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ABSTRACT 

Andrea C. Uetrecht 

Golgi positioning during cell migration 

(Under the direction of Dr. James E. Bear) 

 

Investigation of crucial aspects of cellular function in live cells frequently 

requires the loss of expression of a specific protein to gain insight into its function.  It 

is also beneficial to combine this with either the enforced re-expression of a tagged 

version of the protein of interest to validate the phenotype, or the expression of 

fluorescently tagged marker proteins to investigate a particular phenomenon.  

Modifications to a short hairpin RNA-mediated knock-down lenti-viral delivery system 

described here enable the simultaneous expression of short hairpin RNA and a 

fluorescently-tagged rescue or marker protein to investigate specific cellular 

processes.  The knock-down phenotype of capping protein ß was rescued by the 

simultaneous expression of a fluorescently tagged knock-down resistant version.  

Chromophore-assisted laser inactivation of capping protein ß demonstrated the 

acute loss of function phenotype and highlighted the necessity of loss of 

endogenous protein expression for the effects to be observed.  Another modification 

in the lenti-viral vector system was used to demonstrate a role for coronin 1B in 

modulating the rate of actin retrograde flow.  A final modification to the lenti-viral 
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system enabled the simultaneous expression of two different fluorescent markers.  

This was used to investigate Golgi and nucleus positioning during migration.  In Rat2 

cells at the edge of an artificial wound, the Golgi and centrosome were positioned 

coincident to one another and were polarized to the front of the nucleus relative to 

the wound edge.  Freely migrating cells expressing fluorescent markers of the Golgi 

and nucleus did not exhibit such polarity.  Instead, Golgi positioning remained fairly 

constant relative to the nucleus independent of the direction of migration.  Nucleus 

and Golgi positioning relative to the direction of migration was also independent of 

the speed or directional persistence.  Lamellipodial dynamics such as the distance, 

duration or rate of protrusion were not substantially different along the nuclear-Golgi 

axis relative to other areas of the cell periphery.  Together these data suggest that 

Golgi positioning in freely migrating cells is independent of the events at the 

periphery of the cell that are involved in migration.   
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Fortune Cookie:  
The shortest distance between two points is no fun 
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CHAPTER 1: INTRODUCTION 

In multicellular organisms, cell migration is a crucial process for both 

development and tissue homeostasis and is involved in such diverse processes as 

neuronal targeting [1] and the immune response [2, 3].  Cell migration also plays 

critical roles in various pathological conditions ranging from rheumatoid arthritis [4] to 

cancer metastasis [5], making understanding the events that regulate and affect cell 

migration of fundamental importance. 

The Cell Migration Cycle 

The field of cell migration has been intensely studied over many decades.  

The most common studies of cell migration in vitro examine the properties of cells on 

a two dimensional substrate.  In this context, cells display a characteristic cycle of 

migratory events (reviewed in [6]).  Migration is initiated through the protrusion of an 

actin-rich leading edge, accompanied by the formation of small adhesions at the 

leading edge.  This is followed by the localized disassembly of mature adhesions at 

the rear of the cell, while myosin-mediated contractility causes retraction.  

Depending on the cellular context, this cycle can occur as discrete steps or in a 

continuous, smooth fashion.  In either case, the cell migration cycle is an inherently 

polarized process, with protrusion occurring at the front of the cell, and retraction at 

the back.  One central question in the field of cell migration is how protrusive, 
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retractive and adhesive areas become localized to specific regions within the cell to 

cause this ‘polarity’ and coordinate migration.   

Polarity and Migration – What is Polarity? 

Defining Front – Formation of the Lamellipodium 

The front of the cell is generally considered to be the actively protruding area 

at the edge of the cell known as the leading edge or lamellipodium.  The events that 

govern protrusion have been studied in numerous systems.  One of the hallmarks of 

lamellipodial protrusion is elevated levels of phosphatidylinositol (3,4,5)-

trisphosphate (PIP3).  PIP3 is generated at the plasma membrane (PM) through 

activation of phosphoinositide 3-kinase (PI3K) and contributes to protrusion through 

the activation of two signaling molecules: phospholipase C (PLC) and Rac.  PLC 

catalyzes the hydrolysis of phosphatidylinositol (4,5) bisphosphate (PIP2) at the PM.  

Loss of PIP2 through PLC-mediated hyrolysis was shown to cause the release of the 

actin severing protein, cofilin, leading to actin polymerization [7].  Presumably other 

actin regulatory proteins could be held inactive at the PM by PIP2 and could also be 

released by this mechanism resulting in their localized activation, although this 

remains to be demonstrated.  Like PLC, the small GTPase Rac is activated by 

elevated PIP3 levels to promote protrusion.  Rac activation is accomplished by its 

recruitment to the PM as well as the activation of Rac-specific guanine nucleotide 

exchange factors (Rac-GEFs) 

Initiation of protrusion via Rac activity, PI3K activity and PIP3 levels depend 

on the cellular context.  In Dictyostelium, PI3K is activated by cyclic-AMP receptor-1 
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(CAR1) and heterotrimeric G proteins (reviewed in [8]).  In neutrophils stimulated 

with N-formyl-Met-Leu-Phe (fMLP), Rac is activated downstream of G-protein 

coupled receptors [9] in a PI3K-dependent manner [10].  In mammalian epithelial 

cells, both Rac and PI3K are activated downstream of the epidermal growth factor 

(EGF) receptor [11] to initiate leading edge protrusion. 

Activated Rac recruits members of the Wiscott Aldrich Syndrome protein 

(WASP)/WASP and Verprolin-homology protein (WAVE) family, which, in turn, 

cause the activation of the Arp2/3 complex (reviewed in [12]).  Arp2/3 promotes actin 

polymerization through the nucleation of new filaments at a 70° angle to an existing 

filament to generate a branched dendritic actin network [13].  It is this dendritic actin 

polymerization that provides the force required for membrane protrusion [14], and 

also causes the rearward movement of the existing actin meshwork in a process 

called retrograde flow.  A number of other factors also influence actin architecture 

and thus lamellipodial protrusion.  For example, capping protein (CapZ or CP) caps 

the growing end of filaments, preventing linear growth thereby indirectly promoting 

branching [15, 16].  Processive cappers such as mDia have the opposite effect, 

promoting linear actin elongation at the expense of branching (reviewed in [17]).  Still 

other proteins such as the Coronin 1B (Coro1B) isoform affect actin architecture 

through influencing localized turnover and disassembly [16, 18].   

Together the factors discussed above contribute to the formation and 

protrusion of the leading edge.  However, using the leading edge as a marker of 

‘front’ is problematic due to the frequent occurrence of multiple protrusive regions in 

many contexts.   
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Defining Rear – Contraction and Retraction 

Recent evidence suggests that the rear or trailing edge of the cell is defined 

prior to the establishment of front.  For example, Mseka and colleagues have shown 

that in embryonic chick fibroblasts, the first visible break in cell symmetry following 

the washout of the actin destabilizing drug Latrunculin A is a localized area of 

retraction.  Prior to retraction or migration, bundled actin filaments become aligned 

along the direction of migration.  The symmetry-breaking event occurs at one end of 

the bundled actin and requires the activity of the actin depolymerizing factor 

(ADF)/cofilin family of actin severing proteins.  When protrusion and migration are 

initiated approximately 20 minutes after washout the area of retraction becomes the 

rear of the cell [19].   

The formation and stabilization of actin bundles, as well as the formation of a 

well-defined, extended cell rear requires activated myosin light chain (MLC) in 

cooperation with myosin II isoforms [20].  Myosin activity and actin contractility are 

regulated by the small GTPase RhoA and its downstream effector Rho-associated 

kinase (ROCK).  These are localized to the sides and rear of migrating cells in both 

Dictyostelium [21] and neutrophils [22] where they limit protrusive activity.  In 

Dictyostelium, localization and activity of phosphatase and tensin-homolog (PTEN) 

is required for localized RhoA and myosin activity [21].  Rho-mediated actin 

contractility defines the cell rear and limits protrusive activity away from the front.   

Establishing vs Maintaining Polarity – the Rho GTPases 

Productive translocation of the cell requires that the spatial organization of 

protrusion, retraction, and adhesion be maintained over a period of time.  Clearly, 
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cells have some self-organizing capacity that allows protrusion to be coupled with 

adhesion, and retraction with de-adhesion, as well as locally reinforcing these 

activities through feedback loops.  Each of the small GTPases of the Rho family play 

important, yet distinct, roles in this process.  As discussed above, PI3K-mediated 

PIP3 production causes the activation of Rac [9].  Rac, in turn, has been found to 

activate PI3K [23-25] leading to increased PIP3 production, and thus to enhanced 

actin polymerization and protrusion [26].  Actin polymerization, in turn, also amplifies 

PIP3 levels at the front [24].  This creates a positive feedback loop for the 

establishment and maintenance of leading edge protrusion.   

PI3K may also be involved in inhibiting the signaling networks that define the 

back of the cell.  Activity of the PI3K isoform p110δ in macrophages negatively 

regulates PTEN through the inhibition of RhoA/ROCK [27], and thus may serve to 

inhibit “back-ness”, while reinforcing “front-ness”.   

Similarly, at the sides and rear of the cell, protrusive activity is restricted by 

Rho-mediated contractility.  In stimulated neutrophils, RhoA/ROCK activity is 

required for the activation and recruitment of PTEN to the posterior membrane [28].  

Loss of PTEN in Dictyostelium results in defective recruitment of myosin II and the 

failure to suppress lateral pseudopods [21].  As well, the PIP3-phosphatase activity 

of PTEN serves to further antagonize “front” signaling through the localized depletion 

of PIP3.  RhoA, ROCK and PTEN thus form a feedback loop, and together are 

responsible for maintaining the cell rear.   

The roles of Cdc42 are less clear.  The spatial restriction and maintenance of 

persistent leading edge protrusion has been shown to be dependent on Cdc42 
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activity in neutrophils [26] and astrocytes [29], yet in fibroblasts reduced Cdc42 

expression has no effect on either the speed of migration or directional persistence 

[30].  Instead, reduced Rac expression and activity results in decreased peripheral 

lamellae and increased directional persistence in fibroblasts [30].  It is not clear 

whether these represent cell-type differences in the roles of Rac and Cdc42, or 

whether they reflect context-dependent differences in the steady-state activities or 

localization of other factors.  For example, plating conditions could affect basal RhoA 

activity, which would affect the activities of other factors through the feedback loops 

described above.  An additional role for Cdc42 in establishing or maintaining the 

organization of internal structures is discussed later in this chapter; how this Cdc42-

mediated internal polarity might contribute to protrusion or migration remains to be 

demonstrated.   

