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ABSTRACT

STEPHEN J. GUY: Geometric Collision Avoidance for Heterogeneous Crowd Simulation
(Under the direction of Ming C. Lin and Dinesh Manocha)

Simulation of human crowds can create plausible human trajectories, predict likely

flows of pedestrians, and has application in areas such as games, movies, safety planning,

and virtual environments. This dissertation presents new crowd simulation methods based

on geometric techniques. I will show how geometric optimization techniques can be used to

efficiently compute collision-avoidance constraints, and use these constraints to generate

human-like trajectories in simulated environments. This process of reacting to the nearby

environment is known as local navigation and it forms the basis for many crowd simulation

techniques, including those described in this dissertation.

Given the importance of local navigation computations, I devote much of this disser-

tation to the derivation, analysis, and implementation of new local navigation techniques.

I discuss how to efficiently exploit parallelization features available on modern proces-

sors, and show how an efficient parallel implementation allows simulations of hundreds of

thousands of agents in real time on many-core processors and tens of thousands of agents

on multi-core CPUs. I analyze the macroscopic flows which arise from these geometric

collision avoidance techniques and compare them to flows seen in real human crowds, both

qualitatively (in terms of flow patterns) and quantitatively (in terms of flow rates).

Building on the basis of these strong local navigation models, I further develop many

important extensions to the simulation framework. Firstly, I develop a model for global

navigation which allows for more complex scenarios by accounting for long-term planning

around large obstacles or emergent congestion. Secondly, I demonstrate methods for using

data-driven approaches to improve crowd simulations. These include using real-world

iii



data to automatically tune parameters, and using perceptual user study data to introduce

behavioral variation.

Finally, looking beyond geometric avoidance based crowd simulation methods, I

discuss methods for objectively evaluating different crowd simulation strategies using

statistical measures. Specifically, I focus on the problem of quantifying how closely a

simulation approach matches real-world data. I propose a similarity metric that can be

applied to a wide variety of simulation approaches and datasets.

Taken together, the methods presented in this dissertation enable simulations of large,

complex humans crowds with a level of realism and efficiency not previously possible.
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CHAPTER 1

Introduction

Building good models of human crowds is important to many fields such as social

science, statistical physics, fire safety planning, and other areas of science and engineering.

These models help us gain an understanding of crowds and can facilitate growth, develop

more effective societies and cities, and can lead to safer cultural activities and events. By

using these models to virtually test design possibilities it is possible to save time, money,

and other resources. Devising such models requires us to draw upon developments from

various fields which study crowds ranging from sociology to psychology to biomechanics.

This dissertation proposes new computational models to simulate trajectories and

movement of human crowds. These models seek to predict plausible or likely motion of

humans in crowds, both in terms of paths and other aspects such as densities, speeds, and

overall behavioral patterns. While this is a broad and challenging goal, realistic computer

models of how human crowds move around obstacles, respond to stress, and avoid others can

have many applications. For example, crowd simulations can help city planners determine

what potential designs will improve flow through the city or expedite emergency evacuations.

Likewise, computer game designers could use such models to create crowds of computer

controlled characters which respond plausibly to the actions of the main character.

However, creating these realistic models is a challenging and multi-faceted problem.

The range of motion humans perform and the variety of situations which people encounter

is almost endless. To make progress, it becomes necessary to limit the scope of the problem

to modeling some subset of human motion. In this dissertation, I focus on heterogenous,

agent-based crowd simulations; that is, crowds of individual entities where each individual



has been given its own intent, characteristics and personality. I further explore a dichotomy

of various simulation approaches in the next section.

1.1 Crowd Simulation Overview

The term “crowd simulation” admits a broad range of interpretations that can vary

based on the target application and domain of study. For the purpose of this dissertation,

I define crowd simulation as the process of creating visual simulations of motion of one

or more individuals interacting with each other and their environment. As such, crowd

simulation is a complex task that has several components. At a high level, creating a

crowd simulation involves at least three important, distinct tasks: firstly, specifying the

scenario (see Section 1.1.1), secondly, computing the movement of the simulated individuals

(see Section 1.1.2), and thirdly, rendering animated imagery consistent with the computed

motion of each agent (see Section 1.1.3). This partitioning follows the broad description of

multi-agent simulation offered by Reynolds (Reynolds, 1999).

1.1.1 Defining the Scenario

At an abstract level, crowds can be viewed as a set of entities (i.e., individuals in

the crowds), with a collection of goals, and a set of obstacles which form the environment.

Defining each of these sets specifies a unique instance of a crowd simulation scenario.

However, the method of specifying an individual’s state, their goals, and the environment

will vary based on the simulation methods being used. In this dissertation, I adopt broad

interpretations for these terms to allow for a wide variety of different simulation approaches;

each term is described in more detail below.

Crowd State: I define the state of a crowd as a collection of properties associated with

each individual in the crowd that can vary between individuals. In all the work presented in

this dissertation the state includes the position and velocity of each individual in the crowd.

At times, the crowd state will need to be expanded to include other attributes such as an
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individual’s orientation, personal space requirements, or personality to allow for more rich

and complex simulations.

Goal Selection: Each individual in the crowd is assumed to have a physically em-

bodied goal. The representation of this goal can vary based on the simulation scenario. For

example, a goal of a desired position can be represented by a static location (point in 2D or

3D space). A goal of entering a room or moving to a specific area can be represented by a

target region of 2D space. Goals can also be dynamic, such as moving to follow a particular

individual, and a complex high-level goal can be broken down into a sequence of subgoals

(e.g., go here, then there).

More complex desired behavior can be specified using navigation fields (Patil et al.,

2011). These are spatially varying flow fields that define a desired velocity for an individual

that depends on that individual’s position. Navigation fields can be used to specify desired

overall flow patterns. For example, Figure 1.1 shows a still from the simulation of the Tawaf

ritual, a part of the Islamic pilgrimage to Mecca for the Hajj. A navigation field is used

to specify the desired counterclockwise motion pattern around the Kabah (central black

structure) that is part of the ritual (for example see the simulations in (Schneider et al., 2011;

Curtis et al., 2011)).

Environment Specification: Beyond specifying the goal points and regions, an

environment for a crowd simulation may include walls, obstacles, and other regions not

accessible to individuals in the crowd. In this dissertation, I assume these obstacles are

represented by (potentially non-convex) polygons that bound the obstacle area. It is the

responsiblity of the crowd simulation to ensure that agents do not enter the obstacle regions.

In the simulation shown in Figure 1.1, the central Kabah structure is represented by a

bounding rectangle which defines a region the agents may not enter during their motion.
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Figure 1.1: Still from a visualization of a simulation of the Tawaf ritual. Agents receive a
desired velocity from a flow field directing them in a counterclockwise motion around the
Kabah (central structure).

1.1.2 Computing Crowd Motion

Given the current state of the individuals in the crowd and the set of goals to reach,

the crowd motion problem is to compute short-term paths which are responsive to the

local conditions but still lead to an entity’s ultimate goals. Reynolds refers to the process

of intermediate-level planning as steering behaviors. Steering behaviors in crowds are

responsible for collision avoidance and local navigation, with the goal of making individuals

in a crowd walk around each other in a natural manner (Reynolds, 1999).

Simply relying on local collision avoidance can result in agents getting stuck behind

obstacles like walls and other local minima in complex environments. This problem can be

alleviated by using global path planning, a process which computes long-term paths that

reach a target destination without getting stuck at local minima. Standard techniques from

the fields of robotics and motion planning, such as probabilistic roadmaps and visibility

graphs, can be used to compute paths that are free from these local minima (LaValle, 2006).
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This dissertation focuses on the problem of motion computation and steering behaviors

for crowd simulation. More details on the approaches for motion planning in crowds are

given in Section 1.2.

1.1.3 Animating and Rendering of Crowds

If the crowd simulation is to be used in a graphical environment, it is necessary to

visually render the simulation results. Creating a natural visual rendering of the computed

motion of human characters is a challenging but well-studied problem in computer graphics.

The most standard approach for animating a human’s motion is known as a ‘walk cycle’,

which involves translating the display of the human character’s center of mass along the

motion vector while moving the character’s arms and legs in a simple, periodic cycle. The

cyclic animation of limb motion can be either created by an artist or recorded from the

motion of real humans using motion capture equipment.

The position of joint and limbs needed to produce natural walk cycles can be computed

using Inverse Kinematics (IK) (Peiper, 1968). IK can be used to devise algorithms to

dynamically adapt limb motion in order to create a variety of different types of walks,

for example (Calvert et al., 1993) and (Bruderlin and Calvert, 1996). Recorded data of

human motion can also be used to drive the motion of animated characters. For example,

(Ko and Badler, 1993) provides a method of converting 2D rotoscoped data of human

motion into walking animation appropriate for people moving at different speeds and for

people of different genders, weights, and body types. Data-driven methods for animated

characters have been extended into 3D as well (Witkin and Popovic, 1995), and can be used

to synthesize a large variety of different recorded motions (Kovar et al., 2002).

When displaying very large crowds, rendering can become especially challenging.

Recent papers have addressed this rendering challenge in different ways. One option is

to use differing levels of details, which switches from complex visual models to simpler

ones when characters get far away from the camera (Luebke, 2003). This process can

5



be used in an aggressive fashion by using very simple geometry such as a single quad

with a detailed human texture as described in (Tecchia et al., 2002), a technique known

as impostors. Impostors can be combined with a geometric level of detail system to allow

real-time rendering of thousands of agents as in (Dobbyn et al., 2005). Impostors can be

improved by using more detailed, animated 2D geometry as is done in (Kavan et al., 2008).

Using such methods can significantly reduce rendering costs, which is critical when creating

real-time animation of crowds for interactive applications like games, training, and VR.

1.2 Motion in Crowds

Several methods can be employed to compute the motion of individuals in crowds. The

choice of the most appropriate method depends on the type of crowds being simulated, the

complexity of the environment, and the densities of the agents. The following subsections

explain some of the high-level considerations that affect crowd simulation algorithms.

1.2.1 Heterogeneous Crowd Simulations

An important consideration in crowd simulation is whether the crowds being simulated

are homogeneous or heterogeneous. The study of heterogeneous crowds date back to at

least the work of Le Bon, who analyzed how members of a crowd can have different races,

genders, intents, and backgrounds (Bon, 1895). This dissertation focuses on these types of

heterogeneous crowds, where each individual maintains a distinct, observable identity. This

identity may be seen in a person’s goals, desired speeds, politeness, cooperation, and many

other factors affecting their motion.

In contrast, homogenous crowds occur when a clear unity of action leads to a “disap-

pearance of conscious personality” leading to a homogeneity of motion (Bon, 1895). When

simulating homogenous crowds, it is possible to exploit the coherence in individual motion

to accelerate the simulation. For example the work of (Hughes, 2002) and (Hughes, 2003)

presents a differential equation that uniformly dictates the flow of crowds across space. The
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homogeneity assumption found in this work has been relaxed by more recent approaches,

such as (Treuille et al., 2006) which allows for a small, fixed number of goals, and (Narain

et al., 2009) which allows for a unique goal for each individual in the crowd. However,

these methods still enforce a continuum of motion, which results in nearby individuals being

grouped together to share common characteristics and states such as similar speeds and

motion, thereby reducing the heterogeneity of the simulation.

Agent-based Crowd Simulations:

In contrast to continuum methods, agent-based simulation methods allow for true

heterogeneity in an individual’s motions. In these simulations, each person in the crowd is

represented as a simulated agent (typically in a 1-to-1 correspondence). Since the motion

of each agent can be computed independently, it is possible to simulate crowds with vastly

differing motion for different agents, even those moving right next to each other.

An agent-based approach was taken in the Boids algorithm, the pioneering work of

Reynolds (Reynolds, 1987). The Boids algorithm produced steering behavior that resembled

flocking, herding, and school behaviors commonly observed in animal motion. Similar

to Boids, this dissertation presents an agent-based model, but designed for simulation of

human crowd motion.

1.2.2 Global Navigation

Computing an agent’s motion breaks down into two distinct tasks: local navigation

and global navigation. Global navigation is the process of determining a long-term path

that is free of local minima. To perform global navigation, it is common to use a spatial

navigation data-structure, such as roadmaps, to guide agents around large, static obstacles in

order to avoid local minima.

A roadmap is a graph consisting of a set of vertices positioned in freespace (i.e. not

inside an obstacle), and a set of edges connecting these vertices. Two vertices are connected
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by a link if and only if the direct path between the two nodes is traversable (i.e. no obstacles

block the direct path). Such roadmaps can be constructed by an artist, or automatically

generated using visibility graphs (Lozano-Pérez and Wesley, 1979), probabilistic roadmaps

(Kavraki et al., 1996), or other techniques (Latombe, 1991; LaValle, 2006).

Agents can compute global paths using such roadmaps. An agent chooses the closest

node to its current position as a start vertex, and the closest vertex to its goal position as an

end vertex. Paths can then be represented by a set of edges between vertices. To find the

shortest path between the start and end vertex, standard graph search techniques, such as

Dijkstra’s algorithm (Dijkstra, 1959) or A* (Hart et al., 1968), can be used. The direction

along the current link towards the next vertex in the path forms a basis for an agent’s goal

velocity. It is the responsibility of the local navigation algorithm to move towards the goal

velocity without colliding into other nearby agents.

1.2.3 Velocity Space Planning for Local Navigation

There are a variety of ways to perform local navigation and collision avoidance. A

common technique is to plan based on the current positions of other nearby agents, with

closer agents being given a greater weight when planning than farther away agents (for

example by using repulsive forces which are inversely proportional to a neighbors distance).

This technique is commonly used in simulations, including work by (Reynolds, 1987),

(Helbing and Molnar, 1995), and (Pelechano et al., 2007).

These techniques implicitly assume that all of an agent’s neighbors will remain in

the same position for the foreseeable future. As such, it is common for such methods to

result in collisions between agents when traveling at high speeds and in complex cross-flows.

Additionally, as agents come towards each other, forces typically grow exponentially, which

can lead to issues with simulation stability and result in unnatural and oscillatory motion.

In contrast, this dissertation presents methods which plan motion for each agent in

velocity space. Velocity space is a vector space of relative velocities for each agent. Each
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neighboring agent will constrain an agent’s potential velocities based on its relative positions

and velocities. Planning in velocity space corresponds to making a short-term constant

velocity assumption. This assumption allows for better avoidance behavior in complex,

congested scenarios with lots of cross flows. See (Fiorini and Shiller, 1998) for a further

discussion of velocity space planning.

Chapter 2 discusses how to adapt velocity space planning to scenarios where multiple

agents simultaneously avoid each other. It also presents an efficient implementation of

a velocity space planning technique designed to exploit the hardware trends discussed in

Section 1.3.

1.3 Modern Processor Architecture Trends

There are various applications of crowd simulations where strong computational

performance is important. For example, in computer games and related areas such as

training and VR, crowds often must respond interactively to the actions of a user. This

requirement means that the actions of all the agents in the crowd must be computed in a few

milliseconds or less to reach the common simulation update target of 30Hz. Another example

is architectural crowd flow analysis, where crowd simulations are used to predict crowd

flows in new architectural or urban domains and to analyze which changes improve these

flows. Architectural analysis benefits from exploring as many options as possible, as quickly

as possible. When designing new simulation algorithms where computational performance

is a major issue, it is important to look at the current trends in modern processors and

understand how to exploit them.

The most important trend in processors is Moore’s law, which predicted an exponential

growth in transistor count and computational power. While this trend has continued over the

past 50 years, the growth in single-core performance has not kept pace with the growth in

the number of transistors. Despite increasing clock speeds and advances in instruction level

parallelism (ILP) such as out-of-order execution, deep pipelines, and multiple ALUs, the
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increase in performance of single-core processing has slowed considerably in recent years

due to power requirements (Borkar and Chien, 2011). Instead, growth in performance comes

from larger vector processors (data-level parallelism) and more cores per chip (thread-level

parallelism). Unlike ILP, exploiting these types of parallelism requires careful thought

from an algorithm designer. In this dissertation, I develop algorithms that can utilize these

increasing levels of parallelism to accelerate crowd simulation.

Another important trend in modern processors is the fact that the growth in compute

power is outpacing the growth in cache speeds and memory access times. The result of this

trend is to effectively reduce the cost of compute relative to each memory access. These

architectural developments have a two-fold impact on the simulation algorithm. Firstly,

because memory access is more likely to be a computation bottleneck, more compute-

intensive approaches to crowd simulation can run at very similar speeds as other simpler,

memory-access-bound methods. Secondly, it creates a greater importance for developing

data-structures that can efficiently exploit the cache and other features of the memory

subsystem in order to reduce the effect of memory access times. Together, these trends

guide the development of the algorithms I present in this dissertation.

1.4 Thesis statement

My thesis is as follows:

Geometric optimization approaches to collision avoidance can be combined with

global navigation techniques to provide an efficient means of computing the trajectories of

individuals in crowd simulations. Such methods can exploit parallelism in modern processors

to run in real time, produce heterogeneous virtual crowds, match human locomotion data,

and reproduce emergent phenomena and flows seen in real crowds.
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1.5 Main Results

In support of my thesis statement, I present several results relating to generating effi-

cient, large-scale, realistic crowd simulations. By using geometric optimization approaches I

develop simulation techniques that are scalable, with applications from modeling the motion

of just two people crossing paths to crowds of hundreds of thousands of people. To this end

there are three main contributions. First, I demonstrate how to exploit the architecture of

modern computer processors to efficiently compute these geometric optimization problems

(Section 1.5.1). Second, I discuss how to incorporate important biomechanically inspired

considerations into the optimization framework to produce more realistic simulations (Sec-

tion 1.5.2). Third, I provide a method for simulating the effect of various personalities on a

person’s path (Section 1.5.3). Additionally, I validate the motion predicted by this model

against data of real humans paths to analyze the correctness of the proposed models (Section

1.5.4).

1.5.1 Parallel, Optimization-Based Collision Avoidance

One important result from this dissertation is a new technique for distributed collision

avoidance. I present the ClearPath algorithm, an adaptation of velocity-based collision

avoidance methods from robotics to the domain of distributed collision avoidance for crowd

simulations.

Additionally, I discuss how the implementation of ClearPath exploits recent hardware

trends to maximize performance. This performance improvement comes from increasing

parallel processing, exploiting SIMD/vector processing, and using spatial data structures to

reduce memory access costs.

The resulting algorithm is capable of simulating crowds in a scalable manner. ClearPath

can compute smooth, collision-free trajectories for small crowds, in dense congestion, and

11



(a) Bi-directional Flow (b) Dense Congestion (c) Evacuation

Figure 1.2: ClearPath performing collision avoidance on several large-scale scenarios with
hundreds of agents at varying densities.

in the presence of obstacles, see Figure 1.2 for examples. These results were published in

(Guy et al., 2009) and are discussed in Chapter 2.

1.5.2 Crowd Simulation based on the Principle of Least Effort

Additionally, in this dissertation I present a simulation algorithm that builds on

distributed collision techniques, like ClearPath, to create biomechanically inspired crowd

trajectories based on the Principle of Least Effort (PLE). The main result of this work is

a unified framework for simulating crowds that reproduces several emergent phenomena

commonly found in real crowds, and that matches real-world trajectory data from human

crowds.

To understand the accuracy of these PLE-based simulations, I present several forms

of analysis and comparison between the simulated trajectories and the known motion

from actual human paths. I demonstrate that well-known emergent behaviors such as

lane-formation and arching arise in both real human crowds and in these simulations, in

both simple targeted set-ups and in simulations of complex real-world scenarios as shown

in Figure 1.3. These results were published in (Guy et al., 2010a) and are discussed in

Chapter 3.

I also present the results of quantitative analysis of the accuracy of this simulation

method. This involves both a direct comparison between real and simulated paths in

scenarios consisting of one to two isolated individuals, as well as a comparison of real and

12



(a) Narrow Passage (b) Shibuya Crossing (c) Long Corridor

Figure 1.3: Images of various crowd simulations using ideas inspired by biomechanics
research. The simulations show a variety of emergent phenomena such as lane formation.

simulated aggregate flow rates in larger scenarios. These results were published in (Guy

et al., 2012) and are discussed in Chapter 4.

1.5.3 Data Use in Crowd Modeling

I also present results related to incorporating various data into crowd simulations. Due

to the complexity of human behavior, no model that simply tries to create rules from first

principles can easily capture all aspects and variety of human motion as part of a crowd.

Because of this variation, it can be necessary to use data of real crowds to guide simulations.

I present a method for matching simulations closely to real world data. These results were

published in (Guy et al., 2010b) and are discussed in Chapter 5.

I also present a method based on data from user-studies to simulate the diversity of

behaviors that comes from different personalities. The result is a method that is able to

simulate individuals with different apparent personalities such as “aggressive” or “shy”.

These results were published in (Guy et al., 2011) and are discussed in Chapter 6.

1.5.4 Simulation Validation form Real-World Data

Real-world crowd data can also be used to validate crowd simulations. I present

techniques to compute a similarity measure of how close a given simulation technique

matches a real-world dataset. This similarity measure, called the Entropy Metric, uses

statistical inference techniques to estimate the amount of error a simulation has with respect

13



(a) Varying Personalities (b) Narrow Hallway (c) Street Crossing

Figure 1.4: (a) Data-driven crowd simulations (b-c) Data-driven evaluation scenarios

to validation data. Such a metric can ultimately be used to measure the accuracy of different

simulation techniques, including those presented in this dissertation, at capturing different

recorded crowd behaviors such as those seen in Figure 1.4b-c. These results are discussed

in Chapter 7.

1.6 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents the ClearPath

algorithm for local navigation and provides a parallel implementation of the approach.

This chapter also briefly discusses the Optimal Reciprocal Collision Avoidance (ORCA)

collision-avoidance approach used later in the subsequent work.

Chapter 3 describes an algorithm for incorporating a biomechanically motivated

version of the Principle of Least Effort into a distributed collision avoidance technique in

order to create simulations of human crowds. Chapter 4 compares the motion computed by

Least-Effort crowd simulations to the motion and flow of human crowds based on standard

techniques used by pedestrian analysis and fire-safety researchers.

Chapter 5 demonstrates how to use optimization techniques to improve the accuracy

of crowd simulations. Chapter 6 introduces a data-driven method to model variations due to

personality differences. Chapter 7 discusses how to robustly use real-world data to validate

simulation methods. Finally, Chapter 8 presents a summary of my contributions and a

discussion of future work.
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CHAPTER 2

ClearPath: A Method for Decentralized Collision Avoidance

2.1 Introduction

From record-setting crowds at rallies and protests to futuristic swarms of robots, our

world is currently experiencing a continuing rise of complex, distributed collections of

independently acting entities. All of these domains can be effective model as multi-agent

system, that is as a set of interacting dynamic entities. With potential applications such as

predicting crowd disasters, improving robot cooperation, and enabling the next generation

of air travel, developing models to reproduce, control, predict and understand these types of

systems is becoming critically important.

One of the key challenges in the area of multi-agent systems is to provide a means

of producing and controlling the behaviors of the agents in the system, while maintaing

important safety constraints. The work presented in this chapter focuses on maintaining

collision-free motion while allowing each agent to reach it’s own (externally specified)

goal. This approach will provide a decentralized solution where each agent can make it’s

own navigation decisions without explicit communications with it’s neighbors nor a central

authority.

While there are many potential uses for distributed collision avoidance in different

types of multi-agent systems, I will focus on uses in crowd simulation as that is the driving

domain of this dissertation. In subsequent chapters, I will explain how I build on top of this

distributed collision avoidance framework to make a full crowd simulation algorithm. In

different domains (e.g. robotic) other considerations might be needed (sensor integration,

uncertainty, etc.).



One of the goals of this work is to study the computational issues involved in enabling

real-time agent-based simulation to exploit current architectural trends. Recent and future

commodity processors are becoming increasingly parallel. Specifically, current GPUs and

upcoming x86-based many-core processors such as the experimental Larrabee processors

consist of tens or hundreds of cores, with each core capable of executing multiple threads and

vector instructions to achieve higher parallel-code performance. Therefore, it is important to

design collision avoidance and simulation algorithms such that they can exploit substantial

amounts of fine-grained parallelism.

2.1.1 Main Results

This chapter describes an algorithm for distributed, multi-agent collision avoidance

called ClearPath. The approach is based on the robotics concept of velocity obstacles (VO)

that was introduced by Fiorini and Shiller (Fiorini and Shiller, 1998) for motion planning

among dynamic obstacles. By using an efficient velocity-obstacle based formulation that

can be combined with any underlying multi-agent simulation, the local collision avoidance

computations can be reduced to solving a quadratic optimization problem that minimizes

the change in underlying velocity of each agent subject to non-collision constraints

In describing ClearPath I will present several main results:

1. A scaleable, decentralized approach for multi-agent collision avoidance

2. A multi-threaded implementation with dynamic load balancing

3. A method for exploiting SIMD/vector processing units for increased computation

The result is a polynomial-time algorithm for agents to compute collision-free, 2D

motion in a distributed manner. When published, ClearPath was more than one order of

magnitude faster than prior velocity-obstacle based methods. Since then, recent work such

as (Snape et al., 2009) and (van den Berg et al., 2011) have sense directly built on the

techniques proposed in this chapter and produce similar performance results.
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2.1.2 Organization

The result of this chapter is organized as follows. Section 2.2 provides a brief review

of closely related work. Section 2.3 describes in detail the ClearPath approach for local

collision avoidance. Section 2.4 details a method for parallel implementation exploiting

both thread-level and data-level parallelism. Sections 2.5 and 2.6 describes a basic method

for incorporating this local collision avoidance method to simulate crowds and analyzes the

performance of the resulting system. In Section 2.7, I discuss the limitations of this method

and some scope for future work.

2.2 Previous Work

Different techniques have been proposed to model behaviors of individual agents,

groups and heterogeneous crowds. Excellent surveys have been recently published including

(Thalmann et al., 2006) and (Pelechano et al., 2008a). These include methods to model local

dynamics and generate emergent behaviors such as (Reynolds, 1987) and (Reynolds, 1999);

psychological effects and cognitive models like the work of (Shao and Terzopoulos, 2005)

and (Yu and Terzopoulos, 2007); and cellular automata models and hierarchical approaches

(Schadschneider et al., 2011). In this section, I give a brief overview of related work in

collision detection and avoidance.

2.2.1 Collision detection and path planning

There is a rich literature on detecting collisions between two or multiple objects.

Many fast algorithms have been proposed for checking whether objects overlap at a given

time instance (discrete collision detection) or over a one dimensional continuous interval

(continuous collision detection), a more though discussion of collision detection can be

found in (Ericson, 2004).
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The problem of computing collision-free motion for one or multiple robots among

static or dynamic obstacles has been extensively studied in robot motion planning (LaValle,

2006). These include global algorithms based on randomized sampling, local planning

techniques based on potential field methods, centralized and decentralized methods for

multi-robot coordination, etc. In general, these methods are either too slow for interactive

applications or may suffer from paths that get stuck at local minima.

2.2.2 Collision avoidance

Collision avoidance problems have been been studied in control theory, traffic simula-

tion, robotics and crowd simulation. Optimization techniques for local collision detection

have been proposed for a pair of objects, including separation or penetration distance com-

putation between convex polytopes (Cameron, 1997; Lin, 1993) and local collision detection

between convex or non-strictly convex polyhedra with continuous velocities (Faverjon and

Tournassoud, 1987; Kanehiro et al., 2008).

Different techniques have been proposed for collision avoidance in group andcrowd

simulations for example (Reynolds, 1999), (Foudil and Noureddine, 2027),(Sugiyama

et al., 2001), (Musse and Thalmann, 1997), (Thalmann et al., 2006), (Helbing et al.,

2005),(Lamarche and Donikian, 2004), and (Sud et al., 2007b). These techniques can

be based on local coordination schemes, velocity models, prioritization rules, force-based

techniques, or adaptive roadmaps. Other techniques have used LOD techniques to trade-off

fidelity for speed such as (Yersin et al., 2008).

The notion of velocity obstacles (VO) was proposed for motion planning in dynamic

environments and has been extended to deal with uncertainty in sensor data (Fiorini and

Shiller, 1998; Fulgenzi et al., 2007; Kluge and Prassler, 2007). van den Berg et al. extended

the VO formulation to compute collision avoid paths between agents (van den Berg et al.,

2008a,b). Other extensions such as (Shiller et al., 2001) and (Paris et al., 2007a) have
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also been proposed. However, these techniques provide higher-order path-planning with

implementations that are not yet fast enough for very large simulations.

2.2.3 Parallel algorithms

Many parallel algorithms have been designed for collision detection, Voronoi diagrams

and related geometric computations that can exploit multiple cores or vector capabilities

of GPUs (Owens et al., 2007). Sud et al. (Sud et al., 2007a) use GPU-based discretized

Voronoi diagrams for collision detection among scenes with few hundred agents. There

is extensive literature on developing parallel and distributed algorithms for multi-agent

simulations (Tolwinski, 2002) including work on specialized hardware such as the cell

processor (Reynolds, 2006).

2.3 Local Collision Avoidance

This sections presents the mathematical details of the ClearPath collision avoidance

algorithm. The resulting approach is general and can be combined with different crowd and

multi-agent simulation techniques.

Assumptions and Notation: ClearPath assumes that the scene consists of heteroge-

neous agents with static and dynamic obstacles. The behavior of each agent is governed by

some extrinsic and intrinsic parameters and computed in a distributed manner for each agent

independently. The overall simulation proceeds in discrete time steps and the state of each

agent, including its position and velocity, is updated each time step. Given the position and

velocities of all the agents at a particular time instant T , and a discrete time interval of �T ,

the goal is to compute a velocity (and therefore a linear path) for each agent that results in

no collisions during the interval [T, T +�T ]. This velocity will be recomputed for every

agent, every time step.

The algorithm, as presented in this chapter, also assume that the agents are moving

on a 2D plane, though the approach can be extended to handle agents moving in 3D space.
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At any time instance, each agent has the information about the position and velocity of

nearby agents. This can be achieved efficiently, but storing the position of every agent

in a kD-tree, neighbors searches can then be preformed in O(log n) times. Each agent is

represented using a circle or convex polygon in the plane. If the actual shape of the agent

is non-convex, its convex hull can be used. The resulting collision-avoidance algorithm

becomes conservative in such cases. In the rest of the chapter, a circular agent will be

assumed, though the algorithm can be easily extended to other convex shapes.

