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ABSTRACT

HYUNSOON CHO: BAYESIAN INFLUENCE DIAGNOSTIC

METHODS FOR PARAMETRIC REGRESSION MODELS.

(Under the direction of Dr. Joseph G. Ibrahim and Dr. Hongtu Zhu.)

The goals of assessing the influence of individual observations in statistical analy-

sis are not only to identify influential observations such as outliers and high leverage

points, but also to determine the importance of each observation in the analysis for a

better model fit. Thus, assessing the influence of individual observations on a model,

choosing an appropriate dimensionality of a model and selecting the best model for a

given dataset are very important and highly relevant problems in any formal statistical

analysis.

Recently, Bayesian methodologies have been getting enormous attention in biomed-

ical research due to the potential advantages of fitting a vast array of complex models

posed by modern data. As the demand for Bayesian data analysis and modeling in-

creases, we need good diagnostic methods for model assessment and selection. In this

dissertation, we develop Bayesian diagnostic measures based on case-deletion to assess

the influence of each observation to model fit and model complexity. First, we propose

Bayesian case influence diagnostics for complex survival models. In detail, we develop

case deletion influence diagnostics for both the joint and marginal posterior distri-

butions based on the Kullback-Leibler divergence. Second, we introduce three types

of Bayesian case influence measures based on case deletion, namely the φ-divergence,

Cook’s posterior mode distance and Cook’s posterior mean distance to evaluate the ef-

fects of deleting a set of observations in general Bayesian parametric models. We also

examine the statistical properties of these three Bayesian case influence measures and
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their applications to identification of influential sets and model complexity.

In any deletion diagnostic, “size matters” issue persists and it is a fundamental

issue of influence analysis, because the size of the deletion diagnostic is associated

with the size of the perturbation. For Cook’s distance, that is Cook’s distance is a

monotonic function of the size of perturbation. Thus, we develop a scaled version of

Cook’s distance to address the size issue for deletion diagnostics in general parametric

models.
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CHAPTER 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

The importance of identification of influential observations in a statistical analysis is

a well recognized methodological problem, and the development of diagnostic mea-

sures to detect influential observations is of interest to many researchers. Influential

observations in a given dataset can have a strong impact on statistical inference and

conclusions. In these situations, such influential observations are an important part

of the data, and hence require the most careful examination. In statistical analysis,

the goals of assessing the influence of individual observations (or generally, a set of

observations) are not only to identify influential observations (or sets of observations)

such as outliers and high leverage points, but also to determine the importance of each

observation in the analysis for a better model fit (Stone, 1974, 1977; Cook, 1977; Cook

and Weisberg, 1982; McCulloch, 1989; Geisser, 1975, 1993; Zhang, 1993). Thus, as-

sessing the influence of individual observations on a model, choosing an appropriate

dimensionality of a model and selecting the best model for a given dataset are very

important and highly relevant problems in any formal statistical analysis.



Recently, Bayesian methodologies have been getting enormous attention in biomed-

ical research due to the potential advantages of fitting a vast array of complex models

posed by modern data. As the demand for Bayesian data analysis and modeling in-

creases, we need good diagnostic methods for model assessment and selection. However,

development of Bayesian influence diagnostic methods for parametric regression models

pose both theoretical and computational challenges. Motivated by this, the first paper

proposes Bayesian case influence diagnostics for complex survival models. We develop

case deletion influence diagnostics for both the joint and marginal posterior distribu-

tions based on the Kullback-Leibler divergence (K-L divergence) (Kullback and Leibler,

1951). We present a simplified expression for computing the K-L divergence between

the posterior with the full data and the posterior based on single case deletion. In ad-

dition, we investigate a theoretical connection between the proposed diagnostics based

on the K-L divergence and Conditional Predictive Ordinate (CPO) (Gelfand et al.,

1992; Geisser, 1993), as well as a connection between diagnostics based on Cox’s par-

tial likelihood (Cox, 1975). The second paper introduces three types of Bayesian case

influence measures based on case deletion, namely the φ-divergence, Cook’s posterior

mode distance and Cook’s posterior mean distance to evaluate the effects of deleting

a set of observations in general Bayesian parametric models. We examine the statis-

tical properties of these three Bayesian case influence measures and their applications

to identification of influential sets and model complexity. This complexity measure is

related to the complexity terms in other information criteria such as the Akaike Infor-

mation Criterion (AIC) (Akaike, 1973) and the Deviance Information Criterion (DIC)

(Spiegelhalter et al., 2002), and the leave-k-out cross validation method (Stone, 1974,

1977, 2002; Geisser and Eddy, 1979).

Cook’s distance is one of the most important diagnostic tools for evaluating the

effects of deleting a subset of observations on a parameter estimate or a fitted value in

a large class of statistical models. However, for many complex data structures (e.g.,
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longitudinal data) no rigorous approach has been developed to address a fundamental

issue of Cook’s distance: “size matters”, that is Cook’s distance is a monotonic function

of the size of the perturbation. This issue has been largely neglected in the literature.

The size matters issue persists in any deletion diagnostic, because the size of the deletion

diagnostic is associated with the size of the perturbation. The third paper develops

a scaled version of Cook’s distance to address the size issue for deletion diagnostics

in general parametric models. We use stochastic ordering to quantify the relationship

between the size of perturbation and the amount of the perturbation on Cook’s distance.

Our scaled Cook’s distance properly accounts for the size of a perturbation and the

fitted model to the data.

The rest of this dissertation is organized as follows. The next section presents

literature reviews of case influence measures and model assessment tools based on the

criterion-based methods. Then we proceed to present each of the three papers: The first

paper is presented in Chapter 2, and it develops Bayesian case influence diagnostics for

survival models for both continuous survival time data and grouped survival data. The

second paper is discussed in Chapter 3, and it proposes methods to evaluate the effects

of deleting a set of observations in Bayesian regression models. These models include

linear models, mixed models, generalized linear models and generalized linear mixed

models. The third paper is discussed in Chapter 4, and it is dedicated to resolving the

size issues for Cook’s distance in general parametric model.

1.2 Literature Review

1.2.1 Case Influence Measures

In frequentist analysis, enormous research has been done for detecting outliers, influ-

ential points, and leverage points by assessing the influence of individual observations.

The techniques used in such analysis are residuals, leverages, case-deletion measures,
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and local influence measures (Cook, 1977; Belsley et al., 1980; Cook and Weisberg,

1982; Cook, 1986). A general approach to influence analysis is studying the changes

in the outcome or other aspects of an analysis caused by a small perturbations in the

model. The most popular perturbation scheme is based on case deletion. In fact, case

deletion is also a special case of perturbations in local influence analysis (Cook, 1986),

which utilize the concept of normal curvature in differential geometry in assessing the

local behavior of the likelihood displacement.

Two widely used case deletion measures for assessing case influence are Cook’s dis-

tance (Cook, 1977) and likelihood displacement (Cook and Weisberg, 1982; Cook, 1986).

Likelihood displacement and Cook’s distance have been used to detect influential ob-

servations in various parametric and semiparametric models from the frequentist point

of view (Cook and Weisberg, 1982; Thomas and Cook, 1989; Pettitt and Daud, 1989;

Weissfeld, 1990; Escobar and Meeker, 1992). The likelihood displacement measures the

effect of deleting one observation on overall model fit using the log-likelihood. Let β

be p × 1 vector of the parameter of interest, β̂ and β̂(i) be the parameter estimates,

usually maximum likelihood estimates (MLE), with full data and with the ith case

deleted data, respectively, and L(β) be the likelihood function for β. The likelihood

displacement is defined by

LD(i) = 2{log L(β̂)− log L(β̂(i))}. (1.1)

For more about likelihood displacement, see Cook and Weisberg (1982), p182-183.

Cook’s distance measures the effect of deleting one observation on a parameter estimate

or a fitted value. The generalized Cook distance for β is defined by

CD(i) = (β̂ − β̂(i))
T M(β̂ − β̂(i)), (1.2)
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where M is a positive definite weight matrix and M is often set as the Fisher infor-

mation matrix. Since the seminal work of Cook (1977) on Cook’s distance in linear

regression, considerable research has been devoted to developing deletion diagnostics

including Cook’s distance for detecting influential observations (or clusters) in vari-

ous statistical models including generalized linear models and the general linear model

with correlated error (Cook, 1977; Cook and Weisberg, 1982; Chatterjee and Hadi,

1988; Andersen, 1992; Davison and Tsai, 1992; Wei, 1998; Haslett, 1999; Zhu et al.,

2001; Fung et al., 2002). For instance, Preisser and Qaqish (1996) developed Cook’s

distance for generalized estimating equations. Christensen et al. (1992) and Banerjee

and Frees (1997) considered case deletion and subject deletion diagnostics, respectively.

Zhu et al. (2001) developed deletion diagnostics for models with missing data.

In Bayesian analysis, considerable research has been devoted to developing single

case influence measures for various specific statistical models including generalized lin-

ear models, time series models, and survival models (Johnson and Geisser, 1983; John-

son, 1985; Pettit, 1986; Kass et al., 1989; Carlin and Polson, 1991; Gelfand et al., 1992;

Weiss and Cook, 1992; Geisser, 1993; Blyth, 1994; Peng and Dey, 1995; Weiss, 1996;

Christensen, 1997; Bradlow and Zaslavsky, 1997). There are two distinct approaches

in assessing influence of individual observations. One is assessing the influence on the

posterior distribution and other is assessing the influence with regard to the predictive

distribution. For those two approaches, a common way of assessing the influence of an

observation on model fit is through case deletion.

The two most popular Bayesian case influence measures are the Conditional Pre-

dictive Ordinate (CPO) (Gelfand et al., 1992; Geisser, 1993) and φ−divergence (Weiss

and Cook, 1992; Csiszár, 1967). The CPO is defined as the predictive density of the

ith case given the data without the ith case. A large value of CPO for the ith case

implies better concordance of the ith case with the rest of the data, and hence a better

model fit. The φ−divergence or φ−influence based on case deletion is a measure of
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discrepancy between the posterior distributions with and without a particular case.

Various forms of φ(·) have been considered in the literature (Weiss, 1996; Weiss and

Cook, 1992; Kass et al., 1989; Blyth, 1994), which include L1−distance, χ2−divergence

and Kullback-Leibler divergence (K-L divergence). A large value of the φ−divergence

for the ith case implies more influence of the ith case on estimation, hypothesis test-

ing, and model fit. Many researchers have been interested in developing case influence

diagnostics using the φ−divergence, especially K-L divergence, under various paramet-

ric models (Johnson and Geisser, 1985; Pettit, 1986; Carlin and Polson, 1991; Weiss

and Cook, 1992; Peng and Dey, 1995; Weiss, 1996; Christensen, 1997; Weiss and Cho,

1998). Pettit (1986) suggested the use of the K-L divergence in detecting influential

observations in his review of Bayesian diagnostics. Carlin and Polson (1991) proposed

an expected utility approach using the K-L divergence as a utility function to define

the influence of a set of observations in a parametric modeling framework, considering

the normal linear model and mixed models. Weiss and Cook (1992) introduced the K-L

divergence to assess the divergence between posteriors in the context of case deletion

in generalized linear models. Peng and Dey (1995) also developed a Bayesian diag-

nostic measure using general divergence measures including the K-L divergence on the

posterior distribution and applied this measure to several regression models, such as a

nonlinear model. Weiss (1996) and Weiss and Cho (1998) proposed assessing the influ-

ence of case deletion using model perturbations as well as establishing its relationship

to the K-L divergence and CPO. Bayesian influence measures for assessing marginal

posterior distributions have also been developed for the multivariate linear model and

normal random effects models (Johnson and Geisser, 1985; Weiss and Cho, 1998).

1.2.2 Criterion-Based Model Assessment

In statistical analysis, we often interested in choosing an appropriate dimensionality of

a model and selecting the best model for a given dataset. In the classical modeling
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framework, information criteria (IC) are fundamental criteria for model comparisons,

which incorporate measures of fit and complexity for model choice. Typically, deviance

statistics are used for the measure of fit, and the number of parameters or degrees of

freedom of estimators are used for the complexity of a model.

Considerable research has been devoted to model comparison and evaluation using

the concepts of information criteria in both the frequentist and Bayesian point of views

(Akaike, 1973; Takeuchi, 1976; Schwarz, 1978; Murata et al., 1994; Konishi and Kita-

gawa, 1996; Spiegelhalter et al., 2002; Ando, 2007), in which they incorporate different

complexity terms for model choice. Akaike (1973) proposed the Akaike Information

Criterion (AIC) which is defined by AIC = −2 log{p(y|θ̂)} + 2p, where p is the num-

ber of parameters and θ̂ is the MLE of θ. The Takeuchi Information Criterion (TIC)

(Takeuchi, 1976) and Generalized Information Criterion (GIC) (Konishi and Kitagawa,

1996) are generalizations of AIC which relax the following assumptions: (i) a specified

parametric family of distributions include the true model; and (ii) a model is “esti-

mated” by its MLE. TIC relaxed assumption (i) and GIC relaxed both (i) and (ii).

Murata et al. (1994) proposed the Network Information Criterion (NIC) as a general-

ization of AIC for determining the optimal number of parameters in neural networks.

Schwarz (1978) adopted Bayesian argument in the development of the Bayesian Infor-

mation Criterion (BIC), which is defined by BIC = −2 log{p(y|θ̂)} + p log(n), where

n is the number of observations in the dataset. The Deviance Information Criterion

(DIC) (Spiegelhalter et al., 2002) is defined by the posterior mean of the deviance as

a Bayesian measure of fit and the effective number of parameters as the complexity

component. DIC is given by DIC = −2Eθ|Y [log{p(y|θ)}] + pD, where Eθ|Y [·] is the

expectation with respect to the posterior distribution, p(θ|y). The effective number of

parameters, pD is defined by pD = Eθ|Y [−2 log{p(y|θ)}] + 2 log{p(y|θ̃)}, where θ̃ is

the posterior mean of θ. Thus, DIC can be used for comparing complex hierarchical

Bayesian models in which the number of parameter is not clearly defined. The Bayesian
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Predictive Information Criterion (BPIC) was proposed by Ando (2007) as an estima-

tor of the posterior mean of the expected log-likelihood of the predictive distribution.

BPIC is defined as BPIC = −2Eθ|Y [log{p(y|θ)}] + 2nb̂θ, where b̂θ is the estimated

asymptotic bias of the predictive discrepancy measures. For more details about b̂θ, see

Ando (2007). L measure (Ibrahim and Laud, 1994; Gelfand and Ghosh, 1998; Ibrahim

et al., 2001b; Chen et al., 2004) is another type of Bayesian criterion-based method,

defined as the expected squared Euclidean distance between the observed data y with

joint sampling density p(y|θ) and the future response vector with the same sampling

density as y|θ.
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CHAPTER 2

BAYESIAN CASE INFLUENCE

DIAGNOSTICS FOR SURVIVAL

MODELS

2.1 Introduction

In Bayesian analysis, considerable research has been done for developing case influence

diagnostics using the K-L divergence under various parametric models (Johnson and

Geisser, 1985; Pettit, 1986; Carlin and Polson, 1991; Weiss and Cook, 1992; Weiss,

1996; Weiss and Cho, 1998). Despite the extensive literature on Bayesian diagnostic

methods for parametric models, very little has been developed for semiparametric mod-

els, including survival models. Due to the potential advantages of fitting a vast array

of complex survival models posed by modern survival data, semiparametirc Bayesian

methodologies in survival analysis have been getting enormous attention in biomedical

research. Bayesian case influence diagnostics for survival models pose both theoretical

and computational challenges, which are discussed here.

The objective of this paper is to propose Bayesian case deletion influence diagnostics

for survival models. First, we develop diagnostic measures to assess the influence of



a case on both the joint and marginal posterior distributions based on the directed

K-L divergence. In this development, we derive a novel and simplified expression for

computing the K-L divergence, which facilitates efficient computation of the proposed

diagnostic measures using Markov chain Monte Carlo (MCMC) samples from full data

posterior distribution. This avoids the burden of sampling from each of the n posterior

distributions, each based on deletion of the ith case, i = 1, · · · , n. Second, we apply

the proposed methodology to Bayesian survival models with continuous survival time

data and grouped survival data. The survival model we consider are the Cox model

with a gamma process prior on the cumulative baseline hazard (Sinha et al., 2003) and

a proportional hazards frailty model in the presence of continuous survival time data

accommodating correlated and clustered data. In the presence of grouped survival data,

we considered the Cox model with a beta process prior. In addition, we investigate a

theoretical connection between the proposed diagnostics based on the K-L divergence

and CPO, as well as a connection between diagnostics based on Cox’s partial likelihood.

To motivate the proposed methodology, we consider a well known dataset, the

Stanford heart transplant data (Miller and Halpern, 1982). The dataset contains 184

transplant cases with the following variables: time measured from the date of the

transplant in days; status code (dead or alive); patient age at first transplant in years;

T5 mismatch score (missing for 27 of the cases). This dataset have been analyzed by

many, illustrating frequentist diagnostic measures (Pettitt and Daud, 1989; Escobar

and Meeker, 1992). Here, it is of interest to carry out Bayesian diagnostic methods

not only to compare our results with the frequentist results, but also to possibly find

other influential (or noninfluential) cases not identified by the previous methods. As

shown in Figure 2.2, our proposed Bayesian diagnostic method identified some cases

as influential in this dataset. More details regarding this example are given in Section

2.6.2. To further illustrate the methodology, we also apply the proposed methods to

simulated data and a phase III melanoma clinical trial (E1690) discussed in Sections

10



2.6.1 and 2.6.3, respectively.

The rest of this paper is organized as follows. In Section 2.2, we introduce Bayesian

case influence diagnostics based on the K-L divergence. In Sections 2.3 and 2.4, we

derive case influence diagnostics for the Cox model and Cox frailty model with a gamma

process prior. In Section 2.5, we present case influence diagnostics for the Cox model

with a beta process prior. In Section 2.6, we examine the performance of the influence

diagnostics using simulated data, the Stanford Heart Transplant data and the E1690

trial. We conclude the paper with some discussion in Section 2.7.

2.2 The Proposed Method

2.2.1 General Development

Let D be full data and D−i be the data with the ith case deleted. Let L(β|D)

denotes the likelihood based on the full data and L(β|D−i) denotes the likelihood

based on the data without the ith case. The posterior distributions for the the

full data and the ith case deleted can be defined as p(β|D) ∝ L(β|D)π(β) and

p(β|D−i) ∝ L(β|D−i)π(β), respectively, where π(β) is the prior distribution of β.

A typical choice of π(β) is a Np(µ0,Σ0) distribution or a uniform improper prior.

Let K(P, P−i) denote the K-L divergence between P and P−i, where P denotes the

posterior distribution of β for the full data, and P−i denotes the posterior distribution

of β without the ith case. Specifically,

K(P, P−i) =

∫
p(β|D) log

{
p(β|D)

p(β|D−i)

}
dβ. (2.1)

K(P, P−i) thus measures the effect of deleting the ith case from the full data on the

joint posterior distribution of β. Note that K(P, P−i) 6= K(P−i, P ) in general. After

some algebra, as shown in the Appendix A, we can derive a simplified expression for
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K(P, P−i) as follows:

K(P, P−i) = log Eβ

[
L(β|D−i)

L(β|D)

∣∣∣∣ D

]
+ Eβ

[
log

{
L(β|D)

L(β|D−i)

}∣∣∣∣D

]
, (2.2)

where Eβ[·|D] represents the expectation with respect to the joint posterior distribution

of β given D. Equation (2.2) enables us to compute K(P, P−i) for i = 1, · · · , n, using

only samples from the full data joint posterior distribution of β. Therefore, (2.2) implies

that we completely avoid sampling from p(β|D−i) for the computation of K(P, P−i),

and this saves us enormous computational time and effort.

Now suppose that interest lies in assessing the influence of the ith case on the subset

β1 of the parameter vector β = (β1,β2). Weiss and Cho (1998), Weiss (1996), and

Weiss and Cook (1992) pointed out that if the goal of an analysis is to assess the

influence of the ith case on the marginal posterior distribution of β1, then using the

joint posterior of (β1, β2) to assess this influence may overstate the influence. Hence, in

these settings, we need to consider the influence of a case using the marginal posterior

distribution of β1.

We can express the marginal influence diagnostics of Weiss and Cho (1998) based

on directed the K-L divergence as

K(P1, P1,−i) =

∫
p1(β1|D) log

{
p1(β1|D)

p1(β1|D−i)

}
dβ1, (2.3)

where p1(β1|D) =
∫

p(β1,β2|D)dβ2. The marginal K-L divergence, K(P1, P1,−i), in

(2.3) measures the effect of deleting the ith case from the full data on the marginal

posterior distribution of β1. Using similar derivations as in (2.2), we can obtain a

simplified expression for K(P1, P1,−i) as follows:

K(P1, P1,−i) = log Eβ

[
L(β|D−i)

L(β|D)

∣∣∣∣D

]
− Eβ1

[
log

∫
L(β|D−i)

L(β|D)
p(β2|β1, D)dβ2

∣∣∣∣ D

]
,

(2.4)
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where p(β2|β1, D)=p(β1,β2|D)/
∫

p(β1, β2|D)dβ2 and

∫
L(β|D−i)

L(β|D)
p(β2|β1, D)dβ2

can be evaluated as Eβ2

[
L(β|D−i)

L(β|D)

∣∣∣∣ β1, D

]
.

Following McCulloch (1989), calibration of K(P, P−i) can be done by solving for pi

such that K(P, P−i)=K(B(0.5), B(pi))=− log{4pi(1 − pi)}/2, where B(p) denotes the

Bernuolli distribution with success probability p. This implies that describing outcomes

using p(β|D−i) instead of p(β|D) is compatible with describing an unobserved event as

having probability pi when the correct probability is 0.5. After calculating K(P, P−i)

from (2.2), we can compute pi using pi = 0.5
[
1 +

√
1− exp{−2K(P, P−i)}

]
. This

equation implies that 0.5 ≤ pi ≤ 1. pi À 0.5 implies that the ith case is influential,

because deleting the ith case changes the posterior distribution as much as describing

an observed event as having probability pi when the correct probability is 0.5. In this

paper, we use pi as the calibration of K(P, P−i) in all of the examples.

2.2.2 Independence Model

As an illustration, we consider the proposed diagnostic for the independence model.

Suppose that given β, yi, i = 1, 2, · · · , n are independent response variables, not

subject to censoring. Then the full data likelihood is L(β|D) =
∏n

k=1 f(yk|β),

where f(yk|β) is the density of yk and the likelihood without the ith observation is

L(β|D−i) =
∏n

k=1,k 6=i f(yk|β). Therefore, L(β|D)/L(β|D−i)=f(yi|β) and the CPO is

given by CPOi = [Eβ[{f(yi|β)}−1|D]]−1 (Gelfand et al., 1992).

Using (2.2) and the above results, we can therefore show that

K(P, P−i) = log Eβ[{f(yi|β)}−1|D] + Eβ[log{f(yi|β)}|D]

= − log(CPOi) + Eβ[log{f(yi|β)}|D]. (2.5)

Similarly, using equation (2.4) we can obtain K(P1, P1,−i) for the influence of the

13



ith case on the marginal posterior distribution of β1 and its connection with CPO

as follows:

K(P1, P1,−i) = log Eβ[{f(yi|β)}−1|D]

−
∫

p(β1|D) log[

∫
{f(yi|β)}−1p(β2|β1, D)dβ2]dβ1

= − log(CPOi)− Eβ1 [log

∫
{f(yi|β)}−1p(β2|β1, D)dβ2|D], (2.6)

where p(β2|β1, D) = p(β1,β2|D)/
∫

p(β1,β2|D)dβ2 and
∫ {f(yi|β)}−1p(β2|β1, D)dβ2

can be evaluated as Eβ2 [{f(yi|β)}−1|β1, D]. Since (2.2), (2.4), (2.5) and (2.6) are

expressed as posterior expectations with respect to the full data posterior distribution,

they can be easily calculated using only MCMC samples from the full data posterior

distribution of β.

2.3 Cox Model with Gamma Process Prior

2.3.1 Model

In the Cox proportional hazards model (Cox, 1972), the gamma process is a very com-

monly used nonparametric prior process for the cumulative baseline hazard (Kalbfleisch,

1978). The full data is denoted as D = {y, δ,X}, where y = (y1, y2, · · · , yn)′ de-

notes the observed survival times, where yi may be right censored. We assume that

the survival times are all distinct and ordered, i.e., 0 < y1 < y2 < · · · < yn < ∞.

δ = (δ1, δ2, · · · , δn)′ is an indicator vector with δi = 1 if the ith subject failed, and

δi = 0 if the ith subject was right censored. Also, X is an n × p matrix of covariates

with ith row x′i, and D−i = {y−i, δ−i, X−i} denotes the data with the ith subject, (i.e.,

(yi, δi,x
′
i)) deleted from D. The hazard function is given by h(yi|xi) = h0(yi) exp(x′iβ),

where β is the p× 1 vector of unknown regression coefficients, and h0(.) is an unknown
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baseline hazard function.

Under the Cox model, the joint probability of the survival of n subjects is given by

P (Y > y|β, X, H0) = exp

{
−

n∑

k=1

H0(yk) exp(x′kβ)

}
, (2.7)

where H0(y) is the cumulative baseline hazard (Ibrahim et al., 2001a). We take H0 ∼
GP (cH∗(·), c), where GP denotes gamma process, H∗(y) is a known differentiable

parametric function which represents a parametric guess for the cumulative baseline

hazard H0(y), and c ≥ 0 is a confidence parameter. H∗(y) is thus the mean of the

process. Letting hk = H0(yk) −H0(yk−1), we take hk ∼ Gamma(ch0k, c), the hk’s are

independent, where h0k = H∗(yk) − H∗(yk−1) and Gamma(α, λ) denotes the gamma

distribution with mean α/λ (α > 0 and λ > 0).