The Role of Adhesions 

The localized formation, maturation and turnover of adhesions are important 

for migration.  Adhesions serve as a direct link between the cell and the substratum, 

and the traction they provide is an absolute requirement for productive lamellipodial 

protrusion.  On the other hand, strong adhesions can be an impediment to migration, 

by hindering retraction at the cell rear.   

The adhesive interaction between the cell and the extracellular matrix (ECM) 

is mediated by integrins, a large family of single-pass heterodimeric transmembrane 

proteins that bind specifically to ECM proteins such as fibronectin (FN), laminin (LN) 

and collagen.  The intracellular domain links integrins to the actin cytoskeleton 

through large protein complexes that can contain in excess of 150 different proteins, 
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including talin, paxillin, vinculin, α-actinin, integrin-linked kinase, focal adhesion 

kinase (FAK) and Src, among many others (reviewed in [31-33]).  The precise 

composition varies considerably depending on the cell type, the integrins involved, 

and a number of other interrelated factors, including the sub-cellular location, size, 

maturity, and tension of the adhesion.  Integrin activation is mediated by PIP2 and 

talin [34].  Talin produces conformational changes in integrins, possibly through 

separation of the transmembrane helices, causing activation and allowing them to 

engage ECM ligands ([35], reviewed in [36]).  Talin also directly binds the actin 

cytoskeleton [37], thus integrin-ECM engagement links the actin cytoskeleton to the 

extracellular environment.   

In migrating cells, integrin engagement with ECM is initiated in association 

with the leading edge, often at the base of filopodia or actin ridges.  These nascent 

adhesions or focal complexes are characterized by their small size and short life, 

and are associated with parallel bundles of actin (reviewed in [38]).  Focal complex 

formation depends on fast actin retrograde flow from the lamellipodium, with 

complexes forming at the transition zone between the lamellipodial and lamellar 

regions [39, 40].  The force generated by retrograde flow is thought to lead to the 

recruitment of other proteins, presumably through tension-sensing activation.  

However, the precise mechanisms responsible for the recruitment or activation of 

each component, and the effects of each component on adhesion formation, stability 

and disassembly are still being elucidated.  Here we focus instead on general 

spatiotemporal aspects of adhesion dynamics.   
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In the absence of additional force, focal complexes fail to mature and are 

rapidly disassembled.  However, Rho-mediated contractility or the external 

application of force on the associated actin fibers causes focal complexes to 

transition into focal adhesions (FA) [41].  This initiates a feedback loop in which 

actin-mediated tension on the adhesion causes the recruitment of additional 

proteins, causing a growth in adhesion size, an increase in the number of associated 

stress fibers, and thus an increase in actin-mediated tension on the adhesion.  

Mature focal adhesions are therefore characterized by their larger size and longer 

lifetime as well as with the presence of additional proteins and the association with 

actin stress fibers, or antiparallel bundles of contractile actin (reviewed in [38, 40]).  

Mature adhesions are located under the cell body and at the periphery, but are 

specifically absent from the lamellipodium.   

Just as the formation of focal complexes is essential for leading edge 

protrusion at the front during cell migration, the turnover and disassembly of focal 

adhesions at the rear of the cell is necessary for cell retraction.  Microtubules (MTs) 

are known to target focal adhesions throughout the cell, and these targeting events 

are correlated with either decreased growth or disassembly of focal adhesions [42].  

Indeed, the MT targeting frequency at the retracting edge of the cell is several-fold 

higher than at the protruding edge [42], highlighting the importance of these events.  

MT targeting could facilitate adhesion turnover through the delivery or removal of 

multiple signaling proteins or complexes, but the precise cargo is not yet known.  

Possibilities include complexes involved in relieving tension, for example Rho 

inhibitors or Rac activators.  Candidates for this are the Rho/Rac-GEFs Lfc [43] and 
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GEF-H1 [44], the Rac-specific GEF Asef [45] or p21-activated kinase (PAK; [46]).  

Delivered locally, these factors could cause relaxation of the associated stress fiber, 

allowing for disassembly of the focal adhesion [47].  Additionally, proteolytic 

enzymes that mediate cleavage of adhesive proteins could also facilitate FA 

disassembly.  The protease calpain is required for MT-mediated FA turnover 

following nocodazole washout [48].  Calpain-mediated cleavage of talin [49] and/or 

other FA components could cause a conformational change in integrins leading to 

either α-actinin binding [48, 50] or perhaps even disengagement from the ECM.  

However FA turnover is mediated, it is clear that the spatiotemporal regulation of 

focal adhesion formation, maturation and disassembly is crucial for efficient cell 

migration.   

Directed Migration 

Here we define directed cell migration as the orientation of migration along a 

specific axis based on external cues.  Many different factors can effect directed cell 

migration.  For example, at the edge of an experimental wound the geometric 

constraints and cell signaling molecules provided by neighboring cells causes cells 

to migrate in a directed manner to fill in the wound [51].  Likewise, a gradient of 

soluble factors can cause a type of directed cell migration called chemotaxis [52, 

53].  Other types of directed migration also occur, but are beyond the scope of this 

introduction.  These include electrotaxis (migration along an electric current) [54], 

durotaxis (migration along a gradient of matrix stiffness) [55], and haptotaxis 

(migration along a gradient of deposited ECM) [56].   
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Migration in to an Experimental Wound 

Some of the earliest studies to examine directed cell migration made use of 

the scratch-wound or wound healing assay.  In this assay, a confluent monolayer of 

cells is experimentally ‘scratched’ to remove a strip of cells.  The remaining cells at 

the edge of the experimental wound subsequently polarize and migrate into the cell-

free zone, thereby closing the wound.  Early observations indicated that external 

polarization and migration into the wound was also accompanied by polarization of 

internal structures such as the microtubule organizing center (MTOC)/centrosome, 

Golgi apparatus, and nucleus.  The first study to look at MTOC positioning in this 

context found that in pig thoracic aorta endothelial cells 4 to 44 hours after 

wounding, the MTOC was oriented between the nucleus and the wound edge in 

80% of cells at the edge of the wound and in 70% of cells in the 2nd and 3rd rows 

back from the wound edge [51].  Similarly, in NRK fibroblasts 78% of cells at the 

wound edge had both the Golgi and MTOC positioned between the nucleus and the 

wound edge within 5 hours of wounding [57].  Indeed, by 5 minutes, before visible 

lamellar extension into the wound, 60% of cells displayed Golgi and MTOC polarity.  

Based on this, the authors speculated that MTOC and Golgi positioning might play 

several important roles in specifying the direction of migration (DOM).  It was 

suggested that polarization of the MTOC was responsible for positioning the force-

generating system involved in lamellipodial protrusion (that actin provided the force 

was not known at the time) and for delivering Golgi-derived vesicles.  The 

positioning of the Golgi was speculated to facilitate protrusion through the insertion 

of new membrane at the leading edge, as well as being involved in the directed 

secretion of ECM molecules for the formation of new adhesions.  Another study 
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showed two stages of reorientation exhibited by NIH 3T3 fibroblasts [58].  In the 

initial stage (up to 3 hours post wounding) cells become polarized, with the nucleus 

and stress fibers at the rear of the cell and endosomes and mitochondria facing the 

direction of migration but excluded from the lamellipodium.  In the second stage of 

migration, stress fibers disappear from the cell rear, while the mitochondria and 

endosomal compartments can be seen in the lamellipodia, even sometimes 

approaching the leading edge.  Whether these stages occur in other cell types is 

unclear, and it is becoming increasingly evident that the mechanisms responsible for 

polarization and migration into an experimental wound differ significantly from one 

cell type to another.  Perhaps the most striking example of this is that PtK2 cells [59] 

and MCF10a cells [60] polarize with either the centrosome or the MTOC and Golgi, 

respectively, to the rear of the nucleus.  However, other more subtle differences 

between cell types are also being discovered.   

Mechanisms of Positioning – Actin and Microtubule Dependence 

The mechanism(s) responsible for Golgi, MTOC, and centrosome positioning 

are being elucidated, and may depend upon actin, microtubules, or both, depending 

on the cell type.  In many cell types, the cell centroid roughly coincides with the 

position of the centrosome or MTOC [61], around which the Golgi is organized 

(reviewed in [62]).  In BSC-1 cells the centrosome is positioned either coincident 

with, or within 5µm of, the cell centroid in 89% of wound edge cells [61].  As leading 

edge extension proceeds and the cell centroid shifts forward, the centrosome is 

maintained at a central position in a MT-dependent manner, while nuclear 

movement is delayed, initially remaining stationary, and subsequently lagging behind 
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the centrosome [61].  Centrosome repositioning under these conditions is thus a 

result of the MT-dependent forward movement of the centrosome, due to leading 

edge protrusion rather than rearward nuclear movement.  Other studies in NIH 3T3 

cells, however, demonstrate that the nucleus is repositioned behind the MTOC 

following wounding through rearward movement of the nucleus in an actin- and 

myosin-dependent manner even in the absence of protrusion [63].  In pig thoracic 

aorta endothelial cells inhibition of MT dynamics through treatment with Colcemid 

blocks both MTOC reorientation and migration into the wound, while treatment with 

Cytochalasin B to block actin dynamics delays MTOC reorientation in the first row of 

cells, prevents reorientation in the 2nd and 3rd rows, and blocks migration completely 

[64].  In astrocytes, both MTOC polarity and migration into the wound are actin 

dependent, as treatment with Cytochalasin D blocks both behaviors, but surprisingly 

does not block protrusion formation.  Treatment with Taxol or low levels of 

Nocodazole to block MT dynamics blocks both protrusion formation and MTOC 

orientation [29] suggesting that both protrusion and MTOC polarity are MT-

dependent events in astrocytes.   

Signaling Networks Involved in Wound-Edge Polarity 

The differences in MT and actin dependence observed from one cell type to 

another suggests that not only do the mechanisms involved in positioning vary 

between cell types, but also that the signaling networks involved might differ as well.  

In both NIH 3T3 fibroblasts [63] and astrocytes [29], polarization of the MTOC 

relative to the nucleus occurs downstream of the Cdc42/Par6/aPKC polarity 

complex, and also requires dynein activity.  In astrocytes, Cdc42/Par6/aPKC and 
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dynein are required, in addition to GSK-3 and APC [65], for proper MTOC polarity, 

but not for the formation of protrusions.  However, they are required to restrict 

protrusion formation to the wound edge.  In contrast, rat embryonic fibroblasts do not 

require Par6/aPKC to restrict protrusive activity to the wound edge, but require the 

activity of PAK, downstream of Cdc42 [66].  In NIH 3T3 fibroblasts, 

Cdc42/Par6/aPKC and dynein are required for self-centering of the MTOC, and thus 

polarity [63].  Together these studies demonstrate that the wound edge represents a 

situation in which similar signaling networks simultaneously govern both directional 

migration and internal organization of the cell.   

