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ABSTRACT 
 

Dana M. Walsh: The Airway Microbiome After Burn and Inhalation Injury 
(Under the direction of David Diaz-Sanchez and Ilona Jaspers) 

 
 

The human microbiome is composed of the entirety of microorganisms living on 

and in the human body along with their genetic material. Recent work has demonstrated 

the importance of these bacterial communities, or microbiota, in health and disease, 

including in the airways. Though the airways contain mechanisms to clear bacteria, 

disruption of homeostasis by illness and injury can induce conditions favorable to 

bacterial colonization and growth. Inhalation injury endured by burn victims disrupts 

homeostasis by damaging the airway epithelium and inhibiting innate immune responses, 

increasing the risk of acute respiratory distress syndrome (ARDS), infection, and 

pneumonia. Inhalation injury is a known cause of ARDS, which is partly diagnosed by 

hypoxia in the airways as indicated by a PaO2/FiO2 ratio ≤ 300. There is a known link 

between ARDS and bacterial infection in the airways, but the relationship is complex and 

poorly understood. Diagnosis of airway bacterial infection in this patient population can 

be challenging due to limitations in detecting and identifying the colonizing organism. 

The goal of this dissertation research was to identify differences in the airway microbiota 

among patients with PaO2/FiO2 ratios ≤ 300 and > 300 after experiencing burn and 

inhalation injury. Bacterial DNA was extracted from therapeutic bronchial washings of 

patients hospitalized for burn and inhalation injury at the North Carolina Jaycee Burn 

Center and sequenced. Patients with PaO2/FiO2 ratio ≤ 300 demonstrated increases in 
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low-abundance bacteria as well as significant enrichment of Prevotella melaninogenica 

that was not altered by antibiotic treatment. Bacterial taxa among patients with PaO2/FiO2 

ratio ≤ 300 were grouped into correlation networks that were distinct both in composition 

and predicted function from patients with PaO2/FiO2 ratio > 300. Further, predicted 

functions important in characterizing the communities were unique for each disease state, 

identifying changes in bacterial interactions and functional roles that may be important in 

progression of hypoxia and ARDS. This combination of metagenomics with advanced 

computational analyses allows identification of specific changes relevant to the entire 

community, providing focused hypotheses for further validation and investigation that 

may lead to new therapeutic targets for preventing bacterial infection after burn and 

inhalation injury.  
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CHAPTER 1: THE HUMAN MICROBIOME AND ANALYSIS STRATEGIES 

 

1.1 Introduction to The Human Microbiome 

 Advances in sequencing technology have revolutionized the study of 

microorganisms living on and within the human body. Populations of bacteria can now be 

identified en masse without first knowing each individual’s unique metabolic 

requirements for growth, enabling rapid detection and identification of multiple species 

as well as discovery of new ones [1–3]. These communities, along with their genetic 

material, are collectively known as the microbiome [4]. Bacteria within the human 

microbiome, or the microbiota, outnumber human cells at an estimated ratio of three to 

one in healthy states [5]. Despite the abundance and diversity of bacteria present at 

homeostasis, traditional biomedical microbiology focuses on the ability of individual 

bacteria to cause disease and the elucidation of treatment strategies targeting these 

individuals. The emerging microbiome field, which allows study of multiple bacteria 

simultaneously, has emphasized the role of bacteria as members of a community that 

interact with each other as well as the host in a symbiotic way [6]. Study of these 

relationships has been advanced by initiation of The Human Microbiome Project [7]. 

This multi-center effort has employed next-generation sequencing (NGS) methods to 

characterize the symbiotic bacteria present at various body locations in healthy people 

and their roles in normal physiology as well as disease [7]. As a whole, the healthy 

human microbiome displays much variation in bacterial diversity and abundance both 
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between individuals and within body locations, but metabolic functions remain relatively 

stable, indicating similarity in function among healthy people [8]. In the gut, which 

maintains the largest population of bacteria within the human body, the microbiota play 

key roles in education of the developing immune system, extraction of nutrients from 

dietary fiber, metabolism of xenobiotic compounds, and production of small molecules 

that influence distant organ systems [9–14]. A growing body of work on the microbiota 

in other body locations implies parallels as well as distinctions in their composition and 

function in comparison to the gut. Whereas increased diversity is generally associated 

with improved health outcomes in the gut, this is associated with poor outcomes in the 

vagina [15]. Conversely, in the nasal and oral microbiome, loss of diversity is seen in 

conjuncture with increased severity of diseases such as chronic rhinosinusitis and 

periodontal disease [16,17]. Regardless of body location, development of disease alters 

the microbiota, their functions, and their relationship with the host. Understanding this 

relationship requires advancement in experimental, computational, and statistical 

techniques, which together contain exciting potential for advances in preventative and 

individualized medicine. 

 

1.1.1 The Human Microbiome Project 

 The initiation of the Human Microbiome Project (HMP) in 2008 was a massive 

undertaking, involving multiple institutions in an effort to understand the genetic and 

physiologic diversity contributed by symbiotic bacteria in healthy states and during 

development of disease [7]. Though the Human Genome Project elucidated the genes 

encoded in the human genome, it did not touch on the additional microbial genomes 
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present and their functions [18]. The HMP is effectively an extension of the Human 

Genome Project in its mission to identify bacterial genes and functions that contribute to 

human health outcomes. Unlike the Human Genome Project, the HMP faced the 

challenge of analyzing multiple genomes from multiple bacterial species, many of which 

cannot be cultured [19]. This required deep, whole-genome sequencing of selected 

individual bacteria to develop reference genomes as well as other sequencing methods, 

specifically 16S rRNA gene sequencing, that are capable of detecting and identifying 

multiple bacteria from short reads. Figure 1.1 provides an overview of experimental and 

sequencing techniques used by the HMP and other microbiome studies.  Although 

alteration of the microbiome in disease states holds greater implications for human health 

Figure 1.1: Microbiome Experimental and Sequencing Methods. Microbiome 
studies require selection of an appropriate model to address an experimental 
hypothesis, followed by sequencing methods to elucidate bacterial community 
composition (Who’s there?) and/or function (What are they doing?). 
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outcomes, the HMP recognized the need to characterize the healthy microbiome and its 

associated functions from a wide range of individuals in order to assess the impact of 

disease-induced change. The project has so far generated publicly available clinical 

specimens, reference genomes, sequencing and annotation protocols, and other 

collection, extraction, and analysis methods [20]. A paper published in 2012 details the 

standardized protocols established for collection, sequencing, and analysis of 5,298 

samples from 15 or 18 body sites in 242 healthy individuals [20]. Bacterial 16S 

ribosomal gene amplicon sequencing was used on all samples and a subset was 

sequenced using whole-genome techniques [20]. Because suitable 16S rRNA gene 

sequencing methods did not exist at the start of the project, the HMP was instrumental in 

developing a standardized way to analyze 16S rRNA gene data for future studies. 

Further, the project has resulted in the development of analysis tools and statistical 

methods specific to microbiome data, which is key to fully understanding the 

implications of the results.  

 

1.1.2 Healthy Microbiome Composition and Function 

 Since initiation of the HMP, microbiome research has increased exponentially. 

Studies are encompassing a growing number of body locations, disease states, and 

environmental exposures as researchers recognize the far-flung impacts of these bacterial 

communities. Results from the HMP provide a starting point in understanding bacterial 

community membership and function in healthy individuals from a broad range of 

backgrounds. The 242 volunteers who provided samples for this study ranged in age from 

18 to 40 years old, were recruited in either Texas or Missouri, met study criteria for 
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healthy status, and submitted either 15 (for men) or 18 (for women) samples from body 

locations listed in Table 1.1.  

Body Site Specific Location 
Oral cavity Attached keratinized gingiva 

Buccal mucosa 
Hard palate 
Palatine tonsils 
Saliva 
Subgingival plaque 
Supragingival plaque 
Throat 
Tongue dorsum 

Nasal cavity Anterior nares 
Skin Left & right antecubital fossa 

Left & right retroauricular crease 
Gastrointestinal tract Stool 
Urogenital tract Mid vagina 
 Posterior fornix 
 Vaginal introitus 
Table 1.1: Body Locations of Sampling for the Healthy Human Microbiome. 

 The HMP’s use of both whole-genome and 16S rRNA gene amplicon sequencing 

provides species level abundance data for all samples and bacterial functions for a subset 

of the samples. Among the 242 healthy volunteers in the HMP, variation among the 

microbiota was greater between individuals than between body locations over time [8]. 

Microbiota from different locations of the body in the same person were more similar 

than those microbiota were to another person, highlighting the effect of inter-individual 

variation. A myriad of reasons may explain this, from differences in diet, to genetics, to 

environmental exposures and ethnic background, among others. Despite person-to-person 

differences in bacterial composition, levels of diversity among body sites were similar. 

The oral and stool microbiota were observed to have high alpha (within sample) diversity 

while the vagina had low diversity [8]. Comparing alpha and beta diversity metrics reveal 

ecological diversity and similarity among community membership. For example, the 
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saliva microbiota displayed high alpha diversity but low beta diversity, indicating 

bacterial communities rich in bacterial taxa that were similar among individuals [8].  

 One of the goals of the HMP was to determine whether a core microbiome exists 

among healthy individuals [7]. Bacterial taxa that are core to a community are 

consistently present among two or more individuals or habitats [21–23]. In the strictest 

definition, the core taxa must be present among all the communities in a group [21]. 

However, other studies have used membership among 95% of individuals to as few as 

50% [23–25]. Identification of a core microbiome is complicated by the level of 

taxonomic specificity as well as sub-populations of people and environments [22]. It is 

easier to define core taxa at the phylum level than it is at the species level, since there is 

wide variation in species carriage among healthy individuals [8]. Various subject 

metadata could be employed to identify core taxa among groups, such as season in which 

the sample was taken among nasal microbiota and the development of peri-implant-

associated disease in the oral microbiota [24,25]. Within the HMP dataset, no taxa were 

present among all subjects [8]. However, taxa present among 95% of subjects, rather than 

all, revealed core microbiota [23]. Samples from the oral cavity contained the greatest 

number of taxa present among 95% of subjects, followed by nose, stool, skin, and vagina 

[23]. This work revealed the difficulties in defining a core microbiota at an appropriate 

level of taxonomic granularity; while taxa in the mouth were defined as core at the genus 

level, refining the taxa to the species level resulted in distinct selection of species among 

individuals [23]. Regardless, identification of core microbiota which occur commonly 

among a group may imply their importance in the function of that particular community 

[21]. 
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 Despite differences in taxonomic composition among individuals, the HMP found 

relative stability among the functions of microbial communities inhabiting specific body 

sites in healthy individuals [8]. Common metabolic pathways, such as the components 

necessary for translation, ATP synthesis, and glycolysis, were consistently represented 

among healthy subjects [8]. This underscores the idea that microbial community function 

may be more important in understanding health outcomes than composition. Although 

common metabolic pathways could be correlated with subject metadata through 

multivariate statistical analysis, this does not explore the impact of less abundant 

functions, such as those associated with pathogenesis [8].  

 The HMP was an enormous undertaking and provided many tools previously 

lacking in the microbiome field, including standardized protocols, new bioinformatics 

methods, and an understanding of the healthy microbiome in various body sites. 

However, much work remains to be done to fully understand the breadth and depth of the 

healthy human microbiome. Some major limitations of the HMP data set are its 

restriction to healthy adults in the United States as well as a lack of detailed metadata 

from these subjects, such as diet, comorbidities, environmental and drug exposures, and 

human genome data. Recent studies have found changes in both microbiome composition 

and function that are age and population dependent, indicating that the HMP data set does 

not adequately cover the range of the healthy microbiome [26,27]. Diet has a clear and 

measurable impact on both the composition and function of the gut microbiome, making 

it an important factor to consider when characterizing healthy microbial communities 

[28]. Similarly, cigarette smoke, environmental chemicals, and xenobiotics have all been 

shown to alter microbiota composition and, in some cases, function [29–32]. Finally, host 
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genetics can shape the microbiome to influence microbial growth and metabolism and 

host phenotype [33,34]. For example, several taxa were identified as heritable among 

monozygotic twin pairs, with Christensenellaceae being the most heritable and 

demonstrating the ability to reduce obesity when introduced to germ-free mice in the 

company of obesity-associated taxa [33]. Further, specific microRNA produced by 

human intestinal epithelial cells have been shown to regulate bacterial gene transcripts 

and modulate bacteria growth [34]. Clearly, there is a complex interaction among the 

microbiota, host, and environment, which we have yet to completely understand. Though 

the HMP’s work was pioneering, there remains a need to expand it to take into account a 

more diverse range of subjects and incorporate a rich set of metadata in order to more 

completely define the healthy human microbiome.  

 

1.1.3 Role of the Microbiome in Immune System Development and Education 

 Recent studies have revealed the key roles microbiota play both in the 

development and function of the host immune system, and how dysbiosis, or perturbation 

of the communities, contributes to disease [16,35–38]. Millions of years of co-evolution 

has resulted in finely balanced cross-talk that allows the host to shape microbial 

communities and these communities, in turn, to influence host immune responses [9]. 

Colonization of mucosal and other surfaces by bacteria occurs immediately following 

birth, and new work indicates that exposure may even begin in utero [14,39–41]. Though 

the impact of in utero bacterial exposure on later health outcomes remains unknown, this 

demonstrates early interaction among the microbiome and the immune system during 

critical developmental periods. Disruption of these interactions, through diet, antibiotic 
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and drug treatments, and environmental exposures, may predispose infants to 

inflammatory, allergic, and other diseases later in life [14,42]. Germ-free (GF) mice, 

which are born in a sterile environment and deprived of microbial interactions, display 

stunted immune maturation and impaired responses to pathogenic bacteria, demonstrating 

the importance of commensal microbes in development of a functional immune system 

[39]. Large-scale studies with human children show reduced risk of allergies if they grow 

up in a farm environment, suggesting that early exposure in life to diverse microbes aids 

in educating the immune system to respond appropriately to foreign antigens [43]. This is 

incorporated in the hygiene hypothesis, which encompasses the idea that modern-day 

sterility reduces early-life exposure to microbes to a degree that results in poor 

development of immunity and increases the risk of allergic disease [44]. Inflammation in 

the absence of microbiota, which is ameliorated by introduction of innocuous bacterial 

products, supports this hypothesis from a microbiome perspective [42]. This work shows 

that early life microbial exposures are important to appropriate immune development and 

function later in life. 

 In an appropriately educated immune environment, microbiota play key roles in 

regulation of inflammation and prevention of infection. In the intestine, a loss in 

microbial diversity or perturbation of the community predisposes the gut to infection, 

highlighting the importance of commensal species in limiting pathogen growth and 

stimulating immune response [39]. Treatment of mice with antibiotics impairs adequate 

innate and adaptive immune responses to viral infection, reducing clearance of the virus 

[45]. In the healthy microbiome, segmented filamentous bacteria (SFB) drive 

differentiation of CD4+ Th17 differentiation and protect against infection by Citrobacter 
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rodentium [39]. In the nasal microbiome, the commensal bacteria Lactobacillus murinus 

is less effective in stimulating CD4+ T cells than the pathogen Streptococcus pyogenes 

and does not induce disease [46]. This demonstrates the immune system’s ability to 

differentiate between commensal and pathogenic organisms and elicit appropriate 

responses. The immune system can also differentiate between the commensal and 

pathogenic potential of the same organism depending on its location in the body. If 

staphylococcal species within the skin microbiome are present below the dermis, an 

inflammatory response is invoked [10]. If they are instead on the epidermal surface, no 

inflammation is produced due to inhibition of Toll-like receptor 3 (TLR3) signaling of 

keratinocytes by staphylococcal lipoteichoic acid [10]. These studies imply that 

interactions between microbiota and the immune system are finely tuned to maintain 

homeostasis and their disruption can lead to inflammation and infection. Ongoing work 

continues to explore these interactions and how they might be manipulated to prevent 

and/or treat disease.  

 

1.1.4 The Diseased and Injured Microbiome 

 Though the healthy microbiome and its interactions with the immune system 

remain to be entirely elucidated, study of the diseased and injured microbiome has 

revealed previously unknown roles for specific taxa that may hold keys for therapeutic 

manipulation of bacterial communities. A large body of work exists exploring changes in 

the gut microbiome under conditions such as irritable bowel disease (IBD), colon cancer, 

diabetes, allergy, and obesity. In all of these diseases, shifts in microbial community 

composition have been observed concomitantly with a loss of overall bacterial diversity. 
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At the coarsest level, more than 90% of phylotypes (sequences with >97% similarity; 

also known as operational taxonomic units or OTUs) in the healthy gut belong to one of 

two phyla; either the Bacteroidetes or the Firmicutes [47]. The phyla Proteobacteria, 

Actinobacteria, Fusobacteria, and Verrucomicrobia have also been consistently detected 

in the gut at lower abundance [23,47]. In the presence of IBD, the abundance of 

Actinobacteria and Proteobacteria increase, Bacteroidetes decrease, and these changes are 

accompanied by a loss of bacterial diversity [47]. In colorectal cancer, Fusobacteria and 

Proteobacteria increase while overall diversity decreases [48]. Patients with type two 

diabetes display a loss of bacteria in the Firmicutes phylum with an increase in 

Betaproteobacteria [49]. Fewer studies on the role of the gut microbiome in allergies 

exist, but a study of infants showed increases in anaerobes and lactobacilli and decreases 

in bifidobacteria and enterobacteria [42]. Finally, obesity is known to induce shifts in the 

gut microbiome, with specific increases in Actinobacteria and Bacteroidetes accompanied 

by an overall loss of diversity as compared to lean individuals [50]. Though these 

disparate diseases show alteration in different bacterial phyla, they all display a loss in 

diversity among the gut microbial communities. This has been a consistent finding 

among other gut microbiome studies as well, leading to the general acceptance of the idea 

that a loss of microbial diversity is associated with poor health outcomes. 

Supplementation with additional bacteria, such as in probiotics or fecal microbiome 

transplants, is a possible therapeutic intervention to ameliorate the effects of these gut 

diseases. 

 The association between loss of diversity and poor health outcomes holds true for 

other body locations, such as the oral and nasal microbiome. In the oral microbiome, 
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outgrowth of a single, low-abundance bacterium, Poryphyromonas gingivalis, is known 

to induce periodontitis [17]. Periodontitis is a polymicrobial disease characterized by 

inflammation and bone loss [17]. P. gingivalis was shown to induce periodontitis through 

the complement pathway only in the presence of other commensal microbiota, despite it 

being a low-abundance organism [17]. Outgrowth of P. gingivalis and development of 

periodontitis was accompanied by a loss of oral microbiome diversity [17]. In a similar 

manner, Corynebacterium tuberculostearicum mediated severity of chronic rhinosinusitis 

in the nasal microbiome [16]. Here, C. tuberculostearicum was enriched in the presence 

of decreased nasal microbiome diversity but could be inhibited by Lactobacillus sakeii 

[16]. These studies not only confirm the association between loss of diversity and poor 

outcomes, but also demonstrate the ability of single, low-abundance species to mediate 

disease. Interventions aimed at controlling the growth of these specific bacteria, possibly 

through other microbiota known to inhibit their growth, could prove effective in 

managing and preventing disease.  

 The vaginal microbiome is one of the few known body locations in which low 

diversity is associated with better health outcomes. In healthy, non-pregnant women, the 

vaginal microbiome has low alpha diversity and is dominated by one or two of the 

following Lactobacillus species; L. crispatus, L. gasseri, L. iners, or L. jensenii [41]. Its 

composition fluctuates with changes in age, hormones, infection, and sexual behavior 

[41]. During bacterial vaginosis (BV), vaginal microbiome diversity increases, which 

indicates poor health outcomes for this body site [51]. In contrast, the vaginal 

microbiome during pregnancy is more stable but less diverse [15,41]. Preterm birth and 

the development of chorioamnionitis are associated with changes in both the vaginal and 
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placental microbiome. In preterm births, the vaginal microbiome displays a decrease in 

the abundance of lactobacilli with a dominance of the Prevotella  and Peptoniphilus 

genera [52]. Healthy term births are associated with increased Enterobacter and L. 

crispatus in the placenta, but preterm births with severe chorioamnionitis display 

enrichment of Ureaplasma parvum, Fusobacterium nucleatum, and Streptococcus 

agalactiae in the placenta [40]. Though the role of these bacteria in BV and preterm birth 

is unclear, intervention strategies which supplement the vagina with Lactobacillus 

depending on vaginal pH level have shown decreases in preterm births [41]. Larger 

clinical trials are necessary to confirm the positive impact of Lactobacillus 

supplementation in pregnant women. 

 Injury to the microbiome, such as by surgery, smoke inhalation, or toxic 

exposures, can also induce dysbiosis. Victims of burn injury often experience disruption 

of the intestinal epithelium, which increases the risk of bacterial translocation and sepsis 

[53]. The gut microbiota in these patients shows increased dysbiosis accompanied by 

specific enrichment of aerobic Gram-negative bacteria [53]. However, alterations in the 

gut microbiome after injury do not always lead to infection and disease. In germ-free 

mice lacking a healthy microbiome, cellular regeneration after colonic injury is slowed, 

indicating that microbiota play important roles in epithelial repair [36]. They may also 

protect the cells; cytoprotective genes are upregulated by microbiota through detection by 

pattern recognition receptors (PRR) and subsequent generation of reactive oxygen species 

(ROS) through the Nrf2/ARE pathway [36]. Environmental chemicals have been shown 

to alter microbiota composition and function as well. Exposure to chemicals in personal 

care products can alter microbial community composition, even at low doses [32]. Rats 
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were exposed to low and high doses of diethyl phthalate, methylparaben, triclosan, or a 

mix of these three from birth through adulthood [32]. Significant increases in 

Bacteroidetes and decreases in Firmicutes were seen at the adolescent stage in these rats, 

but these changes disappeared by adulthood [32]. Arsenic, a common drinking water 

contaminant, also shifts microbial composition and metabolic phenotype [54]. Arsenic 

demonstrated time and dose-dependent changes in Bacteroidetes and Firmicutes along 

with microbial and host nitrogen metabolism, possibly inducing conditions favorable to 

infection and disease [54]. Cigarette smoke, which contains known cytotoxic compounds 

such as acrolein and polycyclic aromatic hydrocarbons (PAH), alters the nasal and oral 

microbiome [55–59]. Comparison of the upper and lower respiratory microbiota in 

smokers and non-smokers revealed overall enrichment of certain taxa in the lung but the 

effect of smoking was only significant in the oral microbiome [58]. Another study 

comparing the effect of smoking on the nasal and oral microbiota revealed increased 

microbial diversity in smokers and clustering first by body site and then by smoking 

status, indicating the greater effect of location over smoke exposure [59]. These studies 

demonstrate that injury, whether physical or chemical, can induce changes in the 

microbiota in a variety of body locations, but their immediate and long-term effects on 

health are unclear and require additional investigation.     

 

1.2 Review of Strategies for Investigating the Microbiome 

 The HMP established a precedent for future microbiome studies. Development of 

standardized protocols provided guidelines for other researchers undertaking human 

microbiome studies, enabling comparison among work from various groups. Mouse and 
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in vitro cellular models have been developed, allowing for mechanistic investigation into 

observations from human studies, as well as various bioinformatics pipelines and 

statistical methods specific to the unique requirements of microbiome data. Microbiome 

studies require the unification of biological experiments with computational data 

analysis, encouraging the formation of multi-disciplinary groups to carry out the most 

effective research. Effective communication between experts in these fields is crucial to 

optimization of research strategies. 

 

1.2.1 Experimental Models 

 The first step in any microbiome project is selection of an appropriate model 

system in which to carry out the study. For research in the human microbiome and its role 

in health and disease, human subjects research is the ideal model. However, certain 

manipulations are impossible to perform in people and must instead be carried out in 

animal or cell culture models. Animal models, such as mice, rats, and ferrets, recapitulate 

the whole organism, allowing for interactions among microbiota and cell subtypes. 

However, animals are genetically and metabolically different from humans, making them 

unsuitable for certain types of studies. Cell culture models allow study of the interaction 

of cells and bacteria in isolation, revealing detailed mechanisms that may shed light on 

therapeutic targets. However, this isolation means crucial cellular interactions may be 

missed and promising therapeutic targets in vitro may not work at all in vivo. A 

combination of these model systems is necessary for a complete understanding of the 

microbiome, its interactions with the host, and how it may be manipulated to improve 

health outcomes. 
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1.2.1.1 Human Studies 

 Of all the model systems, human subjects research may be the most critical to 

accurately understanding microbe-host interactions and their roles in health and disease. 

Study of microbiota in humans is the most clinically relevant system but may be limited 

by the ability to recruit appropriate subjects, compliance with National Institutes of 

Health (NIH) guidelines, and lack of fine experimental control [60]. Protections for 

human subjects in biomedical research in the United States are heavily based upon the 

1979 Belmont Report and were subsequently expanded in the Protection of Human 

Subjects Law and the Common Rule [61]. The Belmont Report is composed of three 

principles: (1) Respect for persons, (2) Beneficence, and (3) Justice. Institutional Review 

Boards (IRB) were created to uphold these principles in resect to research with human 

studies. An IRB is composed of both scientists and members of the community whose job 

is to review research protocols and ensure they comply with human research protection 

laws [61]. Therefore, it is crucial to design human microbiome studies with these 

principles in mind. In compliance with the principle of beneficence, a study must do no 

harm to the subject and provide a benefit either to the individuals involved in the study or 

to society as a whole [61]. Within respect for persons, researchers must provide informed 

consent documents to study volunteers which explain, in clear terms, what they are 

agreeing to do and why [61]. Finally, to comply with the principle of justice, researchers 

must not discriminate in selection of study participants and must make results of the 

study publicly available [61]. Compliance with these rules makes certain types of studies 

impossible in human volunteers, necessitating the use of other model systems. 
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1.2.1.2 In Vivo Animal Models    

 Animal models allow study of manipulations to both the host and the microbiome 

that may not be ethically possible in human studies. Animals can be treated with 

pathogens and toxic compounds that are known to do harm to people, and they can be 

euthanized and dissected to study the impact of such compounds on specific body 

locations [62]. Although such methods provide crucial knowledge that ultimately benefits 

human health, their use in people would clearly be unethical and violate the principle of 

beneficence laid out by the Belmont Report. Therefore, animal models provide a critical 

link between observations in human studies and specific manipulations that aid in 

understanding the mechanism behind them. 

 Of existing animal models, mice are used most frequently due to ease of working 

with and maintaining them, genetic tools available, and their genetic similarities to 

humans [60]. Mice share ninety-nine percent of their genes with humans, and various 

knock-out, knock-in, and transgenic models have been developed to study the function of 

these genes and their impact on human biology. Environmental conditions in mouse 

models, such as diet, exercise, wake/sleep cycles, and stress are easy to alter and assess 

the resulting impact on microbiota and health outcomes. Mice have played key roles in 

the study of transgenerational inheritance, which is the idea that epigenetic alteration to 

previous generations, through environmental exposures and/or disease, can be passed on 

to the offspring [63]. Though not widely explored in the context of the microbiome, 

recent mouse studies demonstrate the role epigenetics may play in appropriate 

colonization of the microbiome after birth as well as the influence these microbes have on 
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host epigenetic mechanisms [64,65]. Mice provide a convenient model system in which 

to explore the interaction of host genetics, epigenetics, and the microbiome. 

      The most widely used mouse model in microbiome studies is the germ-free 

mouse (GF). These mice are born in sterile isolators that keep them free from 

colonization with any microorganism; bacteria, virus, or fungi [66]. These animals can 

then be colonized with individual bacteria, selected communities, or even donor 

communities from humans in order to link them to specific functions [66]. Once 

colonized, these animals are known as gnotobiotic mice [60,66]. The utility of this model 

is exemplified in a recent study on the composition and function of the gut microbiota in 

twins [67]. Here, fecal microbiota from one monozygotic twin pair and three dizygotic 

twin pairs, all of which were discordant for obesity, were transplanted into GF mice. The 

mice were fed a low-fat, high-plant polysaccharide diet and assessed for adiposity and 

metabolic changes. Because mice are coprophagic, cohousing one mouse with the lean 

microbiota and another with the obese microbiota allowed study of transmission of the 

microbiota between them. The model revealed increases in adiposity in mice colonized 

with the obese microbiota, along with decreased metabolism of short-chain fatty acids 

(SCFA), and increased metabolism of branched-chain amino acids. Cohousing prevented 

adiposity in obese mice and shifted their microbiota to a lean-like state, which included 

increased abundance of Bacteroidales [67]. Although compositional and functional 

differences can be measured from human microbiota, the use of GF mice in this study 

provided evidence that the bacteria themselves, rather than diet, contributed to increased 

body mass and adiposity. Further, the ability to cohouse these mice demonstrated 

transferability of the phenotype and identified bacterial taxa that may be important in 
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preventing obesity. This level of fine experimental control is not possible in human 

studies and provides direct evidence for functional roles of the microbiota in health and 

disease. 

 Though GF mice play crucial roles in elucidation of microbial functions, they are 

not without their limitations. In comparison to conventionalized (CONV) mice, GF 

animals demonstrate stunted immune responses, altered gene expression profiles in 

epithelial intestinal cells, and reduced renewal of epithelial cells after injury [39,66]. 

Several recent studies imply that microbial colonization after birth is critical to 

development of appropriate immune responses as well as brain development [14,68–70]. 

In the prefrontal cortex of GF mice, genes involved in myelination and myelin plasticity 

were upregulated and axons showed hypermyelination, suggesting that microbiota are 

necessary for appropriate regulation of this process [68]. Though the GF model allows 

elucidation of functional roles of microbiota, particulary during development, it may not 

be appropriate for studies investigating differences in microbial composition at the adult 

stage. Since these animals have not had exposure to microbes from birth, their responses 

to various microbiota may be skewed and not accurately represent differences induced by 

microbial communities. For example, though the previously mentioned twin study used 

GF mice to identify differences in function and composition between lean and obese 

microbiota, the response may be entirely different if CONV mice had been used instead. 

Despite these issues, the GF mouse remains an important model for establishing the 

importance of specific bacteria and communities of bacteria on host development.   

 Due to limitations of the GF model as well as limitations in access to it, depletion 

of microbiota in mice has also been done through antibiotic treatment. This allows the 
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mouse to be exposed to microbiota during development, eliminating the deficiencies seen 

in the GF model [71]. For studies examining the impact of microbiota on disease later in 

life, this may be a more appropriate model. Chronic treatment of mice from weaning 

onward with antibiotics (ABX) resulted in altered gut microbiota, reduced anxiety, 

cognitive deficits, and significantly reduced expression of neuromodulators in the adult 

brain [69]. The similarity of these results to those in GF mice implies that ABX treatment 

may be a valid alternative to GF mice. As with GF mice, microbiota can be transplanted 

into ABX-treated mice, but differences in phenotype may not be as strong and the donor 

community composition may not be maintained for as long [71,72]. Further, antibiotics 

may selectively inhibit specific bacterial species while allowing outgrowth of others 

rather than eliminating the entire community, resulting in variability among ABX-treated 

mice in baseline remaining microbiota before introduction of the microbiota of interest 

[72]. Depletion of intestinal microbiota in mice by oral gavage with ABX has been 

shown to significantly decrease bacterial load and result in a GF-like phenotype but a 

lack of 16S rRNA gene sequencing in this study does not address the issue of variability 

in post-treatment microbiota [73]. The solution may be post-ABX and pre-transplant 

sequencing of ABX-treated mice in order to statistically address the impact of the pre-

existing microbiota. The transplant could also be given to GF parents and the offspring 

used in subsequent studies, but this introduces additional uncertainty in efficient transfer 

of the transplant to the offspring [71]. ABX are also known to directly impact host 

physiology, may contribute to an increase in transfer of ABX-resistant genes, and do not 

eliminate viruses or fungi, both of which play important roles in interactions with the 

microbiome and the host [71]. Despite these limitations, ABX-treated mice provide an 
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easily maintained and accessible model for investigating the role of the microbiome in 

various life stages. 

 Additional considerations in using mouse models are strain and vendor specific 

differences in microbiota and cohousing. C57BL/6 mice obtained from two different 

commercial vendors, Jackson Laboratory and Taconic Farms, were observed to have 

significant differences in the proportion of Th17 cells in their small intestinal lamina 

propria [74]. Transfer of microbiota only from Taconic mice into a GF model induced 

accumulation of Th17 cells, and cohousing of mice from the two vendors allowed Th17 

cell accumulation in Jackson mice. The hypothesis that this was due to the presence of a 

specific bacterial taxa in Taconic mice was confirmed; segmented filamentous bacteria 

were shown to induce Th17 cells and play significant roles in immune modulation [74]. 

Sequencing analysis of fecal microbiota of various strains from several vendors 

confirmed the major impact of vendor on microbial composition and development over 

24 weeks of the mouse’s life [75]. Strain-specific differences are well documented in 

mouse models, but vendor-specific differences at the level of the microbiota are often 

overlooked. These studies emphasize the importance of taking this into consideration 

when designing studies; results with mice from one vendor could be completely different 

with mice from another. The way in which mice are cohoused also has a demonstrated 

impact on the gut microbiome. Various studies have shown that cohousing mice results in 

transfer of the microbiota with healthy, advantageous species dominating the community 

[71]. Further, mice caged together have microbiota which are more similar in 

composition than mice in other cages, indicating the development of a cage 

microenvironment which can confound microbiome effects [76]. Introduction of an initial 
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common microbiome by gavaging mice altered microbial community composition but 

did not eliminate the impact of the cage microenvironment. Meaningful microbiome 

studies must not only choose an appropriate mouse model system, but must take into 

account the source of the mice as well as their living environment in assessing the impact 

of alterations in microbial communities.      

 Both GF and ABX-treated models exist in other species, and similar limitations 

apply. Each has specific advantages, but none are as similar genetically and 

physiologically as mice are to humans. Zebrafish are popular model systems due to their 

transparency until they reach adulthood, ease of maintenance and generation, the suite of 

genetic tools available, and the similarity of their gastrointestinal tract to mammals 

[60,66]. Rats contain many similarities to mice, including various disease-specific and 

genetically altered strains. The fruit fly Drosophila has powerful genetic tools available 

but lacks an adaptive immune system [60]. Various other mammals, such as pigs, dogs, 

and the bobtail squid have also been used to model the microbiome [60,66].    

 

1.2.1.3 In Vitro and Ex Vivo Systems 

 Once observational and functional studies have been done in human and animal 

models, in vitro and ex vivo systems can be applied to examine the mechanism behind 

them. In vitro model systems for the gut consist of bioreactors and/or microchannels that 

have been designed to reproduce distinct functions of the microbiota but typically lack 

human cells [60,62]. Ex vivo systems incorporate cells taken from human donors and co-

culture them with microbiota, allowing study of specific interactions between bacteria 

and cell subtypes [77,78]. These models provide the highest degree of control of 
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experimental variables, are less costly and higher throughput, and allow use of high-

resolution molecular analyses [66]. 

 In vitro gut bioreactors consist of either simple short-term incubations and single 

stage reactors or multi-compartmental continuous systems [62]. Short-term incubations 

and single reactors act as screening tools in which the ability of microbiota to metabolize 

or interact with various substrates can be measured. Continuous systems are made of 

multiple reactions and mimic the varying digestive capabilities of the human intestinal 

tract [62,66]. One of the earliest models consisted of three reaction vessels simulating the 

ascending, transverse, and distal colon at a pH of 6.0, 6.5, and 7.0, respectively [62]. 

More complex models, such as the Simulator of the Human Intestinal Microbial 

Ecosystem (SHIME), incorporate additional reaction vessels and internal components to 

more accurately model the length of the digestive system [62,66]. SHIME has five 

interconnected reaction tubes containing mixtures of luminal microbes that mimic 

digestion by acid and pepsin in the stomach, monosaccharide metabolism in the small 

intestine, and fermentation by microbes in the varying regions of the colon previously 

modeled [62,66]. Models such as the TIM2 build on the SHIME model by adding 

computer-controlled peristaltic mixing through application of pressure to the tubes, and 

absorption of water and microbial metabolites through use of a dialysis membrane 

[62,66]. These models are useful in evaluating the roles of the microbiota in digestion and 

metabolism of dietary components and drugs as well as studying the functional capacity 

of specific microbiota from healthy or diseased states. However, their major limitation is 

the lack of incorporation of human cells, which prevents study of host-microbe 

interactions. 
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 There are a limited number of studies that have successfully co-cultured human 

and microbial cells [66]. Immortalized vaginal epithelial cells (VEC) grown at air-liquid 

interface (ALIF) form tight junctions and multilayers that resemble the stratified 

squamous epithelium of the vagina and respond in a similar manner to pro-inflammatory 

stimuli [79]. Normal commensal members of the vaginal microbiota colonized only the 

apical layer of the cultures and did not induce cytokine secretion but Staphylococcus 

epidermidis, a skin commensal, did. This system was used to determine the impact of 

vaginal microbial community composition on replication efficiency of human 

immunodeficiency virus-1 (HIV-1) and application of an antiretroviral medication, 

demonstrating its utility in reproducibly modeling the interactions of vaginal microbiota 

with both normal and infected host cells [77]. More complicated and recent model 

systems have used organoids and microfluidics [78,80]. Intestinal organoids are three-

dimensional structures that differentiate into epithelial subtypes when cultured in a gel 

matrix [80]. Cells from the intestinal crypt, which include stem cells, are harvested from 

human donors for this ex vivo model. Gene expression quantification revealed that this 

model reflects in vivo expression levels of genes involved in the serotonin pathway. 

Supplementation of microbiota-derived factors induced expression of other serotonin-

related genes, making it a useful tool in studying this pathway [80]. When exposed to 

cultured media from abundant commensal gut bacteria, organoids respond in a strain-

specific manner [81]. Although organoids have not been exposed to complex 

communities of commensal bacteria, these studies imply that the system has the potential 

to elucidate specific microbe-host interactions in a physiologically relevant model. 

Finally, the most complicated of these models, called human-microbial crosstalk 
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(HuMiX) involves three co-laminar microchannels for co-culture of human intestinal 

epithelial cells with microbiota [78]. These three chambers each have inlet ports for 

inoculation of cells and perfusion media as well as outlet ports for collection of eluates 

for down-stream molecular analyses. They are separated by porous membranes to allow 

perfusion of media between the chamber layers but prevent cross-contamination, 

allowing long-term co-culture. The system also has integrated sensors to measure oxygen 

concentrations and allows for measurement of epithelial integrity by insertion of a 

chopstick-style electrode [78]. This complex model allows HuMiX to recapitulate in vivo 

transcriptional responses to bacteria, making it the most physiologically relevant of the in 

vitro and ex vivo models described here while allowing for high-resolution molecular 

analyses to understand host-microbe interactions. Models that integrate the multiple cell 

types that interact with the microbiome, allow for in-depth mechanistic studies, and 

simulate appropriate physiologic processes are necessary to understanding the role of 

microbiota in health and disease. Fine experimental control that provides reproducible 

data in the most physiologically relevant system will result in concrete strategies to 

manipulate the microbiota in vivo for improved health outcomes. 

 

1.2.2 Sequencing Strategies and Technology 

 After extraction of DNA from microbiome samples, identification of individual 

community members is achieved through the use of sequencing methods. Due to rapid 

advancement in sequencing technology, next-generation methods are now used with 

more frequency than classic capillary Sanger sequencing [82]. Of existing sequencing 

methods, Sanger remains the gold standard due to its long read length, low error rate, and 
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larger insert sizes [82]. However, Sanger sequencing requires shearing of DNA into 

fragments that are then clonally amplified within a plasmid vector [83]. This process is 

laborious, time-consuming, and expensive [22,82,83]. Further, library preparation may be 

biased due to toxicity of gene content to the vector expressing it [83]. Next-generation 

sequencing (NGS) methods produce shorter read lengths at a fraction of the cost of 

Sanger sequencing, implement the use of polymerase chain reaction (PCR)-based 

amplification methods, and take much less time to run. Comparison of NGS and Sanger 

sequencing has demonstrated that shorter read lengths are similar in accuracy to longer 

Sanger read lengths in clustering analysis based on environment the sample came from 

[84]. Shorter reads also give comparable results at the level of microbial community 

composition as Sanger reads in samples from lean and obese people [85]. These 

advantages have led to a shift in the metagenomics field to use of NGS over Sanger 

sequencing for identification of microbiota.  

 

1.2.2.1 Next-Generation Sequencing 

 The term NGS refers broadly to high-throughput methods that allow sequencing 

of millions to billions of DNA strands in parallel [86]. These methods encompass varying 

combinations of amplification, detection, and sequencing chemistry methods, providing 

researchers with an array of platforms to choose from that best meet their projects’ needs. 

Table 1.2 provides a summary of the platforms applied to microbiome studies 

specifically. Though many of these have been used in microbiome studies, the Roche 454 

pyrosequencing platform dominated the field, followed by take-over of Illumina’s solid-

state amplification and sequencing-by-synthesis technology.   
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Both Roche and Illumina platforms use sequencing-by-synthesis chemistry, in 

which a single nucleotide is incorporated into the sequence per cycle [2,83,86]. On the 

Roche 454 platform, DNA fragments are attached to microscopic beads for clonal 

amplification by emulsion PCR and then deposited into a plate for parallel 

pyrosequencing [82]. For each cycle, DNA polymerase incorporates the complementary 

deoxynucleoside triphosphate, releasing pyrophosphate [2,82,83]. Pyrophosphate is 

converted to adenosine triphosphate (ATP) by the enzyme sulfurylase in the presence of 

adenosine 5’-phosphosulfate [2,83]. ATP acts as a substrate for the enzyme luciferase, 

which produces light that is detected by a charge-coupled device camera that allows 

conversion to the template sequence [2,82,83]. The emulsion PCR used in this method is 

prone to generation of artificial replicate sequences, which can be dealt with 

appropriately using bioinformatics tools [82]. When the polymerase encounters 

homopolymers, the Roche platform often has difficulty in correlating the amount of light 

produced to the correct number of nucleotides [82]. Illumina’s technology is superior in 

that it does not have this homopolymer issue due to its use of uniquely fluorescently 

labeled deoxynucleotides (dNTP). Unlike the Roche bead system, Illumina sequencing 

takes place on a flow cell to which a lawn of oligonucleotides is hybridized [87]. Single-

stranded sequences complementary to these oligos, known as adapters, are attached by 

PCR to both ends of the DNA template to allow bridge amplification on the flow cell.  

The opposite end bends over to bind to its complement on the flow cell surface, creating 

a bridge-like structure. All sequences are amplified and then one copy cleaved off to 

allow additional amplification [87,88]. Bridge amplification can generate 800,000 – 1 

million clusters per mm2 of the flow cell surface, allowing massively parallel sequencing  
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of PCR clones of the original DNA template [87].  As with Roche 454 technology, 

Illumina employs the sequencing-by-synthesis method, adding all of the four possible 

dNTPs (A, C, T, or G) fluorescently labeled with a unique color at each cycle. Only the 

complementary dNTP is incorporated into the growing sequence, which is imaged and 

the color recorded as the appropriate base. A decrease in quality may appear  

Table 1.2: Comparison of Sequencing Technology used in Microbiome Studies 
[3,86,89–91]. 
 

Platform Method Read 
Length 

Run 
Time 

% 
Total 
Error 
Rate 

16S 
rRNA 

Whole 
Genome 

Sanger Capillary-
based, 
fluorescent 
dideoxy 
terminator 

750 - 800 
base pairs 

2 hours 0.001 Full 
length; 
2-3 
reads 

Long reads 
enable 
database 
comparisons 

Illumina Fluorescent 
sequencing-by-
synthesis 

36 – 151 
base pairs 

4 hours 
– 15 
days 

<1 1 
variable 
region 
per read 

Short reads 
aren’t 
limiting 

Roche 454 Pyrosequencing 
light emission 

300 – 
600 base 
pairs 

9 – 23 
hours 

1 3 
variable 
regions 
per read 

Long reads 
enable 
database 
comparisons 

IonTorrent Proton 
detection 

200 base 
pairs 

2 – 3 
hours 

2 4 
variable 
regions 
per read 

Short reads 
aren’t 
limiting 

PacBio Fluorescent 
single-molecule 
sequencing 

250 base 
pairs to 
40 
kilobases 

1.5 
hours 

15 Full-
length 
reads 

Long reads 
assist in 
assembly 

Oxford 
Nanopore 

Single-
molecule 
sequencing 
detected by 
DNA passing 
through pore 

230 – 
300 
kilobase 
pairs 

1 
minute 
– 48 
hours 

~30% 90% of 
full-
length 
reads 

Long reads 
assist in 
assembly 
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at the end of Illumina reads, which is due to extension of some of the sequences either 

falling behind or getting ahead of the others [87,92]. Illumina has become the sequencing 

platform of choice for microbiome studies due to its increased accuracy, lower cost, and 

faster run time [82].  

 
 
1.2.2.2 Microbiome Sequencing Methods 

The HMP used two techniques to sequence the human microbiome; whole-

genome sequencing (WGS) and 16S rRNA gene amplicon sequencing [8]. Both of these 

methods have been extensively used in other microbiome studies, with 16S rRNA gene 

sequencing much more widely employed. WGS is a powerful tool that captures the 

entirety of the bacterial genome, allowing identification of genes and bacterial functions 

following genome assembly [93]. It does not suffer from PCR bias, as 16S rRNA gene 

amplicon sequencing does, but it is less sensitive, more expensive, and genome assembly 

can be difficult and computationally complex [3,91,93]. 16S rRNA gene sequencing 

relies on amplification of variable regions within the bacterial 16S ribosomal gene for 

bacterial identification. Due to the short length of the read, functional information cannot 

be inferred from this method. However, 16S rRNA gene sequencing has become the 

method of choice due to its cost-effectiveness, speed, and accuracy in identifying 

bacterial communities [93].   
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1.2.2.2.1 16S rRNA Gene Amplicon Sequencing 

16S rRNA gene amplicon sequencing is dependent on amplification of the 

universally conserved bacterial 16S ribosomal gene [2]. It contains nine hypervariable 

regions between which nine conserved regions are interspersed, allowing design of 

primers that anneal to conserved regions and amplify a specific variable region for 

sequencing [2,3]. Figure 1.2 depicts conserved and hypervariable regions within the 16S 

rRNA gene. The primer set in Figure 1.2 corresponds to the highly used 515F/806R set 

developed by Caporaso et. al [94]. These primers specifically amplify the V4 

hypervariable region which Caporaso et. al. have determined to yield optimal results 

based on the length of Illumina sequencing reads. However, the optimal variable region 

for amplifying and detecting the range of bacterial species in a microbiome sample has 

yet to be determined [22,91]. Despite the conserved nature of the gene, there is some 

variability among the conserved regions between bacteria, making certain primer sets 

better suited to anneal to these regions in specific populations rather than others. This 

results in over- or under-representation of certain taxa depending on the primer set used 

Figure 1.2: The Bacterial 16S rRNA Gene. The 16S rRNA gene contains nine conserved 
and nine hypervariable regions. Primers (red arrows) are designed that anneal to 
universally conserved regions and amplify a variable region (red box) that allows 
identification of the organisms present.	
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[22]. For example, the previously mentioned primer 515F, as well as several others, 

matches greater than 95% of sequences of bacterial phyla in the gut, while 784F is biased 

against Verrucomicrobia, and 967F matches less than 5% of Bacteroidetes, a major 

constituent of the gut [22]. Primer bias clearly alters detection of bacteria within the 

microbiota, leading to significant differences in diversity metrics depending on region 

sequenced and making it impossible to compare studies using different primer sets 

[22,95]. Standardization of primer sets among microbiome studies has been suggested to 

address this problem, but ignores the issue of taxonomic under-representation by the 

specified primers in communities where the missing taxa could be crucial to 

functionality. WGS, which does not depend on amplification and therefore bypasses 

primer bias, is a viable alternative to amplicon sequencing for microbiome studies, but is 

not widely used due to cost and computational complexity. 

