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Abstract

JOSH GRAY: Understanding regional water resource dynamics due to
land-cover/land-use and climate changes in the North Carolina Piedmont.

(Under the direction of Conghe Song.)

The spatiotemporal distribution of freshwater resources on Earth is controlled by interact-

ing climatologic, ecological, and physical processes. These dynamics are likely to change in the

future due to climate and land cover changes with important implications for life on Earth.

Ecosystem simulation models which couple these processes are increasingly relied upon to pro-

vide projections of probable future changes so that resources may be sustainably managed and

future growth and development planned. The majority of these models depend critically on sur-

face descriptions such as land cover and vegetation abundance obtained from remotely sensed

images, and remote sensing methods have played an essential role in accurately parameterizing

and implementing models at appreciable spatial scales. However, significant challenges exist

for investigations adopting an integrated remote sensing and ecosystem simulation approach.

This investigation sought to quantify the likely impacts of climate change and land cover

change on the water cycle of the Eno River basin in central North Carolina. Special attention

was paid to addressing and overcoming existing remote sensing methodological limitations

related to mapping leaf area index (LAI) and land cover. Improved methods were developed

and the resulting products used to parameterize two different ecohydrologic models which

were then used to quantify the hydrological effects of various climate and land cover change

scenarios. The improved methods are demonstrated to overcome several of the major existing

limitations to mapping LAI and land cover accurately, consistently, and efficiently with diverse

data sources. These improvements lead to greater confidence in simulated results and future

projections. The results of this investigation highlight the dominant role that climate plays in

structuring basin response, and indicate that future changes may increase water stress in the

area, particularly under scenarios of reduced growing season precipitation.
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Chapter 1
Introduction

Water is essential for life on Earth. Of the hydrosphere’s 1,386 million cubic kilometers of

water, 97.5% is saline. The 2.5% that is freshwater is 69% ice or permanent snow and 29.9%

groundwater. The sum contents of all Earth’s rivers, lakes, and reservoirs is only 0.26% of

all freshwater stores (Shiklomanov, 2000). The spatiotemporal distribution of groundwater

and surface resources are determined by climatic, physical, and biological processes. First

order control on terrestrial water cycles is determined by climatic patterns of precipitation

and temperature. Topographic controls distribute precipitation across the landscape through

stream networks and lateral and vertical soil moisture fluxes. Vegetation covers much of Earth’s

surface and exerts a strong influence on local water balances through ecological water use

(transpiration), and alterations of the surface energy budget. In temperate forested areas such

as the southeastern United States, over 70% of the precipitation is returned to the atmosphere

via transpiration or evaporation. This combined latent heat flux, known as evapotranspiration

(ET), is an important component of terrestrial energy and water budgets. While the providence

of precipitated water depends on the mesoscale weather patterns associated with a particular

location, in regions like the Amazon, evapotranspired water is an important source of water

vapor for local precipitation. In any case, the latent heat flux is an important component of

surface energy budgets and is the process responsible for the generally appreciated cooling effect

of forests. In turn, spatial patterns of temperature and precipitation control the distribution

and composition of Earth’s vegetation communities. These interactions between geological,

climatological, and ecological processes are responsible for the observed patterns of surface

and ground water resources on Earth, and future changes in their dynamics may alter water

availability, vegetation water stress, and flood/drought frequency with important consequences



for life on Earth (Vorosmarty et al., 2000; Jackson et al., 2001).

Global climate modeling activities have progressed to ensemble efforts comprised of many

individual models that are increasingly converging on future climate predictions under a vari-

ety of development and emissions scenarios. The most recent report of the Intergovernmental

Panel on Climate Change (IPCC) indicates that anthropogenic activities, most notably emis-

sions of greenhouse gases, has very likely contributed to an observed global warming pattern,

and that these changes are likely to persist or be exacerbated in the future. Regional patterns

of temperature change indicate that in the coming century high latitude areas will experience

the greatest warming and increases in precipitation, while many already dry regions such as

the western United States and Mediterranean stand to get significantly drier. These changes

have important implications for water resources. In general, regions are expected to become

more water stressed in the future due to decreases in glacial and snow fed river runoff, de-

creases in precipitation over many regions, salinization in coastal areas due to sea-level rise,

and increased extreme event frequency (IPCC, 2007). In addition to overall changes in the

magnitude of annual precipitation, changes in precipitation seasonality and variability may

place additional strains on water availability with some regions transitioning to more extreme

hydrologic regimes with longer, more intense droughts and a greater frequency of floods and

extreme weather events (Oki and Kanae, 2006).

Land cover and land use influence local, regional, and global water cycles in a number of

ways (DeFries et al., 2004; Foley et al., 2005; Piao et al., 2007; Scanlon et al., 2007). Sur-

face physical properties determine the fate of precipitation by controlling the partitioning of

water into evaporated, transpired, ground storage, and runoff. Vegetation distributions, most

importantly abundance and composition, control the relative magnitudes of latent heat fluxes

with important climate feedbacks related to relative atmospheric moisture content and surface

energy fluxes. Land uses influence water balances through alteration of these surface phys-

ical properties and by determining consumptive withdrawals of freshwater from surface and

ground stores and, in some cases, water inputs in the form of irrigation. Globally there is a

trend toward increasingly human-dominated land uses that stand to appreciably impact water

availability in the future (Brown et al., 2005b; White et al., 2009). Agricultural land uses are

2



replacing natural vegetation communities in many parts of the world, and impervious surface

proportions are increasing in many developed and developing catchments. While increases in

catchment impervious surface are generally well understood to produce more extreme, tem-

porally variable patterns of runoff, other changes in land cover and land use, particularly

vegetation changes, produce hydrologic changes that are mediated through a variety of eco-

physiological processes and feedbacks that are more difficult to understand. Improved under-

standing of these processes and their various interactions is critical if hydrological sciences is

to successfully inform environmental decision making and water resource management.

Assessing the impacts of future climate and land cover changes argues for a simulation mod-

eling approach capable of modeling the interacting climatic, physical, and biological processes

which determine water balances at multiple spatial and temporal scales (Rodriguez-Iturbe,

2000; Allen and Ingram, 2002; Jackson et al., 2009; Vose et al., 2011). Much progress has been

made in developing these types of models, and there is a large diversity of approaches reported

in the literature (Sellers et al., 1997). At one extreme are conceptually simple empirical models

which seek to exploit relationships determined between measured variables such as streamflow,

ET, and ecosystem productivity and environmental drivers. This pragmatic approach has mul-

tiple benefits including relatively rapid development and simple implementation. Despite their

simplicity, these models are useful, especially for monitoring and management of contemporary

conditions, because simulated processes are constrained by observed relationships and thus are

likely to provide realistic estimates given similar environmental forcing regimes. However, em-

pirical approaches have significant limitations, chiefly the inability to produce reliable results

when biological, climatic, and physical process interactions change, invalidating established

empirical relationships. At the other extreme, many recent modeling approaches have focused

on detailed process models coupling many physical subcomponent models and their various

interactions. These models typically have higher input data requirements, computational

requirements, and generally more complicated implementations than their empirical counter-

parts. However, coupled models offer significant advantages, most importantly the ability to

simulate complex, possibly non-linear, interactions between various processes and therefore

have greater utility in assessing the impacts of future changes that may alter environmental

3



dynamics than do empirical models.

Regardless of the modeling approach adopted, there is a need for some quantity of input

data to parameterize the model. These data include maps of land cover, vegetation compo-

sition and abundance distributions, climate series, topographic information, soils maps and

parameters, stream network maps, and parameters describing the physical properties of vege-

tation and other land surfaces. Increasingly, remote sensing images and methods are employed

to provide these data at the spatial scales necessary for modeling investigations (Lucas and

Curran, 1999; DeFries, 2008). Among the model inputs available from remotely sensed im-

ages, topographic, vegetation, and land cover information are the most commonly retrieved

and a robust literature has developed concerning the development and refinement of these

techniques. Remote sensing methods of mapping land cover was one of the initial applica-

tions of remote sensing imagery and this subdiscipline enjoys the most robust literature in all

of remote sensing science, with a multitude of ad hoc and operational approaches at spatial

scales ranging from the entire Earth to a few hundred square meters. The importance of global

vegetation distributions in influencing hydrologic and climatological processes has motivated

a myriad of investigations seeking to characterize these distributions with remotely sensed im-

ages. Many efforts have focused on mapping leaf area index (LAI) from diverse data sources,

but the majority of methods are predicated on the relationship between vegetation abundance

and differential reflectance of electromagnetic radiation across different frequency intervals.

Despite the proven utility of remote sensing methods to provide more or less reliable esti-

mates of land cover and vegetation distributions on Earth, there remain significant challenges

that impose limitations on their use in modeling studies. With respect to land cover mapping,

the most significant challenge is to leverage the vast and growing archives of Earth imagery

to obtain consistent and accurate time series of land cover maps which may be used to assess

historical dynamics and project future changes (Loveland et al., 2002). At present, products

from the majority of large-scale land cover mapping initiatives have been limited in temporal

resolution to consideration of a single or a few time points. The principal difficulty in obtaining

temporally dense products is the lack of automated methods capable of efficiently utilizing huge

data volumes and ensuring consistency between maps of land cover at various time intervals.
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In short, existing methods either require extensive ground reference data and human interven-

tion, or are limited by the requirement that individual images be identical in terms of spectral

reflectance properties. There is therefore a need to develop efficient methods of utilizing ex-

isting data archives that overcome these existing limitations. Methods of mapping vegetation

abundance, either biomass or LAI, are similarly limited by methodological challenges (Baret

and Guyot, 1991; Asner et al., 2003; Ganguly et al., 2008b,a). The most commonly employed

approach relates the greenness of a pixel to the density of vegetated canopies. However, once

stands have reached a closed canopy condition the pixel greenness changes very little, and so

the sensitivity of greenness measures to further increases in LAI diminishes. This leads to

the inability to reliably retrieve estimates of vegetation abundance in high biomass regions.

This is especially problematic considering that a large portion of Earth’s vegetation exists in

densely forested stands, and these areas exert the most significant impacts on climate and

hydrological processes. The lack of temporal dimension in LAI products is also a significant

limitation of these remote sensing methods. Typically, maps of LAI and biomass are produced

for a single date in time (usually during the peak of the growing season), and therefore cannot

offer insight on vegetation temporal dynamics. This is especially problematic for assimilating

these data into ecosystem modeling investigations which typically require information about

the temporal evolution of vegetation during the year.

This dissertation seeks to understand the individual and combined impacts of climate and

land cover changes on the hydrology of a moderately sized (the 360 km2 Eno River basin)

watershed in central North Carolina. Quantifying the expected changes in water resources

due to climate and land cover changes is critical in this area because rapidly growing regional

populations are placing intense pressures on existing resources and reshaping the landscape

(Burkett et al., 2000). I adopt an ecohydrolgic simulation approach utilizing two existing mod-

els which bracket the structural variability seen across ecohydrological models. An important

feature of this investigation is its reliance on a modeling approach which integrates the best

available data from remote sensing data sources. To this end, I focus on making significant

methodological progress in remote sensing methods of characterizing land cover and vegetation

distributions which improve the accuracy of model inputs and therefore the reliability of the

5



simulated results. I first develop a novel multi-sensor information fusion approach to mapping

LAI which overcomes challenges related to retrieving estimates in high biomass stands and

characterizing temporal vegetation patterns. Next, I address the limitations of existing land

cover mapping approaches and develop a method capable of efficiently assimilating data from

arbitrarily large archives in order to obtain consistent and accurate maps of temporal land

cover dynamics with a minimum of user intervention and reference information. Finally, I use

these products to parameterize two ecohydrolgic models, a process-oriented detailed physical

model (RHESSys) and an empirically based model (WaSSI), and assess the impacts of multiple

climate and land cover scenarios on long-term streamflow and ET patterns in the basin.
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Chapter 2
Mapping leaf area index using spatial, spectral, and temporal information

from multiple sensors

2.1 Introduction

Terrestrial vegetation plays a critical role in regulating the exchange of energy and mass be-

tween ecosystems and the atmosphere. Radiation absorption, evapotranspiration and carbon

exchange are among the most important biophysical processes that strongly depend on vege-

tation structure. Process-based models are increasingly being used to understand ecosystem

dynamics in response to changing environmental drivers such as climate change and land-

cover/land-use change. Simulation results from these models are highly dependent on the

accuracy of landscape biophysical parameters, particularly those related to vegetation struc-

ture and distribution. Leaf area index (LAI) is perhaps the most important biophysical variable

characterizing vegetation abundance and distribution across the landscape. Thus, ecosystem

process models are very sensitive to its parameterization (Running et al., 1989; Bonan, 1993;

Nemani et al., 1993; Running and Hunt, 1993). LAI is typically taken to be the total one-sided

leaf area per unit ground area (Chen and Black, 1992), but nonrandom foliage distribution

(clumping) makes measuring this quantity directly difficult because most optically-based mea-

surement methods rely on the assumption that foliage is randomly distributed in the canopy.

Instead, effective LAI (Le, the product of LAI and the clumping coefficient) is often estimated

and converted to LAI as necessary with independently estimated clumping information (Chen,

1996; Chen et al., 2003). Remote sensing provides the only viable option for mapping LAI

continuously over the landscape. Therefore, mapping LAI using remotely sensed data has been

a major objective in remote sensing application (Running et al., 1986; Spanner et al., 1994;

Chen and Cihlar, 1996; Myneni et al., 2002; Colombo et al., 2003; Soudani et al., 2006; Song



and Dickinson, 2008).

Numerous algorithms have been developed in the literature for mapping LAI using remotely

sensed data. One such approach is the inversion of canopy reflectance models (e.g., Myneni

et al. (1997); Knyazikhin et al. (1998); Peddle et al. (2004)). Inversion methods have a number

of attractive qualities such as a firm physical foundation and the ability to apply them across

large spatial scales since they are not generally restricted to a single biome type. However,

they are often difficult to parameterize and may be mathematically ill-posed (i.e., solutions

may not be unique). Another approach is based on empirically developed models, which are

perhaps the most commonly employed methodology (Peterson et al., 1987; Spanner et al., 1990;

Chen and Cihlar, 1996; Turner et al., 1999). Most empirical approaches relate ground-based

LAI to remotely sensed spectral vegetation indices (SVI) and use the site-specific, empirical

relationship to map LAI for the spatial extent over which the model was developed. This

approach has been successful, but has serious limitations. The most significant limitation is

the tendency of SVI to lose sensitivity, or “saturate”, at high to moderate levels of LAI (Baret

and Guyot, 1991). Furthermore, there are a wide variety of such LAI/SVI relationships in the

literature and little guidance exists about which SVI is most appropriate for LAI estimation,

and which form the empirical relationship should take. Additionally, the product of such

investigations usually lacks temporal dimension and represents LAI at a single “snap-shot” in

time.

The tendency for SVI to saturate at moderately high LAI (LAI>3) is one of the major limi-

tations for modeling of LAI using spectral information (Gower et al., 1999; Turner et al., 1999).

One potential method of overcoming this limitation is to use additional information from re-

motely sensed imagery as predictors in the empirical model, particularly information from the

spatial domain such as image texture (Wulder et al., 1998). There are many measurements

to quantify image spatial information. Geostatistical parameters of image semivariograms and

first-order texture measures, such as local variance, provide information on the vegetation

content in the scene (Curran, 1988; Woodcock et al., 1988), and have been used to estimate

vegetation structural parameters such as crown diameter (Cohen et al., 1990; Bruniquel-Pinel

and Gastellu-Etchegorry, 1998; Song and Woodcock, 2003), stocking density (St-Onge and
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Cavayas, 1995), successional trajectories (Song and Woodcock, 2002), LAI (Song and Dick-

inson, 2008), and to improve classification accuracy (Ferro and Warner, 2002; Warner and

Steinmaus, 2005). Second-order texture measures are another method of measuring spatial

information and can be derived from the grey level co-occurrence matrix (GLCM) (Haralick

et al., 1973; Haralick, 1979; Baraldi and Parmiggiani, 1995). GLCM features have been used

to increase classification accuracy (Franklin and Peddle, 1989; Carr and de Miranda, 1998;

Franklin et al., 2000, 2001; Puissant et al., 2005), and to estimate forest structural attributes

(Kayitakire et al., 2006). Texture measures improve the performance of empirical LAI models

by contributing forest structural information (e.g. stem density, crown diameter, and crown

closure). For example, Wulder et al. (1996) found that including texture variables as a compli-

mentary predictor along with NDVI improved the correlation between observed and modeled

LAI values in pine and aspen stands. Wulder et al. (1998) observed a 20% increase in model

performance when multiple texture variables were used in addition to NDVI for predicting

LAI in deciduous stands. They argued that texture variables are a better predictor of LAI

in spectrally heterogeneous stands than vegetation indices. Colombo et al. (2003) also found

a significant improvement in empirical LAI prediction across diverse cover types when tex-

ture metrics were included with vegetation indices. In that study, the improved performance

resulted from the texture variables distinguishing between vegetation types rather than con-

tributing stand structural information. It is clear from these results that texture measures

include information about structural attributes of forest stands that can improve estimates of

LAI. However, the precise nature of this structural information is difficult to ascertain since

a particular texture is the result of many phenomenon including crown diameter, stocking

density, the size and distribution of canopy gaps, and illumination/view geometry. Neverthe-

less, we might expect the relationship of LAI with texture to follow from changes in forest

structure as a stand matures. For example, the texture of a forest canopy could be expected

to become smoother as a young sparse stand matures into an even-aged, closed canopy, but

then become rougher with further stand development due to increased canopy gaps and an

increasingly uneven age and height distribution. Thus, we should expect rough textures to

be associated with higher leaf areas in stands maturing beyond a closed canopy, even aged

9



condition, whereas smoother textures would be associated with higher leaf areas as a stand

develops from a field condition towards a closed canopy.

An additional challenge results from the tradeoff between spatial and temporal resolutions

that is necessary due to the physical and technological limitations of remote sensing systems.

Sensor systems that have the spatial resolution required for local and regional-scale studies

typically lack the temporal resolution required to produce maps for the evolution of vegetation

through a growing season, especially considering that cloud-cover may significantly reduce the

actual number of usable images in any one year. This difficulty has motivated the exploration

of various image fusion techniques to combine desirable image characteristics across multiple

sensors and spatial resolutions. Some examples of these techniques include HSV transforms

(Carper et al., 1990) and wavelet decompositions (Yocky, 1996; Nunez et al., 1999). These

techniques have focused on enhancing the spatial resolution of multispectral imagery with

panchromatic images (“pan-sharpening”), but they introduce spectral distortions which limits

their application to studies which require rigorous estimates of surface reflectance or spectral

radiance (Chavez et al., 1991; Hilker et al., 2009). Gao et al. (2006) attempted to overcome

this limitation by developing the STARFM algorithm to generate synthetic Landsat images

using MODIS and Landsat image pairs. Hilker et al. (2009) used STARFM to investigate

phenological patterns in British Columbia and found that the predicted and observed Landsat

reflectance values were well correlated. However, the effectiveness of the STARFM algorithm

is strongly dependent on the number of homogeneous coarse-resolution pixels in the study-

area, significantly limiting its application to highly heterogeneous areas such as suburban and

urban landscapes. Creating synthetic imagery is not the only way to combine complimentary

information from multiple sensors. Instead, multiple phenomena may be investigated inde-

pendently with imagery having spatial, spectral and temporal resolutions commensurate with

the process under investigation and the resulting information combined to investigate a more

complicated phenomenon for which no single data source had optimum resolutions.