Given an agent A, pA, rA, and vA is used to denote the agent’s position, radius and

velocity, respectively. The algorithm assumes that the underlying simulation algorithm uses

intrinsic and extrinsic characteristics of the agent or some high level model to compute

desired velocity for each agent (vdes
A ) during the timestep. The symbols vmax and amax

will represent the maximum velocity and acceleration, respectively, of the agent during a

timestep. Furthermore, q? denotes a line perpendicular to line q.

2.3.1 Velocity Obstacles

ClearPath builds on the concept of velocity obstacles (Fiorini and Shiller, 1998). Let

A� B represent the Minkowski sum of two objects A and B and let �A denote the object

A reflected in its reference point. Furthermore, let �(p,v) denote the a ray starting at p and

heading in the direction of v: �(p,v) = {p+ tv | t � 0}.

Let A be an agent moving in the plane and B be a (moving) obstacle on the same plane.

The velocity obstacle V OA
B(vB) of obstacle B to agent A is defined as the set consisting of

all those velocities vA for A that will result in a collision at some moment in time (t � T )

with obstacle B moving at velocity vB. This can be expressed as:

V OA
B(vB) = vA |�(pA,vA � vB) \B ��A 6= ;

This region has the geometric shape of a cone. Let �(v,p, µ) denote the distance of

point v from p along µ:
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�(v,p, µ) = {(v � p) · µ}

Henceforth, the region inside the cone is represented as

V OA
B(v) = (�(v,vB,p

?
ABleft) � 0) ^ (�(v,vB,p

?
ABright) � 0),

where p

?
ABleft and p

?
ABright are the inwards directed rays perpendicular to the left and right

edges of the cone, respectively. The VO is a cone with its apex at vB (Fig. 2.1).
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Figure 2.1: The Velocity Obstacle V OA
B(vB) of a disc-shaped obstacle B to a disc-shaped

agent A. This VO represents the velocities that could result in a collision of A with B (i.e.
potentially colliding region).

Van den Berg et al. (van den Berg et al., 2008a) presented an extension to VO called

RVO. The resulting velocity computation algorithm guarantees an oscillation-free behavior

for two agents. An RVO is formulated by moving the apex of the VO cone from vB to
(v

A

+v

B

)

2

. If A has N nearby neighbors, then N avoidance cones will be created, and each

agent needs to ensure that its desired velocity for the next frame, vdes
A , is outside the union of

all N velocity obstacle cones to avoid collisions. RVO algorithm performs random sampling

of the 2D space in the vicinity of vdes
A , and heuristically attempts to find a solution that

satisfies the constraints. However, the RVO algorithm has the following limitations: RVO

performs random sampling, and may not find a collision-free velocity even if there is a

feasible solution. Since RVO uses infinite cones, the extent of the feasible region decreases
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as N increases. In practice, RVO formulation can become overly conservative for tightly

packed scenarios.

2.3.2 Optimization Formulation for Collision Avoidance

The local collision avoidance problem for N agents as a combinatorial optimization

problem. ClearPath extends the VO formulation by imposing additional constraints that can

guarantee collision avoidance for each agent during a given interval. It accounts for this time

interval by defining a truncated cone to represent the collision-free region during the time

interval corresponding to �T . This finite time horizon velocity obstacle is denoted as FVO

in this chapter. This truncation is a similar ideas presented in (Fiorini and Shiller, 1998),

however here it is extend from one agent moving through unresponsive dynamic obstacles,

to handle several responsive agents moving around each other. The original VO or RVO is

defined using only two constraints (left and right), as shown in Fig. 2.1. The FVO is defined

using a total of three conditions. The two boundary cone constraints of the FVO are same as

that of RVO:

FVOL
A
B(v) = �(v, (vA + vB)/2,p?

ABleft) � 0

FVOR
A
B(v) = �(v, (vA + vB)/2,p?

ABright) � 0
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Figure 2.2: The Finite-time horizon Velocity Obstacle FVOA
B(vB) of a disc-shaped obstacle

B to a disc-shaped agent A. This formulation takes into account the time interval for local
collision avoidance.
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Ann additionally boundary is used to form an FVO:

Collision avoidance in only guaranteed for the duration �T . This leads to a finite subset

of the RVO cone that corresponds to the forbidden velocities that could lead to collisions

in �T . The truncated cone (expressed as shaded region in Figure 2.2) is bounded by a

curve �AB(v) (derivation is given in Appendix A). Due to efficiency reasons, �AB(v) is

replaced with a conservative linear approximation �AB(v). Note that this approximation

is conservative in nature, and in practice, this increases the area of the truncated cone by a

small amount. This constitutes the additional constraint, defined as: FVOT
A
B(v) =

�AB(v) = �
⇣
M � d

p

?
AB ⇥ ⌘, p?

AB

⌘
,where

⌘ = tan

✓
sin

�1

rA + rB

|pAB|

◆
⇥ (|pAB|� (rA + rB)), and

M = (|pAB|� (rA + rB))⇥ d
pAB +

vA + vB

2

Any feasible solution to all of constraints, which are separately formulated for each

agent, will guarantee collision avoidance. A new, constraint satisfying velocity for each

agent (in a distributed manner) which minimizes the deviation from v

des
A –the velocity desired

by the underlying simulation algorithm.

Let B
1

,.., BN represent the N nearest neighbors of an agent A. The computation of a

new velocity (vnew
A ) can be posed as the following optimization problem:

Minimize k(vnew
A � v

des
A )k

2

such that:
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This is a quadratic optimization function with non-convex linear constraints for each agent.

There is polynomial time solution when the dimensionality if the constrains is constant – in

this case two.
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Let the union of all the FVO from an agent’s neighbors be referred to its potentially

colliding region (PCR), and the boundary segments of each neighbor’s FVO as collectively

the Boundary Edges (BE). BE consists of 3N boundary segments – 3 from each neighbor of

A. By exploiting the geometric nature of the problem it is to possible to derive the following

lemma (proof in Appendix A):

Lemma 1: If vdes
A is inside PCR, vnew

A must lie on the boundary segment of the FVO

of one of the neighbors.

In many simulations, there are other constraints on the velocity of an agent. For

example, kineodynamic constraints (LaValle, 2006), which impose certain bounds on the

motion (e.g. maximum velocity or maximum acceleration). In case the optimal solution

to the quadratic optimization problem doesn’t satisfy these bounds, the constraints can be

relaxed by removing the furthest agent from A, and recomputing the optimal solution by

considering only N � 1 agents. This relaxation step is carried on until an optimal solution

satisfying all the constraints is obtained.

2.3.3 ClearPath Implementation
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Figure 2.3: Classifying FVO boundary subsegments as Inside/Outside of the remaining FVO
regions for multi-agent simulation. The optimization algorithm performs these classification
tests to compute a non-colliding velocity for each agent.
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This mathematical optimization formulation can be used to design a fast algorithm

to compute a collision-free velocity for each agent independently. Specifically, Lemma

1 can be exploited to compute all possible intersections of the boundary segments of BE

with each other. Consider segment X in Figure 2.3. The k intersection points of the FVO

region labeled as X
1

, .. , Xk. Note that these points are stored in a sorted order of increasing

distance from the corresponding end point (X
0

) of the segment. Each intersection point can

be further classified as being Inside or Outside of PCR. After performing this classification,

the subsegments between these points can also as being Inside or Outside of the PCR, based

on the following lemma (proof in Appendix A):

Lemma 2: The first subsegment along a segment is classified as Outside iff both its

end points are tagged as Outside. Any other subsegment is classified as Outside iff both its

end points are Outside, and the subsegment before it is Inside the PCR.

For example, both X
0

and X
1

are tagged as Outside, and hence the subsegment X
0

X
1

is tagged as Outside. However, the subsegment X
1

X
2

is tagged as Inside since X
0

X
1

is

Outside the PCR.

After classifying the subsegments of BE , Outside subsegments are considered, the

one closest to v

des
A is returned as the new velocity. The ClearPath algorithm performs the

following steps for each agent:

Step 0. Given an agent, query the kD-tree for the N nearest agents, and compute the

FVO constraints to arrive at BE .

Step 1. Compute the normals of the each segment in BE .

Step 2. Compute the intersection points along each segment of BE with the remaining

segments of BE .

Step 3. Classify the intersection points as Inside or Outside of the PCR.

Step 4. Sort the intersection points for each segment with increasing distance from its

corresponding end point.

Step 5. Classify the subsegments along each segment as Inside or Outside, and
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compute/maintain the closest point for the Outside subsegments.

Step 6. In case the resulting solution does not satisfy the kineodynamic or velocity

constraints, relaxing the constraints by removing the FVO corresponding to the furthest

neighbor, and repeat the algorithm with fewer agents.

For M number of total intersections segments in BE , the runtime of the algorithm for a

single agent is O(N(N +M)).

Collision Resolution: Due to initialization conditions, numerical precision errors,

and approximations in implementation is still it possible to have collision between agents.

In cases when agents are colliding, they should choose a new velocity that resolves the

collision as quickly as possible. This results in an additional set of constraints in velocity

space this can be conservatively approximated as a cone (Figure 2.4). In this case, the

Potentially Colliding Region is the intersection between two circles. The first circle, P, is

the set of maximal velocities reachable by an agent in a single time step (a circle of radius

amax ⇥�T ). The second circle, R, is the Minkowski difference of the two agents: B ��A.

The region which lies in the 1

st circle, but not the second is the set of velocities which

escapes the collision in 1 time step. The region which lies in both circles are reachable

velocities which fail to resolve the collision next time step. This area is conservatively

approximated with a cone, which create an additional constraint for any agents that are

colliding. These constraints are combined with the existing PCR from the neighboring

agents. A colliding agent’s preferred velocity is set to 0 so that the smallest possible velocity

which resolves the collision is chosen. This will minimize oscillations due to collision

resolution.

2.4 P-ClearPath: Parallel Collision Avoidance

The current trend is for processors to deliver high-performance through multithreading

and wider SIMD instructions. This section describes a data-parallel extension of ClearPath

that can exploit the capabilities of current multi-core CPUs and many-core accelerators.
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Figure 2.4: Red lens area: Velocities which will not remove agent from collision this time-
step. Green cone: Conservative conical approximation of red area. Circle R: Minkowski
sum of colliding agents. Circle P: Positions current agent can reach next time step.

ClearPath operates on a per-agent basis in a distributed manner, finding each agent’s nearest

neighbors and computes a velocity that is collision-free with respect to those neighbors.

There are two fundamental ways of exploring Data-Level parallelism (henceforth

referred to as DLP).

Intra-Agent: Consider Figure 2.5(a). For each agent, DLP can be used within the

ClearPath computation. Since the agents operate in 2D, they can perform their X and Y

coordinate updates in a SIMD fashion. This approach does not scale to wider SIMD widths.

Inter-Agent: Operate on multiple agents at a time, with each agent occupying a slot

in the SIMD computation. This approach is scalable to larger SIMD widths, but needs to

handle the following two issues:

1. Non-contiguous data access: In order to operate on multiple agents, ClearPath requires

gathering their obstacle data structure into a contiguous location in memory. After

computing the collision-free velocity, the results need to be scattered back to their

respective non-contiguous locations. Such data accesses become a performance

bottleneck without efficient gather/scatter operations.
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Agent Pool (Agentnext = Agentcurr ++)

A0 A1 Ak -1Ak -2
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Step 1,2,3,4,5

scatter operation :
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X coord.
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 (b) Inter-Agent SIMDfication(a) Intra-Agent SIMDfication

Gather K agent data structures from 
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Scatter computation results back to 
non-contiguous memory space

Take X, Y coordinates per agent
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SSE

Step 1,2,3,4,5

Figure 2.5: Data-Parallel Computations: (a) Intra-Agent SIMDfication for SSE (b) Inter-
Agent SIMDfication for wide SIMD

2. Incoherent branching: Multiple agents within a SIMD register may take divergent

paths. This degrades SIMD performance, and is a big performance limiter because

of intersection computations and inside/outside tests. One or more of the agents may

terminate early, while the remaining ones may still be performing their comparison

operations.

The current SSE architectures on commodity CPUs does not have efficient instructions

to resolve the above two problems. Hence, it is necessary to use the intra-agent SIMDfication

approach, but this obtains only moderate speedups (see Section 2.5). For the remainder of

this section, I will focus on exploiting wider SIMD, with the SIMD width being K-wide.

P-ClearPath adopts the Inter-agent approach, and performs computation on K agents

together. Figure 2.5(b) shows a detailed mapping of the various steps in ClearPath algorithm.

For collision-free velocity computation, each agent Ai is given as input its neighboring

velocity obstacles (truncated cones) and the desired velocity. The steps performed by each

agent are described in Section 2.3.3.

First the obstacle data structure gathers K agents into contiguous chunks of memory

and then loads various fields as needed by the SIMD operation. Although each of the steps
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listed there map themselves well to SIMD, there are a few important issues that need to be

addressed.

1. Varying number of neighbors for each agent: This affects each of the steps,

decreasing the SIMD utilization. For example, if one of the agents in the SIMD computation

has N neighbors, and the second one has N /2, the second agent is masked out for half of

the execution and does not perform any computation. Reordering the agents based on their

neighbor count, and executing agents that have the same number of neighbors together in

a SIMD fashion helps address this issue. Since the number of agents is a relatively small

number, this reordering runs in linear time, and takes up insignificant portion of runtime.

2. Constraint Relaxation by some agents: After computing the collision-free veloc-

ity, it is indeed possible for some agents to not satisfy their kineodynamic or other constraints

– thereby going back to the start and computing the solution with one less constraint in an

iterative manner. A pack instruction (Seiler et al., 2008) can be exploited to improve the

efficiency of this step. After all the agents have completed one iteration, the slots that need

to be recomputed are identified with a mask, and are packed their data structure (i.e. the

cone information) together in a separate memory location. This step is performed for all the

agents. After the first iteration, the result is a contiguous list of agents that have failed the

constraints, and need to be operated upon. The are operated on again – loading K agents

each time and operating on them in a SIMD fashion as before. Note that after termination,

the computed results need to be scattered to the appropriate memory location.

3. Classifying points as inside/outside: This is the most important part of the

algorithm. While classifying points as being inside or outside of the truncated cones, their

orientation is tested with respect to each truncated cone, and as soon as it is detected being

inside any of the cones, it does not need to be tested against the remaining cones. However,

it is often the case that some other point within the SIMD register is still being tested and

the computation for other lanes is wasted. In the worst case, the SIMD utilization may be as

low as 1/K.
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The ClearPath’s algorithm efficiency can be improved as follows. After testing the

orientation with respect to the first cone, the points contiguously as described above are

packed. In the subsequent iteration, the points are loaded and tested against the next

cone, and the process repeated. Note that in comparison to the scalar version of the code,

each point is tested against the same number of cones in the SIMD code. However, to

improve SIMD efficiency, it is packed, and then retrieved for each cone it is checked against.

This increases the overhead, but improves the SIMD efficiency to around K/3-K/2. With

the above discussed modifications, and appropriate support for gather/scatter and pack

instructions, P-ClearPath should achieve around K/2 SIMD speedup as compared to the

scalar version. A detailed analysis with SIMD scaling for each step in CleatPath algorithm

is discussed in Sec. 2.5.3.

2.5 Implementation and Results

This sections describes the implementation as part of a simple crowd simulation and

demonstrate the performance of both the serial and parallel version of the algorithms on

various benchmarks.

Nearest 
Neighbor List

Desired 
Velocity

Clearpath

New Velocity

For Each Agent

Add Timestep
- Update agent positions
- Compute desired velocity

Figure 2.6: For each agent, each time step, ClearPath takes a desired velocity from a multi-
agent simulation, and a list of nearby neighbors and computes a new minimally perturbed
velocity with avoids collisions. This velocity is then used as the agent’s new velocity.
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To test the ClearPath, it was incorporated into two open-source crowd simulation

systems: the RVO-Library (van den Berg et al., 2008a) and OpenSteer (Reynolds, 1999).

These simulations provided the desired velocities, which ClearPath minimally modified

to provide collision-free motion among the agents. A diagram of this process is shown

in Figure 2.6. New Velocities were applied using simple Euler integration. The Nearby

Neighbor List was obtained efficiently using a kD-tree. ClearPath was implemented as

described in Section 2.3.3. The algorithm for the Desired Velocity for each agent depends

on the simulation and is described briefly below.

RVO-Library: This library provides a global goal for each agent and can perform

collision avoidance. The built-in RVO based collision avoidance was removed and replaced

with ClearPath. The global navigation is based on a graph-based roadmap that is pre-

computed for a given environment. At runtime, A* is used to search the graph and compute

a desired path for each agent towards its goal position. The direction along the path provides

the desired velocity, vdes, for each agent.

OpenSteer: OpenSteer uses steering forces to guide agents towards their goals and

away from each other. Two configurations where tested in connection with OpenSteer. For

one, it output was used directly as an agent’s desired velocity. In the second, the OpenSteer’s

collision avoidance components were removed from computing it’s desired velocity and

only ClearPath’s collision avoidance was used.

Through the similar procedures the ClearPath collision-avoidance algorithm could be

incorporated into other multi-agent simulation systems.

Different types of benchmarks were used to evaluate the performance of the algorithms.

These varied from simple game-like scenes with a few dozen agents to complex urban scenes

with tens to hundreds of thousands of agents. In these tests, the collision avoidance part of

local navigation was found to take 50%� 80% of the total runtime and is a major bottleneck

in the the performance of the overall multi-agent system. The algorithms were evaluated

on different scenarios with varying the number of agents from 500 to 250K. Each agent
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is modeled as a heterogeneous agent and separate collision avoidance on each agent was

performed in a distributed manner.

Performance Comparison of Serial Algorithm: The performance of the serial

implementation of ClearPath with roadmaps was compared versus the original RVO-Library

and open source implementation of collision-avoidance in OpenSteer. All of them were

running on a single Xeon core (running at 3.14 GHz) with no data parallelism. Note that

all these algorithms result in different agent behaviors with varying velocities and motions,

though each of them is a goal-directed simulation where each agent has a desired goal.

Hence, it is hard to make direct comparisons, especially with OpenSteer whose behavior

differed significantly from the other two.

In general, there was 8 � 12X improvement when using ClearPath over original

RVO-Library (Fig. 2.7), and the absolute running time of ClearPath is comparable to the

collision-avoidance routine in OpenSteer. However, OpenSteer can results in many collisions

among the agents. Fig. 2.7 shows the absolute frame rates of simulation systems that use

RVO-Library, ClearPath and P-ClearPath for collision avoidance.
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Figure 2.7: Performance of RVO-Library, ClearPath and SSE implementation of P-ClearPath
measured on a single core Xeon. The ClearPath implementation is about 5X faster than
RVO-Library. The SSE capability offers additional 25� 50% speedup.
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2.5.1 Behavior Evaluation

Artificial scenarios were set up to evaluate local navigation and some emergent

behaviors of ClearPath. The following emergent behaviors were observed from ClearPath in

the benchmarks: lane-formation, vortices, slow down in congestion, respond to collisions,

avoiding each other, swirl to resolve congestion, jamming at exits, and arching at narrow

passages.

Circle-1K: 1, 000 agents start arranged uniformly around a circle and try to move

directly through the circle to the their antipodal position on the other side (see Fig. 2.8).

The scenario becomes very crowded when all the agents meet in the middle and swirling

behavior occurs.

Figure 2.8: Dense Circle Scenario: 1, 000 agents are arranged uniformly around a circle
and move towards their antipodal position. This simulation runs at over 1,000 FPS on an
Intel 3.14 GHz quad core, and over 8,000 FPS on 32 Larrabee cores.

4-Streams: 2, 000 agents are organized as four streams that walk along the diagonals

of the square. This is similar to the benchmark in Continuum Crowds (Treuille et al., 2006),

though ClearPath results in different behaviors, including smooth motion, lane formation

and some swirls.

Back&Forth: Between 10 and 100 agents are asked to move back and forth along

a line. This is test is run side-by-side with OpenSteer to compare the number collision

with unmodified OpenSteer to the number of collisions with OpenSteer combined with

ClearPath. With both techniques agents generally smoothly avoid each other. However,

when the ClearPath local collision avoidance algorithm is added, there are no longer any
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penetrations between the agents. With OpenSteer alone there are a significant number of

collisions.

2.5.2 Complex Scenarios

Larger, more realistic scenarios were used to evaluate the performance of the overall

system. All of these demos have a large, complex set of obstacles, with roadmaps to guide

agents to their goal.

Building Evacuation: Agents were given initial positions of different rooms in an

office building. The scene has 218 obstacles and the roadmap consists of 429 nodes and

7.2K edges. The agents move towards the goal positions corresponding to the exit signs.

The hallway quickly fills up with the agents and there is congestion at the exits, which allow

for only 1� 2 agents to leave at a time. Three versions of this scenario are used with 500,

1K and 5K agents and they are denoted as Evac-500, Evac-1K, and Evac-5K, respectively.

Stadium Scene: The scenario was a simulation of 25K agents as they exited from

their seats out of a stadium. The scene has approximately 1.4K obstacles and the roadmap

consists of almost 2K nodes and 3.2K edges. The agents moves towards the corridors and

produce congestion and highly-packed scenarios. This benchmark is denoted as Stad-25K.

City Simulation: This scenarios uses a city model with buildings and streets with

1.5K obstacles. The roadmap has 480 nodes and 916 edges. Different agents are simulated

as they walk around the city streets. The agents move at different speeds and overtake each

other and avoid collisions with oncoming agents. Three versions with 10K, 100K and 250K

agents were performed and denote as City-10K, City-100K and City-250K, respectively.

2.5.3 Parallel Implementation

ClearPath can be easily parallelized across multiple agents since the computation per-

formed by each agent is local and independent of the other agents. Specifically, performance
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on two kind of parallel processors and systems with different characteristics were tested.

They are:

1. Multi-core Xeon processors: The algorithms were tested on a PC workstation

with a Intel quad-core Xeon processor (X5460) running at 3.16 GHz with 32KB L1 and

12MB L2 cache. Each core runs a single thread. There is no support for gather/scatter

operations.

2. Many-core Larrabee simulator: Larrabee (Seiler et al., 2008) is an x86-based

many-core processor architecture based on small in-order cores that uniquely combines full

programmability of today’s general-purpose CPU architecture with compute-throughput and

memory bandwidth capabilities similar to modern GPU architectures. Larrabee processor

core consists of a vector unit (VPU) together with a scalar unit augmented with 4-way

multi-threading, and the VPU supports 16 32-bit float or integer operations per clock. Each

core has 32KB L1 data cache, and 256KB L2 cache. Hardware support for masking,

gather/scatter, and pack instructions allows a substantial amount of fine-grained parallelism

to be exploited by P-ClearPath.

2.5.3.1 Data-Parallelism

Figure 2.7 shows the improvement due to SSE instructions for P-ClearPath on Xeon

processors. There is only about 25�50% speedup with SSE instructions as Xeon processors

do not support scatter and gather instructions, have limited support for incoherent branches.

Figure 2.9 shows the performance of P-ClearPath on SSE and Larrabee architectures.

For Larrabee, the performance is measured in terms of Larrabee units. A Larrabee unit

is defined to be one Larrabee core running at 1 GHz. The reported performance data is

derived from performance simulation of complete multithreaded execution that takes into

account various execution stalls arising from instruction dependency, resource contention,

and cache/memory misses.
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Figure 2.9: Performance (FPS) of P-ClearPath on SSE (left most column) and Larrabee
(with different units) architectures. Even on complex scenes, P-ClearPath achieves 30� 60

FPS on many-core processors.

2.5.3.2 Thread-level Parallelism (TLP)

One of the issues that affects scaling is the load balancing amongst different threads.

Some of the agents in a dense scenarios may perform more computations than the ones

in sparse regions, as they consider more neighbors within the optimization computation.

Hence, a static partitioning of agents amongst the threads may suffer from severe load

balance problems, especially in simulations with few number of agents for large number

of threads. The main reason is that the agents assigned to some specific thread(s) may

finish their computation early, while the remaining ones are still performing the collision

avoidance and other computations.

ClearPath reduces the load imbalance by using a scheme based on dynamic partitioning

of agents. Specifically, Task Queueing (Mohr et al., 1990) is used to decompose the execution

into parallel tasks consisting of a small number of agents. This allows the runtime system

to schedule the tasks on different cores. In practice, the scaling improves by more than 2X

as compared to static partitioning for 16 threads. This speedup occurs in small game like

scenarios with tens or hundreds of agents. By exploiting TLP, P-ClearPath achieves around

3.8X parallel speedup on the quad-core X5460 over all benchmarks.
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Additionally, the combined benefits of TLP and data-level parallelism were evaluated.

Running 4 threads per core, the working set fits in L1 data cache and the implementation is

not sensitive to memory latency issues. 16-wide SIMD provides around 4X scaling over

scalar code. Hardware gather/scatter provides 50% additional speedup, resulting in 4.5X

scaling. The pack instructions provide additional 2X scaling to achieve the overall 6.4X

scaling.

2.5.3.3 SIMD Scalability

ClearPath Steps % Time Breakdown SIMD Scaling
Step 1 14% 7.9X

Step 2 39% 5.6X
Step 3 21% 5.9X
Step 4 13% 9.3X
Step 5 13% 5.6X
Total 100% 6.4X

Table 2.1: Average time (%) spent in various steps (Section 3.3) of Clearpath and the
corresponding SIMD scalability on Larrabee simulator of execution cycles as compared to
the scalar version.

Table 2.1 shows the SIMD scaling achieved by each of the first five steps of ClearPath

described in Section 3.3. The table provides a breakdown of the time spent in that part

and the overall speedup. By performing repeated packing and memory gather operations

during these steps to negative performance effects of path divergence and early termination

of the agent cone intersection and inside/outside computation can be reduced. This improves

the SIMD utilization but the performance improvement is limited by the overhead of

theseoperations.
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2.6 Analysis and Comparisons

2.6.1 Performance Analysis

A key issue for many interactive applications is the fraction of processor cycles that

are actually spent in collision avoidance and multi-agent simulation. Note that collision

avoidance can take a high fraction of frame time, especially when dealing with dense

scenarios with a high number of agents. The left-hand side graph in Fig. 2.9 highlights

the performance on simulations with 5K and 25K agents. P-ClearPath achieves real-time

simulation rates of 30 � 60FPS with only one Larrabee unit of computation. Using 64

Larrabee units, this would take up less than 2% of the total computation time and the rest

of the remaining 98% time could be used for AI, Physics, behavior, rendering and related

computations. Even on a quad-core Xeon CPU, P-ClearPath takes up only 20% of the

available computation time for 5K agents. As a result, P-ClearPath running on a commodity

many-core processor may be fast enough for game-like scenes. The right-hand side graph

in Fig. 2.9 highlights the scalability of ClearPath on extremely large models. For an urban

simulation with 100K to 250K agents, real-time rates are achieved with 32-64 Larrabee

units.

2.6.2 Behavioral Analysis

Evaluating behavior of the simulation can be difficult, as there is no clear standard

for the “right way” to avoid collisions, especially among a high number of agents in a

dense scenario. However qualitatively ClearPath results in smooth collision-free motion.

Quantitatively, the number of times agents are colliding can be directly measured. In the

80 agent version of the Back&Forth benchmark, OpenSteer agents were colliding with

each other nearly 16 times per frame. In contrast, when ClearPath was added there were no

collisions among the agents over the entire simulation (Fig. 2.10).
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Figure 2.10: A snapshot of the 80 agent Back&Forth demo. Opensteer (on the left) averages
16 collisions per frame. When combined with ClearPath (on the right) the simulation is
collision-free. Two particularly egregious collision are circled in red.

As the density increases OpenSteer may result in more collisions, whereas simply

using ClearPath or adding it to OpenSteer results in virtually no collisions regardless of the

density of the agents (Fig. 2.11).

2.6.3 Comparison and Limitations

Previously, the performance of ClearPath’s serial implementation was compared other

approaches. Here, crowd systems that use the parallel capabilities of GPUs or multiple

CPUs are compared.

The parallel implementation P-ClearPath can handle heterogeneous agents, global

navigation and support collision response between the agents. Some earlier algorithms also

offered similar capabilities. These include Parallel-SFM (Quinn et al., 2003), which is an
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Figure 2.11: As density increases, OpenSteer’s collision rate increase super-linearly. Simply
using ClearPath on it’s own, and combining OpenSteer with ClearPath results in practically
no collisions.

implementation based on a social force model that parallelizes the simulation process over

11 PCs and used for simulations with thousands of agents. A multi-core implementation

of RVO-Library on a 16 Core system is described in (van den Berg et al., 2008a). Sud

et al. (Sud et al., 2007a) used GPU-based discretized Voronoi diagrams for multi-agent

navigation (MANG), but this approach doesn’t scale to large number of agents. It is hard

to make direct comparisons with Parallel-SFM and MANG, as they have very separate

behavior than ClearPath. However, these papers report significantly slower performance

numbers than ClearPath.

There are other approaches that can handle some complex scenarios. But it is hard

to make direct comparison with them because some of the underlying features of these
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approaches are different. FastCrowd (Courty and Musse, 2004) is an implementation of

a similar social force model on a single GPU, but it doesn’t include collision response.

PSCrowd (Reynolds, 2006) implements a simple flocking model on a Cell Processor with 6

SPUs, but provides only limited collision avoidance. Continuum Crowds (Treuille et al.,

2006) is designed to handle homogeneous groups of large agents. It has impressive perfor-

mance numbers on a single CPU for these large homogeneous groups, but is inappropriate

for heterogeneous crowds.

2.7 Conclusions and Future Work

This chapter has presented a robust algorithm for collision avoidance among multiple

agents. The approach is general and works well on many different complex multi-agent

simulations, including those with tightly-packed and dense scenarios. The algorithm is

almost one order of magnitude faster than prior VO-based approaches. Moreover, the

algorithm can be combined with other crowd simulation systems and used to generate

collision-free motion for each agent (e.g. OpenSteer). I described a parallel extension using

data-parallelism and thread-level parallelism and use that for real-time collision avoidance

in complex scenarios with hundreds of thousands of agents.