 The short read length of Illumina technology was initially a concern in the 

microbiome field, which had previously relied upon Roche 454 reads that were nearly 

twice the length [94]. Longer 454 reads allow up to three hypervariable regions to be 

sequenced per read, whereas Illumina’s 150 base pair length allows a single region per 

read [3]. The shorter read length prevents high resolution of individual taxa (i.e. down to 

species level) but the greater number of reads and sequencing depth makes Illumina’s 

technology superior in overall community resolution [95]. Caporaso et. al. compared 

microbiome amplicon sequencing using both Roche and Illumina platforms and 

discovered that between-sample beta diversity metrics did not significantly differ, leading 

them to conclude that the shorter read length would not significantly alter sequencing 

results [94]. Further, Illumina’s greater number of reads makes it possible to compare 
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either thousands of samples per run or fewer samples with much higher coverage, which 

has not been possible with previous sequencing technology [94]. Illumina’s fluorescently 

labeled dNTPs solve Roche’s homopolymer issue, making it more accurate. The 

advantages of Illumina’s platform have made it the leader in microbiome amplicon 

sequencing studies. 

 

1.2.2.2.2 Whole Genome Sequencing 

 As previously mentioned, WGS avoids the primer bias experienced by 16S rRNA 

gene amplicon sequencing and allows investigation of both community composition and 

function [2,3,93]. Similar to amplicon sequencing, the first step in WGS is to extract 

DNA from experimental samples. However, unlike amplicon sequencing, the DNA from 

the entire population is fragmented to a specific size and sequenced without amplification 

of a hypervariable region of the 16S rRNA gene [1]. Due to its requirement for a greater 

amount of starting material, some studies have used whole genome amplification on low-

DNA samples and found that amplification bias by this method can be minimized [2]. 

Samples used in WGS contain DNA from the host species as well as bacteria, viruses, 

fungi, and bacteriophages. Particularly in the case of whole genome amplification, the 

host DNA may out-number microbial DNA, which can bias sequencing due to limits in 

depth and coverage [91]. Though Illumina’s ability to generate many thousands of reads 

per sequencing run provides greater coverage for complex communities it still only 

covers fragments of genes from each species within the community [83]. Assembly of 

sequenced genomic fragments is necessary to elucidating functional content of the 

microbes within the community as it can reveal open reading frames, operons, and 
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transcriptional elements with their associated promoters and binding sites [83]. In 

complex microbiome samples, genomes from each community member are only partially 

sequenced in short fragments and a lack of bacterial reference genomes creates difficulty 

in appropriately mapping the reads to the correct species. Despite these challenges, the 

HMP has successfully used WGS to demonstrate the relative consistency of microbial 

community functions from a range of body sites in healthy adults [8]. Although 

computationally complex, WGS provides an additional layer to metagenomic community 

sampling that aids in understanding the functional roles of different microbial 

communities as well as their composition. 

 

1.2.3 Data Analysis 

 After sequencing, raw reads require a number of processing steps before the 

bacteria they represent can be identified and statistically analyzed. Various open-source 

tools have been developed to complete distinct steps in this process but, prior to 2009, 

they did not exist in a single package that could take raw reads as input and give 

publication-quality figures as output. To address this issue, metagenomics pipelines were 

developed. These pipelines integrate other independently developed tools into a 

streamlined platform, providing ease of use and increased reproducibility. Once WGS 

and amplicon reads have been identified as bacterial taxa and/or functions, statistical 

analysis incorporating sample metadata (such as patient physical characteristics, disease 

state, and diet) can be completed either within the pipelines or using other tools. Pie 

charts, heatmaps, and dot plots are commonly used for visualization of similarity among 

bacterial communities, and specific statistical methods have been developed to determine 
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significance of differences among bacterial abundances. Though choice of pipeline may 

be based on user preference, care must be taken in use of statistical methods for data 

analysis. An understanding of both computational and statistical methods is necessary in 

choosing the appropriate test to make valid biological conclusions.   

 

1.2.3.1 Analysis Pipelines 

 Metagenomics pipelines were developed to streamline the analysis of both WGS 

and amplicon sequencing data. Very generally, a pipeline is a series of data input/output 

steps that is automated to run with just a few commands. Metagenomics pipelines take 

raw reads in FASTA and/or FASTQ file format, filter out low-quality reads, demultiplex 

sample barcodes, and trim off primer sequences [2]. After this pre-processing step, the 

samples are treated differently depending on whether they are WGS or 16S rRNA gene 

amplicon sequences. If they are WGS, assembly of the read fragments is required 

followed by comparison to a database to annotate the reads. If they are 16S rRNA gene 

amplicons, they are grouped into operational taxonomic units (OTU) by percent sequence 

similarity. This serves as a proxy of species-level taxonomy and reduces computational 

complexity [96]. Once grouped into OTUs, the sequences are compared to one of several 

16S rRNA gene databases in order to identify the bacteria present. The number of 

sequences corresponding to an OTU is used to construct a raw count table, which can be 

normalized to provide relative abundances of bacterial taxa. This normalized abundance 

table is then used in downstream statistical analyses, such as calculation of species 

diversity and comparison of between- and within-community similarity [2,93].      
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The earliest and most popular of the pipelines are mothur [97], developed by Pat 

Schloss’s group at the University of Michigan, and Quantitative Insights into Microbial 

Ecology (QIIME, pronounced ‘chime’) [98], developed by Rob Knight’s group at the 

University of Colorado at Boulder. A less popular but more user-friendly platform was 

developed by Susan Huse, David Welch, and Mitch Sogin at the Marine Biological 

Laboratory and is known as Visualization and Analysis of Microbial Population 

Structures (VAMPS) [99]. Tools for analysis of microbial communities are constantly 

evolving and improving, and, as such, the creators of each of these pipelines are 

continually releasing updated versions, resulting in increasing accuracy and 

reproducibility of data analyzed by each. The choice of which pipeline to use for data 

analysis depends mainly on the user’s experience in bioinformatics, as each is excellent 

but has its own advantages and disadvantages.  

Both QIIME and mothur are implemented in the command line and require the 

user to be able to operate in a Linux environment as well as have some basic knowledge 

of the programming language each is written in. The scripts within QIIME are written in 

the language Python, while those within mothur are written in C++. Python is a flexible 

programming language that is easy to learn and use, but can be slow due to the nature of 

its implementation [100]. C++ is more complex than Python, making it more difficult to 

learn and use, but its implementation makes it much faster [97]. When analyzing large 

metagenomic datasets, computational power and speed are factors that must be 

considered when choosing an appropriate analysis pipeline. 

Despite mothur’s increased analysis speed, QIIME is more frequently used, likely 

due to the extensive tutorials, workshops, and support offered by Dr. Knight’s group. At 
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the time of this writing, the original article describing QIIME was cited 2,146 times in 

Pubmed, while the article introducing mothur was cited 1,899 times. Both QIIME and 

mothur are free and open-source and contain scripts for parsing FASTQ files, 

demultiplexing barcodes, trimming sequences, denoising sequencing errors, and 

identifying and eliminating chimeric sequences that result from PCR errors. Mothur 

contains scripts to bin sequences into OTUs by percent similarity, but QIIME takes this a 

step further and provides three separate strategies for grouping OTUs that implement 

external OTU clustering tools. The first two of these strategies are de novo and closed-

reference OTU picking. De novo OTU picking algorithms cluster sequences together 

without comparison to reference sequences. Closed-reference strategies cluster reads 

against reference sequences and eliminate those that do not match any of the references. 

Open-reference OTU picking combines these two strategies; reads are matched to 

reference sequences and clustered de novo if they do not match. QIIME’s default external 

tool for this process is UCLUST, which is an algorithm developed by Robert C. Edgar 

[101]. The UCLUST algorithm improved on the speed, computational power, and quality 

of clustering as compared to other commonly used methods, such as CD-HIT. External 

OTU clustering tools are also wrapped into mothur, and include DOTUR and CD-HIT 

[97]. Although the OTU picking methods of QIIME and mothur are valid, differences in 

the algorithms used has been demonstrated to give different clustering results. He et. al. 

recently showed that many commonly used OTU clustering methods produce unstable 

OTUs, where membership changes based on the number of sequences clustered [96]. 

Varying assignment of sequences to OTUs could result in very different biological 

conclusions and make reproducibility impossible. Closed-reference OTU picking 



	 37	

produces the best OTU stability, but eliminates discovery of new species by discarding 

reads without a previously sequenced match. Open-reference picking, with a de novo 

clustering algorithm that is more stable, may be the best solution to this issue [96]. 

Understanding the nuances behind options such as OTU picking strategies is critical to 

getting high-quality data from metagenomics pipelines. 

Beyond quality filtering and OTU picking, both mothur and QIIME contain tools 

for statistical data analysis and visualization. Mothur groups its scripts into OTU-based 

and hypothesis testing approaches, while QIIME has a variety of scripts for analyzing 

microbial diversity. In mothur, OTU-based approaches encompass calculation of 

microbial community diversity based on ecological measures. Mothur’s hypothesis 

testing approaches include statistical analysis of distance metrics, analysis of variance, 

and co-occurrence. The QIIME website includes tutorials on using analysis of variance 

(ANOVA) to compare categories, distance metric comparison, network building, 

supervised learning algorithms, and microbial source tracking. QIIME also integrates 

software that displays the data in visually appealing formats. Both pipelines produce 

publication-quality figures from statistical analyses. 

Though QIIME and mothur are powerful analysis pipelines, they can be daunting 

to begin using due to their command-line interface. VAMPS was developed to address 

this issue and operates on a more intuitive web-based platform [99]. Like QIIME and 

mothur, VAMPS incorporates externally developed tools as well as scripts written by the 

developers to take raw sequence reads and produce publication-quality statistical analyses 

and figures. It also allows use of the statistical programming language R and code from 
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QIIME and mothur. VAMPS is an excellent starting point for sequencing analysis for 

biologists with limited coding experience. 

QIIME, mothur, and VAMPS were all initially developed to analyze 16S rRNA 

gene amplicon sequencing data, not WGS reads [97–99]. QIIME currently contains code 

under development to analyze WGS reads but mothur and VAMPS do not. As with 

amplicon sequencing, many tools exist to perform the various steps involved in WGS 

assembly and annotation but there are few pipelines that streamline these tools in order to 

take raw reads to publication-ready figures. WGS reads are generally either assembled by 

mapping to reference genomes or de novo, without a reference genome [102]. Reference-

based mapping is limited by existing reference genomes while de novo assembly requires 

more computational power and memory. Once assembled, reads are binned into 

taxonomic groups in one of two methods. The first is based on the distribution of the k-

mers, or fixed-length ‘DNA words’, among genomes. Different genomes have unique k-

mer distributions, which allows grouping independent of a reference. In the second 

method reads are aligned to a reference and binned based on similarity. Finally, 

assembled genomes can be annotated to identify coding, noncoding, and other regulatory 

regions.  

Analysis of WGS reads from microbiome samples is challenging due to the 

randomness with which the genomes are sampled [103]. WGS reads are generally short 

and represent a randomly selected portion of individuals in the community. These reads 

may or may not overlap, which is necessary to assemble the genome and identify the 

bacteria present. In answer to this issue, C. Titus Brown’s group has developed khmer, a 

pipeline for analyzing WGS reads from microbial communities as well as mRNA [104]. 
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Unfortunately, truncating sequences to create k-mers and considering them 

simultaneously for assembly requires a large amount of computational memory. Khmer 

deals with this issue by partitioning the reads into different files. The program counts k-

mers and calculates their abundance and performs ‘digital normalization,’ in which k-mer 

abundance is normalized by eliminating redundant reads covering the same portion of the 

genome and keeping just enough to allow efficient genome assembly. Khmer does not 

include code to annotate assembled genomes, so users will need to seek external tools to 

perform this step. Though other assembly tools exist, khmer is a good choice for 

efficient, reproducible WGS read assembly and is relatively easy to use. Ultimately, the 

choice of analysis pipeline depends on the goals of the study and the researcher. 

 

1.2.3.2 Statistical Analysis of Compositional Data 

Once amplicon or WGS reads have been transformed into OTU tables, statistical 

analysis can be done. The complex nature of microbiome datasets makes them 

challenging to analyze appropriately and improved methods are constantly being 

developed to do it better. Various unsupervised, exploratory methods have been used, 

such as clustering and resampling methods, as well as univariate and non-parametric 

models [105]. Multivariate statistics have been developed and applied to microbiome 

datasets but may fail to be appropriate for the data as they tend to assume linearity when 

microbiome data is generally curved [105,106]. Other statistical challenges include the 

compositional nature of the data and its sparseness [106,107]. Due to variation and error 

in PCR and sequencing, it is not possible to get absolute abundances of bacterial taxa 

from microbiome sequencing data. However, relative abundances can be calculated in 
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which the percent composition of each taxa totals to 100% for each individual sample. 

This compositional nature means that changes in abundance of one taxa will drive 

changes in the others, since the data is forced to sum to a constant [107]. Rarefaction, 

which randomly resamples to the size of the smallest library, has been used to correct for 

this compositional data, but it has been argued that rarefaction is inappropriate to use for 

this purpose [108]. McMurdie et. al. demonstrated that rarefaction results in high false 

positive rates when identifying significant differences in species abundance and it 

eliminates sequences that can be appropriately clustered using other methods. The 

continued use and prevalence of rarefaction in the microbiome field highlights how 

important it is for biologists to understand the theory behind statistical and computational 

methods to analyze microbiome data. Inappropriate application of statistical models can 

lead to conclusions that do not support the underlying biology. 

Development of appropriate statistical analysis methods for microbiome data is 

challenging. Corrections for the compositional nature of the data include log-ratio 

transformations which, in theory, do not alter underlying covariance or correlation among 

the data and allow application of traditional statistical analyses [107]. However, the 

sparseness of microbiome data often makes this transformation problematic, as it requires 

dividing by the geometric mean of the taxa. If the mean is zero, the value becomes 

undefined. Pseudo-counts have been used to correct for this, in which the same random, 

small number is added to all counts so that none are zero. This poses problems too, as 

division by 1 is the same as analyzing unnormalized data and the consequences of using 

other values is not well understood, particularly in light of the importance low-abundance 

taxa may play in microbial communities. Despite these issues, transformation of 
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compositional microbiome data enables use of traditional statistics methods to determine 

significant changes in microbial populations. 

Microbiome statistical analysis methods draw heavily on diversity methods from 

the ecology field. Species diversity indices are widely used to simplify complex 

microbial communities by assigning values that represent overall trends in the population 

[109,110]. These indices have been used to compare changes in microbiota diversity 

according to relevant community variables, such as environment and patient disease state. 

They fall into one of two categories; alpha diversity, which quantifies within-sample taxa 

diversity, and beta diversity, which quantifies between-sample diversity [106]. Several 

methods exist to calculate alpha diversity, including the widely-used Shannon and 

Simpson indices [110]. Both of these indices combine measures of taxa richness (the 

number of different taxa) and abundance but do so with different underlying theoretical 

foundations. The Shannon index is abstract and represents uncertainty in identifying 

unknown taxa, while the Simpson index is more intuitive and indicates the probability of 

two randomly chosen taxa belonging to different species [110]. Species evenness, or the 

number of individuals within each taxon, can be derived from both of these indices. The 

Chao 1 index is used with less frequency but is a non-parametic method that can estimate 

OTU richness and performs well with low-abundance communities [109,111]. Several R 

packages can be used to calculate alpha diversity, including vegan [112] and phyloseq 

[113]. QIIME and mothur contain scripts for alpha diversity as well, as does the open-

source software Explicet [114]. Several studies have compared the usefulness of these 

indices when applied to metagenomic datasets and generally agree that all three are 

appropriate, despite their varying foundational theories, and suggest that studies may 
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benefit from using and comparing all of them to determine interactions within 

communities [109–111]. 

Beta diversity measures allow comparison of similarity and dissimilarity among 

microbial communities. They are particularly important in identifying trends over time 

within large datasets [115]. Commonly used beta diversity measures include Morisita-

Horn similarity and Bray-Curtis dissimilarity [114]. Both of these beta indices and the 

previously described alpha indices are based on normalized counts of taxa and do not 

take phylogenetic relationships into account. Phylogeny indicates the evolutionary history 

of organisms, and trees can be built in order to represent these relationships [106,116]. 

Fast UniFrac is a popular beta diversity method that calculates distance of relatedness of 

microbiota based on the branch lengths of phylogenetic trees [116]. The fact that it is a 

distance metric allows analysis of the resulting data with standard multivariate methods, 

such as clustering and principle components analysis (PCA). Fast UniFrac was developed 

by the Knight lab and is included in both the QIIME and mothur pipelines. Visualization 

of Fast UniFrac data with PCA plots allows easy identification of community similarity 

by clustering. Fast UniFrac has been cited in over 200 papers and has been used to 

compare similarity among environmental and host-associated microbial communities. 

Several recent papers have used it to compare bacterial communities in sludge systems 

[117], subtropical rainforests [118], and recurrent aphthous stomatitis, an oral mucosal 

disorder, in patients [119]. Each of these studies also employs a range of alpha diversity 

indices to compare microbiota. Beta diversity measures are useful in understanding 

overall trends and changes between samples in a study. 
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Though diversity indices are useful in assessing overall trends among microbiota, 

identifying differential abundance of individual taxa among groups may indicate specific 

bacteria that play important roles in the environment or disease state. Besides the 

compositional nature of microbiome data, both its sparseness and its tendency to be 

dominated by a few taxa make appropriately modeling this data difficult [106]. As 

mentioned previously, log-ratio transformations can be used in order to apply standard 

downstream statistical analyses. Dirichlet multinomial mixtures have been developed that 

take into account data sparsity as well as the presence of diverse and rare taxa [120]. 

Two-sample t-tests have been employed to determine differential abundance among 

abundant taxa and Fisher’s exact test has been used for rare taxa [106]. Variations on the 

Wilcoxon rank-sum test have been used as well [114]. Specific tools have been 

developed to manage the challenges of microbiome data and identify significantly 

enriched taxa. Curtis Huttenhower’s group at Harvard has developed a suite of analysis 

tools written in a combination of Python, R, and Perl that perform both compositional and 

statistical data analysis. These tools have been implemented in the Galaxy platform, 

which is a web-based environment that allows researchers without a programming 

background to analyze high-throughput data [121]. The Huttenhower group’s programs 

LEfSe and MaAsLin can be used within Galaxy to determine significant enrichment of 

bacterial taxa based on relevant biological information [122]. LEfSe employs a 

combination of the Kruskal-Wallis rank sum test, the Wilcoxon rank-sum test, and linear 

discriminant analysis in order to rank significant enrichment of bacteria between two 

biological classes, such as diseased and healthy. Wu et. al. recently used LEfSe to detect 

bacteria significantly enriched among gut microbiota of normal control mice and those 
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exposed to lead [123]. MaAsLin takes this a step further and allows detection of enriched 

taxa among multiple biological classes. The previously mentioned pipelines and R 

packages also contain methods to detect differentially abundant taxa and visualization 

options to compare them. Given the issues in appropriate statistical methods to detect 

enriched taxa, experimental methods such as quantitative PCR (qPCR) should be used to 

confirm bacterial abundances. 

While diversity indices provide overall trends among microbiome data and 

differential abundance detects changes in specific taxa, co-occurrence relationships and 

network analyses aim to understand how the microbes in a community interact with each 

other or respond to specific variables [124]. Rather than describing how and to what 

degree microbial communities change, network and co-occurrence analyses predict how 

taxa influence each other or are altered by outside variables through the use of correlation 

coefficients and networks. These methods are a type of dimensionality reduction, in 

which complex microbiome data can be mathematically condensed into a simpler version 

that is easier to interpret and understand. Various studies have used both Pearson and 

Spearman methods to calculate correlation coefficients for changes in microbial taxa and 

external factors, such as exercise [125] and bacterial metabolites [126]. Though the 

Pearson method is appropriate for parametric data and Spearman for non-parametric, 

neither of these methods takes the compositional nature of the data into account [127]. 

Sparse Correlation for Compositional Data, or SparCC, was developed to determine 

pairwise correlations between microbial taxa while correcting for the data’s 

compositional nature [128]. It relies on log-ratio transformation of the data and has been 

shown to produce fewer false correlations than the Pearson method. Another method, 
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Sparse Inverse Covariance Estimation for Ecological Association Inference (SPIEC-

EASI), dispenses with pairwise correlations and instead attempts to infer the entire 

correlation network simultaneously [129]. It does this through use of a graphical model 

inference framework that assumes the data is compositional and sparse. Though SPIEC-

EASI is more reproducible than SparCC, results from the methods are not directly 

comparable due to the different ways in which they calculate microbial correlations. Each 

of these tools is useful in determining microbe-microbe and microbe-external variable 

correlations that could indicate their potential in predicting interactions or outcomes. 

Statistical analysis of microbiome data is complicated and requires knowledge of 

both the biology behind the study as well as the mathematics driving the models and 

algorithms employed. Appropriate models are still under active study, making it crucial 

that biologists collaborate with statisticians and bioinformaticians in order to choose the 

best model for the data to generate valid biological conclusions.        
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CHAPTER 2: BURN AND INHALATION INJURY AND ITS RELATION TO THE 

AIRWAY MICROBIOME 

 

2.1 The Airway Microbiome  

 Development of standardized methods and generation of data from healthy 

subjects by the HMP provided an invaluable resource to other microbiome researchers. 

Metagenomic profiling of various body sites from healthy individuals gave a baseline for 

healthy microbial community structure, allowing comparison to other disease and 

exposure states [20]. However, the HMP’s sole sampling site for the airways was the 

nasal cavity [20]. The mucosal surfaces of the nasal passages are known colonization 

sites for commensal bacteria but little work had been done on their roles in health prior to 

the HMP [130–132]. The HMP revealed microbial composition and functional dynamics 

in the nose, but lacked sampling further down the airways. Traditionally, the respiratory 

tract below the larynx was considered sterile due to inability to culture organisms here 

[35,133]. Culture-independent sequencing techniques have challenged this belief and 

suggest that there is a diverse but low-abundance population of bacteria present in the 

healthy lungs [35,133–135]. Investigation into their roles in health and disease is 

ongoing, and several theories exist as to how a healthy population of bacteria is 

maintained in the lungs. Like the gut, the lower airways are lined by mucosal surfaces 

and contain ciliated cells which beat to move mucus through the airway lumen [136]. 

This mucociliary escalator, in combination with airway innate immune responses, is 
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thought to keep the lungs relatively free of foreign particles, including bacteria [136,137]. 

However, the airways are constantly exposed to inhaled air, which contains suspended 

microbes as well as dust particles to which the organisms can adhere [138]. A study in 

Japan found concentrations of bacteria in dusty air to be as high as 1.6 x 107 cells m-3, 

which was two orders of magnitude higher than non-dusty air [138]. Subclinical 

microaspiration is also a significant source of microbial immigration to the airways [139]. 

This implies that bacteria are constantly entering the airways, and, though they may be 

quickly cleared, they are interacting with airway cells. An important question is how this 

interaction takes place and its impact on airway physiology and host health outcomes. A 

recently published theory suggests that airway homeostasis is maintained in the presence 

of bacteria through a balance of microbial immigration and elimination mirroring the 

equilibrium model of island biogeography [139]. This model is taken from ecology and 

posits that the diversity of species on an island is dependent on the balance of 

immigration and extinction [140]. Since an island is a closed system and contains limited 

resources, the immigration rate will fall as the number of species increases and the 

extinction rate will simultaneously increase [140]. If the lungs are regarded as an island, 

this model explains the consistently diverse yet low-abundance communities claimed to 

be found in healthy people at homeostasis [139]. Though not investigated by the HMP, 

recent work has explored the possibility of healthy airway microbiota as well as their 

roles in disease. 
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Homeostasis within the airways can be disrupted by both injury and development 

of disease, either of which may lead to conditions favorable for bacterial colonization 

[139]. Under conditions of homeostasis, the immigration/extinction balance of the 

microbiota is maintained through scarcity of nutrients, mucociliary clearance, and innate 

immune defenses [133,137,139]. Disease or injury may alter conditions in the airway to 

favor bacterial growth through an influx of nutrients with concurrent inhibition of 

immune defenses, leading to unchecked bacterial growth [139,141]. An increased burden 

of bacteria within the airways induces inflammation and results in a positive feedback 

loop, furthering airway injury and bacterial growth, which could lead to dysbiosis and 

infection [139,141]. In agreement with this theory, bacteria are found at much higher 

abundance in airways diseased and damaged by conditions such as asthma, 

bronchiectasis, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), 

idiopathic pulmonary fibrosis (IPF), and smoking [58,59,135,142–150]. Figure 2.1 

illustrates changes at the phylum level in asthma, COPD, and CF [35]. Bronchial 

Figure 2.1: Dysbiosis in the Diseased Airway Microbiome. Outgrowth of specific 
phyla accompanied by an overall loss of microbiota diversity is observed in asthma, 
COPD, and cystic fibrosis. Adapted from Marsland et al, 2013. 
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brushings from patients with asthma show an increase in bacterial diversity and the 

specific families Comomonadaceae, Sphinomonadaceae, and Oxalobacteraceae that are 

correlated with severity of bronchial hyperresponsiveness [145]. Transcriptomic analysis 

of host and microbiota function in children with asthma demonstrate metabolic 

differences and association of microbial adhesion factors and increases in Proteobacteria 

with the cytokine IL1A, suggesting that the microbiome modulates host inflammation 

and immune response in this airway disease [142]. The lung microbiota of smokers is 

often studied in conjunction with COPD since smoking increases the risk of this disease. 

During COPD exacerbations, diversity in the airway microbiome is increased, patient 

samples are more similar by inhaled corticosteroid and bronchodilator treatment, and 

several oral taxa are enriched [143]. A separate COPD microbiome study, which also 

examined location-specific communities in the lungs, found lower diversity in two out of 

four patients with COPD and extensive overlap in bacterial taxa among healthy patients, 

healthy smokers, and those with COPD [144]. This overlap lead the authors to propose a 

core pulmonary microbiota consisting of Pseudomonas, Streptococcus, Prevotella, 

Fusobacteria, Haemophilus, Veillonella, and Porphyomonas genera [144]. A study 

comparing the upper and lower respiratory tract in non-smokers and smokers found 

enrichment of Enterobacter, Haemophilus, Methylobacter and Ralstonin in the lower 

airways, which were also present in the upper airways [58]. Only Tropheryma was 

unique to the lower airways. Further, this study found no difference in lower airway 

microbiota among smokers but did find changes in the upper airways [58]. In IPF, disease 

progression has been specifically associated with increases in Streptococcus and 

Staphylococcus genera [146]. Patients with cystic fibrosis are prone to polymicrobial 
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bacterial infections, which tend to be dominated by a specific genus but remain relatively 

stable during exacerbations [148]. Finally, injury to the airways by intubation and 

mechanical ventilation demonstrates decreasing microbial diversity with increasing time 

spent on the ventilator [135]. Though these diseases are known to predispose patients to 

airway bacterial colonization, these studies show their influence on airway microbial 

communities, which provides insight into bacterial interactions that may influence 

therapeutic treatment strategies. 

Study of the airway microbiome is relatively recent, and the studies above 

demonstrate some of the challenges in accurately sampling and sequencing these low-

abundance communities. Whereas loss of diversity in the gut is clearly associated with 

increased severity of disease, its role in the airway is not as straightforward. In these 

studies, airway diversity was seen both to increase with disease, opposite to the trend in 

the gut, and to decrease with disease. This lack of consistency may reflect true biology, 

but it is more likely that differences in sampling, extraction, and sequencing methods are 

contributing to these disparate results.  

In the gut, where bacterial abundance is high, these technical differences do not 

contribute as drastically to the results as they do in the airways. Table 2.1 compares 

sampling, extraction, and sequencing methods for the airway studies. Though there are 

similarities among the individual steps, the differences make each study’s entire protocol 

unique. Generally, airway samples were taken by bronchial washings or brushings, with 

just two using sputum and swabs from endotracheal tubes. During bronchoscopy, a sterile 

tube is inserted either through the nasal passages or the oral cavity, passed through the 

trachea and larynx, and wedged into the lung region of interest.  
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Study 
[Reference #] 

Airway 
Sampling 
Method 

DNA 
Extraction 
Method 

qPCR to 
Confirm 
Bacterial 
DNA? 

Sequencing 
Method + 
Variable Region 

Kelly, 2016 
[135] 

Frozen 
swabbing and 
suctioning of 
endotracheal 
tubes 

Bead beating + 
Mo Bio 
PowerSoil Kit 

No V1 – V2 
Diseased: Illumina 
MiSeq  
Healthy: Roche 
454 GS-FLX 

Carmody, 2015 
[148] 

Frozen sputum Sputolysin + 
bead beating + 
MagNA Pure 
kit 

No V3 – V5 
Roche 454 with 
HMP protocols 

Morris, 2013 
[58] 

Bronchial + 
oral washings  

Standard at 
each center 

No V1 – V3 + V3 – 
V5 
Roche 454 FLX 
Titanium 

Han, 2014 
[146] 

Frozen 
bronchial 
washing pellet 
+ some 
explanted lung 
tissue 

Bead beating 
for tissue only 
+ Qiagen 
DNeasy Blood 
& Tissue Kit 

No V3 – V5 Roche 
454 GS Junior 

Huang, 2011 
[145] 

Bronchial 
brushes 

Bead beating + 
Qiagen 
AllPrep Kit 

Yes Microarray + 16S 
rRNA gene clone 
libraries of 
hybridized DNA 
ABI PRISM 3730 
capillary 
sequencing 

Pragman, 2012 
[143] 

Frozen and 
fresh bronchial 
washings 

Bead beating + 
RNase 
treatment + 
own protocol 

No V3 
Multiple 
displacement 
amplification 
Roche 454 FLX 

Erb-
Downward, 
2011 [144] 

Bronchial 
washing pellet 
+ whole lung 
tissue 

Bacterial lysis 
buffer + bead 
beating + 
Proteinase K 
treatment + 
MagNA Pure 
Kit 

Yes V1 – V3 
Roche 454 FLX 
Titanium 

Table 2.1: Sampling, Extraction, and Sequencing Methods Among Lung  
Microbiome Studies. 
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From here, a bronchoalveolar lavage (BAL) is performed by flushing sterile saline 

through the bronchoscope into the right or left lobe and then removing it by suction. A 

brushing can be done by instead inserting a small, sterile, wire-bristled brush into the 

same location and physically scraping the airway surface to collect epithelial cells. There 

are advantages and disadvantages to both methods. With a bronchial washing or BAL, a 

larger area of the lungs can be sampled since the fluid can travel throughout the tissue. 

With brushings, only a small area of the tissue is sampled, but the physical scraping 

removes more mucus and some tissue beneath it, allowing detection of bacteria that may 

be within the mucus layer or adhered to the epithelium below. Bronchial brushes are 

usually done with a protected brush and thus are considered less prone to contamination 

since the brush is only brought into the distal airway once in the region of interest. With 

either method, insertion through the nasal or oral cavity invites contamination from these 

densely population areas, creating a need for simultaneous oral and/or nasal washes in 

order to detect non-lung organisms. Intubation can significantly reduce the risk of 

contamination but has more potential side effects. Of the studies listed in Table 2.1, only 

Morris et al. sequenced both oral washings and BAL and compared them in order to 

detect bacteria unique to the lower respiratory tract [58]. Among the 64 study subjects, 

they found enrichment of several bacterial taxa in the lungs that were also present in the 

mouth, and only one taxa uniquely associated with the lungs [58]. Based on application 

of the neutral model [151], they hypothesize that these enriched and uniquely represented 

species may be part of a healthy lung microbiome. However, this study did not entirely 

eliminate the possibility that these species are contaminants from the upper airways 

pushed down by bronchoscopy. The subjects used antiseptic mouthwash prior to 
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bronchoscopy in an attempt to control for this, but re-sampling of the oral microbial 

population to identify bacteria present after the mouthwash was not done. None of the 

other studies in Table 2.1 indicated any attempt to control for upper airway contamination 

during bronchoscopy, making it possible that the so-called lower airway microbiome 

actually reflects that of the upper airways. 

After collection, samples are either immediately extracted for sequencing or 

frozen for later extraction. The impact of extracting fresh or frozen samples on microbial 

diversity has not been examined extensively, but a single study found significant 

differences in two bacterial genera among gut samples that were extracted either fresh or 

frozen [152]. The authors conclude that freezing preserves the integrity of microbial 

diversity, but this does not take into account the impact that specific species and even 

strains can have on host physiology. This is particularly important in lower airway 

samples, which have much fewer bacteria than the gut, enhancing the impact of 

individual, low-abundance bacteria. The use of frozen samples in three of the studies in 

Table 2.1 may not reflect true biology among the microbiota of their subject populations 

as accurately as fresh samples. 

After sample collection but prior to DNA extraction, it is wise to employ a 

method to measure the ratio of live to dead cells. Though dead cells may elicit responses 

from both other bacteria and the host immune system, live cells may be more important 

in community dynamics and host-microbiome interactions. Regardless, differentiation 

between these states may reveal the roles of specific bacteria within the airway 

ecosystem. Unfortunately, this is rarely done in microbiome studies and can often be 

difficult to do. None of the studies in Table 2.1 assessed viability of bacterial cells in their 
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samples. Metagenomic sequencing methods are incapable of detecting, in single samples, 

the viability of the organisms present [153]. All bacterial DNA is detected and identified, 

regardless of whether it came from a live or dead organism. The biochemical processes of 

living and actively reproducing organisms will have vastly different effects on host 

physiology than dead organisms, whose metabolic activities have stopped. Differentiation 

among live and dead bacteria in the studies in Table 2.1 may have led to different 

conclusions.  

 Following sample collection, an appropriate DNA extraction method is necessary 

to release nucleic acids from all bacteria present. Bead-beating in combination with 

phenol:chloroform:isoamyl alcohol has been commonly used [34,154–156] along with 

extraction kits developed specifically for either microbiome studies or purification of 

DNA from bacteria [16,32,59,73,135,157,158]. Efficient extraction of the diverse 

bacteria present in a community while preserving nucleic acid integrity for sequencing 

can be challenging, particularly for low-abundance samples. Bead beating is commonly 

used as a physical lysis method followed by chemical or enzymatic lysis and DNA 

purification methods. The HMP employed MoBio Laboratories’ PowerSoil DNA 

Isolation Kit, in which samples are added to tubes pre-filled with 0.7mm garnet beads 

[159]. A solution containing sodium dodecyl sulfate (SDS) is added to chemically lyse 

cells before the samples are homogenized in a 10 minute vortexing step. This step can 

alternatively be done in 30 seconds using a bench-top homogenizer. Because it is 

designed for soil samples, the PowerSoil kit contains several steps designed to remove 

non-DNA and inorganic substances such as humic acid. DNA purification is done on a 

silica spin column, to which DNA binds after addition of a high-salt solution. Other DNA 
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kits, such as those from QIAGEN and MP Biomedicals, follow this general protocol. 

Several studies have tested the effectiveness of these varying protocols, including the 

necessity of bead beating. Two studies compared the effectiveness of physical and 

enzymatic lysis methods of bacterial DNA in soils through denaturing gradient gel 

electrophoresis and assessed purity by absorbance ratios [160,161]. de Lipthay et. al. 

compared bead beating, sonication, and grinding-freeze-thawing methods and found that 

bead beating gave consistently diverse and higher molecular weight DNA than the other 

methods [161]. Further, the results were more reproducible. Yeates et. al. compared bead 

beating with sonication and enzymatic lysis and also found that bead beating gave the 

highest bacterial diversity as assessed by number of bands on the gel [160]. de Boer et. 

al. recognized the need for optimization of bead beating protocols, as too vigorous 

methods result in DNA shearing [162]. Here, silica beads of 0.1mm in diameter resulted 

in increased detection of Gram positive species without compromising detection of the 

Gram negative. Though these methods demonstrate the ability of bead beating to extract 

sufficient quantity and quality of DNA for sequencing, they do not indicate whether the 

retrieved DNA accurately reflects the members of the bacterial community. More recent 

studies have compared variation in bead beating extraction methods as well as 

commercial kits in 16S rRNA gene amplicon sequencing results. Yuan et. al. compared 

six different extraction methods and evaluated resulting DNA yield, shearing, 

representation of microbial diversity, and reproducibility [163]. A wide range of DNA 

extraction methods are used in microbiome studies and the airway studies in Table 2.1 

are no exception. Yuan et. al. recognized this and set out to compare the more common 

variations in DNA extraction strategies. While most studies evaluate the effectiveness of 
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the method by DNA yield and quality, Yuan et. al. created specific communities with 

known quantities of bacteria so they could calculate expected abundance after 16S rRNA 

gene amplicon sequencing to determine the ability of each method to accurately reflect 

the diversity of the community. This is an important measure since the goal of 

microbiome studies is to draw conclusions about biology based on the composition of 

microbial communities. Confirming the work of Yeates et. al. and de Boer et. al., bead 

beating was found to yield significantly higher quantity and quality of DNA [163]. 

However, higher yield of DNA did not correlate with better representation of the original 

microbial community. Instead, bead beating in combination with enzymatic digestion by 

a mixture of mutanolsyin, lysozyme, and lysostaphin gave the best representation of the 

microbial community regardless of quantity, implying that a higher yield of DNA does 

not indicate a superior extraction method. Each of these enzymes cleaves the bacterial 

cell wall through different mechanisms. Lysozyme cleaves the glycosidic bond between 

N-acetyl-glucosamine and N-acetyl-muramic acid while mutanolysin does it here when 

peptidoglycan is O-acetylated. Lysostaphin cleaves the pentaglycine cross-link in the 

peptidoglycan cell wall of staphylococci. Differences in the peptidoglycan layer of both 

Gram positive and Gram negative bacteria make them variably sensitive to each of these 

enzymes so using a mixture of each lyses a more diverse range of bacteria. For low-

density airway samples, an effective, reproducible method is critical to accurate 

representation of the original community. Evaluation of extraction methods on upper 

airway human samples [164] and BAL from lower airway pediatric samples [165] 

demonstrated more significant variation in microbial community composition by 

extraction method than by technical replicate. Further, low-abundance airway samples are 
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more prone to influence by contaminating microbial sequences known to be present in kit 

reagents, making reagent controls crucial for these samples. Of the studies in Table 2.1, 

only Morris et. al. sequenced a reagent control in order to detect reagent contaminants 

[58]. However, reagent contamination may not contribute significant bias to the results, 

even in low-abundance samples [166]. Each study employed bead beating for DNA 

extraction but no two studies used the same method. Although comparison of samples 

extracted by the same method may give useful results, comparison between the studies in 

Table 2.1 is not valid due to the demonstrated variability among extraction methods. 

Bacterial load in microbiome samples must be quantified independently of 

sequencing, as sequencing can only quantify relative abundance of bacteria. It is also 

useful to confirm the presence of bacterial DNA prior to amplification and sequencing, as 

both PCR and sequencing errors in low-abundance samples may give false positive 

results if there is little to no DNA present. Inclusion of negative and reagent controls in 

sequencing runs can help detect this error. Methods such as qPCR, which is another 

relative quantification method, give a better estimate of the initial load of bacteria present 

in a sample. Though useful, this step is not necessary, which is reflected in only two 

studies in Table 2.1 employing it. Nevertheless, quantification by qPCR must be 

performed cautiously, as underlying differences among bacteria can lead to incorrect 

quantification. Most universal quantification methods, similar to amplicon sequencing, 

rely on the bacterial 16S rRNA gene. Primers are designed which anneal to conserved 

regions within this gene in all bacteria present, allowing, in theory, amplification and 

quantification of all bacterial DNA in the sample. In reality, each primer set contains bias 

that amplifies certain bacteria preferentially over others [167]. The most commonly used 
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universal primer set was designed by Nadkarni et. al. [168] and has good coverage of 

most bacterial taxa but does not amplify those in the phyla Spirochetes or Chlamydiae 

well. Though its common use may indicate that those studies employing this primer set 

may be compared, there are other complications that prevent this. The bacterial 16S 

rRNA gene is known to vary in copy number among bacterial species, which means that 

uncorrected quantification data will over-represent species with more copies and under-

represent those with fewer [169]. Methods to correct for this have been developed for 

sequencing data [170,171] but doing so for qPCR data is more difficult since the 

community composition is unknown. Sequencing data could be used to elucidate 

bacterial community structure and qPCR data could be corrected retrospectively, but this 

could introduce more bias due to primer bias, PCR and sequencing error, and variation in 

OTU generation and identification. Use of other genes for universal quantification has 

been explored, such as the single copy rpoB gene, which provides better species-level 

resolution over the 16S rRNA gene [172,173]. Despite these advantages, the 16S rRNA 

gene remains dominant in the field for amplicon sequencing, likely due to the high 

number of resources already available for its use. However, the rpoB gene may hold 

promise for increased accuracy in quantification of bacterial load. 

 Though use of the 16S rRNA gene is ubiquitous in microbiome studies, the best 

variable region for amplicon sequencing is still up for debate [22]. This is clearly 

demonstrated in Table 2.1, in which studies use multiple regions in the V1-V5 range. 

This further makes direct comparison between the studies impossible, since the primer 

sets that target these varying regions will be biased against different bacterial taxa. Use of 

a standard set of primers targeting the same region would eliminate this issue, but does 
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not account for variability in detection of specific bacteria. The use of an appropriate 

variable region that detects all bacteria present in a community and reflects their true 

abundance is an on-going challenge in the microbiome field that is actively being 

investigated.  

Though all the studies in Table 2.1 identify bacterial communities in the airways 

in various disease states, the heterogeneity of methods used in detecting these 

communities make them impossible to compare directly, and may imply that none 

accurately reflect the true community composition. Continued standardization and 

optimization of amplicon sequencing methods will improve these issues in the future, but 

make current metagenomics studies questionable, particularly for low-abundance airway 

communities. Despite these challenges, comparison of community changes in disease 

states can give valuable insight into host-microbe and microbe-microbe interactions that, 

if validated experimentally, may generate novel research questions and lead to new 

therapeutic targets. Metagenomic studies in combination with experimental validation 

provide a powerful set of tools to explore the roles of airway microbial communities in 

disease and health that may lead to improvements in treatment, prevention, and detection 

strategies. 

 

2.2 Burn and Inhalation Injury 

 Research in the airway microbiome field has focused on changes in microbiota 

during and after disease as well as determination of existence of a lower airway 

microbiota at homeostasis. Few studies have examined changes in airway microbiota 

after injury and none have examined the microbiota following burn and inhalation injury. 
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Treatment of burn injury has improved markedly over the past 35 years, resulting in a 

78% decrease in mortality since the 1970s [174]. This is illustrated in the mortality rate 

associated with total body surface area (TBSA) burn, where 30% TBSA in the 1970s 

resulted in a 50% mortality rate while 80% TBSA results in the same mortality rate today 

[174,175]. This is likely due to improvement in initial shock resuscitation, airway 

management, nutrition, wound care, and infection control [174]. Burn injury is defined by 

the type of injury, burn depth, TBSA, and injury severity [176]. Type of injury includes 

thermal, electrical, chemical, and radiation. In between the years 2005 and 2014, 42.6% 

of burn injuries reported to the American Burn Association were caused by fire or flame, 

while scalding accounted for 34.0%, making thermal injury the most common type [175]. 

Burn depth is measured by the layer of skin the injury penetrates through and ranges from 

first to fourth degrees [176,177]. First and second degree burns are generally superficial 

and heal with minor intervention, while third and fourth require more care. Increasing 

TBSA is associated with increased mortality rates. Though burns with %TBSA of less 

than ten compromised over 75% of burns within the years 2005 – 2014, patients with 

70% to 80% TBSA had a 55% mortality rate while those with greater than 90% TBSA 

had an 85% mortality rate [175]. Burn severity encompasses several metrics and is used 

to triage patients into minor, moderate, and major categories. TBSA, burn depth, patient 

age, location, injury type, and pre-existing conditions all factor into severity. Burns 

categorized as severe with greater than 20% TBSA are associated with systemic changes 

similar to those seen in trauma and surgical patients [177]. Patients experience decreases 

in metabolic function and cardiac output within the first 48 hours of burn injury which 

gradually increase to become hypermetabolic within five days of injury [177]. Though 
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patients experience a systemic inflammatory response, global immune function is 

compromised, increasing susceptibility to bacterial, viral, and fungal infections. The top 

three complications burn patients experienced between 2005 and 2014 include 

pneumonia, cellulitis, and urinary tract infections, with respiratory failure coming in at a 

close fourth place [175]. Unfortunately, infection can be difficult to diagnose in this 

patient population, as the systemic changes described above make traditional infection 

indicators, such as elevated temperature and white blood cell count, unreliable [174,178]. 

The presence of inhalation injury (II) complicates matters by increasing mortality by up 

to 25%, while pneumonia alone increases it by 40%, and both together by 60% [179,180]. 

Prevention of both complications is challenging due to ineffectiveness of prophylactic 

antibiotic treatment and a lack of standardized procedures for diagnosing, scoring, and 

treating II [178,179]. Diagnosis of II is highly subjective, as it requires visual 

examination of damage to the airways through a bronchoscope accompanied by a history 

of burn injury in an enclosed space [181,182]. After smoke inhalation, soot and other 

particles and gases come into contact with airway epithelial cells, inducing damage and 

causing them to slough off [183]. Damage signals initiate a cascade of inflammatory 

responses that result in airway edema, bronchoconstriction, and poor gas exchange 

[184,185]. Combined with the immune suppression and hypermetabolic state induced by 

severe cutaneous burn, impairment of airway defenses by II increases susceptibility to 

bacterial infection and subsequent pneumonia [183]. In order to improve survival rates of 

patients with concurrent burn and II, improved methods for detection and identification 

of infecting bacteria is critical. Application of NGS methods, particularly 16S rRNA gene 

amplicon sequencing, to burn patient airway samples may reveal changes in airway 
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communities after injury that can be therapeutically targeted to prevent infection and 

pneumonia. 

