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Abstract

JUSTIN L. JOFFRION: Essays on Incentives in Rank-Order Tournaments.
(Under the direction of Sérgio O. Parreiras.)

This dissertation explores the effect of a dynamic tournament on strategic behavior. First, I

examine the relevant theory and build a model of a two-player continuation contest. I find that there

are two unique equilibria including one where an underdog can take the lead. Second, I analyze the

effect that an educational signal from the Air Force Academy has on distant career outcomes. Using

a regression discontinuity design, I show that the distinction of Distinguished Graduate has no effect

on selection to In-residence Intermediate Developmental Education. Finally, I explore the impact

that the tournament structure and the prize valuation have on strategic behavior of cadets at the Air

Force Academy.

The views expressed in this article are those of the author and do not reflect the official policy

or position of the United States Air Force, Department of Defense, or the U.S. Government.
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Chapter 1

Introduction

Contests are one of the essential tools used to motivate and screen agents. They have been used

in a variety of settings. In sports, tournaments determine who is the best athlete. In politics, lobby-

ists vie to influence government. In business, employees compete for promotion. Additionally, in

schools, students rival to be head of the class. In their seminal paper, Lazear and Rosen (1981) show

that contests are an efficient means to induce worker effort. In the time since this finding was pub-

lished, there has been effort to examine contest structure and the effect that the structure has on the

outcome. This paper uses the all-pay framework to examine the competitive behavior of multiple

agents in a two-period competition when there is a single prize and a cap on the observable output

in each period. My dissertation will explore the complete equilibrium of this model. Furthermore,

I will use data from the Air Force Academy to test the theoretical predictions of this model.

There are two segments of literature that examine dynamic or multi-stage contests. The first

looks at elimination tournaments where a subset of the players compete in early rounds for a set

of prizes that include the opportunity to compete against other early winners in later rounds for

a grand prize. This form of tournament is frequently used in sporting competition where early

heats narrow the field for the final competition or in bracket-style tournaments where losers are

eliminated and the winners continue to compete until one is left standing. The other branch of

this literature looks at multi-stage contests where players who lose continue to compete. In these

continuation tournaments, either the principal, the competitors, or both receive information about

the level of performance in early rounds. Several papers have examined the optimal design of con-

tests so that this information is released to maximum effect. This paper contributes to this vein



of research by examining a multiple-stage contest where agents learn their relative position after

each stage and the prize is awarded to the agent with the highest cumulative measure of effort. In

addition, I examine effort under linear and convex cost of effort.

It is appropriate to examine different functional forms of the cost of effort. In many circum-

stances, the marginal cost of effort in increasing. Furthermore when the contest is divided into

stages, the cost of effort may “reset” between rounds. Examples include semesters for students,

stages for the Tour de France, and other extended competitions. The convexity of the cost function

can be such that an agent may determine it is no longer worthwhile to compete and drop-out of

the competition after the information is revealed. For example, consider a five round competition

where the marginal cost of effort in each round is increasing and the highest cumulative score wins.

Specifically, the effort to score over five points exceeds every player’s valuation. If after four rounds,

a player is ahead by more than six points, no other player has an opportunity to win. Because the

effort required to win is too costly, other players will “self-eliminate” from the contest until the

final round. In this round, players will randomize the amount of effort they exert based on their

standing in the competition.

In some competitions, there is no upper bound on the competitors. There are limits to the

competition in terms of time or distance, but there is no limit on the measure of output. For

instance, in a basketball game, the game ends after the clock expires. However while the clock is

running, there is no limit to the number of points that a team can score. In other settings, there is a

limit to the score. The motivating example is the academic setting where students compete for the

prize of valedictorian. Setting aside all other prizes (high GPA for college, future value of human

capital, etc.), students must allocate their effort towards being first among their peers based on their

valuation of being first and the perceived likelihood that they will be first based on their effort.

Moldovanu and Sela (2006) examine a competition where agents are separated into sub-groups

that compete for entry into later rounds of the tournament. They show that when individuals face

convex cost functions, a contest designer can increase total effort by splitting the contestants into

sub-groups and awarding prizes to finalists, as well as the overall winner. Unlike this paper, in their

model, players do not observe opponents’ effort levels in the first round. They only know that they

are competing against other winners of the first round.
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In examining carryovers, Baik and Lee (2000) find that in a two-stage elimination game, carry-

over rate affects the level of effort in the second period. When agents are allowed to carryover some

of their effort from the first stage, they find that more effort is expended in the first stage and less

in the second. When agents can carryover all of their effort from the first period, they find that no

competition occurs in the second round. The winner is decided in the first round. In addition, the

rent is completely dissipated so that the total effort outlay equals the value of the rent.

In a recent working paper, Petrenko (2008) examines continuation contests where agents face

cost “carryover” so that resources spent in early periods result in higher costs in subsequent peri-

ods. More specifically, they use a “best of” model where the first player to reach a specified number

of wins is the overall winner. They find that, in equilibrium, the leader after the first period ex-

pends more effort in subsequent periods. However, this effect is diminished when contestants face

a budget constraint.

This dissertation explores the contest environment at the United States Air Force Academy.

First, I develop a model that examines the behavior of two players who compete for a single prize

in a multiple-stage game. The winner is the player who has the highest aggregate bid. Second, I use

data from the graduating classes of 1982-1995 to examine the value of the top prize at the Academy,

the designation of Distinguished Graduate. Finally, I explore the strategic behavior of cadets as

predicted by the model of competition. This project will shed light on the role that contest design

plays on strategic behavior and yield suggestions for how to improve design to extract more effort

from participants.

Cadets are engaged in an economic tournament where they compete for prizes including the des-

ignation of Distinguished Graduate (DG), which is awarded to the top ten percent of each class. In

terms of a tournament, this designation is one of the economic prizes. While there are other prizes

available in the tournament, the environment at the Academy is useful to study because all cadets

graduate in four years and are required to serve in the Air Force for five years following graduation.

During these five years, they will receive the same monetary compensation and are promoted on a

fixed schedule that does not vary regardless of job assignment or performance. However, despite the

guarantee of job placement, they still have career preferences. Some would like to be rated and serve

as pilots and aircrew. Others seek contracting, acquisitions, or other billets. Because assignments

3



are based on class ranking, this is another prize in the tournament. However, this prize is more

difficult to value due to the heterogeneous preferences over jobs described above. So, in this paper

we focus our attention on the DG prize.

The Distinguished Graduate designation is important during the promotion to field grade offi-

cer, which does not happen until nine years after graduation. At that time, the promotion board

meets again to rank-order all officers. The top twenty percent are identified as selectees for In-

residence Intermediate Development Education (IDE). This is a strong signal for future promotion

boards. It is possible to see if the officers who were Distinguished Graduates are now considered

the top twenty percent of the officer corps. Knowing the value of the distinguished graduate signal

will allow me to investigate the mechanism that the academy employs to incentivize cadets.

While the setting described above is a special case of tournament theory, this examination has

general implications that are applicable to other tournament structures.

Background on the United States Air Force Academy

The United States Air Force Academy (USAFA) was established on April 1, 1954 and soon after the

campus was sited near Colorado Springs, Colorado. The mission of the Academy is to “educate,

train and inspire men and women to become officers of character, motivated to lead the United

States Air Force in service to our nation.” To accomplish this mission, the Academy has established

a military, athletic, and academic environment to challenge officer trainees, commonly referred

to as cadets, and develop their capabilities. Taxpayers spend approximately $250,000 to educate

an Academy graduate. Thus, the Academy, to provide a sound return on this investment, must

determine what cadets most need to know and incentivize cadets to learn as much as possible.

USAFA is an accredited four-year university that currently offers thirty-two academic majors to

just over four thousand men and women from all fifty states and numerous other countries and

territories. Approximately ninety-five percent of the student body is from out-of-state. There are a

small number of cadets who are citizens of foreign countries. These exchange cadets return to their

home countries following graduation. There are over 500 officer and civilian faculty members,

of whom forty percent hold terminal degrees. Athletes may participate in twenty-seven NCAA

Division I sports. Unlike other universities, all cadets who graduate do so in four years with a

4



Bachelor of Science degree. In lieu of tuition, cadets agree to serve five years as commissioned

officers in the United States Air Force. A small percentage cross-commission into other branches of

the Armed Forces. Cadets receive academic, military, and athletic performance scores. These scores

determine the overall order of merit at graduation. Cadets who graduate in the top ten percent of

the order of merit are designated as Distinguished Graduates. This identifier becomes part of the

officer’s record that is presented to the promotion board. No other information about a cadet’s

performance is available to the board.

Officer advancement is based on the outcome of promotion boards held centrally at the Air

Force Personnel Center at Randolph Air Force Base outside San Antonio, Texas. Promotion to

service in a higher rank is not a reward for successful performance. Rather, it is a recognition that a

service member is capable of additional duty and responsibility. While previous experience is an in-

dicator of this capability, it is not the sole factor that determines promotion. The promotion board

also considers recommendations from superiors, peer stratification, and training and education. El-

igibility for promotion is based on time in grade. Graduates enter the Air Force with the rank of

Second Lieutenant. After two years, officers become eligible for promotion to First Lieutenant.

After two years as a First Lieutenant, officers are eligible to become Captains. The advancement

to these ranks is fairly automatic. No formal promotion boards are held. Thus, the promotion to

Major is the first time that an officer faces a promotion board. At this point, officers are selected

for both promotion and In-residence Intermediate Development Education (IDE). The selection to

IDE identifies the top twenty percent of the officers in that year group. Hence, it is possible to com-

pare the top performing officers to the top performing cadets. Furthermore, In-residence selection

is an important signal to future promotion boards. While all officers must complete IDE, either

by correspondence or In-residence, to be eligible for promotions beyond Major, those selected for

In-residence IDE are in effect “primed” for future promotion opportunities.

While at the Academy, cadets are competing in a rank-order tournament that extends over eight

semesters. The outcome of this tournament determines job placement, graduate school oppor-

tunities, and the designation as a Distinguished Graduate (DG). After each semester, cadets receive

grade reports that inform them of their position in the tournament. It is informative to examine the

strategic behavior of cadets in the final semester at the academy when only the DG prize remains.

5



After the seventh semester, job placement, salary, and promotion schedule are all predetermined.

Tournament theory suggests how agents should behave based on this scenario.

The remainder of this thesis is organized as follows: Chapter 2 presents a theoretical model of a

multiple stage continuation contest and its solution. The third chapter explores the value of the ed-

ucational signal that results from the USAFA tournament by examining its influence on a distance

career outcome. Chapter 4 examines the strategic behavior of cadets at the Air Force Academy to

determine if the theoretical predictions of the model are valid.
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Chapter 2

Theoretical Model of a Two-Player Continuation

Contest

2.1 Introduction

This chapter identifies the equilibrium of a contest where two players with known valuations com-

pete for a single prize. Although each player values the prize, one player has a greater valuation.

The player who at the end of all stages has exerted the highest cumulative effort receives the prize.

Using an all-pay auction framework, I identify two Markov perfect equilibria. In the first, the player

with the higher valuation wins the prize; and, in the second, the player with the lower valuation

wins the prize. In addition, I identify the circumstances where either the first, the second, or both

equilibria exist. Because there is an equilibrium where the lower valuation wins, the contest may fail

to identify the player with the highest valuation. Furthermore, I find that as one player accumulates

an advantage over the other, both players will reduce their exertion. Thus, this contest structure

may not induce maximal output from the players.

There are several additional findings. In the last stage of the competition, each player uses a

mixed bidding strategy. When agents have linear cost of effort, each player may exert zero effort up

until the final stage where they will exert mixed effort. Under this circumstance, only the player

with the higher valuation will expect to earn positive profits. However, when agents’ cost is a

convex function of effort, there are circumstances where either the high valuation player or the low

valuation player will exert effort in every period and the other does not. This is true until the last



period where both employ a mixed strategy.

In the basic theory of the firm, there is a principal, or owner, of the firm that relies upon

agents, or employees, to provide effort that generates revenue for the firm. To maximize profit,

the principal must elicit the maximum amount of effort from agents at the lowest wage possible.

Hence, one of the central concerns of the principal is to find an optimal mechanism to incentivize

agents.

Over time, many incentive structures have been implemented. Two of the most common mech-

anisms are the contract mechanism and the tournament (or contest) mechanism. With the contract

mechanism, the principal and agent agree to compensation based on some observable measure of

performance. Because this measure is often a function of output, this incentive mechanism is some-

times referred to as a piece-rate contract, where the piece-rate is the wage paid per measure of output.

Under this mechanism, agents focus on their individual performance. This mechanism works well

when agents are risk-neutral and the principle can measure performance cost-effectively. The tour-

nament mechanism plays upon the notion that competition among agents will drive higher perfor-

mance. With this mechanism, the principal and agent agree upon some assessment of performance.

The principal ranks the agents according to this assessment and awards one or more agents with the

incentive prize. The tournament serves two functions. It motivates the contestants to exert effort

and it identifies the agents with high ability. In addition, because contestant performance is assessed

relative to other competitors, common shocks are accounted for in the tournament.

It is instructive to think of the contest mechanism as an all-pay auction where there is a fixed

number of “winners,” but the auctioneer wants each participant to “bid” their maximum effort. In

some circumstances, the auctioneer has information about each buyer’s maximum willingness to

pay. Like the auctioneer who designs the auction so that each bidder bids his maximum valuation,

the principal’s goal is to design the tournament so that each participant exerts maximal effort.

In both the tournament and contract mechanisms, the principal faces two constraints. The

incentive structure must be such that the agent receives more than some minimal amount of utility.

This is referred to as the individually rational or participation constraint. If the firm does not offer

this level of compensation, the agent will either work for another principal or not work at all.

Second, the incentive scheme must induce the agent to align his interests with the principal. If the

8



agent can gain an advantage by shirking on effort, pretending to have lower ability, or otherwise

misbehaving, then the incentive mechanism will not entice the agent properly. This constraint is

the incentive compatibility constraint.

As there are multiple ways to incentivize agents, it is beneficial to investigate which mecha-

nism is optimal. This is the fundamental question that motivated Lazear and Rosen’s seminal paper

(1981) on rank-order tournaments, in which they established that tournaments can be optimal un-

der certain conditions. Following in their footsteps, other authors have attempted to refine the

circumstances where the optimal contest mechanism outperforms optimal contracts. In addition,

there are many ways to employ the tournament mechanism. Contests can be decided in a single

round of competition or after multiple rounds. When there are multiple stages, the principle can

affect behavior by choosing how to release information between stages, how to match competitors,

and the timing of actions within rounds. In general, multi-stage contests can be separated into two

categories: elimination contests and continuation contests. In elimination contests, contestants are

divided into groups that compete in early rounds. From these initial stages, a subset of players from

each division face each other in subsequent rounds of competition. Rosen (1986) completely char-

acterizes the equilibrium of elimination contests. And, Moldovanu and Sela (2006) describe how

this form compares to “winner-take-all” tournaments. Continuation contests allow contestants to

compete in later rounds regardless of the outcome of earlier rounds. The principle must decide how

earlier outcomes will affect the competition in later rounds.

Because of the many forms that a contest may take, there is a large number of papers pertaining

to this research. In this space, I refer to a number of the more recent and pertinent studies. Baye,

Kovenock, and de Vries (1996) detail the solution to the all-pay auction with complete information.

I use their techniques to solve the model. With the all-pay auction, the uncertainty in the outcome is

due to the simultaneity of bidding. Yildirim (2005) investigates a two-stage, two-player continuation

contest with uneven players using a logit contest success function to provide uncertainty. He finds

that a player who exerts lower effort in early rounds will exert additional effort in later rounds to

make up the difference. Furthermore, his model rules out scenarios where the player with lower

valuation leads. The results of my model suggest that an equilibrium exists where the underdog can

lead, but only if the nature of the contest is such that the separation between players is diminished.
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Additionally, as one player falls behind, both players will become less aggressive.

Ludwig and Lünser (2008) examine two identical agents in a two stage continuation contest.

They identify a pure strategy equilibrium where both players exert the same effort as the other and

equal effort in each period. In their study there is uncertainty in the outcome of the tournament

due to measurement error in the observed effort. This uncertainty incites both agents to participate

despite the advantage that one agent may have over another. Compounding this incentive is an

upper bound that they place on the amount of effort that can occur in each round.

Finally, several works (Lazear and Rosen (1981), O’Keeffe, Viscusi, and Zeckhauser (1984),

Shogren and Baik (1992), and Baik and Lee (2000)) recognize that contestants are not necessarily

equally matched. Casas-Arce and Martínez-Jerez (2007) examine an all-pay auction where there are

handicaps on the participants. In their model, each agent has the same valuation. However, there

is a maximum bid amount that varies across participants. In a two-period contest, they find that

agents will delay bidding until the final period. When I introduce convex cost of effort, my model

eliminates this tendency for agents to delay. Konrad and Kovenock (2008) examine multi-battle

contests where the winner is determined by the number of battles won. They find that players will

exert effort in each stage if there are intermediate prizes.

This paper advances the literature by examining the case where two contestants with valuations,

v1 > v2 > 0, compete in a multiple-stage continuation contest. In these contests, it is not the number

of stages won that matters but the aggregate score. Depending on the outcome of previous stages,

an agent may enter the current stage with an advantage. The magnitude of this advantage will affect

behavior and outcome. The impact of the advantage depends on the difference between the players’

valuations and the convexity of the cost function. In a two stage continuation contest, I find that in

the case where agents have linear cost of effort, each player will exert zero effort in the first round

and mixed effort in the second round. However, when agents’ cost is a convex function of effort,

there is a unique equilibrium where Player 1 exerts positive effort in the first round and Player 2

exerts zero effort. Then, in the second round, each player employs a mixed strategy. When this

contest is played in multiple periods with convex costs, I find that in any stage prior to the last

stage, only one player will compete. However, there are conditions where participation may come

from either the player with higher valuation or lower valuation.
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The rest of this chapter proceeds as follows. Section 2.2 describes the motivation behind the

model. Section 2.3 provides the solution concept. Section 2.4 describes the model. Section 2.5

examines the equilibrium of a continuation contest limited to two stages. Section 2.6 extends the

analysis to a multi-stage continuation contest. In section 2.7, I provide some notional examples of

how the equilibrium will develop under different cost functions and valuation differences. Sections

2.8 provide remarks on the results and 2.9 offers the conclusion.

2.2 Motivation

One can evoke several examples of situations where agents engaged in competition obtain informa-

tion about their relative positions before the end of the race. Perhaps the canonical example is from

Aesop (translated by George Fyler Townsend1) in “The Hare and the Tortoise”:

A hare one day ridiculed the short feet and slow pace of the tortoise. The latter, laugh-
ing, said, “Though you be swift as the wind, I will beat you in a race.” The hare, deem-
ing her assertion to be simply impossible, assented to the proposal; and they agreed that
the fox should choose the course, and fix the goal. On the day appointed for the race
they started together. The tortoise never for a moment stopped, but went on with a
slow but steady pace straight to the end of the course. The hare, trusting to his native
swiftness, cared little about the race, and lying down by the wayside, fell fast asleep. At
last waking up, and moving as fast as he could, he saw the tortoise had reached the goal,
and was comfortably dozing after her fatigue.

In this example, the hare enters the race with a strong advantage. So strong, that the tortoise can-

not overcome the hare unless circumstances beyond his control intervene. The tortoise, confident

of the hubris of the hare, continues to exert effort despite the seeming impossibility of winning.

Sure enough, happenstance allows for the hare to oversleep. Thus, by a fluke, the tortoise is able

to take the prize. Of course, the moral invites those with less capability to participate in the con-

test. However, if the hare had simply run the race and napped afterward, the effort of the tortoise

would be for nought. Thus, a contest where one agent is outmatched may not entice both agents to

1George Fyler Townsend, Three Hundred Aesop’s Fables: Literally Translated from the Greek (London: George
Routledge and Sons, 1867), pp. 9-10.
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participate. In what follows, I shall show that this is not an equilibrium because had the hare acted

prudently, he would have won the race. This is the irony of the fable.

Even if participants are equally matched at the beginning of the race, this cannot ensure full

participation throughout the entire race. If a player amasses too much of a lead, the outcome of

the contest may be determined before the final stage of the competition. Consider the example of

the game show Jeopardy. In this game, players compete in three rounds. Each contestant enters

the final round with the money they’ve earned in previous rounds. This final round consists of

a single question. Before the players are asked this question, they must wager some or all of the

money they’ve accrued in the previous rounds. Players who answer the question correctly, receive

the amount of money they put up. And, those who answer incorrectly lose the amount they put

forth. The maximum payoff occurs when a player bets all of his money and answers correctly. In

most cases, the players have different amounts to risk in the final round. So, the player who enters

the final round with the most money has an advantage. And, the player who has more money than

the others has an advantage. There are times when the final round is not interesting because one

player has an insurmountable lead over the other contestants.