2.7.1 Limitations

ClearPath has some limitations. The FVO constraints highlighted in Section 3.2 are

conservative. It is possible that there is a collision free path for the agents, but the algorithm

may not be able to compute it. The data parallel algorithm has room for improvement,

and may be able to obtain up to 50% improvement as a function of SIMD width and the

performance varies based on cache size and memory bandwidth. Lastly, ClearPath has a

very simplified model of an agent: a single disk with no holomonic motion restrictions. This

model is overly simplistic for many applications.
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2.7.2 Future Work

There are many avenues for future work. One important thing to try would be porting

P-ClearPath to a many-core GPUs and evaluate its runtime performance. Another interesting

extension would be to incorporate kinematic motion constraints related with ClearPath,

which can be important in robotic systems and human character animation.

Important improvements such as incorporating human dynamics, personal differences,

and evaluating simulation accuracy with respect to real-world data will be discussed later in

this dissertation.

2.8 ORCA

As mentioned in the introduction I worked with others to produce a system which runs

faster than ClearPath with very similar behavior (van den Berg et al., 2011). The resulting

system, known as ORCA, approximates the ClearPath FVO with a linear constraint in

velocity-space (see Figure 2.12). By using only linear constraints, the convex optimization

described in Section 2.3.3 can be replaced by simple linear programing. The resulting

algorithm has a 2-5X speed up over ClearPath depending on the simulation.

ORCA is well suited for large scale simulations such as the Tawaf simulation pictured

below (Figure 2.13). Despite involving 25,000 agents ORCA is still able to run the simulation

in real-time.

Subsequent results in this dissertation will build of the faster ORCA formulation rather

than ClearPath.
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Figure 2.12: Constructing the set of ORCA allowed velocities. vopt is the agent’s current
velocity. ORCA forces agents to choose new velocities which avoid at least half the collision
u. In RCAP, only agents whose TB|A

sight < T � Tobs generate ORCA constraints.

Figure 2.13: Still from a real-time, ORCA simulation of Tawaf ritual involving 25,000
agents.
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CHAPTER 3

PLEdestrians: A Caloric-Minimization Approach to Crowd Simulation

3.1 Introduction

The main role of collision avoidance techniques such as ClearPath or ORCA is to

tell agents where they cannot go. An interesting question still is where to go. Specifically,

ORCA and ClearPath will generally leave a large range of allowed velocities but only one

will be taken at any timestep. Which velocity is chosen can sometimes be largely a matter

of personal preference, but often there are simple, general guidelines which can naturally

describe typical motion. This chapter explores one such guideline known as the Principle of

Least Effort (PLE) for it’s analogous role to the principle of least action from the field of

physics.

As a guiding principle for understanding human motion PLE dates back to at least the

1940s with Zipf’s classic book on human behavior (Zipf, 1965). The principle suggests that

people will naturally achieve their goals in a manner which uses the least amount of effort

possible. The least-effort principle has influenced the design of recent crowd modeling

systems which tend to find paths which minimize an agent’s travel time, travel distance,

congestion, acceleration or other factor which can be indirectly related to the concept of

effort.

In this chapter, I propose to directly measure an agent’s effort as it’s expected caloric

expenditure. Minimizing caloric expenditure precedent from the field of biomechanics, an

area which extensively studies human motion. For example, (Inman et al., 1981) uses the

minimum calorie principle to successfully explain human locomotion patterns. Likewise,

minimum calorie analysis can correctly predict the approximate speed which individuals



generally travel (Whittle, 2002) and is valid across a wide range of body types (Browning

and Kram, 2005).

3.1.1 Main Result

This chapter describes a unified system for simulating human trajectories based on

a biomechancially inspired implementation of the principle of least effort. The heuristic

of minimizing the total amount of calories consumed, combined with ORCA for collision

avoidance, can completely specify a crowd simulation. I will show how to use PLE to inform

both low-level collision avoidance, and high level path selection. The resulting system is

shown to generate more efficient trajectories than other recent crowd simulation work.

3.1.2 Organization

The rest of this chapter is organized as follows. Section 3.2 gives an overview of

some related work. Section 3.3 describes the mathematical foundation of the PLE model.

Section 3.4 details how to implement PLE as part of a full crowd simulation. Sections 3.5

and 3.6 analyze the resulting simulations in terms of fulfilling the principle of least effort

and qualitative behaviors. Section 3.7 proves a summary of the work and outlines some

future directions.

Chapter 4 continues the analysis of the PLE approach to crowd simulation and focuses

on measuring its accuracy at capturing actual human motion.

3.2 Previous Work

There is extensive literature on simulating crowd dynamics and distributed motion

planning, the surveys of (Pelechano et al., 2008b) and (LaValle, 2006) cover these areas

respectively. Recent work has included attempts to generate group behaviors (Bayazit et al.,

2002; Kamphuis and Overmars, 2004) and and support real-time navigation of large numbers

of agents (Gayle et al., 2009).
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3.2.1 Least Effort in Crowd Simulation

Crowd simulation has often been formulated as a problem of minimizing some metric

a for group of independent agents. Techniques such as distance based roadmaps, help agents

find minimum distance paths to reach a goal. Recent methods have focused on minimizing

various effort functions directly inspired by PLE by using cellular automata (Still, 2000;

Sarmady et al., 2010) or phenomenological forces (Kagarlis, 2002). These methods aim to

capture the large scale patterns of movement, and are not well suited for animations, which

require high quality, smooth, collision-free motion.

Several techniques have been proposed specifically for animating large crowds. There

is extensive work in this area and, at a broad level, many of them can be classified into five

main categories: potential-based which focus on modeling agents as particles with potentials

and forces(Helbing and Molnar, 1995; Karamouzas et al., 2009), boid-like approaches based

on the seminal work of Reynolds which create simple rules for velocities (Reynolds, 1987,

1999), geometric which compute collision-free paths using sampling (van den Berg et al.,

2008a) or optimization (Guy et al., 2009), and field based which either compute fields for

agents to follow (Yersin et al., 2005; Pettré et al., 2009; Chenney, 2004; Jin et al., 2008),

or by generate fields based on continuum theories of flows (Treuille et al., 2006) or fluid

models (Narain et al., 2009).

Additionally, other approaches for crowd simulation are based on cognitive modeling

and behavioral (Shao and Terzopoulos, 2005; Yu and Terzopoulos, 2007) or sociological or

psychological factors (Pelechano et al., 2007).

3.2.2 Motion Synthesis

Related to the Principle of Least Effort, the Principle of Minimum Energy governs the

behaviors of many dynamic systems. In fact, energy minimization techniques have been

extensively used for character animation and to synthesize motions like walking, running
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etc. (Kang et al., 1998; Juang, 1999). Gait generation algorithms have also been proposed to

minimize energy consumption (Channon et al., 1992; Roussel et al., 1998).

3.3 PLE Model

The Principle of Least Efforts (PLE) was summarized by Zipf with the following

observation. “an organism will expend the least average rate probable of work as estimated

by itself.” (Zipf, 1965) The basic idea is that living beings will naturally choose the path

to their goal which they expect will require the least amount of “effort”. This concept has

been used in many domains, such as analyzing traffic patterns (Masucci et al., 2009) and

has been observed directly in human walking, which occurs in a manner that minimizes

metabolic energy (Inman et al., 1981). More recently, Still (Still, 2000) illustrated numerous

cases and data that exhibit crowd dynamics and behaviors which appear to follow the PLE

model. Inspired by these findings, this chapter presents a simple yet effective mathematical

model for PLE to compute energy-efficient trajectories for each agent in a virtual crowd.

3.3.1 Notation and Overview

Let the simulated environment consist of N heterogeneous agents and optionally

contain static and dynamic obstacles. Each agent (A) has a current position (pA), and a goal

position (GA), both viewed as input. Each agent and obstacle is represented using a circle

or polygon in the plane. Each agent has an independent radius (rA) and velocity (vA). The

goal position may change dynamically during the course of the simulation. While the PLE

approach can extend to agents moving in 3D space, the chapter assume agents are moving

on a 2D plane. For any vector n, let ˆn denotes a unit vector along n, and |n| denotes the

magnitude of the vector n.

The overall simulation proceeds in discrete time steps, and the position and velocity

of each agent are updated at every step. At each time step, the agent uses its current position,

goal position, and information about it’s neighbors to computes a new velocity for the time

47



step. The PLE algorithm uses a local collision avoidance method (van den Berg et al., 2011)

that computes a range of permissible velocities (denoted PVA) for each agent at each time

step. The PVA is computed by taking into account the position and velocity of other nearby

agents and obstacles. The algorithm chooses a velocity from among those allowed by PVA

which will minimize the expected effort to reach to goal.

3.3.2 Least Effort Function

As noted by Still, key aspects of human behavior arise form the principle of least

effort (Still, 2000). Specifically, individuals or agents should:

1. Take the shortest available routes to their destinations.

2. Attempt to move at their preferred speed.

By choosing an appropriate function to represent “effort”, the underlying mathematical

formulation for PLE should be able to model these behaviors. A simple effort function that

minimizes the distance to reach the goal does not address the influence of speed. Similarly,

a metric that only minimizes the time to reach the goal will result in the agents walking

at their maximum speed rather than at their preferred speed, expending more energy than

necessary. This chapter present a novel metric to model PLE based on biomechanical

principle: minimize the total biomechanical energy expended by an individual during

locomotion, measured in Joules (J).

The measurement of biomechanical energy expended by an agent is derived from

prior experiments of subjects walking on treadmills at various speeds (Whittle, 2002). By

measuring the oxygen consumed, the instantaneous power (P ) spent by the subjects walking

can be modeled as a function of the underlying speed:

P = es + ew |v|2, (3.1)

48



where v is the instantaneous velocity, and es (measured in J/Kg/s) and ew (measured in

Js/Kg/m2) are per-agent constants1. This formulation is adapted to model the total effort for

each person as the total metabolic energy expended while walking along a path, that is:

E = m

Z
(es + ew |v|2)dt, (3.2)

where m is the mass of the person. The PLE trajectory computation algorithm aims to

minimize this function for each agent.

I now present an important lemma regarding the trajectories which will minimize this

proposed effort function. In the absence of dynamic obstacles, it can be shown that (proof

given in Appendix):

Lemma 1: The total effort (Eqn. 3.2) spent while walking to a goal is minimized by

an agent moving at a constant speed of
p
(es/ew) along the shortest path to the goal.

It is important to note that
p

es/ew =
p

2 .23/1 .26 = 1.33 m/s, which is the average

walking speed for humans in an unconstrained environment (Whittle, 2002). Because of this,

Lemma 1 highlights the strong connection between PLEdestrians and real human motion.

As a Corollary, it is possible to compute the minimum possible effort to travel a given

distance.

Corollary 1: For a path of length L, the minimum amount of effort expended by a

person of mass m to traverse it is 2mL
p
esew .

Lemma 1 and its corollary highlight that the proposed effort function matches the

above two criteria: the metric is minimized by agents taking the shortest path at natural

human walking speed.
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Figure 3.1: The algorithm computes the new velocity (vnew
A ) for moving from pA to GA

in accordance with PLE. The effort function is analytically minimized over all possible
intermediate positions qA, such that the the agent expends least amount of effort to reach its
goal.

3.3.3 Mathematical Model for Effort Minimization

Given the effort function, it is possible to reduce the problem of crowd simulation

governed by the PLE to an optimization problem. For any agent A, find the trajectory which

minimizes the total biomechanical energy expended while moving from its current position

to its goal, and move the agent by the corresponding velocity at the start of that trajectory.

Consider Fig. 3.1, showing an agent at pA with a goal of GA. Given a set of velocities

PVA, which will not cause any near-term collisions, a new velocity must be chosen from

this set which will minimize the expected biomechanical effort. To evaluate a potential new

velocity, vnew
A , for this time step it is necessary to estimate how much effort a path starting

with v

new
A would take. Any potential vnew

A is assumed to remain approximately constant for

the next ⌧ seconds, and the resulting position of following that velocity is denoted as qA.

The effort expended for moving from pA to GA can be decomposed into the sum of energy

expended for traversing from pA to qA and energy for going from qA to GA. Minimizing

the total effort E reduces to solving:

Minimize m⌧(es + ew |vnew
A |2) + E

q

A

G

A

, s.t.vnew
A 2 PVA. (3.3)

1es = 2.23 J
Kg s and ew = 1.26 Js

Kg m2 for an average human (Whittle, 2002)
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Complexity of optimal solution: Finding the optimum value of E
q

A

G

A

(e.g. through

recessive approximation refinement) would be computationally prohibitive. In fact, the

goal of computing a globally optimal solution to the effort function, can be reduced to the

problem of computing an optimal path for multiple robots in the plane. The complexity of

such motion planning problems tend to increase as an exponential function of the number of

robots or the total number of degrees of freedom (LaValle, 2006). As a result, the complexity

of computing a globally optimal path for each agent that minimizes the effort function

(Eqn. 3.3) would have exponential complexity in the number of agents.

Instead, the following greedy local approach is used to compute an approximately

optimal velocity individually for each agent.

Greedy Approach: Referring back to Eqn. 3.3, it is necessary to evaluate E
q

A

G

A

to

compute the total expected energy consumption. Rather than evaluating it exactly a greedy

heuristic is used, replacing E
q

A

G

A

with the minimum possible amount of effort required

to traverse from qA to GA as provided by Corollary 1. As a result, assuming L as the

distance from qA to the goal, the effort function can be given as: E = m⌧(es + ew |vnew
A |2)+

2mL
p
esew , with the resulting optimization formulation being:

Minimize ⌧(es + ew |vnew
A |2) + 2|GA � pA � ⌧vnew

A |
p
esew , s.t. v

new
A 2 PVA. (3.4)

This objective function is convex, with one global minimum (proof in Appendix).

Optimizing over this functions returns a new velocity, vnew
A , to be undertaken by agent A for

this time step.

3.3.4 Properties of the PLE Metric

When minimizing energy using a local, greedy approach (Eqn. 3.4), agents will move

along smooth paths, and expend energy within a small bound of the minima. This arises
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Figure 3.2: Multi-agent navigation: An overview of the proposed approach for computing
the trajectory for each agent. Each agent performs these computations at each time step.
The roadmap used for navigation is also updated. The effort function shown in Eq. 3.4 is
used by the optimization algorithm for velocity computation.

from key properties of the metric relating to smoothness and accuracy. The most important

smoothness property is captured in the following lemma, which holds for a fixed goal.

Lemma 2: The trajectories traversed by the agents using the PLEdestrians are C1

continuous (if allowed by the PV .)

A detailed proof is given in Appendix B. Additionally, assuming a bounded period of

congestion, bounds for the accuracy of the heuristic can be derived, more details are given

in the appendix.

3.4 Trajectory Computation

The section presents a trajectory computation algorithm that uses the PLE function

presented in Section 3.3. Given the goal position, this algorithm computes a biomechanically

energy-efficient trajectory that avoids collisions with the other agents and obstacles.

3.4.1 Algorithm Overview

Figure 3.2 highlights the various components of the algorithm. First, a global roadmap

is precomputed for and used for collision-free navigation around static obstacles. This

roadmap is represented as a graph used by each agent to compute a path to its goal position.
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During Goal Selection, the desired goal for each agent is computed by some high-level

crowd simulation algorithm during each time step.

This goal position is used by the Guiding Path Computation module to compute a

path from each agent’s current position to its goal position along the precomputed roadmap.

With each edge of the roadmap, a weight is dynamically assigned that is a measure of

the biomechanical effort needed to traverse the edge. The edges with slow moving agents

indicate congestion and the algorithm will assign them large weights, while edges with little

or no congestion will have lower weights. The A* graph search algorithm is used to compute

a minimum-energy path to the goal along the roadmap. For efficiency, if the expected energy

consumption along the path has not worsened since the last timestep and the goal position

has not changed, the path computed during the previous time step can be used again.

The Local Collision Avoidance module returns a set of permissible velocities (PVA)

that will be free from collision with all nearby obstacles and agents. This information is

used in the Velocity Computation step, which computes the velocity which results in the

minimal estimated energy to reach the next intermediary node along the guiding path form

the roadmap. The geometric algorithm of (van den Berg et al., 2011) is used to compute the

permissible region of non-colliding velocities. In this case, PVA is a convex region and this

property is exploited to design an efficient algorithm for solving the optimization problem

of computing the new velocity for each agent.

3.4.2 Dynamic Energy Roadmap

After the algorithm has computed a new velocity for each agent, the edges in the

roadmap are updated in the Roadmap Update module. First the average agent speed along

the edge (|vavg|) is computed. This velocity is then used along with Eqn. 3.2 to estimate

the total biomechanical energy (per unit mass) that will be spent while crossing the edge,
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resulting in the following equation (assuming edge length l):

Elink = (

es
|vavg| + ew|vavg|)l (3.5)

This equation must be updated as |vavg| changes throughout the simulation. After Eqn. 3.5

is evaluated for each edge, the roadmap weights correspond to the total energy needed to

navigate though environment without colliding at the current time step.

3.4.3 Velocity Computation

I will now present an optimization algorithm to compute a velocity in PVA that

minimizes the energy function Eqn. 3.4 (see Figure 3.3).

Figure 3.3: Velocity selection - (a) Agent A avoids 4 neighboring agents. (b) The permissible
velocities PVA of agent A is shown in white. Radiating ellipses correspond to iso-contours
of the energy function. The circles show the local minima along each line segment, the
enlarged white circle being the global minima of the energy function and the new velocity
computed for this agent for the next time step, vnew

A

Because of the convex shape of PV and the convexity of the objective function

(Eqn. 3.4) basic optimization theory suggests the function must be minimized at either:

1. The velocity oriented straight towards to goal at magnitude of
p

es/ew (denoted v

des
A )

OR
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2. A point along the boundary of PVA

Case 1 can be easily tested for. Case 2 requires finding the optimal point along each line

segment of the boundary of PVA and taking the minimum of the points which optimize

energy for a given line segment constraint. Since boundary of PVA consists of linear

segments, I will first describe the algorithm to minimize the energy function on a given line,

followed by the minimization over the convex region PVA.

Energy Minimization along a Line: Let a line be represented using the y-intercept

form: y = mx+ e. The velocity along this line that minimizes eqn. 3.4 can be computed

using the following formulation. Let vnew
A be defined as an offset from a vector towards the

goal:

v

new
A = (GA � pA)/⌧ +

2

64
r cos ✓

r sin ✓

3

75 . (3.6)

Let (GA � pA)/⌧ = (dx, dy). The magnitude r can be computed by solving the following

quartic equation:

r4 + Ar3 + Br2 + C r + D = 0 (3.7)

where:

A =

r
4es
ew

, B =

es
ew

+

⌧�2

(dx +mdy)2(dy �mdx)2 � e2

(1 +m2

)

,

C =

�2pes(dy⌧ �md
x

⌧
� e)2

p
ew(1 +m2

)

, D =

es(
d
y

⌧
�md

x

⌧
� e)2

ew(1 +m2

)

The orientation ✓ can be computed as:

✓ = arcsin

✓
�m(dx +mdy)⌧�1

(r +
p
es/ew)(1 +m2

)

�
d
y

⌧
�md

x

⌧
� e

r(1 +m2

)

◆
(3.8)

Substituting the appropriate root from Eqn. 3.7 and ✓ from Eqn. 3.8 into Eqn. 3.6 computes

optimal velocity along the line.
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Energy Minimization for PVA: The energy function needs to be minimized along all

boundary line segments of PVA. The (expected) linear-time linear programming algorithm

from (de Berg et al., 2008) is used which consists of the following steps:

Step 1: Decompose the set of PVA into line segments (L). The line segments are

obtained by intersecting a randomized permutation of the boundary lines with each other.

Since the lines form a convex region, the boundary line segments can be obtained in an

expected time linear in the number of lines (de Berg et al., 2008).

Step 2: For each l 2 L, compute the point along the line segment that minimizes

the energy metric, as defined by Eqn. 3.6 to Eqn. 3.8. Note that for any line segment, the

minimum point may lie on one of its end points. At the end of Step 2, there will be a set of

|L| points.

Step 3: Return the point computed in Step 2 that evaluates to the minimum total

energy in Eq. 3.4. This algorithm runs in O(n) time per agent, where n is the number of

neighboring agents and obstacles used to compute the non-colliding constraints.

3.4.4 Clustering-based Optimizations

Recalling that N is the total number of agents in the simulation, our total runtime

is O(Nn). The value of n is bounded by the total number of agents N , providing a total

runtime of O(N2

). It practice, it possible to only consider the closest neighboring agents

during the computation of PVA. This is sufficient to avoid collisions, but since this approach

ignores agents beyond a certain distance, it can potentially lead to increased agent density in

certain regions – leading to congestion.

To prevent this effect, and account for all agents in a computationally efficient way,

distant agents are clustered using kD-trees and use these clusters to compute constraints in

the velocity space to prevent the agent from walking towards dense groups of other agents.

By computing clusters to be the leaves of the kD-tree at a fixed depth, the total number of

such constraints is limited to logN , reducing the total run time to O(NlogN).
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3.5 Results

The PLE algorithm was implemented in C++ using OpenGL for visualization on a

Windows Vista x64 operating system with an Intel i7 965 quad core system with a 3.2GHz

processor and 6GB of memory. Each core supports simultaneous multi-threading (SMT)

with two hardware threads per core.

3.5.1 Benchmarks

Two kind of benchmarks were used to test the algorithm’s performance. The first set

of benchmarks were used to test the emergent behaviors and crowd effects. These include:

n-Agent Circle - A small number of agents pass each other walking to antipodal

positions of a 10m radius circle.

Figure 3.4: Long Corridor Scenario

Long Corridor - Ten thousand agents that fill a corridor that is 300m long. The

agents all have a random goal that is located 100m or more south of their initial position.

(Fig. 3.4)

Narrow Passage - 100 agents must pass through a narrow passage to reach their goals

(Fig. 3.5).
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Figure 3.5: Narrow Passage Scenario

Figure 3.6: Narrow Passage Scenario

Concentric Circles - 100 agents are placed along two concentric circles, 34 in the

inner circle and 66 in the outer one. Their goal position is given by the antipodal position on

the corresponding circle (Fig. 3.6).

The second set of benchmarks are designed to test realistic scenarios and the overall

performance of the algorithm. These include:

Trade-show Floor - A recreation of a typical exhibition floor found at a trade show.

All 1000 agents are asked to leave the floor, but given a goal positions corresponding to the
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exit furthest away from their starting position causing them traverse almost the full length of

the floor and encouraging potential congestion (Fig. 3.7).

Figure 3.7: A simulation frame from the Trade Show Floor consisting of 1, 000 agents.
PLEdestrians computes collision-free trajectories with many emergent behaviors at 31 fps.

Shibuya Crossing - A recreation of the 5-way scramble crossing in front of the

Shibuya train station in Tokyo, Japan. Here, 1000 agents cross along the various crossings

provided (Fig. 3.8 & 4.10a).

3.5.2 Comparison to Other Methods

Here, the trajectories computed by the PLE algorithm are compared to those generated

by other crowd or multi-agent simulation methods. First, for simple scenarios, the results of

various crowd simulations are compared against the analytical minimum energy possible.

Secondly, various methods to each other numerically in terms of the biomechanical energy

consumed.

Four popular simulation techniques which have been proposed for simulating large

crowds with hundreds or thousands of agents are chosen for comparison. These methods are:

Helbing social force with the tuned parameters suggested in (Helbing et al., 2000); OpenSteer
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Figure 3.8: Simulation of Shibuya Metro Station

steering based model, which is an extension of Reynold’s flocking model (Reynolds, 1999);

RVO collision avoidance method that uses sampling (van den Berg et al., 2008a); and the

ClearPath collision avoidance method (Guy et al., 2009).

Analytical Comparisons: In order to analyze how well the approximate greedy

formulation comes to the true global minimum, the energy required by the simulated

paths can be compared to the actually minimum energy required to reach the goal. Least

energy, non-colliding trajectories can be found analytically for simple scenarios with few

agents. Here I compute the biomechanical energy of two agents swapping position using the

various methods, and compare to the analytical minimum. For a small number of agents

PLEdestrians performs similarly to RVO and ClearPath in using close to the theoretical

minimum amount of energy. Helbing and OpenSteer however use significantly more energy

in this scenario, this is to be expected as they are not explicitly optimizing for energy spent.

The effect of these inefficiencies is the planned motion is visibly less natural paths as can be

seen in Fig. 3.9.

Numerical Comparisons: For more complex scenarios, a true analytical minimum

of least effort paths are unknown. However, I can compare the total biomechanical energy
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Figure 3.9: Comparisons of path traced for 2-Agent Crossing: The figure shows the
initial position (star) and final position (circle) for each agent, along with a comparison of the
paths traced by PLEdestrians (blue) and Helbing social force algorithm (red). PLEdestrians
paths have less deviation and consume less total effort for the agents.

used by PLE to other standard crowd simulation methods. Table 3.1 shows a comparison of

energy used in two complex scenarios where the analytical solution is not known: the 10-

Agents Circle demo, and the Concentric Circles demo. PLEdestrians produces trajectories

which use the least energy in all scenarios, providing support for the acceptability of the

local, greedy heuristic proposed in Sec 3.3.3.

Avg. Energy (J/kg) Avg. Time (s)
Method #1 #2 #3 #1 #2 #3
ClearPath 33.4 39.8 315 7.5 11.3 124.5
OpenSteer 36.1 43.7 251 8.1 10.5 54*
Helbing 39.3 45.6 211 10.0 14.2 70.5
RVO 33.9 42.1 195 7.6 13.3 64.0
PLE 33.3 35.7 183 7.5 10.4 61.7

Table 3.1: Energy expended and simulated time to complete the benchmark for 2-Agent
swapping (#1), 10-Agent Circle (#2) and Concentric Circles (#3). *OpenSteer fails to avoid
collisions in the dense regions of this scenario.

3.5.3 Comparison to Data from Crowd Studies

The trajectories computed by PLEdestrians can be compared with prior studies on

human and crowd motion.

Quantitative Comparisons: Data has been collected by social scientists on the paths

traversed by humans, as they move in crowds. One important analysis is how the humans

respond to congestion: as local density increases, the speed decreases. Fruin (Fruin, 1971)

collected data of commuters at bus terminals and transit stations in various cities, and

61



produced a numerical curve showing the empirical response. Later studies have examined

more data in a variety of circumstances and have suggested the equation S = k(1 � ↵⇢),

where S is the speed of an individual (m
s

), ⇢ is the density ( ppl
m2 ) and k and ↵ are constants

which vary based on the situation as described by Nelson and Maclennah (Nelson and

Maclennan, 1995).

Figure 3.10: Effect of density on the speed. This graph compares the results of PLEdestri-
ans with the prior data collected on real humans. The PLE model matches real-world data
closely.

Figure 3.10 shows Fruin’s original commuter data, as well as Nelson and Maclennah’s

empirical equation (with k= 1.4 for corridors and ↵=0.266 for the level floors). The figure

also shows data collected from several runs of the PLE simulations at various densities. The

simulated results match closely to both Fruin’s and Nelson’s data.

Emergent behaviors: A different way to evaluate how human-like the motion gener-

ated by the PLEdestrian algorithm is by investigating it’s ability to generate well-known

emergent crowd phenomena which have been reported by social scientists. Below is a list of

such phenomena with brief descriptions, all of these occur in both real humans and in the

PLEdestrian simulations. In humans, these behaviors have been noted by several researchers

such as Still (Still, 2000) and Helbing et al. (Helbing and Molnar, 1995), and in several

field studies such as Fruin (Fruin, 1971). Examples from the simulations are shown in the

supplemental videos, and are highlighted below.
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• Jams/Bottlenecks - congestion form at narrow passages

• Arching - semi-circular arches form at exits

• Lane formation - opposing flows pass through each other

• Swirling - vortices can form in cross flows

• Wake effect - empty space persists behind obstacles

• Uneven densities - regions form with more or less people than the surrounding areas

• Edge effects - agents move faster near the edges of crowds

• Overtaking - fast individuals move past slower neighbors

• Congestion avoidance - individuals tend to avoid overly dense regions if possible

The Long Corridor scenario provides a clear demonstration of the edge effect. Agents

at either edge of the crowd move noticeably faster than other agents in the center. Figure

3.11 shows the average velocities along a cross section of the agents. Agents at the left (0m)

and right (25m) are moving 33% faster than those in the center (12.5m). This benchmark

also shows agents on the sides overtaking those in the centers, and demonstrates the uneven

densities that can form in crowds.

Figure 3.11: Edge-Effect Phenomena. A graph of speed vs. a cross section of the PLEdes-
trian simulation. Agents near the edge of the crowd move faster than those in the center.
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The Narrow Passage benchmark demonstrates how jamming and bottlenecks form at

narrow passages. Additionally, the well known arching effect is visible as the agents form

an arch around the entrance of the corridor. Lastly, the wake effect can be seen as people

slowly spread out after the narrow passage rather than fill the available space immediately.

The Concentric Circles, Trade-show Floor and Shibuya Crossing benchmarks all

demonstrate congestion avoidance in various ways. In the Concentric Circles scenario, the

agents move around the congestion that starts to form in the center. In the Trade-show Floor

agents plan new paths around the congestion that starts to form in the central passages. In

Shibuya Crossing, the agents spread out on the crosswalks to avoid congestion. The effects

of congestion avoidance can be quantified by examining the energy consumption. Fig. 3.12

shows the biomechanical energy consumed in the Trade-show Floor with varying number of

agents. The congestion avoidance that arises from the PLEdestrians simulation drastically

reduces the average amount of energy consumed per agent.

Figure 3.12: Effect of PLE on Congestion: A comparison of the effort of each agent
in PLEdestrians vs. ClearPath and RVO in the trade-show benchmark. The PLEdestrian
approach avoids congestion and there is only a slow increase in the average effort that is
needed to reach the goals as the number of agents increases.
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3.5.4 Performance Results

I report performance results on the three most complex benchmarks. The Long

Corridor benchmark has 10, 000 agents and 2 obstacles. The Trade-show Floor demo with

1, 000 agents, 500 obstacle segments, and a roadmap with 300 edges. The Shibuya Crossing

benchmark has 1, 000 agents, 200 obstacle segments, and a roadmap with 70 links. The

results are shown in Table 3.2, both for single thread performance, and at full parallel

utilization. In all cases the simulations ran at interactive rates.

Benchmark Agents FPS - 1 Core FPS - 4 Core
Long Corridor 10K 15.1 58.9
Shibuya 1K 29.9 113.1
Trade-show 1K 31.0 114.7

Table 3.2: Performance Results for different benchmarks. The algorithm scales almost
linearly with the number of cores.