The goal of this study was to develop an algorithm to produce Le maps with both high

temporal and spatial resolutions, capturing both its heterogeneity in space and its variation in

time, which are essential inputs for process-based ecosystem models. To accomplish this goal,
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we developed a model to map Le which combines complimentary spatial, spectral and temporal

information from IKONOS, Landsat and MODIS remotely sensed imagery, respectively. We

chose to estimate Le rather than LAI because it is determined solely by radiation interaction

with the canopy, and therefore comports better with both the remote sensing perspective, and

indirect field-based measurement techniques. The model was able to generate daily maps of

Le at Landsat spatial resolution for a study site in North Carolina.

2.2 Methods

2.2.1 Study Area

We took the 10x10 km extent of an IKONOS image centered on the Blackwoods Division of

Duke Forest (35◦ 58′ 25′′ N, 79◦ 5′ 35′′ W) as the study area for this investigation (Fig. 2.1).

The Blackwoods Division of Duke Forest is an approximately 1000 ha research forest near

Chapel Hill in Orange County, North Carolina. Forests are a well partitioned mix of pine

and hardwood stands on acidic clay-loam soils. Loblolly pine (Pinus taeda) is the dominant

evergreen species but shortleaf and Virginia pines (Pinus echinata and Pinus virginiana, resp.)

are also common. Hardwood species include white oak (Quercus alba), post oak (Quercus stel-

lata), blackjack oak (Quercus marilandica), mockernut and pignut hickory (Carya tomentosa

and Carya glabra), sweetgum (Liquidambar styraciflua), and tulip poplar (Liriodendron tulip-

ifera) in the overstorey, with red maple (Acer rubrum), flowering dogwood (Cornus florida),

and redbud (Cercis canadensis) commonly found in the understorey. Hardwood stands exhibit

a mixed age distribution with some individuals in excess of 200 years old. Though some un-

managed pine stands are over 100 years old, the majority used in this study are much younger

planted and managed stands of evenly aged individuals. July is the warmest month with aver-

age maximum temperatures reaching 32◦ C, and January is the coldest with average maximum

temperatures of 11◦ C. Precipitation averages 1180 mm and is evenly distributed throughout

the year.
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Figure 2.1: Left: May, 19 2009 Landsat TM NDVI image of study-area (10 km x 10 km extent
of IKONOS image). Right: The Duke Forest research area where ground-observations of LAI
were made. Sampling plots are shown on the panchromatic IKONOS image.

2.2.2 Ground Le Measurement

There are two approaches to estimating LAI on the ground: direct and indirect (for a review of

in situ LAI estimation see Breda (2003); Jonckheere et al. (2004); Weiss et al. (2004)). Direct

approaches, such as destructive harvesting, typically result in a set of allometric equations

which estimate LAI as a function of more easily observed quantities such as stem diameter.

Though this methodology can produce very accurate estimates of LAI, it is much less efficient

than indirect techniques. Indirect approaches use optical instruments and Beer’s law of radi-

ation attenuation to predict Le under certain assumptions about the spatial distribution and

orientation of leaves in the canopy (Norman and Welles, 1983). We used a pair of LAI-2000

Plant Canopy Analyzers (Li-cor, Lincoln, Nebraska) (Welles and Norman, 1991) to estimate

Le in 33 stands within the Blackwoods Division of Duke Forest in June and July of 2008 and

2009 (Fig. 2.1). The devices were deployed in paired operating mode with one unit collecting

out of canopy radiation measurements in a large, open field and the other device collecting

below canopy measurements. Observations were conducted at dawn or dusk under diffuse
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lighting conditions. The footprint of such measurements depends on the height of the canopy.

In our case, the footprint of the field observations are circles with radii ranging from 20 to

70 meters. FV2000 software (Li-Cor, Lincoln, Nebraska) was used to merge the datasets and

convert above and below canopy radiation measurements to Le estimates. The device was

configured to average four individual below canopy measurements (taken facing the cardinal

directions) to estimate plot Le. The LAI-2000 instrument utilizes an optical sensor which

simultaneously records radiation in five concentric zenith rings. Chen et al. (2006) argues that

estimates may suffer from a multiple scattering effect that is greatest at the largest zenith

angles, and therefore recommends calculating Le estimates neglecting the fifth and/or fourth

sensor ring. We investigated this multiple scattering effect by estimating Le with all five sensor

rings and excluding the fifth ring.

2.2.3 Model Overview

The central idea of our approach is to use a phenological function to track the variation of Le

between minimum and maximum values for individual pixels, similar to the approach taken by

the ECOCLIMAP project (Masson et al., 2003), but at a much higher spatial resolution. The

temporal component of the Le trajectory is separate from the spatial and spectral components,

and therefore the two phenomena may be modeled independently with data appropriate for

each. Equation 2.1 shows how the Le of a single pixel may be determined as a function of time

(t) by adding to the pixel’s minimum Le an increment of the total annual Le amplitude deter-

mined by a phenological function f(t) that indicates the relative position along a phenological

trajectory. At peak Le f(t) → 1 and Le is equal to its maximum value, whereas during the

dormant period f(t)→ 0 and Le is at its minimum.

Le(t) = min(Le) + f(t) [max(Le)−min(Le)] (2.1)

Separate empirical models for evergreen and deciduous forest types were developed based on

ground observations using a combination of spectral and spatial information from Landsat and

IKONOS imagery to generate a map of maximum Le (Eq. 2.2). It should be noted that Eq. 2.1
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is a special case of a simple linear equation with the coefficient equal to max(Le)−min(Le), and

the intercept equal to min(Le). As such, the model could be expressed generically and solved

for arbitrary dates during the growing season. However, the majority of field observations are

obtained during the peak of the growing season, and errors in the estimation of the coefficient

are minimized when the difference in Le is greatest, making the stated form of the equation

the most relevant realization.

max(Le) = β0 + β1SVI1 + β2SVI2 + β3TEX (2.2)

Where SVI1,2 and TEX are spectral and textural predictors, respectively, and βi are empir-

ical coefficients determined from linear regression. Minimum Le is mapped by assuming that

deciduous vegetation will be absent during the dormant season (Le=0), and evergreen Le will

fall to about one-half of its maximum value, based on the findings of McCarthy et al. (2007)

that showed the mean ratio of annual maximum to annual minimum LAI was 1.8 for loblolly

pine stands in our study area. Pure deciduous or evergreen pixels are rare in this study area

and so we treat each pixel as having some contribution from both vegetation types. A decid-

uousness parameter, ω, is calculated for each pixel from the normalized difference of winter

and summer NDVI (Eq. 2.3). After linear scaling between zero and one, this deciduousness

parameter is taken to represent the sub-pixel fraction of deciduous vegetation. This parameter

is then used in Eq. 2.4 to mix the Le contributions from evergreen, Lep, and deciduous, Led,

vegetation in each pixel.

ω =
NDVIsummer −NDVIwinter

NDVIsummer + NDVIwinter
(2.3)

Le = (1− ω)Lep + ωLed (2.4)

The phenological function, f(t), is determined by fitting a nonlinear model (Eq. 2.5) to a

time series of MODIS NDVI. These estimates are then transformed via a simple linear scaling

to values between zero and one to be used as phenological coefficients in the composite model
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(Eq. 2.6).

MODSVI(t) =

(
1

1 + ea−bt
− 1

1 + ea′−b′t

)
g + h (2.5)

f(t) =
MODSVI(t)

MODSVImax −MODSVImin
(2.6)

Where MODSVI, MODSVImax, and MODSVImin are MODIS NDVI and its corresponding

minimum and maximum value within a year for a pixel, and a, b, a′, b′, g, and h are empirical

parameters.

2.2.4 Spatial & Spectral Information: Texture and SVI

A single Landsat TM image (path 16, row 35, collection date: May 19, 2009) was used to

calculate the SVI used as predictors in the empirical modeling effort. This image was selected

because it was the cloud free image closest in time to the field data collection. Texture

measures were calculated on a panchromatic IKONOS image (collection date: September

24, 2004), which was the only available image from this sensor covering the entire study

area. Although there is a lag in time between the IKONOS image and the Landsat image,

we believe that the texture information should still be helpful in overcoming the problem

of spectral signal saturation. The TM image was orthorectified to the IKONOS image and

atmospherically corrected using a dark object subtraction technique with downwelling diffuse

radiation modeled using the 6S radiative transfer code (Song et al., 2001).

There is little agreement in the literature about which SVI are best suited for estimating

LAI. For this reason we chose to calculate a suite of commonly used indices and used a model

selection procedure to determine the most explanatory model. We calculated a variety of SVI,

including the simple ratio (SR), reduced simple ratio (RSR), normalized difference vegetation

index (NDVI), normalized difference water index (NDWI), enhanced vegetation index (EVI)

and the structural index (SI) (Table 2.1). Homogeneous areas surrounding the study plots

were selected and used to obtain a single average value of each SVI for each study plot. These

areas varied in size depending on the heterogeneity of the forest stand surrounding the study
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plots, but were 90 m by 90 m on average, and were non-overlapping.

First-order texture metrics such as windowed variance and second-order metrics such as

GLCM features have been used successfully to estimate forest structural attributes (see Section

2.1). However, second-order metrics require extensive parameterization. To calculate GLCM

features, it is first necessary to determine the appropriate window-size, grey-level quantization

and offset distance and direction (Haralick et al., 1973). It is also necessary to determine

which subset of the many GLCM features will be used for prediction. In comparison, first-

order metrics require only the selection of the optimum window-size, and the full gamut of

image grey-levels may be used without incurring significant computational penalties. For these

reasons, we chose to use windowed variance as the only texture predictor in the Le estimation

effort. We calculated image semivariograms on samples from the IKONOS panchromatic image

that were representative of the deciduous and evergreen plots measured on the ground. The

range of these semivariograms indicates the characteristic spatial scale of the pattern, or the

distance at which ground objects are no longer related. We chose to use the maximum range (13

meters, and 13 pixels) among the image samples as the geographic window size for calculating

the variance across the entire image. This approach follows the recommendations by Franklin

et al. (1996) for determining optimum geographic windows with empirical semivariograms.

The same homogeneous areas surrounding the study plots used for averaging SVI were used

to average the variance values resulting in a single texture predictor for each plot.
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2.2.5 Temporal Information: Phenology

Tracking the onset and duration of phenological events has long been investigated using re-

motely sensed imagery. Approaches usually rely on fitting a nonlinear model to a set of indi-

cator variables, such as spectral vegetation indices (Jonsson and Eklundh, 2002). Phenological

events occur quite rapidly in vegetation communities like the ones in our study area. Obtaining

a temporally dense time series of images is essential for successful model fitting. Though the

spatial resolution of Landsat imagery is appealing for regional and local-scale investigations,

its revisit time is too infrequent to ensure reliably cloud-free images at an acceptable interval.

Instead we used the MODIS 16-day composite SVI products for fitting the phenological model.

We obtained a growing season length time series of MODIS NDVI at 250 m spatial resolu-

tion (MOD13Q1 product) and used the accompanying metadata to restrict pixels to only the

most reliable observations. The 500 m MODIS land-cover product (MCD12Q1) was used to

further segregate the pixels into deciduous and evergreen pixels using the IGBP biome defini-

tions of that product. A daily time series of average, high-quality NDVI observations for each

cover type was constructed by averaging the NDVI value of all pixels having the appropriate

day of year as indicated by the composite day of year image included in the MOD13Q1 prod-

uct. This is essentially “decompositing” the 16-day MOD13Q1 product using the composite

day of year. Further filtering of values was necessary to remove outliers. We used a 16-day

moving window on the time series and flagged as outliers values which either exceeded the

third quartile maximum by more than 1.5 times the interquartile range, or were below the first

quartile minimum by 1.5 times the interquartile range or more (Tukey definition). Averages

calculated using fewer than 20 pixels were also excluded. Equation 2.5 (Fischer, 1994; Zhang

et al., 2003; Fisher et al., 2006) was fit to the refined time series using weighted nonlinear

least squares regression techniques. Weighted regression was used because each estimate of

daily mean NDVI is computed from a potentially different number of observations and the

variances of the observations are therefore not necessarily equal. Weighting each observation

by the reciprocal of the measurement’s variance leads to unbiased estimates.
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2.2.6 Empirical Model Selection

There are a wide variety of published empirical LAI models taking a variety of mathematical

forms. Most use a single SVI as a predictor and thus neglect potential complimentary informa-

tion from other sensors (Fassnacht et al., 1997). Also, multiple competing models are generally

not considered, or the selection procedure is not rigorous. In this investigation, we relied on a

model selection procedure based on information theoretic criteria to compare multiple models

(Burnham and Anderson, 2002). In this procedure a portfolio of candidate models are pro-

posed, fit to the data, and then ranked according to the Akaike information criterion (AIC),

a relative measure of the goodness of fit of a model which allows for comparisons between

models with varying numbers of parameters. Multiple regression with two complimentary SVI

predictors and one, or no texture predictors (Eq. 2.2) was used to model the ground observed

Le. Initial exploratory analysis indicated that one of either SR or RSR as the first SVI pre-

dictor and SI or EVI as the second SVI predictor best explained the field observations. Thus,

we proposed eight candidate models (four different models using only SVI predictors, and the

same four models with the addition of the texture variable), fit them to the data, and ranked

them according to the AIC selection procedure. The best among this portfolio of models was

selected as the empirical relation to map maximum Le.

2.3 Results

2.3.1 Spatial & Spectral Le Model

A comparison of Le estimates obtained by excluding the fifth sensor ring reveals the same

pattern found by Chen et al. (2006), i.e. an increase in estimated Le when the highest zenith

angle ring was excluded (Fig. 2.2). This indicates either multiple scattering, which violates

the assumption of opaque leaves at blue wavelengths (a critical assumption of the LAI-2000

instrument), or stand-level clumping leading to a violation of the assumption of randomly

distributed foliage. As a result, we used the estimates obtained by excluding the fifth sensor

ring as the Le estimates for subsequent modeling.
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Figure 2.2: Comparison of Le estimates,
11111: all five sensor rings used, 11110:
first four sensor rings used.

The overall best model included SR and EVI as

SVI predictors along with the texture variable (local

variance) and explained 73% of the observed variabil-

ity in the ground data (Table 2.2). The second best

model replaced SR with RSR and achieved an R2 of

0.71. Both of the best models had residual standard

errors of 0.7. The two best models included texture

as a predictor and explained significantly more vari-

ability than the best models which did not include

a texture predictor. Figure 2.3 shows that texture

offered the greatest improvement to deciduous Le

prediction and accounted for more variability within

these stands than any other predictor. Deciduous Le was positively correlated with image

texture in all models that included it as a predictor. In evergreen stands Le was positively

correlated with SR and RSR and there was no significant correlation with texture variables.

There were significant negative correlations with EVI among both evergreen and deciduous

models for the two best models. The AIC weight indicates the relative likelihood of each can-

didate model and may be used for multi-model averaging when there are multiple competing

models. In this case, the best model has a much higher likelihood than the next best model

and we therefore choose it for mapping maximum Le across the entire study area.

2.3.2 Phenology

Table 2.3 provides the parameter values estimated via weighted nonlinear least squares re-

gression. There were no significant differences between parameter values for deciduous and

evergreen models. For this reason we selected the deciduous model as f(t) in Eq. 2.1 and

neglect the evergreen model. Figure 2.4 shows the data used for the fitting procedure, the

identified outliers, and the weights assigned to each observation. It was determined that re-

moval of outliers and observations averaged from less than 20 pixels was necessary in order to

obtain stable parameter estimates in an automated fashion. It should be noted that this is the
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Figure 2.3: Comparison of observed and predicted Le using models SE (A) and SEV (B).
Model SEV contains a texture estimator which leads to a significant improvement in model fit
for deciduous stands.

variability that remains after the initial restriction to pixels identified by the MODIS algorithm

as being “good data”. If these outliers and high variance estimates are not removed, there

is too much variance for the nonlinear least squares procedure and extensive user adjustment

of initial parameter values is required. In order to use the phenological information in the

composite model we must adjust the model from one that predicts NDVI as a function of day

of the year to one that yields a coefficient between zero and one indicating the relative position

along the phenological trajectory (Eq. 2.5 vs. Eq. 2.6). This is accomplished by calculating

the expected NDVI for each day in the growing season with the phenological model and then

linearly scaling these values between zero and one.

2.3.3 Modeled Le

The empirical Le model identified as best through the model selection procedure was used to

generate a single map of max(Le). The deciduousness parameter, ω, was calculated according

to Eq. 2.3 for every forested pixel within the study area using the summer Landsat TM image

and a winter image (collection date: January 25, 2008, there were no cloud free images of

the study area available in 2009). Equation 2.4 was then used to calculate maximum Le for
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Deciduous Conifer
Parameter Estimate Std. Error Estimate Std. Error

a 18.61*** 3.38 16.29*** 3.76
b 0.166*** 0.030 0.144*** 0.033
a’ 15.16*** 1.47 16.62*** 1.97
b’ 0.049*** 0.005 0.054*** 0.007
g 0.292*** 0.008 0.299*** 0.010
f 0.516*** 0.006 0.512*** 0.008

Table 2.3: Weighted nonlinear least squares estimates of parameter values for Eq. 2.5. Sig:
***: <0.001
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Figure 2.4: Mean NDVI for MOD12Q1 Type 1 Deciduous forests indicating points omitted
from fitting procedure by outlier detection or too few pixels used in calculation (A), and the
full range of just the data used for fitting (B). Point sizes indicate the relative weight used in
the nonlinear least squares fit. Dashed line is fit. Note that the figures have different scales.
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each pixel by weighted mixing of estimated Le contributions according to the deciduous or

evergreen model. Minimum Le was determined using this same equation and the previously

stated assumptions regarding minimum Le among cover types. Thus, the model was fully

determined and used to generate daily maps of Le for forested pixels within the study area.

We lacked ground observations of Le for non-forested plots and were thus unable to produce

an empirical relationship for these cover types. However, LAI is typically low in non-forest

vegetation, thus spectral signal saturation is much less of a problem. For these areas we used

the best Le model based only on SVI.

Validation of a product such as this is complicated by the lack of time series of LAI or

Le estimates across many sites. However, two AmeriFlux sites within our study area (Fig.

2.1) provide these data for a single deciduous and evergreen stand. The temporal dynamics

of pine LAI were reconstructed using data on leaf litterfall mass and timing, specific leaf area,

leaf elongation rates, and fascicle, and shoot counts (McCarthy et al., 2007). Hardwood LAI

was estimated using conventional litterfall techniques (Oishi et al., 2008). We used these data

for a plot level comparison of LAI estimates for a single year. We performed an additional,

coarser scale, evaluation of the model utilizing the MODIS LAI product (MCD15A2) for the

2009 calendar year. This product is produced at an 8-day interval and a 1x1 km pixel size.