Tournaments are frequently used to determine a sporting champion. The Tour de France is an

example of a multi-stage continuation contest where the winner is the cyclist who has the lowest

aggregate time. It is rare that a winner actually be first in many stages. And, when Greg LeMond

won in 1990, he did so having never won an individual stage. This may be one of the reasons why

the honor of wearing a yellow jersey is so important. In addition, the race recognizes the rider who

wins the most individual stages. Also, riders are often members of teams. Thus, those who are

out of the running for an overall win may continue to exert effort in order to assist a teammate by

riding in front and giving him the benefit of slipstreaming.

Finally, consider an extended political race where two contestants face each other in polls. It

is possible that one can gain such an advantage in the polls that the opponent may choose to exit.

Or, supporters who no longer believe their candidate is viable reduce their contributions and their

candidate can no longer sustain the race.

In what follows, I differentiate players based on their valuation. However, it is important to
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realize that this valuation can be interpreted in a variety of ways. The most straightforward inter-

pretation is that the valuation refers to the amount of value that the individual assigns to the prize. It

is also possible to consider the valuation a means to differentiate players based on their future value

to an organization. For instance, the player with the higher valuation may be the type of player that

a future principle would want to identify. As an example, a student who places a higher value on

receiving a university honor such as “sigma cum laude” may have an inate drive to excel. Since most

employers value motivated employees, a contest structure that successfully identifies such individu-

als would be beneficial. However, if the contest structure leads to outcomes where lower valuation

employees take the prize, the selection effect of the contest is eliminated.

2.3 Contest Modeling Approach and Solution Concept

There are two general approaches that researchers have used to study the use of tournaments as

incentives. Both focus on the means by which the winner of the tournament is determined. In the

first approach, the prize is awarded according to a set rule. There is no ambiguity in the determina-

tion of the winner. In the second approach, things are not as clear-cut as there is some uncertainty

in the determination. Nevertheless, in both allocation methods, the contestants, by their actions,

have some sway over the allocation of the prize. The first allocation method is typically modeled

as an all-pay auction where the actions of the agents are modeled as bidding on a prize. These bids

can be viewed as the level of effort put forth in the competition. The cost of effort can vary across

agents. The second method introduces some ambiguity in the contest success function so that it is

possible that an agent who exerts strictly lower effort may still have a positive probability of win-

ning. Tullock pioneered this formulation, hence these competitions are often referred to as Tullock

contests. Nitzan (1994) provides a summary of the “winner-take-all” contest literature that employs

probabilistic contest success functions.

I use the all-pay auction framework to model the contest; whereas, others use a contest success

function to analyze the contest. As I am using an auction framework, players in the contest are

choosing how much effort to exert to win. I view this effort as their bid. So, the strategy they

employ in the game is their bidding strategy. There is a cost to bidding that reduces an agent’s
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payoff. The uncertainty in the model comes from not knowing what the other agent is bidding

until after the bids are submitted. Therefore, the probability that an agent wins is the probability

that after all rounds are complete, the total of the agent’s bids is higher than the total of the other

agent’s bids.

The interpretation of this bidding behavior is flexible. The cost of bidding may be tied directly

to the ability of the agent. Furthermore, the cost of bidding need not be linear. It is reasonable

that the cost of effort is increasing in effort level. That is to say that the marginal cost of effort is

increasing.

The solution that follows is a Markov equilibrium to the all-pay auction formulation. Hence,

the strategies below provide for a Nash equilibrium in every subgame. However, these strategies do

not rely on the complete history of the game. This rules out more complicated scenarios where a

player may employ punishment to drive an outcome. Nevertheless, in a finite game, this restriction

does not severely impede the implications of my findings. The state variable that sets each stage of

the game is the advantage that players have accumulated over all prior stages.

2.4 Model

There are two players with commonly known valuations v1 > v2 > 0. Player i’s bid in period t is

denoted b t
i . The timing of the game is as follows. Players enter the game evenly matched. At the

beginning of each period, the players bid simultaneously. The cost of bidding occurs at the time

of bidding, but no payoffs occur until the the end of the final stage. At the end of each stage the

bids are revealed. Players enter the following period knowing the history of bids. In each stage that

follows, players continue to bid simultaneously. At the end of the final stage, the player with the

highest aggregate bid wins the prize. If there is a tie, then the prize will be divided between those

who have the highest bid.

The gap between the stages allows each bidder to understand where he stands in relation to the

other bidder. Thus, they design their bidding strategies in each period based on what they have

observed in the past.

Definition 1 (Probability of winning). The probability that Player 1 wins is:
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P1(win) =



























1 if
∑N

n=1 b n
1 >

∑N
n=1 b n

2

1
2 if

∑N
n=1 b n

1 =
∑N

n=1 b n
2

0 if
∑N

n=1 b n
1 <

∑N
n=1 b n

2

and the probablity that Player 2 wins is:

P2(win) = 1− P1(win)

Given the game described above, players seek to maximize expected profit. Payoff only occurs

in the final round; however, bidding is costly in every round.

Definition 2 (Profit functions). The profit in round n for player i is

πn
i =−b n

i

for all n <N , and

πN
i =−b N

i + vi ∗ Pi (win)

in the final round, N . Therefore, the total profit, Πi is

Πi =
N
∑

k=1

πk
i

Because the players are accumulating an advantage over time, the model requires that we track

the amount of this advantage. The following defines the variable that will track the advantage.

Definition 3. In any period n,∆n represents the advantage at the start of stage n.

∆n =
n−1
∑

k=1

(b k
1 − b k

2 )

=
n−1
∑

k=1

b k
1 −

n−1
∑

k=1

b k
2

2.4.1 Effective bid

Neither player will bid a positive amount if that bid yields a negative expected profit. From this

statement, we know that πN
i ≥ 0. And this implies that c(b N

i ) ≤ vi or b N
i ≤ c−1(vi ). Because
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players have different valuations, this results in different upper bounds on their bidding. Player 1

has a higher upper bound since v1 > v2 and c is strictly increasing.

If this was a one period game, that would be the end of the story. But due to the prior stages,

the effective2 bid for Player 1 is b N
1 +

∑N−1
n=1 b n

1 and Player 2 is b N
2 +

∑N−1
n=1 b n

2 . That is, the
∑N−1

n=1 b n
i

entering the round affects the outcome of the game, but the cost has already been paid.

Proposition 1. Only the player with the higher limit on their effective bid in period N will earn positive

expected profits.

Proof. Suppose Player 1 has a higher limit on his effective bid in period N and does not earn positive

profit. The effective bid is the bid place in the current period combined with the cumulative bids

placed in early periods. The bids placed in early periods are a sunk cost. Therefore, the only

constraint on the bidding in the current period is that the cost of the bid cannot exceed the player’s

valuation. So, c(bi ) ≤ vi . Therefore the maximum bid in the current period is bi ≤ c−1(vi ). This

combined with previous bidding is the upper limit on Player i’s effective bid:

c−1(vi )+
N−1
∑

n=1
b n

i

So, if Player 1 has the higher limit,

c−1(v1)+
N−1
∑

n=1
b n

1 > c−1(v2)+
N−1
∑

n=1
b n

2

This implies that

c−1(v1)− c−1(v2)+
N−1
∑

n=1
b n

1 −
N−1
∑

n=1
b n

2 > 0

c−1(v1)− c−1(v2)+∆
N > 0

2Effective in terms of its impact on the probability of winning

16



In order for Player 1 to not earn positive profit

b N
1 +

N−1
∑

n=1
b n

1 < b N
2 +

N−1
∑

n=1
b n

2 ≤ c−1(v2)+
N−1
∑

n=1
b n

2 < c−1(v1)+
N−1
∑

n=1
b n

1

Which is to say,

b N
1 +

N−1
∑

n=1
b N

1 < c−1(v1)+
N−1
∑

n=1
b N

1

b N
1 < c−1(v1)

Yet this is suboptimal play for Player 1 who could increase b N
1 to c−1(v2)−∆N+εwithout exceeding

c−1(v1). Hence as long as c−1(v1)− c−1(v2)+∆
N > 0 Player 1 can guarantee himself positive profit

by bidding just over Player 2’s maximum profitable bid. The same reasoning holds for Player 2, if

Player 2 has the higher effective bid.

This proposition has implications for how the players behave in the game. In all previous peri-

ods, players, aware of where they stand in the game, can look forward and determine the impact of

their bids on the effective bids in the final round. They will only bid in the current period if they

believe that bidding will result in having the highest effective bid in period N .

To illustrate the equilibrium, I start by examining a two stage continuation contest. Using the

results of this examination, I will expand the solution to the multiple stage continuation contest.

2.5 The Two-Stage Continuation Contest

The contest is played in two stages, and players have valuations v1 > v2 > 0. At the beginning of

stage 1, the players bid simultaneously. The bids are then revealed but no payoffs occur in the first

period. In the second stage, players again bid simultaneously. At the end of the second stage, the

player with the highest aggregate bid wins the prize.

Based on definition 1, the probability that Player 1 wins is:
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P1(win) =



























1 if b 1
1 + b 2

1 > b 1
2 + b 2

2

1
2 if b 1

1 + b 2
1 = b 1

2 + b 2
2

0 if b 1
1 + b 2

1 < b 1
2 + b 2

2

The probablity that Player 2 wins, according to definition 2, is:

P2(win) = 1− P1(win)

In the two-stage game, the profit for Player i is:

Πi = π1
i +π

2
i

= −b 1
i − b 2

i + vi ∗ Pi (win)

= −b 1
i − b 2

i + vi ∗ Pi (b
1
i + b 2

i > b 1
−i + b 2

−i )

Finally, definition 3 allows us to calculate the advantage players hold when they enter the final

period:

∆N = b 1
1 − b 1

2

and this advantage is known to both players at the start of the final stage. To simplify notation,

I will refer to ∆N as ∆ because in the two-stage game there can only be an advantage in the final

round.

In a two-stage continuation contest, after the first round, there are three possible scenarios:

1. If∆= 0, neither player has an advantage

2. If∆> 0, Player 1 has an advantage

3. If∆< 0, Player 2 has an advantage

After the first stage, the bidding that has transpired is a sunk cost. Hence, the players will not factor

that sunk cost into their subsequent bidding decisions. However, because the outcome of the game

is based upon the cumulative bidding, the bidding in earlier rounds does affect the game. But only
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through the effect on the probability of winning the contest. Hence, in the second round, a players’

maximum bid is only bound by their valuation of the prize. But, in the first round, players are

aware of what it will take to win in the second round. Therefore, they will bid according to their

expectation of how the game will progress in the second round.

In the first scenario, where neither player has an advantage, the players enter stage 2 perfectly

matched. This is the case described by Che and Gale (1998). They find that without caps on bids,

expected revenue is strictly below v2. However, when bids are capped, there could be an increase in

competition that could raise expected revenue.

In the second and third scenarios, where one of the players has an advantage, Szymanski (2003)

explains the two concerns. First, if the players are far enough apart, the weak player may choose

not to participate. And, second, even if the both agents compete, overall effort may be dampened

as the advantaged player can exert less than his or her potential but still win.

The magnitude of the advantage will affect the behavior in the second stage. For example, if

b 1
2 − b 1

1 = v1− v2, then the second stage of the competition can be modeled as a symmetric all-pay

auction because the upper limit of each players bid is equal. The bottom line is that players will

behave strategically in the first round to shape the scenario in the second round.

2.5.1 Solution with linear cost of bidding

Consider the case where bidders face a linear cost of bidding (e.g, c(bi ) = bi ). The cost function is

common to both players. Again, v1 > v2 > 0 and players have complete information.

I will be more formal later, but consider the following. Player 1 has a higher valuation than

Player 2. Neither player will commit to a strategy that yields negative expected profit. Therefore,

Player 1 starts the contest with an advantage in that he has a higher upper bound on his willingness

to bid. In order for Player 2 to overcome this advantage, he must enter the final stage with ∆ such

that v2 −∆ > v1. This gives Player 2 the “ability” to outbid Player 1 and earn positive expected

profits. This is important as we will see because whomever has the ability to outbid will have

positive expected profits. Because the creation of ∆ is costly, Player 2 must find it profitable to

expend the effort in round 1 necessary to create the situation where v2 −∆ > v1. And, Player 1

must find is unprofitable to block such a move.
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Lemma 1. If ∆ > v2 − v1, then Player 1’s expected payoff is positive and Player 2’s expected payoff is

zero. If ∆ < v2 − v1, Player 2 receives a positive expected payoff and Player 1 receives zero. And, if

∆= v2− v1, each player has an expected payoff of zero. The full solution to the second stage problem is

presented in Table 2.1.

Proof. The proof is in the Appendix.

This outcome is due to the effective bid proposition above. If ∆ > v2 − v1, Player 1 has the

higher limit on the effective bid. And if, ∆ < v2 − v1 then Player 2 has the higher limit. The

solution of the second stage problem has three important results. First, one player will receive a

positive payout and the other will receive nothing. Second, both players will play mixed strategies

in the final round. Third, the magnitude of the advantage determines both who will receive a

positive payout, the amount of the payoff, and the mixing strategy for both players.

Having explored the possible outcomes in stage two, we turn our attention to stage one to find

the overall equilibrium of the model.

Proposition 2 (Equilibrium of the two stage continuation contest with linear cost of bidding). In

a two stage contest where two bidders with unequal valuations compete with linear cost of bidding, the

player with the lower valuation will bid zero in the first period. The player with the higher valuation

will bid any amount between zero and player two’s valuation. Then, in the second round, players will

bid using a mixed strategy according the following CDFs in Table 2.1.

Proof. The complete proof is provided below; however, this a brief sketch. Starting with round 2

and working backwards, we note that players will not employ a pure strategy in the final period

unless the ∆ is such that one player has no possibility of winning with positive profit. In this

event, the outcome of the contest is essentially predetermined and both players will bid zero. More

interesting is the case where there is competition in the final round.

At the beginning of stage one, both players are aware of v1 and v2. Players chose b 1
1 and b 1

2 ,

respectively, to maximize individual profit. Figure 2.1 shows the relationship between bid combi-

nations in the first round and payoffs in the second round. In the region shaded with green, Player

1 earns positive profit. In the red region, Player 2 earns positive profit. Note that it is not enough
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Figure 2.1: Payoffs from first round bids based on second round choices
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for Player 2 to have ∆ < 0. It must be that ∆ < v2− v1− ε. Otherwise, in round 2 he earns zero

profits. Therefore, he must bid at least b 1
2 ≥ v1− v2+ ε. Otherwise, he would prefer to bid zero.

Also, Player 2 cannot bid greater than v2 and earn positive profits. Hence, b 1
2 ∈ {0,[v1−v2+ε, v2]}.

Player 1 has the opportunity to earn nonnegative profits over the range [0, v1]. However, because

Player 2 will not bid higher than v2, b 1
1 ∈ [0, v2].

I begin by checking if bidding a positive amount is dominated by bidding zero. The maximum

profit for Player 2 occurs if Player 1 bids zero in the first round and Player 2 bids v1−v2+ε so that

he enters round 2 under case 3 at the lowest possible cost. In this case,∆= b 1
1 − b 1

2 =−v1+ v2−ε.

This yields profit in the second round of π2
2 = v2−v1−∆= v2−v1− (−v1+v2−ε) = ε. But, since

π1
2 =−(v1− v2+ ε), overall profit for Player 2 is.

Π2 = π1
2+π

2
2

= −(v1− v2+ ε)+ ε

= −(v1− v2)

Therefore, Player 2 earns negative profit for bidding any amount other than zero. Hence, in equi-

librium, Player 2 bids zero in the first round.

Knowing that in stage 1 b 1
2 = 0, Player 1 may bid any amount in the first stage3. And, ∆= b 1

1 .

Given expected profit in the second round is v1− v2+∆, overall profit is

Π1 = −b 1
1 + v1− v2+∆

= −b 1
1 + v1− v2+ b 1

1

= v1− v2

To summarize, we have that b 1
1 = [0, v2] and b 2

1 = G1(x) =
x+b 1

1
v2

. And, b 1
2 = 0 and b 2

2 =

G2(x) =
v1−v2+x

v1
. These strategies result in expected profit of Π1 = v1− v2 and Π2 = 0.

3Note that if there is discounting in the profit function, then Player 1 will delay bidding until the second period.
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2.5.2 Solution with convex cost of bidding

Until now, the cost of bidding has been a linear function of effort. However, in many circumstances,

the marginal cost of additional effort is increasing4. For example, in a sporting contest, it becomes

increasingly difficult to reduce race times. And, in academics, it may not require much additional

effort to raise a mark to a C from an F. But, to achieve an A+ versus an A may be highly costly. If

bidding cost is convex, there is a unique equilibrium.

Definition 4. Let c(b ) be the convex cost of bidding in each period, where c ′(b )> 0, c ′′(b )> 0 and

c(0) = 0.

The bidding strategy of the players affects profit through both the cost function and the probability

of winning. Despite the non-linearity in the cost function, the cost enters the payoff function

linearly. Therefore much of what has been determined with the linear cost functions carries over to

the non-linear cost function. The bid strategy can be expressed as the inverse of the cost function.

To determine the strategies, we again use backward induction.

In the second round, payoff functions for players are:

π2
1 = v1G2(b

2
1 +∆)− c(b 2

1 )

π2
2 = v2G1(b

2
2 −∆)− c(b 2

2 )

This is because Player 2 is using strategy G2 and the probability that Player 1 wins is:

P (b 1
1 + b 2

1 > b 1
2 + b 2

2 ) = P (b 2
2 < b 2

1 + b 1
1 − b 1

2 )

= P (b 1
2 < b 2

1 +∆)

= G2(b
2
1 +∆)

4In some specialized cases, such as when there is learning, there may be concave costs. However, I do not consider
concave costs in this paper.

24



Similarly, the probability that Player 2 wins under Player 1’s strategy of G1 is:

P (b 1
2 + b 2

2 > b 1
1 + b 2

1 ) = P (b 2
1 < b 2

2 + b 1
2 − b 1

1 )

= P (b 1
1 < b 2

2 −∆)

= G1(b
2
2 −∆)

Lemma 2. If ∆> c−1(v2)− c−1(v1), then Player 1’s expected payoff is positive and Player 2’s expected

payoff is zero. If∆< c−1(v2)−c−1(v1), Player 2 receives a positive expected payoff and Player 1 receives

zero. And, if ∆= c−1(v2)− c−1(v1), each player has an expected payoff of zero. The full solution to the

second stage problem is presented in Table 2.2.

Proof. Using the same technique detailed in the appendix for linear costs, one can determine the

payoffs, CDFs, and supports.

This cost structure will make minor changes to the profit and strategies of the players. How-

ever, the substance of the game is unchanged. The most significant impact is on the effective bid.

In the linear case, the difference between v1 and v2 determined the bid. Now, it is important to

consider not only this difference, but also the possibility that there could be a high marginal cost

of outbidding one’s opponent. Although the difference in valuation may be large, the difference in

maximum effective bid could be small.

Proposition 3. In a two stage contest where two bidders with unequal valuations compete with convex

cost of bidding, the player with the lower valuation will bid zero in the first period. The player with the

higher valuation will bid b 1
1 =

c−1(v2)
2 . Then, in the second round, players will bid using a mixed strategy

according the CDFs in Table 2.2.

Proof. Using the same reasoning as before, in the first round, Player 2 will select b 1
2 = 0. Otherwise,

Player 2 receives negative profits. However, now, to ensure minimal costs, Player 1 prefers to spread

costs over the two rounds. Thus in round 1, Player 1 recognizes that expected profit in the second

round is

π2
1 = v1− c(c−1(v2)− b 1

1 )
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And overall profit is

Π1 = v1− c(c−1(v2)− b 1
1 )− c(b 1

1 )

So, Player 1’s problem is to choose b 1
1 to maximize Π1.

argmax
b1

1

Π1

∂ Π1(b
1
1 )

∂ b 1
1

= 0

0 = c ′(c−1(v2)− b 1
1 )− c ′(b 1

1 )

c ′(c−1(v2)− b 1
1 ) = c ′(b 1

1 )

c−1(v2)− b 1
1 = b 1

1

c−1(v2) = 2b 1
1

b 1
1 =

c−1(v2)

2

The solution to Player 1’s problem is to choose b 1
1 =

c−1(v2)
2 . Note that this is exactly one-half

of the maximum that Player 1 will bid up to in the second round. If Player 1 does not make this

commitment in the first round, Player 2 will realize that Player 1 may not intend to bid up to

c−1(v2) in the second round. This will lead Player 2 to bid more aggressively in round 2.

Hence, the strategy for Player 1 is b 1
1 =

c−1(v2)
2 and b 2

1 =G1(b
2
1 ) =

c(x+∆)
v2
). Player 2’s strategy is

(b 1
2 = 0,G2(b

2
2 ) =

v1−c(c−1(v2)−∆)+c(x−∆)
v1

). Expected profits are

Π1 = v1− c(c−1(v2)−
c−1(v2)

2
)− c(

c−1(v2)

2
)

= v1− 2c(
c−1(v2)

2
)

and Π2 = 0.

