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ABSTRACT 

Jeran Kent Stratford: Aberrant gene expression: diagnostic markers and therapeutic targets 
for pancreatic cancer 

(Under the direction of Jen Jen Yeh and Channing J. Der) 
 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer and the fourth 

leading cause of cancer-related death in the United States. The overall median survival for 

patients diagnosed with PDAC is five to eight months. The poor outcome is due, in part, to a 

lack of disease-specific symptoms that can be used for early detection, and as such, most 

patients present with locally advanced or metastatic disease at the time of diagnosis. 

Therefore, the need for diagnostic tools is both great and urgent. Furthermore, current 

chemotherapies have low response rates and high toxicity, limiting their use, and there are 

currently no effective targeted therapies for PDAC. Therefore, a greater understanding of the 

underlying biology of pancreatic cancer is needed to identify tumor-specific vulnerabilities 

that can be therapeutically exploited.  

Pancreatic cancer development is driven by genomic changes that alter gene 

expression. Aberrant gene expression produces changes in protein expression, which in turn 

may confer growth advantages to the tumor; often the tumor then develops a dependency on 

continued aberrant gene and protein expression. Determining how aberrant genome-wide 

gene expression changes affect the biology of the tumor is of paramount importance in our 

continued efforts to improve patient therapy. By identifying and establishing a role for the 

overexpressed genes in PDAC we can discover new avenues for therapeutic intervention and 
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potentially predict the most effective therapy for each individual and avoid therapies that 

may have little clinical efficacy. My research aimed to identify aberrantly expressed genes in 

primary tumor samples from PDAC patients and characterize the diagnostic and therapeutic 

value of the identified genes. The work outlined in this dissertation focuses first on 

identifying a prognostic signature of genes with the ability to stratify patients into high and 

low risk groups, and second on assessing the biological importance of overexpression of the 

dual-specificity protein kinase TTK for pancreatic cancer oncogenesis. Together these two 

investigations provide a basis for translating molecular changes in tumor biology into 

improved therapy for pancreatic cancer patients.   



	   v	  

 

 

 
 

To Mindy, my ever steady companion



	   vi	  

 
 
 

 
 

ACKNOWLEDGEMENTS 
 

 First I wish to thank my mentors, Jen Jen Yeh and Channing Der. I sincerely thank 

you for all of the encouragement and time you have spent on my behalf as advisors. It was 

only through your continued support and guidance that the work contained in this dissertation 

was made possible. Your combined knowledge has aided me in discovering how to apply 

basic research to key clinical questions, one of the main goals I wanted to accomplish in my 

graduate career. I appreciate the patience and guidance I have received from both of you as I 

have struggled through developing experimental methods and the ever-daunting process of 

writing. I will always appreciate the sacrifices you have made on my behalf to mold me into 

the scientist I have become. 

 Secondly I wish to thank the Department of Pharmacology for all of the support I 

have received. I would not have been able to accomplish this work had I not been fortunate 

enough to collaborate with such exceptional faculty and students. This has been such a 

unique opportunity to learn and grow as a scientist and as a person. In addition I would like 

to thank the members of the Yeh and Der labs both past and present. Thank you for helping 

guide me through the hard times and share in the joy of the good times.  

 Lastly, I thank my wonderful and ever-growing family. Family is forever and I 

appreciate your patience and interest in me as I have pursued this doctorate. I’d like to thank 

my father and mother for their encouragement and support even though I moved over 2000 

miles away from them. Thank you for your positive outlook and well-timed packages of 



	   vii	  

candy. Finally, a thank you to Mindy, my sweet wife. This would have been impossible had I 

not had you by my side. You have provided me with the strength I didn’t have on my own to 

stay the course through your amazing example and kind words. You’re simply the best. I 

love you and can never say thank you enough.  



	   viii	  

 
 
 
 

TABLE OF CONTENTS 
	  

LIST OF TABLES .................................................................................................................. X 

LIST OF FIGURES .............................................................................................................. XI 

LIST OF ABBREVIATIONS ............................................................................................ XII 

CHAPTERS 

I. INTRODUCTION ........................................................................................................ 1 

PANCREAS ANATOMY AND FUNCTION  ...........................................................................  2 

PANCREATIC DUCTAL ADENOCARCINOMA DEVELOPMENT  ............................................  2 

STAGING OF PANCREATIC CANCER  ................................................................................  5 

PANCREATIC DUCTAL ADENOCARCINOMA OUTCOME AND TREATMENT  ........................  9 

GENOMIC INSTABILITY  ................................................................................................  14 

SPINDLE ASSEMBLY CHECKPOINT  ................................................................................  14 

TTK  ............................................................................................................................  16 

APC/C  ........................................................................................................................  18 

GENETICS OF PANCREATIC DUCTAL ADENOCARCINOMA ..............................................  23 

GENE EXPRESSION PROFILING  .....................................................................................  27 

SUMMARY  ...................................................................................................................  29 

 



	   ix	  

II. A SIX-GENE SIGNATURE PREDICTS SURVIVAL OF PATIENTS WITH 
LOCALIZED PANCREATIC DUCTAL ADENOCARCINOMA  .......................... 32 

OVERVIEW  ..................................................................................................................  32  

INTRODUCTION  ............................................................................................................  33 

EXPERIMENTAL PROCEDURES ......................................................................................  34 

RESULTS  .....................................................................................................................  39 

DISCUSSION  ................................................................................................................  48 

III. GENETIC AND PHARMACOLOGIC INHIBITION OF TTK IMPAIRS 
PANCREATIC CANCER CELL LINE GROWTH BY INDUCING LETHAL 
LEVELS OF CHROMOSOMAL INSTABILITY  .................................................... 54 

OVERVIEW  ..................................................................................................................  54  

INTRODUCTION  ............................................................................................................  55 

EXPERIMENTAL PROCEDURES ......................................................................................  58 

RESULTS  .....................................................................................................................  64 

DISCUSSION  ................................................................................................................  84 

IV. CONCLUSIONS AND FUTURE DIRECTIONS ..................................................... 90 

DIAGNOSTIC GENE EXPRESSION FOR PANCREATIC DUCTAL ADENOCARCINOMA  ..........  90  

GENE EXPRESSION SIGNATURES AND SUBTYPES OF DISEASE  .......................................  91 

THERAPEUTIC VALUE OF TTK FOR PANCREATIC DUCTAL ADENOCARCINOMA .............  92 

TTK PHOSPHORYLATION SUBSTRATES  ........................................................................  95 

USP16 SUBSTRATES AND REGULATION  ........................................................................  96 

SUMMARY  ...................................................................................................................  97	  

REFERENCES  ........................................................................................................................ 98 



	   x	  

LIST OF TABLES 

 

Table 1. Pancreatic	  cancer	  TNM	  classification ........................................................................... 6 

Table 2. AJCC	  stage	  groupings	  for	  pancreatic	  cancer  ................................................................ 7 

Table 3. ECOG	  Performance	  Status  ........................................................................................... 15  

Table 4. Patient, tumor, and treatment characteristics in the derivation set  ................................ 40 

Table 5. Patient, tumor, and treatment characteristics in the training and testing sets  ............... 41 

Table 6. Cox proportional hazards regression analysis of the six-gene signature  ...................... 45 

Table 7. Relationship between the six-gene signature and clinicopathological variables  .......... 45 

Table 8. Comparison of individual genes in high- and low-risk groups (JHMI) ......................... 46 

Table 9. Comparison of individual genes in high- and low-risk groups (NW/NSU) ................... 46 

Table 10. Differentially expressed kinases in primary PDAC tumors  ........................................ 66 

Table 11. Biological	  pathways	  enriched	  with	  differentially	  expressed	  kinases  ................... 73 

Table 12. Function	  of	  the	  10	  most	  overexpressed	  kinases  ..................................................... 73 

 

 

	  



	   xi	  

LIST OF FIGURES 

Figure 1. Anatomy	  of	  the	  pancreas ........................................................................................ 3 

Figure 2. Precursor lesions of PDAC ....................................................................................... 4 

Figure 3. Early detection of pancreatic cancer associated with better 5-year survival ............ 8 

Figure 4. The	  Whipple	  procedure  ....................................................................................... 11 

Figure 5. Domain	  structure	  of	  TTK  ......................................................................................19 

Figure 6. TTK	  signaling ..........................................................................................................20 

Figure 7. The	  spindle	  assembly	  checkpoint ........................................................................ 24 

Figure 8. The morphological and genetic progression of PDAC ........................................... 25 

Figure 9. Mechanisms	  of	  aberrant	  gene	  expression .......................................................... 30 

Figure 10. Identification, development, and application of a six-gene signature for PDAC   38 

Figure 11. Significance of KLF6 and Fos B expression in primary PDAC  .......................... 47 

Figure 12. Increased	  expression	  spindle	  assembly	  checkpoint	  components	  and	  its	  

regulator	  TTK	  in	  PDAC  ......................................................................................................... 74 

Figure 13. Ingenuity	  pathway	  analysis	  of	  differentially	  expressed	  kinases	  in	  primary	  

PDAC	  compared	  to	  normal	  pancreas ................................................................................... 75 

Figure 14	  Individual targeting of TTK of each siRNA used in the pool  .............................. 77 

Figure 15. Genetic	  and	  pharmacologic	  inhibition	  of	  TTK	  decrease	  growth	  of	  PDAC	  cell	  

lines  ....................................................................................................................................... 78 

Figure 16. TTK	  inhibition	  overrides	  the	  SAC	  mediated	  cell	  cycle	  arrest	  and	  leads	  to	  

aberrant	  cell	  cycle	  progression,	  multi-‐nucleation	  and	  apoptosis  .................................... 82 

Figure 17. Usp16	  is	  a	  TTK	  phosphorylation	  substrate  ..................................................... 85 



	   xii	  

LIST OF ABBREVIATIONS 

 

AA  Amino acid 

AJCC  American joint committee on cancer  

APC/C  Anaphase promoting complex/cyclosome 

ATCC  American type culture collection 

ATP4A ATPase H+/K+ exchanging, alpha polypeptide 

BRAF  v-Raf murine sarcoma viral oncogene homolog B 

BRCA2 Breast cancer type 2, early onset 

BUB1B Budding uninhibited by benzimidazoles 1 mitotic checkpoint serine/threonine 

kinase B 

BUB3  Budding uninhibited by benzimidazoles 3 

CDC20 Cell division cycle 20 

CDH1  Cell division cycle 20 related 1 

CDK1  Cyclin-dependent kinase 1 

CI  Confidence interval 

CK2  Casein kinase 2 

D-Box  Destruction box motif  

DMSO  Dimethyl sulfoxide 

DWD   Distance weighted discrimination 

ECOG  Eastern cooperative oncology group  

EGFR  Epidermal growth factor receptor 

FDR  False discovery rate 

FOSB  FBJ murine osteosarcoma viral oncogene homolog B  



	   xiii	  

FU  Fluorouracil 

G2/M  Gap 2 / mitosis 

GAPS  GTPase activating proteins 

GEO  Gene expression omnibus 

GFP  Green fluorescent protein 

GTPase Guanine triphosphatase 

GSG1  Germ cell associated 1 

HRAS  Harvey rat sarcoma viral oncogene homolog 

IPA  Ingenuity pathway analysis 

IPMN  Intraductal papillary mucinous neoplasm  

IRB  Institutional review board 

JHMI  Johns Hopkins Medical Institutions 

KEN  Lysine-glutamate-asparagine motif 

KLF6  Kruppel-like factor 6 

KNN  K-nearest neighbors imputation 

KRAS  Kirsten rat sarcoma viral oncogene homolog 

MAD1  Mitotic arrest deficient-like 1  

MAD2  Mitotic arrest deficient-like 2  

MAPK  Mitogen activated protein kinase 

MCC  Mitotic checkpoint complex  

MCN  Mucinous cystic neoplasm 

MELK  Maternal embryonic leucine zipper kinase 

miRNA Micro ribonucleic acid 



	   xiv	  

MTT  Thiazolyl	  blue	  tetrazolium	  bromide 

NEB  University of Nebraska Medical Center Rapid Autopsy Pancreatic Program 

NEK6  NIMA related kinase 6 

NFKBIZ Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

zeta  

NLS  Nuclear localization signal  

NOC  Nocodazole 

NTE  N-Terminal extension 

NRAS  Neuroblastoma RAS viral (v-ras) oncogene homolog 

NSU  North Shore University Health System 

NW  Northwestern Memorial Hospital 

OS  Overall survival 

p16ink4a  Cyclin dependent kinase 4 inhibitor A  

PanIN  Pancreatic intraepithelial neoplasia 

PC  Principal component 

PDAC  Pancreatic ductal adenocarcinoma 

PIK3CA Phosphatidylinositol-4,5-biophosphate 3-kinase, catalytic subunit alpha 

PLCε  Phospholipase C epsilon 

P/S	   	   Penicillin	  and	  streptomycin 

RalGDS Ral guanine nucleotide dissociation stimulator 

RalGEF Ral guanine nucleotide exchange factor 

RISC  RNA-induced silencing complex 

RNA-Seq Whole transcription ribonucleic sequencing 



	   xv	  

SAC  Spindle assembly checkpoint 

SAM  Significance analysis of microarrays  

SIGLEC 11 Sialic acid binding Ig-like lectin 11  

siRNA  Small/short interfering RNA 

SMAD4  Mothers against decapentaplegic homolog 4 

SSP   Single sample predictor 

TIAM1 T-cell lymphoma invasion and metastasis 1 

TMA  Tissue microarray 

TNM  Tumor, node, and metastasis 

TP53  Tumor protein 53 

TPR  Tetratricopeptide repeat  

UNC  University of North Carolina  

USP16  Ubiquitin specific peptidase 16 

 



	   1	  

 
 
 

 

CHAPTER I 

Introduction 

 

  Pancreatic cancer remains one of the most lethal cancers having an overall five-year 

survival rate of less than 5% (Cooper et al., 2013; Wolfgang et al., 2013; Heinemann et al., 

2013). The annual percent change in the number of people diagnosed with pancreatic cancer has 

increased by 0.7% and death rates have been rising by 0.4% each year (http://seer.cancer.gov). 

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States and is 

projected to become the second leading cause of cancer-related death by 2030 (Burris et al., 

1997; Rahib et al., 2014; Siegel et al., 2014).  

  The poor prognosis of pancreatic cancer patients, in part, stems from the silent nature and 

lack of recognizable clinical symptoms, absence of early detection and diagnostic tools, inherent 

aggressiveness and high metastatic potential of the tumor, and resistance to standard 

chemotherapies. Surgical resection followed by adjuvant therapy remains the only potentially 

curative therapy. However, more than 80% of pancreatic cancer patients present with locally 

advanced or metastatic disease at diagnosis and are not considered candidates for surgery (Arnal 

and Wade, 1995; Sohn et al., 2000).   

  Chemotherapy is the standard of care for metastatic or locally advanced pancreatic 

cancer. Gemcitabine, alone or in combination, has been the standard chemotherapeutic agent for 

PDAC for over 15 years (Hoff et al., 2013; Werner et al., 2013). Recently the gemcitabine-free 

FOLFIRINOX protocol has also been approved to treat pancreatic cancer (Conroy et al., 2011). 

Although overall survival is increased for patients treated with chemotherapy, the low response 
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rate, high toxicity, and a lack of sustained efficacy pose significant hurdles to overcome (Oken et 

al., 1982; Maginn et al., 2014). Therefore there is a dire need to develop clinically effective 

strategies. I propose that a better understanding of the fundamental molecular biology of 

pancreatic cancer will allow for development of novel therapeutic approaches and diagnostic 

tools.  

Pancreas anatomy and function 

  The pancreas is the main organ responsible for maintaining glucose homeostasis and 

regulating protein, lipid, and carbohydrate digestion. These functions are carried out by two 

physiologically distinct functional components: endocrine and exocrine pancreas. Endocrine 

pancreas is composed of four specialized cell types that are clustered into structures called the 

Islets of Langerhans (Bardeesy and DePinho, 2002). Islets are found throughout the pancreas and 

regulate metabolism and glucose homeostasis by secretion of hormones including glucagon, 

insulin, and somatostatin into the blood stream produced by alpha, beta, and delta cells 

respectively.  

  Exocrine pancreas accounts for the majority of the tissue mass of the pancreas and is 

responsible for the production and delivery of digestive zymogens into the gastrointestinal tract. 

Exocrine pancreas is composed of acinar and ductal cells that are organized into a branched 

network. The acinar cells synthesize and secrete the zymogens into the ductal lumen to be 

emptied into the small intestine to aid in digestion (Figure 1). 

Pancreatic ductal adenocarcinoma development 

  Pancreatic cancer can arise from the endocrine or the exocrine pancreas components. 

Endocrine tumors arise from cells in the hormone-producing Islets of Langerhans of the pancreas 

and account for less than 5% of the total pancreatic cancer cases (Halfdanarson et al., 2008). 

Exocrine tumors arise from pancreatic acinar or ductal cells and account for 95% of pancreatic  
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Figure 1. Anatomy of the pancreas.  The pancreas is an organ situated behind the stomach and 
adjacent to the duodenum of the small intestine. The widest part of the pancreas is called the 
head, the middle section is referred to as the body, and the thinnest section is named the tail. The 
pancreas is composed of two functionally distinct compartments: endocrine and exocrine 
pancreas. Endocrine pancreas secretes hormones directly into a capillary network and is 
organized into Islets of Langerhans. Exocrine pancreas is composed of acinar cells that produce 
digestive enzymes that are secreted into ducts that feed into the small intestine to aide in 
digestion.  
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Figure 2. Precursor lesions of PDAC. Histopathological images of the normal pancreas 
and the three precursor lesions. Lesions progress towards pancreatic ductal 
adenocarcinoma in a temporal sequence. Increasing dysplasia can be observed during 
progression. Adapted from Hezel AF et al. (2006) Genes Dev. 20:1218-1249. PanIN: 
Pancreatic intraepithelial neoplasm precursor; PDAC: pancreatic ductal adenocarcinoma; 
MCN: mucinous cystic neoplasm; IPMN: intraductal papillary mucinous neoplasm. 
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tumors. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of exocrine 

pancreatic cancer, accounting for more than 90% of total cases of exocrine pancreatic cancers 

(Antoniou et al., 2013). 

  The progression from non-neoplastic cells to a malignant adenocarcinoma occurs 

through a series of precursor lesions characterized by increasing levels of dysplasia (Hezel et 

al., 2006). Three premalignant, non-invasive lesions of PDAC have been identified: 

intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasm (MCN), and 

pancreatic intraepithelial neoplasia (PanIN) (Figure 2). Previous studies have identified 

increasing genomic instability in premalignant and malignant PDAC lesions.  

Staging of pancreatic cancer 

  In 2009 the American Joint Committee on Cancer (AJCC) established an official 

guide for clinical staging of pancreatic cancer. The system is based on the TNM scale. The T 

variable describes the primary tumor size and invasion beyond the pancreas. The N variable 

describes the involvement of regional lymph nodes. The M variable describes the presence or 

absence of distant metastatic lesions (Table 1). Pancreatic cancers are staged from 0-IV; a 

stage 0 exhibits no evidence of a primary tumor and stage IV is any primary tumor with 

distant metastasis regardless of lymph node involvement (Table 2).  