The main MODIS LAI algorithm relies on a lookup table generated from a radiative transfer

model. A backup algorithm based on biome specific empirical equations and SVI is used

when the main algorithm fails (Knyazikhin et al., 1999). We chose to directly compare our

Le estimates with AmeriFlux and MODIS LAI estimates because measurements (our own

unpublished data) have shown that there is only minor clumping in the closed canopy forests

in our study area, and thus the differences are likely small. Figure 2.5 compares our modeled

Le with the AmeriFlux LAI at the evergreen and deciduous site. Our modeled estimates of

evergreen maximum and minimum Le agree very well with the AmeriFlux estimates, and the

onset and duration of the green-up and senescence period are also predicted well. Our model

predicts a deciduous maximum Le that is one unit smaller than the AmeriFlux LAI estimate,

but captures the start and duration of the green-up period well. The lower peak Le predicted

by the model may be due to a minor effect of leaf clumping in the canopy. Our model predicts a
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Figure 2.5: Daily estimates of Le using our model compared to AmeriFlux daily estimates of
LAI at a deciduous (A) and evergreen (B) site within the study area. AmeriFlux estimates
represent canopy LAI, the sum of deciduous and evergreen LAI contributions within each site.
For example, though the evergreen site is primarily P. taeda there are small LAI contribu-
tions from various deciduous understorey species. These data are reconstructed from litterfall
collection as described by McCarthy et al. (2007)

prolonged senescence period compared to the reconstructed AmeriFlux LAI for the deciduous

stand. This is because the phenological model is based on 250x250 m MODIS SVI and 500x500

m MODIS land-cover, at which scales there are very few pure deciduous or evergreen pixels in

the heterogeneous landscape of our study area. This problem would probably be ameliorated

for larger study areas with a more homogeneous land-cover composition.

We resampled our Le surfaces to MODIS spatial resolution (1x1 km pixels) and compared

our annual Le pattern to time series of MODIS LAI estimates for spatially coincident pixels.

The single 1x1 km resampled pixel centered on the Blackwoods study site covered four 500

m spatial resolution MODIS land cover (MCD12Q1) pixels, 75% of which were classified as

deciduous broadleaf forest and 25% were identified as evergreen needleleaf forest. We also chose

a developed pixel where 75% of the pixel was classified as urban in the MCD12Q1 product,

with the remainder being classified as forest. Figure 2.6 compares the MODIS LAI estimates

with the resampled estimates from our model over a calendar year. The MODIS LAI/FPAR
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quality control bitfield is displayed below the time series. Modeled maximum Le agrees with

the MODIS maximum LAI estimate and the green-up period characteristics are similar for both

sets of estimates at the Blackwoods pixel. At the urban pixel, MODIS estimated maximum

LAI exceeds our estimate by two units, and our modeled minimum is one unit lower than that

estimated by the MODIS algorithm. At the urban pixel, the green-up and senescence periods

are difficult to discern due to the high amount of variability in the estimates. This variability

is common to both pixel’s MODIS LAI trajectories, and is not fully explained by the QC flags.

For instance, DOY 225 has an exceptionally low LAI estimate in both time series, but the QC

flag at the Blackwoods site does not indicate any problems, whereas mixed clouds are indicated

over the developed pixel. It can be seen that estimates produced with the backup MODIS

LAI algorithm are generally lower than the main algorithm, but limiting analysis to only main

algorithm estimates does not significantly reduce variability in the LAI trend, especially over

the developed pixel. The unsteady temporal trend of MODIS LAI has been noted by other

investigators and may be addressed using a variety of gap-filling and smoothing techniques

Verger et al. (2008); Kobayashi et al. (2010); Verger et al. (2011).

2.4 Discussion

Our results support previous work indicating that texture measures generally improve empirical

models of LAI in forests when compared to using SVI alone (Wulder et al., 1996, 1998; Song

and Dickinson, 2008). It has been hypothesized that this improvement is due to the textural

features containing forest structural information. Indeed, this line of reasoning is supported by

studies which have shown relationships between image texture and structural variables such

as canopy diameter and stocking density (St-Onge and Cavayas, 1995; Song and Woodcock,

2003; Song, 2007; Song and Dickinson, 2008). Others have argued that the improvement is

due to the textural information providing a pseudo-classification of the image (Colombo et al.,

2003), which is likely the case in study-sites with many diverse vegetation communities. Our

results support the former hypothesis more strongly than the latter by showing the greatest

improvement in modeling efficiency for a single land cover type (deciduous stands), although a
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Figure 2.6: Comparison of estimated Le and the MODIS LAI product (MCD15A2) for single
MODIS pixels centered on the Blackwoods study site (A) and a mostly developed pixel (B) over
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direct comparison between these studies is complicated by the use of different texture metrics

and vegetation types.

Wulder et al. (1998) showed the greatest improvement in LAI prediction with texture

measures among evergreen stands, but our results showed an insignificant relationship in these

stands. In contrast, texture was the single best predictor of deciduous Le in this investigation.

However, it is important to note that we used a single measure of texture and a single window-

size to calculate this metric. While we believe we gain interpretability and simplicity with this

approach, it is possible that different measures of image texture may contain complimentary

information. For instance, the lack of a significant relationship between evergreen Le and

variance may be the result of a non-optimal window size for evergreen variance calculation.

In fact, the deciduous crowns were much larger than the evergreens and a “one-size-fits-all”

approach to variance calculation may have been inadequate. However, using multiple window

sizes increases the reliance on image classification. The positive relationship between first-order

image variance and Le observed in this study may indicate that variance captures information

about canopy complexity which may be reasoned to increase with LAI as canopies mature.

We have also demonstrated that multiple SVI can provide complimentary information and

that multiple candidate models may be rigorously compared using AIC based model selection

procedures.

We found that extensive filtering of MODIS SVI was required in order to obtain stable

parameter estimates to the proposed phenological model in an automated fashion. Even af-

ter restricting the data to pixels identified as reliable by the MOD13Q1 algorithm, there was

still too much variability and the nonlinear least squares approach was unstable and sensi-

tive to initial parameter estimates. We used a simple phenological model because it has been

demonstrated to perform well for forested vegetation. It is inadequate, however, for multi-peak

phenologies characteristic of multiple crop rotations, and an alternative model would be re-

quired if capturing such vegetation changes was important in a given study area. We observed

that there was no significant difference between deciduous and evergreen phenological models.

We believe that this results from heterogeneity in pixels assumed to be pure deciduous or

evergreen. The MODIS land-cover product used for constructing the time series has a spatial
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resolution of 500 m which is likely too large for a study area as small and heterogeneous as ours.

It should be noted, however, that the same lack of difference in phenologies was found when

a much more restrictive pixel selection procedure was employed. Using the NLCD land-cover

product we attempted to identify MODIS resolution pixels with at least 80% homogeneity

in NLCD land-cover definition. This resulted in far fewer pixels available for the calculation

of daily NDVI averages and necessitated that the area considered for phenological signal ex-

traction be much larger. However, the lack of difference between evergreen and deciduous

phenology under this more restrictive pixel selection procedure does not rule out the possi-

bility that landscape heterogeneity is the underlying cause. Rather, it most likely indicates

that there are very few homogeneous stands, and there is confusion in the classified map. This

hypothesis is supported by field observations of abundant deciduous herbaceous and woody

understory species in stands which would appear to be pure evergreen from a satellite view.

Another possible source of phenological error is geolocation errors in the MODIS product.

However, the difficulty in finding pure MODIS pixels using a finer scale product such as the

NLCD lends stronger support to the hypothesis that subpixel heterogeneity is the dominant

factor.

It is important to note that by relying on NDVI time series to fit the function f(t) there

is an implicit assumption of linearity in the relationship between SVI and NDVI that is likely

violated in some cases, particularly in densely vegetated pixels. However, whereas this leads

to underestimation of LAI in simple linear empirical relationships, the most likely effect on

our model is a seasonal trajectory which reaches peak Le too early in the growing season. In

reality, some very densely vegetated pixels may continue to accumulate leaf area throughout

the summer. This could possibly be avoided by utilizing a conversion function to convert

MODIS NDVI observations to LAI, or by using the MODIS LAI product directly to fit the

phenological function. In our case, using MODIS LAI to fit f(t) would have exacerbated

the mixed pixel problem due to the coarser spatial resolution of that product in comparison

to NDVI, and would not have permitted the decompositing process used to obtain a finer

temporal resolution time series. Nevertheless, this is probably a viable option in areas with

larger, more heterogeneous forested areas, and a smoothing approach such as the one employed
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by Gao et al. (2008) would be useful in obtaining a reasonable time series from MODIS LAI

estimates.

The lack of time series of LAI ground observations prevented a rigorous validation, but

comparison of predicted Le at the two sites where time series LAI data was available are en-

couraging. The green-up period and time to peak LAI was well predicted for both deciduous

and evergreen sites. Peak LAI for deciduous was under predicted, but the magnitude of the

error is within the limits that are generally accepted among other studies. The senescence

pattern for the deciduous vegetation is not well matched by our model. This is most likely

the result of contamination of the phenological signal due to pixel heterogeneity as previously

discussed. At the MODIS scale, our modeled estimates compared favorably over the pre-

dominately deciduous Blackwoods pixel, but not as well over the urban pixel where MODIS

maximum and minimum LAI exceeded our estimates by two and one unit, respectively. There

is a large amount of variability in the single pixel time series of MODIS LAI estimates, and

although this product is not intended to be used at the scale of an individual pixel, it has

important implications for studies utilizing this product for fine spatial scale ecosystem simu-

lations. Our algorithm does not rely on instantaneous surface reflectance for estimating Le and

therefore produces a much smoother temporal trend of Le. This more realistic trend, along

with the finer spatial resolution and greater flexibility in land-cover designation are the main

advantages of our algorithm over the MODIS product for local to regional-scale ecosystem

simulation applications.

The accuracy of Le estimates produced with our algorithm are determined primarily by

the accuracy of the maps of minimum and maximum Le. To overcome the problem of signal

saturation using spectral information alone, we included image texture information based on

findings from other studies (Colombo et al., 2003; Song and Dickinson, 2008; Song et al.,

2010). It appears that this method works, at least for deciduous vegetation. However, the use

of texture measures introduces its own limitations such as increased computational and data

requirements. Texture measures also increase the dependency on land-cover maps because

they are significant predictors of Le only in closed canopy forest stands. The dependence on a

single phenological function introduces several limitations. First, the double logistic function
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is only capable of fitting SVI time series with a single yearly maximum, making it unsuitable

for fitting time series of agricultural areas with multiple rotations in a year. Second, we must

rely on coarser spatial resolution SVI estimates from MODIS in order to achieve the necessary

temporal resolution for time series construction. As previously discussed, the main limitation

of this approach is that it is difficult to fit vegetation specific phenological models in areas with

few land-cover patches that are homogeneous at the MODIS SVI spatial resolution. In this

investigation, this was evident in the lack of significant difference in models fitted to evergreen

and deciduous SVI time series, and the prolonged senescence period evident in the estimated

Le time series. An additional issue associated with this approach is that relatively coarse land

cover schema (e.g. “deciduous” as opposed to “oak”) obscure phenological differences between

individual species. With our approach, a single phenology is prescribed for all deciduous

species. However, since the coarse spatial resolution SVI represent the bulk contribution to

greenness from all species, the effect is likely not severe except in extreme cases where there

are strong sub-pixel species gradients. A more serious limitation of this approach is that

a single, land cover specific phenology is prescribed for the entire study-area which results

in an insensitivity to environmental gradients affecting phenology. However, our method is

primarily aimed at improving vegetation representation at spatial scales where these differences

are small; in larger study areas where this effect is not small, existing moderate to coarse

resolution vegetation representations are likely adequate and finer scale representations would

be computationally infeasible.

This investigation combined complimentary information from IKONOS, Landsat, and

MODIS sensors across a wide range of spatial resolutions. Our approach to using images

from multiple sensors at a variety of temporal and spatial resolutions might best be thought

of as information fusion rather than image fusion. The distinguishing feature is that we have

combined complimentary information from multiple images without resorting to the produc-

tion of synthetic images. The main application of this technique in this study was the fusing of

phenological information from temporally dense MODIS observations with vegetation pattern

information from higher spatial resolution Landsat imagery. Our approach is applicable to all

naturally vegetated landscapes, particularly forested areas with high LAI, but is not applicable

31



in landscapes dominated by agricultural crops with multiple rotations due to the phenological

model used.

2.5 Conclusions

In this study, we developed an algorithm which takes complimentary information from multiple

remote sensing sensors, IKONOS, Landsat, and MODIS, to produce Le surfaces at high spatial

and temporal resolutions. We used spatial information from IKONOS imagery, spectral infor-

mation from Landsat imagery, and temporal information from time series of MODIS NDVI.

The data fusion approach used in this study did not have the production of synthetic images

as its goal, instead we extracted spatial, spectral, and temporal information from the appro-

priate sensors and used the information directly in our algorithm. The approach is capable of

producing Le maps at Landsat spatial resolution and an arbitrary temporal resolution. Our

Le map compares well with the LAI trajectories independently developed for two AmeriFlux

sites within the study area. Although we implemented the algorithm for a 100 km2 study

area, the approach can be applied to any size study area for which the necessary imagery is

available. Our approach is particularly appealing in areas with high forest coverage and high

LAI where traditional approaches based only on spectral information suffer from signal satu-

ration. However, our approach is not applicable to agricultural landscapes with complex crop

rotations. The Le maps generated using this approach would be suitable for local to regional

scale ecosystem simulation studies requiring accurate representation of the spatial patterns of

vegetation at fine temporal and spatial scales. Another application would be to use these maps

to test the effects of spatial resolution in process models such as GCMs which typically use

coarser spatial scale maps of vegetation. Future improvements to this model should explore

other texture metrics (possibly multiscale), improve upon the phenological model to address

the problem of pixel heterogeneity and complex crop rotations, and obtain the ground data

necessary for a robust validation.
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Chapter 3
Consistent classification of image time series with automatic adaptive

signature generalization

3.1 Introduction

It is well understood that land cover plays an important role in regulating energy and mass

exchanges between the terrestrial ecosystem and the atmosphere with important implications

for biological and climatological cycles (Foley et al., 2005). Human-dominated land uses have

played a central role in shaping the observed pattern of land cover change, and there are

concerns about how increasingly anthropogenically dominated environments will be able to

reliably supply ecosystem services such as clean water and carbon sequestration in the future

(DeFries et al., 2004). Characterizing historic land cover patterns, and monitoring current

conditions are therefore of critical importance to efforts to model Earth system processes, and

has motivated many efforts to map these patterns using remotely sensed images (Franklin and

Wulder, 2002). In fact, land cover mapping, broadly defined, is without a doubt the most

common scientific application of remotely sensed data, which are uniquely well suited to the

task. Notable global efforts include early work with AVHRR data (Defries and Townshend,

1994), and the operationally produced MODIS global land cover product (Friedl et al., 2002).

With a few important exceptions, such as the National Land Cover Dataset (NLCD) generated

for the conterminous United States (Vogelmann et al., 2001), there have been few large scale

mappings of land cover at fine spatial resolution. Historically, this type of mapping activity has

been out of reach due to the practical, financial, and computational challenges associated with

constructing and processing large archives of images. Recent developments such as the opening

of the Landsat archive and advances in large-scale distributed computing on massive datasets

have relaxed these limitations. Therefore, there is growing interest in methods to efficiently



utilize these archives to gain understandings of land cover dynamics at unprecedented spatial

and temporal scales.

The essential challenge to reliably characterizing patterns of land cover dynamics with re-

motely sensed images is accurately and consistently classifying time series of images, preferably

in an automated fashion (Loveland et al., 2002; Rogan et al., 2008). Consistency among land

cover maps is essential to mapping change and is achieved by minimizing semantic errors be-

tween classified maps at different times. This amounts to ensuring that class spectral signatures

are adapted to image differences, but correspond to the same land cover class for supervised

classification approaches. Image differences result from varying irradiance, illumination/view

geometry, atmospheric effects, surface moisture conditions, and other physical scene changes

such as phenological development. Accounting for these image differences in class spectral sig-

natures, or signature generalization (Woodcock et al., 2001), is the main challenge to mapping

image time series. Fundamentally, two options exist: adjust spectral signatures so they are

matched to individual images, or adjust the images themselves so that a single set of signatures

may be used across all image dates. The former is the approach taken in generating the NLCD

and most ad hoc land cover mapping investigations, whereby a few image dates are classified

independently with unique training data. Aside from the practical limitations involved with

assembling the extensive reference data, this method can invite inconsistency in class defi-

nitions due to training set differences, but is capable of adapting signatures to substantial

spectral differences between images. In contrast, generalizing a single set of class spectral

signatures across time and space by enforcing radiometric consistency among images is known

as “signature extension” (Minter, 1978) and is more amenable to an automated workflow as

the only a priori information required is a single set of class spectral signatures.

Signature extension methods rely on either relative (e.g., Hall et al. (1991); Olthof et al.

(2005)), or absolute image corrections (e.g, Song et al. (2001); Pax-Lenney et al. (2001)) to

account for atmospheric, radiometric, and irradiance differences between images, and have been

implemented for decades (Botkin et al., 1984). Most existing signature extension experiments

have been limited by data availability to consideration of a few discrete time steps, limiting the

utility of the approach in comparison to independent mapping. Therefore, given developments
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in data availability and computational power, the impetus to develop signature extension

methods has never been stronger (Woodcock et al., 2001). However, there are significant

limitations to signature extension methods. First, not all atmospheric and view/illumination

effects can be completely accounted for. Further, even if correction procedures were 100%

successful in removing such effects, signature extension methods are incapable of accounting

for actual changes in class spectral signatures associated with phenology, moisture status,

or other scene changes. Likewise, relative image normalization assumes linear relationships

between images which may not be valid when spectral differences associated with phenology

or moisture differences are present. Thus, signature extension methods would not be expected

to perform well when image pairs were out of season, or when the surface was wet at one

image date but not the other. Thus, traditional signature extension is severely limited in its

application to temporally irregular time series of images that result when cloud conditions or

other factors limit image acquisitions.

These concerns motivated the development of a novel approach to spectral signature gen-

eralization which overcomes the limitations associated with signature extension while main-

taining an automated workflow with limited reference data requirements. Importantly, the

approach is able to derive consistent class spectral signatures which are adaptive to a wide

range of image differences, not only atmospheric and irradiance effects, yet has no requirement

for relative or absolute image correction procedures. The essential concept of our approach is

that class signatures may be derived independently for each image date from locations that

have stable land cover. This approach is a development and refinement of previously recognized

concepts, such as combining band difference and classification maps to map stable/change lo-

cations, and deriving spectral signatures from stable sites (Pilon et al., 1988; Sader, 1995;

Mertens and Lambin, 2000; Fortier et al., 2011). However, the potential of these methods

to enable automatic signature generalization across image time series, particularly temporally

irregular ones, has not been previously explored. The objective of this study was to develop

such an approach and provide an assessment of its performance relative to existing signature

extension methods under multiple conditions.

35



3.2 Methods

3.2.1 Automatic Adaptive Signature Generalization Overview

Figure 3.1 compares workflows for a traditional signature extension approach and the auto-

matic adaptive signature generalization (AASG) method developed in this investigation. The

essential concept is that training sites may be derived independently for each image in a time

series by identifying locations that have not undergone a land cover change, labeling these

locations with an existing classified map, and using these training sites to condition a unique

classifier for each image date. In this way, class spectral definitions are consistent through

time and adaptive to differences between images due to atmospheric effects, view/illumination

geometry, surface moisture conditions, and phenological differences. This obviates the need

to correct for image differences with absolute or relative correction. Furthermore, since class

signatures are uniquely adapted to individual images, the AASG method has the potential

to classify temporally irregular time series in which vegetation has undergone phenological

change. This is not possible with traditional signature extension, even if image differences

were removed perfectly, and so limits the potential of that method to utilize temporally sparse

data archives. Given any image pair, the AASG approach has the potential to be at least as

accurate as traditional signature extension and independent image classification while main-

taining an automated workflow and increasing data flexibility, attractive features for large-scale

operational approaches.