Chemotaxis 

Chemotaxing cells are characterized as being highly polarized, with a well-

defined lamellipodial region extending towards the chemotactic source and a 

retracting tail.  Classic models for chemotaxis rely on the internal amplification of a 

shallow external chemotactic gradient.  This occurs through the local activation and 

amplification of PIP3 signaling where receptor occupancy is highest coupled with the 

global inhibition of PIP3 signaling, via PTEN, throughout the remainder of the cell.  

This feedback loop is proposed to render the front of the cell more sensitive to the 

chemoattractant and lead to directionally persistent migration towards the source.  

Recent studies, however, suggest that this model may not be entirely complete.  

Dictyostelium cells lacking both PTEN and all five PI3K isoforms exhibit slower 

migratory speeds but are not defective in directional sensing [67].  Similarly, 

neutrophils lacking PI3K are less migratory but still respond to chemotactic gradients 

[68].  Additionally, cells in very shallow gradients undergo chemotaxis through a 
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characteristically different type of migratory path called a biased random walk.  In 

this case, migration is the result of a series of discrete protrusion events that are 

either formed preferentially towards the chemotactic source, as demonstrated for 

dendritic cells and fibroblasts [69], or are preferentially maintained towards the 

source as demonstrated in Dictyostelium [70].  In the latter context, the inhibition of 

PI3K affects the frequency of protrusive events, but not their accuracy [70].  During 

biased random walk chemotaxis, protrusions can occur in any direction at any given 

time, but the net protrusive activity, and thus the net DOM, is towards the 

chemotactic source.   

Few studies have examined centrosome or Golgi positioning during 

chemotaxis.  In chemotaxing neutrophils the centrosome is positioned preferentially 

between the lamillipod and the nucleus [71].  Similarly, mouse peritoneal 

macrophages reorient both the Golgi and MTOC towards a gradient of activated 

mouse serum in an actin-dependent manner [72].  In chemotaxing Dictyostelium, the 

centrosome is positioned to the front of the nucleus, and if the position of the 

gradient is altered, centrosome repositioning follows the formation of a new leading 

process [73].   

Unconstrained Migration 

Observations of MTOC and Golgi polarity and migration suggest that there is 

a fundamental link between MTOC/Golgi polarity and migration.  Few studies have 

attempted to address this problem directly in freely migrating cells in the absence of 

external cues.  Danowski et al. reported that the centrosome of freely migrating PtK2 

cells expressing green fluorescent protein (GFP)-tagged γ-tubulin did not reorient 
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when the cell changed direction, and in fixed cells was localized predominantly to 

the rear of the nucleus, often in the retracting tail [74].  In the context of the wound 

edge the positioning of the centrosome in this cell type was maintained the rear of 

nucleus [59], demonstrating that anterior positioning of the MTOC relative to the 

nucleus is not a requirement for migration.  Ueda et al. examined centrosome 

positioning in Dictyostelium using GFP-γ-tubulin expression and found that 

centrosome repositioning never precedes pseudopod extension.  However, if 

reorientation of the centrosome does not occur within 30 seconds the new 

pseudopod will collapse [73], suggesting that centrosome positioning is important for 

the stabilization or maintenance of the leading process.   

The positioning of the Golgi has never been examined in freely migrating 

cells.  However, the observed co-localization of the MTOC and Golgi in other 

contexts would suggest that, like the centrosome, Golgi positioning might be 

important for cell migration, leading to several important questions.   

• Does the Golgi Polarize in the Absence of External Cues? 

Golgi positioning could be correlated with the DOM or migratory path of freely 

migrating cells.  Based on available data on MTOC/centrosome and Golgi 

positioning in the situations discussed above, it seems reasonable to speculate 

that Golgi positioning would correlate with the DOM, at least during periods of 

highly persistent migration.   

• Does Golgi positioning influence lamellipodial dynamics? 

One of the purposes ascribed to Golgi positioning is to facilitate targeted delivery 

of post-Golgi vesicles to the leading edge of the cell.  Presumably this would 

result in the localized delivery of either signaling complexes or bulk membrane 
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that would be required for protrusion.  If this is the case, lamellipodial dynamics 

could be affected by proximity to the Golgi.  It is also possible that all lamellipodia 

are targeted equally, and/or that localized vesicle fusion has no effect on 

lamellipodial dynamics.   

• What signaling pathways couple Golgi positioning to migratory parameters? 

Assuming that Golgi positioning is correlated with either differences in 

lamellipodial dynamics or the DOM (or both), are any of the signaling pathways 

implicated in polarity in other contexts relevant for freely migrating cells?  Loss of 

a particular signaling pathway could result in a number of different phenotypes.  

Uniform lamellipodial dynamics could indicate defects in vesicle targeting to the 

front.  Changes in cell speed, or persistence, or loss of Golgi polarity, could 

indicate roles in coupling Golgi positioning to the DOM.  Alternatively, loss of a 

particular signaling pathway could have no effect on lamellipodial dynamics, 

migration, or Golgi polarity.   

In order to examine these questions, we developed and tested a series of 

expression constructs to simultaneously knock-down target genes while expressing, 

at modest levels, either a fluorescently tagged rescue protein, or fluorescent 

marker(s).  The design and testing of the initial constructs are outlined in Chapter 2.  

Our success with these constructs prompted us to build a ‘polarity sensor’ that 

fluorescently tags both the nucleus and Golgi from the same vector backbone 

(outlined in Chapter 3).  This allowed us to pursue whether Golgi positioning was 

correlated with the DOM or other migratory parameters (outlined in Chapter 3), or 

with differences in lamellipodial dynamics (outlined in Chapter 4).  We find that Golgi 

positioning is not related to either lamellipodial dynamics or migratory parameters, 

precluding investigation of any signaling pathways involved.   
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CHAPTER 2: DEVELOPMENT OF KNOCK-DOWN/RESCUE 
SYSTEM 

Summary 

RNA interference has become a common cell biology technique.  Here we 

describe modifications to a lentiviral-mediated short hairpin RNA delivery system for 

a broad spectrum of applications.  We demonstrate its use in replacing endogenous 

protein with a fluorescently tagged version to rescue knock-down phenotypes.  We 

also demonstrate its use to mark short hairpin RNA targeted cells with fluorescently 

labeled proteins to examine protein dynamics in live cells containing either shRNA 

against the protein of interest or a non-specific control short hairpin RNA.  Finally, 

we describe a modification allowing for the simultaneous expression of two proteins 

from the same promoter.  Based on our success in these initial studies, we continue 

to use this system for knock-down of target proteins and are expanding upon both 

the short hairpin RNA targets as well as the range of fluorescent markers for use in 

future studies.   

Introduction 

The technique of RNA-mediated interference (RNAi) of protein expression 

has become increasingly prevalent in cell biology.  There are several common 

approaches to target specific proteins for knock-down.  The first technique is to 

transfect either a single species or a cocktail of double stranded small interfering 
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RNA (siRNA) that is complimentary to sequence(s) in the target protein.  There are 

several drawbacks to this technique.  It is often difficult to unambiguously identify 

which cells received the siRNA even when simultaneously co-transfected with a 

fluorescent marker.  Additionally, because the siRNA is delivered by transfection, 

researchers are limited to using easily-transfected cell types.  Finally large amounts 

of siRNA may cause off-target effects such as increased expression of the cellular 

RNAi processing machinery. 

Another commonly used technique for inducing RNAi involves the generation 

of an expression vector encoding a specific sequence that will become processed 

into short hairpin RNA (shRNA).  This approach can overcome some of the 

disadvantages of the siRNA approach described above.  First, the vector can be 

engineered to also express a GFP marker, allowing for unambiguous identification of 

targeted cells.  Second, a vector-based system is self-renewing.  Finally, if the 

shRNA system is incorporated into a viral vector delivery system, the range of target 

cells is much greater as viral delivery is independent of transfection efficiency and 

the sequence becomes stably integrated into the genome of the targeted cells.  

However, as with siRNA-mediated knock-down, vector-based shRNA delivery 

systems cannot overcome the possibility of off-target effects.  In either case, the 

knock-down phenotype must be validated by rescuing the phenotype through the re-

expression of the target protein.   

Rubinson et al. reported the use of a lentiviral-mediated shRNA delivery 

system to infect a broad range of cells [75].  We initially set out to create a single-

step knock-down/rescue system based on this vector.  Our success with this 
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prompted further modifications to substantially increase the utility of the system.  

These changes and a sample of their applications are discussed in this and the 

following chapter.   

Results and Discussion 

In creating our knock-down/rescue system, we wanted to minimize the 

possibility of inducing additional phenotypes as a result of the overexpression of the 

rescue construct.  We therefore wanted to ensure that target protein re-expression 

levels were close to physiological.  We tested GFP expression levels from several 

different promoters and found that the expression from the 5’ long terminal repeat 

(LTR) from the murine stem cell virus (MSCV) was considerably lower than from the 

cytomegalovirus (CMV) promoter used in the original pLL3.7 vector (not shown).  

Validation of Knock-Down/Rescue 

We set out to test for the ability of the 5’LTR promoter to rescue protein 

expression to near-endogenous levels, as well as to rescue a knock-down 

phenotype.  We used a previously characterized shRNA against the ß-subunit of the 

actin capping protein, CapZ (CP), which is effective against mouse and rat CP [16], 

but has two mismatches with human CP (Figure 1A).  We then generated a series of 

constructs incorporating either or both of the CP-shRNA (shCP) and/or MSCV-

5’LTR-driven human EGFP-CPß (Figure 2).  From these vectors we generated 

stable cell lines in Rat2 fibroblasts.  As previously reported, expression of the shCP 

resulted in the formation of increased numbers of filopodia [16], while the co-

expression of EGFP-CP was able to rescue the phenotype (Figure 1B).  A stable  
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Figure 1: CPß knock-down/rescue and CALI of EGFP-CP. 
 
A) Alignment between rat/mouse shRNA target sequence and the corresponding 

human sequence with two mismatches indicated in red.   

B) DIC images of an uninfected control Rat2 fibroblast (top) and Rat2 cells infected 

with only the shCP portion of the vector (middle) or the complete KDR construct 

(bottom).   
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C) Western blot of control Rat2 cells and a clonally derived Rat2 cell line infected 

with the KDR construct.  Alpha-tubulin is used as a loading control (bottom 

panel).   

D) DIC images of a Rat2 CP-KDR cell before and 3 min after CALI (left) and 

fluorescent images of the same cell before and immediately after CALI (right).  

Black circle indicates the area of irradiation.   