  Pancreatic cancer has few symptoms and no early detection diagnostics. As such, 

over 50% of pancreatic cancers are classified as stage IV at the time of diagnosis (Seer 

cancer statistics review). The five-year survival rate of localized exocrine pancreas cancer 

patients is 26% whereas patients diagnosed with stage IV is 2%, 

(http://seer.cancer.gov/statfacts/html/pancreas.html, Figure 3).  
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Table 1. Pancreatic cancer TNM classification 
T Classification Primary Tumor 

T0 No evidence of primary tumor 

Tis (Carcinoma in situ) N/A 

T1 Tumor limited to the pancreas, ≤2 cm in greatest dimension. 

T2 Tumor limited to the pancreas,  >2 cm in greatest dimension. 

T3 
Tumor extends beyond the pancreas but without involvement of 
the celiac axis or the superior mesenteric artery. 

T4 
Tumor involves the celiac axis or the superior mesenteric artery 
(unresectable primary tumor). 

TX Tumor cannot be assessed 

N Classification Nodal Metastasis 
N0 No regional lymph node metastasis 
N1 Regional lymph node metastasis 
NX Regional lymph nodes cannot be assessed 

M Classifications Distant Metastasis 
M0 No distant metastasis 
M1 Distant metastasis 
Reproduced from Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging 
Manual. 7th ed. New York, NY: Springer, 2010, pp 241-9.  
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Table 2. AJCC stage groupings for pancreatic cancer 
Stage T Class N Class M Class Treatment 

0 Tis N0 M0  
IA T1 N0 M0 

Surgery 
Chemotherapy 

Chemoradiation 

IB T2 N0 M0 
IIA T3 N0 M0 
IIB T1 N1 M0 

 T2 N1 M0 
 T3 N1 M0 

III T4 Any N M0 Chemotherapy 
Palliative therapy IV Any T Any N M1 

Reproduced from Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging 
Manual. 7th ed. New York, NY: Springer, 2010, pp 241-9.  
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Figure 3. Early detection of pancreatic cancer associated with better 5-year survival. 
Patients with localized (confined to primary site) disease have the highest survival. Most 
patients are diagnosed with regional (regional lymph nodes involved) and distant (metastasis 
present) disease and have a worse prognosis. From SEER 18 2004-2010, all races, both sexes 
by SEER summary stage 2000. 
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Pancreatic ductal adenocarcinoma outcome and treatment 

  Pancreatic cancer is a lethal disease and is the fourth leading cause of cancer-related 

death in the United States (Siegel et al., 2014). The overall median survival for patients 

diagnosed with PDAC is five to eight months. The five-year survival rate for PDAC is less 

than 5% (Bilimoria et al., 2007). The poor outcome of PDAC patients stems from a strong 

tendency for tumors to invade and metastasize, resistance to chemotherapy, and a lack of 

disease-specific signs and symptoms that can be used for early detection. Because the 

symptoms of pancreatic cancer are absent through most of the development of the tumor, 

most patients are diagnosed at an advanced stage of PDAC and often present with tumors 

that have spread beyond the initial site. PDAC often invades through nerves and perineural 

spaces, lymphatic spaces, and small veins leading to metastasis beyond the pancreas (Cleary 

et al., 2004).  

  Surgical resection followed by adjuvant chemotherapy is the only potentially curative 

therapy for PDAC. Patients with localized disease are considered as eligible candidates for 

surgical resection. The location of the tumor defines the surgical procedure. Of total cases, 

20-25% of pancreatic tumors arise in the body or tail of the pancreas.  To resect these tumors, 

a distal pancreatectomy is performed as a transection of the pancreas to the left of the 

superior mesenteric vein/portal vein trunk with possible resection of peripancreatic lymph 

nodes and potentially the spleen. This procedure carries up to a 5.9% mortality rate and a 

45.3% major morbidity with the common causes of morbidity being pancreatic leak, splenic 

vein thrombosis, intra-abdominal abscess, and postoperative bleeding (Cuschieri et al., 1996; 

Lillemoe et al., 1999; Birkmeyer et al., 2002; King et al., 2008; Venkat et al., 2012; Iacono 

et al., 2013). 
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  The majority of PDAC tumors, 60-70%, arise in the head of the pancreas. For PDAC 

located in the pancreas head, a pancreaticoduodenectomy, or Whipple procedure, is the 

procedure of choice. This procedure involves resection of the pancreatic head, duodenum, a 

portion of the jejunum common bile duct, gallbladder, and a partial gastrectomy but may be 

pylorus sparing (Figure 4). The Whipple procedure carries a 4% perioperative mortality rate 

and a 59% major morbidity with common causes of morbidity being infectious 

complications, dehydration, delayed gastric emptying, abscess formation, development of 

fistulas, and abdominal bleeding (Sohn et al., 2000; DeOliveira, Winter, Schafer, 

Cunningham, Cameron, Yeo, and Clavien, 2006a; Yermilov et al., 2008; SA Ahmad et al., 

2012).  

  Although surgical resection of PDAC tumors is quite intensive, there are also 

substantial clinical benefits. Patients who are candidates for resection have an improved 

median overall survival of 23 months with a 15-30% five-year survival rates (Neuhaus et al., 

2008; Paulson et al., 2013; Rahib et al., 2014; Siegel et al., 2014). Balancing the potential 

risks and benefits from surgical resection make the decision about which patients would 

benefit from the procedure quite complicated.  

  PDAC patients who undergo surgery have the best overall survival, but peripancreatic 

lymphatic involvement, peripancreatic nodal involvement, presence of distant metastasis, 

greater than 180-degrees encasement of the superior mesenteric artery or celiac axis, 

unreconstructable superior mesenteric vein/portal vein occlusion, and involvement of inferior 

vena cava or aorta are contraindications to surgical resection and are present in 80% of 

patients at the time of diagnosis (Sohn et al., 2000; Seufferlein et al., 2012). However, a 

classification of stage III borderline resectable disease has recently been defined as abutment 
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Figure 4. The Whipple procedure. Structure of the pancreas and other digestive organs 
before the procedure (left) and after (right) the procedure, with structures to be excised 
shown pink. Adapted from Freelove R and Walling AD. (2006) Am Fam Physician 
73(3):485-492. 
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(less than 180-degree involvement) of the vasculature without any indication of metastatic 

disease (Callery et al., 2009; Werner et al., 2013; Wolfgang et al., 2013). Although surgical 

resection of borderline resectable tumors is considered technically possible, the probability of 

a positive margin is high. Neoadjuvant therapy is recommended to patients with borderline 

resectable tumors in an effort to shrink the tumor in preparation for surgical resection. 

Patients whose tumors are converted from unresectable to resectable disease after 

neoadjuvant therapy and undergo tumor resection have comparable overall survival to 

primarily resectable patients (Conroy et al., 2011; Cooper et al., 2013; Heinemann et al., 

2013). Therefore, a pressing need exists to determine the patients who may respond to 

neoadjuvant therapy as a therapeutic strategy is established for patients with borderline 

resectable disease. 

  For the 80% of patients who are not eligible for surgery, chemotherapy is the standard 

of care. In 1997 gemcitabine (Gemzar) monotherapy was approved for first-line treatment of 

PDAC, having shown to improve overall survival compared to 5-fluorouracil (5-FU, 4.41 

months for 5-FU vs. 5.4 months for gemcitabine) (Burris et al., 1997; Maginn et al., 2014). 

Gemcitabine is a nucleoside analog of cytidine and inhibits DNA synthesis. Many 

combination therapies of cytotoxic drugs with gemcitabine have been conducted but failed to 

provide increased clinical benefit. Recently a combination of gemcitabine and nanoparticle 

albumin-bound paclitaxel (nab-paclitaxel, Abraxane) was shown to have clinical efficacy 

over gemcitabine monotherapy. Paclitaxel is a stabilizing agent that prevents microtubule 

depolymerization to disrupt mitosis (Arnal and Wade, 1995; Bardeesy and DePinho, 2002). 

In a recent phase III clinical trial nab-paclitaxel in combination with gemcitabine improved 

response rate (7% for gemcitabine and 23% in combination), progression-free survival (3.7 



	   13	  

months for gemcitabine alone vs. 5.5 months in combination), and overall survival (6.7 

months for gemcitabine vs. 8.5 months in combination) (Halfdanarson et al., 2008; Hoff et 

al., 2013). 

  One of the best advancements in the treatment of unresectable PDAC is the 

combination therapy composed of the folic acid derivative leucovorin, 5-fluorouracil, 

topoisomerase I inhibitor irinotecan, and the DNA alkylating agent oxaliplatin, 

(FOLFIRINOX). In a phase III clinical trial FOLFIRINOX had a better response rate than 

gemcitabine alone (32% for FOLFIRINOX compared to 9% for gemcitabine). In addition 

FOLFIRINOX had a significantly higher time of progression-free survival (6.4 months for 

FOLFIRINOX vs. 3.3 months for gemcitabine) as well as overall survival (11.1 months for 

FOLFIRINOX compared to 6.8 months for gemcitabine). Although the clinical benefit of 

FOLFIRINOX is exciting, the use of FOLFIRINOX is limited due to greater toxicity. 

Patients given FOLFIRINOX experienced neutropenia, febrile neutropenia, 

thrombocytopenia, diarrhea, neuropathy, vomiting, and fatigue (Conroy et al., 2011; 

Antoniou et al., 2013). Therefore, FOLFIRINOX is reserved for the healthiest patients as 

defined as an Eastern Cooperative Oncology Group (ECOG) performance status less than 1 

(Oken et al., 1982; Hezel et al., 2006) (Table 3). Studies are currently underway to modify 

the regimen to reduce toxicity and expand the population of patients who can receive this 

therapy. Given the complexity and the heterogeneity of PDAC, gaining a greater insight into 

the clinical characteristics, molecular biology, dependencies, and an understanding of the 

transformation and metastatic process will be required to drive future diagnostic and 

therapeutic developments. 
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Mitotic fidelity of PDAC 

Genomic instability   

  Genomic instability and mutations are hallmarks of cancer (Hanahan and Weinberg, 

2011; Siegel et al., 2014). PDAC has been shown to exhibit characteristics of genomic 

instability including mutations (Bilimoria et al., 2007; S Jones et al., 2008; Biankin et al., 

2012), copy number variations (Harada et al., 2008; Fu et al., 2008), genomic 

rearrangements (PJ Campbell et al., 2010), and microsatellite instability (Brentnall et al., 

1995).  In addition to genetic instability, PDAC cells frequently missegregate their 

chromosomes (Hansel et al., 2003), resulting in cellular aneuploidy, a state where cells have 

a chromosomal number other than 46 (Kops et al., 2005). The process whereby cancer cells 

acquire and propagate chromosomal abnormalities is termed chromosomal instability 

(Gordon et al., 2012).  Three major mechanisms have been proposed whereby cells acquire 

chromosomal instability: mitotic checkpoint defects, centrosome over-duplication, or faulty 

sister chromatid cohesion (Duijf and Benezra, 2013). 

Spindle assembly checkpoint 

  Mitotic checkpoints are important for regulating the proper progression through the 

cell cycle. Deregulation of mitotic entry and progression can lead to cellular transformation. 

Mitotic checkpoints exist throughout the cell cycle to halt mitotic progression until the 

current stage of the cell cycle is completed. Checkpoints remain active until error-free 

completion of the current mitotic process, thus ensuring proper timing and transition between 

stages and ultimately prevent the propagation of transformed cells.  
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Table 3. ECOG Performance Status 
Grade ECOG 

0 Fully active, able to carry on all pre-disease performance without restriction 

1 Restricted in physically strenuous activity but ambulatory and able to carry out 
work of a light or sedentary nature, e.g., light house work, office work 

2 Ambulatory and capable of all self-care but unable to carry out any work 
activities. Up and about more than 50% of waking hours 

3 Capable of only limited self care, confined to bed or chair more than 50% of 
waking hours 

4 Completely disabled, Cannot carry on any self-care. Totally confined to bed or 
chair 

5 Dead 
 
Reproduced from Oken MM et al., (1982) Am J Clin Oncol 5:649-655.  
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  Of particular interest in regards to chromosomal instability is the spindle assembly 

checkpoint (SAC). Genetic screens in the budding yeast Saccharomyces cerevisiae originally 

identified mutants that failed to arrest in mitosis when the spindle was destroyed leading to 

the identification of the SAC. Later mammalian homologs were found with conserved 

function. The SAC regulates entry into anaphase during mitosis. SAC activation occurs in the 

presence of unattached kinetochores or syntelic kinetochore attachment, attachment of sister 

chromatids to microtubules emanating from the same spindle pole. Activation of the SAC is 

regulated by the activity of the T-cell tyrosine kinase (TTK, also known as Mps1 or CT96) 

(X Liu and Winey, 2012).  

TTK 

  TTK is an evolutionarily-conserved protein kinase with homologs in yeast, xenopus, 

mice, rat, zebra fish, and drosophila (X Liu and Winey, 2012). The C-terminal kinase domain 

is highly conserved and kinase domain similarity is the main metric to identify homologs, yet 

the N-termini appear unrelated among species. In humans, TTK is an 857-amino acid (aa) 

97-kDa protein. The C-terminus contains the conserved kinase domain (aa 515-794) followed 

by an unstructured tail (aa 794-857). Previous work revealed that the tail is required for 

exogenous substrate recruitment (Sun et al., 2010). In addition, the extreme C-terminus 

contains a predicted nuclear localization signal (NLS)  (aa 852-857) (X Zhang et al., 2011). 

  Until recently the role of the much larger N-terminus of TTK has been poorly 

characterized. Expression of TTK N-terminus truncation mutants suggests that the N-

terminus was important for subcellular localization and protein stability, but the functional 

domains were unknown. Newly published studies confirm the role of the N-terminus and 

identify tetratricopeptide repeat motifs (TPR, aa 61-192) preceded by an N-terminal 

extension (NTE, aa 1-60). These protein binding motifs are important for TTK kinetochore 
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localization (Thebault et al., 2012; S Lee et al., 2012; Nijenhuis et al., 2013).  Additionally, 

two LXXLL motifs (aa 65-69, 80-84), commonly referred to as nuclear receptor boxes, were 

found to be important for nuclear translocation at the G2/M boundary (X Zhang et al., 2011). 

  TTK is also regulated by post-translational modifications. Ubiquitination is a process 

of covalently linking ubiquitin to a protein substrate. Whereas mono-ubiquitination is 

important for subcellular localization, poly-ubiquitination is generally a signal for protein 

degradation by the proteasome. TTK contains a single RXXL destruction box motif (D-Box, 

aa 256-259) that is recognized by the anaphase promoting complex, or cyclosome (APC/C) 

leading to ubiquitination of TTK and signaling for its degradation (Cui et al., 2010).  

  Phosphorylation also regulates TTK function and activity. TTK is auto-

phosphorylated as well as phosphorylated by other protein kinases. Mass spectrometry 

experiments have identified over 50 phosphorylation sites on TTK (J Kang et al., 2007; Daub 

et al., 2008; Guo et al., 2008; Jelluma, Brenkman, McLeod, et al., 2008; Oppermann et al., 

2009; Xu et al., 2009; Tyler et al., 2009; YH Yeh et al., 2009; Mayya et al., 2009; Kasbek et 

al., 2010; Iliuk et al., 2010; Olsen et al., 2010; Rigbolt et al., 2011; X Zhang et al., 2011; 

Grosstessner-Hain et al., 2011; Phanstiel et al., 2011; Kettenbach et al., 2011; Hegemann et 

al., 2011; Stokes et al., 2012; Franz-Wachtel et al., 2012; L Zhang et al., 2013; Zhou et al., 

2013; C-W Yeh et al., 2014). Although most of these studies only identified the sites of 

phosphorylation, several of these sites have been functionally characterized. Phosphorylation 

of TTK regulates subcellular localization (T12, S15, T288, and S821), protein stability 

(S281, T288, and Y811) (YH Yeh et al., 2009; Tyler et al., 2009; J Liu et al., 2013), and 

activation (T675, T676, and T686) (Mattison et al., 2007; W Wang et al., 2009). 

Characterizing the functional consequences of phosphorylation events on TTK and the 
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kinases responsible for these phosphorylation events will be required to understand the 

molecular role of TTK (Figure 5). 

  Originally identified in a screen using anti-phosphotyrosine antibodies, TTK mRNA 

and protein were observed in proliferating cells but not in resting cells. This study suggested 

that TTK may have a role in cell cycle regulation (Hogg et al., 1994). Soon after, it was 

discovered that TTK had a conserved role regulating progression from metaphase to 

anaphase in the cell cycle. Since that time TTK has been shown to regulate DNA damage 

response through phosphorylation of CHK2 and BLM (Wei et al., 2005; Leng et al., 2006), 

chromosomal alignment by phosphorylating Borealin (Jelluma, Brenkman, McLeod, et al., 

2008), and post-mitotic arrest through phosphorylating p53(Huang et al., 2009). TTK has 

also been shown to phosphorylate Smad2 and Smad3 but the downstream effects remain to 

be characterized (Zhu et al., 2007). TTK has also been shown to localize to centrosomes 

(Bayliss et al., 2012) and may play a similar role in centrosome duplication as observed in 

vertebrates (Fisk et al., 2004) (Figure 6). Although the mechanism is not completely 

understood, TTK responds to a yet-unidentified signal produced by unattached kinetochores 

to prevent anaphase onset by activating the SAC. The way the SAC prevents early anaphase 

onset is by inhibiting APC/C.  

APC/C 

  APC/C is a multi-subunit E3 ubiquitin ligase that ubiquitinates proteins containing a 

lysine-glutamate-asparagine (KEN) or D-BOX motifs. These proteins become 

polyubiquitinated and thereby targeted for proteosomal degradation by the 26S proteasome. 

APC/C requires association with cell division cycle 20 (Cdc20) or cell division cycle 20 

related 1 (Cdh1) to be active (Hagting et al., 2002). It is thought that Cdc20 and Cdh1 recruit
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Figure	  5.	  Domain	  structure	  of	  TTK.	  TTK	  protein	  contains	  a	  C-‐terminal	  kinase	  
domain	  (blue),	  tandem	  tetratricopeptide	  repeats	  (TPR,	  red)	  preceded	  by	  an	  N-‐
terminal	  extension	  (NTE,	  orange),	  and	  a	  single	  D-‐Box	  (yellow).	  TTK	  also	  contains	  a	  
nuclear	  localization	  peptide	  sequence	  at	  the	  extreme	  C-‐terminus	  (blue	  lines)	  and	  
tandem	  LXXLL	  motifs	  in	  the	  N-‐terminus	  (green	  lines)	  required	  for	  nuclear	  
accumulation.	  Validated	  phosphorylation	  sites	  with	  known	  functions	  are	  also	  
displayed	  (black	  lines).	  
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Figure 6. TTK signaling. TTK  is activated downstream of unattached kinetochores by a 
yet-undefined mechanism. Trans- and auto-phosphorylation of T675, T676, T686 activate 
TTK and lead to downstream signaling. TTK phosphorylates multiple downstream substrates 
to mediate distinct cellular functions, yet gaps in the knowledge of the molecular signaling 
cascades remain unknown.



	   21	  

ubiquitination substrates to APC/C by binding to both partners.  Cdc20 is important for 

regulating mitotic proteins in early mitosis, whereas APC/C binding to Cdh1 is important for 

the late stages of mitosis important for mitotic exit (Nasmyth, 2005; Lehman et al., 2010).  

