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ABSTRACT 
 

JUSTIN BRAVEBOY-WAGNER: Metabolic Effects of Rosiglitazone and Pioglitazone 
on Complex I and Complex II Respiration in Isolated Rat Mitochondria 

(Under the direction of Ekhson Holmuhamedov) 
 
 
 

Thiazolidinediones (TZDs) are believed to exert their antidiabetic effect through a 

variety of pathways and mechanisms, some of which relate to the toxic properties of 

these drugs. Research has proven that TZDs impair cell respiration in vitro and that they 

have an affect on oxidative stress within the cell. This paper investigates the role of 

mitochondria in rosiglitazone and pioglitazone action with respect to Complexes I and II 

of the respiratory chain. Inhibition of Complex I was confirmed via the reduced 

efficiency of mitochondrial respiration at increasing levels of drug concentration, with 

malate/glutamate as an energizing substrate, and in relation to Complex I (energized by 

succinate). Additionally, a decrease in the production of extra-mitochondrial reactive 

oxygen species (ROS) was detected, particularly on exposure to rosiglitazone, possibly 

correlating with a lower level of cytotoxicity in comparison to pioglitazone. 
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LIST OF ABBREVIATIONS AND TERMS 
 
Terms 
 
Complex I - Section of the electron transport chain mediated by NADH dehydrogenase ; 
 
Complex II - Section of the electron transport chain mediated by succinate 
dehydrogenase ; 
 
MMP - (Mitochondrial) Membrane Potential ; 
 
ROS - Reactive Oxygen Species ; 
 
State 2 - Mitochondrial respiration in the absence of Adenosine diphosphate ; 
 
State 3 - Mitochondria respiration in the presence of Adenosine diphosphate ; 
 
TZD - Thiazolidinedione ; 



1. Introduction 
 

Thiazolidinediones (also called glitazones) were synthetic compounds introduced 

in the late 1990s as an adjunctive therapy for diabetes mellitus (type 2) and related 

diseases. While troglitazone (Rezulin), was withdrawn from the market due to an 

increased incidence of drug-induced hepatitis in the liver, (Kohlroser, 2000) two other 

members of this family of drugs, rosiglitazone (Avandia) and pioglitazone (Actos), were 

approved for the treatment of hyperglycemia (Gillies, 2000) and are believed to be less 

toxic (Isley, 2003). In vitro studies upheld the differences in cytotoxicity, identifying 

troglitazone as more toxic than rosiglitazone and pioglitazone (Haskins 2001; Bae, 2003, 

Yamamoto, 2001).  

Metabolic changes due to prolonged TZD treatment, particularly as related to 

insulin-stimulated glucose disappearance (Maggs, 1998), have been well described in 

vivo and ex vivo, clinical TZD therapy is built on limited knowledge of metabolic events 

that occur as a result of TZD action in cells and organelles. A major difficulty in 

understanding the mechanisms of TZD action is to separate events that are causal for 

antidiabetic action from other humoral and metabolic phenomenon that arise secondarily 

to glucose lowering or are unrelated to antidiabetic action. (Furnsinn, 2002) The study of 

the effects of TZDs on isolated cells or tissues in vitro remains useful as a means to 

distinguish TZD interaction from causal TZD-induced changes in hormones and 

metabolites and to provide mechanistic information relevant to clinically observed TZD 

cytotoxicity. 



 2

Mitochondrial dysfunction was observed in cytotoxicity experiments (Haskins, 

2001; Shishido, 2003). Mitochondrial dysfunction may play a role in TZD cytotoxicity, 

but the precise mechanism underlying this action is unclear. Studies have suggested that 

mitochondrial membrane permeability transition (MPT) has a pathogenic role in 

mitochondria-mediated cell injury due to chemical agents, characterized by a progressive 

permeabilization of the inner mitochondrial membrane (Lemasters, 1998). The potent 

TZD, troglitazone, has induced mitochondrial membrane permeability transition in 

isolated rat liver mitochondria, while rosiglitazone and pioglitazone have less effect 

(Masubuchi, 2006).  