 

2.3 Toxic Effects of Smoke Exposure 

 Smoke is generated by the process of incomplete combustion, in which a fuel 

source burns in the presence of an insufficient oxygen supply and heat [184]. Thermal 

decomposition and vaporization produce a complex, heterogeneous mixture of gases and 

particles that can be inhaled in large concentrations in an enclosed space, such as a 

burning building [186]. The toxic components of smoke can be categorized as 

asphyxiants, respiratory irritants, or systemic toxins [184,186]. Carbon monoxide and 

hydrogen cyanide are asphyxiant gases common to all fires that are causes of early smoke 

inhalation-associated morbidity [181]. Both gases interfere with the body’s ability to 

utilize oxygen. The iron-containing protein haemoglobin, to which oxygen binds within 

red blood cells for transport through the body, has 250 times the affinity for carbon 

monoxide than oxygen [187]. Binding of carbon monoxide displaces oxygen, reducing 

the oxygen-carrying capacity of the blood, and it interferes with cellular respiration by 

inhibiting binding of oxygen to cytochrome oxidase. Hydrogen cyanide’s toxic effects are 

due to its ability to inhibit electron transport and cellular respiration by binding to 

trivalent iron in the mitochondrial a3 complex. Due to their systemic effects, both of 

these gases can also be classified as systemic toxins. Heavy metals inhaled from 

combustion of various materials are also classified as systemic toxins. However, it is the 

components classified as respiratory irritants that are most likely to induce II. Respiratory 

irritants include gases that may be inhaled alone or adhered to the surface of carbon-
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containing particles, such as ammonia, acrolein, and formaldehyde. Heat injury may 

seem an obvious culprit in induction of II, but the efficiency of heat dissipation of the 

upper airways prevent heat injury from traveling much further down than past the vocal 

cords [188]. Irritant gases, conversely, can travel as far as the alveoli, even when adhered 

to particles. The presence of specific irritant gases depends on the materials burned. 

Acrolein, which can bind to particles, is produced by combustion of materials containing 

cellulose, such as wood and paper products, as well as acrylics such as wall coverings 

and textiles [189]. Acrolein is known to be present in cigarette smoke as well and has 

been shown have a pro-inflammatory effect on primary nasal epithelial cells [55]. 

Hydrogen chloride may be more toxic to the airways when bound to particles than in its 

gaseous form and is produced in large amounts during combustion of polyvinyl, which is 

present in floor and furniture coverings as well as wire and pipe coatings. Phosgene, also 

produced by burning of polyvinyl, is a strong irritant that injures the small airways and 

alveoli. Aldehydes, free radicals, ammonia, and polycyclic aromatic hydrocarbons, 

among others, all of which may contribute to II, are also produced in varying amounts 

during a house fire [184,189].  

 Regardless of the composition of the inhaled smoke, II results from the interaction 

of the gases and particles with the airway mucosa and lung parenchyma, inducing an 

inflammatory cascade that results in airway injury and pulmonary edema [187]. 

Specifically, damage to the airways by irritant gases causes production of inflammatory 

mediators such as interleukin-1 [185]. These inflammatory mediators induce the 

complement cascade, draw neutrophils and macrophages to the airways, and activate 

fibrinogen. Activation of the complement cascade may lead to cellular dysfunction, while 
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inducible nitric oxide synthase by macrophages and neutrophils contributes to pulmonary 

edema and airway casts. The coagulation cascade, which activates fibrinogen, also results 

in formation of airway casts. Each of these responses decreases the ability of the airways 

to oxygenate effectively and inhibits airway defenses and immune responses, increasing 

susceptibility to infection. Treatment involves mechanical ventilation to assist 

oxygenation and supportive care, including washing the airways with saline to remove 

soot and toxic particles.             

 

2.4 Immune Response and Infection Risk 

 As mentioned above, severe burn injury with greater than 20% TBSA results in 

traumatic injury with systemic effects, including hypermetabolic changes and a massive 

inflammatory response [177]. Recognition of this inflammatory response, particularly in 

the septic patient, and the need to identify it early led to defining the systemic 

inflammatory response syndrome (SIRS) in 1991 [190]. SIRS is characterized by a 

massive pro-inflammatory response after traumatic injury that can inhibit patient 

recovery if not appropriately addressed. The compensatory anti-inflammatory response 

syndrome (CARS) is thought to directly follow SIRS, and consists of inhibition of 

immune responses in order to restore homeostasis [191]. Recent studies suggest that 

SIRS and CARS may occur simultaneously rather than successively [192]. Blunt trauma 

or burn injury was found to alter 80% of the leukocyte transcriptome, including activation 

of inflammatory mediators and genes involved in pattern recognition and antimicrobial 

functions, and suppression of antigen presentation and T and NK cell function [192]. 

These genome-wide changes were induced regardless of type of injury, suggesting a 
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common immune response to traumatic injury. Further, induction of both pro- and anti-

inflammatory responses simultaneously implies that SIRS and CARS can occur together, 

rather than one after the other.    

 Dysregulation of pro- and anti-inflammatory responses has also been 

demonstrated in II. Several studies have found blunted immune responses in the airways 

in burn patients with II early after injury and that the magnitude of the response is 

associated with the degree of injury [193,194]. Further, these studies have associated 

excessive amounts of the cytokine interleukin-1 receptor antagonist (IL-1Ra) specifically 

with immune dysfunction in II, allowing it to serve as either a biomarker of injury or a 

therapeutic target. Leukocytes from patients who do not survive burn and II do not 

produce as many immune mediators as those from patients who survive, while 

macrophages, though increased in number in the airways after II, also display decreased 

function [193,195]. The increased number of macrophages follows increases in the 

inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8), 

both of which induce tissue damage in the lung parenchyma. Neutrophils are also drawn 

to the airways in larger numbers following II and release oxygen radicals, inflammatory 

cytokines, and proteases that can also damage the lung parenchyma. This damage leads to 

increased pulmonary vascular permeability, resulting in edema that, in addition to 

inflammation, alters ventilation and perfusion and leads to acute lung injury (ALI) and 

acute respiratory distress syndrome (ARDS) [195,196]. The tissue damage and 

inflammation associated with ALI and ARDS increase susceptibility of the airways to 

infection, particularly pneumonia, which was present twice as frequently in patients with 

II than those without [180,195]. Bacterial pneumonia in patients with both burn and II is 
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associated with mortality rates as high as 68%, emphasizing the importance of early and 

appropriate antibiotic treatment in this patient population [183,195]. This is complicated 

by challenges in identifying infections early as well as the organism responsible for 

infection. Routine cultures of bronchial washings as well as endotracheal tubes have been 

used to identify infecting organisms but use of specific culture media identifies only 

those organisms capable of growth in those conditions rather than all organisms present. 

Use of NGS methods could overcome this bias, as it allows identification of a broader 

range of organisms and is not dependent on the organism’s growth conditions. Although 

these methods are not yet fast enough to be clinically beneficial, they could identify the 

communities of organisms that play roles in the development of ALI and ARDS 

following burn and II in the airways, providing therapeutic targets that may improve 

patient outcomes.              
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CHAPTER 3: OPTIMIZATION OF DNA EXTRACTION AND SEQUENCING 

METHODS 

 

3.1 Patient Population  

 The goal of this project was to use NGS methods to identify bacterial DNA 

present in the airways of patients with burn and inhalation injury. Through collaboration 

with the North Carolina Jaycee Burn Center at the University of North Carolina Hospital, 

a repository was created in order to store bronchial washings from burn patients. Within 

24 hours of hospitalization, patients with suspected inhalation injury (II) underwent 

therapeutic bronchoscopy in order to flush soot and other debris from the airways. After 

clinical use of the sample, what remained was usually discarded. Creation of the 

repository allowed frozen storage of these airway washings for future studies instead. The 

repository was approved by the UNC Institutional Review Board (IRB) under study #10-

0959. Consent for retaining samples was obtained from the patient or their legally 

authorized representative. After bronchoscopy, samples were placed on ice and processed 

within 72 hours. The washing was spun down and the pelleted cell fraction was stored 

separately from the supernatant at -80°C. Special permission from the IRB was obtained 

to use the pelleted portion of the sample to extract bacterial DNA (IRB #12-2475). 

 Samples were collected over a three-year period and de-identified before storage 

in the repository. Patient clinical and demographic data was also collected and stored in 

the electronic Red Cap database. Information such as patient gender, race, comorbidities, 
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clinical bacterial cultures, and measurement of inflammatory cytokines was collected and 

stored. Table 3.1 lists the information available within the database. For this study, DNA 

was extracted from 277 samples from a total of 102 patients.  

Demographics Injury 
Information 

Bronchoscopy 
Clinical Data 

Bronchoscopy 
Laboratory 
Data 

Blood Data 

Study ID Date Injured Date of 1st 
Bronchoscopy 

Date Blood 
Obtained? 

Date enrolled Item First 
Ignited 

Day Post Injury Volume Tube Types 

Sex Flame Spread Ventilator 
Mode 

HSP-70 GSTM1 
Genotype 

Race Fire Location FiO2 Hyaluronic 
Acid 

Serum Urea 

Age at Injury COHb Mean Airway 
Pressure 

HMGB-1  

Height Tracheostomy PaO2 Total Cells per 
Milliliter 

 

Weight Days Trached FiO2/PaO2 Differential Cell 
Count 

 

BMI Hospital Days Oxygenation 
Index 

Inflammatory 
Cytokines 

 

Comorbidities Ventilator Days Secretions   
Smoking Status Discharged on 

Ventilator? 
Soot   

 Cause of Death Mucosa 
Condition 

  

  X-Ray Results   
  Bacterial, Viral, 

and Fungal 
Culture Results 

  

Table 3.1: Patient Demographics and Clinical Data Collected. BMI = Body mass 
index, COHb = carboxyhemoglobin levels, FiO2 = fraction of inspired oxygen, PaO2 = 
partial pressure of arterial oxygen, HSP-70 = Heat shock protein-70, HMGB-1 = high 
mobility group box 1 protein 
 
Besides patient demographics, information recorded in the Red Cap database included 

general injury information as well as biomarkers and clinical results specific to airway 

injury. General information on how the injury occurred, as listed under ‘Injury 

Information’ in Table 3.1, included the type of injury (flame, scald, electrical, etc.), the 
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material first ignited, the location of the fire (house, office building, trailer, work site, 

etc.), and how the fire spread. Specific clinical parameters included whether a 

tracheostomy was performed for mechanical ventilation, the number of days the patient 

spent on a ventilator, the number of days spent in the hospital, as well as levels of 

carboxyhemoglobin (COHb), which indicate carbon monoxide poisoning, and cause of 

death, if the patient died. Clinical information specific to the bronchoscopy included how 

long after the injury it was performed, the ability of the airways to oxygenate and 

ventilate, the physical appearance of the airways during bronchoscopy (sloughing of 

epithelial cells, secretions, presence of soot, etc.), x-ray results indicating edema and/or 

pneumonia in the lungs, and the results of clinical cultures. After clinical use of the 

bronchoscopy samples, specific biomarkers were assayed for research purposes, 

including HSP-70, HMGB-1, hyaluronic acid, and pro- and anti-inflammatory cytokines. 

The samples were also analyzed for the number and type of cells present. HSP-70, 

hyaluronic acid, and HMGB-1 all play roles as damage-associated molecular patterns 

(DAMPs) which can activate innate and adaptive immune responses in the airways [197]. 

HSP-70 is an important heat shock protein released in the cytoplasm following thermal or 

chemical injury in order to protect protein integrity and prevent cytotoxicity [198]. 

HMGB-1 plays important roles in assembly of nucleoprotein complexes in the nucleus 

but induces pro-inflammatory responses when in extracellular space [197]. Hyaluronic 

acid is derived from damage to the extracellular matrix and induces inflammatory 

responses. All three of these molecules activate TLR2 and TLR4. A panel of cytokines 

was selected for measurement to represent inflammatory and immune responses as well 

as tissue damage and repair [199]. Blood samples were taken in order to determine the 
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patient’s glutathione S-transferase Mu 1 (GSTM1) genotype and serum levels of urea. 

GSTM1 is part of the glutathione S-transferase family and protects the lungs from 

oxidative damage [200]. It has a null polymorphism that is present in a median 50% of 

the population and is associated with increased risk of inflammatory lung disease. Serum 

urea has been associated with mortality and is an indicator of kidney function [201,202]. 

Together, this data enables a range of observational studies in relation to the airway 

microbiota identified within these samples.    

 Recent airway microbiome studies indicate the possibility of a low biomass yet 

diverse microbiota in the lower airways of healthy individuals [203–205]. We collected 

bronchial washings from healthy volunteers in order to determine if we could replicate 

these results. Collection of these samples was previously approved by the UNC IRB 

[206] and their use in this study was approved in IRB #12-2475. 

 

3.2 Challenges in Extraction of Bacterial DNA from Bronchial Washings of Burn 

Victims 

 Methods for extraction of DNA from the bronchial washing samples in the 

repository were developed. Prior to this study, no specific method existed for extraction 

of bacterial DNA from burn patient bronchial washings samples. Increased interest in gut 

and soil microbiota over airway microbiota has led to development of extraction methods 

specific to these environments. Airway samples from the nasopharyngeal region contain 

approximately five to seven orders of magnitude fewer bacteria than do gut samples 

[164]. This low abundance of bacteria makes use of efficient extraction methods and 

reagent controls crucial to ensuring accurate representation of the original airway 



	 71	

community. Bacterial biomass within the respiratory tract is highest in the 

nasopharyngeal region and decreases from the upper respiratory tract down through the 

lower respiratory tract (from trachea to bronchi to alveoli) [134]. In bronchial washings 

from burn victims, the presence of soot, sloughed epithelial cells, blood, and mucous 

posed additional challenges in ensuring efficient extraction of bacterial DNA. Due to the 

possibility of bacteria adhering to any of these contaminants, separation by centrifugation 

was not considered. Use of dithiothreitol (DTT), which reduces disulfide bonds and 

maintains thiol groups, was considered for reducing mucous viscosity for increased 

extraction efficiency of bacteria adhered to it. DTT at a concentration of 0.1% has been 

shown to increase reproducibility of cell counts in sputum samples from patients with CF 

[207], and it has been used for detection by culture of anaerobic bacteria in CF patient 

sputum [208] as well as extraction of DNA for 16S rRNA gene amplicon sequencing of 

CF patients [148]. To compensate for overabundance of human DNA as compared to 

bacterial DNA, methods for enrichment of bacterial DNA were considered. Specifically, 

the New England BioLab’s NEBNext kit was tested with burn patient samples. This kit 

depends on differential methylation of human and bacterial DNA, and employs a methyl-

CpG binding domain and magnetic beads in order to separate human DNA from bacterial 

DNA, which has a higher percentage of methylation at adenine nucleotides [209]. 

Mechanical, chemical, and enzymatic lysis methods were tested in order to determine 

which combination of techniques resulted in the highest extraction efficiency. The most 

appropriate method was determined based on the quality and quantity of DNA extracted. 

Appropriateness of these methods for this sample type could be further confirmed 
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through 16S rRNA gene amplicon sequencing in order to determinate how well they 

reflect the structure of the original bacterial community. 

 

3.3 DNA Extraction Methods 

 Commercial bacterial DNA extraction kits from MP Biomedicals, Mo Bio, and 

Qiagen were compared with extraction using phenol:chloroform:isoamyl alcohol (PCI). 

Each method incorporates some form of physical lysis (through homogenization or 

vortexing) as well as subsequent chemical and enzymatic lysis steps.  

 Dr. Scott Plevy’s group at the University of North Carolina at Chapel Hill 

designed the PCI protocol used here. Prior to use of this protocol, the Qiagen DNeasy kit 

was used according to the manufacturer’s instructions but gave poor quality and quantity 

DNA from nasal lavage samples. This method was not specifically designed for 

microbiome research but Dr. Plevy’s PCI method was. The PCI method employs 

enzymatic lysis with lysozyme and physical lysis by homogenization with 0.1mm silica 

beads followed by additional chemical lysis with SDS and isolation of DNA using PCI. 

The Qiagen DNeasy kit is then used to further purify the precipitated DNA. 

Homogenization with bead beating and through a syringe was tested with this method. 

Bead beating consistently gave four to ten-fold higher DNA quantity with comparable 

quality. Digestion using lysozyme and lysis with SDS was tested using the Gram positive 

organism Bacillus subtilis. Gram positive organisms contain a thick cell wall composed 

of peptidoglycan, while Gram negative organisms contain a much thinner layer [210]. 

This thick cell wall makes lysis of Gram positive organisms difficult and necessitates 

lysis methods in addition to detergent-based techniques. Lysozyme is an antimicrobial 
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factor that is abundant in the airways and cleaves the glycosidic linkage between N-

acetylglucosamine and N-acetyl muramic acid within peptidoglycan, effectively inducing 

cell lysis in Gram positive bacteria [211,212]. SDS is a negatively charged amphipathic 

detergent composed of exposed hydrophilic heads and hydrophobic tails tucked within 

[213]. This bipolar nature allows it to disrupt the phospholipid bilayer of cell membranes, 

resulting in lipid-detergent micelles in solution with hydrophilic heads pointing out and 

hydrophobic tails pointing in. The necessity of both SDS and lysozyme was tested with 

B. subtilis samples. 1.4x109 B. subtilis cells per mL were placed into six tubes containing 

silica beads. These were treated either with or without lysozyme and SDS and incubated 

at 37°C for 5, 15, and 30 minutes. Prior to DNA extraction, treated bacteria were placed 

on slides and Gram stains performed to visually confirm cell wall digestion. Gram 

positive B. subtilis was expected to appear purple if the cell wall was intact and pink if 

not. Figure 3.1 is a representative picture of B. subtilis treated with 1% SDS and 

lysozyme incubated for 30 minutes and Figure 3.2 is of B. subtilis without SDS or 

Figure 3.1: B. 
subtilis Gram 
Stain after SDS 
and Lysozyme 
Treatment. B. 
subtilis was treated 
with 1% SDS and 
lysozyme and 
incubated at 37°C 
for 30 minutes. 
Though some 
purple can be seen, 
the majority of the 
cells appear pink, 
indicating efficient 
lysis of the Gram 
positive cell wall. 

10um 
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lysozyme treatment. The majority of B. subtilis cells treated with 1% SDS and incubated 

at 37°C for 30 minutes after addition of lysozyme are pink, indicating efficient cell wall 

lysis. In Figure 3.2, lack of SDS and lysozyme treatment does not result in cell lysis, even 

after bead beating, as evidenced by the presence of mostly purple cells. 

 

 

Based on these results, physical bead beating in combination with lysozyme enzymatic 

digestion and SDS chemical lysis was included in the method prior to DNA extraction. 

 To address increased mucous viscosity in the burn patient samples and possible 

inaccessibility of bacteria within it, DTT was tested in conjuncture with the PCI 

extraction method. The PCI method was used to extract bacterial DNA from nasal lavage 

samples and the Sputolusin method (EMD Millipore) was used to treat the samples with 

DTT before extraction. Two samples from the same individual were taken for a total of 

four individual subjects and eight samples. One sample per subject was treated with DTT 

and the other sample was not. For two of the subjects, DTT treatment resulted in 

Figure 3.2: B. 
subtilis Gram 
Stain without 
SDS or Lysozyme 
Treatment. B. 
subtilis was not 
treated with SDS 
or lysozyme prior 
to physical bead 
beating. The 
resulting Gram 
stain shows mostly 
purple cells, 
indicating an intact 
cell wall. 

10um 



	 75	

increased DNA quantity but for the other two it did not seem to make a difference (Table 

3.2). Overall, DNA extraction quantity was variable, leading to questions about the 

effectiveness of the extraction method. 

Sample Treatment DNA (ng/ul) 260/280 Ratio 
1a Sputolysin 242.3 1.86 
1b No sputolysin 252 1.82 
2a Sputolysin 12.4 1.56 
2b No sputolysin 2.6 0.82 
3a Sputolysin 30.7 1.59 
3b No sputolysin 33.7 1.64 
4a Sputolysin 7.5 1.9 
4b No sputolysin 1.1 0.46 
Control-a Sputolysin 3.2 0.87 
Control-b No sputolysin 8.6 1.39 
 Table 3.2: DNA Quantity and Quality after Phenol:Chloroform:Isoamyl Alcohol 
Extraction Prior to DTT Treatment. Sputolysin is the commercial name for DTT. 
 
 Despite optimization of cell lysis methods, the phenol:chloroform:isoamyl alcohol 

procedure was inconsistent in quality and quantity of DNA extracted and was prone to 

contamination with bacterial DNA from the environment and the low amounts present in 

reagents. To overcome these issues, standardized commercial kits designed for 

microbiome samples were tested. Three kits were compared, including MP Biomedicals’ 

FastPrep DNA kit, Mo Bio’s PowerFecal kit, and Qiagen’s UCP Mini Pathogen kit. For 

the FastPrep kit, lysing matrix A, which included garnet and zirconium beads, was used 

for physical lysis. For the PowerFecal kit, 0.7mm garnet beads were used, and the Qiagen 

kit uses a proprietary mix of beads that appear similar to silica beads. Initial tests of the 

PowerFecal kit gave very low DNA quantities as compared to the 

phenol:chloroform:isoamyl alcohol method, so this kit was not tested further. The Gram 

positive bacteria Staphylococcus aureus was used to compare extraction efficiency of the 

Qiagen and MP Bio kits. Samples were pre-treated with lysozyme, mechanically lysed 
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using the beads that came with each kit, and treated with 1% SDS. The same initial 

quantity of S. aureus resulted in six times more DNA when extracted with the Qiagen kit. 

This DNA was also of better quality. Addition of RNase A resulted in better quality DNA 

and additional tests demonstrated consistent quantity and quality with this kit. Figure 3.3 

compares DNA quantity using this optimized extraction protocol to that obtained using 

the phenol:chloroform:isoamyl alcohol method. Figure 3.4 compares the 

Figure 3.3: 
Quantity of 
Extracted 
DNA. Burn 
patient samples 
and bacterial 
controls were 
extracted using 
the 
phenol:chloro-
form:isoamyl 
alcohol method 
and the 
optimized 
protocol. 

Figure 3.4: 
Quality of 
Extracted 
DNA. Burn 
patient samples 
and bacterial 
controls were 
extracted using 
the 
phenol:chloro-
form:isoamyl 
alcohol method 
and the 
optimized 
protocol. 
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quality of DNA obtained from both of these methods. The final, optimized method used 

to extract bacterial DNA from burn patient bronchial washings consisted of enzymatic 

lysis by lysozyme, physical lysis through bead beating with a vortex, chemical lysis by 

SDS, and DNA purification using the spin-column based Qiagen UCP Mini Pathogen kit. 

The protocol can be found in Appendix 1. 

 Overabundance of human DNA was a concern in the burn patient samples. 

Although the sequencing primers target the bacterial 16S rRNA gene specifically, excess 

human DNA may interfere with efficient amplification and sequencing. To enrich the 

bacterial DNA present in the samples and remove as much human DNA as possible, the 

New England BioLabs NEBNext kit was tested. This kit makes use of differences in  

Figure 3.5: 
Quantity of 
Human and 
Bacterial DNA 
Before 
Enrichment. 
Bacterial and 
human DNA was 
quantified prior to 
enrichment to 
determine loss of 
DNA due to the 
method. 
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methylation location between human and bacterial DNA [209]. A CpG-

binding domain fused to the constant region of immunoglobulin G (IgG) is used to 

specifically bind human DNA. This protein is bound to magnetic beads prior to 

introduction of DNA, allowing removal of CpG-methylated DNA and leaving adenine-

methylated bacterial DNA behind. Figures 3.5 and 3.6 compare human and bacterial 

DNA quantity before (Figure 3.5) and after (Figure 3.6) enrichment using the NEBNext 

kit. Although the kit successfully removes human DNA, leaving behind a majority of 

Figure 3.6: 
Quantity of 
Human and 
Bacterial 
DNA After 
Enrichment. 
Human and 
bacterial 
DNA present 
in patient 
samples was 
quantified 
after 
enrichment. 
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bacterial DNA, it depletes bacterial DNA quantity by more than one full order of 

magnitude. In order to determine whether this loss of DNA quantity impacted the 

bacterial composition, both unenriched and enriched samples were sequenced using 16S 

rRNA amplicon sequencing. Mock samples containing only S. aureus were included as 

controls. Figure 3.7 shows the sequencing results as the bacterial community composition 

of each sample normalized to 100%. Samples from the same patient did not display 

significant differences in community composition based on enrichment of samples. Since 

unenriched samples contained more bacterial DNA, which will increase sequencing 

accuracy, and they are not significantly different from enriched samples, the enrichment 

method was not used in the final extraction method prior to sequencing.    

  

Figure 3.7: Enrichment Does Not Alter Bacterial Community Composition After 
16S rRNA Gene Amplicon Sequencing. Although enrichment results in a 10-fold 
loss of bacterial DNA within the patient samples, it does not significantly alter 
community composition. Due to low abundance of bacterial DNA in some patient 
samples, enrichment was not used. 
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Figure 3.8: Non-Human DNA in Burn Patient Bronchial Washings. Non-human 
DNA was indirectly quantified by subtracting total DNA from human DNA. This method 
quantifies bacterial as well as viral and fungal DNA but avoids bias associated with direct 
bacterial DNA quantification.  
 

3.4 Quantification Methods 

 Quantification of bacterial DNA after extraction and prior to sequencing can 

measure total bacterial load as well as specific bacterial species of interest. 16S rRNA 

gene amplicon sequencing can only quantify relative abundance of bacteria, making 

additional methods necessary for more accurate measures. Universal primers targeting 

the bacterial 16S rRNA gene are widely used with qPCR to quantify bacterial load. 

Nadkarni et. al. has developed a set that is commonly used and successfully detects a 

majority of bacteria present [168]. However, at the phylum level, this primer set does not 

detect any Chlamydiae and misses the majority of Spirochetes. A set designed by Maeda 
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et. al. successfully detects 44% of Spirochetes but also misses all Chalmydiae [214]. 

Measuring primer coverage at the phylum level does not take into account additional 

variation at lower taxonomic levels, such as genus and species. It is likely that coverage 

is even worse at these levels, which means these primers do not accurately measure total 

bacterial load. Further, it is well known that copy numbers of bacterial 16S rRNA genes 

vary between a single to as many as fifteen copies among different species [169]. If this 

variation is not corrected for it results in overrepresentation of species with higher copy 

numbers and underrepresentation of those with lower. Although algorithms have been 

developed to correct for this, they all depend on knowledge of the bacterial community 

composition and are dependent on sequencing results. A non-biased method, independent 

of sequencing, is needed to accurately quantify total bacterial load.  

 To address this challenge, we indirectly quantified total bacterial load by qPCR 

quantification of human DNA and total sample DNA using the double-stranded DNA dye 

PicoGreen. Subtraction of the quantity of human DNA from total DNA in the sample 

gives the quantity of non-human DNA and is not biased by primers, bacterial 16S rRNA 

gene copy number, or sequencing results. Clearly, this method is limited in that it will 

quantify viral and fungal DNA in addition to bacterial and it depends on two distinct 

methods of quantification. However, we find increased consistency in quantification with 

this method as compared to quantification of the 16S rRNA gene. Figure 3.8 shows the 

percent of non-human DNA present in bronchial washing samples from burn patients 

taken within 72 hours of burn and inhalation injury. These samples are divided based on 

whether the patient had hypoxia as indicated by their PaO2/FiO2 ratio. 
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Figure 3.9: 
Detection of 
Bacterial 
DNA with 
Universal 
Primers. 
DNA from 
patients was 
PCR 
amplified 
using 
universal 
primers 
designed by 
Maeda et. al. 
Expected 
product size 
was slightly 
less than 
400bp. Lanes 
are labeled 
by patient ID 
numbers. 



	 83	

 

Figure 3.10: 
Detection of 
Bacterial 
DNA with 
MTFS 
Sequencing 
Primers. 
DNA from 
patients was 
PCR 
amplified 
using the 
MTFS 
sequencing 
primers. 
Expected 
bacterial 
product size 
was less 
than 400 bp. 
Lanes are 
labeled by 
patient ID 
numbers. 
 

 

Although the indirect quantification method removes bias associated with direct 

quantification of bacterial DNA, direct detection of it was necessary to ensure its 

presence before sequencing. This was done through PCR amplification using a set of 

universal primers and the primers to be used for sequencing followed by gel 

electrophoresis. Figure 3.9 shows detection of bacterial DNA using the universal primer 

set designed by Maeda et. al. and Figure 3.10 shows detection using the sequencing 

primer set (Molecule tagging frame shifting; MTFS). Both PCR products were slightly 

less than 400 base pair long, as indicated in both figures. Negative and positive controls 

were included, as well as a mock sample containing both human (16HBE) and bacterial 
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(SA or S. aureus) DNA. The MTFS sequencing primers display brighter bands in some 

patient samples that appear lighter in the Maeda set (Figure 3.10), such as for patients 

297, 324, and 328, possibly indicating higher sensitivity of the MTFS set. The Maeda set 

does not detect any DNA in the negative water control while the MTFS set shows a faint 

but small band. This may indicate contamination of the water with very low-abundance 

bacterial DNA that the Maeda set is not sensitive to. The Maeda set shows a brighter 

band for both the positive S. aureus control and the mock sample with both human and S. 

aureus DNA, which may indicate that it detects staphylococci better than the MTFS set. 

Both detect a product in the human DNA negative control, but the MTFS set detects a 

product similar in size to that in the water control for the mock sample. This could 

indicate that human DNA present in the samples will not interfere with amplification of 

bacterial DNA by the MTFS primer set. Low-level contamination is common in 

microbiome samples, especially since reagents may contain small amounts of bacterial 

DNA. To account for this, control samples that include reagents and water, human DNA, 

bacterial DNA, and human and bacterial DNA together will be sequenced with the patient 

samples. Detection of bacterial DNA by the MTFS sequencing primer set ensures the 

presence of template for 16S rRNA gene sequencing. 

Bacterial DNA in control samples from healthy volunteers was quantified using 

the Maeda et. al. primer set (Figure 3.11). The positive bacterial controls show that the 

primers were able to quantify bacterial DNA. However, the healthy samples did not have 

significantly more DNA than the human-only (16HBE) control. Due to this low quantity 

of DNA, these samples were not submitted for sequencing. 
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3.5 Molecule Tagging Method  

 The use of barcodes for DNA template from the same sample has become 

common among 16S rRNA gene sequencing projects [22]. This allows pooling of 

multiple samples into a single lane, decreasing sequencing time. An addition to this, 

called molecule tagging (MT), was developed by Lundberg et. al., in which the MTFS 

primer set previously mentioned allows labeling of individual DNA molecules with  

unique tags [215]. The MTs are added prior to PCR amplification and sequencing, and 

can be used to group resulting sequences with identical tags and generate a consensus 

sequence. This minimizes amplification and sequencing errors and has been shown to 

decrease the number of operational taxonomic units (OTUs) generated as compared to 

methods that only barcode the samples. For the MT method, the samples are barcoded as 

well so that samples may be pooled before sequencing on the Illumina MiSeq platform. 

We chose to use the MT method due to its increased accuracy in sequencing. The low 

Figure 3.11: 
Quantification 
of Bacterial 
DNA in Healthy 
Lower Airways. 
Bronchoalveolar 
lavage fluid 
(BALF) from 
healthy 
individuals was 
extracted using 
the optimized 
method described 
above and 
quantified using 
primers designed 
by Maeda et. al. 
Although control 
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abundance of bacterial DNA present in the burn patient samples makes sequencing 

accuracy critical to accurate representation of the original bacterial community. 

Therefore, although it is more expensive than traditional barcoding, we chose to 

implement the MT method. Figure 3.12 shows how sequencing libraries are created with 

this method. In a short PCR step, MTs and barcodes are added to each original DNA 

molecule per sample. In a subsequent round of full PCR, primers and the required 

Illumina adapters are added. These libraries are checked to ensure the expected PCR 

product is present and then they are loaded onto the MiSeq for sequencing. 

 

 After sequencing, raw reads are quality filtered using Illumina’s CASAVA 

software [216]. The sequences can then be analyzed using MT-Toolbox, a pipeline 

created specifically for the MT method [217]. MT-Toolbox joins paired-end reads and 

generates consensus sequences from molecule-tagged DNA. OTUs are generated using 

Figure 3.12: Sequencing Library Creation with the Molecule Tagging Method. 
MTs are attached to each DNA molecule in a brief round of PCR. A full round of PCR 
follows, which attaches the primers and adaptors. The resulting library is loaded onto 
the Illumina flow cell for sequencing on the MiSeq instrument. 
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UPARSE at 97% sequence similarity [218] and 16S rRNA copy number is corrected for. 

OTUs are compared to the 

GreenGenes 16S rRNA 

database in order to identify 

them to the lowest possible 

taxonomic level [219]. The 

final output consists of 

sequence quality information 

(such as the percent of reads 

that merged successfully and 

MTs per sample) and an 

OTU table with patient 

samples in columns and 

bacterial taxa in rows. The number of sequences identified per OTU is represented as a 

count per patient. OTU counts are typically normalized to 100% since they are relative 

counts of the bacteria present. Further statistical analysis can be performed on the OTU 

table, as outlined in Figure 3.13, in order to elucidate biological roles of the microbiota. 

After analysis, control samples contained very low percentages of total sequences and 

MTs (Table 3.3). Normalized bacterial community composition is shown in Figure 3.13. 

The S. aureus (SAUR) control contains only sequences identified as S. aureus.  

 

 

Figure 3.13: From Sample Collection to Data 
Analysis. Methods used for sample collection, DNA 
extraction, sequencing, and statistical analysis are 
outlined. 
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Control Percent of Total 
Sequences 

Percent of Total 
Molecule Tags 

Human (16HBE) 1.1 0.002 

Staphylococcus 
aureus (SAUR) 

1.2 2.3 

Reagent (CNTRL) 0.44 0.002 

Table 3.3: Percent of Total sequences and Molecule Tags for Human (16HBE), 
Staphylococcus aureus (SAUR) and Reagent (CNTRL) Controls. 
 

 

 

The reagent control (CNTRL) contains a majority of sequences identified as 

Enterobacteriaceae while the human DNA control (16HBE) is split between 

Streptophyta, Pseudomonadaceae, Comamonadaceae, Microbacteriaceae, and 

Weeksellaceae. However, these two control samples only contained 0.002% total MTs, 

while the S. aureus control contained 2.3%. Overall, each had very low percentages, but 

those that were expected to contain no bacterial DNA had 1,150 times fewer total MTs. 

Such a low amount of contamination is unlikely to significantly alter sequencing results. 

Figure 3.14: Family Level OTUs Detected Among Human (16HBE), 
Staphylococcus aureus (SAUR), and Reagent (CNTRL) DNA Controls. 
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CHAPTER 4: ALTERATIONS IN AIRWAY MICROBIOTA IN PATIENTS WITH 

LOW P/F RATIOS AFTER BURN AND INHALATION INJURY 

 

4.1 Introduction 

Smoke-induced inhalation injury occurs in up to 43% of burn victims, increasing 

death rates by up to 20% as compared to patients with burn injury alone [220]. Inhalation 

injury predisposes these patients to respiratory failure, acute respiratory distress 

syndrome (ARDS), and pneumonia. Pneumonia, in combination with burn and inhalation 

injury, further increases patient mortality to 60% and is a contributing risk factor to 

development of ARDS [181,196]. ARDS is a life-threatening condition resulting from 

either direct or indirect injury to the lung, and is diagnosed clinically by the presence of 

bilateral opacities on chest imaging and airway hypoxia [196,221]. Hypoxia is 

determined by the ratio of the partial pressure of arterial oxygen (PaO2) to the fraction of 

inspired oxygen (FiO2). To meet the Berlin definition of ARDS, this ratio must be less 

than or equal to 300 mm Hg, with a minimum positive end expiratory pressure (PEEP) of 

5 cm H2O [221]. Although bacterial infection is frequently the first step towards 

pneumonia and sepsis, and can induce direct injury to the lung and contribute to the 

pathogenesis of ARDS, its relationship with the disease is complex and not well 

understood [222].  
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Early antibiotic therapy is critical to improved patient outcomes once infection 

and pneumonia occur, but identification of the organisms can be challenging [183]. 

Current methodologies rely on culture or polymerase chain reaction (PCR) techniques to 

identify the causative agent [223]; however, these methods require specific knowledge of 

the organism’s growth and metabolic requirements and a period of 1 – 2 days for 

identification and susceptibility testing, which are prone to false positive results [223]. 

These limitations often result in broad-spectrum antibiotic treatment that may have little 

to no impact on the target organism, promote the development of antibiotic resistance, 

and ultimately increase mortality [183,223].     

To address these limitations, we utilized next-generation sequencing to 

characterize the bacterial communities (collectively known as microbiota) in the airways 

of burn patients following smoke inhalation with or without a PaO2/FiO2 (P/F) ratio ≤ 

300, regardless of the presence of ARDS. Study of the microbiota has revealed the key 

roles they play in the development and function of the host immune system, and how 

dysbiosis, or perturbation of the communities, contributes to disease [35,37,16]. Although 

host-microbiota interactions are complex and poorly understood, recent studies 

underscore the importance of low-abundance species in dysbiosis and disease 

progression, particularly in the airways [16,17]. We hypothesized that inhalation injury 

and a low P/F ratio (≤ 300) would create conditions within the airways that favor distinct 

communities of bacteria. We show that facultative anaerobic taxa are enriched among all 

burn patients, and that specific, low-abundance bacterial taxa are associated with low P/F 

ratios within the first 24 to 72 hours after injury.  
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4.2 Methods  

4.2.1 Patients and Sample Collection  

Therapeutic bronchial washings from patients hospitalized for burn and inhalation 

injury at the North Carolina Jaycee Burn Center were collected as previously described 

[199]. Briefly, patients with suspected inhalation injury underwent clinically indicated 

bronchoscopy within 24 hours of admission. All patients were intubated, bronchial 

washes performed, and inhalation injury severity scored on the basis of examination. 

Clinical cultures were grown to detect bacteria within these bronchoscopy samples. 

Organisms detected per patient and antibiotic treatment are listed in Table S2 in the 

additional data According to the Berlin definition of ARDS, hypoxia was defined as the 

ratio of the partial pressure of arterial oxygen (PaO2) to the fraction of inspired oxygen 

(FiO2) ≤300 [199]. Ratios >300 were defined as normal oxygenation levels [196]. Other 

clinical information, such as patient demographics and total body surface area burned, 

were collected upon admission. The study protocol was approved by the Institutional 

Review Board at the University of North Carolina School of Medicine in Chapel Hill 

(IRB# 10-0959 and #12-2475). All patients or their legally authorized representative gave 

informed consent for collection of their bronchial washings for inclusion in a repository 

as previously described [199]. Analysis of the microbiota in bronchial washings was not 

an original part of the study and was added after completion of sample collection (IRB 

#12-2475). 
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4.2.2 DNA Extraction and Sequencing 

Bronchial washes were transported on ice and processed within 24 - 48 hours. 

DNA was extracted from the cellular portion of the wash. Positive Staphylococcus aureus 

and negative reagent and human DNA controls were extracted simultaneously and 

prepared in parallel with the patient samples for sequencing. Samples were centrifuged to 

separate the supernatant from the cellular fraction and these were stored separately at        

-80°C. The cellular fraction was used to extract bacterial DNA, and these were thawed 

briefly in a water bath at 35°C prior to extraction. Both enzymatic and physical methods 

were used to lyse the bacterial cell walls; the samples were resuspended in a lysis buffer 

including lysozyme and were placed in a Vortex mixer for 10 minutes. Samples were 

treated with RNase A to degrade contaminating RNA and DNA was extracted using the 

Qiagen QIAmp UCP Pathogen Mini Kit according to the manufacturer’s protocol. The 

recommended lysis step was skipped in favor of the method described above. 

Quantitative real-time polymerase chain reaction (qPCR) was used to quantify human 

DNA [224] in the samples and total DNA was quantified using the Applied Biosystems 

PicoGreen double-stranded DNA dye. Bacterial DNA was quantified indirectly by 

subtracting the quantity of human DNA from total DNA. Strains of S. aureus and K. 

pneumoniae used as standard curve DNA were received from Carolina Biologicals 

(Burlington, NC). The 16HBE14o- cell line was a gift from D.C. Gruenert [225]. DNA 

extraction for all samples and standards was done as described above. Bacterial DNA was 

quantified using primers designed by Maeda et. al.[214]. 

 Sequencing of bacterial DNA was performed in duplicate by a molecule tagging 

method recently described by Lundberg et al., [215]. This approach allows us to 
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confidently identify operational taxonomic units (OTU) that diverge at the 3% threshold. 

Briefly, a short round of polymerase chain reaction (PCR) was performed to attach 

molecule tags to each DNA molecule, followed by a round of full PCR to label each 

individual sample with a barcode and attach the adapters necessary for sequencing. The 

primers targeted the V4 region of the bacterial 16S rRNA gene with forward sequence 

GTGCCAGCMGCCGCGGTAA (515F) and reverse sequence 

TAATCTWTGGGVHCATCAGG (806R) [215]. Sequencing was performed on the 

Illumina MiSeq platform at the High Throughput Sequencing Facility at the University of 

North Carolina at Chapel Hill. Quality trimming of the resulting sequencing reads was 

performed using the Illumina CASAVA software. The MT-Toolbox pipeline, developed 

specifically to handle sequences resulting from the molecule tagging method, was used to 

generate consensus sequences from the molecule tags, group them into operational 

taxonomic units (OTUs), and match them to the GreenGenes 16S rRNA gene database to 

identify the sequences to the lowest bacterial taxonomic level possible [217,219]. 

 

4.2.3 Sequencing Data and Statistical Analysis 

We used the MT-Toolbox [217] pipeline to minimize sequencing errors and 

match reads to the GreenGenes 16S rRNA database [219]. Sequences that did not match 

a 16S GreenGenes sequence were removed from the OTU table and those remaining 

were corrected for variation among 16S rRNA operon number. Duplicate samples were 

averaged and count thresholds were set for the OTU tables using an R-squared 

correlation analysis as detailed previously [226]. The samples varied according to the 

date of sequencing and thresholds were set separately for each group. Tables with 
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appropriate thresholds were imported into the program Explicet [114] for normalization 

and subsequent diversity analyses and the Wilcoxon rank-sum and two-proportions tests. 

Rarefaction was performed on sample counts within Explicet before bootstrapping to 

calculate Chao1 diversity indices. The Wilcoxon test is a non-parametric, continuity-

corrected test appropriate for analysis of differential OTU abundances [114]. The two-

proportions test performs a continuity-adjusted chi-square test to determine differences in 

detection among OTUs [114]. One-way analysis of variance (ANOVA) was used to 

identify differences among the abundance of aerobic and anaerobic bacterial taxa present 

in patients with and without ALI (performed in R as anova = 

lm(Taxa_per_seq_count~Group, data=ALI)) [227]. The linear discriminant analysis 

(LDA) effect size (LEfSe) method [122] was used to determine the significance of 

differences in taxa abundance by biologically relevant classes, which included patient P/F 

ratio and antibiotic treatment. LEfSe first performs a factorial Kruskal-Wallis test to 

determine differential distribution of OTUs among the biological classes. If subclasses 

are present, a pairwise Wilcoxon test is done on those with p values greater than 0.05. 

OTUs with significant differences are then used to build a linear discriminant analysis 

model, which uses the relative differences of OTUs among classes to rank those that are 

most discriminative.   
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4.3 Results  

4.3.1 Patients 

Of the 48 patients included in this study, 50% had P/F ratios ≤ 300 (Table 4.1). 

The rate of positive bacterial cultures in both patients with (21%) and without (25%) a 

P/F ratio ≤ 300 was similar to the overall rate (23%). However, the rate of antibiotic 

treatment within the first 72 hours of injury in patients with a P/F ratio ≤ 300 was lower 

Figure 4.1: Unique Facultative Anaerobic OTUs are Significantly Enriched 
Among All Patients. OTUs were identified as facultative anaerobes, obligate 
anaerobes, or obligate aerobes among all patients. OTUs were quantified and 
normalized to the molecule tag count and averaged by bacterial aerobic or anaerobic 
capability. One-way ANOVA detected a significant difference among the mean taxa 
of facultative anaerobes (p = 0.029). (n = 48) 
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(29%) than either patients with a higher P/F ratio (46%) or the entire group (40%). 

Antibiotic treatment was not associated with P/F ratio ≤ 300 (chi-square test, p = 0.4).  

Clinical Variable Total PaO2/FiO2 ≤ 300 PaO2/FiO2 > 300 

Patients 48 24 24 

Males 36 (75%) 18 (75%) 18 (75%) 

Females 12 (25%) 6 (25%) 6 (25%) 

BMI 27 (14 – 51) 30 (17 – 51) 25 (14 – 42) 

Age 41 (1 – 75) 42 (8 – 76) 41 (1 – 75) 

%TBSA 19 (0 – 85) 27 (0 – 85) 10 (0 – 40) 

Antibiotic Treated 19 (40%) 7 (29%) 11 (46%) 

Baux Score 60 (1 – 115) 71 (31 – 115) 50 (1 – 96) 

Endotracheal Tube 29 (60%) 17 (71%) 12 (50%) 

Days on Ventilator 35 (0 – 105) 45 (0 – 105) 25 (0 – 79) 

Positive Cultures 11 (23%) 5 (21%) 6 (25%) 

Survived 41 (87%) 17 (71%)* 24 (100%) 

Table 4.1: Clinical Variables. Patient clinical characteristics were grouped by total 
population and subdivided by P/F ratio. The data are represented as mean (range) or 
number (percent). PaO2/FiO2 > 300 and PaO2/FiO2 ≤ 300 group percentages are 
calculated per group total. *Cause of death was either or both cardiac and pulmonary 
failure. 
 

4.3.2 The Airway Microbiota Among All Patients 

Among all patient samples, OTUs identified as facultative anaerobic taxa were 

detected at a significantly higher rate than OTUs identified as either aerobic or obligate 

aerobic taxa (Figure 4.1; ANOVA p=0.029). The most abundant OTUs among all patient 

samples at the family level were Streptococcaceae and Enterobacteriaceae, which 
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accounted for 26% and 18% of total family-level OTUs, respectively. The remaining 

56% of OTUs consisted of 45 additional families, each present at 7% of the total family-

level OTUs or less. 