The marginal likelihood function of β can now be written as follows (Ibrahim et al.,

2001a; Sinha et al., 2003) :

L(β|D) =
n∏

k=1

Lk(β|D) (2.8)

=
n∏

k=1

exp

[
cH∗(yk) log

{
1− exp(x′kβ)

c + Ak

}][
−ch∗(yk) log

{
1− exp(x′kβ)

c + Ak

}]δk

,

where h∗(y) = d
dy

H∗(y), Ak =
∑

l∈R(yk) exp(x′lβ), and R(yk) = {l : yl ≥ yk} is the set

of subjects at risk at time yk.

We now derive the likelihood function without the ith subject. If yk < yi then

the risk set at time yk involves the ith subject, otherwise, the risk set at yk does not

involve the ith subject. Therefore, after deleting the ith subject, the risk set changes

to R(yk) = {l : yl ≥ yk, l 6= i} for k < i. As the risk set changes, the corresponding Ak

in the denominators of (2.8) changes to Ak− exp(x′iβ) for k < i, whereas for k > i, the

risk set and Ak remain the same (see Appendix A for details). Hence, the likelihood
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function without the ith subject is given by

L(β|D−i) =
i−1∏

k=1

Lk,−i(β|D)
n∏

k=i+1

Lk(β|D), (2.9)

where

Lk,−i(β|D) = exp

[
cH∗(yk) log

{
1− exp(x′kβ)

c + Ak − exp(x′iβ)

}]

×
[
−ch∗(yk) log

{
1− exp(x′kβ)

c + Ak − exp(x′iβ)

}]δk

,

Lk(β|D) = exp

[
cH∗(yk) log

{
1− exp(x′kβ)

c + Ak

}][
−ch∗(yk) log

{
1− exp(x′kβ)

c + Ak

}]δk

.

The posterior distributions based on the full data and the data without the ith subject

are thus given by p(β|D) ∝ L(β|D)π(β) and p(β|D−i) ∝ L(β|D−i)π(β), respectively.

2.3.2 Diagnostic Measures

For the Cox model in general, the likelihood function cannot be written as a product

of n independent terms because the risk set for the kth subject involves observations

other than the kth subject. Because of this dependency, we use (2.8) for the likelihood

function. Another advantage of (2.8) is its computational feasibility. Since the hazard,

hk, has been integrated out from (2.8), (2.8) is only a function of β. Therefore, sampling

the hk’s is not necessary for Bayesian inference and diagnostics, and thus only samples

from the posterior distribution of β are needed.

After some algebra, the ratio of likelihoods for the full data and the data without

the ith subject can be written as L(β|D)/L(β|D−i)=gi(β)Li(β|D). Thus, we can get a

simplified expression for computing the influence of the ith subject on the joint posterior

distribution of β as follows:

K(P, P−i) = log Eβ[{gi(β)Li(β|D)}−1|D] + Eβ[log{gi(β)Li(β|D)}|D] (2.10)

= − log(CPOi) + Eβ[log Li(β|D)|D] + log[Eβ[{gi(β)}−1|D]] + Eβ[log gi(β)|D],
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where

Li(β|D) = exp

[
cH∗(yi) log

{
1− exp(x′iβ)

c + Ai

}][
−ch∗(yi) log

{
1− exp(x′iβ)

c + Ai

}]δi

,

(2.11)

gi(β) =
∏i−1

k=1 Lk(β|D)/
∏i−1

k=1 Lk,−i(β|D), which can be simplified as

gi(β) =

i−1∏

k=1

[
1− exp(x′kβ)

c + Ak

]cH∗(yk) [
− log

{
1− exp(x′kβ)

c + Ak

}]δk

i−1∏

k=1

[
1− exp(x′kβ)

c + Ak − exp(x′iβ)

]cH∗(yk) [
− log

{
1− exp(x′kβ)

c + Ak − exp(x′iβ)

}]δk
.

(2.12)

In addition, CPOi can be written as,

CPOi =
Eβ[{gi(β)}−1|D]

Eβ[{gi(β)Li(β|D)}−1|D]
. (2.13)

Since (2.10) is expressed as a posterior expectation with respect to the full data,

computation of (2.10) can be done using MCMC samples from the full data posterior

p(β|D). The samples from p(β|D) can be easily obtained using Adaptive Rejection

Metropolis Sampling (ARMS, Gilks et al. (1995)) within Gibbs. Specifically, we have

K(P, P−i) = log

[
1

J

J∑
j=1

{gi(β
(j))Li(β

(j)|D)}−1

]
+

1

J

J∑
j=1

log{gi(β
(j))Li(β

(j)|D)} ,

(2.14)

and

CPOi =

1

J

J∑
j=1

{gi(β
(j))}−1

1

J

J∑
j=1

{gi(β
(j))Li(β

(j)|D)}−1

, (2.15)

where J is the number of Gibbs samples after burn-in and β(j) = (β
(j)
1 , · · · , β

(j)
p )′ is the
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jth Gibbs sample, j = 1, · · · , J .

Similarly, we obtain

K(P1, P1,−i)

= log Eβ[{gi(β)Li(β|D)}−1|D]− Eβ1 [log

∫
{gi(β)Li(β|D)}−1p(β2|β1, D)dβ2|D] (2.16)

= − log(CPOi) + log Eβ[{gi(β)}−1|D]− Eβ1 [log

∫
{gi(β)Li(β|D)}−1p(β2|β1, D)dβ2|D].

Monte Carlo evaluation of Eβ1 [log
∫ {gi(β)Li(β|D)}−1p(β2|β1, D)dβ2|D] in (2.16) can

be obtained using the following steps:

Step 1. We use Gibbs sampling to obtain the samples β(j) = (β1
(j),β2

(j)) for j =

1, · · · , J from p(β|D) and record (β1
(1), · · · ,β1

(J)) as J Gibbs samples from the

marginal posterior of β1, p(β1|D).

Step 2. We use Gibbs sampling to obtain the samples β(r) = (β1
(r),β2

(r)) for r =

1, · · · , R from p(β|D) and record (β2
(1), · · · ,β2

(R)) as R Gibbs samples from the

marginal posterior of β2 given β1, p(β2|β1, D).

Step 3. For each β1
(j), use β2

(r) as nested Gibbs samples from p(β2|β1
(j), D) to get

the Monte Carlo approximation of Eβ1 [log
∫ {gi(β)Li(β|D)}−1p(β2|β1, D)dβ2|D]

as 1
J

∑J
j=1 log[ 1

R

∑R
r=1{gi(β1

(j),β2
(r)), Li(β1

(j), β2
(r)|D)}−1].

Note that the Gibbs samples in the first and second steps need to be sampled indepen-

dently. Now, we can get the MCMC approximation of (2.16) as

K(P1, P1,−i) = log

[
1

J

J∑
j=1

{
gi(β1

(j), β2
(j))Li(β1

(j),β2
(j)|D)

}−1
]

(2.17)

− 1

J

J∑
j=1

log

[
1

R

R∑
r=1

{
gi(β1

(j), β2
(r))Li(β1

(j),β2
(r)|D)

}−1
]

.

After computing K(P, P−i) or K(P1, P1,−i) for all subjects, we can plot K(P, P−i)
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or K(P1, P1,−i) across subjects to identify influential cases.

Since K(P, P−i) measures the effect of deleting the ith case on the joint posterior

distribution of β, it can be viewed as a Bayesian analogue of the likelihood displacement

(LD), as discussed in Cook (1986). Specifically, for the Cox model, K(P, P−i) is com-

parable to the likelihood displacement based on partial likelihood, which is available in

Statistical Analysis Systems (SAS) version 9.1.3. For more on likelihood displacement

for the Cox model, see Pettitt and Daud (1989). In addition, a limiting expression

for K(P, P−i) based on model (2.8) provides a method for computing K(P, P−i) under

Cox’s partial likelihood.

2.3.3 Relationship to Partial Likelihood

In this subsection, we derive a limiting expression for K(P, P−i) based on model (2.8)

in Section 2.3. This result provides a method for computing K(P, P−i) under Cox’s

partial likelihood. Kalbfleisch (1978) and Sinha et al. (2003) showed that the partial

likelihood defined by Cox (1975) can be obtained as a limiting case of the marginal

posterior for β in the Cox model with continuous time survival data under a gamma

process prior for the cumulative baseline hazard. The partial likelihood can be written

as (Sinha et al., 2003)

lim
c→0

L(β|D)

c
∑n

k=1 δk(− log c)δn
∏n

k=1{h∗(yk)}δk
=

n∏

k=1

{
exp(x′kβ)

Ak

}δk

. (2.18)

Therefore,

lim
c→0

Li(β|D)

cδi{h∗(yi)}δi
=

{
exp(x′iβ)

Ai

}δi

, for i = 1, · · · , n− 1, (2.19)

and

lim
c→0

Ln(β|D)

cδn(− log c)δn{h∗(yn)}δn
=

{
exp(x′nβ)

An

}δn

, for i = n. (2.20)
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Using similar ideas and extensions of the proofs of (2.18), we can derive the limiting

expression of gi(β) as c → 0. Since An−1 − exp(x′nβ) = exp(x′n−1β), we have

lim
c→0

gi(β) =

i−1∏

k=1

{
exp(x′kβ)

Ak

}δk

i−1∏

k=1

{
exp(x′kβ)

Ak − exp(x′iβ)

}δk
, for i = 1, · · · , n− 1, (2.21)

and

lim
c→0

(− log c)δn−1gi(β) =

i−1∏

k=1

{
exp(x′kβ)

Ak

}δk

i−1∏

k=1

{
exp(x′kβ)

Ak − exp(x′iβ)

}δk
, for i = n. (2.22)

Using the above results, it follows that

lim
c→0

K(P, P−i) = lim
c→0

[
log Eβ[{gi(β)Li(β|D)}−1|D] + Eβ[log{gi(β)Li(β|D)}|D]

]
(2.23)

= log Eβ[lim
c→0
{αigi(β)Li(β|D)}−1|D] + Eβ[log{lim

c→0
αigi(β)Li(β|D)}|D],

where

αi =





1
cδi{h∗(yi)}δi

for i = 1, · · · , n− 1,

(− log c)δn−1

cδn{h∗(yn)}δn(− log c)δn for i = n.
(2.24)

Hence, we can obtain

K∗(P, P−i) ≡ lim
c→0

K(P, P−i) = log Eβ[{Mi(β)}−1|D] + Eβ[log{Mi(β)}|D] , (2.25)

where

Mi(β) =

i−1∏

k=1

{
exp(x′kβ)

Ak

}δk
{

exp(x′iβ)

Ai

}δi

i−1∏

k=1

{
exp(x′kβ)

Ak − exp(x′iβ)

}δk
. (2.26)

Thus, we can compute K∗(P, P−i) using MCMC samples from p(β|D) implied by model
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(2.8) in Section 2.3.

2.4 Frailty Model with Gamma Process Prior

2.4.1 Model

In survival analysis, the hazard function for each individual may depend on a set of

frailties representing unobservable risk factors. In this section, we extend the results

of Sinha et al. (2003) to the proportional hazards frailty model and develop Bayesian

case deletion diagnostic measures.

Let yij denote the survival times and xij denotes the p× 1 covariate vector for the

jth subject in the ith cluster for i = 1, 2, · · · , n and j = 1, 2, · · · ,mi. The total number

of subjects is N =
∑n

i=1 mi and δij is an indicator with δij = 1 if the jth subject in the

ith cluster failed and δij = 0 otherwise. The hazard function is given by h(yij|wi,xij) =

h0(yij)wi exp(x′ijβ), where β is the p×1 vector of unknown regression coefficients, h0(.)

is an unknown baseline hazard function, and wi is the frailty term for the ith cluster.

To extend the results of Sinha et al. (2003), we first rearrange the data as follows.

Let D = {X,y, δ,w} denote the complete data. We assume that the survival times,

y = (y1, y2, · · · , yN)′, are all distinct and ordered as 0 < y1 < y2 < · · · < yN < ∞,

X is an N × p matrix of covariates with kth row x′k, δ = (δ1, δ2, · · · , δN)′ is the right

censoring indicator vector, and w = (w(1), w(2), · · · , w(N))
′ is the frailty vector according

to (y1, y2, · · · , yN). Thus, h(yk|w(k),xk) = h0(yk)w(k) exp(x′kβ), k = 1, 2, · · · , N , and

assuming a gamma process prior for H0(y) as in Section 2.3.1, the likelihood function

can be obtained as

L(β|D) =
N∏

k=1

Lk(β|D) (2.27)

=
N∏

k=1

exp

[
cH∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}][
−ch∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}]δk

,
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where h∗(y) = d
dy

H∗(y), Awk =
∑

l∈R(yk) w(l) exp(x′lβ) and R(yk) = {l : yl ≥ yk} is the

set of subjects at risk at time yk.

Now, we consider the data with the ith subject deleted. If the ith subject is the

only observation in a cluster (mi = 1), the frailty term for that cluster is deleted along

with the deletion of the ith subject. Otherwise, the frailty term for the cluster remains.

Therefore, we denote the data with the ith subject deleted as D−i = (y−i, δ−i,X−i,w)

for mi ≥ 2 and D−i = (y−i, δ−i,X−i,w(−i)) for mi = 1. Furthermore, let Dobs =

{X,y, δ} denote the observed data and Dobs,−i = {X−i,y−i, δ−i} denote the observed

data with the ith subject deleted. Because of the change in the risk set with the deletion

of the ith subject, Awk in the denominators of (2.27) becomes Awk − wi exp(x′iβ) for

k < i and remains as Awk for k > i. Thus,

L(β|D−i) =
i−1∏

k=1

Lk,−i(β|D)
N∏

k=i+1

Lk(β|D)

=
i−1∏

k=1

exp

[
cH∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk − w(i) exp(x′iβ)

}]

×
[
−ch∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk − w(i) exp(x′iβ)

}]δk

(2.28)

×
N∏

k=i+1

exp

[
cH∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}][
−ch∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}]δk

.

We assume that β and w are independent a priori and π(w) =
∏n

j=1 π(wj), where

the wj’s are i.i.d. gamma random variables with mean 1. The posterior distribution

for the observed data is p(β,w|Dobs) ∝ L(β|D)π(w)π(β). The posterior distribution

for the observed data with the ith subject deleted is given by

p(β,w|Dobs,−i) ∝





L(β|D−i)π(w)π(β) for mi ≥ 2,

L(β|D−i)
∏n

j=1,j 6=i π(wj)π(β) for mi = 1.
(2.29)
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2.4.2 Diagnostic Measures

For the computation of K(P, P−i), we assume that there are at least two subjects in each

cluster (mi ≥ 2). The influence of the ith subject on the joint posterior distribution of

β is given by

K(P, P−i) =

∫ ∫
p(β, w|Dobs) log

{
p(β, w|Dobs)

p(β,w|Dobs,−i)

}
dβ dw. (2.30)

If we denote the ratio of likelihoods with full data and data without the ith subject as

L(β|D)/L(β|D−i) = gi(β,w)Li(β|D), K(P, P−i) can be computed as follows:

K(P, P−i) = log[Eβ,w[{gi(β, w)Li(β|D)}−1|Dobs]] + Eβ,w[log{gi(β,w)Li(β|D)}|Dobs]

= − log(CPOi) + Eβ,w[log Li(β|D)|Dobs]

+ log[Eβ,w[{gi(β,w)}−1|Dobs]] + Eβ,w[log gi(β,w)|Dobs], (2.31)

where Eβ,w[ · |Dobs] is the expectation with respect to the joint posterior of (β,w)

given Dobs. The corresponding Li(β|D), gi(β,w) and CPOi can be written as

Li(β|D) = (2.32)

exp

[
cH∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}] [
−ch∗(yk) log

{
1− w(k) exp(x′kβ)

c + Awk

}]δk

,

gi(β,w) = (2.33)
i−1∏

k=1

[
1− w(k) exp(x′kβ)

c + Awk

]cH∗(yk) [
− log

{
1− w(k) exp(x′kβ)

c + Awk

}]δk

i−1∏

k=1

[
1− w(k) exp(x′kβ)

c + Awk − w(i) exp(x′iβ)

]cH∗(yk) [
− log

{
1− w(k) exp(x′kβ)

c + Awk − w(i) exp(x′iβ)

}]δk
,
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and

CPOi =
Eβ,w[{gi(β, w)}−1|Dobs]

Eβ,w[{gi(β, w)Li(β|D)}−1|Dobs]
. (2.34)

The computation of (2.31) can be accomplished using MCMC samples from

p(β,w|Dobs). To obtain samples from p(β, w|Dobs), we perform ARMS within Gibbs

using the full conditional distributions (i) p(β|w, Dobs) and (ii) p(w|β, Dobs).

In assessing the influence of case deletion on β1 of β = (β1, β2), we define

K(P1, P1,−i) =

∫ ∫
p1(β1,w|Dobs) log

{
p1(β1, w|Dobs)

p1(β1, w|Dobs,−i)

}
dβ1 dw, (2.35)

where

p1(β1,w|Dobs) =

∫
p(β1,β2, w|Dobs)dβ2

p1(β1,w|Dobs,−i) =

∫
p(β1,β2, w|Dobs,−i)dβ2.

A computational formula for K(P1, P1,−i) is therefore given by

K(P1, P1,−i) = log[Eβ,w[{gi(β,w)Li(β|D)}−1|Dobs]] (2.36)

−Eβ1,w[log

∫
{gi(β, w)Li(β|D)}−1p(β2|β1,w, Dobs)dβ2|Dobs]

= − log(CPOi) + log[Eβ,w[{gi(β,w)}−1|Dobs]]

−Eβ1,w[log

∫
{gi(β, w)Li(β|D)}−1p(β2|β1,w, Dobs)dβ2|Dobs],

where p(β2|β1,w, Dobs) = p(β1, β2,w|Dobs)/
∫

p(β1,β2, w|Dobs)dβ2. The computa-

tion of (2.36) can also be carried using MCMC samples from p(β,w|Dobs).

2.4.3 Relationship to Partial Likelihood

Using similar justifications as in Sinha et al. (2003), we obtain the frailty model based

on Cox’s partial likelihood (Sargent, 1998) as a limiting case of the marginal posterior
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distribution of β based on the frailty model discussed in Section 2.4.1. For the likelihood

given by (2.27), we can show that

lim
c→0

L(β, w|D)

c
∑N

k=1 δk(− log c)δN
∏N

k=1{h∗(yk)}δk

'
N∏

k=1

{
w(k) exp(x′kβ)

Awk

}δk

. (2.37)

We see that the right-hand side of (2.37) is equal to the frailty model based on Cox’s

partial likelihood (Sargent, 1998).

Using a similar method as for proving (2.25), it can be shown that

lim
c→0

K(P, P−i) = log Eβ,w[{Mi(β,w)}−1|Dobs] + Eβ,w[log Mi(β,w)|Dobs], (2.38)

where

Mi(β,w) =

i−1∏

k=1

{
w(k) exp(x′kβ)

Awk

}δk
{

w(i) exp(x′iβ)

Awi

}δi

i−1∏

k=1

{
w(k) exp(x′kβ)

Awk − w(i) exp(x′iβ)

}δk
. (2.39)

Therefore, we can compute K(P, P−i) for the frailty model based on partial likelihood

using MCMC samples from the p(β,w|Dobs) implied by (2.27).

2.5 Cox Model with Beta Process Prior

2.5.1 Model

The actual survival time is often unknown in medical studies. However, we can obtain

the information whether the subject is failed or censored in a given interval. In this

case, the data is available as grouped within the intervals and called grouped survival

data. We construct a finite partition of the time axis, 0 < s1 < s2 < · · · < sJ , with

sJ > yi for i = 1, 2, · · · , n. Thus, we have J disjoint intervals and let Ij = (sj−1, sj].

The observed data D is available as grouped within theses intervals. We denote D =
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(X,Rj,Dj : j = 1, 2, · · · , J) as full data, where Rj is the risk set and Dj is the failure

set of the jth interval Ij. To define the data with the ith subject deleted from the full

data, we assume that the ith subject is in the ath interval, Ia = (sa−1, sa]. And we

denote D−i = (X,R−i
a ,D−i

a ,Rj,Dj : j = 1, · · · , a−1, a+1, · · · , J) as the data without

the ith subject, where R−i
a is the risk set and D−i

a is the failure set of the ath interval

without the ith subject. We also assume that the censoring indicator for the deleted

subject is known.

To model the grouped survival data, we consider the discretized beta process (Hjort,

1990; Sinha, 1997) with a grouped data likelihood (Ibrahim et al., 2001a). Let hj be

the discretized baseline hazard rate in the interval Ij = (sj−1, sj], j = 1, 2, · · · , J

and we specify independent beta priors for the hj’s. Specifically, we take hj ∼
Beta(c0kα0k, c0k(1 − α0k)), and hj are independent for j = 1, 2, · · · , J . The likelihood

is given by (Ibrahim et al., 2001a)

L(β, h|D) =
J∏

j=1

Lj(β,h|D)

=
J∏

j=1


 ∏

k∈Rj−Dj

(1− hj)
exp(x′kβ)

∏

l∈Dj

{
1− (1− hj)

exp(x′lβ)
}


 , (2.40)

where h = (h1, h2, · · · , hJ)′.

After deleting the ith subject, the risk set and failure set of the ath interval change.

Since the risk set of the ath interval always contains the ith subject, it becomes Ra −
{ith subject} after deleting the ith subject. On the other hand, the failure set of the

ath interval contains the ith subject only if the survival time is observed from the

failure (event). Therefore, the failure set becomes Da−{ith subject}, if the ith subject

is failed, and it remains same as Da, if the ith subject is censored. Thus, the likelihood
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without the ith subject (ith subject ∈ Ia) is given by

L(β,h|D−i) =
J∏

j=1,j 6=a

Lj(β,h|D)La(β, h|D−i) (2.41)

=
J∏

j=1

Lj(β,h|D)
[
(1− δi)(1− ha)

exp(x′iβ) + δi

{
1− (1− ha)

exp(x′iβ)
}]−1

,

where δi is the indicator for the ith subject having 1 for failure and 0 for censoring.

La(β, h|D−i) is the likelihood for the ath interval without the ith subject and given by

La(β,h|D−i) = La(β,h|D)
[
(1− δi)(1− ha)

exp(x′iβ) + δi

{
1− (1− ha)

exp(x′iβ)
}]−1

.

(2.42)

A typical prior distribution for β is a Np(µ0, Σ0), which is independent of h. The

posterior distributions for full data and data without the ith subject are given by

p(β,h|D) = L(β,h|D)π(h)π(β)/

∫ ∫
L(β, h|D)π(h)π(β) dh dβ ,

and

p(β,h|D−i) = L(β,h|D−i)π(h)π(β)/

∫ ∫
L(β, h|D−i)π(h)π(β) dh dβ. (2.43)

Sampling from the joint posterior distribution of (β, h), p(β, h|D), can be done by

using transformation qj = − log(1 − hj), j = 1, 2, · · · , J and exponential auxiliary

variables (Ibrahim et al., 2001a).
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2.5.2 Diagnostic Measures

We define CPO statistics for the ith subject in the ath interval with the grouped data

likelihood as

CPOi = p(zi|D−i)|zi∈Ia , i = 1, 2, · · · , n, (2.44)

where p(zi|D−i) is the predictive density of the ith subject given D−i. We de-

note the ratio of likelihoods with full data and data with the ith subject deleted as

L(β,h|D)/L(β,h|D−i) = gi(β, ha). Specifically, gi(β, ha) = (1 − δi)(1 − ha)
exp(x′iβ) +

δi

{
1− (1− ha)

exp(x′iβ)
}
. We can show that the CPO statistics for the beta process

model can be computed by

CPOi =
[
Eβ,h{gi(β, ha)

−1|D}]−1
, for i = 1, 2, · · · , n. (2.45)

For the beta process model, K-L divergence is defined by

K(P, P−i) =

∫ ∫
p(β,h|D) log

{
p(β,h|D)

p(β,h|D−i)

}
dh dβ. (2.46)

We can obtain computational formula for K(P, P−i) assessing the influence of the

ith subject on the joint posterior distribution and establish its connection to CPO

as follows:

K(P, P−i) = log Eβ,h

[
gi(β, ha)

−1|D]
+ Eβ,h [log gi(β, ha)|D]

= − log(CPOi) + Eβ,h [log gi(β, ha)|D] . (2.47)

We can also obtain computational formula for K-L divergence assessing the influ-

ence of the ith subject on the marginal posterior distribution of β1 and establish its
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connection to CPO as follows:

K(P1, P1,−i) = log Eβ,h

[
gi(β, ha)

−1|D]
(2.48)

− Eβ1,h

[
log

{∫
gi(β, ha)

−1p(β2|β1, h, D)dβ2

}∣∣∣∣D

]

= − log(CPOi)− Eβ1,h

[
log

{∫
gi(β, ha)

−1p(β2|β1,h, D)dβ2

}∣∣∣∣ D

]
,

where p(β2|β1, h, D) = p(β1,β2,h|D)/
∫

p(β1,β2,h|D)dβ2.