E) Time-lapse DIC images of the irradiated region of a CP-KDR cell (top) or a cell 

expressing EGFP-CP without knock-down of endogenous protein (bottom).   

F) Fluorescent image of EGFP-CP immediately after laser irradiation (left) and a 

pseudocolored image of actin filament barbed ends 3 min post-CALI.   

G) Graph showing the relative barbed end increase in the irradiated regions of Rat2 

cells expressing EGFP alone (n=12), CP-KDR (n=19), or EGFP-CP with no knock-

down of endogenous CP (n=7) 
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Figure 2: Schematic of lenti-lox vector design.   
The original lenti-lox vector, pLL3.7 is shown at the top.  Modifications to this vector 
included the generation of the 5.0 series of lenti-lox vectors where expression of the 
fluorescent rescue or marker protein is under control of the MSCV 5’LTR promoter.  In 
pLL 5.5 the EGFP was replaced with an internal ribosomal entry sequence (IRES) to 
allow simultaneous expression of multiple proteins from the same promoter.   
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clonal cell line generated from this knock-down/rescue (KDR) construct displays 

complete loss of endogenous CPß, while expressing near-physiological levels of the 

EGFP-tagged human CPß as detected by Western blot analysis (Figure 1C).  It is 

important to note that the antibody used to detect protein levels recognizes a region 

of CPß that is identical between human and rat; therefore similar band intensities 

reflect similar protein expression levels.  Because the expression levels of MSCV-

5’LTR-driven EGFP-CPß so closely matched endogenous CPß protein levels, we 

based all further expression constructs on the MSCV-5’LTR promoter.   

Based on our success with this construct, we also constructed a similar vector 

to facilitate use in other applications.  Specifically, a multi-cloning site was cloned 

upstream of EGFP, under the control of the MSCV-5’LTR promoter (pLL5.0, Figure 

2).  We used this approach to confirm the knock-down phenotype of Coro1B, again 

targeting rat/murine Coro1B specifically and rescuing with EGFP-tagged human 

Coro1B (hCoro1B-EGFP) which has four mismatches in the shRNA target sequence 

(Figure 3A).  Expression of shCoro1B alone results in a slower migratory speed, as 

well as a decrease in lamellipodial protrusion distance and duration (Figure 3B-D).  

These effects are rescued by the expression of hCoro1B-EGFP, indicating the 

functional replacement of rat Coro1B with GFP-tagged human Coro1B.   

This knock-down/rescue system has also been used to confirm the knock-

down phenotype of Coro2A [76] and is currently being used for other applications.  

To expand the versatility of this system, we have also replaced the EGFP tag with 

red fluorescent proteins (mCherry or TagRFP), and have generated a bi-cistronic 

vector with an internal ribosomal entry sequence (IRES) flanked by two  
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Figure 3: Coro1B knock-down/rescue and knock-down/marker. 
 
A) Alignment between rat/mouse shRNA target sequence and the corresponding 

human sequence with four mismatches indicated in red.   

B) Whole cell speed of uninfected Rat2 control cells or Rat2 cells expressing a non-

specific hairpin (shNS), the Coro1B target (KD-1B) or the Coro1B-KDR (rescue).  

Newman-Keuls multiple comparison test was used after one-way ANOVA to 

generate the p values (p < 0.001); error bars represent 95% CI.   

C) Method for kymography analysis. Minimal intensity projection of a 300-frame 1 s 

interval movie is presented on the right. Pixel intensities along a 1-pixel wide line 

(blue) were used to generate the kymograph presented in the blue box; a 

magnified region (outlined in green) is displayed on the right.  Red dashed lines 

indicate the parameters for one protrusion. Abbreviations are as follows: D, 

protrusion distance; P, protrusion persistence; and tanα , protrusion rate. 

D) Protrusion parameters of Rat2 cells expressing the Coronin 1B shRNA without or 

with coexpression of human Coronin 1B (rescue).  Sample kymographs are shown 

above each bar; red lines indicate persistence time for each protrusion.  Mean 

value is presented; error bars represent 95% CI.  Newman-Keuls multiple 

comparison test was used after one-way ANOVA to generate the p values (p < 
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0.001 compared to Rat2).   

E) Average actin retrograde flow rates in Rat2 cells coexpressing either Coronin 1B 

(KD-1B) or control (NS) shRNA and GFP-actin.  Representative kymographs 

showing retrograde actin flow are shown above (red bar represents 1.14 mm; 

white bar represents 30 s).  Box and whisker plots represent three 

measurements/cell for each condition.  Unpaired Student’s t test indicates a 

signification difference between samples (p < 0.0001).   
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multi-cloning sites to allow simultaneous expression of two proteins (pLL5.5, Figure 

2, discussed below and in Chapter 3).   

Other Applications for the Knock-Down/Rescue System 

Long-term loss of protein expression, via genetic loss or RNAi, can result in 

unknown and unanticipated compensations at the cellular level.  We have used the 

CP-KDR cells described above to acutely inactivate CP by using chromophore-

assisted laser inactivation (CALI).  In this case, EGFP serves as the chromophore 

and has the advantage of being genetically encoded and thus specifically and 

covalently linked to the target protein.  This eliminates the potential for non-specific 

labeling that other strategies suffer from [77, 78].  Following CALI of a ~23µm 

diameter area (approximately 1/6-1/4 of the cell area) using a 1.5mW/µm2 

illumination for 100ms, we observed numerous dynamic protrusions on the dorsal 

surface of the irradiated area (Figure 1D).  This effect was not observed in either 

cells irradiated over a smaller area at a higher intensity (~5µm, 6.1mW/µm2; not 

shown), or in cells retaining endogenous unlabeled protein (lacking the shCP 

component; Figure 1E).  The rapid turnover of CP that we observed with 

fluorescence recovery after photobleaching (FRAP; not shown) can account for 

these effects.  The rapid turnover and diffusion of non-inactivated EGFP-CP from 

outside the irradiated area could readily compensate for any acute loss of labeled 

and inactivated CP, as could the presence of endogenous unlabeled CP.  That the 

CALI effects were not observed in cells retaining endogenous CP also demonstrates 

that the increase in dorsal surface protrusions is a direct and specific result of loss of 

CP function rather than a non-specific effect of laser irradiation.  We also confirmed 
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that these dorsal structures contained increased amounts of F-actin as visualized by 

phalloidin staining (not shown).  The barbed end assay indicated the irradiated area 

contained twice as many barbed ends as the surrounding area of the cell (Figure 

1F), consistent with the localized uncapping of actin filaments following CALI.  

Importantly, no increase in barbed ends was observed in the presence of 

endogenous unlabeled CP (Figure 1G).   

In the above study, we demonstrated not only the utility of EGFP as a CALI 

fluorophore, but also the necessity of eliminating endogenous protein for the CALI 

effect to be observed.  Another context in which endogenous protein might interfere 

with the testing of (or compensate for) the tagged construct is during the 

characterization of mutant proteins.  Our knock-down/rescue system can also be 

used for this application.  For example, Coro1B contains a coiled-coil region that 

mediates homo-oligomerization.  Thus, the potential for endogenous protein to 

interact with and compensate for a mutant Coro1B could confound interpretation of 

the results.  To exclude this possibility, our KDR system was used to identify the 

actin-binding site on Coro1B as Arg30 and to characterize the role of actin binding in 

Coro1B function [79].  Specifically actin binding was found to be essential for 

Coro1B lamellipodial localization and is required to rescue defects in migration and 

lamellipodial dynamics exhibited by Coro1B knock-down [79].   

Marking Knock-down Cells with Other Fluorescent Proteins 

Having validated a knock-down phenotype, it is often useful to investigate 

specific cellular processes using fluorescently tagged proteins.  The lentiviral vector 

system described above can also be used to mark knock-down cells with a particular 
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protein of interest, simply by cloning the gene of interest into the MCS or replacing 

the EGFP with another fluorescently tagged protein.  As an initial test of this system, 

we replaced the EGFP with EGFP-actin (Figure 2), followed by cloning of different 

shRNA sequences including a non-specific sequence (shNS) that has no 

complimentary sequence in the mouse, rat or human genomes.  This allowed us not 

only to identify infected cells by the expression of EGFP-actin, but also to examine 

and compare actin dynamics in live cells.  Using this approach, we determined that 

cells expressing shCoro1B knock-down display decreased actin retrograde flow 

relative to the shNS control cells (Figure 3E).  We also used this system to examine 

the localization of slingshot 1L (SSH1L)-GFP in shCoro1B and shNS cells and found 

SSH1L localization to be perturbed in Coro1B knock-down cells compared to the 

shNS control cells (not shown).  This system has also been used to examine focal 

adhesion dynamics using GFP-paxillin in Coro2A knock-down cells [76] and other 

studies are ongoing.   

As demonstrated above, the design of this vector system allows for its use in 

a broad range of applications.  Further modifications of the vector have enabled the 

simultaneous expression of multiple fluorescent markers from the same promoter by 

using an internal ribosomal entry sequence (IRES) to create a bi-cistronic vector 

(pLL5.5, Figure 2). This co-expression system could also be used in cases where 

the rescue protein does not tolerate the presence of a large tag such as GFP by 

simultaneous expression of an untagged version of the protein of interest and GFP.  

This would allow infected cells to be marked by GFP expression without interfering 

with the function of the protein of interest.  Further studies utilizing these knock-
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down/rescue and knock-down/marker systems are ongoing.  An application for the 

bi-cistronic expression construct is described in the following chapter. 

Materials and Methods 

Materials 

Cells were from ATCC, restriction enzymes were from New England Biolabs, 

KOD DNA polymerase was from EMDbioscience.  All other materials were from 

Sigma unless otherwise indicated.   