Thiazolidinediones act by binding to Peroxisome proliferator-activated receptors; 

many metabolic and anti-inflammatory properties of TZDs are linked to PPAR-γ, a 

transcription factor that stimulates and represses a number of genes (Delerive, 2001). 

However, while TZDs have been linked to drug-induced hepatitis in the liver, the healthy 

liver, like skeletal muscle, does not strongly express PPAR-γ (Auboeuf 1997). 

Alternative PPAR-independent mechanisms may account for some glitazone responses 

(Feinstein, 2005). In vitro, TZDs have been observed to reduce fuel oxidation and elevate 

lactate release in skeletal muscle; an effect independent of PPAR-γ induced gene 

expression (Brunmair, 2001). A shift to anaerobic respiration indicates a PPAR-γ 

independent inhibition of cell respiration (Preininger 1999; Dello Russo, 2003), and an 

inhibitory influence on mitochondrial function. 

Mitochondria are major producers of reactive oxygen species (ROS) in response 

to agents that alter their functions (Perez-Ortiz, 2006). Reactive oxygen species have 

been implicated in a number of pathologies, such as type II diabetes, atherosclerosis, 
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ischemia/reperfusion injury (Droge, 2002); the generation of ROS and the release of 

proteins from the mitochondria have been shown to lead to the activation of different 

modes of apoptosis (Orrenius, 2003). ROS also regulate the cellular metabolism through 

the activation of enzymatic cascades and transcription factors. 

As TZDs have been reported to affect mitochondria in hepatoma cells 

(Masubuchi, 2006), and Jurkat cells (Kanunfre, 2004), among others, TZDs have been 

shown to generate ROS as a result of action on mitochondrial function (Narayanan, 

2003). Troglitazone produced intra-mitochondrial oxidant stress leading to mitochondrial 

permeabilization, leading to organelle injury and cell death (Lim, 2007). With reactive 

oxygen species implicated in the cytotoxic effects of TZDs, further investigation into the 

production of the superoxide anion (O2
−) (a short lived byproduct of oxidative 

phosphorylation) and hydrogen peroxide (H2O2), both species known to mediate 

cytotoxicity, could relate to PPAR-γ independent glitazone action.  

The present study aimed to better define the mechanisms underlying TZD effects 

on mitochondrial dysfunction/stress independent of PPAR-ligand pathways and how they 

relate to Complex I and Complex II activity and mitochondrial function. Previous 

research indicated that Rosiglitazone and Pioglitazone reduced State 3 respiration in 

mitochondria primarily by impairing Complex I activity. These drugs could be called 

Complex I-dependant regarding State 3 respiration (Brunmair 2004). One of the 

consequences of inhibition of Complexes I, II and III is an increase in mitochondrial ROS 

generation. Although the exact mechanism of how TZDs trigger cell injury is not fully 

understood, several lines of evidence point to a pivotal role played by reactive oxygen 

species (ROS) and oxidant stress (Jung 2007). Research into oxidative stress has 
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traditionally been assessed in whole cells rather than mitochondria; it is unknown 

whether changes in ROS production are the source or consequence of cell injury 

provoked by TZDs (Masubushi 2006). The present study accessed the mitochondrial 

damage done and changes caused by dose dependant drug exposure, with the aim of 

understanding the nature of mitochondrial dysfunction under these conditions. 



2. Materials and Methods 
 
2.1. Drugs and Chemicals 

The following need purchase/procurement information: Rosiglitazone, 

Pioglitazone, TMRM, Amplex Red, Thymadine, ADP, JM2 cells 

 

2.2. Animals  

Female Sprague–Dawley rats were obtained; the animals were housed in an air-

conditioned room (25˚C) under a 12 hour light-dark cycle. All animal experiments were 

performed under the criteria for humane care as outlined by the National Academy of 

Sciences in the “Guide for the Care and Use of Laboratory Animals” published by the 

National Institutes of Health.  