  APC/CCdc20 has several well-characterized ubiquitination substrates among which are 

securin, and cyclin B. Securin is a chaperone protein responsible for inhibiting the protease 

activity of separase. Separase is a protease that cleaves cohesin, a multi-subunit protein that 

holds sister chromatids together, thus destroying the link between the sister chromatids in 

preparation for segregation during anaphase. Cyclin B is an activator of the cyclin-dependent 

kinase 1 (Cdk1), whose activities is responsible for progression through the cell cycle. Cyclin 

B/Cdk1 inhibits separase through direct phosphorylation. The simultaneous degradation of 

both securin and cyclin B by the APC/C relieve the inhibition of separase, allowing for 

separation of sister chromatids during anaphase (Nasmyth, 2005).  

  It is of vital importance that APC/C remain inactive until proper alignment and 

attachment of microtubules to each sister chromatid to ensure mitotic fidelity. The SAC 

accomplishes this function by sequestering the APC/C co-activator CDC20. Previous reports 

have shown that active mitotic arrest-deficient 2-like-1 (Mad2) can bind directly to CDC20, 

thereby preventing its association with APC/C. Unbound Mad2 exists in two conformations, 

an inactive “open” form (O-Mad2) and an active “closed” form (C-Mad2). As a monomer 

Mad2 is mostly found in the open, inactive state. C-Mad2 is found stably bound to a mitotic 

arrest-deficient 1-like-1 (Mad1) homodimer. Activation of O-Mad2 is thought to occur 

through a template model whereby O-Mad2 forms a homodimer with C-Mad2 that is bound 

to Mad1. Dimerization changes the conformation of O-Mad2 to C-Mad2. At this point the 

recently activated C-Mad2 can release the C-Mad2/Mad1 complex and bind to CDC20, 
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weakly capturing it. The binding of C-Mad2 and CDC20 is strengthened by the subsequent 

binding of budding uninhibited by benzimidazoles 1 mitotic checkpoint serine/threonine 

kinase B (BubR1) and budding uninhibited by benzimidazoles 3 (Bub3) to form the mitotic 

checkpoint complex (MCC). In the MCC, CDC20 is directly bound to C-Mad2 and BubR1, 

thus strengthening the sequestering effect. However, in the cytosol O-Mad2 cannot interact 

with the C-Mad2/Mad1 complex because the dimerization site is masked by p31comet, which 

is a Mad2 binding protein that functions as a negative regulator of the SAC. p31comet  

outcompetes O-Mad2 for the C-Mad2 dimerization site due to its higher affinity. To 

overcome this negative regulation, the Mad1/C-Mad2/p31comet complex is recruited to 

unattached kinetochores. Although the mechanism is still under investigation, at unattached 

kinetochores p31comet disassociates from the C-Mad2/Mad1 dimer, allowing O-Mad2 to bind, 

convert to the closed conformation, and subsequently bind CDC20 (Figure 7).  

  TTK is required to recruit Mad2 to unattached kinetochores (Abrieu et al., 2001; 

Martin-Lluesma et al., 2002; Santaguida et al., 2010; Maciejowski et al., 2010; Sliedrecht et 

al., 2010; Hewitt et al., 2010). Although TTK does not phosphorylate Mad2, TTK has been 

shown to phosphorylate Mad1 in vitro (Hardwick et al., 1996). Furthermore, catalytic 

inhibition of TTK prevents hyper-phosphorylation of Mad1, maintenance of C-Mad2/Mad1 

complex to the kinetochore, and continual recruitment of O-Mad2 to kinetochores (Hewitt et 

al., 2010; Tipton et al., 2013). These and other findings demonstrate the essential role of 

TTK for sustained SAC function. Inhibition of TTK with either siRNA depletion or 

pharmacologic inhibition of TTK catalytic activity causes SAC silencing, resulting in an 

accelerated mitotic transit time and aberrant chromosomal separation. Ultimately the result of 

TTK inhibition is massive cellular aneuploidy that is incompatible with cell viability 
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(Schmidt et al., 2005; Tighe et al., 2008; Jelluma, Brenkman, van den Broek, et al., 2008; 

Kwiatkowski et al., 2010).  

  The deregulation of the cell cycle by disrupting mitotic checkpoint machinery is an 

attractive approach for cancer therapy (Janssen and Medema, 2011; Aarts et al., 2013). The 

requirement of TTK in proper SAC activation makes it an attractive target to inappropriately 

force cancer cells through the cell cycle.  To explore this hypothesis, numerous 

pharmacologic inhibitors have been developed to selectively inhibit TTK, including AZ3146 

(Hewitt et al., 2010), Reversine (Santaguida et al., 2010), MPS1-IN-1, MPS1-IN-2 

(Kwiatkowski et al., 2010), MPS-IN-3 (Tannous et al., 2013), MPS-BAY1, MPS-Bay2a 

(Jemaà et al., 2013), NMS-P715 (Colombo et al., 2010), and MPI-0479605 (Tardif et al., 

2011). Pharmacologic inhibition of TTK has been shown to decrease cell proliferation of 

breast cancer cell lines in vitro and in vivo (Daniel et al., 2011; Maire et al., 2013).  In 

addition, inhibition of TTK has been shown to decrease growth of other cancer cell lines 

including colorectal (Kwiatkowski et al., 2010; Tardif et al., 2011; Jemaà et al., 2013), lung 

(Tardif et al., 2011), glioblastoma (Tannous et al., 2013), cervical (Tardif et al., 2011; Jemaà 

et al., 2013), pancreas  (Slee et al., 2013), and malignant melanoma (Colombo et al., 2010).  

  These studies demonstrate the importance of TTK for continued growth of PDAC and 

to suppress chromosomal instability. Genomic instability, of which chromosomal instability 

is a component, is thought to drive cancer. Identification and characterization of the driving 

mutations and expression profiles in PDAC may identify vulnerabilities in PDAC to explore 

as therapies. 

Genetics of pancreatic ductal adenocarcinoma 

  Progression from non-invasive precursor lesions towards PDAC is believed to occur 

through step-wise accumulation of genetic mutations (Figure 8) 
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Figure	  7.	  The	  spindle	  assembly	  checkpoint.	  TTK	  promotes	  kinetochore	  
localization	  of	  a	  Mad1	  homodimer	  bound	  to	  closed	  Mad2.	  Kinetochore	  binding	  
causes	  the	  release	  of	  p31comet.	  O-‐Mad2	  (green	  circles	  labeled	  O)	  binds	  to	  closed	  Mad2	  
(red	  circles	  labeled	  C)	  and	  becomes	  activated	  and	  converts	  to	  closed	  Mad2	  that	  can	  
now	  bind	  and	  sequester	  CDC20.	  Further	  binding	  of	  BubR1	  and	  Bub1	  stabilizes	  the	  
complex	  and	  continues	  sequesteration	  of	  CDC20	  to	  prevent	  APC/C	  activation.	  	  	  
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Figure 8. The morphological and genetic progression of PDAC. Normal	   duct	   epithelium	  
progresses	   to	   invading	   carcinoma	   through	   a	   series	   of	   histologically	   defined	   precursor	  
lesions.	   Accumulation	   of	   genetic	   mutations	   drive	   development	   from	   early	   stage	   PanIN1	  
lesions	   to	   advanced	   PanIN3	   lesions	   that	   demonstrate	   increased	   dysplasia	   including	  
elongation	  of	  the	  cell	  morphology,	  nuclear	  atypia	  and	  dysplastic	  growth.	  Development	  into	  
invasive	   PDAC	   includes	   degradation	   of	   the	   extracellular	   matrix	   (orange)	   and	   infiltration	  
through	  the	  stroma	  (green).	  Activating	  point	  mutations	  in	  KRAS	  occur	  early	  in	  the	  process	  
and	  are	   followed	  by	   inactivating	  mutations	   in	  p16ink4a,	   SMAD4,	  p53,	  and	  BRCA2	  relatively	  
later	  in	  the	  process.	  Adapted	  from	  Hruban	  RH	  et	  al.,	  (2008)	  Int	  J	  Clin	  Exp	  Pathol	  1:306-‐316.	  
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(Hruban et al., 2000; JJ Yeh and Der, 2007). One of the earliest mutations to arise in the 

development of PDAC, and most common, occurring in greater than 90% of tumors, is 

within the KRAS (Kirsten rat sarcoma) gene. KRAS is a member of the Ras family of small 

guanine triphosphatases (GTPases). Ras proteins act as a molecular switch to relay signals 

between the growth-promoting stimulation received at cell surface to the nucleus by initiating 

signal transduction cascades. In the nucleus, transcription factors convert the signals into 

gene expression changes that are more permissive of growth. Mutations in KRAS cause 

persistent signaling, even in absence of the growth-promoting signals, thereby driving PDAC 

development.   

  Work in mouse models of pancreatic cancer informs us that Ras mutations alone are 

sufficient to transform normal cells into carcinoma, however, it takes an extended period of 

time to form a tumor. The vast majority of pancreatic cancers required more than just Ras 

mutations. Whole genome sequencing of human primary PDAC tumors reveals that most 

tumors have an average of 48 genetic alterations. Some of these mutations cause activation of 

oncogenes, including KRAS and epidermal growth factor receptor (EGFR), as well as 

mutations that inactivate tumor suppressors, such as tumor protein 53 (TP53), breast cancer 

type-2 susceptibility protein (BRCA2), mothers against decapentaplegic homolog 4 (SMAD4, 

also known as DPC4) and cyclin dependent kinase 4 inhibitor A (p16ink4a) (S Jones et al., 

2008). Although these mutations are more common in PDAC, each tumor is made up of 

unique set of acquired mutations. 

  Some mutations may be biologically inert and have little influence on tumor biology 

and are often referred to as passengers. Although the passenger genes may not provide a 

selective growth advantage for oncogenesis, they are of potential value as diagnostic 
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markers. Unlike traditional biomarkers, mutated protein and DNA are produced only by 

tumor cells (Q Wang et al., 2011).  

  There are also mutations that directly provide cancer cells with a growth advantage; 

these mutations are referred to as driver mutations. Driver mutations often occur in key 

signal transduction nodes that regulate essential biological processes such as survival, 

proliferation, cellular invasion and motility, and apoptosis. Similarly to mutant KRAS, driver 

mutations often perturb cellular signaling resulting in altered transcription factor activity and 

gene expression changes. A genome-wide identification gene expression change, hereafter 

referred to as a gene signature, is one method to investigate the growth promoting 

consequences of driver mutations to tumor biology.  

Gene expression profiling 

  It is now widely appreciated that cancer is a heterogeneous disease. Therefore, we 

need to improve our understanding of the molecular classification of patients to personalize 

the treatment plan. During tumor progression mutations will drive changes in gene 

expression to promote growth, and tumors may develop dependencies on key overexpressed 

genes. Often the tumor may become addicted to the overexpressed gene product to an extent 

where if the gene is removed the tumor is no longer viable. There is a great need to identify 

the products of overexpressed genes to which tumors become addicted. One way to 

accomplish this is by analysis of gene expression profiles of patient tumors. Statistical 

methods can be employed to determine a minimal number of genes that can stratify patients 

into high- and low-risk groups based on patient survival. Previously, gene signatures have 

been identified in multiple cancers with the ability to stratify patients into high- and low-risk 

groups associated with overall survival (Sørlie et al., 2001; Beer et al., 2002; van de Vijver et 

al., 2002; Eschrich et al., 2005).  Not only does this method help identify biomarkers to help 



	   28	  

dictate the treatment plan but it also generates a list of potential addictions of the tumor. In 

this way, genes that compose a gene signature can also be investigated for their potential use 

for therapeutic intervention.   

  Changes in gene expression occur through many molecular mechanisms including 

aneuploidy, gene amplification (Chou et al., 2013), aberrant cell signaling (Singh et al., 

2009), aberrant micro RNA (miRNA) expression (Szafranska et al., 2007), and epigenetic 

changes such as DNA methylation or histone modifications (McCleary-Wheeler et al., 2013; 

Nones et al., 2014) (Figure 9). Technological advances, such as complementary DNA 

(cDNA) microarrays and whole transcription RNA sequencing (RNA-seq), have provided a 

means to investigate gene expression on a genome-wide scale.  

  Several studies investigating aberrant gene expression are providing insight and 

understanding of the molecular biology that promotes malignant transformation, important to 

development of both diagnostic tools and therapeutic targets. Comparing the transcriptome of 

micro-dissected PanIN I-III precursor lesions with normal pancreas identified 1251 

differentially regulated genes. Interestingly, only 47 differentially expressed genes were 

identified in PanIN-1B samples whereas PanIN2 had 438 differentially expressed genes 

when compared to normal pancreas. Of these genes, 30-60% of aberrantly expressed PanIN 

genes were also aberrantly regulated in PDAC, suggesting a functional role in disease 

progression (Buchholz et al., 2005).  

  The utility of gene expression profiling as a diagnostic tool is an area of current 

investigation. Comparison of gene expression profiles of normal pancreas and chronic 

pancreatitis with PDAC cell lines and primary tumors identified differential expression of 

158 genes in PDAC (Logsdon et al., 2003). These genes not only provide new insights into 
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the molecular development of PDAC but could also be useful in differentiating between 

chronic pancreatitis and invasive PDAC, which has been a challenge for clinicians when the 

histology is inconclusive (Klöppel and Adsay, 2009). 

  In addition to diagnostic use, gene expression profiles may identify genes of 

biological significance for PDAC development. Comparison of the gene expression profiles 

of normal pancreas with pancreatic cancer cell lines and primary tumors have identified an 

enrichment of genes involved with specific molecular pathways in PDAC. One study 

identified 149 differentially up-regulated genes, 103 genes not previously identified in PDAC 

associated with cell-cell and cell-matrix interactions, cytoskeleton remodeling and calcium 

homeostasis (Iacobuzio-Donahue, Maitra, et al., 2003). Further investigation into these 

pathways known to be involved with invasive properties of the cell may 

provide insight into the mechanism of metastasis and potential identify therapeutic targets. 

   Recent whole-genome profiling of PDAC performed by the International Cancer 

Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA, unpublished data from 

https://tcga-data.nci.nih.gov/tcga/) have unveiled vast heterogeneity in PDAC (Biankin et al., 

2012). Clustering of the gene expression of primary PDAC tumors demonstrates that 

similarities between tumors exist, perhaps subtypes of PDAC (Lowe et al., 2007). Gene 

expression analysis in breast cancer led to the identification of disease subtypes associated 

with patient prognosis (Sørlie et al., 2001). Assuming that subtypes exist, identification of 

subtypes of disease may help identify vulnerabilities and dependencies of PDAC that can be 

used to guide therapeutic choices as well as identify novel therapeutic targets.  

Summary 

  Despite the low overall survival of PDAC patients, about 20% of patients with 

resectable PDAC will survive for five years following surgery. Although the reasons are not  
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Figure	  9.	  Mechanisms	  of	  aberrant	  gene	  expression.	  Aberrant	  gene	  expression	  
occurs	  through	  many	  mechanisms	  in	  the	  cell.	  Mutation	  (red	  callout)	  can	  aberrantly	  
phosphorylate	  (P)	  and	  activate	  MAPK	  signaling	  cascades	  resulting	  in	  enhanced	  
transcription	  factor	  (TF)	  phosphorylation	  leading	  to	  nuclear	  translocation	  where	  it	  
can	  enhanced	  transcription	  by	  RNA	  polymerase	  II	  (Pol	  II).	  Copy	  number	  alterations	  
including	  gene	  duplication	  (red	  DNA)	  can	  also	  enhance	  gene	  expression.	  Aberrant	  
epigenetic	  changes	  in	  DNA	  methylation	  (Me)	  or	  chromosomal	  structure	  can	  
enhance/inhibit	  transcription	  factor	  accessibility	  to	  gene	  promoters	  and	  affect	  
transcription.	  Enhanced	  expression	  of	  miRNA	  can	  increase	  RNA-‐induced	  silencing	  
complex	  (RISC)	  and	  regulate	  mRNA	  expression.	  	  	  
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completely known, it has been hypothesized that the long-term survivors may have a less 

aggressive form of the disease. Elucidating the molecular differences between more and less 

aggressive tumors could be helpful in determining a patient’s therapy. In addition, by gaining 

a more complete understanding of tumor biology, including its addictions, dependencies, 

disposition for invasion and metastatic spread, we can better understand how to treat each 

newly diagnosed pancreatic cancer patient.  

  Here we have discussed the development, progression, characteristics, and therapy of 

PDAC. PDAC is a heterogeneous disease but there are mutations that are more common such 

as the mutational activation of the oncogene KRAS, and inactivation of the tumor suppressors 

TP53, p16ink4a, and SMAD4. These driver mutations often result in changes in gene 

expression whose gene products may represent dependencies. By studying the changes in 

gene expression in in vitro and in vivo models of PDAC, we can identify novel diagnostic 

approaches, therapeutically useful targets, and further understand the molecular biology of 

PDAC to ultimately lead to advances in the way that we treat pancreatic cancer.  
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Chapter II. 

A six-gene signature predicts survival of patients with localized pancreatic ductal 
adenocarcinoma. 

Overview 

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease. For patients with 

localized PDAC, surgery is the best option, but with a median survival of less than 2 years 

and a difficult and prolonged postoperative course for most, there is an urgent need to better 

identify patients who have the most aggressive disease. 

We analyzed the gene expression profiles of primary tumors from patients with 

localized compared to metastatic disease and identified a six-gene signature associated with 

metastatic disease. We evaluated the prognostic potential of this signature in a training set of 

34 patients with localized and resected PDAC and selected a cut-point associated with 

outcome using X-tile. We then applied this cut-point to an independent test set of 67 patients 

with localized and resected PDAC and found that our signature was independently predictive 

of survival and superior to established clinical prognostic factors such as grade, tumor size, 

and nodal status, with a hazard ratio of 4.1 (95% confidence interval [CI] 1.7–10.0). Patients 

defined to be high-risk patients by the six-gene signature had a 1-year survival rate of 55% 

compared to 91% in the low-risk group. 

Our six-gene signature may be used to better stage PDAC patients and assist in the 

difficult treatment decisions of surgery and to select patients whose tumor biology may 

benefit most from neoadjuvant therapy. The use of this six-gene signature should be 

investigated in prospective patient cohorts, and if confirmed, in future PDAC clinical trials, 
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its potential as a biomarker should be investigated. Genes in this signature, or the pathways 

that they fall into, may represent new therapeutic targets. 

Introduction 

Pancreatic ductal adenocarcinoma (PDAC), comprising over 90% of all pancreatic 

cancers, remains a lethal disease with an estimated 232,000 new cases, 227,000 deaths per 

year worldwide, and a less than 5% 5-year survival rate (Parkin et al., 2005; Boyle et al., 

2008). Currently the standard of care for the 20% of patients with localized disease is surgery 

followed by chemotherapy, and in some cases radiation. Unfortunately, despite the use of 

adjuvant therapy, median survival remains at best 23 months (Neuhaus et al., 2008). It is 

important to note, however, that up to 27% of patients with resected PDAC can survive for 5 

year (Conlon et al., 1996; NA Ahmad et al., 2001; Cleary et al., 2004; Han et al., 2006; 

Winter et al., 2006; Ferrone et al., 2008; Schnelldorfer et al., 2008). However, in studies 

examining actual long-term survivors (Conlon et al., 1996; NA Ahmad et al., 2001; Cleary et 

al., 2004; Han et al., 2006; Winter et al., 2006; Ferrone et al., 2008; Schnelldorfer et al., 

2008), only two have found that adjuvant therapy was associated with improved survival 

(NA Ahmad et al., 2001; Winter et al., 2006). In addition, randomized controlled trials of 

gemcitabine-based chemotherapy demonstrate an improvement in median survival of at best 

3 months (Neuhaus et al., 2008; Ueno et al., 2009). One possible conclusion from these 

studies is that tumor biology dictates outcome and that our current adjuvant therapy has only 

a modest impact on altering a patient’s course. 

