       | 0.00781              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | MYBL2          | С        | 11     | Т        | 0                       | 0.00098              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | NR2F2          | С        | 10     | Т        | 0                       | 0.00195              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | FOXA1          | С        | 10     | Т        | 0                       | 0.00195              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | HEY1           | С        | 19     | Т        | 0                       | 3.81E-06             | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | NFIC           | С        | 9      | Т        | 0                       | 0.00391              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | HDAC2          | С        | 10     | Т        | 0                       | 0.00195              | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | P300           | С        | 23     | Т        | 0                       | 2.38E-07             | imputed             |
| rs6068599   | chr20:52259618     | HepG2      | CREB1          | С        | 8      | Т        | 0                       | 0.00781              | imputed             |
| rs2041278   | chr20:52268995     | HepG2      | FOXA2          | G        | 27     | Т        | 10                      | 0.00763              | imputed             |
| rs2832245   | chr21:30554634     | HI32       | FOXA2          | С        | 30     | Т        | 7                       | 0.00019              | common              |
| rs6000200   | chr22:36612258     | HI32       | PDX1           | С        | 31     | G        | 12                      | 0.0054               | common              |
| rs4828057   | chrX:100006043     | HI81       | MAFB           | А        | 20     | С        | 5                       | 0.00408              | common              |
| Only imbala | nces sites at eQTL | or cardion | netabolic GWAS | loci are | shown. | abinomia | al P-value <sup>b</sup> | Heterozygous         | sites were          |

|               |                      | Enr.                  |                                                                                                                             | Othe       | r                         |
|---------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|
| Variant       | Position             | Allele                | Imbalanced Protein/Assay                                                                                                    | Allele     | e Gene(s)                 |
| rs1494813     | chr1:45957290        | С                     | (L) MXI1                                                                                                                    | Т          | (I) CCDC163P              |
| rs9793263     | chr1:46722389        | G                     | (L) MAFK                                                                                                                    | А          | (A) C1orf190              |
| rs17125090    | chr1:63988904        | А                     | (L) MAX,MXI1                                                                                                                | G          | (I) ITGB3BP               |
| rs11161503    | chr1:85462582        | С                     | (L) EZH2                                                                                                                    | G          | (I) MCOLN3                |
| rs11161505    | chr1:85462665        | Т                     | (L) EZH2                                                                                                                    | G          | (I) MCOLN3                |
| rs12127787    | chr1:89458761        | Т                     | (L) CREB1*,USF1,USF2,YY1*                                                                                                   | С          | (I) GBP3                  |
| rs10858091    | chr1:109935578       | С                     | (L) HEY1,SIN3AK20,TCF12                                                                                                     | Т          | (I) MYBPHL,SYPL2          |
| rs2140924     | chr1:109935775       | А                     | (L) CREB1                                                                                                                   | С          | (I) MYBPHL,SYPL2          |
| rs573491      | chr1:110026891       | Т                     | (L) TAF1                                                                                                                    | G          | (I) SYPL2                 |
| rs2781553     | chr1:110026989       | G                     | (L) YY1                                                                                                                     | Т          | (I) SYPL2                 |
| rs12091564    | chr1:145395604       | С                     | (L) CREB1,MYBL2,NR2F2,TBP                                                                                                   | Т          | (I) NOTCH2NL              |
| rs2201601     | chr1:213031448       | G                     | (L) YY1                                                                                                                     | С          | (I) NCRNA00292            |
| rs11120067    | chr1:213094557       | А                     | (L) CTCF                                                                                                                    | G          | (I) NCRNA00292            |
| rs61844237    | chr1:245133662       | G                     | (L) DNASE                                                                                                                   | С          | (I) EFCAB2                |
| rs2291426     | chr1:245134114       | А                     | (L) CREB1                                                                                                                   | С          | (I) EFCAB2                |
| rs4020081     | chr1:245209045       | С                     | (L) CREB1,FOXA1,P300                                                                                                        | Т          | (I) EFCAB2                |
| rs4020082     | chr1:245209134       | А                     | (L) FOXA1                                                                                                                   | G          | (I) EFCAB2                |
| rs6759670     | chr2:950291          | С                     | (L) RAD21                                                                                                                   | А          | (I) LOC339822             |
| rs34122754    | chr2:9884076         | С                     | (L) CTCF                                                                                                                    | G          | (I) GRHL1                 |
| rs4669449     | chr2:9884205         | G                     | (L) EZH2                                                                                                                    | А          | (I) GRHL1                 |
| rs633808      | chr2:20957592        | G                     | (L) TCF12                                                                                                                   | Т          | (I) C2orf43               |
| rs36101491    | chr2:24387532        | Т                     | (L) CTCF,RAD21,ZBTB7A                                                                                                       | С          | (I) C2orf84               |
| rs17046192    | chr2:24461334        | А                     | (L) FOXA1,ZBTB7A                                                                                                            | G          | (I) C2orf84               |
| rs11676939    | chr2:24479057        | С                     | (L) CEBPB                                                                                                                   | Т          | (I) C2orf84               |
| rs72803210    | chr2:24615710        | А                     | (L) MAFK                                                                                                                    | G          | (I) C2orf84               |
| rs77421503    | chr2:24625676        | С                     | (L) MAX                                                                                                                     | G          | (I) C2orf84               |
| rs10460551    | chr2:24627074        | С                     | (L) HDAC2                                                                                                                   | Т          | (I) C2orf84               |
| rs2011616     | chr2:27302561        | G                     | (L) HDAC2                                                                                                                   | А          | (A) KHK                   |
| rs162330      | chr2:38319496        | С                     | (L) CEBPB                                                                                                                   | А          | (L) CYP1B1                |
| rs1554612     | chr2:48827497        | С                     | (L) CTCF,FOXA2,RAD21                                                                                                        | Т          | (A) STON1 (L) STON1       |
| rs2070063     | chr2:64862055        | А                     | (L) MAFK                                                                                                                    | G          | (A) SERTAD2               |
| rs2241883     | chr2:88424066        | Т                     | (L) POL2                                                                                                                    | С          | (L) ARHGAP5, FABP1, TIGD2 |
| rs2276561     | chr2:113956371       | G                     | (L) MAX                                                                                                                     | С          | (I) LOC654433             |
| rs2305133     | chr2:113956821       | С                     | (L) BHLHE40,CTCF,RAD21                                                                                                      | G          | (I) LOC654433             |
| rs931472      | chr2:113969948       | С                     | (L) DNASE                                                                                                                   | Т          | (I) LOC654433             |
| rs1049137     | chr2:113975110       | G                     | (L) POL2                                                                                                                    | А          | (I) LOC654433             |
| Tissues are o | designated by (L) li | ver <sup>113,11</sup> | , (I) islets <sup>116</sup> , (A) adipose <sup>115</sup> . *indicates sequence reads are enriched for other allele rather t | han enricl | ned allele (Enr. Allele)  |

## APPENDIX 2: Allelic imbalance at eQTL loci (P<1.0x10<sup>-5</sup>)

| -             |                     | Enr.                   |                                                                                                   | Othe                               | r                        |
|---------------|---------------------|------------------------|---------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|
| Variant       | Position            | Allele                 | Imbalanced Protein/Assay                                                                          | Allele                             | e Gene(s)                |
| rs2289897     | chr2:113977454      | А                      | (L) CEBPB                                                                                         | G                                  | (I) LOC654433            |
| rs4849176     | chr2:113977936      | С                      | (L) POL2                                                                                          | Т                                  | (I) LOC654433            |
| rs4849178     | chr2:113982608      | А                      | (L) FOXA1                                                                                         | G                                  | (I) LOC654433            |
| rs2166421     | chr2:113990242      | С                      | (L) FOXA1,HNF4A                                                                                   | Т                                  | (I) LOC654433            |
| rs7421852     | chr2:113990261      | А                      | (L) FOXA1                                                                                         | G                                  | (I) LOC654433,PAX8       |
| rs10206269    | chr2:113990393      | А                      | (L) HNF4A                                                                                         | C                                  | (I) LOC654433,PAX8       |
| rs4849181     | chr2:113991970      | G                      | (L) CTCF                                                                                          | A                                  | (I) LOC654433,PAX8       |
| rs2364723     | chr2:178126546      | С                      | (L) MBD4                                                                                          | G                                  | (L) NFE2L2               |
| rs938929      | chr2:198780860      | G                      | (L) RAD21                                                                                         | A                                  | (I) PLCL1                |
| rs12991600    | chr2:202337236      | G                      | (L) MAFK                                                                                          | A                                  | (A) TRAK2                |
| rs10171839    | chr2:219051314      | G                      | (L) MAX                                                                                           | A                                  | (A) ARPC2                |
| rs13062       | chr2:219260651      | А                      | (L) CTCF,MAX,ZEB1                                                                                 | С                                  | (A) SLC11A1              |
| rs13423632    | chr2:232079116      | С                      | (L) MAX                                                                                           | т                                  | (I) HTR2B                |
| rs16827879    | chr2:232092301      | Т                      | (L) CTCF,RAD21                                                                                    | С                                  | (I) HTR2B                |
| rs77438791    | chr2:239035642      | G                      | (L) MBD4                                                                                          | A                                  | (I) ESPNL                |
| rs10206101    | chr2:241835543      | С                      | (L) FOSL2,HNF4G,JUND,ZEB1                                                                         | A                                  | (I) C2orf54              |
| rs10933517    | chr2:241836338      | С                      | (L) DNASE,RAD21                                                                                   | т                                  | (I) C2orf54              |
| rs990284      | chr3:104972         | А                      | (L) FOXA1,FOXA2,P300                                                                              | G                                  | (L) CHL1                 |
| rs3774750     | chr3:50208406       | G                      | (L) MAX                                                                                           | С                                  | (A) MST1R                |
| rs2233474     | chr3:50388607       | С                      | (L) DNASE                                                                                         | А                                  | (A) CYB561D2             |
| rs2976742     | chr3:125417021      | С                      | (L) CTCF                                                                                          | т                                  | (I) LOC100125556         |
| rs12695470    | chr3:125635718      | А                      | (L) DNASE, POL2                                                                                   | С                                  | (I) LOC100125556         |
| rs9841194     | chr3:125635739      | Т                      | (L) POL2                                                                                          | С                                  | (I) LOC100125556         |
| rs12497980    | chr3:125636117      | G                      | (L) MAX,MXI1                                                                                      | А                                  | (I) LOC100125556         |
| rs4377449     | chr3:125642330      | G                      | (L) USF1                                                                                          | А                                  | (I) LOC100125556         |
| rs9826071     | chr3:125648165      | Т                      | (L) CTCF,RAD21                                                                                    | С                                  | (I) LOC100125556         |
| rs17523380    | chr3:125802874      | Т                      | (L) RAD21                                                                                         | С                                  | (I) LOC100125556         |
| rs2939820     | chr3:128127643      | G                      | (L) CTCF                                                                                          | А                                  | (L) HSS00171311          |
| rs7661077     | chr4:7219889        | С                      | (L) CEBPB                                                                                         | т                                  | (L) SORCS2               |
| rs78578320    | chr4:68566689       | G                      | (L) DNASE                                                                                         | А                                  | (I) GNRHR                |
| rs28653581    | chr4:68567025       | G                      | (L) DNASE                                                                                         | Т                                  | (I) GNRHR                |
| rs10030238    | chr4:141808805      | А                      | (L) HNF4G                                                                                         | G                                  | (A) RNF150               |
| rs2227426     | chr4:155493171      | G                      | (L) POL2                                                                                          | А                                  | (L) C9orf66              |
| rs6846466     | chr4:166424428      | Т                      | (I) FOXA2                                                                                         | С                                  | (I) MIR578               |
| rs28641985    | chr4:189376705      | А                      | (L) CREB1,ELF1,FOXA1,FOXA2,HEY1,MAFK,POL2,SRF                                                     | G                                  | (I) LOC401164            |
| rs10941891    | chr5:21391789       | G                      | (L) CTCF,RAD21,SMC3                                                                               | С                                  | (I) GUSBP1               |
| rs3195676     | chr5:34008100       | С                      | (L) BHLHE40,MAX,TAF1                                                                              | Т                                  | (A) AMACR                |
| rs13356762    | chr5:56110992       | G                      | (L) TAF1                                                                                          | Т                                  | (I) C5orf35              |
| rs2548663     | chr5:56172778       | G                      | (L) CEBPB                                                                                         | А                                  | (I) C5orf35              |
| rs185220      | chr5:56205357       | G                      | (L) DNASE                                                                                         | А                                  | (I) C5orf35              |
| Tissues are d | esignated by (L) li | ver <sup>113,114</sup> | , (I) islets <sup>116</sup> , (A) adipose <sup>115</sup> . *indicates sequence reads are enriched | for other allele rather than enric | hed allele (Enr. Allele) |

|               |                     | Enr.                   |                                                                                                                                           | Other      |                                             |
|---------------|---------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|
| Variant       | Position            | Allele                 | Imbalanced Protein/Assay                                                                                                                  | Allele     | Gene(s)                                     |
| rs252923      | chr5:56205662       | G                      | (L) YY1                                                                                                                                   | Т          | (I) C5orf35                                 |
| rs33321       | chr5:56206073       | G                      | (L) HEY1                                                                                                                                  | Т          | (I) C5orf35                                 |
| rs1643635     | chr5:79928216       | G                      | (L) MBD4                                                                                                                                  | А          | (I) DHFR                                    |
| rs10168       | chr5:79950403       | С                      | (L) DNASE,MAX                                                                                                                             | Т          | (I) DHFR                                    |
| rs386689494   | chr5:79961675       | С                      | (L) MAFK                                                                                                                                  | Т          | (I) DHFR                                    |
| rs1677645     | chr5:79964419       | С                      | (L) CEBPB                                                                                                                                 | Т          | (I) DHFR                                    |
| rs226198      | chr5:81573992       | С                      | (L) MAX,USF1                                                                                                                              | Т          | (I) ATP6AP1L                                |
| rs730870      | chr5:125874993      | G                      | (L) FOXA1                                                                                                                                 | Α          | (L) HSS00124116                             |
| rs192231      | chr5:140248539      | С                      | (L) CTCF,RAD21                                                                                                                            | Т          | (I) VTRNA1-2                                |
| rs7739320     | chr6:3054146        | С                      | (L) DNASE                                                                                                                                 | Т          | (I) LOC401233                               |
| rs12203636    | chr6:3064249        | А                      | (L) HEY1,MAX,MYBL2,POL2,ZEB1                                                                                                              | G          | (I) LOC401233                               |
| rs12196777    | chr6:3064523        | С                      | (L) DNASE                                                                                                                                 | Т          | (I) LOC401233                               |
| rs12665605    | chr6:3067003        | G                      | (L) POL2                                                                                                                                  | А          | (I) LOC401233                               |
| rs12663589    | chr6:3069057        | С                      | (L) POL2                                                                                                                                  | Т          | (I) LOC401233                               |
| rs9379687     | chr6:24721787       | С                      | (L) BHLHE40,CREB1,HEY1,MAX,MXI1                                                                                                           | А          | (A) FAM65B                                  |
| rs198853      | chr6:26104096       | С                      | (L) HEY1,MYBL2,POL2,RXRA,SRF,TBP                                                                                                          | Т          | (L) HFE                                     |
| rs13201769    | chr6:30756066       | А                      | (L) CTCF,NR2F2,SP1                                                                                                                        | G          | (A) IER3                                    |
| rs3132555     | chr6:31082910       | G                      | (L) RAD21                                                                                                                                 | С          | (I) CDSN                                    |
| rs1042149     | chr6:31082960       | G                      | (L) CTCF                                                                                                                                  | А          | (I) PSORS1C1                                |
| rs386579266   | chr6:31089982       | G                      | (L) CEBPB                                                                                                                                 | А          | (I) CDSN                                    |
| rs9271092     | chr6:32576296       | А                      | (L) RAD21                                                                                                                                 | G          | (I) HLA-DQA1,HLA-DRB1                       |
| rs9271093     | chr6:32576341       | G                      | (L) CTCF                                                                                                                                  | А          | (I) HLA-DQB1,HLA-DRA, HLA-DRB1,<br>HLA-DRB5 |
| rs9271094     | chr6:32576347       | G                      | (L) CTCF                                                                                                                                  | С          | (I) HLA-DQA1,HLA-DRB1                       |
| rs9271096     | chr6:32576426       | А                      | (L) CTCF                                                                                                                                  | G          | (I) HLA-DQA1,HLA-DRB1                       |
| rs17843603    | chr6:32620241       | G                      | (L) BHLHE40                                                                                                                               | А          | (I) HLA-DQA1,HLA-DQB1, HLA-DRB1             |
| rs1063349     | chr6:32627906       | Т                      | (L) HNF4A                                                                                                                                 | С          | (I) HLA-DQA1,HLA-DQB1, HLA-DRB1             |
| rs386699568   | chr6:32627923       | А                      | (L) HNF4A                                                                                                                                 | G          | (I) HLA-DQA1,HLA-DQB1, HLA-DRB1             |
| rs9274535     | chr6:32634620       | Т                      | (L) RFX5                                                                                                                                  | С          | (I) HLA-DQB1,HLA-DRA, HLA-DRB1,<br>HLA-DRB5 |
| rs12192544    | chr6:46620252       | С                      | (L) EZH2                                                                                                                                  | G          | (L) SLC25A27                                |
| rs9493450     | chr6:133135807      | Т                      | (L) HEY1,POL2                                                                                                                             | С          | (A) SNORD100                                |
| rs11155000    | chr6:139099401      | С                      | (L) TCF7L2                                                                                                                                | Т          | (A) CCDC28A                                 |
| rs539298      | chr6:160770360      | G                      | L) BHLHE40,CEBPB,CREB1,DNASE,ELF1,HNF4A,HNF4G,JUND,MAX,MYBL2,NFIC, NR2F2,P300,POL2,RAD21                                                  | А          | (L) SLC22A3                                 |
| rs8200        | chr7:75696606       | G                      | (L) POL2                                                                                                                                  | С          | (L) AK022137                                |
| rs10953284    | chr7:77169782       | G                      | (L) CEBPB, DNASE, HNF4A, HNF4G                                                                                                            | С          | (L) PTPN12                                  |
| rs776745      | chr7:99291337       | G                      | (L) FOXA1                                                                                                                                 | Т          | (I) CYP3A5                                  |
| rs6962760     | chr7:141465363      | Т                      | (I) FOXA2                                                                                                                                 | С          | (I) FLJ40852                                |
| rs11783893    | chr8:2100976        | С                      | (L) CTCF                                                                                                                                  | G          | (I) MYOM2                                   |
| rs2279128     | chr8:71581559       | т                      | (L) BHLHE40                                                                                                                               | G          | (I) XKR9                                    |
| Tissues are d | esignated by (L) li | ver <sup>113,114</sup> | <sup>4</sup> , (I) islets <sup>116</sup> , (A) adipose <sup>115</sup> . *indicates sequence reads are enriched for other allele rather th | nan enrich | ned allele (Enr. Allele)                    |