The principal challenge is to identify stable areas that are suitable to train the classifier

for each image. Two goals guide the selection of these locations: identify pixels that have not

changed class between the image dates, and account for spatial uncertainty in the image pair

and the classified map used to identify and label the locations. Image change detection has

perhaps one of the most robust literatures in all of remote sensing science (see the reviews by

Singh (1989), Coppin and Bauer (1996) and Lu et al. (2004), for example), but many effective

approaches are based on simple band differencing and thresholding. If it is assumed that the

majority of the image area did not change class (a condition usually met when the image

covers a sufficiently large area), then the observed radiometric differences for most pixels may
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Figure 3.1: Comparison of workflows for traditional signature extension approaches (A), and
the AASG method developed in this investigation (B). In both cases, the goal is to create
classified maps C1 and C2 from input images I1 and I2. Signature extension requires that
corrected images IC1 and IC2 be created either with a relative (dashed line), or absolute image
correction procedure so that the training site information from I1 may be used to classify I2.
In contrast, the approach proposed here automatically generates unique training sites for I2
from stable locations in the scene.
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be attributed to atmospheric effects, illumination/view geometry, or surface condition changes

related to phenology or moisture differences. Considering the band difference histogram, stable

locations would be located in an interval around the mean, and radiometric differences due

to class changes would be in the tails of the distribution. Thus, for an image pair at times

1 and 2 (I1 and I2), a difference map can be constructed for each band n: ∆In = I1,n − I2,n

and stable locations should be found among those pixels where ∆In is in the interval µ± c · σ,

where µ is the mean and σ is the standard deviation of ∆In, and c is a user-selected constant

determining the width of the stable interval. The resulting binary stable pixel masks may be

combined by intersection to refine the stable locations based on multiple band differences. The

fact that there is usually high covariance among image bands means that it is not typically

necessary to use all image bands to identify class changes, and a few band difference images

will suffice for most classification schema.

Once stable pixels have been identified, a single classified map at time 1 (C1) is used to

assign class labels to the stable locations. However, these locations may not yet be used to

generate class signatures for the image at time 2 (I2) because of spatial uncertainty due to

misregistration of the individual images and the classified map (Townshend et al., 1992). This

misregistration presents two challenges: identifying if a pixel is actually stable, and correctly

labeling the pixel. Confusion occurs in the former case along boundaries between stable and

unstable pixel regions, and in the latter along the boundaries between different land cover

regions. Provided that the images and classified map have been coregistered to within a

pixel of each other, then a class-by-class erode filter with a 3 × 3 kernel may be used to

account for both sources of uncertainty (Fig. 3.2). This procedure significantly reduces the

number of pixels available to be used as training data, particularly in small study areas or

when landscapes are heterogeneous at fine spatial scales. Care must therefore be taken in the

selection of stable pixels (through the selection of c), especially in complex landscapes and

with complex classification schema.
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Figure 3.2: Illustration of the spatial filtering process necessary to account for spatial uncer-
tainty due to image misregistration. First, a binary map of stable locations are determined
using band differencing and thresholding (white pixels in A are stable, black are not). Next,
class labels are assigned to stable pixels using an existing classified map (three classes are
evident in B). Finally, an erode filter (3×3 kernel) is applied to each class in the labeled stable
pixels map to create a final map (C) of locations which are assumed to be both stable and
accurately classified.

[
Raleigh

76°0'0"W

76°0'0"W

78°0'0"W

78°0'0"W

80°0'0"W

80°0'0"W

82°0'0"W

82°0'0"W

84°0'0"W

84°0'0"W

40
°0
'0
"N

38
°0
'0
"N

38
°0
'0
"N

36
°0
'0
"N

36
°0
'0
"N

34
°0
'0
"N

34
°0
'0
"N

32
°0
'0
"N

32
°0
'0
"N

A 0 2010

km
B

Figure 3.3: Our 100×100 km study-area shown in the context of the mid-Atlantic region of
the United States (A), and NDVI over the entire study-area on 2005/7/27 (B).
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3.2.2 Study Area, Data, and Preprocessing

A region of central North Carolina around the capital, Raleigh, was chosen to compare the per-

formance of AASG and signature extension approaches. This study area was selected because

it contains a wide variety of natural and human-dominated land cover types, has experienced

widespread land cover change associated with urbanization and shifting agricultural practices

over the past several decades, and is one of the fastest growing metropolitan areas in the

United States. One winter and two summer Landsat TM images (WRS path: 16, row: 35,

image dates: 1992/3/1, 1992/5/4, and 2005/7/27) were subset to a 100× 100 km area around

the cities of Raleigh and Durham (Fig. 3.3, center: 35◦0′4′′N, 79◦0′1′′W) and converted to

planetary top-of-atmosphere reflectance (ρ0) using the constants and updated calibration co-

efficients provided by Chander et al. (2009). In order to increase class separability, we then

derived a limited selection of spectral derivatives and ancillary information for each image:

simple ratio vegetation index (Jordan, 1969), normalized difference vegetation index (Rouse

et al., 1973), structural index (Fiorella and Ripple, 1993), and the topographic wetness index

calculated from a National Elevation Dataset 30 m resolution digital elevation model (as de-

fined by Beven and Kirkby (1979): TWI = ln(A/ tanβ), where A is upslope contributing area

and β is local surface slope).

We used maximum-likelihood classification to map land cover in 2005 to obtain a reference

map for the AASG approach and spectral signatures for the signature extension approach. The

classifier was trained on user-defined reference sites (delineated using 2005 color aerial photog-

raphy), TM spectral bands (ρ0), and derived/ancillary information from the 2005/7/27 TM

image for seven land cover types: water, urban, suburban, deciduous forest, evergreen forest,

wetlands, and crops/pasture. The suburban class is defined as the mix of natural vegetation,

managed vegetation, and impervious surfaces characteristic of suburban neighborhoods. There

is a strong correspondence between this class and the “developed, open space”, “developed,

low intensity”, and “developed, medium intensity” classes used in the 2001 National Land

Cover Dataset (Homer et al., 2004).
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3.2.3 Assessment of Performance

Performance of the automatic adaptive signature generalization method was compared to

traditional signature extension with three different levels of image correction: conversion to

ρ0, conversion to surface reflectance (ρ) via atmospheric correction, and relative correction of

ρ0 between image pairs. Additionally, the ability of AASG to classify image pairs that are

from different seasons was tested. This potential application is particularly appealing because

signature extension would be expected to perform poorly in such cases due to changes in

vegetation spectral signatures associated with phenological development. Furthermore, high

quality anniversary date images are not always available when constructing a time series of

images, particularly in areas with frequent cloud cover. Finally, the sensitivity of classification

accuracy to selection of the thresholding parameter c was assessed. It should be stressed that

this investigation sought to demonstrate the efficacy of the proposed method relative to existing

signature extension methods for consistently and accurately classifying time series of images,

and not to demonstrate improvements in overall map accuracy for individual classified maps,

or to suggest a particular supervised classification algorithm. In fact, an attractive aspect

of the AASG aproach is its flexibility with respect to classification algorithm. Therefore,

maximum-likelihood classification (MLC) was used for all tests because it is well understood,

easily implemented, and relatively computationally efficient.

Classification of Summer-Summer Image Pairs

Class signatures were extracted from the 2005/7/27 TM ρ0 image and used to classify the

1992/5/4 TM ρ0 image using MLC for a “baseline” signature extension approach (i.e., cor-

recting only for differences in irradiance, not atmospheric effects). Next, the relative image

correction procedure proposed by Hall et al. (1991) was used to generate a 1992/5/4 rectified

TOA reflectance (ρ̂0) relative to 2005/7/27 ρ0. The Hall et al. (1991) correction works by fit-

ting band-by-band linear transfer functions between control points assumed to represent areas

with the same average surface reflectance between image dates (e.g., deep reservoirs and bright

concrete), and then applying these functions to one of the images in order to rectify it to the
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other. The relatively corrected 1992/5/4 ρ̂0 image was then classified as before, with MLC

and the class spectral signatures extracted from the 2005/7/27 ρ0 image. We then applied an

absolute atmospheric correction to both the 1992/5/4 and 2005/7/27 TM images to obtain

surface reflectance (ρ) images. A simple dark object subtraction (DOS) procedure was used

(specifically, the “DOS3” method outlined in Song et al. (2001)), because such corrections have

been shown to perform well for signature extension (Pax-Lenney et al., 2001). Class signatures

were extracted from the 2005/7/27 ρ image using the same training sites as before, and were

then used to classify the 1992/5/4 ρ image using MLC. Finally, we used the AASG method

to classify the 1992/5/4 ρ0 image using the 2005/7/27 ρ0 image and the 2005/7/27 classified

map. Landsat TM bands three and four were used in the differencing/thresholding procedure

with the parameter c set at 0.5.

Accuracy of the four 1992/5/4 classified maps were assessed using over 100 validation

sites selected with a simple random sampling design (Stehman, 1999) and labeled using leaf-

on aerial photographs collected in 1993 and 2005. Homogeneous blocks of pixels (3 × 3)

were employed as the assessment unit because they are robust against spatial misregistration

(Stehman and Wickham, 2011). Confusion matrices, overall map accuracy, kappa coefficient of

agreement, and class specific producer’s and user’s accuracies were generated for each classified

map (Congalton, 1991; Foody, 2002).

Classification of Summer-Winter Image Pairs

A similar procedure was used to test the ability of AASG to classify image pairs with sig-

nificantly mismatched collection dates. Specifically, we tested the performance of the AASG

method when presented with a late winter Landsat TM ρ0 image (1992/3/1) and the 2005/7/27

ρ0 image along with the 2005/7/27 classified map. Given the same resources, traditional sig-

nature extension would be expected to perform poorly. Deciduous vegetation and seasonally

snow covered surfaces, for example, would have very different spectral signatures than their

summer counterparts. However, the AASG method derives spectral signatures from the indi-

vidual images themselves, and the signatures therefore have the ability to adapt to more than

just atmospheric and illumination/view geometry effects. If stable locations can be reliably
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identified, then the AASG method could perform as well as independent image classification

for any set of collection dates in a time series. It should be noted that in cases where the

class spectral signatures change in such a way as to introduce class confusion, the achiev-

able classification accuracy may be lower than an in-season image pair due to reduced class

separability.

The main challenge in identifying stable locations with the proposed band-by-band differ-

encing and thresholding approach when class signatures have changed through time is that

while there will be large radiometric differences for certain bands in some classes, other classes

will show no change in their spectral signatures (Fig. 3.4). In these cases the implicit assump-

tion that the band difference histogram is unimodal and normally distributed no longer applies,

and using the mean-based thresholding procedure to identify stable locations is unreliable. For

example, discriminating stable sites based on a near-infrared band thresholding procedure in

an image dominated by deciduous vegetation would neglect all locations which are stable, but

not deciduous vegetation, resulting in few or no training sites for all other classes. A possible

alternative is to use a selection of bands in the thresholding procedure which are unaffected

by the physical changes in particular class signatures. The penalty for imposing this type of

limitation is that some band combinations are incapable of discriminating class changes when

the classes share a similar spectral response across the selected bands. Pixels which have un-

dergone such a change are mistakenly identified as stable and assigned an incorrect class label.

These misclassified pixels reduce class separability by contaminating the spectral signatures,

resulting in degraded classifier performance. However, if land cover change is rare, then very

few pixels in the image will have experienced actual class changes, and even fewer will have

experienced the type of land cover change that is impossible to discriminate with a particular

selection of bands. The result is very few misclassified pixels contaminating the class spectral

signatures and minimal impact on classifier performance, at least for classification algorithms

such as MLC which rely on mean spectral response.

We hypothesized that TM band 3 difference alone could be used to identify stable loca-

tions between the 2005/7/27 and 1992/3/1 images, based on its demonstrated effectiveness

for this purpose in previous investigations (e.g., Ridd and Liu (1998)). Band 3 is sensitive to
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Figure 3.4: Mean summer spectral signatures (A) and the difference between winter and sum-
mer mean spectral signatures ∆ρ0 (B) for the land cover classes considered in this investigation.

class changes, particularly those altering the barren/impervious surface and natural vegetation

proportions which are associated with urbanization and other anthropogenic changes, but is

relatively similarly affected across all classes by atmospheric effects (Fig. 3.4), making it the

best choice for identifying stable locations in our study area. We used the AASG approach

with this image differencing criteria and c = 0.5 to classify the 1992/3/1 ρ0 image given the

2005/7/27 ρ0 image and the 2005 classified map. Another baseline performance comparison

was conducted by classifying the 1992/3/1 ρ0 image using spectral signatures derived from

2005/7/27 ρ0 image. Accuracy of the two classified maps was assessed using the same valida-

tion data and procedure described in section 3.2.3

Threshold Sensitivity

The thresholding parameter c influences the characteristics of the stable training set by deter-

mining the range of radiometric variation assumed to result from processes other than land

cover change. Therefore, this tolerance determines the probability of mistakenly identifying

a change pixel as stable, and the overall number of stable pixels available for training. The
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goal is to select a value of c which minimizes the number of misclassified pixels while main-

taining sample sizes adequate to describe the spectral characteristics of land cover classes.

We hypothesized that, with respect to classifier performance, there would be an optimum c

value above which classifier performance is degraded by the inclusion of misclassified pixels

in the training set, and below which class spectral characteristics are inadequately described

by the training set due to too few samples. If class separability were observed to decrease

with increasing c, then the former portion of the hypothesis would be supported. Reduced

performance for individual classes associated with low training set numbers would support

the notion that a restrictive c degrades performance by failing to capture the full range of

class spectral variability. Sensitivity of the AASG method to c was assessed by classifying the

1992/3/1 ρ0 TM image using the 2005/7/27 ρ0 image, and independently classified 2005 land

cover map at three different levels of the c parameter: 1, 0.5, and 0.25 (using TM bands 3 and

4 ρ0 difference images). Class separability of the training set was determined for each level

of the thresholding parameter, and overall map accuracy, kappa coefficient, and producer and

user accuracies were calculated as before.

3.3 Results

3.3.1 Signature Extension vs. AASG

AASG and traditional signature extension with absolute atmospheric correction performed

nearly identically, and best overall of the various methods of generating class signatures for

classification of the 1992/5/4 TM image (Table 3.1). Signature extension with relative and

TOA reflectance corrections performed slightly worse, but still well overall for the summer-

summer image pair. The AASG method was able to maintain high overall classification accu-

racy (66%) in the winter image (1992/3/1) whereas traditional signature extension performed

only slightly better than random assignment (κ = 0.07).

The AASG method achieved the highest user accuracies for forested classes (Dec and Evg;

Tables 3.2 and 3.3), but had low user’s and producer’s accuracies for the wetlands and suburban

classes (Wet and Sub, resp.). All tested methods over-predicted urban class (Urb) membership
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Signature Generation Method Image Date Overall Acc. (%) κ

User Supervised 2005/7/27 68.34 0.59

Sig Ext: TOA Reflectance (ρ0) 1992/5/4 69.13 0.56
Sig Ext: Relative Correction (ρ̂0) 1992/5/4 70.42 0.65
Sig Ext: Absolute Correction (ρ) 1992/5/4 72.79 0.66
Automatic Adaptive Generalization 1992/5/4 72.99 0.68

Sig Ext: TOA Reflectance (ρ0) 1992/3/1 15.37 0.07
Automatic Adaptive Generalization 1992/3/1 66.02 0.63

Table 3.1: Overall accuracy and kappa statistic (κ), for the classified maps generated via
user-supervised signature generation, signature extension with three levels of image correction
(conversion to ρ0, ρ̂0, and ρ), and the AASG method proposed in this investigation.

(high producer’s and low user’s accuracy), and under-predicted membership (low producer’s

and high user’s accuracy) in the crops/pasture (Agr) class (Tables 3.2 and 3.3). Overall, in

comparison to the various methods of signature extension, AASG showed improved or similar

performance for producer’s and user’s accuracies across all classes except suburban, for which

AASG performed slightly poorer than signature extension with relative and absolute image

corrections.

2005/7/27 User 1992/5/4 AASG 1992/3/1 AASG

Class Prod. User Area (%) Prod. User Area (%) Prod. User Area (%)

Agr 41.4 77.4 9.8 39.9 70.5 10.8 51.0 67.3 16.3
Dec 68.4 82.8 22.8 90.6 96.7 26.3 66.7 79.7 29.6
Evg 48.8 62.7 13.8 75.9 84.3 15.4 82.1 83.1 16.2
Sub 78.8 46.6 39.0 65.6 62.0 26.9 45.0 49.7 23.9
Urb 95.6 72.3 4.7 96.7 42.7 7.5 98.9 54.3 5.5
Wat 90.0 100.0 1.4 86.7 100.0 1.4 92.2 100.0 1.6
Wet 65.1 45.6 8.4 60.3 54.3 11.7 100.0 56.8 7.0

Table 3.2: Class producer’s and user’s accuracy, and the percentage of the study area assigned
to each class (Area) for the 2005/7/27 map classified with user-defined training sites, and the
1992/5/4 and 1992/3/1 maps classified with via the AASG method.

The suburban class exhibits the highest spectral variation of all classes and was over-

predicted in the 2005/7/27 classified map at the expense of every other class except urban and

water. This is evidence of the propagation of error from the 2005/7/27 map to the 1992/5/4

map that is unique to the AASG approach. That is, the training sites generated with the
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1992/5/4 ρ0 1992/5/4 ρ̂0 1992/5/4 ρ

Class Prod. User Area (%) Prod. User Area (%) Prod. User Area (%)

Agr 34.3 70.8 8.9 40.9 75.7 15.0 43.4 76.1 15.6
Dec 85.4 93.9 24.0 78.8 83.5 30.9 79.2 83.2 31.1
Evg 37.7 74.4 7.9 67.1 77.1 13.9 67.7 79.6 13.8
Sub 66.1 42.2 44.5 72.0 69.4 25.5 71.4 78.0 25.1
Urb 97.8 35.8 11.9 98.9 43.8 7.3 98.9 44.3 7.2
Wat 84.4 100.0 1.3 89.9 100.0 1.5 86.5 100.0 1.4
Wet 27.0 77.3 1.7 63.5 50.0 5.8 100.0 18.4 5.8

Table 3.3: Class producer’s and user’s accuracy, and the percentage of the study area assigned
to each class (Area) for the 1992/5/4 classified maps generated via signature extension with
three levels of image correction (ρ0, ρ̂0, and ρ).

automatic adaptive approach contain some mislabeled pixels in favor of the suburban class,

broadening the spectral envelope of the class and resulting in increased suburban class con-

fusion in the 1992/5/4 classified map. The traditional signature extension approach suffers

from relatively low class predicted accuracy, but does not take the additional penalty of con-

taminated class spectral signatures. Note that this is different than the contamination of

spectral signatures due to mislabeling change pixels as stable (described in Section 3.2.3), and

emphasizes the importance of the user’s accuracy of the initial classified map to the AASG

approach.

The pattern of producer’s and user’s accuracies for the 1992/3/1 ρ0 image classified via

AASG is similar to the 1992/5/4 ρ0 image classified with the same method, with some re-

duced accuracy in the deciduous and suburban classes. Extension of class signatures from

the 2005/7/27 ρ0 image to the 1992/3/1 ρ0 image performed poorly, with zero producer’s and

user’s accuracy for all classes except water which was well predicted, and urban which was

predicted for all non-water spectral responses (100% and 9%, producer’s and user’s accuracies,

respectively).