Hypothesizing that the dismal outcome of patients with localized disease is due to the 

presence of micrometastatic disease, current clinical investigation has focused on 

preoperative or neoadjuvant therapy (Evans et al., 2008; Varadhachary et al., 2008). This 

approach, in which patients who cannot tolerate the stress of therapy or who develop 
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metastatic disease during treatment are spared surgery, has demonstrated an overall survival 

of 34 months in this highly selected patient population (Evans et al., 2008; Varadhachary et 

al., 2008). Therefore the ability to select patients who would most benefit from a neoadjuvant 

approach may be important. One way to select these individuals is to define a prognostic 

gene signature that can identify patients with more aggressive tumor biology upfront. 

Expression profiling of PDAC has lead to further studies of additional molecular 

diagnostic and prognostic markers (Grützmann, Saeger, et al., 2004; Grützmann et al., 2005; 

Goggins, 2007; Grote and Logsdon, 2007; Tonini et al., 2007; Kolbert et al., 2008). 

However, the search for genes of biological significance in these large datasets continues to 

be challenging. One approach to identify genes or pathways that are biologically relevant is 

to study those that are of prognostic significance (JJ Yeh, 2009). Lowe and colleagues found 

differential gene expression changes associated with nodal status in primary PDAC (Kim et 

al., 2007), suggesting that molecular differences in primary PDAC do exist. We hypothesized 

that by comparing primary PDAC tumors at the extremes of disease, we would identify 

molecular changes reflective of differences in biology within primary PDAC tumors. 

Experimental Procedures 

Patients 
PDAC samples from 15 patients with resected primary PDAC from the University of 

North Carolina at Chapel Hill (UNC) and 15 patients with metastatic PDAC from the 

University of Nebraska Medical Center Rapid Autopsy Pancreatic Program (NEB) were used 

to derive differentially expressed genes associated with metastatic disease. For the NEB 

samples, human pancreatic tumors from decedents who had previously been diagnosed with 

PDAC, and who generously consented to post mortem examinations, were obtained from the 

institutional review board (IRB)- approved NEB Tissue Bank. To ensure minimal 



	   35	  

degradation of tissue, organs were harvested within 3 h post mortem and the specimens flash 

frozen in liquid nitrogen. 

The training cohort included 34 patients with resected PDAC from Johns Hopkins 

Medical Institutions (JHMI). The testing or validation cohort included patients from two 

institutions: 48 from Northwestern Memorial Hospital (NW) and 19 from North Shore 

University Health System (NSU). All samples were collected between 1999 and 2007 at the 

time of operation and flash frozen in liquid nitrogen after approval by each individual IRB. 

The UNC IRB approved use of all de-identified samples for this study. All available samples 

were reviewed by a single pathologist (KAV). De-identified data including tumor, node, and 

metastasis (TNM), grade or differentiation, margin status, and survival were available for the 

majority of patients. 

RNA isolation and Microarray Hybridization 

All RNA isolation and hybridization was performed on Agilent (Agilent 

Technologies) human whole genome 4×44 K DNA microarrays and at UNC. RNA was 

extracted from macro-dissected snap-frozen tumor samples using Allprep Kits (Qiagen) and 

quantified using nanodrop spectrophotometry (Thermo Scientific). RNA quality was assessed 

with the use of the Bioanalyzer 2100 (Agilent Technologies). RNA was selected for 

hybridization using RNA integrity number and by inspection of the 18S and 28S ribosomal 

RNA. Similar RNA quality was selected across samples. One microgram of RNA was used 

as a template for DNA preparations and hybridized to Agilent 4×44 K whole human genome 

arrays (Agilent Technologies). cDNA was labeled with Cy5-dUTP and a reference control 

(Stratagene) was labeled with Cy3-dUTP using the Agilent (Agilent Technologies) low RNA 

input linear amplification kit and hybridized overnight at 65°C to Agilent 4×44 K whole 
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human genome arrays (Agilent Technologies). Arrays were washed and scanned using an 

Agilent scanner (Agilent Technologies). The data are publicly available in Gene Expression 

Omnibus database (http://www.ncbi.nlm.nih.gov/ geo/query/acc.cgi?acc = GSE21501). 

Microarray and Statistical Analysis 

All array data were normalized using Lowess normalization. Data were excluded for 

genes with poor spot quality or genes that did not have mean intensity greater than 10 for one 

of the two channels (green and red) in at least 70% of the experiments. The log2 ratio of the 

mean red intensity over mean green intensity was calculated for each gene and went through 

LOWESS normalization (YH Yang et al., 2002). Missing data were imputed using the k-

nearest neighbors imputation (KNN) with k = 10 (Troyanskaya et al., 2001). A distance 

weighted discrimination (DWD) was used to detect the systematic biases between the 

different datasets and then global adjustments made to remove these biases (Benito et al., 

2003). Genes that were significantly up- or down-regulated were identified using significance 

analysis of microarrays (SAM) (Tusher et al., 2001). Two centroids were created using the 

mean gene expression profile of this significant gene list from the derivation set and used to 

develop a single sample predictor (SSP, nearest centroid algorithm) (Hu et al., 2006) for an 

objective classifier. After DWD, the SSP was applied to a 34-patient training set where any 

new sample was compared to the resected centroid and assigned by the SSP distance function 

to the resected centroid using (1 2 Pearson correlation coefficient). The X-Tile software 

program, which assigns a two-population log-rank value to each sample and then determines 

the best cut-point, was used to determine the best threshold for classifying samples into high- 

and low-risk categories (Camp et al., 2004). X-Tile predicted that the (12 Pearson correlation 

coefficient) distance of 1 would be the appropriate cut-point to stratify patients into a high- 
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and low-risk group (p = 0.006). A second independent validation cohort was then used as a 

test set using this predetermined cut-point to evaluate outcome. 

Survival analysis was performed using the statistical software programs R, the R-

package ‘‘survival,’’ and SPSS (SPSS, Inc.). Overall survival (OS) was analyzed using the 

Kaplan-Meier product-limit method and the significance of our variables was measured by 

the log-rank test. The Fisher exact test was used to analyze associations between two 

variables, the Pearson Chi-square test was used to analyze association between more than 

two variables. Multivariable analysis and analysis of continuous and ordinal variables was 

performed using the Cox proportional hazards regression method. 

Tissue Microarrays 

Tissue microarrays (TMAs; UNC2) were prepared from formalin-fixed paraffin-

embedded tissue sections using a 2-mm punch. The arrays contained triplicate cores of 

matched normal and tumor tissue as well as chronic pancreatitis when available, from each 

patient. We prepared 5-µm sections from each TMA block. Hematoxylin and eosin stained 

slides from each TMA block were reviewed by a pathologist (KAV) to ensure that tissues 

were scored accurately. 

Immunohistochemistry 

Slides with 5-µM sections from the paraffin-embedded specimens were 

deparaffinized and rehydrated. The slides were then subjected to alkaline heat antigen-

retrieval using 1% Tris EDTA for 20 min in a steamer. All slides were incubated with 3% 

H2O2 for 5 min and washed with TBS. The slides were further treated with protein block 

solution (bovine serum albumin) for 20 min. The sections were incubated with primary KLF6 

1:150 antibody (sc-7158, Santa Cruz Biotechnology) for 60min at room temperature.  
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Figure 10. Identification, development, and application of a six-gene signature for 
PDAC. Clustering of (A) the six genes defined by SAM evaluation of the metastatic 
compared to nonmetastatic primary PDAC using a false discovery rate of 5%; (B) patient 
samples into high- and low-risk groups in a training set of 34 patients with localized and 
resected PDAC using the X-tile determined cut-point of a Pearson correlation coefficient of 
zero; (C) patient samples into high- and low-risk groups in an independent test set of 67 
patients with localized and resected PDAC using the predetermined cut-point of zero. 
Kaplan-Meier overall survival of (D) the training set classified into high- and low-risk groups 
according to the X-tile determined cut-point of a Pearson correlation coefficient of zero; (E) 
and the independent test set classified into high- and low-risk groups according to the same 
predetermined cut-point. From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
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Following a TBS wash, the slides were incubated with secondary labeled Polymer-HRP anti- 

rabbit (Dako K4002) for 30 min. This was followed by a 5-min incubation with the substrate- 

chromogen, 3,39-diaminobenzidine (Vector SK-4100). The sections were counterstained 

with Harris hematoxylin. Positive KLF6 staining was defined as when more than 5% of cells 

expressed the marker and graded from 0 (no staining) to 4 (strong staining). The results of 

each protein marker were then expressed as intensity (I) and proportion (P) of positive 

epithelial cells and the score as the product of I and P (Hoos and Cordon-Cardo, 2001; JJ Yeh 

et al., 2009). All stained slides were reviewed in a blinded fashion (JMA). 

Results 

Patient and Tumor Characteristics 
In order to study the extremes of PDAC tumor biology, we collected a diverse set of 

resected PDAC specimens from patients with and without metastases. As the tumor 

microenvironment is increasingly recognized to play a critical role in tumorigenesis (Allinen 

et al., 2004; Mueller and Fusenig, 2004; Comoglio and Trusolino, 2005; Troester et al., 

2009), tissues were macro-dissected in order to preserve the normal adjacent tissue and 

stroma of the tumors. The characteristics of the dataset used to derive the signature 

(derivation set) comprised 15 primary resected PDAC tumors (UNC1) and 15 primary 

tumors from patients with metastatic PDAC (NEB). The training set comprised 34 patients 

with primary PDAC and the independent validation test set comprised 67 patients with 

primary PDAC (Tables 4 and 5). There were no differences in RNA quality between the 

decedent and resected PDAC samples. Available treatment data of the patients in the training 

and test sets are also shown. One of 15 (7%) UNC1 patients received preoperative or 

neoadjuvant chemotherapy and 11/15 (73%) NEB patients received chemotherapy less than 6 

months prior to death. No patient in the 34-patient training set received neoadjuvant
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Table 4. Patient, tumor, and treatment characteristics in the 
derivation set. 
Demographics (Derivation Set) NEB, n=15 UNC, n=15 
Median follow-up (months) NA 6 (1-35) 
T stage 
   1 NA - 
   2 NA 2 (13%) 
   3  NA 12 (80%) 
   4 NA 1 (7%) 
N stage 
   0 NA 7 (47%) 
   1 NA 8 (53%) 
M stage 
   0 0 15 (100%) 
   1 15 0 
Grade 
   1 NA 2 (14%) 
   2 NA 8 (57%) 
   3 NA 4 (29%) 
Margin 
   Negative NA 12 (80%) 
   Positive NA 3 (20%) 
Neoadjuvant therapy 
   No NA 14 (93%) 
   Yes NA 1 (7%) 
Adjuvant Therapy 
   No NA 11 (73%) 
   Yes NA 4 (27%) 
Chemotherapy 
   No 3 (20%) NA 
   Yes 12 (80%) NA 
Median Survival (months) NA 9 (1-35) 
NA, not available 
 
From Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
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Table 5. Patient, tumor, and treatment characteristics in the training and testing sets. 
Demographics  JHMI 

(Training Set), 
n=34 

NW/NSU 
(Testing Set), 
n=67 

UNC2 (TMA), 
n=50 

Median follow-up (months) 14 (2-54) 17 (2-59) 11 (0-51) 
T stage  
   1 - 2 (3%) 5 (10%) 
   2 6 (18%) 10 (16%) 8 (16%) 
   3 27 (79%) 51 (81%) 32 (66%) 
   4 1 (3%) - 4 (8%) 
N stage  
   0 2 (6%) 25 (38%) 15 (31%) 
   1 32 (94%) 41 (62%) 34 (69%) 
M stage  
   0 34 (100%) 67 (100%) 47 (94%) 
   1 0 0 2 (4%) 
Grade  
   1 1 (3%) 2 (3%) 2 (4%) 
   2 13 (38%) 34 (54%) 26 (52%) 
   3 20 (59%) 27 (43%) 20 (40%) 
Margin  
   Negative NA 51 (80%) 7 (14%) 
   Positive NA 13 (20%) 2 (4%) 
Neoadjuvant therapy  
   No 34 (100%) 65 (97%) 7 (14%) 
   Yes 0 2 (3%) 1 (2%) 
Adjuvant Therapy  
   No NA 30 (45%) NA 
   Yes NA 37 (55%) NA 
Median Survival (months) 13 (2-54) 21 (3-59) 12 (0-51) 
NA, not available 
 
From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
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chemotherapy. Only 3% (2/67) of patients in the test set received neoadjuvant chemotherapy 

and 45% (30/67) of patients received postoperative or adjuvant chemotherapy. 

Gene Expression Differences in Nonmetastatic and Metastatic Primary Tumors 

We hypothesized that we could enrich for molecular differences in primary PDAC, 

which may be clinically and biologically relevant, through examining primary tumors 

representing opposite spectrums of PDAC: early (localized) and late (metastatic) stage. To 

accomplish this, we compared nonmetastatic (UNC1) with metastatic (NEB) primary PDAC 

tumors. As the methods of procurement for these tumors differed, we used DWD to identify 

systematic biases between the two datasets (Benito et al., 2003). This method has been used 

previously to successfully combine three breast cancer datasets across three microarray 

platforms (Hu et al., 2006), across species (Herschkowitz et al., 2007), and across multiple 

datasets (Oh et al., 2006; Lu et al., 2006). We therefore used DWD to adjust for the 

systematic biases between the UNC1 and NEB datasets by taking advantage of the fact that 

each dataset also had 15 normal pancreas samples assayed. In short, we used DWD to adjust 

these 15 tumor-normal pairs from both datasets to have similar distributions in principal 

component (PC) 16PC 2 space. After the DWD adjustment, we used SAM to identify 

differentially expressed genes (Tusher et al., 2001; YH Yang et al., 2002). Using a false 

discovery rate of 5%, we identified six genes that were differentially overexpressed between 

nonmetastatic and metastatic primary tumors: FBJ murine osteosarcoma viral oncogene 

homolog B (FOSB), Kruppel-like factor 6 (KLF6), nuclear factor of kappa light polypeptide 

gene enhancer in B-cells inhibitor, zeta (NFKBIZ, IKBZ, MAIL), ATPase H+/K+ exchanging, 

alpha polypeptide (ATP4A), germ cell associated 1 (GSG1), and sialic acid binding Ig-like 

lectin 11 (SIGLEC11) (Figure 10A; Table S1, available online at 
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http://www.plosmedicine.org/). 

Development of a Classifier Using the Six-Gene Signature 

We examined the relationship of our six-gene signature to outcome using a training 

set of 34 patients with localized and resected PDAC. After identifying and adjusting for 

systematic bias using DWD (Benito et al., 2003), a resected centroid-based predictor (Hu et 

al., 2006) was created using the 30 samples in the derivation dataset. The centroid was then 

applied to the DWD-adjusted training set of primary PDAC patients to determine the 

performance of the six- gene signature. X-tile (Camp et al., 2004) was used to determine the 

optimal distance function to the centroid cut-point for classifying this training set of patients 

into high-risk and low-risk groups on the basis of survival (Figure 10B and 10D). The 

optimal cut-point occurred at a Pearson correlation coefficient of zero (p = 0.006) with 

patients with Pearson correlation coefficients greater than zero in the low-risk and less than 

zero in the high-risk groups. 

Application of the Six-Gene Signature to an independent Validation Cohort of 67 

Patients 

In order to evaluate the performance of the cut-point determined by X-tile (Camp et 

al., 2004), we applied the cut-point to an independent validation test set of 67 patients with 

primary PDAC. Our predetermined Pearson correlation coefficient cut-point of zero distance 

to the centroid successfully stratified patients into high- (n=42) and low-risk groups (n=25) 

with a median overall survival (OS) of 15 versus 49 months (p = 0.001) (Figure 10C and 

10E). Patients in the high-risk group had 1-, 2-, and 3-y estimated survival rates of 55%, 

34%, and 21%, compared to 91%, 64%, and 56% in the low-risk group. 

Previous studies in PDAC have found that nodal status is the most predictive of 
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outcome for patients with localized PDAC (Sohn et al., 2000). We compared our prognostic 

signature to current clinical prognostic benchmarks. We found that tumors that were node 

positive (p=0.091) and grade 2 or 3 trended towards a shorter survival (p = 0.080). Neither T 

stage (p = 0.977) nor margin status (p = 0.223) were prognostic in this cohort. Treatment 

with adjuvant chemotherapy (p=0.699) or with neoadjuvant chemotherapy (p=0.409) was 

also not prognostic, although only two patients received neoadjuvant chemotherapy. We 

found no gene expression changes between the tumors of the two patients who received 

neoadjuvant chemotherapy and the tumors of patients who received no treatment prior to 

surgery. 

An important feature of any prognostic signature is that it should be independent or 

additive to currently used clinicopathologic prognostic criteria. We therefore compared the 

prognostic importance of our molecular signature in the setting of grade (p = 0.417), nodal 

status (p = 0.381), T stage (p = 0.675), and margin status (p=0.295). We found that our six-

gene signature was the only independent predictor of survival in the 57 patients with 

complete data, with a hazard ratio of 4.1 (95% confidence interval 1.7–10.0) (Table 6). 

We also looked at whether our six-gene signature was confounded by available 

clinicopathological variables. We found no association between our molecular signature, and 

tumor size, grade, margin status, nodal status, and neoadjuvant or adjuvant chemotherapy in 

our independent test set (Table 7). 

KLF6 Expression in Primary PDAC 

In order to further validate the six-gene signature, we performed 

immunohistochemical analyses for KLF6, which showed a wide range of expression values 

between nonmetastatic versus metastatic samples (Figure 10A). To evaluate KLF6 protein
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Table 6. Cox proportional hazards regression analysis of the six-gene signature. 
Variable Hazard Ratio CI p-Value 
Six-gene signature 4.1 1.7-10.0 0.002 
   T stage - - 0.675 
   N stage - - 0.381 
   Grad - - 0.417 
Margin status - - 0.295 
CI, confidence interval. 
 
From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
 
 
Table 7. Relationship between the six-gene signature and clinicopathological variables. 
Variable Six-Gene Signature 
 High Risk Low Risk p-Value 
T stage  
   1 1 (50%) 1 (50%) 0.886 
   2 6 (60%) 4 (40%) - 
   3 33 (65%) 18 (35%) - 
N stage  
   0 13 (52%) 12 (48%) 0.203 
   1 28 (68%) 13 (32%) - 
Grade  
   1 1 (50%) 1 (50%) 0.788 
   2 22 (65%) 12 (35%) - 
   3 19 (70%) 8 (30%) - 
Margin  
   Negative 31 (59%) 22 (41%) 0.344 
   Positive 9 (75%) 3 (25%) - 
Neoadjuvant therapy  
   No 42 (65%) 23 (35%) 0.136 
   Yes 0 (0%) 2 (100%) - 
Adjuvant Therapy  
   No 24 (65%) 13 (35%) 0.801 
   Yes 18 (60%) 12 (40%) - 
 
From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
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Table 8. Comparison of individual genes in high- and low-risk groups Johns Hopkins 
Medical Institutions. 