The actual computation of equations (2.45), (2.47) and (2.48) can be done using MCMC

samples from p(β,h|D).

2.6 Illustrative Examples

In this section, we illustrate our methodology with simulated data and two real data

sets.

2.6.1 Simulated Data

To examine the performance of the proposed diagnostics measures, we considered sim-

ulated datasets with one or more of the generated cases perturbed. The covariate

xi1, i = 1, · · · , n, was generated from a N(30, 4) distribution and standardized for

numerical stability. An additional covariate, xi2, was independently generated from a

Bernoulli(0.5) distribution. The failure time Ti was generated from an exponential dis-

tribution with hazard rate λi, where λi = exp(β0+β1xi1+β2xi2) with β0 = 1, β1 = −0.5

and β2 = 2, and the censoring time Ci was generated from an exponential distribution

with λc = 2.56, where Ti and Ci were assumed independent. The survival times yi,

i = 1, · · · , 150, were taken as yi = min(Ti, Ci), δi was the censoring indicator equal to 1,

if Ti ≤ Ci, and 0, if Ti > Ci. In the simulated data, yi ranged from 0.000008 to 0.8269

with median=0.0553, mean=0.1045 and standard deviation= 0.1321, whereas λi ranged
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from 1.11 to 58.79 with median=5.97, mean=12.89 and standard deviation=13.28. The

observed censoring rate was 32%.

We selected cases 10, 59 and 62 for perturbation. To create influential observations

in the dataset, we choose one or two of those selected cases and perturbed the survival

time (yi), the covariate (xi1), or both the survival time and the covariate of the chosen

case(s). For the above perturbations, the survival time for the ith case was perturbed

as ỹi = yi + 5σ̂y, where σ̂y is the standard deviation of the yi’s. And the covariate x1

for the ith case was perturbed as x̃i1 = xi1 − 5σ̂x1 , where σ̂x1 is the standard deviation

of the xi1’s. After perturbing the survival time, the survival time of cases 10, 59, and

62 were changed from 0.01820 to 0.67849, 0.06854 to 0.72883, and 0.06765 to 0.72795,

respectively. After perturbing x1, the value of this covariate for cases 10, 59 and 62 was

then changed from -1.39632 to -6.39632, -0.60912 to -5.60912, and -1.31305 to -6.31305,

respectively. Specifically, we considered 6 different types of perturbation schemes: (I)

perturbation of a survival time for a case; (II) perturbation of a covariate for a case;

(III) perturbation of both a survival time and a covariate for a case; (IV) perturbation

of a survival time for two cases; (V) perturbation of a covariate for two cases; (VI)

perturbation of a survival time for one case and a covariate for another case. Detailed

descriptions regarding the perturbations are given in Table 2.1. In Table 2.1, dataset

(a) denotes the original simulated dataset with no perturbation and datasets (b)-(o)

denote datasets with perturbed case(s) added by the perturbation schemes (I)-(VI).

We fit the gamma process model of Section 2.3 with an exponential H∗(y) = 2.7y.

We chose a noninformative prior distribution for β as N2(0, 106I). We used ARMS

within Gibbs to obtain posterior samples. After burn-in, 40,000 MCMC posterior sam-

ples were used in the analysis. The proposed joint and marginal K-L divergences,

K(P, P−i) in (2.10), K(P1, P1,−i), K(P2, P2,−i) in (2.16), and calibrations of those di-

vergences were computed for the simulated data with and without perturbation of the

cases. We used pi in Section 2.2.1 to compute the calibrations of K(P, P−i), K(P1, P1,−i)
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and K(P2, P2,−i). We monitored convergence of the Gibbs chain using the method pro-

posed by Geweke (1992), as well as trace plots. We conducted sensitivity analyses using

c=0.01, 0.1, 1, 10 and 100. For brevity, we present results for only the low confidence

value of c=0.01. For the computation of K(P1, P1,−i) and K(P2, P2,−i), we used every

5th sample from the 40,000 MCMC posterior samples to reduce the autocorrelations

and yield better convergence results.

Table 2.1 shows that the posterior inferences are sensitive to the perturbation of

the selected case(s). Overall, the inferences are most sensitive to the perturbation of

both the survival time and the covariate. Since we used noninformative priors on β and

c=0.01, the posterior estimates were similar to the maximum likelihood estimates based

on partial likelihood. The results regarding the diagnostics showed that K(P, P−i), as

well as K(P1, P1,−i) and K(P2, P2,−i), changed very little for the non-perturbed cases,

while they changed a lot for the perturbed case(s).

The results in Table 2.2 show that before perturbation (dataset (a)), all of the

selected cases are not influential, each providing a small K(P, P−i) with its calibration

close to 0.5. However, after perturbation (datasets (b) through (o)), K(P, P−i) for those

perturbed cases increased a lot and the corresponding calibrations become much larger

than 0.5, indicating those cases are influential. Specifically, perturbing both the survival

time and the covariate of a case increases K(P, P−i) a lot. For example, K(P, P−i) (and

its calibration) for case 10 in dataset (h) is increased from 0.0006 (0.5168) to 5.8040 (1).

We also note that the perturbed cases are similarly identified as influential using the

likelihood displacement (LD) based on partial likelihood. Moreover, Figure 2.1 clearly

shows that K(P, P−i) performed well for identifying influential case(s) in each dataset

providing larger K(P, P−i) for the perturbed case(s) compared to the other cases.

Moreover, in Table 2.1, we observe that perturbing the survival time of a case had

influence on the posterior estimates of both β1 and β2, while perturbing the covari-

ate (x1) of a case alone had more influence on the estimates of β, corresponding to
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FIGURE 2.1: K(P, P−i) for the simulated data with c=0.01.

the perturbed covariate. We see that K(P1, P1,−i) and K(P2, P2,−i) in Table 2.2 de-

scribe these marginal influences well. Specifically, both K(P1, P1,−i) and K(P2, P2,−i)

increase for the perturbation of the survival time, while K(P1, P1,−i) increases relative

to K(P2, P2,−i) for the perturbation of the covariate (x1). For example, perturbing

the survival time of case 62 in dataset (d) increases K(P1, P1,−i) and K(P2, P2,−i) from

0.0107 to 1.3214, and 0.0036 to 1.7394, respectively, while perturbing the covariate (x1)

of case 62 in dataset (g) increases K(P1, P1,−i) and K(P2, P2,−i) from 0.0107 to 2.4073,

and 0.0036 to 0.0618, respectively.

Although there may be masking effects when there is more than one perturbed case

(datasets (k) through (o)), K(P, P−i) identifies the influential cases by providing a larger

K(P, P−i) and its calibration compared to the other cases. In addition, K(P1, P1,−i)

and K(P2, P2,−i) also describe the influence of the cases on posterior inference regarding
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β1 and β2, respectively. However, the magnitude of the measures become much smaller

and the existence of an extremely influential case may mask the influence of other cases.

This is not surprising since the proposed diagnostics are based on single case deletion.

Overall, the proposed joint and marginal influence diagnostic measures, K(P, P−i),

K(P1, P1,−i) and K(P2, P2,−i) performed well for identifying influential cases as well as

describing the influence of a case on posterior inference.

2.6.2 Stanford Heart Transplant Data

To further illustrate the proposed methodology, we revisit the Stanford heart transplant

data discussed in Section 2.1. Escobar and Meeker (1992) used 184 transplant cases to

identify influential cases using an accelerated failure time lognormal regression model.

We used the same dataset here with some minor modifications and identified influential

cases using the proposed methodology. Of the 184 cases, 71 cases were right censored.

The covariate included in this analysis was Age (x1) (mean=41.09, and standard devi-

ation=11.036) as well as a quadratic term of Age (x2). Similar to Miller and Halpern

(1982) and Escobar and Meeker (1992), the T5 mismatch score covariate was not used

in this analysis due to its nonsignificance. For numerical stability in MCMC sampling,

we standardized Age and divided survival time by 365 to make time in years instead

of days.

We fit the gamma process model of Section 2.3 with H∗(y) = 0.35y, c=0.01 and

c=100. We chose a noninformative prior distribution for β = (β1, β2) as N2(0, 106I).

MCMC computations were done similarly as described in Section 2.6.1, and 14,000

MCMC posterior samples were used in this analysis after burn-in. The posterior

means (standard deviations) and 95% Highest Posterior Density (HPD) intervals for β

were: For c=0.01, 0.4588 (0.1134) and (0.2404, 0.6830) for β1, and 0.2323 (0.0841) and

(0.0650, 0.3949) for β2 ; For c=100, they were 0.3793 (0.1068) and (0.1746, 0.5916) for

β1, and 0.1117 (0.0766) and (-0.0385, 0.2606) for β2.
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TABLE 2.3: Case influence diagnostics for the heart transplant data

Case identification c=0.01 c=100

Patient no. Time(days) Status Age K(P, P−i) Cal. K(P, P−i) Cal.

74 2006 Alive 15 0.1539 0.7573 0.1818 0.7761

159 10 Dead 13 0.0865 0.6993 0.0973 0.7102

119 1116 Alive 14 0.0743 0.6858 0.0628 0.6718

139 86 Dead 12 0.0530 0.6585 0.0871 0.6999

160 5 Dead 20 0.0307 0.6219 0.0337 0.6277

108 42 Dead 19 0.0303 0.6211 0.0359 0.6316

133 1 Dead 21 0.0270 0.6145 0.0289 0.6185

Note that Cal. represents calibration

Table 2.3 shows subjects having large K(P, P−i) and calibration values compared

to the other subjects in the dataset. For both small and large c, case 74 was identified

as the most influential, having K(P, P−i) (calibration)=0.1539 (0.7573) for c=0.01 and

K(P, P−i) (calibration)=0.1818 (0.7761) for c=100. Cases 159, 119 and 139 were also

identified as influential. In addition, we identified cases 160, 108 and 133 as somewhat

influential compared to other cases in the dataset for both small and large c. Figure

2.2 shows a plot of K(P, P−i) for all the cases using c=0.01. Upon examination of these

cases, it appears that these cases are influential due to low values of the covariate age,

and because there were not many low age cases. Specifically, cases 159, 139, 160, 108

and 133 had small failure times in spite of their low age values. An analysis using the

likelihood displacement based on partial likelihood showed that cases 74, 159, 119 and

139 were also identified as influential. In addition, our analysis identified similar cases

as being influential as in Escobar and Meeker (1992), in which they identified influential

cases using either case weight perturbations (patient number: 21, 74, 119, 133, 159) or

response perturbations (patient number: 18, 21, 133, 139, 159) based on an accelerated

failure time lognormal regression model. Although a different model than ours was
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FIGURE 2.2: K(P, P−i) for the heart transplant data with c=0.01

being fit, we used the results in Escobar and Meeker (1992) as a benchmark for the

proposed Bayesian methodology to examine whether the proposed Bayesian method-

ology was at least consistent and yielding results in the same direction as commonly

used frequentist methodology. We note that we used patient number as case number

while Escobar and Meeker (1992) used case number sorted by Age.

2.6.3 Melanoma Data

As a further demonstration of the proposed methodology, we considered a phase III

clinical trial conducted by the Eastern Cooperative Oncology Group (ECOG), labeled

E1690 (Kirkwood et al., 2000). The trial evaluated the efficacy of interferon alfa-2b ther-

apy on melanoma patients. The dataset used in this analysis consisted of 427 patients

on the high-does interferon arm and observation arm combined. The response variable

was relapse-free survival (RFS) time in years (a continuous variable, ranging from 0 to

6.9760 with mean=2.2596, and standard deviation=1.9487). Of the 427 patients, 241
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patients experienced cancer relapse (event) and 186 patients were right censored. The

covariates included in this analysis were age (a continuous variable ranging from 19.13

to 78.05 with mean=47.93, and standard deviation=13.15), treatment (215 patients on

high-dose interferon arm (IFN), 212 patients on the observation arm (OBS)), sex (159

females, 268 males), and performance status (54 patients with moderate performance

status, 373 patients with good performance status). For numerical stability in MCMC

sampling, age was standardized. We fit the gamma process model of Section 2.3 with

H∗(y) = 0.26y and c=0.01. We chose a noninformative prior distribution for β as

N4(0, 106I). MCMC computations were done similarly as described in Section 2.6.1

For the E1690 data, we did not find any highly influential cases. The K(P, P−i)

was smaller than 0.034 for all cases and the corresponding calibrations were not much

larger than 0.5 (Figure 2.3 ). However, cases 16784, 16074, 16179, 16109, 16221 and
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16504 had larger K(P, P−i) compared to the other cases (Table 2.4). Specifically, case

16784 (K(P, P−i)=0.0338, calibration=0.6279) and case 16074 (K(P, P−i)=0.0303, cal-

ibration=0.6213) were identified as the most and the second most influential cases com-

pared to the other cases. After an investigation as to the reason why these identified

cases were more influential than others, we found that the identified cases had longer

relapse free survival time (although they were censored) in spite of their large ages

compared to other cases having moderate performance status. The marginal influence

for the individual βj’s showed that the identified observations were more influential

on posterior inference of β4, which corresponds to the performance status covariate,

compared to the other covariates (Table 2.4).

2.7 Discussion

We have proposed Bayesian case influence diagnostics using the Kullback-Leibler di-

vergence for survival models. We have provided simple computational formulas for

computing case influence on both the joint and marginal posterior distributions using

MCMC techniques. We have only considered diagnostics based on single case deletion.

This can be easily expanded to deletion of more than a single case or subsets of cases.

In principle, this methodology can also be applied to any regression model by specifying

the ratio of likelihoods with full data and data with a single case (or subset of cases)

deleted. We have presented the full development for survival models here for focus and

clarity of exposition.
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CHAPTER 3

BAYESIAN CASE INFLUENCE

MEASURES AND THEIR

APPLICATIONS

3.1 Introduction

In Bayesian analysis, considerable research has been devoted to developing single case

influence measures for various specific statistical models including generalized linear

models, time series models, and survival models (Johnson and Geisser, 1983; Johnson,

1985; Pettit, 1986; Kass et al., 1989; Carlin and Polson, 1991; Gelfand et al., 1992;

Weiss and Cook, 1992; Geisser, 1993; Blyth, 1994; Peng and Dey, 1995; Weiss, 1996;

Christensen, 1997; Bradlow and Zaslavsky, 1997). Despite the extensive literature on

Bayesian diagnostic measures in specific models, very little has been done on systemat-

ically examining Bayesian case influence measures in general parametric models when

a small or large number of observations are deleted at a time.

The aims of this paper are to introduce three types of Bayesian case influence mea-

sures based on case deletion, namely the φ−divergence, Cook’s posterior mode distance

and Cook’s posterior mean distance, and to evaluate the effects of deleting a set of



observations in general parametric models including random effects models. When

the number of observations in each set, denoted as NS, is small, we will systemati-

cally derive their asymptotic approximations, which facilitate their computation and

establish their asymptotic equivalence. We also propose a calibration method for eval-

uating their relative sizes. Moreover, we will extend these results to the case when

NS increases with sample size. In particular, we show that Cook’s posterior mode and

posterior mean distance have nice asymptotic properties even when NS →∞. We will

establish connections between Bayesian case influence measures, measures of Bayesian

model complexity, as well as leave-k-out cross validation methods for model selection.

Specifically, we will show that the sums of these proposed Bayesian case-deletion statis-

tics are measures of model complexity, and show their asymptotic equivalence to the

effective number of parameters in the Deviance Information Criterion (DIC) (Spiegel-

halter et al., 2002). Finally, based on the proposed measures, we construct Bayesian

information criterion which can be used for model selection.

The rest of this paper is organized as follows. In Section 3.2, we introduce the three

Bayesian case influence measures and propose computational formulas for computing

these measures. We also examine their asymptotic properties and propose a calibration

method to assess the relative sizes of these measures. Finally, we examine deleting sets

of observations, whose numbers increase with sample size. In Section 3.3, we investigate

applications of the proposed diagnostic measures to Bayesian model assessment. In

Section 3.4, we illustrate the proposed methodologies with some Bayesian regression

models. In Section 3.5, we illustrate the proposed methodology on generalized linear

models and generalized linear mixed models using two real data examples involving a

Los Angeles Heart Study and a clinical trial for epileptic patients. We conclude the

paper with some discussion in Section 3.6.
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3.2 Bayesian Case Influence Measures

3.2.1 Preliminaries

Let p(Y |θ) be the probability function for a random vector Y T = (Y T
1 , · · · ,Y T

n ),

parameterized by an unknown parameter vector θ = (θ1, · · · , θp)
T in an open subset

Θ of Rp. Moreover, the dimension of Y i = (yi1, · · · , yimi
)T , denoted by mi, can vary

across all i. For example, in longitudinal studies and mixed models, mi is the number

of observations in each cluster and this may vary significantly across the clusters. Let

p(θ) be the prior distribution of θ. The posterior distribution for the full data Y is

given by p(θ|Y ) ∝ p(Y |θ)p(θ).

We are interested in assessing the influence of deleting a set of observations, denoted

by S, on posterior inferences regarding θ. Let N =
∑n

i=1 mi and NS be, respectively, the

total number of observations and the number of observations in the set S. A subscript

‘[S]’ denotes the relevant quantity with all observations in S deleted. For instance, if

S = {i}, then Y [S] is the corresponding observed data with all of Y i deleted, whereas

if S = {i1, i2}, then Y [S] is the corresponding observed data with Yi1 and Yi2 deleted.

Furthermore, we may set S = {i1, · · · , ik} and S = {(i1, j1), · · · , (ik, jk)} to allow more

complicated case deletions. Let Y S denote a subsample of Y consisting of all the

observations in S and let Y [S] denote a subsample of Y with all observations in S

(Y S) deleted. The posterior distribution for a subsample of the data Y is given by

p(θ|Y [S]) ∝ p(Y [S]|θ)p(θ), where p(Y [S]|θ) is given by p(Y |θ)/p(Y S|θ).

Now, we introduce three types of Bayesian case influence measures based on case

deletion. The first type is the φ−influence of Y [S], defined by

Dφ(S) =

∫
φ(R[S](θ))p(θ|Y )dθ, (3.1)

where R[S](θ) = p(θ|Y [S])/p(θ|Y ) and φ(·) is a convex function with φ(1) = 0 (Weiss
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and Cook, 1992; Weiss, 1996). Dφ(S) directly measures the distance (discrepancy)

between two posterior distributions p(θ|Y [S]) and p(θ|Y ) (Csiszár, 1967; Weiss and

Cook, 1992) and a large value of Dφ(S) corresponds to an influential set of observations.

Various forms of φ(·) have been widely considered in the literature (Kass et al., 1989;

Weiss and Cook, 1992; Blyth, 1994; Peng and Dey, 1995; Weiss, 1996). For instance,

φ(·) can be chosen to be φα(u), which is defined by 4{1−u(1+α)/2}/(1−α2) for α 6= ±1,

u log(u) for α = 1, and − log(u) for α = −1. In particular, φ1(·) and φ−1(·) lead to the

Kullback-Leibler divergence (K-L divergence); moreover, φ(u) = φ1(u) + φ−1(u) leads

to the symmetric K-L divergence. The L1−distance and the χ2−divergence correspond

to φ(u) = 0.5|u− 1| and φ(u) = (u− 1)2, respectively (Kass et al., 1989).

The second Bayesian influence measure assesses the discrepancy between the poste-

rior mode of θ with and without the ith case (Cook and Weisberg, 1982). We call this

measure Cook’s posterior mode distance. Specifically, we define the posterior modes

of θ for the full sample Y and a subsample Y [S] as θ̂ = argmaxθ log p(θ|Y ) and

θ̂[S] = argmaxθ log p(θ|Y [S]), respectively. Then, Cook’s posterior mode distance for

comparing Y and Y [S], denoted by CP(S), can be defined as follows:

CP(S) = (θ̂[S] − θ̂)T Gθ(θ̂[S] − θ̂), (3.2)

where Gθ is chosen to be a positive definite matrix. For instance, Gθ can be

−∂2
θ log p(θ|Y ) = −∂2

θ log p(Y |θ) − ∂2
θ log p(θ) evaluated at θ̂, where ∂2

θ represents

the second-order derivative with respect to θ. If we consider a uniform improper prior

for θ, then CP(S) reduces to the well-known Cook’s distance for deleting a set of ob-

servations (Cook and Weisberg, 1982). A large value of CP(S) implies more influence

of the set S on the posterior mode.

The third type of Bayesian influence measure assesses the distance between the

posterior mean of θ with and without the observations in S. We define the posterior
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mean of θ for the full sample Y and a subsample Y [S] as θ̃ =
∫

θ · p(θ|Y )dθ and

θ̃[S] =
∫

θ · p(θ|Y [S])dθ, respectively. Cook’s posterior mean distance for deleting the

observations in the set S, denoted by CM(S), can then be defined as follows:

CM(S) = (θ̃[S] − θ̃)T Wθ(θ̃[S] − θ̃), (3.3)

where Wθ is chosen to be a positive definite matrix. A large value of CM(S) corresponds

to an influential set S regarding the posterior mean.

Although all three Bayesian case influence measures assess the influence of a set of

observations, there is a conceptual difference among those measures. The Dφ(S) quan-

tifies the effects of deleting a set of observations on the overall posterior distribution,

whereas CP(S) and CM(S) quantify the effects of deleting a set of observations on the

posterior estimates; the posterior mode and the posterior mean of θ, respectively. Since

Dφ(S) measures the overall differences between p(θ|Y ) and p(θ|Y [S]), and such differ-

ences may include shape, mode, mean etc., Dφ(S) can be more sensitive to the changes

of the posterior distributions due to the deletion of the observations in S compared to

CP(S) and CM(S).

3.2.2 Computation, Approximation and Calibration

Ideally, the proposed case influence measures can all be computed using only MCMC

samples from the full posterior distribution, p(θ|Y ). We define pS(θ), the ratio of

likelihoods with and without the observations in S as

pS(θ) =
p(Y |θ)

p(Y [S]|θ)
= p(Y S|Y [S],θ), (3.4)

which is the conditional distribution of Y S, which contains all observations in S, given

Y [S]. Then, we have p(θ|Y[S]) = [pS(θ)]−1p(Y |θ)p(θ)/
∫

[pS(θ)]−1p(Y |θ)p(θ)dθ. Thus,
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the computational formula for Dφ(S) can be obtained as

Dφ(S) = Eθ|Y

[
φ

(
[pS(θ)]−1

Eθ|Y {[pS(θ)]−1}
)]

, (3.5)

where Eθ|Y denotes the expectation taken with respect to the posterior distribution

p(θ|Y ). Specifically, for the K-L divergence (φ(u) = − log(u)), the computational

formula is given by Dφ(S) = log Eθ|Y {[pS(θ)]−1}+ Eθ|Y {log[pS(θ)]}.
To compute CP(S), we need to evaluate θ̂ and θ̂S. In general, the posterior mode

of θ does not have a closed analytic form, thus we have to rely on iterative methods

such as Newton-Raphson to obtain θ̂ and θ̂[S]. However, this can be computationally

intensive for most models, such as state space models. Gθ in CP(S) can be analytically

obtained by evaluating JN(θ) = −∂2
θ log p(θ|Y ) = −∂2

θ log p(Y |θ)− ∂2
θ log p(θ) at θ̂.

Since we can write θ̃ = Eθ|Y (θ) and θ̃[S] = Eθ|Y {θ · [pS(θ)]−1}/Eθ|Y {[pS(θ)]−1}, we

can easily compute CM(S) using MCMC samples from the full posterior distribution,

p(θ|Y ). Specifically, the posterior mean of θ, denoted θ̃, can be obtained directly

by averaging the MCMC samples and Wθ can be analytically obtained by evaluating

JN(θ) at θ̃. Furthermore, Wθ as well as Gθ can be approximated by the inverse of the

posterior covariance matrix, obtained from the MCMC samples.

For diagnostic purposes, it is desirable to derive computationally feasible approx-

imations to these case influence measures. We obtain the following theorems, whose

detailed proofs can be found in the Appendix.

Theorem 3.1. If Assumptions C1-C4 in the Appendix hold and NS is bounded by a

fixed constant, then we have the following results:

(a) Dφ(S) can be approximated by

Dφ(S) = 0.5φ̈(1)[∂θ log pS(θ̂)]T [JN(θ̂)]−1[∂θ log pS(θ̂)][1 + Op(N
−1)],
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where φ̈(1) = ∂2
uφ(u)|u=1.

(b) The one-step approximation for θ̂[S] is given by

θ̂[S] = θ̂ + Op(N
−1) = θ̂ − [JN(θ̂)]−1∂θ log pS(θ̂)[1 + Op(N

−1)].

(c) The one-step approximation for θ̃[S] is given by

θ̃[S] = θ̃ − [JN(θ̂)]−1∂θ log pS(θ̂)[1 + Op(N
−1)].

(d) 2Dφ(S)/φ̈(1), CP(S), and CM(S) are asymptotically equivalent, that is,

Dφ(S) = 0.5φ̈(1)× CP(S) + Op(N
−2) = 0.5φ̈(1)× CM(S) + Op(N

−2).

Theorem 3.1 has several important implications. Theorem 3.1 (a) provides theoret-

ical and computational approximations of Dφ(S) as a quadratic form in ∂θ log pS(θ̂).