3.3.2 Threshold Sensitivity

As previously discussed (Section 3.2.3), the thresholding parameter c determines the charac-

teristics of the pixels used as training sites in the AASG method by limiting the amount of
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tolerable variability in band difference images. Overall classified map accuracy was high across

all three values of c that we tested. There was a modest reduction in overall accuracy and κ

associated with the minimum threshold value, but no difference for the higher c values (Table

3.4). The lack of large changes in overall accuracy can be partially attributed to the fact that

classes which are a large constituent of the study area (e.g., deciduous), are relatively well

classified and robust against changes in c (Table 3.5). However, class accuracies among the

lesser represented classes in the study area exhibited larger changes in accuracy associated

with different values of c.

c Overall (%) κ

0.25 71.7 0.65
0.50 73.3 0.68
1.00 73.3 0.68

Table 3.4: Overall accuracy and κ for the 1992/5/4 TM image classified with the AASG
method and three levels of the thresholding parameter c.

0.25× σ 0.5× σ 1× σ

Class # Pixels Prod. User # Pixels Prod. User # Pixels Prod. User

Agr 36 76.3 77.0 1497 39.9 70.5 18756 42.4 62.2
Dec 1320 95.8 90.2 33708 90.6 96.7 242693 88.5 97.3
Evg 4068 62.4 84.2 60791 75.9 84.3 211455 85.8 81.7
Sub 166 74.1 45.9 23789 65.6 62.0 316450 56.6 68.6
Urb 11 14.4 39.4 536 96.7 42.7 9410 96.7 43.9
Wat 23088 91.1 100.0 73638 86.7 100.0 99237 87.8 100.0
Wet 33 19.1 31.6 772 60.3 54.3 8049 65.1 51.3

Table 3.5: Producer’s and user’s accuracies and the number of stable training pixels per class
for the 1992/5/4 classified maps generated via the AASG method at three different threshold
levels: 0.25× σ, 0.5× σ, and 1× σ. Bold text indicates quantities that are greater than their
counterpart when c = 0.5, whereas italic text indicates the quantity is less.

An increase in c led to an order-of-magnitude increase in the number of pixels in the stable

training set in every instance except for water (Table 3.5), which is unique in being much more

spatially, spectrally, and temporally uniform than the other classes. When c = 0.25, there were

few stable pixels selected for the crops/pasture, urban, and wetlands classes. In the case of the

urban and wetlands classes, the samples were insufficient to describe the spectral variability,
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leading to reduced classification accuracy when c = 0.25 compared to the higher thresholds.

In contrast, the crops/pasture class had a similarly low number of training pixels (36) when

c = 0.25, but achieved higher classification accuracies under that condition than when c was

increased. This result may be partially explained by the fact that the number of training pixels

increased much more as c increased from 0.25 to 0.5 for the crops/pasture class than for the

urban and wetlands class, leading to greater propagation of misclassification errors from the

reference classified map.

Among the classes with sufficient training pixels to describe the class spectral variability,

evergreen forest had lower producer’s and user’s accuracy when c = 0.25 than when c = 0.5,

whereas deciduous and water classes both reached their highest producer’s accuracy at the

smallest c value. Producer’s accuracy increased and user’s accuracy decreased for crop/pasture,

evergreen, and wetlands classes as c increases from 0.5 to 1, whereas deciduous and suburban

classes show modest opposite trends (Table 3.5). Neglecting the most restrictive threshold,

the class specific accuracies are broadly consistent with those of the 2005/7/27 reference map

(Table 3.2).

Class separability, as measured by Jeffries-Matusita distance, exceeded 1.8 for all class

pairs when c = 0.5 (Table 3.6). Class separability decreased when c increased from 0.5 to

1 for all pairs except wetlands-evergreen, and increased when c was decreased from 0.5 to

0.25, though the differences were modest for all pairs except suburban-crops/pasture and

suburban-evergreen (Table 3.7). The suburban class became appreciably less separable from

crops/pasture and evergreen classes when c was increased from 0.5 to 1.0, ultimately leading

to an under-prediction of membership in this class (increased user’s accuracy and decreased

producer’s accuracy, Table 3.5).

3.4 Discussion

3.4.1 Relative Performance of AASG and Signature Extension

Our results indicate that the AASG approach is capable of performing as well as traditional

signature extension approaches in the conditions most suited to the traditional approach: an
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Class Agr Dec Evg Sub Urb Wat Wet

Agr - 2.00 2.00 1.94 2.00 2.00 2.00
Dec - - 1.98 1.98 2.00 2.00 1.84
Evg - - - 1.94 2.00 2.00 1.80
Sub - - - - 2.00 2.00 1.98
Urb - - - - - 2.00 2.00
Wat - - - - - - 2.00
Wet - - - - - - -

Table 3.6: Jeffries-Matusita distance with the AASG threshold parameter c fixed at 0.5

Class Agr Dec Evg Sub Urb Wat Wet

Agr - 0 0.02 0.19 0 0 0
Dec 0 - 0.02 0.01 0 0 0.06
Evg 0 -0.02 - 0.16 0 0 -0.1
Sub -0.03 -0.02 -0.03 - 0 0 0
Urb 0 0 0 0 - 0 0
Wat 0 0 0 0 0 - 0
Wet 0 -0.13 -0.1 -0.02 0 0 -

Table 3.7: Difference in Jeffries-Matusita distance between the training set when c = 0.5 and
c = 1 (upper-triangle), and between c = 0.5 and c = 0.25 (lower-triangle). For example, the
Jeffries-Matusita distance between the Agr and Sub classes was 0.19 greater when c = 0.5 than
when c = 1

in-season image pair with minimal atmospheric or scene moisture/phenological differences.

The ability to adapt to changes in class spectral signatures is a significant advantage of the

AASG approach over signature extension, particularly in areas where persistent cloud-cover

or infrequent image collection lead to temporally sparse data archives. However, the AASG

method is vulnerable to contamination of class signatures by propagation of two related errors:

misclassification in the initial reference map, and mislabeling of stable/change pixels. As a

general rule, if the reduction in classification accuracy resulting from signature contamination

in the AASG process is less than the increase in accuracy associated with improved temporal

signature generalization, then the AASG approach would be preferred to signature extension.

The experimental classification of out-of-season image pairs illustrates this point: the adaptive

winter signatures, accepting all misclassification errors, offer large increases in accuracy com-

pared to extension of summer signatures. Under the optimum condition of a summer-summer

image pair, the balance struck between errors in the two methods is much closer, and the
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importance of the accuracy of the initial reference and stable site maps to the AASG method

is emphasized.

A useful boundary condition for signature contamination through misclassified pixels in

the automatically generated training set is given by the case when c = ∞. In this case,

the training set is simply the spatially filtered reference map with no accounting for change

pixels. However, if land cover change is rare and the reference map is accurately classified,

then the impact of misclassifications on class mean spectral signatures is small (at least for

classifiers such as MLC dependent on the mean vector). Furthermore, the spatial filtering

process significantly refines the training set by selecting only from homogeneous sites which

are more likely to emphasize the central tendency of class spectral signatures than increase

class spectral variability due to sub-pixel scene heterogeneity. This suggests that reference

map accuracy more strongly determines AASG results than threshold selection. The fact that

we observed little change in overall map accuracy with changes in c supports this hypothesis,

although at least partial contribution must be given to the areal proportions of land cover

and the relatively high classification accuracy for major constituents as discussed previously

(Section 3.3.2). We nevertheless observed sensitivities of individual class accuracies to c, due

primarily to large differences in training set size. Furthermore, the classification accuracy of

the initial reference map is determined by the limitations of a particular study, and not by any

consequence of the AASG method. In the context of the development of the AASG method,

it is therefore useful to consider the ways in which the selection of c determines training set

characteristics.

3.4.2 Threshold Sensitivity

We hypothesized that there should exist an optimum value of c above which classifier perfor-

mance was reduced by inclusion of misclassified pixels in the training set, and below which the

number of pixels in the training set are inadequate to describe the actual spectral variability of

classes, also degrading classifier performance. Considering MLC, adding training sites either

expands or contracts the decision regions in spectral space (except when the additional set

exactly matches the statistical properties of the existing set). Assuming that the existing set
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is already sufficient to describe the full range of class spectral variability, and that all other

class decision regions are static, broadening decision regions leads to over-prediction of class

membership and an associated increase in producer’s and decrease in user’s accuracy. Con-

tracting the spectral decision region would generate the opposite response, with fewer pixels

predicted to belong to a class, but with greater certainty.

Applying this logic to the results of our experiment, crop/pasture, evergreen, and wetlands

classes exhibit the pattern of increasing producer’s and decreasing user’s accuracy associated

with a broadening of the class spectral decision regions as c increases from 0.5 to 1, whereas

deciduous and suburban classes show modest opposite trends (Table 3.5). In the case of

AASG, the assumption that other class decision regions are static is not met, and the actual

changes in class accuracies are determined not only by the characteristics of the additional

training sites, but also by relative changes in other class spectral decision regions. In that

respect, the small increases observed in deciduous and suburban user’s accuracy may be due

to relative decreases in other classes, and not a refinement of the class spectral signatures.

The observed over-prediction of crop/pasture, evergreen, and wetlands classes as c increased

is easier to reconcile with the theoretical contamination of class spectral signatures associated

with inclusion of misclassified pixels as the thresholding parameter increases. At a minimum,

the results indicate that c must be selected in such a way that some minimum number of pixels

per class is obtained.

While there is limited dependence of overall map accuracy on c, there is at least the

potential for a more informed selection than arbitrarily assigning a constant. An interactive

selection procedure that started with a small c value and increased until some minimum number

of training sites were achieved in each class would be a simple improvement that would be easy

to operationally implement. Our results suggest that further improvements could perhaps be

achieved by selecting class specific c values rather than a single value across all classes. The

theoretical implication is that classes would have a unique threshold of tolerable temporal

spectral variation. Crops/pasture, for instance, shows much larger temporal spectral change

than water, and thus requires a higher c value to obtain the same number of stable sites

(Table 3.5). Interactively selecting class specific c values would have the benefit of achieving
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optimum training site sizes for each class, and limit the spectral contamination resulting from

too many training sites in classes with modest temporal spectral variability. Defining an

objective function for this interactive selection is an important consideration. The simplest

approach would be to require a minimum number of pixels per class, but this runs the risk

of not capturing the full spectral variability in diverse classes. A better approach might be

to adjust c until the class specific spectral variance/covariance statistics of the training set

are within some small deviation of their counterparts in the reference map. This would have

the attractive quality of maximizing semantic consistency between the reference and AASG

classified maps, but would limit the ability of the training signatures to adapt to changes which

altered class (co)variance. A constrained approach to the selection of c could be achieved by

attempting to maximize the resulting classification accuracy, either with independent reference

data at a single date in the image, or by using the automatically generated signatures to classify

the reference date imagery and comparing the result to the reference classified map, although

this would result in the same adaptation penalty as previously discussed and would therefore

be best suited for in-season image time series.

Despite the similarities between change detection and stable site selection, there are im-

portant conceptual and practical differences. In the context of this study, the most important

difference is that stable site selection can have more conservative thresholding criteria because

there is no penalty for mislabeling a pixel that was actually stable once a sufficient sample of

training sites has been determined. In other words, the goal of stable site selection as employed

by AASG is to maximize the user’s accuracy of the resulting binary stable site map with no

regards to the producer’s accuracy. In contrast, the majority of change detection methods

have the goal of maximizing the overall accuracy, and must therefore try to identify the actual

“true” threshold value.

3.4.3 Practical Considerations and Limitations

With respect to operational potential, the proposed AASG method has several attractive

qualities. It is straightforward to automate, requires only a single well classified reference map

for one of the images in the times series, is flexible with respect to classification algorithms,
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and has the potential to utilize temporally irregular image time series because signatures are

adaptive. AASG offers the additional practical benefit of not requiring an image correction

procedure and the associated image-by-image parameterization, but incurs a computational

cost due to the spatial filtering process used to determine stable sites. The AASG approach

is capable only of within-scene temporal generalization of signatures. In contrast, signature

extension has the theoretical potential to accommodate out-of-scene generalization, although it

has performed poorly in such applications (Woodcock et al., 2001). This limitation is somewhat

ameliorated because there is an increasing number of high-quality, large area classifications

limited only in their temporal extent. AASG offers the potential to use these products as

reference data, thereby taking advantage of their spatial consistency, but solving the problem

of inadequate temporal density.

The most critical assumption of the method is that there are many more stable pixels

in the study area than change pixels, and that they can be identified through simple band

differencing procedures. Violations of this condition can occur in small study areas where the

land cover change proportion is high, or when class changes are not resolvable using band-by-

band spectral differences. Class spectral confusion is common to any spectrally based mapping

approach, however, and most land cover schema feature classes which are well distinguished

in spectral space. Furthermore, the limited impact of change/stable classification errors on

AASG performance under such conditions has been previously discussed (Sections 3.2.3 and

3.4.1). It remains, though, that the thresholding criteria exerts the strongest influence on

AASG performance aside from those factors which are external to methodological choice (e.g.,

land cover schema, reference map accuracy, and data properties), and a strategy for optimal

selection of c, and band difference images is required for operational deployment.

Of the alternatives to band differencing for change detection summarized by Lu et al.

(2004), the only ones amenable to an automated approach are transformations and advanced

models. Transformations such as principal components analysis and Kauth-Thomas (“tasseled-

cap”) may provide more accurate and efficient change detection than band differencing, but

the requirement to select a threshold value remains. Advanced models such as spectral mix-

ture models, canopy reflectance models, or estimation of biophysical parameters such as LAI

54



or fraction impervious surface require additional reference data to fit empirical equations or

describe spectral endmembers, and are best suited to detecting specific changes such as forest

conversion. It follows that thresholding of either band differences or transformed components

is a requirement of automatic, general change detection, and reemphasizes the importance of

a refined approach to automatic threshold selection.

Though we demonstrated the AASG approach using the maximum-likelihood classification

algorithm, the approach could be implemented with any supervised classification method.

However, the ways in which training site characteristics such as misclassification rate and

sample size affect performance are different for other classification approaches. For instance,

the computational requirements of artificial neural network (ANN) scale with the number of

training sites, and having the very large number of sites identified in this study (e.g., at c = 0.5,

Table 3.5) would present a significant computational burden with an ANN approach, whereas

MLC is dependent only on computing the variance/covariance matrix which is considerably

less influenced by training set size. Additionally, the fact that training sites are selected from

homogeneous areas and thus are more representative of pure class spectral endmembers means

that AASG derived training sites would be less than ideal for approaches such as support vector

machines which depend on training sites at spectral class boundaries, often occurring at spatial

class boundaries. Strategies for generating optimal training set sizes have been previously

discussed, but it should be emphasized that tailoring the band thresholding procedure with

careful consideration of the theoretical requirements of the chosen classification algorithm will

achieve the best results.

3.5 Conclusions

Our investigation was motivated by the need to develop automatic approaches to consistently

and accurately classify temporally irregular time series of remote sensing images. Data acces-

sibility and computational limitations have hampered previous development along these lines,

but the recent opening of long-term, global image archives such as the Landsat record, and rev-

olutionary developments in computational resources such as massive storage and distributed
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computing capabilities have stimulated renewed interest in the subject. Existing signature

extension approaches can produce good results under optimal conditions, but have important

limitations, and are incapable of adapting to the changes in class spectral signatures neces-

sary to map irregular times series when phenological or surface conditions are present. We

developed a method that automatically generates class spectral signatures, uniquely adapted

to each image, from locations which are assumed to be stable with respect to land cover class.

This automatic adaptive signature generalization scheme has attractive qualities for opera-

tional deployment to dense time series, particularly in sparse and irregular records which were

of limited use to existing classification methods.

AASG was compared to traditional signature extension by classifying a summer-summer

(2005/7/27 & 1992/5/4), and summer-winter (2005/7/27 & 1992/3/1) pair of Landsat TM

images over a 100×100 km square study area in central North Carolina. Overall classification

accuracy for the summer-summer pair was high for all methods considered, though there was a

modest advantage for the AASG and atmospheric correction approaches. Signature extension

performed poorly for the summer-winter image pair whereas AASG was able to maintain

lower, but acceptably high overall classification accuracies relative to the in-season image pair.

With regards to AASG, there is a tradeoff between increased classifier performance due to

better signature generalizability, and decreased classifier performance due to propagation of

errors from the reference map and stable site determination. At a minimum, AASG will have

an advantage when class signatures change as a result of physical scene changes, and has

the potential to perform as well as signature extension when spectral signatures are static,

depending mainly on the accuracy of the reference and stable site map. It should be noted

that even in-season image pairs, or study areas lacking deciduous vegetation may have changes

in class spectral conditions due to factors other than atmospheric effects, such as changes in

soil moisture status.

We tested the sensitivity of the AASG approach to the selection of the thresholding pa-

rameter c and found that c must be high enough to reach a class-specific minimum number

of observations necessary to describe the actual class variability. Most class pairs showed
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decreased spectral separability when c increased, and several classes showed evidence of over-

prediction that would be expected when spectral decision regions are broadened due to signa-

ture contamination, supporting our hypothesis that there is an optimum c value, above which

class spectral signatures are degraded by error propagation. The results suggest that using a

single, arbitrarily selected value of c for all land cover classes is not ideal, and that a refined

approach which allows a varying amount of tolerable temporal spectral variability for each

class may lead to improvements in the automatically generated signatures. We propose that

such a development may best be achieved with a procedure which interactively determines the

thresholding parameter by optimization of classified map accuracy with independent data, or

the existing reference data.

Though this approach is limited to within-scene applications, it might be used in combina-

tion with existing high-quality, large area land cover maps to expand the results to a temporal

density limited only by data availability. As such, this development represents substantial

progress towards utilizing long-term data records to gain a better understanding of histori-

cal land cover and land use change patterns, and for automatic, operational monitoring of

land cover dynamics at arbitrary temporal and spatial scales. Important applications include

refining land cover inputs to ecosystem and climate simulation models, and parameterizing

predictive models of land cover dynamics with empirical change matrices at an unprecedented

temporal resolution. The most important considerations in the application of the AASG ap-

proach are the accuracy of the classified reference and stable site maps. There is considerable

flexibility in implementation, and it is expected that for any given study area, refinement of

the classifier, input data, reference map, and change detection method will result in improved

final products. For instance, we have already speculated on improvements to the thresholding

procedure. However, it remains that we have demonstrated here, in it’s most simple form, a

novel and flexible approach to automatically classifying irregular time series of remotely sensed

images more accurately and consistently than existing signature generalization methods.
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Chapter 4
Climate and land cover effects on the hydrology of the Eno River

watershed in central North Carolina

4.1 Introduction

The distribution of freshwater resources on Earth is controlled by climatic, physical, and

biological processes which vary in time and space. Understanding these processes is essential in

order to ensure growing demands on freshwater can be sustainably met in the future. Improved

understanding of global water and climate cycles has led to the general conclusion that there

will be an overall acceleration of the global hydrologic cycle due to climate change in the

future, with global precipitation, evapotranspiration (ET) and runoff all increasing (Loaiciga

et al., 1996; Jackson et al., 2001; Huntington, 2006; Oki and Kanae, 2006). Additionally,

Land cover and land use influence hydrologic cycles directly through surface physical and

biological properties, and through climate system feedbacks (Pielke et al., 1998). Globally,

there are trends towards increasingly developed and anthropogenically managed landscapes

with hydrological, agricultural, and biochemical implications for water cycles (Foley et al.,

2005). Concurrently, there are increasing demands on freshwater resources associated with

growing populations and increased per capita water use (Vorosmarty et al., 2000). These

factors highlight the critical role that climate, ecosystem, and hydrological sciences play in

sustainably managing freshwater resources and argues for coupled climate-ecosystem-hydrology

simulation systems to project future dynamics. However, while the expected trends in water

balance components are increasingly well defined at the global scale, regional changes are less

certain (IPCC, 2007). Furthermore, management decisions are made at local to regional scales

and there is a need to reconcile these scales with those of hydrologic and climate modeling

investigations so that simulation results can inform environmental management decisions.