Molecular Cloning 

The original lenti-lox vector, pLL3.7 is described in [75].  CPß was cloned 

from human first-strand cDNA using standard PCR techniques and cloned into 

pMSCV-EGFP.  To generate all pLL3.7-based vector derivatives, the ApaI and SacII 

sites in the pLL3.7 backbone were sequentially eliminated by enzyme digest 

followed by Klenow-mediated overhang fill-in and re-ligation.  Similar strategies were 

employed to generate pLL5.0 and pLL5.0-EGFP-CPß.  The MCS + EGFP for pLL5.0 

or EGFP-CPß for pLL5.0-EGFP-CPß were amplified from pML2-EGFP or pMSCV-

EGFP-CPß, respectively, using standard techniques.  The 5’LTR from pMSCV was 

amplified using primers that overlapped with either the MCS or EGFP to generate 

pLL5.0 or pLL5.0-EGFP-CPß respectively.  Complimentary sequences were spliced 

using splice-overlap extension, followed by PCR to generate either 5’LTR-MCS-

EGFP or 5’LTR-EGFP-CP.  These sequences were cloned into pLL3.7 as NotI/MfeI 

fragments using standard techniques to replace the CMV-EGFP sequence (excised 

with NotI/EcoRI) from pLL3.7.  Knock-down sequences were designed and cloned 
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as described previously [75] into either pLL3.7 or a red fluorescent protein version of 

pLL3.7, and sub-cloned into other pLL-based vectors as indicated, using standard 

techniques.  Coro1B and SSH1L were cloned into the MCS of pLL5.0 using standard 

techniques.  EGFP-actin was cloned as an EcoRI/ClaI(blunt) fragment into an 

EcoRI/SbfI(blunt) digested pLL5.0, replacing the EGFP.  The bi-cistronic lenti-lox 

vector, pLL-5.5, was generated by replacing the GFP in pLL-5.0 (described in [80]) 

with the internal ribosomal entry sequence (IRES) from pQC-XIX using standard 

PCR-based cloning techniques. 

Cell Culture, lentiviral infections and generation of clonal derivatives 

HEK-293FT and Rat2 cells were cultured as described previously [81].  

Lentiviral infections were carried out using standard protocols [75] and infected cell 

populations were FACS-sorted either for appropriate expression levels or to 

generate clonal derivatives, as indicated.  Clonal CP-KDR cell lines were screened 

for appropriate expression by Western blot analysis using anti-CPß (3F2.3; 1:500) 

and anti-tubulin (E7; 1:1000) from Developmental Studies Hybridoma Bank, 

University of Iowa.   

Immunofluoresence and Barbed-end Assays 

Cells were plated on acid-washed coverslips coated with FN (100 µg/mL) and 

allowed to adhere overnight.  Cells were fixed in ice-cold 4% paraformaldehyde for 

10 minutes, and stained as previously described [18].  For barbed-end assays, cells 

were plated on FN-coated MatTek dishes and CALI was performed as described 

below.  Without removing the dish from the microscope, cells were permeablized 
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with saponin buffer (20mM HEPES, 138 mM KCl, 4 mM MgCl2, 3 mM EDTA, 0.2 

mg/mL saponin, 1% BSA, 1 mM ATP, 3 µm phalloidin) for 1 min, washed once in 

saponin-free buffer, and labeled for 3 min with 0.4 µM Alexa-568- conjugated G-actin 

(Molecular Probes).  Cells were fixed with ice-cold 4% paraformaldehyde, washed 

with PBS and imaged immediately.   

Live Cell Imaging, Tracking, Kymography and Actin Retrograde Flow 

For live cell experiments, cells were adapted for several days to CO2-

independent imaging media: DME (Gibco) containing 4500 g/l glucose, 0.35 g/l 

NaHCO3 and 25 mM HEPES, supplemented with 5% Fetal Bovine Serum (Hyclone), 

100 units/ml penicillin, 100 mg/ml streptomycin and 292 mg/ml glutamine.  Cells 

were plated on FN-coated delta-T imaging dishes (Bioptechs) and allowed to adhere 

prior to imaging.  Migration of Rat2 fibroblasts was analyzed as described with slight 

modifications [18].  Cells were tracked and whole-cell speed calculated using 

Tracking Analysis software (Andor Bioimaging).  GFP negative cells were analyzed 

as an internal control.  For kymography, 300 images were captured at 1 s intervals 

and processed using ImageJ.  Kymographs were generated from protrusive areas of 

at least 5 cells per treatment and lamellipodial parameters were calculated as 

described [82].  Data were exported to Prism for statistical analysis.  For actin 

retrograde flow experiments, Rat2 cells infected pLL5.0-GFP-actin that contained 

either shCoro1B or shNS were used.  Images were captured at 1 s intervals using 

spinning disk confocal microscopy.  Kymographs were generated and analyzed as 

described above. 
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CALI protocol 

EGFP-CP CALI experiments were performed by using a Spectra Physics 

Stabilite 2017 argon ion laser (Spectra Physics Laser Incorporated, 488 nm line, 2 W 

of beam power at the laser head) focused onto a 23.4 µm diameter spot (1/e2 

diameter) through a X60 1.45 N.A. PlanApo TIRF objective (Olympus).  Irradiation 

was controlled with a fast Uniblitz shutter (Vincent Associates).  Laser power at the 

specimen plane dropped to 625 mW because of optical losses and was measured 

by placing the sensor of a laser power meter (Model FM with LS 10 head, Coherent 

Inc.) directly above the objective.  Irradiation time was 100 ms, resulting in a 62.5-mJ 

dose of energy for the CALI experiment.   
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CHAPTER 3: GOLGI POLARITY DOES NOT CORELATE 
WITH SPEED OR PERSISTENCE IN FREELY MIGRATING 

FIBROBLASTS 

Summary 

The polarization of the Golgi has long been thought to be important for cell 

migration.  Here we show that Rat2 cells at the edge of an artificial wound repolarize 

the Golgi relative to the nucleus to face the direction of migration into the wound.  

However, in the absence of cues from neighboring cells, individual cells do not 

display Golgi polarity relative to the direction in which they are moving.  Instead, the 

positioning of the Golgi relative to the nucleus remains relatively constant over time 

and does not reflect changes in the direction of migration.  Consistent with this 

observation, we observe only a slight bias in Golgi positioning to the front of the 

nucleus and this bias is not higher during periods of time when the cell is moving in a 

persistent manner.  Taken together, these data suggest that Golgi polarity is not a 

requirement for cell migration.   

Introduction 

Polarized cell migration is critical to many physiological processes including 

morphogenesis, immune response, and wound healing.  One model for directional 

migration is the scratch-wound assay, in which a strip of cells are cleared from 

confluent monolayer and the remaining cells migrate collectively to fill the gap.  In 
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this context, migration is accompanied by reorientation of the microtubule organizing 

center (MTOC), centrosome and Golgi apparatus, relative to the nucleus, to face the 

direction of migration (DOM).  In general, manipulations that interfere with 

reorientation of the MTOC/centrosome or the Golgi also block migration into the 

wound [61, 63, 64].  It has therefore been assumed that centrosome/Golgi 

polarization is a fundamental step in cell migration, although this has not been tested 

directly.   

Whether this holds true for cells outside the context of the wound edge is 

unclear.  Few studies have addressed the importance of MTOC/centrosome polarity 

for the migration of single cells.  In freely migrating PtK2 cells the centrosome did not 

reorient when the cell changed direction [74].  In Dictyostelium, the formation of a 

pseudopod precedes centrosome reorientation, and if this does not occur within 30 

seconds, the pseudopod collapses [73].  These data suggest that centrosome 

positioning may be important for maintenance but not establishment of directed 

migration in freely migrating cells.   

In this manuscript, we report for the first time the observation and analysis of 

Golgi position and morphology in live, freely migrating cells.  Fluorescently tagged 

Golgi and nuclear markers were expressed in Rat2 fibroblasts and their positions 

were tracked in live cells.  Contrary to the scratch-wound model, our data suggest 

that in freely migrating cells Golgi polarity is not a prerequisite for migration.   



 

 35 

Results and Discussion 

Polarity Sensor Validation 

To assess whether Golgi polarity is related to migratory parameters, we 

developed a method to track the position of the Golgi apparatus relative to the 

nucleus in live cells over time.  We designed a ‘Polarity Sensor’ to express 

fluorescent markers of both the nucleus (Histone H2B (H2B)-mCherry) and Golgi (ß-

1,4-glactosyl transferase (GT)-EGFP) (Figure 4A).  In Rat2 cells expressing this 

construct, GT-GFP co-localizes with the Golgi marker GM130 and H2B-mCherry co-

localizes with Hoechst staining (Figure 4B).  To confirm that Polarity Sensor 

expression did not affect polarization, we performed end-point scratch-wound 

assays and assessed Golgi polarity after 4 hours (Figure 4C, D).  Cells were 

considered polarized if the centroid of the Golgi was within ±60° of the front of the 

nucleus (white lines, Figure 4C).  We observed no significant difference in Golgi 

polarization between control cells and Polarity Sensor cells (77% vs. 71% 

respectively, p > 0.05, Figure 4D).  Previous studies demonstrated that MTOC, and 

presumably Golgi polarity requires intact microtubules, and that low levels of 

nocodazole decreased MTOC reorientation [29, 61].  We observed a similar 

decrease in Golgi polarization in both cell lines when treated with low levels of 

nocodazole (50% vs. 51%, p>0.05, Figure 4D).   

Heterogeneous Golgi Morphology in Sparsely Plated Cells 

Polarity Sensor cells plated under low-density conditions for single-cell 

migration assays display a more heterogeneous morphology than cells in the  
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Figure 4: Characterization of the Polarity Sensor. 
 
A) Polarity Sensor design.  The Golgi is marked with the first 81 amino acids of ß-1,4-

Glactosyl Transferase (GT) fused to EGFP.  The nucleus is marked with histone 

H2B (H2B) fused to mCherry.  These sequences flank an internal ribosomal entry 

sequence (IRES) to allow simultaneous expression from a single promoter. 

B) Rat2 cells expressing the polarity sensor were fixed and stained with anti-GM130 

and Hoechst.  GT-GFP (green at right) and the Golgi marker GM130 (magenta) are 

co-localized, as are H2B-mCherry (red) and the nuclear stain, Hoechst (blue). 

C) Representative images of cells in the scratch-wound assay treated with either 

DMSO (control) or nocodazole (0.1µg/mL).  Uninfected Rat2 cells are labeled with 

anti-GM130 (green) and Hoëchst (blue) to mark the Golgi and nucleus, 

respectively.  The wound edge is up, the white lines indicate ±60° facing the 

wound edge, considered polarized.  Scale bar = 10 µm. 

D) Quantification of results in (B).  Results are from at least 100 cells per treatment 

from each of 3 independent experiments.  Data were analyzed using one-way 

ANOVA and Turkey’s post-test.  Error bars = s.e.m.; dashed line indicates random 

Golgi positioning. 
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scratch-wound assay.  We observed 7 categories of Golgi morphology (Figure 5A) 

and quantified the relative abundance of each type under different plating conditions 

(Figure 5B).  For two categories, no clear Golgi centroid could be determined and 

these cells were excluded from analysis.   

The Golgi Reorients to Face the Wound Edge in a Live-Cell Scratch-Wound Assay 

Polarity Sensor cells were observed live in a scratch-wound assay using time-

lapse microscopy (Figure 6A).  Nuclear and Golgi positions were tracked by hand, 

as were cell positions because cell borders could not be unambiguously determined.  