 Group 1 (High Risk) Group 2 (Low Risk)  

 Average Stdev Average Stdev 
2 Sided 

Type 2 T-
Test 

SIGLEC11 0.0604 0.8489 -0.3163 0.7000 0.2098 
KLF6 0.3502 0.8063 0.1471 0.6985 0.2571 
FOSB -0.5505 .9013 0.4487 0.9527 0.0033 

ATP4A -0.1818 0.9529 -0.1826 0.7753 0.0010 
NFKBIZ 0.5668 0.7767 -0.1826 0.7753 0.0010 

GSG1 -0.2451 0.8350 0.1019 1.3196 0.1912 
Stdev, standard deviation 
From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
 
 
Table 9. Comparison of individual genes in high- and low-risk groups Northwestern 
Memorial Hospital/NorthShore University Health System 

 Group 1 (High Risk) Group 2 (Low Risk)  

 Average Stdev Average Stdev 
2 Sided 

Type 2 T-
Test 

SIGLEC11 0.1145 0.5742 -0.2116 0.7660 0.0492 
KLF6 0.5304 0.6399 -0.2474 0.5880 0.0000 
FOSB -0.9593 0.8241 0.9310 0.7750 0.0000 

ATP4A 0.0885 0.7960 0.1234 0.8217 0.8619 
NFKBIZ 0.1985 0.9682 -0.7227 0.8165 0.0001 

GSG1 0.0270 0.9123 0.1259 0.8499 0.6548 
Stdev, standard deviation 
From: Stratford JK et al. (2010) PLoS Med 7(7): e1000307.  
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Figure 11. Significance of KLF6 and Fos B expression in primary PDAC. (A) KLF6 
staining is significantly higher in PDAC compared to normal adjacent pancreas in an 
independent dataset of a 50-patient TMA (UNC2) as well as NEB samples used for the 
original analysis. (B) Kaplan-Meier overall survival of 50 patients classified by high and low 
KLF6 scores, using the median cutoff score of 1.5. (C) KLF6 immunostaining in the primary 
tumor of a patient who died of metastatic disease (ii) and in a resected primary tumor (iv). 
Minimal staining is seen in the matched normal adjacent tissue of both patients (i, iii). KLF6 
immunostaining in islet cells (i, white arrowhead). Arrows illustrate normal ductal 
epithelium. Black arrowheads illustrate tumor. From: Stratford JK et al. (2010) PLoS Med 
7(7): e1000307.  
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expression, we obtained another independent dataset of 50 patients represented on a TMA 

with matched normal, chronic pancreatitis, and PDAC (UNC2, Table 5). First, using the 

median score of 1.5 as the cutoff, we found that KLF6 expression was much higher in tumors 

compared to normal pancreas (p<0.001) (Figure 11A and 11C). KLF6 expression was strong 

in normal islet cells in agreement with a previous study (Figure 11Ci, white arrowhead) 

(Hartel et al., 2008). Second, we found that KLF6 expression with a score greater than 1.5 

(high) was associated with a shorter median survival of 11 months compared to 24 months 

for patients with KLF6 expression scores less than 1.5 (low) (p = 0.04) (Figure 11B). 

Discussion 

We profiled and compared nonmetastatic and metastatic primary PDAC tumors and 

identified a six-gene signature. Although this signature was not derived on the basis of 

outcomes, we show that it was prognostic in a true test set of resectable PDAC patients. 

Importantly, our six-gene signature was independently predictive of survival, stratifying 

patients with median survivals of 15 compared to 49 months, outperforming current 

pathological staging criteria, suggesting that our signature will be a powerful prognostic tool 

for patients with localized PDAC. 

PDAC continues to be a devastating disease with few long-term survivors. Surgery 

remains the standard therapy for patients diagnosed with resectable PDAC (Yeo et al., 1997). 

Yet with a median survival only of less than 2 y after surgery, the attendant postoperative 

mortality rate of 2%–6% (Yermilov et al., 2008; Eppsteiner et al., 2009), and postoperative 

complication and hospital readmission rates of 59% (DeOliveira, Winter, Schafer, 

Cunningham, Cameron, Yeo, and Clavien, 2006b; Yermilov et al., 2008), the decision for 

surgery should be made cautiously. Therefore, improved patient selection for therapy is 

necessary. For the majority of patients who cannot undergo surgery, gemcitabine 
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chemotherapy remains the best option, yet only 5%–10% of patients respond to the treatment 

(Abou-Alfa et al., 2006; Van Cutsem et al., 2009). Given the current therapeutic limitations, 

additional prognostic tools are needed to help a patient decide whether to have surgery, 

and/or neoadjuvant chemotherapy, or when to consider participation in a clinical trial. 

Our analysis identified a surprisingly small number of genes with differential 

expression between early compared to late stage primary PDAC (Table S1, available online 

at http://www.plosmedicine.org/). This finding suggests that primary PDAC may be largely 

homogenous from a global gene expression standpoint. Nonetheless, the differences that we 

identified appear to be clinically and therefore biologically important. Our findings of 

molecular differences in resected primary PDAC tumors suggest that there is subtle 

biological variation in these tumors that influences outcome. A review of previous published 

studies did not identify differential expression of our six genes (Crnogorac-Jurcevic et al., 

2001; 2002; Iacobuzio-Donahue et al., 2002; Logsdon et al., 2003; Iacobuzio-Donahue, 

Ashfaq, et al., 2003; Iacobuzio-Donahue, Maitra, et al., 2003; Crnogorac-Jurcevic et al., 

2003; Grützmann, Pilarsky, et al., 2004; Grützmann et al., 2005; Ishikawa et al., 2005; 

Segara et al., 2005; Kim et al., 2007; Lowe et al., 2007; Karanjawala et al., 2008). This 

finding is not surprising, as previous studies examined differential gene expression changes 

between either normal pancreas or chronic pancreatitis and PDAC (Crnogorac-Jurcevic et al., 

2001; 2002; Iacobuzio-Donahue et al., 2002; Logsdon et al., 2003; Iacobuzio-Donahue, 

Ashfaq, et al., 2003; Iacobuzio-Donahue, Maitra, et al., 2003; Crnogorac-Jurcevic et al., 

2003; Grützmann, Pilarsky, et al., 2004; Grützmann et al., 2005; Ishikawa et al., 2005; 

Segara et al., 2005; Lowe et al., 2007; Karanjawala et al., 2008). Only one study has looked 

at gene expression changes between PDAC of different stages (Kim et al., 2007). Ours was 
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the first, to our knowledge, to study molecular differences between nonmetastatic versus 

metastatic primary tumors and identify and validate a prognostic signature for PDAC. 

Of the six genes identified in this study, most do not have an obvious role in 

carcinogenesis. Three of the six genes demonstrated significantly higher expression in the 

poor prognostic groups (SIGLEC11, KLF6, NFKBIZ; Tables 8-9). ATP4A, GSG1, and 

SIGLEC-11 have not been studied in cancer. SIGLEC-11 is thought to be expressed by tissue 

macrophages and also the brain microglia (Angata et al., 2002). Interestingly, a missense 

mutation of SIGLEC-11 (S465A) was identified in the mutation discovery screen of the 

recent genome-wide sequencing of PDAC (S Jones et al., 2008). NFKBIZ, also called 

IkappaB zeta, binds to the p50 subunit of nuclear factor (NF)-kappaB and is important for 

interleukin-6 (IL-6) induction and may be induced by IL-1 receptor and Toll-like receptors 

(Angata et al., 2002). Given the prevalence of chronic pancreatitis and high degree of stromal 

fibrosis, it is possible that NFKBIZ may play a role in PDAC and inflammation. 

KLF6 is a transcription factor and its full-length transcript is thought to be a tumor 

suppressor gene involved in prostate, lung, and ovarian carcinogenesis (DiFeo et al., 2009). 

However a splice variant KLF6- SV1 has been shown to have oncogenic properties. The 

oligonucleotide probes used in the Agilent whole human genome array and the antibody 

against KLF6 did not differentiate between the full-length and splice variant. In agreement 

with a previous study (Hartel et al., 2008), we found that KLF6 protein expression was 

higher in tumors than normal pancreas. In addition we found that higher KLF6 expression 

was associated with worse survival. Hartel et al. further investigated KLF6-SV1 expression 

in their study using real-time PCR and demonstrated that the higher KLF6 expression seen in 

tissues was associated with a higher ratio of KLF6-SV1 compared to full-length KLF6. 
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Therefore our findings that KLF6 expression is higher in tumors and is prognostic is likely in 

agreement with this study. 

Only one patient in the UNC1 cohort was treated with neoadjuvant chemotherapy 

compared to 80% of NEB patients who were treated with palliative chemotherapy. Although 

there is a possibility that our signature may be reflective of gemcitabine treatment or perhaps 

resistance, as NEB patients died of metastatic disease despite gemcitabine treatment, the 

successful application of our six-gene signature on an independent test set of patients where 

only 3% of patients with localized PDAC were treated with neoadjuvant therapy suggests 

that it is a rigorous predictor of prognosis in previously untreated patients. We found no 

association between our six-gene signature and whether a patient received adjuvant 

chemotherapy. In addition, chemotherapy treatment in this cohort, either pre- or 

postoperative, did not demonstrate a survival advantage. 

Another concern is the validity of our hypothesis that gene expression changes at 

different stages of primary PDAC development may occur and be important for prognosis. 

Our study is in agreement with Lowe and colleagues’ findings that differential gene 

expression changes can be identified within primary PDAC (Kim et al., 2007). However, 

they did not address the prognostic value of their findings. Several studies have also 

suggested that gene expression changes in metastasis may be found in primary tumors. In a 

study of molecular differences between primary tumors and metastases, Golub and 

colleagues identified a gene expression signature of metastasis present that could be 

identified in primary tumors (Ramaswamy et al., 2003). In addition, studies in melanoma 

have suggested that metastatic cells may be found in the parent primary tumor (Fidler and 

Kripke, 1977). Finally studies in breast cancer have demonstrated that gene expression 
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changes found in breast cancer cells with metastatic potential may be prognostic and 

predictive of patients who will develop metastasis (Minn, Y Kang, et al., 2005; Minn, Gupta, 

et al., 2005; Minn et al., 2007). Our study is the first to demonstrate that molecular 

differences in metastatic PDAC can be identified at earlier stages, and that these differences 

are predictive of future behavior. Whether these molecular changes are biologically 

associated with metastatic potential will require further investigation. 

We have applied our six-gene signature to an independent dataset of 67 patients, and 

have validated its prognostic value. In addition, we have validated the protein expression of 

KLF6 in a 50-patient TMA. Although not nearly as powerful a predictor of prognosis as our 

six-gene signature, we found that KLF6 expression was prognostic in our 50-patient TMA. 

Further validation studies will be needed to see if KLF6 alone may be a useful prognostic 

marker as others have shown (Hartel et al., 2008). Our findings suggest that the prognostic 

value of KLF6 is strengthened in evaluating the six genes in their entirety. 

Studies of patients with resectable PDAC demonstrate median survivals of up to 22 

months, equivalent to the median survival of patients in our training and testing cohorts 

(Neoptolemos et al., 2001; Neuhaus et al., 2008; Ueno et al., 2009). Our finding that our six-

gene signature is able to stratify patients, with startling differences in survival, suggests that 

it may be used to select patients for therapies. For example, for patients who are at high 

operative risk, knowledge of a median survival of 49 compared to 15 months, may be helpful 

in the operative decision-making process. Similarly, patients who have a poor prognosis 

based on the six- gene signature may be considered for neoadjuvant therapy. Currently, the 

minority of centers use neoadjuvant therapy as a standard of care, most instead reserve this 

for patients with locally advanced unresectable or borderline resectable tumors. Therefore the 
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current decision-making process is based on anatomical considerations. Our prognostic 

signature may refine this paradigm such that neoadjuvant therapy is offered to patients on the 

basis of biological considerations, regardless of resectability, and may allow us to further 

study and maximize the benefits of neoadjuvant treatment. In addition, as new therapies are 

developed, it may help to determine whether patients may require more or less aggressive 

treatment. Finally, our findings that there are molecular differences associated with late-stage 

primary tumors, which translate into differences in prognosis, suggest that the six genes in 

this signature should be further studied for their potential as biomarkers, and some of these 

genes, or the pathways that they fall into, may represent new therapeutic targets. 
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Chapter III 

Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by 
inducing lethal chromosomal instability 

Overview 

Pancreatic ductal adenocarcinoma (PDAC), which accounts for the majority of 

pancreatic cancers, is a lethal disease with few therapeutic options. Genomic profiling of 

PDAC has identified a complex and heterogeneous landscape.  Further understanding of 

PDAC molecular biology will facilitate the identification of potential therapeutic strategies. 

We analyzed the gene expression profiles of primary tumors from patients compared to 

normal pancreas and identified high co-overexpression of core components of the spindle 

assembly checkpoint (SAC), including the protein kinase TTK. We found overexpression of 

TTK protein in a subset of PDAC primary tumors and cell lines. siRNA-mediated depletion 

or catalytic inhibition of TTK resulted in an aberrant cell cycle profile, multi- and micro-

nucleation, induction of apoptosis, and decreased cell proliferation and transformed growth. 

Selective catalytic inhibition of TTK caused override of the SAC-induced cell cycle arrest. 

Together these results suggest the importance of the role of TTK-dependent SAC activation 

to prevent excessive chromosomal instability and support growth. Unexpectedly, we 

identified ubiquitin specific peptidase 16 (Usp16), a ubiquitin hydrolase, as a 

phosphorylation substrate of TTK. Usp16 regulates chromosomal condensation and G2/M 

progression by deubiquitinating histone H2A. Phosphomimetic mutants of Usp16 show 

enhanced proteosomal degradation and may prolong the G2/M transition allowing for 
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correction of replication errors. Taken together, our results suggest a critical role for TTK in 

preventing aneuploidy-induced cell death in pancreatic cancer. 

Introduction 

PDAC represents 95% of all pancreatic cancers and is the fourth leading cause of 

cancer related deaths in the United States. Median survival of pancreatic cancer patients is 

five to eight months with fewer than 5% of patients surviving longer than five years after 

diagnosis. The poor prognosis stems from the frequent presence of metastatic disease at the 

time of or shortly after diagnosis. The current standard of care for metastatic pancreatic 

cancer is chemotherapy. Although chemotherapeutic approaches including gemcitabine, nab-

paclitaxel, and FOLFIRINOX have improved patient survival (Conroy et al., 2011; Gourgou-

Bourgade et al., 2013; Hoff et al., 2013), the discovery of new and better drugs targets 

remains essential for the continued improvement of therapies for PDAC.  

Genomic and mouse model studies have advanced our understanding of PDAC tumor 

biology and have identified a high degree of chromosomal instability in PDAC (Moskovitz et 

al., 2003; Hingorani et al., 2005; Gotoh et al., 2011).  One aspect of chromosomal instability 

is the unequal segregation of chromosomes during mitosis, resulting in aberrant 

chromosomal numbers and cellular aneuploidy of both daughter cells (Thompson and 

Compton, 2008). It has long been postulated that chromosomal instability is an important 

mechanism for tumor adaptation (Nowell, 1976; Lengauer et al., 1998). However, recent 

studies have hypothesized that the adaptive capacity of cancer cells to aneuploidy is limited 

(Birkbak et al., 2011; Tang et al., 2011). Aneuploid cancer cells must maintain a delicate 

balance between sustaining an altered genome that enhances proliferation yet confines 

continued chromosomal instability within survivable limits (Kops et al., 2004; Janssen et al., 

2009). As such, there is a pressing need to characterize the adaptive mechanisms that control 
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this balance to potentially identify therapeutic targets that can shift this balance from 

sustainable to non-viable chromosomal instability.   

 Chromosomal segregation during mitosis is a multi-step process and errors during 

this often result in aneuploidy (Gordon et al., 2012). Therefore, the timing of each step is 

tightly regulated in order to maintain mitotic fidelity. In normal cells, mitotic checkpoints 

ensure that each step is completed prior to continuing through the next phase of the cell 

cycle. The importance of these checkpoints in cancer is an area of current interest as 

inactivation of mitotic checkpoints has been shown to enhance chromosomal instability 

(Duijf and Benezra, 2013), which may result in aneuploidy and decreased cell fitness. 

The spindle assembly checkpoint (SAC) is a conserved mitotic checkpoint found 

from yeast to mammals that ensures accurate segregation of chromosomes during mitosis. 

During metaphase, sister chromatids congregate at the metaphase plate prior to separation 

during anaphase. The SAC is activated to prevent the premature onset of anaphase until bi-

oriented microtubule attachment at each kinetochore. Failure to activate the SAC has 

previously have been shown to promote chromosomal instability (Kops et al., 2004; 

Thompson and Compton, 2008; Rao et al., 2009; Janssen et al., 2009). 

SAC activation requires the expression and activity of the protein kinase TTK, also 

known as Mps1/Pyt/CT96, (X Liu and Winey, 2012). Overexpression of TTK has been 

proposed to be an adaptive mechanism whereby cells cope with aneuploidy. In agreement 

with this hypothesis, high levels of TTK mRNA have been observed in multiple cancer types 

and been shown to be protective against aneuploidy (Thykjaer et al., 2001; Yuan et al., 2006; 

Salvatore et al., 2007; Landi et al., 2008; Mizukami et al., 2008; Daniel et al., 2011; Maire et 

al., 2013). Previous studies have investigated the role of TTK in cancer using pharmacologic 



	   57	  

inhibitors in cancer cell lines. Pharmacologic inhibition of TTK in colorectal and 

glioblastoma cancer cell lines reduced cell viability, caused aberrant cell cycle progression, 

increased aneuploidy, and increased apoptosis (Kwiatkowski et al., 2010; Tardif et al., 2011; 

Jemaà et al., 2013; Tannous et al., 2013). Similarly, a recent study provides a tantalizing 

rationale to look at the role of TTK overexpression in PDAC. This study found that 

pharmacologic inhibition of TTK in PDAC caused aberrant override of SAC-dependent cell 

cycle arrest, increased chromosomal instability, increased apoptosis and decreased 

clonogenic survival (Slee et al., 2014). While this study demonstrated that pharmacologic 

inhibition of TTK might prevent PDAC growth, several questions remain unanswered about 

the biological role of TTK in PDAC. First, although the pharmacologic inhibitor used was 

selective for TTK, it also inhibits casein kinase 2 (CK2), maternal embryonic leucine zipper 

kinase (MELK), and NIMA-related kinase 6 (NEK6) (Colombo et al., 2010). Second, TTK 

has a large N-terminal domain with protein binding motifs that may participate in disparate 

pathways and processes that support PDAC growth that cannot be directly studied using 

catalytic site ATP-competitive pharmacologic inhibitors. Third, Slee et al. focused on the 

effects of TTK inhibition of PDAC cell lines after several cell divisions and the acute role of 

TTK for PDAC growth remains undetermined. Finally, the requirement of TTK for cellular 

transformation and in vivo tumorigenesis in PDAC were not evaluated.   