Now that we have established what happens in a two stage game, we investigate the multiple-

stage game.
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2.6 The Multiple-Stage Continuation Contest

This section solves the case where there are N rounds in the contest. As above, two players with

valuations v1 > v2 > 0 compete and the prize is awarded to the player with the highest aggregate

bid. The cost of bidding in every period, c(b ) is convex, with c ′(b )> 0 and c(0) = 0, and the same

for each player.

Definition 5. In any period n,∆n represents the advantage at the start of stage n.

∆n =
n−1
∑

k=1

(b k
1 − b k

2 )

=
n−1
∑

k=1

b k
1 −

n−1
∑

k=1

b k
2

At the beginning of the first stage the advantage is zero (i.e., ∆1 = 0). After each stage, con-

testants learn b n−1
i and update ∆n after each stage. If ∆n is positive, Player 1 hold the advantage.

Whereas, Player 2 has the advantage if∆n is negative.

The method of finding the solution is identical to the two-stage problem. Therefore, the solu-

tion for the last stage is unchanged. Thus, the tables above are still valid. However, when N > 2,

there is more opportunity for players to accumulate an advantage.

Many of the proofs require comparison of inequalities. The following lemma is useful in this

exercise.

Lemma 3. If c is an increasing convex function and c(0) = 0, then c−1(λv1)> λc−1(v2) ∀λ ∈ [0,1].

Proof. Proof: If c is a increasing convex function, then c−1 is an increasing concave function. And,

by the definition of concavity, ∀λ ∈ [0,1] and x = 0:

c−1(λv2+(1−λ)x) ≥ λc−1(v2)+ (1−λ)c
−1(x)

c−1(λv2) ≥ λc−1(v2)

And, because v1 > v2, this means that λv1 > λv2. And because c−1 is an increasing function, we
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have the result that:

c−1(λv1) > c−1(λv2)≥ λc−1(v2)

c−1(λv1) > λc−1(v2)

2.6.1 Period N

In this period, Player 1’s objective is to maximize:

πN
1 = v1G2(b

N
1 +∆

N )− c(b N
1 )

and Player 2’s objective is to maximize:

πN
2 = v2G1(b

N
2 −∆

N )− c(b N
2 )

This is the same subgame as the final period of the 2 stage game described above. Therefore, the

solution is the same. Each player will play a mixed strategy represented by CDFs G1 and G2. And,

each player’s strategy is a function of the advantage,∆N .

Over the course of the contest, each player attempts to posture themselves so that they have

the higher limit on their effective bid in the final round. The following sections will examine the

bidding in prior periods. We will start with the N − 1 stage and then generalize to the N − k stage.

2.6.2 Period N-1

I now examine the case where players enter the second to last round without an advantage.

Proposition 4 (No mixed strategies). Neither Player 1 nor Player 2 will employ a mixed strategy in

his bidding.

The formal proof is in the appendix. However, it is constructive to examine why this is true.
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This is a winner take all contest. As a result, the players can work backwards from the end to know

where they stand in the competition. They know at any stage in the game what their effective

bid will be and the cost of raising their effective bid. Ultimately, one player will have the higher

maximum effective bid and earn positive expected profits. As a result, the other player would prefer

not to have bid at all.

Having established that players do not use mixed strategies, we turn our attention to pure strat-

egy equilibria. To simplify notation, we will refer to bids without superscripts. So, in stage N − 1,

Player 1 bids b1 and Player 2 bids b2.

Proposition 5 (Pure strategy equilibria). For stage N − 1, the following describes the Markov perfect

equilibria:

If∆N−1 ≥ c−1(v2)−2c−1( v1
2 ) and∆N−1 > 4c−1

� v2
2

�

−2c−1(v1)− c−1(v2), then an equilibrium exists

where:

b ∗1 =
c−1(v2)−∆N−1

2
b ∗2 = 0

and the value functions are:

V1 = v1− 2c(
c−1(v2)−∆N−1

2
)

V2 = 0

If∆N−1 ≤ 2c−1
� v2

2

�

− c−1(v1) and∆N−1 < 2c−1(v2)+ c−1(v1)− 4c−1( v1
2 ):

b ∗1 = 0

b ∗2 =
c−1(v1)+∆

N−1

2
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and the value functions are:

V1 = 0

V2 = v2− 2c(
c−1(v1)+∆

N−1

2
)

The proof is given in the Appendix, but the rationale is as follows. With the advantage, ∆N−1,

players must first decide if they wish to bid at all. There are four possible scenarios. The first

scenario has both Player 1 and Player 2 bidding a positive amount. The second scenario is where

only Player 1 bids a positive amount. In the third scenario, Player 2 bids a positive amount and

Player 1 bids zero. Finally, in the fourth scenario, both players bid zero. First, I show that due

to the threshold, it cannot be that both players will find it profitable to bid. Therefore, only one

player will bid a positive amount. To determine which player, I must first determine the conditions

where it is profitable for a player to bid. And, having established that condition, I must specify the

condition where the other player would not find it profitable to deviate from bidding zero. Hence,

either the advantage or the amount of the bid must be sufficient to discourage entry. Otherwise, the

other player may wish to intercede. It may be that there is a region where both players are willing

to bid. In this region, there are two possible equilbria: one where the high valuation player bids

positively and wins. And, the other where the lower valuation bids profitably and wins. Finally, I

show that there is no situation where both players bid zero. Because of the convexity of the cost

function, the player who has the advantage in terms of valuation or delta, will want to bid in order

to avoid the high marginal cost of bidding later in the game.

Having established the two possible equilibria and their necessary conditions, I can generalize

these results to any period prior to the final period.

2.6.3 Period N-k

A player will only bid in period N − k if the bid will lead to a positive expected profit in the final

round. The analysis for period N − 1 shows that there are four conditions that define the equilibria

of this model.
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Lemma 4 (Conditions for equilibria). There are four cases5 to consider. In period N − k:

1. It is profitable for Player 1 to bid if Player 2 bids zero.

2. It is not profitable for Player 2 to outbid Player 1 if Player 1 bids.

3. It is profitable for Player 2 to bid if Player 1 bids zero.

4. It is not profitable for Player 1 to outbid Player 2 if Player 2 bids.

If both conditions 1 and 2 are satisfied and if either condition 3 or 4 is not, then there is only

one equilibrium where Player 1 bids and Player 2 does not. On the opposite side, if conditions 3

and 4 are satisfied and either 1 or 2 is not, then the only equilibrium is one in which Player 2 bids

and Player 1 does not. But, if all four conditions are satisfied, then there are multiple equilibria.

Either Player 1 will bid and Player 2 will not or Player 2 will bid and Player 1 will not.

I can now generalize the value functions and bid function for any period.

Proposition 6. When Player 1 bids and Player 2 does not, the value functions for Player 1 and 2 are:

V N−k
1 = v1− (k + 1)c

 

c−1(v2)−∆N−k

k + 1

!

V N−k
2 = 0

and Player 1 bids:

b N−k
1 =

c−1(v2)−∆N−k

k + 1

And, when Player 2 bids and Player 1 does not, the value functions are:

V N−k
1 = 0

V N−k
2 = v2− (k + 1)c

 

c−1(v1)+∆
N−k

k + 1

!

5The cases presented here are endogeneous. However, as I have shown in the period N−1 analysis above, it is possible
to develop these conditions from the primitives.
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and Player 2 bids:

b N−k
2 =

c−1(v1)+∆
N−k

k + 1

Proof. This proof is by induction and is in the appendix.

One important implication is that as a player’s advantage increases, b N−k
i decreases. Therefore,

a contest where one player amasses a large advantage results in decreased effort later in the contest.

2.7 Examples

This section will explore two example situations to provide context and show the existence of the

region where multiple equilibria exist.

First consider the case where n =N − 1, c(x) = x2, v1 = 10, and v2 = 9. In this scenario, we are

in the second to last round of the competition. If ∆n > 0.218, Player 2 will not find it profitable to

challenge Player 1. The unique equilibrium will be one where Player 1 bids and Player 2 does not.

If ∆n <−0.839, Player 1 will not challenge Player 2. Therefore, Player 2 will bid and Player 1 will

not. However, if∆n is greater than -0.839 and less than 0.218, either Player 1 or Player 2 may bid a

positive amount. But, the other player will bid zero. This is because there is no profitable deviation

for either player if the other bids positively. For example, if∆n = 0, there are two equilibrium.

1. b1 = 1.5 and b2 = 0 resulting in V1 = 5.5 and V2 = 0

2. b1 = 0 and b2 = 1.58 resulting in V1 = 0 and V2 = 4

In the first equilibrium, Player 2’s most profitable deviation is to bid 2.33. However this still does

not breach the threshold to win the contest. Therefore, the outcome from bidding such an amount

is -2.33. In the second equilibrium, Player 1 can cross the threshold by bidding 2.29. However, the

expected profit from doing so is -0.4934. Therefore, Player 1 would prefer not to deviate.

The first equilibrium is not efficient because 37.2% of the time, Player 1 does not receive the

prize. And, the second equilibrium is even worse from an efficiency standpoint with Player 2

winning 63.1% of the time. However, if the principle is solely interested in inducing effort, the
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second equilibrium provides a higher expected revenue. The total expected revenue in the first

equilibrium is 2.69; whereas, in the second equilibrium, it is 2.82.

As a second example, we will use the same scenario as before, except that the cost function will

now be c(x) = x4. Before the range for multiple equilibrium was −0.839 < ∆n < 0.218. With

the same valuations, the difference in these bounds shrinks to ε. Hence, there is essentially no

opportunity for multiple equilibria.

2.8 Remarks

If the cost function is highly convex and the players have close valuations, then there is a region

where either player bidding is an equilibrium. The analysis above shows that the multi-stage all-pay

auction may cause an agent to reduce overall output compared to the single-stage competition. This

result is driven by the high level of information that agents have about valuations and their position

in the competition. If there were more uncertainty in the model, there may be a higher level of total

effort (Petrenko, 2008).

If an agent were to face a shock, especially early in the competition, it could allow an opening for

a competitor with lower prize valuation to gain an upperhand and eventually win the competition.

Because of this possibility, it is difficult to make the argument that the contest results in an outcome

where the highest valuation contestant is selected. Hence, if the prize of the contest is meant to

convey information to future employers about the quality of the contestant, this structure may not

have the intended consequences.

As the distance between v1 and v2 increases, the range where there are multiple equilibria is

reduced. The distance required to eliminate the possibility of multiple equilibria depends on the

convexity of the cost function. As the cost function becomes more convex, less separation between

the valuations is required to eliminate the possibility of multiple equilibria. This is because though

the player with the higher valuation can place the higher effective bid, the marginal cost of increas-

ing the bid makes it unprofitable to do so.

There are several empirical implications that arise from this model. Of course, there will be

more ambiguity from an observed continuation contest. Nevertheless, we should see that a player
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who does not have the highest valuation winning the competition. This is perhaps the most striking

result of the model. Furthermore, we should observe that players’ level of effort changes based on

where they are in relation to other players. A player at the top of the order in any period should

remain in the top at the next period. And a player lower in the order should remain lower in the

following periods. This is due to the dynamic nature of the contest. As the advantage a player

holds over his opponent increases, the amount of effort required to hold that advantage decreases.

The disadvantaged player observes that he is no longer “in the running” for the prize and therefore

reduces effort. The advantaged player, aware of this, can reduce effort accordingly and still maintain

the advantage necessary to win.

2.9 Conclusion

It is important when devising incentive structures that their implementation be robust. Though

this model contains many simplifying assumptions, the underlying premise suggests that there is

a likelihood that multiple equilibria may exist in competition. If the structure of the contest is

meant to select the player with the highest valuation, there is the possibility that a player with

a lower valuation may win. And, if the prize of the contest is meant to convey information to

future employers, this possibility undermines the efficacy of the signal. Additionally, if the contest

is meant to extract the maximum possible effort from participants, a large advantage may reduce

effort from both players.
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Chapter 3

Value of an Educational Signal on a Distant

Career Outcomes

This chapter investigates the effect that an educational signal has on a distant career outcome. The

purpose behind this investigation is to identify if a signal, which is bestowed on top graduates, has

value from a career standpoint. Using data from the United States Air Force Academy (USAFA), I

measure the effect that the Distinguished Graduate (DG) designation has on subsequent officer per-

formance. One empirical challenge in measuring the effect of the DG designation is that we cannot

observe how an individual would have performed had they not achieved this distinction. However,

because the designation of DG is based on an assignment rule, it is possible to use a Regression

Discontinuity Design (RDD) to identify the causal effect of the DG signal on the likelihood that

graduates will be in the top twenty percent of their officer cohort, as revealed through Intermediate

Developmental Education (IDE) “In-Residence” selection. As there are limited opportunities for

development, the Air Force struggles to identify those with great potential early in their careers.1

Whenever a designation is bestowed based on performance, one may ask if later outcomes are

due to the characteristics associated with the performance or if the designation in and of itself is the

causal factor. The latter has become known as the “sheepskin” effect because possession of a degree

may act as a signal to employers. Spence (1973) and Arrow (1973) were the pioneers of the edu-

cational signaling literature. And, Weiss (1995) argues that any attempt to examine the economic

1Panel Prods Academies to Groom Elite Officers, Air Force Times, 20 July 2009.



returns to education must consider the impact of signaling effects. Furthermore, there is a rich

body of research to determine the returns to education. In this regard, the following analysis ex-

plores the signal of DG designation and its impact on distant career outcomes. Though this analysis

capitalizes on the unique properties of the USAFA environment, the findings are applicable in a

broader setting. The DG designation is comparable to the summa cum laude designation bestowed

by many civilian universities. Furthermore, in an environment where there is increasing grade in-

flation (Chan, Hao, and Suen, 2007), a rank-based distinction may help identify which students are

truly at the head of the class.

While it is fruitful in itself to explore this signaling value, determining the effect of DG on IDE

is part of my broader research agenda where I explore the incentive structure at the United States

Air Force Academy. The situation at USAFA is unique in that it allows empirical analysis, partic-

ularly of the final semester at the Academy. Cadets compete in a multi-stage tournament for DG

recognition. A central facet of the tournament is the prize for which agents compete. In addition to

the DG prize, cadets vie for higher class rank so they can have a better choice of assignment, oppor-

tunities for graduate school, and extra privileges while at USAFA. Because these other prizes have

been awarded by the last semester, the analysis of the competition is greatly simplified. Therefore,

this analysis focuses on the valuation of the DG prize. The valuation includes the intrinsic value

of the prize held by the cadet and the extrinsic value that the prize may have on future career out-

comes. The prize’s intrinsic value may be the pride that a winner feels from having done well. This

intrinsic value is heterogeneous across competitors. The extrinsic value of the prize is the impact

that the DG status has on an officer’s career progression. As the intrinsic valuation varies greatly

across individuals, I focus on the extrinsic valuation.

Agents who have higher valuation for a prize will exert higher effort. In addition, average effort

increases as the number of prizes available increases (Harbring and Irlenbusch, 2003). Early research

of tournaments focused on agents drawn from an identical distribution. Hence, the principal was

concerned with effort levels rather than selection. Clark and Riis (2001) consider the case where

principals have preferences over agents. They show that a two-tiered prize structure can ensure

that selection is perfect. Before I examine the strategic behavior of cadets, I must first have a better

understanding of the prize for which they compete.
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This chapter is organized into five sections. The next section describes the scenario at USAFA

and the data. The second section explains the identification strategy. Section three explains the var-

ious methodologies employed to examine the effect of DG on IDE selection. Section four contains

remarks on the results of the empirical analysis. The final section explains the ramifications of these

results on the incentives at USAFA.

3.1 Background and Data

Many authors have attempted to characterize the relationship between educational signals and ca-

reer outcomes. Card (1999) provides a survey of the empirical issues and some attempts to overcome

these challenges. Since that article was written, the search for a connection between education and

earnings has continued. Psacharopoulos and Patrinos (2004) provide a compendium of returns to

education studies using data from various countries. Finding data that are robust enough to address

the central question is challenging. The Current Population Survey (CPS) and the National Longi-

tudinal Surveys (NLS) are popular sources for empirical work. My research relies upon the unique

properties of the United States Air Force Academy and the United States Air Force promotion sys-

tem to address the impact that an educational signal has on career outcomes. While most studies in

this vein address the impact of an additional year of schooling, this contribution is unique because

there are no studies that examine how graduation honors impact earnings. As grade inflation be-

comes more of an issue, employers may begin to view honors as a distinguishing characteristic. Yale

has taken steps to ensure that its honors designations are limited to those students at the top of the

class rather than those above a GPA threshold.2

Among colleges and universities in the United States, the Academy is unique in that it serves a

dual role: provide a liberal education with a technical focus as well as prepare graduates for military

service. Graduates of the Academy have been successful in both military and academic settings.

Since its establishment in 1959, it has produced 35 Rhodes Scholars, 10 Marshall Scholars, 14 Tru-

man Scholars, and 36 Fulbright Scholars. In addition, over 470 graduates have served as general

2Yale Moves to Make Cum Laude Mean More, New York Times, 22 May 1988.

38



officers.3 At the same time, cadets who attend the Academy are not unlike those who attend other

prestigious universities. Previous studies that have used data on Air Force Academy cadets have

found that the demographics at the Academy are similar to civilian schools that focus on technical

degrees.4

Upon graduation, cadets fulfill their commitment to serve for five years as active-duty Air Force

officers. Based on their performance at the Academy, cadets choose a job classification according to

their preferences from a menu of career openings. The Air Force refers to these job classifications

by Air Force Speciality Codes (AFSC). There are nine top-level speciality codes: operations, logis-

tics, support, medical, legal, acquisitions, office of special investigations (OSI), special, and student.

Furthermore, there are two broad classes of officers in the Air Force. Those who are medically

qualified may choose to attend pilot or navigator school. Officers who complete this training are

known as rated officers. Those who do not are considered non-rated officers. Typically, rated

officers are assigned an operations speciality code.5 Non-rated officers serve in logistics, commu-

nications, maintenance, special investigations, and acquisitions.6 Rated officers enter pilot training

following graduation. Based on their performance in pilot training, they are assigned to specific

aircraft. This aircraft type will dictate the type of mission and location of assignments. Hence,

non-rated officers compete for their job and basing location while at the Academy. Rated officers

do not compete for these details until they enter pilot training.

At graduation, cadets are recognized as Distinguished Graduates if they are in the top ten percent

of their class according to their Officer Performance Average (OPA). The OPA consists of measures

of performance from academic, military, and athletic endeavors. While the weighting of these three

measures has changed slightly over time, the largest component of the OPA is the academic grade

point average (GPA). Typically, 80 percent of OPA is GPA. Upon graduation, cadet records are

sealed. Only the DG designation follows a cadet into the officer corps. Hence, one of the benefits

3USAF Academy Institutional Self-Study Report (2009)

4See Carrell, Page, and West (2009), Table 1 for comparison to peer institutions

5In the data used in this study, 85 percent of rated officers have an operations AFSC.

6A small subset of cadets enter the legal and medical branches. Because these career fields are promoted in separate
boards, graduates in these fields are not included in this analysis.
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of achieving this distinction is that it is reflected in the officer selection brief when graduates come

before their promotion board. Part of the value of the prize is the impact that the designation has

on promotion.

Officer advancement is based on the outcome of promotion boards held centrally at Air Force

Personnel Center at Randolph Air Force Base outside San Antonio, Texas. Promotion to service in

a higher rank is not a reward for successful performance. Rather, it is a recognition that a service

member is capable of additional duty and responsibility. While previous experience is an indicator

of this capability, it is not the sole factor that determines promotion. The promotion board also

considers recommendations from superiors, peer stratification, and training and education. Again,

records from the Academy are sealed. However, the board is informed of the officer’s commission-

ing source (USAFA, ROTC, or OTS) and whether he graduated with distinction.

Eligibility for promotion is based on time in grade. Graduates enter the Air Force with the rank

of Second Lieutenant. After two years, officers become eligible for promotion to First Lieutenant.

After two years as a First Lieutenant, officers are eligible to become Captains. The advancement

to these ranks is fairly automatic. No formal promotion boards are held. Thus, the promotion to

Major is the first time that an officer faces a promotion board. At this point, officers are selected

for both promotion and In-residence Intermediate Development Education (IDE). This selection

identifies the top twenty percent of the officers in that year group. Hence, it is possible to compare

the top performing officers, those selected for In-residence IDE, to the top performing cadets, those

designated as Distinguished Graduates. Furthermore, In-residence selection is an important signal

to future promotion boards. While all officers must complete IDE, either by correspondence or

in-residence, to be eligible for promotions beyond Major, those selected for In-residence IDE are

in effect “primed” for future promotion opportunities. If Air Force promotion boards use the DG

information as a signal of capability, then there should be a positive correlation between DG and

IDE.

The data used in this thesis was supplied by the USAF Academy’s Office of Plans and Programs

under the supervision of the Academy’s Institutional Review Board (IRB). The data contain obser-

vations from the class of 1982 to 1995, the most recent class to complete IDE. For each cadet, there

is demographic information, admissions data, cadet performance measures, and officer performance
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measures. The variables and summary statistics are listed in Appendix A.

3.2 Identification Strategy

The aim of this paper is to measure the impact of achieving the designation of “Distinguished Grad-

uate” (DG) on the selection to attend Intermediate Developmental Education (IDE) “In-Residence”.