Vegetation, particularly forest, dominate much of the Earth’s surface and plays a critical

role in the global water cycle. Though water-vegetation interactions have long been appreci-

ated, much of our initial hydrologic understanding of the role forest play in controlling water-

shed dynamics has been gained from the results of paired-catchment experiments dating back

to the early 20th century (Hewlett et al., 1969; Bosch and Hewlett, 1982). These studies showed

that catchment water yield is influenced by changes in the transpiration, evaporation and in-

terception components of the water balance, all of which tend to increase with the amount of

vegetation in the catchment (Stednick, 1996; Zhang et al., 2001; Brown et al., 2005a). The type

of vegetation present is also important; forests typically transpire more water than do shrubs

and grasses, and coniferous forest intercept and evaporate more precipitation than broad-leaf

forests (Swank and Douglass, 1974; Swift et al., 1975; Farley et al., 2005). Planted and natural

stands have different hydrologic properties due primarily to the ability of planted stands to

support unnaturally high biomass due to irrigation and fertilization, and modeling exercises

have demonstrated that plantations tend to reduce water availability (Pearce and Rowe, 1979;

Cannell, 1999; Jackson et al., 2005).

Leaves are the primary interface between the forest ecosystem and the atmosphere, and are

the site of water, energy and mass transfers. If environmental drivers of ET are held constant,

then the amount of transpired water is proportional to the amount of leaves in the canopy,

which is typically quantified by leaf area index (LAI). The relationship between vegetation

production and environmental controls is generally well understood with water, light, CO2,

and nutrients being the dominant factors (Cowling and Field, 2003; Norby et al., 2003, 2005).

Precipitation that is intercepted by plant canopies and subsequently evaporated is also an

important part of the water budget (Rutter, 1963), and the differential interception rates of

conifer and deciduous stands has been implicated as the most important factor affecting catch-

ment water yields when these forest composition conversions take place (Swank and Miner,

1968). Grier and Running (1977) were the first to quantify the relationship between LAI and

site water balance. Eagleson (1982) showed that in moisture-limited systems, vegetation would

act to minimize water stress. Nemani and Running (1989) used this hypothesis to predict ei-

ther equilibrium LAI or soil water–holding capacity when one of those two variables is known.
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In general, we can say that vegetation affects the water balance primarily through ET, and

that the magnitude of ET is strongly dependent on the amount of vegetation in a canopy.

Furthermore, biological factors tend to optimize biomass at least in part according to local

water availability. Thus, accurately simulating ET is of primary importance when simulat-

ing catchment response to climate and vegetation changes, and accurate characterization of

vegetation distributions is necessary.

Stomatal conductance gs, and it’s canopy scale counterpart canopy conductance gc are the

most important limitations to ET in vegetation. It is controlled by plant physiology, specif-

ically the regulation of stomatal aperture in response to water requirements for assimilation

and available soil water. Stomata must serve the dual purpose of regulating water loss and

allowing the influx of CO2. The notion that the response of stomata over a given interval

of time should act to optimize the amount of carbon gained to water loss was originally put

forward by Cowan and Farquhar (1977) and enjoys a great deal of experimental support (as

reviewed by Farquhar and Sharkey (1982)). The mechanisms for the regulation of stomatal

conductance in response to leaf water balance are reviewed by (Buckley, 2005) who concludes

that the hypothesis of “hydro-active local feedback” (a metabolically mediated response of the

stomatal guard cells to local water status) explains most of the observed stomatal responses

to changing environmental conditions. Many empirical and semi-empirical formulations have

been developed to model the change in stomatal conductance with environmental drivers (von

Caemmerer and Farquhar, 1981; Collatz et al., 1991; Leuning et al., 1995). In the seminal

work of Jarvis (1976) the dominant relationships between gs and environmental variables was

established. He proposed an empirical relationship between gs and functions of environmen-

tal driving variables: temperature, the air-leaf vapor pressure difference, photon flux density,

ambient CO2 concentration, and leaf water potential. These functions contribute a 0–1 coef-

ficient which is used to reduce gs from a theoretical maximum value. Alternative models such

as the “Ball-Berry” model (Ball et al., 1988) which are more mechanistic in nature have also

been developed. Despite the limitations of the Jarvis model, it is conceptually simple, easy to

implement, and has been used in a wide variety of simulation models with success.

Climate-vegetation feedbacks are important at regional scales where increases in convective
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precipitation and changes to sensible-latent heat balances may have large effects on large-scale

climate and vegetation patterns. However, at the scale of a local catchment, climate change

will affect hydrology primarily through alterations to the precipitation regime and changes in

the magnitude of ET (Field et al., 1995). Higher concentrations of CO2 allow plants to reduce

stomatal conductivity leading to increased water use efficiency. This increase in efficiency

may be offset by an increase in total leaf area such that the total amount of transpiration

remains constant or even increases (Running and Nemani, 1991; Hatton et al., 1992; Field

et al., 1995). Increasing temperatures alter the amount of energy available for evaporation

and may lengthen growing seasons in some regions, both processes leading to increases in ET.

Alternatively, increasing temperatures may exceed the optimal level for photosynthesis and

transpiration may be attenuated.

The goal of this investigation was to assess the impacts of climate and land cover changes on

streamflow and ET in a forested river basin in central North Carolina. We adopt an ecosystem

simulation approach utilizing two existing ecohydrologic models which take different theoret-

ical and structural approaches to simulating basin water balance components. An additional

goal of this investigation was to contrast the two models and assess their relative performance.

Our approach integrates improved remote sensing inputs describing land cover and vegetation

distributions which are thought to increase the accuracy and reliability of simulated quanti-

ties. Importantly, this investigation makes progress towards reconciling the scale mismatches

between the management and modeling communities by deliberately choosing spatial and tem-

poral scales that are relevant to local environmental decision makers. It should be stressed

that this investigation was an experiment designed to assess the relative impacts of climate

and land cover changes across two models with contrasting theoretical implementations. As

such, the results presented here do not constitute a forecast, and therefore should not be taken

to represent a likely future scenario. Instead, these results should be used to compare the

relative impacts of climate and land cover changes, and to assess differential responses across

the two models used here.
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4.2 Methods

We assessed the impact of climate and land cover changes on streamflow and ET in a moderate

sized river basin in the North Carolina piedmont using two ecohydrologic models: RHESSys, a

physically based, coupled hydrologic and ecosystem process model; and WaSSI, an empirically

based model aggregated to 12-digit HUC basins. Three different climate scenarios and two land

cover scenarios were considered for a total of six climate-land cover permutations. Climate

scenarios were the 1961–1990 WMO baseline period, and 2051–2080 scenarios derived from

two Global Climate Models (GCM). Contemporary land cover (2010) derived from remote

sensing images was used along with a hypothetical future scenario featuring a large increase

in the proportion of evergreen forest. Long-term monthly mean streamflow and ET were

compared between model runs to disentangle the independent and combined effects of land

cover and climate change. Additionally, WaSSI and RHESSys results were compared relatively

and against observed streamflow.

4.2.1 Study Area

The Eno River, along with the Flat and Little Rivers are the major tributaries to Falls Lake

(Fig. 4.1). The Eno basin drains 367.0 km2 of mostly rural territory Northwest of the city

of Durham. Terrain is gentle to moderate and elevation ranges from 82 m to 261 m. Con-

temporary land cover is 61% predominately deciduous forest, 5% predominately evergreen

forest, 17% grass/pasture/agriculture, and 16% sparsely vegetated cover types based on the

land cover maps developed in Chapter 3. Like much of the southeastern United States, this

area seen increased forest area associated with agricultural abandonment and forest planting

initiatives, and a more recent growth in developed areas due to a rapidly growing regional

population (Wear and Greis, 2001).

Average temperature in the Eno during the baseline period period was 14.6◦C with January

minimum temperatures averaging −2.6◦C and July maximum averaging 31.7◦C. Annual pre-

cipitation averaged 1209 mm and was distributed evenly throughout the year. Annual average
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Figure 4.1: The Falls Lake basin in central North Carolina with major hydrological features,
12-digit HUC subbasins for the Eno basin, NWS Coop stations (“1”: 31167, “2”: 312515),
and USGS gauges (“1”: 02085070, “2”: 02084909) used in this study.

temperature in the Eno basin decreased from the 1950’s through the 1980’s but has been in-

creasing since then, in line with the overall warming trend observed for the globe (IPCC, 2007).

Robinson (2006) found no trend in 20th century annual precipitation in North Carolina, but

identified a decreasing trend in summer precipitation and increasing fall precipitation. Annual

streamflow on the Eno averages 307 mm and the mean annual runoff ratio is 0.26.

4.2.2 RHESSys

RHESSys is a distributed ecohydrological process model designed to simulate ecosystem pro-

cesses in small to moderate sized watersheds at a daily time step (Band et al., 1993; Tague

and Band, 2004). Core components of the model include a hydrologic model which deter-

mines lateral soil moisture distribution (DHVSM (Wigmosta et al., 1994) for explicit routing,

or TOPMODEL (Beven and Kirkby, 1979) for implicit routing), an ecological process model

(BIOME-BGC (Running and Hunt, 1993)) providing simulated carbon, nutrient, and plant wa-

ter cycles, a soil biochemical model controlling soil nitrogen processes (based on CENTURY
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(Parton et al., 1996)), and a microclimatic model which accounts for topographic controls

on precipitation and temperature (MTCLIM (Running et al., 1987)). A unique feature of

RHESSys is its GIS managed, hierarchical landscape representation whereby the basin is sub-

divided into successively smaller units such as hillslopes and patches. Structuring the model

in this way allows processes to be simulated at distinct spatial scales appropriate to the phe-

nomenon, and allows greater flexibility in defining more ecologically meaningful landscape

divisions than simple grids (Tague and Band, 2004). Previous investigations have demon-

strated the utility of RHESSys for assessing the ecological and hydrological impacts of climate

and land cover changes across basins with diverse vegetation, climate, and topographic regimes

(e.g. Baron et al. (1998); Zierl et al. (2007); Tague et al. (2008, 2009)).

RHESSys utilizes the Penman-Monteith combination equation (Monteith, 1965) to simu-

late ET based on landscape properties and climatic drivers derived from the input series of

minimum and maximum temperature and precipitation. RHESSys employs the Jarvis (1976)

model of gs. Conductance is scaled to the canopy by multiplying by the shaded and sunlit LAI

adopting the approach of Chen et al. (1999). Canopy conductance is also used in the Farquhar

and vonCaemmerer (1982) carbon assimilation model used by RHESSys which calculates a

photosynthetic rate dependent on leaf enzymes, irradiance, conductance, CO2 concentration,

atmospheric pressure, and temperature (Waring and Running, 2007).

Lateral soil moisture redistribution are simulated at the finest spatial scale (the patch)

via the quasi-spatially distributed statistical approach of TOPMODEL, or the explicit rout-

ing model adapted from DHVSM. Both approaches may be calibrated to provide reasonable

results in many basins, but there are some important differences. Explicit routing is capable

of simulating the observed shift in spatial patterns of saturated subsurface flow from spatially

variable, locally controlled patterns during dry periods to more homogeneous flow regimes

during wet periods, whereas the TOPMODEL approach generally maintains consistent spa-

tiotemporal patterns of soil moisture (Tague and Band, 2001). When spatial patterns of soil

moisture are important, in a land cover change assessment, for instance, the explicit approach

would be preferred. Preliminary testing with calibrated models indicated that the explicit

approach better replicated the observed patterns of streamflow for a small calibration basin
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and was therefore adopted in this investigation. The RHESSys explicit routing algorithm cal-

culates saturated throughflow between patches based on patch geometry, local surface slope,

and transmissivity. The method described in Wigmosta et al. (1994) is adapted to account for

non-uniform patch elements (Tague and Band, 2004). Transmissivity is calculated based on a

local saturation deficit, saturated hydraulic conductivity at the surface (Ksat0), and the decay

of hydraulic conductivity with depth (m). Lateral and vertical moisture fluxes are controlled

by the vertical profile of hydraulic conductivity which is assumed to decrease exponentially

with depth.

Spatial variability in soil properties is accommodated by an input soil map and associated

parameters. However, preferential flowpaths and macropore flows dominate lateral redistribu-

tion at the hillslope scale and the hydraulic model must be calibrated to account for these site

specific conditions (McDonnell, 1990). Typically m and Ksat0 are calibrated against observed

streamflow in order to account for preferential flow properties of the soil matrix, although it

should be noted that these values are used as tuning parameters rather than intended to reflect

any measurable soil properties (Tague and Band, 2001). Groundwater parameters, control-

ling the amount of water moving from the saturated soil store to groundwater store, are also

calibrated. A Monte-Carlo approach is usually employed whereby random parameter values

within user-defined ranges are selected and simulated streamflow is assessed against observed

flow using an objective function such as Nash-Sutcliffe Efficiency (NSE). This process continues

until an optimum set of parameters is achieved (typically thousands of model iterations).

4.2.3 WaSSI

In contrast to the process-oriented approach of RHESSys, WaSSI takes a simplified empirical

approach to the estimation of ET and basin water yield. WaSSI has been used to investigate

the ecohydrological impacts of climate change, land cover change, and supply/demand dynam-

ics (Sun et al., 2011b). The core of the model is an empirical model for ET developed from

flux tower and sapflow observations (Sun et al., 2008, 2011a). ET is predicted as a function of

potential evaporation (calculated via Hamon’s method (Lu et al., 2005)), LAI, and precipita-

tion. Fluxes are calculated at a monthly time step for eight land cover types and aggregated to
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basins according to areal fraction. Initially, WaSSI was developed for 8-digit USGS Hydrologic

Units (8-digit HUC), but it has since been downscaled to the 12-digit HUC scale and coupled

with an empirical water use efficiency model to simulate carbon dynamics (Sun et al., 2011a).

Infiltration, soil storage, and runoff processes are simulated using soil parameters and compo-

nents of the Sacramento Soil Moisture Accounting Model which allows ET to be constrained

by soil moisture.

4.2.4 Climate Scenarios

Daily and monthly series of observed maximum and minimum temperature and precipitation

were assembled from NWS Coop stations for the 1961–1990 baseline climate period. Data

from two stations were used in this investigation (Fig 4.1). The Chapel Hill station (NWS

Coop ID: 311677, 35◦54′32′′N, 79◦04′44′′) has a record of minimum and maximum temperature

and precipitation from 1891/1/1 to present. The Durham station (NWS Coop ID: 312515,

36◦02′33′′N, 78◦57′45′′) has a similarly long record, with the first observation recorded on

1899/3/1. Data from the two stations were used in order to fill intermittent missing data.

After verifying no systematic bias between the two stations, the temperature and precipitation

records were merged by averaging daily values when both stations had observed data and filling

data when only one station recorded data.

Output from two global climate models and a stochastic weather generator were used

to construct daily and monthly series of temperature and precipitation for the 2051–2080

future climate period. The third version of the Hadley Center Coupled Model (HADCM3)

and the Canadian Centre for Climate Modeling and Analysis’ Coupled Global Climate Model

version three (CGCM3) were used in this investigation in part because previous versions of

these GCMs have been used for other climate impact assessments in the southeastern United

States (Burkett et al., 2000; Sun et al., 2000). Gridded model output for temperature and

precipitation were retrieved from the WCRP CMIP3 multi-model dataset for the SRES A2

emissions scenario (economic and technological growth are fragmented and regionally oriented)

for the 2000–2100 simulation period. Monthly mean values of temperature and precipitation

for the model grid cell covering central North Carolina were extracted from the datasets for the
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2051–2080 period. Anomalies were constructed relative to the baseline period via comparison

to the high resolution global gridded CRUTEM3 product (Brohan et al., 2006). This was done

rather than via comparison to the NWS Coop observed values because anomalies calculated

from individual stations may not accurately reflect the magnitude of future changes due to

mismatches in spatial scale.

HADCM3 and CGCM3 predict similar increases in mean annual temperature in 2051-2080

relative to the baseline period (2.2◦C and 2.6◦C), but there are differences in the seasonal pat-

tern of change. Whereas the CGCM3 simulated temperature increase is essentially temporally

uniform, HADCM3 shows a distinct seasonality favoring much warmer summers and base-

line or slightly cooler winters (Fig. 4.2). Mean monthly temperatures calculated from station

data were consistently 1.6◦ higher than the CRUTEM3 values. The HADCM3 model predicts

a modest increase in mean annual precipitation (35 mm). Mean annual precipitation is in-

creased by 136 mm under the CGCM3 climate scenario. Both models share a similar pattern

of reduced late summer precipitation and increased winter and spring precipitation, although

the magnitude of winter and spring increase is much greater for the CGCM3 model than the

HADCM3 model. CRUTEM3 and Coop precipitation are generally in good agreement except

for late summer months when the Coop values are around 20 mm lower than the CRUTEM3

values.

These monthly climate series and anomalies are sufficient input for the WaSSI model,

but RHESSys requires daily series. The challenge of downscaling climate data spatially and

temporally is the subject of a large literature (see reviews by Hewitson and Crane (1996); Wilby

and Wigley (1997); Xu (1999); Fowler et al. (2007)). Methodologies can broadly be grouped

into dynamic modeling and statistical approaches. The former uses the results of coarser

scale GCMs to constrain finer scale regional climate models. Statistically based methods

include a large variety of techniques which seek to identify relationships between observed data

and broader scale patterns and use these empirical relationships to adjust GCM predictions.

Statistical approaches are easier to implement and have been shown to perform as well or

better than dynamic modeling approaches in a limited number of comparison studies although

they tend to underestimate inter-annual variability (Fowler et al., 2007). Among statistical
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Figure 4.2: Temperature anomalies for HADCM3 and CGCM3 climate models relative to
NWS Coop observations (dashed lines) and the CRUTEM3 global dataset (solid lines). Solid
area in upper panel indicates one standard deviation around the mean for the NWS Coop data
record.

approaches, regression, machine learning, weather typing, and stochastic weather generators

are all commonly employed techniques. We chose to use the stochastic weather generator

LARS-WG (Semenov and Barrow, 1997) for its proven performance (Semenov et al., 1998),

and because weather generation methods of downscaling have been shown to be a reliable

statistical method (Wilby and Wigley, 1997). Precipitation is the major variable used by

LARS-WG to adjust all other climate variables and simulation of precipitation is based on

observed distributions of wet and dry day series. We conditioned LARS-WG using the NWS

Coop observed data and generated daily time series of minimum and maximum temperature

and precipitation to correspond to the 2051–2080 GCM climate change scenarios.