From these three tracks, we calculated the Nuclear-Golgi Axis (NGA) and the 

current DOM at every time-point (Figure 6B).  We plotted the angles of the current 

DOM and NGA vectors over time (Figure 6C).  As expected, the NGA is initially 

random relative to the long-term DOM, but over time the Golgi becomes oriented to 

face into the wound.  This trend was evident when we calculated the average 

absolute value of the NGA (|NGA|) for the population over time (Figure 6D).  We also 

noticed that the current DOM fluctuated substantially despite the fact that this type of 

behavior was not evident in the time-lapse images.  This likely reflects the fact that 

cells are moving slowly (<5 pixels per frame or <0.3 µm/min), and slight inaccuracies 

in tracking could result in significant fluctuations in the calculated current DOM 

(addressed below).  

Freely Migrating Cells Have Rapid Changes in Direction Despite Constant Nucleus-
Golgi Positioning 

We next examined Golgi positioning in sparsely plated, freely migrating cells 

(Figure 6E).  Cells underwent highly saltatory movement, characterized by periods of 
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Figure 5: Golgi morphology is heterogeneous. 
 
A) Representative images of different Golgi morphologies observed in sparsely 

plated cells.  Scale bar = 10 µm. 

B) Quantification of results in (A).  Two categories of Golgi morphology, indicated by 

asterisks, were excluded from subsequent analyses because the Golgi position 

could not be determined. 
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Figure 6: The Nuclear-Golgi Axis during migration.   
 
A) Representative time-lapse images of Rat2 cells expressing the polarity sensor in 

the scratch-wound assay.  The arrow indicates the cell analyzed in panel (C). 

B) Schematic diagram of axes used for analysis.  The cell track is represented by the 

black line, from t=0 to t=end.  These two points define the long-term DOM 

(turquoise arrow).  The current DOM at t=n is defined by the position of the cell 

centroid at t=(n-1) and t=(n+1) (blue arrow).  The NGA is the vector defined by the 

current nuclear and Golgi positions (red arrow). 

C) Current DOM and NGA relative to the long-term DOM over time for the 

representative cell indicated in panel (A). 

D) The average absolute value of NGA relative to the long-term DOM for multiple 

cells (n~60) in the wound healing assay over time.  Error bars = s.e.m. 

E) Time-lapse images of a freely migrating cell expressing the polarity sensor. 
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F) Current DOM and NGA of cell in panel (E) relative to the long-term DOM over time.  

In this case, DOM was calculated from the hand-outlined track. 
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 directionally persistent migration interspersed with periods of non-motility, or 

pauses, often associated with changes in direction.  To minimize tracking 

inaccuracies revealed by our scratch-wound experiments (further investigated in 

Figure 7), we outlined cells in every frame and determined the mathematical centroid 

of the cell to generate more accurate cell tracks.  We plotted the current DOM and 

the NGA over time (Figure 6F).   

We were surprised to find that the NGA did not appear to align with either the 

current or long-term DOM.  Rather Golgi positioning relative to the nucleus remains 

fairly constant over time, suggesting Golgi positioning is independent of the DOM in 

freely migrating cells.  Changes in NGA are relatively slow, similar to a processing 

gyroscope.  This ‘gyroscope-like’ behavior suggests that cells have the ability to 

maintain internal organization independent of peripheral structures such as the 

leading edge. 

To investigate Golgi positioning during migration in a more quantitative way, 

we developed a metric (θ) of the relationship between the NGA and either the 

current DOM (θC) or the long term DOM (θLT) (Figure 8A).  In either instance, a lower 

θ indicates that the NGA is more aligned with the specified DOM.  For the scratch-

wound assay, we used θLT since cells in this context were moving too slowly to 

accurately determine θC, but maintained constant direction for the duration of the 

assay.  During wound closure, the Golgi was distributed within ±60° of the front of 

the nucleus 68.5% of the time (Figure 8B).  This result is in general agreement with 

results from traditional end-point scratch-wound assays (Figure 4C).   
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Figure 7: The direction of migration cannot be accurately determined by hand 
tracking when cells are moving slowly. 

 

A) DOM was calculated from cell centroids determined by two different methods.  

Mathematical centroids were determined by outlining cells and using the measure 

function in ImageJ.  Centroids of the same cells were also assessed by hand 

tracking.  DOM was calculated for each tracking method and plotted over time for 

the cell in Fig. 2/3.  There was general agreement in the current DOM between the 

two methods.  

B) Difference in calculated DOM as a function of current cell speed.  The DOM was 

determined for both data sets and the angle between these two directions was 
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plotted as a function of the distance traveled between two frames.  At speeds 

below 1 µm/minute, hand tracking is unreliable for determining the direction of 

migration.  Results are from 10 cells. 
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Figure 8: Nucleus-Golgi polarity is not correlated with the direction of migration in 
freely migrating cells. 

 
A) Schematic for calculating θ .  θLT is used for cells in the scratch wound assay and 

θC is used for freely migrating cells.  The current DOM (and θC) was calculated 

from cell centroids determined in two ways, as described in the text and Fig. S1. 

B) The distribution of θ  for cells at the wound edge or in freely migrating cells.  Red 

lines indicate ±60° facing the DOM, and the percentage of data that fall within 

these boundaries are indicated above.  Data were generated from at least three 

independent experiments with at least 100 cells total for each condition, tracked 

over at least 5 hours. 
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C) θ  as a function of current cell speed.  Current cell speed was calculated using 

tracks from outlined cells over 10 minutes from (t-1) to (t+1). 

D) RunD/T was calculated as a sliding window using cell centroids from time (t-2), (t-

1), (t), (t+1) and (t+2).  D/T is defined as the net path length (D) divided by the total 

path length (T). 

E) θ  and RunD/T for the cell shown in Fig. 2E over time.  RunD/T was calculated from 

the hand-outlined track of this cell. 

F) Percentage of times when the Golgi is oriented (θ  < 60°), during times when 

RunD/T is high (≥ 0.9), medium (0.9 > RunD/T > 0.7) or low (< 0.7) in freely 

migrating cells.  RunD/T was calculated from the hand-tracked positions and 

instances when cells were deemed too slow for accurate tracking were eliminated 

(see Fig. S1). The dashed line indicates random Golgi positioning.  Error bars = 

s.e.m.  Data were generated from four independent experiments with at least 100 

cells total. 
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The frequent directional changes of freely migrating cells necessitated use of 

θC.  Therefore, we calculated θC using either the accurate tracks from 10 outlined 

cells, or a larger cohort of hand tracked cells that were filtered to eliminate all 

instances when the cell was moving too slowly to track accurately (Figure 7B), and 

found that the Golgi was located in front of the nucleus approximately 45% of the 

time using either tracking method (Figure 8B).  Together, these data indicate that 

freely migrating cells have less polarized Golgi than cells migrating into a wound.  

Golgi Polarity is not Correlated With Cell Speed or Persistence 

We examined the relationship between speed and θC for freely migrating cells 

(Figure 8C).  In general, we see no correlation between cell speed and Golgi 

polarity.  Since freely migrating fibroblasts are saltatory, we developed a new metric 

to monitor persistence over short periods by modifying a standard directionality 

measurement, D/T, which is normally calculated over the course of an entire 

experiment.  Instead, we calculated D/T in a sliding window over 20 minutes, which 

we called RunD/T (Figure 8D).  We examined the relationships between θC and 

RunD/T over the course of a typical experiment (Figure 8E) and observed no 

obvious relationship between these parameters (compare 120-180 min to 210-270 

min, Figure 8E).  To generalize this observation across multiple cells, we compared 

the fraction of time when a cell had an oriented Golgi (i.e. θC between ±60°) across 

three categories of RunD/T and found that Golgi polarization was equivalent (Figure 

8F).  This indicates that Golgi polarization is not correlated with speed or directional 

persistence in freely migrating cells. 
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Cells at the wound edge polarize the Golgi to face the direction of migration, 

yet freely migrating cells do not.  Several factors present in the wound edge 

environment may account for this.  First, cells at the wound edge can form junctional 

complexes with neighboring cells on all sides except the one facing into the wound.  

Recent evidence has demonstrated the importance of Cadherins in regulating 

MTOC/Golgi polarity at the wound edge [83-85].  Freely migrating cells lack 

junctional input, which results in an uncoupling of Golgi-nuclear positioning from 

peripheral events.  Second, it has been shown that single cells will adopt specific 

orientation of the centrosome, Golgi and nucleus, without migrating, when plated on 

geometrically constrained substrates [86], suggesting that geometrical constrains 

can also impinge on Golgi polarity.  The wound edge may provide the spatial and 

signaling cues that can drive MTOC/Golgi polarity - cues that are absent during 

single cell migration.  The factor(s) responsible for determining the direction of 

migration in freely migrating cells have yet to be fully elucidated.   

Materials and Methods 

Materials 

All materials were from Sigma unless otherwise indicated.   

Generation of Polarity Sensor Cells 

The polarity sensor vector was created in four basic steps.  Primer sequences 

for all cloning steps are available on request.  First, a bi-cistronic lenti-lox vector, 

pLL-5.5, was generated by replacing the GFP in pLL-5.0 (described in [80]) with the 

internal ribosomal entry sequence (IRES) from pQC-XIX using standard PCR-based 
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cloning techniques.  Second, the Golgi-GFP marker was generated as follows.  The 

sequence corresponding to the first 81 amino acids of human ß 1,4-

galactosyltransferase (ß1,4-GT) was PCR-amplified from human first-strand DNA 

and cloned into pML2-EGFP(N1) as an EcoRI/BamHI fragment by standard 

techniques.  The ß1,4-GT-GFP fragment was subcloned into pLL-5.5 as an 

EcoRI/NotI(blunt) fragment upstream of the IRES to generate pLL-5.5-GIX.  Third, 

the nuclear-mCherry marker was generated as follows.  Histone-H2B was amplified 

from mouse first strand DNA and cloned into pML2-mCherry(N1) as a SacII/SalI 

fragment.  The Histone-H2B-mCherry fragment was PCR-amplified and cloned into 

the blunted pLL-5.5 vector downstream of the IRES to generate pLL-5.5-XIH.  To 

create the final vector, pLL-5.5-GIH, we made use of the two internal PciI sites in 

pLL-5.5 (one in the IRES, another in the vector backbone) by ligating together two 

PciI fragments from pLL-5.5-GIX and pLL-5.5-XIH containing either ß1,4-GT-GFP or 

Histone-H2B-mCherry, respectively.  Lentiviral infections of Rat2 fibroblasts were 

carried out as previously described [75, 82].  Individual Rat2 cells infected with pLL-

5.5-GIH were cloned by fluorescence-activated cell-sorting and screened for 

appropriate levels of expression. 