There are significant empirical difficulties in identifying the impact that an honors designation has

on future career outcomes. One inherent problem is that it is impossible to know what the in-

residence determination would have been had an individual, who graduated as a DG, not received

this designation. Similarly, the data cannot identify what a non-DG’s outcome would have been if

she or he had been a DG. Econometric techniques can mitigate this problem.

Due to the nature of these data, there are no observations with identical covariates who progress

through the system with and without the signal. Without such a counterfactual there is no possi-

bility of using matching as an identification model. In my analysis, I have explored using LPM,

probit, and bivariate probit models to identify the causal effect of the DG signal. However, due

to the unobserved heterogeneity between the DG signal and the IDE selection outcome variable,

these models produce a biased effect of DG on IDE. To correct for this issue and give weight to the

results, I use a discontinuity design based on the assignment rule for DG to isolate the effect of the

DG designation. As long as the covariates associated with DG are continuous over the cutoff, we

can infer that those in a small neighborhood on opposite sides of the cutoff are equivalent except for

the possession of the DG designation. Given this equivalence, we can determine the unconfounded

influence of DG on IDE selection.

3.3 Empirical Analysis

3.3.1 LPM and Probit

It is constructive to run a simple linear probability model (LPM) to determine if DG has a statisti-

cally significant effect on the likelihood that an officer is selected for IDE. In this most basic model,

DG has a significant effect on IDE selection. This is true in the five specifications detailed in Table
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3.1. The first, second, and third specifications contain all observations from the classes of 1982-1995

who are commissioned as Air Force officers and achieve the rank of Major. The fourth and fifth

specification divide the observations into those who are rated and those who are non-rated.7 The

LPM model is:

I DEi =β0+β1DGi +β
′
2Si + εi

The covariates included in Si vary across specifications. All specifications include controls for over-

all performance average,8 state of residence, and class year. The first specification includes demo-

graphic variables for gender,9 race, and academic composite score. The second specification adds

recruited athlete, intercollegiate athlete,10 and age at commissioning to the first specification. The

third, fourth, and fifth specifications include the officer job classification, whether the officer ever

married, the number of dependents the officer has, and whether the officer has earned an advanced

academic degree. The excluded group is the white male who was not a recruited athlete, did not

participate in intercollegiate sports, and serves under the operator AFSC.

Because selection to In-residence IDE is a binary variable and the linear probability model may

yield predictions outside this range, Table 3.2 contains the same specifications described above using

a probit model. Now, the results are mixed. The first two specifications indicate that DG has a

positive effect on In-residence IDE selection. But, once post-graduation controls are added to the

model, this effect is no longer statistically significant.

While the probit model does restrict predicted probabilities to between zero and one, serious

issues remain. Almost assuredly, there is endogenity with regards to the DG variable and the unob-

served characteristics. Consider an individual who is highly motivated. This motivation may not

7Rated officers receive their assignments in a different manner than non-rated officers. Therefore, I have included
tables in the Appendix that focus solely on rated officers. Also, only three rated officers who attain the rank of Major
serve under the OSI job classification. None of these officers are selected for In-Residence IDE. Hence, the coefficient on
specification (4) for AFSC_osi is zero in the linear probability model and these observations are dropped from the probit
model.

8Because DG is determined by OPA, I have also run the same specifications without controlling for OPA. These
results, presented in the Appendix, do not differ substantially.

9Because women comprise less than twenty percent of a graduating class, I’ve included addition tables in the appendix
that focus on males only. Again, the results are not substantially different.

10There may be concern that recruited athlete and intercollegiate athlete are highly correlated. In the sample, the
correlation coefficient between these variables is only 0.4754.
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Table 3.1: Marginal Effect on Selection to In-Residence IDE – by LPM

(1) (2) (3) (4) (5)
VARIABLES All All All Rated Non-rated

Distinguished Graduate 0.0716*** 0.0703*** 0.0557** 0.0464* 0.0724*
(0.0234) (0.0233) (0.0229) (0.0280) (0.0425)

OPA 0.154*** 0.152*** 0.126*** 0.130*** 0.124***
(0.0169) (0.0166) (0.0159) (0.0194) (0.0291)

female -0.00890 -0.0145 -0.0153 -0.0460* -0.00876
(0.0144) (0.0149) (0.0156) (0.0243) (0.0202)

minority (non-white) -0.0155 -0.0103 -0.00826 -0.0264* 0.0173
(0.0123) (0.0124) (0.0116) (0.0147) (0.0198)

intercollegiate athlete 0.00474 0.0112 0.0123 0.00724
(0.0129) (0.0124) (0.0137) (0.0211)

recruited athlete 0.0343** 0.0282** 0.0139 0.0593**
(0.0144) (0.0139) (0.0154) (0.0235)

academic composite score -8.38e-05*** -7.06e-05*** -7.92e-05*** -9.05e-05*** -6.61e-05*
(1.95e-05) (2.03e-05) (1.92e-05) (2.33e-05) (3.52e-05)

AFSC - logistics 0.0220 -0.0162 -0.0181
(0.0226) (0.0592) (0.0278)

AFSC - support 0.0118 -0.0316 -0.0173
(0.0175) (0.0437) (0.0242)

AFSC - acquisitions -0.0328** -0.0451 -0.0561***
(0.0144) (0.0440) (0.0204)

AFSC - osi -0.0332 0 -0.0566
(0.0524) (0) (0.0555)

AFSC - special -0.0841*** -0.0509 -0.146***
(0.0250) (0.0311) (0.0406)

AFSC - student -0.0284 -0.0143 -0.0863**
(0.0200) (0.0223) (0.0435)

ever married – binary 0.0714*** 0.0609*** 0.0961***
(0.0159) (0.0202) (0.0288)

advanced academic degree 0.259*** 0.257*** 0.247***
(0.00778) (0.00920) (0.0135)

Age at Graduation -0.0141** -0.0128** -0.0148** -0.0138
(0.00565) (0.00530) (0.00611) (0.00989)

maximum number of dependents 0.00671** 0.00992** -0.000349
(0.00309) (0.00385) (0.00562)

Constant 0.461** 0.743*** 0.385* 0.256* 0.424
(0.202) (0.227) (0.228) (0.154) (0.363)

Observations 8476 8476 8476 5673 2803
R2 0.069 0.070 0.153 0.175 0.138

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table 3.2: Marginal Effect on Selection to In-Residence IDE – by probit

(1) (2) (3) (4) (5)
VARIABLES PR1 PR2 PR3 PR4 PR5

Distinguished Graduate 0.0486** 0.0473** 0.0247 0.00829 0.0580
(0.0217) (0.0215) (0.0184) (0.0186) (0.0420)

OPA 0.165*** 0.163*** 0.127*** 0.122*** 0.130***
(0.0175) (0.0173) (0.0153) (0.0170) (0.0305)

female -0.00918 -0.0144 -0.00585 -0.0347* -0.00378
(0.0144) (0.0148) (0.0139) (0.0183) (0.0206)

minority (non-white) -0.0168 -0.0115 -0.00908 -0.0275** 0.0206
(0.0126) (0.0129) (0.0108) (0.0116) (0.0217)

intercollegiate athlete 0.00498 0.00764 0.00844 0.00596
(0.0132) (0.0113) (0.0114) (0.0206)

recruited athlete 0.0342** 0.0262** 0.0104 0.0618**
(0.0148) (0.0130) (0.0127) (0.0245)

academic composite score -8.86e-05*** -7.67e-05*** -7.58e-05*** -8.39e-05*** -5.93e-05*
(1.96e-05) (2.05e-05) (1.75e-05) (1.92e-05) (3.50e-05)

AFSC - logistics 0.0206 -0.0221 -0.0163
(0.0185) (0.0446) (0.0249)

AFSC - support 0.0148 -0.0481 -0.0119
(0.0154) (0.0478) (0.0231)

AFSC - acquisitions -0.0216** -0.0184 -0.0532***
(0.0109) (0.0276) (0.0190)

AFSC - osi -0.0231 -0.0543
(0.0398) (0.0479)

AFSC - special -0.0811*** -0.0608** -0.133***
(0.0183) (0.0248) (0.0267)

AFSC - student -0.0219 -0.00927 -0.0696*
(0.0216) (0.0227) (0.0418)

Age at Graduation -0.0157** -0.0108** -0.0117** -0.0148
(0.00613) (0.00520) (0.00551) (0.0106)

maximum number of dependents 0.00772*** 0.00938*** 0.00105
(0.00292) (0.00331) (0.00557)

Observations 8476 8476 8476 5654 2800
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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be captured in the covariates. Hence, it appears in the error term. At the same time, that motivation

will affect both the likelihood that an individual becomes a DG and the likelihood that he is selected

for IDE. Therefore, the results of the LPM and probit specifications detailed in Table 3.1 and 3.2 are

biased.11 To determine if there is correlation between the two binary outcomes, DG and IDE, we

can employ a bivariate probit model.

3.3.2 Bivariate Probit

There may be unobserved heterogeneity that affects both selection to In-residence IDE and selection

as a DG. To test for this, I used a bivariate probit specification as described in Cameron and Trivedi

(2005):

I DEi =β0+β1DGi +β
′
2Si + εi (3.1)

DGi = α0+α
′
1Ti +µi (3.2)

where Si and Ti are observable characteristics affecting I DE and DG selection for individual i . If

ρ, the correlation between εi and µi , is zero, then (3.1) and (3.2) can be considered separately.

The results of the bivariate probit model are presented in Table 3.3. Because ρ is not significant,

we have that there is no correlation between the error terms. Specification (1) in Table 3.3, which

corresponds to equation (3.1) above, shows that DG does not affect IDE selection. However OPA,

from which the DG distinction is based, does have a significant effect on selection for IDE. I also

considered a model that omits OPA from equation (3.1). The effect of DG on IDE remains insignif-

icant.12 The insignificance of ρ is another indication that IDE and DG selection are unrelated by

unobservables. However, the results are unstable, and the model is probably not identified. There

may be endogeneity in the covariates which could be marring these results.

11Blackburn and Neumark (1995) find that omitted ability measures may lead to upward bias in OLS estimation of
economic returns to schooling. This suggests that the impact of DG may be overstated.

12Appendix C, Table C.3.
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Table 3.3: Bivariate Probit

(1) (2) (3)
VARIABLES IDE DG ρ

Distinguished Graduate 0.300
(0.404)

OPA 0.596***
(0.0666)

female -0.0130 -0.390***
(0.0699) (0.0889)

minority (non-white) -0.0294 -0.131
(0.0683) (0.146)

intercollegiate athlete 0.0481 -0.0964*
(0.0441) (0.0573)

recruited athlete 0.102** -0.0616
(0.0422) (0.0721)

academic composite score -0.000398*** 0.00263***
(0.000140) (0.000164)

advanced academic degree 1.667*** 0.415***
(0.169) (0.0614)

attended prep school 0.112** -0.871***
(0.0561) (0.155)

AFSC - logistics 0.0801
(0.113)

AFSC - support 0.0689
(0.0657)

AFSC - acquisitions -0.106**
(0.0464)

AFSC - osi -0.102
(0.228)

AFSC - special -0.513***
(0.125)

AFSC - student -0.0925
(0.196)

Age at Graduation -0.0769*** 0.0715**
(0.0170) (0.0340)

maximum number of dependents 0.0364**
(0.0166)

parent attended an academy -0.115
(0.116)

sibling attended an academy 0.0276
(0.0827)

Constant -0.169 -16.61 -0.112
(0.706) (.) (0.218)

Observations 8476 8476 8476
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, afsc_operator
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3.3.3 Regression Discontinuity Design

There are several approaches to dealing with the potential endogeneity of explanatory variables.

Panel methods, matching, and instrumental variables are traditional means to obtain unbiased esti-

mates. Because the DG signal is bestowed according to an assignment rule, I can use the regression-

discontinuity design approach to study the outcome in a quasi-experimental manner. In a pure

experiment, I would be able to randomly assign a treatment, in this case the DG designation, to

individuals and observe the impact on the outcome of interest, selection to In-residence IDE. With

observational data, the treatment is not assigned by either the researcher or a defined process; there-

fore, the analysis is more difficult. However, with an assignment rule and if certain assumptions

hold, it is possible to treat the observation data as if it were experimental. This is the purpose of the

regression discontinuity design (RDD).

The discontinuity design procedure is set forth by Imbens and Lemieux (2008) and van der

Klaauw (2008). Though this technique was first used by Thistlethwaite and Campbell in 1960, it has

recently grown in popularity, particularly in the research on education interventions. This has led

to empirical advances and the codification of best practices. There are two types of discontinuities

exploited by RDD: sharp and fuzzy. A sharp discontinuity is one where there is a firm cut-off

where all observations that meet this threshold receive the treatment. In a fuzzy discontinuity,

there is strong evidence of an assignment rule, but it is not deterministic. Rather, there is some

variability around the cut-off as to whether the treatment is observed.

Data suited for RDD do not admit observations where an individual both receives treatment

in one instance and then does not receive the treatment in another. In addition, an important as-

sumption required for identification is that the regression functions, conditioned on the covariates,

are smooth and continuous. One drawback of the discontinuity design is that it identifies only the

treatment effect for the covariates close to the cut-off. While these effects may be useful for the

question at hand, the results are not applicable in a more general setting.
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Key Assumptions

The discontinuity design exploits the rank-ordering inherent in the DG signal. Because there is a

cut-off that determines DG, it is reasonable to assume that those who are just short of the mark

are similar to those who just make it. Based on this reasoning, I can consider individuals who have

OPAs close to the cut-off as the same for econometric purposes. Thus, if members of this group

who have the DG distinction are more likely to be selected for In-residence IDE than those who

are not DGs, then we can conclude that the DG designation has an impact. Close is a relative term.

Adjustments to the bandwidth around the cutoff will impact the results. The results presented

use a bandwidth of ±0.1 from the OPA cutoff for DG. However the results hold for a range of

bandwidths. Table 3.4 shows how the choice of bandwidth changes the effect of DG on IDE. The

table investigates four cutoffs: all observations with OPA > 1, observations with OPA within 0.1

of the cutoff, within 0.05 of the cutoff, and within 0.01 of the cutoff.

Having established the appropriate bandwidth with which to examine the discontinuity, it is

important to test the assumption that those who border the cut-off are the same except for the treat-

ment. This is accomplished by examining covariates both graphically and analytically. Graphical

results are presented in Figure 3.1. These variables, which are detailed in Table C.10 of Appendix

C, allow me to note if any observable characteristics are responsible for differences in in-residence

selection. If, for example, gender plays a role, then I cannot isolate the effect of the DG signal. So,

to conclude that it is the DG distinction that has an impact and no other, I must examine other

factors that may play a role in the selection for IDE. The figures represent a local linear regression

on each side of the cut-off for DG. Gender, race, age at commissioning, high school GPA, academic

composite, candidate fitness test score, military performance average, and rated status are depicted.

The graphs of these covariates all appear smooth and continuous across the cut-off. Detailed ex-

amination of the coefficient on DG for each covariate confirms that the characteristics are smooth

across all except military performance average (MPA). This is not unreasonable given that MPA

accounts for between fifteen and twenty percent of OPA depending on the class year. However, the

coefficient on treatment variable is insignificant for all other covariates.
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Table 3.4: Effect of Distinguished Graduate on Selection to In-Residence IDE – by bandwidth

(1) (2) (3) (4)
VARIABLES All ±0.1 ±0.05 ±0.01

Distinguished Graduate -0.0107 0.0729 0.205 -0.208
(0.0636) (0.0865) (0.122) (0.183)

female -0.0151 -0.106 -0.115 -0.709
(0.0157) (0.0846) (0.101) (0.348)

minority (non-white) -0.00883 -0.0469 -0.153 -0.232
(0.0116) (0.102) (0.123) (0.382)

intercollegiate athlete 0.0112 -0.00936 -0.0251 -0.277
(0.0124) (0.0462) (0.0444) (0.152)

recruited athlete 0.0277** 0.00761 0.0203 -0.348
(0.0140) (0.0944) (0.186) (0.148)

academic composite score -7.99e-05*** -4.25e-05 -0.000159 0.000373
(1.93e-05) (0.000106) (0.000134) (0.000230)

AFSC - logistics 0.0214 0.185 0.0238 0.723
(0.0226) (0.168) (0.298) (0.479)

AFSC - support 0.0114 -0.0772 -0.0706 -0.566
(0.0175) (0.0987) (0.147) (0.484)

AFSC - acquisitions -0.0336** -0.0734 -0.0269 -0.113
(0.0143) (0.0586) (0.0759) (0.245)

AFSC - osi -0.0334 0.186 -0.180 0.453
(0.0527) (0.220) (0.264) (0.825)

AFSC - special -0.0831*** -0.0638 0.0433 0
(0.0250) (0.105) (0.154) (0)

AFSC - student -0.0286 -0.0302 0.0871 1.168**
(0.0201) (0.117) (0.179) (0.274)

advanced academic degree 0.260*** 0.331*** 0.399*** 0.611**
(0.00779) (0.0403) (0.0569) (0.133)

Age at Graduation -0.0129** -0.0540* -0.102*** -0.0594
(0.00530) (0.0272) (0.0277) (0.100)

maximum number of dependents 0.00656** 0.0292** 0.0468** 0.0657
(0.00308) (0.0133) (0.0178) (0.0389)

Constant 0.396* 2.067** 2.431** 0.246
(0.229) (0.791) (0.961) (2.676)

Observations 8476 596 335 93
R2 0.153 0.239 0.370 0.731

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, afsc_operator
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Figure 3.1: Estimates of discontinuity in observable characteristics
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Model Specification

The discontinuity approach is the straightforward “sharp" discontinuity whereby individuals are

assigned a treatment based on achieving a threshold over a continuous measure. Specifically, cadets

who are in the ninetieth percentile of their class according to their officer performance average

(OPA). This treatment, DG = 1 occurs according to the following assignment rule:

DGi c = 1�OPAi c≥OPAc

�

where OPAc is the threshold for each graduating class c above which individual i is in the top tenth

percentile of their peers. Appendix B lists the cutoffs for each graduating class. The final cutoff for

DG is determined just prior to graduation because the cutoff depends on the number of graduates.

Because cadets do not know the cutoff in advance, they cannot adjust their behavior to self-select

into DG.

Since it is true that the covariates are smooth over the cutoff, the DG signal can be examined

independently from the covariates within a bandwidth of the cutoff. This allows us to examine the

effect of DG on the selection to IDE using the following model:

I DEi =β0+β1DGi +β
′
2Si+ εi

where S is a vector of observable characteristics.

Assumptions:

1. Cadets do not have advanced knowledge of where the DG cutoff will be. This is plausible

because the assignment rule is based on the top ten percent of cadets. The cutoff point is not

established until all scores are final.

2. Also, E[ε|DG,S] = E[ε|S]. This is the foundation of the discontinuity approach. This

assumption implies that the unobserved heterogeneity is not conditional on the treatment

Cameron and Trivedi (2005). Therefore, the effect of the treatment is the difference in the
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outcomes of the individuals just below the threshold and those just above:

lim
S↓S̄

E[y|S]− lim
S↑S̄

E[y|S] = α+ lim
S↓S̄

E[ε|S]− lim
S↑S̄

E[ε|S]

Following Lee, Moretti, and Butler (2004) and Hoekstra (2008), I use a cubic polynomial speci-

fication for the local linear regressions on each side of the DG discontinuity. All specifications are a

cubic polynomial of officer performance average with interactions with a dummy variable for DG

designation. Table 3.5 shows that regardless of the choice of polynomial the effect of DG on IDE is

insignificant.

Results

TREATMENT VARIABLE

Figure 3.2 shows that this is indeed a sharp discontinuity where the treatment is present only for

those observations that are above the cut-off.

Figure 3.2: Sharp discontinuity in treatment

OUTCOME VARIABLE

Conditional upon achieving the rank of Major13, I find no evidence that DG is a factor in IDE

13I also performed the analysis including those who did not make Major with an IDE value of zero. There were no
substantive changes to the results.

52



Table 3.5: Polynomial Specifications - within 0.1 of cutoff

(1) (2) (3) (4)
VARIABLES linear quadratic cubic quartic

Distinguished Graduate 0.00373 0.0481 0.0248 0.0105
(0.0681) (0.0705) (0.0765) (0.0718)

OPA 0.563 1.421 -0.505 5.542
(0.610) (3.926) (7.378) (13.37)

OPA2 8.785 -40.75 238.1
(41.72) (163.4) (689.2)

OPA3 -335.2 4059
(1030) (11367)

OPA4 22181
(58096)

DG ·OPA -0.373 -4.683 2.738 -7.417
(1.060) (4.600) (8.763) (17.28)

DG ·OPA2 24.78 -67.36 -144.7
(41.80) (185.8) (818.5)

DG ·OPA3 1271 -6331
(1179) (13975)

DG ·OPA4 -6174
(65072)

Constant 0.133* 0.144** 0.129** 0.154**
(0.0679) (0.0534) (0.0597) (0.0587)

Observations 596 596 596 596
R2 0.062 0.064 0.065 0.066

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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In-residence Selection. Table 3.6 shows the outcome of several specifications based upon the lo-

cal linear regressions.14 All specifications include gender, race, and high school zip code dummy

variables. Specification (1) focuses on the academic ability at admission by including academic com-

posite score. Specification (2) looks at the role that age and athletics play in IDE selection. There is a

general perception at the Academy that athletic participation builds leadership and character. In ad-

dition, older cadets often have prior college or military experience which may affect performance.