By using clustering techniques, there is as much as a 60x speed up at run-time for a

simulation of 1,000 agents. For a given scenario, the total energy used differs by less than

5%.

3.6 Analysis

There are two important criteria to evaluate the PLE work on. First, what the accuracy

of our trajectory computation algorithm based on the least effort model proposed in Sec-

tion 3.3.2 (i.e. minimization of the total effort spent per agent). Second, to what extent in

the algorithm capable of generating natural behaviors.

In terms of minimizing the effort, the PLEdestrian algorithm performs quantitatively

better than other widely used agent-based crowd simulation models. As Table 3.1 and

Figure 3.12 show, the total energy expended per agent was much less for PLEdestrians

than other widely used approaches. Furthermore, in simple cases with a known theoretical
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minimum, PLEdestrians comes within 99% of the theoretical minimum energy, validating

the greedy optimization heuristic.

The smoothness of the generated trajectories proven by Lemma 2, can be clearly seen

in the the paths agents take walking around their neighbors. Paths such as those show in

Figure 3.9 and in the demos in the accompanying video highlight the smoothness of the

paths generated by PLEdestrians vs. other methods such as social forces.

In terms of matching the behavior of real humans, the an important evaluation is

to check how well the algorithm reproduces well-known emergent phenomena seen in

real-world crowds. As discussed in Section 3.5 and can be seen in the supplemental videos,

the PLEdestrians algorithm reproduces many of these effects. The jamming, arching, lane

formation, wake effects, uneven densities, edge effects, overtaking, and vortices were

consistently generated by the PLEdestrian algorithm. While other approaches can also

reproduce some of these phenomena, seeing them in PLEdestrian simulations suggests that

these phenomena are consistent with the PLE hypothesis.

The validation of the PLE model is further strengthened by the match between

aggregate data collected on real people, and the same data collected on the simulated agents

in similar scenarios. As shown in Figure 3.10, the PLE simulations match the prior data

very well in terms of how quickly individuals move at various levels of congestion. Because

agents are represented as a hard disk with radius of at least 0.3m(an area of 0.28m2), the

system cannot generate accurate simulations with densities greater than 4 agents/m2 without

creating overlaps between the agents. This limits the accuracy of the results in scenarios

where more than 4 people are packed per m2. (However, it is important to note this is beyond

what is normally considered a safe density.)

3.7 Summary and Conclusions

This chapter has presented a novel mathematical formulation for generating energy-

efficient trajectories based on a biomechanical principle for guiding agents in crowd simu-
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lations. I have presented a simple optimization algorithm to compute paths based on the

well known Principle of Least Effort. I have also validated the results by comparing them to

prior studies on crowd simulation and other real world data. The overall approach can be

used for interactive crowd simulation with thousands of agents and automatically generates

many emerging behaviors.

3.7.1 Limitations

The method has some limitations. Most importantly, the measurement of the biome-

chanical energy of locomotion is based only on studies of humans walking in straight lines

at normal speeds. While this approach is sufficient to produce a wide array of emergent

crowd behaviors and match real data, the generated motion could be more accurate with a

more complex energy function accounting for various rates of turning and different styles

of gaits. For example, this approach is unable to model motions such as running, panic

situations and other atypical behaviors. Also, there are many behaviors of real-world crowds

that are reproducable by this approach such as aggressive behavior.

Additionally, humans are modeled as a hard disk of fixed radius. While this can be

a sufficient approximation for many scenarios, it ignores the fact that sometimes people

may “squeeze” themselves to fit into very narrow passages or may come very close to other

agents in a highly dense setting. This assumption also artificially slows down the rate at

which the agents move through narrow passages.

Finally, given the complexity of computing the global optimum of the energy, a

heuristic approach was used for minimization and may not be able to compute the most

optimal trajectory in terms of total effort.

3.7.2 Future Work

There are several avenues for future work. This work has only examined the scenarios

in which the agents move in either open space or around solid obstacles. These is an
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interesting range of other environments such as uneven or sandy terrain which would

significantly change effort assumptions. Additionally, relaxing the fixed disk representation

of humans would likely lead to better simulations in certain constrained scenarios. This

could be in the form of an disk of ellipse whose size changes based on speed of local density.

The next chapter will explore the validating of this model in more detail, specifically

focusing on it’s ability to reproduce real-world data.
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CHAPTER 4

PLE Simulation Approach: Analysis and Validation

4.1 Introduction

The work presented in Chapters 2 and 3 have primarily focused on the process of

developing local collision avoidance methods. In this chapter, I will analyze the accuracy

of this model. Previous chapters have provided evidences that the approximation of the

PLE principle present here produces collision-free paths which are calorically efficient.

The specific question addressed in this chapter is to what extent does modeling the PLE

assumption reproduce typical human movement patterns and flow rates.

In this chapter, I show that this biomechanically-inspired model of pedestrian dy-

namics model can meaningfully predict the trajectories of humans in crowds and thereby

generate natural crowd movement. Specifically, I show that individuals in a crowd minimiz-

ing their expected caloric expenditure results in a number of common emergent behaviors

and phenomena. I also show that the model’s predictions match the paths and flow rates

of real humans well. While previous methods have demonstrated some of these aspects,

the approach from this dissertation can demonstrate all of these aspects and is based on

a simplified interpretation of human energy consumption presented in the biomechanics

literature.

4.1.1 Main Result

This chapter will provide both qualitative and quantitative evidence that modeling the

PLE assumptions leads to expected crowd motion. That is, that “least-effort” trajectories

lead to emergent crowd behaviors.



Results of PLE simulations are compared against known human motion patterns and

emergent phenomena. Overall flow rates of simulated agents and real humans are also

compared. Finally, the specific paths taken by the PLE agents are compared to real human

paths.

The analysis shows that the results of the computer simulations compare well with

empirical data on human trajectories. The analysis also shows that the model can correctly

reproduce many emergent crowd behaviors and numerically predict crowd flows in different

settings.

4.1.2 Organization

This chapter is organized as follows. Section 4.2 briefly discusses related work.

Section 4.3 provides an summary of the PLE method as implemented for these validation

experiments. Section 4.4 covers the various simulation results and comparisons.

4.2 Previous Work

Many researchers, including Hoogendoorn and Bovy (Hoogendoorn and Bovy, 2004),

have shown that crowd motion can be modeled as independent agents that try to optimize

some utility function. Different models have been proposed to simulate human motion

in a crowd. While some methods try to model the macroscopic or overall motion of

the crowd (Hughes, 2003, 2002), they do not accurately model trajectories of individual

pedestrians. In contrast microscopic, or agent-based, model of human motion specifically

tries to model the position and velocity of each individual over time. Previously proposed

models of this type include many-particle force-based models (Helbing et al., 2000, 2005)

and their important extensions (Yu et al., 2005; Chraibi et al., 2010), methods based on simple

rules (Reynolds, 1987), flow-field based methods (Kretz, 2009), and Cellular Automata

models (Muramatsu and Nagatani, 2000; Hartmann, 2010). Methods have also been

proposed which fit models to recorded data (Johansson et al., 2008) or extended existing
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models to capture newly recognized phenomena (Yu and Johansson, 2007). An overview

of this general area of the physics of complex systems and transport can be found in

Schadschneider et al. (Schadschneider et al., 2011).

Recently, researchers have proposed geometric optimization based, multi-agent sim-

ulation methods where agents attempt to directly compute collision-free velocities in a

predictive manner, based on anticipated motion (Paris et al., 2007b), data collected on

humans (Pettré et al., 2009), and cognitive theories of perception (Moussaı̈d et al., 2011).

The PLE model likewise uses an optimization framework, which in contrast to these works,

is based on biomechanically-inspired principles of individual motion.

A key issue in the design of an optimization-based approach is determining the correct

metric to optimize. Previous approaches have suggested minimizing the total distance

traveled (such as by using differential geometry (Maury and Venel, 2008), planning on

geodesics (Hartmann, 2010), or using flow-based techniques (Hughes, 2002)). However,

path length minimization is not a complete metric as its value is independent of an agent’s

speed. Additionally, it fails to model important real-world phenomena such as why humans

tend to avoid congestion. In contrast, biomechanics research suggests the natural metric of

calories expended over a path.

When walking in an unconstrained environment, people are known to move at veloci-

ties that minimize their caloric expenditure per unit distance (Browning and Kram, 2005;

Whittle, 2002). However, when in crowd-like settings, other people create constraints on

the possible motion an individual can take. My PLE work posits that it is this interaction

between different individuals, each of whom is independently minimizing his or her expected

effort, that gives rise to the emergent behaviors and motion patterns exhibited by crowds.

Such behaviors can be numerically approximated by performing a constrained minimization

over all the paths each individual can take, as described below. The PLE model is to compute

all the pedestrian trajectories in a crowd based on this formulation.
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4.3 Least-Effort Model

This section summarizes the PLE method. More detail can be found in Chapter 3.

A person’s caloric expenditure rate, R, can be well approximated by a quadratic

function of their instantaneous speed (Browning and Kram, 2005; Whittle, 2002). My work

uses the approximation provided by Whittle (Whittle, 2002): R = ew |v|2 + es , where the

parameters of ew and es can vary based on gender, age, and fitness level. This function

was derived empirically by fitting a curve to data extracted from oxygen consumption of

participants walking on a treadmill at various speeds.

For any given trajectory, integrating this caloric rate function over the trajectory will

result in an estimate of the total calories a human would expend by traversing the trajectory.

This leads to the following equation for the energy expended by a person moving along a

path ⇧:

E(⇧) = m

Z

⇧

(ew |v|2 + es)dt, (4.1)

where m is the person’s mass, ew captures how efficiently calories are used, and es is a

person’s rate of energy consumption when standing still.

Based on this model, a person will be walking most efficiently when Eq. (4.1) is

optimized per unit distance (Fig. 4.1). This happens with a path of a constant speed of
p

es/ew . For the average adult male ew = 1.26 and es = 2.23 (Whittle, 2002), which

corresponds to a speed of 1.33 m s�1. This matches the measured average walking speed

for humans in low density environments (Klüpfel et al., 2005). In other words, a least effort

analysis correctly predicts that people in an unconstrained environment will take the shortest

path to their goal at their optimal speed.

In a crowded environment, however, nearby humans and obstacles result in additional

constraints on an individual’s motion. The strongest of these constraints is that two people

cannot share the same physical space. Additionally, humans tend to avoid collisions in an

anticipatory manner, reacting to the collisions before they occur (Pettré et al., 2009). This
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Figure 4.1: Graph of the empirical relationship between velocity and caloric efficiency for
adult males (Whittle, 2002) (Eq. 4.1). The minimum energy corresponds to the velocity 1.3
m/s, the average walking velocity for adult males. (Klüpfel et al., 2005)

can result in a need to constantly adjust paths to avoid collisions well ahead of time to

account for the potential actions of others. In other words, humans tend to choose velocities

that will result in collision-free motion with respect to other nearby people and obstacles.

To capture these two aspects of human navigation, the PLE model represents each

individual in the crowd as a virtual agent that attempts to find the minimum energy path

to its goal while avoiding collisions. It models the tendency to anticipate collisions as a

restriction on the set of permissible velocities an agent can take to include only those which

result in collision-free paths for the near future. Here I denote these velocities as PV (Fig.

4.2 - white region).

The PLE formulation assumes each individual chooses the velocity from this set that

is expected to minimize the energy described by Eq. (4.1). To achieve this minimization, the

set of potential velocities PV is computed using a set of linear constraints on the velocities

of each agent (Fig. 4.2). This set can be computed efficiently using geometric optimization

techniques. In the remainder of this section I summarize the method by which this set PV

can be generated and the optimal velocity computed for each agent.
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Figure 4.2: Computation Overview. The current agent, A
1

, has a goal marked X, but needs to
avoid two approaching agents, A

2

and A
3

, each with some velocity (arrows). Each neighbor creates
a restriction on the velocity the current agent can take (boundary line and shaded regions show
forbidden endpoints of the velocity vector of A

1

), leaving the set of collision-free permissible
velocities (PV). Each velocity results in some expected energy to reach the goal (dashed ellipses
mark the iso-contours of this function). The computed new velocity (light arrow) is the one which
leads to the collision-free path to the goal (dotted line) using the least expected energy. This model is
used to compute a new velocity for each agent at each simulation time-step.

4.3.1 Optimization Formulation

Agents are represented as a hard disk with a fixed radius r. Following the methods

proposed in Berg et al. (van den Berg et al., 2011), PV is defined as a intersection of several

linear constraints on an agent’s velocity, one constraint for each neighboring agent. Given

an agent A, for each neighboring agent B, B’s constraint on A’s velocity in computed by

first finding the minimum change in the relative velocity between A and B needed to avoid

collision for at least ⌧ seconds. This change in velocity is denoted as the vector u. A’s

velocity is the constrained to change by at least 1

2

u (with the assumption B will likewise

avoid the other half of the collision). Therefore, given A has a current velocity of vcur

A , the

permitted velocities given B are:

PV A|B = {v : (v � (v

cur

A +

1

2

u)) · u � 0}. (4.2)
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The boundary of this set is a line which goes through the point (v +

1

2

u) with the slope

u

?
= (u.y,�u.x). A similar formulation can handle avoidance of obstacles with the

exception that obstacles can not be expected to reciprocate in avoiding collisions and

therefore the entire vector u must be accounted for. Therefore, for an obstacle O:

PV A|O = {v : (v � (v

cur

A + u)) · u � 0}. (4.3)

The union of these linear velocities constraints across all agents forms PV (Fig. 4.2).

Formally:

PV =

\

B 6=A

PV A|B \
\

O

PV A|O. (4.4)

The PLE notion of the collision-free path taking the least caloric energy can now be

defined as:

MinimizeE(⇧) s.t. vinit 2 PV, (4.5)

where agents are limited to paths whose initial velocity, vinit, lies with the set of non-

colliding velocities PV . Solving this equation produces a model for crowd motion which

can be summarized as: each agent finds the path, ⇧, with an initially velocity v

init from the

permitted velocities PV , which minimizes the expected biomechanical effort to reach the

goal.

In practice people can only avoid other agents and obstacles that they are aware of.

For the results in this chapter the region of awareness for an agent is represented as a circle

of radius 10m, centered around their current position. Other, anisotropic, sensing models

are also possible as the method is independent of the underlying sensing model.

4.3.2 Geometric Solution

Agent trajectories can be computed by solving Eq (4.5) for each agent. As a sim-

plifying assumption, only paths ⇧ which can be represented by two linear segments are
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considered. The first segment corresponds to a motion that avoids collisions with nearby

obstacles and other individuals, and the second segment leads the agent directly to its goal

position (Fig. 4.2 dotted line). By assuming that the avoidance segment takes ⌧ seconds at

an initial velocity of v, the exact effort along the path can be computed as follows: Given

an individual’s current position, p, and goal position, G, Eq. (4.1) is used to compute the

expected energy along a path as:

E(v) = ⌧(ew |v|2 + es)m + 2|G� p� ⌧v|
p
esewm. (4.6)

By combining Eq. (4.5) and Eq. (4.6), the Least Effort model for trajectory computation

and motion in crowds can be defined as:

MinimizeE(v

new
) s.t. vnew 2 PV. (4.7)

Equation (4.7) can be solved efficiently by exploiting the convexity of the energy

function, E, and the convexity of the set of potential velocities, PV as described in Chapter

3, by using a linear programming type solution, where each linear segment on boundary

of PV is optimized for sequentially. Specifically, the velocity that minimizes Eq. (4.6)

along a chosen line segment which we denote as vopt. For Eq. (4.6), this point can be found

analytically through differentiation. For each linear boundary segment of PV , it is checked

if vopt is a permitted velocity. If it is not a permitted then a new optimal velocity is found

along the linear boundry. This new point now serves as vopt, and this process is repeated for

each remaining segment of PV . The final value of vopt will be the point that minimizes Eq.

(4.7).

This process is repeated for each agent to compute the optimal velocity, vopt, for

that agent. All agent positions are then updated using Eulerian integration of their velocity

over discretized time-steps (0.1s in the results below). This process is repeated until each

agent reaches its goal position. As discussed in (van den Berg et al., 2011) and (Guy
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et al., 2010a), this general method for collision avoidance will lead to provably smooth and

collision-free paths (provided there is sufficient free space for agents to maneuver). This

adds to the generality of the model by alleviating the need to tune specific parameters to find

smooth or collision-free paths; rather free parameters can be used to capture the naturally

occurring variation in human motion. Additionally, because the implicit cooperation between

agents (the results of avoiding only 1

2

u) large timesteps can be used while still maintaining

collision-free motion between agents (van den Berg et al., 2011).

The resulting model has three free parameters to describe each agent: the agent’s

radius, r, and the parameters es and ew in their energy function which define their preferred

velocity.

4.3.3 Global Navigation

In cases when an agent’s goal is not immediately visible, we use a roadmap (a graph

of connected, mutually visible, intermediate goals) to select a path of intermediate goals

for an agent. The agent then navigates via these intermediate goals along the way to its

ultimate destination (Guy et al., 2010a; van den Berg et al., 2011). Here, the roadmap

is formed by randomly sampling potential, collision-free positions to select intermediate

goals and then connecting mutually visible intermediate goals (whose direct between them

does not pass through walls) to create a graph with the intermediate goals as nodes and the

path between these goals as edges. Each edge is weighted by the expected caloric energy

needed to traverse the link. Standard graph search techniques are used to find the series

of intermediate goals which forms the path of least expect effort to reach an agent’s final

goal (LaValle, 2006). The next visible of these intermediate goals serves as an agent’s goal,

G, in Eq. (4.6).
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4.4 Results

The validity of the model described in Sec. II can be analyzed in several respects.

First, I examine the emergent phenomena generated by the model. These are effects which

are not explicitly accounted for in the formulation, but reliably occur in simulations due to

the interaction between agents. Secondly, I present a quantitative analysis of how closely

the simulated results match data collected about real-word crowd flows and paths taken

by humans in controlled studies. Finally, I analyze results from simulations of complex

scenarios consisting of thousands of independent agents and hundreds of obstacles.

(a) Initial Conditions (b) Lane Formation

Figure 4.3: Lane Formation. (a) Two opposing groups of agents, (dark) red and (light) blue,
have opposing initial conditions with goals past each other. (b) As the groups approach the
agents naturally form into small coherent lanes reducing the overall effort of each individual.

4.4.1 Emergent Phenomena

As discussed briefly in Chapter 3, several different crowd movement patterns and

other emerging behaviors arise from the Least-Effort model which can be compared them to

observed phenomena in real crowds. For example, simulated individuals tend to dynamically

form emergent lanes when they are moving in bi-directional flows as demonstrated in Fig.

4.3. In this scenario two groups of agents are given goals corresponding to a horizontal

movement in opposite directions along the x-axis. In the process of reaching their goals,

agents naturally self-organize into lanes. This is a result of the fact that agents spend fewer
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Figure 4.4: Stills from a simulation of humans walking through a narrow passage, taken at
15 second intervals. There is initially jamming at the passage (a), followed by a semi-circular
arch forming around the exit (b). Once through the passage, individuals do not immediately
spread out, but leave an empty space or “wake” behind the obstacles (c).

calories by joining existing lanes of people moving with a similar direction and speed. This

allows individuals to move at their most energy efficient speed without having to slow down

to avoid collisions and thereby minimize the total individual effort. This emergent lane

formation has been commonly reported in observations of real-world crowds (Still, 2000;

Helbing et al., 2005; Klüpfel et al., 2005).

The PLE model is also able to reproduce observed human behavior at narrow passages.

The scenario shown in Fig. 4.4 highlights many of these behaviors. Here, each agent

is given a goal horizontally along the x-axis beyond the narrow passage. The simulated

agents tend to jam in the congestion that forms at a narrow passage as they attempt to avoid

colliding with other individuals who are nearby. This also leads to semi-circular arching

around the passage as the individuals try to come as close as possible to the exit in order to

minimize time spent in congestion. These phenomena of jamming, congestion, and arching

around exits have all been reported in studies of real human crowds (Klüpfel et al., 2005;

Predtetschenski and Milinski, 1971).

The process of each individual minimizing his or her caloric energy also allows the

model to capture several other common crowd phenomena. For example, obstacles in

a crowd’s path create an open space behind them which people do not immediately fill

(Fig. 4.4, right panel). This is known as the wake effect (Still, 2000) as it is reminiscent

of flow separation regions in fluids. In such regions the agents tend to choose a direct

path towards the goal as it is more efficient overall than filling in the free space behind an

obstacle.
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Energy minimization also explains overtaking behavior seen in crowds. As shown

in Fig. 4.1, moving slower than the optimal speed is inefficient. Individuals with higher

optimal velocity will therefore overtake the slower ones, minimizing their overall effort.

Another related phenomenon is congestion avoidance. Taking paths which avoid regions of

high density, slow moving individuals often results in using less caloric energy than slowing

down and moving through the congestion. Simpler simulation methods such as finding the

shortest or quickest path fails to reproduce such effects.

4.4.2 Flow Analysis

Further validation of this biomechanically-inspired model of crowd motion can be

performed by comparing predictions from the simulation to actual flow data. For exam-

ple, several recent studies have analyzed human exit times through doorways of various

widths (Müller, 1981; Nagai et al., 2006; Kretz et al., 2006; Seyfried et al., 2009).

Figure 4.5: Flow Analysis Scenario. 96 agents are placed in a room of dimension 5m x 8m.
Agents are given a goal outside the room which requires them to pass through the exit on the
right wall. The experiment is repeated for various exit widths varying from 0.8m to 1.4m.

To compare the PLE simulation results to these studies I created a scenario similar to

those of the above studies. Several simulations were run where approximately 100 simulated

agents are given a goal of a point 10m outside the room centered along the exit’s midpoint.

For each run the width of the room’s exit was varied from 0.8m to 1.4m. Fig. 4.5 summarizes

this simulation set-up.
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Figure 4.6: Real and Simulated Flow Rates. A comparison of the effect of exit width on the
flow for real (dashed lines) and simulated (solid line) humans. Agents simulated with the
PLE model exhibit similar flow as real humans.

Fig. 4.6 compares the flow rate predicted by the least-effort simulations and flow rates

measured on real humans. The predicted flow rates lie within the range of flows reported for

humans for a range of exit widths.

Another aspect of human flow is the well established correlation between increased

density and slower speeds known as the fundamental diagram (Seyfried et al., 2008; Weid-

mann, 1992). The PLE model shows a similar trend. As an example, I initialize agents with

the positions and velocities reported in several timesteps of the Bottleneck benchmark in

(Seyfried et al., 2008) and plot the predicted speed of each agent as a function of density

(Fig. 4.7). While there is variation in the agents’ speeds at any density, in general, agents in

high density regions move significantly slower than those in low density regions. The blue

line in Fig. 4.7 shows a quadratic fit of the data, this fit closely matches the fundamental

diagram established by Weidmann (Weidmann, 1992).
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Figure 4.7: The fundamental diagram comparing agent speeds vs their local density (solid
line) matches the relationship established by Weidmann (dashed line) (Weidmann, 1992).

4.4.3 Path Comparison

In addition to comparing real and predicted flows, I can also compare the paths

predicted by the PLE method to those of real people walking in similar condition. Here

the data comes from two scenarios gathered at the Centre de Recherches sur la Cognition

Animale, CNRS, Toulouse, France and presented in (Moussaı̈d et al., 2011).

The first scenario involved two people standing about 6m apart and being instructed

to exchange places. Fig. 4.8 shows the mean and standard deviation of the participants’

paths. In this figure all the paths have been normalized so that “forward” corresponds to the

positive x-axis. Overlaid on the actual human paths is the path predicted by the PLE method

(r=.28m). The path predicted by the PLE method falls within the variation of the human

paths and closely matches the mean of the human paths.

In the second scenario (Fig. 4.9) paths from the model are validated against those of

real humans when walking around a static obstacle. Again, the path predicted by the PLE
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Figure 4.8: Paths of two humans passing each other. The model’s path (light solid line)
matches very closely with the the mean of the human paths (dark solid line), and within one
standard deviation of human paths (dashed lines).
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Figure 4.9: Paths taken past a static obstacle (circle). The model’s path (light solid line)
matches very closely with the the mean of the human paths (dark solid line), and within one
standard deviation of human paths (dashed lines).

model lies within the variation seen in human paths and is close to the mean of the human

paths.

4.4.4 Complex Scenarios

The simplicity of the PLE algorithm allows for computationally efficient implemen-

tations capable of simulating large scale crowd behavior in real time. Because of the

underlying efficiency of the approach, the model can be used to generate realistic crowd

behaviors for complex, real-world scenarios.

One of the key challenges in simulating complex environments is to avoid collisions of

the agents with each other and between the agents and the obstacles in the environment. The

PLE approach is scalable and can handle complex scenarios involving thousands of virtual
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agents. In these complex scenarios, the constrained optimization framework successfully

avoids collisions between agents and with obstacles while still navigating agents to their

goal.

In these complex scenarios, the algorithm is capable of producing motion which is

similar to real human paths. Figure 4.10 shows a comparison between a simulation and real

footage of the five-way scramble crossing outside Shibuya Metro Station in Tokyo. The

agents perform the crossing at similar speed to the real people and with similar over all flow

patterns and lane formation. Importantly, this scenario also demonstrates phenomena such

as lane formation in a natural setting.

(a) A still from crossing simulation (b) A still from a video of the crossing

Figure 4.10: The PLE approach automatically generates many emergent crowd behaviors at
interactive rates in this simulation of Shibuya Crossing (left) that models a busy crossing
at the Shibuya Station in Tokyo, Japan. (right). The trajectory for each agent is computed
based on minimizing an biomechanically-inspired effort function.

4.5 Summary and Conclusions

In summary, I have introduced a new computational model to simulate crowds that

display collective behaviors formed by individual trajectories. By combining fundamental

biomechanical measurements and the Principle of Least Effort I was able to develop a crowd

simulation system based on constrained energy minimization. The chapter has validated the
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model by comparing the predicted results with data from real-world crowds and have shown

that it can accurately model humans paths, crowd flows, and emergent behaviors.

4.5.1 Limitations

While I have shown that constrained caloric energy minimization can successfully

reproduce typical crowd behaviors, there are still scenarios which are not currently well

modeled by this approach. For example, there are social and psychological factors, such

as running when panicked, that can not be captured simply in terms of minimizing the

biomechanical energy of locomotion. Additionally, different people do not always take the

exact same path, but rather exhibit variations which come from differences in personality

and style.

4.5.2 Future Work

Looking forward, I conjecture that this approach can be extended to eventually model

several of these sociological and psychological factors, as well capture some of the variations

seen in humans. Accounting for factors such as discomfort in dark areas or close to walls

could further enhance the approach. Such a model could be used to analyze crowd flows in

various environments and assist in predicting and controlling crowds in large assemblies.

Additionally, the least-effort model should be compared to other optimization-based

or predictive approaches, ideally on a qualitatively bases. Such a study would ideally focus

on highly discriminative scenarios such as two pedestrians approaching at various angles.

Chapter 7 presents a possible approach for performing such an evaluation.
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CHAPTER 5

Data-driven Simulation of Variations in Human Trajectories

5.1 Introduction

The work presented in Chapters 2 through 4 focus on how to simulate typical people

in expected environments. However, most people deviate from the norm in interesting ways:

they have differences in comfort zones, differences in reaction times and even differences

in physical abilities. This chapter proposes a data-driven way to capture these important

differences in human motion within the ORCA simulation framework.

Here I propose several changes to ORCA to form a new algorithm which focuses on

Reciprocal Collision Avoidance for Pedestrians or RCAP. The RCAP algorithm explicitly

models a human’s reaction and observation time, as well as kinodynamic constraints on

their motion. The model is compared to and validated against data of real humans avoiding

collisions with each other that was collected from the Locanthrope project by (Pettré et al.,

2009). Additionally, statistical distributions of key model parameters are derived from the

human motion data. Finally, the performance of the model is demonstrated on simulations

of both small and large groups of agents, with and without obstacles.

5.1.1 Main Result

This chapter describes RCAP an extension of ORCA which:

- Accounts for reaction time

- Models variations in personal space

- Models kineodynamic movement limitations



- Is derived from real motion data

- Provides for a natural variation in motion generated from recorded data

5.1.2 Organization

This chapter is organized into the following sections. Section 5.2 gives an overview

of prior work on collision-free navigation and modeling of human motion. Section 5.3

provides a brief summary of ORCA and other multi-robot navigation techniques used in

the RCAP approach. Section 5.4 introduces the new algorithm for pedestrian navigation

called Reciprocal Collision Avoidance for Pedestrians (RCAP). Section 5.5 describes the

experimental setup and methods used to train the model and Section 5.6 highlights the

validation of the model a real-world dataset. Section 5.7 presents the simulation results and

I analyze key aspects of the algorithm in Section 5.8.

5.2 Background and Previous Work

5.2.1 Multi-robot Collision Avoidance

Multi-robot collision avoidance is a form of robot motion planning which involves

moving a robot directly towards its immediate goal, while only avoiding collisions with

obstacles and other robots as needed. A well established techniques for local collision

avoidance comes from the concept of Velocity Obstacles (Fiorini and Shiller, 1998) which

computes a forbidden set of potentially colliding velocities which provides an appropriate

means to develop such a strategy. However, this method fails when the obstacle being

avoided is also actively reacting to avoid that robot as well, e.g. in the case of humans

avoiding other humans. Reciprocal Velocity Obstacles (RVO) (van den Berg et al., 2008a)

provides an extension to the Velocity Obstacles concept that works for agents who are

actively avoiding each other, and ORCA (van den Berg et al., 2011) extends this concept

further to work for any number of robots.
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5.2.2 Modeling Human Motion

There have been many attempts to characterize how humans move using mathematical

or scientific models. At a physiological level, researchers study topics such as human foot

placement and the characterization of various gaits (Whittle, 2002). Other low-level aspects

of human motion have been extensively studied and a survey of this topic can be found in

(Elgammal et al., 2007).

5.2.2.1 Cognitive and Behavioral Models

Sever researches have attempted to explicitly model the cognitive aspects of avoiding

and interacting with others. (Funge et al., 1999) used cognitive modeling methods to allow

agents to plan and perform high level tasks. (Shao and Terzopoulos, 2005) proposed an

artificial life model where agents make decisions at different levels of abstraction. (Yu and

Terzopoulos, 2007) introduced a method to simulate behaviorally animated agents using

bayesian decision networks, which also allowed for variations in agent behaviors.

