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ABSTRACT 

TANYA BURCH: Biochemical Characterization of Human Heparan Sulfate 6-O-
Endosulfatase 

(Under the direction of Jian Liu) 
 

Heparan sulfate (HS) is a complex and diverse polysaccharide abundantly found on 

the cell surface of cells from several different species.  The HS biosynthetic machinery 

creates very heterogeneous structures that interact with a variety of proteins that result in 

important biological functions.  In addition, HS can be remodeled in the extracellular matrix 

by a novel class of extracellular sulfatases (Sulfs) which selectively remove 6-O-sulfo groups 

from glucosamine residues within HS.  The activities of Sulfs have been correlated with 

various biological activities relating to embryonic development and cancer.  Therefore, 

understanding and utilizing Sulf activity can aid in understanding the structure-function 

relationship of HS as well as aid in developing and tailoring HS based therapies.  The goals 

of this work were to investigate the substrate specificity of human 6-O-endosulfatase isoform 

2 (HSulf-2) as well as to utilize HSulf-2 editing activity to tailor anticoagulant HS structures.  

The use of synthetic polysaccharides along with active HSulf-2 found in the conditioned 

medium of mammalian cells has allowed for the investigation of the substrate specificity of 

HSulf-2.  Results demonstrated that HSulf-2 is selective toward 6-O-sulfo groups on 

glucosamine residues that are found in moderately and highly sulfated domains of HS.  In 

addition, 2-O-sulfation of uronic acid and N-sulfation of glucosamine are necessary for 

serving as a substrate.  Results also showed HSulf-2 can tailor HS anticoagulant structures 

and is capable of maintaining anticoagulant properties while reducing the binding of HS to 
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other proteins.  The biochemical characterization of a human heparan sulfate 6-O-

endosulfatase as described herein provides a novel method for determining the substrate 

specificity of HSulf-2.  Because Sulf treated HS maintains excellent anticoagulant activity, 

results of my work open up a new approach to prepare anticoagulant HS with reduced side 

effects.  The future development of this project could elucidate important structure-function 

relationships as well as become a valuable tool in drug discovery. 
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CHAPTER I 

INTRODUCTION 
 

Section I: Glycosaminoglycans 

Macromolecules known as glycosaminoglycans (GAGs) are found in abundance on 

the cell surface and in the extracellular matrix (ECM).  GAGs are predominately found on 

the cell surface attached to different core proteins in the form of proteoglycans.  GAGs 

consist of linear, unbranched polysaccharides which bind to a variety of proteins such as 

growth factors, chemokines, and cytokines.  These interactions lead to a wide range of 

biological events such as angiogenesis and lipoprotein metabolism in addition to viral entry 

and embryonic development (1-3).  These polysaccharides consist of repeating disaccharide 

units.  The repeating disaccharide units contain a uronic acid residue, which is either iduronic 

acid (IdoA) or glucuronic acid (GlcA), linked to either an N-acetyl galactosamine (GalNAc) 

or N-acetyl glucosamine (GlcNAc) residue.  Hyaluronic acid, keratan sulfate, chondroitin 

sulfate, and heparin/heparan sulfate are four distinct classes of glycosaminoglycans (Figure 

1).  These GAGs are classified by their different repeating disaccharide units and 

arrangement of sulfations.   
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Figure 1.  Repeating disaccharide units of glycosaminoglycans.  R represents H or sulfate, 
and R’ represents H, sulfate, or acetyl. 

 
 

Hyaluronic Acid 

Hyaluronic acid (HA), also known as hyaluronan or hyaluronate, is a highly viscous 

and compressible carbohydrate polymer widely known for its shock absorbing quality in 

synovial fluid, vitreous humor, and ECM loose connective tissues and joints (4).  HA is a 

non-sulfated, non-epimerized GAG, which is neither covalently attached to a protein to form 

a proteoglycan nor is synthesized in the Golgi.  It is a copolymer of glucuronic acid and 

glucosamine residues linked together via alternating β1, 3 and β1,4 linkages.  It is 

synthesized directly into the ECM with an average molecular weight of 105 – 107 Da (5).  In 

addition, HA has been approved for use in pre-operative and post-operative treatment in eye 

surgery, treatment of osteoarthritis of the knee, and is a common component of skin care 

products due to its wound healing and regenerative properties (4, 6-8).  Studies suggest it 

plays a role in cell proliferation and migration as well as being an indicator for malignancy 
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and poor prognosis in prostate and breast cancer.  HA has also been shown to aid in growth 

factor stimulation that facilitates angiogenesis (9). 

 

Keratan Sulfate 

Keratan sulfate (KS), also known as kertosulfate, is mainly found in cornea, cartilage, 

and bone (10).  The main structure of KS consists of a copolymer of repeating galactose and 

N-acetyl glucosamine disaccharide units connected by alternating β1, 3 and β1, 4 linkages.  

KS is synthesized in the Golgi and is found in proteoglycan form.  KS can vary in the degree 

of sulfation, and has a molecular weight ranging from 4×103 to 2×104 Da (10).  In addition, it 

has been suggested that KS functions in vivo in embryogenesis, cartilage metabolism, and 

cancer invasion (11-13).  Furthermore, it has been shown to have regenerative properties in 

wound healing and hydrating the cornea (10) 

 

Chondroitin Sulfate 

Chondroitin sulfate (CS) is found abundantly in the ECM of connective tissues and in 

the central nervous system (14).  It is synthesized as a copolymer of repeating disaccharide 

residues of glucuronic or iduronic acid and N-acetyl galactosamine attached via alternating 

β1, 3 and β1, 4 linkages (Figure 1).  Like heparan sulfate, CS is a structurally complex 

glycosaminoglycan.  CS contains varying degrees of sulfation, and it can be divided into 

three distinct categories.  Chondroitin sulfate A (CS-A) contains a galactosamine-4-O-

sulfate, chondroitin sulfate B (CS-B), also known as dermatan sulfate (DS), contains a higher 

degree of IdoA residues, and chondroitin sulfate C (CS-C) contains galactosamine-6-O-

sulfate (14, 15).  They exist on the cell surface and in the extracellular matrix in the form of 
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proteoglycans, and can interact and modulate growth factors, cytokines, and chemokines 

(16).  It has been implicated in the regulation and maintenance of cell proliferation, tissue 

morphogenesis, and displaying important roles in neural network formation in the developing 

mammalian brain (14, 17). 
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Section II: Structure and Biosynthesis of Heparin/Heparan Sulfate 

Structure of Heparin vs. Heparan Sulfate 

Heparan sulfate (HS) is a polysaccharide composed of 50 to 200 disaccharide units in 

length consisting of hexuronic acid (HexA) and N-acetyl glucosamine residues attached via 

alternating β1, 4 and α1, 4 linkages (Figure 1).  The HexA can be either a GlcA or IdoA 

residue.  HS is covalently attached to a core protein, and can be found on the cell surface and 

in the ECM.  Studies of the past several decades have revealed that HS plays an important 

role in a variety of physiological processes.   

Heparin (HP), a commonly administered anticoagulant drug, is a structural analog of 

HS.  HP is a copolymer of repeating UA and GlcNAc residues.  There are several noticeable 

differences between heparin and heparan sulfate.  HS is common product of all mammalian 

cells while HP is an exclusive product of mast cells.  Heparin contains a higher degree of 

sulfation and epimerization compared to HS, displaying extended repeating disaccharides of 

IdoA2S-GlcNS6S.  On average 2.7 sulfate groups are present within disaccharide units of HP 

compared to an average of 0.6-1 sulfate groups present within the disaccharide units of HS 

(18, 19).  HS displays a more diverse pattern of sulfation and epimerization, while containing 

heparin-like sequences within the polysaccharide chain.  HS and HP isolated from natural 

sources contain monosaccharides present at various levels.  Glucosamine residues commonly 

found in HS are either N-acetylated (GlcNAc) or N-sulfated (GlcNS).  Only 1-7% of the 

glucosamine residues exist in the N-unsubstituted form (GlcNH2) which allows HS to display 

primary amine groups (18, 20).  2-O-sulfated iduronic acid and 6-O-sulfated glucosamine are 

common monosaccharides found in HS, while 3-O-sulfated glucosamine and 2-O-sulfated 

glucuronic acid (GlcA2S) are rare monosaccharides found in HS (21). 
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NMR and molecular modeling studies reveal HP and HS display a helical-type 

structure with the various sulfo and carboxylate groups projected in an outward fashion (22).  

Structural variability, overall charge, and conformation affect interactions with target 

proteins.  Therefore, the length of the HS chain and number of sulfo groups are important.  In 

addition, changes in ring conformation and rotation around the glycosidic bond can affect the 

three dimensional arrangement of the sulfo groups.  GlcA and GlcNAc residues are 

commonly found in the 1C4 (chair) conformation.  However, the IdoA residue can adopt 

either the 1C4 or 2S0 (skew boat) conformation (Figure 2) (23).   

O

OH O
NR'H

OR

O
O

OH

OR

HOOC

O

O

OH ONR'H

OR

O
O

OH

OR

HOOC
O

O

HO O
NR'H

OR

O

O
HO

OR

HOOC

O

GlcA GlcN

IdoA, 1C4 Conformation GlcN

GlcNIdoA, 2S0 Conformation  
Figure 2.  Disaccharide repeating units of HS.  IdoA±2S is present in both 1C4 and 2S0 
conformations.  Both conformations are presented.  R=-SO3,-H; R’=-SO3,-H, or –Ac. 

 
 
Both chair and skew boat conformations of IdoA have been observed in co-crystal and NMR 

structural analysis of protein interactions (24, 25).  The equilibrium between the two 

conformations for IdoA residues depends its own substitution with 2-O-sulfation and the 



7 

 

sulfation of the adjacent glucosamine residues (26).  Moreover, it has been suggested that 

replacement of the N-sulfo groups to the reducing side of IdoA residues by an N-acetyl group 

has only a slight affect on the balance of IdoA conformational equilibrium.  While it has also 

been suggested that 6-O-sulfo groups at the nonreducing end alters the balance of the IdoA2S 

equilibrium more toward the 2S0 conformation (27). Therefore, there may be a cooperative 

effect between N- and 6-O sulfation.  This information is important in elucidating 

conformational changes of HS and the potential regulatory role 6-O-sulfation may play 

within HS chains.  Thus, the arrangement of IdoA residues can help optimize any structural, 

electrostatic, and van de Waals properties required for these protein interactions (28, 29). 

 

Heparan Sulfate Proteoglycan Core Proteins 

Heparan sulfate proteoglycans (HSPGs) are found abundantly on the cell surface and 

ECM of mammalian cells.  HSPGs are comprised of a core protein covalently attached to one 

or more GAG chains.  The core protein determines the localization and presentation of HS on 

the cell surface and in the ECM.  The major HSPGs contain up to 5 conserved HS sites 

which consist of a SGXG or SG sequence, where X refers to any amino acid with this 

sequence commonly being preceded by various acidic residues (15).  HS side chains 

modified by sulfotransferases, epimerase, and extracellular endosulfatases (Sulf1 and Sulf2) 

yield structurally diverse chains involved in various biological functions.  Membrane bound 

and secreted proteoglycans are the two major classes of HSPGs.  Syndecans and glypicans 

are the major membrane bound proteoglycans, while perlecans and agrins are the major 

secreted proteoglycans (Figure 3).   
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Figure 3.  The family of HS proteoglycans.  The core proteins are shown in purple, while 
the HS chains are shown in orange and red.  Syndecan is a transmembrane protein and 
glypican is a glycosylphosphatidylinositol (GPI) anchored protein.  Perlecan and agrin are 
not attached to the cell surface and are found in the ECM. 

 
 

Syndecan 

The syndecan core protein family is a single type I transmembrane protein.  

Syndecan-1, syndecan-2 (fibroglycan), syndecan-3 (N-syndecan), and syndecan-4 

(amphiglycan or ryudocan) represent four human or mouse members as well as a Drosophila 

homologue having an average molecular weight of 20-45 kDa (30).  Syndecan core proteins 

contain an N-terminal signal peptide sequence, an ectodomain, a homologous transmembrane 

domain, and a cytoplasmic C-terminal domain with four tyrosine residues at fixed positions.  

The ectodomain is somewhat divergent except for the several consensus sequences for GAG 

attachment and a protease dibasic cleavage sequence.  This suggests the proteolytic cleavage 

sites can be cleaved allowing the shedding of the ectodomain to free the GAG from the cell 

surface.  The shed HSPG is placed in the ECM to interact with biological targets in addition 
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to regulating the amount of HS on the cell surface and in the extracellular matrix (31).  This 

protein core family is encoded by multiple genes expressed in a developmental and cell-type 

specific pattern by transcriptional and translational demands as well as tissue-specific 

proteases (32, 33).  They carry three to five attachment sites for GAG side chains.  The side 

chains for this core protein are HS and CS/DS. 

 

Glypican 

The glypican core protein family is another HSPG, but unlike syndecan it is anchored 

to the cell surface by a glycosylphosphatidylinositol (GPI) linkage at the hydrophobic C-

terminal tail.  The extracellular domain contains two or three GAG attachment sites.  These 

GAG attachment sites carry HS exclusively and are found in close proximity to the cell 

membrane.  There are 14 invariant cycteine residues in the extracellular domain that aid in 

the stabilization of a compact tertiary structure (30).  Six isoforms have been identified in 

human and mouse which include glypican-1(glypican), glypican-2 (cerebroglycan), glypican-

3 (OCI-5), glypican-4 (K-glypican), glypican-5, and glypican-6 as well as two Drosophila 

glypicans and one C. elegans glypican.  The molecular weight of this core protein family has 

a range of 60-70 kD.  Studies suggest that glypican regulate the activities of fibroblast growth 

factors (FGFs), bone morphogenic proteins (BMPs), wingless (Wnt), hedge hogs (Hhs), and 

insulin-like growth factors (IGFs) (34).  In addition, glypicans have been implemented in the 

progression of several types of cancer (35).  Mutations found in the gene that encodes 

glypican-3 leads to Simpson-Golabi-Behmel syndrome, which is a rare X-linked disorder 

characterized by pre- and postnatal overgrowth of multiple tissues, organs, and multiple 

visceral and skeletal abnormalities (34-38). 
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Agrin 

Agrin is a 250 kDa protein which displays exclusively HS chains.  It has at least six 

potential HS attachment sites and has five N-glycosylation sites (39).  Agrin is found in the 

basement membrane of the neuromuscular junctions and renal tubular basement membranes 

of many species such as human, rat, and mouse (39-41).  Agrin contains domains that have 

specific functions that have been shown to function in the aggregation of acetylcholine 

receptors during synapsis in the neuromuscular junctions.  It is also participates in 

interactions with neural cell adhesion molecules involved in synaptogenesis during neural 

development, and is involved in lymphocyte activation contributing to immunological 

synapse formation (41-44). 

 

Perlecan 

Perlecan is one of the largest proteins found in mammals, Drosophila melanogaster, 

and C. elegans.  Perlecan consists of approximately a 470 kD core protein which can display 

up to four HS chains (45, 46).  However, it has been shown that perlecan can also display CS 

(47).  This core protein contains five domains, each having a distinct function.  It is mainly 

found in the basement membrane of most endothelial and epithelial cells where it can interact 

with fibroblast growth factor 2, vascular endothelial growth factor and platelet-derived 

growth factor (48).  It is involved in vascular development and homeostasis in addition to the 

development of mature cartilage (49-51) 
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Biosynthesis of heparan sulfate 

The biosynthesis of HS has been the subject of intense investigation since the 

biosynthesis of HS results in the generation of very heterogeneous and complex 

polysaccharide chains.  HS ability to interact with different target proteins and/or ligands 

along with its involvement in various biological functions is correlated with the structural 

diversity of HS.  Moreover, the combination of IdoA residues and sulfations patterns within 

the polysaccharide chain is vital for the structure-function relationship of HS in various 

biological contexts.  The biosynthesis of HS is a non-template, enzymatic driven process 

resulting in the possibility of disaccharides units within the chains containing variable 

modifications.  The HS biosynthetic pathway is separated into three stages: 1) biosynthesis of 

the tetrasaccharide linkage region, 2) chain initiation/chain elongation, and 3) chain 

modification.  All enzymes participating in the HS biosynthesis have been cloned, allowing 

us to study and increase our knowledge of this critical biological pathway. 

 

Step 1: Biosynthesis of the tetrasaccharide linkage region 

The biosynthesis of HS occurs in the lumen of the Golgi apparatus and begins with 

the attachment of four monosaccharides known as the tetrasaccharide linkage region to the 

core protein.  The tetrasaccharide linkage region of HS consists of a xylose-galactose-

galactose-glucuronic acid (GlcA(β1→3)Gal(β1→3)Gal(β1→4)Xly(1→O-Ser) in which Xyl 

is covalently attached to a specific serine residue of the core protein.  This tetrasaccharide 

sequence also serves as the linkage region for CS proteoglycans.  Each sugar residue is added 

to the tetrasaccharide linkage sequence in a stepwise manner by four specific 

glycosyltransferases, namely xylosyltransferase (XylT), galactosyltransferase I (GalT-I), 
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galactosyltransferase II (GalT-II), and glucuronyltransferase I (GlcAT-I) (Figure 4).  

Sulfation was shown to be found on the C-4 and/or C-6 position of Gal1 and Gal2, and have 

been demonstrated for CS/DS but not for HS/HP biosynthesis suggesting that the sulfation at 

the linkage region directs the synthesis of CS or HS.  C-2 phosphorylation of xylose has been 

demonstrated for HS/HP and CS/DS biosynthesis (52-54).  It has been suggested that 

phosphorylation and sulfation play a critical role in regulating maturation and production of 

growing GAG chains (55-57). 

 

 

 
Figure 4.  Generation of the tetrasaccharide linkage region.  The synthesis of the 
tetrasaccharide linker region that attaches the GAG chains to a serine within the conserved 
attachment site of the core protein is shown.  XylT attaches xylose the first residue of the 
tetrasacchride linkage region to the core protein.  The activities of GalT-I, GalT-II, and 
GlcAT-I transfer two galactose residues and a glucuronic acid, respectively, to complete the 
tetrasaccharide linkage region. Xylose is depicted as the yellow star, galactose the dark blue 

circle, and glucuronic acid as the light blue/white diamond. 
 
 
Xylosyltransferase (XylT) 

Xylosyltranferase (XylT) is the first enzyme to proceed in the biosynthesis of the 

tetrasaccharide linkage region by using uridine diphosphate (UDP)-xylose as a donor 

substrate to transfer xylose to specific serine residues within the core protein.  These serine 

residues are found in the SGXG peptide sequence within the protein, where X is any amino 
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acid.  Not every SGXG sequence is involved in the formation of the tetrasaccharide linkage 

region suggesting additional signals for catalysis (58, 59).  XylT is important in the formation 

of HS biosynthesis.  It has been shown to be a rate–limiting step in the formation of GAGs 

(60).  In addition,  Chinese hamster ovary (CHO) cells deficient in XylT were unable to 

produce HS or CS, and re-expression of XylT restored GAG chain synthesis (61, 62).  XylT-I 

and XylT-II have been identified and cloned with an overall sequence identity of 55 % (63, 

64).  They are type II transmembrane proteins located in the endoplasmic reticulum.  Both 

XylT-I and XylT-II have been found in human, mouse, and rat, but only one isoform was 

found in Drosophila melangaster and C. elegans (63-65).  These isoforms are differentially 

expressed in animal tissues (62).  In addition, mutations in either XylT-I or XylT-II can be 

used as biochemical markers and genetic risk factors for diseases (66, 67). 

 

Galactosyltransferase I (GalT-I) and Galactosyltransferase II (GalT-II) 

Galactosyltranferase I (GalT-I) is the second enzyme used in the formation of the 

tetrasaccharide linkage region.  This enzyme introduces the first Gal residue.  

Galactosyltransferase II (GalT-II) is the third enzyme involved in the formation of the 

tetrasaccharide linkage region.  It attaches the second Gal residue to the linkage region.  Both 

utilize UDP-galactose as a substrate donor.  However, GalT-I adds the first Gal residue to the 

tetrasaccharide linkage region by generating a β1,4 linkage, whereas GalT-II generates a β1,3 

linkage to the growing tetrasaccharide when adding the second Gal residue (68).  Both 

enzymes show type II membrane topology and are located in the early-medial potion of the 

Golgi apparatus (68, 69).  GalT-I can transfer a Gal onto a non-phosphorylated xlyoside, 

whereas the phosphorylated analog was not a substrate, suggesting phosphorylation at the C-
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2 position of xylose inhibits the transfer of the first Gal residue to xylose (57).  Re-expression 

of GalT-I into GalT-I deficient CHO cells restored GAG synthesis, demonstrating its 

importance in the biosynthesis of GAGs (70).  In addition, siRNA-mediated inhibition in 

HeLa S3 cells demonstrated that GalT-II was essential for GAG formation (68).  Two 

mutations in expressed GalT-I showing either absent or defective activity is responsible for 

the progeroid variant of Ehlers-Danlos syndrome, a connective tissue disorder manifesting in 

loose joints, fragile blood vessels, and abnormal wound healing (71).  In addition, the GalT-I 

deficient form of Ehlers-Danlos syndrome produce altered HS which is associated with a 

delay in wound repair, altered cell migration, adhesion, and contractility (72). 

Glucuronyltransferase I (GlcAT-I) 

Glucuronyltranferase I (GlcAT-I) is final glycosyltransferase involved in the 

completion of the tetrasaccharide linkage region.  It catalyzes the transfer of GlcA from 

UDP-GlcA to the terminal Gal residue.  It plays a critical role in preparing for the initiation 

and elongation of the GAG chains.  It has also been shown to regulate the overall GAG 

synthesis process and is rate-limiting in various cells since it positions the last 

monosaccharide at the branching point of GAG synthesis, which could direct the synthesis of 

CS or HS (73).  The crystal structure was solved for GlcAT-I, and information from the 

crystallography and site-directed mutagenesis studies have aided in elucidating key residues 

associated with substrate binding and catalysis (74, 75).  GlcAT-I has a greater reactivity 

toward compounds with sulfation of Gal1 and phosphorylation of Xyl  at the C-2 position, 

which may contribute to the efficient completion and maturation of the tetrasaccharide 

linkage (57, 76).  GlcAT-I has been expressed in mammalian cells and E.coli cells.  