The third specification, (3), includes the previous variables and adds officer characteristics such as

job classification, Air Force Specialty Code (AFSC), marital status, and number of dependents.

These variables shape the type of job assignments that officers can fill. Assignments lead to experi-

ences which are assessed by the promotion boards. Finally, the Air Force is divided between those

who have aeronautical ratings and those without. Specifications (4) and (5) look at these separately.

3.4 Remarks on the Prize Valuation

As there is no discontinuity in selection to In-residence IDE across the treatment, RDD indicates

that DG has no effect on this distant career outcome. In all specifications there is no evidence

that DG status affects the likelihood of selection to In-Residence IDE. While it appears that some

other covariates such as gender may play a role based on the results of specifications (1) and (2), the

more thorough specification, (3), which includes AFSC, does not show that gender is significant.

Because much of the information available to the promotion board concerns job performance, the

AFSC is an important factor. Note, the board does not consider AFSC directly when determining

promotion and IDE selection. However, they do consider the range of experiences and level of

responsibility held. This is directly related to AFSC. The high level of significance in the AFSC

dummy variables shows the linkage between AFSC and the unobserved factors.

Specifications (4) and (5) compare rated and non-rated officers. For rated officers, there is evi-

dence that race has a negative effect on IDE selection. Also, rated officers benefit more in terms of

IDE selection from having an advanced academic degree. This is likely because flying duties rarely

14To validate this result, I also used the software package developed by Nichols (2007). His program employs a more
flexible kernel across several bandwidths. The results from this exploration, though not presented in this paper, yield the
same conclusion which is that the DG treatment has no impact on selection to In-residence IDE.
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Table 3.6: Effect of Distinguished Graduate on Selection to In-Residence IDE

(1) (2) (3) (4) (5)
VARIABLES All All All Rated Non-rated

±0.1 OPA ±0.1 OPA ±0.1 OPA ±0.1 OPA ±0.1 OPA

Distinguished Graduate 0.0298 0.0393 0.0729 0.0892 -0.350
(0.0917) (0.0928) (0.0865) (0.104) (0.244)

female -0.139 -0.142 -0.106 -0.0461 -0.120
(0.0854) (0.0847) (0.0846) (0.135) (0.123)

minority (non-white) -0.0569 -0.0756 -0.0469 -0.149** 0.0578
(0.111) (0.109) (0.102) (0.0676) (0.253)

intercollegiate athlete -0.0363 -0.00936 -0.0326 0.0195
(0.0489) (0.0462) (0.0546) (0.127)

recruited athlete 0.0766 0.00761 -0.00419 0.0171
(0.103) (0.0944) (0.132) (0.163)

academic composite score -3.51e-05 -4.87e-05 -4.25e-05 -6.56e-05 -2.18e-05
(0.000103) (0.000105) (0.000106) (0.000151) (0.000277)

AFSC - logistics 0.185 -0.244 0.237
(0.168) (0.220) (0.250)

AFSC - support -0.0772 0 -0.0643
(0.0987) (0) (0.146)

AFSC - acquisitions -0.0734 -0.0366 -0.0443
(0.0586) (0.130) (0.113)

AFSC - osi 0.186 0 0.408
(0.220) (0) (0.388)

AFSC - special -0.0638 -0.211** 0.225
(0.105) (0.0942) (0.352)

AFSC - student -0.0302 -0.00123 0.0706
(0.117) (0.129) (0.268)

ever married – binary 0.0602 -0.0275 0.191
(0.0847) (0.110) (0.180)

advanced academic degree 0.331*** 0.350*** 0.274
(0.0403) (0.0444) (0.231)

Age at Graduation -0.0590** -0.0540* -0.0440 -0.0593
(0.0247) (0.0272) (0.0410) (0.0766)

maximum number of dependents 0.0292** 0.0440*** -0.0228
(0.0133) (0.0158) (0.0240)

Constant -0.102 1.249* 0.704 0.689 0.227
(0.370) (0.729) (0.807) (1.093) (3.056)

Observations 596 596 596 436 160
R2 0.164 0.173 0.239 0.306 0.514

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, afsc_operator

Controls gender gender gender gender gender
race race, age race, age race, age race, age

academic composite academic composite academic composite academic composite academic composite
high school residence high school residence high school residence high school residence high school residence

intercollegiate status intercollegiate status intercollegiate status intercollegiate status
recruit status recruit status recruit status recruit status
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allow time for rated members to attend school on weekends and evenings. Also, once the Air Force

has invested in pilot training, it is reluctant to release members from flying billets to attend graduate

school full time. In many non-rated career fields, officers are expected to have a master’s degree to

be eligible for promotion.

Also, it is important to keep in mind that the results from covariates in this analysis are not

broadly applicable. As discussed when I introduced the RDD procedure, the validity of the coeffi-

cients on the covariates are only applicable to the those cadets close to the cutoff. The purpose of

the discontinuity design is not to determine the effect of any particular covariate, but to measure

the impact of the treatment on an outcome. Hence, this analysis finds no effect of DG on IDE.

Finally, the results of this analysis of the DG prize have implications about the theoretical pa-

rameters from Chapter 2. Specifically, the lack of impact on IDE selection may indicate that DG

is not distinguishing between those who have high valuation and low valuation. Or, it may be that

those who have high valuation for the DG prize are not the individuals who become the best offi-

cers. Because I do not have a measure of an individuals valuation for the prize or the marginal cost

of effort, I cannot use the theoretical model to predict which type of cadet is more likely graduate

with DG distinction.

3.5 Conclusion

The absence of a DG effect suggests that the promotion boards place more emphasis on the officer’s

career performance rather than education signals. Hence, as a prize, DG status may lack extrinsic

appeal. If the tournament structure at the Academy fails to offer an appealing prize, the effort and

selection outcomes will be inefficient. Yet, it could also be that cadets place a strong intrinsic value

on the prize of DG. If this is the case, competition would be strong in the group that does place a

high value on the prize. Whereas those who do not value the prize would not expend costly effort.

If the Academy makes it a priority to award those who strive for excellence in all they do regardless

of extrinsic value, then this structure may identify and reward those individuals. However, the Air

Force is no likelier to select these individuals for In-residence IDE.
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Chapter 4

Analysis of Strategic Behavior by US Air Force

Academy Cadets

In the final chapter of my dissertation, I examine the strategic behavior of Academy cadets in the

multi-stage tournament for distinguished graduate. To isolate the main prize most effectively, I focus

on cadet behavior in the final semester at the Academy. At this point, cadets have already made their

job selection. Hence, the only prize available is the designation of distinguished graduate. As the

analysis in Chapter 3 shows, the DG designation has no discernible impact on later career outcomes.

Additionally many cadets enter the Academy due to the abundance of pilot slots as compared to the

Reserve Officer Training Corps (ROTC) program. The assignment of those slots is based on the

overall class ranking. However, it is typical that there are over 500 pilot slots. Therefore, most

cadets who are medically qualified to fly stand a good chance of obtaining a slot. In 1992, there was

a shortage of pilot slots due to the draw down after the Cold War. This led to the first class who had

more cadets who were medically qualified to fly than there were slots available. However, it is also

important to note that cadets have little foresight into the number of slots that will be allocated to

the Academy. For example, in 1988 the Congressional Budget Office1 predicted a shortage of 2,000

pilots by 1992.

The second chapter of this thesis shows that there is a threshold that distinguishes the level of

participation in the tournament for DG. Since there are other motivations at the Academy, one

1http://www.cbo.gov/ftpdocs/49xx/doc4953/doc09.pdf



must be careful to disentangle the various incentives that are in play. However, in the last semester,

cadets have already received their assignments. Hence, the DG prize is left as the foremost motivat-

ing factor. In addition, the actions of cadets have limited impact on the rank-ordering.

Because of this perceived futility, cadets may become cynical, morose, or, perhaps worst of all,

indifferent. This is despite receiving what many consider to be a first-class education. Recently, for

the third year running, the Academy was named the best baccalaureate college in the west by the

U.S. News & World Report’s “America’s Best Colleges” rankings. Forbes magazine consistently

ranks USAFA as a best value in education. And, the Princeton Review rates the Academy highly

for its easily accessible professors. Furthermore, the entire cost of tuition, supplies, meals, hous-

ing, and health care is provided for in exchange for five years of service in the Air Force. Such

accolades and value suggest that cadets would be pleased with their situation. Yet, according to

a GAO study2, twenty-four percent of USAFA cadets were overall dissatisfied with the Academy.

And, while ninety-two percent view the overall academic program as good or excellent, sixty-nine

percent perceive that the workload is too high. I am inclined to believe that cadets are frustrated

with some of the incentive structures in place at the Academy. Specifically, those who fall behind

in this extended competition are left to “go through the motions” knowing that they are nor longer

competitive.

This chapter provides a brief examination of the behavior of cadets. First, I show that cadets

respond to a lack of incentive by reducing their effort. Next, I provide a brief look at officer promo-

tion data. The third section examines how cadets alter their effort from one semester to the next.

Finally, I look for a threshold that differentiates cadets who exert effort and those who relax. The

purpose of this chapter is to provide a descriptive analysis of these topics and preview future avenues

for research.

4.1 Cadet Motivation

The incentive structure at the Academy has measurable effects on cadet behavior. Consider, for

example, the class of 2007. This class year was informed of their duty assignments in the second

2http://www.gao.gov/new.items/d031001.pdf
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semester of their junior year. This is a full year earlier than previous classes. While the reasons for

this revelation are unclear, the ramifications are easily seen in the data. Once the cadets were aware

of their job assignment, the incentive to compete in the rank-order tournament was dramatically

reduced. Hence, the two types of cadets revealed themselves earlier and more strongly. There were

those who were still in competition for DG and graduate school opportunities. And, those who no

longer felt that it was necessary to compete.

Figure 4.1: Histogram of Class of 2007 Final Semester GPA

If the cadets are indeed behaving strategically, theory predicts that those cadets who have little

probability of success should exert little effort. Because I have observations of each cadet’s per-

formance by semester, I am able to examine the behavior of individual cadets as information is

revealed over the four-year Academy tournament. This will allow me to observe if cadets who no

longer believe they are able to succeed are indeed reducing their effort.

Figure 4.1 shows a histogram of final semester GPA from the class of 2007. This is the GPA

from the final semester only and not the cumulative GPA. In the upper left-hand chart, all cadets

are shown. The other charts display the cadets according to gender. In each chart, there are three

vertical red lines. The line on the left is at 2.0. This is the minimum GPA required of cadets. If the
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cumulative GPA is lower than 2.0, cadets may not graduate. The center line is at the mean GPA.

And the line on the right represents the cutoff for DG distinction. In addition to the bars of the

histogram, each graph shows two fitted distributions. One is the normal distribution, and the other

is the kernel density.

The charts show that bifurcation occurs. This is seen most clearly from the graph of the women.

Here we see a mass that is well below the mean and two masses above the mean. While there is a

distinct mass above the cutoff for DG, there is also a mass below the DG cutoff. One possible

reason for this is that some cadets may be trying to maintain a GPA high enough for consideration

to attend graduate school. In the men, we also see some bifurcation, but the results are not as

pronounced. There are significantly more men than women in the sample, and this could be causing

more smoothing. Nevertheless, there is strong indication that cadets behave as theory predicts.

4.2 Officer Promotions

In the Chapter 3, the data show that the DG signal has little effect on an officer’s selection to IDE

In-Residence. Given the weight that In-Residence status has on future promotion opportunities,

this result suggests that the DG designation has little bearing on an officer’s career path. Further-

more, this lack of impact suggests that other factors such as job assignment and performance have

a larger effect on promotion boards. If the extrinsic value of the DG signal is low and uncorrelated

with officer performance, then USAFA may be relying too heavily on a tournament prize that is

not highly valued by those who are most likely to become successful officers as measured by IDE

selection. The weakness of this prize may be cause for concern with regard to the efficiency of the

tournament incentive structure.

Figure 4.2 shows that up until Captain, DG designation plays little role. However, of those who

become Field Grade Officers,3 a higher percentage of DGs attained the rank of Colonel than do

those who do not graduate as DGs. This fact seems to contradict the previous notion that DG plays

little role in distant career outcomes. Additional measures are required to determine if DG impacts

advancement to Colonel.

3Field Grade Officers include those holding the rank of Major, Lieutenant Colonel, or Colonel.
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Figure 4.2: Highest Rank Attained as Percentage of DG Status

4.3 Semester Transition Matrices

As cadets progress through the four year program, they have the opportunity after each semester

to assess their performances relative to their peers. Based on their class standings, they may choose

to alter their effort levels. Figure 4.3 shows the movement between deciles. This is an aggregation

across all semesters for the graduates from the classes of 1982-2004. The y-axis indicates the decile in

which the cadet resided in period t . As an example, the bars above the number four represent the

cadets who are in the fortieth percentile in period t . The bars clustered over each decile depict the

percentage of cadets who entered the decile that corresponds to the bar in period t + 1. This figure

shows that cadets who start in the lowest decile tend to remain in a lower decile in the next period.

Similarly, cadets who exit period t in the highest decile have a tendency to remain in the highest

decile in t + 1.

Table 4.1 provides the information in Figure 4.3 as a transition matrix for all transitions. In

other words, based on aggregating the movements across all 8 semesters, 35.89% of cadets in the

bottom 10% will appear in the bottom 10% in the next period. This quantity is represented by the

leftmost bar in Figure 4.3 and the upper lefthand cell in Table 4.1.

The empirical implications of the theoretical model from Chapter 2 are difficult to predict with-

out information about how each cadet values the prizes in the contest. However, one implication

that is observable is that players who amass a strong advantage will maintain that advantage as those

who lag behind recognize that they have a lower probability of winning and reduce their effort
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Figure 4.3: Movement between deciles

Table 4.1: Observed percentage of movement between deciles

Decile in period t+1
0 1 2 3 4 5 6 7 8 9

D
ec

ile
in

pe
ri

od
t

0 35.89 23.45 15.60 10.19 6.35 3.82 1.97 1.15 0.68 0.90
1 24.91 23.57 18.12 13.52 9.27 5.68 3.17 1.23 0.42 0.10
2 15.57 18.95 19.15 16.47 12.65 8.17 5.27 2.68 0.91 0.18
3 9.43 14.08 16.70 17.34 15.34 11.63 8.30 4.73 1.99 0.45
4 5.14 9.94 13.01 16.03 16.40 14.99 12.10 7.95 3.66 0.79
5 2.74 5.84 8.84 12.58 15.68 16.78 16.22 13.21 6.36 1.74
6 1.38 2.96 5.53 8.43 12.44 16.25 19.06 17.81 12.31 3.83
7 0.83 1.24 2.69 4.44 7.92 12.93 18.73 22.41 19.92 8.88
8 0.63 0.35 0.69 1.80 3.29 6.60 12.49 20.57 30.11 23.48
9 0.79 0.12 0.14 0.31 0.69 1.59 3.93 9.17 22.56 60.69
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level.

Using an ordered logit specification, I can estimate the transition probabilities rather than rely

solely on observation. This analysis is performed on a semester by semester basis. Table 4.2 shows

the observed transitions between between semesters 1 and 2. The estimated percentage of cadets to

transition into the semester 2 deciles based on semester 1 decile is shown in Table 4.3.

Table 4.2: Observed percentage of movement between deciles from semester 1 to semester 2

Decile in period t+1
0 1 2 3 4 5 6 7 8 9

D
ec

ile
in

pe
ri

od
t

0 38.55 23.39 15.20 10.24 6.49 3.61 1.7 0.61 0.13 0.09
1 25.51 23.34 18.90 13.57 9.09 5.12 2.94 1.15 0.38 0.00
2 15.95 18.31 18.31 17.34 13.04 7.85 5.57 2.45 1.05 0.13
3 9.88 14.45 16.11 18.63 15.28 10.84 8.18 4.44 1.92 0.26
4 5.05 9.47 12.72 15.83 16.42 15.41 11.58 8.04 4.63 0.84
5 2.51 5.91 8.99 13.98 15.21 16.27 16.36 12.52 6.57 1.68
6 1.14 3.02 6.21 8.52 12.80 16.06 17.91 17.05 13.20 4.08
7 0.59 1.22 3.08 4.52 7.47 14.10 19.85 21.03 18.71 9.42
8 0.29 0.37 0.71 1.37 3.82 6.86 12.92 20.73 29.04 23.89
9 0.08 0.08 0.12 0.44 0.80 2.03 4.38 9.92 23.86 58.30

Table 4.3: Estimated percentage of movement between deciles from semester 1 to semester 2

Decile in period t+1
0 1 2 3 4 5 6 7 8 9

D
ec

ile
in

pe
ri

od
t

0 42.87 25.93 14.57 8.14 4.17 2.16 1.15 0.57 0.29 0.13
1 27.22 25.14 19.07 12.90 7.40 4.07 2.25 1.13 0.58 0.27
2 15.70 19.68 20.08 17.36 11.83 7.23 4.24 2.20 1.14 0.53
3 8.49 12.94 16.86 18.88 16.15 11.62 7.57 4.18 2.24 1.06
4 4.42 7.54 11.65 16.33 17.85 15.96 12.27 7.55 4.31 2.11
5 2.25 4.09 7.00 11.54 15.67 17.78 17.08 12.47 7.96 4.15
6 1.13 2.13 3.86 7.04 11.20 15.73 19.35 17.88 13.67 8.00
7 0.57 1.08 2.03 3.92 6.88 11.31 17.43 21.07 20.85 14.86
8 0.28 0.55 1.04 2.07 3.84 6.98 12.74 19.79 26.77 25.94
9 0.14 0.27 0.52 1.06 2.03 3.91 7.95 15.00 27.83 41.28

Table 4.4 looks at the transition between deciles between semester 7 and 8. From this table, we

can see that of the 2,618 cadets who exit the seventh semester in the top decile, 56.5% remain at the

top after semester 8. This number is consistent with the 58.3% that remain in the top decile from

semester 1 to semester 2 as shown in Table 4.2. And, Table 4.5 provides a “zoomed-in” look at the
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top percentiles as cadets transition from semester 7 to semester 8. In this table, we see that 19.3% of

cadets remain in the 99th percentile between the seventh and eighth semesters. Each of these tables

indicates that cadets tend to remain in the same decile that they were in before. In other words,

you don’t see a surge of effort at the end of the competition where those at the bottom pick up the

pace and those at the top react to maintain their lead. Rather, most cadets tend to hold their current

position.

Table 4.4: Transition between percentiles – Semester 7 to 8

Decile in semester 8
0 1 2 3 4 5 6 7 8 9

D
ec

ile
in

se
m

es
te

r
7

0 876 518 339 217 130 80 41 16 6 3
1 591 547 471 346 232 141 108 34 16 6
2 377 422 416 386 301 192 157 71 28 12
3 243 329 416 418 336 291 218 98 66 18
4 137 245 297 352 401 342 321 201 113 30
5 62 147 235 302 339 370 351 269 163 53
6 38 93 157 190 319 369 492 438 322 106
7 11 41 80 118 230 308 470 519 505 236
8 4 16 29 66 104 174 309 492 657 579
9 2 8 8 14 29 56 161 275 587 1478

4.4 Switching Regression

Based on the theory set forth in Chapter 1, there should be some point where cadets go from

exerting effort to coasting. The purpose of this analysis is to examine the data from the last semester

at the Academy to determine if such a threshold exists. To do this, I propose a simple switching

regression.

GPAi8 =β0+β1GPAi7+β
′
2Si +β

′
3h(Si )+ εi (4.1)

where GPAi j is the GPA of a cadet, i , in semester, j . Si is a vector of covariates that affect GPA.

There are issues with endogeneity in that most variables that affect a cadet’s GPA in semester 8 will

also affect a cadets GPA in semester 7. However, putting this issue aside, we can test for a threshold

where cadets above a certain GPA behave differently than those below. h(Si ) is a function of the

covariates interacted with the GPA threshold. To determine the optimal threshold, we run the
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model repeated while incrementing the threshold. After each calculation, we note the fit of the

model by its adjusted R-squared. The model with the highest adjusted R-squared value results from

the optimal threshold.

Figure 4.4 shows the adjusted R-squared over thresholds ranging from 2.0 to 4.0. The best fit

occurs when the threshold is 3.09. This is a very reasonable result given that the cutoff for DG is

only slightly higher.
.1
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Figure 4.4: Adjusted R-squared vs GPA threshold

Again, setting aside issues with endogeneity for now, I employ a basic switching model using

the 3.09 GPA threshold established above:

GPAi8 =β0+β1T +β2GPAi7+β3(T ·GPAi7)+β
′
4Si + εi (4.2)

The results of this model are presented in Table 4.6. Though this is a rough approximation,

this result suggests that cadets who have a GPA above 3.09 behave differently from those below.