|                |                      | Enr.                   |                                                                                                                              | Other     | ,                       |
|----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| Variant        | Position             | Allele                 | Imbalanced Protein/Assay                                                                                                     | Allele    | Gene(s)                 |
| rs6985299      | chr8:71613079        | Т                      | (L) MAX                                                                                                                      | С         | (I) XKR9                |
| rs11985375     | chr8:71613472        | G                      | (L) CREB1,MAX                                                                                                                | Α         | (I) XKR9                |
| rs10810299     | chr9:14964272        | А                      | (L) POL2                                                                                                                     | С         | (I) LOC389705           |
| rs1414395      | chr10:13334136       | Т                      | (L) CEBPB                                                                                                                    | G         | (A) PHYH                |
| rs4747275      | chr10:16552472       | G                      | (L) MAFK                                                                                                                     | Α         | (I) C1QL3               |
| rs17141322     | chr10:17604700       | А                      | (I) PDX1                                                                                                                     | С         | (I) ST8SIA6             |
| rs10510007     | chr10:11663672       | 1G                     | (L) CEBPB                                                                                                                    | Α         | (A) KIAA1600            |
| rs10835531     | chr11:1516110        | А                      | (I) FOXA2                                                                                                                    | G         | (I) LOC338651           |
| rs538954       | chr11:65756808       | С                      | (L) ZBTB7A                                                                                                                   | Т         | (L) NM_032325,NM_174952 |
| ds613128       | chr11:68638058       | G                      | (L) MAX                                                                                                                      | Т         | (I) MRPL21              |
| rs514833       | chr11:68657734       | С                      | (L) CTCF,DNASE,RAD21,ZBTB33                                                                                                  | Т         | (I) MRPL21              |
| rs629426       | chr11:68671104       | G                      | (L) YY1                                                                                                                      | А         | (I) MRPL21              |
| rs9787897      | chr11:74659302       | Т                      | (L) FOXA2                                                                                                                    | Α         | (I) XRRA1               |
| rs567956       | chr11:74659779       | С                      | (L) POL2                                                                                                                     | Т         | (I) XRRA1               |
| rs2165163      | chr11:74660143       | С                      | (L) DNASE,MAX                                                                                                                | G         | (I) XRRA1               |
| rs4944968      | chr11:74724276       | С                      | (L) DNASE                                                                                                                    | G         | (I) XRRA1               |
| rs3781884      | chr11:113217364      | 4G                     | (L) CTCF                                                                                                                     | А         | (I) TTC12               |
| rs2534721      | chr12:6580144        | С                      | (L) DNASE                                                                                                                    | А         | (I) TAPBPL              |
| rs933462       | chr12:9103665        | G                      | (L) HDAC2                                                                                                                    | Т         | (A) KLRG1               |
| rs2239182      | chr12:48255411       | С                      | (L) FOXA1                                                                                                                    | Т         | (L) CASKIN2             |
| rs4509811      | chr12:58335142       | А                      | (L) CEBPD                                                                                                                    | G         | (I) XRCC6BP1            |
| rs1010461      | chr14:21153788       | С                      | (L) POL2                                                                                                                     | А         | (A) RNASE4              |
| rs1769591      | chr14:34378886       | G                      | (L) FOXA1                                                                                                                    | А         | (L) EGLN3               |
| rs11624787     | chr14:53288450       | С                      | (L) CEBPB,FOXA1,FOXA2,HNF4A,P300                                                                                             | G         | (L) STYX                |
| rs2034652      | chr15:40802768       | А                      | (L) CEBPB                                                                                                                    | G         | (I) C15orf57,MRPL42P5   |
| rs8036737      | chr15:40874256       | G                      | (L) MAFK                                                                                                                     | А         | (I) C15orf57,MRPL42P5   |
| rs7175950      | chr15:78236353       | А                      | (L) POL2                                                                                                                     | G         | (I) LOC645752           |
| rs9925556      | chr16:2880105        | Т                      | (L) DNASE,FOXA1                                                                                                              | С         | (L) NM_145252           |
| rs11075256     | chr16:15187912       | G                      | (L) HEY1,MAX,MXI1,POL2,SP2,TAF1                                                                                              | С         | (L) RRN3                |
| rs62032983     | chr16:23653343       | Т                      | (L) CREB1,ELF1                                                                                                               | С         | (I) DCTN5               |
| rs2303222      | chr16:31085470       | С                      | (L) POL2                                                                                                                     | Т         | (L) VKORC1              |
| rs1981760      | chr16:50723074       | С                      | (L) EZH2                                                                                                                     | Т         | (L) CARD15              |
| rs35223604     | chr16:70052345       | С                      | (L) CTCF                                                                                                                     | G         | (I) EXOSC6              |
| rs4985407      | chr16:70285901       | G                      | (L) BHLHE40, CHD2, CREB1, CTCF, DNASE, ELF1, GABP, MAX, POL2, SIN3AK20, YY1                                                  | А         | (I) EXOSC6              |
| rs876985       | chr16:87882124       | С                      | (L) P300                                                                                                                     | Т         | (A) SLC7A5              |
| rs5689147      | chr17:41438468       | Т                      | (I) POL2                                                                                                                     | С         | (I) NBR2                |
| rs12938996     | chr17:41438674       | А                      | (I) POL2                                                                                                                     | G         | (I) NBR2                |
| rs12948653     | chr17:46259254       | А                      | (L) CTCF                                                                                                                     | С         | (A) HOXB5               |
| rs16949649     | chr17:49230308       | т                      | (L) CEBPB                                                                                                                    | С         | (A) NME1 (L) NME1       |
| rs8076760      | chr17:61920497       | т                      | (L) CHD2,GABP,MAX,TCF12                                                                                                      | С         | (I) FTSJ3               |
| Tissues are de | esignated by (L) liv | /er <sup>113,114</sup> | , (I) islets <sup>116</sup> , (A) adipose <sup>115</sup> . *indicates sequence reads are enriched for other allele rather th | an enrich | ed allele (Enr. Allele) |

|               |                     | Enr.                  |                                                                                                                             | Oth                  | er                                 |
|---------------|---------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|
| Variant       | Position            | Allele                | Imbalanced Protein/Assay                                                                                                    | Alle                 | le Gene(s)                         |
| rs2598414     | chr17:74067099      | С                     | (L) BHLHE40                                                                                                                 | Т                    | (A) SRP68                          |
| rs2376585     | chr17:76417883      | Т                     | (L) CEBPA, CTCF, DNASE, FOXA1, FOXA2, MAX, NR2F2, ZBTB33, ZEB1                                                              | С                    | (I) DNAH17                         |
| rs8101689     | chr19:30185697      | А                     | (L) HDAC2                                                                                                                   | G                    | (I) C19orf12                       |
| rs1343703     | chr19:49955155      | С                     | (L) ARID3A (I) FOXA2*                                                                                                       | G                    | (L) NOP17                          |
| rs34541537    | chr19:58912737      | С                     | (L) CREB1                                                                                                                   | Т                    | (I) ZNF584                         |
| rs35138622    | chr19:58912788      | С                     | (L) CREB1                                                                                                                   | A                    | (I) ZNF584                         |
| rs35117909    | chr19:58912906      | G                     | (L) CREB1                                                                                                                   | A                    | (I) ZNF584                         |
| rs11878203    | chr19:58920050      | G                     | (L) DNASE                                                                                                                   | A                    | (I) ZNF584                         |
| rs11697620    | chr20:3150165       | С                     | (L) CTCF,MAX                                                                                                                | Т                    | (A) ProSAPiP1                      |
| rs6111720     | chr20:17868623      | Т                     | (L) CEBPD                                                                                                                   | С                    | (L) ADRBK1, AP4M1, ATP2B1, CAPN10, |
|               |                     |                       |                                                                                                                             |                      | CORO1B,GIPC1,LZTR1,PIAS3,          |
|               |                     | ~                     |                                                                                                                             |                      | SLC39A13, TAF6, WHSC2, WIZ         |
| rs386814838   | chr20:48092076      | G                     | (L) CEBPB                                                                                                                   | A                    | (L) AK055386,Contig29707,KCNB1     |
| rs2832245     | chr21:30554634      | С                     | (I) FOXA2                                                                                                                   | Т                    | (I) RWDD2B                         |
| rs6000200     | chr22:36612258      | С                     | (I) PDX1                                                                                                                    | G                    | (A) APOL2                          |
| rs4828057     | chrX:100006043      | А                     | (I) MAFB                                                                                                                    | С                    | (A) SYTL4                          |
| Tissues are d | esignated by (L) li | ver <sup>113,11</sup> | <sup>4</sup> , (I) islets <sup>116</sup> , (A) adipose <sup>115</sup> . *indicates sequence reads are enriched for other al | lele rather than enr | ched allele (Enr. Allele)          |

| Locus       | Variant         | Position           | Enr.<br>Allele | Imbalanced Proteins                                                                  | Other<br>Allele | Trait                                                    | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling    | Risk.<br>Allele |
|-------------|-----------------|--------------------|----------------|--------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------|---------------------|--------------------------------------|-------------|-----------------|
| TMEM57.     | rs9438904       | chr1:25756860      | С              | (L) YY1                                                                              | T               | Total Cholesterol                                        | rs12027135          | 0.98                                 | T,A         | A               |
| LDLRAP1     |                 |                    |                |                                                                                      |                 | LDL cholesterol                                          | rs12027135          | 0.98                                 | T,A         | Α               |
| LEPR        | rs12021623      | chr1:66153586      | С              | (L) HNF4G                                                                            | A               | C-reactive protein                                       | rs4420065           | 0.90                                 | C,T         | С               |
|             | rs2268667       | chr1:85793746      | G              | (L) FOXA1                                                                            | A               | Serum dimethylarginine levels                            | rs1884139           | 0.90                                 | G,G         | T               |
| DDAH1       | rs2177461       | chr1:85861976      | G              | (L) ZBTB33                                                                           | С               | Serum dimethylarginine levels                            | rs1884139           | 0.97                                 | G,G         | Т               |
|             | rs839605        | chr1:120217524     | С              | (L) CTCF                                                                             | A               | Blood metabolite levels                                  | rs1163251           | 0.98                                 | C,C         | T               |
|             | rs639761        | chr1:120217558     | G              | (L) CEBPA, CEBPB, CREB1, CTCF, RAD21                                                 | Α               | Blood metabolite levels                                  | rs1163251           | 0.97                                 | G,C         | Т               |
| PHGDH       | rs640195        | chr1:120217650     | Т              | (L) ARID3A,CEBPB,CREB1,CTCF,RAD21                                                    | Α               | Blood metabolite levels                                  | rs1163251           | 0.98                                 | T,C         | Т               |
|             | rs483180        | chr1:120267505     | G              | (L) HDAC2                                                                            | С               | Metabolite levels                                        | rs478093            | 0.99                                 | C,G         | G               |
|             |                 |                    |                |                                                                                      |                 | Metabolic traits                                         | rs477992            | 0.99                                 | C,G         | Α               |
| F5, SELP    | rs2236869       | chr1:169535196     | G              | (L) FOXA1                                                                            | Т               | Activated partial thromboplastin time                    | rs6028              | 0.90                                 | T,T         | С               |
| FMO3        | rs2281007       | chr1:171111351     | G              | (L) CEBPA                                                                            | Α               | Blood metabolite levels                                  | rs7061710           | 0.79                                 | G,G         | С               |
|             | rs17361251      | chr1:178520577     | A              | (L)<br>CEBPA,CEBPB,CEBPD,FOXA1,FOXA2,HNF4A,<br>HNF4G,MAX,NFIC,NR2F2,P300,SP1,ZBTB7A  | С               | HDL cholesterol                                          | rs4650994           | 1.00                                 | A,A         | G               |
| ANGPTL1     | rs17276513      | chr1:178520604     | A              | (L)<br>CEBPA,CEBPB,DNASE,FOXA1,FOXA2,HDAC2,<br>HNF4A,HNF4G,MAX,NR2F2,P300,SP1,ZBTB7A | Т               | HDL cholesterol                                          | rs4650994           | 0.99                                 | A,A         | G               |
|             | rs17276527      | chr1:178520680     | A              | (L)<br>CREB1,DNASE,FOXA1,FOXA2,HDAC2,HNF4A,<br>HNF4G,MAX,NFIC,P300,SP1,ZEB1          | G               | HDL cholesterol                                          | rs4650994           | 1.00                                 | A,A         | G               |
|             | rs9970073       | chr1:214156165     | A              | (L) MAX                                                                              | G               | Fasting glucose-related traits (interaction with BMI)    | rs340874            | 0.73                                 | G,C         | -               |
|             |                 |                    |                |                                                                                      |                 | Fasting glucose-related traits                           | rs340874            | 0.73                                 | G,C         | С               |
| FROAT       | rs340879        | chr1:214156514     | Т              | (L) RAD21                                                                            | С               | Fasting glucose-related traits<br>(interaction with BMI) | rs340874            | 0.77                                 | C,C         | -               |
|             |                 |                    |                |                                                                                      |                 | Fasting glucose-related traits                           | rs340874            | 0.77                                 | C,C         | С               |
|             | rs4846770       | chr1:222795569     | G              | (L) CEBPD                                                                            | С               | Myocardial infarction (early onset)                      | rs17465637          | 0.95                                 | G,C         | С               |
| IVIIA3      |                 |                    |                |                                                                                      |                 | Coronary heart disease                                   | rs17465637          | 0.95                                 | G,C         | С               |
|             | rs4846913       | chr1:230294715     | A              | (L) CEBPA, CEBPB, CEBPD, NR2F2 (I) MAFB                                              | С               | HDL cholesterol                                          | rs2144300           | 1.00                                 | A,T         | Т               |
| GALNT2      |                 |                    |                |                                                                                      |                 | Triglycerides                                            | rs4846914           | 1.00                                 | A,A         | G               |
|             |                 |                    |                |                                                                                      |                 | Metabolite levels                                        | rs10127775          | 1.00                                 | A,T         | -               |
|             | rs526936        | chr1:234852204     | A              | (L) POL2 (I) FOXA2                                                                   | G               | Total Cholesterol                                        | rs514230            | 0.92                                 | A,T         | A               |
| IRF2BP2,    |                 |                    |                |                                                                                      |                 | LDL cholesterol                                          | rs514230            | 0.92                                 | A,T         | Α               |
| TOMM20      | rs556107        | chr1:234853059     | С              | (L) HEY1                                                                             | Т               | Total Cholesterol                                        | rs514230            | 0.93                                 | T,T         | Α               |
|             |                 |                    |                |                                                                                      |                 | LDL cholesterol                                          | rs514230            | 0.93                                 | T,T         | Α               |
| TRIB2       | rs4669888       | chr2:12980514      | G              | (L) CEBPA,CEBPB                                                                      | A               | Pericardial fat                                          | rs10198628          | 0.98                                 | A,A         | -               |
| * indicates | other allele is | enriched rather th | an enr         | iched allele(Enr. Allele), aR2 and coupling (imbaland                                | ced allel       | e, reported allele) calculated in 1000 C                 | Senome EUR          | Risk                                 | allele incr | eases           |