However, the expression in yeast has led to a more soluble, properly folded, highly active 
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enzyme (77).  In addition, there has been an increasing interest of glycosyltransferases as 

pharmacological targets, and the over expression of GlcAT-I by gene transfer is a promising 

strategy to overcome GAG depletion induced by pro-inflammatory cytokines that are major 

mediators of osteoarthritis (78). 

 

Step 2: Chain Initiation/Chain Elongation 

After the tetrasaccharide linkage region is generated, another group of enzymes are 

involved in the biosynthesis of HS to generate the HS backbone.  The formation of the HS 

backbone can be divided into two sections: 1) chain initiation and 2) chain polymerization.  

The HS backbone is generated after the addition of a GlcNAc residue by N-acetyl-

glucosaminyltransferase I (GlcNAcT-I) activity, and chain elongation proceeds by N-acetyl-

glucosaminyltransferase II (GlcNAcT-II) and glucuronyltransferase II (GlcAT-II) activities 

which add α1,4 GlcNAc and β1,4 GlcA residues in alternating sequences to the nonreducing 

end of the growing polysaccharide  (Figure 5) (79).  These glycosyltransferases are encoded 

by the exostosin (EXT) gene family (17).  Five members of the EXT family of 

glycosyltransferases are known: EXT1, EXT2, EXTL1 (EXT-Like 1), EXTL2, and EXTL3, 

which are type II transmembrane proteins found in the Golgi apparatus.  The EXT gene 

family contains dual glycosyltransferase activity in HS biosynthesis in addition to 

functioning as tumor suppressor genes (80, 81).  The actions of the EXT gene family produce 

HS polysaccharides that will later serve as substrates for modification by sulfotranferases in 

the biosynthesis of HS. 
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Figure 5.  Initiation and polymerization of HS.  Chain initiation is carried out by N-acetyl-
glucosaminyltransferase I (GlcNAcT-I) which adds a GlcA residue to the tetrasaccharide 
linkage region.  This directs the formation of HS backbone by the alternating activities of N-
acetyl-glucosaminyltransferase II (GlcNAcT-II) and glucuronyltransferase II (GlcAT-II), 
which add GlcNAc and GlcA residues, respectively. 

 

 

N-Acetyl-glucosaminyltransferase I (GlcNAcT-I) 

N-acetyl-glucosaminyltranferase I (GlcNAcT-I) is a crucial enzyme involved in the 

initiation of the elongation of the HS polysaccharide chain.  GlcNAcT-I catalyzes the transfer 

of a α1, 4 GlcNAc from UDP-GlcNAc to the nonreducing end of the tetrasaccharide linkage 

region (Figure 6).  This step commits the resulting pentasaccharide to elongate into a HS 

chain rather than CS/DS chain (82).  EXTL2 has been shown to exclusively exhibit 

GlcNAcT-I activity, where as EXTL3 has been shown to exhibit both GlcNAcT-I and 

GlcNAcT-II activities (80, 83, 84). 

 

D-Glucuronyltransferase II (GlcAT-II)/N-Acetyl glucosaminyltransferase (GlcNAcT-II) 

Chain elongation is accomplished by the alternating addition of GlcA and GlcNAc 

residues by EXT1 and EXT2, which can extend the chain up to 200 disaccharides in length.  

N-acetyl glucosaminyltransferase (GlcNAcT-II) catalyzes the transfer of GlcNAc residue 
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from UDP-GlcNAc, whereas D-glucuronyltranferase II (GlcAT-I) catalyzes the transfer of 

GlcA residue from UDP-GlcA in the production of the HS chain.  The tumor suppressor 

genes, EXT1 and EXT2, encode for the two glycosyltransferases proteins.  EXT1 and EXT2 

both have dual  GlcAT-II and GlcNAcT-II activities even though EXT2 activities are weaker 

than EXT1 (85, 86).  It has been suggested that EXT1 and EXT2 form a heterocomplex in 

vivo to be a completely functional polymerization unit (83, 85, 86).  In addition, EXTL1 and 

EXTL3 have been reported to have GlcNAcT-II (80). 

Glycosyltransferase Function 

XylT Transfer of xylose to a serine on the core 
protein 

GalT-I Transfer of first galactose to xylose. 
GalT-II Transfers of second galactose to linker 
GlcAT-I Transfer of glucuronic acid to complete 

linker region 
Table 1.  Summary of enzymes involved in the generation of the tetrasaccharide linkage 

region. 
 
 

Step 3: Chain Modification 

The HS chain contains disaccharide unit repeats of glucuronic acid and N-acetyl 

glucosamine (GlcA- GlcNAc)n generating an unepimerized, unsulfated HS backbone.  The 

biosynthesis of HS is not complete until the HS chain is further subjected to modifications.  

The enzymes that produce these modifications are N-deactylase/N-sulfotransferase (NDST), 

C5 epimerase (C5-Epi), 2-O-sulfotransferase (2-OST), 6-O-sulfotransferase (6-OST), and 3-

O-sulfotransferase (3-OST), respectively.  These sulfotransferases and C5 epimerase are 

membrane bound and found in the Golgi apparatus and therefore available to produce the 

necessary modifications to the HS chain.  HS sulfotransferases utilizes 3’-phosphoadensine 

5’-phosphosulfate (PAPS), a common sulfo donor, to transfer a sulfo group to different 

acceptor sites on the polysaccharide (Figure 6).  
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Figure 6.  The general scheme of the catalyzed reaction by sulfotransferases.  R-OH 
represents the acceptor substrate for the sulfo group catalyzed by sulfotransferases from 
PAPS. Sulfotransferases included NDST, 2-OST, 6-OST, or 3-OST. The R-OSO3

- represents 
the sulfated product. 
 
 

These enzymes catalyze the modifications which include N-deacetylation and N-

sulfation of the N-acetyl position of glucosamine, C5 epimerization to convert GlcA to IdoA, 

2-O-sulfation at the 2-OH position of GlcA or IdoA, along with 6-O-sulfation and 3-O-

sulfation at the 6-OH and 3-OH position of glucosamine.  The majority of these isoforms 

have been cloned and expressed (87).  Incomplete sulfation at specific sites on the 

polysaccharide chain results in heterogeneity and diversity within HS.  To further complicate 

the biosynthesis of HS, HS sulfotransferases with the exception of 2-OST have multiple 
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isoforms, which include four isoforms for NDST, three isoforms for 6-OST, and seven 

isoforms for 3-OST. The different isoforms have somewhat distinct substrate specificities.  

These isoforms have different expression patterns in tissue, and can be regulated by specific 

tissues to yield specific saccharide sequences related to the structure-function relationship 

associated with various biological interactions (29) 
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Figure 7.  The bifunctional activity of NDST.  The removal of the acetyl group from 
GlcNAc is catalyzed by the N-deacetylase activity of NDST creating an unsubstituted 
glucosamine with a free amino group (GlcNH2).  The N-sulfotransferase activity of the 
enzyme catalyzes the transfer of a sulfo group from PAPS to generated GlcNS. The 
transferred sulfo group is colored red. 
 
 

NDST is a dual functioning enzyme that catalyzes the removal of the acetyl group 

from GlcNAc residues and the addition of a sulfo group to the free amino group (GlcNH2) 

that was deacetylated (Figure 7).  NDST has four isoforms, which are NDST1, NDST2, 

NDST3, and NDST4.  All isoforms have type II membrane topology and consist of a 

cytoplasmic region, transmembrane region, stem region, and catalytic domain encompassing 

distinct and independent N-deacetylase and N-sulfotransferase activities.  NDST isoforms 

have shown differences in their levels of N-deacetylase and N-sulfotransferase activities 

along with exhibiting different tissue expression patterns, and NDST1 and NDST2 have 

largely overlapping expression in tissues, whereas NDST3 and NDST4 expression patterns in 

tissue seem to be more restricted (88).  NDST1-deficient mice show a reduction of N- and O-
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sulfation and C5-epimerization of HS, and die shortly after birth due to defects of the 

developing lungs (89).  However, NDST2-deficient mice have a less severe phenotype 

containing a defect in mass cell HP and having an inability to produce HS (90). 

NDST activity acts upon approximately 40-50% of the polysaccharide chain.  N-sulfation has 

been suggested to be a prerequisite or a strong modulator of subsequent sulfotransferase 

modifications to the polysaccharide chain.  It has been demonstrated that NDST1 and 

NDST2 activities can be regulated by varying the amount of PAPS, or the expression levels 

of EXT1 and EXT2 can affected the amount of NDST1 present in the cell, which, in turn, can 

greatly influence HS structure during biosynthesis (91, 92).  N-sulfation occurs inconsistently 

along the chain creating blocks of highly sulfated NS domains flanked by shorter, moderately 

sulfated NS/NA domains separated by longer stretches of unsulfated NA domains.   

The crystal structure for the N-sulfotransferase domain (NST1) of human NDST1 has been 

solved in complex with 3'-phosphoadensine 5'-phosphate (PAP) shown in Figure 8 (93).  

NST1 is spherical overall with an open cleft containing five-stranded parallel β-sheet with α 

sheet on both sides.  Between the 5’-phosphoate binding loop (PSB-loop) and α6 there is a 

cavity where the PAP binding site is located.  Perpendicular to the PAP binding cavity is an 

open clef that is large enough to fit a hexasaccharide.  A cleft near the 5’-phosphate of PAP 

consisting of the α6 and a random coil between β2 and α2 may be involved in the substrate 

binding site. 
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Figure 8. Overall structure of NST1 (93). Ribbon representation of NST1 in complex with 
PAP.  Helices are in yellow, β-strands in green, random coil in blue, disulfide bond in light 

blue, and PAP molecule in red. 
 
 

Lys-614 of NST1 has been shown to be conserved in other heparan sulfate 

sulfotransferases along with all cytosolic sulfotransferase through site-directed mutagenesis 

and crystallography studies (94, 95).  Superimposition of the crystal structure of estrogen 

sulfatase in complex with PAP-vandate and the crystal structure of NST1 has suggested that 

Lys-614 is a proton donor during catalysis (93).  The crystal structure of NST1 has led to the 

modeling of NST domains of additional isoforms of NDST, which has shown that their 

binding sites show variable charge distributions that may equate to their varying levels of 

NDST activity (88). 
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Figure 9. Ribbon diagram of the PAP binding site of NST1 (93).  The side chains of key 
residues are shown that can interact with PAP.  The disulfide bond is shown in blue. 

 

 

Glucuronyl C5 Epimerase (C5-Epi) 

During the HS biosynthesis, C5-epi catalyzes the converts D-glucuronic acid residues 

to L-iduronic acid residues by changing the configuration at the C5 position.  This enzyme 

has type two membrane topology and is found in the Golgi apparatus.  Figure 10 shows the 

activity of this enzyme proceeds in two stages beginning with the abstraction of a proton at 

the C5 position on GlcA producing a carbanion intermediate.  The second step involves the 

introduction of a proton from the medium at the C5 position that results in inversion of 

configuration of the stereocenter that shifts the carboxyl group across the plane of the 

structure (96). 
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Figure 10.  General mechanism for C5 epimerization reaction.  C5-epi catalyzes the 
abstraction of the C5 proton from GlcA (top) followed by re-addition of a proton from the 
medium to produce a carbanion (middle) resulting in the formation of IdoA (botton). 
 
 

The requirement for substrate recognition by C5-epi is an adjacent GlcNS residue to a 

GlcA residue at the non-reducing end of the polysaccharide within the structural context of 

GlcNS-GlcA (97).  Therefore, the enzyme would not have activity against GlcA residues 

containing an adjacent GlcNAc residue (GlcNAc-GlcA).  This reaction has been shown to be 

reversible with an in vitro system, but in vivo it has been suggested that it is locked into place 

with the introduction of 2-O-sulfation of the IdoA residue (98).  Activities in vivo may be due 

to C5-epi forming a stable complex with 2-OST (99).  The equilibrium of the reaction favors 
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the formation of the GlcA residue in vitro.  However, the formation of C5-epi/2-OST 

complex increases epimerase activity, and aids in the shift of equilibrium to the IdoA residue 

(97).  Epimerization is important in biological functions of HS since the flexible 

conformation of IdoA residues play an essential role in orienting the sulfo groups that 

interact with numerous proteins.  In addition, this enzyme is important in the production of 

HP, since C5-epi deficient mast cells failed to epimerize GlcA to IdoA residues, and the C5-

epi deficient mast cells containing HP have an altered  O-sulfation pattern (100). 
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Figure 11.  2-OST catalyzed reaction.  A sulfo group from PAPS is transferred to the 2-OH 
position of IdoA by 2-OST to generated IdoA2S.  GlcA is also a sulfated by 2-OST, but the 
enzyme favors the sulfation of IdoA.  The transferred sulfo group is in red. 

 
 
2-O-sulfation of IdoA residues in the HS polysaccharide chain is very important for 

many biological functions via binding to fibroblast growth factor (FGF) signaling such as 

cell migration, developmental patterning, and organ and nervous system development (101-

106).  2-OST is also a type II transmembrane protein and found in the Golgi apparatus.  2-

OST catalyzes the transfer of a sulfo group to the 2-OH position to either GlcA or IdoA 

residues (Figure 11).  However, it has a preference for IdoA residues.  To date, only one 

isoform is identified and it is highly conserved across species.  In addition, the crystal 

structure of 2-OST has not been solved.  However, mutational studies have shown that 2-
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OST is vital for biological activities.  Mice deficient in 2-OST die in the neonatal period and 

have developmental defects in the kidneys, eyes, and bones (103).  
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Figure 12.  Reaction catalyzed by 6-OST.  A sulfo group from PAPS is transferred to the 6-
OH position of glucosamine. The transferred sulfo group is shown in red.  R represents a 
proton, acetyl, or sulfate. 
 

6-OST is responsible for transferring a sulfo group to the 6-OH position on 

glucosamine as shown in Figure 12.  6-OST has three isoforms (6-OST-1,-2, and -3) and one 

alternatively spliced variant (6-OST-2 S, where S refers to Short) (107, 108).  Each isoform 

has overlapping substrate specificities, but each has a preference to a particular substrate 

adjacent to a GlcNS or IdoA residue.  6-OST-1 has a preference for -IdoA-GlcNS- 

disaccharide residues, 6-OST-3 acts equally on -IdoA-GlcNS- or -GlcA-GlcNS- disaccharide 

residues, and 6-OST-2 preference depends on the availability of either disaccharide residue.  

In addition, their preference of disaccharide substrate can be with or without 2-O-sulfation 

present, and GlcNAc residues are capable of being a substrate for all isoforms (107, 109).  

Therefore, it can be concluded that each isoform has similar substrate specificities.  These 

enzymes are type II membrane proteins found in the Golgi apparatus.  6-OST-1 is expressed 

strongly in liver, 6-OST-2 is expressed mainly in brain and spleen, and 6-OST-3 is expressed 

throughout the body.  Studies suggest that isoforms of 6-OST may be regulated in tissue-

specific manner and modulate HS with tissue-specific structures and functions (110, 111).  
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The majority of 6-OST-1 null mice was neolethal or exhibited a smaller size than their wild-

type counterparts.  In addition, these mice had developmental abnormalities and distorted HS 

biosynthesis (112).  Furthermore, 6-O-sulfation is necessary for binding to a variety of 

ligands such as FGF-2 and Wnt (113, 114).  This suggests that 6-OST is an important 

enzyme in the biosynthesis of HS that has essential function for embryonic development. 
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Figure 13.  General scheme of the catalyzed reaction of 3-OST.  A sulfo group is 
transferred from PAPS to the 3-OH position on glucosamine by 3-OST.  R represents a 
proton or sulfo group.  R’ represents a proton, acetyl, or sulfo group.  The transferred sulfo 
group is colored red. 
 
 

The transfer of sulfo groups to the 3-OH position of glucosamine residues on the HS 

polysaccharide chain is achieved by 3-OST (Figure 13).  3-OST modification is very rare and 

the final step in HS biosynthesis.  3-OST has seven isoforms which are 3-OST-1, 3-OST-2, 

3-OST-3A, 3-OST-3B, 3-OST-4, 3-OST-5, and 3-OST-6 (115-117).  3-OST-3A and 3-OST-

3B have nearly identical amino acid sequences in the sulfotransferase domain.  Therefore, 

both 3-OST-3A and 3-OST-3B can be represented as 3-OST-3.  The sulfotransferase 

domains of the 3-OSTs have greater than 60% sequence homology (118).  The substrate 

specificities of all 3-OSTs have been thoroughly examined (119, 120).  3-OST-1 catalyzes 

the transfer of a sulfo group to the 3-OH position of a glucosamine residue adjacently linked 

to GlcA or IdoA.  3-OST-2, 3-OST-3, 3-OST-4, and 3-OST-6 catalyze the transfer of a sulfo 
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group to the 3-OH position of a glucosamine residue adjacently linked to a 2-O-sulfo 

iduronic acid (IdoA2S).  Lastly, 3-OST-5 catalyzes the transfer of a sulfo group to the 3-OH 

position of a glucosamine residue next to a GlcA, IdoA, and IdoA2S.   

Isoform Tissue Type 

3-OST-1 Brain, Heart, Kidney, Lung 
3-OST-2 Brain 
3-OST-3A Heart, Lung, Kidney, Placenta 
3-OST-3B Brain, Lung, Heart, Kidney 
3-OST-4 Brain 
3-OST-5 Brain, Skeletal muscle, Spinal cord 
3-OST-6 Kidney, Liver 

Table 2. Expression of 3-OST isoforms in human tissue. 

 

 
With the exception of 3-OST-5, all other isoforms of 3-OST have more specific 

substrate specificities (Figure 14).  The substrate specificities of 3-OST isoforms produce 

specific biological functions for HS.  3-OST-2, -3, -4, and -6 generate modified HS that serve 

as entry receptors for herpes simplex virus type 1 (HSV-1).  3-OST-1 generates HS that binds 

to AT and produces anticoagulant activity.  3-OST-5 is more promiscuous and can produce 

both anticoagulant HS as well as produce HS that can serve as an entry receptor for HSV-1. 
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Figure 14. Substrate specificities of 3-OSTs (117).  3-OST-1 transfers a sulfo group to the 
3-OH position of N-sulfated glucosamine (GlcNS±6S) linked to a GlcA or IdoA residues.  3-
OST-3,-4,-6 transfers a sulfo group to the 3-OH position of an N-unsubstituted glucosamine 
(GlcNH2±6S) linked to an IdoA2S residue.  3-OST-5 transfers a sulfo group to the 3-OH 
position of a glucosamine residue (GlcNH2±6S or GlcNS±6S) linked to GlcA or 
IdoA/IdoA2S residues.  The 3-O-sulfation by 3-OSTs is shaded and indicated in bold. R 
represents a sulfo group (-SO3) or proton (-H). 
 
 

The isoforms of 3-OST are distributed differently in tissue (Table 2).  Except for 3-

OST-1, all other isoforms contain a type II membrane topology and can be found in the Golgi 

apparatus. 3-OST-1 does not contain a transmembrane region, which suggests it may localize 

in the membrane through another type of interaction.  However, 3-OST-1 has been detected 

in the serum and medium of cell lines (121).  The crystal structure of 3-OST-1 in complex 

with PAP has been solved at 2.5-Å resolution (122).  The crystal structure of 3-OST-1 and 

PAP is somewhat spherical with a large open cleft, and contains a α/β motif found to be 
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conserved in all sulfotransferases (Figure 15).  The crystal structure aided in providing 

information about the mechanisms involved in the biosynthetic pathway. 

 
Figure 15.  The crystal structure of 3-OST-1 in complex with PAP (122). The stereo 
ribbon diagram of the crystal structure of 3-OST-1 is shown with PAP and conserved 
residues Ser-159 and Lys-68 that interact with the 3'- and 5'-phosphates of PAP.  In addition, 
Glu-90 is proposed to be involved in catalysis. 
 
 

Along with site-directed mutagenesis analysis, the results suggested that Arg-67, Lys-

68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for PAPS binding 

and enzymatic activity.  In addition, Arg-67, Arg-72, His-92, and Asp-95 are conserved in 3-

OSTs but not in NDST1, showing that these residues are important for substrate specificity.  

The crystal structure of the ternary complex 3-OST-3/PAP/tetrasaccharide has been solved at 

1.9- Å resolution (Figure 16).  The overall structure of 3-OST-1 and 3-OST-3 are very 

similar.  The tetrasaccharide binds to the positively charged cleft of 3-OST-3.  The N-sulfo 

group of the G1 residue and the carboxylate along with the 3-OH group of the I2 residue 

interact with the protein.  The G3 residue contains the 3-OH group where a sulfo group 

would be accepted from PAPS.  Here, it is positioned closely to PAP and can hydrogen bond 



30 

 

with Glu-184.  The U4 residue hydrogen bonds with residues that have been determined to be 

responsible for substrate specificity, and these residues were confirmed by mutational 

studies.  However, for 3-OST-1, the U4 residue would adopt a different confirmation and 

interact in a different manner with these residues.   

Figure 16.  The crystal structure of 3-OST-3/PAP/tetrasaccharide complex (29)  A) The 
crystal structure shown for the 3OST-3 in complex with PAP (blue) and a tetrasaccharide HS 
molecule (green).  B) Superposition of PAPS onto PAP in the active site of the 3OST-3 
crystal structure. This figure displays the relative orientation of the acceptor 3-hydroxyl to 
the sulfo group being transferred from PAPS.  Side chains that are involved in binding the 
tetrasaccharide are shown.  A sodium ion involved in binding is pictured in pink.  C) Side 
chain with specific functional groups of the bound tetrasaccharide.  Hydrogen bonds are 
indicated by dashed lines. 
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Remodeling of heparan sulfate 

6-O-enodsulfatase 

Once biosynthesis of HS within the cell is completed, mature HS is released from the 

cell in proteoglycan form, and can be found on the cell surface or in the ECM where it can 

interact with growth factors, cytokines, and chemokines to modulate biological activities.  It 

was thought that no further modification to HS occurred that would alter the heterogeneous 

and complex nature of this GAG.  However, a novel class of sulfatase enzymes called Sulfs 

emerged, which have endosulfatase activity and are capable of removing 6-O-sulfo groups 

from within HS (Figure 17) (123, 124).  Before the discovery of Sulfs, HS sulfatases were 

found intracellularly in the lysosomal compartments.  Here, lysosomal sulfatases worked as 

exosulfatases aiding in the catabolism of HS.  Sulfatases in general are a class of enzymes 

that are highly conserved sequentially, structurally, and mechanistically across eukaryotic 

and prokaryotic species (125).  Sulfatases catalyze the hydrolytic cleavage of sulfate esters 

(CO-S) or sulfamates (CN-S).  All known sulfatase contain a conserved amino acid motif, 

C/S-X-P-S/X-R-X-X-X-L/X-T/X-G/X-R/X, found within the catalytic domain, which is 

essential for directing the post-translational modification of the initial cysteine or serine 

residue into a catalytically active Cα-formylglycine residue (126). 
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Figure 17.  General scheme of exolytic and endolytic sulfatase activity.  Exolytic 
sulfatase activity refers to the removal of sulfo groups from the terminal end of the 
polysaccharide.  For example, 2-O-sulfatase from Flavobacterium heparinum removes sulfo 
groups from the 2-OH position on uronic acid at the end of the chain.  Endolytic sulfatase 
activity refers to the removal of sulfo groups from within the polysaccharide chain. For 
example, 6-O-endosulfatase removes sulfo groups from the 6-OH position on glucosamine 
within the chain. Sulfo groups colored red would be removed by sulfatases. 