Theorem 3.1 (b) and (c) provide the one-step approximation of θ̂[S] and θ̃[S], which

reduces the burden of computing θ̂[S] and θ̃[S] for each S. Moreover, to the best of

our knowledge, Theorem 3.1 (d) is the first result that establishes a direct connection

between Dφ(S), CP(S) and CM(S) for any φ(·) within the Bayesian framework. In

particular, for φα(u) = − log(u), it can be shown that ∂2
uφα(u)|u=1 = 1, which leads to

Dφα(S) = 0.5CP(S) + Op(N
−2) = 0.5CM(S) + Op(N

−2) for all α. Furthermore, for the

χ2−divergence and the symmetric K-L divergence, we have ∂2
uφ(u)|u=1 = 2, which gives

Dφ(S) = CP(S)+Op(N
−2) = CM(S)+Op(N

−2). However, no simple connection exists

between the three diagnostic measures based on the L1−distance (φ(u) = 0.5|u − 1|),
because φ̈(1) = 0. Thus, Dφ(S) = Op(N

−2) for the L1−distance.

According to Theorem 3.1, to approximate these case influence measures, we only

need to compute the posterior mean θ̃, the observed-data information matrix JN(θ̃),
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∂θ log pS(θ) evaluated at θ̃, and

AP(S; θ̃) = [∂θ log pS(θ̃)]T [JN(θ̃)]−1[∂θ log pS(θ̃)]. (3.6)

In particular, θ̃ and JN(θ̃) can be easily computed from the MCMC samples. For most

statistical models, the computation of ∂θ log pS(θ) = ∂θ log p(Y |θ) − ∂θ log p(Y [S]|θ)

is relatively straightforward. Here, we use the fact that the posterior mean and poste-

rior mode are asymptotically equivalent under suitable regularity conditions which are

satisfied for the regression models considered here.

To calibrate these case influence measures, we use posterior predictive p-value (Gel-

man et al., 1996, 2003), which is defined as the probability that replicate data could

be more extreme than the observed data, as measured by the case influence measures.

We present the five key steps to compute the posterior predictive p-value for AP(S; θ̃)

in (3.6).

Step 1. Using the observed data Y , we obtain the MCMC sample θ(j) for j = 1, · · · , J

from p(Y |θ).

Step 2. For given θ(j), we compute AP(S; θ(j)) based on the observed data, and denote

it by APobs(S; θ(j)) for j = 1, · · · , J .

Step 3. We draw one replicate, denoted by Y rep,(j), from the distribution p(Y rep|θ(j))

for each θ(j) and compute AP(S; θ(j)) based on the replicate data, denote by

APrep(S; θ(j)) for j = 1, · · · , J .

Step 4. We repeat Step 3 M times, and therefore we have APrep,(m)(S; θ(j)) for m =

1, · · · ,M and j = 1, · · · , J .

Step 5. The Monte Carlo approximation of the posterior predictive p-value can be
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obtained as

p̂AP (S) =
1

J

1

M

J∑
j=1

M∑
m=1

I(APrep,(m)(S; θ(j)) ≥ APobs(S; θ(j))), (3.7)

where I(·) is an indicator function.

Note that p̂AP (S) is not a regular p-value. A small value of p̂AP (S) corresponds to an

influential set S in the data for the given model.

3.2.3 Deleting Large Numbers of Observations

Although we have systematically examined the deletion of a bounded number of ob-

servations, there are some applications that require deleting relatively large numbers

of observations. For instance, for clustered data, we may be interested in deleting all

observations in some clusters, whose numbers may be comparable with the total num-

ber of clusters n. That is, NS → ∞. Moreover, the idea of multifold cross validation

(Geisser, 1975; Zhang, 1993) requires deleting a large number of observations at a time.

We obtain the following theorem.

Theorem 3.2. If Assumptions C1, C2, C3’, and C4 in the Appendix hold and NS →∞
and NS/N → γ ∈ [0, 1), then we have the following results:

(a) The one-step approximation for θ̂[S] is given by

θ̂[S] = θ̂ + Op(N
−1/2) = θ̂ − [JN,[S](θ̂)]−1∂θ log pS(θ̂)[1 + Op(N

−1/2)],

where JN,[S](θ) = −∂2
θ log p(θ|Y [S]). If γ = 0, then

θ̂[S] = θ̂ − [JN(θ̂)]−1∂θ log pS(θ̂)[1 + Op(N
−1/2) + Op(NS/N)]. (3.8)
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(b) The one-step approximation for θ̃[S] is given by

θ̃[S] − θ̃ = (θ̂[S] − θ̂)[1 + op(1)].

(c) CP(S) and CM(S) can be asymptotically approximated by [∂θ log pS(θ̃)]T ·
[JN,[S](θ̃)]−1[JN(θ̃)][JN,[S](θ̃)]−1[∂θ log pS(θ̃)]. If γ = 0, then

CP(S) = CM(S)[1 + op(1)] = AP(S; θ̃)[1 + op(1)]. (3.9)

(d) Dφ(S) can be approximated by

Dφ(S) = φ(AS) + Op(N
−1),

where AS = σ × p(Y [S]|θ̂)p(θ̂)/[σ[S] × p(Y [S]|θ̂S)p(θ̂S)], σ2 = [JN(θ̂)/N ]−1 and σ2
[S] =

[JN,[S](θ̂S)/N ]−1.

Theorem 3.2 has several important implications. Theorem 3.2 (a) and (b) provide

the one-step approximations of θ̂[S] and θ̃[S], which reduce the burden of computing

θ̂[S] and θ̃[S] for each S. Theorem 3.2 (c) provides theoretical and computational ap-

proximations of CP(S) and CM(S). If NS/N → 0, such as NS =
√

N , then CP(S)

and CM(S) can be well approximated by AP(S; θ̃). Theorem 3.2 (d) shows that when

NS → ∞, Dφ(S), which can be approximated by φ(AS), is not asymptotically equiv-

alent to AP(S; θ̃) in any case. Therefore, we cannot use AP(S; θ̃) to characterize the

asymptotic behavior of Dφ(S). Since calculating Dφ(S) and p(Y [S]|θ) in AS can be

computationally tedious compared with CM(S) and AP(S; θ̃) in many models, such as

random effects models with or without missing data, we generally suggest using the

Bayesian case influence measures CP(S) and CM(S) for diagnostic purposes.

50



3.3 Applications to Model Assessment

3.3.1 Model Complexity and Cross Validation

The three proposed Bayesian case influence measures are also associated with Bayesian

measures of model complexity and fit. Specifically, we consider a Bayesian measure of

model complexity (BMMC) based on the sum of AP(S; θ̃) as follows:

MC(IS) =
∑
S∈IS

AP(S; θ̃), (3.10)

where IS denotes all possible sets sharing the same pattern as the set S. For

instance, if we consider single cluster deletion, that is S = {i}, then IS =

{{1}, · · · , {n}}. If we consider single observation deletion, that is S = {(i, j)}, then

IS = {{(1, 1)}, · · · , {(1,m1)}, · · · , {(n,mn)}}. Similarly, we can define other BMMCs

based on Dφ(S), CP(S), and CM(S), which are asymptotically equivalent to MC(IS).

An interesting question is how MC(IS) is related to both classical and Bayesian

measures of model complexity. The following theorem ensures that MC(IS) is asymp-

totically equivalent to the effective number of parameters in other information criteria

such as the Akaike information criterion (AIC) (Akaike, 1973), Takeuchi’s information

criterion (TIC) (Takeuchi, 1976) and DIC. Using the one-step approximation for θ̃[S]

in Theorem 3.1, we are led to the following Theorem on the consistency of MC(IS).

Theorem 3.3. Suppose that Assumptions C1, C2, C5 and C6 in the Appendix hold

and NS is bounded by a fixed constant. Then, we have the following results:

(a) (Consistency) Let NIS
be the number of sets in IS. Then

N

NIS

MC(IS)=
N

NIS

tr{[JN(θ̃)]−1KN(IS|θ̃)} = tr[J−1
∗ K∗(IS)] + op(1), (3.11)
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where JN(θ̃) = −∂2
θ log p(θ|Y )|θ=θ̃ and KN(IS|θ̃) =

∑
S∈IS

[∂θ log pS(θ)]⊗2|θ=θ̃. More-

over,

J∗ = lim
N→∞

E[−∂2
θ log p(θ∗|Y )]

N
and K∗(IS) = lim

NIS
→∞

E{∑S∈IS
[∂θ log pS(θ∗)]⊗2}

NIS

,

(3.12)

where θ∗ denotes the pseudo-true parameter (Bunke and Milhaud, 1998) and a⊗2 = aaT

for any vector a.

(b) (Asymptotic Normality)
√

N×SMC(IS) converges to a N(0, σ2
S) distribution, where

SMC(IS) = NN−1
IS

(
MC(IS)− tr{[JN(θ̃)]−1E[KN(IS|θ̃)]}

)
.

Theorem 3.3 has several important implications. First, we consider single clus-

ter deletion IS = {{1}, · · · , {n}} and examine the relationship of MC(IS) with

other model complexity measures based on clustered data, in which the Y i are in-

dependent for different i, but the components in each Y i may be correlated. In

this case, we have NIS
= n, KN(IS|θ̃) =

∑n
i=1{∂θ log p(Y i|θ)}⊗2|θ=θ̃, K∗(IS) =

lim
n→∞

n−1E[
∑n

i=1{∂θ log p(Y i|θ∗)}⊗2], JN(θ̃) = −[
∑n

i=1 ∂2
θ log p(Y i|θ) + ∂2

θ log p(θ)]|θ=θ̃

and J∗ = lim
N→∞

N−1E[−{∑n
i=1 ∂2

θ log p(Y i|θ∗) + ∂2
θ log p(θ∗)}]. Let p∗ = tr[J−1

∗ K∗(IS)].

Using a uniform improper prior for θ, p∗ is the measure of model complexity in TIC.

Furthermore, if the model p(Y |θ) is correctly specified, then p∗ reduces to p, the num-

ber of parameters, and MC(IS) = p + op(1). In this case, p is the measure of model

complexity in AIC. For general priors, p∗ is the effective number of parameters in the

network information criterion (NIC) (Murata et al., 1994; Ripley, 1996). Moreover,

MC(IS) is also associated with the effective number of parameters, denoted by pD,

in DIC, where pD = Eθ|Y [−2 log p(Y |θ)] + 2 log[p(Y |θ̃)]. Under the two conditions

of approximately normal likelihoods and a uniform improper prior for θ, it can be

shown that pD = tr{JN(θ̃)E[(θ − θ̃)⊗2]} + op(1) (Spiegelhalter et al., 2002). More-

over, using the fact that E[(θ− θ̃)⊗2] = JN(θ∗)−1KN(IS|θ∗)JN(θ∗)−1[1+op(1)] (Bunke

and Milhaud, 1998), we can obtain the following connections between pD and MC(IS):
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pD = MC(IS) + op(1). Thus, MC(IS) has many of the same properties as pD (Spiegel-

halter et al., 2002). We also note that MC(IS) is always nonnegative, whereas pD is

not. Finally, we can apply the Lindeberg-Fellner central limit theorem to establish the

asymptotic normality of SMC(IS) by noting that

SMC(IS) =
1√∑n
i=1 mi

tr
(
[JN(θ̃)]−1{[∂θ log p(Y i|θ)]⊗2 − E[∂θ log p(Y i|θ)]⊗2}

)
.

Second, we consider single observation deletion IS = {{(1, 1)}, · · · , {(n,mn)}} and

examine MC(IS) for clustered data. We have NIS
= N =

∑n
i=1 mi and

∂θ log p[(i,j)](θ) = ∂θ log p(Y i|θ)− ∂θ log p(Y i,[(i,j)]|θ), (3.13)

where Y i,[(i,j)] denotes Y i with yi,j deleted. It can be shown that

KN(IS|θ̃) =
n∑

i=1

mi{∂θ log p(Y i|θ̃)}⊗2

−
n∑

i=1

∂θ log p(Y i|θ̃){
mi∑
j=1

∂θ log p(Y i,[i,j]|θ̃)}T

−
n∑

i=1

{
mi∑
j=1

∂θ log p(Y i,[i,j]|θ̃)}[∂θ log p(Y i|θ̃)]T

+
n∑

i=1

mi∑
j=1

{∂θ log p(Y i,[i,j]|θ̃)}⊗2. (3.14)

Moreover, p∗ = tr[J−1
∗ K∗(IS)] can be regarded as the measure of model complexity for

clustered data. Even if the model p(Y |θ) is correctly specified, p∗ does not reduce to p,

the number of parameters, and MC(IS) 6= p + op(1). Compared with p as the measure

of model complexity in AIC, p∗ = tr[J−1
∗ K∗(IS)] accounts for the correlation structure

in the clustered data. Although one may consider other case deletion mechanisms, we

omit them here for the brevity and the sake of space.

The posterior predictive p-value of MC(IS) can be computed in a similar fashion as
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described in Section 3.2.2. Thus, we obtain

p̂MC(S) =
1

J

1

M

J∑
j=1

M∑
m=1

I(MCrep,(m)(IS)(j) ≥ MCobs(IS)(j)),

where MCobs(IS)(j)=
∑

S∈IS
APobs(S; θ(j)) and MCrep,(m)(IS)(j)=

∑
S∈IS

APrep,(m)(S; θ(j)).

A small value of p̂MC(S) corresponds to a potentially misspecified model p(Y |θ).

MC(IS) is also associated with the leave-k-out cross validation method (Stone, 1974,

1977, 2002; Geisser and Eddy, 1979). The cross-validation method usually divides the

data into two subsamples: a training sample and a validation sample. The training

sample is used for model fitting and the validation sample is used to assess model fit.

For a given S, θ̃[S] is estimated from the training sample Y [S], whereas we use the

predictive distribution p(Ỹ S|Y [S]) for model validation, where Ỹ S is an independent

copies of Y S. One choice of the predictive distribution is to use p(Ỹ S|Y [S], θ). By

substituting Y S and θ̃[S] into p(Ỹ S|Y [S],θ), we can define the deleting-k multifold

cross validation criterion as

MCV(IS) =
∑
S∈IS

log p(Y S|Y [S], θ̃[S]) =
∑
S∈IS

log pS(θ̃[S]). (3.15)

We now obtain the following result.

Theorem 3.4. Suppose that Assumptions C1-C4 in the Appendix hold and NS is

bounded by a fixed constant. Then we have MCV(IS) =
∑

S∈IS
log pS(θ̃)−MC(IS)[1 +

op(1)].

Theorem 3.4 establishes the connection between MCV(IS) and MC(IS). If we con-

sider single cluster deletion for clustered data, then we have
∑

S∈IS
log pS(θ) =

∑n
i=1 log p(Y i|θ) = log p(Y |θ). Thus, based on the previous discussion about BMMC,

MCV(IS) is also closely related to AIC, TIC and NIC.
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3.3.2 Model Comparison Criterion

Since MC(IS) measures the complexity of a fitted model, we can construct a Bayesian

information model selection criterion based on MC(IS). Let Z = (Z1, · · · , Zn) be an

independent copy of Y . We consider the following quantity:

η = n−1EZEθ|Y {log p(Z|θ)} = n−1

∫ {∫
log p(Z|θ)p(θ|Y )dθ

}
g(Z)dZ,

where g(Z) is the true distribution of Z. Here, η is an extension of the predictive

discrepancy measure in Ando (2007) for dependent data. When Z1, · · · , Zn are in-

dependent, then η is an average of the predictive discrepancy measure considered by

(Ando, 2007).

Following the development of BPIC in Ando (2007), we find the bias corrected

estimator of η to select an optimal model. We set Z = Y and obtain an estimate of η

as

η̂ = n−1Eθ|Y {log p(Y |θ)} = n−1

∫
log p(Y |θ)p(θ|Y )dθ.

Because the same data Y are used to construct p(Y |θ) and to evaluate η, we consider

the bias of η̂ relative to η, denoted by Bη, as follows:

Bη = EY (η̂ − η) = n−1

∫ [
Eθ|Y {log p(Y |θ)} − EZ [Eθ|Y {log p(Z|θ)}]] g(Y )dY .

If a consistent estimate of Bη, denoted by B̂η, exists, then a bias-corrected estimator

of η is given by η̂ − B̂η. Thus, a Bayesian information criterion can be constructed as

ICB = Eθ|Y {−2 log p(Y |θ)}+2nB̂η. In particular, as shown in Theorem 3.5, the model

complexity MC(IS) is indeed a consistent estimator of nBη. For ease of exposition, we

assume mi = 1, for i = 1, · · · , n.
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Theorem 3.5. Suppose that Assumptions C1-C4 in the Appendix hold. Then, we have

nBη = EY

[
Eθ|Y [log{p(Y |θ)p(θ)}]− log{p(Y |θ̂)p(θ̂)}

]

+tr{J−1
n (θ̂)K̃n(IS|θ̂)}+ p/2 + op(1)

= tr{J−1
n (θ̂)K̃n(IS|θ̂)}+ op(1),

where K̃n(IS|θ̂) =
∑n

i=1{∂θ log p[i](θ) + ∂θ log p(θ)/n}⊗2|θ=θ̂.

Assuming a uniform improper prior or a general prior with a very small value of

∂θ log p(θ), K̃n(IS|θ̂) ≈ Kn(IS|θ̂), and thus nBη = MC(IS) + op(1). Therefore, we

propose a Bayesian Case-influence Information Criterion (BCIC) as follows:

BCIC = −2Eθ|Y {log p(Y |θ)}+ 2MC(IS). (3.16)

We then choose the model that minimizes BCIC. The differences between BPIC, DIC,

and BCIC are in the complexity terms. Since BCIC uses the complexity based on case

influence, a model has a larger penalty than the other candidate models, if there exist

more influential cases in the model compared to the other candidate models. Similar to

DIC and BPIC, BCIC can be easily computed using MCMC samples from the posterior

distribution p(θ|Y ).

3.4 Theoretical Examples

In this section, we illustrate the proposed diagnostic measures for various regression

models.
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3.4.1 Normal Linear Models

We consider normal linear model

Y = Xβ + ε, (3.17)

where Y = (y1, · · · , yn)T is an n×1 vector, X is an n×p covariate matrix with ith row

xT
i , β is a p × 1 parameter vector, ε ∼ Nn(0, τ−1I), and τ = 1/σ2 is assumed known.

Thus, we have Y |β, τ ∼ Nn(Xβ, τ−1I). We consider a conjugate normal prior for β|τ
as Np(µ0, τ

−1Σ0). The posterior distribution for β|τ based on the full data and the

ith case deleted data, respectively, are given by

β|Y ∼ Np(β̃, τ−1(XT X + Σ−1
0 )−1) and β|Y [i] ∼ Np(β̃[i], τ−1(XT

[i]X [i] + Σ−1
0 )−1),

where β̃ = (XT X + Σ−1
0 )−1(XT Y + Σ−1

0 µ0), β̃[i] = (XT
[i]X [i] + Σ−1

0 )−1(XT
[i]Y [i] +

Σ−1µ0), X [i] is X with xT
i deleted, and Y [i] is Y with yi deleted. Note that XT

[i]X [i] =

XT X − xix
T
i and XT

[i]Y [i] = XT Y − xiyi.

Here, we consider single case deletion for the clarity and ease of exposition in deriva-

tion of the diagnostic measures. For the K-L divergence, we can get an exact analytic

form for Dφ(i) (Cook and Weisberg 1982, p163, equation(4.3.4)) as follows:

Dφ(i) = 0.5[τ(β̃ − β̃[i])
T (XT X + Σ−1

0 )(β̃ − β̃[i])− τ(β̃ − β̃[i])
T (xix

T
i )(β̃ − β̃[i])

− log |1− xT
i (XT X + Σ−1

0 )−1xi| − tr{xT
i (XT X + Σ−1

0 )−1xi}].

Letting Q = X(XT X +Σ−1
0 )−1XT with diagonal element qii = xT

i (XT X +Σ−1
0 )−1xi,

we have

β̃ − β̃[i] =
1

1− qii

(XT X + Σ−1
0 )−1xi(yi − xT

i β̃). (3.18)
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Thus, we obtain

Dφ(i) = 0.5

{
τ · qii

1− qii

(yi − xT
i β̃)T (yi − xT

i β̃)− log(1− qii)− qii

}
.

In model (3.17), we note that the posterior mode and posterior mean are the same

(i.e. β̂ = β̃, β̂[i] = β̃[i]), and Gβ=Wβ=τ(XT X + Σ−1
0 ). Therefore, CP(i) and CM(i)

are exactly the same measures. By substituting (3.18) into the formula for CM(i), we

obtain

CM(i) = τ

(
1

1− qii

)2

qii(yi − xT
i β̃)T (yi − xT

i β̃). (3.19)

In addition, the result in (3.19) ensures the equivalence shown in Theorem 3.1

(d) since Dφ(i) = 0.5CM(i) − 0.5{qiiCM(i) + log(1 − qii) + qii}. Since pi(β) =

(2π)−1/2τ 1/2 exp{−1
2
τ(yi − xT

i β)T (yi − xT
i β)} and Jn(β) = τ(XT X + Σ−1

0 ), the ap-

proximations in Theorem 3.1 (a), (b), (c) for model (3.17) are given by

Dφ(i) = 0.5 ¨φ(1)τqii(yi − xT
i β̃)T (yi − xT

i β̃){1 + Op(n
−1)},

β̂[i] = β̃[i] = β̃ − (XT X + Σ−1
0 )−1xi(yi − xT

i β̃){1 + Op(n
−1)},

AP(i; β̃) = τqii(yi − xT
i β̃)T (yi − xT

i β̃).

Summing AP(i; β̃) for i = 1, · · · , n yields MC(IS) and combining this with the pos-

terior expectation of the deviance, Eβ|Y [−2 log p(Y |β)] = n log(2π) − n log(τ) +

τ(Y − Xβ̃)T (Y − Xβ̃) + tr(Q), yields a closed form expression for BCIC. More-

over, we can easily extend the results to multiple case deletions using pS(β) =
∏n

i=1,i∈S(2π)−1/2τ 1/2 exp{−1
2
τ(yi − xT

i β)T (yi − xT
i β)}.
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3.4.2 Linear Mixed Models

We consider the model of Laird and Ware (1982) as

Y i = X iβ + Zibi + εi, for i = 1, · · · , n, (3.20)

where Y i is an mi×1, X i is an mi×p matrix of fixed covariates, β is a p×1 vector of fixed

effects, Zi is an mi×q matrix of covariates for the q×1 vector of random effects bi, bi ∼
Nq(0, τ−1D), εi is an mi × 1 vector of random errors, εi ∼ Nmi

(0, τ−1Imi
), τ = 1/σ2,

and εi and bi are independent. We can write this model as Y = Xβ + Zb + ε, where

Y = (Y 1, · · · , Y n)T , X = (X1, · · · , Xn)T , Z = diag(Z1, · · · ,Zn), b = (b1, · · · , bn)T ,

and ε = (ε1, · · · , εn)T . Thus ε ∼ NN(0, τ−1IN) and b ∼ Nnq(0, τ−1(In ⊗D)), where

N =
∑n

i=1 mi, and ⊗ denotes kronecker product.

Known D and τ

If D and τ are known, we obtain closed form expressions for the diagnostic measures

and the expressions are similar to Section 3.4.1. We note that upon integrating out

b, we have Y |β, D, τ ∼ NN(Xβ, τ−1V ), where V = diag(V 1, · · · , V n) with V i =

Imi
+ ZiDZT

i . If we consider a normal prior for β as Np(µ0, τ
−1Σ0), the posterior

distributions of β based on the full data and with the ith cluster deleted, are given by

β|Y , D, τ ∼ Np(β̃, τ−1(XT V −1X + Σ−1
0 )−1)

β|Y [i],D, τ ∼ Np(β̃[i], τ
−1(XT

[i]V
−1
[i] X [i] + Σ−1

0 )−1),

where β̃ = (XT V −1X + Σ−1
0 )−1(XT V −1Y + Σ−1

0 µ0) and β̃[i] = (XT
[i]V

−1
[i] X [i] +

Σ−1
0 )−1(XT

[i]V
−1
[i] Y [i]+Σ−1

0 µ0). Using similar calculations as in Section 3.4.1, we obtain
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Dφ(i) based on the K-L divergence as follows:

Dφ(i) = 0.5
[
τ(Y i −X iβ̃)T{(Imi

−Qi)
−1}T V −1

i Qi(Y i −X iβ̃)− log |Imi
−Qi| − tr(Qi)

]
,

where Qi = X i(X
T V −1X + Σ−1

0 )−1XT
i V −1

i . For model (3.20), we note that β̂=β̃,

β̂[i]=β̃[i] and JN(β) = Gβ = Wβ = τ(XT V −1X + Σ−1
0 ); therefore, we have

CP(i) = CM(i) = τ{(Imi
−Qi)

−1(Y i−X iβ̃)}T V −1
i Qi(Imi

−Qi)
−1(Y i−X iβ̃). (3.21)

In addition, since pi(β) = (2π)−mi/2τmi/2|V −1
i |1/2 exp[−1

2
τ(Y i − X iβ)T V −1

i (Y i −
X iβ)], the approximations in Theorem 3.1 are given by

Dφ(i) = 0.5 ¨φ(1)τ(Y i −X iβ̃)T V −1
i Qi(Y i −X iβ̃){1 + Op(N

−1)},

β̂[i] = β̃[i] = β̃ − (XT V −1X + Σ−1
0 )−1XT

i V −1
i (Y i −X iβ̃){1 + Op(N

−1)},

AP(i; β̃) = τ(Y i −X iβ̃)T V −1
i Qi(Y i −X iβ̃).