When modeling the behavior of humans interacting with each other, it can be important

to capture the social and psychological aspects of these interactions. For example, (Pedica

and Vilhjalmsson, 2008) proposed a method for modeling social interaction by incorporating

a set of prioritized behavior models which are executed at different frequencies. Additional

models have been proposed to incorporate the results of Proxemics studies on how humans

perceive and use the space around them such as (Rehm et al., 2005).

An important issue with any simulation method is to ensure that the model used

accurately captures the motion and behavior seen in real people. Data-driven approaches

explicitly address this issue by deriving a model directly from some real-world crowd data.

For example, (Arechavaleta et al., 2008) derived a numerical optimization based model from

motion capture data of people walking to a target spot on the floor. Data-driven methods

have also been used to produce simulated crowds which behave with a certain trait or “style”

matching some source data (typically a video of a crowd). One example is (Lee et al.,
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2007), which used data-driven methods to match recorded motion from videos by training a

behavior model. The work of (Ju et al., 2010) also proposed a data-driven method which

attempts to match the style of simulated crowds to those in a reference video.

5.3 Distributed Collision Avoidance

The RCAP approach to modeling human collision avoidance builds off recent work

in collision avoidance for mobile robots, specifically the ORCA collision avoidance algo-

rithm (van den Berg et al., 2011). This section provides an overview of the ORCA algorithm

and the optimization framework used to compute agent paths.

There are several reasons why RCAP is based on ORCA. First, ORCA provides

strong collision avoidance guarantees, which is appropriate as humans seldom collide,

and rarely overlap each other. Secondly, it incorporates a notion of reciprocity or implicit

cooperation when avoiding collisions, which is important in modeling how humans generally

avoid collision without any explicit coordination. Finally, ORCA is built on the notion

of respecting time-to-collision constraints, that is forbidding velocities which might cause

collisions in the near future. Recent studies such as (Schrater et al., 2000) and (Hopkins

et al., 2004) have shown that human brains have special cells dedicated to processing time-

to-collision, i.e. how long until they would run into another person or object. This suggests

that exploiting time-to-collision calculations (as ORCA does) might provide an accurate

model of human collision avoidance.

Problem Definition: ORCA provides an efficient solution to the n-body collision

avoidance problem in a distributed manner. The n-body collision avoidance problem

involves n virtual agents sharing the same environment, each with their own current position,

physical extent, and velocity (which are all known to other nearby agents), and an internal

desired goal velocity which could change as the simulation progresses. For simplicity, each

agent is represented as a 2D disk, with a current position, a current velocity and a desired

velocity. The goal is to compute a new velocity for each agent at every step of the simulation
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such that none of the resulting trajectories will collide. ORCA solves this problem in O(n)

running time for each agent, where n is the number of nearby agents.

Table 5.1 gives a description of the variables used by ORCA to represent an agent.

These variables taken together, completely determine the unique state of any agent in the

simulation.

Symbol State Description
ra External Agent A’s radius
pa External Agent A’s position
vA External A’s Current velocity
v

max

A Internal A’s Maximum velocity
v

pref

A Internal A’s Desired (goal) velocity

Table 5.1: Variables of state for each agent

5.3.1 Velocity Obstacles

ORCA is built on the concept of velocity obstacles (VO) (Fiorini and Shiller, 1998).

A VO is a set of forbidden velocities which would lead to a collision between an agent and

an obstacle in the next ⌧ seconds. Formally, a VO is defined as follows. Let D(p, r) denote

an open disc of radius r centered at p:

D(p, r) = {q | kq� pk < r}, (5.1)

then, given a time horizon ⌧ for which to avoid colliding with any obstacles:

V O⌧
A|B = {v | 9t 2 [0, ⌧ ] :: tv 2 D(pB � pA, rA + rB)} (5.2)

The geometric interpretation of a VO is shown in Figure 5.1. This figure is drawn in velocity

space where the graph’s origin corresponds to a velocity of 0 (standing still), the x-axis

corresponds to the x-component of the velocity, and the y-axis to the y-component of the

velocity. In this space, a V O⌧ has the shape of a truncated cone. Intuitively, this can be
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thought of as the set of all the velocities which move an agent A towards obstacle B too

quickly to be able to avoid collisions with it.

(a) 2 Agents A&B (world space) (b) V O⌧
A|B (velocity space)

Figure 5.1: (a) Shows the positions of two agents A and B, with zero relative velocity. (b)
Shows the VO in A’s velocity space induced by B. This is the set of all of A’s velocities
which would collide with B within ⌧ seconds.

V Os are also appropriate for dynamic obstacles. If the obstacle B was moving with

respect to A, the apex of the V O would be shifted to lie at the relative velocity vB � vA.

Whenever A chooses a velocity that is outside of V O⌧
A|B, agent A is guaranteed not

to collide with the obstacle B for at least ⌧ seconds. This guarantee only holds assuming B

does not change its velocity over the course of those ⌧ seconds. If B is another intelligent

agent and not an obstacle following a predefined trajectory, this assumption does not hold. If

A and B are on a colliding path, B will change its velocity (in an attempt to avoid colliding

with A). If two agents use a strictly V O based means to avoid each other, they will constantly

oscillate between over-correcting for the collision and under-correcting for it (van den Berg

et al., 2011).
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5.3.1.1 Reciprocal Collision Avoidance

The work of (van den Berg et al., 2011) introduced the notion of reciprocity into

multi-agent planning. Instead of taking full responsibility for avoiding a collision, if A

knows B is a responsive agent, A will perform only half the work of avoiding collisions with

the expectation that B will similarly perform the other half of the collision avoidance work.

Assuming that both agents involved are following the same basic strategy, this method is

provably oscillation-free and collision-free (van den Berg et al., 2011).

5.3.2 Optimization Formulation

Building on the concept of reciprocity, the ORCA algorithm provides Optimal Recip-

rocal Collision Avoidance between multiple agents. The method works by creating linear

constraints that ensure every agent’s new velocity will be outside of the V O⌧ of every other

agent’s new velocity (van den Berg et al., 2008a). This is in contrast to previous techniques

such as (Fiorini and Shiller, 1998), which assigns agents new velocities that are outside the

V Os generated by other agents’ old velocities.

The ORCA algorithm generates linear constraints on an agent’s velocity, which will

guarantee reciprocal collision avoidance. The first step in constructing these constraints is

to find the smallest change required in the relative velocity of A and B to avert the collision

between them and denote this vector as u. Assuming agents A and B are traveling at

v

opt

A and v

opt

B , respectively, u can be geometrically interpreted as the vector going from

the current relative velocity (v

opt

B � v

opt

A ) to the closest point on the V O⌧ boundary (see

Figure 5.2). Specifically,

u = ( argmin

v2@V O⌧

A|B

kv � (v

opt

A � v

opt

B )k)� (v

opt

A � v

opt

B ). (5.3)

Because the agents are implicitly “sharing responsibility” of collision avoidance, each

agent needs to change its velocity by (at least) 1

2

u with the expectation that the other agent
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Figure 5.2: Constructing the set of ORCA allowed velocities. vopt is the agent’s current
velocity. ORCA forces agents to choose new velocities which avoid at least half the collision
u. In RCAP, only agents whose TB|A

sight < T � Tobs generate ORCA constraints.

will take care of the other half. Therefore, the set of velocities permitted by ORCA for agent

A is the half-plane starting at point vopt

A and facing away from V O⌧
A|B. The normal of the

half-plane, n, is chosen to be the normal of the closest point on V O⌧
A|B in order to maximize

allowed velocities near vopt

A . Therefore, the set of ORCA allowed velocities for A is:

ORCA⌧
A|B = {v | (v � (v

opt

A +

1

2

u)) · n � 0}. (5.4)

ORCA⌧
B|A for B is defined symmetrically (see Figure 5.2).

5.3.2.1 Multi-agent Collision Avoidance

If agent A is avoiding collisions with multiple agents, its allowed velocities are simply

the intersection of the ORCA⌧
A|Bs generated by each other agent B. If this set is empty, a

“least bad” velocity can be chosen as discussed in (van den Berg et al., 2011). The entire set
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of allowed velocities for an agent A, referred to as ORCA⌧
A, can be formally defined as:

ORCA⌧
A = D(0, vmax

A ) \
\

B 6=A

ORCA⌧
A|B. (5.5)

Note that this definition also includes the maximum speed constraint on the agent A of vmax

A .

Each ORCA⌧
A|B corresponds to a linear constraint on A’s velocity. The task of

selecting a new velocity closest to A’s desired velocity v

pref
A subject to the linear ORCA

constraints can be solved efficiently using linear programming.

By always choosing a new ORCA allowed velocity as close as possible to v

pref
A for

each agent, all of the agents will move in a theoretically sound and efficient manner.

5.4 Reciprocal Collision Avoidance for Pedestrians

Unlike ORCA, real humans do not move in a perfectly efficient manner. This section

presents a novel extension of the ORCA collision avoidance algorithm by taking into account

some of the characteristics of human motion.

5.4.1 Modeling Human Motion

As described in Section 5.3, the ORCA algorithm solves the n-body collision avoid-

ance problem in an efficient and robust manner. While it is theoretically sound, as a model

for humans navigating around each other, ORCA misses two key aspects. First, humans

take time to react to any collisions, whereas the ORCA model responds to collisions in-

stantaneously. Second, even when a human decides how to avoid a collision, he or she is

subject to physical constraints in terms of how quickly they can adopt their new velocity

(Arechavaleta et al., 2008). This decision making process happens all while the humans are

still walking towards their goals.
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5.4.1.1 Response and Observation Time

When two humans first see each other, it typically takes time for them to understand

and evaluate what is going on in terms of their relative motion. This time includes visually

processing the appearance of the other individual, recognizing that this individual is walking

towards them, deciding that their trajectories may pass too close to each other, and calculating

a new velocity that will avoid a collision with the other individual.

This aspect of human motion is modeled by introducing a new parameter Tobs that

corresponds to the time required for observation and reaction for each agent. Given a

simulation currently at time T , if agent A spots a new neighbor at time Tsight, this new

neighbor would not be considered as an obstacle (nor contribute to A’s motion) until Tobs

time has passed, that is until:

T � Tsight + Tobs. (5.6)

The agent A will see each new neighboring agent B at a unique time which is denoted as

TB|A
sight. This allows us to modify the original ORCA equation (Equation 5.5) to include the

observation time effect:

ORCA⌧
A =

\

B 6=A

{ORCA⌧
A|B : TB|A

sight < T � Tobs}. (5.7)

While Equation 5.6 assumes a universal Tobs for all individuals, one can use a different

observation time parameter for each different virtual human as discussed in Section 5.7.1.

5.4.1.2 Kinodynamic Constraints

In addition to response and observation time, humans are subject to kinodynamic

constraints on their motion. These are constraints on the possible velocities and accelerations

an agent may take (LaValle, 2006). While Tobs provides a way to model human mental

constraints, it does not capture the effect of these physical constraints on human motion well.
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The original ORCA formulation includes a term v

max, which models the fact that agents

have a maximum possible speed. Beyond this constraint, humans also have other significant

limitations on their motion. For example, humans cannot simply choose any new velocity

instantaneously. There are physical limits in terms of how fast a person can come to a stop

or accelerate from a resting position to a desired velocity, or switch from heading left to

heading right, etc.

In order to model these physical constraints, I introduce a second parameter amax.

This parameter captures the maximum rate at which an agent can change its velocity. If the

acceleration required to reach the newly computed velocity, vcomputed, is larger than that

allowed by amax, the new velocity will be clamped to be within the allowable range using

the following equation, where �T is the amount of time which has passed since the last

timestep, and �v = vcomputed � vold:

vnew = vold + amax

�T
�v

k�vk . (5.8)

In addition to physical constraints, psychological factors such as distraction or anxiety can

also effect the rate at which people respond to collisions and thereby effect amax.

5.4.1.3 Personal Space

When humans are represented as disks which tightly bound of their physical extent,

a precise solutions to collision avoidance would produce paths were they would brush

shoulders. However, when real humans pass each other they typically do not brush shoulders,

but pass with some space between them. In practice, as Proxemics (the study of distances

between interacting people) tells us, humans instead give each other a wider affordance (Hall,

1963), a concept commonly referred to as “personal space” (see Figure 5.3). This personal

space provides room to safely swing limbs and serves as a buffer of comfort between people.

Rather than planning around an agent’s physical extent, I use instead the agent’s personal
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space to define the planning radius, r. Like Tobs and amax, personal space r may vary from

person to person, and change between different cultures or environmental settings (Hall,

1963).

Figure 5.3: Comparison of a tight oval bounds on the physical space (blue oval) to the larger
personal space which is used for planning (dashed circle).

Table 5.2 summarizes the three parameters introduced by RCAP.

5.4.2 Static Obstacles and Global Navigation

The RCAP formulation can account for static obstacles in the same collision avoidance

framework. Small obstacles such as trees, tables, and poles can be accounted for by treating

them much as an agent who remains still. The one important difference is that an obstacle

will not share the responsibility in collision avoidance, forcing the agent to account for the

entire avoidance vector u (the minimal change in velocity required to resolve the collision).

Formally, with respect to an obstacle O, linear ORCA constraints can be computed as:

ORCA⌧
A|O = {v | (v � (v

opt

A + u)) · n � 0} (5.9)

where u, as above, is smallest vector moving the velocity out of V O⌧
A|O and n is the normal

of the VO at this closest point.

When navigating around obstacles, it is assumed that agents are not subjected to the

mental processing constraints of Tobs. This is because the obstacles don’t move and are

unlikely to surprise the agents. However, the kinodynamic constraints on motion are still

enforced, as is the concept of a small personal space buffer around an agents physical extent.
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If agents need to navigate around very large obstacles (such as walls, and buildings),

treating them the same way as small obstacles can lead agents to get stuck in local minimums.

In these cases, a roadmap is used for global navigation as in (van den Berg et al., 2008b).

Agents are given an immediate goal of the closest node on the roadmap which leads to their

goal.

5.4.3 Algorithm Overview

Algorithms 1 and 2 provide an overview of the entire RCAP algorithm in pseudocode.

In both these algorithms T is the current time in the simulation. Two helper functions are

also used. The first is ClampVelocity() which implements Equation 5.8. The second is

LinearProgramming(goal, constraints)which computes the velocity that is closest

to the goal velocity and does not violate the constraints.

Algorithm 1: RCAP Algorithm
Input: Agent A, List of neighbors B
Output: vnew - The new velocity for A

1 ORCA⌧
A  ;;

2 foreach B 2 B do
3 if T > TB|A

sight + Tobs then
4 ORCA⌧

A  ORCA⌧
A \ORCA⌧

A|B

5 vcomputed  LinearProgramming(vpref ,ORCA⌧
A);

6 vnew  ClampVelocity(vcomputed, vold,amax

)

The RCAP algorithm is part of the general loop that updates the simulation, as shown

in Algorithm 2. Here, Neighbors(A) returns all the agents nearby to A. It is also

responsible for updating TB|A
sight if it is the first time a new agent B was sighted.

5.5 Model Optimization & Training

In order to compute appropriate values for the RCAP parameters Tobs, amax, and r

data was used from several sessions of two tracked humans interacting with each other in
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Algorithm 2: Simulation Update
Input: AgentList a list of agents to simulate, �T simulation timestep

1 T  0;
2 while Simulation is running do
3 foreach A 2 AgentList do
4 B  Neighbors(A);
5 v

A
new  RCAP(A,B);

6 va  vnew;
7 pa  pa +�Tva;
8 T  T +�T ;

a motion capture studio provided by (Pettré et al., 2009). This data contains high-quality

motion capture paths of two humans as they pass each other in a large lab space. In the

experiment, two people start at two randomly chosen corners of a 15m x 15m room. The

two participants can initially not see each other, due to the presence of 5m long occluding

walls, which serve as obstacles. The participants are simultaneously directed to walk to the

opposite corner of the room. After a few meters, the participants will have moved passed

the occluding barriers and be able to see each other. At this point the participants have

reached the interaction area and will need to respond to each other to avoid collisions. The

participants continue walking until they reach the opposite corner. This experimental setup

is shown in Figure 5.4.

Data was used from 474 different runs of this experiment collected across 5 different

days. The data provides a wide variety in the initial conditions of the simulations. Specifi-

cally, each time the participants entered the interaction area they do so at different positions,

with different velocities, have different average speeds, and walk towards different spots

in the opposite corners. All these differences provide a variety of scenarios to compare the

trajectories of virtual humans with their real counterparts.
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Figure 5.4: Experimental set-up Two people (red circles) are placed in a 15m x 15m
motion-tracked lab. Participants start at randomly selected corners, initially unable to see
each other due to 5m long barriers (blue rectangles). They were simultaneously asked to
walk to the opposite corner. A few meters into their path they enter the Interaction Area and
can see the other participant and react to avoid colliding. (Drawn to Scale)

5.5.1 Training Approach

In order to learn the appropriate parameters for the RCAP model, the experimental

data was split into training data and validation data. Finding the values of RCAP parameters

which best fit the real human data can be viewed as a multi-dimensional optimization

problem. A standard simulated annealing method is used to find the optimal values of the

RCAP parameters at which the simulations most closely matched the real data.

5.5.1.1 Optimization Metric

In order to optimize the RCAP parameters some metric must be specified for measur-

ing how close any given run of the simulation is to the actual human paths. A poor choice of

the optimization metric can lead to undesirable and unrealistic behavior. For example, the

simple metric of minimizing the absolute difference in the predicted and actual paths leads

to two issues. First, this metric does not penalize collisions between the simulated agents
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(while the real participants never collided). Secondly, it allows for no natural variations in

paths. The choice to avoid someone on the left or right is often symmetric and does an equal

job of avoiding collision, however an agent could be penalized heavily by this simple metric.

For example, the predicted response might be an exactly mirrored reflection of the actual

paths the participants took, but the positions will not be close to each other so the response

might be heavily penalized.

To solve this problem, the RCAP approach compares the trajectories of simulated

agents to the real participants based on collision response curves. The metric is defined

as the change in the projected distance of the closest point the two agents will approach.

For example, when two people are on a head-on, center-to-center collision path, their

projected minimum distance will be at or near zero. This is commonly the case in the

experiments when two people first see each other. As people move along and respond to the

impending collision, the minimum projected distance will grow as they move away from a

collision course. When the minimum projected distance is greater than a person’s width,

the individuals are on safe trajectories but they still may continue to adjust their velocities

because of personal space considerations or other proxemic reasons.

The change of the minimum projected distance as the agents interact is what defines

the collision response curve for any run. A graph of a typical response curve is shown

in Figure 5.5, which compares the response curves predicted by RCAP to the actual ones

generated by the human subjects in a particular trial. The collision response curves were

used to train the RCAP parameters using two different procedures. The first time, the

parameters were trained by optimizing once over all runs to find values of these parameters

for average humans. Secondly, each run was optimized individually in order to train

parameters specifically for that run. This produces a distribution of the RCAP parameters

across all the participants.
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Figure 5.5: Graph of how the distance between the agents at projected closest point between
two agents’ trajectories changes over time during a single trial. Blue Line: Two real people
initially start on a colliding path (if unchanged, their centers would be only .1m apart). As
the experiment progresses, the people eventually sort out the collision and adopt velocities
which will have their centers pass .7m apart, more than far enough to avoid a collision (at
least .5m). Green Line: An RCAP simulation initialized with the above conditions.

5.5.2 Optimal RCAP Values

As discussed above, one optimization was run over the entire training dataset to

compute appropriate average value of the RCAP parameters. This provides a baseline for a

typical human (at least among the age ranges present in the experimental data). The values

obtained from optimizing over the entire training data set are shown in Table 5.2.

Symbol Value Description
r 0.375m (15”) Personal Space (radius)
amax 0.098m

s2
Maximum Acceleration

Tobs 0.486s Observation Time

Table 5.2: Table of RCAP constants.
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For any given run, the predicted collision response curve can be compared to the

actual human response. One such comparison is shown in Figure 5.5, where the blue line

charts the response from actual participants and the green line shows RCAP’s prediction

from the corresponding simulation. Further comparisons of real and predicted collision

response curves are shown in Figure 5.6 and 5.7. Two runs are shown where the participants

initially are on a collision course (Figures 5.6a and 5.6b), and one run where the participants

will pass closely but do not collide (Figure 5.7).

(a) (b)

Figure 5.6: Closest Approach Graphs for 2 different runs.

Figure 5.7: The participants’ desired velocities do not lead to a collision course, the real and
virtual agents both chose to maintain their desired velocities, instead of changing them.
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5.5.3 RCAP Parameter Distribution

In contrast to above approach which optimized parameters once over the entire training

dataset, it is possible to train individually optimized parameters for each run of users in

the study. These per-run results are denoted as “RCAP Tuned” as this process provides an

estimate of the RCAP parameters tuned to each pair of individuals. By collecting this data

over multiple runs, the variance of these parameters between different participants can be

analyzed and used to build a distribution over the various runs. Table 5.3 shows the mean

value and standard deviation of each of the parameters.

Symbol Value Std. Dev
r 0.397m (16”) 0.120m (4.2”)
amax 0.289m

s2
0.445m

s2

Tobs 0.504s 0.470s

Table 5.3: Variance of RCAP parameters between participants.

Figure 5.8 shows a graphical depiction of the distribution of the learned personal space

r. The parameters follow an approximately bell-shaped distribution. The range of values

correlates well with the area defined as intimate distance in the proxemics literature (Hall,

1963). This is defined as the distance which is viewed as entirely personal and any entrance

into it is viewed as an intrusion. This is similar to the RCAP definition of personal space.

Approximately 80% of the tuned values for r fall into the zone of between 0.14m - 0.46m,

as suggested by Hall. This suggests the results of the RCAP method are in agreement with

the proxemics literature.

Figure 5.9 shows the distribution of the maximum acceleration and reaction time

parameters. The distributions of both parameters are strictly positive but have a mean

within one or two standard deviations of zero. This prevents the distributions from being a

bell-curved and results in both distributions having a positive skew.

To understand the effect of tuning the RCAP parameters per person, Figure 5.10 shows

the improvement from using the the per-run, tuned parameters over the generic ones for two
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Figure 5.8: Distribution of Tobs across all runs.

(a) (b)
Figure 5.9: Distribution of amax, and r across all runs.

sample runs. In Figure 5.10(a), the generic parameters overestimate the amount of personal

space desired by the participants. In Figure 5.10(b), the generic parameters underestimate

this amount. In both cases, the scenario specific tuned parameters provide higher accuracy

in terms of estimating the personal space, the reaction and observation time, and the rate of

velocity response in order to more closely match the collision response curves.

5.6 Model Validation

To analyze how close the RCAP model of human motion matches the data collected

from real-world experiments, the paths in the validation dataset where compared to those
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(a) (b)

Figure 5.10: Comparison of the true collision response curve (Blue Line) to the one predicted
by RCAP with generic constants (Green Line) and the prediction with constants tuned to the
specific runs (Red Line).

predicted by the RCAP algorithm. For this comparison the mean values for Tobs, amax, and

r were used as given in Table 5.2. The results are analyzed qualitatively and quantitatively

along three dimensions: the collision response timing, a biomechanical energy consumption

based analysis of the trajectories, and on the paths themselves. A five-fold cross validation

was also performed to analyze error in the model while reducing over-fitting.

5.6.1 Collision Response Phases

In analyzing the results qualitatively, three distinct phases of RCAP agent motion

are apparent. These phases can be clearly seen in the collision response curves such as

those in Figures 5.5, 5.6(a) and 5.6(b). The first phase is the observation phase, which

lasts a little under a second. Here the agents move along at their preferred velocities,

without any changes. Secondly, is the reaction phase, where the agents have computed an

appropriate velocity and take a second or two to achieve it (depending on how far it is from

the observation phase velocity). Finally, there is the maintenance phase where the agents

maintain their collision-free velocities.

Participants in the experiment often show a similar means of response to a collision

as the three phase response predicted by RCAP. People would at first not react to avoid

106



the collision, then slowly adopt a correct velocity, and finally maintain velocities which

generally result to collision-free trajectories. This is in stark contrast to ORCA agents as

they instantaneously adopt and maintain a collision-free velocity.

In all cases, there is little change in velocity when there is no imminent collision to

avoid, such as in the scenario reported in Figure 5.7.

5.6.2 Biomechanical Energy Consumption Analysis

A more quantitative way to measure how realistic the simulated paths are is to analyze

the biomechanical effort implied by the trajectory. As humans move in the environment,

they expend energy and turn chemical potential energy stored in their body into the physical

kinetic energy of motion. Humans have been shown to walk at speeds which minimize the

amount of energy spent walking (Inman et al., 1981). Given an agent’s weight, velocities,

and path taken, it is possible to calculate how much much energy the agent must have spent

walking along that path (Whittle, 2002). This calculation can be performed for both the

real and virtual humans, which gives us a means to determine if the virtual agents choose

similarly efficient paths as compared to real humans.

Assuming a weight of 70 Kg, over the course of all the runs, the average real human

consumed 1,778 joules (J) walking to his or her goal (standard deviation 306 J). During the

same runs, the virtual agents consumed 1,770 J (s.d. 307 J). On any given run, the average

difference between the energy consumed by real and virtual humans was only 20 J.

5.6.3 Path Similarity

In addition to comparing manner and pacing of collision response as above, the

absolute paths taken by virtual agents can be compared to those of the real humans. In

general the paths taken are very similar. Figure 5.11 shows a run of the simulation (shown

in red) overlaid with the paths that the actual participants took. On average, the simulated

and real humans were only 0.168m apart at any time.
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Figure 5.11: A comparison of paths Real Humans vs Virtual Humans. Agents are displayed
as circles with their goal for this simulation run show in Xs. The redline shows the path that
the simulated humans took, and the black line shows the path of the humans.

Figure 5.12 shows more paths from different initial conditions for the real humans and

virtual agents. Even in just these three runs, the six participants invoke a variety of different

techniques to avoid collisions with each other including slowing down, speeding up, veering

left or right, and keeping the same path while the other person adjusts. Despite this variety,

the virtual agents are still able to follow the trajectories of the real humans very closely.

5.6.4 Cross Validation

In order to reduce the effect of overfitting, the above experiments war re-ran using

a five-fold cross validation. That is, the model was trained five separate times with a

different fifth of the training data removed each time. For each fold, error statistics were

computed with respect to the removed data set. In all cases the resulting models show a

strong agreement between the predicted paths and the validation data. Averaged across the

five folds, the model showed an average root-mean square error (RMSE) of 0.217m (8.5”).
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Figure 5.12: Comparisons of paths Real Humans vs Virtual Humans from two additional
runs. Black lines: Real humans’ paths, Red lines: Virtual Agents’ paths

Additionally, the positions of the modeled agents and actual humans physically overlapped

95.1% of the time.

5.7 Simulation Results

This section presents results of various simulations created with RCAP agents. I

discuss both how to handle simulations with more than two agents, and how to generate data

driven crowd simulations using RCAP.

5.7.1 Multi-person Simulations

While tuned on two-person interactions, RCAP scales without modification to handle

complex simulations with any number of individuals. It can be further adopted to handle

more complex scenarios involving obstacles by simply adding a new linear constraint which

forbids moving towards or into an obstacle fast enough to reach it in time ⌧ , as described in

Section 5.4.2.

When RCAP virtual agents pass each other without a wall nearby, they chose recipro-

cating paths, sharing the burden of collision avoidance (Figure 5.13(a)). However, when

an agent is too close to a wall, they may not be able to reciprocate. Here, the agent with

enough free space to respond to the collision automatically adapts and eventually takes the
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entire responsibility for avoiding the collision (Figure 5.13(b)). I consider this a reasonable

behavior as it efficiently avoids collisions between the two agents.

(a) No Wall

(b) Wall

Figure 5.13: Time-lapse diagram of agent positions. (a) Two RCAP agents exchange
positions. The agents reciprocate, each taking half the responsibility. (b) A wall pre-
vents the green agent from turning away from the collision. The red agent automatically
accommodates, eventually taking full responsibility for avoiding the collision.

5.7.1.1 Data-driven Crowd Simulations

When simulating crowds or large groups of people it is often desirable to have

a natural diversity in how the individuals in the crowd behave. This task is known as

heterogeneous crowd simulation. This diversity in the crowds can be modeled in a natural

manner by drawing values from the distributions given in Figures 5.8 and 5.9 to set the

RCAP parameters for the various individuals in the simulated crowd. Repeating the same

process with a different sample population would results in a different simulation which

reflects the new population

Figure 5.14 shows a trace of the paths from a simulation with 6 agents with RCAP

parameters drawn from the distributions shown in Figures 5.8 and 5.9. Each agent is trying

to get across the circle to the other side from where it started (the antipodal position). Agents
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Figure 5.14: Trace of a 6 agent simulation. Agents follow smooth, simple, curved paths
similar to those from the trials with humans. No agents collide.

are able to negotiate around each other without collisions while maintaining smooth, gentle

curving paths.

RCAP can be extended to perform simulations with a large number (hundreds or

thousands) of agents. To test the performance in these larger scenarios, a simulation of

thousands of agents exiting an office environment was ran. Again the parameters for these

agents are drawn from the distributions shown in Figure 5.8 and 5.9. A snapshot from this

simulation is shown in Figure 5.15. This large simulation ran at real-time rates (about 80

ms/frame).

5.8 Comparison & Analysis

This section analyzes RCAPs performance and provides a qualitative and quantitative

comparison with other collision avoidance techniques.
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Figure 5.15: Snapshot from a simulation of 1,000 people evacuating an office environment.

5.8.1 Path Analysis

RCAP performs extremely well in its ability to match human-like paths. In the

majority of cases, the difference between trajectories traveled by the real and virtual agents

is rather low. In fact, the trajectories of the virtual agent and the real human physically

overlap 94.7% of the time, i.e. the distance between paths is less than the person’s physical

radius.

The biomechanical comparison discussed in Section 5.6.2 can help in “quantifying”

the naturalness of the paths. The amount of energy consumed during walking is an indirect

measurement of how efficient the simulated walking is in terms of calories consumed. By

this measurement, RCAP agents tend to choose paths that were nearly as efficient as those

of real humans. The maximum difference in energy consumed is about 1% of actual energy

consumed and 0.1% when averaged out over all the runs. The efficiency of human motion

in avoiding collisions is well captured by the RCAP model for these benchmarks.