 

4.3.3 Enrichment of Low-Abundance OTUs Among Patients with PaO2/FiO2 ≤ 300 

The Streptococcaceae and Enterobacteriaceae family-level OTU abundances 

were not significantly different between patients with and without PaO2/FiO2 ≤ 300 

(Wilcoxon test, p >0.05). At the lowest level of OTU identification, Enterobacteriaceae 

family-level OTUs, Streptococcus genus-level OTUs, and Staphylococcus genus-level 

OTUs were detected in 80% of patients both with and without PaO2/FiO2 ≤ 300 (Tables 

4.2 and 4.3). However, when compared to patients with PaO2/FiO2 > 300, patients with 

the lower ratio had a 27% increase in OTUs identified as Streptococcus spp., a 32% 

increase in Enterobacteriaceae, and an 83% increase in Staphylococcus spp. An 

additional six OTUs were detected in 80% of patients with PaO2/FiO2 ≤ 300 at 3.1% or 

less of the total OTUs in this group (Table 4.3). All OTUs detected in 80% of patients 

were either facultative or obligate anaerobes. Figures 4.2 and 4.3 display OTU 

abundances at the family level that account for greater than 1% of the total OTUs among 

individual patients without and with PaO2/FiO2 ≤ 300, respectively. 
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Figure 4.2: The Airway Microbiota Among Patients with PaO2/FiO2 > 300. OTUs 
identified as the families Streptococcaceae and Enterobacteriaceae dominate the 
airway microbiota within 72 hours following burn and inhalation injury. The category 
‘Other’ includes bacterial taxa present at less than 1% of the total community. (n = 24) 
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Figure 4.3: The Airway Microbiota Among Patients with PaO2/FiO2 ≤ 300. OTUs 
identified as the families Streptococcaceae and Enterobacteriaceae dominate the 
airway microbiota within 72 hours following burn and inhalation injury. The category 
‘Other’ includes bacterial taxa present at less than 1% of the total community. (n = 24) 
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Bacteria Aerobe/Anaerobe Average Abundance* 

Enterobacteriaceae Facultative anaerobe 20.0 

Streptococcus spp. Facultative anaerobe 27.8 

Staphylococcus spp. Facultative anaerobe 2.7 

Table 4.2: Taxa Detected in 80% of Patients with PaO2/FiO2 > 300. Taxa names 
represent the lowest level of identification of the corresponding OTU. *Percent of total 
OTUs among 24 patients with PaO2/FiO2 > 300. 
 

Bacteria Aerobe/Anaerobe Average Abundance* 

Enterobacteriaceae Facultative anaerobe 17.0 

Streptococcus spp. Facultative anaerobe 22.1 

Staphylococcus spp Facultative anaerobe 9.2 

Atopobium spp. Facultative anaerobe 3.1 

Gemellaceae Facultative anaerobe 1.8 

 Veillonella dispar Obligate anaerobe 1.2 

Lactobacillales Facultative anaerobe 0.7 

Prevotella spp. Obligate anaerobe 2.4 

Prevotella melaninogenica Obligate anaerobe 2.5 

Table 4.3: Taxa Detected in 80% of Patients with PaO2/FiO2 ≤ 300. Taxa names 
represent the lowest level of identification of the corresponding OTU. *Percent of total 
OTUs among 24 patients with PaO2/FiO2 ≤ 300. 
 

4.3.4 Alpha Diversity Among Patients with and without PaO2/FiO2 ≤ 300 

The Chao1 diversity index, which is a non-parametric species richness estimator 

[228], did not show significant differences in number of different OTUs between patients 

with and without PaO2/FiO2 ≤ 300  (Figure 4.4). Though the median Chao1 index in 
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patients with PaO2/FiO2 > 300 is less than that of patients with the lower ratio, it shows a 

much broader range in patients with PaO2/FiO2 > 300.  

 

 

 

4.3.5 Significant Enrichment of Specific OTUs Among Patients with PaO2/FiO2 ≤ 

300   

Four OTUs were identified as significantly different in abundance and detection 

between patients with and without PaO2/FiO2 ≤ 300 . OTUs identified as Prevotella 

melaninogenica, Mogibacterium spp., and Corynebacterium spp. were significantly 

increased in abundance among patients with PaO2/FiO2 ≤ 300 (Table 4.4). Patients with 

PaO2/FiO2 ≤ 300 had 72% more of the OTU represented by Prevotella melaninogenica 

than patients with PaO2/FiO2 > 300, 79% more Corynebacterium genus-level OTU, and 

86% more of the Mogibacterium genus-level OTU. Prevotella melaninogenica OTUs 

were also detected significantly more frequently among patients with PaO2/FiO2 ≤ 300, 

while Corynebacterium OTUs were significantly more frequent in patients with the 

higher ratio (Table 4.5). OTUs identified as Fusobacterium spp. were also detected 

Figure 4.4: 
Average Chao1 
Diversity Index 
of Patients with 
and without 
PaO2/FiO2 ≤ 
300. ALI = 
PaO2/FiO2 ≤ 300, 
None = 
PaO2/FiO2 > 300 
(n = 48) 
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significantly more frequently among patients with PaO2/FiO2 ≤ 300. LEfSe [122] was 

used to confirm these results. LEfSe identified the Prevotella melaninogenica OTU as 

most discriminative among patients with PaO2/FiO2 ≤ 300 as compared to those with a 

higher ratio, followed by Staphylococcus genus-level and then Bifidobacteriales order-

level OTUs (Figure 4.5). Staphylococcus OTUs were 83% more abundant in patients with 

PaO2/FiO2 ≤ 300 as compared to those with PaO2/FiO2 > 300, while Prevotella 

melaninogenica OTUs were 72% more abundant and Bifidobacteriales OTUs were 50% 

more abundant (Figure 4.6). Additional analysis with LEfSe indicated significant 

enrichment of Staphylococcus spp. OTUs in the presence of antibiotics, while enrichment 

of Prevotella melaninogenica OTUs was not affected (Figures 4.7 and 4.8). 

 

Taxa Percent 
Abundance Among 
Patients with 
PaO2/FiO2 ≤ 300 

Percent 
Abundance Among 
Patients with 
PaO2/FiO2 > 300 

P-Value 

Prevotella 
melaninogenica 

1.56 0.44 0.042 

Corynebacterium 
spp. 

1.53 0.32 0.037 

Mogibacterium spp. 0.07 0.01 0.048 

Table 4.4: OTU Level Significant Differences in Abundance as Determined by Wilcoxon 
Rank-Sum Test. Taxa names represent the lowest level of identification of the 
corresponding OTU. 
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Taxa Detection Rate 

Among Patients 
with PaO2/FiO2 ≤ 
300 (# of patients) 

Detection Rate 
Among Patients 
with PaO2/FiO2 > 
300 (# of patients) 

P-Value 

Prevotella 
melaninogenica 

19 11 0.037 

Corynebacterium 
spp. 

6 14 0.040 

Fusobacterium spp. 17 9 0.043 

Table 4.5: OTU Level Significant Differences in Detection as Determined by the Two-
Proportions Test. Taxa names represent the lowest level of identification of the 
corresponding OTU.  
 

 

 

 

 

Figure 4.5: Specific Bacterial Taxa are Enriched Among Patients with PaO2/FiO2 
≤ 300. LEfSe analysis detected significant enrichment of OTUs identified as 
Prevotella melaninogenica, Staphylococcus spp., and the order Bifidobacteriales 
among patients with PaO2/FiO2 ≤ 300. This tool uses a Kruskal-Wallis rank-sum test, 
Wilcoxon rank-sum test, and linear discriminant analysis to determine the biological 
relevance of significant enrichment of taxa and ranks them by effect size. LDA score 
indicates the magnitude of the effect size.  
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4.4 Discussion 

Our work details differences in the airway microbiota in patients with PaO2/ FiO2 

ratios ≤ 300 and > 300 following burn and inhalation injury. A cut-off of 300 was chosen 

based on the Berlin definition of airway hypoxia in ARDS [221]. We identify several 

low-abundance OTUs with significant enrichment in patients with PaO2/ FiO2 ≤ 300, of 

which the OTU identified as Prevotella melaninogenica was the most significant. In 

addition, we show that while antibiotic treatment alters the airway microbiota, it does not 

explain the enrichment of a specific OTU among patients with PaO2/ FiO2 ≤ 300. 

 

Patients with a PaO2/ FiO2 ratio that was less than or equal to 300 within 72 hours 

of burn and inhalation injury had consistently worse indicators of poor prognosis. Table 1 

shows the average values for patients with and without PaO2/FiO2 ≤ 300 for several 

clinical variables that are predictive of injury severity. In patients with inhalation injury, 

several studies have demonstrated that age, percent TBSA and PaO2/ FiO2 ratio predict 

Figure 4.6: 
Percent 
Abundance 
Increase in 
OTUs with 
Significant 
Differences 
Detected by 
LEfSe. Bacterial 
abundances are 
displayed as the 
percent increase 
in patients with 
PaO2/ FiO2 ≤ 300 
as compared to 
patients with 
PaO2/ FiO2 > 
300. (n = 48) 
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mortality [181]. The PaO2/ FiO2 ratio itself has been shown to be more predictive of 

patient outcomes on the day after patients meet the Berlin definition of ARDS rather than 

the day of [229]. In our study, patients with PaO2/FiO2 ≤ 300 had, on average, a higher 

Baux score (age + %TBSA), spent longer on the ventilator, were intubated more 

frequently, and had lower survival rates. Only percent TBSA and the PaO2/ FiO2 ratio 

were significantly different among the patient groups (Student’s t test, p = 0.002 and 

5.293e-11, respectively).  While fewer patients with PaO2/FiO2 ≤ 300 received antibiotic 

treatment than those with ratios > 300, rates of positive clinical bacterial cultures were 

similar between the two groups. This discrepancy may be partly due to the challenges in 

predicting bacterial infection and development of pneumonia in this patient population. 

Pneumonia is the primary complication of inhalation injury [180] and early, adequate 

antibiotic treatment has been shown to improve outcomes in these patients [183]. Criteria 

to predict pneumonia early after injury have been developed and include age > 60 years, 

TBSA > 20%, and initial PaO2/ FiO2 ratio of ≤ 300 [230]. The patients with PaO2/FiO2 ≤ 

300 in our study meet the TBSA and initial PaO2/ FiO2 ratio criteria, but not the age 

criteria, which may explain why they did not receive as many antibiotics. A major 

limitation of this scoring system is its failure to take into account bacteria within the 

airways, emphasizing the need for one that does, perhaps through a combination of 

clinical cultures and next-generation sequencing.  

Though we have focused on the PaO2/FiO2 ratio in alterations of the airway 

microbiota, TBSA may also contribute to the differences we detected. Increasing TBSA 

is a known predictor of patient mortality [180], which is compounded in the presence of 

inhalation injury. Burns greater than 20% TBSA induce systemic changes similar to those 
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seen in trauma and surgical patients [177]. The injury induces a systemic inflammatory 

response, but compromises global immune function, increasing susceptibility to bacterial, 

viral, and fungal infections. Patients with PaO2/FiO2 ≤ 300 in our study had, on average, 

27% TBSA, indicating immune dysfunction that could predispose them to airway 

bacterial colonization and infection. Though we cannot determine whether the burn injury 

itself induces PaO2/FiO2 ≤ 300 through systemic changes or if this is a direct result of 

inhalation injury, it is clear that TBSA may be contributing indirectly to alterations in the 

airway microbiota in our patient population. A mouse model of burn and inhalation injury 

is necessary to determine the extent to which TBSA influences changes in the airway 

microbiota. 

Among all patients in the study, there were significantly more unique OTUs 

identified as facultative anaerobes than either strict anaerobes or aerobes (Figure 4.1). 

Anaerobic taxa are normally associated with mucosal surfaces, but may lead to infection 

following disruption by trauma and surgery [231]. All patients within this study, 

regardless of PaO2/FiO2 ratio, presumably experienced disruption of their mucosa 

through the double trauma of burn and inhalation injury. Recent work has demonstrated 

that the mouth serves as the primary source community for the airway microbiota [139]. 

Inhalation injury may have increased microbial immigration through disruption of the 

mouth and upper airways’ mucosal surface, dislodging facultative anaerobic taxa that 

subsequently traveled down the airways to the bronchi. Alteration of airway conditions 

by inhalation injury may have selected for enrichment of facultative anaerobic taxa 

among all patients, which was significantly different from strict aerobic and anaerobic 

taxa (ANOVA, p = 0.029). When we subdivided the data by PaO2/FiO2 ratio, we did not 
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see significant differences in strict aerobes, anaerobes or facultative anaerobes between 

the two patient groups (Figure 4.9, p > 0.05). These results suggest that PaO2/FiO2 ≤ 300 

early after burn and inhalation injury does not select for overall taxa in the airways based 

on their aerobic or anaerobic capabilities, but that burn and inhalation injury do. 

Development of PaO2/FiO2 ≤ 300 within 72 hours of burn and inhalation injury may not 

be enough time to observe significant change in the abundances of overall taxa between 

the two groups. 

 

 

We detected OTUs identified as Enterobacteriaceae, Streptococcus spp., and 

Staphylococcus spp. in 80% of patients with and without PaO2/FiO2 ≤ 300 (Tables 4.2 

and 4.3). All three of these OTUs are facultative anaerobes and their dominance across 

patients implies similarity in the mechanism of injury to the airways selecting for these 

Figure 4.7: Streptococcaceae Family Members are Enriched in Patients with 
PaO2/FiO2 ≤ 300 without Antibiotic Treatment. Among patients with PaO2/FiO2 ≤ 
300, only those not treated with antibiotics contained significantly enriched taxa, all of 
which were in the Streptococcaceae family. 
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taxa and their related functions. Inhalation injury may induce fluctuations in oxygen 

availability in the airways, perhaps creating both aerobic and anaerobic 

microenvironments that favor taxa that can withstand these changes. Our finding of 

overall significant enrichment of facultative anaerobic taxa supports this idea. Patients 

with PaO2/FiO2 ≤ 300 demonstrated a 32%, 27%, and 83% increase in 

Enterobacteriaceae, Streptococcus spp., and Staphylococcus spp. OTUs, respectively, 

when compared to those with PaO2/FiO2 > 300 (Tables 4.2 and 4.3). Additionally, 80% 

of patients with PaO2/FiO2 ≤ 300 contained six more OTUs that represented 3.1% and 

less of the total community among these patients (Table 4.3).  This suggests that, 

although facultative anaerobes are enriched over strict anaerobes and aerobes among all 

patients, there are differences in enrichment of specific, low-abundance OTUs depending 

on PaO2/FiO2 ratio. 

Enterobacteriaceae, Streptococcus spp., and Staphylococcus spp. have all been 

consistently detected in previous airway microbiome studies in both healthy and diseased 

airways [133]. Members of the Enterobaceriaceae family have been implicated in 

inflammation-driven colorectal cancer in the gut microbiome [48,232], are enriched in 

patients with COPD and asthma, but can also be detected in healthy airways [58,145]. 

Similarly, Streptococcus is consistently found in healthy airways but is enriched in 

COPD [143], idiopathic pulmonary fibrosis (IPF) [146], and pneumonia [233]. 

Staphylococcus, while a normal commensal in the nasal microbiome [234,235], is largely 

associated with disease in the lung, such as IPF [146], and cystic fibrosis, in which it is 

correlated with increased inflammation [147,236]. Given the inconsistency with which 

these three taxa are associated with health or disease, it is difficult to interpret the 
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importance of their detection across patients with and without PaO2/FiO2 ≤ 300. They 

may indicate an underlying core airway microbiota among all burn and inhalation injury 

patients but it is not clear whether their presence is beneficial or detrimental. A 

longitudinal study of patients with burn and inhalation injury could clarify the role of 

these taxa.  

Due to its association with health outcomes, overall diversity has long been a 

focus in many microbiome studies; however, we observed no difference in diversity 

between patients with PaO2/FiO2 ≤ 300 and those with PaO2/FiO2 > 300 (Figure 4.4). 

This agrees with recent studies demonstrating that diversity (especially in the airways) is 

a complex, multifactorial trait that is unlikely to simply indicate positive or negative 

outcomes [145,236]. Many of these studies have emphasized the critical roles of specific 

taxa during disease and their interactions with other taxa [16,17]. They suggest that rare 

and less abundant taxa, which are overlooked by traditional culture methods, may play 

significant roles in the development of disease. Dysbiosis of the microbiota is followed 

by enrichment of a specific bacterial taxa that is either rarely found or present at very low 

abundance [16,233]. Changes in the balance of bacterial taxa alters how the microbes 

interact with each other along with their associated functions, allowing species that may 

have been suppressed by the presence of other bacteria to overgrow [16]. What was 

considered a harmless commensal in a healthy individual may become a harmful 

pathogen under dysbiosis-inducing conditions [39]. Accordingly, in our study, we 

observed significant differences not in the species dominating the overall community, but 

in less abundant taxa. While these taxa do not differ in microbial diversity, they may 

differ by functional diversity, which ultimately plays a greater role in patient outcomes 
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[133]. Most significantly, we identified enrichment of the OTU identified as Prevotella 

melaninogenica among patients with PaO2/FiO2 ≤ 300  within 72 hours of burn and 

inhalation injury.  

 

 

 

Figure 4.8: Antibiotic Treatment Alters the Microbiome but Does Not Impact 
Association of the Prevotella melaninogenica OTU with PaO2/FiO2 ≤ 300. LEfSe 
analysis identifies a significant increase in Staphylococcus among all patients treated 
with antibiotics.  
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Prevotella melaninogenica is a gram-negative obligate anaerobe that is part of the 

normal flora but is also a significant source of infection [237]. The specifics of Prevotella 

melaninogenica’s function in the microbiome remain unclear. In the gut, it has been 

identified as a normal commensal family, but within dental plaque it is a potential 

pathogen [124]. In the upper airways, the presence of Prevotella melaninogenica is 

associated with health while lactobacilli, Rothia spp., and Streptococcus pneumoniae 

dominate bacterial profiles in patients with pneumonia [233]. Prevotella 

melaninogenica’s positive role in the airways is supported by its ability to decrease 

production of T cell-activating IL-12p70 by dendritic cells exposed to Haemophilus 

influenzae [238]. This highlights the ability of bacteria within microbial communities to 

regulate each other’s functions as well as that of the host immune system. Several studies 

indicate that Prevotella melaninogenica could also play a non-beneficial or harmful role 

in the airways under certain conditions. Prevotella melaninogenica was a dominant 

bacterial species isolated from the airways of intubated patients [239] as well as cystic 

fibrosis patients, where characterized species varied phenotypically over time [240]. 

Though present at low abundance, we identified a large, consistent, and significant 

enrichment of the Prevotella melaninogenica OTU among patients with PaO2/FiO2 ≤ 300 

within 72 hours of burn and inhalation injury. While facultative anaerobic taxa were 

enriched among all patients in the study, Prevotella melaninogenica was enriched 

specifically in patients whose airways have the lowest PaO2/FiO2 ratio, which may select 

for growth of this obligate anaerobe. Without pre-injury samples from the patients, it is 

not possible to determine whether enrichment of Prevotella melaninogenica precedes 

PaO2/FiO2 ≤ 300 or if a low PaO2/FiO2 ratio precedes this enrichment. If confirmed in a 
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longitudinal study, the consistent presence of this OTU throughout the hospital stay of 

patients with PaO2/FiO2 ≤ 300 would suggest that it is in some way altering the airway 

environment to favor Prevotella melaninogenica. This could be achieved through 

elimination of other OTUs it interacts with that cannot thrive in hypoxic conditions  

 

or outgrowth of those that can. Early changes in both oxygen availability and other OTUs 

may impact Prevotella melaninogenica’s ability to act as a pathogen depending on 

whether species it interacts with are increased or eliminated or airway conditions alter its 

growth and pathogenicity. Given that Prevotella melaninogenica is an obligate anaerobe, 

hypoxic conditions may favor its growth, but it is impossible to predict its pathogenicity 

without further study. While determining a causal link between PaO2/FiO2 ≤ 300 and 

Prevotella melaninogenica is beyond the scope of the current study, future studies will 

examine its pathogenicity from patients with and without PaO2/FiO2 ≤ 300 as well as its 

role in either preceding or following hypoxia.  

Figure 4.9: 
Average Unique 
OTUs Identified 
as Facultative 
or Strict 
Anaerobes and 
Aerobes Among 
Patients with 
and without 
PaO2/FiO2 ≤ 
300. (n = 48) 
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Infection is a serious concern in these immunocompromised patients, for whom 

mortality rates increase to 20% with inhalation injury alone and triple to 60% when 

present with pneumonia [241]. Prophylactic antibiotic treatment is a common strategy to 

prevent infection, but results in as many as 25% of patients without infections receiving 

antibiotics [242], which may alter the microbiota in deleterious ways and encourage  

Patient Number Bacteria Cultured Percent of 
Individual 
Community* 

Antibiotic Treatment 

14 ORSA 0 None 

79 Unknown NA Vancomycin/iso-dex & 
Piperacillin/tazobactam/is
oOsmoticPMB 

93 OSSA 0.1 None 

S. pneumoniae 54 
104 S. pneumoniae 17.1 Tigecycline 

124 S. pneumoniae 35.3 Tigecycline & 
Piperacillin 

128 Acinetobacter 0.02 None 
H. influenzae 0 

169 S. pneumoniae 0.1 Piperacillin/tazobactam/ 
isoOsmoticPMB 

202 Enterobacter 
   

0.1 Tigecycline & 
Piperacillin 

H. influenzae 0 
S. pneumoniae 0.1 
OSSA 91.2 

308 Unknown NA Vancomycin 
346 OSSA 0 None 

S. pneumoniae 25 
380 Unknown NA Tigecycline & 

piperacillin/tazobactam/is
oOsmoticPMB   

Table 4.6: Clinical Cultures. Bacteria detected by clinical culture per patient, their 
corresponding abundance as detected by NGS, and patient antibiotic treatment. 
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outgrowth of resistant bacteria [243]. Antibiotic treatment has been shown to perturb the 

gut microbiome and immune cell response by eliminating commensal species and 

allowing drug-resistant bacteria to take over [244,245]. In the airways, antibiotic 

treatment in asthma shows a similar response, in which elimination of certain species 

provides a niche for establishment of other infectious species [150]. Three months of 

varying types of antibiotic treatment in patients with COPD did not reduce overall 

bacterial load and increased antibiotic resistance across all groups [246]. While a 

powerful tool for controlling bacterial growth, antibiotic treatment is a double-edged 

sword that can create communities of bacteria resistant to treatment. Our poor 

understanding of bacterial interactions within the microbiota and their roles in patient 

outcomes combined with antibiotics’ lack of specificity results in overkilling of 

beneficial organisms that could aid in improving patient outcomes. In our study, 18 total 

patients were treated with antibiotics; nine of these had negative culture results and for 

two, cultures were not done (Table 4.6). If negative culture results indicate absence of 

infection in these patients, antibiotic treatment is unnecessarily altering the airway 

microbiota, possibly contributing to development of resistance and poor outcomes. 

Among all patients treated with antibiotics, analysis with LEfSe indicated significant 

enrichment of bacteria in the Staphylococcaceae family and the order Bacillales (Figure 

4.8). These bacteria may be resistant to the drugs or not targeted by them, leading to 

overgrowth of these particular species. Methicillin-resistant Staphylococcus aureus is a 

known problematic infection in hospitals, including the Jaycee Burn Center, but its role 

within burn patient microbiota is unknown and requires further study. Despite alteration 

of other taxa by antibiotic treatment, enrichment with the Prevotella melaninogenica 
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OTU among patients with PaO2/FiO2 ≤ 300 was not affected, implying that its association 

with hypoxia is independent of antibiotic treatment, at least within 72 hours of injury. 

Further study is necessary to determine the role of this OTU in early development of 

hypoxia and whether targeted antibiotic treatment may be beneficial. 

There are several limitations to the study. Although unique in its examination of a 

heterogeneous group of burn patients, our work is also limited by this variability. The 

number of patients studied is comparable to or larger than previous studies of microbiota 

in airway disease [16,143]. The small number of patients treated with antibiotics and 

cross-sectional nature of the study makes investigation of the effect of different 

antibiotics on the airway microbiota impractical. 

In conclusion, we have demonstrated differences in the airway microbiota of 

patients with and without PaO2/FiO2 ≤ 300 within 72 hours of burn and inhalation injury. 

We detected overall enrichment of facultative anaerobes among all patients with 

differences in specific OTUs among patients with and without PaO2/FiO2 ≤ 300. 

Significant differences between these patients reside among the less abundant OTUs, 

specifically the Prevotella melaninogenica OTU, an obligate anaerobe whose role in the 

microbiome is unclear. Hypoxic conditions indicative of ARDS development may favor 

Prevotella melaninogenica enrichment and alter its pathogenicity. Alternatively, hypoxia 

may develop due to increased abundance of this OTU following inhalation injury. A 

mouse model of inhalation injury is needed to determine whether development of 

hypoxia drives enrichment of Prevotella melaninogenica or enrichment of this OTU 

induces hypoxia. Given the cross-sectional nature of this study, more work is necessary 

to determine the long-term impact of Prevotella melaninogenica and its role in the airway 
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microbiome of burn patients with inhalation injury who develop PaO2/FiO2 ≤ 300 within 

72 hours of injury. Importantly, antibiotic treatment did not alter this association, 

supporting a link between this OTU and PaO2/FiO2 ≤ 300 early after burn and inhalation 

injury. 
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CHAPTER 5: PREDICTION OF BACTERIAL TAXA ASSOCIATED WITH 

PAO2/FIO2 ≤ 300 AFTER BURN AND INHALATION INJURY 

 

5.1 Introduction  

 An exciting potential of microbiome research is to predict outcomes based on 

community structure. The field of machine learning is increasingly being utilized to 

predict outcomes from medical, experimental, and environmental data sets, including 

those from microbiome studies [247–250]. Machine learning algorithms have been 

successfully applied to patient medical records to predict colorectal cancer [251], to 

somatic mutations, copy number alterations, DNA methylation, and gene expression in 

tumors to predict drug response [252], and to patients undergoing repair of an abdominal 

aortic aneurysm to predict mortality [253]. Machine learning evolved from the field of 

artificial intelligence and allows a computer program to ‘learn’ without being explicitly 

programmed [254]. Data is given as input to an algorithm, from which it learns to predict 

outcomes. The more data it has as input, the better the algorithm will be at predicting 

output. Metagenomic data sets are large and high dimensional in nature, which makes 

them well suited to machine learning methods. 

 Metagenomic data sets are organized in a typical N x p matrix, in which N is the 

number of samples and p is the number of features, or variables, in the data [255]. The 

features p are also referred to as the dimensions of the data and in this way the matrix 

becomes a collection of N points in a p-dimensional space. It is common in metagenomic 
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studies for p to be much larger than N, as the number of bacterial species or operational 

taxonomic units (OTUs) typically outweigh the number of subjects in the study. Classical 

statistical methods operate on the assumption that p is less than N and N increases 

towards infinity [255]. These methods fail when p is larger than N, which tends to be the 

case in most metagenomic studies unless they have very large sample sizes. The growing 

pervasiveness of this problem in modern data sets has resulted in the development of 

methods to deal with high dimensional data, usually through some form of 

dimensionality reduction prior to interpretation and analysis [256]. Both unsupervised 

and supervised methods exist for this purpose. Unsupervised methods, which examine 

relationships between the data points to reveal underlying structure independent of data 

response variables, can be used as a preprocessing reduction step before use of supervised 

methods [256,257]. Clustering and principle components analysis (PCA) are commonly 

used unsupervised methods. Supervised methods categorize data based on a response 

variable, such as patient outcome. The reduced data set can be applied to these methods 

in order to make predictions about the data. Regression is a well-known supervised 

method and machine learning algorithms such as random forests (RF), neural networks, 

and support vector machines (SVM) fall into this category as well. Appropriate use of 

unsupervised and supervised methods in the context of microbiome data can lead to novel 

inference about the data and accurate prediction of outcomes.   

 

5.1.1 Unsupervised Clustering Methods Reveal Data Structure 

 Unsupervised clustering methods are a form of exploratory data analysis that 

allow discovery of relationships among data points independent of associated variables 
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[257]. They provide an unbiased way of determining which features are most important 

in the data set so that the N x p matrix can be reduced to N > p in order to allow analysis 

with classical statistical methods. Several popular methods that are extensively used with 

microbiome data include PCA, hierarchical clustering, and K-means clustering. PCA is a 

form of dimensionality reduction that can be easily visualized, while hierarchical and K-

means clustering group the data based on similarity. While each method is useful, 

understanding the theory behind them is necessary for choosing the most appropriate one 

for data analysis. 

PCA summarizes a high dimensional data set with representative variables that 

explain the most variability within the entire data set. This is done through generation of 

principle components (PC) by linear combination of the features that maximize variance. 

The linear combination of features is similar to a weighted average that takes into account 

each feature and its variation [258]. Each feature is normalized with a value referred to as 

a loading. The total loadings for each feature comprise a loading vector, which is used to 

generate the scores of each PC. The loadings give a direction for the data in feature space, 

along which the scores for each PC can be projected. Thus, PCA allows for selection of 

features based on variability as well as visualization, providing easy identification of 

similar data points in a lower dimension space. 

Clustering methods differ from PCA in that they seek to find similar subgroups 

among the dataset, rather than dimension reduction based on the best explanation of 

variance [257]. Both hierarchical and K-means clustering methods cluster the data based 

on similarity. K-means requires specification of the desired number of clusters while 

hierarchical does not. Hierarchical clustering results in an easily interpreted dendrogram 
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that is usually built in an agglomerative, bottom-up way. All observations begin as their 

own cluster at the bottom of the tree. Those that are most similar are fused, and the 

algorithm moves up to the next leaf. Here, the previously formed clusters are compared to 

the remainder of the data, and those that are most similar are grouped again. This process 

continues until all samples are grouped in a single cluster or tree. In K-means clustering, 

observations are grouped into the specified number of clusters iteratively until the 

smallest within-cluster variation is found. Due to the requirement of cluster size 

specification, K-means is used less frequently with microbiome data than hierarchical 

clustering is. Like PCA, both provide a way to group the data based on similarity in order 

to find trends within it. 

 Discriminant analysis of principle components (DAPC) improves on the 

previously described unsupervised methods by combining PCA and discriminant analysis 

(DA) [259]. PCA incorporates both between-group and within-group variation, which 

does not allow assessment of the relationship between clusters. DA maximizes the impact 

of between-group variation and minimizes that of within-group variation in determining 

discriminative variables within the data. Unlike PCA, it has no method for reducing 

dimensionality of the data, and it cannot handle data with p larger than N. It also cannot 

compensate for the compositional nature of the data, which will result in false 

correlations. DAPC uses PCA to transform the data as a prior step to DA. This allows 

both data transformation and feature selection, which addresses the issues associated with 

DA analysis of high dimensional data sets. DAPC optimizes the variance between groups 

while minimizing that within groups, allowing identification of discriminant features 

[260]. After application of PCA to reduce dimensionality, DAPC uses K-means 
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clustering with an increasing number of clusters to select the number that best represents 

the data. This method was developed for high dimensional genetic data but also works 

well for clustering metagenomic data.  

 

5.1.2 Machine Learning Algorithms Predict Outcomes 

 Several machine learning algorithms exist that have been applied to microbiome 

data. Regression methods are commonly used to assess correlations between variables 

and can be useful in selecting subsets of predictors related to the response, shrinking 

coefficients to reduce variance, and reducing dimensionality of the data [257]. Elastic net 

regression, which includes the lasso and ridge methods, is particularly useful for high-

dimensional data. Both of these models constrain coefficient estimates, which shrinks 

them towards zero and reduces their variance, resulting in improved prediction accuracy. 

They also contain a penalty factor that creates bias within the model but decreases 

variance, resulting in overall increased accuracy [261]. Both ridge and lasso contain a λ 

tuning parameter that must be determined by cross-validation using a subset of the data. 

An increasing value of λ in ridge regression reduces the coefficients but keeps all 

predictors in the model. In lasso, increasing values of λ result in some coefficients 

becoming zero, which effectively removes the predictors they correspond to from the 

model. Lasso regression therefore performs variable selection, which decreases the 

complexity and dimensionality of the data. The elastic net method, which combines both 

lasso and ridge regression, is useful in that it provides a less flexible approach and 

prevents overfitting of the model, which can lead to inaccurate predictions. 
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 Both lasso and ridge regression are types of linear classification models that may 

not adequately model microbiome data, which is usually non-linear in nature [261]. As a 

result, non-linear regression models are more frequently used, such as support vector 

machines (SVM), random forests (RF), and neural networks. SVM is a generalization of 

the maximal margin classifier, and is depicted in Figure 5.1 [257]. It consists of a 

hyperplane (labeled the maximal margin hyperplane in Figure 5.1) that optimally 

separates the data points. The maximal margin establishes the best choice of separating 

hyperplane, since infinite hyperplanes could separate the data. Here, the distance between 

possible hyperplanes and the observations is measured. The maximal margin hyperplane 

is the hyperplane with the largest distance between it and the nearest observations. These 

nearest observations (white points in Figure 5.1) are termed support vectors because they 

establish and support the maximal margin. The dependence of the margin on a subset of 

Figure 5.1: The 
Maximal 
Margin 
Classifier. A 
hyperplane 
(maximal 
margin 
hyperplane; 
solid line) 
separates the 
data. 
Observations 
closest to the 
hyperplane act 
as support 
vectors (white 
data points) that 
establish the 
maximal margin 
(dotted lines).  
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the data allows for more accurate and consistent classification of incoming data. In many 

cases, it is not possible to neatly separate data by a linear hyperplane. Further, data may 

need to be classified into more than two categories. The SVM was developed to address 

both of these issues. The SVM enlarges feature space using kernels in order to encompass 

non-linear data. A kernel is a mathematical function that describes the similarity of two 

data points, allowing use of equations specific to non-linear data. An appropriate kernel 

function will establish non-linear boundaries for the maximal margin classifier that best 

fits the data. Incorporation of more than one class is a more difficult challenge and relies 

on one-versus-one or one-versus-all approaches. In one-versus-one, pairs of classes are 

compared in order to determine classification. In one-versus-all, each class is compared 

to all the others to classify observations. Though SVM is useful in categorizing linear 

data into binary classes, neural networks and RF may be more appropriate choices for 

most microbiome data. 

 The development of artificial neural networks was influenced by biological neural 

networks, in which a single neuron communicates with several other neurons through 

axons [254]. Though several types of neural networks exist, all function on a similar 

structural basis, as shown in Figure 5.2. The most used neural network is the multilayer 

perceptron, which consists of between one and three hidden layers of neurons and an 

output neuron [254]. Each neuron is connected to every neuron in the layer preceding it 

but neurons within the same layer are not connected to each other. This is essential to  
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accurate classification within the model. Each neuron-to-neuron link is associated with a 

weight. The input values are multiplied by this weight before being subjected to the 

transfer function in the next layer of neurons. Each of these next neurons also has an 

associated weight that the resulting values from the previous layer are multiplied by 

before being subjected to the transfer function again. This process is referred to as feed-

forward propagation and results in varying weights of evidence that allow the network to 

choose the best classification of the input data. The universality theorem states that, with 

the right number of neurons and the right choice of weights, a neural network model can 

be used to solve any classification problem accurately [254]. Unfortunately, knowing 

what these correct choices are is more difficult. The choice of correct weights for a neural 

network is done through a training process known as backpropagation of error. This is an 

Figure 5.2: Neural Networks. Input neurons receive a weighted sum of data, which is 
transformed by a mathematical function by interconnected sets of hidden layer 
neurons. Multiplication by the weights is used to determine classification of the output 
data. 
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iterative method in which a range of weights is assigned to the model and input is 

propagated through the network. Both the error and each neuron’s degree of 

responsibility for it can be calculated backwards through the network and used to adjust 

the weights appropriately. Though highly accurate and applicable to nearly any 

classification problem, neural networks are prone to overfitting and can be 

computationally expensive, both of which are partly due to the problem of choosing the 

optimal number of neurons for the network.  

The RF algorithm is an extension of decision tree methods that divides the 

predictor 

variables in a 

dataset into 

homogenous 

groups that 

predict the 

response 

variable [261]. 

The predictors 

are divided by 

the process of 

recursive binary 

splitting, which is a top-down, greedy approach [257]. It is top-down in that splitting 

begins with all the predictors present, and it is greedy because the best choice for each 

specific split is made rather than the split that will generate a better tree for the entire data 

|Days_on_ventilator>=8

PercentHumanDNA< 52.81

3
n=48

2.5
n=38

1.789
n=19

3.211
n=19

4.9
n=10

Figure 5.3: Decision Tree. PCA was used to cluster species 
abundance data for airway microbiota from burn patients and a 
decision tree was applied to determine which patient variables 
explain the clustering. The data was split by days spent on the 
ventilator and percent human DNA in the sample.  
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set. Figure 5.3 gives an example of a decision tree applied to airway microbiome data. 

Here, principle components analysis (PCA) was used to cluster species abundance data 

by similarity. Clusters were assigned numbers and a decision tree was used to predict 

which patient clinical variables explain the clustering. The labels at each split indicate the 

variables that best predict the data, the numbers at each leaf represent the mean of the 

cluster assignments for each group, and the number of samples at each split is indicated 

by n=x. At the top of the tree, all the data was split based on the number of days the 

patient spent on the ventilator. Patients with less than eight days (right side of the top 

branch) were predicted to be in cluster five (mean of cluster assignments = 4.9). Patients 

with greater than or equal to eight days (left side of the top branch) were further split by 

the percent of human DNA present in the sample. If the sample had less than 52.81% 

human DNA (left side of the branch) the sample was predicted to be in cluster two (mean 

cluster assignment = 1.789). If the same sample had more DNA than that (right side of 

the branch) it was predicted to be in cluster three (mean cluster assignment = 3.211). To 

put it another way, if a patient spent less than eight days on the ventilator, their airway 

microbiota was predicted to be in cluster five. If they spent eight or more days on the 

ventilator and had less than 52.81% human DNA in their airway sample, their microbiota 

would be in cluster two. If they spent eight or more days on the ventilator and had 

52.81% or more human DNA, their microbiota would be in cluster three. Decision trees 

are easy to interpret but their simplicity means that they lack the predictive accuracy and 

power of other classification methods. Further, because they simultaneously consider all 

the predictors, they can be biased towards variables that dominate the data.	Aggregation 

of trees can greatly improve prediction accuracy and several methods exist to do this, of 
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which RF is the most powerful. In the RF model, a number of decision trees are built 

using bootstrapping, which consists of randomly resampling the data and is a powerful 

way of estimating variance. Unlike the decision tree method, however, RF only selects a 

subset of the predictors to make each tree. This randomization process eliminates bias 

that may be present due to dominance of certain predictors among the others. It also 

decorrelates the trees, which produces less variability and more reliability in the resulting 

average of the trees. Figure 5.4 illustrates how the RF model works. The other strength of 

the RF algorithm is its ability to deal with compositional, sparse data. Decorrelation of 

Figure 5.4: Random Forests. The random forest algorithm builds many 
decision trees based on a subset of the predictors in a dataset. The resulting 
tree is an average of these decorrelated trees and has improved accuracy and 
reliability over a single decision tree. 
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the trees accommodates the spurious correlations that arise due to the nature of 

compositional data, and zeros in the data can be handled due to the method being non-

parametric [262]. The RF algorithm is an improvement over decision tree methods and is 

a powerful predictive tool that can appropriately manage microbiome data. 

Several studies have used these algorithms to predict outcomes or groupings 

based on microbiome data, such as subsistence groups in rural Africa from gut microbial 

community composition [26] and presence of pneumonia in patients based on upper 

respiratory tract microbiota [233]. However, the field is lacking validation of machine 

learning algorithms that accurately predict outcomes from microbiome data. Several 

studies have addressed this issue by comparing performance of several algorithms on 

microbiome data. Pasolli et. al. used support vector machines (SVM), random forests 

(RF), and lasso and elastic net regression algorithms to predict disease state among 2,424 

publicly available metagenomic datasets [247]. RF produced the best classification 

accuracy as evaluated by area under the curve (AUC), a metric that summarizes true 

positive and false positive rates. The study also explored whether a reduced set of 

features (e.g. bacterial species) selected by each of the algorithms could be used to 

accurately predict disease state. Though feature selection produced good AUC, the best 

results were obtained with more than 60 bacterial species, indicating the importance of 

microbiota complexity in predicting outcomes. Statnikov et. al. applied 18 machine 

learning algorithms from seven families, including the four discussed above, to 1,802 

human microbiome samples [249]. This work emphasizes the variation present in human 

microbiome datasets and the challenges they bring to classifying this data, particularly in 

the case of disease prediction. However, of the methods described here, Statnikov et. al. 
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found that SVM, RF, and ridge regression outperformed neural network classification. 

Pasolli et. al. found RF to be most accurate but used a different dataset, which will vary 

from Statnikov et. al.’s dataset, and did not include neural networks in the models they 

evaluated. Regardless of the difference in results, these studies confirm the utility of 

machine learning algorithms in predicting patient outcomes from microbiome data and 

establish RF, SVM, and ridge regression as appropriate models to use. 

 

5.1.3 Application of Supervised and Unsupervised Methods to Burn Patient Airway 

Microbiota 

We applied both unsupervised and supervised machine learning algorithms to 

metagenomic data from the airways of patients with burn and inhalation injury. Our goals 

were to find structure within the data in an unbiased manner using unsupervised methods 

and predict patient outcomes based on the microbiota with supervised methods. We used 

PCA, hierarchical clustering, and DAPC to identify clusters within the data. We used the 

DAPC cluster assignments as the response variable in the RF algorithm to determine 

which patient variables predict the clustering patterns. RF was also used to identify 

bacterial taxa that are predictive of development of PaO2/FiO2 ≤ 300. This work 

demonstrates the utility of machine learning algorithms in predicting patient outcomes 

from high-dimensional metagenomic data. 
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5.2 Methods 

5.2.1 Patient Samples and Sequencing 

 Burn patient samples were collected, processed, and sequenced as described in 

chapters 3 and 4. Briefly, DNA was extracted from samples taken within 72 hours of 

burn and inhalation injury. 16S rRNA gene amplicon sequencing was performed on the 

Illumina MiSeq using the molecule tagging (MT) method [215]. Samples were processed 

and OTU tables generated using the MT-Toolbox pipeline [217]. 

 

5.2.2 Unsupervised Clustering 

 Raw OTU count tables were normalized per patient in Explicet [263] and 

imported to R for further analysis [227]. The OTU table was called ‘abundances’ within 

R. Initial PCA was performed using the R package nsprcomp, which performs 

constrained PCA for sparse, non-negative data (NSPCA). The following code was used:  

burn.nspca <- nsprcomp(abundances, nneg=TRUE, scale.=TRUE).   

DAPC was done using the package adegenet:  

grp <- find.clusters(abundances_t, max.n.clust=40) 

dapc1 <- dapc(abundances_t, grp$grp) 

scatter(dapc1) 

Before continuing with clustering methods, the data was transformed according to the 

centered log ratio in order to address the compositional nature of the data [106]. For K- 

means clustering, the appropriate number of clusters was determined as follows:  

wss <- (nrow(abundances)-1)*sum(apply(abundances,2,var)) 

for (i in 2:15) wss[i] <- sum(kmeans(abundances, centers=i)$withinss) 
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plot(1:15, wss, type="b", xlab="Number of Clusters",ylab="Within groups sum of 
squares", main="Knee Method for Number of Clusters") 
 
Clustering was then performed according to: fit <- kmeans(abundances, 3) 
 
Hierarchical clustering was done as follows:  

hc <- hclust(dist(abundances), method="ward") 

The number of clusters for hierarchical clustering was determined after viewing the 

dendrogram, and the tree was cut as follows: rect.hclust(hc, k=3) 

A hierarchical clustering-based heatmap was drawn using Manhattan distance and Ward 

clustering:  

distance <- dist(abundances, method="manhattan") 

cluster <- hclust(distance, method="ward.D2") 

heatmap.2(abundances, Rowv=as.dendrogram(cluster), Colv=TRUE, scale="column", 
trace="none", col=redgreen, xlab="Taxa", ylab="Patient ID", margins=c(10,15)) 
 
Finally, a K-means clustering-based heatmap was drawn: 
 
distance <- dist(abundances, method=”manhattan”) 
 
fit <- kmeans(distance, 3) 
 
heatmap.2(as.matrix(abundances)[order(fit$cluster),], Rowv=NA, Colv=NA, 
scale="none", trace="none", col=redgreen, xlab="Taxa", ylab="Patient ID", 
margins=c(10,15)) 
 
 
5.2.3 Supervised Random Forest Predictions 
 
 After unsupervised clustering was done, community assignments generated by 

DAPC were used as response variables in a random forest model to determine which 

patient variables predict the clustering. The patient’s PaO2/FiO2 ratio (≤ 300 or > 300) 

was used as a response variable in a separate RF model in order to determine which taxa 
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predict PaO2/FiO2 ≤ 300. For both models the data was randomly split into a training set 

as follows: 

choo_train <- abundances_t[sample(1:nrow(abundances_t), 38, replace=FALSE),] 
 
The best model parameters were chosen based on the training data: 

tune.ALI <- tune.randomForest(ALI~., data=choo_train, mtry=c(2.8, 5.6, 11.1), 
ntree=c(250,500,1000), na.rm=TRUE) 
 
x<-summary(tune.ALI) 

The model was then run on the entire data set using the best parameters from the tuning 

procedure: 

rf.ALI <- randomForest(ALI~., data=abundances_t, importance=TRUE, 
na.action=na.omit, mtry=as.numeric(x$best.parameters[1]), 
ntree=as.numeric(x$best.parameters[2])) 
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5.3 Results 

 

Figure 5.5: Sparse, Non-negative PCA Colored by Patient ALI Status. PCA analysis 
does not show clear clustering based on development of PaO2/FiO2 ≤ 300 (ALI). 
 

 

5.3.1 Clustering Trends 

 The first three components of the sparse, non-negative PCA are shown in Figure 

5.5. Each point represents a patient sample and the closer each point is in the three-

dimensional plot, the more similar they are. The points were colored by the patient’s  

PaO2/FiO2 ratio (≤ 300 = ALI, > 300 = None) in order to determine whether sample 

similarity was driven by development of PaO2/FiO2 ≤ 300 within 72 hours of injury. 

Figure 5.5 does not demonstrate clear clustering by PaO2/FiO2 ≤ 300. 
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 To determine K, the number of clusters for K-means clustering, we used what is 

referred to as the elbow method. Here, variance within the clusters is graphed against the  

 

 

 

Figure 5.6: Cluster Assignments as Determined by Hierarchical Clustering. The 
NSPCA plot was colored by clusters identified through hierarchical clustering. 1, 2, and 3 
refer to the clusters each sample was assigned to. 
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Figure 5.7: Cluster Assignments as Determined by K-means Clustering. The NSPCA 
plot was colored by clusters identified through K-means clustering. 1, 2, and 3 refer to the 
clusters each sample was assigned to. 
 

number of clusters. The first few clusters will explain a large percentage of the variance, 

and at some point this levels off, giving an “L” or elbow-shaped graph. The bend in this 

graph is the optimal number of clusters that explains the variance between them. Using 

this method, we determined that three clusters were appropriate for both K-means and 

hierarchical clustering based on similarity of the samples (Figures 5.6 and 5.7). Though 

cluster assignment is similar between the two methods, K-means is more successful at 

assigning similar samples to the same cluster than hierarchical clustering is, indicating  

that K-means is a more appropriate method for this data set. The dendrogram produced 

by hierarchical clustering is shown in Figure 5.8 with the three clusters shown in red 

boxes. Each number corresponds to a patient sample. 