 

Structural Features 

HS 6-O-endosulfatase has been identified in quail, human, mouse, rat, chicken, Zebra 

fish, Drosophila, Xenopus, and C. elegans.  Two isoforms, Sulf-1 and Sulf-2, have been 

identified in several species, and have been cloned and expressed in several different cell 

lines (123, 124, 127-129).  Sulf-1 and Sulf-2 have been reported to be found on the cell 

surface or in the conditioned medium of cells, where it removes 6-O-sulfo groups from 

glucosamine (123, 127, 130).  Mammalian Sulfs are approximately 870 amino acids in 

length.  The structure of Sulfs can be divided into three domains, the N-terminal sulfatase 

domain, the hydrophilic domain, and the C-terminal domain.  The N-terminal sulfatase 

domain contains the catalytic amino acids necessary for activity.  It also contains a signal 

sequence approximately 24 amino acids in length.  The hydrophilic domain follows the 
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sulfatase domain and is approximately 300-320 amino acids in length.  It contains 

approximately 40% charged amino acids of which 27% are basic and 13% are acidic 

residues.  It has been suggested that the hydrophilic domain is needed for cell surface 

localization through cell surface components and/or HS, endosulfatase activity, and 

potentially oligomerization (123, 124, 127).  The C-terminal domain is approximately 100 

amino acids in length and has significant homology to glucosamine 6-sulfatase (G6S).  It has 

been suggested the C-terminal domain for G6S and Sulfs determine specificity toward 

glucosamine.  The 130 kDa full length protein contains about 10 N-glycan sites.  In addition, 

the full length protein can be processed further into a smaller protein, which can be found in 

the ECM of over-expressing cell lines (124).  Additional, multiple aspargine-linked 

glycoslyation sites in the N-terminal sulfatase domain and C-terminal domain were identified 

in quail sulf isoform one (QSulf1).  It has been revealed that glycosylation of QSulf1 is 

critical for enzymatic activity, membrane targeting, and secretion (131).  To date, a crystal 

structure of Sulf is not available. 

 

Substrate Specificity 

It has been suggested that QSulf-1 has a high substrate specificity toward trisulfated 

IdoA2S-GlcNS6S disaccharides and a slight substrate specificity toward disulfated GlcA-

GlcNS6S disaccharides (132).  However, other studies showed that QSulf-1 was selective 

only toward disaccharide motifs found in highly sulfated NS-domains (i.e. [IdoA2S-

GlcNS6S]n), and enzymatic activity had no effect on disaccharide motifs found in moderately 

sulfated NA/NS domains (i.e.IdoA-GlcNS or GlcA-GlcNS6S) (133).  In addition, QSulf1 

and QSulf-2 have been shown to have the same substrate specificity toward trisulfated 
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IdoA2S-GlcNS6S disaccharides located within highly sulfated NS-domains of HS in vitro 

(127).  In addition, human sulf isoform one (HSulf-1) and HSulf-2 were shown to have high 

selectivity toward trisulfated disaccharides, IdoA2S-GlcNS6S, within the appropriate context 

of heparin, and did not show any activity toward disulfated glucosamine residues when IdoA 

residues lacking 2-O-sulfation were adjacent to glucosamine-6-suflate (IdoA-GlcNS6S).  A 

mass spectrometry study of HP suggested that HSulf-1 may have to a lesser extent activity 

toward another disaccharide motif within HP, the 6-, N-sulfated disaccharide (134).  This 

study also showed that the smallest substrate for the HSulf-2 was a fully sulfated 

tetrasaccharide.  All in vitro studies showed that this novel class of enzymes definitely had 

the greatest substrate specificity toward trisulfated IdoA2S-GlcNS6S disaccharides found 

within highly sulfated NS-domains.  The consensus for whether Sulf have substrate 

specificity for other disaccharide motifs found in HP/HS is unclear. 

To complicate the issue of Sulf substrate specificity, murine embryonic fibroblast 

(MEF) cells from Sulf knockout mice were used to evaluate the activities of Sulfs on the 

disaccharide level.  Analysis of HS from MEFs showed that there was an increase in 6-O-

sulfation for UA-GlcNAc6S disaccharides found in transition zone domains (NA domains), 

UA2S-GlcNS6S disaccharides found in highly sulfated NS-domains, and UA-GlcNS-6S 

disaccharides found in moderately sulfated NA/NS domains (135).  In addition, loss of either 

one or both Sulfs resulted in an increase in the 6-O-sulfation of a different composition of 

these disaccharide even though in vitro studies have suggested that Sulf-1 and Sulf-2 have 

functional redundancy (127, 136).  A combination of in vitro and in vivo studies showed that 

changes in 6-O-sulfation by loss of Sulfs produce a moderate change in N- and 2-O-sulation 

of HS that influence the HS biosynthetic pathway for regulating biological functions (135, 
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137).  This suggests that Sulfs along with sulfotransferases have a dynamic relationship that 

results in the complexity of HS and challenges the current model of HS biosynthesis which 

suggests that biosynthetic enzymes and Sulfs function independently of each other (138). 

 

Role in development 

Their ability to regulate the amount of 6-O-sulfation within HS chains has the ability 

to alter the structure-function relationship with proteins in mature as well as developing 

bodies of different species.  It has been shown that Sulfs can modulate Wnt ability to 

associate with its receptor Frizzled (123, 132, 137, 139).  It also has a positive effect on BMP 

releasing it from its inhibitor Noggin and allowing it to interact with its receptor (133).  

However, Sulfs have the ability to inhibit FGF signaling by disrupting the formation of 

FGF2-HS-FGFR ternary complex (140).  They can additionally have positive or negative 

effects on growth factors such as vascular endothelial growth factor (VEGF), FGF1, 

cytokines, and chemokines (141). 

Moreover, Sulf-1 and Sulf-2 were expressed in normal and osteoarthritic (OA) human 

articular cartilage in addition to joints from normal and aging mice.  Sulfs expression level 

was significantly raised in human OA cartilage and aging mouse joints compared to their 

normal counterparts (142).  Moreover, it has been demonstrated that TGF-β1 can induce the 

expression of HSulf-1 in vitro and in vivo, and HSulf-1 may provide negative feedback in 

order to regulate TGFβ1 in pulmonary fibrosis (143).  Studies show that Sulfs modulate 

growth factor signaling that is essential in the digital development of the quail autopod and 

the differentiation of satellite cells during muscle regeneration in mice (144, 145)  In 

developing quail, Sulf-1 expression and activity are found in somites, axial structures, and 
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differential stages of cartilage and joint formation (146).  In addition, RSulfFP1 found in rat 

oligodendrocyte progenitor cells (OPCs) was down-regulated by TGFα, and further 

investigation led to the expression of this Sulf in OPC regulated cell migration and Wnt 

activity was correlated with tyrosine phosphorylation of β-catenin (147).  The regulator 

effects of Sulf activity suggest they are important modulators of variety of developmental 

and physiological processes. 

Furthermore, mouse studies were conducted to understand the function of Sulfs in 

vivo.  In the developing skeleton of mice, Sulf-1 and Sulf-2 are reported to have a redundant 

function but displayed specific malformations with premature bone ossification and fusion in 

the sternum, lumbar and tail vertebrae, and reduced bone length(148).  In addition, Sulf-1 and 

Sulf-2 play an important role in esophageal innervation by reducing GDNF binding to HS 

and allowing it to interact with its receptor to produce GDNF signaling and neurite sprouting 

in the developing esophagus of mice (149).  Results showed that Sulf-1 knockout mice did 

not show any obvious phenotype except for an increase in the mortality rate within the first 

couple of months (135).  Sulf-2 knockout mice had a reduction in litter size and body weight 

as compared to their wild-type counterparts.  Sulf-1 and Sulf-2 double knockout mice had a 

decreased litter size, decreased body weight, and were hard to obtain due to a short live span.  

Sulf-2 gene trap experiments, an approach that is used to introduce insertional mutations into 

the Sulf gene, revealed strain-specific non-penetrant defects, which adversely effected lung 

growth and development along with overall viability (150).  The results suggest that Sulfs 

have distinct activities in vivo and are necessary for development and viability. 
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Role in cancer 

In addition, changes in Sulfs expression in certain types of cancers can have either 

beneficial or adverse affects.  HSulf-1 mRNA is detected in normal ovarian, breast, renal, 

pancreatic, and liver.  However, it is undetectable in 5 of 7 ovarian carcinoma cells, and 

HSulf-1 was significantly diminished in or undetectable in approximately 75% of ovarian 

cancers (151).  Down-regulation of HSulf-1 was detected in some breast, renal, pancreatic, 

and hepatocellular carcinoma cell lines.  Re-expression of HSulf-1 in ovarian cell lines 

reduced heparin-binding growth factor signaling, reduced cell proliferation, and made cells 

more susceptible to apoptosis via a kinase inhibitor and a chemotherapeutic agent (151).  

HSulf-1 is down-regulated in squamous cell carcinoma of the head and neck.  Re-expression 

of HSulf-1 inhibited  hepatocyte growth factor (HGF) signaling, cell growth, and cell 

motility and invasion (152).  Additionally, in breast cells HSulf-1 can reduce proliferation in 

vitro and reduce tumor size and angiogenesis in vivo (153).  Conversely, HSulf-2 mRNA was 

significantly higher in breast carcinomas as well as brain tumors, and colon carcinomas 

compared to their normal counterparts (154, 155).  In hepatocellular carcinoma HSulf-2 re-

expression promoted histone H4 acetylation, increased the effectiveness of histone 

deacetylase inhibitors, and inhibited tumorigenesis (156). Nevertheless, HSulf-2 was shown 

to up-regulate glypican-3, increased FGF signaling, and lowered survival in hepatocellular 

carcinoma (157).  In addition, in subsets of cancers including breast cancer, pancreatic 

cancer, lung adenocarcinoma, and hepatocellular carcinoma HSulf-1 is significantly 

upregulated (158-162).  HSulf-2 is additionally upregulated in some subsets of breast cancers 

especially estrogen-receptor positive tumors as well as CNS cancer and multiple myeloma 

(136, 154, 155).  Both HSulf-1 and HSulf-2 are upregulated in Wnt-dependent pancreatic 
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adenocarcinoma tumors. Producing mutations in HSulf-2 or siRNA silencing of HSulf-2 has 

led to reduced Wnt signaling which subsequently reducing cell growth in vitro and tumor 

growth in vivo (139).  Over-expression of both HSulf-1 and HSulf-2 in myeloma tumors 

suggested that Sulfs present within the tumor microenvironment are able to inhibit growth 

factor signaling and other factors that attribute to tumor growth in vivo (136). 

Loss of HSul-1 expression increases both autocrine and paracrine proliferation 

signaling by amphiregulin and heparin binding epethelilial growth factor (HB-EGF), HB-

growth factors of the EGF superfamily, and re-expression of HSulf-1 in breast cancer is 

shown to decrease cyclin D1 levels leading to decreased S-phase fraction and increased G2-

M fraction and cell death (163).  Furthermore, down-regulation of HSulf-1 via DNA 

methylation and histone H3 methylation can lead to chemoreistance, and treatment with 

demethylating agent and/or deacytelase inhibitor can reactivate HSulf-1 expression in 

ovarian cancer cell lines leading to increased sensitivity to chemotherapeutic drugs (164).  

DNA methylation was also demonstrated in the silencing of 3-OST-2 in human breast, colon, 

lung, and pancreatic cancers (165).  Taken together, the silencing enzymes involved in HS 

biosynthesis and remodeling such as Sulfs can raise the level of sulfation within HS.  As a 

result, altered HSPGs are involved in cancer development and progression. 

 

Heparanase 

Heparanase is a mammalian endo-β-glycosidase derived from normal and malignant 

cells and tissues including placenta, liver, endothelial cells, platelets, mast cells, neutrophils, 

macrophages, and T and B lymphocytes that can be secreted into the ECM (166-169).  The 

cloning and expression along with biochemical studies on heparanase suggest it has no 
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isoforms (168).  Heparanase is a 65 kD proenzyme that is processed by cleavage to form a 

heterodimeric protein, which contains a 50 kDa and 8 kDa subunits connected by a linker 

region (170, 171).  Proteolytic cleavage of the linker promotes a conformational change that 

produces an enzymatically active protein.  This allows heparanase to cleave the glycoside 

bond of HS via a hydrolase mechanism.  The mode of action of heparanase separates it from 

bacterial heparinases that deploymerize HS chains by eliminative cleavage.  Heparanase 

activity only digests HS at a few sites producing approximately fragments 10-20 residues in 

length.  It has been suggested that heparanase requires O-sulfation, but N-sulfation or IdoA 

residues are not necessary for cleavage to occur, but 2-O-sulfation on a hexuronic acid 

residue near the cleavage site may be critical for substrate recognition (172).  The 

degradation of HS into smaller fragments produces normal and pathological changes that 

involve a variety of HS binding proteins such as growth factors, chemokines, and 

morphogens (15, 33).  In addition, heparanase is significantly elevated in many types of 

cancer, and is linked to cancer progression and poor prognosis (173, 174).  The development 

of therapeutic agents to inhibit heparanase activity led to the synthesis of PI-88, which is 

mixture of highly sulfated mannan penta- and tetrasaccharides isolated from yeast pichia 

pastoris. It is a HS mimic, which has been proven to inhibit heparanase activity and compete 

with HS in binding to growth factors that result in the decrease in tumor angiogenesis and 

metastasis in vivo (175, 176).  To date, PI-88 is the only heparanase inhibitor to reach clinical 

trials for its effectiveness in several types of cancers. 
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Section III: Structural Analysis of Heparan Sulfate 

The heterogeneity and diversity of HS has made it a very challenging macromolecule 

to analyze and decode it chemical structure.  With all of the emerging data involving HS in 

numerous physiological interactions, it is critical to elucidate the structure-function 

relationship.  Unfortunately, there is no available method such as DNA sequencing to 

analyze the sequence of HS.  In addition, structural analysis of HS would require a pure 

sequence, but this would be difficult since HS is not a template driven process and produces 

a mixture of different lengths and sulfation pattern of HS.  Currently, only HS 

oligosaccharides less than tetradecasaccharide can be completely sequenced (177).  

Therefore, it is not possible to structurally characterize HS on the polysaccharide level. 

 

Heparin Lyase Degradation 

Structural analysis of HS can be accomplished at the disaccharide level.  This requires 

depolymerization of the polysaccharide chain to generate disaccharides to determine their 

identity and relative compositions by separation techniques such as reverse-phase-ion-pairing 

(RPIP) HPLC or mass spectrometry.  There are two methods for depolymerizing HS 

polysaccharides. The first technique is an enzymatic method that utilizes heparin lyases.  

Heparin lyases are expressed and purified from Flavobacterium heparium (178).  There are 

three isoforms of the enzyme that have specific substrate cleavage sites as depicted in Figure 

18.  Heparin lyase I breaks the glycosidic linkage between N-sulfated glucosamine (GlcNS) 

and 2-O-sulfated iduronic acid (IdoA2S).  Heparin lyase III cleaves the glycosidic linkage 

between either N-acetyl glucosamine (GlcNAc) or GlcNS and nonsulfated glucuronic acid 

(GlcA).  Heparin lyase II contains broad substrate specificity.  It cleaves the linkage between 
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GlcNAc/GlcNS and GlcA/IdoA residues.  A mixture of heparin lyases are usually used 

together to generate a high degree of polymerization.  The cleavage of the glycosidic bonds 

of HS create disaccharides containing a ∆4,5-unstaturated uronic acid at the non-reducing end, 

which can be detected by UV absorption at 232nm.  However, the depolymerization using a 

mixture of these enzymes does not go to completion and some disaccharide species may be 

underestimated (177). 
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Figure 18.  Heparin lyases substrate specificity.  R represents a sulfate or proton.  R’ 
represents a sulfate, acetyl, or proton. 
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Nitrous Acid Degradation 

 

The second method for generating disaccharides is a chemical method employing 

nitrous acid.  This is a common method that breaks the glycosidic linkage of either N-sulfated 

glucsoamine (GlcNS) or N-unsubstituted glucosamine (GlcNH2) at the reducing end as 

shown in Figure 19.  At low pH nitrous acid degradation (pH 1.5), the nitrous acid prefers to 

react with GlcNS residues (179).  At high pH (pH4.5-5.5), the nitrous acid predominately 

reacts with GlcNH2 residues (180).  The advantage of this technique is that configuration of 

the uronic acid (GlcA or IdoA) is retained, but the disaccharide must contain a fluorescent or 

radioactive tag for detection (180).  The detection of the resultant disaccharides can also be 

achieved by mass spectrometry. 
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Figure 19.  Nitrous acid degradation of HS.  The linkage between N-sulfated glucosamine 
and uronic acid is cleaved at pH 1.5 by nitrous acid.  For nitrous acid degradation at pH 4.5-
5.5, N-acetylated glucosamine is first converted to N-unsubstituted glucosamine, since high 
pH nitrous acid degradation only cleaves the linkage between N-unsubstituted glucosamine 
and uronic acid.  
 

 
A common method to resolve a mixture of disaccharide is by RPIP-HPLC.  The 

advantage of this method is that it can identify many combinations of disaccharides 

containing either GlcA or IdoA with different numbers of sulfo groups present.  

Unfortunately, this method can only produce information on a disaccharide level and cannot 

provide how the disaccharides are linked together to form the oligo- or polysaccharide.  
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However, it is a powerful tool in determining substrate specificity of enzymes involved in 

modifying HS and determining different disaccharide motifs within a structure. 

 

Sequencing Strategy 

In addition, another strategy for elucidating the structural sequence of HS 

oligosaccharides can be accomplished in two steps. The first step would introduce either a 

mass, radiolabel, or fluorescent tag at the reducing end of the oligosaccharide (181-183).  

The tagged oligosaccharide would be subjected to partial or exhausted digestion by either 

heparin lyases or nitrous acid, and the tag would aid in determining if the resulting product 

originated from the reducing end once compared to standards.  The second step involves 

treatment of the non-reducing end with exoenzymes such as sulfatases, hexauronidases, and 

α-hexaminidases.  These exoenzymes would aid in the identification of each residue after 

each treatment once compared to standards.  The disadvantage of this strategy is that it would 

require a sufficient amount of material and time to complete each step. 

Furthermore, another strategy would be the employ mass spectroscopy (MS) for 

structural analysis of HS.  Recent advances in this technology have permitted a more direct 

sequencing method that can deduce relatively large oligosaccharide sequences by 

depolymerizing the oligosaccharide and then identifying overlapping sequences.  Matrix-

assisted laser desorption/ionization MS (MALDI-MS), electrospray ionization (ESI-MS), and 

a combination of RPIP-HPLC/ESI-MS are MS techniques have helped determine the 

sequence of HS oligosaccharides (184-186).  Nonetheless, these MS methods need to be 

improved, because they cannot obtain data for oligosaccharides larger than a 

tetradecasaccharide. 
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Section IV: Important Protein Interactions 

Antithrombin 

Antithrombin (AT) is a critical mediator in blood coagulation.  It is a 58kDa serine 

protease inhibitor that deactivates factor Xa and thrombin (IIa) activities involved in the 

cleavage of fibrinogen to fibrin (blood clot).  AT is activated by its binding to HS/HP.  The 

mechanism of action for active AT involves an amino acid P1 loop which serves as a 

substrate for the serine protease.  AT undergoes a conformational change once the P1 loop is 

cleaved, which results in the protease being covalently attached as a inactive, acyl-enzyme 

intermediate to AT (187, 188).  Many studies have examined the correlation of HP/HS and 

AT in anticoagulant activity in the blood coagulation cascade.  It has been shown that once 

AT binds to HS it increases the affinity of AT about 1,000-fold for Factor Xa and thrombin 

(189).  Through extensive study of HS and AT structure-function relationship, an AT binding 

pentasaccharide, -GlcNS(or Ac)6S-GlcA-GlcN3S±6S-IdoA2S-GlcNS6S-, was identified 

which has a 10-50nM binding affinity to AT.  Upon further structural analysis, the 3-O-

sulfated glucosamine residue is critical for binding and increases the binding affinity by 

20,000-fold (190).  The discovery of the AT binding pentasaccharide has lead to the clinical 

development of Low Molecular Weight Heparin (LMWH), such as Lovenox®, and the 

synthetic HS pentasaccharide Arixtra®.  The crystal structure of AT complexed with the 

pentasaccharide has been solved, and has shown extensive hydrogen bonding with the 

carboxylate groups on hexuronic acid and 3-O- and 6-O-sulfo groups of glucosamine (191).   

In addition, the crystal structure does not show the interaction of AT with 2-O-sulfo 

groups of the IdoA residue, and studies have shown that it is not crucial for AT binding 

(192).  Furthermore, it has been shown using a chemoenzymatic approach that an 
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anticoagulant structure devoid of IdoA2S residues are not essential for AT binding and 

anticoagulant activity (193).  Moreover, in order for clinical anticoagulant drugs to be 

effective, they need to inhibit Factor Xa and thrombin.  Arixtra can inhibit Factor Xa but not 

thrombin.  In order to inhibit thrombin, anticoagulant heparin needs to be at least 14-20 

residues in length to generate a bridge between AT and thrombin to create a ternary complex 

(194). 