Specifically, at the threshold, there is a 0.181 increase in predicted semester 8 GPA. And the marginal

impact of an increase in seventh semester on predicted eighth semester GPA rises by 0.569.

Based on the theoretical model developed in the first chapter, I expect cadets above a certain
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Table 4.6: Estimated Switching Model with Threshold at GPA7 = 3.09

(1)
VARIABLES GPA8

T -1.577***
(0.0723)

T ·GPA7 0.569***
(0.0241)

GPA7 0.210***
(0.0208)

female 0.0675***
(0.0115)

minority (non-white) -0.0823***
(0.00781)

intercollegiate athlete 0.0131*
(0.00755)

recruited athlete -0.0358***
(0.00741)

attended prep school -0.0697***
(0.00717)

Age at Graduation -0.00815*
(0.00454)

parent attended an academy 0.0166
(0.00979)

sibling attended an academy 0.0159*
(0.00786)

Constant 2.341***
(0.0985)

Observations 21088
R2 0.498

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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threshold to complete more rigorously than those below. These results seem to indicate that this is

the case.

4.5 Comments

This chapter provides a brief examination of some of the theoretical predictions of the model of a

continuation contest. Cadets indeed have a tendency to behave differently depending upon which

side of the threshold they fall. If this behavior is not optimal from the Air Force’s viewpoint,

then the contest should be adjusted to change cadet behavior. Since the release of information is

what allows cadets to adjust their exertion over time, it may be better to mask the cadets’ relative

performances. If this is not plausible, then there are other options available to adjust behavior.

The Academy could restructure the nature of the tournament by allowing for elimination. Or, the

Academy could provide intermediate prizes after each semester. Given the caliber of cadets and the

level of effort necessary to rank highly, these prizes would have to be substantial.

Although this dissertation examines cadet behavior from an economic standpoint, it could be

that the Academy has other designs. One of the core values of the Academy is Excellence in all we

do. Perhaps USAFA is interested in cadets who behave in a certain way despite the strategically

“correct” thing to do. In other words, they are testing cadets to determine if they will strive to excel

regardless of the prize at stake. While this may be a nobel ambition, the incentive structure leads

to a situation where cadets who are no longer in the running for Distinguished Graduate may not

feel compelled to perform to their potential. And, it is difficult to properly test for striving without

regard to the extrinsic value of the prize when there are no repercussions for failure – especially

when introducing such consequences invalidates the purpose of the test.
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Appendix A

Data and Summary Statistics

The following variables are used in Chapter 2. These data were provided under IRB supervision

by USAFA Plans and Programs (USAFA/XP).

Table A.1: Summary Statistics – Variables Used in Chapter 2
Variable Mean Std. Dev. Min. Max.

class year 1988.721 3.92 1982 1995
Distinguished Graduate 0.07 0.256 0 1
IDE attendance 0.209 0.406 0 1
overall performance average 2.873 0.368 2 4.24
academic composite score 3179.645 270.891 2259 4120
female 0.087 0.282 0 1
minority (non-white) 0.135 0.342 0 1
ever married – binary 0.940 0.238 0 1
maximum number of dependents 2.775 1.523 0 19
Age at Graduation 22.761 0.764 21.225 27.039
intercollegiate athlete 0.256 0.437 0 1
recruited athlete 0.183 0.386 0 1
advanced academic degree 0.742 0.438 0 1
Rated Officer 0.669 0.47 0 1
parent attended an academy 0.027 0.164 0 1
sibling attended an academy 0.093 0.291 0 1

N 8476
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IDE attendance

N Y Total

No. % No. % No. %

class year

1982 439 6.5% 33 1.9% 472 5.6%

1983 532 7.9% 46 2.6% 578 6.8%

1984 484 7.2% 63 3.6% 547 6.5%

1985 472 7.0% 67 3.8% 539 6.4%

1986 524 7.8% 97 5.5% 621 7.3%

1987 532 7.9% 123 7.0% 655 7.7%

1988 478 7.1% 136 7.7% 614 7.2%

1989 481 7.2% 139 7.9% 620 7.3%

1990 512 7.6% 172 9.7% 684 8.1%

1991 457 6.8% 171 9.7% 628 7.4%

1992 557 8.3% 198 11.2% 755 8.9%

1993 377 5.6% 160 9.0% 537 6.3%

1994 404 6.0% 222 12.6% 626 7.4%

1995 459 6.8% 141 8.0% 600 7.1%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

Distinguished Graduate

N 6,327 94.3% 1,552 87.8% 7,879 93.0%

Y 381 5.7% 216 12.2% 597 7.0%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

Source: USAFA/XP
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IDE attendance

N Y Total

No. % No. % No. %

female

M 6,114 91.1% 1,624 91.9% 7,738 91.3%

F 594 8.9% 144 8.1% 738 8.7%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

minority (non-white)

N 5,767 86.0% 1,561 88.3% 7,328 86.5%

Y 941 14.0% 207 11.7% 1,148 13.5%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

AFSC (single digit level)

1 4,748 70.8% 1,238 70.0% 5,986 70.6%

2 261 3.9% 93 5.3% 354 4.2%

3 533 7.9% 168 9.5% 701 8.3%

6 745 11.1% 208 11.8% 953 11.2%

7 37 0.6% 10 0.6% 47 0.6%

8 121 1.8% 13 0.7% 134 1.6%

9 263 3.9% 38 2.1% 301 3.6%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

attended prep school

0 5,531 82.5% 1,498 84.7% 7,029 82.9%

1 1,177 17.5% 270 15.3% 1,447 17.1%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

intercollegiate athlete

N 5,006 74.6% 1,299 73.5% 6,305 74.4%

Y 1,702 25.4% 469 26.5% 2,171 25.6%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

Source: USAFA/XP
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IDE attendance

N Y Total

No. % No. % No. %

Rated Officer

N 2,123 31.6% 680 38.5% 2,803 33.1%

Y 4,585 68.4% 1,088 61.5% 5,673 66.9%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

parent attended an academy

N 6,535 97.4% 1,708 96.6% 8,243 97.3%

Y 173 2.6% 60 3.4% 233 2.7%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

sibling attended an academy

N 6,101 91.0% 1,583 89.5% 7,684 90.7%

Y 607 9.0% 185 10.5% 792 9.3%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

recruited athlete

N 5,529 82.4% 1,399 79.1% 6,928 81.7%

Y 1,179 17.6% 369 20.9% 1,548 18.3%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

Source: USAFA/XP
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Distinguished Graduate

N Y Total

No. % No. % No. %

female

M 7,170 91.0% 568 95.1% 7,738 91.3%

F 709 9.0% 29 4.9% 738 8.7%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

minority (non-white)

N 6,764 85.8% 564 94.5% 7,328 86.5%

Y 1,115 14.2% 33 5.5% 1,148 13.5%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

recruited athlete

N 6,381 81.0% 547 91.6% 6,928 81.7%

Y 1,498 19.0% 50 8.4% 1,548 18.3%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

Commissioned

Y 7,879 100.0% 597 100.0% 8,476 100.0%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

attended prep school

0 6,449 81.9% 580 97.2% 7,029 82.9%

1 1,430 18.1% 17 2.8% 1,447 17.1%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

intercollegiate athlete

N 5,806 73.7% 499 83.6% 6,305 74.4%

Y 2,073 26.3% 98 16.4% 2,171 25.6%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

Source: USAFA/XP
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Distinguished Graduate

N Y Total

No. % No. % No. %

parent attended an academy

N 7,658 97.2% 585 98.0% 8,243 97.3%

Y 221 2.8% 12 2.0% 233 2.7%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

sibling attended an academy

N 7,142 90.6% 542 90.8% 7,684 90.7%

Y 737 9.4% 55 9.2% 792 9.3%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

Source: USAFA/XP
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IDE attendance

Academic Major N Y Total

No. % No. % No. %

Aeronautical Engineering 441 6.6% 133 7.5% 574 6.8%

Astronautical Engineering 307 4.6% 95 5.4% 402 4.7%

Aviation Science 81 1.2% 15 0.8% 96 1.1%

Basic Sciences 933 13.9% 152 8.6% 1,085 12.8%

Behavioral Sciences 587 8.8% 143 8.1% 730 8.6%

Biology 211 3.1% 74 4.2% 285 3.4%

Chemistry 51 0.8% 19 1.1% 70 0.8%

Civil Engineering 356 5.3% 87 4.9% 443 5.2%

Computer Science 201 3.0% 46 2.6% 247 2.9%

Economics 151 2.3% 36 2.0% 187 2.2%

Electrical Engineering 308 4.6% 68 3.8% 376 4.4%

Engineering Sciences 321 4.8% 84 4.8% 405 4.8%

English 45 0.7% 27 1.5% 72 0.8%

General Engineering 182 2.7% 53 3.0% 235 2.8%

Geography 311 4.6% 74 4.2% 385 4.5%

Meteorology 1 0.0% 1 0.1% 2 0.0%

History 485 7.2% 138 7.8% 623 7.4%

Humanities 94 1.4% 29 1.6% 123 1.5%

International Affairs 318 4.7% 69 3.9% 387 4.6%

Legal Studies 45 0.7% 22 1.2% 67 0.8%

Management 512 7.6% 137 7.7% 649 7.7%

Mathematics 101 1.5% 42 2.4% 143 1.7%

Operations Research 204 3.0% 42 2.4% 246 2.9%

Physics 139 2.1% 49 2.8% 188 2.2%

Political Science 250 3.7% 116 6.6% 366 4.3%

Social Sciences 73 1.1% 17 1.0% 90 1.1%

Total 6,708 100.0% 1,768 100.0% 8,476 100.0%

Source: USAFA/XP
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Distinguished Graduate

Academic Major N Y Total

No. % No. % No. %

Aeronautical Engineering 485 6.2% 89 14.9% 574 6.8%

Astronautical Engineering 331 4.2% 71 11.9% 402 4.7%

Aviation Science 92 1.2% 4 0.7% 96 1.1%

Basic Sciences 1,083 13.7% 2 0.3% 1,085 12.8%

Behavioral Sciences 697 8.8% 33 5.5% 730 8.6%

Biology 272 3.5% 13 2.2% 285 3.4%

Chemistry 59 0.7% 11 1.8% 70 0.8%

Civil Engineering 423 5.4% 20 3.4% 443 5.2%

Computer Science 227 2.9% 20 3.4% 247 2.9%

Economics 172 2.2% 15 2.5% 187 2.2%

Electrical Engineering 328 4.2% 48 8.0% 376 4.4%

Engineering Sciences 369 4.7% 36 6.0% 405 4.8%

English 70 0.9% 2 0.3% 72 0.8%

General Engineering 231 2.9% 4 0.7% 235 2.8%

Geography 352 4.5% 33 5.5% 385 4.5%

Meteorology 2 0.0% 0 0.0% 2 0.0%

History 589 7.5% 34 5.7% 623 7.4%

Humanities 119 1.5% 4 0.7% 123 1.5%

International Affairs 353 4.5% 34 5.7% 387 4.6%

Legal Studies 67 0.9% 0 0.0% 67 0.8%

Management 638 8.1% 11 1.8% 649 7.7%

Mathematics 122 1.5% 21 3.5% 143 1.7%

Operations Research 227 2.9% 19 3.2% 246 2.9%

Physics 148 1.9% 40 6.7% 188 2.2%

Political Science 333 4.2% 33 5.5% 366 4.3%

Social Sciences 90 1.1% 0 0.0% 90 1.1%

Total 7,879 100.0% 597 100.0% 8,476 100.0%

Source: USAFA/XP
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female

Academic Major M F Total

No. % No. % No. %

Aeronautical Engineering 557 7.2% 17 2.3% 574 6.8%

Astronautical Engineering 378 4.9% 24 3.3% 402 4.7%

Aviation Science 83 1.1% 13 1.8% 96 1.1%

Basic Sciences 1,023 13.2% 62 8.4% 1,085 12.8%

Behavioral Sciences 630 8.1% 100 13.6% 730 8.6%

Biology 227 2.9% 58 7.9% 285 3.4%

Chemistry 60 0.8% 10 1.4% 70 0.8%

Civil Engineering 429 5.5% 14 1.9% 443 5.2%

Computer Science 233 3.0% 14 1.9% 247 2.9%

Economics 173 2.2% 14 1.9% 187 2.2%

Electrical Engineering 365 4.7% 11 1.5% 376 4.4%

Engineering Sciences 380 4.9% 25 3.4% 405 4.8%

English 49 0.6% 23 3.1% 72 0.8%

General Engineering 226 2.9% 9 1.2% 235 2.8%

Geography 347 4.5% 38 5.1% 385 4.5%

Meteorology 2 0.0% 0 0.0% 2 0.0%

History 571 7.4% 52 7.0% 623 7.4%

Humanities 89 1.2% 34 4.6% 123 1.5%

International Affairs 335 4.3% 52 7.0% 387 4.6%

Legal Studies 58 0.7% 9 1.2% 67 0.8%

Management 587 7.6% 62 8.4% 649 7.7%

Mathematics 126 1.6% 17 2.3% 143 1.7%

Operations Research 225 2.9% 21 2.8% 246 2.9%

Physics 181 2.3% 7 0.9% 188 2.2%

Political Science 324 4.2% 42 5.7% 366 4.3%

Social Sciences 80 1.0% 10 1.4% 90 1.1%

Total 7,738 100.0% 738 100.0% 8,476 100.0%

Source: USAFA/XP
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Table A.2: Variables used in Analysis
Variable Definition
personal id Unique identifier provided by USAFA/XP
gender Dummy variable = 1 if individual is female
race Dummy variable = 1 if individual is not caucasian
IDE Dummy variable = 1 if individual attended Intermediate

Developmental Education in-residence
Distinguished Graduate Dummy variable = 1 if individual is a distinguished grad-

uate
Officer Performance Average Composite of Academy grade point average, military per-

formance average, and physical education average
Military Performance Average Assessment of the cadets performance on military roles

and responsibilities
Academic Composite Aggregate measure of individuals academic performance

as an applicant; based on high school GPA and standard-
ized test scores

Recruit Status Dummy variable = 1 if individual is a recruited athlete
Intercollegiate Athlete Dummy variable = 1 if individual participated in inter-

collegiate sports
Air Force Specialty Code Air Force job classification (1 = Operations, 2 = Logis-

tics, 3 = Support, 4 = Medical, 5 = Law/Chaplain, 6 =
Aquisitions/Financial Management, 7 = Special Investi-
gations, 8 = Special Duty, 9 = Student/Trainee/Patient*

Zip Code High school zip code aggregated to the one-digit level
with 11 = overseas, 12 = APO/FPO Europe, 13 =
APO/FPO Asia

Age Age at graduation from Academy
Marital Status Dummy variable = 1 if individual was ever married
Dependents Number of household dependents
Advanced Academic Degree Dummy variable = 1 if individual has an advanced aca-

demic degree
Rated Dummy variable = 1 if individual is rated for aircrew

duty (e.g. Pilot or navigator)
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Appendix B

Thresholds for Distinguished Graduate

Designation

Table B.1: OPA Thresholds for Distinguished Graduate Designation
Class year Num of cadets OPA cutoff

1982 815 3.50
1983 925 3.48
1984 994 3.49
1985 889 3.45
1986 935 3.47
1987 953 3.46
1988 1,036 3.48
1989 973 3.47
1990 940 3.44
1991 920 3.50
1992 1,030 3.47
1993 895 3.46
1994 965 3.40
1995 938 3.46
1996 868 3.41
1997 748 3.38
1998 900 3.40
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Appendix C

Additional Specifications Regarding the

Valuation of an Educational Signal

This appendix contains the following additional specifications in support of Chapter 2:

Table C.1 Marginal Effect on Selection to In-Residence IDE – by LPM without OPA

Table C.2 Marginal Effect on Selection to In-Residence IDE – by probit without OPA

Table C.3 Bivariate Probit – without OPA

Table C.4 Marginal Effect on Selection to In-Residence IDE – by LPM – Males only

Table C.5 Marginal Effect on Selection to In-Residence IDE – by probit – Males only

Table C.6 Bivariate Probit – Males only

Table C.7 Marginal Effect on Selection to In-Residence IDE – by LPM – Rated only

Table C.8 Marginal Effect on Selection to In-Residence IDE – by probit – Rated only

Table C.9 Bivariate Probit – Rated only

Table C.10 Covariates
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Table C.1: Marginal Effect on Selection to In-Residence IDE – by LPM without OPA

(1) (2) (3) (4) (5)
VARIABLES All All All Rated Non-rated

Distinguished Graduate 0.163*** 0.161*** 0.129*** 0.120*** 0.147***
(0.0214) (0.0213) (0.0210) (0.0258) (0.0388)

female -0.0118 -0.0174 -0.0150 -0.0438* -0.00686
(0.0146) (0.0152) (0.0158) (0.0243) (0.0205)

minority (non-white) -0.0331*** -0.0282** -0.0218* -0.0396*** 0.00505
(0.0123) (0.0124) (0.0116) (0.0147) (0.0196)

intercollegiate athlete 0.00340 0.0101 0.00976 0.00839
(0.0131) (0.0125) (0.0138) (0.0212)

recruited athlete 0.0320** 0.0264* 0.0120 0.0578**
(0.0145) (0.0140) (0.0155) (0.0235)

academic composite score 1.08e-06 1.02e-05 -1.32e-05 -2.26e-05 -1.74e-06
(1.77e-05) (1.81e-05) (1.68e-05) (2.00e-05) (3.10e-05)

AFSC - logistics 0.00315 -0.0174 -0.0297
(0.0230) (0.0586) (0.0278)

AFSC - support 0.000289 -0.0428 -0.0211
(0.0177) (0.0440) (0.0243)

AFSC - acquisitions -0.0320** -0.0396 -0.0480**
(0.0144) (0.0447) (0.0205)

AFSC - osi -0.0302 0 -0.0454
(0.0527) (0) (0.0550)

AFSC - special -0.0842*** -0.0530* -0.138***
(0.0248) (0.0313) (0.0408)

AFSC - student -0.0229 -0.00611 -0.0823*
(0.0199) (0.0222) (0.0433)

ever married – binary 0.0710*** 0.0606*** 0.0961***
(0.0161) (0.0204) (0.0288)

advanced academic degree 0.265*** 0.263*** 0.256***
(0.00787) (0.00930) (0.0134)

Age at Graduation -0.0184*** -0.0159*** -0.0181*** -0.0162
(0.00579) (0.00542) (0.00612) (0.0100)

maximum number of dependents 0.00763** 0.0110*** -0.000124
(0.00310) (0.00384) (0.00561)

Constant 0.104 0.498** 0.167 0.0318 0.183
(0.202) (0.228) (0.228) (0.148) (0.360)

Observations 8476 8476 8476 5673 2803
R2 0.059 0.061 0.146 0.168 0.133

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.2: Marginal Effect on Selection to In-Residence IDE – by probit without OPA

(1) (2) (3) (4) (5)
VARIABLES All All All Rated Non-rated

Distinguished Graduate 0.167*** 0.164*** 0.116*** 0.0943*** 0.155***
(0.0229) (0.0227) (0.0209) (0.0236) (0.0426)

female -0.0127 -0.0180 -0.00603 -0.0336* -0.00302
(0.0145) (0.0149) (0.0141) (0.0191) (0.0208)

minority (non-white) -0.0338*** -0.0289** -0.0211** -0.0361*** 0.00740
(0.0120) (0.0123) (0.0105) (0.0114) (0.0208)

intercollegiate athlete 0.00368 0.00696 0.00580 0.00855
(0.0133) (0.0114) (0.0115) (0.0206)

recruited athlete 0.0315** 0.0246* 0.0102 0.0585**
(0.0148) (0.0130) (0.0129) (0.0245)

academic composite score 1.14e-07 8.02e-06 -1.14e-05 -2.08e-05 5.20e-06
(1.79e-05) (1.85e-05) (1.56e-05) (1.67e-05) (3.15e-05)

AFSC - logistics -0.000240 -0.0251 -0.0275
(0.0173) (0.0443) (0.0241)

AFSC - support 0.00164 -0.0547 -0.0165
(0.0149) (0.0464) (0.0231)

AFSC - acquisitions -0.0213* -0.0140 -0.0445**
(0.0110) (0.0303) (0.0193)

AFSC - osi -0.0213 -0.0441
(0.0408) (0.0500)

AFSC - special -0.0809*** -0.0631** -0.128***
(0.0190) (0.0260) (0.0289)

AFSC - student -0.0204 -0.00513 -0.0687
(0.0222) (0.0241) (0.0423)

Age at Graduation -0.0200*** -0.0137** -0.0144*** -0.0175
(0.00633) (0.00536) (0.00555) (0.0108)

maximum number of dependents 0.00861*** 0.0105*** 0.00116
(0.00297) (0.00338) (0.00558)

Observations 8476 8476 8476 5654 2800
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.3: Bivariate Probit – without OPA