Hierarchical clustering of both the patient samples and taxa abundance was used 

to produce the heatmap in Figure 5.9. The data has been transformed using the centered 
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log ratio, which corrects for the compositional nature of the data and any spurious 

correlations. Taxa abundances are represented by their Z score, or how many standard 

deviations they are above or below the mean. Taxa that are significantly more abundant 

than the mean are brighter green, while those that are significantly less than the mean are 

brighter red. Three clusters can be identified based on differences in abundance within 

Figure 5.9 and from the dendrogram on the vertical axis. The top-most cluster consists of 

patients whose microbiota are mostly high abundance, and a few patients with low-

abundance microbota. Patients grouped into the middle cluster have a higher number of 

taxa represented at average abundance, while the last cluster at the bottom consists of 

patients with low-abundance microbiota. The heatmap in Figure 5.10 displays the same 

data as Figure 5.9 but here the patients are grouped according to their K-means clustering 

assignments. Though less distinct than the clusters in Figure 5.9, Figure 5.10 displays a 

similar pattern, with the low abundance group of patients clustered at the top of the 

heatmap, high abundance in the middle, and average abundance at the bottom. The 

average abundance group is not as clear as in Figure 5.9 and includes a mixture of some 

patients with high and low abundance taxa. 
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Figure 5.8: 
Hierarchical 
Clustering 
Dendrogram. 
Three clusters 
were 
identified by 
hierarchical 
clustering.  
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Figure 5.9: Hierarchical Clustering-Based Heatmap of Abundance Data. Data points 
which are brighter green represent taxa that are significantly more abundant than the 
mean while points which are brighter red are taxa which are significantly less abundant 
than the mean. 
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Figure 5.10: K-Means Clustering-Based Heatmap of Abundance Data. Data points 
which are brighter green represent taxa that are significantly more abundant than the 
mean while points which are brighter red are taxa which are significantly less abundant 
than the mean. 
 

 

 DAPC clustering, which incorporates K-means clustering with PCA and DA, is 

shown in Figure 5.11. In agreement with K-means and hierarchical clustering, DAPC 

identifies three clusters among the samples. Of the all the unsupervised clustering 

methods used here, DAPC provides the best grouping of the samples.    
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5.3.2 Random Forest Analysis 

 Due to the advantages of the DAPC method, cluster assignments generated by it 

were used as response variables in a RF model to predict which patient variables explain 

the clustering. Figure 5.12 shows the model output, which consists of ranking of the 

variables by the mean decrease they produce in the Gini index when removed from the 

model. Body mass index (BMI) was identified as most important in explaining sample 

clustering. Although there is not a set cut-off point for variable selection, it is typically 

done at the first largest change in variable importance. In Figure 5.12, the cut-off could 

Figure 5.11: DAPC Identifies Three Clusters. The DAPC method found three 
distinct clusters among the data, in agreement with hierarchical and K-means 
clustering. 1, 2, and 3 refer to the clusters each sample was assigned to. 
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be after BMI, leaving a single variable for interpretation of the model, after Days on 

Ventilator, or after Age. While a single variable can make model interpretation too 

simplistic, including too many can make it overly complicated. Table 5.1 displays the 

average values for each cluster for the variables using Age as the cut-off point. Although 

BMI was ranked as the most important variable in determining sample clustering, the 

average BMI between the three clusters is similar. Cluster 1 contains the lowest average 

BMI while clusters 2 and 3 have very similar BMI values. Similarity among average BMI 

values supports our use of additional variables in explaining the model and expanding its 

complexity. The next most important variable in the model was Days on Ventilator. 

Patients in cluster 1 spent an average of 37.8 days on the ventilator, while those in cluster 

2 spent 35.7 and those in cluster 3 spent 30.5. Cluster 1 also has the youngest patients on 

average, contained the lowest quantity of IL-12p70, the middle amount of IL-8, had the 

lowest Baux score, and the highest number of molecule tags (MTs). The average age of 

patients in cluster 2 was between clusters 1 and 3 but had the highest quantity of IL-

12p70, lowest of IL-8 and MTs, and Baux scores between the other two clusters. Finally, 

cluster 3 had levels of IL-12p70 and MTs between clusters 1 and 2, the highest amount of 

IL-8, and the highest Baux score. 

 A RF model was also applied to taxa abundance in order to predict which species 

are associated with development of PaO2/FiO2 ≤ 300. The model clearly identifies the 

Streptococcaceae family as most predictive of PaO2/FiO2 ≤ 300 (Figure 5.13). 
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Figure 5.12: RF Analysis Identifies BMI as 
Most Predictive of Sample Clustering by 
DAPC.  BMI was ranked as most predictive by 
node purity as quantified by the Gini index. 
 

Cluster BMI Days on 
Ventilator 

IL12p70 
(pg/ml) 

MT 
Counts 

Baux 
Score 

IL8 
(pg/ml) 

Age Taxa 
Abundance 

1 25.5 37.8 14.8 72,289.7 53.4 21,866.9 26.1 Low 
2 27.7 35.7 23.3 14,775.2 60.0 17,438.9 27.6 Mean + 

high 
3 27.3 30.5 20.4 64,912.7 66.9 43,559.4 48.8 High 
Table 5.1: Average Value per Cluster Assignment 
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Figure 5.13: RF Analysis Identifies the 
Streptococcaceae Family as Most 
Predictive of ALI. Streptococcaceae is 
ranked as most predictive by the Gini index. 
 

5.4 Discussion 

 High dimensional metagenomic data present statistical challenges that cannot be 

addressed with classical methods, requiring the development of sophisticated machine 

learning methods that can adapt to the needs of the study. Statistical learning methods 

like clustering and RF provide tools to handle large, complex data sets and allow 

prediction of output from input of this data [257]. Such methods allow unbiased 

examination of patterns among the data as well as accurate prediction of patient outcomes 

based on microbiota composition. 
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 Analysis of burn patient airway microbiota with several different clustering 

methods revealed grouping based on similarity in species abundance among the patients. 

Although initial PCA showed loose clusters among the samples, they were not driven by 

development of PaO2/FiO2 ≤ 300 (Figure 5.5). This implies that similarity among the 

samples is due to a more complex combination of patient variables, which is unsurprising 

given the heterogeneous nature of both the injury and the patient group. 

 We next applied hierarchical and K-means clustering without patient variable 

labels in order to discern the appropriateness of each method to forming unbiased 

clusters. For burn patient airway microbiota data, the appropriate number of clusters was 

determined to be three. For hierarchical clustering, pre-determination of the clusters is not 

necessary due to the “bottom-up” clustering technique used in the algorithm. Hierarchical 

clustering produced the dendrogram in Figure 5.8. “Cutting” the dendogram at different 

levels gives different numbers of clusters depending on the branches bisected. Because 

the elbow method can be applied to any clustering method to quantitatively assess the 

optimal number of clusters, we cut the dendrogram to produce three clusters. The cluster 

assignments from K-means and hierarchical clustering were then used to label points on 

the PCA graph. In Figure 5.6, hierarchical clustering misclassifies some of the points 

with other clusters. For example, a blue point that is clearly more similar to cluster two 

was assigned to cluster three, while several points that are closer to cluster three were 

assigned to clusters one and two. Assignment by K-means clustering in Figure 5.7 

misclassifies only a single green point, which lies within red cluster one. This visual 

examination reveals that the K-means clustering algorithm is more successful in 
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determining similarity among the data points and is an appropriate method to use in 

analysis of the data. 

 Hierarchical clustering is the default method in the creation of heatmaps, which 

are commonly used to display gene expression changes. The graph clusters the patient 

samples in the same manner as Figure 5.8 and produces a dendrogram for taxa abundance 

as well (Figure 5.9). A second heatmap was generated using K-means clustering rather 

than hierarchical due to its appropriateness for this data set (Figure 5.10). In both figures, 

brighter green data points indicate increased abundance as compared to the mean, while 

brighter red points indicate decreased abundance. Unlike the PCA plots in Figures 5.6 

and 5.7, the superiority of K-means over hierarchical clustering is less clear from the 

heatmaps. Although a high, average, and low abundance group can be found in both 

Figures 5.9 and 5.10, mixing of some high and low abundance taxa within each group 

make it difficult to determine which method more effectively clusters the data. From the 

PCA plot in Figure 5.7, K-means appears to be more appropriate than hierarchical 

clustering (Figure 5.6). However, the hierarchical clustering heatmap in Figure 5.9 

produces more distinct clusters by taxa abundance than does the K-means heatmap in 

Figure 5.10. Based on these results, it is not clear which clustering method is more 

appropriate in determining similarity among the data points. 

 To address this issue, we re-clustered the data using the DAPC method. DAPC 

was designed to overcome the limitations of PCA and DA by combining them to produce 

a method in which dimensionality can be reduced and samples clustered without a loss of 

information [259]. Although both K-means and hierarchical clustering account for 

between- and within-sample variation, they do not reduce the dimensions of the data as 
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PCA does. In large metagenomic data sets, dimension reduction can be critical to 

interpretation of the data. The DAPC method incorporates both K-means clustering and 

PCA for dimensionality reduction followed by application of DA in order to determine 

which features are most discriminatory. DAPC’s incorporation of multiple dimensionality 

reduction and clustering algorithms makes it more sophisticated than K-means or 

hierarchical clustering alone, giving it an advantage in dealing appropriately with our 

complex metagenomic data. DAPC sorted the burn patient samples into the three clusters 

shown in Figure 5.11, in agreement with the number of clusters as determined by the 

elbow method. However, unlike Figures 5.6 and 5.7, the clusters in Figure 5.11 have no 

overlap, confirming that DAPC is a better method for unsupervised clustering with this 

data set.   

 The DAPC clusters are grouped by maximizing between-group and minimizing 

within-group variation. This means that the microbiota of the burn patient samples in 

each of the three clusters is highly similar to others in the same group but maximally 

different from those assigned to the other groups. This implies an underlying difference 

in the microbiota that maximally divides them by their differences in three ways. We 

hypothesized that these groupings may be influenced by specific patient variables and 

applied a RF model to determine which these may be. RF is a supervised tree-based 

method used for regression and classification of data [257]. We chose RF over other 

machine learning methods due to its ability to deal with compositional data, 

computational efficiency, ability to extract relevant features from the model, and its 

proven appropriateness for metagenomic data sets [247,249,262,264]. Figure 5.12 

displays the decrease in the Gini index, which is a measure of node purity and ranks 
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variable importance in classification by the model. The most important variable that has 

the largest decrease when removed is at the top in Figure 5.12. The RF model ranks BMI 

as the most important variable, which implies that BMI is the primary driver behind the 

three clusters generated by unsupervised methods. The remaining variables in the model 

are ranked by decreasing level of importance. Obesity, defined by the National Heart, 

Lung, and Blood Institute as a BMI over 30, and overweight, defined as a BMI between 

25 and 29.9, have been linked to low-grade inflammation as well as a reduction in lung 

function in healthy individuals [49,265]. None of the average BMIs for each of the 

DAPC-defined clusters is over 30, but each falls within the overweight category. Based 

on obesity research, we might expect low-grade inflammation in each of these patient 

clusters as well as loss of lung function. Reduction in lung function can be indirectly 

inferred from the number of days spent on a respiratory ventilator, which is associated 

with increased severity of injury and susceptibility to infection [266]. The number of days 

spent on the ventilator was ranked as the second most important variable in the RF 

model, but was highest on average for cluster 1, which had the lowest BMI, and lowest 

for cluster 3, which had an average BMI between clusters 1 and 2. If an increase in BMI 

was directly associated with a decrease in lung function, we would expect patients with 

higher BMIs to spend longer on a ventilator. According to the averages for the clusters 

and the correlation between BMI and days on the ventilator, this is not true of this data 

set. Increasing BMI and more days on the ventilator are only weakly correlated (done in 

R as cor(bmi, vent, method= “spearman”, use= “complete”); correlation is 0.158). This 

study has a relatively low number of patients, which may be why the correlation is low. 

Expansion of the number of patients in future studies can be done to confirm whether or 
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not there is a correlation between BMI and days spent on the ventilator. We would also 

expect an increase in inflammation among patients with a higher BMI. This is difficult to 

interpret within burn patients since the burn injury itself induces an acute inflammatory 

response. However, the cytokines IL-12p70 and IL-8 were both ranked as important 

variables among the clusters and are both pro-inflammatory mediators. IL-8 expression is 

induced by a wide range of stimuli, from other cytokines to bacterial and viral products, 

and recruits neutrophils to the airways [267,268]. IL-12p70 is induced largely by viral 

and bacterial activation of TLR-4 and TLR-8 on dendritic cells and plays important roles 

in differentiation of Th1 cells [269,270]. Similar to BMI and the number of days on the 

ventilator, correlations between the levels of these two cytokines and BMI are small (-

0.108 for IL-12p70 and 0.063 for IL-8). Again, inclusion of a larger number of patients in 

the study will confirm whether these correlations exist. The remaining variables ranked 

as important are Baux score, MT count, and age. The Baux score is the sum of the 

patient’s age and size of burn injury and increases in this score, along with increases in 

age, have been associated with increased mortality [175]. Based on the average Baux 

score per cluster, patients in cluster 3 are predicted to have the worst outcome, followed 

by those in cluster 2 and then 1. This is the opposite of what might be predicted based on 

the days the patient spent on the ventilator. The MT count can be viewed as a measure of 

bacterial 16S rRNA abundance, as these are the sequences used to generate the OTU 

table. Based on this, cluster 1 has the highest overall abundance of bacteria, followed by 

cluster 3 and then 2. If we assume the healthy airways maintain very low amounts to no 

bacteria, we would assume that patients with higher MT counts would have poor 

outcomes and be at increased risk of infection and pneumonia. However, this does not fit 
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the pattern of the Baux score or days spent on the ventilator. Cluster 1, with the lowest 

average BMI, has the highest MT count, and cluster 2, with the highest average BMI, has 

the lowest MT count. If obesity is associated with an increased risk of lung function 

reduction and inflammation, generally indicating poorer health, we would hypothesize 

that patients with higher BMIs would have more bacteria in their airways. However, this 

is not the case with our data set. The patients within this study are heterogeneous, with a 

variety of co-morbidities, physical characteristics, and degree of burn and inhalation 

injury. This makes the data challenging to interpret and necessitates inclusion of a larger 

number of patients. Despite this limitation, the RF model identifies a subset of patient 

characteristics that may be important in influencing the airway microbiota after injury, 

providing future studies with specific patient variables monitor.  

Examination of the clusters in Figure 5.10 reveals high abundance of the 

Streptococcaceae family and low abundance of Enterobacteriaceae in cluster 1, high 

abundance of Streptococcaceae and a mixture of high and low Enterobacteriaceae in 

cluster 2, and half the taxa in cluster 3 are present at average abundance with low 

abundance of Streptococcaceae and high abundance of Enterobacteriaceae. When taken 

in context with the patient variable data, this information paints a specific picture of both 

the airway microbiota and the patient characteristics that define these clusters. This 

information could serve as the basis for a framework to predict patient outcomes based on 

the clinical characteristics ranked as important as well as the composition of the airway 

microbiota. Further work is necessary to determine whether this classification holds true 

for a larger number of patients and if they can be linked to specific patient outcomes. 
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 The RF model in Figure 5.13 specifically addresses the question of which taxa are 

predictive of PaO2/FiO2 ≤ 300. Here, instead of patient variables, taxa abundance was 

input into the RF model with patient PaO2/FiO2 ratio as the response (≤ 300 or > 300). 

The Gini index quite clearly indicates that Streptococcaceae is most predictive, given its 

distance from the next most important variable. Although this result implies that 

Streptococcaceae is important in predicting PaO2/FiO2 ≤ 300, it does not indicate whether 

high or low abundance of the family is most predictive. In Figure 5.10, clusters 1 and 2 

contain high abundance of Streptococcaceae, while cluster 3 contains low abundance. In 

cluster 1, 58% of patients have PaO2/FiO2 ≤ 300, and 60% of those in cluster 3 have 

PaO2/FiO2 ≤ 300. In cluster 2, 38% of patients have PaO2/FiO2 ≤ 300. From this data, it is 

not clear whether high or low abundance of Streptococcaceae predicts PaO2/FiO2 ≤ 300. 

A larger sample size is needed to confirm these results and clarify the importance of 

Streptococcaceae in predicting PaO2/FiO2 ≤ 300. 

 This study demonstrates the application of unsupervised clustering and supervised 

machine learning methods to high dimensional metagenomic data from a patient 

population. We used clustering methods to ascertain patterns in the data in an unbiased 

method and applied RF models to understand the clinical and biological relevance of the 

clustering. Although the predictive power of the RF algorithm is limited in this study due 

to small sample size, it highlights the ability of machine learning to make sense of high 

dimensional metagenomic data and make clinically relevant predictions. Machine 

learning algorithms can aid in determining the most biologically relevant dimensions of a 

study, producing specific questions that can be validated experimentally in the lab. We 

have shown that airway microbiota from burn patients taken within 72 hours of inhalation 
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injury produce three distinct clusters. These clusters are most significantly associated 

with patient BMI and days spent on the ventilator, as well as levels of IL-12p70, IL-8, 

Baux score, MT count, and age to a lesser degree. Finally, we show through a RF model 

that the Streptococcaceae family is most predictive of patient development of PaO2/FiO2 

≤ 300 early after injury. This could serve as the basis of a larger study to establish a 

subset of patient clinical variables that predict airway microbiota composition and link 

changes in the bacteria to specific patient outcomes. 
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CHAPTER 6: PREDICTION OF FUNCTIONAL CHANGES AMONG BACTERIAL 

NETWORKS IN PATIENTS WITH PAO2/FIO2 ≤ 300 

 

6.1 Introduction 

 High-throughput NGS methods allow characterization of a range of bacteria 

present in various body and environmental locations as well as observation of how 

community membership can be altered by a disease or environmental event. Application 

of high-dimensional data analysis methods, such as machine learning, can sift through the 

large amount of data produced to identify taxa that may play important roles in a disease 

process or adaption to a change in environment. While study of individual taxa may lead 

to discovery of their specific functions, they ultimately exist within a complex 

community of other bacteria with which they may be interacting [271]. Within ecology, 

the relationships between organisms in a community can be defined on a spectrum of 

interactions. These range from mutualism, in which all organisms involved benefit, to 

commensalism, in which none benefit, to parasitism, where some benefit at the expense 

of the others [272]. Bacteria participate in each of these interactions, exchanging 

intermediate compounds with other species in order to make necessary amino acids, 

eliminating functions they can hijack from the host organism or other bacteria, or 

exchanging genetic information by lateral gene transfer that may or may not confer a 

benefit to either organism [271]. To understand whether these interactions are taking 

place in bacterial communities identified by metagenomic sequencing, methods have 
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been developed to detect co-occurrence through correlation networks. These methods 

largely depend on Spearman’s or Pearson’s correlations, with the strength of the 

correlation indicating the degree of association of the microbes and negative correlations 

indicating competition among them [248]. However, these methods are not well suited to 

metagenomic data, as they do not take the compositional nature of the data nor its 

sparseness into account [124]. Further, co-occurrence analysis only provides an 

observation of the frequency with which specific bacteria appear together in a community 

and does not directly indicate whether they are interacting on a functional level. A 

systems-based approach, incorporating WGS or 16S rRNA gene amplicon sequencing 

with other ‘omics’ techniques, such as metabolomics and transcriptomics, provides a 

more distinct picture of how the bacteria are interacting with each other, the host, and 

their environment [273]. Though the cost of conducting these studies continues to fall and 

computational methods for analysis continue to improve, large-scale meta-omics are not 

always feasible to employ. 

 To address these issues, we applied the community clustering algorithm SparCC 

[128] to abundance data from airway communities in patients with burn and inhalation 

injury. We then used a computational approach to predict bacterial functions from 16S 

rRNA gene sequencing data in order to understand potential functional changes within 

these communities based on whether or not the patient had hypoxia as indicated by 

PaO2/FiO2 ≤ 300. SparCC, which stands for Sparse Correlations for Compositional Data, 

was developed to handle the sparseness present in all microbiome data as well as its 

compositional nature. SparCC addresses the compositionality of the data using a log 

transformation and then estimates the linear Pearson correlations [128]. When compared 



	 154	

to the Pearson’s and Spearman’s methods, SparCC produces fewer spurious and more 

accurate correlations. 

 To predict community functions we used phylogenetic investigation of 

communities by reconstruction of unobserved states (PICRUSt) [170]. Langille et. al. 

developed this computational tool to address the lack of functional information 16S 

rRNA gene sequencing provides. PICRUSt employs an algorithm that reconstructs gene 

families present based on available reference genomes that correspond to the taxa 

predicted by the 16S rRNA gene. Testing of this method against WGS data revealed its 

ability to accurately predict bacterial functions. This method provides a reliable technique 

to predict functions from 16S rRNA gene amplicon data, which can then be confirmed 

with further experiments. 

 We combined SparCC and PICRUSt in a community-wide, systems-based 

approach to functional changes in the airway microbiota in patients with PaO2/FiO2 ≤ 300 

after burn and inhalation injury. We used SparCC to predict bacterial interactions among 

patients with and without hypoxia based on taxa abundance and presence, applied 

PICRUSt to predict functional changes among these communities, and then employed the 

machine learning algorithm random forests (RF) to identify the functions most important 

to the community clustering. We find that, although there is not a clear difference based 

on abundance alone, each community has a distinct pattern of predicted functions. 

Further, RF analysis reveals that predicted functions most important in determining the 

community clustering in patients with and without hypoxia are distinct. Our work 

demonstrates that a community-wide approach can identify predicted functional changes 

among the communities as a whole and that application of machine learning algorithms 
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can be used to narrow this information down to identify important functions that can be 

pursued further in an experimental setting. Our approach focuses on overall changes 

among the community, rather than a few enriched individuals, providing a more complete 

picture of how these bacteria are interacting and influencing each other as well as host 

outcomes. Understanding community dynamics is crucial to designing effective 

therapeutic strategies to manipulate the microbiota and improve patient and 

environmental outcomes. 

 

6.2 Methods 

6.2.1 Patient Samples  

  Bronchial washings were collected from burn victims hospitalized at the North 

Carolina Jaycee Burn Center at the University of North Carolina Hospital. Within 24 

hours of hospitalization, patients with suspected inhalation injury (II) underwent 

therapeutic bronchoscopy in order to flush soot and other debris from the airways. After 

clinical use of the sample, what remained was stored frozen in a repository. The 

repository was approved by the UNC Institutional Review Board (IRB) under study #10-

0959. Consent for retaining samples was obtained from the patient or their legally 

authorized representative. After bronchoscopy, samples were placed on ice and processed 

within 72 hours. The washing was spun down and the pelleted cell fraction was stored 

separately from the supernatant at -80°C. Special permission from the IRB was obtained 

to use the pelleted portion of the sample to extract bacterial DNA (IRB #12-2475). 

 Samples were collected over a three-year period and de-identified before storage 

in the repository. Patient clinical and demographic data was also collected and stored in 
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the electronic Red Cap database. Information such as patient gender, race, comorbidities, 

clinical bacterial cultures, and measurement of inflammatory cytokines was collected and 

stored.  

 

6.2.2 DNA Extraction and Sequencing 

 Burn patient samples were collected, processed, and sequenced as described in 

chapters 3 and 4. Briefly, DNA was extracted from samples taken with five days of burn 

and inhalation injury. 16S rRNA gene amplicon sequencing was performed on the 

Illumina MiSeq using the molecule tagging (MT) method [215]. Samples were processed 

and OTU tables generated using the MT-Toolbox pipeline [217].  

 

6.2.3 Application of SparCC to Burn Patient Microbiome Data 

 Raw counts from the OTU table were normalized and log-transformed according 

to the SparCC method [128]. Two networks were made: one for OTU abundances from 

patients with PaO2/FiO2 ≤ 300 and one for those from patients with PaO2/FiO2 > 300. 

SparCC returns positive and negative pairwise correlations for each of the 372 OTUs 

within each network (PaO2/FiO2 ≤ 300 or PaO2/FiO2 > 300). We considered only positive 

correlations, limiting our analysis to mutually beneficial or neutral microbial interactions. 

The sparseness of the OTU table produces many edges, which we reduced by introducing 

a threshold that produces networks with one large component, and results in stability in 

the cluster assignments as well as the number of clusters. For a range of thresholds, we 

compared similarities in community (Z) assignments for adjacent thresholds (t-1 and t), 

(Z_t-1, Z_t). To compare them, we computed the normalized mutual information (NMI). 
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So, NMI(Z_t-1, Z_t). We would like to choose a threshold where the NMI between 

adjacent community assignments is close to 1 (meaning it is not changing as we vary the 

threshold). The NMI for the PaO2/FiO2 ≤ 300 network is shown in Figure 6.1 and that for 

the PaO2/FiO2 > 300 network in Figure 6.2. 

 

Figure 6.1. NMI 
Between Adjacent 
Threshold Points in the 
PaO2/FiO2 ≤ 300 
Network. The NMI was 
plotted for each threshold 
value. It was close to 1 
between thresholds of 
0.01 and 0.14.  
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Figure 6.2. NMI Between 
Adjacent Threshold Points 
in the PaO2/FiO2 > 300 
Network. The NMI was 
plotted for each threshold 
value. The NMI is less stable 
than for the PaO2/FiO2 ≤ 300 
network but is close to 1 
between thresholds of 0.01 
and 0.10. 

 

In order to ensure stability of the number of clusters found by SparCC, we also 

plotted the number of communities as a function of threshold. These are shown in Figures 

6.3 and 6.4. For both the PaO2/FiO2 ≤ 300 and PaO2/FiO2 > 300 networks, a threshold of 

0.14 produced stable community assignment with an NMI close to 1. Therefore, we used 

a threshold of 0.14 for final community assignment. Abundance heatmaps were made 

using R for each network. 
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Figure 6.3: Number of 
Communities vs. Threshold 
for the PaO2/FiO2 ≤ 300 
Network. The number of 
communities was plotted per 
threshold value. A threshold of 
0.14 produces a stable number 
of communities and the NMI is 
near 1 (Figure 6.1). Therefore, 
we used a threshold of 0.14 for 
the PaO2/FiO2 ≤ 300 network.  

 

 

 

Figure 6.4: Number of 
Communities vs. Threshold 
for the PaO2/FiO2 > 300 
Network. The number of 
communities was plotted per 
threshold value. A threshold of 
0.14 produces a stable number 
of communities here, as for the 
PaO2/FiO2 ≤ 300 network. At 
this threshold the NMI for the 
PaO2/FiO2 > 300 network is 
also near 1 (Figure 6.2). 
Therefore, we used a threshold 
of 0.14 for both the PaO2/FiO2 
≤ 300 and PaO2/FiO2 > 300 
networks. 
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6.2.4 Predicted Functional Gene Content of the Airway Microbiome 

 We implemented PICRUSt as detailed by Langille et. al. [170]. Briefly, raw OTU 

counts were normalized and OTU numbers matched to those found within the 

Greengenes database [219]. OTUs with matches were kept while those that did not match 

were removed from the table. Matching OTUs were corrected for 16S rRNA copy 

number differences and a predicted gene table was produced by multiplying the 

normalized OTU table by the gene content predictions. This table was imported into R 

[227], where predicted functions for each OTU were matched to their community 

assignment based on the SparCC networks. Heatmaps were produced using R to identify 

predicted differences in functions for each of the four communities identified by SparCC 

within patients with and without PaO2/FiO2 ≤ 300. Manhattan distance and Ward 

clustering were used to create the heatmap dendrograms. 

 

6.2.5 Use of Machine Learning to Predict Functions Associated with Networks 

 A random forest algorithm was used to identify which predicted functions were 

most important in the SparCC community assignments. The package used was modified 

by Liaw and Wiener for implementation in R [274]. Before running the model, variable 

selection of the predicted functions was necessary as they outnumbered the patient 

samples. There were 328 functions with variability greater than 0.05 for communities in 

patients with and without PaO2/FiO2 ≤ 300. These were chosen for use in the RF model. 

The model was trained on a random subset of half the data and tested on the entire data 

set. This was done separately for communities in patients with and without PaO2/FiO2 ≤ 

300. The code was written as follows: 
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Training set: 

set.seed(10) 
choo_train.3 <- ALI.rf[sample(1:nrow(ALI.rf), nrow(ALI.rf)*0.5, replace=FALSE),] 
tune <- tune.randomForest(ALI.communities~., data=choo_train.3, mtry=c(2.8, 5.6, 
11.1), ntree=c(250,500), na.rm=TRUE) 
x.3<-summary(tune) 
 

Testing set: 

rf.ALI.funct <- randomForest(ALI.communities~., data=ALI.rf, importance=TRUE, 
na.action=na.omit, mtry=as.numeric(x.3$best.parameters[1]), 
ntree=as.numeric(x.3$best.parameters[2])) 
  

6.3 Results 

6.3.1 OTU Networks Among Patients 

 Before applying the SparCC method to our data, we needed to determine an 

appropriate threshold. All metagenomic data tends towards sparsity, as a large number of 

OTUs may be identified but they may have many zero counts per sample [107]. SparCC 

creates additional edges in data sets with increasing sparseness, resulting in a dense 

community network that is difficult to interpret. To reduce these edges, we chose a 

threshold at which the NMI was close to one, indicating stability. NMI is a measure of 

dependence between two variables, or how much information about one variable can be 

obtained through its dependence on the other [107,261]. We plotted the NMI against a 

range of thresholds for networks among patients with and without PaO2/FiO2 ≤ 300 

(Figures 6.1 and 6.2). We also wanted to choose a threshold that produced stability in the 

number of communities, so we plotted this against each threshold as well (Figures 6.3 

and 6.4). Setting a threshold of 0.14 for communities within patients with and without 

PaO2/FiO2 ≤ 300 resulted in four community clusters for each network. PaO2/FiO2 ≤ 300 
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clusters are shown in Figure 6.5 and PaO2/FiO2 > 300 clusters in Figure 6.6. Each node in 

both networks indicate individual OTUs while the length of the edge between them 

indicates the strength of the positive correlation, which could be interpreted as a mutually 

beneficial interaction. The nodes in Figure 6.5 are colored according to the community 

cluster they were assigned to. We maintained these colors in Figure 6.6 in order to show 

the change in OTU correlations in patients without hypoxia. The networks have 

dissimilar overall shapes, indicating differences in positively correlated relationships 

among OTUs in patients with and without PaO2/FiO2 ≤ 300. 

 

 

Figure 6.5: PaO2/FiO2 ≤ 
300 Community Clusters 
Identified by SparCC. A 
threshold of 0.14 identifies 
four community clusters 
among microbiota of 
patients with PaO2/FiO2 ≤ 
300 (hypoxia). 

  

 

ALI graph
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Figure 6.6: PaO2/FiO2 > 
300 Community Clusters 
Identified by SparCC. A 
threshold of 0.14 identifies 
four community clusters 
among microbiota of patients 
with PaO2/FiO2 > 300 (no 
hypoxia). 

 

 Figures 6.7 and 6.8 show abundance of the 372 OTUs per patient. The OTUs are 

ordered based on their SparCC community assignment. Figure 6.7 shows no clear 

patterns in OTU abundance by community in patients with PaO2/FiO2 ≤ 300. Figure 6.8 

indicates that community A in patients with PaO2/FiO2 > 300 contains OTUs with mostly 

average abundance, but there is no clear pattern among the other communities. 

Table 6.1 is a contingency table showing the number of OTUs that overlap 

between the community networks. This indicates OTUs that are shared between the 

communities within the two networks. PaO2/FiO2 ≤ 300 community 1 has the most 

overlap with PaO2/FiO2 > 300 community C, but the least of all with PaO2/FiO2 > 300 

communities A and B. PaO2/FiO2 ≤ 300 2 has high overlap with PaO2/FiO2 > 300 A and 

D and less with PaO2/FiO2 > 300 B and C. PaO2/FiO2 ≤ 300 3 has the greatest total 

overlap of all the communities, sharing the highest number of OTUs with PaO2/FiO2 > 

No ALI graph
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300 A, followed by B and C. It has low overlap with PaO2/FiO2 > 300 D. Finally, 

PaO2/FiO2 ≤ 300 4 and PaO2/FiO2 > 300 A have the highest number of OTUs in 

common. PaO2/FiO2 ≤ 300 4 has lower overlap with PaO2/FiO2 > 300 communities B 

through D. 

 P/F > 300 A P/F > 300 B P/F > 300 C P/F > 300 D 

P/F ≤ 300 1 1 1 27 2 

P/F ≤ 300 2 50 5 9 22 

P/F ≤ 300 3 66 46 37 5 

P/F ≤ 300 4 77 5 15 4 

Table 6.1: OTU Overlap within PaO2/FiO2 ≤ 300 (P/F ≤ 300) and PaO2/FiO2 > 300 (P/F 
> 300) Communities. 
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Figure 6.7: PaO2/FiO2 ≤ 300 Communities Abundance Heatmap. A heatmap of OTU 
abundance per community was created for the PaO2/FiO2 ≤ 300 networks. OTUs are 
listed on the vertical axis and patient numbers across the horizontal axis. The colored bar 
on the left side of the graph indicates the community SparCC assigned each OTU to. 
Abundances are displayed as standard deviation from the mean, with brighter green 
indicating higher abundance than the mean and brighter red indicating lower abundance 
than the mean. n = 22 patients. 
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Figure 6.8: PaO2/FiO2 > 300 Communities Abundance Heatmap. A heatmap of OTU 
abundance per community was created for the PaO2/FiO2 > 300 networks. OTUs are 
listed on the vertical axis and patient numbers across the horizontal axis. The colored bar 
on the left side of the graph indicates the community SparCC assigned each OTU to. 
Abundances are displayed as standard deviation from the mean, with brighter green 
indicating higher abundance than the mean and brighter red indicating lower abundance 
than the mean. n = 19 patients. 
 

6.3.2 Highly Represented Predicted Gene Functions 

 Heatmaps were created to visualize changes in predicted functions for each 

community. Figures 6.9 – 6.12 represent changes in predicted functions of the 

communities in the PaO2/FiO2 ≤ 300 network. Hierarchical clustering was used to group 

the OTUs (on the vertical axis) and the predicted functions (on the horizontal axis). 

While the dendrograms for the OTUs demonstrate different clustering per community 

with distinguishable clusters, clustering by predicted function is not as clear and is similar 

among all communities. Overall, patterns of over- and under-abundant predicted 
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functions are different for each community. PaO2/FiO2 ≤ 300 community 1 appears to 

contain more predicted functions with lower than average abundance (Figure 6.9). This 

community also contains a larger group of predicted functions with higher than average 

abundance than the other PaO2/FiO2 ≤ 300 communities. PaO2/FiO2 ≤ 300 communities 2 

through 4 contain groups of functions with both higher and lower than average 

abundance but not to the degree that PaO2/FiO2 ≤ 300 community 1 does. This is also the 

community with a single OTU in common with PaO2/FiO2 > 300 communities A and B 

(Figures 6.13 and 6.14), two with PaO2/FiO2 > 300 D (Figure 6.16), but 27 with 

PaO2/FiO2 > 300 C (Figure 6.15). Comparison of the heatmaps of these predicted 

functions show distinct patterns of abundance despite the similarities or differences in 

OTUs. Figures 6.13 – 6.16 represent changes in predicted functions of the communities 

in the PaO2/FiO2 > 300 network. As with the PaO2/FiO2 ≤ 300 networks, the PaO2/FiO2 > 

300 predicted functions were ordered by hierarchical clustering in Figures 6.13 – 6.16. 

Clustering of the predicted functions across the horizontal axis is similar among the 

PaO2/FiO2 > 300 communities but distinct clusters are difficult to distinguish. Clustering 

of the OTUs across the vertical axis reveals different patterns of clustering per 

community with clearer groupings than among the predicted functions. Similar to the 

PaO2/FiO2 ≤ 300 communities, the patterns of predicted function abundance are different 

per community. PaO2/FiO2 > 300 community A contains predicted functions with mostly 

average abundance, while communities B and C have some groups of both over- and 

under-abundance predicted functions. PaO2/FiO2 > 300 community D has an interesting 

pattern of a few functions with higher than average predicted abundance and a few others 

with lower than average predicted abundance but the majority with average predicted 
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abundance. All of the communities in the PaO2/FiO2 ≤ 300 and PaO2/FiO2 > 300 

networks display distinct patterns of predicted function abundance. 

 

Figure 6.9: Community 1 Predicted Functions. A heatmap was made to show changes 
in predicted functions among OTUs assigned to community 1 in the PaO2/FiO2 ≤ 300 
network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean.  
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Figure 6.10: Community 2 Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community 2 in the PaO2/FiO2 ≤ 
300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.11: Community 3 Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community 3 in the PaO2/FiO2 ≤ 
300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.12: Community 4 Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community 4 in the PaO2/FiO2 ≤ 
300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.13: Community A Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community A in the PaO2/FiO2 
> 300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.14: Community B Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community B in the PaO2/FiO2 
> 300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.15: Community C Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community C in the PaO2/FiO2 
> 300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
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Figure 6.16: Community D Predicted Functions. A heatmap was made to show 
changes in predicted functions among OTUs assigned to community D in the PaO2/FiO2 
> 300 network. OTU numbers are listed across the vertical axis and functions across the 
horizontal axis. Brighter green indicates functions with greater prevalence than the mean 
and brighter red indicates functions with less prevalence than the mean. 
 

Tables 6.2 and 6.3 summarize the differences in predicted functions per 

PaO2/FiO2 ≤ 300 and PaO2/FiO2 > 300 communities. For each community within each 

network, we identified the single predicted function with maximum abundance and the 

single predicted function with maximum variance. Each community had multiple 

predicted functions with the same minimum values and minimum variance. The tables 

contain the number of functions per community per network with the same minimum 

values when multiple were present. The name of the function is listed if there was a 
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single minimum value. Overall, predicted functions with maximum abundance and 

maximum variance were similar among all the communities. The number of predicted 

functions with minimum abundance and variance contained more variability per 

community. Functions with minimum abundance in ALI communities 2 and 4 were 

identical. 

 

Community Maximum 
Abundance 

Minimum 
Abundance* 

Maximum 
Variance 

Minimum 
Variance 

1 Probable 
multidrug 
resistance ABC 
transporter 
ATP-binding 
permease 
protein 

757 Probable 
multidrug 
resistance ABC 
transporter 
ATP-binding 
permease 
protein 

71 

2 Fumarate 
reductase 
flavoprotein 
subunit 

771§ Iron complex 
outer 
membrane 
receptor protein 

19 

3 Iron complex 
outer 
membrane 
receptor protein 

920 Iron complex 
outer 
membrane 
receptor protein 

Transposase for 
insertion 
sequence 
elements 

4 Probable 
multidrug 
resistance ABC 
transporter 
ATP-binding 
permease 
protein 

771§ RNA 
polymerase 
sigma-70 factor 

17 

Table 6.2: PaO2/FiO2 ≤ 300 Communities Predicted Function Summary. *Number of 
functions with the same minimum value §Identical functions  
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Community Maximum 

Abundance 
Minimum 
Abundance* 

Maximum 
Variance 

Minimum 
Variance 

A Iron complex 
outer membrane 
receptor protein 

920 Methyl-
accepting 
chemotaxis 
protein 

4 

B Probable 
multidrug 
resistance ABC 
transporter 
ATP-binding 
permease 
protein 

1108 Iron complex 
outer 
membrane 
receptor protein 

19 (identical to 
minimum 
functions of 
ALI 
community 2) 

C Probable 
multidrug 
resistance ABC 
transporter 
ATP-binding 
permease 
protein 

771 (identical 
to minimum 
functions of 
ALI 
community 4) 

Iron complex 
outer 
membrane 
receptor protein 

Transposase for 
insertion 
sequence 
elements 

D Uncharacterized 
gene/protein 

808 RNA 
polymerase 
sigma-70 factor 

17 (identical to 
minimum 
functions of 
ALI 
community 4) 

Table 6.3: PaO2/FiO2 > 300 Communities Predicted Function Summary. *Number of 
functions with the same minimum value   
	
 

6.3.3 Random Forest Prediction of Functions Representative of Network 

Communities 

 We used the RF model to determine the importance of the predicted functions in 

classifying the OTUs by their SparCC-assigned communities. We fit one model to the 
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PaO2/FiO2 ≤ 300 data alone and another to the PaO2/FiO2 > 300 data alone. Here, our 

response variable was the SparCC community assignment and our features consisted of 

the predicted functions per OTU. Before selection of the training data, we performed 

variable selection to decrease p. A limitation of the RF algorithm is that it cannot handle 

p larger than N in an N x p data matrix, where N is the number of samples and p the 

features. Our N was 372 for both data sets, as 372 OTUs were identified among the data. 

Our p was initially 6,911, the number of predicted functions for each OTU from the 

PICRUSt algorithm. Elimination of predicted functions for all OTUs that totaled zero 

brought this down to 4,621. Further variable selection was necessary to make p equal to 

or less than our N of 372. To do so, we selected functions which had a small ratio of 

within-class variance to between-class variance. This left us with predicted functions with 

the highest variance among a single function but low variance between functions. Setting 

a threshold of greater than or equal to 0.05 brought p down to 328 for both the PaO2/FiO2 

≤ 300 and PaO2/FiO2 > 300 predicted functions. With this data set, we first chose 

appropriate model parameters by randomly selecting half of the data for use as a training 

set. We then fit the model to the entire data set using the pre-determined parameters. This 

was done independently for the PaO2/FiO2 ≤ 300 and PaO2/FiO2 > 300 data sets.  These 

are output with the most important predicted function at the top for patients with 

PaO2/FiO2 ≤ 300 in Figure 6.17 and for patients with PaO2/FiO2 > 300 in Figure 6.18. 

Importance of the variables, which is determined using the Gini index, decreases in order 

down the list for both figures. The Gini index measures the purity of the node when 

splitting the trees by each predictor. The purer the node, the more accurately the chosen 

variable explains the categorization of the response variables, and the higher the Gini 
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index. The KEGG ID numbers from PICRUSt were replaced with shortened versions of 

the function name in both figures. Importantly, there was no overlap among the functions 

in Figures 6.17 and 6.18, indicating that the functions of most importance in determining 

the communities are distinct among patients with and without PaO2/FiO2 ≤ 300. For 

patients with PaO2/FiO2 ≤ 300, the antibiotic transport system permease protein was 

ranked as most important in assigning the OTUs to the communities within the 

PaO2/FiO2 ≤ 300 network in Figure 6.5. For patients with PaO2/FiO2 > 300, 

glyceraldehyde phosphate dehydrogenase was ranked as most important in determining 

the communities in Figure 6.6.  

 

Figure 6.17: Predicted 
Functions Ranked by 
Importance in 
Determining the 
SparCC Community 
Assignments in the 
PaO2/FiO2 ≤ 300 
Network. A RF 
classification model was 
run to determine which 
predicted functions are 
most important in 
determining the SparCC 
community assignments. 
Functions listed at the 
top of the figure have the 
highest importance and 
decrease from there. 
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Community Number of OTUs 
Containing the 
Predicted Function 

Name of OTU with Highest Abundance of 
the Function 

1 25 k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Actinomycetaceae; g__Actinomyces; s__ 

2 54 
3 138 
4 93 
Table 6.4: OTUs Containing the Most Important Predicted Function Among PaO2/FiO2 ≤ 
300 Communities. 
 

 

Figure 6.18: Predicted 
Functions Ranked by 
Importance in Determining 
the SparCC Community 
Assignments in the PaO2/FiO2 
> 300 Network. A RF 
classification model was run to 
determine which predicted 
functions are most important in 
determining the SparCC 
community assignments. 
Functions listed at the top of the 
figure have the highest 
importance and decrease from 
there. 
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Community Number of OTUs 
Containing the 
Predicted 
Function 

Name of OTU with Highest Abundance of the 
Function 

A 193 k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Micrococcaceae; g__Rothia; 
s__mucilaginosa 

B 57 k__Bacteria; p__Proteobacteria; 
c__Gammaproteobacteria; 
o__Enterobacteriales; f__Enterobacteriaceae; 
g__; s__ 

C 88 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__Veillonellaceae; 
g__Veillonella; s__dispar 

D 33 k__Bacteria; p__Firmicutes; c__Bacilli; 
o__Gemellales; f__Gemellaceae; g__; s__ 

Table 6.5: OTUs Containing the Most Important Predicted Function Among PaO2/FiO2 
> 300 Communities. 
 
 Tables 6.4 and 6.5 indicate OTUs that contain the predicted functions ranked as 

most important by the RF models in Figures 6.17 and 6.18 among the PaO2/FiO2 ≤ 300 

and PaO2/FiO2 > 300 communities, respectively. The second column of both tables 

shows the total number of OTUs per community that contain the predicted function while 

the third column lists the name of the OTU with the highest predicted abundance of this 

function. In Table 6.4, each PaO2/FiO2 ≤ 300 community contains a variable number of 

OTUs that are predicted to have the antibiotic transport system permease protein. P/F ≤ 

300 community 3 contains the most OTUs with this function. For every PaO2/FiO2 ≤ 300 

community, the OTU with the highest abundance of the predicted function is identified as 

a species of Actinomyces. Similarly, each PaO2/FiO2 > 300 community in Table 6.5 

shows varying numbers of OTUs that contain glyceraldehyde phosphate dehydrogenase, 

with P/F > 300 A containing the highest number. Unlike Table 6.5, the identities of the 
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OTUs with highest abundance of this predicted function are different for each 

community.    

 
6.4 Discussion 

 Understanding microbial community dynamics is critical to predicting functional 

changes that may have a significant impact on patient or environmental outcomes. 