Summing AP(i; β̃) yields MC(IS) and combining this with Eβ|Y [−2 log P (Y |β)] =

N log(2π) − N log τ + log |V | +
∑n

i=1 τ(Y i − X iβ̃)T V −1
i (Y i − X iβ̃) +

∑n
i=1 tr(Qi)

yields BCIC for model (3.20). Moreover, we can easily extend the results to multiple

cluster deletions using pS(β) =
∏n

i=1,i∈S pi(β).

Unknown D and τ

When D and τ are unknown, we assume a joint prior of the form p(β, τ, D−1) ∝
p(β|τ)p(τ)p(D−1). The conjugate prior specifications are β|τ ∼ Np(µ0, τ

−1Σ0), τ ∼
Gamma(δ0/2, γ0/2), and D−1 ∼ Wishartq(ν0,C0), where ν0 is a scalar and C0 is

a q × q positive definite matrix. Note that taking ν0 = 0, C−1
0 = 0, Σ−1

0 = 0,

δ0 = 0, and γ0 = 0 leads to a commonly used joint noninformative (and improper) prior

specification. We can now write the joint posterior of θ = (β, τ, D) as p(β, τ, D−1|Y ) ∝
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p(Y |β, τ, D)p(β|τ)p(τ)p(D−1). Posterior samples of (β, τ, D) can be obtained for this

model using MCMC methods. We note that each of the full conditional distributions

have a closed form, so that Gibbs sampling is very efficient in this case.

The diagnostic measures can be computed by the formulas in Section 3.2.2 using

MCMC samples of (β, τ, D−1). Since the Y is are independent, we have pS(β) =
∏n

i=1,i∈S(2π)−mi/2τmi/2|V −1
i |1/2 exp

{−1
2
τ(Y i −X iβ)T V −1

i (Y i −X iβ)
}
, where V i =

Imi
+ ZiDZT

i . Under the conjugate informative prior specification,

p(β, τ, D−1|Y ) ∝
n∏

i=1

τmi/2|V −1
i |1/2 exp

{
−1

2
τ(Y i −X iβ)T V −1

i (Y i −X iβ)

}

×τ p/2 exp
{
−τ

2
(β − µ0)

TΣ−1
0 (β − µ0)

}
× τ δ0/2−1 exp

{
−γ0

2
τ
}

×|D−1|(v0−q−1)/2 exp

{
−1

2
tr(C−1

0 D−1)

}
,

and therefore, ∂θ log p(β, τ, D−1|Y ) = ∂θ log p(Y |β, τ, D) + ∂θ log p(β|τ)p(τ)p(D−1)

and ∂2
θ log p(β, τ, D−1|Y ) = ∂2

θ log p(Y |β, τ, D) + ∂2
θ log p(β|τ)p(τ)p(D−1), where θ

denotes (β, τ, D). The first and the second derivatives of log p(Y |β, τ, D) and

log p(β|τ)p(τ)p(D−1) are given in the Appendix B. Using the MCMC posterior samples

and the derivatives, we can compute JN(θ), diagnostics measures, and their approxi-

mations, and BCIC.

3.4.3 Generalized Linear Models

Suppose y1, · · · , yn are independent, where yi has a density in the exponential family

indexed by the canonical parameter ψi and scale parameter τ . The joint density of

(y1, · · · , yn) is given by

n∏
i=1

p(yi|ψi, τ) =
n∏

i=1

exp[{yiψi − b(ψi)}/ai(τ) + c(yi, τ)], (3.22)
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where the functions b(·) and c(·) determine a particular family in the class. Without loss

of generality, we assume ai(τ) = τ−1 and τ is known. We consider a regression model via

ψi = ψ(ηi), ηi = xT
i β, i = 1, · · · , n, where xT

i is ith row of the n×p covariate matrix X,

β is a p×1 parameter vector, and ψ(·) is a monotone differentiable function. We consider

three types of prior distributions for the GLM: i) improper uniform prior; ii) normal

prior; and iii) conjugate prior. In this model, posterior samples of β from p(β|Y )

can be easily obtained using the Adaptive Rejection Metropolis Sampling (ARMS)

algorithm (Gilks et al., 1995) to sample the full conditional distributions within the

Gibbs sampling algorithm.

Computation of the proposed diagnostic measures can be achieved by the com-

putational formulas as well as the approximation in 3.2.2. Since the yi’s are inde-

pendent, pS(β) =
∏

i∈S p(yi|β, τ) =
∏

i∈S exp[τ{yiψ(xT
i β) − b(ψ(xT

i β))} + c(yi, τ)].

The posterior mode, β̂ can be obtained by solving ∂β log p(Y |β) + ∂β log p(β) = 0

and the posterior mean, β̃ can be directly obtained from the posterior samples.

Jn(β) = −∂2
β log p(Y |β)− ∂2

β log p(β) and Jn(β) varies according to the different prior

specifications. In model (3.22), we assume a canonical link for ease of exposition, so that

ψi = ηi. Now, we have ∂β log p(Y |β) = τXT (Y −µ) and ∂2
β log p(Y |β) = −τXT V X,

where µ = (∂ψ1b(x
T
1 β), · · · , ∂ψnb(xT

nβ))T , V = diag(∂2
ψ1

b(xT
1 β), · · · , ∂2

ψn
b(xT

nβ)). In

the following, we examine approximations for the diagnostic measures under the differ-

ent types of prior specifications for β.

i) Uniform improper prior for β:

We consider p(β) ∝ 1. Since ∂β log p(β) = 0, the posterior mode can be obtained

by solving τXT (Y − µ) = 0. In addition, we have Jn(β) = τXT V X. Thus, the
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approximations are given by

Dφ(S) = 0.5φ̈(1)τ

{
n∑

i=1,i∈S

(yi − µ̂i)x
T
i

}

× (XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̂[S] = β̂ − (XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̃[S] = β̃ − (XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

AP(S; β̃) = τ

{
n∑

i=1,i∈S

(yi − µ̃i)x
T
i

}
(XT Ṽ X)−1

{
n∑

i=1,i∈S

(yi − µ̃i)xi

}
.

ii) Normal prior for β:

We consider p(β) ∝ exp{−1
2
(β−µ0)

TΣ−1
0 (β−µ0)}. We have ∂β log p(β) = −Σ−1

0 (β−
µ0) and ∂2

β log p(β) = −Σ−1
0 . Thus, the posterior mode can be obtained by solving

τXT (Y −µ)−Σ−1
0 (β −µ0) = 0 and we have Jn(β) = τXT V X + Σ−1

0 . The approx-

imations are given by

Dφ(S) = 0.5φ̈(1)τ 2

{
n∑

i=1,i∈S

(yi − µ̂i)x
T
i

}

× (τXT V̂ X + Σ−1
0 )−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̂[S] = β̂ − τ(τXT V̂ X + Σ−1
0 )−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̃[S] = β̃ − τ(τXT V̂ X + Σ−1
0 )−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

AP(S; β̃) = τ 2

{
n∑

i=1,i∈S

(yi − µ̃i)x
T
i

}
(τXT V̂ X + Σ−1

0 )−1

{
n∑

i=1,i∈S

(yi − µ̃i)xi

}
.
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iii) Conjugate prior for β:

We consider the conjugate prior for β of Chen and Ibrahim (2003), given by

p(β|a0, y0, τ) ∝ exp[a0τ{yT
0 ψ(Xβ) − JT b(ψ(Xβ))}], where J = (1, . . . , 1)T is an

n × 1 vector of ones, and y0 and a0 > 0 are the specified hyperparameters. Since we

have ∂β log p(β) = a0τXT (y0 − µ) and ∂2
β log p(β) = −a0τXT V X, the equation for

solving for the posterior mode is τ{XT (y − µ) + a0X
T (y0 − µ)} = 0 and we have

Jn(β) = τ(1 + a0)X
T V X. Thus, the approximations are given by

Dφ(S) = 0.5φ̈(1)τ(1 + a0)
−1

×
{

n∑
i=1,i∈S

(yi − µ̂i)x
T
i

}
(XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̂[S] = β̂ − (1 + a0)
−1(XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

β̃[S] = β̃ − (1 + a0)
−1(XT V̂ X)−1

{
n∑

i=1,i∈S

(yi − µ̂i)xi

}
{1 + Op(n

−1)},

AP(S; β̃) = τ(1 + a0)
−1

{
n∑

i=1,i∈S

(yi − µ̃i)x
T
i

}
(XT Ṽ X)−1

{
n∑

i=1,i∈S

(yi − µ̃i)xi

}
.

Summing AP(S; β̃) yields MC(IS). Thus, for single case deletion, we obtain BCIC =

Eβ|Y [−2
∑n

i=1[τ{yix
T
i β − b(xT

i β)}+ c(yi, τ)]] + 2MC(IS).

3.4.4 Generalized Linear Mixed Models

Let yij denote the jth measurement on the ith subject. Suppose the sampling distri-

bution of yij, i = 1, · · · , n, j = 1, · · · , ni is from an exponential family, so that

p(yij|θij, φ) = exp{φ−1(yijθij − a(θij)) + c(yij, φ)}. (3.23)

Without loss of generality, we assume φ = 1 for the logistic and Poisson regression

models. In GLMM, the canonical parameter θij is related to the covariates by θ(θij) =
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ηij = xT
ijβ + zijbi, where θ(θij) is a monotonic function of θij, xT

ij is a 1 × p vector of

the jth row of X i, zT
ij is a 1× q vector of the jth row of Zi, β is p× 1 and bi is q × 1

random effects of the ith row of b = (b1, · · · , bn)T . We assume bi ∼ Nq(0,D) and bi,

i = 1, · · · , n are independent. Conditional on the random effects bi, the observation on

the subject i are independent, thus the likelihood function for all n subjects is given

by p(Y |β, b) =
∏n

i=1

∏ni

j=1 p(yij|β, bi), where p(yij|β, bi) = exp{yijθ(x
T
ijβ + zijbi) −

a(θ(xT
ijβ+zijbi))+c(yij)}. The usual joint proper prior for (b,β, D−1) is p(b,β,D−1) =

p(β)p(b|D−1)p(D−1), and we take β ∼ Np(µ0,Σ0), D−1 ∼ Wq(ν0, C0) and b|D ∼
Nnq(0, (In ⊗ D)). We write the kernel of the joint posterior of (b,β,D−1) and run

Gibbs sampler on the complete conditionals to obtain posterior samples of (b, β,D−1).

Since the complete conditionals do not have an analytic closed form for this model, we

use ARMS within the Gibbs sampling algorithm. The joint posterior of (b, β,D−1)

can be written as p(b, β,D−1) ∝ {∏n
i=1

∏ni

j=1 p(yij|β, bi)p(bi)}p(β)p(D−1).

For this model, we can compute diagnostic measures using approximations in

section 3.2.2 as well as AP(S; θ̃) in equation (3.6). Let θ = (β,D) then

pS(θ) =
∏

i∈S

∫
Rq

∏ni

j=1 p(yij|θ, bi)p(bi)dbi. We can obtain ∂θ log pS(θ) as sum of the

ith component of ∂θ log p(Y |θ) in S. The computation of ∂θ log p(Y |θ) and JN(θ) =

−∂2
θ log p(θ|Y ) = −∂2

θ log p(Y |θ) − ∂2
θ log p(θ) can be done via the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977). In detail, ∂θ log p(Y |θ) can be

evaluated by Eb[∂θ log p(Y , b|θ)|Y ] and ∂2
θ log p(Y |θ) can be computed by the Louis’s

method (Louis, 1982) as follows:

∂2
θ log p(Y |θ) = Q̈ + Eb[∂θ log p(Y , b|θ)∂θ log p(Y , b|θ)T |Y ]− Q̇Q̇T , (3.24)

where Q̈ = Eb[∂
2
θ log p(Y , b|θ)|Y ] and Q̇ = Eb[∂θ log p(Y , b|θ)|Y ]. In numerical exam-

ples, [JN(θ̃)]−1 can be estimated by the empirical posterior covariance matrix, obtained

from the MCMC samples.
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3.5 Illustrative Examples

3.5.1 Generalized Linear Models: Binary Data

We first illustrate our methodology with a logistic regression example. We con-

sidered data on 200 men taken from the Los Angeles Heart Study conducted un-

der the supervision of John M. Chapman (Dixon and Massey, 1983). The response

variable is the occurrence or nonoccurrence of a coronary incident in the previous

ten years. Of the 200 cases, 26 had coronary incidents and the dataset contains

six other covariates: Age (x1) (mean= 42.56, sd=11.65), Systolic blood pressure

(x2) (mean=121.64, sd=16.70), Diastolic blood pressure (x3) (mean=81.59, sd=9.99),

Cholesterol (x4) (mean=285.11, sd=65.04), Height (x5) (mean=65.58, sd=2.5) and

Weight (x6) (mean=165.19, sd=24.94). The logistic regression frequentist analysis of

these data has been carried out by Christensen (1997). Here, we illustrate the proposed

Bayesian diagnostic methods under both a uniform improper prior and normal priors

for β.

The model is given by log(pi/(1−pi)) = β0+β1xi1+β2xi2+β3xi3+β4xi4+β5xi5+β6xi6,

where pi is the probability of the occurrence of a coronary incident for the ith case for

i = 1, · · · , 200. For the normal prior for β, we took β ∼ N(0, κ(XT X)−1), and con-

sidered several values of κ including κ=1, 3, 10 and 100. The posterior samples were

obtained using Adaptive Rejection Sampling (ARS) within Gibbs (Gilks and Wild,

1992) and 40,000 MCMC posterior samples were used in the analysis after burn-in.

For numerical stability in the MCMC sampling, we standardized all of the covariates.

The posterior means (standard deviations) for β = (β0, β1, β2, β3, β4, β5, β6) were, re-

spectively, given by: -2.375 (0.289), 0.559 (0.285), 0.113 (0.356), -0.069 (0.400), 0.433

(0.245), -0.196 (0.274) and 0.528 (0.258).

To examine the performance of the proposed diagnostic measures, we computed the

K-L divergence (φ(u) = − log(u)), denoted by KL, and the AP statistic. The posterior
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TABLE 3.1: Chapman data. Case influence diagnostics based on the uniform improper
prior for β

Single Case Deletion Simultaneous Two Case Deletion

Case ID KL Cal. AP p-value Case ID Case ID KL Cal. AP p-value

86 0.202 0.788 0.404 0.027 86 192 0.638 0.924 1.276 0.003

151 0.191 0.782 0.382 0.075 41 126 0.619 0.921 1.238 0.060

192 0.179 0.774 0.358 0.090 129 192 0.579 0.914 1.158 0.015

41 0.177 0.773 0.355 0.401 48 151 0.568 0.912 1.136 0.017

126 0.166 0.766 0.331 0.130 86 129 0.558 0.910 1.117 0.004

48 0.150 0.755 0.300 0.185 48 192 0.529 0.904 1.057 0.019

129 0.143 0.749 0.286 0.134 86 151 0.510 0.900 1.021 0.002

5 0.123 0.734 0.246 0.451 151 159 0.490 0.895 0.979 0.005

21 0.108 0.720 0.216 0.079 86 184 0.469 0.890 0.938 0.004

159 0.106 0.718 0.212 0.054 86 159 0.453 0.886 0.906 0.002

Cal. denotes calibration of KL computed by the methods in McCulloch (1989) and Chapter 2.

Cal. close to 1 implies an influential observation.

predictive p-value of AP was computed as described in Section 3.2.2 with M=25 and

M=10 for single case deletion and two case deletion, respectively. The changes in the

posterior estimates across the cases were computed as well. Tables 3.1 and 3.2 show

the top ten most influential cases based on uniform and normal priors, respectively, for

single case deletion. We observe from Table 3.1 that case 86 (KL=0.202, AP=0.404)

is identified as the most influential case followed by cases 151, 192 and 41 for the

uniform prior. Under the normal prior with κ=10 and κ=100, case 41 is identified as

the most influential, whereas for the normal prior with κ=1 and κ=3, essentially no

influential cases are identified (Figure 3.1). This is due to the fact that the prior is very

informative and therefore dominates the likelihood. When κ gets large, the normal prior

becomes more noninformative and thus yields similar results to the uniform prior. The

changes in the posterior estimates also describe the influence of the identified cases very

well (results not shown for brevity). The Bayesian model complexity measure MC(IS)
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TABLE 3.2: Chapman data.Case influence diagnostics based on the normal prior for β

Single Case Deletion

κ=10 κ=100

Case ID KL Cal. AP Case ID KL Cal. AP

41 0.067 0.677 0.134 41 0.150 0.754 0.299

5 0.055 0.661 0.110 151 0.139 0.747 0.279

19 0.050 0.654 0.099 192 0.122 0.732 0.243

151 0.048 0.651 0.096 126 0.121 0.732 0.242

126 0.043 0.644 0.087 86 0.121 0.732 0.242

48 0.041 0.641 0.083 48 0.111 0.724 0.223

192 0.039 0.637 0.078 5 0.105 0.718 0.210

113 0.037 0.633 0.073 129 0.100 0.713 0.200

129 0.034 0.628 0.068 19 0.088 0.701 0.177

111 0.032 0.624 0.064 21 0.071 0.682 0.143

86 0.031 0.623 0.062 42 0.071 0.682 0.142

is 6.82 with a p-value=0.347, which means that the model fits the data reasonably

well although the data contains some influential cases. Moreover, MC(IS) is close to

pD=7.04 as well as number of parameters p=7. After an investigation as to the reasons

why these identified cases were more influential than other cases, we found that one or

two of the covariate values were extreme, or that a coronary incident occurred for the

cases having covariate values corresponding to those at lower risk of a coronary incident.

For example, case 86 has low values for the covariates, age, cholesterol level, and weight

corresponding to a low risk of a coronary incident (age (x1)=34, cholesterol(x4)=214

and weight (x6)=139), but a coronary incident had occurred for this case. Case 41

has an exceptionally high cholesterol value (x4=520), and case 151 has a low weight

(x6=128), which is the smallest weight among those that had coronary incidents.

We also illustrate the performance of the proposed diagnostic measures for multiple
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FIGURE 3.1: Chapman data. Case influence diagnostics, single case deletion: (a) AP
based on the uniform improper prior; (b) KL based on the uniform improper prior. KL
is computed using the computational formula and the approximation evaluated at the
posterior mean. The results from the two methods agree well; (c), (d), (e) and (f) AP
based on normal priors for κ=1, 3, 10 and 100, respectively.

case deletion by deleting two cases simultaneously. Table 3.1 shows top 10 most influ-

ential pairs of cases based on the uniform improper prior for β. We observe large AP

values and small p-values for the identified pairs. Moreover, most of the pairs consisted

of the cases identified in single case deletion. We visualized the diagnostic measure,

AP, for the simultaneous two case deletion scheme using a scatter plot in 2-dimensional

space as well as a colored-surface plot in 3-dimensional space (Figure 3.2 (a), (b)). Note

that the colors represent the magnitude of AP in both plots and the size of the symbol

is proportional to the magnitude in the scatter plot. Mosaic patterns are found for

larger values of AP in both plots, when one of the cases in the pairs is influential in
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FIGURE 3.2: Chapman data. Case influence diagnostics based on the uniform improper
prior, two case deletion: (a) 2-D scatter plot; (b) 3-D surface plot

single case deletion. The sets of case deletion pairs for the top 10 largest AP values are

labeled in the scatter plot. Interestingly enough, the two case deletion scheme where

each single case deletion has a large value of AP in Figure 3.1, magnify the values

of AP. This indicates that the proposed diagnostic measure captures influential cases

quite well whether in a single or simultaneous case deletion schemes.

TABLE 3.3: Chapman data. Information criteria for the top five models selected by
BCIC based on the uniform improper prior for β

Model No. Covariate MCn BCIC AIC BIC pD DIC nb̂β BPIC

31 x1, x6 2.80 147.42 144.77 154.66 3.01 144.84 2.68 147.19

27 x1, x4, x6 4.20 148.03 143.52 156.72 4.02 143.64 3.98 147.58

32 x1 1.89 148.54 146.74 153.34 2.00 146.77 1.83 148.42

29 x1, x5, x6 3.69 149.52 146.05 159.25 4.01 146.15 3.50 149.14

28 x1, x4 3.26 149.53 145.93 155.83 3.02 146.03 3.12 149.24

nb̂β is the estimated asymptotic bias of the predictive discrepancy measures (Ando, 2007).

Now, we illustrate model selection using BCIC. We fit 26 = 64 models; the full model

and reduced models, with each model having an intercept term. Results for both the
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FIGURE 3.3: Chapman data. Information criteria: (a) comparison of BCIC with other
information criteria based on the uniform improper prior for β; (b) behavior of BCIC
for the different choices of κ based on the normal prior for β

uniform prior and normal prior are presented. Also, for each model, AIC, BIC, DIC

and BPIC were computed for comparison purposes. Table 3.3 presents results based

on the uniform prior. Form the results in Table 3.3, we can see that model (x1, x6) is

the best fitting model by BCIC. The top four models selected by BCIC are (x1, x4,

x6), (x1), (x1, x5, x6) and (x1, x4). Moreover, these models are also selected by BPIC

among the top five best fitting models. AIC and DIC selected (x1, x4, x6) as the best

model and (x1, x6) as the second best fitting model, whereas BIC selected (x1) as the

best and (x1, x6) as the second best fitting model based on the uniform prior (Figure 3.3

(a)). Figure 3.3 (b) shows that the behavior of BCIC is similar for the different choices

of κ, however, the magnitude of the variation across the models gets smaller as κ gets
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smaller. Overall, we can see that BCIC selects model (x1, x6) as the best fitting model

for both the uniform and normal prior with sufficiently large κ. Note that the model

number is defined as 64 − (25I(x1) + 24I(x2) + 23I(x3) + 22I(x4) + 21I(x5) + I(x6)),

where I(xj) is 1 if a model includes covariate xj, j = 1, · · · , 6 and 0 otherwise.

3.5.2 Generalized Linear Mixed Models: Longitudinal Data

We consider the data from a clinical trial of 59 epileptics presented in Table 2 of

Thall and Vail (1990). These epileptic patients were randomized to receive either the

antiepileptic drug progabide (Trt=1) or a placebo (Trt=0) as an adjuvant to standard

chemotherapy. Each patient reported the number of seizures that occurred over the

previous 2 weeks at each of four successive postrandomization clinic visits. The other

covariates measured were 8-week prerandomization seizure count and patient age in

years. Frequentist analyses of these data as well as diagnostics have been done by

many researchers (Thall and Vail, 1990; Breslow and Clayton, 1993; Zhu and Lee,

2001). In this analysis, we fit a model similar to that of Breslow and Clayton (1993)

(Model IV) and Zhu and Lee (2001) within the Bayesian paradigm and illustrate the

performance of the proposed Bayesian diagnostics.

The response variable yij, the seizure count for patient i on the jth visit, is assumed

to be conditionally Poisson distributed with mean µij such that

log(µij(bi)) = xT
ijβ + bi1 + bi2Visitj/10, (3.25)

where the covariate xij include the intercept term, the logarithm of 1
4

the number of

baseline seizure count (Base), treatment (Trt), an interaction between baseline seizure

count and treatment (Base×Trt), the logarithm of age (Age) and a variable Visitj for

each of the four clinic visits coded as (-3, -1, 1, 3); bi = (bi1, bi2)
T are normally dis-

tributed random effects. We assumed that bi1 and bi2 are independent, bi1 ∼ N(0, τ−1
1 )
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TABLE 3.4: Epileptic data. Case influence diagnostics

Single Patient Deletion Simultaneous Two Patient Deletion

Patient ID AP Patient ID Patient ID AP

135 17.629 135 227 40.683

227 5.469 135 126 40.200

126 5.028 135 116 28.139

232 3.040 135 143 27.753

225 3.030 135 217 25.281

112 2.635 135 225 24.328

and bi2 ∼ N(0, τ−1
2 ). We choose noninformative prior distributions for β, τ1 and τ2 as

β ∼ N6(0, 106I), τ1 ∼ Gamma(10−4, 10−4) and τ2 ∼ Gamma(10−4, 10−4), respectively,

where Gamma(α, λ) denotes the gamma distribution with mean α/λ (α > 0, λ > 0).

Posterior samples were obtained using WinBUGS (Spiegelhalter et al., 2003). We used

every 25th sample after burn-in to reduce autocorrelations and yield better convergence

results, and the results are based on 20,000 samples. The posterior means (standard

deviations) for β = (β0, β1, β2, β3, β4, β5, β6, τ1, τ2) were, respectively, given by: -1.363

(1.257), 0.8945 (0.1378), -0.9044 (0.4198), 0.3234 (0.2126), 0.4688 (0.3691), -0.2621

(0.1592), 3.6 (0.8755) and 2.225 (1.492).