Cell Culture and Imaging Conditions 

Cells (ATCC) were maintained as previously described [82].  For live cell 

experiments, cells were adapted for several days to CO2-independent imaging 

media: DME (Gibco) containing 4500 g/l glucose, 0.35 g/l NaHCO3 and 25 mM 

HEPES, supplemented with 5% Fetal Bovine Serum (Hyclone), 100 units/ml 

penicillin, 100 mg/ml streptomycin and 292 mg/ml glutamine.  For live-cell scratch-
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wound assays, cells were plated on laminin (LN)-coated (50 µg/ml) delta-T dishes 

(Bioptechs) at a density of 4.2x105 cells/dish.  The following day, media was 

replaced with serum-free media containing 0.5% fatty acid-free BSA for 16-18hrs 

prior to assays.  Confluent monolayers were wounded using a 200µl pipet tip, 

washed 2X with PBS and allowed to recover in imaging media containing 5% FBS 

for 45 minutes prior to imaging.  For single-cell migration, cells were adapted and 

plated as above but at a density of 9.5x103 cells/dish and allowed to adhere 

overnight prior to imaging.  For all live cell imaging, media was supplemented with 6-

Hydroxy-2,5,7,8- tetramethylchroman-2-carboxylic acid (0.1mM), Ascorbate (0.5mM) 

and Catalase (10µg/ml).   

End-Point Assays and Immunofluorescence 

Cells were plated at the appropriate density on acid-washed LN-coated 

coverslips and allowed to adhere overnight.  For nocodazole treatment, cells were 

pre-treated with 0.1µg/ml nocodazole for 1hr prior to wounding.  Scratch assays 

were performed as above, and allowed to recover for 4 hours in serum-containing 

media (+/- nocodazole) prior to fixation.  Cells were fixed as described [80] and 

stained with Hoechst (1:10 000, Invitrogen) and anti-GM130 (1:500, BD 

Transduction Laboratories) using standard techniques.   

Image Acquisition and Analysis 

Images were captured in Slidebook (Olympus) using an IX-81 Olympus 

inverted microscope with a 20X 0.75NA dry objective, a CCD camera (C4742-80-

12AG, Hamamatsu) and an automated X-Y stage.  Images were exported as tiff files 
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and analyzed using ImageJ.  X-Y coordinates were exported to Excel (Microsoft) for 

calculations and graphing.  Rose plots were generated in Aabel (Gigawiz, Ltd.) and 

statistical analysis was done in PRISM (Graph Pad, Inc.) 
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CHAPTER 4: GOLGI POSITIONING AND LAMELLIPODIAL 
DYNAMICS 

Summary 

Protrusion of the leading edge is an important factor in migration and requires 

delivery of signaling molecules.  One possible source of the membrane and 

signaling complexes required for leading edge protrusion is the Golgi.  We tested 

whether protrusion dynamics were related to the DOM or NGA.  We find protrusion 

dynamics to be similar around the perimeter of the cell, regardless of Golgi 

positioning or DOM.  This suggests that lamellipodial protrusion is not influenced by 

Golgi positioning and is not related to the DOM.   

Introduction 

Leading edge protrusion is thought to require the localized delivery of PM 

components, either through endosome recycling or through anterograde trafficking 

from the Golgi and trans-Golgi network (TGN) to the PM.  In support of this, it was 

shown that Golgi-derived vesicles are transported farther from the Golgi and 

preferentially fuse close to the leading edge in cells at the wound edge compared 

with stationary confluent NRK fibroblasts [87].  Blocking TGN to PM transport by the 

expression of a kinase-dead protein kinase B (PKB) inhibits retrograde flow of 

surface particles, ruffling, and migration [88].  Lamellipodial dynamics in kinase-dead 

PKB expressing cells can be rescued by the expression of constitutively active Rac 
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[88], suggesting that Golgi-derived vesicles are not essential to provide bulk 

membrane for protrusion, however vesicle cargo could contain essential signaling 

complexes that might include Rac activators.   

Combined with the observation that centrosome (and presumably Golgi) 

positioning is required for pseudopod stabilization in Dictyostelium one might 

speculate that the targeting of Golgi-derived vesicles to the leading edge provides 

signaling complexes that would help to establish or maintain “front-ness”.  If this is 

the case, and post-Golgi vesicles do fuse preferentially to the front of the cell, we 

would expect to see protrusion dynamics affected by proximity to the Golgi.  To 

determine whether this is true, we compared lamellipodial dynamics relative to the 

NGA and the DOM.   

Results and Discussion 

We examined lamellipodial dynamics in freely migrating Rat2 cells expressing 

the polarity sensor as described in Chapter 3.  Lines for kymographs were drawn 

and classified as to whether they fell within ±30° of a specified axis (the long- or 

short-term DOM or the NGA, see Figure 9A).  Lines that fell outside of these regions 

were used as a control.  In general we saw minimal differences in the duration, 

distance, or rate of lamellipodial protrusions along the NGA relative to other regions 

(Figure 9B).  There were two exceptions to this.  First, the protrusion duration was 

moderately but significantly shorter along the NGA than in the control region.  The 

significance of these results is unclear.  If these data relect a true difference in 

protrusion duration, then Golgi positioning could serve to dampen lamellipodial 

dynamics.  It is also possible that, although statistically significant, practically  
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Figure 9: Lamellipodial dynamics relative to the NGA or DOM. 
 
A) Representative image of a Rat2 cell expressing the polarity sensor with lines 

drawn for kymographs (red).  Colored arrows represent the indicated axes, 

colored lines around the periphery indicate which kymograph lines fall within ±30° 

of the corresponding axis. 

B) Quantification of the duration, distance and rates of protrusions along each axis.  

Data were generated from seven independent experiments with at least 18 cells 

total.  The number of protrusion events analyzed for each category was at least 

200.  Data were analyzed using one-way ANOVA and Turkey’s post-test.  Except 

where indicated, all pair-wise comparisons were not significant (p > 0.05).  Error 

bars = s.e.m.  Asterisk indicates a significant difference (p < 0.01) from the other 

three regions.   
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speaking these differences are not substantial.  In either case, Golgi positioning 

does not seem to increase lamellipodial dynamics.   

The second significant result we obtained was that the protrusion rate was 

slightly but significantly slower in the control regions when compared with other 

regions.  Again, it is not clear whether this represents a true difference in protrusion 

rate.  If so, the extent to which this apparently negligible difference would contribute 

to net protrusive activity and migration should be investigated further.  Regardless of 

whether differences in protrusion dynamics contribute to the DOM, a number of 

other factors that we have not accounted for could also influence the DOM.  One 

possibility that we have not accounted for is the frequency of protrusion events, 

which could be higher in the DOM.  Alternately, the dynamics or frequency of 

retraction events could be decreased in the DOM, leading to net protrusion.  Finally, 

dynamics of contraction and retraction away from the leading edge (for example, 

retraction at the rear or the collapse of peripheral lamellipodia) could play a 

significant role in determining the DOM.  Future studies could address these issues.   

Materials and Methods 

Materials and Cell Culture 

All materials, cell lines and cell culture were as described in Chapter 3.   

Imaging and Kymography 

Red and green fluorescent images were taken at the beginning of imaging to 

determine nuclear and Golgi positions and calculate the NGA as described in 

Chapter 3.  Movies for kymographs were generated by time-lapse imaging using 
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phase-contrast illumination at the rate of 1 image/second for 200 seconds.  Cells 

were then imaged every 5 minutes for 25 minutes to determine the short-term (0-5 

minutes) and long term (0-25 minutes) DOM.  Maximum intensity projections were 

generated to aid in kymograph generation and analysis.  Kymographs were 

classified as to whether they fell within 60° (±30°) of a specified axis (short- or long-

term DOM, or NGA).  Once kymographs were generated and classified, the 

distance, rate and persistence of protrusion were determined as described in 

Chapter 2.  Data were exported to Excel (Microsoft) for graphical presentation and 

Prism (Graph Pad, Inc.) for statistical analysis.   
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CHAPTER 5: CONCLUSIONS AND FUTURE PROSPECTS 

We have thus far described the development of a series of lentiviral-based 

expression constructs that enable the simultaneous knockdown of a target protein 

with the expression of either a rescue component, or a fluorescent marker to identify 

transduced cells.  This system has allowed us to demonstrate not only the use of 

EGFP as a CALI chromophore, but also the necessity of eliminating endogenous 

labeled protein to observe the CALI effect.  Furthermore, we have illustrated the 

utility of this system in analyzing the role of Coro1B in actin retrograde flow and 

SSH1L localization.  Based on these results, current and ongoing studies in our lab 

utilizing this system, and the study on Golgi positioning discussed below, we 

anticipate its use for a broad range of applications in the future.   

Using the bi-cistronic lenti-viral expression system to fluorescently tag the 

nucleus and Golgi, we have examined Golgi positioning relative to the nucleus in 

both freely migrating cells and cells migrating into an experimental wound.  We 

found that in the context of the wound edge, the Golgi is reliably polarized to the 

front of the nucleus, as observed in other cell types [57, 59, 72, 89, 90].  In freely 

migrating cells however, the Golgi is much more randomly distributed, demonstrating 

that Golgi polarization is not a requirement for cell migration in this context.  

Furthermore, there does not seem to be a relationship between Golgi positioning 

and lamellipodial protrusion dynamics.  Unfortunately, these results preclude the 
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possibility of testing the role(s) of various factors in polarity during random migration.  

On the other hand, these results do raise several interesting and more general 

issues with regard to Golgi positioning and morphology during random cell migration.   

One issue worth considering is the morphology of the Golgi apparatus in 

different contexts.  Although we observed a much more compact and homogeneous 

Golgi in confluent cells and those at the wound edge than in sparsely plated cells, 

the significance of this is unclear.  Danson et al. found that RNAi against the actin 

regulator WAVE2 inhibited Golgi polarization at the wound edge and noted that the 

failure to polarize was accompanied by a ‘fragmented Golgi’ that resembled the 

Golgi of cells distant from the wound edge [89].  The authors suggest that this 

fragmentation and failure to polarize could be caused by disruption of the 

polarization signal to the Golgi.  Although we do not see differences in Golgi 

morphology in Rat2 cells distant from the wound edge, we do find similar 

heterogeneous Golgi morphologies in freely migrating cells.  It is possible that the 

signaling cascade involved in generating a compact Golgi morphology is not 

activated in freely migrating cells.  Whether this would occur as a result of cell-cell 

signaling or geometric constraints is unknown.  To address this, cells could be plated 

on small adhesive islands to provide geometric constraints in the absence of cell-cell 

contact.  It would also be interesting to examine specific regulators of Golgi 

morphology and to determine the effect of their activities on Golgi behavior during 

different types of migration, or perhaps even their effects on migration itself.  