4.2.5 Land Cover Scenario

In addition to future climate dynamics we also consider a future land cover scenario wherein

there is widespread expansion of evergreen forests at the expense of deciduous, agricultural,
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Figure 4.3: Precipitation anomalies for HADCM3 and CGCM3 climate models relative to
NWS Coop observations (dashed lines) and the CRUTEM3 global dataset (solid lines). Solid
area in upper panel indicates one standard deviation around the mean for the NWS Coop data
record.

and pasture areas. This particular land cover scenario, while perhaps not being the most

likely, is interesting in several respects. First, production of softwood products, primarily

from southern pine species, is a major economic force in the southeast which provides 40%

of the national supply (McNulty et al., 1996; Wear and Greis, 2001). Furthermore, the area

of planted pine stands in the southeast is increasing and accounts for nearly half of the total

pine forest area in the southeast (Wear and Greis, 2001; McGrath et al., 2004). Additionally,

large-scale conversions from natural deciduous to managed evergreen stands are interesting

because they have the potential to alter water balances through variable ecological water use.

The consequences of such conversions have long been recognized , but have received increasing

attention recently due to suggestions that increased pine afforestation may have benefits for

climate mitigation and biofuel production (Jackson et al., 2005, 2007; Jackson and Baker,

2010). These recent investigations highlight the negative impacts of these types of conversions

on water availability, particularly in already water stressed areas.
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In order to isolate the effect of increased pine area on the hydrologic cycle of the Eno river

we developed a hypothetical future land cover map by iteratively growing regions of existing

evergreen forest cover at the expense of all other vegetation types. We began with the land

cover maps generated in Chapter 3. In this way, only vegetation composition changes are con-

sidered, and the overall vegetated area and relative frequencies of other land cover types remain

constant. We also prescribed a 30% increase of LAI in newly established pine areas under the

assumption that they would be intensively managed and thus be able to support higher pro-

ductivity. The starting map was a form of the previously generated land cover map (Chapter 3)

adapted to broad, hydrologically significant land cover classes: deciduous vegetation, evergreen

vegetation, grass/agriculture/pasture, and not vegetated. The contemporary basin proportion

of 6% evergreen forest was increased in the future scenario to 37% with an associated reduction

in deciduous forest from 61% to 34%, and 17% to 13% for grass/agriculture/pasture.

4.2.6 Model Parameterization, Calibration, and Simulation

Major inputs to RHESSys include the previously described daily climate series, maps of leaf

area index, land cover, and soils, topographic information, and a collection of vegetation and

soil parameters. We assembled these inputs through a variety of methods and organized the

spatial data using the GRASS GIS (GRASS Development Team, 2012). A 1-arc second resolu-

tion National Elevation Dataset digital elevation model (DEM) was subset to the study area,

reprojected to UTM coordinates, and resampled to 30 m spatial resolution. A sink filled ver-

sion of the DEM and derivative products (e.g. slope, aspect, flow accumulation) were used to

delineate the Eno basin from the USGS gauges at the outlet above Falls Lake and at Sevenmile

Creek (4.1). Hillslopes were defined based on area thresholds selected interactively to corre-

spond to streams digitized from USGS 1:24000 Quadrangles. Soils texture data were obtained

from SSURGO maps and collapsed to broad categories (e.g. “clay”, “loam”, “sandy-loam”,

etc.) so that RHESSys required soil physical properties could be derived from literature values

(Clapp and Hornberger, 1978). Vegetation related parameters such as maximum gs, optimum

photosynthetic temperature, and phenological information were gathered from literature re-

ported values (White et al., 2000) and mapped to the previously described adapted land cover
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maps. The LAI estimation method described in Chapter 2 was modified to account for the lack

of analogous high temporal resolution imagery over the entire Eno basin and used to initialize

RHESSys canopy carbon stores. RHESSys patches were assigned as individual 30 m DEM

grid cells.

Explicit routing is computationally intensive and requires special considerations when sim-

ulating at the spatial scales of this investigation. The typical RHESSys calibration procedure

relies on many thousands of model runs to identify an optimum parameter set, but this amount

of computation was infeasible for the entire Eno basin. Instead, we chose to calibrate RHESSys

using the smaller Sevenmile Creek subbasin and assumed the parameters would be applicable

to the entire basin. The Sevenmile Creek watershed is located in the southwest corner of the

Eno basin, is approximately one-tenth the size of the Eno (36.2 km2), and has land cover

proportions approximately equal to those of the larger basin. The twelve water year period

between 1989 and 2000 was used as the calibration period because it includes a diversity of

flows and precipitation events. Observed streamflow from a USGS gauge on Sevenmile Creek

(USGS ID: 02084909, 36◦03′56′′N, 79◦08′39′′W, record period: 1981/6/24–2004/10/21) was

used to calculate NSE for actual and log-transformed flows at daily and monthly time steps.

Over 5000 simulations with unique values of Ksat0, m, and groundwater parameters were per-

formed on a cluster computing facility at the University of North Carolina. Parameter ranges

were individually restricted over successive model runs based on observed patterns of model

skill in order to converge on an optimum parameter set.

Computational limitations require further considerations to scale the model up to the entire

Eno Basin. We opted for an “embarassingly parallel” implementation whereby the Eno basin

is subdivided into smaller basins which are individually simulated and the results aggregated

using areally-weighted averaging. This approach allowed for an efficient implementation on

a research cluster computing facility. The optimal parameter set identified on the Sevenmile

Creek calibration basin were assumed to be optimal for the entire Eno River basin and extended

to 11 subbasins ranging in area from 73.2 km2 to 13.0 km2.

Four 12-digit HUCs comprise the Eno River basin (Fig. 4.1). Land cover proportions,

LAI, and soils data were extracted for each 12-digit HUC and used to parameterize four
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individual WaSSI models. Results from each subbasin were aggregated as before using areally-

weighted averaging of streamflow and ET. No attempt at calibration of the model functions

for ET, streamflow, or soil moisture was conducted for WaSSI simulations. Instead, we used

the existing model configuration which reflects global relationships between water fluxes and

meteorological driving variables derived from flux tower data.

Simulations were performed for all six permutations of the climate change and land cover

scenarios using both RHESSys and WaSSI models for the Eno basin. RHESSys utilized the

daily observed climate series, and the daily future climate series developed with the LARS-WG

stochastic weather generator as meteorological forcing data whereas WaSSI used the monthly

versions of these series. Flow observations from a USGS stream gauge on the Eno, located just

upstream of the river’s outlet in Falls Lake (USGS ID: 0208570, 36◦04′20′′N, 78◦54′28′′W), was

used to asses the performance of both models over the baseline 1962–1990 period. NSE and

log-NSE were used to assess the skill of the models in reproducing observed patterns of daily

and monthly streamflow across the basin. The individual and combined effects of climate and

land cover change were assessed by comparing mean monthly and annual simulated streamflow

and ET. Relative model performance was assessed over the baseline period through correlation

analysis and comparison of simulated values.

4.3 Results

4.3.1 RHESSys Calibration

Maximum NSE and log-NSE (0.53 and 0.57, resp.) were observed for a Sevenmile Creek

simulation with m = 1.44, Ksat0 = 130.4, and the multipliers for water moving from the

saturated to groundwater stores and groundwater stores to the stream at 0.009 and 0.61,

respectively. Monthly NSE was higher than daily NSE for both raw and log-transformed flows

(0.79 and 0.66, resp.) indicating that the model does a slightly better job simulating low flows

than peak flows. Figure 4.4 indicates that the calibrated RHESSys model generally replicates

the magnitude and timing of flow events and the characters of the rising and recessional

hydrograph limbs. Extremely low flows are over-predicted but the overall magnitude of the
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Figure 4.4: RHESSys results for Sevenmile Creek for five water years during the calibration
period. Upper panel depicts observed and simulated daily log-transformed streamflow. Lower
panel depicts cumulative simulated and observed water year fluxes.

differences are small. Peak flows, however, are usually underestimated. Water year cumulative

fluxes indicate low inter-annual variability in ET and overall good agreement between observed

and simulated water year cumulative streamflow. Streamflow is nearly balanced by ET and

streamflow at the water year temporal scale except in 1996–1997 when simulated and observed

streamflow and ET significantly exceed the precipitation input.

4.3.2 RHESSys and WaSSI Simulation Results

RHESSys simulated mean annual streamflow was 347 mm for the baseline climate period under

contemporary land cover conditions. Mean annual streamflow was increased by 24.7 and 95.3

mm under the HADCM3 and CGCM3 climate scenarios, respectively, with land cover fixed

at contemporary conditions (Fig. 4.5, and Table 4.1). These increases are associated with the

significant increase in winter and early-spring precipitation predicted under these scenarios.

In fact, modest reductions in streamflow were observed for most summer months associated
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with decreased summer precipitation and increased water vapor flux due to increased energy

available for evaporation. The variability of streamflow was decreased under the climate change

scenarios with overall less years with very low flows, and fewer years with exceptionally high

flows, while the ET variability was constant across scenarios.

Whereas annual increases in precipitation under both climate scenarios resulted in increased

streamflow, changes in vegetation composition to an increased pine forest condition (with

attendant increases in LAI) led to a reduction in simulated annual streamflow. Under the

baseline climate scenario, the increase in pine area led to a 39.4 mm reduction in streamflow,

and a 12.6 mm reduction under the HADCM3 climate (Table 4.1). The increase in streamflow

accompanying the large increase in precipitation predicted by the CGCM3 climate model was

reduced to 47.7 mm under the pine land cover scenario, a smaller increase than the 95.3 mm

simulated under contemporary land cover (Table 4.1). In general, the two climate scenarios

investigated here led to increases in simulated streamflow due to increased precipitation, while

the change to increased pine area led to reductions with the net effect depending on the relative

magnitudes.

Climate and land cover changes both increased simulated mean annual ET, though the

magnitude of the increases varied. Under the baseline climate, mean annual simulated ET

increased by 40.9 mm when the land cover was modified to an increased pine condition (Table

4.2). Under the HADCM3 climate, ET was increased by 32.0 and 69.6 mm, whereas under

the CGCM3 climate the increases were 49.6 and 97.6 mm under contemporary and pine land

cover conditions, respectively (Table 4.2). These increases in ET may be attributed to in-

creased precipitation (greater evaporation from nonvegetated surfaces and canopy intercepted

water), increased air temperature, and increased vapor pressure deficit (associated with higher

temperatures).

At the monthly scale, the largest increases in simulated mean streamflow occurred in De-

cember, January, and March under the CGCM3 climate change scenario (Fig. 4.6). Patterns of

streamflow change were similar across all months for both climate scenarios, but the magnitude

of simulated changes were consistently higher under the CGCM3 climate scenario. Reductions
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Figure 4.5: Boxplots of annual simulated streamflow and ET for the RHESSys and WaSSI
models over all six permutations of climate and land cover change

RHESSys WaSSI
Contemp Pine Contemp Pine

Base – -39.4 – -29.6
HADCM 24.7 -12.6 7.5 -19.4
CGCM 95.3 47.7 90.8 62.6

Table 4.1: Simulated change in mean annual streamflow (mm yr−1) relative to baseline cli-
mate and contemporary land cover conditions. Positive values indicate that the simulated
quantity was greater under the given land-cover/climate treatment than the baseline climate
and contemporary land-cover conditions.

RHESSys WaSSI
Contemp Pine Contemp Pine

Base – 40.9 – 29.6
HADCM 32.0 69.6 80.7 107.7
CGCM 49.6 97.6 88.8 116.5

Table 4.2: Simulated change in mean annual evapotranspiration (mm yr−1) relative to baseline
climate and contemporary land cover conditions. Positive values indicate that the simulated
quantity was greater under the given land-cover/climate treatment than the baseline climate
and contemporary land-cover conditions.
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Figure 4.6: RHESSys simulated monthly streamflow and ET for three climate scenarios and
contemporary land cover.

in monthly mean streamflow, and streamflow variability were observed for summer months un-

der both HADCM3 and CGCM3 climates. Monthly patterns of streamflow change were similar

under contemporary and enhanced pine land cover scenarios (Fig. 4.7), but the magnitudes of

streamflow increases are reduced under the pine land cover scenario, and reductions in mean

monthly streamflow are larger. Increases in mean monthly ET are simulated across all months

except July and October for both HADCM3 and CGCM3 climate scenarios (mean monthly

ET enhancement is 4% under HADCM3 and 7.5% under CGCM3) and the magnitudes of the

increases are greatest under the pine land cover scenario.

WaSSI simulated mean annual streamflow showed a similar response to varying climate and

land cover as the RHESSys simulations. The simulated reduction in mean annual streamflow

in response to increased pine area was 29.6 mm, whereas increases of 7.5 and 90.8 mm were

simulated for contemporary land cover and HADCM3 and CGCM3 climate scenarios, respec-

tively (Table 4.1). Under the increased pine land cover condition streamflow was reduced by

19.4 mm under the HADCM3 climate, and increased by 62.6 mm for the CGCM3 climate. An-

nual streamflow variability was increased for climate change scenarios with contemporary land

cover, and reduced or constant relative to the contemporary land cover condition for the pine
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Figure 4.7: RHESSys simulated monthly streamflow and ET for three climate scenarios and
the increased pine land cover scenario.

land cover scenarios. It should be noted that while the magnitudes of simulated mean annual

streamflow differed between WaSSI and RHESSys, the responses to land cover and climate

were consistent in sign between the models, and the magnitudes of the impacts were similar.

Similar to the RHESSys simulated results, WaSSI simulated mean annual ET increased under

every land cover and climate condition tested, and the increase was greatest under the pine

land cover condition and the CGCM3 climate (Table 4.2).

WaSSI results at the monthly scale had a similar pattern to the RHESSys results (Figures

4.8 and 4.9). Relative increases in monthly mean streamflow were greatest for the winter

months while summer months had modestly reduced streamflow under both climate scenarios.

September and October mean streamflow were significantly reduced under climate change

scenarios due reduced precipitation during these months. Significant increases in ET were

simulated by WaSSI under both climate scenarios for all months except October and November

which saw modest reductions. Under the enhanced pine land cover scenario WaSSI simulates

increased ET in all months under the baseline climate scenario, and larger increases under

both climate change scenarios except for the month of October for which there is a modest

reduction in simulated monthly mean ET relative to the contemporary land cover condition.
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Figure 4.8: WaSSI simulated monthly streamflow and ET for three climate scenarios and
contemporary land cover.

0
50

10
0
15
0
20
0

S
tre

am
flo

w
 (m

m
)

WaSSI Baseline WaSSI HADCM3 WaSSI CGCM3

0
50

10
0

15
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E
va

po
tra

ns
pi

ra
tio

n 
(m

m
)

Figure 4.9: WaSSI simulated monthly streamflow and ET for three climate scenarios and the
increased pine land cover scenario.
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Following Tague et al. (2009) we assessed changes in the occurrence of summer low flows

under the various climate and land cover scenarios. A threshold was determined as the num-

ber of years in which August streamflow was less than or equal to the lower quartile value

under the baseline climate and contemporary land cover conditions. Occurrences of August

streamflow less than this threshold were calculated for each model run. Under baseline climate

and contemporary land cover, low August flows occurred in 26.7% of RHESSys and WaSSI

simulated years. Relative occurrences of low flows increased to 30% of RHESSys simulated

years under the HADCM3 climate scenario and contemporary land cover, and remained con-

stant at 26.7% for the CGCM3 scenario. The land cover change alone resulted in an increase

in August low flow proportion to 30% for the RHESSys results. WaSSI results indicate an

increase in simulated years with low August flows from 26.7% to 33.3% under the HADCM3

and 30% under the CGCM3 climate scenario for both contemporary and enhanced pine land

cover scenarios.

4.3.3 RHESSys and WaSSI Comparison

Monthly NSE and log-NSE for the Eno Basin RHESSys simulation, over the entire baseline

simulation period were 0.80 and 0.78, respectively. WaSSI NSE and log-NSE over this period

were 0.49 and 0.41. On average, WaSSI annual simulated streamflow is 110 mm higher than

RHESSys simulations, and WaSSI simulated annual ET is 147 mm lower (Figures 4.11 and

4.12). Correlation analysis between simulated results for the baseline climate and contempo-

rary land cover indicate a slight positive bias for WaSSI results relative to RHESSys across the

full range of simulated flows (Table 4.3, and Fig. 4.10). Seasonally, the mismatch is greatest

for fall months where WaSSI indicates monthly streamflows that are on average 16 mm higher

than the RHESSys results. Correlations between RHESSys and WaSSI simulated monthly ET

are high at the annual time scale, but low during the winter and summer months. In general,

WaSSI estimated ET is higher than RHESSys during months with low ET, and lower during

months with high ET.
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β0,Q β1,Q R2
Q β0,ET β1,ET R2

ET

DJF 8.77 0.98 0.69 18.07 0.73 0.33
MAM 16.24 0.85 0.78 28.06 0.44 0.81
JJA 9.52 1.14 0.74 95.53 -0.04 < 0.01
SON 6.52 1.14 0.84 25.47 0.43 0.54
Annual 10.57 0.97 0.79 22.29 0.53 0.83

Table 4.3: Seasonal and annual relationship between RHESSys and WaSSI simulated monthly
streamflow (Q) and ET (ET ) for observed baseline climate and contemporary land cover.
Values are the intercept, slope, and coefficient of determination (β0, β1, and R2) for the linear
regression: WaSSIQ/ET = β0,Q/ET + β1,Q/ET · RHESSysQ/ET All estimated parameters are
significant at p < 0.001 except β1,ET for summer months (JJA) where p > 0.1.
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Figure 4.10: Relationship between RHESSys and WaSSI simulated monthly streamflow and
ET for observed baseline climate and contemporary land cover with linear fit.
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Figure 4.11: RHESSys and WaSSI mean monthly simulated streamflow and ET across for
contemporary land cover and each climate scenario.
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Figure 4.12: RHESSys and WaSSI mean monthly simulated streamflow and ET across for the
increased pine land cover scenario and each climate scenario.
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4.4 Discussion

4.4.1 The Effects of Climate Change and Land Cover Change

Although these results do not constitute a forecast, these experiments indicate that future

climate and/or land cover regimes could significantly alter streamflow and ET patterns in the

Eno River basin. Model simulations highlight the important role that vegetation composition

plays in this mostly forested watershed. Significant reductions in streamflow were observed to

result from enhanced ET when pine area was increased. However, these decreases are offset

by increased streamflow resulting from climate change driven precipitation increases, so that

the net effect under both climate and land cover changes depends on the magnitude of the

precipitation change. For instance, the relatively modest increase in precipitation under the

HADCM3 climate scenario was insufficient to offset the impact of increased pine area and

streamflow was decreased, whereas streamflow increased under the CGCM3 scenario with its

more substantial increase in precipitation. Although temperature increases are associated

with higher evaporation and transpiration, changes in precipitation dominate the simulated

patterns of streamflow in the Eno. This is due to the fact that even though ET increases

with available energy, the magnitude of precipitation changes are larger and dominate the

streamflow response. These trends are in line with what would be expected as part of a synoptic

scale acceleration of the hydrologic cycle. Furthermore, increased atmospheric water vapor due

to increased ET may reinforce this trend leading to still greater precipitation. Importantly,

the predicted changes under HADCM3 and CGCM3 scenarios would introduce an increased

precipitation seasonality favoring drier growing seasons (particularly late summer), and wetter

dormant periods.