 

2.3. Isolation of rat liver mitochondria 

Rat liver mitochondria were isolated from fasted mature female Sprague–Dawley 

rats (180–250 g) as previously described (Pon, 2007). The rats were euthanized by 

decapitation and the livers removed. The livers were homogenized in an icecold isolation 

medium consisting of 220-mM mannitol, 70-mM sucrose, 2-mM HEPES, 0.5-mM 

EGTA, 0.1% BSA (fatty acid free) as a pH of 7.4 using a prechilled homogenizer. The 

homogenate was then centrifuged at 1000 x g for 10 minutes at 4ºC in a SA-600 rotor. 

The supernatant obtained was then transferred into a fresh prechilled tube and centrifuged 

a second time with the same parameters.  
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The supernatant obtained was then centrifuged at 10,000 x g for 10 minutes at 

4ºC. The resulting pellet, enriched with mitochondria, is retained while the supernatant is 

removed. The pellet is then re-suspended in buffer and gently stirred before being 

transferred into a chilled 15-ml tube for storage. Mitochondrial protein concentration was 

determined using a biuret procedure with bovine serum albumin as the standard (Gornall, 

1949). The condition of intact mitochondria was then tested by measuring oxygen 

consumption in the presence of succinate and ADP and determining respiratory control 

ratio (RCR).   

 

2.4. Oxygen Consumption 

Oxygen consumption was measured in air-saturated isolation buffer (0.2-M 

sucrose, 0.02-mM EGTA, 20-mM Tris-Hepes, 1-mM KH2PO4, pH 7.4) at room 

temperature with a Clark-type oxygen electrode. Mitochondria (1 g protein per liter) were 

pre-incubated for 3 minutes before the addition of concentrations of rosiglitazone or 

pioglitazone. Control experiments involving similar TZD-empty volumes of DMSO did 

not affect rates of oxygen consumption.  

For stimulating mitochondria respiration the isolation buffer contained either 

subtrates for Complex II (5-mM succinate, 5-µM rotenone) or Complex I (5-mM malate, 

5-mM glutamate). After 3 minutes, mitochondrial respiration was accelerated by the 

addition of 250-µM ADP allowing ATP synthesis. The rates of oxygen consumption 

were measured quantitatively in both State 2 and State 3 (with and without the presence 

of ADP, respectively) respiration. The Respiratory Control Ratio was then recorded as a 
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measure of mitochondrial efficiency in ATP synthesis. Measurements were done in 

triplicate.  

 

2.5. Detection of Superoxide in Isolated Rat Mitochondria by DHE-derived Fluorescence 
 

Suspensions of mitochondria (0.1 mg/ml) are preincubated in buffer without 

modifiers. Plate well suspensions are prepared with either 5-mM succinate, 5-µM 

rotenone or 5-mM malate, 5-mM glutamate, in addition to 1-µM DHE, with or without 

ADP (250-µM). Rosiglitazone or Pioglitazone concentrations of 5-µM, 25-µM and 50-

µM were also added. Mitochondria were exposed to these conditions at room temperature 

in 96-well plates and immediately added to a multi-well plate reader BMG (FlouStar, 

Durham, NC, USA) set at excitation 485 nm and emission 590 nm. The kinetics of O2
− 

generation was then recorded in the absence or presence of modifiers for 9 minutes. The 

level of O2
− in each experiment was measured in relative fluorescence units (RFU) per 

minute and the rate of Superoxide anion generation was expressed as RFU.min. The 

inhibitor, Antimycin A (10µg/ml), was used as a control. (Pon, 2007) 

 