(1) (2) (3)
VARIABLES IDE DG ρ

Distinguished Graduate 0.454
(0.370)

female -0.0191 -0.391***
(0.0691) (0.0886)

minority (non-white) -0.0771 -0.125
(0.0628) (0.147)

intercollegiate athlete 0.0447 -0.0968*
(0.0452) (0.0571)

recruited athlete 0.103** -0.0605
(0.0400) (0.0725)

academic composite score -3.93e-05 0.00263***
(0.000138) (0.000164)

advanced academic degree 1.680*** 0.417***
(0.169) (0.0620)

attended prep school 0.0142 -0.870***
(0.0501) (0.156)

AFSC - logistics -0.0117
(0.110)

AFSC - support 0.00955
(0.0669)

AFSC - acquisitions -0.101**
(0.0478)

AFSC - osi -0.0788
(0.220)

AFSC - special -0.498***
(0.122)

AFSC - student -0.0865
(0.196)

Age at Graduation -0.0635*** 0.0705**
(0.0157) (0.0339)

maximum number of dependents 0.0388**
(0.0160)

parent attended an academy -0.121
(0.117)

sibling attended an academy 0.0198
(0.0847)

Constant -1.959*** -16.58 -0.0114
(0.652) (.) (0.197)

Observations 8476 8476 8476
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, afsc_operator

83



Table C.4: Marginal Effect on Selection to In-Residence IDE – by LPM – Males only

(1) (2) (3) (4) (5)
VARIABLES All Males All Males All Males Rated Males Non-rated Males

Distinguished Graduate 0.0732*** 0.0718*** 0.0577** 0.0469* 0.0827*
(0.0243) (0.0242) (0.0241) (0.0283) (0.0464)

minority (non-white) -0.0210 -0.0159 -0.0135 -0.0281* 0.0102
(0.0136) (0.0137) (0.0127) (0.0156) (0.0229)

intercollegiate athlete 0.0108 0.0149 0.00738 0.0304
(0.0138) (0.0130) (0.0142) (0.0241)

recruited athlete 0.0370** 0.0288** 0.0182 0.0486*
(0.0148) (0.0142) (0.0160) (0.0257)

academic composite score -8.96e-05*** -7.39e-05*** -8.32e-05*** -9.32e-05*** -7.18e-05*
(2.04e-05) (2.12e-05) (1.99e-05) (2.38e-05) (4.05e-05)

AFSC - logistics 0.0135 -0.0203 -0.0284
(0.0239) (0.0648) (0.0318)

AFSC - support -0.00434 -0.0656* -0.0313
(0.0184) (0.0397) (0.0271)

AFSC - acquisitions -0.0335** -0.0434 -0.0577**
(0.0153) (0.0468) (0.0226)

AFSC - osi -0.0305 0 -0.0575
(0.0575) (0) (0.0624)

AFSC - special -0.0556* -0.0407 -0.106**
(0.0288) (0.0353) (0.0464)

AFSC - student -0.0127 -0.0133 -0.0328
(0.0219) (0.0232) (0.0597)

Age at Graduation -0.0156*** -0.0134** -0.0151** -0.0139
(0.00595) (0.00560) (0.00636) (0.0114)

maximum number of dependents 0.00670** 0.00996** -0.00106
(0.00304) (0.00388) (0.00598)

Constant 0.612** 0.917*** 0.505 0.256 0.633
(0.295) (0.309) (0.319) (0.162) (0.517)

Observations 7738 7738 7738 5451 2287
R2 0.070 0.072 0.158 0.177 0.141

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.5: Marginal Effect on Selection to In-Residence IDE – by probit – Males only

(1) (2) (3) (4) (5)
VARIABLES All Males All Males All Males Rated Males Non-rated Males

Distinguished Graduate 0.0504** 0.0491** 0.0254 0.00950 0.0706
(0.0225) (0.0223) (0.0191) (0.0192) (0.0470)

minority (non-white) -0.0218 -0.0166 -0.0114 -0.0283** 0.0190
(0.0138) (0.0142) (0.0117) (0.0123) (0.0250)

intercollegiate athlete 0.0111 0.00995 0.00379 0.0246
(0.0143) (0.0117) (0.0117) (0.0236)

recruited athlete 0.0374** 0.0277** 0.0143 0.0551**
(0.0152) (0.0131) (0.0133) (0.0257)

academic composite score -9.56e-05*** -8.15e-05*** -8.02e-05*** -8.60e-05*** -6.96e-05*
(2.04e-05) (2.13e-05) (1.76e-05) (1.95e-05) (3.95e-05)

AFSC - logistics 0.0133 -0.0203 -0.0260
(0.0192) (0.0462) (0.0280)

AFSC - support -0.000397 -0.0862*** -0.0269
(0.0152) (0.0224) (0.0253)

AFSC - acquisitions -0.0227** -0.0172 -0.0575***
(0.0110) (0.0285) (0.0208)

AFSC - osi -0.0199 -0.0575
(0.0427) (0.0522)

AFSC - special -0.0586** -0.0532* -0.104***
(0.0234) (0.0293) (0.0353)

AFSC - student -0.00377 -0.00555 -0.0165
(0.0242) (0.0242) (0.0586)

Age at Graduation -0.0178*** -0.0123** -0.0132** -0.0152
(0.00652) (0.00539) (0.00566) (0.0124)

maximum number of dependents 0.00768*** 0.00945*** 0.000788
(0.00284) (0.00332) (0.00593)

Observations 7737 7737 7737 5432 2283
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.6: Bivariate Probit – Males only

(1) (2) (3)
VARIABLES IDE DG ρ

Distinguished Graduate 0.273
(0.488)

minority (non-white) -0.0479 -0.111
(0.0742) (0.149)

intercollegiate athlete 0.0561 -0.118**
(0.0376) (0.0506)

recruited athlete 0.110*** -0.113
(0.0342) (0.0720)

academic composite score -0.000411** 0.00259***
(0.000174) (0.000162)

advanced academic degree 1.746*** 0.418***
(0.187) (0.0568)

attended prep school 0.121* -0.912***
(0.0654) (0.155)

AFSC - logistics 0.0440
(0.114)

AFSC - support 0.00357
(0.0680)

AFSC - acquisitions -0.113**
(0.0517)

AFSC - osi -0.0868
(0.274)

AFSC - special -0.348**
(0.138)

AFSC - student -0.000528
(0.205)

Age at Graduation -0.0874*** 0.0848**
(0.0200) (0.0332)

maximum number of dependents 0.0372**
(0.0145)

parent attended an academy -0.0930
(0.121)

sibling attended an academy 0.0589
(0.0802)

Constant -0.0445 -16.87 -0.0944
(0.796) (.) (0.266)

Observations 7738 7738 7738
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, afsc_operator
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Table C.7: Marginal Effect on Selection to In-Residence IDE – by LPM – Rated only

(1) (2) (3)
VARIABLES Rated Rated Rated

Distinguished Graduate 0.0633** 0.0624** 0.0464*
(0.0282) (0.0282) (0.0280)

female -0.0582** -0.0655*** -0.0460*
(0.0227) (0.0230) (0.0243)

minority (non-white) -0.0351** -0.0338** -0.0264*
(0.0162) (0.0164) (0.0147)

intercollegiate athlete 0.00782 0.0123
(0.0146) (0.0137)

recruited athlete 0.0168 0.0139
(0.0164) (0.0154)

academic composite score -9.54e-05*** -8.92e-05*** -9.05e-05***
(2.33e-05) (2.40e-05) (2.33e-05)

AFSC - logistics -0.0162
(0.0592)

AFSC - support -0.0316
(0.0437)

AFSC - acquisitions -0.0451
(0.0440)

AFSC - special -0.0509
(0.0311)

AFSC - student -0.0143
(0.0223)

Age at Graduation -0.0172** -0.0148**
(0.00675) (0.00611)

maximum number of dependents 0.00992**
(0.00385)

Constant 0.340*** 0.699*** 0.256*
(0.0787) (0.166) (0.154)

Observations 5673 5673 5673
R2 0.078 0.080 0.175

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.8: Marginal Effect on Selection to In-Residence IDE – by probit – Rated only

(1) (2) (3)
VARIABLES Rated Rated Rated

Distinguished Graduate 0.0319 0.0311 0.00829
(0.0243) (0.0241) (0.0186)

female -0.0602*** -0.0667*** -0.0347*
(0.0222) (0.0217) (0.0183)

minority (non-white) -0.0382** -0.0371** -0.0275**
(0.0167) (0.0170) (0.0116)

intercollegiate athlete 0.00924 0.00844
(0.0152) (0.0114)

recruited athlete 0.0167 0.0104
(0.0167) (0.0127)

academic composite score -0.000102*** -9.76e-05*** -8.39e-05***
(2.34e-05) (2.40e-05) (1.92e-05)

AFSC - logistics -0.0221
(0.0446)

AFSC - support -0.0481
(0.0478)

AFSC - acquisitions -0.0184
(0.0276)

AFSC - special -0.0608**
(0.0248)

AFSC - student -0.00927
(0.0227)

Age at Graduation -0.0202*** -0.0117**
(0.00742) (0.00551)

maximum number of dependents 0.00938***
(0.00331)

Observations 5654 5654 5654
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, AFSC - operator
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Table C.9: Bivariate Probit – Rated only

(1) (2) (3)
VARIABLES IDE DG athrho

Distinguished Graduate -0.0392
(0.653)

female -0.199 -0.437***
(0.139) (0.167)

minority (non-white) -0.147 -0.0693
(0.0958) (0.146)

intercollegiate athlete 0.0564 -0.188**
(0.0619) (0.0750)

recruited athlete 0.0596 -0.0164
(0.0541) (0.0820)

academic composite score -0.000384 0.00266***
(0.000302) (0.000138)

advanced academic degree 1.829*** 0.490***
(0.211) (0.0748)

attended prep school 0.0446 -0.861***
(0.0761) (0.200)

AFSC - logistics -0.0886
(0.282)

AFSC - support -0.333
(0.584)

AFSC - acquisitions -0.105
(0.151)

AFSC - special -0.534*
(0.287)

AFSC - student -0.0361
(0.194)

Age at Graduation -0.0740*** 0.0766**
(0.0227) (0.0349)

maximum number of dependents 0.0517***
(0.0161)

parent attended an academy -0.109
(0.148)

sibling attended an academy 0.0833
(0.0877)

Constant -0.304 -15.87 0.0464
(1.152) (0) (0.380)

Observations 5673 5673 5673
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Excluded group: male, white, non-recruit, non-athlete, afsc_operator
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Table C.10: Covariates

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES female nonwhite hs_gpa aca_cmp rated_condensed cft_score age mpa

Distinguished Graduate 0.0365 0.0285 0.371 -35.44 0.0271 -10.03 0.115 0.0939**
(0.0408) (0.0433) (0.576) (52.56) (0.0747) (22.46) (0.306) (0.0421)

OPA -4.236** -5.826*** -39.31* 1953 3.046 1159 -3.167 -0.480
(2.050) (1.820) (22.80) (2298) (3.245) (807.7) (10.92) (1.822)

opasq -73.12 -204.0*** -1290* 72952 80.77 47145** -10.62 -14.97
(50.15) (37.99) (693.0) (48619) (94.43) (20362) (245.2) (51.69)

opacube -304.4 -1559*** -12129** 644874** 667.3 400134*** 19.44 -107.6
(348.6) (258.4) (5235) (308609) (713.4) (142063) (1571) (387.1)

Dopasq 188.9* 394.5*** 2769* -66184 -209.0 -75953** -39.96 14.77
(96.71) (78.27) (1380) (102869) (162.1) (35781) (450.4) (98.52)

Dopacube -459.3* 169.1 1069 -865609*** 399.3 -201881* 922.4 265.6
(244.8) (195.6) (6569) (260746) (484.2) (100903) (1006) (337.5)

Constant 0.0303 0.0428 3.736*** 3403*** 0.746*** 500.7*** 22.52*** 3.150***
(0.0312) (0.0277) (0.125) (34.93) (0.0366) (7.689) (0.140) (0.0353)

Observations 602 602 83 602 602 602 602 601
R2 0.011 0.033 0.118 0.022 0.013 0.015 0.015 0.066

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix D

Proofs

Proof of Lemma 1: Stage N outcome with linear cost of bidding. To find the Markov perfect equilib-

rium, I rely on backward induction. Thus, the first step is to determine the solution to the final

stage. The solution is determined as follows: conjecture support, analyze payoffs, solve for distri-

butions, confirm supports.

Entering the last stage, both players are aware of v1, v2, b 1
1 , and b 1

2 . Hence, they are aware of ∆.

Players choose b 2
1 and b 2

2 , independently, to maximize individual profit. The following examines

the three possible scenarios players face with regards to∆.

SCENARIO 1: ∆> 0

Conjecture Support: The purpose here is to determine the range of bids that players my place with

positive probability. Player 2 will never bid above v2. Otherwise, max π2 = v2− b 2
2 < 0. Player 1,

knowing that b 2
2 ≤ v2, will never bid above v2 −∆+ ε.1 Otherwise, Player 1 could lower his bid

and increase π1. Furthermore, Player 2 will never bid in the range (0,∆). Any bid in this range is

not enough to overcome Player 1’s advantage,∆. Therefore, a bid in this range will result in π2 < 0.

The support of Player 2’s strategy is b 2
2 ∈ {0,[∆, v2]}.

Let G1 and G2 be the CDFs that describe the bidding strategies of Player 1 and Player 2. Based on

the supports above, G1(v2 −∆) = 1 and G2(v2) = 1. And, G1(0) = 0. Player 2 may put a mass at

0. To see this, assume ∆ = v2. In this scenario, Player 2 would set b 2
2 = 0 with probability 1. Let,

G2(0) = α where α is the mass at 0. Given that no bids occur in the range (0,∆), G2(b
2
2 ) = α for all

b 2
2 in this range.

1To simplify, I will not carry the ε through the rest of the analysis.
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Analyze Payoffs: Having established the range over which players bid, I wish to determine the

bidding strategy that maximizes the players’ payoffs, which are:

Π1 =π
N
1 = v1G2(b

2
1 +∆)− b 2

1 (D.1)

Π2 =π
N
2 = v2G1(b

2
2 −∆)− b 2

2 (D.2)

Note that for each Player, the bids placed in the first round are unrecoverable sunk costs. Hence,

they do not enter the payoff functions in the second stage other than through their impact on the

advantage,∆. What remains is to solve for the distributions G1 and G2. Player 1 has the higher limit

on his effective bid. According to Proposition 1, he will earn positive expected profit and Player 2

will earn zero expected profit. Player 1 has the opportunity to win assuredly by bidding v2 −∆.

Therefore he will employ a mixed strategy that gives him this profit in expectation. Similarly, Player

2 expects zero profit and mixes accordingly. Any mixed strategy equilibrium requires that expected

profits equal:

π1 = v1− v2+∆ (D.3)

π2 = 0 (D.4)

Solving equations (D.1), (D.2), (D.3), (D.4) simultaneously yields the distributions:

G1(x) =
x+∆

v2
for x ∈ [0, v2−∆]

G2(x) =
v1−v2+x

v1
for x ∈ {0,[∆, v2]}

Finally, note that Player 2 places a mass point at zero. When x = 0, α= v1−v2
v1

. Figure D.1 plots the

CDF describing Player 2’s mixed bidding strategy.

SCENARIO 2: ∆< 0

In the second round, Player 2 enters with an advantage. For exposition, define Λ =−∆= b 1
2 − b 1

1 .

So, Λ is the advantage that Player 2 holds. There are three cases, defined by the magnitude of Λ, to
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Figure D.1: Player 2’s second round mixed strategy CDF

consider. If Λ = v1 − v2, then players enter the second round “even” in terms of their maximum

effective bids. Therefore, each will receive expected profits of zero. If Λ is smaller than this amount,

that is even with the advantage v1 > v2+Λ, Player 1 will receive a positive expected payoff though it

will be lower than when he held the advantage. Finally, if Λ> v1− v2, then Player 2 can effectively

outbid Player 1 in the second round and receive positive profits. The following will consider each

of these three cases using the solution methodology outlined above.

Case 1: v1 = v2+Λ

Conjecture Support: Player 2 will never bid above v2. Otherwise, max π2 = v2− b 2
2 < 0. For the

same reasons, Player 1 will not bid above v1. For Player 1 to win, he must bid above b 2
2 +Λ. If

Player 2 bids b 2
2 = v2, then Player 1 must bid v2 +Λ = v1. Also, Player 1 must overcome Player

2’s advantage. Thus Player 1 will not bid in the interval (0,Λ). Thus G1 and G2 have supports

x2
1 ∈ [Λ, v1] and x2

2 ∈ [0, v2].

Based on these supports, G1(Λ) = 0, G1(v1) = 1, G2(0) = α, and G2(v2) = 1.

Analyze Payoffs: Using mixed strategies defined over the supports above, the payoffs for players
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are:

π1 = v1G2(b
2
1 −Λ)− b 2

1 (D.5)

π2 = v2G1(b
2
2 +Λ)− b 2

2 (D.6)

Because each player has the same effective bid, the expected profits are:

π1 = 0 (D.7)

π2 = 0 (D.8)

Solving equations (D.5), (D.6), (D.7), (D.8) simultaneously yields the distributions:

G1(x) =
x −Λ

v2
for x ∈ [Λ, v1]

G2(x) =
x +Λ

v1
for x ∈ [0, v2]

This results shows that when Player 2 enters round two with enough of an advantage so that his

maximum bid equals that of Player 1, neither player receives positive expected profits.

Case 2: v1 > v2+Λ

Unlike the first case, the advantage held by Player 2 is not enough to allow his maximum effective

bid to equal Player 1’s highest effective bid. Therefore, Player 1 has a range of bidding options where

he can secure a win. To see this, we will again repeat the exercise above.

Conjecture Support: Player 2 will bid no higher than v2 regardless of the size of Λ. Player 1 may

bid up to v2+Λ. However, Player 1 will not bid below Λ otherwise π1 < 0. So, x2
1 ∈ [Λ, v2+Λ]

and x2
2 ∈ [0, v2]. The CDFs of each player evaluated at the upper and lower bounds are G1(Λ) = 0,

G1(v2+Λ) = 1, G2(0) = α, and G2(v2) = 1. Again, because Player 1 has the opportunity to outbid

Player 2, there is some positive probability that Player 2 will put a mass at zero.
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Analyze Payoffs: The payoffs are the same as those in case 1. However the expected profits differ:

π1 = v1− v2−Λ (D.9)

π2 = 0 (D.10)

Solving equations (D.5), (D.6), (D.9), (D.10) simultaneously yields the distributions:

G1(x) =
x −Λ

v2
for x ∈ [Λ, v2+Λ]

G2(x) =
v1− v2+ x

v1
for x ∈ [0, v2]

Player 2 puts a mass of α= v1−v2
v1

at zero.

Case 3: v1 < v2+Λ

Conjecture Support: In this final case of scenario 2, Player 2 enters the second round with enough

of an advantage that his maximum effective bid is above Player 1’s maximum effective bid, x2
1 = v1.

Therefore, Player 1 will place a positive probability, α, on playing zero. Player 1’s support is x2
1 ∈

{0,[Λ, v1]}. And Player 2, aware that Player 1 will not bid above v1, will not bid above v1 − Λ.

Hence, Player 2’s strategy spans [0, v1−Λ].

Analyze Payoffs: Using mixed strategies defined over the supports above, the payoffs for players

are:

π1 = v1G2(b
2
1 +Λ)− b 2

1 (D.11)

π2 = v2G1(b
2
2 −Λ)− b 2

2 (D.12)

Because it is now Player 2 who has the higher maximum effective bid, he will earn positive expected

profits.

π1 = 0 (D.13)

π2 = v2− v1+Λ (D.14)
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Solving equations (D.11), (D.12), (D.13), (D.14) simultaneously yields the distributions:

G1(x) =
v2− v1+ x

v2
for x ∈ {0,[Λ, v1]}

G2(x) =
x +Λ

v1
for x ∈ [0, v1−Λ]

And, is this case, Player 1 will place a mass at zero: α= v1−v2
v1

SCENARIO 3: ∆= 0

In this final scenario, neither player enters round 2 with an advantage. Therefore, the first stage has

no impact on how the players behave in the second. This case is developed in Baye, Kovenock, and

de Vries (1996). Adapting their multiple player model to this two player model, we have that players

will both bid in the range: x2
i ∈ [0, v2]. The payoff functions are as follows:

π1 = v1G2(b
2
1 )− b 2

1 (D.15)

π2 = v2G1(b
2
2 )− b 2

2 (D.16)

And, expected profits are given below. Because Player 1 has the higher maximum effective bid, he

will earn positive expected profits.