The administration of anticoagulant heparin has many beneficial effects in treating 

arterial and venous thrombic disorders as well as in surgery (195).  However, heparin-

induced thrombocytopenia (HIT) can occur during treatment.  Platelet factor 4 (PF4) is a 

chemokine secreted form platelets.  HIT develops when PF4 binds and forms a complex with 

heparin.  Antibodies are generated to attack this complex and create a severe immunological 

response.  It has been demonstrated that 2-O-sulfo groups on IdoA residues are important for 

PF4 binding, and 6-O-sulfo groups on glucosamine residues may have some requirement for 

binding to PF4 (196). However, N-sulfo groups are not necessary for binding. Moreover, PF4 

can inhibit AT mediated inactivation of Factor Xa (197).  Thus, side effects such as PF4 can 

lower the efficacy and predictability of anticoagulant heparin.  Therefore, anticoagulant 

research has focused on developing a better heparin, and trying to understand the underlying 

mechanisms that cause unfavorable outcomes with the usage of anticoagulant therapies. 

 

Fibroblast Growth Factor 

Fibroblast growth factors (FGFs) are involved in many cell signaling events that are 

implicated in angiogenesis, tumor progression, embryonic development, and even wound 

healing (198-200).  The FGF family contains 22 members, which bind ligand dependent FGF 
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receptor tyrosine kinases (FGFR1-4).  Once FGF binds to its receptor, receptor dimerization 

occurs, which leads to phosphorylation and activation of downstream molecules that initiate 

the signaling cascade.  Cell based studies have demonstrated that HP/HS binding to FGF 

allows it to bind to its receptor and promote FGF signaling (201, 202).  Both mouse and 

Drosophila genetic studies have shown that HS is vital for FGF signaling (203, 204).  In 

addition, along with the length of the polysaccharide, IdoA2S and GlcNS residues are 

important for signaling by FGF-1 and FGF-2.  However, 6-O-sulfation is necessary for FGF-

1 signaling but not for FGF-2 signaling (205).  

Two models have emerged from two crystal structures solved for the FGF/HP/FGFR 

ternary complex are shown in Figure 20 (207, 208).  For the ternary complex containing 

FGF-2, the 2:2:2 stoichiometry is referred to as the “two end model”, where two HP 

molecules make contact with one FGF and one FGFR in addition to each HP making contact 

with another FGFR.  For the ternary complex containing FGF-1, an “asymmetric” 2:2:1 

stoichiometry is shown, where one HP molecule comes into contract with two FGFs and one 

FGFR.  Each model gives a different depiction of how each FGF subtype and HP interacts 

with FGFR.  However, in order for the receptor tyrosine kinases to undergo trans 

autophosphorylation, they need to be in close proximity to each other.  Mutational studies 

confirm the physiological relevance of this model.  Therefore, the “two end model” meets 

this requirement and would seem more feasible in a biological context (206). 
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Fig
ure 20.  Two crystal structures of FGF:FGFR:HP ternary complex (206).  Each crystal 
structures show the two different binding interactions.  FGF is represented in green and 
FGFR in orange. HP atom coloring is red for oxygens, yellow for sulfurs, blue for nitrogens, 
and gray for carbons. 
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Statement of Problem 

 

Heparan sulfate (HS) is a highly sulfated GAG present in significant quantities on the 

cell surface.  The biosynthesis of HS is a complex process leading to structurally 

heterogeneous structures.  To further complicate this process, HS can be remodeled in the 

extracellular environment by a novel class of Sulf enzymes.  Previous studies have shown the 

extracellular remodeling by Sulfs has been involved in Wnt signaling in addition to the 

progression of certain types of cancers.  Effects on biological functions due to Sulf tailoring 

of the fine structure of HS may provide new insights into understanding and modulating 

these activities. 

Utilizing the substrate specificity of Sulfs along with its HS tailoring abilities, Sulfs 

can provide us with additional information about the structure-function relationship of HS 

and other biological molecules.  In addition, harnessing Sulf editing activities may aid in 

developing or improving therapeutic drugs.  The goals of this dissertation are to provide 

additional information about the substrate specificity of a human Sulf in regard to activity 

against different disaccharide motifs within HS polysaccharides other than IdoA2S-GlcNS6S 

such as GlcA-GlcNS6S or GlcA2S-GlcNS6S.  In addition, we want to demonstrate that Sulfs 

can be used as a tool for editing HS polysaccharide based drugs. 

 

 

 

 

 



 

 

 

 

 

CHAPTER II 

MATERIALS AND METHODS 

Mammalian Cell Culture 

Maintenance of CHO cells was performed according to an established protocol.  Cells 

were grown in a T75 flask with F12 medium supplemented with 10% fetal bovine serum 

(FBS, JRH Bioscience) and antibiotics penicillin/streptomycin.  Cells were passaged using a 

standard protocol after cells reached 90% confluence.  Briefly, the cells were washed three 

times with 1 × phosphate buffered saline (Gibco), and detached from the flask with 2ml of 

buffered trypsin (Gibco) at 37ºC.  Once detached, the cells were diluted to 10ml with 

supplemented F12 medium and the concentration (cells/ml) was determined by using a 

hemocytometer under a microscope.  Cells were seeded into a new flask at approximately 105 

cells per flask. For long term storage, cells were passaged as described above and then 

centrifuged at 500×g for 15min. The cells (107 cells/ml) were then resuspended in F12 

medium containing 10%FBS and 10% dimethyl sulfoxide and frozen slowly at -80ºC by 

placing them in a double insulated container. 

 

Agarose Gel Electrophoresis 

PCR products and DNA plasmid construct quality were assessed by agarose gel 

electrophoresis.  Briefly, a 1% agarose solution was made by microwaving 0.4 g agarose 

with 40 ml 10 mM Tris-acetate 1 mM EDTA (TAE) buffer.  Once the solution cooled to 

approximately 70 °C, 1 µl of 5 mg/ml solution of ethidium bromide was added and the 
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agarose was poured into a standard gel casting box with a well comb.  After the gel set, 1x 

TAE buffer was added to the gel box and samples were diluted 2 fold with loading buffer 

(50% glycerol, 0.0125% bromophenol blue) and added to separate wells.  The gel was run at 

120 volts and analyzed under UV light. 

 

Preparation of [
35

S] HS 

Wild-type CHO and HSulf-2/CHO were grown to 90% confluence in F12 media 

containing 10% FBS and 100 Units/mil Penicillin/Streptomycin.  Cells were grown in the 

growth media containing 1 mCi/ml of sodium [35S] sulfate (ICN) for 10 h.  [35S]HSPGs were 

harvested and purified on a DEAE column and subjected to β-elimination under alkaline 

conditions followed by phenol extraction to remove polypeptides.  [35S]HS was then isolated 

by ethanol precipitation.  The estimated specific 35S-radioactivity of the [35S] HS was 4 x 

107cpm/µg.  We observed that the yield of [35S] HS from HSulf-2/CHO cells was comparable 

to that from wild type CHO cells. 

 

Western Blotting Analysis  

Protein was run on an SDS-PAGE gel.  The protein from the SDS-PAGE gel was 

transferred onto a nitrocellulose membrane (Amersham).  The membrane was soaked in 

PBSTM (PBS, 0.1% Tween 20, 5% w/v nonfat dry milk) for 1 hour at room temperature to 

block nonspecific binding of the antibody.  The membrane was washed with PBST (PBS, 

0.1% Tween 20) for 15 minutes then 5 minutes at room temperature.  The membrane was 

probed with anti-myc antibody (1:3000) in PBSTM overnight at 4ºC.  The membrane was 

washed with PBST for 15 minutes then 5 minutes at room temperature, and then incubated 
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with horseradish peroxidase-conjugated anti-mouse IgG secondary antibody (1:5000) in 

PBST for one hour at room temperature.  The membrane was subsequently washed briefly 

two times with PBST, and then washed with PBST for 30 minutes.  The membrane was then 

washed three times for five minutes with PBST, and the signals were detected by ECL 

detection system that employs chemiluminescence. 

 

Quantification of Purified Lovenox-Alcian Blue Assay 

The amount of lovenox was quantified using an alcian blue assay previously 

described (209).  Briefly, the alcian blue dye stock solution was made by dissolving 1mg of 

the dye with 100ml of 18mM H2SO4, a 1/100 dilution of the resulting dye stock solution 

should have an A600nm of approximately 1.4.  Additional dye was added if the appropriate 

absorbance was not reached.  This was followed by centrifugation at 10,000rpm for 30min. 

to remove insoluble dye particles.  Standards and unknown samples were prepared in 

duplicate with standards of lovenox ranging from 0-2.0µg.  All samples were brought up to 

10µl with distilled water, followed by the addition of 10µl of reagent A.  Reagent A 

contained a 1:1 ratio of 8M guanidine-HCl and 54mM H2SO4, 0.75% Triton X-100, this 

solution was prepared fresh with each use.  Then 100µl of working dye was added to all 

samples bringing the final volume of the samples to 120µl.  The working dye solution 

contained 18mM H2SO4, 0.25% Triton-X100, and 5% dye stock solution, which was filtered 

through a 0.2µm filter and the resultant solution was centrifuged at 10,000rpm for 10min. to 

remove any insoluble material.  The samples were mixed thoroughly and centrifuged at 

14,000rpm for 30min.  The pellet was dissolved with 500µl of 8M guanidine-HCl after the 

supernatant was removed.  The samples were analyzed at A600nm. 
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SDS-PAGE Electrophoresis 

Protein purity was determined using SDS-PAGE using precasted Tris-Tricine SDS-

PAGE (16.5% resolving gel, 4% stacking gel, 8.6 × 6.8cm (W × L), BioRad).  Samples 

(10µl) were diluted with an equal volume of sample buffer (200mM Tris-HCl, pH 6.8, 2% 

SDS (BioRad).  Gels were run at 100V for 45min., and then stained with coomassie blue 

(0.4%) for 1hr.  Gels were destained with 10% acetic acid. 

 

Affinity Co-Electrophoresis (ACE) 

To quantitatively determine the binding affinity between 3-OST-1 and 3-OST-5 

modified polysaccharide from Chinese hamster ovary cells and AT, an affinity co-

electrophoresis approach was used in a similar manner as previously described (210, 211).  

Purified AT was cast in 1% low melting point agarose (GIBCO) separation zones in a 

degassed gel buffer containing 125mM sodium acetate and 50mM 3-(N-morpholino)-2-

hydroxhypropane-sufonic acid, pH 7, at nine final concentrations ranging from 0-60nM of 

AT in each zone.  In separate experiments, nonradioactive labeled 3-O-sulfated [35S] HS 

polysaccharide from Chinese hamster ovary cells was loaded into each separation zone and 

the gel was subjected to electrophoresis at 350mA for 2 hr. 30min. in circulated cold gel 

buffer.  The gel was dried using a Bio-Rad Gel Air dryer, and analyzed on a Phosphor 

Imager (Amersham Biosciences, Storm 860).  The binding affinity between the 

nonradioactive labeled 3-O-sulfated [35S] HS polysaccharide and AT was calculated as a Kd 

value by plotting R/gD verses R, where the retardation coefficient R = (M0-M)/M0. M0 is 

representative of the migration of the free nonradioactive labeled 3-O-sulfated [35S] HS 

polysaccharide, and M is the observed migration of the nonradioactive labeled 3-O-sulfated 
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[35S] HS polysaccharide in the presence of a specific concentration of AT located in a 

separation zone.  Based on the Scatchard equation, the calculation of the slope from the 

resulting plot yields -1/Kd. 

 

Heparin Lyase Digestion  

The digestion of unmodified and modified polysaccharides were carried out as 

previously described (212).  Digestions were carried out in 250µl of 50mM ammonium 

acetate (pH 7) containing limited amounts of heparin lyase I, II, and III, which are expressed 

and purified using a bacterial expression system.  The reactions were incubated at 37ºC 

overnight, and the reactions are terminated by heating at 100ºC for 2min.  The resultant 

material was centrifuged for 5min. at 13,000rpm to remove any insoluble material and was 

subsequently ready for HPLC analysis, or placed on a Bio Rad P-2 column for further further 

purification of oligosaccharides. Oligosaccharides were collected, dried down in a speed 

vacuum, and then resuspended in water and ready for HPLC analysis. 

 

Polyamine-High Performance Liquid Chromatography (PAMN-HPLC) 

Samples were analyzed using PAMN chromatography.  The elution profile was 

monitored as the [35S] labeled sample was applied to a silica-based polyamine (PAMN) 

HPLC column (0.46 × 25cm, Waters) (213)  The column was equilibrated with filtered 

distilled water, and the radioactive material was eluted with a linear gradient of KH2PO4 

from 0 to 1M in 60min. at a flow rate of 0.5ml/min., followed by a continuous state of 

washing at 1M for up to 100min.  The [35S] elution profile was monitored using an online 

radioactive detector. 
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Preparation of HSulf-2 Transiently Expressed CHO Cells (HSulf-2/CHO) 

The expression plasmid pcDNA3.1A-myc/His-HSulf-2 was transiently transfected 

into wild type CHO cells using LipofectAMINE 2000 (Invitrogen, Inc.) following the 

manufacturer’s protocol in 6 well plates.  After 48 hrs., conditioned medium (CM) was 

collected, dialyzed against 50mM HEPES, pH 8.0, concentrated 20×, and stored at -80ºC 

until needed.  Cells were washed 3×1ml cold 1×PBS, and then harvested by scraping cells 

from plate.  Cells were centrifuged at 2,000rpm for 10min., and the cell pellet was subjected 

to mixture of 1.5M sucrose, 1% triton X-100 for 1hr. on ice.  The mixture was centrifuged at 

14,000rpm at 4ºC for 20min to separate the cellular debris.  The supernatant (cell extract) 

was stored at -80ºC until needed. 

 

Reverse Phase Ion Pairing-High Performance Liquid Chromatography (RPIP-HPLC) 

The disaccharides were analyzed by reverse phase ion pairing RPIP-HPLC.  Briefly, a 

C18 reverse phase column (Vydac or ThermoFischer) was equilibrated with 38 mM 

ammonium dihydrogen phosphate, 2 mM phosphoric acid and 1 mM TBA 

dihydrogenphosphate and eluted with acetonitrile at 8% for 45 minutes, at 15% for 15 

minutes, and at 19.5% for 30 minutes in a solution containing 38 mM ammonium dihydrogen 

phosphate, 2mM phosphoric acid, 1 mM TBA dihydrogen phosphate at a flow rate of 0.5 

ml/min.  The identities of the disaccharides were confirmed by co-elution of 35S-labeled and 

disaccharide standards (Sigma-Aldrich). 
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AT Affinity Assay 

[35S]HS was incubated with 5 µg AT in 50 µl of reaction buffer containing 10 mM 

Tris-HCl (pH 7.5), 150 mM sodium chloride, 1 mM Mn2+, 1 mM Mg2+, 1 mM Ca2+, 10 µM 

dextran sulfate, 0.02 % sodium azide and 0.0004 % Triton X-100 for 30 minutes at room 

temperature. 100 µl of 1:1 slurry of aged ConA-Sepharose was added, and the reaction was 

agitated for one hour at room temperature on an orbital shaker. The beads were washed three 

times with the reaction buffer and eluted with buffer containing 10 mM Tris-HCl (pH 7.5), 

1000 mM sodium chloride, 1 mM Mn2+, 1 mM Mg2+, 1 mM Ca2+, 10 µM dextran sulfate, 

0.02% sodium azide, and 0.0004% Triton X-100. 

 

Assay for the AT-Mediated Deactivation of Factor Xa by Lovenox 

Briefly, factor Xa (Enzyme Research Laboratories, South Bend, IN) was diluted to 

10U/ml with PBS containing 1 mg/ml BSA.  The chromogenic substrates S-2765 (for factor 

Xa assay) was purchased from Diapharma and prepared at 1 mM with PBS. Lovenox was 

dissolved in PBS containing 1mg/ml BSA at various concentrations (1–400 ng/ml). The 

reaction mixture, which consisted of 1µl AT(2mg/ml) and various concentrations of lovenox 

was incubated at 37°C for 2 min.  Factor Xa (1µl) was added. After incubating at 37°C for 4 

min, 15µl S-2765 was added to a final volume of 100µl.  The absorbance of the reaction 

mixture was measured at 405 nm continuously for 2 min. The absorbance values were plotted 

against the reaction time. The initial reaction rates as a function of concentration were used to 

calculate the IC50 values. 
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DEAE Chromatography 

Heparan sulfate polysaccharides were purified by DEAE -Sephacel ion exchange 

chromatography.  Briefly, the reaction was diluted with 3× the reaction volume of UPAS 

buffer (20mM sodium acetate, 150mM sodium chloride, 3M urea, 0,02% Triton X, pH 5) and 

applied to a 0.2ml DEAE column.  The column was washed four times with 1ml UPAS 

buffer and then washed two times with 1ml of wash buffer (250mM sodium chloride, 0.001% 

Triton X).  The column was eluted with 1ml of 1M sodium chloride.  For modifications with 

sulfotransferase reactions, the amount of 35S-labeled polysaccharide was determined by 

scintillation counting (10% of the total eluent volume).  The remainder of the eluent was 

dialyzed against 20mM ammonium bicarbonate for four hours at 4ºC.  The dialyzed 

polysaccharide was dried by centrifugal evaporation and resuspended in water for further 

use.  For analysis of Sulf activity, the radioactivity of the eluent volume of the 35S-labeled 

polysaccharide was determined by scintillation counting. 

 

Modification of Polysaccharides 

The starting material (heparosan, N-sulfo heparosan, bovine kidney HS, and CDNS 

heparin) were modified by 5-10µg of NST-1, C5-Epi, 2-OST, 6-OST-1/3, 3-OST-1, and 3-

OST-5, 0.5 to 1 ×106
 cpm [35S] PAPS, 10nmols unlabeled PAPS to produce the desired 

polysaccharide.  Reactions were incubated at 37ºC for 1hr.  The reaction was heat 

deactivated in a 100 °C for two minutes.  The polysaccharides were purified by DEAE ion 

exchange chromatography.  The amount of [35S] sulfo groups per chain and pmols of [35S] 

sulfation of 35S-labeled disaccharide was measured based on the specific 35S radioactivity. 
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Spin Column Assay 

The G-25 sephadex spin column (Roche) was centrifuged at 2000 rpm to remove 

storage buffer.  The reaction was applied to the spin column and centrifuged at 2000 rpm for 

4 min.  The eluent was collected and the amount of 35S-labeled polysaccharide was 

determined by scintillation counting. 

 

HSulf-2 Enzymatic Assay 

Substrates were mixed with 50µl of concentrated (20×) HSulf-2 conditioned medium 

from Chinese hamster ovary cells, 50mM HEPES pH8.0, 10mM MgCl2 in a 100µl reaction 

volume.  The reaction mixture was incubated overnight at 37ºC. 

 

FGF BaF3 Cell Assay 

The BaF3 FGFR1c cells were maintained in RPMI 1640 media (Sigma, St. Louis, 

MO) supplemented with 10% fetal bovine serum, 0.5 ng/ml IL-3 (PeproTech, Inc., Rocky 

Hill, NJ), 2 mM l-glutamine, penicillin (50 IU/ml), and streptomycin (50 µg/ml), and 50 µM 

β-mercaptoethanol. For mitogenic assays, BaF3 FGFR1c cells were washed three times with 

RPMI 1640 media to remove IL-3 and resuspended in the growth media lacking IL-3. About 

30,000 cells were plated per well in a 48-well plate in media containing various 

concentrations of heparin, lovenox, and 2 nM FGF2 (PeproTech, Inc.) in a total volume of 

200 µl. The cells were then incubated at 37°C for 40 hr. To each well, an additional 50 µl 

growth media containing 1 µCi [3H] thymidine was added. Cells were harvested after 4–5 hr 

by centrifugation. The incorporation of [3H] thymidine into the DNA was determined by 

scintillation counting. 
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Cloning of MBP-Sulfs 

EST clones were obtained from Open Biosystems for human and mouse isoforms 

(accession numbers AF112227, AF097544, AF181684).  For the cloning of the full length 

HSulf-2 construct forward  primer 5’-AAAGGGATAGGATCCATGGGCCCCCCGAGC-3’ 

and reverse primer 5’-AAAGGGATAAAGCTTTTAACCTTCCCAGCC-3’ were used.  For 

the truncated HSulf-2 construct in which the signal sequence was removed forward and 

reverse primers 5’-AAAGGGATAGGATCCTTCCTGTCGCACCACCGCCTG-3’ and 5’-

AAAGGGATAAAGCTTTTAACCTTCCCAGCC-3’ were used.  For the full length MSulf-

2 construct forward and reverse primers 5’-

AAAGGGATAGGATCCATGGCACCCCCTGGC-3’ and 5’-

AAAGGGATAAAGCTTTTAGCCTTCCCAACC-3’ were used.  For the full length MSulf-

1 construct forward and reverse primers 5’-

AAAGGGATAGTCGACATGAAGTATTCCCTC-3’ and5’- 

AAAGGGATAAAGCTTCTAACCTTCCCATCC-3’ were used. The purified genes from 

human and mouse were amplified with polymerase chain reaction and primers and cloned 

into pMAL-c2X vector (New England Biolabs) using BamHI/HindIII ( human and mouse 

Sulf 2) and SalI/HindIII (mouse Sulf 1) sites to generate a maltose-binding protein (MBP)-

Sulf fusion protein.  Expression of Sulfs was achieved in OriB containing GroEL/ES.  The 

bacteria were grown in LB medium supplemented with 12.5 µg/ml tetracycline, 15 µg/ml 

kanamycin, 35 µg/ml chloramphenicol, and 50 µg/ml carbenicillin at 37 °C.  When the OD600 

nm reached 0.6–0.8 the temperature was lower to 22ºC, and expression was induced by the 

addition of IPTG and L-arabinose at a final concentration of 0.1 mM and 1 mg/ml, 

respectively. 
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PF4 Neutralization Assay 

For a 100µl reaction volume, various amounts of PF4 (0-100ug) were pre-incubated 

with 400ng/ml of lovenox for 2min at 37ºC in a 48 well plate.  The mixture of PF4 and 

lovenox was incubated for 2 min at 37ºC with 1µl AT (2mg/ml).  1µl of Factor Xa (10U/ml) 

was introduced and incubated at 37ºC for 4 min.  15µl of chromogenic substrate S-2765 

(2mg/ml) (Diapharma) was added to the wells, and the plate was read at 405nm for 2min. to 

determine Factor Xa activity. 