Current sequencing technology effectively identifies the bacteria comprising a 

community of interest but elucidation of their functions remains a challenge. In theory, 

WGS captures both microbial identity and function. However, the short reads and 

inadequate coverage make assembly difficult [275]. 16S rRNA gene amplicon 

sequencing is more commonly used due to its lower computational complexity and 

increased identification accuracy but its reliance on a common ribosomal gene sequence 

means that it cannot directly provide functional information on the identified bacteria. To 

infer possible microbial interactions based on co-occurence, correlation methods have 

been applied to metagenomic abundance data, with positive correlations interpreted as 

beneficial interactions and negative as competitive [124]. Ideally, metgenomics 

sequencing studies would be carried out in parallel with other ‘omics’ techniques, such as 

metabolomics and transcriptomics, which would give more in-depth information on 

bacterial relationships and community functions. However, this is often cost-prohibitive, 

necessitating the development of computational methods that can identify bacterial 

interactions and predict functions with high accuracy. Community network algorithms 

continue to be developed and improved upon, while other algorithms exist to predict 

functions from WGS [275] data as well as 16S rRNA gene amplicon data [170]. Use of 

these algorithms alongside other ‘omics’ techniques has demonstrated their accuracy in 
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predicting community functions and their power in identifying important therapeutic 

targets from the community as a whole [126]. However, few studies have examined 

interactive networks of bacteria within the entire community and their corresponding 

functional changes. We have used a community network algorithm appropriate for 

microbiome data to identify changes in interactive communities among the airway 

microbiota following burn and inhalation injury. We applied the PICRUSt algorithm to 

these communities to predict bacterial functions and fit a RF model to determine which 

predicted functions are most important in classifying the community assignments. Our 

results identified distinct predicted functional differences among the SparCC 

communities within patients with and without PaO2/FiO2 ≤ 300. Application of the RF 

model allows prediction of the most important predicted function determining the 

SparCC communities, providing a specific hypothesis that can be validated 

experimentally. This work employs a systems biology approach, using computational 

methods to examine the community as a whole and identify specific interactions that may 

play significant roles in patient outcomes. Such an approach allows further pursuit of 

focused hypotheses with maximum relevancy to the overall community, resulting in 

discovery of therapeutic targets most likely to improve patient outcomes. 

 Our previous work in chapter 4 identified significant enrichment of the OTU 

Prevotella melaninogenica in patients with PaO2/FiO2 ≤ 300 72 hours after injury. This 

implies that P. melaninogenica may play an important role in PaO2/FiO2 ≤ 300 after burn 

and inhalation injury, but we cannot discern the specifics of its role without further study. 

Selection of this specific organism does not take into account its interaction with others in 

the community that may contribute to its enrichment through beneficial sharing of 
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metabolic factors or inhibit its growth through competition. To take these interactions 

into consideration, we employed methods that allow study of the range of bacterial 

relationships within the community. Previous studies have used Pearson’s and 

Spearman’s correlations, which are inappropriate for metagenomic data as they do not 

take into account its compositional nature nor the sparseness of the data [128]. Instead, 

we applied SparCC, which performs a log transformation of the data that allows 

appropriate application of the Pearson correlation method. Here, we implemented a 

threshold in order to account for the sparseness in the data set. For both the NMI and 

number of communities, a threshold of 0.14 produced the best stability for both networks. 

This threshold was applied to produce the PaO2/FiO2 ≤ 300 network in Figure 6.5 and the 

PaO2/FiO2 > 300 network in Figure 6.6. The OTUs in Figure 6.5 are colored according to 

community assignment and these colors are maintained in Figure 6.6 to show the change 

in OTU correlations among patients with and without PaO2/FiO2 ≤ 300. The networks 

have overall shapes that are different from each other, indicating differences in positive 

correlations among OTUs in patients with and without PaO2/FiO2 ≤ 300. This could 

imply one of two things; (1) that development of PaO2/FiO2 ≤ 300 drives changes in 

mutually beneficial interactions among bacteria or (2) that changes in mutually beneficial 

relationships precede development of PaO2/FiO2 ≤ 300. Further experiments need to be 

done to confirm which of these is correct. Although the network graphs visually display 

differences among the OTU correlations, we quantified OTU overlap in the contingency 

table in Table 6.1. Overlap of OTUs within the communities of both networks varies. 

Some overlap at a maximum of 77 OTUs and some have an overlap of only one OTU. 

Higher overlap indicates similarity in membership among the communities, which may 
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also indicate similarity in overall community interactions and functions. Conversely, less 

overlap may imply greater differences among interactions and functions and highlight 

OTUs that play important roles in PaO2/FiO2 ≤ 300 through their interactions with other 

OTUs. The communities that display the least overlap are P/F ≤ 300 community 1 and 

P/F > 300 communities A and B, which share a single OTU. Further investigation into 

the differences between OTUs among these three communities as well as their predicted 

functions could reveal relationships that distinguish P/F ≤ 300 and P/F > 300 

communities, possibly providing biomarker species for PaO2/FiO2 ≤ 300 and/or other 

taxa that could be important therapeutic targets. 

 Figures 6.7 and 6.8 are OTU abundance heatmaps ordered by the community to 

which each OTU was assigned. Although there are differences in abundance among the 

OTUs, there are no clear patterns by community assignment. In Figure 6.7, abundance 

among the PaO2/FiO2 ≤ 300 communities appears mostly random. This is similar for the 

PaO2/FiO2 > 300 communities in Figure 6.8, except that P/F > 300 community A 

contains more OTUs with average abundance. This demonstrates that abundance alone 

does not explain differences among the communities detected by the SparCC algorithm. 

By itself, SparCC can identify possible beneficial or competitive interactions based on 

co-occurrence. We took this a step further by applying PICRUSt to predict functions for 

the OTUs within these communities and using machine learning to explore significant 

differences between them. The heatmaps in Figures 6.9 through 6.12 show differences in 

abundance of predicted functions for the PaO2/FiO2 ≤ 300 communities while Figures 

6.13 through 6.16 show them for PaO2/FiO2 > 300 communities. Each heatmap displays a 

different pattern of predicted function over- or under-abundance as compared to the 
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mean, indicating that our results predict that each SparCC-identified community is doing 

something different. Through visual examination of the heatmaps, community 1 (Figure 

6.9) shows the greatest variation in predicted functions among the PaO2/FiO2 ≤ 300 

communities (Figures 6.9 through 6.12). This predicted variation in function abundance 

could indicate that this community is more active than the other PaO2/FiO2 ≤ 300 

communities, whose patterns of over- and under-abundant predicted functions is less 

variable (Figures 6.10 – 6.12). P/F ≤ 300 community 1 is also the community that has 

only a single OTU in common with P/F > 300 communities A (Figure 6.13) and B 

(Figure 6.14). This community is possibly the most active among the PaO2/FiO2 ≤ 300 

communities and the most different. These results indicate that further investigation of 

the OTUs present within PaO2/FiO2 ≤ 300 community 1 could reveal bacterial 

interactions and functions that play important roles in disease pathogenesis. The greatest 

variation among the P/F > 300 communities (Figures 6.13 through 6.16) is not as clear 

from visual inspection. None of these communities appear to contain as much variation as 

P/F ≤ 300 community 1, except possibly P/F > 300 community 4. This could imply that 

the P/F > 300 communities are not as functionally active as the P/F ≤ 300 communities, 

especially P/F ≤ 300 community 1. This comparison again implies that further 

investigation of the OTUs within P/F ≤ 300 community 1 and their predicted functions 

could reveal interactions relevant to hypoxia as indicated by the PaO2/FiO2 ratio. 

 In Tables 6.2 and 6.3 we summarized predicted functions with maximum and 

minimum abundance and maximum and minimum variance among the communities. 

This quantifies the differences in expression implied by the heatmaps in Figures 6.9 – 

6.16. While each community contained a single predicted function with maximum 
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abundance and variance, there were multiple predicted functions with the same minimum 

abundance and variance for each community. For P/F ≤ 300 and P/F > 300 communities, 

the maximum function for two was a multidrug resistance ABC transporter ATP-binding 

permease protein and one was iron complex outer membrane receptor protein (Tables 6.2 

and 6.3). P/F ≤ 300 community 2 was predicted to have fumarate reductase flavoprotein 

subunit as its maximally abundant function while for P/F > 300 community 4 it was an 

uncharacterized protein. The number of functions with the same value of minimum 

abundance varied between all the communities. PF > 300 community 3 contained 

identical minimum functions as P/F ≤ 300 community 4. Differences among the 

communities in maximum and minimum variance showed similar patterns. Two P/F ≤ 

300 and two P/F > 300 communities displayed maximum variance in the iron complex 

outer membrane receptor protein and one community within each network had maximum 

variance in RNA polymerase sigma-70 factor. P/F ≤ 300 community 1 contained 

maximum variance in the permease protein and P/F > 300 community 1 in a methyl-

accepting chemotaxis protein. Two P/F ≤ 300 communities had minimum variance in 

predicted functions identical to those with minimum variance within two P/F > 300 

communities. Despite these similarities, the variation across all the maximum and 

minimum values are distinct per community, in agreement with the observational data 

from the heatmaps. This quantitative summary is limited in scope as compared to the 

heatmaps, which makes the heatmaps more useful in identifying differences in overall 

predicted function expression patterns. Though subtle, these differences imply that these 

communities are doing different things, possibly as a consequence of the interaction of 

their different OTUs. 
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 The heatmaps and quantitative summaries of the predicted functions per 

community indicate that they are doing different things, but this does not explain which 

of the functions are most important among them and may play roles in hypoxia. To 

identify predicted functions of importance to the SparCC-identified communities, we fit a 

RF model to the data. As explained in chapter 5, this model is appropriate for 

metagenomic data sets due to its computational efficiency, its ability to handle 

compositional data, and its selection of relevant features from the data. The importance of 

the predicted functions according to the Gini index is shown for the P/F ≤ 300 data set in 

Figure 6.17 and for the P/F > 300 data set in Figure 6.18. Output from the PICRUSt 

algorithm uses KEGG Orthology identification numbers from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database to identify predicted genes from 16S rRNA gene 

sequencing data. We used the KEGG [276] and Universal Protein Resource (UniProt) 

[277] databases to identify the names of the predicted genes and their functions from the 

KEGG orthology numbers. The names of the predicted functions deemed important by 

the RF algorithm are listed in Figures 6.17 and 6.18. Overall, there was no overlap in 

functions that the RF model determined most important in the P/F ≤ 300 and P/F > 300 

communities, implying that predicted functions that define the communities in both 

networks are distinct. In agreement with the SparCC networks in Figures 6.5 and 6.6, this 

implies that either (1) development of hypoxia within three days of burn and inhalation 

injury induces distinct communities of bacteria with distinct functions within the airways 

or (2) development of distinct communities of bacteria with distinct functions early after 

injury drives development of hypoxia. Although further experiments need to be done to 

confirm this, our work reveals the development of distinctly correlated bacterial 
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communities with distinct predicted functions dependent on patient PaO2/FiO2 ratio. 

Further analysis of these communities could provide marker species to detect hypoxia 

early as well as other co-occuring species that induce other problems later on. 

Besides identifying distinct predicted functions among the P/F ≤ 300 and P/F > 

300 communities, the RF model ranked these functions in order of their importance for 

each. Among patients with hypoxia, the antibiotic transport system permease protein was 

ranked as most important in determining the SparCC-identified communities, and 

glyceraldehyde phosphate dehydrogenase was identified as most important in 

determining the communities among patients without hypoxia. If these functions can be 

experimentally validated, this may indicate that the communities among patients with 

PaO2/FiO2 ≤ 300 are better able to transport antibiotics out of the cell, making them more 

resistant to treatment. Glyceraldehyde phosphate dehydrogenase has been shown to 

enhance adhesion of Neisseria meninigitidis to host cells independently of the presence of 

a capsule [278], implying a role in pathogenesis and infection for this protein. Based on 

these results, antibiotic transport may be more important for the PaO2/FiO2 ≤ 300 

bacterial communities and their subsequent roles in patient outcomes than their ability to 

adhere to host cells and cause infection. These results are interesting in light of our 

previous work in which we found enrichment of Prevotella melaninogenica in patients 

with PaO2/FiO2 ≤ 300, and that this was not affected by antibiotic treatment. Future work 

could isolate P. melaninogenica from burn patient airways and determine whether it 

contains this antibiotic transport system permease protein and if this gives the bacteria an 

advantage in resisting antibiotic treatment and persisting in the airways of patients with 

hypoxia. Other strains could be isolated from burn patients without hypoxia and tested for 
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glyceraldehyde phosphate dehydrogenase in order to confirm its presence and perform 

future studies to elucidate its specific role. The RF model effectively identified predicted 

functions both distinct and important to microbiota communities among patients with and 

without PaO2/FiO2 ≤ 300. 

After identifying the predicted functions most important in determining the P/F ≤ 

300 and P/F > 300 communities, we wanted to know which OTUs contained these 

functions and which communities they belonged to. This is listed in Table 6.4 for the P/F 

≤ 300 communities and Table 6.5 for the P/F > 300 communities. Among the P/F ≤ 300 

communities, community 3 had the most OTUs predicted to express the antibiotic 

transport system permease protein. P/F ≤ 300 community 1 contained the fewest OTUs 

with this predicted function. This is also the community with the highest variability in 

predicted function expression. The OTUs with the highest abundance of the permease 

protein were all identified as a member of the Actinomyces species for each community. 

In the P/F > 300 communities, community A contained more OTUs predicted to express 

glyceraldehyde phosphate dehydrogenase. Unlike the P/F ≤ 300 communities, OTUs with 

the highest expression of this function were all from different bacterial families. In 

patients with hypoxia, if Actinomyces has the highest expression of the permease protein, 

which the RF model predicted to be most important in determining the P/F ≤ 300 

communities, it is likely that these bacteria play a significant role in the disease. 

Unfortunately, it is impossible to determine what this role is without specific experiments 

with Actinomyces, perhaps in a mouse model of inhalation injury. Highest expression of 

the most important function among the same taxa in P/F ≤ 300 communities but among 

different taxa in each P/F > 300 community suggests similarity induced among the 
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communities and their functions in patients with hypoxia. Longitudinal studies could 

reveal whether the P/F ≤ 300 communities continue to become functionally, if not 

taxonomically, similar the worse hypoxia becomes, and whether the P/F > 300 

communities continue to diversify by function and/or taxa. If this is so, functional 

similarity among SparCC-identified communities could be a possible early indicator of 

hypoxia.  

 This work is clearly hypothesis generating and specific hypotheses will need to be 

validated in the lab. However, it provides a set of tools to identify areas and/or 

interactions of interest in a large dataset that would be difficult to interpret otherwise. A 

limitation to our method is that it is a prediction based on pre-existing databases of 

information. It cannot detect the exchange of genetic information between bacteria in the 

community through lateral gene transfer or development of antibiotic resistance. 

Additional studies will be necessary to elucidate this and to confirm functional 

predictions. The method’s ability to examine the community as a whole and identify 

specific and relevant hypotheses for future, focused studies out weigh this limitation. 

Other limitations include the inability of the RF algorithm to handle p larger than N, 

necessitating either variable selection or extension of the number of samples.  

 In conclusion, we have employed a set of computational methods in a novel way 

to make predictions about alterations in disease-driven OTU interactions and functional 

changes. Rather than identifying differences in OTU abundance as a result of hypoxia, as 

we did in our previous work, this method allows identification of OTU interactions and 

how this alters their predicted functions. This systems-level approach takes the entire 

community into account, allowing determination of specific interactions that may play 
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significant roles in the development and/or progression of disease. These interactions can 

then be replicated experimentally to pursue mechanistic studies that could lead to new 

and more effective therapeutic targets. 
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CHAPTER 7: ADDITIONAL STUDIES: ALTERATION OF BRONCHIAL 

EPITHELIAL CELL RESPONSE TO WOOD SMOKE PARTICLES BY BACTERIA 

 

7.1 Introduction 

 Application of NGS to burn patient bronchial washings allows investigation into 

broad changes in airway microbiota following inhalation injury and the development of 

hypoxia, as well as correlation with other patient factors and outcomes. Data analysis 

with machine learning algorithms can identify important elements of the microbiota that 

may play clinically relevant roles. However, NGS methods alone are observational and 

follow-up with mechanistic methods is necessary to confirm results and identify specific 

therapeutic targets. Both in vivo animal and in vitro cell culture models can be used to 

confirm the importance of specific bacterial taxa identified in NGS studies. Our previous 

work using 16S rRNA gene amplicon sequencing to characterize the airway microbiota 

after burn and inhalation injury revealed specific changes associated with the 

development of PaO2/FiO2 ≤ 300. However, this does not answer how or why these 

changes occur, which is important in identifying effective therapeutic targets. Therefore, 

we sought to develop a cell culture model using primary airway bronchial epithelial cells 

in order to determine changes in their response to smoke and bacteria. We used cells from 

healthy human volunteers grown at air-liquid interface (ALIF) and introduced wood 

smoke particles (WSP) alone and with bacteria and assessed epithelial integrity and 

inflammatory response. We found that WSP induces an oxidative stress response in 
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human bronchial epithelial cells (HBEC) that is attenuated when Klebsiella pneumoniae 

is introduced. Further, doses of greater than 1x104 colony forming units (CFU)/ml of K. 

pneumoniae disrupted epithelial integrity in fully differentiated HBECs.  

 

7.2 Methods 

7.2.1 Primary Human Bronchial Epithelial Cells  

 HBECs were obtained from healthy volunteers using a protocol previously 

approved by the University of North Carolina at Chapel Hill Institutional Review Board 

[279]. Briefly, healthy volunteers underwent bronchoscopy after consent was received. 

Cells were extracted from bronchial brushings and expanded in bronchial epithelial 

growth medium (BEGM, Clonetics, San Diego, CA, USA). 

 

7.2.2 Air-Liquid Interface and Exposures 

  Isolated cells were plated on a transwell insert at 1x105 cells/insert. Cells were 

grown submerged in a 1:1 mixture of BEGM and Dulbecco’s Modified Eagles Medium 

(DMEM) with high glucose, growth supplements, bovine pituitary extract, bovine serum 

albumin, and nystatin until they reached confluence. Apical media was replaced with 

0.5ml fresh media and basolateral media with 1ml fresh media every 48 hours. Once the 

cells reached confluence, retinoic acid was added to the media and the apical media was 

removed to bring the cells to the air-liquid interface. Cells were maintained for 21 days 

with replacement of basolateral media every 48 hours to allow for differentiation into 

ciliated and mucous-producing cells. At day 14 at ALIF, basolateral media was replaced 

with antibiotic-free media in preparation for WSP and bacteria exposures. Media 
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continued to be replaced every 48 hours. On day 21, WSP alone, bacteria alone, or WSP 

and bacteria were introduced to the cells for 24 hours.  

 

7.2.3 Bacterial Strains and Culture Conditions 

 Klebsiella pneumoniae and Staphylococcus aureus were obtained from Carolina 

Biological Supply Company (Burlington, NC, USA). Prior to experiments, bacteria were 

grown separately in LB growth media overnight at 37°C in a shaking incubator. 

Appropriate doses were calculated from growth curves done for both species and the 

optical density taken at a wavelength of 600nm with a spectrophotometer. Bacteria were 

then centrifuged for two minutes at top speed, media was aspirated off, and cells were 

suspended in phosphate buffered saline (PBS, Thermo Fisher Scientific, Pittsburgh, PA, 

USA). Two more washes were done in PBS before resuspension to the appropriate 

concentration and introduction to the apical side of HBECs grown on a transwell insert. 

HBECs were grown at ALIF for 22 days and all exposures were done on day 23. 

 

7.2.4 Wood Smoke Particle Generation and Composition 

 WSP were generated as described by Ghio et. al. [280]. Briefly, red oak wood 

was heated in a Quadrafile 3100 woodstove (Colville, Washington, USA). A teflon filter 

was used to collect smoke and particles were extracted in 1N HCl. Metals present in the 

WSP were determined using inductively coupled plasma optical emission spectroscopy 

(Perkin Elmer, Norwalk, Connecticut, USA). For cell exposures, WSP were collected 

from the stainless steel chimney above the woodstove and sonicated (Thermo Fisher 
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Scientific, Pittsburgh, PA, USA) in water to disaggregate the particles. Particles were 

resuspended in PBS prior to exposure to HBECs. 

 

7.2.5 Cytotoxicity Assay 

 Cytotoxicity of WSP and bacteria exposures was measured following 24 hours of 

exposure using the CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega, Madison, 

WI, USA). The assay was performed per the manufacturer’s instructions. HBECs alone 

as well as HBECs with bacteria served as positive lysis controls. 

 

7.2.6 Transepithelial Eletrical Resistance 

 Transepithelial electrical resistance (TEER) was used as a measure of epithelial 

integrity. TEER measurements were performed using the EVOM2 (World Precision 

Instruments, Sarasota, FL, USA), which applies alternating current and measures 

resistance through the membrane of the transwell insert with a two-pronged electrode. 

Measurements were made in triplicate every 48 hours while the cells were differentiating 

for 21 days as well as immediately before and 1, 3, and 24 hours after WSP and bacteria 

exposures. During TEER measurements, 0.5ml of PBS was placed on the apical surface 

and 1ml of media in the basolateral side of the transwell in order to submerge each end of 

the electrode. A transwell without cells but with 1ml basolateral media and 0.5ml apical 

PBS was always used as a blank and its averaged triplicate value was subtracted from 

subsequent cell measurements.  
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7.2.7 Oxidative Stress Response and Pro-Inflammatory Gene Expression 

 Total cellular RNA was extracted at 1, 3, and 24 hours post WSP and bacteria 

exposure. Complementary DNA was made and quantitative PCR was performed using 

TaqMan primer/probe sets targeted to the HO-1 and IL-8 genes (Applied Biosystems, 

Pittsburgh, PA, USA). Gene expression was normalized to the human beta-actin gene and 

analyzed using the Pfaffl method [281].  

 

7.3 Results 

7.3.1 Post-Exposure Cytotoxicity 

 Release of lactate dehydrogenase as measured by the CytoTox kit was used as an 

indication of cytotoxicity. Cytotoxicity was measured after 24 hours of 1x102 CFUs/ml 

K. pneumoniae, a dose which does not disrupt epithelial integrity, as well as increasing 

doses of WSP, and WSP and K. pneumoniae together. Additional exposures with WSP 

and S. aureus together, as well as K. pneumoniae, and S. aureus co-exposures with WSP, 

have been planned but not completed. Figure 7.1 demonstrates cytotoxicity of K. 

pneumoniae after 24 hours as compared to cells alone and PBS-only controls. Figure 7.2 

demonstrates WSP toxicity from 0.3µg/cm2 up to 530.53µg/cm2 as compared to cells with 

PBS controls. Finally, Figure 7.3 shows cytotoxicity with doses of WSP alone from 

1µg/cm2 and up to 50µg/cm2 as well as these doses with concurrent exposure of 1x102 

CFUs/ml K. pneumoniae. 
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Figure 7.1: K. 
pneumoniae-
Induced 
Cytotoxicity. 
HBECs grown 
at ALIF for 23 
days were 
exposed to 
1x102 CFUs/ml 
K. pneumoniae 
suspended in 
PBS for 24 
hours and LDH 
release in the 
apical 
compartment 
was measured 
using the 
CytoTox kit.   
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Figure 7.2: WSP-Induced Cytotoxicity. HBECs grown at ALIF for 23 days were 
exposed to the indicated concentrations of WSP suspended in PBS for 24 hours and LDH 
release in the apical compartment was measured using the CytoTox kit. Woodsmoke 
condensate = WSP. N = 6 
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Figure 7.3: WSP Alone and WSP with K. pneumoniae Cytotoxicity. HBECs grown at 
ALIF for 23 days were exposed to the indicated concentrations of WSP suspended in 
PBS alone for 24 hours of the indicated concentration and 1x102 CFUs/ml K. pneumonia. 
LDH release in the apical compartment was measured using the CytoTox kit. 
Woodsmoke condensate = WSP. N = 6. 
 

7.3.2 TEER During Cellular Differentiation 

 Prior to WSP and bacteria exposures, TEER measurements were taken every 48 

hours over the 21 days of HBEC differentiation in order to determine the appropriate time 

period for exposure. All measurements were normalized to a blank control well and done 

in triplicate. Figure 7.4 shows a representative graph of changes in TEER over 21 days at 

ALIF. TEER gradually increases from ALIF day 0, peaks around day 10, and decreases 

over the next 3 – 5 days to plateau between days 17 and 22. This pattern was seen in cells 

from all donors. Bacterial exposures were done on day 23, once TEER plateaued. 

Antibiotic-free media was added at day 14 in order to avoid killing bacteria. 
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TEER measurements were taken after 24 hours of exposure of increasing doses of 

K. pneumoniae to HBECs that had been at ALIF for 21 days in order to determine an 

appropriate dose that did not disrupt epithelial integrity (Figure 7.5). Staurosporine, a 

non-specific protein kinase inhibitor that induces apoptosis [282], was used as a positive 

control. Growth of K. penumoniae on agar plates from basolateral media post exposure 

was used to confirm disruption of epithelial integrity.  Of the four doses used in Figure 

7.5, no bacterial growth was seen only at 1x102 CFUs/ml K. pneumonia. This dose was 

selected for future exposures as well as combined WSP and K. pneumoniae exposures.   

 

 

 

 

Figure 7.4: Changes in TEER During HBEC Differentiation. TEER measurements 
were taken every 48 hours over the 21 days of cellular differentiation in order to 
determine the appropriate time to begin exposures. TEER levels plateau between days 17 
and 22, so exposures were done on day 23. Cells were placed in antibiotic-free media 7 
days prior to exposure. 
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Figure 7.5: Disruption of Epithelial Integrity by K. pneumoniae. HBECs grown at 
ALIF for 23 days were exposed to the indicated doses of K. pneumoniae for 24 hours. 
Bacterial were placed on the apical side of the transwell insert. TEER was measured 
before and after exposure and basolateral media was incubated on agar plates after 
exposure. A dose of 1x102 CFUs/ml resulted in the lowest decrease in TEER and no 
growth from basolateral media.  
 

7.3.3 Induction and Attenuation of Oxidative Stress Response by WSP and Bacteria 

 RNA was harvested from cells after 1, 3, and 24 hours of exposure to WSP alone 

or WSP with K. pneumoniae. RNA was used as a template to make cDNA, which was 

then used in a qPCR reaction to quantify expression of the oxidative stress gene heme 

oxygenase-1 (HO-1). Additional exposures with WSP and S. aureus together as well as 

K. pneumoniae and S. aureus co-exposure with WSP have been planned but not 

completed. Figure 7.6 shows expression of HO-1 24 hours after exposure of HBECs to 
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increasing concentrations of WSP alone or WSP and K. pneumoniae. HBECs were grown 

for 23 days at ALIF and exposed on day 23. 

 

 

Figure 7.6: K. pneumoniae Attenuates WSP-Induced HO-1 Expression. HBECs were 
exposed to increasing concentrations of WSP alone or WSP with K. pneumoniae for 24 
hours on day 23 at ALIF. The highest dose of WSP induced a significant increase in HO-
1 expression that was attenuated by addition of K. pneumoniae. n = 4. 
    

7.3.4 Induction of Inflammatory Response by WSP and Bacteria 

 The cDNA made from the RNA above was also used in a qPCR reaction to 

quantify expression of the pro-inflammatory cytokine interleukin-8 (IL-8) after WSP and 

K. pneumoniae exposure. Figure 7.7 shows IL-8 expression after 24 hours of exposure. 

IL-8 was induced at much lower levels by both exposures as compared to HO-1. WSP 

and K. pneumoniae together induced significantly increased IL-8 expression over WSP 

alone. 
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Figure 7.7: K. pneumoniae Increases IL-8 Gene Expression Over WSP. HBECs were 
exposed to increasing concentrations of WSP alone or WSP with K. pneumoniae for 24 
hours on day 23 at ALIF. K. pneumoniae induced significantly increased IL-8 expression 
as compared to every dose of WSP. n = 4. 
 

7.4 Discussion 

 Advances in NGS have made possible high dimensional metagenomic studies in 

which the populations of bacteria present in a sample can be identified and examined 

simultaneously. The study of bacterial communities rather than individual species or 

strains allows insight into population dynamics and host-community interactions that may 

be crucial to identifying promising new therapeutic targets. However, these large studies 

require the development of advanced computational methods, along with sufficient 

computing power and speed, in order to understand and interpret this complex data. 
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Though complex and sophisticated, these methods are largely observational and can be 

used to identify taxa that may play important roles in various disease processes or 

environments. Hypothesis-driven, mechanism-based microbiological methods are critical 

to exploring and confirming the interactions revealed by metagenomic studies. 

 Our previous metagenomic work on changes in the airway microbiota following 

burn and inhalation injury suggested that specific taxa might play important roles in the 

development of ALI early after injury. In-depth computational work predicted differences 

in functions of the communities in patients with and without ALI and how these taxa may 

be interacting with each other. The need to experimentally validate this work led to the 

development of a model in which we exposed HBECs to WSP and burn patient-relevant 

bacteria in order to understand how these exposures changed the response of healthy 

airway epithelial cells. 

 We chose to work with HBECs due to their physiological relevance to the airways 

and their lack of genetic abnormalities that are frequently seen in cell lines [283,284]. 

When grown at air-liquid interface, primary human bronchial epithelial cells undergo 

mucociliary differentiation into ciliated and mucous-producing cells, which mimics the 

cell types present in vivo [283]. This pseudo-stratified epithelium better represents 

physiologic airway responses but genetic variation from donor to donor can make 

reproducibility difficult, necessitating the use of more cells than would be needed with a 

cell line [285]. Immortalized cell lines, however, contain chromosomal abnormalities that 

can alter cell behavior and their ability to differentiate normally, bringing in to question 

their accuracy in modeling physiologic responses [284,286]. We monitored cellular 

differentiation of HBECs over 21 days through visual detection of mucous production 
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and cilia movement. Further, we measured changes in TEER over the course of 

differentiation and observed an early and rapid increase in resistance near day 10 at ALIF 

that plateaued between days 17 and 22 (Figure 7.4). We speculate that this may be due to 

initial formation of tight junctions followed by differentiation into a pseudo-stratified 

epithelium. Immunofluorescence to detect the presence of tight junction proteins has been 

used in other ALIF models to confirm the association of TEER with epithelial integrity. 

We began optimizing immunofluorescence methods to detect tight junction proteins such 

as zonula occludens-1 (ZO-1) and those in the claudin family. Immunofluorescence has 

been used to detect reduction of ZO-1 and ZO-2 in association with disruption of 

epithelial integrity by cigarette smoke extract [287]. Further, immunofluorescence has 

demonstrated reduced ZO-1 present in the airways of patients with atopic asthma [288]. 

These proteins have been associated with increased TEER values, but recent studies 

suggest observed changes in TEER involve other tight junction proteins as well. ZO-1 

was observed to be consistently present regardless of TEER value in primary bronchial 

cells at ALIF from horses as well as humans, indicating that this single tight junction 

protein does not fully explain the observed changes in TEER. To determine whether 

changes in tight junction proteins are responsible for the variation in TEER we observed 

in Figure 7.4, ZO-1, occludins, claudins, and other tight junction proteins need to be 

detected, visualized, and quantified using immunofluorescence and Western blot. 

Measurement of TEER and visualization of tight junction formation also do not confirm 

cellular differentiation. Immunofluorescent staining for mucin and cilia proteins as well 

as haemotoxylin and eosin staining could be used to visualize and confirm differentiation.  
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 Based on the TEER values in Figure 7.4, we chose to introduce bacteria and WSP 

exposures on ALIF day 23, once TEER plateaus. We used WSP generated by a wood 

burning stove in order to increase reproducibility in our results. Replication of the smoke 

that the burn patients were exposed to is not possible due to its heterogeneous 

composition and it would introduce a high level of variability into our experiments. To 

avoid these issues, we generated smoke of a consistently reproducible composition using 

the wood burning stove. Using whole smoke could have increased the physiological 

relevance of our model, but techniques that currently exist to do this do not reliably and 

consistently expose cells to reproducible doses. Use of WSP extracted from the wood 

stove allowed us to consistently expose the cells to the same dose of particles of the same 

composition, increasing reproducibility in our system. Our choice of bacteria was based 

on organisms commonly cultured in the Burn Center. K. pneumoniae, a gram negative 

organism, and S. aureus, which is gram positive, are both frequent causes of pneumonia 

in the Burn Center. Further, K. pneumoniae is part of the Enterobacteriaceae family, 

which dominated the patient bacterial communities in our 16S rRNA gene amplicon 

sequencing results (Chapter 4). A more appropriate choice for the gram positive organism 

would have been a member of the Streptococcaceae family, since this taxa was also 

highly abundant. The long-term plan for these experiments is to introduce K. pneumoniae 

and S. aureus in a co-exposure with WSP in order to replicate bacterial community 

interactions at a very simplistic level. The community network results from Chapter 6 

could be used to guide these models and select relevant co-occuring taxa that are 

predicted to interact with one another.    
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  We gave the cells antibiotic-free media for 7 days prior to the exposures in order 

to avoid toxic effects on the bacteria that could skew our results. In Figure 7.5, we 

introduced four doses of K. pneumoniae at day 23 ALIF ranging from 1x102 CFUs/ml up 

to 1x108 CFUs/ml for 24 hours. We measured TEER before and after introduction of 

bacteria as well as a staurosporine-treated positive control well and a negative control 

well containing PBS on the apical side. From this, we calculated the percent decrease in 

TEER, which is displayed in Figure 7.5. Bacteria were only introduced to the apical side 

of the transwell, so that we did not expect to find them in the basolateral side if epithelial 

integrity remained intact. After exposure, we incubated the basolateral media overnight 

on LB agar plates to determine which dose of K. pneumoniae disrupted epithelial 

integrity, allowing the bacteria to cross through the porous transwell membrane into the 

bottom of the well. As shown in Figure 7.5, the three highest doses disrupted epithelial 

integrity. We chose to continue our experiments with a dose of 1x102 CFUs/ml K. 

pneumoniae. If these experiments are continued with S. aureus, this experiment will need 

to be conducted again to determine an appropriate dose of this or another new organism. 

 Although our chosen dose of K. pneumoniae did not disrupt epithelial integrity, 

we did not know whether this dose was toxic to the cells. We used the CytoTox kit to 

measure release of LDH, an enzyme that catalyzes the conversion of pyruvate to lactate 

found in all living cells. This is an indirect measure of cytotoxicity, as it is assumed that 

increased release of LDH can be attributed to rupture of cell membranes from increased 

toxicity. In Figure 7.1, we measured LDH release from unexposed cells, untreated cells at 

ALIF (ALI), cells treated with K. pneumoniae, cells treated with K. pneumoniae and 

supplemented with fetal bovine serum (FBS), and control wells treated with PBS alone 
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and PBS supplemented with FBS. LDH release was higher in cells treated with K. 

pneumoniae, and there was not a significant difference in toxicity depending on FBS 

supplementation. Supplementation of K. pneumoniae with FBS was done to determine 

whether this altered the bacteria’s cytotoxicity to the cells as compared to bacteria 

suspended in PBS. Since FBS did not alter cytotoxicity significantly, we continued our 

exposures with bacteria suspended in PBS. Although 1x102 CFUs/ml of K. pneumoniae 

was more toxic than PBS or no treatment at all, it only induced an increase in LDH 

release of 10%. In Figure 7.2, we introduced HBECs to a wide range of WSP doses in 

order to assess cytotoxicity. LDH release is not significantly different from the PBS 

control except for the highest dose. Based on these results, we chose doses of 1µg/cm2 , 

10µg/cm2, and 50µg/cm2 to assess cytotoxicity in combination with 1x102CFUs/ml of K. 

pneumoniae. We exposed HBECs at ALIF on day 23 to each of these WSP doses alone 

or simultaneously with K. pneumoniae for 24 hours (Figure 7.3). Each of these doses 

alone did not significantly increase LDH release as compared to the PBS control, but the 

addition of K. pneumoniae increased release by 15% for all but one of the doses. 

 For each of these exposures we performed qPCR to quantify expression of the 

oxidative stress response gene HO-1 (Figure 7.6) and the pro-inflammatory gene IL-8 

(Figure 7.7). There was no significant difference in HO-1 expression between WSP alone 

and WSP with K. pneumoniae until the highest dose of WSP. At 50µg/cm2 WSP, HO-1 

expression increased 25-fold. Addition of K. pneumoniae attenuated this response, which 

could suggest that K. pneumoniae inhibits HBEC oxidative stress response to WSP. In 

Figure 7.3, addition of K. pneumoniae to each dose of WSP increased LDH release, 

implying increased cytotoxicity. Increased cytotoxicity could explain attenuation of HO-1 
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expression at 50µg/cm2 WSP with K. pneumoniae in Figure 7.6. However, we do not see 

this pattern at the other two doses of WSP, which suggests that an increase in cytotoxicity 

does not completely explain attenuation of HO-1 expression. Clearly, more experiments 

need to be done to confirm this effect. 

 In Figure 7.7, addition of K. pneumoniae increased expression of IL-8 at each 

dose of WSP, including the PBS control. Interestingly, the increase in IL-8 expression 

was highest with the lowest dose of WSP and decreased for increasing doses of WSP. 

Although the overall fold increase in IL-8 is low, addition of K. pneumoniae increases it 

significantly at each dose (one-way ANOVA performed in R: 

anova(lm(Fold_Change~Treatment, data=IL8))). For 50µg/cm2 WSP, the dose at which 

K. pneumoniae attenuates HO-1 expression, IL-8 is significantly increased with K. 

pneumoniae but not to the extent that it is at the lower doses of WSP. 

 Both IL-8 and HO-1 are expressed when the transcription factor nuclear factor 

erythroid 2-related factor 2 (Nrf2) binds to the antioxidant response element (ARE) 

[289,290]. Nrf2 is normally bound to the repressor protein Kelch ECH associated protein 

1 (Keap1) in the cytosol, inhibiting it until the application of stress to the cell changes the 

conformation of Nrf2 and releases it. It then crosses into the nucleus, where it binds to 

ARE, inducing transcription of HO-1 and IL-8 [267,290]. Despite their similarity of 

location, it has been shown that transcription of IL-8 and HO-1 are independent of each 

other [291]. Co-culture of nasal epithelial cells from patients with non-allergic chronic 

rhinosinusitis with Streptococcus pneumoniae increases expression of IL-8 and 

neutrophil adherence to endothelial cells [292]. Other studies have demonstrated the 

ability of Pseudomonas aeruginosa to induce increased IL-8 expression and recruit 
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neutrophils to the airways [293]. Induction of sepsis by intratracheal instillation of 

Klebsiella pneumoniae in mice and inhibition of HO-1 expression showed increased 

recruitment of neutrophils to bronchoalveolar spaces, decreased bacterial load, decreased 

alveolar collapse, and increased survival rate [294]. Together, these studies suggest that 

increased HO-1 expression interferes with IL-8 expression and its ability to recruit 

neutrophils to the site of injury. At doses of 1 and 10µg/cm2 WSP with K. pneumoniae, 

we see increased levels of IL-8 with decreased levels of HO-1, which agrees with 

previous studies. Based on this, at 50µg/cm2 WSP with K. pneumoniae, where we see 

attenuation of HO-1 expression, we would expect increased levels of IL-8. Instead, we 

see the lowest level of IL-8 expression with both WSP and bacteria (Figure 7.7). K. 

pneumoniae mutants lacking a polysaccharide capsule have been shown to induce 

signaling through toll-like receptor-4 (TLR4), and inhibition of TLR4 is associated with 

decreased HO-1 expression and increased iron levels [295,296]. The availability of iron 

regulates the ability of K. pneumoniae to synthesize capsular polysccacharide, which in 

turn upregulates expression of TLR4 and TLR2 on airway epithelial cells [297,298]. 

Signaling induced by lipopolysaccharide in bacterial cell walls may depend on both 

TLR2 and TLR4 [299]. This suggests that application of K. pneumoniae lacking a 

capsule in combination with WSP will activate TLR4 and TLR2, leading to increased 

expression of HO-1, decreased expression of IL-8, and decreased iron levels that would 

inhibit capsule polysaccharide synthesis. Instead, we see attenuation of HO-1 expression 

and a negligible increase in IL-8, which implies that TLR4 signaling is somehow 

inhibited. Without further experiments and detection of activation of the signaling 

molecules involved in expression of IL-8 and HO-1 it is impossible to determine how K. 
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pneumoniae is altering these genes. However, attenuation of HO-1 expression without an 

increase in IL-8 may indicate a novel pathway response to WSP and K. pneumoniae 

together, which could give mechanistic insight into bacteria and HBEC interaction after 

WSP exposure with further investigation. 

 This is an additional, incomplete study and, as such, has many limitations. The 

use of HBECs alone, rather than in co-culture with neutrophils or other innate immune 

cells, only represents the response of the airway epithelium to bacteria and WSP. 

Inclusion of innate immune cells could help elucidate the interaction between the 

epithelium and the innate immune system to regulate responses to bacteria. Further, 

exposure with a single bacterial species does not replicate the complexity of the airway 

microbiota as elucidated in chapter 4. Bacterial interactions are important in determining 

their impact on host cells, and this model fails to capture this accurately. A mouse model 

would be better suited to capture the spectrum of bacterial as well as host cell interactions 

and their response to whole wood smoke. Methods exist to expose both mice and cells at 

ALIF to whole wood smoke, but reproducibility of smoke concentration remains a 

challenge for both systems. Cell culture is superior to mouse models in regard to 

reproducibility, as the same concentration of WSP can be added to the same numbers of 

cells and bacteria each time. With mice, a consistent dose of WSP could be instilled 

intratracheally, but consistency in the number of host and bacterial cells exposed is more 

difficult to control. The cell culture model used here needs to be expanded to include S. 

aureus as well as more complex mixtures of bacteria. Immunofluorescence methods 

should be used to visualize formation of tight junction proteins and Western blot to 

quantify them. Western blot should also be used to detect activation of signaling 
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molecules involved in expression of IL-8 and HO-1 as well as to quantify these proteins 

themselves.  

 In conclusion, we have developed an in vitro model to understand the 

mechanisms behind changes in the airway microbiota following burn and inhalation 

injury. Metagenomics studies serve as a hypothesis-generating step, while application of 

computational methods allows selection of important relationships to explore further 

experimentally. Our results suggest that the gram negative bacteria Klebsiella 

pneumoniae inhibits expression of HO-1 induced by 50µg/cm2 WSP after 24 hours of 

exposure. If this result can be confirmed, it suggests that K. pneumoniae can play a 

potentially beneficial role in burn patient airways by inhibiting oxidative stress responses 

that could damage the airway epithelium. Such results could alter thinking about what we 

consider a pathogen in the airways and how it might be used to improve patient 

outcomes. It will be important in future studies to examine how K. pneumoniae’s 

interaction with HBECs changes when other bacteria are introduced to the system, as 

bacterial interactions can shift their functions in beneficial, negative, or neutral directions. 

Our additional studies provide a model with which many avenues of microbiota-host 

interaction can be explored in a focused, mechanistic way that has the potential to reveal 

important therapeutic targets in the burn patient population. 
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS 

 

8.1 Summary 

 The human microbiome holds promising potential for the future of preventative 

and precision healthcare. Research has revealed the role of the microbiota in various 

states of health and disease, including obesity [300], Crohn’s disease [301], asthma [302], 

pregnancy [41], chronic rhinosinusitis [16], colorectal cancer [232], and COPD and 

smoking [144], among others. These studies have captured trends in changes of 

microbiota among disease states and identified specific taxa with important roles that 

could serve as therapeutic targets. The use of predictive machine learning algorithms 

alongside experimental data has demonstrated the ability of these computational methods 

to identify taxa that predict these disease states with high accuracy, providing tools to 

detect specific taxa for early and preventative treatment [26,247,249,264]. Although this 

work has demonstrated the importance of specific taxa in various disease states, the 

Human Microbiome Project has been instrumental in showing that the composition of 

healthy human microbiota can vary widely from individual to individual [8]. 

Significantly, the functions of these healthy communities remain similar despite changing 

bacterial community composition. More recent studies have demonstrated that these 

communities have a degree of fluidity in their composition that can be altered by diet 

[11,26,28,65,125,303] as well as xenobiotics, and particularly antibiotics 

[29,244,245,304]. The ability to modify these communities has led to the development of 



	 215	

strategies in which specific microbes are introduced to shift the community towards a 

healthier state. The most successful example of this strategy is in fecal microbiota 

transplantation (FMT), in which transfer of a healthy gut community to patients infected 

with nosocomial Clostridium difficile has been used to successfully treat the infection 

[38,305]. Although this is a promising treatment strategy, lack of understanding of the 

complex interactions among microbiota have hindered the success of FMT in treating 

other gut disorders, such as ulcerative colitis [306]. Such challenges indicate the 

importance of understanding individual microbial community dynamics in designing 

effective personalized treatment strategies.  

 Work on the airway microbiota is relatively recent and has focused on changes in 

bacterial communities during airway disease. Though few studies have examined the 

impact of airway injury on microbial communities, they have suggested that alteration of 

airway homeostasis leads to conditions conducive to bacterial colonization and growth, 

resulting in disease-specific alterations [141]. Our work has focused on changes in airway 

microbiota in the context of burn and inhalation injury and the development of airway 

disease as a result of these insults. We have applied amplicon sequencing techniques to 

bronchial washings from patients hospitalized for burn and inhalation injury. We detected 

a broad range of bacteria in the lower airways as soon as 24 hours after injury and 

observed significant differences in taxa abundance among patients with and without acute 

lung injury (ALI). These differences led us to apply machine learning techniques to our 

data to discover pre-existing patterns, what patient variables drive these patterns, and 

which taxa are predictive of ALI. Functional differences are increasingly being 

recognized as more important than community composition, which encouraged us to use 
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a community detection algorithm in combination with prediction of bacterial functions 

and machine learning to discern differences in community functions in patients with and 

without ALI. We recognize that these computational methods do not capture within-

community changes, such as the development of antibiotic resistance and lateral gene 

transfer. To address this limitation, we developed an in vitro model examining the 

interaction of bacteria and human bronchial epithelial cells (HBECs) after exposure to 

wood smoke particles. Our work incorporates observational metagenomic studies with 

predictive computational methods and validation by experiment, providing a framework 

that allows identification of important microbial interactions and predicted functions that 

can be explored experimentally for identification of effective therapeutic targets. 

 Prior to 16S rRNA gene amplicon sequencing, bacterial DNA extraction methods 

had to be optimized for the bronchial washing samples. These samples were 

contaminated with mucous, soot, blood, and human airway cells, all of which could 

interfere with efficient DNA extraction from bacterial cells. A combination of physical, 

chemical, and enzymatic lysis methods followed by a commercial spin-column-based kit 

gave the best quality and highest quantity DNA. To account for the low quantity of 

bacterial DNA present in airway samples as compared to gut samples, we utilized a 

molecule tagging method to increase the accuracy of our sequencing results. Together, 

these methods ensured the best sequencing accuracy for our low-quantity airway samples. 

 Statistical analysis of our sequencing results revealed differences in bacterial 

community composition among patients with and without ALI early after injury. The 

OTUs Streptococcus and Enterobacteriaceae were dominant among all patients, but 

several low-abundance taxa were enriched among patients with ALI. Linear discriminant 
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analysis effect size ranked the OTU identified as Prevotella melaninogenica as most 

significantly enriched among patients with ALI, which was not impacted by antibiotic 

treatment. These results suggest that Prevotella melaninogenica is associated with ALI 

early after burn and inhalation injury but we cannot discern whether ALI drives 

enrichment of this OTU or enrichment of this OTU induces development of ALI. Further 

studies in a mouse model of inhalation injury are necessary to elucidate the relationship 

between this bacteria and ALI following burn and inhalation injury. 