Table 3.4 presents the patients (pairs of patients) having larger AP values compared

to AP values of the other patients, obtained from deleting a single patient (cluster) as

well as deleting two patients simultaneously. A deletion of a patient here means that

we delete an entire cluster, that is we delete the observations for all four time points for

that patients. For single cluster deletion, we observed that patient 135, 227, 126, 232,

225 and 112 were identified as influential (Table 3.4, Figure 3.4). Among the identified

patients, patient 135 was highly influential. Moreover, pairs involving patient 135 were

influential for deleting two patients simultaneously (Figure 3.5). Breslow and Clayton

(1993) pointed out that patient 135 has a marked improvement over time after an
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FIGURE 3.4: Epileptic data. Index plot of case influence diagnostics for deleting a
single patient at a time. Indices on the horizontal axis correspond to the order of
the patients in Table 2 of Thall and Vail (1990). IDs for the influential patients are
indicated in the plot.

initially high seizure rate. Patients 227, 225, 112 have the highest overall count levels

relative to their covariate values, and patient 232 has especially low or zero counts. In

addition, some of these patients were regarded as outliers (Thall and Vail, 1990) and

identified as influential by local influence measures (Zhu and Lee, 2001). Our Bayesian

analysis confirms the findings of Breslow and Clayton (1993) as well as the others. In

addition, we identified patient 126 who also had a marked improvement over time after

an initially high seizure rate, in spite of the fact that the patient was on the placebo

arm and is of old age compared to the other patients. We note that the Bayesian model

complexity MC(IS) is 58.98 for single cluster (patient) deletion.
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3.6 Discussion

We have developed a general framework for evaluating Bayesian case influence measures

based on case deletion for general parametric models. We have derived approximations

to these case influence measures and proposed a calibration method under the deletion

of a small (or large) number of observations. We have showed that these case influence

measures are also associated with model complexity. When the number of observations

in each set is large, we have shown that it is advantageous to use Cook’s posterior

mode and posterior mean distance for diagnostic purposes. The analytic forms for the

proposed measures were derived for linear models, generalized linear models, normal

mixed models and generalized linear mixed models. Future work includes developing a

general framework for Bayesian diagnostic methods in semiparametric model.
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CHAPTER 4

SCALED COOK’S DISTANCE

4.1 Introduction

In influence analysis, a set of observations is flagged as ‘influential’ if its removal from

the data set produces a significant difference in the parameter estimate. Since the sem-

inal work of Cook (1977) on Cook’s distance in linear regression, considerable research

has been devoted to developing deletion diagnostics including Cook’s distance for de-

tecting influential observations (or clusters) in various statistical models (Cook, 1977;

Cook and Weisberg, 1982; Chatterjee and Hadi, 1988; Andersen, 1992; Davison and

Tsai, 1992; Wei, 1998; Haslett, 1999; Zhu et al., 2001; Fung et al., 2002). Moreover,

Cook’s distance has been widely used in statistical practice and can be calculated in

popular statistical software, such as SAS and R.

A fundamental issue of Cook’s distance is that “size matters”, that is Cook’s dis-

tance is a monotonic function of the size of the perturbation. This issue has been largely

neglected in the literature. The size matters issue persists in any deletion diagnostic,

because the size of the deletion diagnostic is associated with the size of the perturba-

tion. Although Critchley et al. (2001) have systematically addressed the size matters

issue in deletion diagnostics for a simple data structure, such as one sample problems,



extending their method to complex data structures, such as longitudinal data, and gen-

eral parametric models represents new theoretical and computational challenges. The

issue that size matters, however, is central to the development of deletion diagnostics in

complex models and data structures, because arbitrarily perturbing a model may lead

to inappropriate inference about influential observations of a large effect. Consider two

possibly overlapping subsets I1 and I2 and size(I1) ≥ size(I2). If CD(I1) ≤ CD(I2),

then it is reasonable to regard I2 to be influential, where CD(·) denotes Cook’s distance.

However, when CD(I1) > CD(I2) is true, it is very difficult to compare the influential

levels of I1 and I2, because a larger perturbation typically implies a larger influential

measure. In particular, the issue of size arises often in assessing influential clusters and

families in longitudinal and family studies, because cluster size (or family size) can vary

significantly across all clusters (or families) and deleting a larger cluster may have a

higher probability of having a larger influence.

The aim of this paper is to develop a scaled version of Cook’s distance to address

the size issue for deletion diagnostics in general parametric models. Our scaled Cook’s

distance properly accounts for the size of a perturbation and the fitted model to the

data. In Section 4.2, we review Cook’s distance and the issue of size of a perturbation.

We develop several scaled Cook’s distances to address the size issue in Cook’s distance.

We illustrate our development with linear regression, generalized linear models, linear

mixed models, and generalized linear mixed models. In Section 4.3, we analyze two

datasets using the proposed scaled Cook’s distance. We give some final remarks in

Section 4.4.
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4.2 Scaled Cook’s Distance

4.2.1 Cook’s Distance

Consider a probability function p(Y|θ) for a random vector YT = (Y T
1 , · · · , Y T

n ), where

θ = (θ1, · · · , θq)
T is a q × 1 vector in an open subset Θ of Rq and Yi = (yi,1, · · · , yi,mi

),

in which the dimension of Yi, denoted by mi, may vary across all i. For instance, in

longitudinal studies, if our interest focuses on detecting influential clusters, then Yi

includes all responses and covariates of interest in the ith cluster. Thus, the number

of observations in the ith cluster may vary significantly across clusters. However, if

our interest is to detect influential observations for longitudinal studies, then Yi can be

data observed from a particular time point from a subject. Another example is a family

study, in which the number of subjects in the ith family can vary across families.

Cook’s distance and many other deletion diagnostics measure the distance between

the maximum likelihood estimators of θ with and without Yi (Cook and Weisberg, 1982;

Cook, 1977). A subscript ‘[I]’ denotes the relevant quantity with all observations in I

deleted. For instance, if I = {i}, then Y[i] is the corresponding observed data with all

of the components of Yi deleted. We define the maximum likelihood estimators of θ for

the full sample Y and a subsample Y[i] as

θ̂ = argmaxθ log p(Y|θ) and θ̂[i] = argmaxθ log p(Y[i]|θ), (4.1)

respectively. Cook’s distance for {i}, denoted by CD(i), can be defined as follows:

CD({i}) = (θ̂[i] − θ̂)T Gθ(θ̂[i] − θ̂), (4.2)

where Gθ is chosen to be a positive definite matrix. For instance, Gθ can be

−∂2
θ log p(Y|θ̂), where ∂2

θ represents the second-order derivative with respect to θ.
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We can easily generalize the above Cook’s distance to quantify the effects of a

subset of observations I on the parameter estimate. Let θ̂[I] be the maximum likelihood

estimator of θ for p(YI |θ), where Y[I] is a subsample of Y with {Yi : i ∈ I} deleted.

Similar to (4.2), Cook’s distance for assessing the subset of observations in I is defined

as

CD(I) = (θ̂[I] − θ̂)T Gθ(θ̂[I] − θ̂). (4.3)

We can use the values of CD(I) to assess the influential level of the subset I. For

instance, for I = {i}, the ith observation is flagged as influential if the value of CD({i})
is relatively large compared with other CD({j}) for j 6= i. Similarly, we can regard I

as influential if the value of CD(I) is relatively large compared with other CD(J) for

all J having a similar structure to I. Moreover, we may determine the magnitude of

CD(I) based on critical points of the χ2 distribution (Cook & Weisberg, 1982, p.183).

To have a better understanding of Cook’s distance, we consider the following exam-

ple in longitudinal data.

Example 1. The Yale infant growth data were collected to study whether cocaine

exposure during pregnancy may lead to the maltreatment of infants after birth such

as physical and sexual abuse. The total 298 children were recruited from two subject

groups (cocaine exposed group and unexposed group). The key feature of this database

is that different children had different numbers and patterns of visits during the study

period (Wasserman and Leventhal, 1993; Stier et al., 1993). The total number of data

points is
∑n

i=1 mi = 3176, whereas mi varies from 2 to 30.

Following Zhang (1999) and Zhu et al. (2007), we consider a linear mixed model

with a compound symmetry covariance structure as follows: yij = xT
ijβ + εij, where

xij = (1, d, (d − 120)+, (d − 200)+, (ga − 28)+, d(ga − 28)+, (d − 60)+(ga − 28)+, (d −
490)+(ga−28)+, sd, s(d−120)+)T , in which d and ga are the age of visit and gestational

age, respectively, and s is the indicator for gender, with one for a girl and zero for a
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FIGURE 4.1: Yale infant growth data: (a) the index plot of Cook’s distance; (b) cluster
size versus Cook’s distance.

boy. In addition, we assume εi ∼ Nmi
[0, σ2Ri] and consider a compound symmetry

covariance structure for Ri. More details regarding this example are given in Section

4.3.2.

By using PROC MIXED (SAS 9.1, Cary, NC), we calculated Cook’s distance for

each child, which relates more to the detection of influential clusters (Banerjee and

Frees, 1997). We obtained a strong correlation 0.363 between Cook distance and the

cluster size with a p−value smaller than 1.03 × 10−10. This indicates that the bigger

cluster size, the larger the Cook distance measure. Figure 4.1 reveals five influen-

tial subjects 217, 269, 274, 289, and 294, whose (CD(i),mi)s are, respectively, given by
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(0.147, 19), (0.242, 12), (0.116, 22), (0.119, 18), and (0.125, 13). Comparing sub-

jects 269 and 274, we observe that m269 = 12 < m274 = 22, but CD(269) is much

larger than CD(274). It is reasonable to claim that subject 269 is more influential

than subject 274. Further, subject 269 is more influential than subject 294, because

m269 ≈ m294 and CD(269) > CD(294). However, comparing subjects 274 and 285, we

observe (m285, CD(285)) = (8, 0.074) and (m274, CD(274)) = (22, 0.116). Because m274

is much larger than m285, it is difficult to claim that subject 274 is more influential than

subject 285. This example illustrates the difficulty in comparing the Cook’s distances

across subsets of different sizes.

4.2.2 Size Matters

Based on the above analyses of the Yale infant growth data, we know that Cook’s

distance can be represented as follows:

CD(I) = F (P(I|M),M,D), (4.4)

where P(I|M),M, and D, respectively, represent the size of the perturbation, the

fitted model, and the dataset at hand and F (·) denotes a nonlinear function. The

representation (4.4) reflects the fact that the influence level of the subset depends

critically on the fitted model to the data and the amount of perturbation under M.

For a given M, P(I|M), which is a function mapping from a subset I to a nonnegative

number, quantifies the degree of perturbation introduced by deleting the subset I for the

fitted M independent of the data. For instance, for the one sample problem, Critchley

et al. (2001) use the Euclidean geometry of P n and associated geodesics to quantify the

size of the perturbation. Specifically, in this case, P(I|M) is defined as the geodesic

distance between the null perturbation and the probability vector corresponding to

deleting the subset I. However, there is no explicit expression for P(I|M) in relatively
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complex data structures, such as time series data and longitudinal data.

Example 2. To have a better understanding of Cook’s distance, we consider the

linear regression model y = Xβ + ε, where y = (y1, · · · , yn)T , X is n × p of rank p,

and ε = (ε1, · · · , εn)T ∼ N(0, σ2In). Recall that β̂ = (XTX)−1XTy and H = (hij) =

X(XTX)−1XT , where y = (y1, · · · , yn)T . Cook’s distance (Cook, 1977) for the ith

point (yi,xi) is given by

CD({i}) =
(β̂ − β̂[i])

T XT X(β̂ − β̂[i])

pσ̂2
=

σ2

pσ̂2
t2i

hii

1− hii

, (4.5)

where σ̂2 is a consistent estimator of σ2, ti = êi/(σ
√

1− hii) and β̂[i] = β̂ −
(XTX)−1xiêi/(1 − hii), in which êi = yi − xT

i β̂. Clearly, Cook’s distance involves

the joint effect of two components:

CD({i}) = Effect of deleting xi ⊕ Effect of deleting yi given xi,

where ⊕ denotes a joint effect. It is natural to think that the size of the perturbation

for deleting different (yi,xi) should equal each other. For diagnostic purposes, if the

true data generator is the same as the fitted model, then CD({i}) should be comparable

regardless of i. Specifically, if ε ∼ N(0, σ2), then t2i follows the χ2(1) distribution for all

i. To eliminate the variation of xi, we may assume that xi follows the same distribution.

Therefore, all CD({i}) are truly comparable, because they follow the same distribution

under the fitted model.

We consider deleting multiple observations in the linear model. Cook’s distance for

deleting the subset I with size(I)= m is given by

CD(I) =
(β̂ − β̂[I])

T XT X(β̂ − β̂[I])

pσ̂2
=

1

pσ̂2
êI(Im −HI)

−1HI(Im −HI)
−1êI , (4.6)

where êI is an m× 1 vector containing all êi for i ∈ I, Im is an m×m identity matrix,
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and HI = XI(X
TX)−1XT

I , in which XI is an m × p matrix whose rows are xT
i for all

i ∈ I. Compared with the deletion of a single case, deleting multiple observations in

the subset I introduces a larger size of the perturbation. Furthermore, we can show

that the stochastic relationship between CD(I1) and CD(I2) for any two subsets I1 and

I2 is as follows:

Theorem 4.1. For the standard linear model, where y = Xβ + ε, ε ∼ N(0, σ2In), we

have the following results:

(a) For any I2 ⊂ I1, CD(I1) is stochastically larger than CD(I2) for any fixed X;

(b) If HI and HI′ follow the same distribution for any I and I ′ with size(I) =size(I ′),

then CD(I) and CD(I ′) follow the same distribution;

(c) Under the same assumptions of Theorem 1 (b), CD(I1) is stochastically larger than

CD(I2) for any two subsets I2 and I1 with size(I1) >size(I2).

Proof of Theorem 4.1.

(a) Let I3 = I1/I2, I1 is a union of two disjoint sets I3 and I2. Without loss of generality,

HI1 can be decomposed as

HI1 = XI1(X
TX)−1XT

I1
=




XI2(X
TX)−1XT

I2
XI2(X

TX)−1XT
I3

XI3(X
TX)−1XT

I2
XI3(X

TX)−1XT
I3




.

Let λ1,1 ≥ · · · ≥ λ1,m1 ≥ 0 and λ2,1 ≥ · · · ≥ λ2,m2 ≥ 0 be ordered eigenvalues

of HI1 and HI2 , respectively, where mk = size(Ik) for k = 1, 2. It follows from

Wielandt’s eigenvalue inequality (Eaton and Tyler, 1991) that λ1,i ≥ λ2,i for all

i = 1, · · · ,m2. For k = 1, 2, we define ΓkΛkΓ
T
k as the spectral decomposition of HIk

and hk = (Imk
−Λk)

−1/2ΓT
k êIk

= (hk,1, · · · , hk,mk
)T , where Γk is the orthnormal matrix
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and Λk = diag(λk,1, · · · , λk,mk
). It can be shown that for k = 1, 2,

hk ∼ N(0, σ2Imk
) and CD(Ik) =

1

pσ̂2

mk∑
j=1

λk,j

1− λk,j

h2
k,j.

Since f(x) = x/(1− x) is an increasing function of x ∈ (0, 1), this completes the proof

of Theorem 4.1 (a).

(b) Note that CD(I) = (pσ̂2)−1
∑m

j=1 λj(1− λj)
−1h2

j , where size(I) = m, λj are the

eigenvalues of HI and h = (h1, · · · , hm)T ∼ N(0, σ2Im). Since

p(h, λ1, · · · , λm) = p(h|λ1, · · · , λm)p(λ1, · · · , λm) = p(h)p(λ1, · · · , λm),

h and λ = (λ1, · · · , λm) are independent. Moreover, the distribution of λ is uniquely

determined by HI . Combining h ∼ N(0, σ2Im) with the assumptions of Theorem 4.1

(b) yields that CD(I) and CD(I ′) follow the same distribution when size(I)=size(I ′).

(c) We can always choose a I ′2 such that size(I ′2)=size(I2) and I1 ⊂ I ′2. Combining

Theorem 4.1 (a) and (b), we can then complete the proof of Theorem 4.1 (c).

Theorem 4.1 shows that for the standard linear model, a larger perturbation can

cause a larger effect. Theorem 4.1 (a) shows that if the covariates in the design matrix

X are treated as fixed, Cook’s distances for two nested subsets satisfy the stochastic

ordering property. Theorem 4.1 (b) and (c) indicates that HI and HI′ follow the same

distribution even for any non-nested subsets I and I ′ with size(I)=size(I ′), and the

Cook’s distances for any two subsets satisfy the stochastic ordering property. Generally,

if XI follows the same distribution for different I, then HI and HI′ follow the same

distribution for any I and I ′ with size(I)=size(I ′).

According to Theorem 4.1, it is natural to use the stochastic order to stochastically

quantify the positive association between the degree of the perturbation and the amount

of the effect. Specifically, we consider two possibly overlapping subsets I1 and I2 with
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P(I1|M) > P(I2|M). Although, for a fixed data set D, CD(I1) may not be greater

than CD(I2), CD(I1), as a random variable, should be stochastically larger than CD(I2).

We make the following assumption:

Assumption A1. For any two subsets I1 and I2 with P(I1|M) > P(I2|M),

P(CD(I1) > t|M) ≥ P(CD(I2) > t|M) (4.7)

holds for any t > 0, where the probability is taken with respect to the fitted model M.

Assumption A1 is essentially saying that if the fitted model M is the true data

generator, CD(I1) stochastically dominates CD(I2) whenever P(I1|M) > P(I2|M).

We can now obtain the following theorem.

Theorem 4.2. Under Assumption A1, Cook’s distance satisfies that for any two subsets

I1 and I2 with P(I1|M) > P(I2|M),

E[h(CD(I1))|M] ≥ E[h(CD(I2))|M] (4.8)

holds for all increasing functions h(·). In particular, we have E[CD(I1)|M] ≥
E[CD(I2)|M] and QCD(I1)

(α|M) is greater than the α-quantile of QCD(I2)
(α|M) for

any α ∈ [0, 1], where QCD(I)
(α|M) denotes the α−quantile of the distribution of CD(I)

for any subset I.

Proof of Theorem 4.2. Theorem 4.2 follows directly from the definition of stochastic

order. We omit the details here.

Theorem 4.2 formally characterizes the size matters issue of Cook’s distance. There-

fore, for any two subsets I1 and I2 with P(I1|M) > P(I2|M), CD(I1) has high proba-

bility of being greater than CD(I2). Thus, it is reasonable to regard I2 to be influential

when CD(I1) << CD(I2), whose probability is small. However, in general, Cook’s

distance for subsets with different sizes are not directly comparable, since the scale of
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Cook’s distance depends on the size of the perturbation.

4.2.3 Scaled Cook’s Distance

We focus on developing several corrections of size for Cook’s distance for detecting

influential subsets. Let SCD(I) denote a scaled Cook’s distance. Consider K0 features

(e.g., mean, variance, median) of SCD(I), denoted by {Sk[SCD(I)] : k = 1, · · · , K0},
when the fitted model is the true data generator. One type of correction for size is a

feature-matching condition defined as follows:

Feature-Matching Condition: Sk[SCD(I1)] = Sk[SCD(I2)] holds for all k and any

two subsets I1 and I2, when the fitted model M is true.

The key features that we will consider below mainly include the mean and the median.

By choosing either the mean or median, we can at least ensure that the centers of

the scaled Cook’s distances for different subsets are the same. Therefore, for any two

subsets I1 and I2, the probability of observing the events SCD(I1) > SCD(I2) and

SCD(I1) < SCD(I2) should be reasonably close to each other. Thus, the SCD(I) are

roughly comparable.

We introduce two scaled Cook’s distance measures as follows.

Definition 4.1. The scaled Cook’s distance for matching the mean and the median are,

respectively, defined as

SCD1(I) =
CD(I)

E[CD(I)|M]
and SCD2(I) =

CD(I)

QCD(I)
(0.5|M)

. (4.9)

It can be shown that E[SCD1(I)|M] = 1 and QSCD2(I)
(0.5|M) = 1 hold for every

subset I. Thus, we can use SCD1(I) and SCD2(I) to evaluate the influential level of

different subsets I. A large value of SCD1(I) (or SCD2(I)) indicates a large influence

of the subset I, whereas a small value indicates a small influence.
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The next problem is to compute E[CD(I)|M] and QCD(I)
(0.5|M) for each sub-

set I under the fitted model. Although the postulated model p(Y|θ) may not rep-

resent the true data generator, we may find an ‘optimal’ model p(Y|θ̂) ∈ M using

the observed data (White, 1982). Then, based on p(Y|θ̂), we use resampling meth-

ods (e.g., parametric bootstrap) or asymptotic methods to approximate E[CD(I)|M]

and QCD(I)
(0.5|M). In the following, we will derive the scaled Cook’s distance for

generalized linear models.

Example 3. We consider Cook’s distance in generalized linear models (McCullagh

and Nelder, 1989) as follows. Suppose that the components of y = (y1, · · · , yn)T are

mutually independent, and the conditional density of yi given xi is given by

p(yi|xi, τ) = exp
{
a−1

i (τ)[yiηi(β)− b(ηi(β))] + c(yi, τ)
}

, (4.10)

where ai(·), b(·) and c(·, ·) are known functions, ηi = η(µi) and µi(β) = g(xT
i β), in

which g(·) is a known monotonic function and twice continuously differentiable and

β = (β1, . . . , βp)
T . Throughout the example, the parameter of interest is β and τ is

a nuisance parameter and is fixed at τ̂ . Let V (β) = diag(b̈(η1(β)), · · · , b̈(ηn(β))) and

D(β)T = (∂βµ1(β), · · · , ∂βµn(β)), where ∂β denotes differentiation with respect to β

and b̈(η) denotes the second derivative of b(η) with respect to η. Using a first-order

approximation, we can show that Cook’s distance for deleting subset I is given by

CD(I) ≈ CD(I)1 =
1

pσ̂2
êT V̂ −1/2UI(Im − ĤI)

−1ĤI(Im − ĤI)
−1UT

I V̂ −1/2ê, (4.11)

where D̂ = D(β̂), V̂ = V (β̂), ê is an n × 1 vector containing all êi = yi − µi(β̂), and

ĤI = X̃I(X̃
T X̃)−1X̃T

I . In addition, X̃ = V̂ −1/2D̂ and X̃I is an m× p matrix containing

the ith row of X̃ for all i ∈ I, and UI = (ui1 , · · · ,uim), in which ik ∈ I and uik is an

n× 1 vector with the ikth element equal to 1 and zero otherwise. Since σ̂−2 appears in

all CD(I), we can fix σ̂ from here on.
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For generalized linear models, we can calculate the scaled Cook’s distance and thus

obtain the following theorem.

Theorem 4.3. For the generalized linear model (4.10), we have the following results:

(a) CD(I)1 can be approximated by

eT
∗ V

−1/2
∗ (In −H∗)UI(Im −H∗,I)−1H∗,I(Im −H∗,I)−1UT

I (In −H∗)V
−1/2
∗ e∗

pσ̂2
, (4.12)

where e∗ = (e1∗, · · · , en∗)T and ei∗ = yi − µi(β∗), D∗ = D(β∗), V∗ = V (β∗), H∗ =

X∗(XT
∗X∗)−1XT

∗ , X∗ = V
−1/2
∗ D∗, and H∗,I = UT

I H∗UI , in which β∗ is the true value of

β.

(b) pE[CD(I)1|M] ≈ E{tr[(Im − H∗,I)−1]|M} − m =
∑m

j=1 E[(1− λI,j)
−1|M] − m,

where λI,1 ≥ · · ·λI,m ≥ 0 are the ordered eigenvalues of H∗,I . Moreover, if m ≥ p, then

m∑
j=1

E[(1− λI,j)
−1|M]−m =

p∑
j=1

E[(1− λI,j)
−1|M]− p. (4.13)

(c) If the xi are independently and identically distributed with

E[||b̈(η(x, β))−1/2∂βµ(x, β)||1+s
2 ] < ∞, in which s > 0, then λI,j − m/n = op(1)

for j ≤ p as m →∞ and m/n → γ ∈ [0, 1).

Proof of Theorem 4.3.

(a) Let µ(β) = (µ1(β), · · · , µn(β))T . If the model M is true, then (β̂ − β∗) =

(DT
∗ V −1

∗ D∗)−1DT
∗ V −1

∗ e∗ + op(n
−1/2). Thus, it can be shown that

V −1/2
∗ ê = V −1/2

∗ [y−µ(β∗)+µ(β∗)−µ(β̂)] = V −1/2
∗ [e∗−D∗(β̂−β∗)] ≈ (In−H∗)V −1/2

∗ e∗,

where e∗ = y − µ(β∗). This yields Theorem 4.3 (a).

(b) Since E[e⊗2
∗ |M] = σ2V∗, we have

E[CD∗(I)|M] = p−1E{tr[H∗,I(Im−H∗,I)−1]|M} = p−1E{tr[(Im−H∗,I)−1]|M}−p−1m.
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Since H∗ only has p non-zero eigenvalues and H∗,I is a submatrix of H∗, it follows from

Wielandt’s eigenvalue inequality that λI,1 ≥ · · · ≥ λI,p ≥ 0 = λI,p+1 = · · · = λI,m for

m ≥ p. This yields Theorem 4.3 (b).

(c) Note that the matrices H∗,I and (XT
∗X∗)−1XT

∗,IX∗,I have the same set of nonzero

eigenvalues. Since n−1XT
∗X∗ and m−1XT

∗,IX∗,I converge to the same matrix almost

surely, mn−1[(n−1XT
∗X∗)−1m−1XT

∗,IX∗,I − Ip] should be close to 0 as n,m →∞. This

completes the proof of Theorem 4.3 (c).

Theorem 4.3 has several important implications for generalized linear models. The-

orem 4.3 (a) characterizes the stochastic behavior of CD(I)1, which depends on both

the responses and the covariates in the set I. To ensure that E[CD(I)|M] and

QCD(I)
(0.5|M) depend only on the size of the perturbation, not the set I itself, we need

to bootstrap the randomness in both the responses and the covariates. Specifically, we

can generate a new set of responses from the fitted model and draw an Is at random

from the original covariate data without (or with) replacement, where size(Is)=size(I).