 

PF4 Filter Binding Assay 

 For a 100µl reaction volume, 10,000cpm of HSulf-2 treated and untreated [35S] HS 

from CHO cells, increasing amounts of PF4 (1-10µg), and reaction buffer containing 50mM 

Tris, 130mM NaCl, pH 7.3 were incubated together at 37ºC for 10 min.  200µl of reaction 

buffer was added to the reaction.  The 300µl total volume samples was applied to a buffer 

equilibrated nitrocellulose membrane (Amersham), and the samples were drawn through the 

membrane by a vacuum manifold.  The membrane was washed 2×500µl with reaction buffer, 

and then allowed to dry.  The remaining radioactivity was detected by a scintillation counter. 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER III 

 SUBSTRATE SPECIFICITY OF HUMAN HEPARAN SULFATE 6-O-

ENDOSULFATASE 

 

Introduction 

The biosynthesis of HS has been the subject of various studies that have been 

previously reported.  The discovery of the novel class of enzymes called Sulfs has generated 

a new perspective on the role of HS once synthesized in the Golgi and released into the 

extracellular environment.  In this chapter the substrate specificity of human heparan sulfate 

6-O-endosulfatase isoform 2 (HSulf-2) is described.  The focus of this chapter is to determine 

the substrate specificity using synthetic polysaccharide substrates.  By using a mammalian 

expression approach, a sufficient amount of crude HSulf-2 was obtained from transient 

transfection for this project.  HSulf-2 from the conditioned medium of mammalian cells was 

employed to investigate whether HSulf-2 had a broader substrate specificity than previously 

reported (124).  The method described in this chapter allows for the ability to determine 

substrate specificity more directly by being able to evaluate the removal of specific sulfo 

groups from the polysaccharide. 

 

Developing a Method to Measure HSulf-2 Activity 

We wanted to develop a rapid and easy method for determining HSulf-2 activity 

against HS in vivo. The strategy was to utilize a method to determine the amount of 
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radioactivity remaining on the HS polysaccharide.  Therefore, DEAE chromatography was 

chosen.  If active HSulf-2 was expressed by CHO cells, the DEAE chromatography method 

would allow us to rapidly determine whether there was any removal of sulfo groups on the 

polysaccharide.  HSulf-2 was cloned into the pcDNA3.1A/myc-His vector, and the transient 

transfection of the CHO cells was carried out by using a standard procedure.  CHO cells 

expressing HSulf-2 and empty vector separately were metabolically labeled with [35S] 

Na2SO4 and the resultant [35S] HS was isolated from the cells.  The [35S] HS was subjected to 

DEAE anion exchange chromatography as described in Chapter II.  35S-labeled 

polysaccharide was eluted from the DEAE column, and the amount of radioactivity was 

determined using a scintillation counter.  Results were inconclusive and could not provide 

evidence of sulfatase activity.  It was possible that HSulf-2 was not removing enough sulfo 

groups on the polysaccharide chain to be accurately determined by this method. 

Therefore, disaccharide analysis was utilized as an alternative method to determine 

the in vivo activity of HSulf-2 expressed in CHO cells.  This common method is more 

sensitive and provides structural information about the material being analyzed.  

Unfortunately, this method requires more time for analysis.  If sulfatase activity can be 

detected by this method, then the digestion of [35S] HS from CHO cells expressing HSulf-2 

with a mixture of heparin lyases should yield a decrease in a [35S]-labeled disaccharide with a 

structure of ∆UA2S-GlcNS6S.  As a result of the removal of 6-O sulfo groups from the 

∆UA2S-GlcNS6S disaccharide motif, the subsequent increase in a [35S]-labeled disaccharide 

with a structure of ∆UA2S-GlcNS would be observed in the elution profile as shown in 

Figure 21.  This hypothesis was based on a previous study in which HSulf-2 enzyme 

removed 6-O sulfo groups from ∆UA2S-GlcNS6S disaccharide motifs found in heparin 
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(124).  The strategy for the determination of sulfatase activity by disaccharide analysis is 

described in figure 21. 

 
Figure 21.  Strategy for the determination of in vivo sulfatase activity.  If HSulf-2 is 
present peak 2, ∆UA2S-GlcNS6S, would decrease and peak 1, ∆UA2S-GlcNS, would 
increase in the elution profile of treated versus untreated material.  The removal of 6-O-sulfo 
groups from the polysaccharide would indicate CHO cells were expressing active enzyme. 

 
 

Disaccharide Analysis of HSulf-2 Treated Heparan Sulfate Confirmed Sulfatase Activity 

[35S]-labeled disaccharides were resolved on the RPIP column as shown in figure 22.  

Along with radioactive detection of the [35S] label, nonradioactive standards with an 

absorbance of 232nm were co-injected to monitor the elution position of the disaccharides.  

The separation of the 35S-labeled disaccharides on the RPIP column was based on their 

negative charge densities.  [35S] HS isolated from the mock transfected cells yielded ∆UA2S-

GlcNS and ∆UA2S-GlcNS6S disaccharide peaks at 42 min. and 68 min. (Figure 22, panel 
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A).  [35S]-labeled disaccharides isolated from the HSulf-2 transfected CHO cells (Figure 22, 

panel B) eluted at the same positions.  In panel B, the 2-fold reduction of the ∆UA2S-

GlcNS6S disaccharide peak along with approximately a 1.5-fold increase in the ∆UA2S-

GlcNS disaccharide peak was observed.  The summary of the disaccharide analysis is shown 

in table 3.  Overall, these results showed CHO cells were expressing active HSulf-2 enzyme. 
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Figure 22.  RPIP-HPLC chromatogram of 

35
S-labeled disaccharide analysis of 

transfected CHO cells.  The cells were transfected with empty vector and HSulf-
2/pcDNA2.1A/myc-His vector, and were metabolically labeled as described in Chapter II.  
Approximately 200,000 cpm of the 35S-labeled disaccharides were subjected to 
chromatography.  The x-axis shows the retention time in minutes, the y-axis monitors [35S] 
using online detection. 
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Table 3.  Summary of HS disaccharide analysis of HSulf-2 activity in vivo.  CHO cells 
expressing HSulf-2 were metabolically labeled to generate [35S] HS.  [35S] HS was isolated, 
purified, and subjected to heparin lyase I, II, III degradation to generate 35S-labeled 
disaccharides.  Disaccharides were resolved on RPIP-HPLC for analysis. Nonradioactive 
standards were run to determine the elution positions of the disaccharides.  Results 
represented as mol-percent of specific disaccharide products from two independent 
experiments. 

 
 

Detection of HSulf-2 in Mammalian Cells 

The cloning of HSulf-2 is described in chapter II.  The resultant protein contains a 

myc epitope tag and a 6× Histidine (His6) tag on its C-terminus in which either tag could be 

used to facilitate the detection of the protein by Western blotting.  The Western blotting 

procedure is described in chapter II. Figure 23 represents the standard curve of the molecular 

weight of the protein standards and their migration distance used to calculate the molecular 

weight of the band observed in figure 23, lane 2.  As expected, HSulf-2 was detected in the 

cell extract of the CHO cells (Figure 24, lane 2) compared to empty vector used as a control 

(Figure 24, lane 1).   

 (1) 

∆UA-GlcNS 

(mol %) 

(2) 

∆UA-GlcNS6S 

( mol %) 

(3) 

∆UA2S-GlcNS 

(mol %) 

(4) 

∆UA2S-

GlcNS6S 

(mol %) 

pcDNA3.1A/CHO 30.4±2.4 5.7±0.6 32.5±2.0 31.4±3.8 

HSulf-2/CHO 30.5±2.4 6.5±2.5 45.6±7.9 17.4±3.0 
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Figure 23. Molecular weight standard curve of HSulf-2.  The standard curve was prepared 
by comparing the molecular weight markers within the molecular weight ladder with their 
migration distances within the Western blot.  The migration distance of the band of interest 
was measured and the resultant molecular weight was determined from the standard curve.  
The calculated molecular weight of the band representing HSulf-2 was 135 kDa.   

 
 

This band was consistent with the size of the full length, glycosylated protein containing a 

myc-His tag but no signal sequence.  The Western blotting technique was used to detect 

HSulf-2 secreted in the conditioned medium (CM), but no bands were detected (data not 

shown).  Overall, HSulf-2 was successfully expressed in CHO cells. 
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Figure 24.  Western blotting analysis of HSulf-2/CHO cell extract.  The Western blotting 
technique was used on the empty vector and HSulf-2 cell extract as described in chapter II. 
Lane 1, cells transfected with pcDNA3.1A/myc-His; Lane 2, cells transfected with HSulf-
2/pcDNA3.1A/ myc-His.  HSulf-2 had a calculated molecular weight of 135 kD. 

 

 

Determination of in vitro Hsulf-2 Activity 

To carry out the experimental design, we needed to make sure that HSulf-2 is also 

active in an in vitro format.  To determine the in vitro enzymatic activity of HSulf-2, the 

enzyme was extracted from the cell lysate of CHO cells, and the activity evaluated by 

disaccharide analysis by RPIP chromatography.  The procedures for the extraction of HSulf-

2 from the CHO cell lysate are described in chapter II.  Initially, [35S] HS was prepared from 

CHO cell culture that was metabolically labeled with Na2 [
35S] SO4.  The [35S] HS was 

treated with HSulf-2 cell extract was followed by a disaccharide analysis by subjecting HS to 

the digestion with a mixture of heparin lyases.  The CM from CHO cells expressing HSulf-2 

was collected and evaluated for enzymatic activity using the same method.  The 35S-labeled 

disaccharides were resolved on the RPIP column.  If activity were present, the elution 

profiles of the untreated and the treated [35S] HS should yield similar results as the in vivo 

disaccharide analysis for the determination of enzymatic activity.  It was shown that the CM 
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of HSulf-2 expressing CHO cells contained enzymatic activity by the observance of a 5-fold 

decrease in the ∆UA2S-GlcNS6S disaccharide peak and the subsequent 2-fold increase in the 

∆UA2S-GlcNS disaccharide peak at elution positions 35 min. and 65 min. (Figure 25, panel 

B) compared to the untreated [35S]HS (Figure 25, panel A).  In addition, a peak at 12 min. 

was concluded to be a free [35S] sulfate peak, which was a result of the de-sulfation of [35S] 

HS by HSulf-2 in the CM.  The discrepancy in the amount of ∆UA2S-GlcNS disaccharide 

peak could be due to HSulf-2 removing sulfo groups from other disaccharide peaks which 

have been identified in the elution profile.  Interestingly, the HSulf-2 CM yielded enzymatic 

activity even though it was not detected by Western blotting.  This may be due to the 

cleavage of the C-terminal myc-His tag from the protein by a post-translational protease 

previously reported (124), rendering an undetectable protein by Western blotting. 
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Figure 25.  Comparison of RPIP-HPLC chromatograms of 
35

S-labeled disaccharide 

analysis of HSulf-2 CM activity in vitro.  Nontransfected CHO cells were metabolically 
labeled to generate [35S] HS.  [35S] HS was isolated, purified, and subjected to HSulf-2 
treatment.  [35S] HS was degraded with heparin lyase I, II, III to generate 35S-labeled 
disaccharides.  Approximately 200,000 cpm of the 35S-labeled disaccharides were subjected 
to RPIP chromatography.  Nonradioactive standards were run to determine the elution 
positions of the disaccharides.  Panel A represents mock CM treatment of [35S] HS.  Panel B 
represents HSulf-2 CM treatment of [35S] HS. (1) represents ∆UA-GlcNS; (2) represents 
∆UA-GlcNS6S; (3) represents ∆UA2S-GlcNS; (4) represents ∆UA2S-GlcNS6S.  The x-axis 
shows the retention time in minutes, the y axis monitors [35S] using online detection. 
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For the cell extract containing HSulf-2, to a lesser extent there was a decrease in the 

∆UA2S-GlcNS6S disaccharide peak followed by a in small increase in the ∆UA2S-GlcNS 

disaccharide peak at elution positions 35 min. and 65 min. (Figure 26, panel B) after HSulf-2 

cell extract treatment compared to the untreated [35S] HS (Figure26, panel A).  In addition, at 

12 min. there is a peak concluded to be a free [35S] sulfate peak, which was a result of the de-

sulfation of [35S] HS by HSulf-2 in the cell extract.  The summary of the disaccharide 

analysis is shown in Table 4.  These results showed enzymatic activity present in the cell 

extract. 
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Figure 26.  RPIP-HPLC chromatograms of 

35
S-labeled disaccharide analysis of HSulf-2 

in vitro activity from cell extract. Nontransfected CHO cells were metabolically labeled to 
generate [35S] HS.  [35S] HS was isolated, purified, and subjected to HSulf-2 treatment.  [35S] 
HS was degraded with heparin lyase I, II, III to generate 35S-labeled disaccharides.  
Approximately 200,000 cpm of the 35S-labeled disaccharides were subjected to RPIP 
chromatography.  Nonradioactive standards were run to determine the elution positions of the 
disaccharides.  Panel A represents mock treatment of [35S] HS.  Panel B represents HSulf-2 
CM treatment of [35S] HS. (1) represents ∆UA-GlcNS; (2) represents ∆UA-GlcNS6S; (3) 
represents ∆UA2S-GlcNS; (4) represents ∆UA2S-GlcNS6S.  The x-axis shows the retention 
time in minutes, the y axis monitors [35S] using online detection. 
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 (1) 

∆UA-GlcNS 

( mol %) 

(2) 

∆UA-GlcNS6S 

(mol %) 

(3) 

∆UA2S-GlcNS 

(mol %) 

(4) 

∆UA2-GlcNS6S 

(mol %) 

Untreated cell lysate 32.0±0.5 6.9±0.9 28.1±0.4 33±0.1 

HSulf-2 cell lysate 33.5±1.8 6.4±2.2 34.0±0.4 26.1±0.8 

Untreated CM 34.4 5.5 31.5 28.6 

HSulf-2 CM 37.5 4.6 52.4 5.5 

Table 4.  Summary of HS disaccharide analysis of in vitro HSulf-2 activity.  
Nontransfected CHO cells were metabolically labeled to generate [35S] HS.  [35S] HS was 
isolated, purified, and subjected to HSulf-2 treatment.  [35S] HS was degraded with heparin 
lyase I, II, III to generate 35S-labled disaccharides.  Nonradioactive standards were run to 
determine the elution positions of the disaccharides.  Results represented as mol-percent of 
specific disaccharide products from two independent experiments for the cell extract and one 
determinant for the CM. 
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Evaluation of [
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S] HS Polysaccharides 
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Figure 27.  Strategy for the development of synthetic HS polysaccharides.  The steps involved in 
generating synthetic substrates to evaluate HSulf-2 activity.  The sulfo groups colored in blue are 
nonradioactive modifications, and sulfo groups colored in red depict radioactive modifications that 
aid in tracking enzymatic activity.  R represents a proton or sulfate.  R’ represents a proton, acetyl, or 
sulfate. 
 

 

In this section, we wanted to investigate the issue of HSulf-2 substrate specificity by 

generating polysaccharides that would aid in determining which disaccharide structures 

within the polysaccharide were necessary and could produce enzymatic activity.  Therefore, 

with the use of different starting materials, we were able to synthesize polysaccharides with 

different [35S] labeled positions on structures carrying specific structural motifs within these 
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polysaccharides as depicted in Figure 27.  In order to produce these polysaccharides all HS 

biosynthetic enzymes were expressed in E. coli in large quantities.  To generate [35S] labels 

at specific sites on the polysaccharide, the polysaccharide was incubated with a specific 

sulfotransferase in the presence of [35S] PAPS.  The resultant structures are not completely 

sulfated at the desired positions due to incomplete enzymatic activity of the sulfotransferases.  

The overall sulfation level among the products was between 0.78-1.85 nmoles of O-sulfo 

groups per microgram of polysaccharide (Table 5).  In addition, there was between 1-10 sulfo 

groups per chain of 35S-labeled polysaccharide, which was measured based on the specific 

35S radioactivity. 

 

Table 5. Summary of the sulfation level of the synthetic polysaccharides.  Synthetic 
polysaccharides were generated from heparosan, N-heparosan, CDNS heparin, and ICN HS 
as starting material.  The starting material was modified by HS sulfotransferases to produce 
the desired product.  35S-labeled sulfation level in nmoles of 35S-labeled sulfate per 
microgram of polysaccharide was measured by the specific 35S radioactivity. 

 
 
Development of a method using a spin column has allowed us to assay for HSulf-2 

activity against the synthesized polysaccharides quickly and more efficiently than HPLC 

chromatography.  The separation by spin column was based on the molecular size of the 

Compound Name Proposed Repeating Units O-
35

S-Labeled 

Sulfation Level (nmoles 

/µg Polysaccharide) 

1 [-IdoA2S-[6-O-
35

S]GlcNS6S-]n 0.8 

2 [-GlcA2S-[6-O-
35

S]GlcNS6S-]n 0.6 

3 [-IdoA-[6-O-
35

S]GlcNS6S-]n 1.9 

4 [-GlcA-[6-O-
35

S]GlcNS6S-]n 1.4 

5 [-GlcA-[6-O-
35

S]GlcNAc6S-]n 0.1 

6 [-[2-O-
35

S]IdoA2S-GlcNS-]n 1.1 

7 [-2-O-
35

S]GlcA2S-GlcNS-]n 1.3 

8 [-GlcA-[3-O-
35

S]GlcNS3S±6S-]n 1.1 

9 [-UA±2S-[3-O-
35

S]GlcNR3S±6S-]n 0.8 

10 [-UA±2S-[N-
35

S]GlcNS±6S-]n 1.6 
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analytes.  Once the [35S] modified polysaccharides were synthesized, each was subjected to 

HSulf-2 digestion to determine whether the enzyme would remove the [35S] sulfo groups 

from the polysaccharide.  The release of [35S] sulfo groups would be quantified by how much 

35S-radioactive counts were trapped in the spin column. Controls for [35S] sulfate and [35S] 

HS were performed.  This spin column method traps small molecules such as free sulfate 

within the resin and excludes larger molecules (size exclusion limit: approximately 6,500 

daltons) such as polysaccharides which run through the column during centrifugation.  The 

amount of pmols of [35S] sulfate can be quantified by this method. 

 

Evaluation of 2-O-sulfated Uronic acid 

 

It is well documented that Sulfs have activity against IdoA2S-GlcNS6S disaccharide 

motifs within HP/HS removing 6-O-sulfo groups from these structures. Studies show that 

IdoA2S residues are important in Sulf activity.  Therefore, we wanted to determine whether 

HSulf-2 had activity against GlcA2S residues also.  However, we needed to synthesize 

structures containing either IdoA2S- or GlcA2S-[6-O-35S] GlcNS6S to evaluate whether 

enzymatic activity was specific toward either 2-O-sulfated hexuronic acid.  Therefore, 

Compound 1 was synthesized from N-sulfo heparosan. Before the generation of compound 1 

could occur, heparosan was first subjected to deacetylation by sodium hydroxide.  After 

deacetylation, heparosan contained GlcNH2 residues which could be converted to GlcNS 

residues by NST-1 to produce N-sulfo heparosan. N-sulfo heparosan was then subjected to 

epimerization of the C5 position of D-glucuronic acid to convert the residue to L-iduronic 

acid.  Next, 2-OST was used to place 2-O-sulfo groups on IdoA residues to create IdoA2S 
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residues on the chain.  Finally, 6-OSTs were used to place [35S] sulfo groups on the 6-OH 

position on the GlcNS residues to produce IdoA2S-[6-O-35S] GlcNS6S disaccharide motifs 

within the polysaccharide.  Even though this structure originated from heparosan, its content 

is more “heparin-like” since the resulting product of the enzymatic modifications contained a 

content of 80% IdoA2S-GlcNS before the addition of [35S] 6-O-sulfo groups on this 

structure.  Compound 2 was also generated from N-sulfo heparosan.  Therefore, 2-O-sulfo 

groups were placed on 2-OH position of GlcA residues to generate GlcA2S residues by 2-

OST.  6-OSTs were used to place [35S] sulfo groups on the 6-OH position of GlcNS residues 

to produce GlcA2S-[6-O-35S] GlcNS6S disaccharide motifs within the polysaccharide. 
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Figure 28.  Generation of compound 1 and 2.  For compound 1 and 2, N-sulfo heparosan is 
used as the starting material.  After subsequent modifications using sulfotrasnferases, sulfo 
groups were placed on the polysaccharide to produce the desired product.  Sulfotransferases 
depicted in blue add sulfo groups colored blue.  Sulfotransferases depicted in red add sulfo 
groups colored in red.  The color blue represents modification using nonradioactive PAPS, 
while the color red represents modifications using radioactive PAPS. 

 
 

After treating compound 1 with HSulf-2 , results showed a very high [35S] sulfate 

release with approximately 97.5 % removal of [35S] 6-O-sulfo groups from the 

polysaccharide compared to control (2.7%).  This showed the spin column was capable of 
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determining sulfatase activity.  To further prove the spin column method is able to screen 

potential substrates, a disaccharide analysis was employed to demonstrate the enzyme was 

active against this substrate.  After degrading the polysaccharide with a mixture of heparin 

lyases, only 6-O-[35S] labeled disaccharides were able to be resolved on the RPIP column.  

The elution profile for the untreated material revealed a major peak at 32 min, which was 

identified as an IdoA2S-GlcNS6S disaccharide (Figure 29, panel A).  Additional peaks at 

16min. and 18min. were apparent, but were not identified.  In the Figure 29, panel B, the 

elution profile for the HSulf-2 treated material contained a large free [35S] sulfate peak 

(approximately 94%) in addition to trace amounts of both the IdoA2S-GlcNS6S disaccharide 

peak (4.3%) and the unidentified peaks (1.9%).  The summary of the disaccharide analysis is 

shown in table 6. 
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Figure 29. HSulf-2 activity against compound 1.  Treated and untreated compound 1 was 
subjected to heparin lyase degradation to produce 35S-disaccharides.  Approximately 50,000 
cpm of the digested material was subjected to RPIP chromatography.  (1) represents a 
mixture of unidentified disaccharides; (2) represents IdoA2S-GlcNS6S disaccharide.  The x-

axis shows the retention time in minutes, and the y-axis monitors [35S] using online detection. 
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Free Sulfate 

(mol%) 

(1) 

∆UA-GlcNS6S 

(mol %) 

(2) 

IdoA2S-GlcNS6S 

(mol %) 

Untreated 0.0 18.3 81.7 

Treated 93.8 1.9 4.3 

Table 6. Summary of the disaccharide analysis of compound 1.  Untreated and treated 
polysaccharide was degraded with heparin lyase I, II, and III to generate 35S-labeled 
disaccharides. Disaccharides were resolved on RPIP-HPLC for analysis.  Results represented 
as mol-percent of specific disaccharide products. 