Candidates include members of the class I and II ADP-ribosylation factor (Arf) family 

of proteins (Arf1, Arf2, Arf3, Arf4 and Arf5), members of the ARAP (Arf GAP, Rho 
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GAP, ankyrin repeat, pleckstrin homology) and ASAP (Arf GAP, Src homology, 

ankyrin repeat, pleckstrin homology) families of Arf regulators, and other regulators 

of actin dynamics at the Golgi such as N-WASP, spectrin and cortactin (reviewed in 

[91]), or various combinations of these.  Of particular interest would be an Arf1/Arf4 

double knock-down, as this combination was shown to cause Golgi dispersal in 

HeLa cells [92].  The effects of this treatment on cellular migration are unknown but 

warrant further investigation.   

Another issue worth considering is the effect of Golgi positioning on 

lamellipodial dynamics.  Although potential relationships between Golgi positioning 

and lamellipodial dynamics were only partially characterized, we find no obvious 

relationship between Golgi positioning or the DOM and protrusion dynamics such as 

rate, distance and duration.  Clearly, for cell migration to occur, the net protrusive 

activity (i.e. the balance between protrusion and retraction) must be greater towards 

the DOM.  The fact that our observations show minimal differences in protrusive 

activity suggests either that these small differences can account for migration, or that 

some other migratory parameters (protrusion frequency or retraction dynamics) are 

more important in determining the DOM.  This warrants further investigation.  

Because it was shown that post-Golgi vesicles fuse preferentially to the front of 

wound-edge cells [87], it would be interesting to see if Golgi positioning affects this.  

This should also be examined in freely migrating cells to determine whether post-

Golgi vesicles fuse preferentially in the DOM or relative to Golgi positioning.  Another 

possibility is that endosome dynamics are different around the cell periphery and 

contribute to migration.  For example, endocytosis has been shown to mediate focal 
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adhesion turnover at the cell rear (reviewed in [93]) while lamellipodial formation and 

ruffling and the activation of Rac also depend on endosomal proteins [94].  It would 

therefore be informative to track endosome dynamics in migrating cells using GFP-

tagged Rab5 to determine whether endosome dynamics correlate with either focal 

adhesion turnover or lamellipodial dynamics and thus the direction of migration.  

Likewise it would also be interesting to block endocytosis (via knock-down of 

dynamin, or various combinations of Arfs) and examine the effects on different types 

of migration.   

The greatest question arising from our studies is why Golgi polarity is so 

different between the scratch-wound assay and freely migrating cells.  Many factors 

have been implicated in Golgi polarity during migration at the wound edge.  Cdc42 

and PAK are required to restrict protrusions to the front of the cell [66].  Intact MTs 

are required to maintain MTOC positioning and Golgi morphology (reviewed in [62]).  

Actin retrograde flow and contractility is required for nuclear positioning, particularly 

in rearward movement of the nucleus [63].  All of these factors should be functioning 

and contribute to Golgi polarity in freely migrating cells; however, this is not the case.  

What is it that sets freely migrating cells apart from cells at the wound edge?  In cells 

at the wound edge, the protrusion and contractility that define the front and back of 

the cell tend to be both sustained and spatially continuous, whereas in freely 

migrating cells they tend to be transient and spatially discontinuous.  It is important 

to keep in mind that the front and back of cells at the wound edge are defined by the 

wound edge itself; that is, in cells at the wound edge, polarity may be externally 

imposed.   
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One of the external factors that could contribute to polarity at the wound edge 

is the physical constraint imposed by neighboring cells.  This constraint occurs on all 

sides except the one facing the wound.  It was demonstrated that cells adopt a 

specific orientation and positioning of the centrosome, Golgi, and nucleus when 

plated on geometrically constrained 2-dimensional surfaces [86].  Under these 

conditions, the cells were unable to migrate yet the centrosome and Golgi were 

positioned at the centre of the cell and the nucleus was positioned away from the 

longest adhesive edge.  Further support for the notion that physical constraints can 

drive polarity comes from two studies demonstrating that the topography of the 

extracellular environment can dictate Golgi polarity [95, 96].  These studies showed 

that cells plated on narrow stripes of adhesive material adopt a polarized 

morphology with the Golgi behind the nucleus.  As cells at the wound edge could be 

spatially restricted in a similar manner, these observations suggest that the physical 

constraints at the rear of wound edge cells can contribute to Golgi polarity.   

A second external factor present at the wound edge but absent from single 

cells is signaling input from cell-cell contacts or junctions.  The cadherin family of 

junctional proteins are homotypic single-pass transmembrane proteins involved in 

the formation of adherens junctions and in mediating membrane associations 

between adjacent cells (reviewed in [97]).  Loss of E-cadherin from NRK-52E 

epithelial cells causes random centrosome polarity in wound edge cells without 

affecting migration [84].  Similarly, loss of N-cadherin from myofibroblasts also 

causes random Golgi polarity at the wound edge, although loss of N-cadherin also 

impinges on wound-edge migration [83].  Regardless, cadherin-based signaling 
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input from neighboring cells seems to be important for wound edge polarity.  As the 

cadherins are linked to the actin cytoskeleton via the catenins this role in polarity 

could be mediated by influencing actin dynamics at sites of contact.  Interestingly, a 

recent study demonstrated that the nucleus and centrosome were drawn away from 

the cell centroid towards sites of cadherin signaling in an actin-dependent manner 

[85].  Junctions could also have a secondary role in migration and polarity at the 

wound edge; maintaining junctions could restrain the rapid and highly saltatory type 

of migration observed in freely migrating cells.  We do observe that cells at the 

wound edge move significantly more slowly than individual cells (not shown).  

However, the removal of ECM proteins during the scratching process could account 

for this.  One way to examine this is to compare the migration rates of freely 

migrating cells and those at the wound edge when plated on either LN or uncoated 

glass.  If the slow migration rates observed at the wound edge are comparable to 

freely migrating cells plated on uncoated glass we would expect that the slow 

migration rate at the wound edge is due to the lack of ECM proteins required for 

adhesion.  However, if freely migrating cells migrate at the same rate on untreated 

glass as they do on LN, the potential removal of ECM from the wound does not likely 

contribute to the slower speed observed in cells at the wound edge.  In either case, 

cadherin-based junctions likely play a role in mediating the Golgi polarity seen in 

wound edge cells but presumably could not contribute to polarity in freely migrating 

cells.   

One model for how cells at the wound edge become polarized is described as 

follows: cells experience asymmetric cell-cell contact, leading to asymmetrical 
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intracellular signaling events through physical constraints, cadherin-based signaling, 

or both.  Because cell-cell contact is maintained during migration – the back and 

sides are defined by cell-cell contact for indefinite periods of time – asymmetries in 

signaling are both spatially and temporally continuous.  The constant reinforcement 

of ‘front’ and ‘back’ could allow the events at the cell periphery to affect or become 

coupled to the internal organization of the cell.   

In contrast, freely migrating cells establish transient asymmetries in 

intracellular signaling, resulting in localized areas of protrusion and adhesion.  

Signaling is not only discontinuous around the periphery of the cell, but is perhaps 

not sustained for sufficient periods to affect positioning of the nucleus, centrosome 

or Golgi.  If this model is correct, we would expect to see that cells undergoing 

persistent chemotaxis in which front/back signaling is constantly reinforced would 

also couple peripheral events to internal organization.   

We have performed preliminary experiments to address Golgi positioning 

during chemotaxis (see Appendix).  Unfortunately we were able to achieve 

chemotaxis only once, and in this instance DIC image quality was so poor as to 

render cell tracking impossible.  We therefore used nuclear positions to generate cell 

tracks and calculate D/T and θ.  Chemotaxis was indeed observed, as 36/43 cells 

migrated towards the chemotactic source.  Based on the observed cell paths and the 

fact that the D/T was only marginally increased relative to freely migrating cells (not 

shown), the cells in this experiment were likely undergoing biased random walk 

chemotaxis rather than persistent chemotaxis [69].  Using nuclear positioning to 

calculate the DOM and θC, we found that Golgi polarity was comparable to that 
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observed in freely migrating cells, with the Golgi positioned to the front of the 

nucleus 47% of the time.  Additionally, we did not observe any bias in Golgi 

positioning towards the chemotactic source, with the Golgi positioned up-gradient 

from the nucleus only 44% of the time.  Together this suggests that biased random 

walk chemotaxis does not induce Golgi polarity.  However, we did observe that the 

Golgi polarization was moderately increased along the long-term DOM, with the 

Golgi positioned to the front of the nucleus 53% of the time.  The significance of this 

is not immediately apparent.  As the majority of cells are migrating towards the 

chemotactic source, we would also expect to see a bias in Golgi positioning relative 

to the gradient, which we do not.  However, based on the cell tracks, even cells that 

do exhibit net migration towards the source often do not migrate parallel to the 

gradient, even over the long term.  It is possible that chemotaxing cells become 

elongated along the long-term DOM, which in turn could bias Golgi positioning to 

either the front or rear of the nucleus based purely on cell geometry.  It was shown 

previously that cells migrating on 1D substrates also became elongated, however in 

this context the Golgi was positioned preferentially to the rear of the nucleus [95].  

The extent to which elongation occurs in chemotaxing cells, and how or whether this 

contributes to Golgi positioning is not clear and requires further investigation.  

Ongoing efforts aim to address this.   
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APPENDIX 

Chemotaxis in a Gradient of Serum 

 

 

Figure 10: Chemotaxis in a gradient of serum.   

 
A) Cell tracks of 43 cells migrating in the µ-slide chemotaxis chamber in a gradient of 

serum.  

B) The distribution of θ  for cells in the chemotaxis chamber.  The current and long-

term DOM was calculated using nuclear positions rather than cell positions.  The 

gradient direction was used as a reference instead of the DOM for θ  Gradient.   
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Materials and Methods 

Cells were cultured as described in Chapter 3.  Cells were plated on LN-

coated (50 µg/ml, 37°C 1hr) ibidi µ-slide chemotaxis chambers (Integrated 

BioDiagnostics) as per the manufactures directions, and allowed to adhere for 2 

hours in serum containing media.  Media was then replaced and the chambers filled 

with serum free media and cells were serum starved for ~6 hours.  Serum was 

introduced to the source chamber as per the manufacturers directions to a final 

concentration of 10% serum in the source chamber.  Imaging was initiated 20 

minutes after the introduction of serum as described in Chapter 3.  Nucleus and 

Golgi positions were tracked essentially as described in Chapter 3.  DIC image 

quality was poor, preventing tracking of cell positions.  Theta was therefore 

calculated as described in Chapter 3 using nuclear positions in place of cell centroid 

positions.   
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