Then, we calculate CD(Is) based on the bootstrapped data for s = 1, · · · , S and use

their sample median to approximate QCD(I)
(0.5|M). Theorem 4.3 (b) gives an ap-

proximation of E[CD(I)1|M]. We can draw a sample of sets {Is : s = 1, · · · , S} of

size(I) at random from the original covariate data without (or with) replacement and

approximate E{tr[(Im − H∗,I)−1]|M} by using
∑S

s=1 tr[(Im − H∗,Is)
−1]/S. Moreover,

it should be noted that
∑m

j=1 E[(1− λI,j)
−1|M] −m increases with the size of I even

for m ≥ p. Theorem 4.3 (c) shows the asymptotic consistency of λI,j for j ≤ p. As

m/n → γ ∈ [0, 1),
∑p

j=1 E[(1− λI,j)
−1|M]− p converges to pγ/(1− γ).

We consider the general linear model with correlated errors (LMCE).

Example 4. Consider the LMCE given by Y = Xβ + ε, where ε ∼ N(0, σ2R). By

choosing various R’s, LMCE includes the linear model with independent data, the

multivariate linear model, time series models, geostatistical models, and mixed effect

models as special cases (Haslett, 1999). Similar to Haslett (1999), we fix R at an
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appropriate estimate R̂ throughout the example. We can calculate the generalized

least squares estimator β̂ = (XTR−1X)−1XTR−1Y = BY, var(β̂) = σ2(XTR−1X)−1,

and σ̂2 = YTQY/(n − p) = êTR−1ê/(n − p), where Q = R−1 − H, ê = RQY,

and H = R−1X(XTR−1X)−1XTR−1. It has been shown in Haslett (1999) that Cook’s

distance for deleting the subset I is given by

CD(I) =
1

pσ̂2
εTQUIQ

−1
II (RII −QII)Q

−1
II UT

I Qε, (4.14)

where QII is the (I, I) subset of Q and RII is the (I, I) subset of R−1. With some

algebraic calculation, it can be shown that

E[CD(I)|M] ≈ E[tr(Q−1
II RII)|M]−m =

m∑
j=1

E[(1− λI,j)
−1|M]−m, (4.15)

where λI,1 ≥ · · · ≥ λI,m are the ordered eigenvalues of (RII)−1/2HII(R
II)−1/2, in which

HII is the (I, I) subset of H. Similar to Theorem 4.3 (b), when m ≥ p, the right-

hand side of (4.15) reduces to
∑p

j=1 E[(1 − λI,j)
−1|M] − p. In many scenarios such

as the multivariate linear model, we can follow the strategies in Example 3 to approx-

imate
∑m

j=1 E[(1 − λI,j)
−1|M]. However, for time series data, since the elements in

X are responses in an autoregressive (AR(p)) model, we can use the parametric boot-

strap method to generate random samples from the fitted model and then approximate
∑m

j=1 E[(1− λI,j)
−1|M].

4.2.4 Conditional Scaled Cook’s Distance

In some statistical problems, it may be better to perform influence analysis while fixing

some covariates of interest, such as measurement time. For instance, in longitudinal

data, since different subjects can have different numbers of measurements and measure-

ment times, which are not covariates of interest in influence analysis, it may be better
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to eliminate their effect in calculating Cook’s distance. To eliminate the effect of some

fixed covariates, we introduce two conditional scaled Cook’s distances as follows.

Definition 4.2. The conditional scaled Cook’s distance (CSCD) for matching the mean

and the median are, respectively, defined as

CSCD1(I,Z) =
CD(I)

E[CD(I)|M,Z]
and CSCD2(I,Z) =

CD(I)

QCD(I)
(0.5|M,Z)

, (4.16)

where Z is the set of some fixed covariates in Y and the expectation and quantiles are

taken with respect to the fitted model M given Z.

We can show that E[CSCD1(I,Z)|M,Z] = 1 and QCSCD2(I,Z)
(0.5|M,Z) = 1 hold

for every subset I given Z. Thus, these conditional scaled Cook’s distances can be used

to evaluate the influential level of different subsets I given Z. Similar to SCD1(I) and

SCD2(I), a large value of CSCD1(I,Z) (or CSCD2(I,Z)) indicates a large influence of

the subset I after controlling for Z. It should be noted that because Z is fixed, the

CSCDk(I,Z) do not reflect the influential level of Z and the CSCDk(I,Z) may vary

across different Z.

For generalized linear models, we can fix all covariates and then calculate CSCDs.

First, pE[CD(I)1|M,Z] ≈ tr[(Im−H∗,I)−1]−m =
∑m

j=1(1− λI,j)
−1−m, which reduces

to
∑p

j=1(1− λI,j)
−1 − p for m ≥ p. Then, the conditional scaled Cook’s distance

CSCD1(I,X) is given by

CSCD1(I,X) ≈ êT V̂ −1/2UI(Im − ĤI)
−1ĤI(Im − ĤI)

−1UT
I V̂ −1/2ê

[
∑m

j=1(1− λI,j)−1 −m]
. (4.17)

To approximate QCD(I)
(0.5|M,Z), we can generate responses from the fitted model

and then substitute them into (4.12) to obtain a sample of simulated CD(I) given

the covariates. Finally, we can use the empirical median of the simulated CD(I) to

approximate QCD(I)
(0.5|M,Z) and calculate CSCD2(I,Z).
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Let’s consider cluster deletion in generalized linear mixed models (GLMM).

Example 5. Consider a dataset that is composed of a response yij, covariate vectors

xij(p × 1) and zij(p1 × 1) for observations j = 1, · · · ,mi within clusters i = 1, · · · , n.

The GLMM assumes that conditional on a p1 × 1 random variable bi, yij follows an

exponential family distribution of the form (McCullagh and Nelder, 1989)

p(yij|bi) = exp[aij(τ)−1{yijηij − b(ηij)}+ c(yij, τ)], (4.18)

where ηij = k(xT
ijβ+zT

ijbi) in which β = (β1, · · · , βp)
T and k(·) is a known continuously

differentiable function. The distribution of bi is assumed to be N(0, Σ), where Σ = Σ(γ)

depends on a p2 × 1 vector γ of unknown variance components. For simplicity, we fix

(γ, τ) at an appropriate estimate (γ̂, τ̂) throughout the example.

We focus here on cluster deletion in GLMMs. After some calculations, the first

order approximation of Cook’s distance for deleting the ith cluster is given by

CD(Ii)
1 = ∂β`i(β̂)T [Fn(β̂)− fi(β̂)]−1Fn(β̂)[Fn(β̂)− fi(β̂)]−1∂β`i(β̂), (4.19)

where Ii = {(i, 1), · · · , (i,mi)}, `i(β) is the log-likelihood function for the ith

cluster, fi(β) = −∂2
β`i(β) and Fn(β) =

∑n
i=1 fi(β). Note that ∂β`i(β̂) ≈

{Ip − fi(β̂)[Fn(β∗)]−1}∂β`i(β∗) + fi(β̂)[Fn(β∗)]−1
∑

j 6=i ∂β`j(β∗). Then, conditional on

all the covariates and {m1, · · · ,mn} in Z, we can show that if the fitted model

is true, then E[CD(Ii)
1|M,Z] can be approximated by tr{(E[Fn(β̂)|M,Z] −

E[fi(β̂)|M,Z])−1E[fi(β̂)|M,Z]}. Thus, the conditional scaled Cook’s distance

CSCD1(Ii,Z) is given by

CSCD1(Ii,Z) ≈ ∂β`i(β̂)T [Fn(β̂)− fi(β̂)]−1Fn(β̂)[Fn(β̂)− fi(β̂)]−1∂β`i(β̂)

tr{(E[Fn(β̂)|M,Z]− E[fi(β̂)|M,Z])−1E[fi(β̂)|M,Z]} . (4.20)

To approximate QCD(Ii)
(0.5|M,Z), we can generate responses from the fitted GLMM
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and then substitute them into (4.19) to obtain a sample of simulated CD(Ii)
1 given

Z. Finally, we can use the empirical median of the simulated CD(I1)
1 to approximate

QCD(Ii)
(0.5|M,Z) and calculate CSCD2(Ii,Z).

Finally, we consider a large class of parametric models for both independent and

dependent data and develop the associated (conditional) scaled Cook’s distance. Let

p(Y[I], θ) be the probability function for the full data with all observations in the set I

deleted. Then, p(YI |Y[I], θ) is the conditional distribution of YI given Y[I]. We obtain

the following theorem.

Theorem 4.4. If Assumptions C1-C4 in the Appendix hold and m(I)/n → γ ∈ [0, 1),

where m(I) denotes the size of I, then we have the following results:

(a) CD(I) can be approximated by

∂θ log p(YI |Y[I], θ̂)
T [Fn(θ̂)− fI(θ̂)]

−1Fn(θ̂)[Fn(θ̂)− fI(θ̂)]
−1∂θ log p(YI |Y[I], θ̂), (4.21)

where Fn(θ) = −∂2
θ log p(Y, θ) and fI(θ) = −∂2

θ log p(YI |Y[I], θ);

(b) E[CD(I)|M] ≈ tr({E[Fn(θ̂)|M]− E[fI(θ̂)|M]}−1E[fI(θ̂)|M]);

(c) E[CD(I)|M,Z] ≈ tr({E[Fn(θ̂)|M,Z]− E[fI(θ̂)|M,Z]}−1E[fI(θ̂)|M,Z]).

Proof of Theorem 4.4.

(a) It follows from a Taylor’s series expansion and assumption (C2) that

∂θ log p(Y[I], θ̂[I]) = 0 = ∂θ log p(Y[I], θ̂) + ∂2
θ log p(Y[I], θ̃)(θ̂[I] − θ̂),

where θ̃ = tθ̂[I] + (1− t)θ̂ for t ∈ [0, 1]. Combining this with Assumption (C3) and the

fact that ∂θ log p(Y, θ̂) = ∂θ log p(Y[I], θ̂) + ∂θ log p(YI |Y[I], θ̂) = 0, we get

θ̂[I] − θ̂ = [−∂2
θ log p(Y[I], θ̂)]

−1∂θ log p(Y[I], θ̂)[1 + op(1)]

= −[−∂2
θ log p(Y[I], θ̂)]

−1∂θ log p(YI |Y[I], θ̂)[1 + op(1)]. (4.22)
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Substituting (4.22) into CD(I) = (θ̂[I] − θ̂)TFn(θ̂)(θ̂[I] − θ̂), completes the proof of

Theorem 4.4 (a).

(b) It follows from Assumptions (C1)-(C3) that

θ̂ − θ∗ = Fn(θ∗)−1∂θ log p(Y, θ∗)[1 + op(1)]

= Fn(θ∗)−1[∂θ log p(Y[I], θ∗) + ∂θ log p(YI |Y[I], θ∗)][1 + op(1)].

Let JI(θ) = ∂θ log p(YI |Y[I], θ). Using a Taylor’s series expansion along with Assump-

tions (C3) and (C4), we get

JI(θ̂) ≈ JI(θ∗)− fI(θ∗)(θ̂ − θ∗) ≈ JI(θ∗)− E[fI(θ∗)|M](θ̂ − θ∗) (4.23)

= {Ip − E[fI(θ)|M]Fn(θ∗)−1}JI(θ∗)− E[fI(θ)|M]Fn(θ∗)−1∂θ log p(Y[I], θ∗).

Since E[JI(θ∗)∂θ log p(Y[I], θ∗)|M] = 0,

E[JI(θ̂)JI(θ̂)
T |M] ≈ E[fI(θ∗)|M]Fn(θ∗)−1{Fn(θ∗)− E[fI(θ∗)|M]}.

It follows from Assumption (C3) that for θ in a neighborhood of θ∗, Fn(θ) and Fn(θ∗)−
fI(θ) can be replaced by E[Fn(θ)|M] and E[Fn(θ∗) − fI(θ)|M], respectively, which

completes the proof of Theorem 4.4 (b).

(c) Similar to Theorem 4.4 (b), we can prove Theorem 4.4 (c).

Theorem 4.4 has several important implications for general parametric models. The-

orem 4.4 (a) establishes the first order approximation of Cook’s distance for a large class

of parametric models for both dependent and independent data. Theorem 4.4 (b) and

(c) give an approximation of E[CD(I)|M] and E[CD(I)|M,Z], respectively. Based

on these results, we can construct the scaled (or conditional scaled) Cook’s distance

measure.
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4.3 Illustrative Examples

4.3.1 Finney Data

We consider a logistic regression model using data from Finney (1947). The data were

obtained to study the effect of the rate and volume of air inspired on a transient vaso-

constriction in the skin of the digits. There are 39 observations in the data set. The

response variable is occurrence or nonoccurrence of vaso-constriction. These data have

been considered in many papers (Pregibon, 1981; Ibrahim and Laud, 1991; Chen and

Ibrahim, 2003).

We fitted the logistic regression model with logit(p) = β0 + β1 log(rate) +

β2 log(volume), where p is the probability of the occurrence of vaso-constriction. We

computed CD, SCD1, SCD2, CSCD1 and CSCD2 as described in Section 4.2. Specifi-

cally, CD was computed using the first order approximation in (11), and SCD1, SCD2,

CSCD1 and CSCD2 were computed using 500 bootstrap samples. We considered single

case deletion as well as multiple case deletion by deleting two and three cases simulta-

neously.

For single case deletion, the 4th and the 18th observations are identified as influential

cases by all of the proposed Cook’s distance measures (Figure 4.2). For simultaneous

two case deletion, the pairs involving either the 4th or the 18th case become influential

and mosaic patterns are found for those pairs (Figure 4.3). Although similar mosaic

patterns are found in Figure 4.3, the influence of the pair (4, 18) is dominant compared

to those of the other pairs when influence is measured by CD, SCD1 and SCD2. On the

other hand, CSCD1 and CSCD2 identified more pairs involving either the 4th or the

18th case other than (4, 18). In addition, the pair (4, 18) was identified as the most in-

fluential set by CD, SCD1, SCD2 and CSCD1 (CD=1.856, SCD1=24.506, SCD2=73.926

and CSCD1=19.208); however, CSCD2 identified pair (4, 32) as the most influential set

(CSCD2=153.173), (4, 10) as the second most influential set (CSCD2=144.611) and (4,
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FIGURE 4.2: Finney data. Index plots for single case deletion; (a) CD, (b) SCD1, (c)
SCD2, (d) CSCD1 and (e) CSCD2.

18) as the 6th most influential set (CSCD2=103.587). The pair (4, 32) was the second

most influential set by CSCD1 (CSCD1=12.493) but not a highly influential set by the

other measures. We observe a similar phenomenon for simultaneous three case deletion

(Figure 4.4). Although the sets identified by CD, SCD1, SCD2 have similar patterns

among those measures, CSCD1 and CSCD2 identified more influential sets. Specifi-

cally, the most influential set is (4, 18, 29) by using CD, SCD1 and SCD2 (CD=2.409,

SCD1=19.836 and SCD2=55.771), whereas (4, 18, 32) is most influential by CSCD1

(CSCD1=19.208) and (4, 10, 32) is most influential by CSCD2 (CSCD2=144.601).

Figure 4.5 shows the relationship between the size of the deletion and the perfor-

mance of the scaled Cook’s distance. For the unscaled Cook’s distance, as the number

of deleted cases increases, the density of CD shifts toward larger values. For the scaled

and conditional scaled Cook’s distance, the densities are not shifted and thus the modes
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FIGURE 4.3: Finney data. 2-D scatter plots for simultaneous two case deletion; (a)
CD, (b) SCD1, (c) SCD2, (d) CSCD1 and (e) CSCD2. Note that the colors represent
the magnitude of each Cook’s distance and the size of the symbol is proportional to
the magnitude.

of the density occur at the same location for single, two and three case deletion. We

can also observe that CSCD2 is robust to the size of deletion. This indicates that

the proposed scaled and conditional scaled Cook’s distance eliminate the size issue

altogether.
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FIGURE 4.4: Finney data. 3-D scatter plots for simultaneous three case deletion; (a)
CD, (b) SCD1, (c) SCD2, (d) CSCD1 and (e) CSCD2. Note that the colors represent
the magnitude of each Cook’s distance and the size of the symbol is proportional to
the magnitude.
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FIGURE 4.5: Finney data. Density plots in log10-scale of (a) CD, (b) SCD1, (c) SCD2,
(d) CSCD1 and (e) CSCD2.

4.3.2 Yale Infant Growth Data

We computed CD using the first order approximation in (4.19), CSCD1 and CSCD2

using 100 bootstrap samples as described in Section 4.2.4. We consider single subject

deletion as well as simultaneous two subject deletion. A deletion of a subject here means

that we delete the observations for all of the visits for that subject. Subjects 269, 217,

294, 289, 274, 90, 38, 285, 280 and 149 are identified as the top 10 most influential

observations by CD, whereas subjects 217, 274, 246, 109, 90, 289, 294, 269, 38 and

149 are identified using the conditional scaled Cook’s distance (Table 4.1 and Figure

4.6). Specifically, subject 269 is the most influential according to CD, whereas it is

less influential according to the conditional scaled Cook’s distance. On the other hand,

subject 246 is not influential according to CD (CD=0.253), but becomes influential
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TABLE 4.1: Yale infant growth data. Top 10 influential subjects for single case deletion
with compound symmetry model.

ID mi CD ID mi CSCD1 ID mi App. CSCD1 ID mi CSCD2

269 12 2.416 274 22 24.911 274 22 23.769 217 19 30.196

217 19 1.465 217 19 23.734 217 19 23.544 274 22 27.809

294 13 1.252 246 5 19.801 109 12 19.584 246 5 25.264

289 18 1.188 90 17 18.151 90 17 18.875 109 12 24.761

274 22 1.163 109 12 18.058 294 13 18.653 90 17 22.526

90 17 0.858 149 17 17.094 246 5 17.168 289 18 20.682

38 24 0.823 294 13 16.904 149 17 16.974 294 13 20.324

285 8 0.738 289 18 16.537 289 18 16.732 269 12 19.835

280 9 0.695 38 24 16.386 269 12 15.943 38 24 18.719

149 17 0.668 269 12 14.168 38 24 15.893 149 17 18.696

Note that mi represents cluster size and App. CSCD1 is computed by equation (4.20).

after eliminating the effect of the cluster size (Table 4.1). The relationship between

Cook’s distance and cluster size indicates that the influential observations have larger

CD values for larger cluster sizes (Figure 4.7 (a)), while cluster size does not affect the

magnitude of the conditional scaled Cook’s distance (Figure 4.7 (b)-(d)). Thus, we

expect uniform patterns across cluster size in the conditional scaled Cook’s distance.

For simultaneous two subject deletion, the sets involving subject 269 were identified as

influential using CD, whereas the conditional scaled Cook’s distance detects the sets

involving subjects 217 and 274 as most influential compared to other sets (Figure 4.8).
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FIGURE 4.6: Yale infant growth data. Index plots for single subject deletion with
compound symmetry model; (a) CD, (b) CSCD1, (c) Approximation of CSCD1 is
computed by equation (4.20) and (d) CSCD2.
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FIGURE 4.7: Yale infant growth data. Cluster size versus Cook’s distance for single
subject deletion with compound symmetry model; (a) CD, (b) CSCD1, (c) Approx-
imation of CSCD1 is computed by equation (4.20) and (d) CSCD2. Note that the
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FIGURE 4.8: Yale infant growth data. 2-D scatter plots for simultaneous two subjects
deletion with compound symmetry model; (a) CD, (b) CSCD1, (c) Approximation of
CSCD1 is computed by equation (4.20) and (d) CSCD2. Note that the colors represent
the magnitude of each Cook’s distance and the size of the symbol is proportional to
the magnitude.
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4.4 Discussion

We have developed a scaled Cook’s distance to address the issue of size matters for

deletion diagnostics in general parametric models. We have used stochastic ordering

to quantify the relationship between the size of the perturbation and the amount of

the perturbation in Cook’s distance. We have shown that the scaled Cook’s distance

provide important information about outliers and influential observations for a fitted

model to a given data set. We have illustrated our development with linear regression,

generalized linear models, linear mixed models, and generalized linear mixed models.

We have analyzed two datasets using the scaled Cook’s distance measure. Future work

includes developing Bayesian analog’s to Cook’s scaled distance measure and developing

such a methodology for other types of models, such as survival models and models with

missing covariate data.
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CHAPTER 5

DISCUSSION

We have proposed diagnostic methods for assessing the influence of observations on

model fit and complexity for Bayesian regression models. These models include linear

models, mixed models, generalized linear models, generalized linear mixed models and

survival models. The proposed methods provide efficient computational formula and

nice statistical properties such as approximations and asymptotic equivalence. We can

view Dφ(i) as a Bayesian analogue of the likelihood distance (Cook and Weisberg, 1982)

and Cook’s posterior mean distance (or Cook’s posterior mode distance) as a Bayesian

analogue of Cook’s distance (Cook, 1977). In the frequentist paradigm, there is an

asymptotic equivalence between the likelihood distance and Cook’s distance. Analo-

gously, we showed that Dφ(i) and Cook’s posterior mean distance are asymptotically

equivalent in the Bayesian paradigm. The implementation of the proposed diagnostic

measures does not involve intensive computation, and only requires MCMC samples

from the full posterior distribution.

We have also presented a scaled Cook’s distance to address the issue of size matters

for the deletion diagnostics in general parametric models. The proposed scaled and

conditional scaled Cook’s distance eliminate the size issues when we consider deleting a

set of observations, and particularly useful for analyzing longitudinal data with different

cluster size.



The issue of what to do in a statistical analysis once an influential observation has

been detected is a huge issue with no easy answer. Most researchers in this area recom-

mend that i) analyses with and without the influential case should be clearly reported,

indicating differences in point and interval estimates, as well as variance estimates, ii)

If one seeks remedies to the problem, three strategies are typically mentioned: one

can transform the data, re-parameterize the model, or fit a new model all together.

Remedies for influential observations is a very large research area on its own.
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APPENDIX A

Proofs in Chap. 2

In this subsection, we provide the proof of equations in Sections 2.2.1, 2.3.2 and 2.4.1.

Proof of equation (2.2) in Section 2.2.1:

K(P, P−i) =

∫
p(β|D) log

{
L(β|D)π(β)/C

L(β|D−i)π(β)/C−i

}
dβ

=

∫
p(β|D) log

{
C−i

C

}
dβ +

∫
p(β|D) log

{
L(β|D)

L(β|D−i)

}
dβ

= log Eβ

[
L(β|D−i)

L(β|D)

∣∣∣∣D

]
+ Eβ

[
log

{
L(β|D)

L(β|D−i)

}∣∣∣∣D

]
, (A.1)

where C =
∫

L(β|D)π(β)dβ and C−i =
∫

L(β|D−i)π(β)dβ. Moreover,

log

{
C−i

C

}
= log

{∫
L(β|D−i)

L(β|D)
× L(β|D)π(β)

C
dβ

}
= log Eβ

[
L(β|D−i)

L(β|D)

∣∣∣∣ D

]
.

(A.2)

Proof of equation (2.4) in Section 2.2.1:

K(P1, P1,−i) =

∫
p1(β1|D) log

{ ∫
L(β|D)π(β)/C dβ2∫

L(β|D−i)π(β)/C−i dβ2

}
dβ1

=

∫
p1(β1|D) log

{
C−i

C

}
dβ1 +

∫
p1(β1|D) log

∫
L(β|D)π(β)dβ2∫ L(β|D−i)

L(β|D)
L(β|D)π(β)dβ2

dβ1

= log

{
C−i

C

}
−

∫
p1(β1|D) log

[∫
L(β|D−i)

L(β|D)
× L(β|D)π(β)/C∫

L(β|D)π(β)/Cdβ2

dβ2

]
dβ1

= log Eβ

[
L(β|D−i)

L(β|D)

∣∣∣∣ D

]
− Eβ1

[
log

∫
L(β|D−i)

L(β|D)
p(β2|β1, D)dβ2

∣∣∣∣ D

]
, (A.3)

where β = (β1, β2) and p(β2|β1, D) = p(β1, β2|D)/
∫

p(β1, β2|D)dβ2.

108



Proof of equation (2.9) in Section 2.3.1:

Following a similar justification as in Sinha et al. (2003), we have

P (Y > y|β,X, H0)k 6=i

= exp

{
−

n∑

k=1,k 6=i

H0(yk) exp(x′kβ)

}

= exp

[
−

{
i−1∑

k=1

hk(Ak − exp(x′iβ)) + hi(Ai − exp(x′iβ)) +
n∑

k=i+1

hkAk

}]
,(A.4)

where Ak =
∑

l∈R(yk) exp(x′lβ) and R(yk) = {l : yl ≥ yk}.
Letting EGP denote expectation with respect to the gamma process prior, we have

EGP{P (Y > y|β,X, H0)k 6=i} (A.5)

=
i−1∏

k=1

(
c

c + Ak − exp(x′iβ)

)ch0k
(

c

c + Ai − exp(x′iβ)

)ch0i n∏

k=i+1

(
c

c + Ak

)ch0k

=
i−1∏

k=1

exp

[
cH∗(yk) log

{
c + Ak+1 − exp(x′iβ)

c + Ak − exp(x′iβ)

}]

×
n∏

k=i+1

exp

[
cH∗(yk) log

{
c + Ak+1

c + Ak

}]

=
i−1∏

k=1

exp

[
cH∗(yk) log

{
1− exp(x′kβ)

c + Ak − exp(x′iβ)

}]

×
n∏

k=i+1

exp

[
cH∗(yk) log

{
1− exp(x′kβ)

c + Ak

}]
,

where h0k = H∗(yk)−H∗(yk−1).