 
 
HSulf-2 activity against compound 2 could not be determined by the spin column 

method due to the incomplete formation of a majority of GlcA2S-[6-O-35S] GlcNS6S 

disaccharide motifs, which was determined by disaccharide analysis of this structure.  

Disaccharide analysis of the product revealed the synthesized polysaccharide contained a 

majority of GlcA-GlcNS6S disaccharide motifs and a minority of GlcA2S-GlcNS6S 

disaccharide motifs within this structure.  This discovery would make it difficult to determine 

whether sulfo groups were actually being removed from the target product.  Therefore, 

HSulf-2 activity against compound 2 was determined by disaccharide analysis on the HPLC.  

We wanted to observe whether the minor GlcA2S-GlcNS6S disaccharide peak could be 

digested by HSulf-2, which would result in a decrease or a complete disappearance of this 

peak in the elution profile.  This compound was degraded by a mixture of heparin lyases to 

generate only 6-O-[35S] labeled disaccharides.  The 35S-labeled disaccharides were resolved 

on a RPIP column.  In the untreated elution profile, GlcA-GlcNS6S and GlcA2S-GlcNS6S 

disaccharide peaks were observed and had elution times of 18 min. and 58 min. (Figure 30, 

panel A).  After HSulf-2 treatment, the GlcA2S-GlcNS6S disaccharide peak completely 

disappeared with the subsequent observance of a free sulfate peak at 8 min. (Figure 30, panel 

B).  In addition, there was a decrease in the GlcA-GlcNS6S disaccharide peak that 

contributed to the free sulfate peak.  The observance of the free sulfate peak was indicative of 
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HSulf-2 activity against this compound removing 6-O-sulfo groups from the material.  This 

evidence further proves HSulf-2 has broad substrate specificity against HS, and is able to de-

sulfate disaccharide motifs that can be found in moderately sulfated domains of HP/HS 

structures. 
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Figure 30.  HSulf-2 activity against compound 2. Treated and untreated compound 2 was 
subjected to heparin lyase degradation into 35S-labeled disaccharides. Approximately 50,000 
cpm of the digested material was subjected to RPIP chromatography. (1) GlcA-GlcNS6S; (2) 
represents GlcA2S-GlcNS6S. The x-axis shows the retention time in minutes, and the y axis 
monitors [35S] using online detection. 
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 Free Sulfate 

(mol %) 

(1) 

GlcA-GlcNS6S 

(mol %) 

(2) 

GlcA2S-GlcNS6S 

(mol %) 

Untreated 0.0 81.3 18.7 

Treated 32.6 67.4 0.0 

 
Table 7.  Summary of compound 2 disaccharide analysis.  Untreated and treated 
polysaccharide was degraded with heparin lyase I, II, and III to generate 35S-labeled 
disaccharides. Disaccharides were resolved on RPIP-HPLC for analysis.  Results represented 
as mol-percent of specific disaccharide products. 
 
 
Determination of Whether 2-O-Sulfation is Necessary for HSulf-2 Activity 

Once we were able to show that HSulf-2 had activity against GlcA2S residues, it was 

important to determine whether 2-O-sulfation was critical for activity.  Therefore, we 

synthesized structures containing either IdoA- or GlcA-[6-O-35S] GlcNS6S disaccharide 

motifs within the polysaccharide. For the synthesis of compound 3, N-sulfo heparosan was 

subjected to [35S] sulfation at the 6-OH position of GlcNS residues producing GlcA-[6-O-

35S] GlcNS6S disaccharide motifs within the polysaccharide.  For compound 4, CDNS 

heparin was used as starting material.  CDNS heparin was chosen as the starting material in 

order to generate compounds with a high IdoA/GlcA residue content.  Therefore, CDNS 

heparin was subjected to [35S] sulfation at the 6-OH position of GlcNS residues producing 

IdoA-[6-O-35S] GlcNS6S disaccharide motifs within the polysaccharide. 
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Figure 31. Generation of compound 3 and 4. For compound 3 CDNS heparin is used as the 
starting material, and for compound 4 N-sulfo heparosan is used as the starting material.  
After subsequent modifications using sulfotransferases, sulfo groups were placed on the 
polysaccharide to produce the desired product.  Sulfotransferases depicted in blue add sulfo 
groups colored blue.  Sulfotransferases depicted in red add sulfo groups colored in red.  The 
color blue represents modification using nonradioactive PAPS, while the color red represents 
modifications using radioactive PAPS. 

 
 
The spin column method showed compound 3 was shown to have approximately 

24.3% [35S] 6-O-sulfo group release after HSulf-2 treatment compared to 8.3% released from 

the control.  Since this compound was a potential substrate for HSulf-2, an HPLC 

disaccharide analysis was performed to further investigate whether there was any activity 

against this compound.  After degradation by a mixture of heparin lyases, disaccharides 

containing only a 6-O-[35S] labeled were generated.  The elution profile for this compound 

showed an IdoA-GlcNS6S disaccharide peak as the majority of the radiolabeled product 

which eluted at 15 min. (Figure 32, panel A).  However, there was also a minor IdoA2S-

GlcNS6S disaccharide peak observed at 31 min.  The observance of the IdoA2S-GlcNS6S 

disaccharide peak was due to a small percentage of the starting material still containing 

IdoA2S residues.  Upon HSulf-2 treatment there was a very small percentage of digestion 
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(4.9%) of the IdoA-GlcNS6S disaccharide peak, but the IdoA2S-GlcNS6S disaccharide peak 

was completely digested. As a result there was the appearance of a 6.5% free [35S] sulfate 

peak (Figure 32, panel B).  The combination of the sulfate removal from IdoA-GlcNS6S and 

IdoA2S-GlcNS6S contributed to the amount of free sulfate observed in the elution profile.  

After further evaluation, this data suggested that HSulf-2 may have a small amount of 

activity against the IdoA-GlcNS6S disaccharide peak.  However, this result is inconclusive 

due to the presence of IdoA2S-GlcNS6S.  In addition, since this compound contains 

approximately 10% of GlcA residues, it is possible that GlcA2S-GlcNS6S and GlcA-

GlcNS6S may contribute to the data being inconclusive. 
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Figure 32.  RPIP disaccharide analysis of compound 3.  Treated and untreated compound 
3 was subjected to heparin lyase degradation into 35S-disaccharides.  Approximately 50,000 
cpm of the digested material was subjected to RPIP chromatography.  (1) represents an 
unknown peak; (2) represents IdoA-GlcNS6S; (3) represents IdoA2S-GlcNS6S.  The x-axis 
shows the retention time in minutes, and the y-axis monitors [35S] using on-line detection. 
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 Free Sulfate 

(mol %) 

(1) 

Unknown 

(mol %) 

(2) 

IdoA-GlcNS 

(mol %) 

(3) 

IdoA2S-

GlcNS6S 

(mol%) 

Untreated 0.0 9.3 89.0 1.7 

Treated 6.5 9.4 84.1 0.0 

Table 8.  Summary of the disaccharide analysis of compound 3. 
 
 
In addition, compound 4 was shown to be a substrate for this enzyme. Approximately 

43.1% of [35S] 6-O-sulfo groups were removed from the polysaccharide compared to 6.6% 

released from the control.  Compound 4 was analyzed by HPLC to further demonstrate the 

material was a substrate for HSulf-2.  This compound was degraded by a mixture of heparin 

lyases to generate disaccharides with only a 6-O-[35S] label.  The 35S-labeled disaccharides 

were resolved on a RPIP column.  The elution profile for compound 4 showed there was one 

major disaccharide peak, GlcA-GlcNS6S, eluted at 20 min. (Figure 33, panel A).  The 

summary of the disaccharide analysis is shown in table 5.  After HSulf-2 treatment (Figure 

33, panel B) there is approximately a 22% decrease in GlcA-GlcNS6S disaccharide with the 

development a free sulfate peak that was approximately 22% of the peaks present in the 

elution profile.  This result showed that HSulf-2 activity is not limited to highly sulfated 

domains containing repeating IdoA2S-GlcNS6S disaccharide units. The sulfatase activity 

extends to GlcA-GlcNS6S disaccharide motifs that contain no IdoA2S residues.  These 

disaccharide motifs are found in moderately sulfated domains of HP/HS. 
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Figure 33.  HSulf-2 activity against compound 4.  Treated and untreated compound 4 was 
subjected to heparin lyase degradation into 35S-labeled disaccharides. Approximately 50,000 
cpm of the digested material was subjected to RPIP chromatography. (1) represents GlcA-
GlcNS6S.  The x-axis shows the retention time in minutes, and the y axis monitors [35S] 
using online detection. 
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 Free Sulfate 

(mol%) 

(1) 

GlcA-GlcNS6S 

(mol %) 

Untreated 0.0 100.0 

Treated 21.9 78.1 

 
Table 9.  Summary of compound 4 disaccharide analysis.  Untreated and treated 
polysaccharide was degraded with heparin lyases to generate 35S-labeled disaccharides. 
Disaccharides were resolved on RPIP-HPLC for analysis.  Results represented as mol-
percent of specific disaccharide products. 

 
 

Determination of Whether N-Sulfation is Critical for HSulf-2 Activity 

O
O

HO

OH

HOOC
O

O

HO

NHCCH3

O

Heparosan

6-OST-1/3

O
O

HO

OH

HOOC

O

O

HO

NHCCH3

O

{-GlcA-[6-O-35S]GlcNAc6S-}n

OH

OSO3HCompound 5

O

O

 

Figure 34.  Generation of compound 5  Heparosan was incubated with 6-OST-1 and 6-
OST-3 in the presence of [35S] PAPS to place a radioactive sulfo group on GlcNAc residues 
in the polysaccharide chain.  Sulfotransferases depicted in blue add sulfo groups colored 
blue.  Sulfotransferases depicted in red add sulfo groups colored in red.  The color blue 
represents modification using nonradioactive PAPS, while the color red repr-esents 
modifications using radioactive PAPS. 
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Compound 4 was shown to be a substrate for HSulf-2.  Therefore, we wanted to 

determine whether N-sulfation was necessary for HSulf-2 activity.  Compound 5 was 

synthesized from heparosan, a capsular polysaccharide from E. coli K5 strain, which is 

identical to a nonsulfated and unepimerized HS.  This structure was synthesized by placing a 

[35S]-sulfo group on the 6-OH position of GlcNAc to generate GlcA-[6-O-35S] GlcAc6S 

disaccharide motifs within the polysaccharide.  The GlcA-GlcAc6S disaccharide is a rare 

structure found in HP/HS.  Therefore, it was difficult to [35S] label this material since 6-OSTs 

prefer N-sulfation first placed on glucosamine residues before any O-sulfation occurs.  For 

compound 5, spin column results showed there was a 28.1% release of free [35S] sulfate 

release compared to control (14.2%).  Based on the spin column method, it was difficult to 

determine whether this material was a substrate for HSulf-2 activity, because the amount of 

free [35S] sulfate release after subtracting the control was comparable to other compounds 

that were not substrates for this enzyme.  Therefore, a disaccharide analysis was performed, 

and the results showed HSulf-2 was not active against this substrate (data not shown). 

 

Evaluation of HSulf-2 Activity Against 2-O-Sulfation 

In order to generate compound 6 CDNS heparin was used as starting material, and 

was subjected to [35S] labeling of the 2-OH position on the IdoA residue to create [2-O-35S] 

GlcA2S-GlcNS disaccharide motifs within the polysaccharide.  N-sulfo heparosan was used 

to synthesize compound 7 by using 2-OST to place [35S] sulfo groups on the 2-OH position 

of GlcA residues. This produces a compound containing [2-O-35S] GlcA2S-GlcNS 

disaccharide motifs within the polysaccharide. 
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Figure 35.  Generation of compound 6 and 7.  For compound 6 and7, CDNS heparin and 
N-sulfo heparosan are used as the starting material.  After subsequent modifications using 
sulfotransferases, sulfo groups were placed on the polysaccharide to produce the desired 
product.  Sulfotransferases depicted in blue add sulfo groups colored blue.  Sulfotransferases 
depicted in red add sulfo groups colored in red.  The color blue represents modification using 
nonradioactive PAPS, while the color red represents modifications using radioactive PAPS. 

 
Compounds 6 and 7 were not substrates for HSulf-2.  Compound 6 released 12.6% 

versus 10.6% of free [35S] sulfate compared to control.  In addition, compound 7 released 

13.7% of free [35S] sulfate compared to control which released 6.7%.  Therefore, minimal 

release of free [35S] sulfate was observed, which was due to the limitations of the spin 

column.  Therefore, Hsulf-2 does not release 2-O-sulfo groups from either GlcA or IdoA 

residues. 
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Evaluation of HSulf-2 Activity Against Other Sulfated Positions in Heparan Sulfate 
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Figure 36.  Scheme for synthesizing structures from HS.  3-O-sulfated and N-sulfated 
structures were produced by incubating the starting material with 3-OST-1, 3-OST-5, or 
NST-1 in the presence of [35S] PAPS. 

 
 
3-O- and N-sulfated positions on glucosamine were evaluated to determine if HSulf-2 

could remove sulfo groups from these positions. 3-OSTs transfer sulfo groups to the 3-OH 

position of specific glucosamine residues within the polysaccharide.  Therefore, bovine 

kidney heparan sulfate was modified by 3-OST-1 and 3-OST-5 separately to produce 3-O-

[35S] ICN HS which contain either GlcA-[3-O-35S] GlcNS3S±6S or UA±2S-[3-O-35S] 

GlcNR3S±6S, where R represents a proton or sulfo group, respectively.  In addition, N-[35S] 

sulfated HS was generated by using NST-1 to produce UA±2S-[N-35S] GlcNS±6S 

disaccharide motifs within the structure.  Spin column results demonstrated that compound 8, 

9, and 10 were not substrates for HSulf-2 since the percentage of [35S] sulfate release was 
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approximately the same as the control. Therefore, it was determined that HSulf-2 does not 

release 3-O-sulfo or N-sulfo groups from HP/HS polysaccharides.  A summary of the HSulf-

2 activity against the synthetic polysaccharides is shown in table 10. 

 
Table 10. Evaluation of HSulf-2 substrate specificity against synthetic polysaccharides. 
N.D.  Not determined 

 

 
Conclusions 

HSulf-2 cDNA was introduced into and expressed by CHO cells to study the 

substrate specificity of this enzyme.  Results of the disaccharide analysis of HS collected 

from CHO cells expressing HSulf-2 showed approximately a 2-fold reduction of ∆UA2S-

GlcNS6S disaccharide, a known substrate for HSulf-2, and approximately a 2-fold reduction 

of ∆UA2S-GlcNS disaccharide.  This demonstrated that HSulf-2 expressed by CHO cells 

was active in vivo.  Western blotting analysis produced a 138 kDa band for HSulf-2 found in 

the cell extract.  This was consistent with the glycosylated protein containing a myc-His tag 

and no signal sequence.  HSulf-2 cell extract was then used to treat HS from nontransfected 

CHO cells.  The disaccharide analysis showed HSulf-2 was active in the cell extract by 

Compound Structure Control 

[
35

S] Sulfate 

Release (pmol) 

HSulf-2 Treatment 

[
35

S] Sulfate Release 

(pmol) 

1 [-IdoA2S-[6-O-
35

S]GlcNS6S-]n 2.7±1.0 97.5±0.8 

2 [-GlcA2S-[6-O-
35

S]GlcNS6S-]n N.D N.D. 

3 [-IdoA-[6-O-
35

S]GlcNS6S-]n 8.3±0.1 24.3±2.7 

4 [-GlcA-[6-O-
35

S]GlcNS6S-]n 6.6±1.6 43.1±2.4 

5 [-GlcA-[6-O-
35

S]GlcAc6S-]n 14.2±3.5 28.1±1.3 

6 [-[2-O-
35

S]IdoA2S-GlcNS-]n 10.4±2.6 12.6±1.3 

7 [-2-O-
35

S]GlcA2S-GlcNS-]n 6.7±1.9 13.7±3.0 

8 [-GlcA-[3-O-
35

S]GlcNS3S±6S-]n 13.6 12.2 

9 [-UA±2S-[3-O-
35

S]GlcNR3S±6S-]n 10.1 13.9 

10 [-UA±2S-[N-
35

S]GlcNS±6S-]n 11.7 13.2 



95 

 

reducing the ∆UA2S-GlcNS6S disaccharide in the elution profile while increasing the 

amount of ∆UA2S-GlcNS disaccharide found in the treated HS.  In addition, testing was 

performed for the activity in the CM of CHO cells expressing HSulf-2.  The disaccharide 

analysis demonstrated that active HSulf-2 was present in the CM of CHO cells.  However, 

the presence of HSulf-2 in the CM of CHO cells could not be demonstrated by Western 

blotting.  This led us to believe the myc-His tag found on the C-terminus of the protein was 

cleaved during post-translational processing. 

Synthetic polysaccharides were prepared and used to probe the substrate specificity of 

HSulf-2.  These synthesized structures contained specific disaccharide motifs and sulfation 

patterns.  A [35S] label was placed on the 2-O-, 3-O-, 6-O-, or N-sulfation positions of uronic 

acid and glucosamine residues to investigate whether HSulf-2 could remove sulfo groups at 

different positions of variable sulfated structures.  As expected, HSulf-2 had the highest 

activity against compound 1.  For compound 3, data was inconclusive as to whether HSulf-2 

had activity against IdoA residues containing no 2-O-sulfation due to the impurity of the 

starting material.  However, HSulf-2 had activity against compound 4, a structure containing 

GlcA-GlcNS6S disaccharide motifs, and activity against compound 2, which contains 

GlcA2S-GlcNS6S disaccharide motifs in its structure.  HSulf-2 did not remove 2-O-, 3-O-, or 

N-sulfo groups from structures, which showed that HSulf-2 is specific toward 6-O-sulfo 

groups on GlcNS residues.  In addition, HSulf-2 substrate specificity extends to other 

disaccharide motifs not found in highly sulfated domains of HP/HS structures.  Furthermore, 

HSulf-2 activity did not discriminate against which 2-O-sulfated hexuronic acid was present, 

even though HSulf-2 had a preference for IdoA2S residues since HSulf-2 had the highest 

activity against compound 1.  GlcA residues devoid of 2-O-sulfation were shown to be 
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substrates, but the activity against this substrate was lower. Taken together, the data suggests 

that 2-O-sulfation is important for HSulf-2 activity.  In addition, N-sulfation is critical for 

activity, since HSulf-2 had not activity against compound 5, which contained GlcNAc 

residues. 

In summary, this study has provided valuable information about the substrate 

specificity of this member of the Sulf family.  These results indicate HSulf-2 has broad 

substrate specificity, and is active against nonsulfated and 2-O-sulfated glucuronic acid 

residues linked to N-sulfated glucosamine residues.  Understanding the HSulf-2 substrate 

specificity can be an important tool to provide further characterization of HS structures that 

can offer insight into its physiological roles and perhaps the design of new approaches 

toward synthesis of important HS oligosaccharides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter IV 

THE EFFECT OF HSULF-2 ON THE BIOSYNTHESIS OF ANTICOAGULANT HS 

 

Introduction 

Heparin’s anticoagulant properties have led to heparin’s clinical use in the treatment 

of thrombolytic conditions and preventative measures during surgery.  Heparin-induced 

thrombocytopenia (HIT) is a serious and major side effect of heparin treatment due to platelet 

factor 4 (PF4) binding to heparin causing an adverse immunological response.  In this 

chapter, we wanted to employ HSulf-2 as an editing enzyme by tailoring the fine structure of 

anticoagulant structures.  After enzymatic editing of the fine structure we wanted to evaluate 

the tailored structure’s anticoagulant properties.  In addition, we wanted to explore whether 

HSulf-2 tailoring of the fine structure of the anticoagulant drug, lovenox, would affect its 

anticoagulant properties and could maintain its anticoagulant activity in the presence of PF4.  

Finally, we wanted to develop a fast and cost effective way to produce large quantities of 

sulfatase for editing purposes by the expression of HSulf-2, MSulf-1, and MSulf-2 in a 

bacterial system. 

 

Determination of 3-O-[
35

S] HS Binding to AT 

The AT binding assay is a method for determining the relative percentage of heparan 

sulfate that binds to this protein.  This assay is a proven method to demonstrate biological 

function of 3-O-sulfated HS (i.e. thrombin and factor Xa deactivation).  From the previous 
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chapter, HS was 35S- labeled by 3-OST-1 and 3-OST-5 separately to produce material 

capable of binding to AT.  It was demonstrated that HSulf-2 had no activity against 3-O-sulfo 

groups since it did not remove [35S] 3-O-sulfo groups from these polysaccharides.  The 

binding of 3-O- [35S] sulfated ICN HS to AT was determined to evaluate the effect of HSulf-

2 treatment.  The results are shown in Figure 37.  For 3-O-[35S] HS generated by 3-OST-1, 

43.6% of treated HS bound to AT, which was very comparable to the 51.2% of untreated HS 

that bound to AT.  Results were similar to 3-O-[35S] HS generated by 3-OST-5.  Therefore, 

the data suggests that HSulf-2 does not remove critical 6-O-sulfo groups from the AT-

binding pentasaccharide within the polysaccharide which would affect the binding to AT. 
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Figure 37.  AT binding of 3-O-[
35

S] HS.  The binding of 3-O-[35S] HS to AT was 
determined by incubating HS and AT/ConA-Sepharose beads.  The control was N-[35S] HS 
by NST-1, which does not bind to AT considerably.  Results represented from two 
independent experiments as the relative-percentage of polysaccharide bound to AT after 
elution with buffer containing 1M NaCl.  
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Since binding to AT was maintained after HSulf-2 treatment, it was speculated that 

HSulf-2 may be removing nonradioactive 6-O-sulfo groups from these structures.  The 

critical structural features of the pentasaccharide required for the anticoagulant function are 

6-O and 3-O sulfates on 1 and 3 residues (Figure 38), and the two residues are 

thermodynamically linked for accelerating coagulation enzyme inactivation by induction of 

the required conformational change in AT (214-218) (figure 2).  Our hypothesis was that 

HSulf-2 could remove 6-O-sulfo groups from anticoagulatant HS structures, but not remove 

6-O-sulfo groups in the critical pentasaccharide region. 
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Figure 38.  The AT binding HS pentasaccharide.  Residue 3 contains a critical 6-O-sulfo 
group on glucosamine.  The R represents an acetyl (-COCH3) group or a sulfo (-OSO3H) 
group.  R’ represents hydrogen (-H) or a sulfo (-OSO3H) group.  Arrows point to positions 
outside of the pentasaccharide region where potential HSulf-2 activity could take place. 
 