## APPENDIX 3: Allelic imbalance at cardiometabolic trait and disease GWAS loci

\* indicates other allele is enriched rather than enriched allele(Enr. Allele), <sup>a</sup>R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown

| Locus                        | Variant                    | Position                                | Enr.<br>Allele | Imbalanced Proteins                                                                                                 | Other<br>Allele | Trait                                                                           | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling    | Risk.<br>Allele |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|------------------------------|----------------------------|-----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------|--------------------------------------|-------------|-----------------|--|--|--|--|--|--|--|--|--|--|--|--|---------------------------------------------|----------|------|-----|---|
|                              | rs1367117                  | chr2:21263900                           | G              | (L) HEY1,MAX                                                                                                        | A               | Total Cholesterol                                                               | rs1367117           | 1.00                                 | -           | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | LDL cholesterol                                                                 | rs1367117           | 1.00                                 | -           | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Lipid metabolism phenotypes                                                     | rs1367117           | 1.00                                 | -           | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs312983                   | chr2:21378580                           | Α              | (L) FOXA1                                                                                                           | С               | LDL cholesterol                                                                 | rs562338            | 0.72                                 | C,G         | G               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Lipid metabolism phenotypes                                                     | rs312985            | 0.99                                 | C,G         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs312984                   | chr2:21378778                           | С              | (L) ARID3A, FOXA1, FOXA2, HNF4A, MAX, NFIC,                                                                         | Т               | LDL cholesterol                                                                 | rs562338            | 0.73                                 | T,G         | G               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                | RAD2,ZEB1                                                                                                           |                 | Lipid metabolism phenotypes                                                     | rs312985            | 1.00                                 | T,G         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| /                            | rs312985                   | chr2:21378805                           | Α              | (L)                                                                                                                 | G               | LDL cholesterol                                                                 | rs562338            | 0.73                                 | G,G         | G               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                | CREB1,FOXA1,FOXA2,HDAC2,HNF4A,HNF4G,<br>MYBL2,NRSF,P300,SP1,ZEB1                                                    |                 | Lipid metabolism phenotypes                                                     | rs312985            | 1.00                                 | -           | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs1652418                  | chr2:21388456                           | Т              | (L) MAZ,RAD21,SMC3                                                                                                  | С               | LDL cholesterol                                                                 | rs515135            | 0.72                                 | C,C         | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Lipid metabolism phenotypes                                                     | rs312985            | 0.99                                 | C,G         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs544039                   | chr2:21398985                           | С              | (L) CTCF,RAD21                                                                                                      | A               | LDL cholesterol                                                                 | rs515135            | 0.71                                 | A,C         | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Lipid metabolism phenotypes                                                     | rs506585            | 1.00                                 | A,A         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| ADCY3,                       | rs7580081                  | chr2:25097072                           | С              | (L) CEBPB                                                                                                           | G               | Body mass index                                                                 | rs6545814           | 0.94                                 | G,A         | G               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| POMC                         |                            |                                         |                |                                                                                                                     |                 | Obesity                                                                         | rs10182181          | 0.73                                 | G,A         | G               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs2580759                  | chr2:27432500                           | G              | (L) CTCF                                                                                                            | Т               | Blood metabolite levels                                                         | rs1395              | 0.71                                 | T,A         | A               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| SLC5A6                       | rs11608                    | chr2:27435374                           | G              | (L) YY1                                                                                                             | Α               | Blood metabolite levels                                                         | rs1395              | 0.88                                 | A,A         | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs1141313                  | chr2:27460968                           | G              | (L) POL2                                                                                                            | Α               | Blood metabolite levels                                                         | rs1395              | 0.91                                 | A,A         | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              | rs1260326                  | chr2:27730940                           | С              | (L) CTCF                                                                                                            | Т               | Triglycerides-Blood Pressure (TG-<br>BP)                                        | rs780093            | 0.91                                 | T,T         | A               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Metabolic syndrome                                                              | rs780094            | 0.91                                 | T,T         | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 |                                                                                 |                     |                                      |             |                 |  |  |  |  |  |  |  |  |  |  |  |  | Waist Circumference - Triglycerides (WC-TG) | rs780093 | 0.91 | T,T | A |
|                              |                            |                                         |                |                                                                                                                     |                 | Palmitoleic acid (16:1n-7) plasma levels                                        | rs780093            | 0.91                                 | T,T         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Fasting glucose-related traits<br>(interaction with BMI)                        | rs780094            | 0.91                                 | T,T         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Serum albumin level                                                             | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Two-hour glucose challenge                                                      | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| GCKR                         |                            |                                         |                |                                                                                                                     |                 | Hypertriglyceridemia                                                            | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Lipid metabolism phenotypes                                                     | rs1260326           | 1.00                                 | -           | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Fasting insulin-related traits                                                  | rs780094            | 0.91                                 | T,T         | С               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Blood metabolite levels                                                         | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Metabolite levels                                                               | rs1260326           | 1.00                                 | -           | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Non-albumin protein levels                                                      | rs1260326           | 1.00                                 | -           | С               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Metabolic traits                                                                | rs1260326           | 1.00                                 | -           | Α               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Fasting insulin-related traits<br>(interaction with BMI)                        | rs780094            | 0.91                                 | T,T         | -               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | C-reactive protein                                                              | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
|                              |                            |                                         |                |                                                                                                                     |                 | Triglycerides                                                                   | rs1260326           | 1.00                                 | -           | Т               |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |
| * indicates<br>risk or trait | other allele is measuremen | enriched rather the the sed on reported | han enr        | iched allele (Enr. Allele), <sup>a</sup> R2 and coupling (imbala<br>t allele in NHGRI GWAS catalog - indicates no e | anced allel     | e, reported allele) calculated in 1000<br>reported in catalog. Only reported va | Genome EUF          | R. Risk                              | allele inci | reases          |  |  |  |  |  |  |  |  |  |  |  |  |                                             |          |      |     |   |

| Locus | Variant   | Position      | Enr.<br>Allele | Imbalanced Proteins                   | Other<br>Allele | Trait                                                    | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling  | Risk.<br>Allele |     |   |  |                                                          |
|-------|-----------|---------------|----------------|---------------------------------------|-----------------|----------------------------------------------------------|---------------------|--------------------------------------|-----------|-----------------|-----|---|--|----------------------------------------------------------|
|       | rs1260326 | chr2:27730940 | С              | (L) CTCF                              | Т               | Blood metabolite ratios                                  | rs1260326           | 1.00                                 | -         | Т               |     |   |  |                                                          |
|       | (cont'd)  |               |                |                                       |                 | Total Cholesterol                                        | rs1260326           | 1.00                                 | -         | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting glucose-related traits                           | rs780094            | 0.91                                 | T,T       | С               |     |   |  |                                                          |
|       | rs780095  | chr2:27741105 | G              | (L) FOXA1                             | A               | Triglycerides-Blood Pressure (TG-<br>BP)                 | rs780093            | 0.88                                 | A,T       | A               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Metabolic syndrome                                       | rs780094            | 0.86                                 | A,T       | Α               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Waist Circumference - Triglycerides (WC-TG)              | rs780093            | 0.88                                 | A,T       | A               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Palmitoleic acid (16:1n-7) plasma levels                 | rs780093            | 0.88                                 | A,T       | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting glucose-related traits<br>(interaction with BMI) | rs780094            | 0.86                                 | A,T       | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Serum albumin level                                      | rs1260326           | 0.81                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Two-hour glucose challenge                               | rs1260326           | 0.81                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Hypertriglyceridemia                                     | rs1260326           | 0.81                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Lipid metabolism phenotypes                              | rs1260326           | 0.81                                 | A,T       | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting insulin-related traits                           | rs780094            | 0.86                                 | A,T       | С               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Non-albumin protein levels                               | rs1260326           | 0.81                                 | A,T       | С               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Metabolite levels                                        | rs1260326           | 0.81                                 | A,T       | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 |                                                          |                     | Blood metabolite levels              | rs1260326 | 0.81            | A,T | Т |  |                                                          |
| Locus |           |               |                |                                       |                 |                                                          |                     |                                      |           |                 |     |   |  | Fasting insulin-related traits<br>(interaction with BMI) |
|       |           |               |                |                                       |                 | Metabolic traits                                         | rs780094            | 0.86                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | C-reactive protein                                       | rs780094            | 0.86                                 | A,T       | Α               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Triglycerides                                            | rs1260333           | 0.98                                 | A,A       | С               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Blood metabolite ratios                                  | rs1260326           | 0.81                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Total Cholesterol                                        | rs1260326           | 0.81                                 | A,T       | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting glucose-related traits                           | rs780094            | 0.86                                 | A,T       | С               |     |   |  |                                                          |
|       | rs780094  | chr2:27741237 | С              | (L) CEBPB,FOXA1,FOXA2,MAFK,MAX,NR2F2, | Т               | C-reactive protein                                       | rs780094            | 1.00                                 | -         | A               |     |   |  |                                                          |
|       |           |               |                | NRSF,ZEB1                             |                 | Metabolic syndrome                                       | rs780094            | 1.00                                 | -         | A               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Metabolic traits                                         | rs780094            | 1.00                                 | -         | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting insulin-related traits (interaction with BMI)    | rs780094            | 1.00                                 | -         | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting glucose-related traits (interaction with BMI)    | rs780094            | 1.00                                 | -         | -               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting insulin-related traits                           | rs780094            | 1.00                                 | -         | С               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Fasting glucose-related traits                           | rs780094            | 1.00                                 | -         | С               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Triglycerides                                            | rs780094            | 1.00                                 | -         | Т               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Waist Circumference - Triglycerides (WC-TG)              | rs780093            | 0.98                                 | T,T       | A               |     |   |  |                                                          |
|       |           |               |                |                                       |                 | Triglycerides-Blood Pressure (TG-<br>BP)                 | rs780093            | 0.98                                 | T,T       | A               |     |   |  |                                                          |

\* indicates other allele is enriched rather than enriched allele(Enr. Allele), <sup>a</sup>R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown

|                  |                      |                    | Enr.     |                                                                          | Other      |                                                | Reported        | LD                                     |             | Risk.  |
|------------------|----------------------|--------------------|----------|--------------------------------------------------------------------------|------------|------------------------------------------------|-----------------|----------------------------------------|-------------|--------|
| Locus            | Variant              | Position           | Allele   | Imbalanced Proteins                                                      | Allele     | Trait                                          | Variant         | ( <b>r</b> <sup>2</sup> ) <sup>a</sup> | Coupling    | Allele |
|                  | rs780094<br>(cont'd) | chr2:27741237      | С        | (L) CEBPB,FOXA1,FOXA2,MAFK,MAX,NR2F2,<br>NRSF,ZEB1                       | Т          | Palmitoleic acid (16:1n-7) plasma levels       | rs780093        | 0.98                                   | T,T         | -      |
|                  |                      |                    |          |                                                                          |            | Two-hour glucose challenge                     | rs1260326       | 0.91                                   | T,T         | Т      |
|                  |                      |                    |          |                                                                          |            | Hypertriglyceridemia                           | rs1260326       | 0.91                                   | T,T         | Т      |
|                  |                      |                    |          |                                                                          |            | Lipid metabolism phenotypes                    | rs1260326       | 0.91                                   | T,T         | ?      |
| GCKR             |                      |                    |          |                                                                          |            | Non-albumin protein levels                     | rs1260326       | 0.91                                   | T,T         | С      |
| (cont'd)         |                      |                    |          |                                                                          |            | Metabolite levels                              | rs1260326       | 0.91                                   | T,T         | -      |
|                  |                      |                    |          |                                                                          |            | Blood metabolite levels                        | rs1260326       | 0.91                                   | T,T         | Т      |
|                  |                      |                    |          |                                                                          |            | Blood metabolite ratios                        | rs1260326       | 0.91                                   | T,T         | Т      |
|                  |                      |                    |          |                                                                          |            | Total Cholesterol                              | rs1260326       | 0.91                                   | T,T         | Т      |
|                  |                      |                    |          |                                                                          |            | Serum albumin level                            | rs1260326       | 0.91                                   | T,T         | Т      |
| C2orf16          | rs1919128            | chr2:27801759      | A        | (L) BHLHE40                                                              | G          | Waist Circumference - Triglycerides<br>(WC-TG) | rs1919128       | 1.00                                   | -           | A      |
| CCDC121          | rs3749147            | chr2:27851918      | G        | (L)<br>CEBPD,DNASE,ELF1,GABP,MAX,MXI1,NR2F2,<br>POL2,TAF1,YY1,ZBTB7A     | A          | Waist Circumference - Triglycerides<br>(WC-TG) | rs3749147       | 1.00                                   | -           | С      |
|                  | rs2136737            | chr2:62969310      | С        | (L) FOXA2,HNF4A                                                          | G          | LDL cholesterol                                | rs2710642       | 0.77                                   | G,A         | G      |
|                  | rs1553832            | chr2:63013515      | G        | (L) BHLHE40                                                              | С          | LDL cholesterol                                | rs2710642       | 0.80                                   | C,A         | G      |
| EHBP1            | rs56373728           | chr2:63095792      | G        | (L) POL2                                                                 | Α          | LDL cholesterol                                | rs2710642       | 0.93                                   | A,A         | G      |
|                  | rs2710642            | chr2:63149557      | G        | (L) POL2                                                                 | Α          | LDL cholesterol                                | rs2710642       | 1.00                                   | -           | G      |
| ALMS1,           | rs10469966           | chr2:73752368      | G        | (L) CEBPB                                                                | A          | Metabolite levels                              | rs9309473       | 0.89                                   | G,A         | G      |
| NAT8,            |                      |                    |          |                                                                          |            | Blood metabolite levels                        | rs10469966      | 1.00                                   | -           | Α      |
| TPRKB,<br>DUSP11 |                      |                    |          |                                                                          |            | Metabolic traits                               | rs13391552      | 0.80                                   | G,G         | A      |
| Intergenic       | rs62150376           | chr2:83295262      | Т        | (L) FOXA1,HDAC2,HNF4G                                                    | С          | Hypertension                                   | rs10496289      | 0.93                                   | C,C         | -      |
| ACMSD            | rs62168897           | chr2:135717997     | С        | (L) POL2                                                                 | Т          | Blood metabolite levels                        | rs6430553       | 0.74                                   | C,C         | Т      |
| FIGN             | rs73029563           | chr2:165008166     | С        | (L) CEBPB                                                                | G          | Blood pressure                                 | rs1446468       | 0.90                                   | C,T         | Т      |
| 00044            | rs6713419            | chr2:165508300     | Т        | (L) MAFK                                                                 | С          | type 2 diabetes                                | rs3923113       | 0.97                                   | C,C         | A      |
| GRB14,           |                      |                    |          |                                                                          |            | Triglycerides                                  | rs10195252      | 0.87                                   | C,C         | С      |
| COBLLI           | rs10184004           | chr2:165508389     | С        | (L) MAFK                                                                 | Т          | type 2 diabetes                                | rs3923113       | 0.85                                   | T,C         | A      |
|                  |                      |                    |          |                                                                          |            | Triglycerides                                  | rs10195252      | 0.99                                   | T,C         | С      |
|                  | rs6745050            | chr2:204691538     | Т        | (L) MAFK                                                                 | С          | Type 1 diabetes                                | rs3087243       | 0.88                                   | C,G         | A      |
| CILA4            |                      |                    |          |                                                                          |            | Type 1 diabetes autoantibodies                 | rs3087243       | 0.88                                   | C,G         | Α      |
|                  | rs4477910            | chr2:234643737     | Т        | (L) FOXA1,FOXA2,HNF4A,NR2F2                                              | A          | Blood metabolite levels                        | rs887829        | 0.74                                   | A,C         | Т      |
| UGT1A            |                      |                    |          |                                                                          |            | Metabolite levels                              | rs887829        | 0.74                                   | A,C         | Т      |
|                  |                      |                    |          |                                                                          |            | Metabolic traits                               | rs887829        | 0.74                                   | A,C         | Т      |
|                  | rs4401206            | chr2:241796905     | G        | (L) CEBPD, CREB1, DNASE, HNF4A, HNF4G, MAX, MXI1, P300, RAD21, USF1, YY1 | A          | Blood metabolite levels                        | rs4675874       | 0.83                                   | G,A         | A      |
| 1017             | rs10933641           | chr2:241813788     | С        | (L) DNASE,MAX,POL2                                                       | Т          | Blood metabolite levels                        | rs4675874       | 0.86                                   | C,A         | Α      |
| AGXT             | rs4675858            | chr2:241840558     | Α        | (L) CEBPB                                                                | G          | Blood metabolite levels                        | rs4675874       | 0.98                                   | A,A         | Α      |
|                  | rs4417704            | chr2:241846573     | G        | (L) CTCF,MAX,RAD21                                                       | Α          | Blood metabolite levels                        | rs4675874       | 0.75                                   | G,A         | Α      |
|                  | rs62186584           | chr2:241853621     | С        | (L) CREB1                                                                | Т          | Blood metabolite levels                        | rs4675874       | 0.72                                   | C,A         | Α      |
| * indicates      | other allele is      | enriched rather th | nan enr  | iched allele(Enr. Allele), aR2 and coupling (imbalar                     | ced allel  | e, reported allele) calculated in 1000 (       | Genome EUR      | Risk                                   | allele incr | eases  |
| risk or trait    | measurement          | based on reporte   | ed effec | t allele in NHGRI GWAS catalog indicates no eff                          | ect allele | reported in catalog. Only reported va          | riant in highes | st LD s                                | shown       |        |