2.6. Detection of H2O2 in isolated rat mitochondria by Amplex Red-derived fluorescence 

Mitochondrial H2O2 release was measured with Amplex Red (10-acetyl-3,7-

dihydroxyphenoxazine) horseradish peroxidase method (Pon, 2007). Horseradish 

peroxidase (HRP, 0.1 units/ml) catalyses the H2O2-dependant oxidation of non-

fluorescent Amplex red (50-µM) to fluorescent resorufin red; as HRP is too large a 

protein to cross membranes , this assay detects only H2O2 that has been released from 

the mitochondria (it does not measure H2O2 inside mitochondria). 100-µl of a solution 



 8

containing HRP and Amplex Red, with or without modifiers in the given concentrations 

is added to individual wells in a 96-well plate. Reactions are initiated by adding the 

buffer to the mitochondrial mixture (0.1 mg/ml) with the addition of 1-mM MgSO4. 

Fluorescence was measured at excitation 560 nm and emission 590 nm at 37ºC at 8 

second intervals for 9 minutes. A buffer without mitochondria served as a negative 

control. A standard curve was created by using known amounts of H2O2 to the assay 

medium in the absence of mitochondria. Results are calculated as RFUs in the 

mitochondrial samples minus RFUs in the empty control (background RFUs) and are 

expressed at pmol H2O2/mg protein/minute.  

 

2.7. Assay of thymidine incorporation by liquid scintillation 

JM2 Heptaoma cells were plated at a density of 7.5 x 104 cells onto a collagen 

coated 60-mm culture dish in 2-ml of DMEM (high glucose) supplemented with 1-mM 

pyruvate, 4-mM glutamine, 0.04-mM Phenol Red and 10% FBS (fetal bovine serum). 

Cell adhesion was allowed to occur over a period of 2.5 hours incubation with no change 

in media. Media was then replaced by feed media including thymidine and drugs at 

concentrations (1-mM, 5-mM, 25-mM, 50-mM) and allowed to culture for 20 hours.  

Following incubation with thymidine and the above experimental conditions, cell 

cultures were harvested, washed with 5% TCA, then with water 5 times sequentially, and 

then dissolved in 1.5-ml of 0.33 N NaOH. The dissolved cells were transferred to test 

tubes on ice and 0.5-ml of a solution of 40% trichloroacetic acid and 1.2 N HCL was 

added to each tube. The tubes were centrifuged for 10 minutes at 2000 rpm. The resulting 

pellets were dissolved in of 0.33 N NaOH. 0.3-ml aliquots were added to scintillation 
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vials along with 0.1 ml of trichloroacetic acid-HCL and 5-ml of a Aquasol (New England 

Nuclear, Boston MA), a xylene-based scintillation fluid. The vials were assayed for 

radioactivity by a liquid scintillation spectrometer. (Michalopoulos, 1984) 

 

2.8. Measurement of membrane depolarization during mitochondrial permeability 

transition 

The electrical transmembrane potential of mitochondria was monitored 

cytofluorometrically using TMRM in a method previously described (Blattner, 2001). 

Mitochondria suspended in a solution without Mg2+ but with a respiratory substrate, the 

presence of CaCl2 leads to Ca2+ uptake into mitochondria through the Ca2+ uniporter, 

and then to opening of permeability transition pores and membrane depolarization. 

Mitochondria (0.5-mg/ml) were incubated with TMRM (1-µM), a membrane potential 

indicating fluorophore, and 100-µM CaCl2. TMRM fluorescence was measured using a 

multiwell plate reader at excitation 540 nm, emission 590 nm; reduced fluorescence 

corresponded to a positive shift in voltage potential. Tests were performed according to 

experimental conditions utilizing a variety of modifiers and respiratory substrates.  
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Fig. 1. Effects of rosiglitazone exposure on isolated rat mitochondria given various 
concentrations of drug exposure. Graphs correlate data, weighted by deviation of that 

data from a baseline control. Mitochondria were incubated in a reaction medium 
containing either air-saturated isolation buffer: 200-mM sucrose, 0.02-mM EGTA, 20-

mM Tris-Hepes, 1-mM KH2PO4, pH 7.4 (during oxygen consumption measurement) or 
220-mM mannitol, 70-mM sucrose, 2-mM HEPES, 0.5-mM EGTA, 0.1% BSA; pH of 
7.4 (for ROS measurement). Mitochondria were energized with either 5-mM succinate 