 
In order to determine whether HSulf-2 was removing 6-O-sulfo groups from 

anticoagulant structure, we decided to metabolically label CHO cells as described in chapter 

II.  [35S] HS was isolated from the CHO cells, and subjected to addition of 3-O-sulfo groups 

by 3-OST-1 and 3-OST-5 separately using nonradioactive PAPS as a donor.  In addition, 
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nonradioactive labeled 3-O-[35S] HS from CHO cells were subjected to AT binding to 

determine the effects of HSulf-2 treatment on these polysaccharides. In Figure 39, 14.4% and 

10.6% treated nonradioactive labeled 3-OST-1 and 3-OST-5 modified [35S] HS from CHO 

cells bound to AT comparably to untreated 3-OST-1 and 3-OST-5 modified [35S] HS from 

CHO cells, 16.1% and 11.0%, respectively.  This showed that AT binding was maintained, 

which suggested that HSulf-2 does not remove 6-O-sulfo groups from within the critical AT 

pentasaccharide sequence needed for anticoagulant activity. 
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Figure 39.  AT binding of 3-O-[

35
S] HS from CHO cells. The binding of 3-O-[35S] HS to 

AT was determined by incubating HS and AT/ConA-Sepharose beads.  The control was 
unmodified [35S] HS from CHO cells, which does not bind to AT considerably.  Results 
represented from two independent experiments as the relative-percentage of polysaccharide 
bound to AT after elution with buffer containing 1M NaCl. 
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Determination of sulfatase activity on 3-O-sulfated structures 

To further investigate whether HSulf-2 was removing 6-O-sulfo groups from the 

nonradiolabeled 3-O-sulfated [35S] HS from CHO cells, the same material used for the AT 

binding assay was degraded to disaccharides by a mixture of heparin lyases.  The 35S-labeled 

disaccharides were subjected to RPIP chromatography.  In figure 40, panel A and B display 

the chromatograms of the disaccharide analysis of untreated and treated nonradiolabeled 3-

O-labeled [35S] HS from CHO cells by 3-OST-1.  After treatment with HSulf-2, there is a 

15% decrease in peak 4, which was a ∆UA2S-GlcNS6S disaccharide.  There is also a 15% 

increase in peak 3, which was identified as a ∆UA2S-GlcNS disaccharide.  Panels A and B in 

figure 41 display the chromatograms of nonradiolabled 3-O-labeled [35S] HS from CHO cells 

by 3-OST-5.  In the chromatogram, a 4% decrease of peak 4 with a subsequent 4% increase 

in peak 3 is observed.  However, in both figures 40 and 41, peak 4 does not completely 

disappear.  This ∆UA-GlcNS3S6S disaccharide motif within the polysaccharide is part of the 

AT pentasaccharide necessary for anticoagulant activity.  In the pentasaccharide, 6-O-

sulfation at this position is not necessary for anticoagulant activity, but the presence of 3-O-

sulfation may hinder HSulf-2 activity against this disaccharide or other disaccharides within 

the vicinity.  This seems to be more prevalent in the 3-OST-5 modified structure.  This is due 

to more 3-O-sulfated positions within the polysaccharide since 3-OST-5 can create an AT 

binding site and a gD binding site.  Thus, this structure could generate more HSulf-2 resistant 

motifs within the polysaccharide.  The summary of the disaccharide analysis is shown in 

table 11.  Taken as a whole, there is observable HSulf-2 activity against this anticoagulant 

structure which does not affect binding to AT. 
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Figure 40.  Disaccharide analysis of nonradiolabled 3-O-sulfated [
35

S] HS from CHO 

cells by 3-OST-1. Panel A represents the disaccharide analysis of untreated 3-O-[35S] HS 
nonradioactive labeled by 3-OST-1. Panel B represents the disaccharide analysis of HSulf-2 
treated 3-O-[35S] HS nonradioactive labeled by 3-OST-1.  Treated and untreated 
nonradioactive labeled 3-O-[35S] HS from CHO cells was subjected to heparin lyase I, II, and 
III degradation into 35S-labeled disaccharides. Approximately 100,000 cpm of the digested 
material was subjected to RPIP chromatography. (1) represents ∆UA-GlcNS; (2) represents 
UA-GlcNS6S; (3) represents ∆UA2S-GlcNS; (4) represents ∆UA2S-GlcNS6S.  The x-axis 
shows the retention time in minutes, the y axis monitors [35S] using online detection. 
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Figure 41.  Disaccharide analysis of nonradioactive labeled 3-O-[

35
S] HS from CHO 

cells by 3-OST-5.  Panel A represents the disaccharide analysis of untreated 3-O-[35S] HS 
nonradioactive labeled by 3-OST-5. Panel B represents the disaccharide analysis of HSulf-2 
treated 3-O-[35S] HS nonradioactive labeled by 3-OST-5.  Treated and untreated 
nonradioactive labeled 3-O-[35S] HS from CHO cells was subjected to heparin lyase I, II, and 
III degradation into 35S-labeled disaccharides. Approximately 100,000 cpm of the digested 
material was subjected to RPIP chromatography. (1) represents ∆UA-GlcNS; (2) represents 
UA-GlcNS6S; (3) represents ∆UA2S-GlcNS; (4) represents a mixture of ∆UA2S-GlcNS6S 
and ∆UA-GlcNS3S6S. The x-axis shows the retention time in minutes, the y axis monitors 
[35S] using online detection. 
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Table 11. Summary of the disaccharide analysis of non-radioactive labeled 3-O-[
35

S] 

HS.  Untreated and treated polysaccharide was degraded with heparin lyase I, II, and III to 
generate 35S-labeled disaccharides. Disaccharides were resolved on RPIP-HPLC for analysis.  
Results represented as mol-percent of specific disaccharide products. 
 
 
Determination of AT binding by Affinity Co-Electrophoresis 

The dissociation constant (Kd) for AT binding nonradiolabeled 3-O-sulfated [35S] HS 

from CHO cells was established by affinity co-electrophoresis (ACE).  ACE is a method that 

has been in several studies evaluating HS/protein interactions in both high and low affinities. 

(3, 210, 211)  The advantage of employing this method is that GAGs such as HS have high 

mobility under the electrophoretic conditions, and ACE requires a small amount of HS to 

determine the Kd.  The nonradiolabeled 3-O-sulfated [35S] HS from CHO cells was purified 

after elution from the AT/ConA-Sepharose beads.  The purified nonradiolabeled 3-O-sulfated 

[35S] HS was separated under electrophoresis conditions through agarose gel zones 

containing AT concentrations ranging from 0 to 60nM.  The migration profile of the 

nonradiolabeled 3-O-sulfated [35S] HS was visualized using a Phosphor-Imager (not shown). 

 

 

 (1) 

∆UA-GlcNS 

(mol %) 

(2) 

∆UA-

GlcNS6S 

(mol %) 

(3) 

∆UA2S-

GlcNS 

(mol %) 

(4) 

∆UA2S-

GlcNS6S 

(mol %) 

3OST-1     

Untreated 22 6 33 39 

Treated 23 5 48 24 

3OST-5     

Untreated 35 2 29 34 

Treated 35 2 33 30 
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Figure 42.  Determination of the Kd by affinity co-electrophoresis.  An agarose gel in 
which 10,000cpm per lane of AT-binding nonradiolabeled 3-O-sulfated [35S] HS by 3-OST-1 
was subjected to electrophoresis through zones containing AT at the concentrations 
indicated.  The Scatchard plot of data was obtained through autoradiograph.  Panel A 
represents the Scatchard plot of untreated nonradiolabeled 3-O-sulfated [35S] HS, and panel 
B represents the Scatchard plot of HSulf-2 treated nonradiolabeled 3-O-sulfated [35S] HS.  A 
plot of R/[AT] verses R, where the retardation coefficient R=(M0-M)/M0.  M0 is the 
migration of free 3-O-sulfated [35S] HS, and M is the observed migration of 3-O-sulfated 
[35S] HS in the presence of AT.  Assuming 3-O-sulfated [35S] HS and AT form a 1:1 complex 
and AT is in great excess, this plot will yield a straight line with a slope of -1/Kd according to 
the Scatchard equation. 
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The nonradiolabeled 3-O-sulfated [35S] HS was retarded by AT in a concentration 

dependent manner, and the relative migration distances of nonradiolabled 3-O-sulfated [35S] 

HS in combination with the Scatchard equation, were used to determine the Kd value to be 

4nM for the untreated nonradiolabled 3-O-sulfated [35S] HS (figure 42, panel A) and 5nM for 

HSulf-2 treated nonradiolabled 3-O-sulfated [35S] HS (figure 42, panel B).  For the untreated 

and treated nonradiolabeled 3-O-sulfated [35S] HS, the Kd values were comparable 

suggesting that removal of 6-O-sulfo groups from this material by HSulf-2 did not adversely 

affect the binding affinity to AT.  In addition, the results suggest that HSulf-2 treatment is not 

removing 6-O-sulfo groups from the critical pentasaccharide motif necessary for AT binding.  

The concentration of nonradiolabeled 3-O-sulfated [35S] HS was considerable lower than the 

AT contained in the separation zones, which allowed for the determination of the Kd value.  

In addition, nonradiolabeled 3-O-sulfated [35S] HS was nearly fully retarded at high 

concentrations of AT suggesting the preparation was pure in terms of AT binding affinity.  It 

is important to note that the binding affinity of heparin and AT was determined to be 9nM 

(211) showing there is a similar binding affinity for AT by untreated and treated 

nonradiolabeled 3-O-sulfated [35S] HS that relates to previously characterized anticoagulant 

HS. 

 

Determination of HSulf-2 Activity Against Lovenox® 

Since the previous data suggested that HSulf-2 treated anticoagulant structures 

maintained binding to AT, we wanted to investigate the effects of HSulf-2 treatment on the 

anticoagulant, LMWH drug lovenox.  Therefore, lovenox was treated with HSulf-2 described 

in Chapter II.  The material was quantified by using an alcian blue assay. In the assay, 
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negatively charged groups on HS interact with the positively charged dye leading to HS 

binding to the dye in a concentration dependent manner as shown in figure 43.  Figure 43 

shows the standard curve using the alcian blue assay with untreated lovenox in order to 

demonstrate this method could be used to quantify the amount of treated lovenox that was 

purified.  It also demonstrated that there is a linear correlation between the amount of 

lovenox and O.D.600nm, which is maintained up to 2 ug of lovenox. Therefore, once the 

standard curve for untreated lovenox was generated, the concentration of purified treated 

lovenox was determined, giving a standard curve with similar results to figure 8. 

 

 
Figure 43.  Alcian blue assay for the quantification of treated lovenox. The standard 
curve was prepared in duplicate with untreated lovenox. The assay was performed as 
explained in “materials and methods” section.  The linear regression and R2 value are present 
in the graph. The purified treated lovenox was prepared in duplicate at various concentrations 
to fall on the standard curve. 

 
 
It was important to determine whether HSulf-2 treatment yielded a reduction of 6-O-

sulfo groups within lovenox.  After treatment of lovenox with HSulf-2, a mixture of heparin 

lyases was used to degrade 5µg of untreated and treated lovenox separately into 
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disaccharides.  The disaccharides were resolved by RPIP chromatography.  The elution 

profile for untreated lovenox contained a major disaccharide peak, ∆UA2S-GlcNS6S, which 

eluted at 59 min represented as peak 2 (figure 44, panel A).  For the elution profile of HSulf-

2 treated lovenox, peak 2 decreases with a subsequent increase in another major disaccharide 

peak identified as ∆UA2S-GlcNS, which eluted at 30 min and is represented as peak 1(figure 

44, panel B).  In figure 44, panel B, peak 2 did not completely disappear from the 

chromatogram due to incomplete digestion by HSulf-2.  In the elution profile of untreated 

lovenox the ratio of peak 1 compared to peak 2 is approximately 1:8.  After treatment with 

HSulf-2, this ratio becomes approximately 1:1.  This suggested that HSulf-2 treatment of 

lovenox reduced 6-O-sulfo groups with this structure, but again there may be some resistant 

motifs that are not susceptible to HSulf-2 activity due to the presence of 3-O-sulfation as 

previously seen in other treated anticoagulant structures. 
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Figure 44.  Disaccharide analysis of lovenox.  Panel A represents untreated lovenox, and 
panel B represents HSulf-2 treated lovenox.  Both untreated and treated lovenox were 
subjected to degradation by heparin lyase I, II, III into nonradioactive disaccharides, and 
resolved on an RPIP column. The procedure is described in chapter II.  Peak 1 represents 
∆UA2S-GlcNS disaccharide, and peak 2 represents ∆UA2S-GlcNS6S disaccharide.  The x-

axis shows the retention time in minutes, and the y-axis monitors the UV at 232nm. 
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AT-Mediated Inhibition of Factor Xa 

Factor Xa is a serine protease that plays a critical role in blood coagulation by 

regulating the formation of a major constituent of blood clots, fibrin.  In blood vessels, the 

interaction of HS and AT prevents blood from clotting by inhibiting Factor Xa activity and 

other serine proteases.  AT-mediated inhibition of Factor Xa was used to investigate whether 

HSulf-2 treated lovenox bound to AT would inhibit Factor Xa comparably to untreated 

lovenox.  Figure 45 shows the inhibition curve of the activity of Factor Xa by untreated and 

treated lovenox .The IC50 values were determined to be 100ng/ml for both untreated and 

treated lovenox, where approximately 15% of the Factor Xa activity remained in the presence 

of 400ng/ml from untreated and treated lovenox.  The inhibition curve for treated lovenox 

still maintained anti-Factor Xa activity after binding to AT compared to the inhibition curve 

for untreated lovenox. 
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Figure 45.  Inhibition curve of Factor Xa activity.  Untreated lovenox (filled circle) and 
HSulf-2 treated lovenox (open circle) at varying concentrations as described in chapter II.  
The activity of Factor Xa was determined by monitoring the increase of the absorbance at 
405nm after the addition of S-2764 chromogenic substrate.  Each data point represents the 
average of two independent experiments. 
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Effects of HSulf-2 treatment on restoration of factor xa activity 

Platelet factor 4 (PF4) is known to interfere with anticoagulation by binding to the 

polysaccharide and reducing the ability of the polysaccharide/AT complex to inhibit Factor 

Xa activity. The activity of PF4 is a side effect of anticoagulant heparins that causes heparin 

induced thrombocytopenia (HIT), and many studies have been devoted to understanding and 

preventing this issue with anticoagulant drugs. Therefore, we wanted to determine whether 

HSulf-2 treatment of lovenox would reduce PF4 binding and inhibit the restoration of Factor 

Xa activity.  PF4 was expressed in bacteria and purified in our laboratory.  Various amounts 

of PF4 were pre-incubated with 400ng/ml of untreated and treated lovenox. At this 

concentration, there is only approximately 15% Factor Xa activity remaining in the presence 

of lovenox and AT.  After pre-incubation, anti-Factor Xa activities of the untreated and 

treated lovenox were examined by determining the remaining activity of Factor Xa.  In figure 

46, addition of increasing amounts of PF4 progressively neutralized the anti-Factor Xa 

activity of 400ng/ml of untreated lovenox, with an IC50 approximately 8µg.  Total inhibition 

required approximately 20µg of PF4.  Pre-incubation with treated lovenox produced an IC50 

of approximately 5 µg, which was comparable to untreated lovenox.  However, HSulf-2 

treated lovenox was able to prevent the total restoration of Factor Xa activity with a total 

inhibition at 10µg of PF4.  The results show that PF4 binds approximately the same to 

untreated and treated lovenox, but there is a population of treated lovenox that is not binding 

to PF4 since the restoration of Factor Xa activity by untreated lovenox is approximately 2-

fold higher than treated lovenox. 
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Figure 46.  Restoration of Factor Xa activity with platelet factor 4.  HSulf-2 treated and 
untreated lovenox (400ng/ml) and different concentrations of PF4 were preincubated together 
before the addition of AT and factor Xa.  Chromogenic substrate S2765 was added to 
determine the initial velocity of factor Xa activities at 405nm. 
 
 
Effects of HSulf-2 Treatment on PF4 Binding 

 Once it was shown that PF4 could not bind to a population of lovenox and restore 

Factor Xa activity after HSulf-2 treatment, we wanted to further demonstrate whether HSulf-

2 treatment was affecting PF4 binding to HS polysaccharides.  Therefore, a filter binding 

assay was performed by incubating various amounts of PF4 with [35S] HS from CHO cells, 

and applying the reaction mixture to a nitrocellulose membrane.  This membrane is capable 

of binding to proteins and will not bind to the radioactive polysaccharide.  Therefore, if PF4 

forms a complex with the radioactive polysaccharide, it will remain bound to the membrane 

after washing the membrane several times.  [35S] HS complexed with PF4 was determined 

using a scintillation counter.  Figure 47 show the results of the filter binding assay.  In the 
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figure, increasing amounts of PF4 bound significantly less to [35S] HS after HSulf-2 

treatment compared to control.  This data demonstrated that HSulf-2 treatment can affect PF4 

binding and forming a complex with HS polysaccharides. 
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Figure 47. Filter binding assay of PF4 before and after HSulf-2 treatment.  10,000 cpm 
[35S] HS was incubated with increasing amounts of PF4, and placed on a nitrocellulose 
membrane.  The membrane was washed and the bound material was detected using a 
scintillation counter.  S.D. < ±1%. 
 
 
Reduction in FGF Mediated Proliferation 

BaF3 cells expressing the FGFR1c receptor are dependent on IL-3 supplemented in 

the medium for growth.  In the absence of IL-3, the BaF3/FRGR1c cells depend on the 

addition of both FGF and HP/HS for cell proliferation.  We wanted to determine the effect on 

FGF mediated proliferation in the presence of HSulf-2 treated lovenox.  Therefore, the 

activity was measured for heparin, untreated lovenox, and HSulf-2 treated lovenox in 

promoting cell mitogenesis using FGF-2/FGFR1c system in BaF3 cells at different 
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concentrations.  The cells receiving untreated lovenox showed an increase in [3H]-thymidine 

incorporation, which was about 30% of that of heparin, respectively, demonstrating that both 

2-O- and 6-O-sulfation confer the activity in promoting cell proliferation (figure 48).  HSulf-

2 treated lovenox exhibited no activity in promoting cell proliferation.  This showed that 

HSulf-2 was able to edit lovenox by removing 6-O-sulfo groups altering the original 

structure of lovenox carrying a specific sequence and order of 2-O- and 6-O-sulfation 

necessary for the moderate signal given by untreated lovenox as suggested by previous 

literature (219).  These results also demonstrate that HSulf-2 treated lovenox can separate 

anticoagulant activity from mitogenic activity, which would be beneficial to patients on long-

term anticoagulation therapy. 
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Figure 48. The effects of lovenox on FGF2-dependent BaF3 FGFR1c cell proliferation. 

BaF3 FGFR1c cells were seeded in 48-well plates with 2 nM FGF2 for control and 2 nM 
FGF2 plus various concentrations untreated and treated lovenox and heparin. Cells were 
cultured for 40 hr, followed by incubation in the media containing [3H]thymidine for 4 hr. 
The cellular proliferation was determined by [3H]thymidine incorporation into the DNA. 
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Chaperone Assisted Expression of Mammalian Sulfs in E. coli 

In order to be capable of tailoring milligram amounts of lovenox or other 

anticoagulant heparins for future animal studies, HSulf-2 had to be produced in large 

quantities.  Therefore, HSulf-2 was cloned into pMAL-c2x vector designed to express a 

maltose binding protein (MBP) fused to the N-terminus of the recombinant protein.  The 

advantage of using the MBP fusion protein is that it helps generate a large amount of soluble 

protein.  The procedure for the expression of MBP-HSulf-2 is described in Chapter II, which 

was carried out in E. coli co-expressing the chaperone proteins GroEL and GroES.  Cloning 

and expression of mouse sulf isoforms one and two were also prepared in the same manner 

along with another version of HSulf-2 in which the signal sequence was truncated.  The cell 

supernatant of each construct was purified by amylose chromatography.  The Sulf proteins 

after amylose column purification were analyzed by SDS-PAGE and the gel is shown in 

figure 49.  Figure 50 represents the standard curve of the molecular weight of the protein 

standards and their migration distance used to calculate the molecular weight of the bands 

observed in the gel.  The purified Sulf migrated at a calculated molecular weight of 143kDa, 

which was consistent with the size of the protein fused to the maltose binding protein.  The 

results suggest that the recombinant MBP-Sulfs were approximately 10% pure, since the 

eluent contained a large amount of chaperone and lower molecular weight fragments which 

could be the result of proteolytic degradation during the purification. 
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Figure 49.  SDS-PAGE analysis of purified bacterial expressed mammalian Sulfs.  SDS-
PAGE analysis was performed on the purified MBP-Sulf proteins as described in chapter II. 
Lane 1 represents the molecular weight ladder; lane 2 represents MBP-truncated HSulf-2, 
which does not contain the signal sequence; lane 3 represents full length MBP-HSulf-2; lane 
4 represents MBP-MSulf-1; lane 5 represents MBP-MSulf-2.  Each MBP-Sulf yielded 
between 27-75mg per liter of culture. 

 
 
 
 
 
 
 
 



117 

 

 

Figure 50.  Molecular weight standard curve of MBP-Sulfs.  The standard curve was 
prepared by comparing the molecular weight markers within the molecular weight ladder 
with their migration distances within the Western blot.  The migration distance of the band of 
interest was measured and the resultant molecular weight was determined from the standard 
curve. 
 
 
Determination of the Activity of MBP-HSulf-2 from E.coli 

To determine whether the bacterial expressed maltose binding protein (MBP)-HSulf-

2 fusion protein had activity, human embryonic kidney (HEK) cells were metabolically 

labeled with Na2
35SO4, and the [35S] HS was isolated. The [35S] HS was treated with MBP-

HSulf-2, and the resultant was subjected degradation by a mixture of heparin lyases which 

generated 35S-labeled disaccharides. The 35S-labeled disaccharides were resolved on a 

PAMN column.  The disaccharide analysis did not demonstrate HSulf-2 activity (data not 

shown).  A disaccharide analysis was performed in the same manner for MBP-truncated 

HSulf-2, MBP-MSulf-1, and MBP-MSulf-2. This also showed no activity was present. 