Although this study clearly implicates the importance of TTK catalytic activity for 

continued PDAC cell line growth, how TTK promotes growth remains unclear, mainly 

because only few TTK phosphorylation substrates have been identified (Zhu et al., 2007; 

Jelluma, Brenkman, van den Broek, et al., 2008; Huang et al., 2009; Sun et al., 2010).  
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The overall goal of this study was to investigate the role of TTK in mitotic 

progression, proliferation and transformation of PDAC and identify the molecular 

mechanism whereby TTK limits chromosomal instability. We found increased mRNA 

expression of core SAC components and elevated mRNA and protein expression of TTK in a 

subset of PDAC cell lines and human tumors, suggesting that TTK might protect cells from 

excessive chromosomal instability through SAC activation. We also found that TTK 

phosphorylates and regulates the protein stability of Usp16, an enzyme required to promote 

chromosomal condensation, suggesting that TTK functions at multiple stages of the cell 

cycle to maintain genome stability. Together these findings establish the importance of TTK 

to adapt to and maintain viable levels of aneuploidy in PDAC. 

Experimental procedures: 

Tissue Collection  

Human tumor lysates from flash-frozen samples were homogenized in NP40 lysis 

buffer, resolved by SDS–PAGE, and evaluated by western blot analysis. 

RNA Microarray analysis  

Gene expression microarray data of 184 normal colon and primary pancreatic tumor 

samples from patients was obtained from the Gene Expression Omnibus (GEO) database 

(accession number GSE21501). Normalization, quality control, and imputation of array data 

was performed as previously described (Stratford et al., 2010).  Expression data from 

multiple probes were collapsed by the mean for each sample. Statistical significance was 

assessed using a two-tailed unpaired t-test comparing SAC component expression in normal 

versus tumor tissue. Differentially expressed genes were identified using statistical analysis 

of microarrays (SAM) using a 5% false discovery rate (FDR) (Tusher et al., 2001). Gene 
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networks were were investigated for enrichment of differentially expressed kinases using 

Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Mountain View, CA).  

Cell culture and reagents  

All cell lines except HPDE, HPNE, 293FT, HuPT3 were obtained from American 

Type Culture Collection (ATCC, LGC Promochem). The HPDE cell line was obtained from 

Ming-Sound Tsao (University of Toronto, Toronto). The HuPT3 cell line was obtained from 

Dan Billadeau (Mayo Clinic, Rochester, MN). 293FT cells were purchased from Invitrogen 

(Grand Island, NY). The HPNE cell line was obtained from Michel Ouellete (UNMC Eppley 

Cancer Center) and has been described previously (KM Lee et al., 2003; PM Campbell et al., 

2007). All cell lines were maintained at 37°C and 5% CO2. HPAC, PANC-1, MIA PaCa-2, 

T3M4, HPAF-II, HPNE, HPDE, 293T, 293FT, and HeLa cell lines were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Corning). BxPC-3, Panc 02.03, Panc 10.05, 

AsPC-1, SW-1990, HuPT3, CFPAC-1, Capan-1 and Capan-2 cell lines were maintained in 

RPMI-1640 with 4.5g/L glucose.  All media was supplemented with 10% (vol/vol) fetal 

bovine serum (FBS, Hyclone), and 100 U/ml penicillin and 100 U/ml streptomycin (P/S, 

Gibco). Capan-1 cells which were supplemented with 15% (vol/vol) FBS.   

Antibodies 

Primary antibodies used for immunoblot or immunoprecipitation include: Mouse anti-

β-actin (IB, 1:5000, AC-15, Sigma Aldrich) mouse anti-TTK (IB, 1:2000, 4-112-3 Millipore) 

rabbit anti-Cyclin B1 (IB, 1:1000, 4138 Cell Signaling), rabbit anti-Histone H3 phospho Ser 

10 (IB, 1:1000, 9701 Cell Signaling), mouse anti-FLAG (IB, 1:1000, M2 Sigma Aldrich), 

mouse anti-phospho tyrosine (IB, 1:1000, 9411 Cell Signaling), mouse anti-phospho serine 

(IB, 1:1000, 4A4 Millipore), mouse anti-phospho threonine (IB, 1:1000, Cell Signaling 3986) 
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rabbit anti-Usp16 (IB, 1:2000, Bethyl A301-615A) mouse anti-HA (1:1000, Covance 

16B12), and mouse anti-GFP (1:5000 Clontech JL8). HRP conjugated secondary antibodies 

include goat anti-mouse (1:10000, Thermo) or goat anti-rabbit (1:10000, Thermo). 

Immunoprecipitation and immunoblotting  

Two to five micrograms of specified antibodies were bound to 20-50 µl of Protein G 

Dynabeads (Invitrogen) overnight at 4°C. Cells were collected following treatments as 

specified in the figure legends. Cells were harvested and then lysed in NP-40 lysis buffer (50 

mM Tris pH 7.5, 10 mM MgCl2, 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 

and 10% glycerol) supplemented with phosphatase (Roche) and protease (Sigma) inhibitor 

cocktails. Cell lysates were incubated with antibody bound Dynabeads overnight at 4°C. 

Beads were washed three times with lysis buffer and resuspended in protein sample buffer 

containing β-mercaptoethanol and examined by immunoblotting. 

Immunoblots were performed by running protein samples on either 15% (for proteins 

under 40 kDa) or 8% SDS-PAGE followed by transfer of resolved proteins to PVDF 

membranes for 90 min at 4°C. All immunoblots were blocked in 5% milk/TBST solution for 

1 h at room temp with gentle agitation. Primary antibodies were diluted in 5% (weight/vol) 

milk or 5% BSA. Primary antibodies were incubated overnight at 4°C.  Following incubation 

with primary antibody blots were washed 3x with TBST and then incubated with secondary 

HRP-conjugated antibodies for 1 h at room temp with gentle agitation. Blots were again 

washed 3x with TBST and developed by ECL/chemiluminescence and auto-radiograph film 

(Kodak) or the Biorad XRS+ imaging system. 

FLAG pull-down were performed on cell lysates using the pull-down buffer (50 mM 

Tris pH 7.6, 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 1 mM EDTA, 1 mM 
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EGTA) and supplemented with protease inhibitors (Roche). Lysates were clarified by 

centrifugation. 10 mg of protein were used in each pull down. Anti-FLAG M2 magnetic 

beads (Sigma) were used to immunoprecipitate FLAG-tagged Usp16. Following extensive 

washing with TBS, FLAG-Usp16 was eluted with FLAG peptide (Sigma) in TBS. 

cDNA expression  

Expression vectors for firefly luciferase (plasmid #17477), FLAG-HA-Usp16 

(Plasmid #22595) were obtained from Addgene. GFP-Usp16 was prepared by amplifying 

Usp16 cDNA from FLAG-HA-Usp16 followed by subcloning into pEGFP-C3 using the 

XhoI  and BamHI sites. GFP-Usp16 3xA and 3xE were prepared by site-directed 

mutagenesis and confirmed by sequencing.  

 Transfections for all cDNA were accomplished using a HBS/CaCl2 or TransIT-LT1 

(Mirius Bio) protocol and cells were examined for expression 48-72 h post transfection  

siRNA transfection  

All siRNA described were obtained from Thermo and are part of their ON-

TARGETplus SMARTpools of siRNA. siRNAs were transfected using RNAiMax 

(Invitrogen).  

Cell proliferation assays 

For the MTT proliferation assay, 300 x 103 cells were transfected with siRNA using 

RNAiMax transfection reagent. Forty-eight hours post transfection 1 x 103 cells were plated 

into 6 identical wells of a 96-well plate. Proliferation was assessed by addition of the MTT 

reagent for 4 h. Measurements were taken at an A560 on the Synergy 2 (Biotek).  

For the soft agar assay, 104 siRNA transfected cells were suspended between layers of 

0.6% (bottom) and 0.3% (top) bacto-agar (BD Biosciences) in three wells of a 6-well dish. 
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Cells were supplied with growth medium twice a week and allowed to form colonies for 7-28 

days. Colonies were visualized by staining with MTT (2 mg/ml). Colonies were imaged and 

quantitated using ImageJ (National Institute of Health).  

Cell cycle analysis by flow cytometry  

DNA content was assayed using propidium iodide. Cells were harvested, washed and 

fixed in 70% ethanol. Cells were permeabolized with 0.5% Triton X-100 and stained with 

propidium iodide. Stained cells were quantitated on the CyAN flow cytometer (Beckman 

Coulter). Distribution of cells in each stage of the cell cycle was performed using ModFit 

(Verity Software House).  

Immunofluorescence  

PANC-1 and HPAC cells were plated on poly-L-lysine (Sigma) coated coverslips. 

Cells were fixed in 4% paraformaldehyde, permeabolized with 0.2% Triton X-100. Cells 

were then blocked in 5% BSA in PBS. Cells were allowed to stain for 2 h at room 

temperature, washed three times with PBS. Alexa Fluor-conjugated secondary antibodies 

(Invitrogen) and DAPI were allowed to bind for 1 h. Stained cells were washed three times 

with PBS, followed by one wash with distilled water. Coverslips were then mounted with 

Fluorsave (Calbiochem).  

All confocal images were obtained on a Zeiss 710 spectral confocal laser scanning 

confocal microscope equipped with a 405, 458, 488, 514, 543, 594, 633 nm excitation lines. 

Images were obtained using a 40X or 63X oil plan/Apo objective. Multicolor images were 

acquired using sequential scanning. All images were visualized using ImageJ and cropped 

using Photoshop.  
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Apoptosis Evaluation  

Apoptosis was evaluated using an Annexin V assay (Roche) following 

manufacturer’s protocol. Live cells were harvested in Tryp-LE (Gibco), washed in PBS, 

incubated in binding buffer with FITC conjugated Annexin V. Necrotic cells were 

discriminated by using a propidium iodide counterstain. Stained cells were quantitated on the 

CyAN flow cytometer (Beckman Coulter). At least 10,000 events were analyzed for each 

sample.  

P32 incorporation assay 

Kinase assays were performed using recombinant active GST-Tagged TTK 

(SignalChem). FLAG-Usp16 was purified from 293FT cells stably expressing FLAG-Usp16. 

Kinase assay was performed at 30°C for 15 and 30 min in 50 µl assay buffer (5 mM MOPS 

pH 7.2, 2.5 mM beta glycerol phosphate, 5 mM MgCl2, 1 mM EGTA, 0.4 mM  EDTA, 200 

µM ATP, 0.4 mCi/ml  [ϒ-32P]ATP, 50 µM DTT, 50 ng/µl BSA). Five microliters of the 

reaction was spotted onto Whatman P81 cellulose phosphate filter paper. Reactions were 

quenched by washing the filter paper with 10% phosphoric acid three times for 5-10 min 

each. Filter paper was washed once with ethanol and dried. Filter papers were placed into 

scintillation vials, scintillation fluid was added to each vial, and P32 incorporation was 

assessed on the Beckman LS6500. 

Results:  

High expression of spindle assembly checkpoint kinases identified in PDAC 

Protein kinases are the most frequently mutated family of genes that promote cancer 

and are therefore an attractive class of highly druggable molecular targets (Lahiry et al., 

2010). However, mutations in protein kinases are relatively uncommon in PDAC (17.6%) 
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compared to breast (75%), lung (86%), and colon (93%) cancers (S Jones et al., 2008; 

Biankin et al., 2012; Cancer Genome Atlas Network, 2012; Koboldt et al., 2012) 

(https://tcga-data.nci.nih.gov/). Gene amplifications and overexpression of protein kinases 

has also been shown to promote oncogenesis (Chou et al., 2013). Thus we examined what 

protein kinases were overexpressed in PDAC by analyzing gene expression profiles of 

previously published cDNA microarrays of primary PDAC tumors (n=30) and normal 

pancreas (n=20) (Stratford et al., 2010). We identified differentially expressed kinases using 

the Statistical Analysis of Microarrays (SAM) software (Tusher et al., 2001; YH Yang et al., 

2002). Of 3899 differentially expressed genes between primary patient tumors and normal 

pancreas, 106 probes were representing 91 kinases were identified (Table 10). 

We identified biological networks regulated by the differentially expressed kinases 

using IPA. We found that the cell cycle was one of the most enriched biological pathways 

regulated by our list of kinases in PDAC (Table 11, Figure 12A, 13), with 7 of the 10 most 

upregulated kinases (Table 12). Interestingly, three of these seven kinases are involved with 

the spindle assembly checkpoint (SAC): BUB1, BUB1B, and TTK. Further interrogation of 

the gene expression profiles found statistically significant co-overexpression of both kinase 

and non-kinase components of the SAC in PDAC tumors compared to normal pancreas 

(Figure 12B). Together these data suggests that the SAC may be important for mitotic 

fidelity in PDAC. 

TTK kinase activity is essential to activate the SAC and prevent early anaphase onset 

(Hardwick et al., 1996; Bettencourt-Dias et al., 2004; MH Jones et al., 2005; May and 

Hardwick, 2006). In order to evaluate the role of TTK we evaluated the expression of TTK at 

the protein level and confirmed that a subset of primary PDAC patient samples had elevated 
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TTK protein expression compared to normal pancreas tissue (Figure 12C). In addition, we 

evaluated TTK protein expression in a panel of 14 PDAC cell lines by immunoblot analysis 

(Figure 12D). We selected two cell lines with moderate TTK expression, HPAC and PANC-

1, to conduct our studies.  

TTK is necessary for PDAC growth 

To determine the functional consequence of TTK expression on PDAC growth we 

depleted TTK in PANC-1 and HPAC cell lines using a pool of 5 individually targeted 

siRNAs (Figure 14). TTK protein knockdown was confirmed by immunoblot analysis 

(Figure 15A). HPAC and PANC-1 cells depleted of TTK showed a significant decrease in 

proliferation as determined by the thiazolyl blue tetrazolium bromide (MTT) assay (Figure 

15B). Catalytic inhibition of TTK with AZ3146 (AstraZeneca) phenocopied the decrease in 

proliferation seen with siRNA in HPAC and PANC-1 cells (Figure 15C). We next examined 

the requirement for TTK to support PDAC transformed growth by measuring anchorage-

independent colony formation in soft agar, a standard assay for cellular transformation. 

Genetic depletion or catalytic inhibition of TTK in PANC-1 and HPAC cell lines 

significantly decreased transformed growth of the cells (Figure 15 D-F).  

 
Override of the spindle assembly checkpoint and aberrant cell cycle progression and 

mitotic aberrancies and apoptosis 

It is well established that TTK is required for proper SAC activation and function (X Liu and 

Winey, 2012). To understand the molecular mechanism whereby TTK supports PDAC 

growth we investigated the effects of TTK inhibition on SAC activation. HPAC and PANC-1 

cells were arrested in mitosis with 100 ng/ml nocodazole and then challenged with 



Table 10. Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-change values 
and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_23_P201988 MASTL microtubule associated serine/threonine kinase-
like 1.75 0.53 

AGI_HUM1_OLIGO_A_23_P20248 MAP2K1 mitogen-activated protein kinase kinase 1 1.42 2.49 

AGI_HUM1_OLIGO_A_23_P207896 CSNK1D casein kinase 1, delta 1.38 2.02 

AGI_HUM1_OLIGO_A_23_P213114 TEC tec protein tyrosine kinase 1.33 4.20 

AGI_HUM1_OLIGO_A_23_P215461 LIMK1 LIM domain kinase 1 1.54 1.43 

AGI_HUM1_OLIGO_A_23_P216920 NEK6 NIMA (never in mitosis gene a)-related kinase 6 1.31 5.07 

AGI_HUM1_OLIGO_A_23_P24997 CDK4 cyclin-dependent kinase 4 1.33 2.93 

AGI_HUM1_OLIGO_A_23_P251342 GSK3B glycogen synthase kinase 3 beta 1.32 0.39 

AGI_HUM1_OLIGO_A_23_P252106 RIPK2 receptor-interacting serine-threonine kinase 2 1.35 2.93 

AGI_HUM1_OLIGO_A_23_P256312 MST1R macrophage stimulating 1 receptor (c-met-related 
tyrosine kinase) 2.00 0.13 

AGI_HUM1_OLIGO_A_23_P259586 TTK TTK protein kinase 2.97 0.00 

AGI_HUM1_OLIGO_A_23_P3204 MAPK6 mitogen-activated protein kinase 6 1.41 2.93 

AGI_HUM1_OLIGO_A_23_P342067 UHMK1 U2AF homology motif (UHM) kinase 1 1.36 2.02 

AGI_HUM1_OLIGO_A_23_P35219 NEK2 NIMA (never in mitosis gene a)-related kinase 2 3.42 0.00 

AGI_HUM1_OLIGO_A_24_P166663 CDK6 cyclin-dependent kinase 6 1.66 1.43 
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Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_23_P359245 MET met proto-oncogene (hepatocyte growth factor 
receptor) 2.38 0.00 

AGI_HUM1_OLIGO_A_23_P39684 TLK1 tousled-like kinase 1 1.29 2.49 

AGI_HUM1_OLIGO_A_23_P397341 PKMYT1 progestin and adipoQ receptor family member IV 1.79 0.00 

AGI_HUM1_OLIGO_A_23_P418413 OXSR1 oxidative-stress responsive 1 1.33 1.12 

AGI_HUM1_OLIGO_A_23_P42784 STK31 serine/threonine kinase 31 1.91 2.93 

AGI_HUM1_OLIGO_A_23_P51646 PLK3 polo-like kinase 3 (Drosophila)|Tctex2 beta 1.57 5.07 

AGI_HUM1_OLIGO_A_23_P55578 RIOK3 RIO kinase 3 (yeast) 1.48 2.49 

AGI_HUM1_OLIGO_A_23_P55584 RIOK3 RIO kinase 3 (yeast) 1.53 1.77 

AGI_HUM1_OLIGO_A_23_P56978 PTK6 PTK6 protein tyrosine kinase 6 3.21 0.00 

AGI_HUM1_OLIGO_A_23_P57667 PLXNA1 plexin A1 1.71 0.00 

AGI_HUM1_OLIGO_A_23_P66732 GSG2 germ cell associated 2 (haspin) 1.44 2.49 

AGI_HUM1_OLIGO_A_23_P75989 PAK1 p21/Cdc42/Rac1-activated kinase 1 (STE20 
homolog, yeast) 1.49 2.02 

AGI_HUM1_OLIGO_A_23_P76731 RAGE renal tumor antigen 1.52 2.02 

AGI_HUM1_OLIGO_A_23_P94422 MELK maternal embryonic leucine zipper kinase 1.80 0.53 
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Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_24_P251899 CSNK1A1 casein kinase 1, alpha 1 1.30 3.47 

AGI_HUM1_OLIGO_A_24_P313504 PLK1 endoplasmic reticulum to nucleus signaling 2|polo-
like kinase 1 (Drosophila) 1.52 2.02 

AGI_HUM1_OLIGO_A_24_P319613 NEK2 NIMA (never in mitosis gene a)-related kinase 2 2.14 0.00 

AGI_HUM1_OLIGO_A_24_P333663 MAPK6 mitogen-activated protein kinase 6 1.45 3.47 

AGI_HUM1_OLIGO_A_24_P37441 PDK1 pyruvate dehydrogenase kinase, isozyme 1 1.76 0.53 

AGI_HUM1_OLIGO_A_24_P42603 TRIO triple functional domain (PTPRF interacting) 1.43 5.07 

AGI_HUM1_OLIGO_A_24_P830690 PDPK1 3-phosphoinositide dependent protein kinase-1 1.36 4.20 