Indeed, the occurrence of late summer low flows were predicted to increase across all sim-

ulations associated with decreased precipitation inputs and increased late summer ET. While

the magnitude of late summer streamflow reductions were insufficient to balance the dormant

period increases (leading to higher annual streamflows under climate change scenarios), the

trend has important implications for water resource availability in the Eno. Summer flows are

already relatively low due primarily to hot summers and abundant vegetation, and climate
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changes which reduce summer precipitation and increase temperature may exacerbate the sit-

uation leading to late season water stress in vegetation and perhaps increased mortality. The

climate changes considered here do not indicate that decreased summer precipitation limits

vegetation productivity. In fact, there is a simulated decrease in summer evaporation and in-

crease in transpiration for RHESSys climate change simulations. However, there is a point at

which soil moisture becomes limiting and transpiration and productivity are reduced. Summer

temperatures that are higher than the scenarios considered here, and/or greater reductions in

summer precipitation could transition the system towards a more water-limited regime wherein

late summer productivity would decrease with possible increases in mortality. Streamflow was

most reduced under the increased pine land cover scenario and further increases in these areas,

particularly when they replace deciduous and sparse vegetation, could similarly move the basin

towards increasing water stress.

Previous studies have noted the insensitivity of temperate forest ET to inter-annual vari-

ation in precipitation (Roberts, 1983; Phillips and Oren, 2001; Oishi et al., 2010). While this

holds for deciduous forest, many pine stands in the southeast indicate tighter coupling with

climatic drivers of ET (Stoy et al., 2006). Hydrologically, the impact of these phenomenon

is a strong dependence of streamflow on precipitation inputs, rather than plant water use

withdrawals. Our results indicate an increased correlation between monthly precipitation and

simulated ET under the pine land cover scenario relative to contemporary land cover condi-

tions. This trend is partly explained by greater evaporation of canopy intercepted water due to

enhanced LAI, and, in climate change scenarios, increased winter evaporation associated with

increased temperature and precipitation. However, this trend may indicate a greater coupling

between precipitation inputs and ecological processes in the basin associated with the relative

increase in moisture sensitive vegetation.

4.4.2 Relative Performance of RHESSys and WaSSI

RHESSys performed better than WaSSI in replicating the observed patterns of basin monthly

streamflow over the baseline period. The patterns of streamflow and ET response to climate

and land cover changes were similar for both models, however, strengthening our confidence
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in the signs, if not the magnitudes, of the predicted changes. The costs of including detailed

process representation and explicit flow routing in RHESSys simulations are much greater data

and computational requirements. RHESSys requires not only daily series of climate data, but

a multitude of environmental data and parameter sets, whereas the WaSSI model can be run

with monthly climate series and relatively less and easier to assemble input data. This is an

attractive feature of the WaSSI model, particularly for assessing climate impacts using GCM

results which are usually reported at monthly time steps. However, the empirical approach of

WaSSI has important limitations. Most importantly, the relations between ET and predictor

variables established from observed flux tower and sapflow data may not be constant in future

climate regimes. For instance, a large literature has reported that water use efficiency may

increase in atmospheres with increased CO2 concentration (Field et al., 1995; Betts et al., 2007;

Katul et al., 2009). These types of ecophysiological changes may invalidate the relationships

established under historic conditions. Accounting for these types of changes is the primary

reason that process-based ecohydrological models may be preferred for assessing future climate

and land cover impacts.

Aside from differences in model structure, the higher performance of RHESSys in replicat-

ing observed streamflow may be partially attributed to the fact that, in contrast to WaSSI,

the RHESSys model is calibrated over thousands of iterations with observed streamflow data.

Though the calibrated parameters are meant to account for unmeasurable properties of the

soil matrix, mainly macropores and preferential flowpaths, in practice they act as tuning pa-

rameters which better match simulated to observed streamflow. It is likely that calibration of

WaSSI to the Eno River basin would result in improved performance. The most straightfor-

ward way to accomplish this calibration would be to tailor the empirical ET equation to data

observed in a particular watershed rather than from geographically diverse lumped data. Like-

wise, multiple empirical ET equations could be used for specific vegetation types in watersheds

where those differences are important. As used in this investigation, a single ET relation is

used for all forested vegetation types and hydrological differences are assumed to be accounted

for by LAI alone. While this assumption is ideal for capturing ecological variability at the

large-scale applications WaSSI was designed for, improvements in local applications are likely
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to be realized with vegetation-specific relations developed with local or regional data.

4.4.3 Limitations and Future Improvements

This investigation focused on isolating the individual and combined effects of changes in mean

temperature and precipitation and land cover change on hydrologic processes in the Eno.

While changes in long-term average temperature and precipitation have important environ-

mental consequences, there are a wide variety of additional effects that were not considered in

this investigation. For example, we chose to keep atmospheric CO2 concentrations constant

throughout our simulations rather than varying the ambient concentrations in accordance with

specific scenarios. Though we recognize the importance of CO2 concentrations to the processes

investigated here, we made this choice in order to more clearly assess the isolated effects of

land cover, temperature, and precipitation drivers. Increasing CO2 concentrations may in-

crease plant water use efficiency and alter the site-climate relationships observed historically,

although at many sites the increase in water use efficiency may be offset by increases in LAI

so that the total vegetated water use remains constant (Drake et al., 1997; Field et al., 1995;

Betts et al., 2007; Katul et al., 2009). Simulating these processes would require a modified

approach to simulation that incorporates dynamic vegetation growth, and a modification to

the Jarvis stomatal conductance model (e.g. Tague et al. (2009)). Changes in temperature

and precipitation variability, and differential changes in maximum and minimum temperature

were also not considered in this investigation, although these quantities are likely to change in

the future along with their mean values.

We considered only on land cover scenario, and this scenario included only changes in

vegetation composition and not changes in overall vegetation abundance, or changes in other

land cover types such as increased impervious surface. While the increased pine forest scenario

considered here is interesting with respect to spatiotemporal soil-moisture/vegetation interac-

tions, carbon sequestration, and climate mitigation opportunities, our choice of this scenario

should not be interpreted as an implication that this particular scenario is likely to occur in the

Eno. Instead, this scenario is useful in understanding the role that vegetation functional types
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play in structuring the Eno River water cycle, and represents a relatively extreme endmem-

ber along the spectrum of likely future land cover changes. More realistic future projections

of water availability should rely on land cover projections that are constrained by economic

data. A variety of such models have been developed in the literature (e.g. the CLUE-S model

of Verburg et al. (1999)). Coupling such models with RHESSys and WaSSI would enable

the models to not only investigate probable future change scenarios, but also the transient

dynamics accompanying the changes.

4.5 Conclusions

This investigation sought to assess the individual and combined impacts of climate and land

cover change on streamflow and ET in the Eno River basin in central North Carolina. Addi-

tionally, we sought to assess the relative performance of two ecohydrologic models with very

different structural approaches. Whereas RHESSys is a detailed, process-oriented simulation

system offering explicit routing of soil moisture and physically-based submodels describing

assimilation and ET, WaSSI is a mostly empirical model developed from a large collection of

in situ measurements from eddy covariance towers and sapflow measurements. Models were

parameterized using an approach that integrated improved remote sensing techniques (to map

LAI and land cover) with literature reported values of soil and vegetation physical properties.

We considered a baseline climate period (1961-1990) with observations obtained from NWS

Coop stations near the basin, and two different climate change scenarios (2051–2080) derived

from GCM output under the IPCC SRES A2 emissions scenario. The HADCM3 model predicts

large increases in average temperature during the summer months, moderate to no warming

during other seasons, and an overall modest increase in precipitation with reductions in late

summer and fall precipitation and increases in winter and spring. In contrast, the CGCM3

model indicates a more uniform increase in temperature across the year and similar patterns

of precipitation, although the overall magnitude of precipitation increase is greater than the

HADCM3 model, particularly during the spring. We also considered a future land cover sce-

nario in which evergreen forest was expanded from it’s contemporary proportion of 6% of the
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basin area to 37% by growing into areas of deciduous forest and grass/pasture/agriculture.

Our results indicate that both climate and land cover changes significantly impact the

basin hydrologic cycle. Annual streamflow was increased across all simulations which featured

a climate change and contemporary land cover, due to increased precipitation. While increased

pine area reduced mean annual streamflow, this reduction was offset by increased precipitation

under the CGCM3 scenario resulting in a net streamflow increase. Streamflow increases were

greatest during winter and spring months and under the CGCM3 scenario. Summer stream-

flows were significantly attenuated due to decreases in late summer precipitation and increases

in ET. The probability of August streamflows falling below the baseline lower quartile level

was increased for climate change scenarios and indicates that future water availability may be

seasonally restricted. ET increased with increasing temperature and precipitation associated

with climate change, and increases were greatest under the pine future land cover scenario.

Land cover change alone led to modest reductions in streamflow as more soil moisture was

used for transpiration. RHESSys better replicated the observed patterns of monthly stream-

flow than did WaSSI (NSE=0.80 and NSE=0.49, resp.). WaSSI predicted annual streamflows

that were 110 mm higher on average than RHESSys predictions, and WaSSI simulated ET

was on average 147 mm lower than RHESSys.

Taken together, our results indicate that climate change and land cover change may result

in significant perturbations of the existing water cycle in the Eno River basin. Specifically,

if precipitation seasonality is altered in the ways predicted by the CGCM3 and HADCM3

models, then the region is likely to be increasingly water stressed during the summer months

despite an increase in annual precipitation. Increased pine area can exacerbate this stress by

increased ET and further reductions in water availability. We stress that while these results

are useful for investigating relative changes in water balance components, and assessing how

climate and land cover drivers contribute to structuring vegetation-water interactions, they

are not intended to provide reliable quantitative estimates of changes in water fluxes. Future

progress can be made by considering transient climate and land cover dynamics, consideration

of alternate change scenarios, investigation of CO2 concentration changes, and coupling land

cover models to the ecohydrologic simulators.
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Chapter 5
Conclusions

Climate and land cover changes in the coming century will have important impacts on local,
regional, and global water cycles with implications for freshwater availability. Previous re-
search has indicated that the effects of these changes will be most strongly felt in regions that
are already water stressed, and in regions where there are increasing demands on freshwater
resources associated with growing and developing human populations. Population growth in
the southeastern United States is more rapid than elsewhere in the United States, highlighting
the importance of reliably managing existing supplies to meet increased demand into the future
in this region. Coupled ecosystem simulation investigations are necessary in order to predict
the ecological and hydrological response of basins to dynamic climate and landscape drivers
of change. This investigation utilized an integrated remote sensing and ecosystem simulation
approach to understanding the impacts of climate and land cover change on the hydrology of
the Eno River basin in central North Carolina. The principal objectives of our investigation
were threefold: 1) improve remote sensing based methods of mapping LAI to address existing
shortcomings related to estimating LAI in high biomass stands and characterizing temporal
patterns of vegetation evolution, 2) develop a method of efficiently utilizing large archives of
remotely sensed images to obtain accurate and consistent maps of land cover and land cover
change, and 3) assess the long-term impacts of specific climate and land cover changes on
streamflow and ET in the Eno River basin, and contrast the performance of two structurally
different approaches to simulating basin hydrological processes.

I first investigated the potential of a multi-sensor information fusion approach to LAI
mapping to overcome acknowledged remote sensing methodological deficiencies. The bulk of
existing methods adopt an empirical approach which seeks to develop relationships between
ground measurements of LAI and remotely sensed predictors such as spectral vegetation in-
dices. These methods have been widely employed with varying degrees of success. There are
three principal limitations to this approach. First, SVI tend to saturate at moderate to high
biomass levels which restricts the predictable range of LAI and lowers the certainty of LAI
estimates in densely vegetated stands. Second, there is little consensus regarding which SVI
predictors should be used and what form the empirical relation should take. Third, even the
most successful empirical relations are only capable of providing maps of LAI at a single point
in time, and thus are incapable of supplying information regarding spatiotemporal variability.

The approach developed in this investigation addresses and overcomes each of these limita-
tions by combining information from multiple satellite based sensors in a modeling framework
that is capable of supplying land cover maps at an arbitrary temporal interval. The most
significant contribution of this study was to demonstrate that spatial information (texture)
from very high resolution remotely sensed images are significant predictors of LAI in closed



canopy forests, and that these metrics may be used along with conventional spectral predic-
tors to overcome the problem of SVI saturation and increase the predictable range of LAI. We
found that the variance of a moving window, the dimensions of which are determined with
spatial statistical methods, was a better predictor of ground measured LAI than any of the
SVI considered, and that a multiple linear regression model which included texture metrics
improved the ability to map LAI across the heavily forested study landscape. Additionally,
we employed multi-model selection statistical tools to address the issue of predictor and model
selection. Our results show that these methods help to reconcile the observed variability in
published LAI models by demonstrating that multiple models and predictor combinations can
perform very similarly, and that there is likely no single best model form or predictor set for
mapping LAI using remotely sensed data. Finally, we combined the spatial-spectral empirical
LAI model with remotely sensed phenological information in a novel model which is capable
of mapping the spatiotemporal patterns of LAI at a user-selected temporal interval. This ap-
proach was demonstrated using a small area over Duke Forest in central North Carolina where
we mapped daily LAI using IKONOS, Landsat, and MODIS data.

Next, I developed an improved method of consistently and accurately classifying time series
of remotely sensed images. Though land cover mapping/classification enjoys the most robust
literature in all of remote sensing science, there remain significant challenges and limitations.
Most efforts to map land cover rely on identifying representative spectral signatures for the
various land cover types of interest, and then using statistical and/or machine learning algo-
rithms to map land cover over the entire study area. While this method works well for ad hoc
land cover mapping, and in situations where only one map of land cover at a specific time is
required, there are challenges to scaling this approach to larger spatial scales and for obtaining
a multitemporal understanding of land cover patterns.

The main problem is that spectral signatures obtained for a single image are not directly
generalizable to images from other areas or from different times. Atmospheric, view/illumination
geometry, phenological changes, and surface moisture conditions alter the radiometric proper-
ties of individual images and adaptation of either images or spectral signatures is necessary to
extend the mapping to other times or areas. Signature extension is a widely employed method
of addressing this issue which seeks to radiometrically rectify individual images so that they
have common radiometric response by either estimation and removal of effects using radiative
transfer models, or by relative adjustments of image radiometric quantities to match a base
image. Unfortunately, signature extension methods are limited because it is not possible to
remove all image differences, particularly when they result from actual physical changes on
the ground (phenological progression, for example), and so the success of signature extension
depends critically on the magnitude and character of the image differences. Individually clas-
sifying images with unique reference data is an alternative method which alters the spectral
signatures to match individual images rather than adjusting radiometric properties of the im-
ages themselves. However, this method is extremely time and labor intensive and invites the
possibility of semantic confusion between land cover classes at different times. These chal-
lenges have been a significant limitation to realizing the potential of long-term image archives
to provide global scale understandings of land cover change.

I develop a novel approach which overcomes these limitations and provides an alternative
method of classifying time series of remotely sensed images: automatic adaptive signature
generalization. The essential concept of the AASG approach is that if land cover changes can
be assumed to be rare (i.e. most of the landscape is stable), and locations with stable land cover
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may be reliably identified, then spectral signatures which are uniquely adapted to individual
images may be automatically derived from these stable locations. A single well classified map
of the study area is the only required input in addition to the time series of images. The most
significant contribution of this new method is to allow for temporally mismatched images to
be classified without resorting to individual classification with unique reference data. In fact, I
demonstrate that the AASG method can classify a winter-summer image pair suffering only a
modest reduction in overall accuracy relative to an in-season image pair. The method is found
to be sensitive to the thresholding parameter used to distinguish stable sites, and we discuss
some strategies for selection of this quantity. This development makes significant progress
towards leveraging growing data archives to gain an unprecedented understanding of global
land cover change.

Finally, I used these improved remote sensing inputs to parameterize ecohydrologic models
and assessed the impact of climate and land cover changes on long-term average streamflow
and ET in the Eno River basin. Investigations such as this are more important than ever as
growing demands on freshwater resources, current and future climate changes, and anthro-
pogenic landscape modification cause uncertainty about the ability of freshwater resources to
meet human and ecosystem needs. The observed distribution of freshwater resources on Earth
are a result of interacting climate, physical, and biological processes which must be understood
in a holistic, coupled manner in order to successfully attribute drivers of hydrologic change
and assess future impacts. Intensive scientific inquiry into these subjects has resulted in a
wide variety of ecosystem models with varying levels of sophistication and different structural
and theoretical approaches. I used two such models which bracket some this variability. The
RHESSys model is a well-validated ecohydrological simulation system which couples physi-
cally based hydrological, ecological, and climatological submodels. In contrast, WaSSI is an
ecosystem water balance and assimilation model which takes an empirical rather than a phys-
ical approach to estimation and is developed using in situ measurements of water and carbon
fluxes and environmental driving variables.

I used both models to simulate the long-term response of streamflow and ET to two climate
change scenarios derived from GCM output, and a single hypothetical land cover scenario spec-
ifying vegetation compositional changes. Results indicated that climatic drivers, specifically
precipitation, dominate the basin’s hydrological response. Specifically, increases in annual pre-
cipitation lead to increased mean annual streamflows, but changes in precipitation seasonality
favoring wetter dormant periods and drier growing seasons may increase water stress in the
catchment and increase the occurrences of anomalously low summer streamflows. Changes in
vegetation composition produced a measurable effect, but were far less important than climate
changes. The two models produced similar responses to climate and land over changes, but
had important relative differences. WaSSI simulated higher streamflows and lower evapotran-
spiration than RHESSys, and RHESSys better replicated the observed patterns of streamflow
over a baseline climate period. Taken together, these results indicate the importance of fu-
ture climate changes in structuring basin level water cycles and cautions that water stress
may increase in the Eno and similar areas if future precipitation changes are similar to those
predicted by global climate models.

This investigation also illuminated several directions for possible future research. With
respect to LAI estimation, it is hoped that other experiments will strengthen the conclusion
that texture metrics are able to improve LAI estimation in high biomass stands. However,
there is a critical need to better explain the physical processes that are responsible for the
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relationship. Though I’ve previously discussed the various factors which conspire to produce
different canopy textures, and sketched a theoretical justification for the relationship between
LAI and these textures, there is a critical need to develop a better physical understanding of
these processes. This understanding may allow the reconciliation of texture measures across
varying sensors and view/illumination/scene geometry which is not currently possible, but is
essential if these techniques are to be scaled up in space. The AASG method developed here
was demonstrated in its simplest form and there is ample room for methodological improve-
ments. Specific improvements have been discussed previously, but alterations which improve
the selection of change thresholds, and implement alternative classification algorithms are the
most likely to have immediate positive impacts. So too will further developments in simula-
tion modeling improve scientific understanding of the ways in which climate, topography, and
vegetation influence water balances, and how basins will respond to future changes in climate
and land cover. Coupling land cover change models with existing ecohydrologic models, and
assessing transient climate and land cover dynamics is a natural progression which will in-
crease the reliability of simulation models and provide valuable information to environmental
managers and policy makers.

The principal contributions of this research are significantly improved remote sensing meth-
ods to map land cover and LAI which overcome many significant existing limitations, and a
detailed understanding of the relative roles that climate and land cover play in structuring the
hydrologic regime of the Eno basin. It is expected that these advances will have appreciable
impacts on the discipline of remote sensing science where the methods developed here may
be used and refined to gain improved understandings of historical land cover and vegetation
properties, increase the reliability of simulation results through improved accuracy in land-
scape representation, and more confidently monitor and manage natural resources. Results
of the simulation exercises conducted here improve our understanding of how future changes
are likely to impact water resource availability in the Eno and similar forested watershed in
southeastern United States. These results will help land managers and planners to assess the
impacts of various development scenarios, and will help to ensure that existing resources are
sustainably managed into the future.
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