and  5-µM rotenone or 5-mM malate plus 5-mM glutamate, without rotenone. All results 
represent mean ± S.D. and are expressed as a percentage of untreated individual controls 

for comparative purposes. (A) Effects of rosiglitazone at various concentrations on 
oxygen consumption (respiration), superoxide production, H2O2 generation, and 

membrane potential (MMP) in State 2, Complex II. (B) Effects of rosiglitazone at State 3, 
in Complex II, due to the presence of 250-µM ADP allowing ATP synthesis. (C) Effects 
of rosiglitazone in State 2, Complex I. (D) Effects of rosiglitazone at State 3, Complex I, 

due to the presence of 250-µM ADP. 
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Fig. 2. Effects of pioglitazone exposure on isolated rat mitochondria given various 
concentrations of drug exposure. Graphs correlate data, weighted by deviation of that 

data from a baseline control. Mitochondria were incubated in a reaction medium 
containing either air-saturated isolation buffer: 0.2-M sucrose, 0.02-mM EGTA, 20-mM 
Tris-Hepes, 1-mM KH2PO4, pH 7.4 (during oxygen consumption measurement) or 220-

mM mannitol, 70-mM sucrose, 2-mM HEPES, 0.5-mM EGTA, 0.1% BSA; pH of 7.4 
(for ROS measurement). Mitochondria were energized with either 5-mM succinate, 5-µM 

rotenone or 5-mM malate, 5-mM glutamate. All results represent mean ± S.D. and are 
expressed as a percentage of untreated individual controls for comparative purposes. (A) 
Effects of pioglitazone at various concentrations on oxygen consumption (respiration), 
superoxide production, H2O2 generation, and membrane potential (MMP) in State 2, 

Complex II. (B) Effects of pioglitazone at State 3, in Complex II, due to the presence of 
250-µM ADP allowing ATP synthesis. (C) Effects of pioglitazone in State 2, Complex I. 
(D) Effects of pioglitazone at State 3, Complex I, due to the presence of 250-µM ADP. 

 
 
 
 
 
 
 
 
 
 
 



3. Results 
 
3.1. Measurement of changes in relative oxygen consumption in isolated mitochondria as 

a result of drug exposure 

Incubation of energized mitochondria limited to Complex II based respiration in 

the presence of rosiglitazone demonstrated an increate in oxygen consumption with 

respect to increasing drug concentration in State 2, contrasted with a smaller decrease in 

State 3. Limited to Complex I activity, mitochondria showed a similar increase in State 2 

oxygen consumption, and a decrease in State 3. The inhibition of State 3 respiration was 

more pronounced in mitochondria reliant on malate/glutamate rather than succinate 

supported respiration. Reactions on exposure to pioglitazone demonstrated an increase in 

State 2, Complex II respiration, but less change in State 3. Complex I respiration was 

inhibited in State 3, but not significantly in State 2.  

 

3.2. Effect of rosiglitazone and pioglitazone on superoxide production 

 Investigating the mechanisms underlying the effects of glitazones on cell 

viability, the oxidative stress response of mitochondria to treatment with rosiglitazone 

and pioglitazone were tested on isolated mitochondria. The mitochondrial electron chain 

is a major source of endogenous ROS (reactive oxygen species). Measurement of State 2, 

Complex II activity in mitochondria in the presence of rosiglitazone demonstrated an 

increase in mitochondrial O2
−, and a decrease in relative O2

− production in State 3. Under 

Complex I conditions, rosiglitazone affected decreases in O2
− production in both State 2 
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and State 3. In the latter case, increases in drug concentration had a similarly increasing 

inhibitory effect. Pioglitazone inhibited O2
− production in Complex II, while having an 

opposite effect on Complex I activity. State 2 Complex I generation of O2
− increased 

dramatically with respect to pioglitazone concentration.  