AGI_HUM1_OLIGO_A_24_P94054 STK4 serine/threonine kinase 4 1.51 4.20 

AGI_HUM1_OLIGO_A_32_P140501 AXL AXL receptor tyrosine kinase 1.49 5.07 

AGI_HUM1_OLIGO_A_32_P25204 PRKDC similar to protein kinase, DNA-activated, catalytic 
polypeptide 1.35 3.47 

AGI_HUM1_OLIGO_A_32_P62997 PBK PDZ binding kinase 2.76 0.00 

AGI_HUM1_OLIGO_A_32_P119174 IPPK inositol 1,3,4,5,6-pentakisphosphate 2-
kinase|centromere protein P 1.37 5.07 

AGI_HUM1_OLIGO_A_24_P245646 TP53RK TP53 regulating kinase 1.30 3.47 

68



Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_24_P76319 LOC642609 similar to tau tubulin kinase 2 1.44 5.07 

AGI_HUM1_OLIGO_A_23_P10559 AATK apoptosis-associated tyrosine kinase -1.98 1.77 

AGI_HUM1_OLIGO_A_23_P110791 CSF1R 
colony stimulating factor 1 receptor, formerly 
McDonough feline sarcoma viral (v-fms) 
oncogene homolog 

-1.89 4.20 

AGI_HUM1_OLIGO_A_23_P125596 RPS6KA6 ribosomal protein S6 kinase, 90kDa, polypeptide 6 -1.28 4.20 

AGI_HUM1_OLIGO_A_23_P126416 TIE1 tyrosine kinase with immunoglobulin-like and 
EGF-like domains 1 -1.73 1.43 

AGI_HUM1_OLIGO_A_23_P128447 LRRK2 leucine-rich repeat kinase 2 -1.64 0.22 

AGI_HUM1_OLIGO_A_23_P134125 MAP3K5 mitogen-activated protein kinase kinase kinase 5 -1.41 3.47 

AGI_HUM1_OLIGO_A_23_P142304 MKNK2 MAP kinase interacting serine/threonine kinase 2 -1.74 2.93 

AGI_HUM1_OLIGO_A_23_P142310 MKNK2 MAP kinase interacting serine/threonine kinase 2 -1.61 2.02 

AGI_HUM1_OLIGO_A_23_P147711 NPR1 natriuretic peptide receptor A/guanylate cyclase A 
(atrionatriuretic peptide receptor A) -1.75 0.14 

AGI_HUM1_OLIGO_A_23_P159169 AATK apoptosis-associated tyrosine kinase -1.29 3.47 

AGI_HUM1_OLIGO_A_23_P164057 MAPK7 microfibrillar-associated protein 4|mitogen-
activated protein kinase 7 -2.40 0.53 

AGI_HUM1_OLIGO_A_23_P16817 CLK1 CDC-like kinase 1 -1.67 1.12 
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Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_23_P202245 RET ret proto-oncogene -1.46 5.07 

AGI_HUM1_OLIGO_A_23_P169819 EPHA3 EPH receptor A3 -1.87 2.02 

AGI_HUM1_OLIGO_A_23_P205900 NTRK3 neurotrophic tyrosine kinase, receptor, type 3 -1.91 0.27 

AGI_HUM1_OLIGO_A_23_P207517 PDK2 pyruvate dehydrogenase kinase, isozyme 2 -1.36 1.77 

AGI_HUM1_OLIGO_A_23_P211985 SNRK SNF related kinase -1.60 1.77 

AGI_HUM1_OLIGO_A_23_P219105 FGFR1 fibroblast growth factor receptor 1 (fms-related 
tyrosine kinase 2, Pfeiffer syndrome) -1.46 3.47 

AGI_HUM1_OLIGO_A_23_P253602 BMX BMX non-receptor tyrosine kinase -1.81 1.12 

AGI_HUM1_OLIGO_A_23_P300033 PDGFRA platelet-derived growth factor receptor, alpha 
polypeptide -2.04 2.02 

AGI_HUM1_OLIGO_A_23_P301304 FGFR1 fibroblast growth factor receptor 1 (fms-related 
tyrosine kinase 2, Pfeiffer syndrome) -1.75 1.43 

AGI_HUM1_OLIGO_A_23_P34804 NTRK1 neurotrophic tyrosine kinase, receptor, type 1 -1.55 4.20 

AGI_HUM1_OLIGO_A_23_P372923 FGFR1 fibroblast growth factor receptor 1 (fms-related 
tyrosine kinase 2, Pfeiffer syndrome) -1.47 5.07 

AGI_HUM1_OLIGO_A_23_P374695 TEK TEK tyrosine kinase, endothelial (venous 
malformations, multiple cutaneous and mucosal) -2.89 0.00 

AGI_HUM1_OLIGO_A_23_P397455 ACVR1C activin A receptor, type IC -1.67 5.07 
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Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_23_P46618 PLXNA2 plexin A2 -1.94 3.47 

AGI_HUM1_OLIGO_A_23_P55107 ULK2 unc-51-like kinase 2 (C. elegans) -1.82 0.27 

AGI_HUM1_OLIGO_A_23_P424 MARK1 MAP/microtubule affinity-regulating kinase 1 -1.64 2.02 

AGI_HUM1_OLIGO_A_23_P61674 CLK4 CDC-like kinase 4 -1.56 2.02 

AGI_HUM1_OLIGO_A_23_P84974 NRK Nik related kinase -2.27 3.47 

AGI_HUM1_OLIGO_A_24_P106112 PKD2 polycystic kidney disease 2 (autosomal dominant) -1.41 4.20 

AGI_HUM1_OLIGO_A_24_P179585 MARK1 MAP/microtubule affinity-regulating kinase 1 -1.47 4.20 

AGI_HUM1_OLIGO_A_24_P243749 PDK4 pyruvate dehydrogenase kinase, isozyme 4 -3.69 0.00 

AGI_HUM1_OLIGO_A_24_P263144 BMX BMX non-receptor tyrosine kinase -1.98 0.22 

AGI_HUM1_OLIGO_A_24_P319923 MYLK myosin, light chain kinase -2.25 4.20 

AGI_HUM1_OLIGO_A_24_P4171 FGFR1 fibroblast growth factor receptor 1 (fms-related 
tyrosine kinase 2, Pfeiffer syndrome) -1.39 4.20 

AGI_HUM1_OLIGO_A_24_P71973 KDR kinase insert domain receptor (a type III receptor 
tyrosine kinase) -1.68 1.77 

AGI_HUM1_OLIGO_A_32_P100379 PDGFRA platelet-derived growth factor receptor, alpha 
polypeptide -1.79 0.39 
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Table 10 (continued). Overexpressed protein kinases in primary PDAC compared to normal pancreas, with their respective fold-
change values and false discovery rates. 

Gene ID Gene Name Gene Product Fold Change q-value(%) 

AGI_HUM1_OLIGO_A_32_P105865 ROCK1 Rho-associated, coiled-coil containing protein 
kinase 1 -1.60 5.07 

AGI_HUM1_OLIGO_A_32_P183765 ERBB4 v-erb-a erythroblastic leukemia viral oncogene 
homolog 4 (avian) -2.13 3.47 

AGI_HUM1_OLIGO_A_32_P200586 CLK1 CDC-like kinase 1 -1.37 3.47 

AGI_HUM1_OLIGO_A_32_P94160 PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic 
subunit -1.60 2.49 
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Table 11. Biological pathways enriched with differentially expressed 
kinases. 

Network name p-Value # of nodes 

Post-translational modification 1.14E-67 – 3.85E-04 66 

Cell cycle 6.76E-24 – 4.16E-04 43 

Amino acid metabolism 1.46E-19 -1.45E-08 18 

Small molecule biochemistry 1.46E-19 – 2.42E-06 25 

Cell death and survival 5.53E-19 – 4.16E-01 58 

Table 12. Function of the 10 most overexpressed kinases 
Kinase Fold Change FDR (Q-Value) Function 
BUB1 3.887 0 Cell cycle 
NEK2 3.424 0 Cell cycle 

CHEK1 3.362 0 Cell cycle 

PTK6 3.213 0 Differentiation 
and apoptosis 

TTK 2.972 0 Cell cycle 
PBK 2.756 0 Cell cycle 

STYK1 2.65 0.125 Proliferation and 
survival 

MET 2.381 0 Growth factor 
sensing 

CDK1 2.343 0 Cell cycle 
BUB1B 2.114 0 Cell cycle 
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Figure 12. Increased expression spindle assembly checkpoint components and its 
regulator TTK in PDAC. (A) Ingenuity Pathway Analysis software identified prominent 
cellular functions that were significantly affected by differentially expressed kinases between 
normal and primary PDAC. (B) Box and whisker plot of median, upper, and lower quartiles 
of mRNA expression of core components and regulators of the spindle assembly checkpoint. 
Asterisk represent the p-value of the Mann-Whitney test (ns: p≥0.05, **: p≤0.01, ***: 
p≤0.001, ****: p≤0.0001). (C) Expression of TTK in a panel of patient samples. N = normal 
pancreas and T = primary tumor. (D) Expression of TTK in immortalized pancreas 
epithelium (HPNE and HPDE) and PDAC cell lines. 
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Figure 13. Ingenuity pathway analysis of differentially expressed kinases in primary 
PDAC compared to normal pancreas identified by unbiased methods. All 106 
differentially regulated kinases were analyzed by integrated pathway analysis using 
Ingenuity.  The posttranslational modification cell cycle, cellular assembly and organization, 
one of the most dominant networks, is depicted here. Signaling pathways are colored 
according to expression, green representing downregulation and red representing 
upregulation with the expression fold change represented by more intense colors.  



	   76	  

2 µM AZ3146. We monitored the stability of the mitotic marker cyclin B to assess silencing 

of the SAC. Catalytic inhibition of TTK caused a drop in the levels of cyclin B (Figure 16A), 

indicating that the catalytic inhibition of TTK caused an escape from checkpoint mediated 

mitotic arrest and accelerated mitotic progression. We next investigated the effect of 

checkpoint silencing on cell cycle progression. We determined the cell cycle phase 

distribution of HPAC and PANC-1 cells treated with siRNA or AZ3146 after 72 h by 

propidium iodide staining and flow cytometry analysis. Aberrant distribution of cells in each 

cell cycle phase occurred, specifically an increase post G2 cells, indicative of multi-

nucleation (Figure 16B-C). 

TTK is required to prevent aneuploidy and apoptosis 

Studies in other tumors have found that TTK depletion causes premature mitotic progression 

and often results in aberrant chromosomal segregation and aneuploidy (Fisk et al., 2003; 

Tighe et al., 2008; Tannous et al., 2013). In PDAC, TTK inhibition induced gains in the X 

chromosome and chromosome 17. However, the effect of TTK inhibition on the nuclear 

architecture is unknown. We examined the nuclear architecture of PANC-1 cells stably 

transduced with a lenti-viral vector encoding H2B-GFP followed by depletion of TTK using 

siRNA. Fluorescent microscopy revealed gross multi- and micro-nucleation in TTK depleted 

cell lines compared to mismatch siRNA controls, which reflected widespread chromosomal 

segregation defects (Figure 16D-E). These results demonstrate the requirement of TTK for 

mitotic fidelity and that depletion of TTK results in an increase of chromosomal instability 

and aneuploidy.  

 



	   77	  

  
Figure 14. Individual targeting of TTK of each siRNA used in the pool. Immunoblot 
analysis of HPAC and PANC-1 cell lines 48 h after transfection with 10 nM siRNA targeting 
TTK.
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Figure 15. Genetic and pharmacologic inhibition of TTK decrease growth of PDAC cell 
lines. (A) Immunoblot analysis of HPAC and PANC-1 cell extracts showing protein level of 
TTK in control mismatch siRNA (siMM) and a TTK siRNA (siTTK) pool 48 h after 
transfection. (B) Growth of HPAC and PANC-1 PDAC cell lines transfected with control 
siMM and siTTK show reduced proliferation with TTK depletion. Cells were measured for 
proliferation at 48, 72, and 120 h as indicated. (C) Growth of HPAC and PANC-1 PDAC cell 
lines treated with DMSO control or 2 µM AZ3146. Cells were measured for proliferation at 
48, 72, and 120 h as indicated. (D) Representative images of colony formation of the PANC-
1 cell line in soft agar. (E) Quantitation of colony formation in soft agar of the HPAC and 
PANC-1 cell lines after transfection of either control or TTK targeted siRNA. Samples 
normalized to control. (F) Quantitation of colony formation in soft agar of the HPAC and 
PANC-1 cell lines after with continuous treatment with vehicle (DMSO) or AZ3146. 
Normalized to DMSO control. Asterisk represent the P-value of the two sided T-test (ns: 
P≥0.05,*:≤0.05, P **: P≤0.01, ***: P≤0.001, ****: P≤0.0001). Results representative of at 
least 2 experiments. 
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Unstable aneuploidy is often associated with cell death from mitotic catastrophe. To 

assess whether TTK is important to preventing apoptosis in PDAC cell lines, we monitored 

apoptotic induction by flow cytometry. siRNA mediated TTK depletion in PANC-1 cells 

resulted in increased Annexin V staining. However, at the same time point, catalytic 

inhibition of TTK did not promote apoptosis (Figure 16F-G).  

Usp16 is a direct substrate of TTK 

TTK has been shown to regulate mitotic progression by phosphorylation of mitotic 

regulators (Leng et al., 2006; Jelluma, Brenkman, van den Broek, et al., 2008). However, 

substrates of TTK that mediate mitotic progression require further characterization. To 

further delineate the molecular mechanism whereby TTK regulates proper mitotic 

progression necessary for growth we sought to identify phosphorylation substrates of TTK. 

To identify putative substrates of TTK we used the Scansite3 (http://scansite.mit.edu/) 

prediction software with an input phosphorylation consensus motif recently identified by 

Hennrich et al (Hennrich et al., 2013). This motif consists of a threonine residue with acidic 

amino acids in the −2, and/or −3 positions and hydrophobic branched-chain amino acids 

(leucine, valine and isoleucine) in the +2 and +3 position (Hennrich et al., 2013). Using this 

approach we identified 410 putative TTK phosphorylation substrates in humans. We focused 

on phosphorylation substrates with known roles in mitotic networks (Table 12) and 

identifiedthe ubiquitin specific peptidase 16 (Usp16, also known as Ubp-M) as a putative 

phosphorylation substrate of TTK. 

To examine if Usp16 is a direct phosphorylation substrate of TTK we performed an in 

vitro kinase assay with ADP-P32 and measured substrate incorporation of P32. Incorporation 

of P32 on purified Usp16 was enhanced when incubated with active TTK (SignalChem) and 
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inhibited upon addition of 2 µM AZ3146 (Figure 17A). These results indicate that Usp16 is 

directly phosphorylated by TTK in vitro. We next sought to identify the TTK dependent 

phosphorylation sites on Usp16 by performing mass spectrometry. TTK activity was 

stimulated with nocodazole in 293FT cells exogenously expressing a flag-tagged Usp16. 

Cells were then concurrently challenged with DMSO control or 2 µM AZ3146 for 4 h. 

FLAG-Usp16 from the cell lysate was purified by immunoprecipitation, digested with 

trypsin, and enriched for phosphopeptides. Amino acid composition of phosphopeptides was 

then identified by orbi-trap mass spectrometry. Analysis of the resulting spectra identified 

three TTK-dependent phosphorylation sites within Usp16: S415, S552, T554 (Figure 17B). 

TTK dependent phosphorylation of Usp16 causes protein degradation 

To investigate the importance of phosphorylation of these three residues on Usp16 function 

we created a green fluorescent protein (GFP) tagged phospho-mimetic mutant of Usp16 

where glutamic acid residues were substituted for the three identified phosphorylation sites 

(GFP-Usp16 3xE), and a phospho-deficient mutant of Usp16 where alanine residues were 

substituted for the three identified phosphorylation sites (GFP-Usp16-3xA). Immunoblot 

analysis of 293FT cells transfected with cDNA for wild type and mutant Usp16 revealed 

decreased expression of the phospho-mimetic mutant of Usp16. RT-PCR with Usp16 specific 

primers confirmed equivalent mRNA expression, suggesting that Usp16 phosphorylation 

promotes protein degradation. Inhibition of the proteasome with 10 µM MG-132 restored 

expression of the phosphomimetic Usp16 mutant (Figure 17C-E). Taken together, these data 

suggest that Usp16 is a phosphorylation substrate of TTK and that Usp16 phosphorylation on 

S415, S552, or S554 leads to proteasome degradation of Usp16. Discussion: 
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Figure 16. TTK inhibition overrides the SAC mediated cell cycle arrest and leads to 
aberrant cell cycle progression, multi-nucleation and apoptosis. (A) Immunoblot of 
HPAC and PANC-1 PDAC cell lines arrested in mitosis by treatment with nocodazole. Cells 
were then treated with 2 µM AZ3146 for 4 h and probed for expression of cyclin B1. (B) 
Representative flow cytometry plots of the cell cycle of HPAC and PANC-1 cell lines of 2 
experiments. Cells were transfected with control or TTK targeted siRNA. 72 h post 
transfection cells were fixed and stained with propidium iodide. DNA content was assessed 
by flow cytometry. (C) Quantitation of B showing distribution of cells in each phase of the 
cell cycle. (D) Confocal microscopy of the PANC-1 cell line stably expressing a GFP-
Histone 2B construct to visualize DNA. Chromosomal instability is visible in cells depleted 
of TTK in the form of multi- and micro-nucleation. (E) Quantitation of cells with multi- or 
micro-nucleated phenotypes. (F) Scatterplots showing induction of apoptosis with depletion 
of TTK. PANC-1 cells were transfected with control or a TTK targeted siRNA pool. 72 h 
post transfection cells were harvested and stained with the apoptotic marker Annexin V and 
the counterstained with propidium iodide to visualize necrotic cells. (G) quantitation of the 
apoptotic induction of cells used in F. 
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Figure 17. Usp16 is a TTK phosphorylation substrate. (A) In vitro kinase assay measuring 
TTK dependent phosphorylation by p32 incorporation measured by liquid scintillation 
counts. Representative of 2 independent experiments. (B) Exogenously expressed FLAG-
Usp16 was immunoprecipitated from DMSO and AZ3146 treated mitotic 293FT cells, 
digested with trypsin and enriched for phosphopeptides. Phosphorylated residues of Usp16 
were identified by mass spectrometry. Spectral counts of representative of individual 
experiments are shown. (C) Immunoblot analysis of 293FT cells transiently transfected with 
control GFP, GFP-Usp16, GFP-Usp16 3xA (phosphodeficient mutant) or GFP-Usp16 3xE 
(phosphomimetic mutant) and treated with control DMSO or MG-132. (D) Densitometry of 
(C). (E) RT-PCR of Usp16 using 2 independent taqman probes from cells used in from (C) 
normalized to β-actin and represented as percent of WT-Usp16.  
 



	   86	  

Patients with PDAC have limited therapeutic options. Discovery of new and better 

drug targets is essential for the continued advancement of better therapies. Chromosomal 

instability and aneuploidy are characteristics of PDAC (Schreiner et al., 2003; Aguirre et al., 

2004; Heidenblad, 2004; Hingorani et al., 2005; Hezel et al., 2006; Bardeesy et al., 2006). 