| Locus                             | Variant                        | Position                                 | Enr.<br>Allele | Imbalanced Proteins                                                                                 | Other<br>Allele    | Trait                                                                             | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling    | Risk.<br>Allele |
|-----------------------------------|--------------------------------|------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------|---------------------|--------------------------------------|-------------|-----------------|
|                                   | rs7640929                      | chr3:27513944                            | A              | (L) CEBPA                                                                                           | С                  | Diastolic blood pressure                                                          | rs13082711          | 0.89                                 | C,T         | Т               |
| SLC4A7                            |                                |                                          |                |                                                                                                     |                    | Blood pressure                                                                    | rs13082711          | 0.89                                 | C,T         | Т               |
|                                   | rs7639267                      | chr3:52568805                            | Т              | (L) HEY1                                                                                            | G                  | Adiponectin levels                                                                | rs2590838           | 0.70                                 | G,G         | G               |
| GNL3                              | rs1108842                      | chr3:52720080                            | С              | (L) CREB1,SIN3AK20,TAF1                                                                             | А                  | Adiponectin levels                                                                | rs1108842           | 1.00                                 | -           | С               |
|                                   | rs2710323                      | chr3:52815905                            | С              | (L) BHLHE40,FOXA2                                                                                   | Т                  | Adiponectin levels                                                                | rs1108842           | 0.80                                 | T,A         | С               |
| GSK3B                             | rs6800622                      | chr3:119580678                           | С              | (L) MAFK                                                                                            | A                  | HDL cholesterol                                                                   | rs6805251           | 0.98                                 | C,C         | Т               |
| ADIPOQ                            | rs58575091                     | chr3:186545319                           | T              | (L) CHD2                                                                                            | С                  | Adiponectin levels                                                                | rs266717            | 0.80                                 | T,C         | С               |
| STX18,<br>MSX1                    | rs4689909                      | chr4:4643276                             | G              | (L) HEY1                                                                                            | A                  | Congenital heart disease                                                          | rs870142            | 0.98                                 | G,C         | A               |
| ANXA3                             | rs4075927                      | chr4:79575058                            | G              | (L) BHLHE40,USF1                                                                                    | A                  | Non-albumin protein levels                                                        | rs10007186          | 0.95                                 | G,T         |                 |
| ABCG2                             | rs45499402                     | chr4:89043634                            | G              | (L) FOXA1                                                                                           | С                  | Serum uric acid levels                                                            | rs2231142           | 1.00                                 | G,G         | T               |
|                                   | rs6841731                      | chr4:89228928                            | A              | (L) MAFK                                                                                            | G                  | Blood metabolite levels                                                           | rs1440581           | 0.89                                 | G,T         | Т               |
| PPM1K                             |                                |                                          |                |                                                                                                     |                    | Metabolite levels                                                                 | rs1440581           | 0.89                                 | G,T         | ?               |
|                                   | rs2869930                      | chr4:89242372                            | G              | (L) FOXA1,FOXA2                                                                                     | С                  | Blood metabolite levels                                                           | rs10022462          | 1.00                                 | G,C         | Т               |
| TMEM154                           | rs6813195                      | chr4:153520475                           | С              | (I) FOXA2                                                                                           | Т                  | type 2 diabetes                                                                   | rs6813195           | 1.00                                 | -           | С               |
| TERT                              | rs31490                        | chr5:1344458                             | A              | (L) CEBPB                                                                                           | G                  | Serum prostate-specific antigen levels                                            | rs401681            | 0.89                                 | A,T         | С               |
| ANKH                              | rs835158                       | chr5:14873254                            | G              | (L) CEBPB                                                                                           | С                  | Blood metabolite levels                                                           | rs835154            | 0.76                                 | C,G         | Α               |
| BHMT,                             | rs16876512                     | chr5:78407261                            | Т              | (L) TCF12                                                                                           | С                  | Blood metabolite levels                                                           | rs16876394          | 0.86                                 | C,T         | Т               |
| BHMT2                             |                                |                                          |                |                                                                                                     |                    | Metabolite levels                                                                 | rs17823642          | 0.83                                 | C,C         | С               |
| ELL2                              | rs10070197                     | chr5:95241868                            | С              | (L) CEBPB                                                                                           | Т                  | Serum total protein level                                                         | rs3777200           | 0.99                                 | T,C         | Т               |
|                                   | rs1458017                      | chr5:95251346                            | Α              | (L) HEY1                                                                                            | G                  | Serum total protein level                                                         | rs3777200           | 0.81                                 | G,C         | Т               |
|                                   | rs2295602                      | chr6:11005842                            | T              | (L) BHLHE40                                                                                         | С                  | Blood metabolite levels                                                           | rs4713169           | 0.87                                 | T,G         | С               |
|                                   | rs3798713                      | chr6:11008622                            | G              | (L) FOXA1,HNF4A                                                                                     | С                  | Blood metabolite levels                                                           | rs4713169           | 0.83                                 | G,G         | С               |
|                                   | rs953413                       | chr6:11012859                            | G              | (L) FOXA1,FOXA2,NR2F2,P300                                                                          | A                  | Blood metabolite levels                                                           | rs4713169           | 0.88                                 | G,G         | С               |
| ELOVL2                            | rs56190003                     | chr6:11088533                            | Т              | (L) HEY1                                                                                            | С                  | Blood metabolite levels                                                           | rs4713169           | 0.94                                 | T,G         | С               |
|                                   | rs13362715                     | chr6:11088630                            | С              | (L) HEY1,POL2                                                                                       | Т                  | Metabolite levels                                                                 | rs3798722           | 0.75                                 | C,A         | -               |
|                                   |                                |                                          |                |                                                                                                     |                    | Metabolic traits                                                                  | rs9393903           | 0.79                                 | C,G         | Α               |
|                                   |                                |                                          |                |                                                                                                     |                    | Blood metabolite ratios                                                           | rs9393915           | 0.85                                 | C,C         | Т               |
|                                   | rs1165176                      | chr6:25830298                            | A              | (L) FOXA1                                                                                           | G                  | Cardiovascular disease risk factors                                               | rs11754288          | 0.78                                 | G,G         | Α               |
|                                   |                                |                                          |                |                                                                                                     |                    | Blood metabolite levels                                                           | rs2762353           | 0.86                                 | G,G         | Α               |
| SLC17A3                           |                                |                                          |                |                                                                                                     |                    | Blood metabolite ratios                                                           | rs1185567           | 0.88                                 | G,G         | Α               |
|                                   | rs1165183                      | chr6:25836380                            | G              | (L) POL2                                                                                            | A                  | Cardiovascular disease risk factors                                               | rs11754288          | 0.78                                 | G,G         | Α               |
|                                   |                                |                                          |                |                                                                                                     |                    | Blood metabolite levels                                                           | rs2762353           | 0.86                                 | G,G         | Α               |
|                                   |                                |                                          |                |                                                                                                     |                    | Blood metabolite ratios                                                           | rs1185567           | 0.87                                 | G,G         | Α               |
| HCG27,<br>HLA-C                   | rs6921948                      | chr6:31171257                            | A              | (I) FOXA2                                                                                           | С                  | Coronary heart disease                                                            | rs3869109           | 0.73                                 | A,A         | G               |
|                                   | rs813115                       | chr6:31620020                            | G              | (L) DNASE,GABP,NRSF                                                                                 | A                  | Diastolic blood pressure                                                          | rs805303            | 1.00                                 | A,G         | G               |
| BAT2, BAT                         | 5                              |                                          |                |                                                                                                     |                    | Systolic blood pressure                                                           | rs805303            | 1.00                                 | A,G         | G               |
|                                   |                                |                                          |                |                                                                                                     |                    | Hypertension                                                                      | rs805303            | 1.00                                 | A,G         | G               |
| * indicates of<br>risk or trait r | other allele is<br>neasurement | enriched rather th<br>t based on reporte | an enr         | iched allele(Enr. Allele), <sup>a</sup> R2 and coupling<br>t allele in NHGRI GWAS catalog - indicat | (imbalanced allele | e, reported allele) calculated in 1000 (<br>reported in catalog. Only reported va | Genome EUR          | . Risk                               | allele incr | eases           |

| Locus                                                 | Variant         | Position           | Enr.  | Imbalanced Proteins                                                                                | Other     | Trait                                                 | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling    | Risk. |
|-------------------------------------------------------|-----------------|--------------------|-------|----------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|---------------------|--------------------------------------|-------------|-------|
|                                                       | rs4348358       | chr6:32399092      | G     | (L) MAFK                                                                                           | A         | Type 1 diabetes                                       | rs9268645           | 1.00                                 | G.C         | -     |
| MHC                                                   | rs9268606       | chr6:32400070      | G     | (L) CTCF                                                                                           | A         | Type 1 diabetes                                       | rs9268645           | 1.00                                 | G.C         | -     |
| SLC35F1,<br>C6orf204,<br>PLN                          | rs283080        | chr6:118606000     | A     | (L) RAD21                                                                                          | С         | Cardiac structure and function                        | rs89107             | 0.79                                 | C,G         | G     |
| Intergenic                                            | rs73069540      | chr7:26904770      | Т     | (L) HDAC2                                                                                          | С         | Type 1 diabetes                                       | rs7804356           | 0.95                                 | C,T         | -     |
| PON-1                                                 | rs705379        | chr7:94953895      | G     | (L) DNASE                                                                                          | A         | Paraoxonase activity                                  | rs854572            | 0.84                                 | G,C         |       |
|                                                       | rs6984305       | chr8:9178268       | Т     | (L) CTCF                                                                                           | A         | Fasting glucose-related traits (interaction with BMI) | rs4841132           | 0.80                                 | T,G         | -     |
|                                                       |                 |                    |       |                                                                                                    |           | HDL cholesterol                                       | rs9987289           | 0.80                                 | T,G         | Α     |
|                                                       |                 |                    |       |                                                                                                    |           | Metabolite levels                                     | rs4841132           | 0.80                                 | T,G         | -     |
| PPP1R3B                                               |                 |                    |       |                                                                                                    |           | HDL Cholesterol - Triglycerides<br>(HDLC-TG)          | rs9987289           | 0.80                                 | T,G         | A     |
|                                                       |                 |                    |       |                                                                                                    |           | Fasting insulin-related traits (interaction with BMI) | rs4841132           | 0.80                                 | T,G         | -     |
|                                                       |                 |                    |       |                                                                                                    |           | C-reactive protein                                    | rs9987289           | 0.80                                 | T,G         | Α     |
|                                                       |                 |                    |       |                                                                                                    |           | Total Cholesterol                                     | rs9987289           | 0.80                                 | T,G         | -     |
|                                                       |                 |                    |       |                                                                                                    |           | LDL cholesterol                                       | rs9987289           | 0.80                                 | T,G         | Т     |
| IDO1                                                  | rs11777082      | chr8:39797703      | A     | (L) BHLHE40                                                                                        | G         | Blood metabolite levels                               | rs2160860           | 0.88                                 | G,A         | Α     |
| CDC123,<br>CAMK1D                                     | rs34428576      | chr10:12281111     | G     | (L) CEBPA,CEBPB,CEBPD,CREB1,DNASE,<br>FOXA1,HDAC2,HNF4A,JUND,MAX,NFIC,NR2F2,P<br>300, RAD21,ZBTB7A | A         | type 2 diabetes                                       | rs12779790          | 0.72                                 | G,A         | G     |
| c10orf107,<br>TMEM26,<br>RTKN2,<br>RHOBTB1,<br>ARID5B | rs16916563      | chr10:63507642     | G     | (L) FOXA2                                                                                          | A         | Diastolic blood pressure                              | rs1530440           | 0.92                                 | G,C         | Т     |
| HHEX                                                  | rs4933736       | chr10:94471595     | Т     | (L) FOXA2                                                                                          | С         | type 2 diabetes                                       | rs1111875           | 0.74                                 | C,C         | G     |
| HIF1AN,<br>SEC31B                                     | rs2295776       | chr10:102295629    | 9 G   | (L) BHLHE40                                                                                        | Т         | Palmitoleic acid (16:1n-7) plasma levels              | rs11190604          | 0.96                                 | G,A         | -     |
| NDUFB8,<br>WNT8B,<br>SCD                              | rs2495758       | chr10:102321900    | ) C   | (L)<br>CHD2,CREB1,CTCF,DNASE,ELF1,MAX,RAD21,Y<br>Y1                                                | G         | Palmitoleic acid (16:1n-7) plasma<br>levels           | rs11190604          | 0.98                                 | C,A         | -     |
|                                                       | -               | chr10:104692633    | 3 A   | (L) CEBPA                                                                                          | С         | Blood pressure                                        | rs11191548          | 0.83                                 | C,T         | Т     |
| CYP17A1,                                              |                 |                    |       |                                                                                                    |           | Coronary heart disease                                | rs12413409          | 0.94                                 | C,G         | -     |
| AS3MT,                                                |                 |                    |       |                                                                                                    |           | Systolic blood pressure                               | rs11191548          | 0.83                                 | C,T         | Т     |
| UNNMZ,                                                | rs1926032       | chr10:104829469    | C C   | (L) CTCF                                                                                           | Т         | Blood pressure                                        | rs11191548          | 0.76                                 | C,T         | Т     |
| N130Z                                                 |                 |                    |       |                                                                                                    |           | Systolic blood pressure                               | rs11191548          | 0.76                                 | C,T         | Т     |
| ACY3                                                  | rs12288023      | chr11:67421341     | T     | (L) CEBPB                                                                                          | С         | Serum metabolite levels                               | rs12288023          | 1.00                                 | -           | С     |
| * indicates of                                        | other allele is | enriched rather th | an en | iched allele(Enr. Allele), aR2 and coupling (imbalance                                             | ed allele | e, reported allele) calculated in 1000                | Genome EUR          | . Risk                               | allele incr | eases |

risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown

| Locus     Variant     Position     Allele imbalanced Proteins     Allele Trait     Variant     (°)     Coupling Allele       APCA5,<br>BAPCA4,<br>APCA4,<br>APCA5,<br>BUD13     rs10351     ch11.116607641     T     (L) CTCF     C     Triglycerides     rs603468     0.91     T.T     T       APCA4,<br>APCA5,<br>BUD13     rs11218752     ch11.112552860     C     (L) CTCF     T     HDL cholesterol     rs741030     0.81     C.T     G       VBASH0B     rs11218752     ch11.112552860     C     (L) FNF4A     G     Biood metabolite levels     rs1498844     1.00     G.A     A       ASCL1     rs746439     ch12.103224913     T     (L) FNF4A     G     Biood metabolite levels     rs204365     0.91     T.T     T       ACADS     rs226810     ch12.103224910     C     (L) FNF4A     G     Biood metabolite levels     rs204365     0.01     T.A     A       ACADS     rs2268287     ch12.124162913     A     (L) FOL2_USF1     C     C androwascular areas     rs214386510     0.81     T.T     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                                                                                                   |                    | Enr.            |                                                    | Other    |                                          | Reported        | LD                                     |             | Risk.    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|----------------------------------------------------|----------|------------------------------------------|-----------------|----------------------------------------|-------------|----------|
| ZMP258,<br>PAOA1,<br>APOA5,<br>APOA4,<br>APOA5,<br>BUD13     rs180351     chr11:116607641     T     L) CTCF     C     Triglycerides     rs603446     0.91     T, T     T       APOA5,<br>APOA5,<br>BUD13     rs11218752 chr11:122552800     C     (L) CTCF     T     HDL cholesterol     rs7941030     0.81     C, T     G       UBASH38     rs11218752 chr11:122552800     C     (L) HNF4A     C     Biodimetabulite levels     rs144664     1.00     G, A     A       VBASH4839     rh12:105244013     T     (L) HNF4A     C     Biodimetabulite levels     rs1204664     1.00     G, A     A       RS12828810     rh12:121452017     G     (L) CTCF     T     Metabolite levels     rs2066938     1.00     T, A     A       MEF1A     rs7139079     rh12:121415233     A     (L) PCL2     G     C-reactive protein     rs7313070     0.91     A     A       ASC4     rs9209054     rn13:9291658     A     (L) PCL2     C     Biodimetabolite levels     rs13030     0.75     T, T     A       SERPINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Locus                                           | Variant                                                                                                                                                           | Position           | Allele          | Imbalanced Proteins                                | Allele   | Trait                                    | Variant         | ( <b>r</b> <sup>2</sup> ) <sup>a</sup> | Coupling    | Allele   |
| BUD13     s11218752     chr11:122552800     C     L) CTCF     T     HDL cholesterol     rs7941030     0.81     C,T     G       ABASH38     rs1218752     chr11:122552800     C     L) NF4A     G     Blood metabolite levels     rs1496054     1.00     CA     A       ASCL1     rs476493     chr12:103522952     C     L) NF4A     T     C-reactive protein     rs1014355     0.81     C.A     A       ACADS     rs12828810     chr12:121452017     G     L) POL2     C     C-reactive protein     rs7014095     0.82     A     G     C-reactive protein     rs701409     0.82     A     G     C-reactive protein     rs7041049     0.82     A     G     C-reactive protein     rs704050     0.82     A     G     C-reactive protein     rs704050     C     C-reactive protein     rs704050     C<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZNF259,<br>APOA1,<br>APOC3,<br>APOA4,<br>APOA5, | rs180351                                                                                                                                                          | chr11:116607641    | Т               | (L) CTCF                                           | С        | Triglycerides                            | rs603446        | 0.91                                   | T,T         | Т        |
| UBASH3B     F11287/32 chrit 1:2255200 C     C     L) FLC     The DL cholesterol     rs/441030     0.81     C, T     G       PAH     rs869916     chrl 2:103244013     T     (L) HNF4A     G     Blood metabolite levels     rs1498694     1.00     G.A     A       ASCL1     rs764939     chrl 2:10322452     C     (L) NFFA     T     T     T     T       ACADS     rs12828810     chrl 2:121452037     G     (L) CTCF     T     Metabolite levels     rs2046938     0.01     T.A     A       ACADS     rs12828810     chrl 2:12145233     A     (L) POL2     C     Caracitive protein     rs7104095     0.82     AG     A       MIREGEN     rs1138076     chrl 2:121454313     A     (L) POL2     C     Caracitive scular diseaser isk factors     rs213545     0.72     C,G     A       MIREGEN     rs1138076     chrl 2:121454313     A     (L) POL2.USF1     C     Caracitive scular diseaser isk factors     rs213545     0.72     C,G     A       MIREGEN     rs1144513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BUD13                                           |                                                                                                                                                                   |                    |                 | ( ) 0705                                           |          |                                          |                 |                                        |             |          |
| PAH     rs868916     chrl12-103244013     T     L) HNF4A     G     Biod Chrlassolu     rs1941030     D.31     C.1     C.G       ASCL1     rs4764039     chrl2:103522582     C     L) HNF4A     T     C-reactive protein     rs10460540.87     C.A     A       ASCL1     rs4764039     chrl2:121152017     G     L) CFCF     T     Metabolite levels     rs2046393     1.00     T.A     A       ACADS     HNF1A     rs7139079     chrl2:121415203     A     L) POL2     C     C-reactive protein     rs7310409     0.82     A     A     A     A     Metabolite levels     rs2066938     1.00     T.A     A     Metabolite levels     rs2014355     0.0     T.A     A     Metabolite levels     rs301409     0.82     A     C     T.A     A     Metabolite levels     rs301409     0.82     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UBASH3B                                         | rs11218752                                                                                                                                                        | chr11:122552600    | C               | (L) CTCF                                           | Т        | HDL cholesterol                          | rs7941030       | 0.81                                   | C,T         | G        |
| PAR     CHI 12 (032493 C)     CHI 22 (032295 C)     C (L) HNF4A     T C-reactive protein     rs10745954 0.87 C.A     A       ACL05     rs12828810 chrl2:121152017     G     (L) CTCF     T     Metabolite levels     rs204355 0.91     T.T     T       ACADS     rs12828810 chrl2:121152017     G     (L) CTCF     T     Metabolite levels     rs2066938     1.00     T.A     A       ACADS     rs12828810 chrl2:121415203     A     (L) POL2     C     C-reactive protein     rs7310409     0.82     A.G     A       MDRAGE     rs1124513     chrl2:121454313     A     (L) POL2     C     C-reactive protein     rs7310409     0.82     A.G     A       MDRAGE     rs1124513     chrl2:12145431     A     (L) POL2     C     C     C     A     A     C     T     Suddem cardiac arrest     rs12429889     CA     A     C     T     Suddem cardiac arrest     rs12429889     CA     A     C     T     C     C     Metabolite levels     rs12498617     C     C     A <td></td> <td>ro<sup>960016</sup></td> <td>obr12:102244012</td> <td></td> <td></td> <td></td> <td>Plead matchelite levels</td> <td>ro1409604</td> <td>1.00</td> <td>C,1</td> <td>G</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | ro <sup>960016</sup>                                                                                                                                              | obr12:102244012    |                 |                                                    |          | Plead matchelite levels                  | ro1409604       | 1.00                                   | C,1         | G        |
| ASCL     Test C-treative puterin     TS C-treat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | 15009910                                                                                                                                                          | chi 12.103244013   |                 |                                                    | G<br>T   |                                          | 151490094       | 0.07                                   | G,A         | A        |
| ACADS     Initial metabolite levels     isol 4333     0.91     1.1     A       ACADS     F87139079     chrl2121415233     A. (L) POL2     C     Creative protein     rs7130079     chrl2121415233     A. (L) POL2     C     Creative protein     rs73130079     chrl2121415233     A. (L) POL2     C     C     Cardiovszoular disease risk factors     rs2931846     0.72     C.G     A       Intergenic     rs1284047     chrl3124796108     C     (L) HNF4G     T     Studden cardiac arrest     rs1242889     0.78     T.T     -       ABCCA     rs30302064     chrl312555     A. (L) HDXA2     C     Metabolite levels     rs30302065     0.99     C.G     A       ADAMTS7     rs1845656 chrl5.79143705     G     (L) HDXA2     C     Metabolite levels     rs30302065     0.99     C.G     A     A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASCLI                                           | 154704939                                                                                                                                                         | chi 12.103522952   |                 |                                                    | <u>-</u> | C-reactive protein                       | 1810745954      | 0.07                                   |             | A<br>T   |
| ACADS     Biodomination reads     rs206935     1.00     T, A     A       HNF1A     rs7139079     chrl2:1214/5283     A     (L) POL2     C     Cardiovascular disease risk factors     rs7313450     0.72     C     A     G       OASL     rs225827     chrl2:1214/5433     A     (L) POL2     G     Cardiovascular disease risk factors     rs7313450     0.72     C,G     A       WDR66     rs1154513     chrl2:122391963     A     (I) FOXA2     G     Biodo metabolite levels     rs493519     0.94     G,C     T       Intergenic     rs12864047     chrl3:74796108     C     (L) HNF4G     T     Sudden cardiac arrest     rs12429889     0.75     T,T     -       ABCC4     rs9302064     chrl5:79169751     T     (L) CRE1,UND     C     Diastolic blood pressure     rs3262607     0.8     A     A       ACSM5     rs7194088     chrl6:20449450     C     (L) MAC2     G     Coronary hear disease     rs3262607     0.8     A     A       FURIN, FES     rs1494398 <td></td> <td>1512020010</td> <td>CHI12.121152017</td> <td>G</td> <td></td> <td>1</td> <td>Died metabolite levels</td> <td>182014355</td> <td>1.00</td> <td></td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | 1512020010                                                                                                                                                        | CHI12.121152017    | G               |                                                    | 1        | Died metabolite levels                   | 182014355       | 1.00                                   |             | 1        |
| HNF1A     rs713079     chrl2:12141523     A     L) POL2     G     C-readive protein     rs7130409     0.82     A     A     G       OASL     rs2256287     chrl2:121415233     A     L) POL2     C     C-readive protein     rs7313456     0.72     C,G     A       MDR66     rs12664047     chrl3:74796108     C     L) HNF4G     C     Cardiovascular disease risk factors     rs3213456     0.72     C,G     A       ABCC4     rs9302064     chrl3:37966851     A     (L) F0XA1,JUND     C     Blood metabolite levels     rs9302065     0.99     C,G     A       SERPINAI     rs18857695     chrl5:75165751     T     L) LO CX41,JUND     C     Blood metabolite levels     rs3302055     0.99     C,G     A       ADAMT57     rs11857695     chrl5:75165751     T     L) HOAC2     C     Orenary heart disease     rs3225101     0.71     A.T     T       FURIN, FES     rs933751     chrl6:20464350     C     L) HOAC2     G     Coronary heart disease     rs324678     0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACADS                                           |                                                                                                                                                                   |                    |                 |                                                    |          | Motobolio troito                         | 182066936       | 1.00                                   | T,A         | A        |
| Find F.M.     First First Status     C     C-relative protein     First Status     Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | m7120070                                                                                                                                                          | abr12:121415202    |                 | (I) POL 2                                          |          |                                          | 152000930       | 0.00                                   | 1,A         |          |
| ORSL     IS229207     DITI2_121494313     A     C Conductascular uses as instactors     IS2231345     0.72     C, G     A       MDR66     rs1154513     ch113_1212391893     A     (L) FOXA2     G     Blood metabolite levels     rs493519     0.94     G, C     T       ABCC4     rs9302064     ch13_1249889     0.78     T, T     -       ABCC4     rs9302064     ch13_12498189     0.78     T, T     -       ABCC4     rs9302064     ch13_12498189     0.78     T, T     -       ABCC4     rs9302064     ch13_12498186     T     (L) HEY1.MBD4_POL2     C     Metabolite levels     rs1303     0.75     T, T       ABCMTS7     rs11856536     ch15_75165751     T     (L) CREB1_JUND     G     Diastolic blood pressure     rs3252307     0.98     AA     A       FURIN, FES     rs493379     ch16_20464350     C     (L) POL2_SRF     G     Blood metabolite levels     rs126476     0.71     A, T     T       ACSMS7     rs7194096     ch16_20464300     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 197 139079                                                                                                                                                        | chi 12.121415295   |                 |                                                    | G        | C-reactive protein                       | 197310409       | 0.02                                   | A,G         | <u>A</u> |
| WDrkob     Fil 194013     Lin II, 2239 1903     A     C) C     T       Intergenic     rsi286404     chrl3:295966851     A     (L) FOXA1, JUND     C     Blood metabolite levels     rsi3202689     0.78     T, T     -       ABCC4     rsi3286407     rsi12456407     T     L) HEY1, MBD4, POL2     C     Metabolite levels     rsi3303     0.75     T, T     -       CSK, ULLX3: rsi1857695     T     L) HEY1, MBD4, POL2     C     Metabolite levels     rsi3025807     0.88     AA     A       CSK, ULLX3: rsi1857695     C L) HEY1, MBD4, POL2     G     Diastolic blood pressure     rsi3252610     0.71     A, T     T       ADAMTS7     rsi1857695     chrl5:091404705     G     (I) NKX6     A     Diastolic blood pressure     rsi32521501     0.71     A, T     T       ACSM55, rs9937681     chrl6:20491030     G     L) MFF, MAFF, MAFK     A     Blood metabolite levels     rs1394678     0.80     C, C     T       rs1394678     chrl6:20491058     C     L) CTCF     T     Blood metabolite levels <td>UASL</td> <td>ISZZ30Z07</td> <td>obr12:121404010</td> <td></td> <td></td> <td><u>C</u></td> <td>Pland matchelite levels</td> <td>183213545</td> <td>0.72</td> <td><u>C,G</u></td> <td>A<br/>T</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UASL                                            | ISZZ30Z07                                                                                                                                                         | obr12:121404010    |                 |                                                    | <u>C</u> | Pland matchelite levels                  | 183213545       | 0.72                                   | <u>C,G</u>  | A<br>T   |
| Intergence     Fit 220000     Clin IN-19000     Clin IN-190000     Clin IN-190000     Clin IN-1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VVDR66                                          | ro12964047                                                                                                                                                        | obr12:74706109     |                 |                                                    | <u>_</u> | Sudden eardige arrest                    | ro12420990      | 0.94                                   | <u> </u>    | ·'       |
| ABUC4     ISS02004     Clin IS 3990081     A     Lin POAR JOIND     C     Biodd interabilite levels     ISS02005     0.99     C.G     A       SERPINAL TS 7090719     Chi 14:394846661     T     (L) POAR JOIND     G     Diastolic blood pressure     rs6495122     0.70     T.C     A       ADAMTS7     rs11856536     chrl5:91404705     G     (I) HDAC2     G     Coronary heart disease     rs3825807     0.98     A.A     A       FURIN, FES     rs7194098     chrl5:91404705     G     (I) HDAC2     G     Coronary heart disease     rs3825807     0.98     A.A     A       ACSM5,<br>rs7194098     chrl6:20464350     C     (I) POL2,SRF     G     Blood metabolite levels     rs11647589     0.89     C,A     A       ACSM2A     rs9937581     chr6:20479030     G     (I) MAFF, MAFK     A     Blood metabolite levels     rs11647589     0.9     C,A     A       ACSM2A     rs9937581     chr6:20479030     C     (I) CTC     T     Blood metabolite levels     rs1394678     0.80     C,G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intergenic                                      | 1512004047                                                                                                                                                        | chi 13.74790100    |                 |                                                    | ·····    |                                          | 1512429009      | 0.70                                   | 1,1         | -        |
| SERVIYA ITS/1907/9 Chilles/9404001     It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | ro17000710                                                                                                                                                        | obr14:04946661     | T               |                                                    | <u>C</u> | Motobolito lovolo                        | ro1202          | 0.99                                   | <u> </u>    | A        |
| CSA, DLRS IS H3/05/05 Clift S/100/S1 T     T     (L) CREB J3/06D     G     Diasolite biolog pressure     rs325/200     T, C     A       ADAMTS7     rs1136563 clift S/109/322     A     (L) HDAC2     G     Coronary heart disease     rs325/200     0.71     A.T     T       ACSMS,<br>ACSM2A     rs1146/503 clift S/109/2012     A     (L) HDAC2     G     Coronary heart disease     rs325/2010     0.71     A.T     T       ACSMS,<br>ACSM2A     rs1194/098     chr16:2046350     C     (L) POL2,SRF     G     Blood metabolite levels     rs1164/7580     A     A       rs1394678     chr16:20473903     G     (L) MAFF,MAFK     A     Blood metabolite levels     rs1394678     0.80     G,C     T       rs181203     chr16:20491058     C     (L) CTCF     T     Blood metabolite levels     rs1394678     0.00    C     G       rs2104480     chr16:2851281     T     (L) HDAC2     G     Type 1 diabetes     rs4788084     0.73     A.C     G       rs20343119     chr16:28531381     T     (L) HDAC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SERPINAT                                        | ro11957605                                                                                                                                                        | obr15:75165751     | <u>-</u>        |                                                    | <u>C</u> | Diastolia blood proceure                 | 151303          | 0.75                                   | 1,1<br>T.C  | -        |
| ADJANTS/     Tist 1830305 cliff 37:9093233     A     L(1) FDAC2     G     Collority frequency for the service     Tist 2302367     A     A     A       FURIN, FES     rs4302370     chr15:91404705     G     (i) NKX6     A     Diastolic blood pressure     rs2521501     0.71     A,T     T       ACSM5,<br>ACSM2A     rs7194098     chr16:20464350     C     (L) POL2,SRF     G     Blood metabolite levels     rs11647589     0.80     C,A     A       ACSM5,<br>ACSM2A     rs1394678     chr16:20491058     C     (L) CTCF     T     Blood metabolite levels     rs1394678     0.00     -     T       rs116203     chr16:28512371     A     (L) EZH2     C     Type 1 diabetes     rs4788084     0.00     -     T       rs2106480     chr16:2856489     G     (L) DASE, HEY1, POL2     A     Type 1 diabetes     rs4788084     0.00     -     C     G       rs7191018     chr16:2866489     G     (L) POL2, POL2     A     Type 1 diabetes     rs4788084     0.74     Q,C     G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSK, ULKS                                       | ro11956526                                                                                                                                                        | obr15:70004225     | 1               |                                                    | <u>G</u> |                                          | 150495122       | 0.70                                   | 1,0         | A        |
| FURIN, FES     Disblic clinitity     Instantion of pressure     Instantion of pressure <thi< td=""><td>ADAM157</td><td>ro4022270</td><td>chi 15.79094325</td><td>A<br/>C</td><td></td><td><u>G</u></td><td>Diastolia blood prossure</td><td>153623607</td><td>0.90</td><td>A,A</td><td><br/></td></thi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ADAM157                                         | ro4022270                                                                                                                                                         | chi 15.79094325    | A<br>C          |                                                    | <u>G</u> | Diastolia blood prossure                 | 153623607       | 0.90                                   | A,A         | <br>     |
| ACSMS,<br>ACSMS,<br>ACSM2     rs7194098<br>rs9937581     chr16:20464350     C     (L) POL2,SRF     G     Biood metabolite levels     rs11647589     0.89     C,A     A       ACSM5,<br>ACSM2A     rs9937581     chr16:20473903     G     (L) MAFF,MAFK     A     Blood metabolite levels     rs1394678     0.80     G,C     T       rs1934678     chr16:204713903     G     (L) CTCF     T     Blood metabolite levels     rs1394678     1.00     -     T       rs181203     chr16:28512371     A     (L) CTCF     T     Blood metabolite levels     rs1394678     0.90     -     T       rs2106480     chr16:2851271     A     (L) EZH2     C     Type 1 diabetes     rs4788084     0.99     T,C     G       rs2106480     chr16:28537971     T     (L) CEBP,DNASE,FOXA1,HNF4A,P300     C     Type 1 diabetes     rs4788084     0.99     T,C     G       rs7191618     chr16:28656489     G     (L) DNASE,MAX,RAD21     G     Type 1 diabetes     rs4788084     0.71     A,C     G         rs7187776     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FURIN, FES                                      | 154952570                                                                                                                                                         | CIII 15.91404705   | G               |                                                    | A        | Systelic blood pressure                  | rs2521501       | 0.71                                   |             |          |
| ACSM5,<br>ACSM2     Is 194058 of chr16:20404390     C     L     POL2, RF     G     Blood metabolite levels     Is 194768 of chr36 0.80     C, A     A       ACSM2A     rs993751 chr16:20473903     G     L     MAFK     A     Blood metabolite levels     rs1394678     1.00     -     T       rs1934678     chr16:20491058     C     L     C     Type 1 diabetes     rs1394678     1.00     -     T       rs181203     chr16:28512371     A     L) EZH2     C     Type 1 diabetes     rs4788084     0.99     T,C     G       rs2106480     chr16:28537971     T     L) CEBPB,DNASE,FOXA1,HNF4A,P300     C     Type 1 diabetes     rs4788084     0.99     T,C     G       rs2106480     chr16:28565489     G     L) DNASE,MAX,RAD21     A     Type 1 diabetes     rs4788084     0.79     G,C     G       rs7191618     chr16:28608230     G     L) DNASE,MAX,RAD21     G     Type 1 diabetes     rs4788084     0.74     G,C     G       rs71387776     chr16:2887645     A     L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | ro7104009                                                                                                                                                         | obr16:20464250     | ~               |                                                    |          | Blood motobolito lovela                  | ro11647590      | 0.71                                   | A, I        |          |
| ACSM2A     Iss394678     Intercedure levels     Is1394678     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30     0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACSM5,<br>ACSM2A                                | ro0027591                                                                                                                                                         | chi 10.20404330    | С<br>С          |                                                    | G        | Blood metabolite levels                  | ro1204679       | 0.09                                   | 0,A         |          |
| Initial stature     Initial st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | ro1204679                                                                                                                                                         | chi 10.2047 3903   | G               |                                                    | A        | Blood metabolite levels                  | ro1204679       | 1.00                                   | 6,0         |          |
| sinitialized chrifeizes chrifeizes   rs4780044   0.19   rs4780044   0.99   T, C   G     rs62034319   chr16:28532188   T   (L) EDP2   G   Type 1 diabetes   rs4780044   0.99   T, C   G     rs2106480   chr16:28532188   T   (L) CEBPB,DNASE,FOXA1,HNF4A,P300   C   Type 1 diabetes   rs4788084   0.09   T, C   G     rs2106480   chr16:28565489   G   (L) DNASE,HEY1,POL2   A   Type 1 diabetes   rs4788084   0.09   T, C   G     rs7191618   chr16:28565667   C   (L) DNASE,MAX,RAD21   G   Type 1 diabetes   rs4788084   0.89   C, C   G     rs62031562   chr16:28608230   G   (L) POL2   T   Type 1 diabetes   rs4788084   0.71   A, C   G     rs62037367   chr16:28857645   A   (L) CREB1,HEY1,HNF4G   G   Body mass index   rs7498665   0.71   A, A   G     SH2B1   rs7187776   chr16:28874547   C   (L) CREB1,HEY1,HNF4G   G   Body mass index   rs7498665   0.00   C, A   G     sr1864750<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | rc191202                                                                                                                                                          | chr16:29512371     | ~               |                                                    | <u>_</u> |                                          | rc4788084       | 0.73                                   | -           | G        |
| IL27   Instruction   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IL27                                            | rc62034310                                                                                                                                                        | chr16:28532188     | T               |                                                    | C        | Type 1 diabetes                          | rs4788084       | 0.73                                   | A,C         | G        |
| IL27   rs62034351   chr16.2857971   T   C)   DNASE, FOXA1, FINF4A, F300   C   Type 1 diabetes   Ts4788084   0.79   G, C   G     IL27   rs62034351   chr16.28565667   C   (L)   DNASE, HEY1, POL2   A   Type 1 diabetes   rs4788084   0.79   G, C   G     rs7191618   chr16.28605230   G   (L)   DNASE, MAX, RAD21   G   Type 1 diabetes   rs4788084   0.74   G, C   G     rs62031562   chr16.28608230   G   (L)   MAX, RAD21   A   Type 1 diabetes   rs4788084   0.71   A, C   G     rs62031562   chr16.28608230   G   (L)   POL2   T   Type 1 diabetes   rs4788084   0.71   A, C   G     rs62037367   chr16.28857645   A   (L)   CREB1, HEY1, HNF4G   G   Body mass index   rs7498665   1.00   C, A   G     SH2B1   rs62037367   chr16:28875122   T   (L)   CREB1, SP2, SRF   G   Body mass index   rs7498665   1.00   C, A   G     SH2B1   rs7198606   chr16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | ro2106490                                                                                                                                                         | ohr16:20532100     | Т               |                                                    | 0<br>C   | Type 1 diabetes                          | ro4700004       | 1.00                                   |             | C        |
| In 127   In 32004331 clin 10.2300403 G (L) DIAASE, HAX, RAD21   Image: rest of the second of the se                                                     |                                                 | ro62024251                                                                                                                                                        | obr16:20565400     |                 |                                                    |          | Type 1 diabetes                          | 154700004       | 0.70                                   |             | G        |
| Is / 191018   Chr16:28003007   C   C   C) DIAASE,MAA, RAD21   G   Type 1 diabetes   Is 478004   0.09   C, C   G     rs743590   chr16:28003203   G   (L) MAX, POL2, YY1   A   Type 1 diabetes   rs4788084   0.74   G, C   G     rs62031562   chr16:2800329   A   (L) POL2   T   Type 1 diabetes   rs4788084   0.71   A, C   G     rs718776   chr16:28857645   A   (L) CREB1, HEY1, HNF4G   G   Body mass index   rs7498665   0.71   A, A   G     SH2B1   rs62037367   chr16:28874547   C   (L) CREB1, HEY1, HNF4G   G   Body mass index   rs7498665   0.71   A, A   G     SH2B1   rs62037367   chr16:28874547   C   (L) CREB1, SP2, SRF   G   Body mass index   rs7498665   1.00   C, A   G     SH2B1   rs7198606   chr16:28875122   T   (L) CREB1, SP2, SRF   G   Body mass index   rs7498665   1.00   T, A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 1502034331                                                                                                                                                        | chi 10.20000409    | G               | (L) DNASE, METT, FOLZ                              | A        | Type 1 diabetes                          | 154700004       | 0.79                                   | G,C         | G        |
| IS743390   CH110.20006230   G   L) MAX, POL2, FTT   A   Type F diabetes   IS4788084   0.74   G, C   G     rs62031562   chr16:28609329   A   (L) POL2   T   Type 1 diabetes   rs4788084   0.71   A, C   G     rs7187776   chr16:28857645   A   (L) CREB1,HEY1,HNF4G   G   Body mass index   rs7498665   0.71   A, A   G     SH2B1   rs62037367   chr16:28874547   C   (L) CREB1,HEY1,HNF4G   G   Body mass index   rs7498665   1.00   C,A   G     SH2B1   rs7198606   chr16:28874547   C   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   C,A   G     SH2B1   rs7198606   chr16:28875122   T   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   T,A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index   rs7498665   0.99   A,A   G     * indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases </td <td>157 191010</td> <td>chi 10.2000007</td> <td>C</td> <td>(L) MAX DOL 2 XX1</td> <td>G</td> <td>Type 1 diabetes</td> <td>154700004</td> <td>0.09</td> <td>0,0</td> <td>G</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 157 191010                                                                                                                                                        | chi 10.2000007     | C               | (L) MAX DOL 2 XX1                                  | G        | Type 1 diabetes                          | 154700004       | 0.09                                   | 0,0         | G        |
| Instruction   Instruction <th cost="" in="" stan<="" standard="" td="" the="" thethold=""><td>15745590</td><td>chi 10.20000230</td><td>۰<br/>۵</td><td></td><td></td><td>Type 1 diabetes</td><td>ro4700004</td><td>0.74</td><td>0,0</td><td>C</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | <td>15745590</td> <td>chi 10.20000230</td> <td>۰<br/>۵</td> <td></td> <td></td> <td>Type 1 diabetes</td> <td>ro4700004</td> <td>0.74</td> <td>0,0</td> <td>C</td> | 15745590           | chi 10.20000230 | ۰<br>۵                                             |          |                                          | Type 1 diabetes | ro4700004                              | 0.74        | 0,0      |
| SH2B1   ISF187776   CH110.20837043   A   L) CREB1, HETT, HIVP43   G   Body mass index   ISF498003   0.71   A,A   G     SH2B1   rs62037367   chr16:28874547   C   (L) CREB1   G   Body mass index   rs7498665   1.00   C,A   G     SH2B1   rs7198606   chr16:28875122   T   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   C,A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index   rs7498665   0.99   A,A   G     * indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases   rs7498665   0.99   A,A   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | ro7197776                                                                                                                                                         | obr16:20009329     | A               |                                                    | <u>_</u> | Pody mass index                          | 154700004       | 0.71                                   | A,C         | G        |
| SH2B1   rs62037367   chr16:28874547   C   (L) CREB1   G   Body mass index   rs7498605   1.00   C,A   G     SH2B1   rs7198606   chr16:28874547   C   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   C,A   G     rs7198606   chr16:28875122   T   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   T,A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index   rs7498665   0.99   A,A   G     * indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases   of the state measurement based of fract allele in enticed allele increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 15/ 10///0                                                                                                                                                        | CIII 10.2003/045   | A               | (L) CREBI, HET I, HINF4G                           | G        | Obooity                                  | 157496000       | 0.71                                   | A,A         | G        |
| SH2B1   rs7198606   chr16:28875122   T   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   C,A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index   rs7498665   0.00   T,A   G     * indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases   ridicates other allele is enriched of fract allele in NUCRI CIVICS exterior in director an effect allele, reported allele, conducted un 1000 Genome EUR. Risk allele increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | rs62037367                                                                                                                                                        | chr16:28874547     | С               | (L) CREB1                                          | <u>^</u> | Desity<br>Redy mass index                | 157496000       | 1.00                                   | A,A         | G        |
| SH2B1   rs7198606   chr16:28875122   T   (L) CREB1,SP2,SRF   G   Body mass index   rs7498665   1.00   T,A   G     rs11864750   chr16:28875204   A   (L) NR2F2   T   Body mass index   rs7498665   0.09   A,A   G     * indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele), calculated in 1000 Genore EUR. Risk allele increases   ridicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele), calculated in 1000 Genore EUR. Risk allele increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                   |                    |                 |                                                    | G        | Douy mass muex                           | 187496065       | 1.00                                   | C,A         | G        |
| A Construction of the second of the sec | SH2B1                                           | rs7198606                                                                                                                                                         | chr16:28875122     | Т               | (L) CREB1,SP2,SRF                                  | <u> </u> | Obesity<br>Dedu mass index               | 187496000       | 1.00                                   |             | G        |
| rs11864750 chr16:28875204 A (L) NR2F2 T Body mass index rs7498665 0.99 A,A G<br>* indicates other allele is enriched rather than enriched allele(Enr. Allele), *R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases<br>rick er treit measurement based on reported effect allele in NUCEL CWAS estaled in actions an effect allele, reported allele, comburgeration bishest L B obuy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                   |                    |                 |                                                    | G        | Obecity                                  | 187496000       | 1.00                                   | T,A         | G        |
| Body mass index Interview of the second of the se     |                                                 |                                                                                                                                                                   | ab #10:0007500.4   | •               |                                                    | т        | Obesity<br>Deduces and av                | 187496005       | 0.00                                   | 1,A         | G        |
| obesity rs/498665 0.99 A,A G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 1511004/50                                                                                                                                                        | 01110.20079204     | A               | (L) NKZFZ                                          |          |                                          | 15/498005       | 0.99                                   | A,A         | G        |
| indicates other allele is enriched rather than enriched allele in NUCEI CMUS and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * indiants                                      | then ellets :-                                                                                                                                                    |                    |                 | ished allala (Eng. Allala) 200 and as with a first |          |                                          | 15/498065       | 0.99                                   | A,A         | G        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | indicates o                                     | ouner allele is                                                                                                                                                   | enriched rather th | an enr          | icried allele(Enr. Allele), "R2 and coupling (imba |          | e, reported allele) calculated in 1000 ( | Jenome EUR      |                                        | allele incr | eases    |