 

3.3. Effect of rosiglitazone and pioglitazone on extra-mitochondrial hydrogen peroxide 

generation and release 

 H2O2 is the most stable and abundant of the reactive oxygen species produced by 

mitochondria, due to it being a byproduct of superoxide scavenging by superoxide 

dismutase (SOD) enzymes (Esposti, 2002). Decreases in the generation and release of 

H2O2 in isolated mitochondria were detected on exposure to both rosiglitazone and 

pioglitazone under all experimental conditions. In the rosiglitazone trials quantifiable 

levels of H2O2 decreased dramatically, particularly with respect to Complex I activity; 

greater reductions in H2O2 levels occurred in Complex I at similar concentrations of 

rosiglitazone than Complex II.  

 

3.4. Effect of Rosiglitazone and pioglitazone on mitochondrial membrane potential 

(MMP) 

Generation of ROS by mitochondria depends on the mitochondrial membrane 

potential and flux in the electron transport chain. Mitochondrial ROS production has been 

shown to decrease with mitochondrial transmembrane electrical potential (Brand, 2004). 

Previous research into the effect of rosiglitazone and pioglitazone on isolated mouse liver 

mitochondria indicated that pioglitazone had a greater effect than rosiglitazone, 
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decreasing membrane potential by approximately 10% relative to control at 50-µM 

(Masubuchi, 2006). Fluctuations in MMP within the range of standard deviation occurred 

in State 2 experiments, while there was a slight trend of increasing potential in State 3, 

except in the case of Complex II activity.  

 

3.5. Assay of glitazone cytotoxicity by thymidine incorporation 

 A thymidine incorporation by liquid scintillation assay was used to determine 

toxicity of rosiglitazone and pioglitazone, and to determine if the glitazones were halting 

the cell cycle. JM2 Heptaoma cells were used as thiazolidinediones have been previously 

reported to affect mitochondria in hepatoma cells (Masubuchi, 2006). The hepatoxicity of 

pioglitazone was confirmed, but did not halt the cell cycle over the course of the 

experiment (see Fig 3.). 
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Fig 3. Effects of rosiglitazone and pioglitazone at varied concentrations on cell 
proliferation. Drug effects were examined via a thymidine incorporation assay, measuring 

the inhibition of deoxyribonucleic acid (DNA) synthesis following exposure to 
thiazolidinediones. JM2 Heptaoma cells were plated at a density of 7.5 x 104 cells onto a 
collagen coated 60-mm culture dish in 2-ml of DMEM (high glucose) supplemented with 

1-mM pyruvate, 4-mM glutamine, 0.04-mM Phenol Red and 10% FBS (fetal bovine 
serum). Incubation offered for 2.5 hours followed by a change in media, and addition of 
thymidine and drugs at concentrations (1-mM, 5-mM, 25-mM, 50-mM). Cells were then 
cultured for 20 hours and harvested. Each data point was done in triplicate and expressed 

as a mean (STDEV of less than 3% was excluded from the graph).
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Fig 4. The effect of thiazolidinediones on RCI (respiratory control index) as a function of 

State-3/State-2 respiration, and sorted by active Complexes (succinate as Complex II 
substrate; malate/glutamate as Complex I). Mitochondria (1 g protein/liter) were 

incubated in an air-saturated isolation buffer containing 0.2-M sucrose, 0.02-mM EGTA, 
20-mM Tris-Hepes, 1-mM KH2PO4, and in a Clark-type oxygen electrode. (A) Displays 
the results of the rosiglitazone trials; (B) displays the results of exposure to Pioglitazone. 

The results are the representative mean of three experiments. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



4. Discussion 
 
 In the present study, the incubation of energized mitochondria with rosiglitazone 

and pioglitazone resulted in impairment of mitochondrial respiration and a decrease in 

energy conserving capacity as defined by the Respiratory Control Index (State 3/State 2). 