Now, we write L(β|D−i) as L(β|D−i)={
∏i−1

k=1 Lk,−i(β|D)} · {∏n
k=i+1 Lk(β|D)}.

Then, the likelihood function with the ith subject deleted can be obtained as in equa-

tion (9).

Proof of equations (2.10) and (2.13) in Section 2.3.2:

The ratio of the likelihood for full data and the data without the ith subject is written
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as

L(β|D)

L(β|D−i)
=

n∏

k=1

Lk(β|D)

i−1∏

k=1

Lk,−i(β|D)
n∏

k=i+1

Lk(β|D)

= gi(β)Li(β|D), (A.6)

where gi(β) =
∏i−1

k=1 Lk(β|D)/
∏i−1

k=1 Lk,−i(β|D).

We compute CPO as follows:

CPOi =

∫
Li(β|D)p(β|D−i)dβ

=

∫
Li(β|D)

L(β|D−i)
L(β|D)

L(β|D)π(β)/C
∫ L(β|D−i)

L(β|D)
L(β|D)π(β)/C dβ

dβ

=

∫
Li(β|D){gi(β)Li(β|D)}−1p(β|D)dβ∫ {gi(β)Li(β|D)}−1p(β|D)dβ

=
Eβ[{gi(β)}−1|D]

Eβ[{gi(β)Li(β|D)}−1|D]
. (A.7)

Thus, we have Eβ[{gi(β)Li(β|D)}−1|D]=Eβ[{gi(β)}−1|D]/CPOi and applying these

results to (A.1) completes the proof.

Proof of equations (2.45) in Section 2.5.2 :

CPOi = p(zi|D−i)|zi∈Ia =

∫ ∫
p(zi|β,h)p(β,h|D−i) dh dβ

∣∣∣∣
zi∈Ia

=

∫ ∫
p(zi|β,h)

L(β,h|D−i)
L(β,h|D)

L(β,h|D)π(h)π(β)
∫∫ L(β,h|D−i)

L(β,h|D)
L(β,h|D)π(h)π(β) dh dβ

dh dβ

∣∣∣∣∣
zi∈Ia

=

∫∫
p(zi|β, h)gi(β, ha)

−1p(β,h|D) dh dβ|zi∈Ia∫∫
gi(β, ha)−1p(β,h|D) dh dβ

, (A.8)

where L(β,h|D)/L(β,h|D−i) = (1− δi)(1− ha)
exp(x′iβ) + δi

{
1− (1− ha)

exp(x′iβ)
}

and

we define L(β,h|D)/L(β,h|D−i) = gi(β, ha). Note that p(zi|β,h)|zi∈Ia = gi(β, ha)

for beta process model with grouped survival data. Therefore, we have CPOi =

[Eβ,h [{gi(β, ha)}−1|D]]
−1

.
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APPENDIX B

Assumptions and Proofs in Chap. 3

Assumptions :

We define FN(θ) = ∂θ log p(θ|Y ) and FN,[S](θ) = ∂θ log p(θ|Y [S]). Even though

p(Y |θ) may be misspecified, the posterior mode θ̂ converges to the θn∗ that minimizes

E{− log p(θ|Y )}, where the expectation is taken with respect to the true distribution

of Y ; see for example, Bunke and Milhaud (1998). For simplicity, we further assume

that θn∗ = θ∗ for all n. We use || · || to denote the Euclidean norm of a vector or a

matrix and use λmax(A) and λmin(A) to denote the largest and smallest eigenvalues of

a symmetric matrix A, respectively. We use the mathematical symbols (e.g., O(N−1))

and the stochastic-order symbols including Op(1), op(1), and Op(N
−1) throughout.

The following assumptions are needed to facilitate the technical details, although

they are not the weakest possible conditions. Because we develop all results for general

parametric models, we only assume several high-level assumptions as follows.

Assumption C1. θ̂ and θ̂[S] for all S are consistent estimates of θ∗, an interior point of

Θ.

Assumption C2. Let ∆(θ) = θ − θ∗ and suppose

log p(θ|Y ) = log p(θ∗|Y ) + ∆(θ)T FN(θ∗)− 0.5∆(θ)T JN(θ∗)∆(θ)[1 + op(1)] and

log p(θ|Y [S]) = log p(θ∗|Y [S]) + ∆(θ)T FN,[S](θ∗)− 0.5∆(θ)T JN,[S](θ∗)∆(θ)[1 + op(1)]

uniformly for all θ ∈ B(θ∗, δ0/
√

N) = {θ :
√

N ||θ − θ∗|| ≤ δ0}. Moreover,

maxS∈IS
supθ,θ′∈B(θ∗,N−1/2δ0) ||JN,[S](θ) − JN,[S](θ

′)|| = op(N), N−1/2FN(θ∗) = Op(1),
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N−1/2FN,[S](θ∗) = Op(1),

0 < inf
θ∈B(θ∗,δ0N−1/2)

λmin(n
−1JN(θ)) ≤ sup

θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN(θ)) < ∞, and

0 < min
S∈IS

inf
θ∈B(θ∗,δ0N−1/2)

λmin(N
−1JN,[S](θ))

≤ max
S∈IS

sup
θ∈B(θ∗,δ0N−1/2)

λmax(N
−1JN,[S](θ)) < ∞.

Assumption C3. Assume that for small δ0 > 0, if NS ≤ N0, a fixed constant, then

max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂θ log pS(θ)|| = Op(1) and max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂2
θ log pS(θ)|| = op(N).

Assumption C3’. Assume that for small δ0 > 0, if NS →∞, then

max
S∈IS

sup
θ∈B(θ∗,δ0/

√
N)

||∂θ log pS(θ)|| = Op(
√

NS) and

max
S∈IS

sup
θ∈B(θ∗,δ0)

||∂k
θ log pS(θ)|| = Op(NS) for k = 0, · · · , 5.

Assumption C4. log p(θ|Y ) and log p(θ|Y [S]) for all S ∈ IS are Laplace regular (Kass

et al., 1990).

Assumption C5. limNIS
→∞ N−1

IS
E[KN(IS|θ∗)] = K∗(IS) and limN→∞ N−1E[JN(θ∗)] =

J∗, where the expectation is taken with respect to the true data generator. Moreover,

for a small δ0 > 0, we have

sup
θ∈B(θ∗,δ0)

||KN(IS|θ)− E[KN(IS|θ)]|| = op(1) and

sup
θ∈B(θ∗,δ0)

||JN(IS|θ)− E[JN(IS|θ)]|| = op(1).

Assumption C6. Each component of N−1
IS

√
N{KN(IS|θ∗) − E[KN(IS|θ∗)]} is asymp-

totically normal.

Remarks: Assumptions C1 and C2 are very general conditions and have been widely
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used to examine the asymptotic properties of the extremum estimator, such as the

maximum likelihood estimate in general parametric models such as time series models

(Andrews, 1999). Sufficient conditions of Assumptions C1 and C2 have been extensively

discussed in the literature (Andrews, 1999). Assumptions C3 and C3’ are needed to

examine the asymptotic properties of the three case influence measures for each S ∈ IS.

Most models with a smooth likelihood automatically satisfy Assumptions C3 and C3’.

Assumption C4 is needed to use the Laplace approximation formula (Kass et al., 1990;

Tierney et al., 1989). Assumption C5 is ensured by the law of large numbers (van der

Vaart and Wellner, 1996). Assumption C6 is usually ensured by central limit theory.

Recall that pS(θ) = p(Y S|Y [S],θ). If pS(θ) only depends on few observations in Y [S],

then we can apply the theory of U-statistics to establish Assumption C6 (van der Vaart,

1998).

Proof of Theorem 3.1:

For notational simplicity, we temporarily assume that the dimension of θ is 1. The

proof of Theorem 3.1 (a) consists of four steps as follows:

In Step 1, we approximate log p(θ|Y ) using log p(θ̂|Y )−0.5N(θ− θ̂)2∂2
θh(θ̂), where

h(θ) = −N−1 log p(θ|Y ). Then, we can use the formula for the Laplace approximation

to integrals (eqn (2.6) in Tierney et al. (1989)) to obtain

Eθ|Y [φ
(
R[S](θ)

)
] = φ[S](θ̂) + 0.5N−1[∂2

θh(θ̂)]−1{∂2
θφ[S](θ̂) (B.1)

−[∂2
θh(θ̂)]−1∂3

θh(θ̂)[∂θφ[S](θ̂)]}+ O(N−2),

where φ[S](θ̂) = φ
(
R[S](θ̂)

)
.

In Step 2, we note that

R[S](θ) =
p(θ|Y [S])

p(θ|Y )
=

p(Y [S]|θ)

p(Y |θ)
×

∫
p(Y |θ)p(θ)dθ∫

p(Y [S]|θ)p(θ)dθ
=

CPOS

pS(θ)
, (B.2)
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where CPOS =
∫

p(Y |θ)p(θ)dθ/
∫

p(Y [S]|θ)p(θ)dθ. Again, the formula for the Laplace

approximation to integrals (eqn (2.6) in Tierney et al. (1989)) leads to

R[S](θ̂) =

(
Eθ|Y {[pS(θ̂)]−1}

)−1

pS(θ̂)
= 1−N−1[∂2

θh(θ̂)]−1{[∂θ log pS(θ̂)]2 (B.3)

−0.5[pS(θ̂)]−1∂2
θpS(θ̂) + 0.5[∂2

θh(θ̂)]−1∂3
θh(θ̂)∂θ log pS(θ̂)}+ Op(N

−2).

In Step 3, differentiating φ[S](θ) with respect to θ and using a Taylor’s series ex-

pansion, we can show that

∂θφ[S](θ̂) = ∂uφ(R[S](θ))∂θR[S](θ)
∣∣
θ=θ̂

= −φ̇(1)∂θ log pS(θ̂) + Op(N
−1) and

∂2
θφ[S](θ̂) = φ̈(1)[∂θ log pS(θ̂)]2 − φ̇(1)∂2

θpS(θ̂)[pS(θ̂)]−1

+2φ̇(1)[∂θ log pS(θ̂)]2 + Op(N
−1), (B.4)

where φ̇(1) = ∂uφ(u)|u=1.

In Step 4, the Taylor’s series expansion yields φ(R[S](θ̂)) = φ̇(1)[R[S](θ̂) − 1] +

Op(N
−2). Then, we combine the above results in Steps 2-4 to complete the proof of

Theorem 3.1 (a).

The proof of Theorem 3.1 (b) consists of two steps as follows:

In Step 1, using Assumptions C1 and C2, we can show (Andrews, 1999) that

θ̂ − θ∗ = Op(N
−1/2) and θ̂[S] − θ∗ = Op(N

−1/2) for all S ∈ IS.

Thus, θ̂ − θ̂[S] = Op(N
−1/2).

In Step 2, expanding ∂θ log p(θ̂[S]|Y [S]) at θ̂ yields

0 = ∂θ log p(θ̂|Y [S]) + ∂2
θ log p(θ̂|Y [S])(θ̂[S] − θ̂)[1 + op(1)],
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Since 0 = ∂θ log p(θ̂|Y [S]) + ∂θ log pS(θ̂) and ∂2
θ log p(θ̂|Y [S]) = ∂2

θ log p(θ̂|Y ) −
∂2

θ log pS(θ̂), we can use Assumption C3 to obtain

0 = ∂θ log pS(θ̂) + ∂2
θ log p(θ̂|Y )(θ̂[S] − θ̂)[1 + op(1)],

which leads to Theorem 3.1 (b).

To prove Theorem 3.1 (c), we use the formula for the Laplace approximation to

integrals (eqn (2.6) in Tierney et al. (1989)) to get

θ̃ = θ̂ + 0.5[∂2
θ log p(θ̂|Y )]−2[∂3

θ log p(θ̂|Y )] + O(N−2).

Furthermore, for each S, we also use the formula for the Laplace approximation to

integrals to get

θ̃[S] = θ̂+[∂2
θ log p(θ̂|Y )]−1[∂θ log pS(θ̂)]+0.5[∂2

θ log p(θ̂|Y )]−2[∂3
θ log p(θ̂|Y )]+O(N−2).

Thus, subtracting θ̃[S] from θ̃, we obtain the proof Theorem 3.1 (c).

Combining Theorem 3.1 (b) and (c) leads to Theorem 3.1 (d).

Proof of Theorem 3.2:

By following the proof of Theorem 3.1 (b), we can show that θ̂− θ̂[S] = Op(N
−1/2),

Op(N
1/2) = −∂θ log p(θ̂|Y [S]) = ∂θ log pS(θ̂) and ∂2

θ log p(θ̂|Y [S]) = ∂2
θ log p(θ̂|Y ) −

∂2
θ log pS(θ̂). Thus, we have

θ̂[S] = θ̂ − [JN,[S](θ̂)]−1∂θ log pS(θ̂)[1 + op(1)].

If NS/N → 0, then JN,[S](θ̂) = JN(θ̂)[1 + Op(NS/N)] = JN(θ̂)[1 + op(1)] and thus we

can replace JN,[S](θ̂) by JN(θ̂). Otherwise, we cannot replace JN,[S](θ̂) by JN(θ̂) when

NS/N → γ < 1. This completes the proof of Theorem 3.2 (a).
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To prove Theorem 3.2 (b), we use the formula for the Laplace approximation to

integrals (eqn (2.6) in Tierney et al. (1989)) to get

θ̃ = θ̂ + 0.5[∂2
θ log p(θ̂|Y )]−2[∂3

θ log p(θ̂|Y )] + Op(N
−2)

θ̃[S] = θ̂[S] + 0.5[∂2
θ log p(θ̂|Y [S])]

−2[∂3
θ log p(θ̂|Y [S])] + Op(N

−2).

It follows from a Taylor’s series expansion that

∆1 = [∂2
θ log p(θ̂|Y )]−2[∂3

θ log p(θ̂|Y )]− [∂2
θ log p(θ̂|Y [S])]

−2[∂3
θ log p(θ̂|Y [S])]

= [∂2
θ log p(θ̂|Y )]−2[∂3

θ log p(θ̂|Y )− ∂3
θ log p(θ̂|Y [S])]

+
{

[∂2
θ log p(θ̂|Y )]−2 − [∂2

θ log p(θ̂|Y [S])]
−2

}
[∂3

θ log p(θ̂|Y [S])] = Op(NS/N2),

which yields ∆1 = op(1/N) as NS/N → 0 and ∆1 = Op(1/N) as NS/N → γ < 1.

Therefore, we have ∆1 = op(1)[JN,[S](θ̂)]−1∂θ log pS(θ̂) and θ̃−θ̃[S] = (θ̂−θ̂[S])[1+op(1)].

Theorem 3.2 (c) easily follows from Theorems 3.2 (a) and (b), and therefore, we

omit all details. To prove Theorem 3.2 (d), we follow the proof of Theorem 3.1 (a).

Equation (B.1) is still valid, but we cannot directly apply equation (2.6) in Tierney et

al. (1989) to get (B.2) since log pS(θ) depends on N . Instead, we use the basic Laplace

approximation to integrals and equation (2.4) in Tierney et al. (1989) to get

R[S](θ̂) =
CPOS

pS(θ̂)
= AS[1 + Op(

1

N
)]. (B.5)

If NS/N → γ ∈ (0, 1), then AS does not converge to 1 in probability, since σ2 =

σ2
S + O(1) and p(Y [S]|θ̂)p(θ̂) = p(Y [S]|θ̂S)p(θ̂S)[1 + Op(1)]. We get

Eθ|Y [φ
(
R[S](θ)

)
] = φ(AS) + φ̇(AS)[R[S](θ̂)− AS] + Op(N

−1) = φ(AS) + Op(N
−1).

Thus, since φ(AS) 6= φ(1) = 0, φ(AS) dominates the asymptotic expansion of

Eθ|Y [φ
(
R[S](θ)

)
].
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If NS/N → 0, then it follows from a Taylor’s series expansion that

σ

σ[S]

= [JN(θ̂)]−1/2[JN,[S](θ̂S)]1/2 = 1 + 0.5[JN(θ̂)]−1JN,[S](θ̂)(θ̂S − θ̂) + Op(
NS

N
), and

log p(θ̂|Y [S])− log p(θ̂S|Y [S]) = −0.5N(θ̂ − θ̂S)2JN,[S](θ̂S) + Op(
N

3/2
S

N2
) = Op(

NS

N
).

These yield that

AS = 1 + 0.5[JN(θ̂)]−1[∂θJN,[S](θ̂)](θ̂S − θ̂) + Op(
NS

N
).

Finally, we can show that

Eθ|Y [φ
(
R[S](θ)

)
] = φ(AS) + Op(N

−1) = φ̇(1)(AS − 1) + Op(N
−1)

= 0.5φ̇(1)[JN(θ̂)]−1[∂θJN,[S](θ̂)](θ̂S − θ̂) + Op(
NS

N
) = Op(

√
NS

N
),

which completes the proof of Theorem 3.2 (d).

Proof of Theorem 3.3:

Theorem 3.3 (a) follows directly from Assumptions C1 and C5. Theorem 3.3 (b)

follows from Assumptions C5 and C6.

Proof of Theorem 3.4:

To prove Theorem 3.4, we expand log pS(θ̃[S]) at θ̃ for each S and obtain

∑
S∈IS

log pS(θ̃[S]) =
∑
S∈IS

log pS(θ̃) +
∑
S∈IS

∂θ log pS(θ̃)T ∆S[1 + op(1)],

where ∆S = θ̃[S] − θ̃. It follows from Theorem 3.1 (c) that

∑
S∈IS

log pS(θ̃[S]) =
∑
S∈IS

log pS(θ̃)−
∑
S∈IS

[∂θ log pS(θ̃)]T [Jn(θ̃)]−1∂θ log pS(θ̃)[1 + op(1)],

which yields Theorem 3.4.
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Proof of Theorem 3.5:

The proof of Theorem 3.5 consists of four steps as follows:

In Step 1, following Lemma A1 of (Ando, 2007), we can show that

Jn(θ∗)−1K̃n(IS|θ∗)−1/2(θ̂ − θ∗) →d N(0, Ip),

where Ip is the p× p identity matrix.

In Step 2, following Lemma A2 of (Ando, 2007), we can show that

EY [Eθ|Y {(θ − θ∗)⊗2] = Jn(θ∗)−1 + {Jn(θ∗)}−1K̃n(IS|θ∗){Jn(θ∗)}−1.

In Step 3, we decompose Bη as a sum of E1, E2, and E3, where

E1 = EY (n−1Eθ|Y log p(Y |θ)− n−1 log{p(Y |θ∗)p(θ∗)}),

E2 = EY (n−1 log{p(Y |θ∗)p(θ∗)} − n−1EZ [log{p(Z|θ∗)p(θ∗)}]),

E3 = EY

(
n−1EZ [log{p(Z|θ∗)p(θ∗)}]− n−1EZ{Eθ|Y log p(Z|θ)}) .

E2 equals zero. Following the arguments in Theorem 1 of Ando (2007), we can do a

second order expansion of log{p(Y |θ∗)p(θ∗)} at θ̂ to obtain

E1 = n−1EY [Eθ|Y {log p(Y |θ)}−log{p(Y |θ̂)p(θ̂)}]+0.5n−1tr{J−1
n (θ∗)K̃n(ISθ∗)}+op(1).

E3 can be written as

EY

(
n−1EZ [log{p(Z|θ∗)p(θ∗)}]− n−1EZ [Eθ|Y log{p(Z|θ)p(θ)}])+EY {Eθ|Y log p(θ)}.
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Combining Step 2 and the Taylor expansion of log{p(Z|θ)p(θ)}, we get

E3 = 0.5n−1tr{J−1
n (θ∗)K̃n(IS|θ∗)}+ 0.5n−1p + EY {Eθ|Y log p(θ)}+ op(1).

In Step 4, we use the formula of the Laplace approximation to integrals to obtain

n−1Eθ|Y [log{p(Y |θ)p(θ)}] = n−1 log{p(Y |θ̂)p(θ̂)} − 0.5n−1p + O(n−2).

Combining Steps 3 and 4, we obtain the proof of Theorem 3.5.

Partial derivatives of log p(Y |β, τ, D) and log p(β|τ)p(τ)p(D−1) in Section

3.4.2:

∂β log p(Y |β, τ, D) =
n∑

i=1

τXT
i V −1

i (Y i −X iβ),

∂τ log p(Y |β, τ, D) =
n∑

i=1

{
mi

2τ
− 1

2
(Y i −X iβ)T V −1

i (Y i −X iβ)

}
,

∂D log p(Y |β, τ, D) =
n∑

i=1

[
−1

2
vec(ZT

i V −1
i Zi)

+
τ

2
vec{ZT

i V −1
i (Y i −X iβ)(Y i −X iβ)T V −1

i Zi}
]
,

∂2
β log p(Y |β, τ, D) =

n∑
i=1

−τXT
i V −1

i X i,

∂2
τ log p(Y |β, τ, D) =

n∑
i=1

−mi

2τ 2
,

∂2
D log p(Y |β, τ, D) =

n∑
i=1

1

2
ZT

i V −1
i Zi ⊗ZT

i V −1
i Zi

− τ{ZT
i V −1

i Zi ⊗ZT
i V −1

i (Y i −X iβ)(Y i −X iβ)T V −1
i Zi},
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∂τ∂β log p(Y |β, τ, D) =
n∑

i=1

XT
i V −1

i (Y i −X iβ),

∂D∂β log p(Y |β, τ, D) =
n∑

i=1

−τ{ZT
i V −1

i X i ⊗ZT
i V −1

i (Y i −X iβ)},

∂D∂τ log p(Y |β, τ, D) =
n∑

i=1

1

2
vec{ZT

i V −1
i (Y i −X iβ)(Y i −X iβ)T V −1

i Zi},

∂β log p(β|τ)p(τ)p(D−1) = −τΣ−1
0 (β − µ0),

∂τ log p(β|τ)p(τ)p(D−1) = (
p

2
+

δ0

2
− 1)

1

τ
− 1

2
(β − µ0)

TΣ−1
0 (β − µ0)−

γ0

2
,

∂D log p(β|τ)p(τ)p(D−1) = −1

2
(v0 − q − 1)vec(D−1) +

1

2
vec{D−1(C−1

0 )T D−1},

∂2
β log p(β|τ)p(τ)p(D−1) = −τΣ−1

0 ,

∂2
τ log p(β|τ)p(τ)p(D−1) = −(

p

2
+

δ0

2
− 1)

1

τ 2
,

∂2
D log p(β|τ)p(τ)p(D−1) = (D−1 ⊗D−1)

[
1

2
(v0 − q − 1)Iqq − {Iq ⊗ (C−1

0 )T D−1}
]

,

∂τ∂β log p(β|τ)p(τ)p(D−1) = −Σ−1
0 (β − µ0),

∂D∂β log p(β|τ)p(τ)p(D−1) = 0,

∂D∂τ log p(β|τ)p(τ)p(D−1) = 0.

Note that for any matrix A(p × q), vec(A) is a column vector which is formed by

stacking the rows of A sequentially (Lee, 2007).
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APPENDIX C

Assumptions in Chap. 4

The following assumptions are needed to facilitate the technical details, although they

are not the weakest possible conditions. Because we develop all results for general

parametric models, we only assume several high-level assumptions as follows.

Assumption C1. θ̂[I] for any I is a consistent estimate of θ∗, an interior point of Θ.

Assumption C2. All p(Y[I], θ) are three times continuously differentiable on Θ and

satisfy

log p(Y[I], θ) = log p(Y[I], θ∗) + ∆(θ)T Jn,[I](θ∗)− 0.5∆(θ)TFn,[I](θ∗)∆(θ) + R[I](θ),

in which |R[I](θ)| = op(1) uniformly for all θ ∈ B(θ∗, δ0n
−1/2) = {θ :

√
n||θ− θ∗|| ≤ δ0},

where ∆(θ) = θ − θ∗ and Jn,[I](θ) = ∂θ log p(Y[I], θ) and Fn,[I](θ∗) = ∂2
θ log p(Y[I], θ).

Assumption C3. For any set I and Z, supθ,θ′∈B(θ∗,n−1/2δ0) n−1/2Jn,[I](θ) = Op(1),

sup
θ∈B(θ∗,n−1/2δ0)

||Fn,[I](θ)− E[FI(θ)|M,Z]|| = op(1),

sup
θ,θ′∈B(θ∗,n−1/2δ0)

n−1||Fn,[I](θ)− Fn,[I](θ
′)|| = Op(1),

and 0 < infθ∈B(θ∗,δ0n−1/2) λmin(n
−1Fn,[I](θ)) ≤ supθ∈B(θ∗,δ0n−1/2) λmax(n

−1Fn,[I](θ)) < ∞.

Assumption C4. For any set I and Z,

sup
θ∈B(θ∗,n−1/2δ0)

JI(θ) = Op(
√

m(I)), sup
θ∈B(θ∗,n−1/2δ0)

||fI(θ)|| = Op(m(I)),

sup
θ∈B(θ∗,n−1/2δ0)

||fI(θ)− E[fI(θ)|M,Z]|| = Op(
√

m(I)).
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Remarks: Assumptions C1-C4 are very general conditions and are generalizations of

some higher level conditions for the extremum estimator, such as the maximum likeli-

hood estimate, given in Andrews (1999). Sufficient conditions of Assumptions C2-C4

have been extensively discussed in the literature (Andrews, 1999; Zhu and Zhang, 2006).

Moreover, for simplicity, we use the rates n and m(I) in Assumptions C2-C4, which

can be modified to accommodate more intricate examples in Andrews (1999) and Zhu

and Zhang (2006).
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