π1 = v1− v2 (D.17)

π2 = 0 (D.18)

Solving equations (D.15), (D.16), (D.17), (D.18) simultaneously yields the distributions:

G1(x) =
x

v2
for x ∈ [0, v2]

G2(x) =
v1− v2+ x

v1
for x ∈ [0, v2]
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Proof of Proposition 4: No mixed strategies. For Player 1 (assuming Player 2 bids2), the valuation func-

tion is an integral over the range of possible bids from Player 2. Player 1 seeks to maximize this value

function, V N−1
1 by choosing b N−1

1 . To simplify notation, I have dropped the superscripts from the

bids. The value function for Player 1 in stage N − 1 is:

V N−1
1 (b1,∆N−1) = −c(b1)+

∫ b1

b1

V N
1 g2(b2)d b2

V N−1
1 (b1,∆N−1) = −c(b1)+

∫ max(0,b1+c−1(v1)−c−1(v2)+∆
N−1)

0
(v1− c(c−1(v2)− b1+ b2−∆

N−1))g2(b2)d b2

0 =
∂ V N−1

1 (b1,∆N−1)

∂ b1

0 = −c ′(b1)+
�

v1− c(c−1(v2)− b1+ b1+ c−1(v1)− c−1(v2)+∆
N−1−∆N−1)

�

∗ 1+
�

v1− c(c−1(v2)− b1+ 0−∆N−1)
�

∗ 0+
∫ b1+c−1(v1)−c−1(v2)+∆

N−1

0

�

−c ′(c−1(v2)− b1+ b2−∆
N−1))g2(b2)

�

d b2

0 = −c ′(b1)+
�

v1− c(c−1(v1))
�

∗ 1+
�

v1− c(c−1(v2)− b1+ 0−∆N−1)
�

∗ 0+
∫ b1+c−1(v1)−c−1(v2)+∆

N−1

0

�

−c ′(c−1(v2)− b1+ b2−∆
N−1)g2(b2)

�

d b2

0 = −c ′(b1)+

(v1− v1) ∗ 1+

0+
∫ b1+c−1(v1)−c−1(v2)+∆

N−1

0

�

−c ′(c−1(v2)− b1+ b2)g2(b2)
�

d b2

c ′(b1) = −
∫ max(0,b1+c−1(v1)−c−1(v2)+∆

N−1)

0

�

c ′(c−1(v2)− b1+ b2−∆
N−1)g2(b2)

�

d b2

2∆N−1 could be such that Player 2 will not bid. This is the case when∆N−1 ≥ b N−1
1 + c−1(v1)− c−1(v2)
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Because c is an increasing function of b N−1
1 , there is no b N−1

1 that would result in a negative change

in c(b N−1
1 ). Therefore, there is no mixed strategy equilibrium for Player 1.

Player 2 wishes to maximize his value function, V2. As Player 1 had to include the possible bids of

Player 2, Player 2 must also maximize over the possible bids of Player 1.

V2(b2,∆N−1) = −c(b2)+
∫ max(0,b2+c−1(v2)−c−1(v1)−∆N−1)

0
(v2− c(c−1(v1)+ b1− b2+∆

N−1))g1(b1)d b1

0 =
∂ V2(b2,∆N−1)

∂ b2

0 = −c ′(b2)+
�

v2− c(c−1(v1)+ b2+ c−1(v2)− c−1(v1)−∆
N−1− b2+∆

N−1)
�

∗ 1+
�

v2− c(c−1(v1)+ 0− b2+∆
N−1)

�

∗ 0+
∫ b2+c−1(v2)−c−1(v1)−∆N−1

0

�

−c ′(c−1(v1)+ b1− b2+∆
N−1))g1(b1)

�

d b1

0 = −c ′(b2)+
�

v2− c(c−1(v2))
�

∗ 1+
�

v2− c(c−1(v1)+ 0− b2+∆
N−1)

�

∗ 0+
∫ b2+c−1(v2)−c−1(v1)−∆N−1

0

�

−c ′(c−1(v1)+ b1− b2+∆
N−1)g1(b1)

�

d b1

0 = −c ′(b2)+

(v2− v2) ∗ 1+

0+
∫ b2+c−1(v2)−c−1(v1)−∆N−1

0

�

−c ′(c−1(v1)+ b1− b2+∆
N−1)g1(b1)

�

d b1

c ′(b2) = −
∫ max(0,b2+c−1(v2)−c−1(v1)−∆N−1)

0

�

c ′(c−1(v1)+ b1− b2+∆
N−1)g1(b1)

�

d b1

Using the same logic as above, there is no mixed strategy equilibrium for Player 2.
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Proof of Proposition 5: Pure strategy equilibria. Each player must decide whether to bid. This leads

to four possible cases: 1. Each player bids; 2. Player 1 bids and Player 2 does not; 3. Player 2 bids

and Player 1 does not; and 4. Neither player bids. The following examines each of the four cases in

detail to arrive at possible equilibria.

1. Assume b1 > 0, b2 > 0, and b1 > b2 + c−1(v2)− c−1(v1)−∆N−1. In this case, Player 1 earns

positive profit.

V1(b1) = −c(b1)+ v1− c(c−1(v2)− b1+ b2−∆
N−1)

argmax
b1

V1

∂ V1(b1)

∂ b1
= 0

0 = −c ′(b1)+ c ′(c−1(v2)− b1+ b2−∆
N−1)

c ′(b1) = c ′(c−1(v2)− b1+ b2−∆
N−1)

c(b1) = c(c−1(v2)− b1+ b2−∆
N−1)

b1 = c−1(v2)− b1+ b2−∆
N−1

b1 =
c−1(v2)+ b2−∆N−1

2

Player 2 earns zero profit.

V2(b2) = −c(b2)+ 0

argmax
b2

V2

∂ V2(b2)

∂ b2
= 0

0 = −c ′(b2)

c ′(b2) = 0

b2 = 0

Note that second order conditions are satisfied as V ′′i (bi )< 0. However, the assumption that b2 > 0
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is violated.

Now assume b1 > 0, b2 > 0, and b2 > b1 + c−1(v1)− c−1(v2) +∆
N−1. Here, Player 1 earns zero

profit.

V1(b1) = −c(b1)+ 0

argmax
b1

V1

∂ V1(b1)

∂ b1
= 0

0 = −c ′(b1)

c ′(b1) = 0

b1 = 0

Player 2 earns positive profit.

V2(b2) = −c(b2)+ v2− c(c−1(v1)+ b1− b2+∆
N−1)

argmax
b2

V2

∂ V2(b2)

∂ b2
= 0

0 = −c ′(b2)+ c ′(c−1(v1)+ b1− b2+∆
N−1)

c ′(b2) = c ′(c−1(v1)+ b1− b2+∆
N−1)

c(b2) = c(c−1(v1)+ b1− b2+∆
N−1)

b2 = c−1(v1)+ b1− b2+∆
N−1

b2 =
c−1(v1)+ b1+∆

N−1

2

Now, the assumption that b1 > 0 is violated. Hence, it cannot be the case that both player bid a

positive amount.

2. Now, assume Player 1 bids b1 > 0 and Player 2 bids zero. Also assume that b1 > c−1(v2)−

c−1(v1)−∆N−1, so that Player 1 crosses the threshold to earn positive expected profit in the final
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round. Player 1 chooses b1 to maximize profit:

V1(b1) = −c(b1)+ v1− c(c−1(v2)− b1−∆
N−1)

argmax
b1

V1

∂ V1(b1)

∂ b1
= 0

0 = −c ′(b1)+ c ′(c−1(v2)− b1−∆
N−1)

c ′(b1) = c ′(c−1(v2)− b1−∆
N−1)

c(b1) = c(c−1(v2)− b1−∆
N−1)

b1 = c−1(v2)− b1−∆
N−1

b ∗1 =
c−1(v2)−∆N−1

2

Now I verify that b ∗1 satisfies the assumption above:

b ∗1 > c−1(v2)− c−1(v1)−∆
N−1

c−1(v2)−∆N−1

2
> c−1(v2)− c−1(v1)−∆

N−1

c−1(v1) >
c−1(v2)−∆N−1

2
(D.19)

Next I verify that the overall profit is positive:

V1(
c−1(v2)−∆N−1

2
) = −c(

c−1(v2)−∆N−1

2
)+ v1− c(c−1(v2)−

c−1(v2)−∆N−1

2
)

= −c(
c−1(v2)−∆N−1

2
)+ v1− c(c−1(v2)−

c−1(v2)−∆N−1

2
)

= −c(
c−1(v2)−∆N−1

2
)+ v1− c(

c−1(v2)−∆N−1

2
)

= v1− 2c(
c−1(v2)−∆N−1

2
)
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Therefore, overall profit for Player 1 is positive as long as:

v1 > 2c(
c−1(v2)−∆N−1

2
)

c−1(
v1

2
) >

c−1(v2)−∆N−1

2
(D.20)

Note if the overall profitability requirement, (D.20), is met, then the threshold requirement, (D.19),

is also satisfied.3

Condition (D.20) assumes that Player 2 bid zero. Player 2 will only bid a positive amount if it can

cross the threshold for profitability given b ∗1 . So, assume that b2 > c−1(v1)− c−1(v2)+ b ∗1 +∆
N−1.

Given this, Player 2 will select b2 maximize profit:

V2(b2) = −c(b2)+ v2− c(c−1(v1)+ b ∗1 − b2+∆
N−1)

V2(b2) = −c(b2)+ v2− c(c−1(v1)+
c−1(v2)−∆N−1

2
− b2+∆

N−1)

V2(b2) = −c(b2)+ v2− c(c−1(v1)+
c−1(v2)+∆

N−1

2
− b2)

argmax
b2

V2

∂ V2(b2)

∂ b2
= 0

0 = −c ′(b2)+ c ′(c−1(v1)+
c−1(v2)+∆

N−1

2
− b2)

c ′(b2) = c ′(c−1(v1)+
c−1(v2)+∆

N−1

2
− b2)

c(b2) = c(c−1(v1)+
c−1(v2)+∆

N−1

2
− b2)

b2 = c−1(v1)+
c−1(v2)+∆

N−1

2
− b2

b ∗2 =
c−1(v1)

2
+

c−1(v2)+∆
N−1

4

Now, to satisfy the assumption above, I derive the requirements for b ∗2 > c−1(v1)− c−1(v2) + b ∗1 +

3Also note that c−1( v1
2 ) >

c−1(v2)
2 . Therefore, ∆N−1 must be greater than or equal to c−1(v2)− 2c−1( v1

2 ) which is a
negative value because c(v1)> c(v2) and 2c−1( v1

2 )> c(v1).
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∆N−1.

b ∗2 > c−1(v1)− c−1(v2)+ b ∗1 +∆
N−1

c−1(v1)

2
+

c−1(v2)+∆
N−1

4
> c−1(v1)− c−1(v2)+

c−1(v2)−∆N−1

2
+∆N−1

c−1(v1)

2
+

c−1(v2)

4
+
∆N−1

4
> c−1(v1)−

c−1(v2)

2
+
∆N−1

2
3

4
c−1(v2)−

∆N−1

4
>

c−1(v1)

2
3

2
c−1(v2) > c−1(v1)+

∆N−1

2
∆N−1 < 3c−1(v2)− 2c−1(v1) (D.21)

Finally, if (D.21) holds, does Player 2 earn overall positive profits? Profit for Player 2 is:

V2(b
∗
1 , b ∗2 ) = −c(b ∗2 )+ v2− c(c−1(v1)+ b ∗1 − b ∗2 +∆

N−1)

= −c(
c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)+ v2

−c(c−1(v1)+
c−1(v2)−∆N−1

2
−

c−1(v1)

2
−

c−1(v2)+∆
N−1

4
+∆N−1)

= −c(
c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)+ v2− c(

c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)

= v2− 2c(
c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)
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V2(b
∗
1 , b ∗2 ) is positive if:

v2− 2c(
c−1(v1)

2
+

c−1(v2)+∆
N−1

4
) ≥ 0

v2 ≥ 2c(
c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)

v2

2
≥ c(

c−1(v1)

2
+

c−1(v2)+∆
N−1

4
)

c−1
�v2

2

�

≥
c−1(v1)

2
+

c−1(v2)+∆
N−1

4

c−1
�v2

2

�

−
c−1(v1)

2
−

c−1(v2)

4
≥
∆N−1

4

∆N−1 ≤ 4c−1
�v2

2

�

− 2c−1(v1)− c−1(v2) (D.22)

The condition for overall profitability, (D.22), is more stringent than the threshold condition,

(D.21). To see this note that:

4c−1
�v2

2

�

− 2c−1(v1)− c−1(v2) < 3c−1(v2)− 2c−1(v1)

4c−1
�v2

2

�

< 4c−1(v2)

c−1
�v2

2

�

< c−1(v2)

Therefore, for Player 2 to bid a positive amount, ∆N−1 ≤ 4c−1
� v2

2

�

− 2c−1(v1)− c−1(v2). And, if

not, then Player 2 will bid zero.

To summarize, if ∆N−1 > c−1(v2)− 2c−1( v1
2 ) and ∆N−1 > 4c−1

� v2
2

�

− 2c−1(v1)− c−1(v2), then an

equilibrium exists where:

b ∗1 =
c−1(v2)−∆N−1

2
b ∗2 = 0
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3. Consider the possibility that Player 1 bids zero and Player 2 bids b2 > 0. Player 2 will only bid

a positive amount if b2 > c−1(v1)− c−1(v2) + ∆
N−1 so that expected profit in the final round is

positive. Assume this is the case. Player 2 selects b2 to maximize profit:

V2(b2) = −c(b2)+ v2− c(c−1(v1)− b 2+∆N−1)

argmax
b2

V2

∂ V2(b2)

∂ b2
= 0

0 = −c ′(b2)+ c ′(c−1(v1)− b2+∆
N−1)

c ′(b2) = c ′(c−1(v1)− b2+∆
N−1)

c(b2) = c(c−1(v1)− b2+∆
N−1)

b2 = c−1(v1)− b2+∆
N−1

b ∗2 =
c−1(v1)+∆

N−1

2

Now I verify that b ∗2 satisfies the assumption above:

b2 > c−1(v1)− c−1(v2)+∆
N−1

c−1(v1)+∆
N−1

2
> c−1(v1)− c−1(v2)+∆

N−1

c−1(v2) >
c−1(v1)+∆

N−1

2
(D.23)

However, a more restrictive condition is necessary for Player 2 to earn overall positive profit:

V2(b2) ≥ 0

−c(
c−1(v1)+∆

N−1

2
)+ v2− c(c−1(v1)−

c−1(v1)+∆
N−1

2
) ≥ 0

v2 ≥ 2c(
c−1(v1)+∆

N−1

2
)

c−1
�v2

2

�

≥
c−1(v1)+∆

N−1

2

∆N−1 ≤ 2c−1
�v2

2

�

− c−1(v1) (D.24)
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This can happen depending on the magnitude of ∆N−1, the convexity of c, and the separation

between v1 and v2. So Player 2 may bid a positive amount.

Can Player 1 place a bid that profitably deviates from bidding zero? For any positive bid to yield

positive profit, b1 > c−1(v2)− c−1(v1) + b2 −∆N−1. Based on Player 2’s bid of b ∗2 =
c−1(v1)+∆

N−1

2 ,

Player 1 bids b1 to maximizes V1.

V1(b1, b ∗2 ) = −c(b1)+ v1− c(c−1(v2)− b1+ b ∗2 −∆
N−1)

= −c(b1)+ v1− c

 

c−1(v2)− b1+
c−1(v1)+∆

N−1

2
−∆N−1

!

= −c(b1)+ v1− c

 

c−1(v2)− b1+
c−1(v1)−∆N−1

2

!

argmax
b1

V1

∂ V1(b1, b ∗2 )

∂ b1
= 0

0 = −c ′(b1)+ c ′
 

c−1(v2)− b1+
c−1(v1)−∆N−1

2

!

c ′(b1) = c ′
 

c−1(v2)− b1+
c−1(v1)−∆N−1

2

!

b1 = c−1(v2)− b1+
c−1(v1)−∆N−1

2

b ∗1 =
c−1(v2)

2
+

c−1(v1)−∆N−1

4

Note that the following threshold must be crossed for Player 1 to receive a payoff:

b ∗1 > c−1(v2)− c−1(v1)+ b ∗2 −∆
N−1

b ∗1 > c−1(v2)− c−1(v1)+
c−1(v1)+∆

N−1

2
−∆N−1

b ∗1 > c−1(v2)−
c−1(v1)+∆

N−1

2
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b ∗1 crosses this threshold if:

c−1(v2)

2
+

c−1(v1)−∆N−1

4
> c−1(v2)−

c−1(v1)+∆
N−1

2

c−1(v2)+
c−1(v1)−∆N−1

2
> 2c−1(v2)− c−1(v1)−∆

N−1

3

2
c−1(v1)+

∆N−1

2
> c−1(v2)

∆N−1 > 2c−1(v2)− 3c−1(v1) (D.25)

Because v1 > v2 and c is an increasing function, this threshold is always a negative number. Finally,

we must ensure that b ∗1 yields an overall profit for Player 1. Player 1’s overall profit at b ∗1 and b ∗2 is:

V1(b
∗
1 , b ∗2 ) = −c(b ∗1 )+ v1− c(c−1(v2)− b ∗1 + b ∗2 −∆

N−1)

= −c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

+ v1

−c

 

c−1(v2)−
c−1(v2)

2
−

c−1(v1)−∆N−1

4
+

c−1(v1)+∆
N−1

2
−∆N−1

!

= −c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

+ v1− c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

= −2c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

+ v1
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This is non-negative if:

− 2c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

+ v1 ≥ 0

v1 ≥ 2c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

v1

2
≥ c

 

c−1(v2)

2
+

c−1(v1)−∆N−1

4

!

c−1(
v1

2
) ≥

c−1(v2)

2
+

c−1(v1)−∆N−1

4
∆N−1

4
≥

c−1(v2)

2
+

c−1(v1)

4
− c−1(

v1

2
)

∆N−1 ≥ 2c−1(v2)+ c−1(v1)− 4c−1(
v1

2
) (D.26)

Note that the overall profitablity condition, (D.26), is more strict than the threshold condition,

(D.25). Therefore, if∆N−1 ≤ 2c−1
� v2

2

�

− c−1(v1) and∆N−1 < 2c−1(v2)+ c−1(v1)− 4c−1( v1
2 ):

b ∗1 = 0

b ∗2 =
c−1(v1)+∆

N−1

2

4. Finally, note that it cannot be the case that both players bid zero. Due to convexity in the cost

function, the player who has the advantage prefers to spread the cost over rounds. Therefore, at

least one player will bid a positive amount.
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Proof of Proposition 6: Valuation functions in period N-k. The result is established by induction. I

begin with the set of value functions where Player 1 earns positive profit.

1. For the k = 0 case:

V N
1 = v1− c(c−1(v2)−∆

N )

Note that this is the value function detailed in Table 2.2.

2. Assuming the result is true for the k = n case, I show that it is also true when k = n+ 1.

Assume:

V N−n
1 = v1− (n+ 1)c

 

c−1(v2)−∆N−n

n+ 1

!

In the n+1 case, Player 1 selects b N−(n+1)
1 to maximize the value function:

V N−(n+1)
1 = −c(b N−(n+1)

1 )+V N−n
1

= −c(b N−(n+1)
1 )+ v1− (n+ 1)c

 

c−1(v2)−∆N−n

n+ 1

!
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The result of this maximization is that:

∂ V1(b
N−(n+1)
1 )

∂ b N−(n+1)
1

= 0

−c ′(b N−(n+1)
1 )+ c ′

 

c−1(v2)−∆N−n

n+ 1

!

= 0

c ′(b N−(n+1)
1 ) = c ′

 

c−1(v2)−∆N−n

n+ 1

!

b N−(n+1)
1 =

c−1(v2)−∆N−n

n+ 1

b N−(n+1)
1 =

c−1(v2)− b N−(n+1)
1 + b N−(n+1)

2 −∆N−(n+1)

n+ 1
(n+ 1)b N−(n+1)

1 + b N−(n+1)
1 = c−1(v2)+ b N−(n+1)

2 −∆N−(n+1)

(n+ 2)b N−(n+1)
1 = c−1(v2)+ b N−(n+1)

2 −∆N−(n+1)

b N−(n+1)
1 =

c−1(v2)+ b N−(n+1)
2 −∆N−(n+1)

n+ 2

Under conditions where b N−(n+1)
2 = 0, we have the following:

V N−(n+1)
1 = −c

 

c−1(v2)−∆N−(n+1)

n+ 2

!

+ v1− (n+ 1)c









c−1(v2)−
c−1(v2)−∆N−(n+1)

n+2 −∆N−(n+1)

n+ 1









= −c

 

c−1(v2)−∆N−(n+1)

n+ 2

!

+ v1− (n+ 1)c(
c−1(v2)−∆N−(n+1)

n+ 2
)

= v1− (n+ 2)c

 

c−1(v2)−∆N−(n+1)

n+ 2

!

= v1− ((n+ 1)+ 1)c

 

c−1(v2)−∆N−(n+1)

(n+ 1)+ 1

!

Recall that k = n+ 1. Substituting this into the equation above yields the result that:

V N−k
1 = v1− (k + 1)c

 

c−1(v2)−∆N−k

k + 1

!

The equilibrium are symmetrical, so the above holds for the second set of value functions as well.
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