Both pathways showed a decreased respiratory control index (RCI; state-3/state-2) as a 

result of drug exposure (Fig 4.). For rosiglitazone, the decreases in RCI were due to both 

an increase in State 2 respiration and a decrease in State 3. The effect of Pioglitazone was 

to inhibit oxygen consumption in State 3 with regard to Complex I, and to increase it in 

State 2 for Complex II.  

As in previous research in isolated mitochondria, rosiglitazone and pioglitazone 

reduced State 3, Complex I respiration (with malate/glutamate as substrates) but did not 

do so in the presence of succinate and rotenone, along with indications that Complex I 

dependant oxidation inhibition was taking place (Brunmair 2004). Despite confirming the 

inhibition of Complex I by rosiglitazone and pioglitazone, a corresponding increase in 

ROS generation was not detected.   

One of the consequences of the inhibition of Complexes I, II and III is an increase 

in mitochondrial ROS generation (Orrenius, 2007), however rosiglitazone and 

pioglitazone exposure resulted in a general decrease in ROS (both H2O2 and O2
−) levels 
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observed in both State 2 and 3, indicating that a specific inhibition of Complex I or II as 

would be caused by rotenone or thenoyltrifluoroacetone is not taking place, despite the 

concentration-dependent decreases in respiratory control. Previous investigations into 

ROS generation in cells have indicated increased ROS generation in Jurkat T cells 

(Soller, 2004) but anti-oxidative properties in patients (Garg, 2000). Troglitazone was 

noted to increase mitochondrial ROS (Lim, 2007). 
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Fig 5. The effect of thiazolidinediones on overall extra-mitochondrial State 3 ROS 
generation. Net levels of reactive oxygen species are expressed as relative fluorescence 

units (RFUs). (A) Rosiglitazone inhibits the production of ROS in Complex 1 
(malate/glutamate) and Complex 2 (succinate/rotenone) respiration. (B) The effect of 

Pioglitazone under Complex 1 and Complex 2 activity. 
 

Drug doses encouraged the release of Superoxide from the mitochondria in State 

2, but inhibited it in State 3. This correlates with the increased oxygen consumption 

observed in State 2 during the Respiration experiments. Oxidative stress is generally 
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defined as an imbalance that favors the production of ROS over antioxidants; however 

isolated mitochondria were not shown to produce markedly increased levels of reactive 

oxygen species that would lead to greater oxidative stress in their environment. 

Rosiglitazone in particular demonstrates a strong adverse correlation to ROS generation, 

especially towards Complex 1 activity (Fig 5). 

The reduction in Respiratory Control and mitochondrial efficiency (with respect 

to ATP synthesis) seen are indicative of a contribution to uncoupled respiration without 

ATP production. Rosiglitazone and Pioglitazone seem to act as uncouplers, both in 

regards to Complex I and Complex II, but primarily Complex I. This activity has been 

suggested previously (Brunmair 2004, Lim, 2007); the protonophoretic uncoupling of 

oxidative phosphorylation is consistent with observed results. However, both 

rosiglitazone and pioglitazone had little impact on mitochondrial membrane potential, 

and inhibited extra-mitochondrial ROS generation. As TZD’s (primarily troglitazone and 

c-glitazone) have been linked to oxidative stress and cell death (Soller, 2007), it seems 

likely that ROS is being generated by an exo-mitochondrial pathway.  

It is increasingly apparent that mitochondria lie at the centre of the process of cell 

death: apoptosis and necrosis. Mitochondria may induce mitochondrial permeability 

transition, and release apoptotic proteins into the cytoplasm, resulting in a biochemical 

and morphological alteration of cell metabolism. Observations of the effect of 

rosiglitazone and pioglitazone are consistent with the concept that mild mitochondrial 

uncoupling contributes to respiratory inhibition and mitochondrial dysfunction, while 

reducing overall output of reactive oxygen species, particularly in rosiglitazone. These 

non- PPAR-γ factors likely contribute to the cytotoxic effects attributes to these drugs.  
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