 Application of high dimensional data analysis methods revealed clustering among 

the bacterial communities that was driven by patient body max index (BMI). Further 

investigation into this relationship could reveal specific patient outcomes predicted by 

each cluster. A random forest model showed that, among the bacterial families present 

within the patient samples, the family Streptococcaceae is predictive of ALI status. As 

with enrichment of Prevotella melaninogenica, these results require experimental 

confirmation. 

 Use of whole genome sequencing (WGS) can reveal limited information on 

bacterial functions, while parallel use of ‘omics’ techniques can provide a broader range 

of transcriptional and metabolomics changes among communities. The computational 

complexity of WGS data and the expense and sample requirements of additional ‘omics’ 

methods often make these approaches unfeasible. To address this issue, computational 

methods have been developed to predict bacterial functions from 16S rRNA gene 

amplicon sequencing data and the method is surprisingly accurate as compared to WGS 

[170]. Our previous work with 16S rRNA gene amplicon sequencing and machine 

learning methods revealed which bacteria were present among burn patients with 
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inhalation injury and which were predicted to be most important in association with ALI. 

However, since bacterial function is likely more important in patient outcomes than 

community composition, we applied the PICRUSt algorithm to our data to predict the 

abundance of functions among the OTUs in our samples. To understand how the 

microbes may be interacting with each other, we used the SparCC algorithm to detect 

four distinct communities of bacteria among patients with and without ALI. PICRUSt 

predicted distinct functions for each of these communities, and application of a random 

forest model identified different functions as most important to the ALI and No ALI 

communities. Among patients with ALI, an antibiotic transport system permease protein 

was ranked as most important in determining the interactive communities, while 

glyceraldehyde phosphate dehydrogenase was ranked as most important in determining 

the communities among patients without ALI. This may indicate that OTUs among 

patients with ALI express proteins to resist antibiotics at a higher level than OTUs among 

patients without ALI, giving them an advantage in resisting antibiotic treatment. Since 

OTUs among patients without ALI do not express this function at a high level, they may 

be more susceptible to antibiotic treatment. Glyceraldehyde phosphate dehydrogenase 

plays an important role in adherence of Neisseria meningitidis to nasal epithelial cells, 

suggesting that its expression may play a role in bacterial pathogenicity. This implies that 

bacterial communities in both groups of patients may be pathogenic, but are so in 

different ways according to the presence of ALI. If these functions can be experimentally 

validated, they may guide identification of specific therapeutic targets to prevent 

infection in patients both with and without ALI.  
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 In an effort to confirm our computational work, we developed a method to 

mechanistically evaluate the impact of wood smoke particles on the interaction between 

bacteria and HBECs. Our additional studies suggest that bacteria inhibit cellular oxidative 

stress responses, which could be protective for cell survival. Future studies will be done 

to confirm and expand this work.  

 Our work has several limitations. Collection of burn patient bronchial washings 

was not originally intended for a microbiome study, which limited our ability to control 

for patient clinical treatment, alter collection conditions, and expand sample collection to 

encompass a greater number of patients. This also prevented us from collecting additional 

material to perform parallel transcriptomics and metabolomics studies in order to confirm 

the computationally predicted functions from the 16S rRNA sequencing results. The 

samples were taken and used first and foremost for patient care. Whatever was left after 

clinical testing was done was stored frozen in the sample repository. When this study was 

done, the samples had been stored for at least one year, prohibiting quantification and 

identification of bacterial species through traditional selective culture. The 

computationally predicted functions require experimental validation, which can be done 

in future studies. The in vitro experimental model is simplistic in its representation of the 

microbiota. We were limited to use of aerobic bacterial species when facultative 

anaerobic bacteria were identified as significantly enriched in the burn patients, and we 

used a single species when the microbiota is clearly more complex than this. Future 

studies will need to expand the complexity of the introduced community. 
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8.2 Future Directions 

 The nature of this data set leaves a variety of future directions open, from further 

observational studies with longitudinal data, to application of other computational 

methods, to mouse and continuation of in vitro cell and bacterial models.  

 

8.2.1 Continuing Studies 

 Although we only performed a cross-sectional study with this data set, multiple 

samples per patient taken throughout their stay at the Burn Center were sequenced. These 

samples could be incorporated into a longitudinal study examining how the airway 

microbiota change throughout recovery. Patient clinical information exists in the RedCap 

database for each of these data points, allowing correlation of changes in cytokine 

production, PaO2/FiO2 ratio, carboxyhemoglobin levels, and others with the composition 

of the microbiota at each time point. Since this is clinical data, however, samples were 

not taken at consistent time intervals and fewer samples exist for patients with longer 

hospital stays. A longitudinal study will be biased towards patients with poorer outcomes 

since these patients were required to stay in the Burn Center for longer periods of time. 

The Burn Center implemented a routine standard of care for all incoming patients prior to 

collection of the samples used in our work. Plans exist to start collecting new samples 

from incoming patients according to this new protocol, which will increase consistency 

among sample collection and patient treatment. A future study could take advantage of 

this and repeat our cross-sectional study along with performing a longitudinal study. 

Other samples, such as oral and nasal swabs and fecal samples, could be collected 
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alongside the bronchial washings, expanding the study from the lower airway microbiota 

to upper airways and gut. 

 Additional work with our predicted bacterial functions could be done to associate 

various patient variables with changes in predicted functions. For example, we found that 

patient BMI drives similarity of the airway microbiota among all patients. Functional 

predictions for these communities could be associated with the respective patient BMIs 

and overall outcomes to predict the influence of BMI on microbiota interactions. 

Longitudinal analysis could show how interactions among the bacteria change over time 

along with their predicted functions, perhaps revealing dependencies among bacteria or 

competitive relationships that could be manipulated to improve patient outcomes. 

Clearly, these functional predictions require experimental validation. This could be done 

through isolation of bacterial strains with the functions of interest, and then employing 

bacterial genetic manipulation to mutate the gene of interest. The mutant bacterial strains 

could then be introduced to a mouse model of inhalation injury and metagenomic 

sequencing as well as transcriptomics and metabolomics could be performed to evaluate 

the impact of this function and its removal on inhalation injury. If collection of patient 

samples is re-started, bacterial RNA and protein could be isolated for specific detection 

of the functions of interest. This could be expanded to samples from additional body 

areas in order to compare functional changes across body sites. 

 The additional studies we initiated using HBECs, bacteria, and wood smoke 

particles could be expanded in future studies. As mentioned above, a limitation of this 

model is its simplicity in replicating the microbiota. Study of individual bacterial species 

will lead to an understanding of how each interacts with HBECs following smoke 
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exposure, which is valuable and may aid in understanding specific community 

interactions. However, the presence of other bacterial species may alter the functions of 

these individual species and their interactions with HBECs, rendering results using 

individual species meaningless. Future studies should employ a complex mixture of 

bacteria identified in burn patient airways following burn and inhalation injury. Further 

tailoring of these communities could be done by modeling them after species identified in 

patients with specific diseases, such as ALI and pneumonia. Our experiments with this 

model focused on the response of HBECs, but future studies should isolate RNA and 

protein from bacteria in order to evaluate their response as well. Finally, the biological 

relevance of this model could be improved through use of whole wood smoke. Methods 

exist to expose cells to whole cigarette smoke, and other methods are under development 

to expose cells to whole wood smoke. At the time we conducted these studies, none of 

these methods were able to provide a consist dose of smoke to the cells. However, future 

studies should be able to overcome this limitation, and may be able to use customized 

mixtures of smoke replicating the conditions burn patients have been exposed to. 

 

8.2.2 Mouse Models 

 Mice are a commonly used model in biomedical research in general as well as 

within the microbiome field [42,123,125,307]. Advances in genetic manipulation along 

with the creation of germ-free and gnotobiotic mice have allowed discovery of the 

importance and function of the microbiome in ways that are not possible to do with 

humans [66]. Although we have begun to incorporate cell culture models, our study 

would benefit from use of a mouse model. Inhalation injury could be induced in both 
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germ-free and conventionalized mice in order to examine changes in airway microbiota 

over time in a more controlled manner than is possible in the burn patients. The germ-free 

mice could also be colonized with customized communities of bacteria that reflect those 

found in the airways of burn patients, allowing controlled study of their function and 

interaction. Gnotobiotic mice could be created by introducing specific bacteria of interest 

to germ-free mice, such as Prevotella melaninogenica. RNA and protein could be 

isolated to examine changes in gene expression and function as a result of these bacteria, 

and bacterial species lacking or containing specific functions could be studied as well. A 

mouse model ties together the observational metagenomic and predictive computational 

portions of our work with the more focused, mechanistic cell culture model. Mice allow 

specific manipulation of both the host and the microbiota, which can lead to confirmation 

of the human studies and closer examination of interactions that cannot be replicated in 

the cell culture model.  

 

8.2.3 Predictive Modeling 

 Besides future experimental studies, additional computational methods could be 

incorporated into this work in order to model changes in community composition and 

function over time and predict patient outcomes. Changes in microbiota associated with 

development of a specific disease, such as pneumonia, could be traced over time. This 

would allow identification of changes in bacterial interactions and functions at specific 

time points that lead to development of pneumonia, possibly providing windows of time 

in which to most effectively target the responsible bacteria. Due to the heterogeneity in 

both patient clinical data and microbiota composition, such a model would require a large 
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number of patients and longitudinal samples in order to achieve accuracy. Replication of 

such a study would be necessary in a mouse model, where specific communities could be 

assembled and monitored in order to confirm their impact on outcome. If such a study 

could be done, it would provide additional clinical guidelines that physicians could use to 

test for specific bacteria at specific time points in accordance with specific clinical 

indications in order to assess the likelihood of development of certain diseases. This 

could allow early and targeted treatment that may improve burn patient outcomes 

following inhalation injury. 

 

8.3 Conclusion 

In conclusion, this study begins with an observational metagenomic study, 

incorporates advanced computational methods to predict bacterial interactions and 

functions, and suggests specific hypotheses relevant to these predictions that can be 

experimentally validated. Our work leaves several avenues open for future study, 

including incorporation of mouse models to confirm and further explore community 

interactions, as well as predictive modeling of longitudinal data. Mechanistic, hypothesis-

driven work is crucial to identifying specific, effective therapeutic targets within the 

microbiome, but large-scale, high-dimensional studies are necessary to understanding the 

importance of these hypotheses to the overall community dynamics. Incorporation of 

both of these approaches takes into consideration community interactions as a whole to 

identify specific functions that can be validated with mechanistic studies. Our work 

attempts to unite high-dimensional, large-scale data analysis with more traditional 

mechanistic work in order to improve the overall efficiency and effectiveness of 
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metagenomic studies and their application to human health. It provides a starting point 

for the expansion of future studies to investigate and confirm specific host-microbe and 

microbe-microbe interactions, which may provide effective targets for therapeutic 

intervention within the burn patient population. 
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APPENDIX 1: DNA EXTRACTION PROTOCOL 

 
Extraction of DNA Using Lysis Buffer Containing Lysozyme and Qiagen UCP Pathogen 
Mini Kit  
 
This protocol gives high quality and high yield S. aureus DNA. 
Materials Needed: 

• Lysis buffer: 200mM NaCl, 100mM Tris pH 8 (filtered), 20mM EDTA (filtered), 
20 mg/ml lysozyme 

• RNase A (20ug/ml) 
• 10% SDS (filtered) 
• Qiagen UCP Pathogen Mini Kit 
• Qiagen Pathogen Lysis tubes 

 
Protocol: 

1. Dissolve lysozyme in lysis buffer at 37C. 
a. Lysozyme hydrolyzes β(1→4) linkages between N-acetylmuramic acid 

and N-acetyl-D-glucosamine residues in peptidoglycan; this step dissolves 
lysozyme into the lysis buffer solution, which will enhance its activity 

2. Resuspend sample in 400µl of lysis buffer; transfer to lysing tubes. 
a. Sample is in lysis buffer but lysozyme is not activated yet 

3. Vortex and incubate at 37C for 30 min. 
a. Activation of lysozyme; degradation of gram positive cell wall, allowing 

cell membrane to swell and lyse in next step 
4. Vortex for 10 min at full speed 

a. This will mechanically break up the cell wall in preparation for cell 
membrane lysis 

5. Add 45ul of SDS and vortex. 
a. SDS is an ionic detergent and will disarticulate the cell membrane, 

allowing the cell to lyse open and release RNA, DNA, proteins 
6. Add 1ul of RNase A and vortex. Let sit at room temperature for 30 min. 

a. Breakdown of RNA into pieces; RNA will contribute to overall nucleic 
acid concentration and I only want DNA; this does not remove the RNA 
nucleic acids, just breaks down the RNA 

7. Spin down briefly and transfer 400uL to clean microcentrifuge tubes 
8. Continue with step 1 of Qiagen QIAamp UCP Pathogen Mini Kit Protocol: 

Sample Prep (Spin Protocol), pg33: 
9. Add 40 µl Proteinase K and mix the sample by vortexing for 10 s. 
10. Incubate the sample at 56°C for 1hr. 
11. Add 200 µl of Buffer APL2 to the sample. Close the cap and mix by 

pulse-vortexing for 30 s. Note: In order to ensure efficient pathogen lysis, it is essential 
that the sample and Buffer APL2 are mixed thoroughly to yield a homogeneous solution. 

12. Incubate at 70°C for 10 min. 
a. This inactivates Proteinase K 

12. Briefly spin the tube to remove drops from the inside of the lid. 
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13. Add 300 µl ethanol to the lysate. Close the cap, and mix thoroughly 
by pulse-vortexing for 15–30 s. 
 a. DNA is insoluble in ethanol; this will precipitate it out of solution 
14. Carefully apply 600 µl of the mixture from step 6 to the QIAamp UCP 
Mini spin column (in a 2 ml collection tube) without wetting the rim. 
Close the cap, and centrifuge at 6000 x g (8000 rpm) for 1 min. 
Place the QIAamp Mini spin column in a clean 2 ml collection tube 
(provided), and discard the tube containing the filtrate. 
Close each spin column in order to avoid aerosol formation during 
centrifugation. 
 a. The precipitated DNA stays on the column; it is a silica membrane; proteins 
and other contaminants go through 
15. Repeat step 7 by applying the remaining mixture from step 6 to the 
QIAamp UCP Mini spin column. 
16. Carefully open the QIAamp UCP Mini spin column and add 600 µl 
Buffer APW1 without wetting the rim. Close the cap and centrifuge at 
6000 x g (8000 rpm) for 1 min. Place the QIAamp UCP Mini spin 
column in a clean 2 ml collection tube (not provided), and discard 
the collection tube containing the filtrate.* 
 a. Contains 57% ethanol; allows contaminants to flow through 
17. Carefully open the QIAamp UCP Mini spin column and add 750 µl 
Buffer APW2 without wetting the rim. Close the cap and centrifuge at 
full speed (20,000 x g; 14,000 rpm) for 3 min. 
 a. Contains 70% ethanol; more contaminants flow through 
18. Recommended: Place the QIAamp UCP Mini spin column in a new 2 ml collection 
tube (not provided) and discard the old collection tube with the filtrate. Centrifuge at full 
speed for 1 min. This step helps to eliminate the chance of possible Buffer APW2 
carryover. 
19. Place the QIAamp UCP Mini column into a new 2 ml collection tube. Open the lid 
and incubate the assembly at 56°C for 3 min to dry the membrane completely. 
 a. Drying removes residual ethanol. 
20. Place the QIAamp UCP Mini column in a clean 1.5 ml elution tube and discard the 
collection tube. Carefully apply 20–100 µl of 10:0.1 Tris:EDTA TE buffer to the center 
of the QIAamp UCP Mini membrane. Close the lid and incubate at room temperature for 
1 min. 

Important: Ensure that the elution buffer is equilibrated to room 
temperature. If elution is done in small volumes (<50 µl) the elution buffer 
has to be dispensed onto the center of the membrane for complete elution 
of bound DNA. Elution volume is flexible and can be adapted according to 
the requirements of downstream applications. The recovered eluate volume 
will up to 5 µl less than the elution volume applied onto the column. 

21. Centrifuge at full speed (20,000 x g; 14,000 rpm) for 1 min to elute the DNA. 
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APPENDIX 2: CHAPTER 4 R CODE 

 

#Statistical tests for Walsh et al, 2016 

#Dana Walsh 

#May 10, 2016 

#Contains all the code used for data analysis in the paper above 

 

library("gplots") 

library("ggplot2") 

library("plyr") 

library("compositions") 

 

#Merged and condensed OTU table from Explicet 

taxa_counts <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/OTU_tables/April_8_Explicet_norm_threshold_cntrls_72hrs_for_R.txt", 

sep="\t", header=TRUE) 

fam.counts <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/OTU_tables/April_13_explicet_norm_thresh_fam_for_R.txt", sep="\t", 

header=TRUE)  

 

#Metadata file 
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meta <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Metadata/complete_meta_72hrs_feb_29.txt", sep="\t", header=TRUE) #Most 

recent and complete metadata file - contains Baux scores 

meta$ALI <- as.character(meta$ALI) 

 

taxa.names <- as.character(fam.counts[,1]) 

patient.id <- colnames(fam.counts) 

patient.id <- patient.id[-1] 

fam.counts.only <- as.matrix(fam.counts[,-1]) 

colnames(fam.counts.only) <- NULL #Numbers alone before transposing - keeps data as 

matrix type 

fam.counts.only.t <- as.data.frame(t(fam.counts.only)) #Transpose the counts as a matrix; 

still has controls 

colnames(fam.counts.only.t) <- taxa.names #Add taxa back 

rownames(fam.counts.only.t) <- patient.id 

SampleID <- patient.id 

fam.counts.only.t <- cbind(SampleID, fam.counts.only.t) 

#rownames(fam.counts.only.t) <- NULL 

fam.meta <- merge(meta, fam.counts.only.t, by=SampleID) 

fam.meta.no.cntrls <- fam.meta[-1*1:2,] 

fam.meta.no.cntrls <- fam.meta.no.cntrls[-9,] 
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taxa.names <- taxa_counts[,1] 

taxa.counts.only <- taxa_counts[,-1] 

ids <- colnames(taxa.counts.only) 

taxa.numeric <- matrix(nrow=168, ncol=51) 

for(i in 1:51){  

  taxa.numeric[,i] <- as.numeric(taxa.counts.only[,i]) #Loops through taxa.counts.only 

and makes all columns numeric 

} 

hist(taxa.numeric) #Very left-skewed; sparse 

colnames(taxa.numeric) <- ids 

taxa.numeric.names <- rbind(ids, taxa.numeric) 

taxa.names <- taxa_counts[,1] 

meta$SampleID <- as.character(meta$SampleID) 

ali.id <- cbind(meta$SampleID, meta$ALI) 

write.table(ali.id, "/Users/walshdm/Desktop/ali.id.txt", sep="\t") #Sorted appropriately in 

Excel 

ali.ids.sort <- read.table("/Users/walshdm/Desktop/ali.id.txt", sep="\t", header=TRUE) 

ali.ids.sort <- ali.ids.sort[,-1] 

ali.ids.sort.t <- t(ali.ids.sort) 

taxa.numeric.ali <- rbind(ali.ids.sort.t, taxa.numeric) 

taxa.numeric.ali <- taxa.numeric.ali[-1,] 

taxa.numeric.ali <- taxa.numeric.ali[,-9] #Remove human control 

taxa.numeric.ali <- taxa.numeric.ali[,-1*(49:50)] #Remove S. aureus and reagent controls 
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spock <- taxa.numeric.ali[1,] 

taxa.numeric.ali <- taxa.numeric.ali[-1,] 

taxa.numeric.ali.2 <- matrix(nrow=168, ncol=48) 

for(i in 1:48){  

  taxa.numeric.ali.2[,i] <- as.numeric(taxa.numeric.ali[,i]) #Loops through 

taxa.counts.only and makes all columns numeric 

} 

log.ctr <- clr(taxa.numeric.ali.2) 

wil.p <- apply(log.ctr,1,function(x,y){wilcox.test(x~y, paired=FALSE)$p.value},spock) 

out.wil.p <- data.frame(Taxa=taxa.names, Wilcox=wil.p, CI=wil.ci, p.adj=p.adjust(wil.p, 

method="bonferroni")) 

write.table(out.wil.p, "/Users/walshdm/Desktop/out.wil.p.txt", sep="\t") 

sig.taxa <- which(out.wil.p$Wilcox<=0.05) 

 

#Nope - nothing of significance here (With low abundance removed) 

#Remove low abundance OTUs, convert to log center scale, do wilcoxon again - need to 

add ALI after log center scaling 

abundance.avg <-cbind(taxa.names, as.data.frame(apply(taxa.numeric.ali.2, 1, mean))) 

abundance.avg <- cbind(abundance.avg, taxa.numeric.ali.2) 

write.table(abundance.avg, "/Users/walshdm/Desktop/abundance.avg.txt", sep="\t") 

oneper <- read.table("/Users/walshdm/Desktop/abundance.avg.oneper.txt", sep="\t", 

header=TRUE) 

bugs <- oneper[,1] 
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oneper.num <- oneper[,-1] 

log.ctr <- clr(oneper.num) #log centered scaling for multivariate analysis of 

compositional abundance data 

log.ctr.t <- t(as.data.frame(log.ctr)) 

 

#This loop makes ALI and None into numbers 

spock <- taxa.numeric.ali[1,] 

kirk <- vector(length=48)  

for(i in 1:length(spock)){ #None = 0, ALI = 1 

  if(spock[i]=="None"){ 

    kirk[i] <- 0 

  }else{ 

    kirk[i] <- 1 

  } 

} 

 

wil.p <- as.data.frame(apply(log.ctr,1,function(x,y){wilcox.test(x~y, 

paired=FALSE)$p.value},spock)) 

wil.p.names <- cbind(bugs, wil.p) 

wil.p.names <- cbind(wil.p.names, p.adjust(wil.p, method="bonferroni")) 

colnames(wil.p.names) <- c("Taxa", "Wilcoxon P Value") 
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write.table(log.ctr, "/Users/walshdm/Desktop/log.ctr.txt", sep="\t")  

log.ctr.sort <- read.table("/Users/walshdm/Desktop/log.ctr.txt", sep="\t", header=TRUE) 

x <- log.ctr.sort[,1:24] 

y <- log.ctr.sort[,25:48] 

 

wil.p <- as.data.frame(apply(log.ctr,1,function(x,y){wilcox.test(x~y, 

paired=FALSE)$p.value},status)) 

wil.ci <- as.data.frame(apply(log.ctr,1,function(x,y){wilcox.test(x~y, paired=FALSE, 

conf.int=TRUE)$conf.int},status)) 

 

 

otu.stats <- cbind(taxa.names, wil) 

colnames(otu.stats) <- c("OTU ID", "Wilcoxon P Value")  

wil.p.adj <- as.data.frame(p.adjust(wil[,1], "bonferroni")) #Nothing significant 

otu.stats <- cbind(otu.stats, wil.p.adj) 

cis <- confint(wil) 

 

 

#Alpha Diversity from Explicet 

alpha <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/Diversity/R_alpha_diversity_5_9_16.txt", sep="\t", header=TRUE)  
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boxplot(alpha$Chao1.Mean~alpha$ALI_Status, main="Chao1 Diversity", ylab="Chao 

Index") 

wilcox.test(Chao1.Mean~ALI_Status, data=alpha, p.adj="bonferroni") 

 

boxplot(alpha$Chao1.Mean~alpha$Prevotella, main="Chao1 Diversity", ylab="Chao 

Index", xlab="Prevotella Detected", names=c("No", "Yes")) 

wilcox.test(Chao1.Mean~Prevotella, data=alpha, p.adjust.methods="bonferroni") 

#Chao1 is based on number of rare OTUs found in a sample; non-parametric 

 

boxplot(alpha$Chao1.Mean~alpha$ALI_Status + alpha$Prevotella, main="Chao1 

Diversity", ylab="Chao Index", xlab="Prevotella Detected", names=c("No", "No", "Yes", 

"Yes"), col=c("blue", "red", "blue", "red"))  

#blue = ALI, red = no ALI 

 

chao.anova <- aov(Chao1.Mean~Prevotella + ALI_Status, data=alpha) 

summary(chao.anova) 

TukeyHSD(chao.anova) 

 

chao.lm <- lm(Chao1.Mean~Prevotella + ALI_Status + Prevotella*ALI_Status, 

data=alpha) 

summary(chao.lm) 

 

#ANOVA for anaerobes/aerobes 
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two_way <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/No_Paraprevotella/Files_for_R/Aerobe_ALI_Taxa_Count_Dec_1_AN

OVA.txt", sep="\t", header=TRUE) 

o2.anova2 <- aov(Taxa_Per_Seq_Count~Group, data = two_way) #Needed to run post 

tests - same results as anova on lm 

summary(o2.anova2) 

TukeyHSD(o2.anova2, which="Group") 

confint(o2.anova2) 

aerobe.mod = data.frame(Fitted = fitted(o2.anova2), Residuals = resid(o2.anova2), Group 

= two_way$Group) 

ggplot(aerobe.mod, aes(Fitted, Residuals, colour = Group)) + geom_point() + 

ggtitle("Aerobic Capabilities") #Plots residuals in a single graph 

 

 

#Plot by Aerobic Capabilities 

boxplot(Taxa_Per_Seq_Count~Group, data = two_way, main = "Unique Taxa Per 

Bacterial Aerobic Capabilities", ylab = "Taxa/Molecule Tag") #Makes a boxplot to show 

differences among unique taxa per aerobic ability 

ggplot(two_way, aes(Group, Taxa_Per_Seq_Count, colour = Treatment)) + geom_point() 

ggplot(two_way, aes(Treatment, Taxa_Per_Seq_Count, colour = Group)) + geom_point() 

boxplot(Taxa_Per_Seq_Count~Group*Treatment, data = two_way, las=2, 

par(mar=c(10,5,4,2) + 0.1), main = "Unique Taxa Per Bacterial Aerobic Capabilities", 



	 236	

ylab = "Taxa/Molecule Tag") #Makes a boxplot to show differences among unique taxa 

per aerobic ability 

 

#Calculate SEM for aerobic ability 

two_way_ALI <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/No_Paraprevotella/Files_for_R/Aerobe_ALI_Only_Taxa_Count_Dec_

1_ANOVA.txt", sep="\t", header=TRUE) 

means.sem_oxygen <- ddply(two_way_ALI, c("Group", "Treatment"), summarise, mean 

= mean(Taxa_Per_Seq_Count), sd = sd(Taxa_Per_Seq_Count), sem = 

sd(Taxa_Per_Seq_Count)/sqrt(length(Taxa_Per_Seq_Count))) 

means.sem_oxygen <- transform(means.sem_oxygen, lower = mean-sem, upper = 

mean+sem) 

 

#Make a bar plot with standard deviation error bars for aerobic ability  

theme_set(theme_bw(base_size=14)) 

p <- ggplot(means.sem_oxygen, aes(fill=Treatment, y=mean, x=Group)) 

p + geom_bar(position="dodge", stat="identity") + geom_errorbar(aes(ymin=mean-sem, 

ymax=mean+sem), width = 0.25, position=dodge) + 

theme(axis.text.x=element_text(angle=90, hjust=1, size=9), 

axis.title.y=element_text(size=10), axis.title.x=element_text(size=10), 

legend.title=element_text(size=10)) + xlab("Aerobe/Anaerobe") + ylab("OTUs/Molecule 

Tag Count")  
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dodge <- position_dodge(width=0.9) 

 

#Bar graph for differences in abundance of bacteria detected as significantly different 

among patients with and without ALI 

sig_abundance <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/No_Paraprevotella/Files_for_R/Enriched_Taxa_ALI_Abundance_Dec

_4.txt", sep="\t", header=TRUE) 

#View(sig_abundance) 

 

#Remove taxa not identified as significant by LEfSe 

sig_abundance_2 <- sig_abundance[-1,] 

sig_abundance_2 <- sig_abundance_2[-4,] 

sig_abundance_2 <- sig_abundance_2[-3,] 

 

#Make a barplot of the abundance data 

#png("/Users/walshdm/Documents/Manuscripts/R_figures/lefse_enriched_taxa.png",widt

h=1200,height=800, res=300) 

theme_set(theme_gray(base_size=10)) 

qplot(x = factor(Bacteria), y = Abundance_Increase_In_ALI, fill = Oxygen, data = 

sig_abundance_2, geom = "bar", stat = "identity", position = "dodge") + labs(x = 

"Significantly Enriched Bacterial Taxa", y = "Abundance Increase in ALI (% of Total 

Taxa)") + scale_fill_discrete(name = "Aerobic Ability", labels = c("Facultative 
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Anaerobe", "Obligate Anaerobe")) + theme(axis.text.x = element_text(angle = 90, hjust = 

1, size=5)) #Makes the barplot from the variables indicated in sig_abundance 

ggsave(file="/Users/walshdm/Documents/Meetings/SOT/2016/R_figures/lefse_enriched_

taxa.png", width=1200, height=800, limitsize=FALSE) 

 

dev.off() 

 

#Significant differences among Entero, Staph, Strep in ALI vs none 

Entero.strep <- taxa_counts[1:2,] 

top.3 <- rbind(Entero.strep, taxa_counts[12,]) 

top.3 <- top.3[,-10] 

top.3 <- top.3[,-1*50:51] 

otus <- top.3[,1] 

otus.short <- c("Streptococcus", "Enterobacteriaceae", "Staphylococcus") 

top.3 <- top.3[,-1] 

colnames(top.3) <- spock 

top.3.log.ctr <- clr(top.3) 

rownames(top.3.log.ctr) <- otus.short 

top.3.otus <- cbind(otus.short, top.3.log.ctr) 

wrs.out<- apply(top.3.log.ctr,1,function(x,y){wilcox.test(x~y)$p.value},spock) 

wilcox.top.3 <- cbind(otus.short, wrs.out) 

 

library(reshape2) 
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top.3.melt <- melt(top.3.otus)  

top.3.log.melt <- melt(top.3.log.ctr) 

top.3.melt <- droplevels(top.3.melt) 

top.3.anova <- aov(value~variable*otus, data=top.3.melt) 

summary(top.3.anova) #Interaction between OTUs and ALI status is significant; run one-

way anovas splitting by taxa 

qqnorm(top.3.anova$residuals) 

plot(top.3.anova$fitted.values, top.3.anova$residuals, xlab="Fitted", ylab="Residuals") 

TukeyHSD(top.3.anova) 

 

top.3.anova.taxa <- aov(value~otus, data=top.3.melt) 

summary(top.3.anova.taxa) 

TukeyHSD(top.3.anova.taxa) 

Strep.top.3 <- subset(top.3.melt, variable == 

"k__Bacteria/p__Firmicutes/c__Bacilli/o__Lactobacillales/f__Streptococcaceae/g__Strep

tococcus/s__") 

strep.anova <- aov(value~variable) 

Entero.top.3 <- subset(top.3.melt, variable == 

"k__Bacteria/p__Proteobacteria/c__Gammaproteobacteria/o__Enterobacteriales/f__Enter

obacteriaceae/g__/s__") 

 



	 240	

Staph.top.3 <- subset(top.3.melt, variable == 

"k__Bacteria/p__Firmicutes/c__Bacilli/o__Bacillales/f__Staphylococcaceae/g__Staphylo

coccus/s__") 

 

none.top.3 <- subset(top.3.melt, variable == "ALI") 

none.anova <- aov(value~otus, data=none.top.3) 

summary(none.anova) 

TukeyHSD(none.anova) 

ali.top.3 <- subset(top.3.melt, variable == "None") 
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APPENDIX 3: CHAPTER 5 R CODE 

#Chapter 5 analysis 

#Aug 3 2016 

#Dana Walsh 

 

library(compositions) 

library("randomForest") 

library("e1071") 

 

meta <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Metadata/complete_meta_72hrs_feb_29.txt", sep="\t", header=TRUE) #Most 

recent and complete metadata file - contains Baux scores 

 

#Merged and condensed OTU table from Explicet 

fam.counts <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/OTU_tables/April_13_explicet_norm_thresh_fam_for_R.txt", sep="\t", 

header=TRUE)  

taxa.names <- fam.counts[,1] #Put taxonomy in a separate vector 

abundances <- fam.counts[,-1] 

abundances_t <- t(abundances) 

abundances2 <- clr(abundances) 
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rownames(abundances2) <- taxa.names 

abundances2_t <- t(abundances2) 

 

#For heatmap 

scout <- apply(abundances2_t,2,sum) 

temp <- which(!(scout==0)) 

abundances3_t <- abundances2_t[,temp] 

 

#Manhattan distance and Ward clustering 

distance <- dist(abundances3_t, method="manhattan") 

cluster <- hclust(distance, method="ward.D2") #Used this in R to make a heatmap 

 

#K-means clustering 

fit <- kmeans(abundances3_t, 3) 

 

#K-means heatmap 

distance <- dist(abundances3_t, method='manhattan') 

fit <- kmeans(distance, 3) 

heatmap.2(as.matrix(abundances3_t)[order(fit$cluster),], Rowv=NA, Colv=NA, 

scale="none", trace="none", col=redgreen, xlab="Taxa", ylab="Patient ID", 

margins=c(10,15)) 

abundances.clust <- cbind(fit$cluster, abundances3_t) #OTU table with K-means cluster 

assignments 
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cluster.1.taxa <- abundances.clust[which(abundances.clust[,1]==1),] 

cluster.2.taxa <- abundances.clust[which(abundances.clust[,1]==2),] 

cluster.3.taxa <- abundances.clust[which(abundances.clust[,1]==3),] 

 

 

#Add BMI  

abundances4_t <- abundances3_t 

rownames(abundances4_t) <- meta$BMI 

 

#ALI Status of Clusters 

cluster.1.ali <- meta.cluster[which(meta.cluster[,2]==1),19] 

cluster.2.ali <- meta.cluster[which(meta.cluster[,2]==2),19] 

cluster.3.ali <- meta.cluster[which(meta.cluster[,2]==3),19] 

 

#Average BMI per Cluster 

cluster.1 <- meta.cluster[which(meta.cluster[,1]==1),37] 

cluster.2 <- meta.cluster[which(meta.cluster[,1]==2),37] 

cluster.3 <- meta.cluster[which(meta.cluster[,1]==3),37] 

cluster.1 <- cluster.1[-1] 

cluster.2 <- cluster.2[-1] 

cluster.2 <- cluster.2[-5] 

cluster.3 <- cluster.3[-9] 

cluster.3 <- cluster.3[-10] 
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cluster.1 <- as.numeric(levels(cluster.1))[cluster.1] 

cluster.2 <- as.numeric(levels(cluster.2))[cluster.2] 

cluster.3 <- as.numeric(levels(cluster.3))[cluster.3] 

mean(cluster.1) 

mean(cluster.2) 

mean(cluster.3) 

 

#Average Age per Cluster 

cluster.1.age <- meta.cluster[which(meta.cluster[,1]==1),29] 

cluster.2.age <- meta.cluster[which(meta.cluster[,1]==2),29] 

cluster.3.age <- meta.cluster[which(meta.cluster[,1]==3),29] 

cluster.1.age <- cluster.1[-1] 

cluster.2.age <- cluster.2[-1] 

cluster.2.age <- cluster.2[-5] 

cluster.3.age <- as.numeric(levels(cluster.3.age))[cluster.3.age] 

mean(cluster.1.age) 

mean(cluster.2.age) 

mean(cluster.3.age) 

 

#Average SeqCount per Cluster 

cluster.1.seq <- meta.cluster[which(meta.cluster[,1]==1),14] 

cluster.2.seq <- meta.cluster[which(meta.cluster[,1]==2),14] 

cluster.3.seq <- meta.cluster[which(meta.cluster[,1]==3),14] 
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cluster.1.seq <- cluster.1.seq[-1] 

cluster.2.seq <- cluster.2.seq[-1] 

cluster.2.seq <- cluster.2.seq[-5] 

cluster.1.seq <- as.numeric(levels(cluster.1.seq))[cluster.1.seq] 

cluster.2.seq <- as.numeric(levels(cluster.2.seq))[cluster.2.seq] 

cluster.3.seq <- as.numeric(levels(cluster.3.seq))[cluster.3.seq] 

mean(cluster.1.seq) 

mean(cluster.2.seq) 

mean(cluster.3.seq) 

 

#Average IL-8 per Cluster 

cluster.1.il8 <- meta.cluster[which(meta.cluster[,1]==1),54] 

cluster.2.il8 <- meta.cluster[which(meta.cluster[,1]==2),54] 

cluster.3.il8 <- meta.cluster[which(meta.cluster[,1]==3),54] 

cluster.1.il8 <- cluster.1.il8[-1] 

cluster.2.il8 <- cluster.2.il8[-1] 

cluster.2.il8 <- cluster.2.il8[-5] 

cluster.1.il8 <- as.numeric(levels(cluster.1.il8))[cluster.1.il8] 

cluster.2.il8 <- as.numeric(levels(cluster.2.il8))[cluster.2.il8] 

cluster.3.il8 <- as.numeric(levels(cluster.3.il8))[cluster.3.il8] 

mean(cluster.1.il8) 

mean(cluster.2.il8) 

mean(cluster.3.il8) 
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#Days on Vent 

cluster.1.vent <- meta.cluster[which(meta.cluster[,1]==1),43] 

cluster.2.vent <- meta.cluster[which(meta.cluster[,1]==2),43] 

cluster.3.vent <- meta.cluster[which(meta.cluster[,1]==3),43] 

cluster.1.vent <- cluster.1.vent[-1] 

cluster.2.vent <- cluster.2.vent[-1] 

cluster.2.vent <- cluster.2.vent[-5] 

cluster.1.vent <- as.numeric(levels(cluster.1.vent))[cluster.1.vent] 

cluster.2.vent <- as.numeric(levels(cluster.2.vent))[cluster.2.vent] 

cluster.3.vent <- as.numeric(levels(cluster.3.vent))[cluster.3.vent] 

mean(cluster.1.vent) 

mean(cluster.2.vent) 

mean(cluster.3.vent) 

 

#IL12p70 

cluster.1.il12 <- meta.cluster[which(meta.cluster[,1]==1),50] 

cluster.2.il12 <- meta.cluster[which(meta.cluster[,1]==2),50] 

cluster.3.il12 <- meta.cluster[which(meta.cluster[,1]==3),50] 

cluster.1.il12 <- cluster.1.il12[-1] 

cluster.2.il12 <- cluster.2.il12[-1] 

cluster.2.il12 <- cluster.2.il12[-5] 

cluster.1.il12 <- as.numeric(levels(cluster.1.il12))[cluster.1.il12] 

cluster.2.il12 <- as.numeric(levels(cluster.2.il12))[cluster.2.il12] 
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cluster.3.il12 <- as.numeric(levels(cluster.3.il12))[cluster.3.il12] 

mean(cluster.1.il12) 

mean(cluster.2.il12) 

mean(cluster.3.il12) 

 

MT_cntrls <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/MT_cntrls.txt", sep="\t", header=TRUE) 

meta.cluster <- cbind(MT_cntrls$MT_Count, meta.cluster) 

 

#MT_Counts 

cluster.1.mt <- meta.cluster[which(meta.cluster[,2]==1),1] 

cluster.2.mt <- meta.cluster[which(meta.cluster[,2]==2),1] 

cluster.3.mt <- meta.cluster[which(meta.cluster[,2]==3),1] 

mean(cluster.1.mt) 

mean(cluster.2.mt) 

mean(cluster.3.mt) 

 

#Baux Score 

cluster.1.baux <- meta.cluster[which(meta.cluster[,2]==1),14] 

cluster.2.baux <- meta.cluster[which(meta.cluster[,2]==2),14] 

cluster.3.baux <- meta.cluster[which(meta.cluster[,2]==3),14] 

cluster.1.baux <- cluster.1.baux[-1] 
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cluster.2.baux <- cluster.2.baux[-1] 

cluster.2.baux <- cluster.2.baux[-5] 

cluster.1.baux <- as.numeric(levels(cluster.1.baux))[cluster.1.baux] 

cluster.2.baux <- as.numeric(levels(cluster.2.baux))[cluster.2.baux] 

cluster.3.baux <- as.numeric(levels(cluster.3.baux))[cluster.3.baux] 

mean(cluster.1.baux) 

mean(cluster.2.baux) 

mean(cluster.3.baux) 

 

#Hierarchical clustering 

rownames(abundances) <- taxa.names 

 

#3D PCA plot 

library(nsprcomp) 

#Non-negative sparse PCA (NSPCA) 

burn.nspca <- nsprcomp(abundances, nneg=TRUE, scale.=TRUE) 

 

#3D Scatterplots 

library("scatterplot3d") 

#Colored by ALI status 

png("/Users/walshdm/Documents/Dissertation/Chpt_5/pca.png", width=1200, 

height=1200, res=300) 
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scatterplot3d(burn.nspca$rotation[,1], burn.nspca$rotation[,2], burn.nspca$rotation[,3], 

main="ALI Status", color=meta$ALI_color, pch=16, xlab="PC1", ylab="PC2", 

zlab="PC3", cex.axis=0.5, cex.lab=0.7) 

legend("topright", legend=paste(c('ALI', 'None', 'Human', 'Bacteria', 'Control')), pch=16, 

col=c("blue", "red", "black", "yellow", "pink"), cex=0.7, inset=c(0.1, 0.2), bty="n") 

dev.off() 

 

#DAPC 

library("adegenet") 

grp <- find.clusters(abundances_t, max.n.clust=40) 

dapc1 <- dapc(abundances_t, grp$grp) 

scatter(dapc1) 

 

#Hierarchical clustering 

hc <- hclust(dist(abundances_t), method="ward.D2") 

par(mfrow=c(1,1)) 

plot(hc, cex=.6) 

 

#Cut the tree 

rect.hclust(hc, k=3) 

 

#Define clusters 

mycl <- cutree(hc, k=3) 
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#MT_Count 

MTs <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/MT_Tag_Counts.txt", sep="\t", header=TRUE) 

MT_Counts <- MTs$MT_Count 

 

 

#Random forest 

meta.dapc.rf <- meta.cluster[,-(1:12)] 

meta.dapc.rf <- meta.dapc.rf[-(1:2),] #Removes controls 

meta.dapc.rf <- meta.dapc.rf[-(9),] #Removes controls 

meta.dapc.rf <- meta.dapc.rf[,-2] #Removes SeqCount 

meta.dapc.rf <- meta.dapc.rf[,-(4:15)] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-(5:11)] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-(7:8)] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-(10:13)] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-17] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-(19:23)] #Removes non-numeric columns 

meta.dapc.rf <- meta.dapc.rf[,-(20:22)] #Removes non-numeric columns 

meta.dapc.rf <- cbind(groups.dapc, meta.dapc.rf) 

meta.dapc.rf <- meta.dapc.rf[,-24] #Removes non-numeric columns 

meta.dapc.rf <- cbind(MT_Counts, meta.dapc.rf) 
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choo_train <- meta.dapc.rf[sample(1:nrow(meta.dapc.rf), 38, replace=FALSE),] 

tune.cluster <- tune.randomForest(groups.dapc~., data=choo_train, mtry=c(2.8, 5.6, 

11.1), ntree=c(250,500,1000), na.rm=TRUE) 

x<-summary(tune.cluster) 

rf.cluster <- randomForest(groups.dapc~., data=meta.dapc.rf, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x$best.parameters[1]), 

ntree=as.numeric(x$best.parameters[2])) 

varImpPlot(rf.cluster, cex=.7) 

varImpPlot(rf.cluster, type=2, cex=.7) 
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APPENDIX 4: CHAPTER 6 R CODE 

#Prediction of Functional Changes Among Bacterial Networks in Patients with 

#PaO2/FiO2 ≤ 300 

#Code for paper #2 

#Dana Walsh 

#July 14 2016 

 

library(randomForest) 

library(e1071) 

library(gmodels)  

library(matrixStats) 

library(compositions) 

library(gplots) 

 

#******all_samp is the OTU table used for final network analysis with 

SparCC********* 

#Import tables with thresholds and averaged duplicates (including controls) 

jan_1 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/OTU_tables/Threshold_OTU_nums/Jan_1a_averaged_otu_nums.txt", 

sep="\t", header=TRUE, stringsAsFactors = FALSE) 

jan_2 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin
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g_Analysis/OTU_tables/Threshold_OTU_nums/Jan_2a_averaged_otu_nums.txt", 

sep="\t", header=TRUE, stringsAsFactors = FALSE) 

dec <-

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/OTU_tables/Threshold_OTU_nums/Dec_averaged_otu_nums.txt", sep="\t", 

header=TRUE, stringsAsFactors = FALSE) 

#cntrls <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Picrust/Cntrls_avgs_no_OTUnum_april_8.txt", sep="\t", header=TRUE) 

all_jan <- merge(jan_1, jan_2, by="OTUId", all=TRUE) 

all_samp <- merge(all_jan, dec, by="OTUId", all=TRUE) 

for(i in 1:nrow(all_samp)){ #Converts NAs to zero counts 

  all_samp[i, is.na(all_samp[i,])] <- 0 

} 

write.table(all_samp, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/OTU_tables/all_samp_taxa.txt", sep="\t") 

all_samp_taxa <- all_samp 

# taxa <- as.character(all_samp_taxa$taxonomy) 

# all_samp_taxa <- all_samp_taxa[,-25] 

# all_samp_taxa <- cbind(taxa, all_samp_taxa) 

 

taxa <- all_samp$taxonomy 
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all_samp <- all_samp[,-25] 

write.table(all_samp, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/OTU_tables/all_samp.txt", sep="\t") 

 

#Add taxonomy back to all_samp 

taxonomy_2 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/OTU_tables/all_otuids_taxa.txt", sep="\t", 

header=TRUE, stringsAsFactors = FALSE) 

taxa.names.2 <- list() #Adds taxonomy to appropriate OTU ID - some OTUs were 

missing from above table 

for(i in 1:nrow(all_samp_taxa)){ 

  taxa.names.2[[i]] <- which(all_samp_taxa[i,1]== taxonomy_2[,1]) 

  if (all_samp_taxa[i,25]==0){ 

    all_samp_taxa[i,25] = taxonomy_2[taxa.names.2[[i]],2] 

  } 

} 

write.table(all_samp_taxa,"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_A

nalysis/Working_Analysis/Community_Analysis/OTU_tables/all_samp_taxa.txt", 

sep="\t") 

 

#Cluster assignments from Natalie - want to know their abundances 



	 255	

ALI.comm <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Community_Assignments/Communities_ALI.txt", 

sep="\t", header=TRUE) 

#ALI <- as.matrix(ALI.comm) 

No.ALI.comm <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Community_Assignments/Communities_No_ALI.txt", 

sep="\t", header=TRUE) 