The collision response graphs from Section 5.5 can also be used to analyze how

human-like the motion produced by the RCAP model is. Figures 5.5 and 5.6 show the clear

improvement that RCAP has over ORCA in terms of modeling how humans respond to
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collisions. The response of ORCA agents was sudden and immediate, thus making it a poor

method for modeling human motion. The three-stage response of RCAP agents provides a

fairly good match for human response. The most significant deviation from real humans

comes in the maintenance phase where real humans continue to have slight changes in their

velocity during the maintenance phase rather than keeping it constant.

Beyond reacting correctly when there is a collision, correctly choosing not to react

when there is no collision is also important. The RCAP model can also handle such a case.

One example is shown in Figure 5.7. Here the two people start with collision-free velocities.

Real humans realize that they were not in danger of colliding and maintain about the same

velocity. RCAP agents correctly reproduce this behavior.

5.8.2 Simulation Analysis

5.8.2.1 Behavioral Analysis

The RCAP simulations produced smooth, natural motion for each agent. Multiple

agents were able to navigate around each other successfully and could cope with the presence

of obstacles while avoiding each other. The RCAP model to drive crowd simulations with

thousands of agents and still produce smooth, collision-free motion.

Additionally, across several different validation metrics (both qualitative and quantita-

tive) that paths resulting from RCAP have shown to match those taken by humans. Compared

to real humans, RCAP agents take similar absolute paths that would expend similar amounts

of energy and have similar collision response curves. This evidence helps support both the

validity of RCAP, and its generality as a model of human collision avoidance.

5.8.2.2 Performance Analysis

Computationally, RCAP adds almost no additional overhead over ORCA. The simula-

tions were able to run at the same high speeds of the original ORCA implementation. A

5, 000-person variant of the office evacuation demo took only 80 ms per timestep to compute
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the new paths. If higher performance or larger simulations were desired, an implementation

that exploits data-level parallelism and vector processing units would be possible, similar to

the method proposed in (Guy et al., 2009) and discussed in Chapter 2.

5.8.3 Comparison to Other Methods

RCAP can be compared against several of the previous models for human motion

discussed in Section 5.2. As compared to these models, RCAP does a better job in terms

of modeling how humans respond to each other while navigating around each other. By

explicitly accounting for human traits and limitations in their motions, RCAP can more

closely model how humans react to various collision conditions.

A detailed comparison for a specific run from the Locanthrope data is shown in Figure

5.16. In this run agents were initially on a collision course and need to respond to avoid

the collision. The human participants show the typical pattern of little initial reaction,

followed by an avoidance phase, then a maintenance phase (Figure 5.16 - blue line) The

graph comparing the collision response curves of RCAP, ORCA, and the Helbing Social

Force Model all initialized with the same start and goal positions and velocities.

In contrast to RCAP, the Helbing Social Force Model works by applying repulsive

forces when agents get too close (Helbing et al., 2005). This approach leads to collision

responses which poorly match that of real humans. This poor match is because in Helbing’s

model, agents do not react to collisions until they are very close to each other, this causes

the reactions to come too late and requires the agents to turn too quickly, as compared to a

natural human response. This lack of anticipation can be seen in Figure 5.16 (light blue line)

where the Helbing agents have almost no collision response for over 3 seconds at which

point they drastically swerve to avoid collisions.

ORCA (Figure 5.16 - dashed purple line) and its predecessor, (van den Berg et al.,

2008a) RVO model (not graphed) perform nearly identically for simulations of two agents.

While they perform collision avoidance well, both suffer from the same fundamental limita-
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Figure 5.16: A Comparison of RCAP, ORCA, and Helbing Social Force Model to real
human data during a single trial.

tions of not explicitly modeling human characteristics and physical capacities. As can be

seen in Figure 5.16, the reaction to potential collisions happens too suddenly and at too fast

a rate.

While ORCA agents respond to collisions too early, and Helbing agents respond too

late, RCAP agents lie in-between and model human collision response more closely. Other

approaches have different issues. For example, the Reynold’s steering model works by

checking each agent to see if they are heading towards a collision, and if so, turns them

away a small amount and checks again (Reynolds, 1999). This model fits the real-human

data better than Helbing’s but is still limited due to the lack of implicit cooperation between

the agents. This allows the agents to alternate between wide swings of overreacting and

underreacting to potential collisions. A further analysis of these approaches applied to the

Locanthrope data can be found in (Pettré et al., 2009).

In the same study that collected the Locanthrope data, (Pettré et al., 2009) proposed a

model for human motion using geometric and numeric techniques. This proposed model

matches the human data well and shows a three-phase collision response similar to that
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displayed by the RCAP model. However, this technique is more complex than RCAP,

requiring more free parameters and significant computational effort to model inter-agent

collision avoidance. As a result, (Pettré et al., 2009) method can be up to three orders of

magnitude slower than RCAP, taking 16ms to compute a new velocity for just two agents.

RCAP is more appropriate in terms of performance and simplicity for simulations involving

a large number of agents and in resource-limited situations such as video games and virtual

reality environments.

5.9 Summary and Conclusions

This Chapter presented a new technique to extend ORCA into a simple yet effective

model for human collision avoidance. The resulting RCAP model successfully captures

key features of human collision avoidance. Agents maintained course when appropriate

and moved to avoid collisions when necessary. The virtual humans chose paths which were

equally efficient as the paths walked by real humans, given the same initial conditions. The

computed paths followed the trajectories traveled by the real humans very closely. Most

importantly, the virtual humans responded to collisions at the same rate and in the same

manner as real humans did in a variety of experiments across multiple data sets. The method

can be used to both model two-person interactions and generate data-driven simulations.

5.9.1 Limitations

There are of course, several aspects of human motion that this model does not capture.

For example, there are some important secondary motion effects when walking, such as

when humans move on a straight path their center of mass does not move directly forward

but rather shifts slightly from side-to-side as their weight shifts from foot to foot while

walking. This phenomena is completely missed by the RCAP model but can be seen in the

paths traced by the real humans.
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There are also some more subtle aspects of the human collision response curves that

are not well captured by RCAP. For example, Figures 5.6, 5.10(a) and 5.16 show a noticeable

dip during the maintenance phase of the human’s collision response curve, which is not

present in the RCAP model. However, the source of this dip is not clear, and it is not seen

across all trials (it appears very weakly in or absent from Figures 5.6(a), 5.6(b) and 5.10(b)).

I suspect this might be due to mismatches in personal space between the participants, but

more study is needed on this issue.

Additionally, this work only tries to model typical, non-panic scenarios often captured

in the lab experiments. Human emotions and personality have a significant effect on how

people respond to each other. Capturing this effect could be important in trying to accurately

reproduce scenarios such as panicked evacuation. More discussion of modeling personality

will be presented in Chapter 6.

Lastly, each human is represented with a very simplified state (e.g. a 2D circle

representation). Other issues related to modeling the high degrees of freedom of the full

human skeleton are ignored. A fully accurate model would need to take into account factors

such as low-level gait analysis, position in stride, and foot placement.

5.9.2 Future Work

Beyond addressing the above limitations, there are many other avenues for future

work. Further studies are needed to determine the best shape and positioning to represent

the personal planning space. For example, some proxemics research suggests anisotropic

shapes such as ellipses might perform better than circles. Finding efficient ways to handle

the resulting orientation dependencies is an interesting and challenging problem.

The validation present here has focused only on scenarios with only a small number

of people and obstacles. In general validation should be extended to large crowds. An

important issue for validating simulations of large crowds is that due to the large number of

complex interactions, the stochastic nature of human motion can cause extreme variations in
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crowd motion. This will cause many of the validation metrics used in this chapter (such as

path similarity) to be inappropriate for large crowds and devising new metrics appropriate

for crowds will be an important area. Discussion about ways to validate against large scale

crowd data is presented in Chapter 7
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CHAPTER 6

Data-driven Simulation of Variations in Personality

6.1 Introduction

When simulating heterogeneous crowds one of the most important aspects is the

variation between individuals in the crowds. In fact, according to Convergence Theory,

crowd behavior is not a product of the crowd itself, rather it is carried into the crowd by the

individuals (Turner and Killian, 1987). As a result, it is important to accurately model the

behavior and interactions among the individuals to generate realistic, heterogeneous crowd

behaviors.

In terms of modeling the behavior of individuals within a crowd, even simple tasks,

such as walking toward a given destination, involve several complex decisions such as what

route to take and the various ways to avoid collisions with obstacles and other individuals.

As a result, different people will achieve the same goal in different manners. While there are

many factors that govern people’s overall behaviors, such as biological and developmental

variations, I focus on capturing the portion of these variations that are due to differences in

underlying personality.

In general, categorizing the variety of personalities that humans exhibit is a difficult

and multifaceted task. While many psychologists have proposed different models to organize

this variation in personality, there are limitations in their ability to capture all types of human

personality using a single classifying model (Harvey et al., 1995; Reise et al., 2000). In

fact, personality can be defined as the interplay between maintaining goal-directness while

responding to the demands of the current situation (Pervin, 2003). Rather than trying to

directly encode this complex interplay by hand, these personalities are characterized based



on data from a user study which asked participants to describe the perceived behaviors of

individual agents in computer-generated crowds. sThis chapter focuses on the problem

of generating heterogeneous crowd behaviors by adjusting the simulation parameters to

emulate personality traits of individuals within a crowd and evaluate the effects of individual

personalities on the overall crowd simulation. The approach is based on Personality Trait

Theory, which proposes that complex variations in behavior are primarily the result of a

small number of underlying traits. It draws on established models from Trait Theory to

specify these variations for each individual. The well-known Eysenck 3-Factor personality

model (Eysenck and Eysenck, 1985) is used to establish the range of personality variation.

This is a biologically-based model of three independent factors of personality: Psychoticism,

Extraversion, and Neuroticism. This so-called PEN model has inspired other similar

personality models, most famously the Big-5 or OCEAN personality model (Costa and

McCrae, 1992), which proposes five independent axes of personality based on a factor

analysis of user responses. The OCEAN model has been previously used as framework for

exploring variations in crowd simulations (Durupinar et al., 2008).

6.1.1 Main Result

This main result of this work is an efficient approach to create and control the perceived

personalities of agents in a crowd simulation. I present a mapping between the low-level

simulation parameters and high level behavior descriptors. This mapping is used to control

the extent that agents exhibit various degrees of aggressive, shy, tense, assertive, active, and

impulsive behaviors. These parameters are also placed in the context of the PEN personality

model. Additionally, I propose a novel two-dimensional factorization of personality traits

derived from the empirical study results on perceived personalities in computer-generated

crowds. These mappings are used to generate heterogeneous crowd simulations with

different, predictable perceived agent personalities.
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6.1.2 Organization

This chapter is organized as follows. Section 6.2 highlights related work in crowd

simulation and behavior modeling. Section 6.3 gives a brief overview of established

personality models and Trait Theory. The user study on perceived personalities in Sec. 6.4,

and Sec. 6.5 uses the results to compute the mappings. Section 6.6 demonstrates the resulting

behavior of agents simulated with various personalities.

6.2 Previous Work

6.2.1 Human Behavior Modeling

Many researchers have proposed approaches to simulate crowds that can closely

model human behavior. Funge et al. (Funge et al., 1999) proposed using Cognitive Modeling

to allow agents to plan and perform high level tasks. Shao and Terzopoulos (Shao and

Terzopoulos, 2005) proposed an artificial life model with several components, that enabled

agents to make decisions at both the reactive/behavioral and proactive/cognition levels of

abstraction. Yu and Terzopoulos (Yu and Terzopoulos, 2007) introduced a decision network

framework for behaviorally animated agents that was capable of simulating interactions

between multiple agents and modeling the effect of different personalities.

Other approaches have directly incorporated personality models into crowd simula-

tions. Durupinar et al. (Durupinar et al., 2008) suggested a method to vary the parameters

of the HiDAC simulation model based on the OCEAN personality model by choosing a

plausible mapping between OCEAN personality factors. Salvit and Sklar (Salvit and Sklar,

2011) created a testbed world based on termites collecting food where they demonstrated

a variety of food-gathering patterns based on varying parameters of the MBTI personality

model.

Perceptual or user studies have been used to improve crowd behaviors and rendering.

McDonnell et al. (McDonnell et al., 2009) utilized perceptual saliency to identify important
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features that need to be varied to add visual variety to the appearance of avatars. McHugh

et al. (McHugh et al., 2010a) investigated the effect of an agent’s body posture on their

perceived emotional state. Durupinar et al. (Durupinar et al., 2011) evaluated their method

to model the OCEAN personality with a user study.

6.2.2 Modeling Crowd Styles

Previous approaches have used data-driven methods to produce simulated crowds

which behaved with a certain trait or “style”. These methods commonly train models for

crowds based on input video data. For example, Lee et al. (Lee et al., 2007) used data-driven

methods to match recorded motion from videos by training a group behavior model. Ju et al.

also proposed a data-driven method which attempts to match the style of simulated crowds

to those in a reference video (Ju et al., 2010) .

6.3 Personality Models and Trait Theory

Psychologists have proposed various ways of characterizing the spectrum of person-

alities exhibited by humans. Several theories focus on aspects of personality that show

cross-situational consistency, i.e. behavior aspects that are relatively consistent over time and

across various situations. While there are many sources of variety in behavior, psychologists

have proposed methods to categorize and organize these variations. This work builds on

Trait Theories of personality, a broad class of theories which categorizes people’s behavior

based on a small number of personality traits (Pervin, 2003).

6.3.1 Trait Theory

A personality trait is an habitual pattern of behavior, thought or emotion. While

humans display a vast number of different traits, a small number of these traits are believed

to be central to an individual’s basic personality. Trait theories identify these primary

traits, which can be used to describe variations in personality; an individual’s personality is
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described based on a score of how strongly or weakly they exhibit each of these primary

traits.

One of the most well established trait theories is the Eysenck 3-factor model (Eysenck

and Eysenck, 1985). This model identifies three major factors which categorize person-

ality: Psychoticism, Extraversion, and Neuroticism (commonly referred to as PEN). An

individual’s personality is identified according to what extent they exhibit each of these

three traits. The Psychoticism factor is a measure of a person’s aggression and egocentricity.

The Extraversion factor is a measure of social interest and higher levels of extroversion are

associated with more active, assertive and daring behaviors. Finally, the Neuroticism factor

is a measure of emotional instability which can correspond to shyness and anxiety (Eysenck

and Eysenck, 1977). Each of Eysenck’s three PEN traits have been linked to biological

basis, such as the levels of testosterone, serotonin and dopamine present in one’s body.

6.3.2 Factor Analysis

The Eysenck 3-factor model is one of several different trait theories. Other theories

have used different methods for classifying the fundamental dimensions of human person-

ality. A particularly successful method of identifying basic personality traits comes from

applying factor analysis to various user studies where participants use common personality

adjectives to describe the behaviors of themselves or others in various situations (Cattell

and Eber, 1972). Factor analysis is the process for determining which small number of

unobserved latent variables can describe the behavior of a large number of observed vari-

ables. In the context of personality trait theory, the observed variables are the many different

adjectives that people use to describe personalities, while the latent variables are a smaller

number of axes which explain the correlation in the way people use these personality de-

scribing adjectives. An example latent variable might be extraversion, which is associated

with the uses of the adjectives outgoing, active, and assertive.
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Costa & McCrae (Costa and McCrae, 1992) applied factor analysis to data collected

from various personality studies and suggested five primary factors of personality which they

dubbed: “Openness to experience”, “Conscientiousness”, “Extraversion”, “Agreeableness”,

and “Neuroticism” (commonly referred to as OCEAN). While the OCEAN model is very

popular, other researches have applied factor analysis to similar user studies and found

different factors or different numbers of factor (e.g. the 16 Personality Factor model (Cattell

and Eber, 1972)). Additionally, many studies have shown that the five OCEAN factors are

not fully orthogonal (i.e. not independent from each other) (Draycott and Kline, 1995).

Furthermore, OCEAN, along with other models such as PEN, deals with personality in

the context of general human behaviors. The work presented in this chapter seeks to study

personality specifically within the context of crowd simulations. To that end, a similar

factor analysis technique is applied to user responses about personalities perceived in

computer-generated crowd simulations.

6.4 Behavior Perception User Study

The goal of this work is to understand how varying parameters in a crowd simulation

affects the perceived behavior of agents in the crowd. To this end, several low-level

parameters commonly used in crowd simulations were investigated in the study: preferred

speed, effective radius (how far away an agent stays from other agents), maximum number

of neighbors affecting the local behavior of an agent, maximum distance of neighbors

affecting the agent, and planning horizon (how far ahead the agent plans). Many agent-based

crowd simulation methods use these or similar parameters to compute the mutual interaction

between agents.

A data-driven approach is used to derive a mapping between simulation parameters

and perceived agent behaviors based on the results of this perceptual study. This approach

has at least two advantages over trying to hand-tune a plausible mapping. First, it ensures that

the perceived personality results are based on the input of a wide range of study participants.
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Second, it allows for richer, more complex mappings than would otherwise be possible with

hand-tuning plausible parameters.

In designing the study, there were multiple goals the system needed to satisfy. First,

the ability to produce mappings to several common adjectives used to describe individuals

in crowds, such as “shy”, “assertive” and “aggressive”. Second, the ability to produce a

mapping from simulation parameters to an established psychological theory, such as the

Eysenck’s PEN model. Finally, the gathered data should be sufficiently rich enough to

support a factor analysis that enables us to extract underlying latent variables describing the

space of personality seen in crowd simulations.

6.4.1 Method

To achieve the above stated goals, I designed a user study, which allowed participants

to describe behavior in crowd simulations using several adjectives. The study involved 40

participants (40% female) between 24 and 64 years old, with an average age of 33 years (std.

dev. of 12 years). In this study, participants were asked to view three different scenarios of

computer generated crowds. In each video, several agents were highlighted to be the focus

of user questions. Animations of these scenarios can be seen in the supplementary video.

All simulations were created using the publicly available RVO2 Library for multi-agent

simulation (van den Berg et al., 2011).

Fig. 6.1 shows a still from each of the scenarios used in the study. The first scenario

was the Pass-Through scenario, where four highlighted agents move through a cross-flow of

400 agents. Second was the Hallway scenario where four highlighted agents move through

a hallway past 66 other agents, who are in several small groups. Lastly, was the Narrowing

Passage scenario where 40 highlighted agents walk alongside 160 other agents towards a

narrowing exit. In all cases, the non-highlighted agents were given the default parameters

from the simulation library, which mostly results in homogeneous behaviors of the agents in
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(a) Pass-Through Scenario (b) Hallway Scenario

(c) Narrowing Passage Scenario

Figure 6.1: Three crowd simulation scenarios. (a) Four highlighted agents move through
crowd. (b) Four highlighted individuals move through groups of still agents. (c) 20
highlighted individuals compete with others to exit through a narrowing passage.

the simulation. The highlighted agents all share the same simulation parameters, that are

randomly chosen for each question given to the participants.

In all scenarios, the highlighted agents are displayed wearing a red shirt with a yellow

disc beneath them to allow them stand out in the crowd. Each participant was shown several

videos for each scenario with randomly chosen simulation parameters for the highlighted

agents. Each video was shown side-by-side with a reference video in which all the agents

were simulated using the default set of parameters of the library. This “reference video” was

the same for each question involving the same scenario to provide a consistent baseline for

comparison.
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The participants were asked to rate how the highlighted agents behaved in comparison

to those in the reference video. Participants were asked to describe the differences in

behavior as being more or less “Aggressive”, “Shy”, “Assertive”, “Tense”, “Impulsive”

and “Active”. These particular six adjectives were chosen both because they are useful

in describing behaviors of individuals in crowds, and can span the space covered by the

PEN model, with at least two adjectives for each PEN trait (Pervin, 2003). Participants

then rated each crowd video in terms of all six personality adjectives on a scale from 1-9,

with 9 meaning, for example, “much more assertive” than the references video, 5 meaning

“about as assertive” and 1 meaning “much less assertive”. The participants were allowed

to re-watch the videos as many times as they felt necessary, and could go back and forth

between questions within a section and revise their answers if desired.

To generate the highlighted agents in the question video the following simulation

parameters were randomly chosen: maximum distance to avoid neighbors, maximum

number of neighbors to avoid, planning horizon, agent radius, and preferred speed. The

random parameter values were shared by all the highlighted agents in each video. The range

of the sampled values is shown in Table 6.1.

Parameter Min Max Unit
Max. neighbors dist. 3 30 m
Max. num. neighbors 1 100 (n/a)
Planning horizon 1 30 s
Agent radius 0.3 2.0 m
Preferred speed 1.2 2.2 m/s

Table 6.1: Range of simulation parameters.

For this study, approximately 100 videos were pre-generated for the 3 different

scenarios with random values for each of the 5 simulation parameters. Each subject was

asked to rate behaviors in several videos randomly chosen from this pool. To keep subjects

engaged, the number of videos shown to each participant was limited to 6 randomly chosen

clips from each of the 3 different scenarios (18 videos total); users were given the option to

skip videos and watched an average of 15 video each. Each video was accompanied with 6
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questions, which resulted in a total of approximately 3,600 data points mapping each set of

input parameters to perceived levels of various personality traits.

6.5 Data Analysis

Given the large number of data points from the study, it is possible to derive a mapping

of the relationship between crowd simulation parameters and the perceived personality of

the agents. A linear model is used for the mapping, though other forms of regression are

possible.

6.5.1 Mapping Perceived Behaviors

Using a QR decomposition with column pivoting, a linear regression between simula-

tion parameters and perceived behaviors is found. The difference between the given agents’

parameters and those of the agents in the reference video serves as an input to the regression

model. This removes the need to compute an offset as part of the regression. The input

is normalized by dividing each parameter by half of its min-to-max range to increase the

numerical stability of the linear regression.

The mapping then takes the following form:
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Using a linear least-squares approach on the user study data produces the following 6-by-5

matrix Aadj:

Aadj =

0

BBBBBBBBBBBBBB@

�0.02 0.32 0.13 �0.41 1.02

0.03 0.22 0.11 �0.28 1.05

�0.04 �0.08 0.02 0.58 �0.88

�0.06 0.04 0.04 �0.16 1.07

0.10 0.07 �0.08 0.19 0.15

0.03 �0.15 0.03 �0.23 0.23

1

CCCCCCCCCCCCCCA

Though Aadj is a not a square matrix, it it still possible to compute a mapping from high-level

behaviors specified by the adjectives to simulation parameters by taking its pseudoinverse

A+

adj . In this way, the perceived change in behavior of an agent can be predicted as the

simulation parameters are adjusted to achieve the desired behavior for each agent.

6.5.2 Mapping Parameters for the PEN Model

In addition to building a mapping for each of the six personality adjectives individually

from the study, a similar procedure to build a mapping for the 3-factor PEN model. The

adjectives from the user study can be mapped to the three PEN factors. The correspondence

of adjective to PEN factors found in Pervin (Pervin, 2003) was used, and summarized in

Table 6.2.

Trait Adjectives
Psychoticism Aggressive, Impulsive
Extraversion Assertive, Active
Neuroticism Shy, Tense

Table 6.2: Excerpt from the mapping between adjectives and PEN factors given in (Pervin,
2003) and used create Apen.
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Like the personality adjectives, a linear mapping for the PEN model can be determined,

where:

0

BBBB@
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Based on a linear regression of the study data, Apen was found to be

Apen =

0

BBBB@

0.00 0.08 0.08 �0.32 0.63

�0.02 0.13 0.08 �0.22 1.06

0.03 �0.01 �0.03 0.39 �0.37

1

CCCCA

Again, this mapping can be used to predict the expected PEN values from any given

simulation parameters.

6.5.3 Factor Analysis

Analyzing the various features of the Apen matrix, reveals a strong correlation between

the different PEN factors. Psychoticism and Extraversion show a strong positive correlation

with each other and both are negatively correlated with Neuroticism. Likewise in the Aadj

matrix shows a correlation between several factors such as Aggressive and Assertive, which

have a Pearson r-squared value of 0.45 in the data collected from the user study. These

correlations suggest that just a few underlying latent factors might be able to explain the

perceived behaviors in the simulations.

Similar to the original OCEAN studies (Costa and McCrae, 1992), these few primary

factors can be found using factor analysis methods. A Principal Component Analysis (PCA)

on Aadj , revealed that two factors that can explain over 95% of the linear relationship
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between the simulation parameters and behaviors. This result suggests that low-dimension

models such as the PEN model offers sufficiently rich dimensions to characterize personality

traits in crowd navigation. The two Principal Component found through factor analysis on

the user study data are:

0

B@
PC1

PC2

1

CA =

0

B@
0 �0.04 0.04 0.75 0.66

0.14 0.5 0.8 0.15 �0.19

1

CA

The factor PC1 primarily has the effect of increasing an agent’s radius and speed.

The factor PC2 primarily makes agents plan further ahead and consider more agents for

local avoidance. For these reasons, I suggestively refer to PC1 as “Extraversion” and PC2

as “Carefulness”. Figure 6.2 shows which personality adjective is most affected, as PC1

and PC2 are jointly varied. The chart indicates that as “Extraverted” agents become more

“Careful”, they move from appearing Aggressive to Assertive to Active. Likewise, agents

who are not “Extraverted” appear Shy, as long as they are “Careful” enough to avoid looking

impulsive. Furthermore, agents who are too “Careful” appear to be Tense. I believe these

two principal components cover the personality space in an interesting and intuitive fashion.

6.6 Simulation Results and Validation Study

Using the above mappings of Apen and Aadj , its possible to perform crowd simulations

in which certain agents appear to exhibit high levels of the different PEN traits, or appear

to display high levels of one or more of the studied personality adjectives. This sections

show the resulting trajectory of agents displaying various personalities in several different

scenarios. I also present the results of a second user study, designed to validate the ability of

the approach to generate agents with a given personality using the derived mappings from

the user study (see Sec. 6.5).

For the purpose of this validation study, the agents’ preferred velocities were clamped

to the range [1.35,1.55] m/s. This range was chosen for two reasons. First, this is the range
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Figure 6.2: This chart shows which behavior adjective has the largest change as the two
principal components are varied.

of normal walking velocities observed in crowds (Still, 2000), which focuses the study on

normal behaviors rather than extreme ones. Second, inspecting the columns of Aadj and

Apen suggests that perceived personalities are most dependent on preferred velocities, by

limiting this range the effect of other simulation parameters is better highlighted. Given

these constraints on preferred velocity, the trained mappings was used to find simulation

parameters for various adjectives and traits covered in the user study. Again, to limit

unnatural or extreme behaviors, parameters were chosen that change behavior by only one

“unit” (on the 1-9 scale described in Sec 6.4.1). The parameters used are summarized in

Table 6.3.

6.6.1 Simulation Results

I now show the results of agents with various personalities in different scenarios.

Figure 6.3 shows paths taken by the highlighted agents in the Pass-Through scenario. The

Aggressive agents can be seen to be taking fairly direct paths. The Impulsive agents still
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Trait Neigh. Num. Plan. Radius SpeedDist Neigh. Horiz.
Psych. 15 40 38 0.4 1.55
Extrav. 15 23 32 0.4 1.55
Neuro. 15 9 29 1.6 1.25
Aggres. 15 20 31 0.6 1.55
Assert. 15 23 32 0.5 1.55
Shy 15 7 30 1.1 1.25
Active 13 17 40 0.4 1.55
Tense 29 63 12 1.6 1.55
Impul. 30 2 90 0.4 1.55

Table 6.3: Simulation parameters for various personality traits.

move quickly, but tend to take less direct routes. Shy agents avoid others more often, so

progress more slowly. Tense agents take the least jittery paths, but are deflected by the

crowds more than aggressive agents.

Agent behaviors can also be chosen based on the Eysnek 3-factor personality model

by using Apen. Figure 6.4 shows the Hallway scenario with agents that have a high level of

“Psychoticism” (P-factor), agents with a high level of “Extraversion” (E-factor), and agents

with a high level of “Neuroticism” (N-factor). The agents with a high level of Eysnek’s

P-factor take fast and direct paths coming close to other agents. The agents with a high level

of Eynsek’s E-factor also move quickly, but take more daring paths, sometimes attempting

to weave through the other agents in the crowd. The agents with a high level of Eysnek’s

N-factor take slower less direct paths and move farther away to avoid the static gray agents.

In the Narrowing Passage scenario, agents also show a variety of behaviors for

different personalities. Figure 6.5 shows the same time-step from two different simulations.

In the left simulation, the light red agents are assigned a personality of Aggressive. In

the right simulation, the light red agents are Shy. At this point, a few seconds into the

simulation, many more Aggressive agents have moved through the exit than the Shy agents.

Furthermore, several of the Shy agents can be seen to be holding back away from the exit

causing less congestion.
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(a) Aggressive (b) Impulsive

(c) Shy (d) Tense

Figure 6.3: Pass-through Scenario. Paths of agents trying to push through a crowd in
various simulations. The agent’s parameters correspond to various personalities. All paths
are displayed for an equal length of time. (a) Aggressive agents make the most progress
with the straightest paths. (b) Impulsive agents move quickly but take less direct routes. (c)
Shy agents are diverted more easily in attempts to avoid others (d) Tense agents take less
jittery paths, but are easily deflected by the motion of others.

A comparison of the rate at which the agents of various personalities passed through

the exit is shown in Fig. 6.6. Shy and Tense agents were the slowest to pass through the

exit, as they moved less quickly and packed in less tightly than the Aggressive and Assertive

agents who made it out fastest.

The evacuation results change when too many of the agents are acting aggressively.

Figure 6.7 shows how the average speed of the Aggressive agents in the scenario varies as the

percent of Aggressive agents increases. As the graph shows, the Aggressive agents exhibit

the well known “faster-is-slower” behavior associated with panic in crowds (Helbing et al.,

2000). Once a critical threshold of too many aggressive agents is reached, the aggressive

agents actually exit the room slower than a non-aggressive agents would.
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(a) High Psychoticism (P) (b) High Extraversion (E)

(c) High Neuroticism (N)

Figure 6.4: Hallway Scenario. A comparison between (a) agents with high levels of
“Psychoticism”, (b) “Extraversion” and (c) “Neuroticism”. Each of the four agents’ paths is
colored uniquely. The high P-factor agents repeatedly cut close to others taking the most
direct paths. The high E-factor agents take faster and occasionally “daring” paths, the high
N-factor agents take more indirect paths and keep their distance from others.