Therefore, we had to use an alternative method to determine the activity of the 

bacterial expressed Sulfs.  The spin column method was used to evaluate sulfatase activity.  

Compound 1 was to investigate whether these bacterial expressed Sulfs had activity.  Results 



118 

 

showed minimal activity against compound 1 (data not shown).  Since the activity of the 

bacterial expressed mammalian Sulfs was low, we decided to increase the amount of 

sulfatase present in the reaction by growing and expressing six liters of each sulfatase, and 

then treating the sulfatase as described in chapter II for CHO cell cultured HSulf-2 before 

testing the activity.  This yielded an increase in activity against compound 1 that was 

comparable to HSulf-2 found in the CM of CHO cells (figure 51).  Both the truncated and the 

full length version of MBP-HSulf-2 released approximately 92.8% of [35S] sulfate from 

compound 1 compared to control (12%), which was comparable the 97.5% release from 

HSulf-2 CM.  MBP-MSulf-1 released approximately 94.5%, and MBP-MSulf-2 removed 

63.6% of [35S] sulfate from compound 1.   

Overall, these results demonstrated HSulf-2, MSulf-1, and MSulf-2 expressed in 

bacteria removed 6-O-sulfo groups from compound 1. However, this process was laborious 

and not very efficient for the amount of enzyme expressed versus the low specific activity. 

Therefore, the bacterial expression and activity of these mammalian Sulfs needed to be 

improved.  In order to utilize a considerable smaller amount of enzyme with comparable 

activity to HSulf-2 expressed from CHO cells, the enzymes were subjected to furin cleavage 

to try to create truncated proteins with potentially higher activity. After furin cleavage, an 

SDS-PAGE was run to determine whether the cleavage of the proteins was successful.  The 

gel showed there was no furin cleavage of any of the Sulf proteins (data not shown).  This 

could have been due to the bacterial expressed Sulfs having resistance to cleavage, 

interference of other proteins since the purity is low, or a component of the cleavage process 

missing in the in vitro reaction. 
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Figure 51.  MBP-Sulf activity against compound 1.  Each Sulf was prepared and incubated 
with compound 1 as described in chapter II.  The reaction was subjected to the spin column 
method, and [35S] sulfated release was determined by calculating the amount of pmols 
remaining after centrifugation and scintillation counting.  The negative control represents the 
untreated substrate.  The positive control represents the treatment of the substrate with 
mammalian expressed HSulf-2 CM.  MBP-HSulf-2  represents the full length bacterial 
expressed maltose binding fusion protein construct.  MBP-MSulf-1 represents the full length 
bacterial expressed maltose binding fusion protein.  MBP-MSulf-2 represents the full length 
bacterial expressed maltose binding fusion protein. 
 
 
Conclusions 

HSulf-2 was utilized as an editing enzyme to evaluate whether the enzyme could 

tailor the fine structure of anticoagulant structures, and whether the tailoring of the fine 

structure had any effect of their anticoagulant properties.  Results showed that AT binding 

was still maintained after HSulf-2 treatment.  This implied that HSulf-2 was removing 6-O-
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sulfo groups from the anticoagulant structures outside of the critical pentasaccharide 

sequence necessary for AT binding and anticoagulant activity.  The disaccharide analysis of 

nonradiolabeled 3-O-sulfated [35S] HS from CHO cells by 3-OST-1 and 3-OST-5 separately 

demonstrated that HSulf-2 could remove 6-O-sulfo groups from these structures but to a 

lesser extent with structures modified by 3-OST-5.  This could be due to the generation of 

more HSulf-2 resistant structures found within the structure.  In addition, the binding affinity 

to AT for untreated and HSulf-2 treated nonradiolabeled 3-O-sulfated [35S] HS from CHO 

cells by 3-OST-1 were comparable suggesting HSulf-2 does not affect the anticoagulant 

structure binding to AT.  

Since the data suggested HSulf-2 treated anticoagulant structures maintained 

anticoagulant properties, we decided to evaluate HSulf-2 treatment on the LMWH 

anticoagulant heparin, lovenox.  The disaccharide analysis of HSulf-2 treated lovenox 

showed the enzyme was active against this compound removing 6-O sulfo groups from the 

compound.  HSulf-2 activity against lovenox did not adversely affect the inhibition of Factor 

Xa by lovenox, but did effect the restoration of the Factor Xa activity by the introduction of 

PF4.  Data suggested that PF4 was unable to bind to a population of HSulf-2 treated lovenox, 

which lead to a 2-fold reduction in the neutralization of anti-Factor Xa activity. In addition, a 

filter binding assay involving PF4 and [35S] HS from CHO cells demonstrated that HSulf-2 

treated affected PF4 ability to bind and form a complex with HS polysaccharides.  Moreover, 

the FGF-2 dependent Baf3 FGFR1c cell proliferation assay demonstrated HSulf-2 treated 

lovenox showed basal levels of [3H] thymidine incorporation into cells suggesting the 

tailored compound does not induce cell growth.   
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In order to perform a tailoring of anticoagulant structures in an efficient and cost 

effect manner on a large scale, large quantities of Sulf enzyme had to be produced.  HSulf-2, 

MSulf-1, and MSulf-2 were cloned and expressed in large quantities in E. coli with a yield of 

27-75mg per liter of culture.  This expression was accomplished by co-expressing bacterial 

chaperone proteins.  Bacterial expression of MBP- mammalian Sulf fusion proteins 

demonstrated they contained sulfatase activity by removing 6-O-sulfo groups from 

compound 1.  To our knowledge, using a bacterial expression system to produce mammalian 

Sulf proteins has not been reported previously, and contradicts the notion that glycoslyation 

of Sulfs is necessary for activity.  In summary, the utilization of Sulfs as an editing enzyme 

to tailor the fine structure of HP/HS structures has the potential to be an important tool in 

activities involving biological and therapeutic aims. However, improvement of the 

expression and activity is necessary for large scale Sulf tailoring of HP/HS structures.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER V 

EXPRESSION AND CHARACTERIZATION OF A PUTATIVE SULFATASE 

 

Introduction 

Characterization of sulfate enzymes may prove to be very beneficial in determining 

the sulfation state of GAGS under physiological and pathophysiological conditions.  In 

addition, they could become a valuable tool in drug discovery and design.  A potential 

iduronate-2-sulfatase (IDS) was identified.  This protein was designated as x-sulfatase.  In 

this study we sought to determine whether this potential sulfatase was active, to understand 

the substrate specificity, and the potential biological function of x-sulfatase. Iduronate-2-

sulfatase has been identified as lysosomal storage enzyme involved in the catabolism of 

sulfate bearing GAGs.  IDS has been found in mouse and human as well as bacteria with 

only one isoform (125).  IDS catalyzes the hydrolysis of 2-O-sulfo groups from L-iduronic 

acid residues of HP, HS, and DS as depicted in Figure 52. 
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Figure 52.  Reaction with iduronate-2-sulfatase. Iduronate-2-sulfatase catalyzes the 
hydrolysis of 2 sulfated groups of L-iduronate-2-sulfate units of heparan sulfate, dermatan 
sulfate, and heparin. 
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Identification of a Potential a IDS from S.typhimurium 

 Screening the nonredundant database of the National Center for Biotechnology 

Information with the deduced amino acid sequence of human IDS (accession number 

AF050145), a putative sulfatase was identified from the Salmonella Typhimurium LT2 (S. 

typhimurium) genome (accession number NC_003197 ).  In addition, the complete open 

reading frame for the protein was found containing 495 amino acid residues.  The sequence 

alignment of human IDS and x-sulfatase revealed the protein had a 24% similarity to human 

IDS in addition to containing an overall 20-39% similarity to the sulfatase family of proteins 

(Figure 53).  The sulfatase family of proteins contains highly conserved sequential, 

structural, and mechanistic characteristics.  All sulfatases contain a highly homologous 

amino acid motif found within the N-terminal sequence comprised of 12 amino acids. The 

sequence alignment revealed that x-sulfatase carries this signature sulfatase sequence of 

amino acids.  This signature sulfatase sequence is necessary for enzymatic activity.  

Therefore, this suggests that x-sulfatase has the sequential feature needed to be a sulfatase. 
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Figure 53. Amino acid sequence alignment of human iduronate 2-sulfatase and the 
putative x-sulfatase.  The alignment was performed by using the program BioEdit.  
Introduced gaps are shown as hyphens, and aligned amino acids are boxed and shaded with 
red for identical residues and dark gray for similar residues.  

 
 
Cloning and expression of x-sulfatase from S. typhimurium LT2 

Blunt-ended PCR was used to clone x-sulfatase directly from the S.typhimurium LT2 

genome.  A resultant 1.4kb band was resolved on an agaraose gel to confirm the correct size 
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of the PCR product (figure 54).  Once the correct size of the PCR product was obtained, the 

putative sulfatase gene was subcloned into the pPCR Script Amp SK (+) vector. This vector 

was chosen for its efficiency in cloning of PCR fragments with a high yield and a low rate of 

false positives.  The pPCR-Script Amp SK(+) cloning vector works ideally with blunt-ended 

PCR products.  The cloning vector also allows for an easy screening for recombinants 

determined by blue-white color selection of colonies (the white colonies being true 

positives).   

 
Figure 54.  X-sulfatase PCR product cloned from the S.typhimurium genome.  PCR was 
run on the S. typhimurium genome with the appropriate primers.  The resultant PCR product 
was resolved on a 1% agaraose gel. The 1.4kb fragment is shown in lane 3. Lane 1 contains 
the molecular weight ladder. 

 

 
Subsequently, the gene was cloned into the bacterial expression plasmid, pET28a(+), 

which would provide the recombinant protein with a 6×His tag at the N-terminus for 

purification purposes.  Figure 55 shows the verification of the insert after being excised out 

of the plasmid after restriction enzyme digestion.  The higher molecular weight band 

represents the vector while the lower molecular weight band represents the x-sulfatase gene 

insert. The procedure for the expression of x-sulfatase was carried out in E. coli.  The cells 

were lysed by sonification, and the supernatant was applied to a nickel column.  The protein 

was eluted from the column with a buffer containing imidazole.  The eluted protein was 
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subjected to SDS-PAGE analysis.  The SDS-PAGE results showed a highly expressed a 60 

kDa protein (Figure. 56).  The resultant protein was approximately 90% pure.  

 
Figure 55.  Verification of x-sulfatase gene insert.  The 1.4kb x-sulfatase gene was cloned 
into the pET28a(+) vector.  To verify whether the purified plasmid contained the gene of 
interest, the insert was digested with NdeI and BamHI. The restriction enzyme digestion 
yielded two bands present in the gel. The higher molecular weight band is the vector while 
the lower molecular weight band is the x-sulfatase gene. 
 

 

Figure 56. SDS-PAGE of x-sulfatase expression. Lane 1 contains the MW marker. Lane 2 
contains expressed x-sulfatase protein. 5µl of x-sulfatase protein was loaded onto the gel.  

 
 
IDS is a 2-O-sulfatase considered to have exolytic activity, meaning it removes 2-O-

sulfo groups from disaccharide motifs at the reducing end of a polysaccharides and 

oligosaccharides as small as a disaccharide (Figure 57).  It was important to determine 

whether this highly expressed protein indeed has enzymatic activity.  Since x-sulfatase could 

potentially have IDS activity, we decided to use disaccharide standards to determine whether 
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sulfatase activity was present.  In addition, we employed a commercially available 2-O-

sulfatase as a control to monitor activity.   
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Figure 57.  Scheme of exolytic activity of IDS.  IDS removes 2-O-sulfo groups from the 
non-reducing end of polysaccharides and oligosaccharides as small as a disaccharide.  R 
represents a proton or sulfate.  R’ represents a proton, acetyl, or sulfate. 

 
 

The disaccharide standard, ∆UA2S-GlcNS6S, was resolved on a PAMN column.  The 

elution profile showed this disaccharide standard eluted at 28 min (Figure 58, panel A).  

After treatment with the commercially available 2-O-sulfatase, the peak representing the 

∆UA2S-GlcNS6S disaccharide standard was completely digested, and consequently a peak 

representing ∆UA-GlcNS6S disaccharide was observed at 23 min. (Figure 58, panel B). 
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Figure 58.  Disaccharide analysis of 2-O-sulfatase activity.  Treated and untreated 
∆UA2S-GlcNS6S disaccharides were resolved on a PAMN column.  Panel A represents the 
disaccharide analysis before 2-O-sulfatase treatment.  Panel B represents the disaccharide 
analysis after 2-O-sulfatase treatment.  The elution profiles were monitored at an absorbance 
of 232nm. 

 
 

This demonstrated that the commercially available 2-O-sulfatase was active under standard 

conditions, and was able to remove 2-O-sulfo groups from the disaccharide standard.  

Therefore, this information provided us with a control for the enzymatic activity of x-

sulfatase against the ∆UA2S-GlcNS6S disaccharide standard.  ∆UA2S-GlcNS6S was 

incubated with x-sulfatase.  ∆UA2S-GlcNS6S eluted at the same position for the elution 

profile before x-sulfatase treatment (Figure 59, panel A). However, the elution profile after 
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treatment with x-sulfatase did not demonstrate that the enzyme was active against this 

substrate.  ∆UA2S-GlcNS6S disaccharide peak did not diminish in stature and a subsequent 

∆UA-GlcNS6S disaccharide peak did not develop in the elution profile (Figure 59, panel B). 
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Figure 59.  Disaccharide analysis for the determination of x-sulfatase activity.  Treated 
and untreated ∆UA2S-GlcNS6S disaccharides were resolved on a PAMN column.  Panel A 
represents the disaccharide analysis before x-sulfatase treatment.  Panel B represents the 
disaccharide analysis after x-sulfatase treatment.  The elution profiles were monitored at an 
absorbance of 232nm. 
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Various disaccharide standards and polysaccharides for HS and CS were used as 

substrates along with modifying the reaction conditions (i.e. pH, salt concentration, divalent 

metals), but no combination of substrate and conditions yielded any observable sulfatase 

activity.  Interestingly, under acidic conditions, this protein precipitated out of solution.  This 

could have been due to the N-terminal His tag on the protein, to components in the buffer at 

the acidic pH not generating a favorable environment for the protein, or it is an indication 

that x-sulfatase may not be an lysosomal sulfatase since the optimal activity of lysosomal 

sulfatases is in an acidic pH range. 

Since activity could not be detected with known disaccharides, an alternative method 

needed to be utilized in order to determine whether x-sulfatase had activity.  The sulfatase 

family of proteins is known to have a broad substrate specificity accommodating one or more 

natural substrates along with one or more generic substrates (125).  Therefore, we 

hypothesized that active x-sulfatase would have activity against one or more of the generic 

substrates reported.  We decided to use 4-MUS as a generic substrate to test for sulfatase 

activity for x-sulfatase, because 4-MUS is a generic substrate for known sulfatases.  In 

addition, potassium 4-nitrophenyl sulfate (pNPS) and 4-nitrocatechol sulfate (pNCS) were 

also used as generic substrates to test for sulfatase activity since they are more specific for 

arylsulfatase activity. Fluorescence and chromogenic studies using generic substrates were 

used to test for the sulfatase activity.  X-sulfatase did not demonstrate activity against any of 

the generic substrates. 

 
 
 
 
 
 



131 

 

 
Fluorescence Assay 

 

O
O

O

S
O

O

o

K+

 

4-Methylumbelliferyl sulfate potassium salt (4-MUS) 

  

Chromogenic Assay 

 

O2N

OK

O S OK

O

O . xH2O

 

4-Nitrocatechol sulfate dipotassium salt (pNCS) 

O2N O S OK

O

O
 

Potassium 4-nitrophenyl sulfate (pNPS)  

Figure 60. Scheme for testing activity with generic substrates.  4-MUS, pNPS, and pNCS 
were used to test for sulfatase activity.  Fluorescence studies would be used for 4-MUS, since 
the release of sulfate from this molecule would fluoresce at 435nm.  pNPS and pNCS would 
be used for chromogenic studies since the reaction would change color once sulfate is 
released allowing the absorbance to be taken. 
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Conclusions 

X-sulfatase was identified as a sulfatase and potentially an iduronate-2-sulfatase.  

Therefore, x-sulfatase was cloned and expressed in bacteria.  As a result, a 65 kDa protein 

was observed.  Exolytic activity for x-sulfatase was tested by using various HS and CS 

disaccharides.  However, x-sulfatase activity was not observed with any of these 

disaccharides.  In addition, oligosaccharides and polysaccharides were tested, but there was 

not activity present.  In an effort to determine whether x-sulfatase had activity, generic 

substrates known to show activity in other sulfatases were used to test whether this putative 

sulfatase had activity. Again, no activity was observed for any of these generic substrates.  

Expression of active sulfatases has been reported in previous literature and in chapter IV 

(220).  Therefore, bacterial expression contains the machinery to produce an active sulfatase.  

However, it is our consensus that x-sulfatase may not be an active sulfatase.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

CHAPTER VI 

CONCLUSIONS 

 

The discovery of a novel class of enzymes called Sulfs, which can modulate the 

structure and function of HS in the ECM after intracellular biosynthesis, has proved to be a 

very important in many biological contexts. As a result, there has been intense investigation 

into evaluating their role in biological activities ranging from embryonic development to 

cancer within almost a decade.  Therefore, it is vital to understand the substrate specificity of 

this enzyme to harness its potential as a tool for understanding structure-function 

relationships of physiological processes in addition to designing new HP/HS based drug 

therapies. 

Consequently, we investigated the substrate specificity of HSulf-2 by synthesizing 

polysaccharides to evaluate their potential as substrates.  However, first we had to 

demonstrate HSulf-2 had activity against HS.  After the cloning and expression of HSulf-2 in 

CHO cells, it was determined through disaccharide analysis that HSulf-2 was active.  Next, 

specific polysaccharides were generated by placing a [35S] label on the 2-O-, 3-O-, 6-O-, or 

N-sulfation positions of uronic acid and glucosamine residues to investigate whether HSulf-2 

could remove sulfo groups at different positions of variable sulfated structures.   

First, we wanted to determine whether HSulf-2 had a preference for polysaccharides 

containing either IdoA2S or GlcA2S residues.  Compound 1, a synthetic polysaccharide 

containing IdoA2S-GlcNS6S disaccharide motifs was shown to be a substrate for HSulf-2.  
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Compound 2 containing GlcA2S-GlcNS6S disaccharides motifs was also shown to be a 

substrate for HSulf-2.  Therefore, HSulf-2 activity did not discriminate against which 2-O-

sulfated uronic acid was present within the HS polysaccharide.  Next, we wanted to 

determine whether 2-O-sulfation was important for HSulf-2 activity.  Compounds containing 

IdoA and GlcA residues devoid of 2-O-sulfation were generated.  This study showed that 2-

O-sulfation was important for activity but was not essential, since compound 4 containing 

GlcA residues devoid of 2-O-sulfation was shown to be substrate.  However, this could not 

be demonstrated for compound 3 containing IdoA residues devoid of 2-O-sulfation, because 

the data was inconclusive due to an impurity in the starting material.  Furthermore, we 

wanted to determine whether N-sulfation was critical for activity.  Results showed that 

HSulf-2 was inactive against compound 5, which contained only GlcNAc residues. After 

evaluating all of the synthetic polysaccharides, it was determined that HSulf-2 was selective 

toward 6-O-sulfo groups on glucosamine residues.  Overall, this portion of the project 

demonstrated that HSulf-2 substrate specificity extends to other disaccharide motifs not 

found in only highly sulfated domains of HP/HS structures, which may be helpful in 

evaluating biological functions concerning moderately sulfated HS domains. 

This study further extended to utilizing HSulf-2 as an editing enzyme to evaluate 

whether this enzyme could tailor the fine structure of anticoagulant structures, and whether 

the tailoring of the fine structure had any effect of their anticoagulant properties.  AT binding 

assays and disaccharide analysis demonstrated that HSulf-2 could tailor and remove 6-O-

sulfo groups from anticoagulant structures.  In addition, HSulf-2 activity against these 

anticoagulant structures did not have a detrimental effect on AT binding.  This showed that 
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HSulf-2 was removing 6-O-sulfo groups from the anticoagulant structures outside of the 

critical pentasaccharide sequence necessary for AT binding and anticoagulant activity.   

HSulf-2 treated anticoagulant structures maintained anticoagulant properties.  Therefore, we 

wanted to investigate HSulf-2 treatment on the LMWH anticoagulant heparin, lovenox.  Our 

results demonstrated that HSulf-2 could edit this FDA approved anticoagulant drug, and did 

not have adverse effects on anticoagulant activity against Factor Xa.  The tailoring of this 

drug showed it reduced the ability of PF4 to neutralize anti-Factor Xa activities.  In addition, 

filter binding assay results demonstrated that HSulf-2 treatment can reduce PF4 binding and 

forming a complex with HS polysaccharides.  Moreover, a cell based assay demonstrated that 

HSulf-2 treated lovenox had anti-proliferative activity, which further enhanced this tailored 

anticoagulant drug’s potential for prolonged administration to patients without promoting 

other biological activities. 

Furthermore, in order to provide a large quantity of tailored anticoagulant drugs for 

animal testing, HSulf-2, MSulf-1, and MSulf-2 were cloned and expressed in large quantities 

in E. coli.  Bacterial expression of MBP- mammalian Sulf fusion proteins demonstrated they 

contained sulfatase activity by removing 6-O-sulfo groups from compound 1.  To our 

knowledge, bacterial expression of Sulfs has not been previously reported, and the ability to 

express active Sulf in bacteria contradicts previously reported data suggesting glycosylation 

was critical for Sulf activity.   

Nonetheless, further exploration into the activities and role of Sulfs is needed in order 

to fully take advantage of the potential of this enzyme.  Herein we have reported the 

biochemical characterization of a 6-O-endosulfatase by evaluating the enzyme’s substrate 

specificity and demonstrating its activities on substrates that are not solely contained in 
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highly sulfated domains.  In addition, this project further extended Sulf activity in a novel 

manner by utilizing its HS tailoring properties, which proved to have potential in tailoring 

anticoagulant drugs containing reduced side effects. 
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