 

#Add Abundances In 

taxonomy <- all_samp_taxa$taxonomy 

OTUIDs <- all_samp$OTUId 

all_samp_norm <- all_samp_taxa[,-1] 

all_samp_norm <- all_samp_norm[,-24] 

all_samp_norm <- as.matrix(all_samp_norm) 

all_samp_norm <- scale(all_samp_norm, center=F, scale=colSums(all_samp_norm)) 

#Normalizes the table to relative abundances 

all_samp_norm <- cbind(OTUIDs, taxonomy, all_samp_norm) 

ALI.norm <- cbind(OTUIDs, taxonomy, all_samp_norm[,4], all_samp_norm[,7], 

all_samp_norm[,9], all_samp_norm[,12], all_samp_norm[,13], all_samp_norm[,14], 

all_samp_norm[,16], all_samp_norm[,19:22], all_samp_norm[,26], all_samp_norm[,27], 
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all_samp_norm[,28], all_samp_norm[,29], all_samp_norm[,32], all_samp_norm[,36:40], 

all_samp_norm[,42]) 

ALI.colnames <- c("OTUIDs", "taxonomy", "X41", "X74", "X79", "X93", "X104", 

"X110", "X146", "X172", "X176", "X182", "X202", "X209", "X219", "X229", "X238", 

"X307", "X356", "X368", "X372", "X2", "X25", "X149") 

colnames(ALI.norm) <- ALI.colnames 

No.ALI.norm <- cbind(OTUIDs, taxonomy, all_samp_norm[,3], all_samp_norm[,5], 

all_samp_norm[,6], all_samp_norm[,8], all_samp_norm[,10], all_samp_norm[,11], 

all_samp_norm[,15], all_samp_norm[,17:18], all_samp_norm[,23:25], 

all_samp_norm[,30:31], all_samp_norm[,33:35], all_samp_norm[,41], 

all_samp_norm[,43])  

No.ALI.colnames <- c("OTUIDs", "taxonomy", "X14", "X63", "X66", "X78", "X81", 

"X89", "X124", "X153", "X169", "X207", "X364", "X380", "X246", "X255", "X314", 

"X317", "X337", "X128", "X186") 

colnames(No.ALI.norm) <- No.ALI.colnames 

 

abundance.matches <- list() #Finds rows in ALI.norm that match ALI.comm 

for(i in 1:nrow(ALI.comm)){ 

  abundance.matches[[i]] <- which(ALI.norm[,1]==ALI.comm[i,1]) 

} 

abundance.match.unlist <- unlist(abundance.matches) 

ALI.comm.abundances <- cbind(ALI.comm, ALI.norm[abundance.match.unlist,-1])  

ALI.comm.abundances <- ALI.comm.abundances[order(ALI.comm.abundances[,2]),] 
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write.table(ALI.comm.abundances, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Community_Assignments/ALI.comm.abundances.txt", sep="\t") 

 

abundance.matches.2 <- list() #Finds rows in No.ALI.norm that match No.ALI.comm 

for(i in 1:nrow(No.ALI.comm)){ 

  abundance.matches.2[[i]] <- which(No.ALI.norm[,1]==No.ALI.comm[i,1]) 

} 

abundance.match.unlist.2 <- unlist(abundance.matches.2) 

No.ALI.comm.abundances <- cbind(No.ALI.comm, 

No.ALI.norm[abundance.match.unlist.2,-1])  

No.ALI.comm.abundances <- 

No.ALI.comm.abundances[order(No.ALI.comm.abundances[,2]),] 

write.table(No.ALI.comm.abundances, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Community_Assignments/No.ALI.comm.abundances.txt", 

sep="\t") 

 

 

#PICRUSt total predicted functions for all possible taxa/OTU IDs 

OTU_functions <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin
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g_Analysis/72hrs/PICRUSt/threshold_15/predicted_traits_15_for_R.txt", sep="\t", 

header=TRUE) 

OTU_nums <- as.character(OTU_functions$OTU_IDs) 

OTU_split <- strsplit(OTU_nums, "_") #Splits the numbers from 'OTU' 

OTU_split_2 <- matrix(unlist(OTU_split), ncol=2, byrow=TRUE) #Unlists OTU_split 

and turns it into a matrix 

OTU_functions_2 <- OTU_functions 

OTU_functions_2[,1] <- OTU_split_2[,2] #Adds OTU ID numbers without 'OTU' 

 

#Match OTU IDs and add predicted function counts to community assignments 

matches <- list() #Finds rows in OTU_functions_2 that match ALI.comm 

for(i in 1:nrow(ALI.comm)){ 

  matches[[i]] <- which(OTU_functions_2[,1]==ALI.comm[i,1]) 

} 

match.unlist <- unlist(matches) 

ALI.comm.funct <- cbind(ALI.comm, OTU_functions_2[match.unlist,-1])   

#ALI.comm.funct is matrix to use for downstream analysis of functions per community 

for patients with ALI 

write.table(ALI.comm.funct, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Community_Assignments/ALI.comm.funct.txt", sep="\t") 

 

#Match OTU IDs and add predicted function counts to community assignments 
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matches_none <- list() #Finds rows in OTU_functions_2 that match No.ALI.comm 

for(i in 1:nrow(No.ALI.comm)){ 

  matches_none[i] <- which(OTU_functions_2[,1]==No.ALI.comm[i,1]) 

} 

match.none.unlist <- unlist(matches_none) 

No.ALI.comm.funct <- cbind(No.ALI.comm, OTU_functions_2[match.none.unlist,-1])  

#No.ALI.comm.funct is matrix to use for downstream analysis of functions per 

community for patients with no ALI 

write.table(No.ALI.comm.funct, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Community_Assignments/No.ALI.comm.funct.txt", sep="\t") 

 

#The only difference between the two files is the community assignment number 

 

 

#Which functions predict community assignment? For patients with ALI 

 

scout <- apply(ALI.comm.funct,2,sum) 

temp <- which(!(scout==0)) 

ALI.comm.funct2 <- ALI.comm.funct[,temp] #Removes columns which sum to zero 

(ALI) 

ALI.comm.funct2.summary <- as.matrix(apply(ALI.comm.funct2,2,summary)) 
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#Add taxa names back to list of communities + functions 

taxa.names.2 <- list() #Adds taxonomy to appropriate OTU ID 

for(i in 1:nrow(ALI.comm.funct2)){ 

  taxa.names.2[[i]] <- which(ALI.comm.funct2[i,1]==taxonomy_2[,1]) 

} 

 

taxa.names.2.unlist <- matrix(unlist(taxa.names.2), ncol=1, byrow=TRUE) 

ALI.comm.funct2 <- cbind(taxonomy_2[taxa.names.2.unlist,2], ALI.comm.funct2) 

 

taxa.names.3 <- list() #Adds taxonomy to appropriate OTU ID 

for(i in 1:nrow(No.ALI.comm.funct2)){ 

  taxa.names.3[[i]] <- which(No.ALI.comm.funct2[i,1]==taxonomy_2[,1]) 

} 

 

taxa.names.3.unlist <- matrix(unlist(taxa.names.3), ncol=1, byrow=TRUE) 

No.ALI.comm.funct2 <- cbind(taxonomy_2[taxa.names.3.unlist,2], 

No.ALI.comm.funct2) 

 

ALI.comm.funct2.clr <- cbind(ALI.comm.funct2[,(1:3)], clr(ALI.comm.funct2[,-(1:3)])) 

#Centered log ratio transformation; adds taxa, OTU number and community assignments 

back in 

No.ALI.comm.funct2.clr <- cbind(No.ALI.comm.funct2[,(1:3)], 

clr(No.ALI.comm.funct2[,-(1:3)])) 
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write.table(ALI.comm.funct2.clr,"/Users/walshdm/Documents/Burn_Study/Sequencing_

Data_Analysis/Working_Analysis/Community_Analysis/Heatmaps/ALI.comm.funct2.clr

.txt", sep="\t") 

write.table(No.ALI.comm.funct2.clr,"/Users/walshdm/Documents/Burn_Study/Sequenci

ng_Data_Analysis/Working_Analysis/Community_Analysis/Heatmaps/No.ALI.comm.fu

nct2.clr.txt", sep="\t") 

#The above files were used with hierarchical clustering to create a large heatmap of all 

functions for all OTUs (minus those that sum to zero) - this is the same graph for ALI and 

No ALI OTUs 

#Make heatmaps per community assignment 

 

 

#For heatmaps 

taxa.ali <- strsplit(as.character(ALI.comm.funct2.clr[,1]), ";") #Each taxonomy level can 

be indexed separately 

taxa.no.ali <- strsplit(as.character(No.ALI.comm.funct2.clr[,1]), ";") 

 

ALI.comm.funct2.clr <- ALI.comm.funct2.clr[,-(1:2)] 

No.ALI.comm.funct2.clr <- No.ALI.comm.funct2.clr[,-(1:2)] 

 

fam <- matrix(data=NA, nrow=372, ncol=1) 

for(i in 1:nrow(ALI.comm.funct2.clr)){ 
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  fam[i,] <- taxa.ali[[i]][5] 

} #Add selected taxonomic level for heatmap 

 

#rownames(ALI.comm.funct2.clr) <- fam[,1] Can't - duplicate names; use OTU 

ali.community <- ALI.comm.funct2.clr[,1] 

ALI.comm.funct2.clr <- ALI.comm.funct2.clr[,-1] 

 

write.table(ALI.comm.funct2.clr,"/Users/walshdm/Documents/Burn_Study/Sequencing_

Data_Analysis/Working_Analysis/Community_Analysis/Heatmaps/ALI.comm.funct2.clr

.txt", sep="\t") 

write.table(No.ALI.comm.funct2.clr,"/Users/walshdm/Documents/Burn_Study/Sequenci

ng_Data_Analysis/Working_Analysis/Community_Analysis/Heatmaps/No.ALI.comm.fu

nct2.clr.txt", sep="\t") 

 

scout_2 <- apply(No.ALI.comm.funct,2,sum) 

temp_2 <- which(!(scout_2==0)) 

No.ALI.comm.funct2 <- No.ALI.comm.funct[,temp_2] #Removes columns which sum to 

zero (No ALI) 

No.ALI.comm.funct2.summary <- as.matrix(apply(No.ALI.comm.funct2,2,summary)) 

 

 

#Heatmap with all functions and ALI + No ALI 

ALI.Status <- rep(c("ALI", "No.ALI"), each=372) 
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All.comm.funct <- rbind(ALI.comm.funct2, No.ALI.comm.funct2) 

All.comm.funct <- cbind(ALI.Status, All.comm.funct) 

All.comm.funct.clr <- clr(All.comm.funct[,-(1:3)]) #Centered log ratio transformation - 

deals with compositional data 

write.table(All.comm.funct.clr, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Heatmaps/All.comm.funct.clr.txt", sep="\t") 

 

write.table(All.comm.funct, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Heatmaps/All.comm.funct.txt", sep="\t") 

 

heatmap2 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Heatmaps/All.comm.funct.txt", sep="\t", 

header=TRUE) 

heatmap <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Heatmaps/All.comm.funct.clr.txt", sep="\t", 

header=TRUE) 

 

#Manhattan distance, Ward clustering, heatmap 

distance <- dist(All.comm.funct.clr, method="manhattan") 
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cluster <- hclust(distance, method="ward.D2") 

 

heatmap.2(All.comm.funct.clr, Rowv=as.dendrogram(cluster), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="OTU", ylab="Predicted Function", 

margins=c(10,15)) 

 

 

#Which functions predict ALI vs None? Combined functional predictions for patients 

with and without ALI 

#Which of the most variable functions predict ALI? 

All.var <- as.matrix(apply(All.comm.funct,2,var)) #542 > 0.3; use for random forest 

features 

All.rf <- cbind(ALI.Status, All.comm.funct[,which(All.var>0.3)]) #Use this for random 

forest on Kure 

All.rf.kure <- All.rf[,-(2:3)] 

All.rf.comm <- All.rf[,-(1:2)] 

write.table(All.rf.kure, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Community_Assignments/All.rf.kure.txt", sep="\t") 

 

#Random Forest for most variable KOs that predict ALI vs No ALI 

set.seed(18) 
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choo_train <- All.rf.kure[sample(1:nrow(All.rf.kure), nrow(All.rf.kure)*0.5, 

replace=FALSE),] 

tune <- tune.randomForest(ALI.Status~., data=choo_train, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x<-summary(tune) 

 

#Entire data set 

rf.ALI <- randomForest(ALI.Status~., data=All.rf.kure, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x$best.parameters[1]), 

ntree=as.numeric(x$best.parameters[2])) 

png("/nas02/home/w/a/walshdm/R_Analyses/RF_ALI/rf_ALI.png", width=800, 

height=1200, res=300) 

varImpPlot(rf.ALI, cex=.7) 

dev.off() 

 

#Which functions that are most prevalent predict ALI? 

All.sum <- as.matrix(apply(All.comm.funct[,-(1:3)],2,sum)) #726 columns have sums 

greater than 410; use these 

All.sum.rf <- cbind(ALI.Status, All.comm.funct[,which(All.sum>410)]) 

All.sum.rf <- All.sum.rf[,-2] 

set.seed(2) 

choo_train4 <- All.sum.rf[sample(1:nrow(All.sum.rf), nrow(All.sum.rf)*0.5, 

replace=FALSE),] 
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tune4 <- tune.randomForest(ALI.Status~., data=choo_train4, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x4<-summary(tune4) 

 

#Entire data set 

rf.ALI.sum <- randomForest(ALI.Status~., data=All.sum.rf, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x4$best.parameters[1]), 

ntree=as.numeric(x4$best.parameters[2])) 

varImpPlot(rf.ALI.sum, cex=.7) 

 

#Random forest for most variable KOs (same as above) that predict community 

assignments (ALI & No ALI together) 

All.rf.comm <- cbind(ALI.Status, All.rf.comm) 

ALI.comm.char <- paste(All.rf.comm$ALI.Status, All.rf.comm$Community, sep="_") 

All.rf.comm <- cbind(ALI.comm.char, All.rf.comm) 

All.rf.comm <- All.rf.comm[,-(2:3)] 

 

set.seed(25) 

choo_train2 <- All.rf.comm[sample(1:nrow(All.rf.comm), nrow(All.rf.comm)*0.5, 

replace=FALSE),] 

tune2 <- tune.randomForest(ALI.comm.char~., data=choo_train2, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x2<-summary(tune2) 
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rf.ALI.comm <- randomForest(ALI.comm.char~., data=All.rf.comm, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x2$best.parameters[1]), 

ntree=as.numeric(x2$best.parameters[2])) 

varImpPlot(rf.ALI.comm, cex=.7) 

 

All.rf.comm <- cbind(ALI.Status, All.rf.comm) 

ALI.comm.char <- paste(All.rf.comm$ALI.Status, All.rf.comm$community, sep="_") 

All.rf.comm <- cbind(ALI.comm.char, All.rf.comm) 

All.rf.comm <- All.rf.comm[,-(2:3)] 

 

#Random forest for most prevalent KOs with ALI and No ALI together 

All.sum.rf <- All.sum.rf[,-1] 

All.sum.rf <- cbind(ALI.comm.char, All.sum.rf) 

set.seed(50) 

choo_train3 <- All.sum.rf[sample(1:nrow(All.sum.rf), nrow(All.sum.rf)*0.5, 

replace=FALSE),] 

tune3 <- tune.randomForest(ALI.comm.char~., data=choo_train3, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x3<-summary(tune3) 

rf.All.sum <- randomForest(ALI.comm.char~., data=All.sum.rf, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x3$best.parameters[1]), 

ntree=as.numeric(x3$best.parameters[2])) 

varImpPlot(rf.All.sum, cex=.7) 
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ALI.comm.var <- as.data.frame(t(All.rf.comm)) #Transpose table for Lefse 

ALI.comm.most <- as.data.frame(t(All.sum.rf)) #Transpose table for Lefse 

 

write.table(ALI.comm.var, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Lefse/ALI.comm.var.txt", sep="\t") 

write.table(ALI.comm.most, 

"/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_Analysis

/Community_Analysis/Lefse/ALI.comm.most.txt", sep="\t") 

 

 

#Summary stats for each community in patients who have ALI 

comm_1 <- ALI.comm.funct2[which(ALI.comm.funct2$community==1),] 

comm_1_sum <- as.matrix(apply(comm_1,2,sum)) 

ALI.comm.1 <- comm_1[,which(!(comm_1_sum==0))] #Community 1 functions with no 

zero total columns 

 

comm_2 <- ALI.comm.funct2[which(ALI.comm.funct2$community==2),] 

comm_2_sum <- as.matrix(apply(comm_2,2,sum)) 

ALI.comm.2 <- comm_2[,which(!(comm_2_sum==0))] #Community 2 functions with no 

zero total columns 
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comm_3 <- ALI.comm.funct2[which(ALI.comm.funct2$community==3),] 

comm_3_sum <- as.matrix(apply(comm_3,2,sum)) 

ALI.comm.3 <- comm_3[,which(!(comm_3_sum==0))] #Community 3 functions with no 

zero total columns 

 

comm_4 <- ALI.comm.funct2[which(ALI.comm.funct2$community==4),] 

comm_4_sum <- as.matrix(apply(comm_4,2,sum)) 

ALI.comm.4 <- comm_4[,which(!(comm_4_sum==0))] #Community 4 functions with no 

zero total columns 

 

#Summary stats for each community within patients without ALI 

No_comm_1 <- No.ALI.comm.funct2[which(No.ALI.comm.funct2$community==1),] 

No_comm_1_sum <- as.matrix(apply(No_comm_1,2,sum)) 

No.ALI.comm.1 <- No_comm_1[,which(!(No_comm_1_sum==0))] #Community 1 

functions with no zero total columns 

 

No_comm_2 <- No.ALI.comm.funct2[which(No.ALI.comm.funct2$community==2),] 

No_comm_2_sum <- as.matrix(apply(No_comm_2,2,sum)) 

No.ALI.comm.2 <- No_comm_2[,which(!(No_comm_2_sum==0))] #Community 2 

functions with no zero total columns 

 

No_comm_3 <- No.ALI.comm.funct2[which(No.ALI.comm.funct2$community==3),] 

No_comm_3_sum <- as.matrix(apply(No_comm_3,2,sum)) 
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No.ALI.comm.3 <- No_comm_3[,which(!(No_comm_3_sum==0))] #Community 3 

functions with no zero total columns 

 

No_comm_4 <- No.ALI.comm.funct2[which(No.ALI.comm.funct2$community==4),] 

No_comm_4_sum <- as.matrix(apply(No_comm_4,2,sum)) 

No.ALI.comm.4 <- No_comm_4[,which(!(No_comm_4_sum==0))] #Community 4 

functions with no zero total columns 

No.ALI.comm.4.summary <- as.matrix(apply(No.ALI.comm.4,2,summary)) 

 

#Contingency table 

All.comm <- ALI.comm 

colnames(All.comm) <- c("OTU", "ALI_Comm") 

No_ALI_comm <- No.ALI.comm[,2] 

All.comm <- cbind(All.comm, No_ALI_comm) 

cont.table <- as.data.frame(CrossTable(All.comm$ALI_Comm, 

All.comm$No_ALI_comm, prop.t=TRUE, prop.r=TRUE, prop.c=TRUE, chisq = 

TRUE)) 

 

#Overlap between ALI and No ALI OTU community assignments 

otus.ali <- as.character(ALI.comm[,1]) 

otus.no.ali <- as.character(No.ALI.comm[,1]) 

ALI.comm[,1] <- otus.ali 

No.ALI.comm[,1] <- otus.no.ali 
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ALI.comm.1 <- ALI.comm[which(ALI.comm[,2]==1),] 

ALI.comm.2 <- ALI.comm[which(ALI.comm[,2]==2),] 

ALI.comm.3 <- ALI.comm[which(ALI.comm[,2]==3),] 

ALI.comm.4 <- ALI.comm[which(ALI.comm[,2]==4),] 

 

No.ALI.comm.1 <- No.ALI.comm[which(No.ALI.comm[,2]==1),] 

No.ALI.comm.2 <- No.ALI.comm[which(No.ALI.comm[,2]==2),] 

No.ALI.comm.3 <- No.ALI.comm[which(No.ALI.comm[,2]==3),] 

No.ALI.comm.4 <- No.ALI.comm[which(No.ALI.comm[,2]==4),] 

 

#Matches input to all No.ALI community assignments and returns No.ALI.comm 

matches 

No.ALI.overlap <- function(x){ 

same <- list() 

for(i in 1:nrow(x)){ 

  same[i] <- which(x[i,1]==No.ALI.comm[,1]) 

  same.1 <- unlist(as.matrix(same)) 

  matches <- No.ALI.comm[same.1,] 

  } 

 return(matches) 

} 
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ALI.1.matches <- No.ALI.overlap(ALI.comm.1) #These contain the community 

assignments for matching OTUs within No.ALI.comm 

ALI.2.matches <- No.ALI.overlap(ALI.comm.2) 

ALI.3.matches <- No.ALI.overlap(ALI.comm.3) 

ALI.4.matches <- No.ALI.overlap(ALI.comm.4) 

 

ALI.overlap <- function(x){ 

  same <- list() 

  for(i in 1:nrow(x)){ 

    same[i] <- which(x[i,1]==ALI.comm[,1]) 

    same.1 <- unlist(as.matrix(same)) 

    matches <- ALI.comm[same.1,] 

  } 

  return(matches) 

} 

No.ALI.1.matches <- ALI.overlap(No.ALI.comm.1) #These contain the community 

assignments for matching OTUs within ALI.comm 

No.ALI.2.matches <- ALI.overlap(No.ALI.comm.2) 

No.ALI.3.matches <- ALI.overlap(No.ALI.comm.3) 

No.ALI.4.matches <- ALI.overlap(No.ALI.comm.4) 

 

#These match the contingency table - can identify which OTUs overlap 
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#________This has to be done on Kure - file is too large_________________ 

#Split data into train set 

choo_train <- ALI.comm.funct[sample(1:nrow(ALI.comm.funct), 

nrow(ALI.comm.funct)*0.5, replace=FALSE),] 

tune_ALI <- tune.randomForest(community~., data=choo_train, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500,1000), na.rm=TRUE) 

x<-summary(tune_ALI) 

 

#Entire data set 

rf.ALI <- randomForest(community~., data=ALI.comm.funct[,-2], importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x$best.parameters[1]), 

ntree=as.numeric(x$best.parameters[2])) 

importance(rf.ALI) 

varImpPlot(rf.ALI, cex=.7) 

#______________________________________________________________________ 

 

#This isn't tested - use to add taxonomy to All.comm (from taxonomy_2) 

taxa.names.2 <- list() #Adds taxonomy to appropriate OTU ID - some OTUs were 

missing from above table 

for(i in 1:nrow(all_samp_taxa)){ 

  taxa.names.2[[i]] <- which(all_samp_taxa[i,1]== taxonomy_2[,1]) 

  if (all_samp_taxa[i,25]==0){ 

    all_samp_taxa[i,25] = taxonomy_2[taxa.names.2[[i]],2] 
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  } 

} 

 

#________This has to be done on Kure - file is too large_________________ 

#Code submitted to Kure: RF.paper.2.kure.R 

 

 

#PICRUSt data per patient sample 

#Analysis of predicted functions per patient - importing and preprocessing 

Patient_functions_15 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/PICRUSt/threshold_15/predicted_metagenome_15_for_R.txt", 

sep="\t", header=TRUE) 

Patient_functions_35 <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/72hrs/PICRUSt/threshold_35/predicted_metagenome_35_for_R.txt", 

sep="\t", header=TRUE) 

All_patient_functions <- merge(Patient_functions_15, Patient_functions_35, by="KO") 

write.table(All_patient_functions, 

file="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_An

alysis/72hrs/PICRUSt/all_patient_functions.txt", sep="\t") 

KOs <- as.character(All_patient_functions$KO) #Assign KO IDs to a vector  

Counts <- All_patient_functions[,-1] #Remove IDs from the count table 
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rownames(All_patient_functions) <- All_patient_functions[,1] 

 

#Random forest indicates these are most important patient communities driving 

clustering: 

#ALI: 25, 219, 79 

#No ALI: 63, 246, 255, 124 

#Center log ratio transformation 

All.patient.funct.clr <- clr(All_patient_functions) 

 

#Remove rows which total zero 

bella <- apply(All.patient.funct.clr,1,sum) 

temp <- which(!(bella==0)) 

All.patient.funct2 <- All.patient.funct.clr[temp,] #Removes columns which sum to zero 

(ALI) 

All.patient.funct2 <- as.data.frame(All.patient.funct2) 

functs <- rownames(All.patient.funct2) 

 

#Patient functions ranked as most important by random forest analysis in determining 

SparCC clustering 

ALI.rf.patients <- cbind(All.patient.funct2$X25, All.patient.funct2$X79) 

rownames(ALI.rf.patients) <- functs 

colnames(ALI.rf.patients) <- c("X25", "X79") 
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No.ALI.rf.patients <- cbind(All.patient.funct2$X63, All.patient.funct2$X246, 

All.patient.funct2$X255, All.patient.funct2$X124) 

rownames(No.ALI.rf.patients) <- functs 

colnames(No.ALI.rf.patients) <- c("X63", "X246", "X255", "X124") 

ALI.rf.patients.summary <- as.matrix(apply(ALI.rf.patients, 1, summary)) 

No.ALI.rf.patients.summary <- as.matrix(apply(No.ALI.rf.patients, 1, summary)) 

ALI.rf.mean <- apply(ALI.rf.patients,1,mean) 

No.ALI.rf.mean <- apply(No.ALI.rf.patients,1,mean) 

difference <- ALI.rf.mean-No.ALI.rf.mean 

 

#Summary stats prior to scaling the data 

s_prime <- summary(All_patient_functions) 

max_per_ko <- as.matrix(apply(All_patient_functions[,-1], 1, max)) 

max_per_ko_id <- cbind(KOs, max_per_ko) 

colnames(max_per_ko_id) <- c("KOs", "Max") 

mean_per_ko <- as.matrix(apply(All_patient_functions[,-1], 1, mean)) 

 

max_per_patient_KO <- as.matrix(apply(All_patient_functions, 2, which.max))#This 

gives the row index number - how to pull out actual value? 

for(i in 1:52){ 

  KO_list[i] <- rownames(All_patient_functions[max_per_patient_KO[i],]) #Pulls out 

row index for max KO, matches to KO ID and adds to list 

} 
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max_per_patient_KO_ID <- cbind(max_per_patient_KO, KO_list) #Puts KO IDs 

together with max KOs per patient 

write.table(max_per_patient_KO_ID, 

file="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Working_An

alysis/72hrs/PICRUSt/max_per_patient_KO_ID.txt", sep="\t") 

 

#Alpha diversity stats 

alpha <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Alpha_diversity/alpha_div_june_13.txt", sep="\t", 

header=TRUE, stringsAsFactors = FALSE) 

 

#For ALI 

boxplot(alpha$Chao1.Mean~alpha$ALI, main="Chao1 Diversity", ylab="Chao Index") 

wilcox.test(Chao1.Mean~ALI, data=alpha, p.adj="bonferroni") #Ties - some values are 

the same; can't compute p 

kruskal.test(Chao1.Mean~ALI, data=alpha, p.adj="bonferroni") 

t.test(Chao1.Mean~ALI, data=alpha, p.adj="bonferroni") #No errors here 

 

#For Prevotella melaninogenica 

boxplot(alpha$Chao1.Mean~alpha$Prevotella, main="Chao1 Diversity", ylab="Chao 

Index") 
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wilcox.test(Chao1.Mean~Prevotella, data=alpha, p.adj="bonferroni") #Ties - some values 

are the same; can't compute p 

t.test(Chao1.Mean~Prevotella, data=alpha, p.adj="bonferroni") 

 

#Prev and ALI boxplot 

boxplot(alpha$Chao1.Mean~alpha$ALI + alpha$Prevotella, main="Chao1 Diversity", 

ylab="Chao Index", xlab="Prevotella Detected", names=c("No", "No", "Yes", "Yes"), 

col=c("blue", "red", "blue", "red"))  

 

#Gemellaceae 

boxplot(alpha$Chao1.Mean~alpha$Gemellaceae, main="Chao1 Diversity", ylab="Chao 

Index", names=c("None", "Gemellaceae Present")) 

wilcox.test(Chao1.Mean~Gemellaceae, data=alpha, p.adj="bonferroni") #Ties - some 

values are the same; can't compute p 

t.test(Chao1.Mean~Gemellaceae, data=alpha, p.adj="bonferroni") 

 

#Gemellaceae and ALI boxplot 

boxplot(alpha$Chao1.Mean~alpha$ALI + alpha$Gemellaceae, main="Chao1 Diversity", 

ylab="Chao Index", xlab="Gemellaceae Detected", names=c("No", "No", "Yes", "Yes"), 

col=c("blue", "red", "blue", "red"))  

 

#Enterobacteriaceae 
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boxplot(alpha$Chao1.Mean~alpha$Enterobacteriaceae, main="Chao1 Diversity", 

ylab="Chao Index", names=c("None", "Enterobacteriaceae Present")) 

wilcox.test(Chao1.Mean~Enterobacteriaceae, data=alpha, p.adj="bonferroni") #Ties - 

some values are the same; can't compute p 

t.test(Chao1.Mean~Enterobacteriaceae, data=alpha, p.adj="bonferroni") 

 

#Enterobacteriaceae and ALI boxplot 

boxplot(alpha$Chao1.Mean~alpha$ALI + alpha$Enterobacteriaceae, main="Chao1 

Diversity", ylab="Chao Index", xlab="Enterobacteriaceae Detected", names=c("No", 

"No", "Yes", "Yes"), col=c("blue", "red", "blue", "red"))  

 

#Staphylococcus 

boxplot(alpha$Chao1.Mean~alpha$Staphylococcus, main="Chao1 Diversity", 

ylab="Chao Index", names=c("None", "Staphylococcus Present")) 

wilcox.test(Chao1.Mean~Staphylococcus, data=alpha, p.adj="bonferroni") #Ties - some 

values are the same; can't compute p 

t.test(Chao1.Mean~Staphylococcus, data=alpha, p.adj="bonferroni") 

 

#Staphylococcus and ALI boxplot 

boxplot(alpha$Chao1.Mean~alpha$ALI + alpha$Staphylococcus, main="Chao1 

Diversity", ylab="Chao Index", xlab="Staphylococcus Detected", names=c("No", "No", 

"Yes", "Yes"), col=c("blue", "red", "blue", "red"))  
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#Dana Walsh 

#August 10 2016 

#Analysis for paper #2 (Predicted functions of bacterial communities) 

#Heatmaps for predicted OTU functions 

 

#Import the files 

ALI.comm <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Heatmaps/ALI.comm.funct2.clr.txt", sep="\t", 

header=TRUE) 

 

No.ALI.comm <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Heatmaps/No.ALI.comm.funct2.clr.txt", sep="\t", 

header=TRUE) 

 

#Remove the taxonomy, OTU ID numbers, and community assignments 

ALI.comm.labels <- ALI.comm[,1:3] 

ALI.comm.funct <- ALI.comm[,-(1:3)] 

No.ALI.comm.labels <- No.ALI.comm[,1:3] 

No.ALI.comm.funct <- No.ALI.comm[,-(1:3)] 

 

#Convert to a matrix 
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ALI.comm.funct <- as.matrix(ALI.comm.funct) 

No.ALI.comm.funct <- as.matrix(No.ALI.comm.funct) 

 

#Assign OTU IDs as row names 

ALI.OTUs <- ALI.comm.labels[,2] 

No.ALI.OTUs <- No.ALI.comm.labels[,2] 

rownames(ALI.comm.funct) <- ALI.OTUs 

rownames(No.ALI.comm.funct) <- No.ALI.OTUs 

 

#The heatmap below is the same for both ALI and No ALI 

distance <- dist(ALI.comm.funct, method="manhattan") 

cluster <- hclust(distance, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.heatmap.png", width=1200, 

height=800) 

heatmap.2(ALI.comm.funct, Rowv=as.dendrogram(cluster), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Functions", ylab="OTU IDs", 

margins=c(10,15)) 

dev.off() 

 

#Make per community heatmaps 

#Replace rownames with community assignments 

ALI.comms <- ALI.comm.labels[,3] 
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No.ALI.comms <- No.ALI.comm.labels[,3] 

rownames(ALI.comm.funct) <- ALI.comms 

rownames(No.ALI.comm.funct) <- No.ALI.comms 

 

#Add OTU IDs back in 

ALI.comm.funct <- cbind(ALI.comm.labels[,2], ALI.comm.funct) 

No.ALI.comm.funct <- cbind(No.ALI.comm.labels[,2], No.ALI.comm.funct) 

 

#Select each community 

ALI.comm.1 <- ALI.comm.funct[which(rownames(ALI.comm.funct)==1),] 

ALI.comm.2 <- ALI.comm.funct[which(rownames(ALI.comm.funct)==2),] 

ALI.comm.3 <- ALI.comm.funct[which(rownames(ALI.comm.funct)==3),] 

ALI.comm.4 <- ALI.comm.funct[which(rownames(ALI.comm.funct)==4),] 

 

No.ALI.comm.1 <- No.ALI.comm.funct[which(rownames(No.ALI.comm.funct)==1),] 

No.ALI.comm.2 <- No.ALI.comm.funct[which(rownames(No.ALI.comm.funct)==2),] 

No.ALI.comm.3 <- No.ALI.comm.funct[which(rownames(No.ALI.comm.funct)==3),] 

No.ALI.comm.4 <- No.ALI.comm.funct[which(rownames(No.ALI.comm.funct)==4),] 

 

#Remove the columns with zero sum 

sum.ali.1 <- apply(ALI.comm.1,2,sum) 

sum.ali.2 <- apply(ALI.comm.2,2,sum) 

sum.ali.3 <- apply(ALI.comm.3,2,sum) 
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sum.ali.4 <- apply(ALI.comm.4,2,sum) 

 

no.sum.ali.1 <- apply(No.ALI.comm.1,2,sum) 

no.sum.ali.2 <- apply(No.ALI.comm.2,2,sum) 

no.sum.ali.3 <- apply(No.ALI.comm.3,2,sum) 

no.sum.ali.4 <- apply(No.ALI.comm.4,2,sum) 

 

ali.keep.1 <- which(!(sum.ali.1==0)) 

ali.keep.2 <- which(!(sum.ali.2==0)) 

ali.keep.3 <- which(!(sum.ali.3==0)) 

ali.keep.4 <- which(!(sum.ali.4==0)) 

 

no.ali.keep.1 <- which(!(no.sum.ali.1==0)) 

no.ali.keep.2 <- which(!(no.sum.ali.2==0)) 

no.ali.keep.3 <- which(!(no.sum.ali.3==0)) 

no.ali.keep.4 <- which(!(no.sum.ali.4==0)) 

 

library("plotrix") 

 

gap.boxplot(sum.ali.1, sum.ali.2, sum.ali.3, sum.ali.4, no.sum.ali.1, no.sum.ali.2, 

no.sum.ali.3, no.sum.ali.4, gap=list(top=c(1e+1, 5e+5), bottom=c(0,1e+1)), las=2, 

names=c("ALI 1", "ALI 2", "ALI 3", "ALI 4", "No ALI 1", "No ALI 2", "No ALI 3", 

"No ALI 4")) 
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boxplot(sum.ali.1, sum.ali.2, sum.ali.3, sum.ali.4, no.sum.ali.1, no.sum.ali.2, 

no.sum.ali.3, no.sum.ali.4, las=2, names=c("ALI 1", "ALI 2", "ALI 3", "ALI 4", "No ALI 

1", "No ALI 2", "No ALI 3", "No ALI 4")) 

 

ALI.comm.1 <- ALI.comm.1[,ali.keep.1] 

ALI.comm.2 <- ALI.comm.2[,ali.keep.2] 

ALI.comm.3 <- ALI.comm.3[,ali.keep.3] 

ALI.comm.4 <- ALI.comm.4[,ali.keep.4] 

 

No.ALI.comm.1 <- No.ALI.comm.1[,no.ali.keep.1] 

No.ALI.comm.2 <- No.ALI.comm.2[,no.ali.keep.2] 

No.ALI.comm.3 <- No.ALI.comm.3[,no.ali.keep.3] 

No.ALI.comm.4 <- No.ALI.comm.4[,no.ali.keep.4] 

 

#Make OTU IDs rownames 

ALI.comm.1.otus <- ALI.comm.1[,1] 

rownames(ALI.comm.1) <- ALI.comm.1.otus 

ALI.comm.1 <- ALI.comm.1[,-1] 

 

ALI.comm.2.otus <- ALI.comm.2[,1] 

rownames(ALI.comm.2) <- ALI.comm.2.otus 

ALI.comm.2 <- ALI.comm.2[,-1] 
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ALI.comm.3.otus <- ALI.comm.3[,1] 

rownames(ALI.comm.3) <- ALI.comm.3.otus 

ALI.comm.3 <- ALI.comm.3[,-1] 

 

ALI.comm.4.otus <- ALI.comm.4[,1] 

rownames(ALI.comm.4) <- ALI.comm.4.otus 

ALI.comm.4 <- ALI.comm.4[,-1] 

 

No.ALI.comm.1.otus <- No.ALI.comm.1[,1] 

rownames(No.ALI.comm.1) <- No.ALI.comm.1.otus 

No.ALI.comm.1 <- No.ALI.comm.1[,-1] 

 

No.ALI.comm.2.otus <- No.ALI.comm.2[,1] 

rownames(No.ALI.comm.2) <- No.ALI.comm.2.otus 

No.ALI.comm.2 <- No.ALI.comm.2[,-1] 

 

No.ALI.comm.3.otus <- No.ALI.comm.3[,1] 

rownames(No.ALI.comm.3) <- No.ALI.comm.3.otus 

No.ALI.comm.3 <- No.ALI.comm.3[,-1] 

 

No.ALI.comm.4.otus <- No.ALI.comm.4[,1] 

rownames(No.ALI.comm.4) <- No.ALI.comm.4.otus 

No.ALI.comm.4 <- No.ALI.comm.4[,-1] 
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#Heatmaps 

dist.ali.1 <- dist(ALI.comm.1, method="manhattan") 

clust.ali.1 <- hclust(dist.ali.1, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.1.heatmap.png", width=1200, 

height=800) 

heatmap.2(ALI.comm.1, Rowv=as.dendrogram(clust.ali.1), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.ali.2 <- dist(ALI.comm.2, method="manhattan") 

clust.ali.2 <- hclust(dist.ali.2, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.2.heatmap.png", width=1200, 

height=800) 

heatmap.2(ALI.comm.2, Rowv=as.dendrogram(clust.ali.2), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.ali.3 <- dist(ALI.comm.3, method="manhattan") 

clust.ali.3 <- hclust(dist.ali.3, method="ward.D2") 
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png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.3.heatmap.png", width=1200, 

height=800) 

heatmap.2(ALI.comm.3, Rowv=as.dendrogram(clust.ali.3), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.ali.4 <- dist(ALI.comm.4, method="manhattan") 

clust.ali.4 <- hclust(dist.ali.4, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.4.heatmap.png", width=1200, 

height=800) 

heatmap.2(ALI.comm.4, Rowv=as.dendrogram(clust.ali.4), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.no.ali.1 <- dist(No.ALI.comm.1, method="manhattan") 

clust.no.ali.1 <- hclust(dist.no.ali.1, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.1.heatmap.png", 

width=1200, height=800) 



	 288	

heatmap.2(No.ALI.comm.1, Rowv=as.dendrogram(clust.no.ali.1), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.no.ali.2 <- dist(No.ALI.comm.2, method="manhattan") 

clust.no.ali.2 <- hclust(dist.no.ali.2, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.2.heatmap.png", 

width=1200, height=800) 

heatmap.2(No.ALI.comm.2, Rowv=as.dendrogram(clust.no.ali.2), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

dist.no.ali.3 <- dist(No.ALI.comm.3, method="manhattan") 

clust.no.ali.3 <- hclust(dist.no.ali.3, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.3.heatmap.png", 

width=1200, height=800) 

heatmap.2(No.ALI.comm.3, Rowv=as.dendrogram(clust.no.ali.3), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 
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dev.off() 

 

dist.no.ali.4 <- dist(No.ALI.comm.4, method="manhattan") 

clust.no.ali.4 <- hclust(dist.no.ali.4, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.4.heatmap.png", 

width=1200, height=800) 

heatmap.2(No.ALI.comm.4, Rowv=as.dendrogram(clust.no.ali.4), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

#Heatmaps for Abundance Data with Community Assignments 

library("compositions") 

ALI.comm.abundances <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Community_Assignments/ALI.comm.abundances.txt", 

sep="\t", header=TRUE) 

ALI.comm.orig <- ALI.comm.abundances 

#Draw heatmap without re-ordering by the dendogram 

color.map <- function(community){ 

 if(community=="1") "red" 

 else if(community=="2") "green" 
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 else if(community=="3") "blue" 

 else if(community=="4") "purple" 

} 

sidebarcolors <- unlist(lapply(ALI.comm.abundances$community, color.map)) 

ALI.otus <- ALI.comm.abundances[,1] 

ALI.comms <- ALI.comm.abundances[,2] 

ALI.taxa <- ALI.comm.abundances[,3] 

ALI.comm.abundances <- ALI.comm.abundances[,-(1:3)] 

rownames(ALI.comm.abundances) <- ALI.otus 

ALI.comm.abundances <- clr(ALI.comm.abundances) 

 

#Heatmap ordered by community assignment 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.abundances.2.heatmap.png", 

width=1200, height=800) 

heatmap.2(as.matrix(ALI.comm.abundances), Rowv=NA, Colv=NA, scale="none", 

trace="none", col=redgreen, xlab="Patient ID", ylab="OTUs", margins=c(10,15), 

RowSideColors=sidebarcolors) 

dev.off() 

 

#Hierarchical clustering-based heatmap 

dist.ali.abund <- dist(ALI.comm.abundances, method="manhattan") 

clust.ali.abund <- hclust(dist.ali.abund, method="ward.D2") 
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png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/ali.comm.abundances.heatmap.png", 

width=1200, height=800) 

heatmap.2(ALI.comm.abundances, Rowv=as.dendrogram(clust.ali.abund), Colv=TRUE, 

scale="column", trace="none", col=redgreen, xlab="Predicted Functions", ylab="OTU 

ID", margins=c(10,15)) 

dev.off() 

 

 

No.ALI.comm.abundances <- 

read.table("/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Workin

g_Analysis/Community_Analysis/Community_Assignments/No.ALI.comm.abundances.t

xt", sep="\t", header=TRUE) 

No.ALI.comm.orig <- No.ALI.comm.abundances 

sidebarcolors.2 <- unlist(lapply(No.ALI.comm.abundances$community, color.map)) 

#Draw heatmap without re-ordering by the dendogram 

No.ALI.otus <- No.ALI.comm.abundances[,1] 

No.ALI.comms <- No.ALI.comm.abundances[,2] 

No.ALI.taxa <- No.ALI.comm.abundances[,3] 

No.ALI.comm.abundances <- No.ALI.comm.abundances[,-(1:3)] 

rownames(No.ALI.comm.abundances) <- No.ALI.otus 

No.ALI.comm.abundances <- clr(No.ALI.comm.abundances) 
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#Heatmap ordered by community assignment 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.abundances.2.heatmap.png

", width=1200, height=800) 

heatmap.2(as.matrix(No.ALI.comm.abundances), Rowv=NA, Colv=NA, scale="none", 

trace="none", col=redgreen, xlab="Patient ID", ylab="OTUs", margins=c(10,15), 

RowSideColors=sidebarcolors.2) 

dev.off() 

 

#Hierarchical clustering-based heatmap 

dist.no.ali.abund <- dist(No.ALI.comm.abundances, method="manhattan") 

clust.no.ali.abund <- hclust(dist.no.ali.abund, method="ward.D2") 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Heatmaps/no.ali.comm.abundances.heatmap.png", 

width=1200, height=800) 

heatmap.2(No.ALI.comm.abundances, Rowv=as.dendrogram(clust.no.ali.abund), 

Colv=TRUE, scale="column", trace="none", col=redgreen, xlab="Predicted Functions", 

ylab="OTU ID", margins=c(10,15)) 

dev.off() 

 

#Random forest for taxa that predict community assignments among ALI and None 

rownames(ALI.comm.orig) <- ALI.otus 

ALI.comm.only <- ALI.comm.orig[,-1] 
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ALI.comm.only <- ALI.comm.only[,-2] 

community <- as.character(ALI.comm.only$community) 

ALI.comm.only <- ALI.comm.only[,-1] 

ALI.comm.only <- cbind(community, ALI.comm.only) 

 

rownames(No.ALI.comm.orig) <- No.ALI.otus 

No.ALI.comm.only <- No.ALI.comm.orig[,-1] 

No.ALI.comm.only <- No.ALI.comm.only[,-2] 

community.2 <- as.character(No.ALI.comm.only$community) 

No.ALI.comm.only <- No.ALI.comm.only[,-1] 

No.ALI.comm.only <- cbind(community.2, No.ALI.comm.only) 

 

library("randomForest") 

library("e1071") 

 

set.seed(18) 

choo_train <- ALI.comm.only[sample(1:nrow(ALI.comm.only), 

nrow(ALI.comm.only)*0.5, replace=FALSE),] 

tune <- tune.randomForest(community~., data=choo_train, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x<-summary(tune) 

 

#Entire data set 
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rf.ALI.comm <- randomForest(community~., data=ALI.comm.only, importance=TRUE, 

na.action=na.omit, mtry=as.numeric(x$best.parameters[1]), 

ntree=as.numeric(x$best.parameters[2])) 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Random_Forests/ALI.comm.abundances.heatmap.

png", width=800, height=1200, res=300) 

varImpPlot(rf.ALI.comm, cex=.7) 

dev.off() 

 

set.seed(23) 

choo_train.2 <- No.ALI.comm.only[sample(1:nrow(No.ALI.comm.only), 

nrow(No.ALI.comm.only)*0.5, replace=FALSE),] 

tune <- tune.randomForest(community.2~., data=choo_train.2, mtry=c(2.8, 5.6, 11.1), 

ntree=c(250,500), na.rm=TRUE) 

x.2<-summary(tune) 

 

#Entire data set 

rf.No.ALI.comm <- randomForest(community.2~., data=No.ALI.comm.only, 

importance=TRUE, na.action=na.omit, mtry=as.numeric(x.2$best.parameters[1]), 

ntree=as.numeric(x.2$best.parameters[2])) 

png(filename="/Users/walshdm/Documents/Burn_Study/Sequencing_Data_Analysis/Wo

rking_Analysis/Community_Analysis/Random_Forests/No.ALI.comm.abundances.heatm

ap.png", width=800, height=1200, res=300) 
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varImpPlot(rf.No.ALI.comm, cex=.7) 

dev.off() 
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