The SAC limits chromosomal instability by ensuring faithful segregation of sister 

chromatids. Here we show RNA overexpression of the core components of the SAC in 

primary PDAC tumors compared to normal pancreas. We hypothesize that targeting the SAC 

function may alter the ability of cancer cells to adapt to aneuploidy and may be a possible 

therapy for PDAC. 

TTK is a protein kinase required for SAC activation and was overexpressed in our 

dataset (X Liu and Winey, 2012). TTK was a gene previously identified in a 25-gene 

signature associated with chromosomal instability and aneuploidy in cancer (Carter et al., 

2006). Thus, overexpression of TTK may represent an adaptive mechanism to sustain the 

growth of chromosomally unstable tumors. In support of this hypothesis, overexpression of 

TTK has been previously observed in multiple tumor types including PDAC (Slee et al., 

2014), breast (Yuan et al., 2006; Daniel et al., 2011; Maire et al., 2013; Al-Ejeh et al., 2014), 

bladder (Thykjaer et al., 2001), esophagus (Mizukami et al., 2008), lung (Landi et al., 2008), 

anaplastic thyroid (Salvatore et al., 2007), and glioblastoma (Tannous et al., 2013).  

To investigate the role of TTK as an adaptive response to aneuploidy in PDAC we 

investigated the effect of both catalytic and genetic depletion of TTK on mitotic progression.  

In agreement with a previous study we show that catalytic inhibition of TTK caused an 

aberrant override of the SAC mediated cell cycle arrest in PDAC (Slee et al., 2014). We 

anticipated that SAC override would result in aneuploidy as previously observed in other 
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cancer cell lines. While, we found that both knockdown and catalytic inhibition of TTK in 

the PANC-1 cell line increased aneuploidy, the HPAC cell line did not. Although this result 

was unexpected, previous reports have demonstrated heterogeneous response to TTK 

inhibition (Jemaà et al., 2013). The difference in response could perhaps be explained by the 

hypothesis that cells with extra chromosomes may have a greater requirement for SAC 

function (Storchová et al., 2006; Z Yang et al., 2008).  However, previous reported 

karyotypes show a modal number of 63 and 61 for the PANC-1 and HPAC cell lines 

respectively, suggesting that the level of aneuploidy does not account for this discrepancy 

(Lieber et al., 1975; Gower et al., 1994). Alternatively, the discrepancy could be attributed to 

differences in the genetic background of the two cell lines. Previous studies have shown that 

aneuploidy can stimulate a p53-dependent senescence-like growth arrest (Thompson and 

Compton, 2010; Li et al., 2010). PANC-1 cells have inactivating mutations in both alleles of 

p53, whereas HPAC cells have two wild-type p53 alleles (Deer et al., 2010). Mitotic errors 

resulting from TTK inhibition in HPAC cells may trigger p53 mediated growth arrest and 

prevent aneuploidy whereas PANC-1 lacking functional p53 continue to aberrantly divide.  

Further investigation in more PDAC cell lines with a wild-type p53 background will be 

required to determine whether TTK inhibition induces senescence-like phenotypes.  

Importantly, we found that both pharmacologic inhibition and knockdown of TTK 

severely decreased PDAC cell line proliferation and transformed growth. Our results are in 

agreement with prior reports in other tumor types where either pharmacologic inhibition or 

genetic knockdown of TTK resulted in a similar decrease in the growth of multiple cancer 

cell lines (Schmidt et al., 2005; Colombo et al., 2010; Kwiatkowski et al., 2010; Sliedrecht et 

al., 2010; Tardif et al., 2011; Daniel et al., 2011; Tannous et al., 2013; Jemaà et al., 2013; 
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Maire et al., 2013; Slee et al., 2013). However, a key observation from our study is that we 

observed greater impairment of proliferation with genetic knockdown compared to 

pharmacologic inhibition. These data suggest that non-kinase domains of TTK are important 

to support proliferation of aneuploid cells. Although poorly characterized, the much larger N-

terminus of TTK contains tandem tetratricopeptide repeats known to be important for protein 

binding (Thebault et al., 2012; S Lee et al., 2012; Nijenhuis et al., 2013). However, the 

binding partners are currently undetermined and future studies will be required to identify 

TTK binding partners and characterize how they contribute to adapting to aneuploidy. 

We also observed that 72 h of catalytic inhibition of TTK with AZ3146 did not 

induce apoptosis in the PANC-1 cell line whereas genetic knockdown of TTK did. In 

contrast to our results, Slee et al. found that pharmacologic inhibition of TTK with NMS-

P715 in PANC-1 cells did induce apoptosis (Slee et al., 2014). Differences in apoptotic 

induction may be due to non-TTK effects suggesting the need to further characterize these 

inhibitors. 

In agreement with previous studies, we clearly demonstrate that the catalytic activity 

of TTK is required for cancer cell line mitotic regulation and growth. However, the 

phosphorylation substrate(s) of TTK are less clear. In an attempt to characterize the 

molecular pathways downstream of TTK, we identified Usp16 as a novel phosphorylation 

substrate of TTK. Usp16 dependent deubiquitination of histone H2A is a prerequisite for 

chromosomal condensation (Kouzarides, 2007; Joo et al., 2007). We identified 3 TTK-

dependent phosphorylation sites on Usp16: S415, S552, and T554. Point mutations in Usp16 

(S415E, S552E, T554E) exhibited enhanced degradation compared to wild-type Usp16. We 

propose that phosphorylation and subsequent degradation of Usp16 may represent another 
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mechanism whereby TTK regulates genome stability by preventing chromosomal 

condensation and thus allowing more time to correct for errors that accumulated during DNA 

replication.  

The high levels of chromosomal instability that exists in PDAC present a window that 

may be exploited for therapy. Our results demonstrate that SAC inactivation through 

inhibition of the upstream activator TTK decreases the ability of PDAC to adapt and support 

the growth of aneuploid cells. TTK inhibition has previously been shown to enhance 

chromosomal instability and sensitivity of cancer cell lines when combined with the 

microtubule targeting drugs vincristine or taxol (Janssen et al., 2009; Tannous et al., 2013; 

Jemaà et al., 2013). Consistent with this idea, the microtubule targeting nab-paclitaxel in 

combination with gemcitabine was approved for PDAC therapy (Hoff et al., 2014). Future 

studies will be required to determine whether TTK inhibition sensitizes PDAC cells to nab-

paclitaxel. Altogether our results support continued study of the molecular mechanism that 

allow PDAC to adapt to chromosomal instability.
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CHAPTER IV 

Conclusions and Future Directions 

 
  In this dissertation I investigated the role of aberrant gene expression as a diagnostic 

marker and the therapeutic value of the gene products of an aberrantly-expressed gene in 

PDAC. Through the analysis of genome-wide gene expression profiles from PDAC patients, 

I have been able to identify a gene signature that can stratify patients into a high- and low-

risk groups associated with overall survival. In addition, I identified and characterized the 

functional role of overexpression of the protein kinase TTK in PDAC oncogenesis.  

  Three main observations arise from my studies: 1) The impact of gene expression 

signatures for diagnostic and prognostic evaluation of PDAC. 2) The therapeutic value of 

TTK in PDAC. 3) The identification of Usp16 as a phosphorylation substrate of TTK. Future 

studies are required to further understand the clinical relevance of these findings. 

Diagnostic gene expression for PDAC 

 One reason behind the high mortality rate of pancreatic cancer is the lack of selective 

and sensitive diagnostic tools for early detection. It is now accepted that there are three main 

precursor lesions: IPMN, MCN, and PanIN. While differences in morphological features and 

clinical outcome exist, each of these three precursor lesions can, through a multistep process, 

develop into invasive PDAC. Early detection of these lesions remains a challenge, yet 

development of diagnostic tools to detect tumors before the disease becomes invasive is 

necessary to allow for potentially curative surgical resection. The genetic progression of each 

of these lesions is also unique, yet some common genetic events, such as activating mutations 
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in KRAS and inactivating mutations of p53, and loss of p16ink4a, have been observed in each 

of the precursor lesions (Hezel et al., 2006; Smith et al., 2012). This pattern of common 

mutations suggests that, in part, similar signaling pathways are deregulated and may 

contribute to oncogenesis. Comparison of gene expression profiles of PanIN, MCN, and 

IPMN precursor lesions may help identify these pathways and provide novel insight into the 

development of PDAC. Identification of gene expression changes of secreted proteins may 

help identify potential early biomarkers of disease. Although overexpression or loss of 

mRNA that encodes for secreted proteins may be identified, extensive confirmation would be 

required before hits could be classified as biomarkers. 

Gene expression signatures and subtypes of disease    

  Whole-exome and genome sequencing have demonstrated that PDAC is a 

heterogeneous disease with diverse molecular subtypes (MH Jones et al., 2005; Biankin et 

al., 2012; Cowley et al., 2013). As previously seen with breast cancer (Parker et al., 2009), 

identification of the intrinsic molecular subtypes would impact clinical practices by helping 

asses risk for surgical procedures, therapy choice based on chemoresistance profiles, and 

identification of novel therapeutic targets. Therefore, it is vital that the molecular 

determinants of PDAC be defined. In this dissertation I present the first study to validate a 

prognostic gene signature for PDAC. It is important to note that this signature was developed 

by studying the molecular differences between nonmetastatic and metastatic primary tumors, 

suggesting that subtypes can be identified based on intrinsic tumor biology. Collisson et al. 

have since used consensus clustering of gene expression data to identify three molecular 

subtypes of PDAC: classical, quasimesenchymal, and exocrine-like. However, analysis of 

human and mouse PDAC cell lines failed to identify all three subtypes, suggesting that future 

work is needed to validate and potentially expand the subtypes of PDAC. It would be 
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interesting to perform consensus clustering on the TCGA and ICGC pancreatic cancer gene 

expression data set and compare any subtypes identified.  

  As subtypes of PDAC are identified, it will be necessary to perform extensive 

characterization of each subtype. Understanding the subtype-specific morphology, pathology, 

and clinical associations will be required to identify subtype-specific dependencies that can 

be targeted for therapy. Jones et al. identified 12 pathways and process whose component 

genes were genetically altered in PDAC (S Jones et al., 2008).  A similar analysis of gene 

expression data would complement the mutational analysis, identifying potential nodes for 

therapeutic intervention.    

Therapeutic value of TTK for PDAC 

  Another observation that arose from my studies is the importance of TTK in PDAC 

growth. Based on the in vitro work we hypothesize that TTK is important for in vivo PDAC 

tumorigenesis. To evaluate this hypothesis it would be necessary to study the effect of TTK 

inhibition in genetically engineered mouse model. The KrasLSL.G12D/+; p53R172H/+; 

PdxCretg/+ mouse model (KPC) faithfully recapitulates many of the characteristics of human 

PDAC including morphology, stromal desmoplasia, and metastasis (Westphalen and Olive, 

2012). To study the affect of TTK expression I propose to create a mouse model in the KPC 

mouse that also has a knockout of TTK. In zebra fish, inactivating mutations in the TTK 

orthologous gene nightcap, was embryonic lethal (Poss et al., 2002). Additionally, 

homozygous deletions of SAC components in mice are also embryonic lethal (Foijer et al., 

2008). Furthermore, complete checkpoint inhibition has been shown to have adverse effects 

on non-transformed immortalized breast cancer cell lines (Kwiatkowski et al., 2010; Maire et 

al., 2013), suggesting that in addition to pancreas specific depletion, knockdown may also 

need to be inducible to allow for proper organ development. Doxycycline-inducible tissue 
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specific knockdown has previously been demonstrated in the pancreas (Collins et al., 2012; 

Ying et al., 2012). A key benefit of this model is that protein knockdown can be depleted in 

an established tumor, allowing characterization of TTK expression for tumor maintenance.   

Based on my cell culture studies, I anticipate that TTK depletion in this setting will exhibit 

an increase in cell cycle defects resulting in impaired tumor growth.  

  Standard therapeutic intervention of protein kinases is accomplished by 

pharmacologic inhibition of the kinase activity. Since TTK is a larger protein (~97 kDa) with 

previously determined non-kinase domain sequences, it is possible that non-kinase functions 

of TTK also contribute to PDAC growth. To determine whether abolishing catalytic function 

of TTK alone decreases tumor growth I would create a conditional knock-in mouse model. In 

the KPC background I would replace the wild-type TTK gene with a mutant TTK with a 

catalytic domain mutation (D664A) previously shown to abolish TTK kinase activity (L 

Zhang et al., 2013).  

  Clinical efficacy of signal transduction inhibitors, in particular protein kinase 

inhibitors, has been hampered by emergence of cells resistant to the inhibitor.  Resistance 

may arise as a consequence of pharmacologic inhibition. Cells can become resistant by 

activation of alternative pathways to reactivate a node downstream of inhibitor’s target, and 

is an example of acquired resistance. In contrast, some tumors display intrinsic resistance. 

Intrinsic resistance occurs when cells within the tumor are inherently resistant to therapy 

before treatment begins. Initial clinical efficacy is observed with inhibitor treatment, as the 

sensitive tumor cells are eliminated and tumor size is reduced. However, the intrinsically 

resistant cells are unaffected by the inhibitor and eventually leading to tumor recurrence.  

  Resistance to a TTK pharmacologic inhibitor is a likely scenario. Therefore future 
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studies are needed to anticipate possible mechanisms of resistance with the goal to identify 

molecular targets that can be used to make a more effective combination therapy. To identify 

intrinsic and acquired resistance mechanisms I would isolate PDAC cell line variants after 

prolonged treatment with a high dose of the TTK inhibitor AZ3146. Comparison of exome 

sequencing of sensitive (pre-treatment) and resistant variants would identify mutations 

associated with resistance. Functional analysis would be required to determine the 

mechanism of resistance.  

  Aberrant activation of compensatory signaling cascades is another resistance 

mechanism that occurs in cancer, often referred to as feedback or reprogramming. To 

investigate compensatory reprogramming of the kinome that results from TTK inhibition I 

would determine global chances in kinase activation using multiplexed inhibitor beads and 

mass spectrometry (MIB/MS) (Duncan et al., 2012). Comparison of kinase activity profiles 

of PDAC cell lines pre- and post-treatment with a TTK inhibitor may identify signal 

transduction pathways that become activated to compensate for loss of TTK catalytic 

activity. Once these pathways are identified, combination of kinase inhibitors that target TTK 

as well as the compensatory pathways will need to be evaluated in vitro and in vivo. 

Anticipating the mechanisms of resistance will hopefully decrease the rates of recurrence in 

PDAC patients. 

Previous studies have also suggested that combination therapies of anti-mitotic drugs 

with TTK inhibitors enhance sensitivity. A study of glioblastoma cell lines found that 

inhibition of TTK enhanced sensitivity to the microtubule targeting drug vincristine 

(Tannous et al., 2013). In addition, treatment of colorectal cancer cell lines with sub-lethal 

does of a TTK inhibitor (Mps-Bay1 or Mps-Bay2a) with paclitaxel demonstrated a 
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synergistic effect. siRNA mediated knockdown of TTK demonstrated similar synergy when 

combined with paclitaxel (Jemaà et al., 2013). Recently a microtubule-targeted drug nab-

paclitaxel in combination with gemcitabine was approved for PDAC therapy (Hoff et al., 

2014). Future studies will be required to determine if TTK inhibition could synergize with 

nab-paclitaxel to not only improve patient response, but also allow a lower dose of paclitaxel 

and reduce adverse side effects. 

TTK phosphorylation substrates   

  Previous studies have found the importance of TTK for  multiple functions in the cell 

including SAC activation, genotoxic stress response, centrosome duplication, cytokinesis, 

and meiosis, yet for the most part the molecular mechanism and phosphorylation substrates 

of TTK remain unclear (X Liu and Winey, 2012). Additional phosphorylation events may 

occur specifically in cancer due to aberrant TTK overexpression and mislocalization. Only 

recently have TTK substrates been identified, and the list is continually growing.  

  A more comprehensive portrait of TTK substrates is needed for elucidating the 

molecular roles of TTK in the cell as well as identifing markers of response to anti-TTK 

therapy. The canonical function of TTK in regulation of the SAC is conserved in many 

eukaryotes, suggesting that there may be conserved substrates. In this work we identified 410 

putative TTK phosphorylation substrates in humans through bioinformatics analysis. To 

identify conserved phosphorylation substrates of TTK that may function to maintain genome 

stability I would perform a similar bioinformatics interrogation of conserved TTK orthologs 

in mice (Esk), zebra fish (nightcap), drosophila (ALD) and xenopus (TTK) to determine 

putative substrates.  Hits could be determined by finding the homologous substrates that 

overlap between species. Validation and functional analysis of these hits would then be 

required in vitro and in vivo.  
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  In addition to a bioinformatics approach, TTK phosphorylation substrates can also be 

identified by detailed proteomic approaches. There are nine available pharmacologic 

inhibitors of TTK, with varying selectivity for TTK. To identify phosphorylation substrates 

of TTK I would compare phosphorylation event changes identified by mass spectrometry of 

cells treated with TTK inhibitors. By identifying the proteins with decreased phosphorylation 

following treatment with multiple inhibitors I will limit identification of false positive 

substrates due to off-target inhibitor activity. These unbiased approaches will provide a 

strong basis for the continued studies and TTK biology and identify markers of response to 

anti-TTK therapy.  

Usp16 substrates and regulation 

  Proper chromosome dynamics during mitosis require TTK expression and function 

and inhibition of TTK promotes genome instability. My identification of Usp16 as a TTK 

phosphorylation substrate adds new dimensions to TTK signaling. Usp16 is a 

deubiquitinating enzymes whose best known function is deubiquitinating histone H2A to 

allow phosphorylation of serine 10 on histone H3 and trigger chromosomal condensation 

(Joo et al., 2007). Based on my studies here, inhibition of TTK causes stabilization of Usp16 

protein. Overexpression of Usp16 has previously been identified in Down syndrome where 

Usp16 is amplified and reduces self-renewal of hematopoietic stem cells, reduces the 

expansion of mammary epithelial cells, and accelerated senescence (Adorno et al., 2013), yet 

the molecular biology that mediate these phenotypes are unknown. To better understand how 

increased Usp16 mediates these functions it is necessary to conduct future studies to identify 

the deubiquitination substrates of Usp16.  

  In addition to the three TTK-dependent sites of phosphorylation on Usp16 our mass 

spectrometry approach also identified sites of phosphorylation that were not altered with 
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TTK inhibition in PDAC cell lines. In order to gain a better understanding of Usp16 biology 

in PDAC it will be necessary to identify the kinases that mediate these functions but also 

elucidate the effect of the remaining phosphorylation events on activity, localization, and 

substrate specificity. 

Summary 

 PDAC remains a lethal disease and only incremental improvement in therapy has 

been made. Through analysis of aberrant gene expression in PDAC we sought to translate the 

molecular biology of PDAC into clinically relevant diagnostic and therapeutic tools. In 

aggregate, our studies found two roles of aberrant gene expression in PDAC: 1) as a 

diagnostic tool to aid in making decisions about patient therapy and 2) as a tool to identify 

therapeutic targets.  

Future studies will be required to identify molecular subtypes associated with drug 

resistance and patient survival. In addition, future studies are required to validate the role of 

TTK in PDAC therapy, anticipate mechanisms of resistance, and improve our understanding 

of TTK biology by identifying and characterizing TTK phosphorylation and Usp16 

ubiquitination substrates.  
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