6.6.2 Heterogeneous Crowds

Using the mappings derived from experimental study, it is easy to generate different

simulations that map to different high-level personality specifications. This can be used to

create interesting variations in complex, heterogeneous crowd simulations. For example, in

the following an evacuation scenario 215 agents simultaneously compete for space as they

leave a room through the same exit. Using the personality-to-parameters mapping, the work

presented hear can easily create a wide variety of specific behaviors during the evacuation,

as shown in Fig. 6.8. The agents’ shirts are color coded by their personalities, for example

agents with red shirts are aggressive and those with brown shirts are shy. The agents behave

as expected with aggressive ones exiting first, active agents darting around slow agents in

front of them and shy agents hanging back.
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(a) Aggressive (b) Shy

Figure 6.5: Narrowing Passage Scenario. A comparison between dark-blue default agents
and light-red Aggressive agents (a) and light-red Shy agents (b). The Aggressive agents
exited more quickly, while several Shy agents stay back from the exit causing less congestion.

6.6.3 Timing Results

Because the behavior mapping can be computed as a pre-processing step, the method

presented here adds no overhead to the overall simulation runtime. Table 6.4 shows the exe-

cution time for simulating agents in several different scenarios, the timings were computed

on a 3.2 GHz Intel i7 processor. In all cases, the simulation ran at interactive rates.

Time
Scenario Agents Obstacles (msec)
Hallway 70 2 0.4
Narrowing Passage 200 2 1.9
Pass Through 404 0 1.4
Evacuation 215 125 4.5

Table 6.4: Performance timings per frame.
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Figure 6.6: Exit Rate. Rate at which agents of various personalities exit in the Narrowing
Passage scenario.

6.6.4 Validation Study

To validate these personality mappings, a follow-up user study was performed where

users were asked questions targeted at evaluating how well the model performed at producing

simulations with the expected behavior. The study was taken by 19 participants (39% female,

average age 37±16), 72% of whom had participated in the original study. This follow-up

study consisted of three sections. This validation study used entirely new videos to reduce

participant bias. In the first two sections, a personality trait was selected at random, and a

pair of videos were generated: one showing a simulation of that trait using the values in

Table 6.3, and one chosen to contrast the selected trait. Participants were asked to choose

which of the two videos better showed the personality trait in question. The first section of

the study evaluated the six personality adjectives (aggressive, assertive, shy, active, impulse,

and tense). The second section evaluated the PEN traits after a brief explanation of each
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Figure 6.7: Faster-is-slower behavior. This graph shows the speed of Aggressive agents
exiting in the Narrowing Passage scenario (solid blue line). As a larger percentage of agents
become aggressive, their ability to exit quickly is reduced to the point where they exit more
slowly than less Aggressive agents with the same preferred speed (dashed red line). This
result is consistent with the well-known “faster-is-slower behavior” (Helbing et al., 2000).

of their meanings to the participants. These sections were intended to measure how well a

given personality attribute could be reproduced.

In a third section, participants were shown a video where agents were chosen to

display a high level of one adjective while maintaing no increase in another one (e.g. Active,

but not Aggressive). Participants were then asked to choose which of the two adjectives

better described the video. This task was intentionally chosen to be challenging, as it

explores to what degree the mapping can model each adjective independent of the others.

Some combinations (such as “Impulsive, but not Active”) were not used in the study as the

mapping suggested the adjectives were too strongly correlated to be independently varied

within the domain of allowed velocities.

The results of the three sections are summarized in Table 7.2. For all three sections

the model predicted the perceived personalities correctly at a statistically significant rate

(p<.05). For all results, the statistical p-values were calculated using a a one-tailed test with
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an exact binomial calculation of probability. The low p-values provide strong evidence these

results are due capturing a mapping of traits to parameters and not just statistical noise.

Sec. Description Accuracy p-value
1 Chose video from adjective 87% 1e-7
2 Chose video from PEN trait 96% 1e-11
3 Chose adjective from video 72% 1e-7

Table 6.5: Performance on validation study

The results of the study can be further broken down by analyzing the results for

each adjective separately. In the first section, users perform with a 100% success rate

at identifying which videos corresponded to Assertive, Shy, and Active. Aggressive and

Impulsive were also identified at a high, statistically significant, rate of 80% and 85%

respectively.

When combined with the more difficult task of separating two simultaneous personali-

ties constraints (such as Shy, but not Impulsive) the overall success rate drops. However,

participants were still able to correctly identify most adjectives at a statistically significant

rate. Figure 6.9 shows a graph of the breakdown of the overall success rate for all questions

involving each of the six adjectives. An asterisk next to the adjective indicates a statistically

significant result (p<.05).

This data suggests the traits of “Aggressive” and “Impulsive” were hard to vary

independently without affecting the perceived levels of other traits, such as Assertiveness and

Shyness. This result is consistent with the high correlations seen between these adjectives in

the initial user study.

The method presented heard also performed well at generating the specific PEN

personality traits. Figure 6.10 shows the success rate for questions involving the PEN values.

The high success rate indicates participants were easily able to apply the high level concepts

behind the PEN model to evaluating various behaviors in the simulations.
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6.7 Summary and Conclusions

This chapter presented a perceptually driven approach to model the personality of

different agents in a crowd simulations. This approach can successfully generate crowd

simulations in which agents appear to depict specific, user-specified personalities, such as

assertive, shy, and impulsive. Furthermore, I have shown that this approach can successfully

generate simulations where agents appear to have various levels of the established PEN

personality traits. Finally, I proposed two novel factors (PC1 and PC2) which are highly

orthogonal, and are able to capture more than 95% of the linear correlation captured in the

experimental data. To the best of my knowledge, this is the first factor-model specifically

targeted at analyzing various perceived personalities in crowd simulations.

6.7.1 Limitations

The approach presented here has some limitations. The current implementation only

explores variation allowed by the RVO2 library. I would like to use this approach with

other collision avoidance and simulation methods to see if more drastic variation in behavior

is possible. Moreover, this work focused on local behaviors and interactions between

agents. However, the completed decision-making process includes global navigation and

path-planning which are not modeled adequately by the simulation parameters used in

this work. Given the large difference in approach between local and global planning, it is

possible other personality models such as the Myers-Briggs Type Indicator (Myers et al.,

1999) might be more appropriate to capture such behaviors.

Additionally, a generic mapping is computed between simulation parameters and

personality traits which is intended to hold across a wide variety of scenarios. By focusing

on more specific scenarios, it may be possible to find more precise mappings for those

particular scenarios.
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6.7.2 Future Work

This overall approach could be applied to other crowd simulation and collision

avoidance techniques, including cellular automata and social-force models. The same data-

driven techniques could be adopted to build mappings from simulation parameters to other

personality trait theories, such as the OCEAN model. I would also like to investigate the

extent that my proposed two-factor model is appropriate for human behaviors in real-world

crowds (perhaps based on video footage). Additionally, this work have focused only on

computing the trajectory of the agents. Other aspects of virtual agents such as posture, facial

expression, and walking style can provide clues to an agent’s personality and should be

taken into account when modeling various personalities.

141



(a) Initial Conditions

(b) Mid Simulation

Figure 6.8: Evacuation Scenario. 200 agents evacuating a building. Shy agents (brown
shirts) hold back while Aggressive agents (red shirts) dart forward. The other personalities
also display a variety of behaviors such as quick maneuvers, overtaking and pushing through.
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Figure 6.9: Adjective Success Rate. Rate at which user responses matched the indented ad-
jective for all questions involving the six personality adjectives studied. ⇤indicates statistically
significant (p<.05).
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Figure 6.10: PEN Success Rate. Rate at which user responses matched the intended
personality trait for questions involving the PEN traits. ⇤indicates statistical significant (p<.05).
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CHAPTER 7

An Entropy Metric for Evaluating Crowd Simulations

7.1 Introduction

At a broad level, there are two types of tasks where crowd simulations are used. One

type is the visual simulation commonly used in games, VR, and animation. Here, what is

important is the ability to create plausible motion. That is, motion which is realistic enough

that is doesn’t look wrong to a carefully engaged end-user. A second type of application,

often referred to as Pedestrian Dynamics, focuses an generating crowds simulations for

the purpose of predicting flows, densities, and general movement patterns. Understanding

Pedestrian Dynamics is important especially in areas like building design, event planning,

and architectural analysis where the goal is often to predict human flows in places which do

not yet exist as an aide in planning. Simulations for these purposes require a much higher

bar in terms of validation. The important question becomes not how plausible the simulated

motion is, but how accurate it is. If crowd simulations are to be used to inform decision

making it is important to know how closely the simulation captures real human behavior.

While there are multiple ways to qualify the accuracy of a simulation, this chapter

focuses on the quantitative comparison of crowd simulations to trajectory data captured on

real human motion. The intuition is that the closer a given simulation method can come to

reproducing known examples of real human trajectories the more accurately it is capturing

real human motion. The end goal is to develop an objective and quantitative formal approach

that is general in terms of evaluating the accuracy of any crowd simulation technique with

respect to any real-world crowd data.



As a result of recent advances in sensing technologies, including high-resolution

cameras, Light Detection And Ranging (LiDAR) and Global Position Systems (GPS),

combined with computer vision and sensor processing algorithms there has been a dramatic

rise in the amount of data available for validation. While this data is a valuable resource,

many issues arise in terms of using them for evaluation. One issue is that the trajectories

may not be accurate, due to occlusion, sensor noise, and other limitations of crowd tracking

algorithms.

The most serious hurdle to developing reliable techniques for analyzing crowd simu-

lations is to the non-linear, chaotic, non-deterministic nature of human motion and group

dynamics. For example, a small perturbation in the initial conditions of a simulation can

potentially lead to large differences in the computed trajectories. As a result, the sensitivity

of a simulation algorithm can greatly magnify the unwanted effects of sensor noise or the

tracking algorithm. Beyond the uncertainty that arises from the sensor noise and simulation

dynamics, paths traveled by humans have an inherent uncertainty that comes from individual

differences (e.g. personality), emotional state (e.g. happy, stressed), and other subtle factors.

Thus, when two humans are seemingly presented with the same choice in paths, they may

choose different ways of moving around their neighbors. The ideal technique for evaluating

the accuracy of crowd simulation must take into account these issues.

7.1.1 Main Result

This chapter describes an “Entropy Metric” to evaluate the accuracy of crowd sim-

ulations with respect to real-world crowd data. The metric is quantitative, general, and

applicable to a variety of simulation techniques. The approach takes into account noise

in the measured data, as well as non-determinism and unmodeled effects in the crowd

simulation method. Such errors are modeled using a probability distribution and the most

likely distribution is estimated from the observed trajectory data using Bayesian smoothing.
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The method presented here simultaneously computes and optimizes the error distri-

bution, using the expectation-maximization (EM) algorithm formulated as a combination

of Ensemble Kalman smoothing and maximum likelihood estimation. Moreover, I show

that the entropy metric is rankable, predictable, discriminative, and robust with respect to

sensor noise. I demonstrate its application to evaluate the accuracy of three different crowd

simulation algorithms against different real-world crowd trajectories corresponding to both

indoor and outdoor scenes.

7.1.2 Organization

This chapter is organized as follows: Section 7.2 gives a broad characterization of

crowd simulation algorithms and introduces the notation used in this chapter. Section 7.3

describes the theoretical basis of the entropy metric and present an efficient algorithm to

compute the metric. The application of the metric to three crowd simulation algorithms

is demonstrated in Section 7.4. Section 7.5 highlights many properties of the metric and

compare it with prior crowd evaluation techniques.

7.2 Background and Notation

This section gives a brief background on crowd simulation algorithms and capturing

crowd data and introduce the notation used in the rest of the chapter.

7.2.1 Definitions

The following notational conventions throughout this chapter: Variables a printed

in italics denote scalars or functions, variables a printed in boldface denote vectors and

variables A printed in blackboard bold denote vector spaces. Variables A printed in capitals

denote (covariance) matrices, and variables A printed in calligraphic typefaces denote

probability distributions.
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Crowd State In the context of this chapter, the term crowd is used to refer to a

collection of entities (e.g. people) whose behaviors and dynamics evolve over time. The

notion of a crowd state is defined as follows: for a given (discrete) point in time k, the

state xk of a crowd contains all non-constant information of a crowd that is relevant to its

evolution over time. Moreover, the space of all crowd states is denoted as X. For instance,

for a crowd consisting of n agents, the state xk 2 X = R5n may correspond to a vector

containing the two dimensional position, two diminutional velocity, and one demential

orientation of all n agents moving on a 2D plane. Other time-varying aspects, such as mental

state of the agents or dynamic behavior parameters may also be part of the state. I make

no specific assumptions about the representation of a crowd state. In addition to the crowd

state, the computational algorithms also use constant information, such as obstacles (with

pre-defined motion paths) in the world, or fixed attributes of the agents.

Crowd Evolution Crowds are not static but evolve over time. That is, if the state of

the crowd at time k is xk 2 X, the crowd evolves into a state xk+1

2 X one unit of time

later. The crowd dynamics, the mathematical formulation driving this evolution, is not well

understood and can not be analytically modeled or derived from first principles. In order to

characterize this unknown crowd dynamics, an abstract function f : X! X is defined, such

that:

xk+1

= f(xk). (7.1)

It should be stressed that f is abstract and unknown, and is only used as a formulation to

describe crowd evolution.

7.2.2 Crowd Simulation and Trajectory Generation

Crowd simulation refers to the process of simulating the movement of a large number

of human agents, taking into account the interactions between them as well the environ-
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ment. At a broad level, these simulations take into account group dynamics and human

behaviors. While the field of crowd simulation covers many facets of generating human

motions and behaviors (such as full-body biomechanics, facial expressions and gestures,

and motion dynamics based on the laws of physics), modeling and analyzing all aspects of a

crowd is highly challenging and can lead to combinatorial explosion of potential variations.

Therefore, the work here only considers the output of these crowd simulation algorithms

that corresponds to existing recorded data which is commonly positions or trajectories.

Simulating Crowds: There has been extensive work on crowd simulation for more

than three decades, leading to a wide variety of strategies for simulating crowds. These in-

clude force-based methods (Helbing and Molnar, 1995; Pelechano et al., 2007; Karamouzas

et al., 2009), boids and steering models (Reynolds, 1987, 1999), techniques based on ve-

locity obstacles and geometric optimization (Guy et al., 2010b; van den Berg et al., 2011),

field based methods (Patil et al., 2011; Pettré et al., 2009; Ondrej et al., 2010; Sung et al.,

2004), continuum models (Treuille et al., 2006; Narain et al., 2009), cognitive models

and decision networks (Funge et al., 1999; Yu and Terzopoulos, 2007), and more. These

methods model different aspects of crowds including collision avoidance between agents,

emergent behaviors, path navigation, high-level behaviors. However, all of them compute

continuous trajectories for each agent as a representation of crowd movement as a function

of characteristics of agents in the crowds and their environment.

In this sense, all such crowd simulation algorithms can be abstracted as a function

ˆf : X! X which attempts to approximates the function f :

ˆf(xk) ⇡ f(xk). (7.2)

That is, a crowd simulation ˆf takes in a state xk of the crowd at time k and produces an

estimate of the state xk+1

of the crowd at one unit of time later. This formulation assumes
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that the crowd simulation algorithm works in a continuous space and this approach may not

be applicable to discrete approaches (e.g. techniques based on cellular automata). Section

7.4.1, describes the detailed representation of function ˆf for some of the commonly used

crowd simulation algorithms.

7.2.3 Crowd Data Sources

Empirical datasets of human crowd motion from videos, LiDAR, and GPS sensors

are becoming increasingly available, aided by research in computer vision, robotics and

pedestrian dynamics on extracting crowd trajectories from sensors and cameras (Seyfried

et al., 2010; Lee et al., 2007; Rodriguez et al., 2009; Kratz and Nishino, 2011; Pettré et al.,

2009). In fact, a recent trend has been to combine tracking algorithms with crowd dynamics

models to extract more accurate trajectories or detect crowd behaviors (Pellegrini et al.,

2009; Mehran et al., 2009).

Most of these tracking algorithms represent the position data or the trajectory as

time-stamped vectors zk, zk+1

, . . . that provide a partial (and potentially noisy) projection

of the true crowd state xk,xk+1

, . . . at the corresponding moment in time. It is assumed that

the relation between the crowd state xk and the data zk available of the crowd at time k is

given by a known function h:

zk = h(xk) + qk, qk ⇠ Q, (7.3)

where qk represents the noise or uncertainty in the real world data, drawn from a constant

distribution Q. The rest of this chapter assumes that Q (the sensor uncertainty) is known.

7.3 Entropy Metric

This section describes the proposed entropy metric and presents an efficient algorithm

to compute it. The entropy metric begins with the assumption that any crowd simulation
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technique could generate real-world crowd trajectories, if some, non-deterministic, correc-

tion is added to the simulation at each time step (Figure 7.1 illustrates this notion). These

correction vectors are denoted as mk, which together form a probability distribution M:

xk+1

= f(xk) =
ˆf(xk) +mk, mk ⇠M. (7.4)

The distribution M depends on the underlying crowd simulation algorithm ˆf and encom-

passes all error and unmodeled effects in ˆf , as well as potential non-determinism in the

function f . The larger this distribution M is, the less accurately the simulation is capturing

the real-world data.

x0

x1
x2

x3
x4

ˆf(x0)

ˆf(x1)

ˆf(x2)
ˆf(x3)

m0

m1

m2
m3

Figure 7.1: Adding a corrective vector mk (green arrow) to each simulation prediction (red
dot) can correctly produce true states of the crowd xk (black dots). The true evolution of the
state is shown in black as agents evolve from state x

0

to x

4

. At each timestep, the crowd
simulation f̂ is used to predict the next state (red dots). In order to reproduce the true state,
it is necessary that some correction vector, mk, is applied at each timestep (green arrow).
The distribution of these mk’s is denoted as M (dashed ellipse) and contains the true state.

In order to quantify the “size” of this distribution, the notion of entropy from informa-

tion theory is used as a measure of unpredictability. The entropy of the distribution M is

the amount of bits of information that is missing from the crowd simulation algorithm ˆf

to completely model the function f . As a result, given two crowd simulation or trajectory
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computation algorithms, ˆf
1

and ˆf
2

, the algorithm for which the entropy of M is lower is

regarded as a “better” crowd simulator for that scenario. Therefore, the evaluation metric

is defined as the entropy of the distribution M of the correction vectors. The higher this

entropy, the larger the error distribution is, and the less accurate the simulation is.

Entropy metric: The entropy of the distribution M, of error between the evolution

of a crowd predicted by a simulator ˆf and by the function f .

Given the entropy metric, the underlying problem of evaluating the accuracy of a

crowd simulation algorithm can be defined as follows: given a crowd trajectory computation

algorithm ˆf , real-world trajectory data z

0

, . . . , zt of a crowd over a period of time 0, . . . , t,

a function h that defines the data measurement process, and distribution Q that defines the

noisiness of the data, estimate the distribution M of the deviation between the simulator

and reality, and compute its entropy.

7.3.1 Computing the Entropy Metric

The main issue in computation of the entropy metric is that the distribution M is

unknown for a given crowd simulator ˆf . Moreover, the function f is unknown. Therefore,

the real world data, z
0

, . . . , zt, must be used to estimate M and compute its entropy.

Likewise, the true crowd states x

0

, . . . ,xt that correspond to the given data are

unknown. If the true crowd states were known, or even only their probability distributions

X
0

, . . . ,Xt (such that xk ⇠ Xk), the distribution M could be easily estimated by measuring

for each crowd state xk the expected error between the next state ˆf(xk) predicted by the

simulator and the true next state xk+1

. Fortunately, it is possible to use Bayesian inference

(McLachian and Krishnan, 1996) to infer the probability distributions X
0

, . . . ,Xt of the true

crowd states from the given crowd data, but only if M is known. This results in a circular

dependency, M can be computed if X
0

, . . . ,Xt is known, and X
0

, . . . ,Xt can be computed

if M is known.
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This problem can be solved by iteratively computing the distributions Xk given

the current estimate of distribution M (using Bayesian smoothing), and computing M

given the current estimate of the distributions Xk (using maximum-likelihood estimation),

bootstrapped by a rough initial estimate of M and X
0

. This process is known as the EM-

algorithm (McLachian and Krishnan, 1996), and is guaranteed to converge in a coordinate-

ascent manner to a locally optimal estimate of the distributions Xk and M (in terms of their

likelihood) given the observed data z
0

, . . . , zt. This process is summarized in Figure 7.2 and

discussed in detail bellow. The entropy of the estimated distribution M is then computed

and used as the evaluation metric for the crowd simulator ˆf .

Bayesian Smoother

(Alg. 1)

Max. Likelihood

Estimation (Alg. 2)

X

M

Simulator:

ˆfData: z

Figure 7.2: The error distribution M for crowd simulation algorithm is estimated via an
iterative process, based on the EM-algorithm. A Bayesian Smoother is used to estimate
the true crowd states X given data z, a simulator ˆf , and an error distribution M. Next, the
maximum likelihood estimate of M given the simulator is computed and used to estimate
the state distributions X . This process is repeated until convergence.

7.3.2 Simplifying Assumptions

There are many difficulties in computing the Entropy metric exactly, arising from both

theoretical and practical issues related to the underlying complexity and non-linear aspects

of crowd dynamics, combined with the general non-parametric nature of the distribution M.

Therefore, appropriate approximations need to be made in order to compute an approximated

value of the Entropy metric.
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The most important assumption is that all relevant distributions for computing the

metric can be modeled as Gaussians. This choice is motivated in part by the central limit

theorem (CLT) and in part by the maximum-entropy principle (MEP). In order to make the

computations tractable, the distributions M and Xk need to represented in a parametric form,

and it is natural to choose the first two moments (mean and variance) of the distribution

as the relevant parameters. The CLT states that uncertainty that arrises as the combination

of many independent sources can be modeled as a Gaussian. The MEP states that in the

absence of knowledge about the true nature of a distribution one should choose a distribution

with the largest entropy so as to minimize the amount of information introduced. Given only

the mean and variance this distribution is also the Gaussian distribution.

Therefore the distribution Xk of the state at time k and the error distribution M are

represented as Gaussians. Further, the crowd state xk is assumed to be composed of the

states of each of the n individual agents within the crowd. Hence, if the state of a single

agent has dimension d, then the dimension of the composite crowd state is nd. Three

further assumptions regarding the error distribution M: (1.) The crowd simulator has no

systemic bias in the error of its predictions; (2.) The crowd simulator is not systemically

more accurate for some agents within a crowd than for others; (3.) There is no systemic

covariance between the prediction errors of different agents within the crowd. The result is

that the distribution M has a zero mean, and that its covariance matrix is block-diagonal;

M = N (0,

2

66666664

M 0 · · · 0

0 M
. . . ...

... . . . . . .
0

0 · · · 0 M

3

77777775

), (7.5)

where M is a d ⇥ d covariance matrix which appears n times along the diagonal. In this

case, M models the per-agent error variance of the crowd simulator, and distribution M
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is fully defined by variance M . This representation also allows for the use of datasets of

crowds of different sizes in evaluation.

7.3.3 Computing Crowd State Distributions

In order to compute the maximum-likelihood estimate of distribution M given the

validation data z

0

, . . . , zt, the EM-algorithm is used as outlined above. The first step of

the EM-algorithm consists of estimating the distributions Xk of the true crowd states xk

given an estimate for M using a Bayesian smoother. Since these distributions are assumed

to be Gaussian, it is natural to use a non-linear variant of the Kalman smoother. Because

the state spaces are (very) high dimension, nd, these distributions Xk are not represented

in an explicit parametric form with each of its t variance matrices consists of n2d2 entries.

Instead, an ensemble representation is used, where each distribution Xk is represented by a

number of m samples (with m << nd), and use an Ensemble Kalman Smoother (EnKS)

(Evensen, 2003) to estimate Xk.

The EnKS algorithm tends to work particularly well for high-dimensional state spaces

and non-linear dynamics (Evensen, 2003). In this case, each distribution Xk is represented by

an ensemble of m samples: Xk = {ˆx(1)

k , . . . , ˆx(m)

k }, and I assume an initial ensemble X
0

is

given. The smoother then proceeds as shown in Algorithm 3. This computes a representation

for X
0

, . . . ,Xt, given a current estimate of M and the trajectory data z

0

, . . . , zt.

7.3.4 Computing the Variance M

The second step of the EM-algorithm consists of computing the maximum-likelihood

estimate of the distribution M, given the current estimates of the distributions X
0

, . . . ,Xt

of the crowd states as computed in the first step. Since only the estimated distribution are

known, and not the states themselves, the distribution M of which the expected likelihood

is maximal is computed. Since M is fully defined by variance M , this is equivalent to

maximizing the expected likelihood of M . Further, it is mathematically convenient to
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Algorithm 3: Ensemble Kalman Smoothing to estimate crowd states
Input: Measured crowd data z

1

...zk, Crowd Simulator ˆf , Estimated error variance M
Output: Estimated crowd state distributions X

1

...Xk

foreach k 2 1 . . . t do
// Predict

foreach i 2 1 . . .m do
Draw m

(i)
k�1

from M
ˆ

x

(i)
k =

ˆf(ˆx(i)
k�1

) +m

(i)
k�1

Draw q

(i)
k from Q

ˆ

z

(i)
k = h(ˆx(i)

k ) + q

(i)
k

¯

zk =
1

m

Pm
i=1

ˆ

z

(i)
k

Zk =
1

m

Pm
i=1

(

ˆ

z

(i)
k � ¯

zk)(ˆz
(i)
k � ¯

zk)
T

// Correct

foreach j 2 1 . . . k do
¯

xj =
1

m

Pm
i=1

ˆ

x

(i)
j ;

⌃j =
1

m

Pm
i=1

(

ˆ

x

(i)
j � ¯

xj)(ˆz
(i)
k � ¯

zk)
T

foreach i 2 1 . . .m do
ˆ

x

(i)
j =

ˆ

x

(i)
j + ⌃jZ

�1

k (zk � ˆ

z

(i)
k )

maximize the expected log-likelihood ``(M) (the logarithm cancels against the exponent in

the probability density function of a Gaussian distribution), which is equivalent since the

logarithm is a monotonic function.

The part of the nd-dimensional crowd state xk that contains the state of agent j 2

1 . . . n is denoted as xk[j]. Now, the expected log-likelihood of variance matrix M under

the assumption of a Gaussian distributions is given by:

E(``(M)) = �
t�1X

k=0

nX

j=1

E
�
(xk+1

[j]� ˆf(xk)[j])
TM�1·

(xk+1

[j]� ˆf(xk)[j])
�
, xk ⇠ Xk. (7.6)

Given the ensemble representations available of the distributions Xk, the variance M that

maximizes this expected log-likelihood is given by Algorithm 4.
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Algorithm 4: Maximum Likelihood Estimation
Input: Estimated crowd state distributions X

1

...Xk, Crowd simulator ˆf
Output: Estimated error variance M

1 M = 0 ;
2 foreach k 2 0 . . . t� 1 do
3 foreach i 2 1 . . .m do
4 foreach j 2 1 . . . n do
5 M+= (

ˆ

x

(i)
k+1

[j]� ˆf(ˆx(i)
k )[j])(ˆx(i)

k+1

[j]� ˆf(ˆx(i)
k )[j])T

6 M/= tmn

The EM-algorithm is initialized with an initial guess for M and X
0

, and both steps are

repeatedly performed until convergence. The resulting M is a (local-)maximum-likelihood

estimate of the error variance of crowd simulator ˆf .

7.3.5 Computing the Entropy of M

Given the per-agent variance M as computed above, it still remains to compute the

entropy of the Gaussian distribution M of Eqn. (7.5). The entropy is given by:

e(M) =

1

2

n log((2⇡e)d det(M)), (7.7)

where n is the number of agents in the crowd, and d is the dimension of the state of a single

agent. In order to make the metric independent of the number of agents in the crowd, I

normalize the above equation by dividing by n. This in fact gives the entropy of the normal

distribution N (0,M) that models the per-agent error of the crowd simulator ˆf . It can be

seen that the metric for evaluating crowd simulators is proportional to the determinant of the

per-agent variance M . Note that while for presentation purposes the algorithm is presented

for a validation data-set of a single crowd for a single duration of time, the algorithm can be

used on multiple dataset of different crowds of different sizes.
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7.4 Implementation and Experimental Set-up

This sections demonstrate the application of the entropy metric on three crowd simu-

lation algorithms. Furthermore, their accuracy in three different settings by computing the

corresponding entropy metric. Three widely used crowd simulation algorithms are used:

steering behaviors, force-based, and geometric collision avoidance. In each case, some of

the parameters are varied to generate a family of methods and evaluated their accuracy on

crowd data.

7.4.1 Simulation Models

In terms of a steering-behavior algorithm, the classical steering method proposed

by Reynolds is used (Reynolds, 1999). A combinations of steering behaviors are used to

achieve higher level goals, such as walking to a point, or steering away from a close neighbor.

The simulation can be parameterized to generate different agent behaviors or trajectories

by changing the collision radius of an agent and the preferred speed. Three different sets

of parameters for the simulator are tested, which are referred to as: Steer-1, Steer-2, and

Steer-3.

The second simulation algorithm is based on the Social Force Model (SFM) (Helbing

and Molnar, 1995). Many variants and extensions of this model have been proposed and

widely used in different applications. SFM computes the trajectory of each agent by applying

a series of forces to each agent that depends on the relative positions and velocities of nearby

agents. An agent A receives a repulsive force pushing away from each neighbor B, denoted

as fAB. Moreover, each agent is applied a force pushing perpendicularly away from the

walls or obstacles, denoted as fW . The magnitude of these forces decrease exponentially

with the distance. Each agent also has a goal velocity, vpref
A , which is used to compute the
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desired speed and direction. The simulation function ˆf can be expressed as:

f

new
A =

v

pref
A � vA

⌧
+

X

A 6=B

fAB +

X

W

fW (7.8)

where ⌧ controls the rate of acceleration. The simulation can be parameterized to generate

different behaviors by changing the collision radius of an agent and the preferred speed.

Three different sets of parameters for this simulator are tested, referred to as: SFM-1, SFM-2,

and SFM-3.

For geometric collision avoidance, I use a velocity-based formulation called reciprocal

velocity obstacle (van den Berg et al., 2011) and its implementation as the RVO2 library.

This algorithm represents the crowd state xk using the position and velocity for each agent.