|                  |                 |                    | _      |                                                                    |           |                                        |                     |                                      |             |       |
|------------------|-----------------|--------------------|--------|--------------------------------------------------------------------|-----------|----------------------------------------|---------------------|--------------------------------------|-------------|-------|
|                  | Variant         | Position           |        | Imbalanced Proteins                                                | Other     | Trait                                  | Reported<br>Variant | LD<br>(r <sup>2</sup> ) <sup>a</sup> | Coupling    | RISK. |
| RABEP2,<br>SH2B1 | rs4072402       | chr16:28937259     | C      | (L) CTCF                                                           | T         | Obesity                                | rs7184597           | 0.85                                 | C,C         | T     |
| CETP             | rs12720926      | chr16:56998918     | A      | (L) DNASE                                                          | G         | Lipid metabolism phenotypes            | rs1532624           | 0.94                                 | A,C         |       |
|                  |                 |                    |        |                                                                    |           | HDL cholesterol                        | rs1532624           | 0.94                                 | A,C         | С     |
|                  |                 |                    |        |                                                                    |           | Blood metabolite levels                | rs1800775           | 0.75                                 | A,C         | Α     |
|                  |                 |                    |        |                                                                    |           | Triglycerides                          | rs1800775           | 0.75                                 | A,C         | С     |
|                  |                 |                    |        |                                                                    |           | Lipid traits                           | rs1800775           | 0.75                                 | A,C         | Α     |
| EDC4,            | rs7199443       | chr16:67841129     | G      | (L) MAX                                                            | Т         | Metabolic syndrome                     | rs8060686           | 0.88                                 | T,T         | T     |
| LCAT             | rs7196789       | chr16:67927124     | Т      | (L) YY1                                                            | С         | Metabolic syndrome                     | rs8060686           | 0.97                                 | C,T         | Т     |
|                  |                 |                    |        |                                                                    |           | HDL cholesterol                        | rs2271293           | 0.71                                 | C,G         | А     |
|                  | rs1134760       | chr16:67964203     | С      | (L) POL2                                                           | Т         | Metabolic syndrome                     | rs8060686           | 0.95                                 | T,T         | Т     |
|                  | rs20549         | chr16:67969930     | G      | (L) POL2                                                           | Α         | Metabolic syndrome                     | rs8060686           | 0.95                                 | A,T         | Т     |
|                  | rs1109166       | chr16:67977382     | С      | (L) CREB1,FOXA1,FOXA2,HNF4A,HNF4G,NR2F2                            | Т         | Metabolic syndrome                     | rs8060686           | 0.92                                 | T,T         | Т     |
| Intergenic       | rs8052763       | chr16:75251659     | С      | (L) HNF4A                                                          | G         | Type 1 diabetes                        | rs7202877           | 0.74                                 | C,T         | G     |
| SLC7A5           | rs12448415      | chr16:87871096     | G      | (L) POL2                                                           | A         | Blood metabolite levels                | rs8051149           | 0.73                                 | G,A         | A     |
|                  | rs12931876      | chr16:87874182     | Т      | (L) CTCF                                                           | С         | Blood metabolite levels                | rs8051149           | 0.78                                 | C,A         | Α     |
|                  | rs34508683      | chr16:87876375     | С      | (L) EZH2,POL2                                                      | Т         | Blood metabolite levels                | rs8051149           | 0.99                                 | C,A         | Α     |
|                  | rs28609922      | chr16:87876631     | Α      | (L) BHLHE40,MAX,P300                                               | С         | Blood metabolite levels                | rs8051149           | 0.99                                 | A,A         | Α     |
|                  | rs56722741      | chr16:87877313     | G      | (L) POL2                                                           | С         | Blood metabolite levels                | rs8051149           | 0.99                                 | G,A         | Α     |
|                  | rs4843270       | chr16:87878072     | Α      | (L) CTCF,POL2                                                      | С         | Blood metabolite levels                | rs8051149           | 0.99                                 | A,A         | Α     |
|                  | rs4843715       | chr16:87878076     | Α      | (L) POL2                                                           | G         | Blood metabolite levels                | rs8051149           | 1.00                                 | A,A         | А     |
|                  | rs4843718       | chr16:87878476     | Α      | (L) CREB1                                                          | G         | Blood metabolite levels                | rs8051149           | 0.99                                 | A,A         | А     |
|                  | rs35459492      | chr16:87878883     | G      | (L) POL2                                                           | С         | Blood metabolite levels                | rs8051149           | 1.00                                 | G,A         | А     |
| ORMDL3           | rs1453559       | chr17:38020419     | С      | (L) BHLHE40,DNASE,MXI1                                             | T         | Type 1 diabetes                        | rs2290400           | 0.85                                 | T,T         | С     |
|                  | rs12936231      | chr17:38029120     | G      | (L) ARID3A,CTCF,RAD21                                              | С         | Type 1 diabetes                        | rs2290400           | 0.87                                 | C,T         | С     |
|                  | rs1031460       | chr17:38072247     | G      | (L) POL2                                                           | Т         | Type 1 diabetes                        | rs2290400           | 0.86                                 | G,T         | С     |
|                  | rs7224129       | chr17:38075426     | G      | (L) POL2                                                           | Α         | Type 1 diabetes                        | rs2290400           | 0.92                                 | A,T         | С     |
|                  | rs4065275       | chr17:38080865     | G      | (L) CTCF, DNASE, RAD21                                             | Α         | Type 1 diabetes                        | rs2290400           | 0.86                                 | G,T         | С     |
|                  | rs8076131       | chr17:38080912     | Α      | (L) CTCF, HEY1, RAD21                                              | G         | Type 1 diabetes                        | rs2290400           | 0.73                                 | A,T         | С     |
| MPP3             | rs17742347      | chr17:41846468     | С      | (L) POL2                                                           | Т         | Triglycerides                          | rs8077889           | 0.90                                 | C,A         | С     |
|                  | rs17674998      | chr17:41879544     | Α      | (L) ZBTB33                                                         | G         | Triglycerides                          | rs8077889           | 0.99                                 | A,A         | С     |
|                  | rs9901676       | chr17:41911818     | Т      | (L) EZH2                                                           | С         | Triglycerides                          | rs8077889           | 0.92                                 | T,A         | С     |
| C17orf71         | rs6503905       | chr17:57287454     | A      | (L) CREB1,ELF1                                                     | G         | Circulating myeloperoxidase levels     | rs6503905           | 1.00                                 | -           | A     |
| PGS1             | rs4969182       | chr17:76393030     | T      | (L) CEBPB,FOXA1,FOXA2,MAX,MYBL2,NR2F2                              | С         | HDL cholesterol                        | rs4129767           | 0.96                                 | C,A         | G     |
|                  | rs4969183       | chr17:76393372     | Α      | (L) BHLHE40                                                        | G         | HDL cholesterol                        | rs4129767           | 0.96                                 | G,A         | G     |
| * indicates      | other allele is | enriched rather th | an enr | iched allele(Enr. Allele), <sup>a</sup> R2 and coupling (imbalance | ed allele | e, reported allele) calculated in 1000 | Genome EUR          | Risk                                 | allele incr | eases |

risk or trait measurement based on reported effect allele in NHGRI GWAS catalog. - indicates no effect allele reported in catalog. Only reported variant in highest LD shown

|                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                | Enr.   |                                      | Other  |                         | Reported  | LD                                     |          | Risk.  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------------------------------------|--------|-------------------------|-----------|----------------------------------------|----------|--------|
| Locus                             | Variant                                                                                                                                                                                                                                                                                                                                                                         | Position       | Allele | Imbalanced Proteins                  | Allele | Trait                   | Variant   | ( <b>r</b> <sup>2</sup> ) <sup>a</sup> | Coupling | Allele |
| CCDC57                            | rs62078747                                                                                                                                                                                                                                                                                                                                                                      | chr17:80055206 | С      | (L) MAX,MXI1                         | G      | Blood metabolite levels | rs4625783 | 0.78                                   | G,C      | Т      |
|                                   | rs59251877                                                                                                                                                                                                                                                                                                                                                                      | chr17:80056498 | G      | (L) JUND,MAX                         | A      | Blood metabolite levels | rs4625783 | 0.76                                   | A,C      | Т      |
|                                   | rs7225637                                                                                                                                                                                                                                                                                                                                                                       | chr17:80059758 | G      | (L) ELF1,TAF1                        | A      | Blood metabolite levels | rs4625783 | 0.82                                   | A,C      | Т      |
|                                   | rs11658040                                                                                                                                                                                                                                                                                                                                                                      | chr17:80059891 | С      | (L) DNASE,HNF4A,MAX                  | Т      | Blood metabolite levels | rs4625783 | 0.82                                   | T,C      | Т      |
|                                   | rs9908277                                                                                                                                                                                                                                                                                                                                                                       | chr17:80060829 | Т      | (L) MAX,MXI1                         | С      | Blood metabolite levels | rs4625783 | 0.83                                   | C,C      | Т      |
|                                   | rs9894129                                                                                                                                                                                                                                                                                                                                                                       | chr17:80075700 | A      | (L) CEBPB,HDAC2,HNF4A,MAX            | G      | Blood metabolite levels | rs4625783 | 0.94                                   | G,C      | Т      |
|                                   | rs9916649                                                                                                                                                                                                                                                                                                                                                                       | chr17:80075739 | G      | (L) BHLHE40,CREB1,FOXA2,MAX,RXRA,SP1 | A      | Blood metabolite levels | rs4625783 | 0.94                                   | A,C      | Т      |
|                                   | rs7218075                                                                                                                                                                                                                                                                                                                                                                       | chr17:80076808 | С      | (L) FOXA2,POL2                       | G      | Blood metabolite levels | rs4625783 | 0.93                                   | G,C      | Т      |
|                                   | rs62079996                                                                                                                                                                                                                                                                                                                                                                      | chr17:80076862 | Α      | (L) FOXA1                            | G      | Blood metabolite levels | rs4625783 | 0.92                                   | G,C      | Т      |
|                                   | rs6502065                                                                                                                                                                                                                                                                                                                                                                       | chr17:80095642 | С      | (L) CEBPB                            | Т      | Blood metabolite levels | rs4625783 | 0.98                                   | T,C      | Т      |
| AP3D1,<br>DOT1L,<br>SF3A2         | rs7256735                                                                                                                                                                                                                                                                                                                                                                       | chr19:2169121  | Т      | (I) NKX2                             | G      | Myocardial infarction   | rs3803915 | 0.95                                   | T,C      | С      |
|                                   | rs10410204                                                                                                                                                                                                                                                                                                                                                                      | chr19:7224350  | С      | (L) FOXA1,FOXA2                      | Т      | Triglycerides           | rs7248104 | 0.98                                   | C,A      | A      |
| INSK                              | rs7248104                                                                                                                                                                                                                                                                                                                                                                       | chr19:7224431  | Α      | (L) FOXA1,FOXA2,MAX,NR2F2,YY1        | G      | Triglycerides           | rs7248104 | 1.00                                   | -        | Α      |
|                                   | rs2303696                                                                                                                                                                                                                                                                                                                                                                       | chr19:18548884 | С      | (L) DNASE                            | Т      | Blood metabolite levels | rs4808136 | 0.80                                   | T,G      | Α      |
| ISTNAT                            | rs8103622                                                                                                                                                                                                                                                                                                                                                                       | chr19:18572834 | С      | (L) CTCF                             | Т      | Blood metabolite levels | rs4808136 | 0.92                                   | C,G      | Α      |
|                                   | rs62102718                                                                                                                                                                                                                                                                                                                                                                      | chr19:33891013 | A      | (L) HNF4G                            | Т      | Adiponectin levels      | rs731839  | 0.76                                   | A,A      | G      |
| PEPD                              |                                                                                                                                                                                                                                                                                                                                                                                 |                |        |                                      |        | HDL cholesterol         | rs731839  | 0.76                                   | A,A      | G      |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                |        |                                      |        | Triglycerides           | rs731839  | 0.76                                   | A,A      | G      |
| SULT2A1                           | rs296368                                                                                                                                                                                                                                                                                                                                                                        | chr19:48372298 | Т      | (L) RAD21                            | С      | Blood metabolite levels | rs182420  | 0.84                                   | C,C      | Т      |
| SPTLC3                            | rs1321940                                                                                                                                                                                                                                                                                                                                                                       | chr20:12959885 | G      | (L) FOXA1                            | A      | Blood metabolite levels | rs4814176 | 0.99                                   | G,C      | Т      |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                |        |                                      |        | Blood metabolite ratios | rs4814176 | 0.99                                   | G,C      | Т      |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                |        |                                      |        | LDL cholesterol         | rs364585  | 0.99                                   | G,G      | А      |
| EDEM2                             | rs6060266                                                                                                                                                                                                                                                                                                                                                                       | chr20:33733078 | С      | (I) CTCF                             | Т      | Protein C levels        | rs6120849 | 0.96                                   | T,C      | Т      |
| FITM2,                            | rs4812816                                                                                                                                                                                                                                                                                                                                                                       | chr20:42930872 | С      | (L) MAZ                              | A      | Type 2 diabetes         | rs6017317 | 0.74                                   | C,T      | G      |
| R3HDML,<br>HNF4A                  | rs6065723                                                                                                                                                                                                                                                                                                                                                                       | chr20:42956922 | С      | (L) MAFF,MAFK                        | Т      | Type 2 diabetes         | rs6017317 | 0.77                                   | C,T      | G      |
| * indicates of<br>risk or trait i | * indicates other allele is enriched rather than enriched allele(Enr. Allele), <sup>a</sup> R2 and coupling (imbalanced allele, reported allele) calculated in 1000 Genome EUR. Risk allele increases risk or trait measurement based on reported effect allele in NHGRI GWAS catalog indicates no effect allele reported in catalog. Only reported variant in highest LD shown |                |        |                                      |        |                         |           |                                        |          |        |

## **APPENDIX 4: Cardiometabolic diseases and traits from GWAS catalog**

Activated partial thromboplastin time Adiponectin levels Adiposity Anthropometric traits Apolipoprotein Levels β2-Glycoprotein I (β2-GPI) plasma levels Blood metabolite levels Blood metabolite ratios Blood pressure Blood pressure (age interaction) Blood pressure measurement (cold pressor test) Blood pressure measurement (high sodium and potassium intervention) Blood pressure measurement (high sodium intervention) Blood pressure measurement (low sodium intervention) Blood pressure (response to antihypertensive medication) Blood pressure variability Body mass index Body mass index and cholesterol (psychopharmacological treatment) Body mass index and fat mass Body mass (lean) Cardiac hypertrophy Cardiac muscle measurement Cardiac structure and function Cardiac Troponin-T levels Cardiovascular disease risk factors Cardiovascular event reduction in the elderly at risk for vascular disease (statin therapy interaction) Cardiovascular heart disease in diabetics Cholesterol Cholesterol and Triglycerides **Total Cholesterol** Coronary artery calcification Coronary artery calcification (smoking interaction) Coronary artery disease Coronary artery disease or ischemic stroke Coronary artery disease or large artery stroke Coronary heart disease Coronary heart disease in familial hypercholesterolemia Coronary restenosis Circulating myeloperoxidase levels (plasma) Circulating myeloperoxidase levels (serum) Congenital heart disease C-reactive protein C-reactive protein levels Diabetes (gestational) Diabetes (incident) Diabetes related insulin traits Diastolic blood pressure Dilated cardiomyopathy Fasting glucose-related traits Fasting glucose-related traits (interaction with BMI)

Fasting insulin (interaction)

Fasting insulin-related traits

Fasting insulin-related traits (interaction with BMI)

Fasting plasma glucose Fat body mass Glycemic control in type 1 diabetes (HbA1c) Glycemic traits HDL cholesterol HDL Cholesterol - Triglycerides (HDLC-TG) Heart failure Hypertension Hypertension (young onset) Hypertriglyceridemia Hypertrophic cardiomyopathy Insulin-related traits Insulin resistance/response LDL cholesterol LDL (oxidized) Lipid metabolism phenotypes Lipid traits Lipopolysaccharide induced cytokine levels Lipoprotein diameter Lp (a) levels Metabolic syndrome Metabolic syndrome (bivariate traits) Metabolic traits Metabolite levels Myocardial infarction Myocardial infarction (early onset) Natriuretic peptide levels NHDL cholesterol Non-albumin protein levels Obesity Obesity and blood pressure Obesity (early onset extreme) Obesity (extreme) Obesity-related traits Palmitic acid (16:0) plasma levels Palmitoleic acid (16:1n-7) plasma levels Paraoxonase activity Pericardial fat Peripartum cardiomyopathy Peripheral artery disease Plasma cystastin c levels in acute coronary syndrome Plasma omega-6 polyunsaturated fatty acid levels (dihomo-gamma-linolenic acid) Plasma omega-6 polyunsaturated fatty acid leve;(linoleic acid) Plasma omega-6 polyunsaturated fatty acid levels (adrenic acid) Plasma omega-6 polyunsaturated fatty acid levels (dihomo-gamma-linolenic acid) Plasma omega-6 polyunsaturated fatty acid levels (linoleic acid) Proinsulin levels Protein C levels Soluble leptin receptor levels Serum albumin level Serum dimethylarginine levels (symmetric) Serum metabolite levels Serum prostate-specific antigen levels

Serum protein levels (sST2) Serum total protein level Serum uric acid levels Subcutaneous adipose tissue Sudden cardiac arrest

Systolic blood pressure Triglycerides Triglycerides-Blood Pressure (TG-BP) Two-hour glucose challenge Type 1 diabetes Type 1 diabetes autoantibodies Type 2 diabetes Type 2 diabetes and 6 quantitative traits Type 2 diabetes and gout Type 2 diabetes and other traits Type 2 diabetes (dietary heme iron intake interaction) Type 2 diabetes nephropathy Type 2 diabetes (young onset) and obesity Vascular constriction Visceral adipose tissue/subcutaneous adipose tissue ratio Visceral fat Waist circumference Waist circumference and related phenotypes Waist circumference (sex interaction) Waist Circumference - Triglycerides (WC-TG) Waist-hip ratio Waist-to-hip circumference ratio (interaction) Waist to hip ratio (sex interaction)

## REFERENCES

- 1. World Health Organization *Global status report on noncommunicable diseases 2014*. 298 (2014).at <a href="http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854\_eng.pdf">http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854\_eng.pdf</a>
- 2. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. *The New England journal of medicine* **363**, 166–76 (2010).
- 3. McPherson, R. From Genome-Wide Association Studies to Functional Genomics: New Insights Into Cardiovascular Disease. *The Canadian journal of cardiology* **29**, 29–23 (2012).
- 4. Björkegren, J. L. M., Kovacic, J. C., Dudley, J. T. & Schadt, E. E. Genome-Wide Significant Loci: How Important Are They?: Systems Genetics to Understand Heritability of Coronary Artery Disease and Other Common Complex Disorders. *Journal of the American College of Cardiology* **65**, 830–845 (2015).
- 5. Willer, C. J. & Mohlke, K. L. Finding genes and variants for lipid levels after genome-wide association analysis. *Current opinion in lipidology* **23**, 98–103 (2012).
- 6. Willer, C. J. *et al.* Discovery and Refinement of Loci Associated with Lipid Levels. *Nature genetics* (2013).
- Dastani, Z. *et al.* Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals. *PLoS Genetics* 8, e1002607 (2012).
- 8. Wu, Y. *et al.* Genome-wide association study for adiponectin levels in Filipino women identifies CDH13 and a novel uncommon haplotype at KNG1-ADIPOQ. *Human molecular genetics* **19**, 4955–64 (2010).
- 9. Heid, I. M. *et al.* Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: results of genome-wide association analyses including 4659 European individuals. *Atherosclerosis* **208**, 412–20 (2010).
- 10. Richards, J. B. *et al.* A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. *PLoS genetics* **5**, e1000768 (2009).
- 11. Jee, S. H. *et al.* Adiponectin concentrations: a genome-wide association study. *American journal of human genetics* **87**, 545–52 (2010).
- 12. Chung, C.-M. *et al.* A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. *Diabetes* **60**, 2417–23 (2011).
- 13. Warren, L. L. *et al.* Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation. *Diabetes* **61**, 1297–301 (2012).

- 14. Fall, T. & Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. *Molecular and cellular endocrinology* **382**, 740–57 (2014).
- 15. Shungin, D. *et al.* New genetic loci link adipose and insulin biology to body fat distribution. *Nature* **518**, 187–196 (2015).
- 16. Locke, A. E. *et al.* Genetic studies of body mass index yield new insights for obesity biology. *Nature* **518**, 197–206 (2015).
- 17. Huyghe, J. R. *et al.* Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. *Nature genetics* **advance on**, (2012).
- 18. Huang, Q. Genetic Study of Complex Diseases in the Post-GWAS Era. *Journal of Genetics and Genomics* **42**, 87–98 (2015).
- 19. Maurano, M. T. *et al.* Systematic localization of common disease-associated variation in regulatory DNA. *Science (New York, N.Y.)* **337**, 1190–5 (2012).
- 20. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. *Nature reviews. Genetics* **10**, 184–94 (2009).
- 21. Hindorff, L. *et al.* A Catalog of Published Genome-Wide Association Studies. at <a href="http://www.genome.gov/gwastudies>">http://www.genome.gov/gwastudies></a>
- Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. *American journal of human genetics* **93**, 779– 97 (2013).
- 23. Musunuru, K. *et al.* From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. *Nature* **466**, 714–9 (2010).
- 24. Carlsson, P. & Mahlapuu, M. Forkhead transcription factors: key players in development and metabolism. *Developmental biology* **250**, 1–23 (2002).
- 25. Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. *Epigenetics & Chromatin* **7**, 33 (2014).
- 26. Holwerda, S. & De Laat, W. Chromatin loops, gene positioning, and gene expression. *Frontiers in genetics* **3**, 217 (2012).
- 27. Lecompte, S. *et al.* Genetic and molecular insights into the role of PROX1 in glucose metabolism. *Diabetes* **62**, 1738–45 (2013).
- 28. Fogarty, M. P., Xiao, R., Prokunina-Olsson, L., Scott, L. J. & Mohlke, K. L. Allelic expression imbalance at high-density lipoprotein cholesterol locus MMAB-MVK. *Human molecular genetics* **19**, 1921–9 (2010).
- 29. Fogarty, M. P., Panhuis, T. M., Vadlamudi, S., Buchkovich, M. L. & Mohlke, K. L. Allele-Specific Transcriptional Activity at Type 2 Diabetes-Associated Single Nucleotide

Polymorphisms in Regions of Pancreatic Islet Open Chromatin at the JAZF1 Locus. *Diabetes* **62**, 1–7 (2013).