Each agent navigates by computing nearby neighbors and obstacles and computes a new

velocity that would avoid a collision with those neighbors for at least ⌧ seconds. Each such

neighbor’s information is represented using a velocity constraint, and the union off all these

velocity constraints is denoted as RV O⌧
A. An agent A is also assumed to have a desired or

goal velocity, vpref
A . The resulting simulation function ˆf can be expressed as:

v

new
A = argmin

v2RV O⌧

A

kv � v

pref
A k. (7.9)

The new velocity for each agent is computed by optimization using linear programming.

The simulation can be parameterized to generate different behaviors by changing parameters

such as ⌧ , the collision radius of an agent, and the preferred speed. Three different sets of

parameters for the simulator were tested, referred to as: RVO-1, RVO-2, and RVO-3.

7.4.2 Real-World Crowd Data

In order to evaluate the algorithm, several sources of data are used. They correspond

to different real-world scenarios (e.g. indoor or outdoor) and have varying number of
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agents. Furthermore, each data was captured using different sensing hardware and noise

characterization (see Table 7.1).

The first real-world data corresponds to a study performed in a motion capture lab,

where two humans were placed about 6m apart and asked to swap their positions (Moussaı̈d

et al., 2011) (see Fig. 7.3a). This benchmark is labeled as Lab.

The second source of crowd data corresponds to pedestrians walking on a street and

was captured using an overhead camera. The trajectories of each agent are extracted using

multi-object tracking (Pellegrini et al., 2009) (see Fig. 7.3b). Two different trajectories are

chosen from this crowd data, and each of them is about 10 sec and corresponds to different

group motions. These medium-sized trajectory datasets are labeled as Street-1 and Street-2.

The third real-world data source comes from a large indoor experiment used to

analyze exiting behavior through passages of varying sizes (Seyfried et al., 2010). The

experiment involved use of markers and optical tracking equipment to gather high-quality

data corresponding to subjects’ positions near the entrance of the passageway. While the

average number of subjects tracked during a single frame was around 50, hundreds of

subjects moved through the tracked area (see Fig. 7.3c). Two sources of data were used

from this dataset, the first with a passage of width 1m and the second with a passage of

width 2.5m, these are denoted as Passage-1 and Passage-2 respectively.

Scenario Average Density Capturing technique
Passage-1 40 2.76 optical tracking+camera
Passage-2 59 2.38 optical tracking+camera
Street-1 18 0.42 overhead camera
Street-2 11 0.37 overhead camera
Lab 2 - motion capture h/w

Table 7.1: Summary of real-world crowd datasets used in this work.

For all these scenarios, it is assumed that the agent’s goal position is the last tracked

position in the dataset and compute v

pref accordingly. However, in some scenarios (such

as people moving in a maze) this assumption may not hold. In such cases v

pref can be

considered as part of the state and inferred along with other parameters using Bayesian
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(a) Lab (small) (b) Street (medium)

(c) Passage (large)

Figure 7.3: Rendering of real-world crowd trajectories used for evaluation

inferencing. Table 7.2 shows the result of the entropy metric for each simulation method on

each dataset.

7.5 Analysis and Comparisons

The entropy metric is a measure of the amount of information missing from a crowd

simulation algorithm, in terms of non-deterministic correction with respect to a given dataset.

Scenario RVO-1 RVO-2 RVO-3 SFM-1 SFM-2 SFM-3 Steer-1 Steer-2 Steer-3
Passage-1 3.048 2.329 3.400 6.576 6.581 6.579 6.403 6.490 6.435
Passage-2 1.991 0.690 1.990 5.430 5.458 5.451 4.713 4.748 4.764
Street-1 2.744 3.156 2.800 4.500 4.707 4.665 2.979 3.569 3.838
Street-2 2.709 2.564 2.520 3.793 3.885 3.780 2.660 2.744 3.060
Lab 1.920 1.610 1.230 2.538 2.523 2.509 1.871 1.847 2.305

Table 7.2: Entropy metric for different simulation algorithms on various datasets.
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This section highlights some key properties of the metric and compare this approach with

prior techniques used to evaluate crowd simulation algorithms.

7.5.1 Metric Properties

The entropy metric has several useful properties, in terms of generating discriminative,

ranakable results that are applicable to a variety of algorithms and data sources. Furthermore,

it does not make any assumptions in terms of number of agents, their density, velocity, or

the time-interval of the simulation.

Rankable results: The Entropy metric provides rankable results because it computes

a single number in R and has a single dimension. The result can be ranked uniquely when

there are no ties. If the entropy metric for ˆf
1

is lower than the entropy metric for ˆf
2

, this

implies that ˆf
1

is a better crowd simulator for that given real-world crowd dataset.

Discriminative: The data presented in Table 7.2 highlights the discriminative na-

ture of the entropy metric. The metric creates a clear quantitative ranking with different

simulation algorithms having different scores.

Generality: The metric makes very few assumptions about the simulation algorithm

and the data. The underlying Bayesian smoothing framework can automatically translate

between the representation of the validation data and the representation of crowd state in

ˆf . As a result, the underlying crowd data used does not impose any restrictions on the

simulation algorithm.

Many simulation algorithms represent the crowd state in terms the position and

velocity of each agent (e.g. steering algorithm). Often the crowd trajectory data only has

the positional information for the agents. One possibility is to approximate the velocity

using finite differences. However, this computation can be sensitive to the noise in the

data. Instead, the Bayesian smoothing framework infers a distribution of the most likely

velocities using the simulator itself, and thereby has an estimate of the complete simulation
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Scenario Correlation
Passage-1 & Passage-2 .975
Street-1 & Street-2 .917
Street-1 & Passage-2 .585
Passage-1 & Street-2 .414

Table 7.3: The entropy metric results on similar datasets such as (Passage-1,Passage-2) or
(Street-1,Street-2) are highly correlated. The metric shows lower correlation for different
dataset pairs.

state for the algorithm. The Bayesian smoothing is not limited to just positions, velocities

and accelerations, but can be applied to any other component of the simulation state.

7.5.2 Consistency

In order to maximizes usefulness, it is important that a metric provides consistency

in its results. It is important that the results generated from one dataset should be similar

to results generated from a similar dataset. The empirical results in Table 7.1 suggest

such a property. Specifically, the results on similar benchmarks are well correlated with

each other. In particular, the ordering from best to worse simulation algorithms for the

benchmarks Passage-1 and Passage-2 does not differ significantly. As summarized in Table

7.3, the metric values computed for each simulation algorithm for (Passage-1, Passage-2)

benchmarks have a high Pearson’s correlation. There is a similar correlation for the (Street-1,

Street-2) benchmarks.

The results from Table 7.3 suggest that the entropy metric produces (relatively)

consistent results given similar inputs. However, if two datasets are very different, such as

passage vs. street, different simulations can perform very differently and new values of the

metric should be computed.

Another form of consistency is the robustness to minor variations, such as sensor noise,

in the validation data. The EnKS framework from Algorithm 3 naturally handles sensor noise

via the filtering process. This ability is demonstrated in Fig 7.4, where uniformly distributed

noise is added to the validation data, while keeping Q constant and the Entropy metric score
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for RVO-1, SFM-2, and Steer-3 simulations are graphed for the Street-1 benchmark. The

gradual increased entropy comes from the additional noise being attributed to the crowd

simulations. However, the metric is robust to this noise and the relative ranking between the

three simulators remains unchanged.
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Figure 7.4: The impact of artificial error (uniformly distributed) on the Street-1 benchmark
for different algorithms. The entropy metric is stable to this error and the relative ranking of
different algorithms does not change.

7.5.2.1 Predictiveness

A metric is classified as predictive, if a good score indicates a good correlation

between the simulation and the source of the data. In order to test the predictiveness of

the entropy metric, synthetic trajectory data was created using a specific crowd simulation

algorithm ( ˆf
1

). Later this trajectory data was used as an input to the evaluation algorithm, i.e.

the output of ˆf
1

corresponds to z

0

, . . . , zk and used to compute the entropy metric for ˆf
1

as

well as other crowd simulation algorithms (e.g. ˆf
2

, ˆf
3

). Ideally, each simulation technique

would be the best predictor of it’s own synthetic data (i.e. the entropy metric would be

the minimum). Three different algorithms where used, RVO-1, SFM-2 and Steer-3, and

synthetic trajectory data were generated for each of them for 100 timesteps, and used to the

entropy metric for each simulation. The results are shown in Table 7.4. As the results show,

this similarity matrix is optimized along the diagonal, demonstrating the predictiveness of

the metric.
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Simulator RVO-1 SFM-2 Steer-3
RVO-1 0.19 3.17 3.16
SFM-2 4.34 1.38 1.58
Steer-3 2.26 1.66 0.90

Table 7.4: Entropy metric evaluation for a synthetic data. Each row corresponds to a different
simulation algorithm. The algorithm listed in the column is used to generated the synthetic
trajectory data. As expected, the entropy metric is minimized when the accuracy of an
algorithm is evaluated on the synthetic trajectory data generated by the same algorithm.

Simulator Metric Improvement Method
RVO-A 6.07 -
RVO-B 2.09 Match radius from data
RVO-C 1.36 Match speed from data
RVO-D 0.75 Increase planning horizon

Table 7.5: As the accuracy of the RVO algorithm is improved based on the data from Lab
benchmark, the entropy metric decreases. RVO-A is the worst algorithm for this benchmark
and RVO-D is the best algorithm. There is a direct correlation between the entropy metric
and accuracy of the simulation algorithm.

The predictiveness of the entropy metric can also be evaluated by measuring the

changes on the metric which are aimed at improving the accuracy of an underlying crowd

simulation algorithm. As a simple example, the two-agent Lab benchmark is used to evaluate

the performance of a series of RVO-based algorithms on this benchmark.

I start with a fairly poor set of parameters for the RVO simulator (⌧=0.1s, radius=0.1m,

|vpref | = 0.9 m/s), which is denoted as RVO-A. Next, different parameters are changed, one

at a time, to improve its accuracy. First, the agent radius is reduced to be half of the closest

approaching distance in the real-world data (RVO-B algorithm). Next, the average speed of

each agent is increased to correspond to the average speed of the two participants in the real-

world data (RVO-C algorithm). Finally, the planning horizon ⌧ is increased, so the agents

can better anticipate the collisions and thereby avoid it (RVO-D algorithm). By design, the

RVO-D parameters resultin the best crowd simulation for this scenario and RVO-A is the

worst. The entropy metric is computed for each of these simulations algorithms and there is

a direct correlation between the entropy metric and the accuracy of the resulting simulation,

as shown in Table 7.5.
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7.5.3 Comparison with Prior Approaches

There is considerable work on evaluating and validating crowd simulations. These

include SteerBench (Singh et al., 2009), which is a benchmark framework to evaluate

steering behavior for virtual agents and includes a diverse set of virtual scenarios, metrics

and a scoring system. Recently, Kapadia et al. (Kapadia et al., 2011) proposed a method

to generate representative scenarios with statistical properties and statistical metrics to

evaluate steering algorithms. Some of the crowd validation methods are based on study

of presence in virtual environments (Pelechano et al., 2008b) or measuring the perceptual

effects of illumination, position, orientation, and camera viewpoints on the plausibility of

pedestrian formations in crowds (Ennis et al., 2011; Jarabo et al., 2012). The entropy metric

is complimentary to these techniques, as it tries to evaluate the accuracy of a simulation

algorithm with respect to given real-world crowd data.

Many crowd evaluation methods use real-world data or data-driven metrics to evaluate

their accuracy. This includes comparing individual trajectories extracted from videos with

the synthetic trajectories generated using a crowd simulation algorithm (Lerner et al., 2009).

Other techniques try to compare the measurements of flow parameters such as crowd

densities and velocity with those of a simulation (Seyfried et al., 2010). The work of (Pettré

et al., 2009) used experimental data to model interactions between virtual walkers and

validate their model by directly comparing the trajectories.

In contrast to these approaches, the entropy metric directly compares the underlying

simulation algorithm with the real-world crowd data (e.g. trajectories) and automatically

takes into account the noise in the data and uncertainty in the simulation algorithm. As

a result, this evaluation approach is more general, and is applicable to a wide variety of

simulation algorithms and real-world datasets from many different types of group motion

and collective behaviors (such as fleets of vehicles, schools of fishes, flocks of birds, etc.).
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7.6 Summary and Conclusions

This chapter introduced an entropy metric for evaluating crowd simulations against

real-world crowd data. This metric provides a single real-valued number with a meaningful

quantification that can be used to rank various crowd simulation algorithms in a predictive

and consistent manner. To the best of my knowledge, this is the first attempt at designing an

objective, quantitative evaluation metric that measures the accuracy of a crowd simulation

algorithm with respect to real-world data and explicitly accounts for sensor noise, model

uncertainty, and non-determinism. The metric was used it to evaluate the performance of

steering behaviors, force-based models, and velocity-based crowd simulation algorithms on

different real-world crowd trajectories.

7.6.1 Limitations

This approach does have some limitations. Most importantly, it assumes simulations

work on continuous spaces and may not be able to evaluate discrete approaches (e.g. cellular

automata). While the metric is simple and provides a consistent, rankable measure as a

single real number, it may not be able to analyze some important aspects of crowd simulation

algorithms (e.g. emergent behaviors) and which may require a separate, multi-dimensional

metric.

The entropy metric is only defined for a given set of real-world crowd data and cannot

directly compare different simulation algorithms in the absence of such data. Moreover, it is

not invariant to properties of the data and may change with reparameterizations or changes

in timestep. For example, a “null” simulation which assume each person never moves might

score well at extremely small timesteps, but will score poorly when the data is collected at a

higher speeds and the motion of human agents is apparent.
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7.6.2 Future Work

Looking forward, beyond address the above limitations, I would also like to analyze

the accuracy of other widely used crowd simulation techniques such as continuum techniques,

vision-based steering, and cognitive models that can be described using continuous space

formulation. Given other forms of real-world crowd data, such as behavior or personality

(Lee et al., 2007), velocity or density information (Seyfried et al., 2010), the approach could

be extend to compare corresponding characteristics of crowd simulation algorithms.

167



CHAPTER 8

Conclusion

Throughout this dissertation, I have addressed a variety of aspects of heterogeneous

crowd simulation: from low-level collision avoidance to long-term path planning, from

biomechanical variations to personality differences, from direct path comparisons to statisti-

cal validation methods. Simulating and analyzing crowds is an incredibly rich and rewarding

area of study. As research in crowds continues, I expect further progress in all these areas.

While there is always more to do, the work presented in this dissertation has made notable

advances on many of the important issues in this field.

To summarize the main results presented in this dissertation:

Distributed Collision Avoidance I presented ClearPath, a method for decentralized, dis-

tributed collision avoidance based on geometric optimization methods.

Massively Parallel Crowd Simulation I presented a parallel implementation of ClearPath

that utilizes both thread-level parallelism (multi-core) and data-level parallelism

(SIMD/vector units) to exploit the recent hardware trends of increasing levels of

parallel processing capability.

Biomechanically-Inspired Crowd Simulation Formulation: I presented a unified crowd

simulation approach, based on a biomechanically-inspired interpretation of the well

known Principle of Least Effort; it addresses both local collision avoidance and path

planning based on minimizing caloric energy expenditure. I also demonstrated an effi-

cient approach to implementing this method based on a local, greedy approximation.



Analysis of Least Effort Hypothesis I also demonstrated that by following the least caloric

effort hypothesis for choosing an agent’s paths, the resulting simulations produced

trajectories which matched human data very closely – both in terms of qualitative

features (e.g. lane formation, jamming, congestion avoidance) and quantitative metrics

(e.g. path differences and flow rates).

Data-driven Approach to Parameter Variation I have presented the Reciprocal Colli-

sion Avoidance for Pedestrians (RCAP) algorithm which can simulate variation

between agents based on various motion parameters. I also demonstrated how to

learn these parameters from motion data gathered on real humans, and how to use the

learned data to create data-driven crowd simulations.

Data-driven Approach to Personality Variation I presented a method to simulate the

variation found in human crowds due to personality characteristics based on data

collected from a user study, which was targeted at understanding the perception of

personality in simulated crowds. I also propose a factor-model specifically targeted

at analyzing various perceived personalities resulting from the proposed geometric

collision avoidance methods.

Data-driven Metric for Evaluating Crowd Simulations I presented a metric to measure

the extent to which different simulation methods were able to reproduce data collected

on real crowds. This metric is robust to the presence of simulation uncertainty, sensor

error, and the non-deterministic nature of human motion. I applied this metric to a

variety of different simulations and different scenarios, to analyze existing crowd

simulation methods.

8.1 Limitations

In a problem as multi-faceted as simulating crowds, there will also be important

limitations to any proposed techniques, including those presented in this dissertation. Most
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importantly, the work presented here has only focused on trajectory computation. However,

there are several other factors that are important to capture all aspects of people in crowds.

For example, the body posture of agents is known to affect how emotion is perceived in

simulated agents in a crowd (McHugh et al., 2010b), and could be integrated with the

personality-based trajectory planning presented in Chapter 6. Similarly, facial expressions,

body language, and even clothing choices should likely be reflective of one’s personality,

and should ultimately be reflected in a simulation.

In general, separating the crowd simulation problem from the crowd rendering prob-

lem, as was done is this dissertation, limits the amount the simulation state can effect the

rendered state and vice-versa. Because this methods presented in this dissertation assumes

that agents are hard 2D disks, while visualizing them as walking 3D beings, they are un-

able to capture effects directly relating to walk cycles (e.g., the unnaturalness of turning

when both feet are on the ground), can not account for people’s orientation changes and

deformations (e.g., turning and squeezing to get past someone), and does not allow true 3D

motion, such as jumping and climbing over people that might happen in a panic situation.

Overcoming these limitations will likely require a more sophisticated model of an agent and

a tighter coupling between the model used for simulation and the one used for rendering.

Additionally, this dissertation only looked at how behavioral variations between people

effect their local navigation. However, differences in mood, opinions, and personality should

cause differences in more long-term decision making. For example, people tend to group

with their friends more than strangers, some people like to chose more direct paths, some

people like more secluded paths, and most people tend to change these preferences over time

or based on the current situation. Capturing these types of phenomena will likely require

agents to change their final goals or intermediate milestones based on behavioral parameters.

I believe the methods presented in this dissertation can be extended to capture several of

these behaviors and should be an interesting avenue for future work.
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8.2 Future Work

There are many exciting directions for future work, both in crowd simulation and in

related domains such as multi-robot navigation. When teams or swarms of robots cooperate

to accomplish a task they face many of the same problems that confront humans in crowds.

Therefore, I believe many of the ideas proposed here can be applicable to robot navigation.

Some of the key challenges in applying these techniques to robots will involve handling

sensor noise, actuator uncertainty, and kinematic constraints. This direction has been pursued

recently in the work of Snape et al. (Snape et al., 2011) and other researches in the field of

biological inspired robotics. I believe further innovations are likely in this domain.

Due to the parallelizable nature of the algorithms presented in this dissertation, sim-

ulation methods presented here are well poised to be implemented on GPUs to exploit an

increasingly popular source of many-core parallelism. More complex agent representations

should also be explored. For example, all the work I presented here assumes agents (or

their personal space) can be well represented by a disk. This prohibits the simulations

from capturing any anisotropic behaviors displayed by people in crowds (for example a

tendency for people to walk more closely side-by-side than front-to-back). Expanding

models to account for an agent’s orientation would be more computationally expensive, but

has the potential to improve simulations. Additionally, more psychological factors can be

incorporated into the crowd formulation including discomfort, panic, stress, groups, friends,

family and other important factors that affect human crowds. Recent work has started to

address some of these issues including psychologically-inspired models of stress (Kim et al.,

2012) and mood (Durupınar, 2010), and I believe more can be done in this area.

From a planning perspective, all the methods proposed in this dissertation for collision

avoidance involve the simple motion model of assuming that every agent will maintain

a constant velocity for the foreseeable future. This assumption is a result of working in

velocity space, which can only represent fixed-velocity trajectories. By moving to a higher
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dimensional space that can represent a larger diversity of trajectories, it may be possible to

relax this assumption. Recent work with motion primitives (Hauser et al., 2008) and path

sampling (Branicky et al., 2008) are particularly promising avenues for better understanding

how to efficiently represent the space of all possible trajectories.

More broadly in crowd simulation, I believe one of the most important tasks is a

deeper understanding of what level of accuracy different models provide. More progress

in this area will likely come from close cooperation with architects, civil engineers, safety

engineers, and others who are interested in using models of human motions to make real-

world decisions. As simulations start playing an increasing role in decision making it is

important to have a thorough understanding of the conditions under which these simulations

are correct, and determine the level of accuracy needed to make good design decisions.

Simulating crowds present a truly limitless scope for investigation and improvement.

Because crowds consist of humans interacting with each other, there are always new levels

or more depths that can be added to models, both in terms of more human-like decision

making and more realistic interactions. This complexity makes the simulation of crowds

one of the most fascinating areas for research.
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APPENDIX A

ClearPath Derivations and Proofs
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Figure A.1: Derivation of (a) �AB(v) and (b) �AB(v)

A.1 Derivation of �AB(v)

For symbols, refer to Section 3.2
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As we define � in Section 3.1,
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A.2 Derivation of �AB(v)

For symbols, refer to Section 3.2

We first define |v| = � (refer to Figure A.1(b)).
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Using the triangle cosine rule,

2�(pAB) · v̂ = �2 + |pAB|2 � (rA + rB)
2
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q
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A.3 Proof of Lemma 1

We prove by contradiction. Let vnew
A not be on the edge of one of the segments of

PCR and say it minimizes the distance from v

des
A . Consider a circle of radius ✏|vnew

A �v

des
A |

centered at vnew
A (✏ > 0). The circle is completely outside the PCR, and we have a point

v

new
A + ✏ (vdes

A � v

new
A ) that is outside and at a distance of (1� ✏)|vnew

A � v

des
A | from v

des
A .

Thus we arrive at a contradiction. Therefore, vnew
A must lie on the boundary segment of one

of the neighbors.
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A.4 Proof of Lemma 2

This follows from the fact that the truncated cones are convex regions. Hence once

we identify a point that is outside the remaining truncated cones, the subsegment before it

would be inside or outside. We use this fact to compute the inside/outside regions on the

cone boundaries of the constraints.

A.5 Proof of Theorem 1

All the agents are in a colllision-free state if the resultant velocity is outside the VO of

its neighbors. FV OL
A
Bi(v) and FV OR

A
Bi(v) ensure that the resultant velocity is outside the

RVO of the neighboring agents. Furthermore, for every pair of agents, FV OC
A
Bi(v) ensures

that we are on the same side of the line joining the centers of the agents. Hence it follows

from RVO pair-wise collision-free property by Berg et al. (van den Berg et al., 2008a) that

all pairs of agents are in a collision-free state w.r.t each other, and hence the system is in a

collision-free state.
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APPENDIX B

PLEdesrian Derivations and Proofs

B.1 Proof of Lemma 1 (Nature of Min. Energy Path)

Proof: Consider a small segment of length dx along the path. Assuming a speed of

v

x

along that segment, the total energy expended to traverse the distance dx is equal to:

Ex = m
R
(es + ew |vx

|2)dt = m(es + ew |vx

|2)(dx/|v
x

|) = m(es/|vx

| + ew |vx

|)dx. In

order to minimize the energy, @E
x

@|v
x

| = 0 implies m(�es/|vx

|2 + ew)dx = 0. Therefore, |v
x

|

=
p

(es/ew). In order to minimize the total energy expended, the agent needs to traverse

each segment of length dx (and hence the whole path) at a speed of
p

(es/ew). For a

total path length of L, the total energy expended evaluates to m(

p
(esew) +

p
(esew))L =

2mL
p

(esew). The above statement also implies that the agent needs to take the shortest

path available from its source to destination in order to reduce the total distance traversed,

and correspondingly the total effort (or energy) expended.

B.2 Objective Function of Eqn. 3.4 is a convex function

Refer to Section 3.3 for notations and figures. E(v

new
A ) = m⌧(es + ew |vnew

A |2) +

2m|GA � pA � ⌧vnew
A |

p
(esew)

= m⌧es +m⌧ew |vnew
A |2 + 2m⌧

p
(esew)|vnew

A � (GA � pA)/⌧ | It follows from first prin-

ciples of convex functions (Boyd and Vandenberghe, 2004) that |vnew
A |2 and

|vnew
A � (GA � pA)/⌧ | are individually convex functions. A weighted sum (with all positive

weights) of convex functions is also a convex function. Since both m⌧ew and m⌧
p
(esew)

are greater than zero, E(v

new
A ) is convex.



B.3 Minima of Eqn. 3.4 lies on the boundary of PVA

It follows from Lemma 1 that vdes
A =

p
(es/ew) \

(GA � pA). Let vnew
A = (x,y). To find

the minima of the objective function, we set @E(v

new

A

)

@x
= 0 and @E(v

new

A

)

@y
= 0, which implies

x/y = (GA � pA)x/(GA � pA)y. Also, x2 + y2 = es/ew . Hence, vnew
A = v

des
A . In case

v

des
A /2PVA, we need to compute the optimal point within the region of permissible velocities

(PVA). We now prove v

new
A lies on a linear boundary segment by contradiction. Assume

the optimal velocity v

0 (= v

new
A ) lies strictly inside the PVA region. Consider the segment

joining v

0 to v

des
A . Since E(vnew

A ) is convex, its projection function along any line would

also be convex (Boyd and Vandenberghe, 2004). Since vdes
A is the global minimum, E(vnew

A )

is strictly increasing along the line segment from v

des
A to v

0. Since v

0 is inside PVA, the

segment intersects the PVA at a point for which the objective function evaluates to a smaller

value. Hence v

0 is not the optimal value, and we have arrived at a contradiction.

B.4 Proofs of Lemma 2 and Lemma 3

Proof of smoothness (Lemma 2). Proof: To show that the trajectories generated are

C1-continuous, we need to prove that the paths are C0-continuous, and their derivative (i.e.

velocity) is also C0-continuous. We first assume that discrete time steps of the underlying

simulation approach zero in the limit. Our simulation displaces the agent by the product

of the instantaneous agent velocity and the time change (Euler integration). Since time

varies C0-continuously, the agent traverses C0-continuous trajectory. In order to prove that

the velocity of the agent is C0-continuous, we need to prove that our energy minimization

formulation (Eqn. 4) computes velocities that vary in a C0-continuous fashion.

Consider the agent A. We assume that the region of permissible velocities changes in

a C0-fashion (i.e. for any boundary curve of PVA, and a point on that curve, the path traced

out by that point, with change in time, is C0-continuous). Furthermore, the boundary curves

themselves are continuous, with at least C0 continuity at their end points
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Consider the boundary segment along which the energy function is minimized. Note

that all the coefficients in Eqn. 4 are either constant or vary with the positions of the

agent and its neighbors. To minimize Eqn. 4, we set the partial derivative of the objective

function of Eqn. 4 to be equal to zero. This results in finding the roots of a polynomial

equation, whose coefficients trace a C0-continuous path. A polynomial equation with

C0-continuous coefficients also has C0-continuous roots (Coolidge, 1908). Hence as long

as the minimum lies on a specific boundary curve, the path traced by the velocity is C0-

continuous. Furthermore, as the minima changes from one boundary curve to another curve,

the partial derivative at their common end point should also evaluate to zero (follows from

the C0-continuity of the PVA boundary curves at their end points).
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Lozano-Pérez, T. and Wesley, M. (1979). An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570.

Luebke, D. (2003). Level of detail for 3D graphics. Morgan Kaufmann Pub.

Masucci, A. P., Smith, D., Crooks, A., and Batty, M. (2009). Random planar graphs and
the london street network. The European Physical Journal B - Condensed Matter and
Complex Systems, 71(2):259–271.

Maury, B. and Venel, J. (2008). A mathematical framework for a crowd motion model.
Comptes Rendus Mathematique, 346(23-24):1245–1250.

McDonnell, R., Larkin, M., Hernández, B., Rudomin, I., and O’Sullivan, C. (2009). Eye-
catching crowds: saliency based selective variation. ACM Transactions on Graphics
(TOG).

184



McHugh, J., McDonnell, R., O’Sullivan, C., and Newell, F. (2010a). Perceiving emotion in
crowds: the role of dynamic body postures on the perception of emotion in crowded
scenes. Experimental brain research.

McHugh, J., McDonnell, R., O’Sullivan, C., and Newell, F. (2010b). Perceiving emotion in
crowds: the role of dynamic body postures on the perception of emotion in crowded
scenes. Experimental brain research, 204(3):361–372.

McLachian, G. and Krishnan, T. (1996). The EM Algorithm and Extensions. John Wiley
and Sons.

Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal crowd behavior detection using
social force model. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 935–942.

Mohr, E., Kranz, D. A., and Halstead Jr., R. H. (1990). Lazy task creation: a technique for
increasing the granularity of parallel programs. In Proc. of the ACM conference on
LISP and functional programming.

Moussaı̈d, M., Helbing, D., and Theraulaz, G. (2011). How simple rules determine pedestrian
behavior and crowd disasters. Proceedings of the National Academy of Sciences,
108(17):6884.

Müller, K. (1981). Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung
von Personen aus Bauwerken auf der Grundlage von Modellversuchen. PhD thesis,
Technische Hochschule Otto von Guericke Magdeburg.

Muramatsu, M. and Nagatani, T. (2000). Jamming transition in two-dimensional pedestrian
traffic. Physica A: Statistical Mechanics and its Applications, 275(1-2):281–291.

Musse, S. R. and Thalmann, D. (1997). A model of human crowd behavior: Group inter-
relationship and collision detection analysis. Computer Animation and Simulation,
pages 39–51.

Myers, I., McCaulley, M., Quenk, N., and Hammer, A. (1999). MBTI manual. Consulting
Psychologists Press.

Nagai, R., Fukamachi, M., and Nagatani, T. (2006). Evacuation of crawlers and walkers
from corridor through an exit. Physica A: Statistical Mechanics and its Applications,
367:449–460.

Narain, R., Golas, A., Curtis, S., and Lin, M. C. (2009). Aggregate dynamics for dense
crowd simulation. ACM Trans. Graph., 28(5).

Nelson, H. E. and Maclennan, H. A. (1995). Emergency movement. In SFPE handbook of
fire protection engineering.

Ondrej, J., Pettre, J., Olivier, A., and Donikan, S. (2010). A synthetic-vision based steering
approach for crowd simulation. ACM Trans. on Graphics, 29(4):123:1–123:9.

185



Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and Purcell,
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