- 30. Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. *PLoS genetics* **10**, e1004633 (2014).
- 31. Kulzer, J. R. *et al.* A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. *American journal of human genetics* **94**, 186–97 (2014).
- 32. Gaulton, K. J. *et al.* A map of open chromatin in human pancreatic islets. *Nature genetics* **42**, 255–9 (2010).
- 33. Lo, K. S., Vadlamudi, S., Fogarty, M. P., Mohlke, K. L. & Lettre, G. Strategies to fine-map genetic associations with lipid levels by combining epigenomic annotations and liver-specific transcription profiles. *Genomics* **104**, 105–12 (2014).
- 34. Bahassi, E. M. & Stambrook, P. J. Next-generation sequencing technologies: breaking the sound barrier of human genetics. *Mutagenesis* **29**, 303–10 (2014).
- 35. McVean, G. A. *et al.* An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- 36. Furey, T. S. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. *Nature Reviews Genetics* **13**, 840–52 (2012).
- 37. Giresi, P. G. & Lieb, J. D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). *Methods (San Diego, Calif.)* **48**, 233–9 (2009).
- 38. Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. *Cold Spring Harbor protocols* **2010**, pdb.prot5384 (2010).
- Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nature methods* **10**, 1213–8 (2013).
- 40. Dunham, I. *et al.* An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57–74 (2012).
- 41. University of California, S. C. UCSC Genome Browser ENCODE downloads. at <ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/>
- 42. ENCODE Consortium ENCODE Project. at <https://www.encodeproject.org/>

- 43. Consortium, R. E. *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317–330 (2015).
- 44. Roadmap Epigenomics Project Human Epigenome Atlas. at <a href="http://www.genboree.org/epigenomeatlas/index.rhtml">http://www.genboree.org/epigenomeatlas/index.rhtml</a>
- 45. Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. *Nucleic acids research* **39**, D19–21 (2011).
- 46. Leinonen, R. *et al.* Improvements to services at the European Nucleotide Archive. *Nucleic Acids Research* **38**, D39–D45 (2009).
- 47. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. *Genome research* **22**, 1748–59 (2012).
- 48. Karczewski, K. J., Snyder, M., Altman, R. B. & Tatonetti, N. P. Coherent functional modules improve transcription factor target identification, cooperativity prediction, and disease association. *PLoS genetics* **10**, e1004122 (2014).
- 49. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. *Nature methods* **9**, 215–6 (2012).
- 50. Paul, D. S. *et al.* Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci. *Genome research* **23**, 1130–41 (2013).
- 51. Sheffield, N. C. *et al.* Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. *Genome research* **23**, 777–88 (2013).
- 52. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic acids research* **40**, D930–4 (2012).
- 53. Boyle, A. P. *et al.* Annotation of functional variation in personal genomes using RegulomeDB. *Genome research* **22**, 1790–7 (2012).
- 54. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic acids research* **38**, e164 (2010).
- 55. Degner, J. F. *et al.* DNase I sensitivity QTLs are a major determinant of human expression variation. *Nature* **482**, 390–4 (2012).
- 56. McVicker, G. *et al.* Identification of genetic variants that affect histone modifications in human cells. *Science (New York, N.Y.)* **342**, 747–9 (2013).
- 57. Ni, Y., Hall, A. W., Battenhouse, A. & Iyer, V. R. Simultaneous SNP identification and assessment of allele-specific bias from ChIP-seq data. *BMC genetics* **13**, 46 (2012).

- 58. Reddy, T. E. *et al.* Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. *Genome research* **22**, 860–9 (2012).
- 59. McDaniell, R. *et al.* Heritable individual-specific and allele-specific chromatin signatures in humans. *Science (New York, N.Y.)* **328**, 235–9 (2010).
- 60. Rozowsky, J. *et al.* AlleleSeq: analysis of allele-specific expression and binding in a network framework. *Molecular systems biology* **7**, 522 (2011).
- 61. Lalonde, E. *et al.* RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression. *Genome research* **21**, 545–54 (2011).
- 62. Harvey, C. T. *et al.* QuASAR: Quantitative Allele Specific Analysis of Reads. *Bioinformatics (Oxford, England)* (2014).doi:10.1093/bioinformatics/btu802
- 63. Skelly, D. A., Johansson, M., Madeoy, J., Wakefield, J. & Akey, J. M. A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. *Genome research* **21**, 1728–37 (2011).
- 64. Satya, R. V., Zavaljevski, N. & Reifman, J. A new strategy to reduce allelic bias in RNA-Seq readmapping. *Nucleic acids research* **40**, e127 (2012).
- 65. Altshuler, D. M. *et al.* Integrating common and rare genetic variation in diverse human populations. *Nature* **467**, 52–8 (2010).
- 66. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)* **26**, 589–95 (2010).
- 67. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. *Genome research* **18**, 1851–8 (2008).
- Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome biology* **10**, R25 (2009).
- 69. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics (Oxford, England)* **29**, 15–21 (2013).
- 70. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. *Bioinformatics (Oxford, England)* **26**, 873–81 (2010).
- 71. Schbath, S. *et al.* Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis. *Journal of computational biology : a journal of computational molecular cell biology* **19**, 796–813 (2012).
- 72. Degner, J. F. *et al.* Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. *Bioinformatics (Oxford, England)* **25**, 3207–12 (2009).

- 73. Birney, E., Lieb, J. D., Furey, T. S., Crawford, G. E. & Iyer, V. R. Allele-specific and heritable chromatin signatures in humans. *Human molecular genetics* **19**, R204–9 (2010).
- 74. Skelly, D. a, Johansson, M., Madeoy, J., Wakefield, J. & Akey, J. M. A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. *Genome research* **21**, 1728–37 (2011).
- 75. Van der Auwera, G. A. *et al. Current Protocols in Bioinformatics. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.]* **11**, 11.10.1–11.10.33 (John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002).
- 76. Wall, J. D. *et al.* Estimating genotype error rates from high-coverage next-generation sequence data. *Genome Research* **24**, 1734–1739 (2014).
- Robertson, G. *et al.* Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. *Nature methods* 4, 651–7 (2007).
- 78. Kasowski, M. *et al.* Variation in transcription factor binding among humans. *Science (New York, N.Y.)* **328**, 232–5 (2010).
- 79. Kasowski, M. *et al.* Extensive variation in chromatin states across humans. *Science (New York, N.Y.)* **342**, 750–2 (2013).
- 80. Kilpinen, H. *et al.* Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. *Science (New York, N.Y.)* **342**, 744–7 (2013).
- 81. León-Novelo, L. G., McIntyre, L. M., Fear, J. M. & Graze, R. M. A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. *BMC genomics* **15**, 920 (2014).
- 82. Kharchenko, P. V, Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP-seq experiments for DNA-binding proteins. *Nature biotechnology* **26**, 1351–9 (2008).
- 83. DePristo, M. A. *et al.* A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. *Nature genetics* **43**, 491–8 (2011).
- 84. Liu, E. Y., Li, M., Wang, W. & Li, Y. MaCH-admix: genotype imputation for admixed populations. *Genetic epidemiology* **37**, 25–37 (2013).
- 85. Hindorff, L. A. *et al.* A Catalog of Published Genome-wide Association Studies. at <a href="http://www.genome.gov/gwastudies">http://www.genome.gov/gwastudies</a>>
- 86. Jostins, L. *et al.* Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. *Nature* **491**, 119–24 (2012).
- 87. Imielinski, M. *et al.* Common variants at five new loci associated with early-onset inflammatory bowel disease. *Nature genetics* **41**, 1335–40 (2009).

- 88. Franke, A. *et al.* Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. *Nature genetics* **42**, 1118–25 (2010).
- 89. Kotla, S., Singh, N. K., Heckle, M. R., Tigyi, G. J. & Rao, G. N. The transcription factor CREB enhances interleukin-17A production and inflammation in a mouse model of atherosclerosis. *Science signaling* **6**, ra83 (2013).
- 90. Wen, A. Y., Sakamoto, K. M. & Miller, L. S. The role of the transcription factor CREB in immune function. *Journal of immunology (Baltimore, Md. : 1950)* **185**, 6413–9 (2010).
- 91. Ernst, J. *et al.* Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature* **473**, 43–9 (2011).
- 92. Andersson, R. *et al.* An atlas of active enhancers across human cell types and tissues. *Nature* **507**, 455–61 (2014).
- 93. Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. *Bioinformatics (Oxford, England)* **27**, 1696–7 (2011).
- 94. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. *Bioinformatics (Oxford, England)* **27**, 1017–8 (2011).
- 95. Knight, D. Leukaemia inhibitory factor (LIF): a cytokine of emerging importance in chronic airway inflammation. *Pulmonary pharmacology & therapeutics* **14**, 169–76 (2001).
- 96. Gieger, C. *et al.* New gene functions in megakaryopoiesis and platelet formation. *Nature* **480**, 201–8 (2011).
- 97. Chen, W. *et al.* Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 7401–6 (2010).
- Heap, G. A. *et al.* Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. *Human molecular genetics* 19, 122–34 (2010).
- 99. Sun, W. A statistical framework for eQTL mapping using RNA-seq data. *Biometrics* **68**, 1–11 (2012).
- 100. Almal, S. H. & Padh, H. Implications of gene copy-number variation in health and diseases. *Journal of human genetics* **57**, 6–13 (2012).
- Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genetic epidemiology* 34, 816–34 (2010).
- 102. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nature genetics* **44**, 955–9 (2012).
- Liu, E. Y. *et al.* Genotype imputation of Metabochip SNPs using a study-specific reference panel of ~4,000 haplotypes in African Americans from the Women's Health Initiative. *Genetic epidemiology* 36, 107–17 (2012).
- 104. 1000 Genomes Project Consortium 1000 Genomes phase I version 3 data. at <ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/>
- 105. Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. *The Annals of Applied Statistics* **5**, 1752–1779 (2011).
- 106. Kundaje, A. ENCODE: TF ChIP-seq peak calling using the Irreproducibility Discovery Rate (IDR) framework. at <a href="https://sites.google.com/site/anshulkundaje/projects/idr">https://sites.google.com/site/anshulkundaje/projects/idr</a>
- 107. Willer, C. J. *et al.* Discovery and Refinement of Loci Associated with Blood Lipid Levels. *Nature genetics*
- 108. Bryzgalov, L. O. *et al.* Detection of regulatory SNPs in human genome using ChIP-seq ENCODE data. *PloS one* **8**, e78833 (2013).
- 109. Furey, T. Allele-Aware ALignments for the Investigation of GeNetic Effects on Regulation (AA-ALIGNER). at <a href="http://fureylab.web.unc.edu/software/AA\_ALIGNER/">http://fureylab.web.unc.edu/software/AA\_ALIGNER/</a>
- 110. Wiernsperger, N. Hepatic function and the cardiometabolic syndrome. *Diabetes, metabolic syndrome and obesity : targets and therapy* **6**, 379–88 (2013).
- 111. Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. *Annual review of physiology* **75**, 155–79 (2013).
- 112. Lafontan, M. Adipose tissue and adipocyte dysregulation. *Diabetes & metabolism* **40**, 16–28 (2014).
- 113. Innocenti, F. *et al.* Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. *PLoS genetics* **7**, e1002078 (2011).
- 114. Schadt, E. E. *et al.* Mapping the genetic architecture of gene expression in human liver. *PLoS biology* **6**, e107 (2008).
- 115. Nica, A. C. *et al.* The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study. *PLoS Genetics* **7**, e1002003 (2011).
- 116. Fadista, J. *et al.* Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. *Proceedings of the National Academy of Sciences of the United States of America* **111**, 13924–9 (2014).
- Kheradpour, P. & Kellis, M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. *Nucleic Acids Research* 42, 2976–2987 (2013).

- 118. Parelho, V. *et al.* Cohesins functionally associate with CTCF on mammalian chromosome arms. *Cell* **132**, 422–33 (2008).
- 119. Slavin, T. P., Feng, T., Schnell, A., Zhu, X. & Elston, R. C. Two-marker association tests yield new disease associations for coronary artery disease and hypertension. *Human genetics* **130**, 725–33 (2011).
- 120. Roman, T. *et al.* Functional regulatory variants at the GALNT2 human high-density lipoprotein cholesterol locus. *in preparation*
- 121. Davis, J. P. personal communication.
- 122. Nouaille, S. *et al.* Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. *Biochemical pharmacology* **72**, 1355–66 (2006).
- 123. Rusanescu, G., Weissleder, R. & Aikawa, E. Notch signaling in cardiovascular disease and calcification. *Current cardiology reviews* **4**, 148–56 (2008).
- 124. Wang, J. *et al.* Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. *Genome research* **22**, 1798–812 (2012).
- 125. Hesselberth, J. R. *et al.* Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. *Nature methods* **6**, 283–9 (2009).
- 126. Lassmann, T., Hayashizaki, Y. & Daub, C. O. TagDust--a program to eliminate artifacts from next generation sequencing data. *Bioinformatics (Oxford, England)* **25**, 2839–40 (2009).
- 127. Picard Tools. at <http://picard.sourceforge.net.>
- 128. Schunkert, H. *et al.* Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. *Nature genetics* **43**, 333–8 (2011).
- 129. Palm, W. & De Lange, T. How shelterin protects mammalian telomeres. *Annual review of genetics* **42**, 301–34 (2008).
- 130. Davies, R. W. *et al.* A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. *Circulation. Cardiovascular genetics* **5**, 217–25 (2012).
- 131. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. *Nature genetics* **43**, 339–44 (2011).
- 132. Dichgans, M. *et al.* Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease: A Genome-Wide Analysis of Common Variants. *Stroke* **45**, 24–36 (2013).
- 133. Qi, L. *et al.* Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. *Human molecular genetics* **19**, 2706–15 (2010).

- 134. Kooner, J. S. *et al.* Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. *Nature genetics* **43**, 984–9 (2011).
- 135. Mahajan, A. *et al.* Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. *Nature genetics* **46**, 234–44 (2014).
- 136. Zeggini, E. *et al.* Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. *Nature genetics* **40**, 638–45 (2008).
- 137. Perry, J. R. B. *et al.* Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. *PLoS genetics* **8**, e1002741 (2012).
- 138. Shu, X. O. *et al.* Identification of New Genetic Risk Variants for Type 2 Diabetes. *PLoS Genetics* **6**, e1001127 (2010).
- 139. Voight, B. F. *et al.* Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. *Nature genetics* **42**, 579–89 (2010).
- 140. Zeggini, E. *et al.* Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. *Science (New York, N.Y.)* **316**, 1336–41 (2007).
- 141. Cho, Y. S. *et al.* Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. *Nature genetics* **44**, 67–72 (2012).
- 142. Teslovich, T. M. *et al.* Biological, clinical and population relevance of 95 loci for blood lipids. *Nature* **466**, 707–13 (2010).
- 143. Kathiresan, S. *et al.* Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. *Nature Genetics* **40**, 189–197 (2008).
- 144. Kathiresan, S. *et al.* Common variants at 30 loci contribute to polygenic dyslipidemia. *Nature genetics* **41**, 56–65 (2009).
- 145. Sandhu, M. S. *et al.* LDL-cholesterol concentrations: a genome-wide association study. *The Lancet* **371**, 483–491 (2008).
- 146. Willer, C. J. *et al.* Newly identified loci that influence lipid concentrations and risk of coronary artery disease. *Nature genetics* **40**, 161–9 (2008).
- 147. Kamatani, Y. *et al.* Genome-wide association study of hematological and biochemical traits in a Japanese population. *Nature genetics* **42**, 210–5 (2010).
- 148. Zhou, L. *et al.* A genome wide association study identifies common variants associated with lipid levels in the Chinese population. *PloS one* **8**, e82420 (2013).

- 149. Coram, M. A. *et al.* Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. *American journal of human genetics* **92**, 904–16 (2013).
- 150. Aulchenko, Y. S. *et al.* Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. *Nature genetics* **41**, 47–55 (2009).
- 151. Kim, Y. J. *et al.* Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. *Nature genetics* **43**, 990–5 (2011).
- 152. Weissglas-Volkov, D. *et al.* Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. *Journal of medical genetics* **50**, 298–308 (2013).
- 153. Sabatti, C. *et al.* Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. *Nature genetics* **41**, 35–46 (2009).
- 154. Figarska, S. M., Vonk, J. M. & Boezen, H. M. NFE2L2 polymorphisms, mortality, and metabolism in the general population. *Physiological genomics* **46**, 411–7 (2014).