
EFFICIENT COMPUTATIONAL GENETICS METHODS FOR MULTIPARENT
CROSSES

Zhaojun Zhang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Computer Science

Chapel Hill
2014

Approved by:

Wei Wang

William Valdar

Leonard McMillan

Fernando Pardo Manuel de Villena

Vladimir Jojic

c© 2014
Zhaojun Zhang

ALL RIGHTS RESERVED

ii

ABSTRACT

ZHAOJUN ZHANG: Efficient Computational Genetics Methods for Multiparent
Crosses

(Under the direction of Wei Wang and William Valdar)

Multiparent crosses are genetic populations bred in a controlled manner from

a finite number of known founders. They represent experimental resources that are of

potentially great value for understanding the genetic basis of complex diseases. An im-

portant new experimental technology that can be applied to multiparent crosses, namely

high-throughput sequencing, generates an immense amount of data and provides un-

precedented opportunities to study genetics at a ultra high resolution. However, to take

advantage of such massive data, several computational genetics problems have to be

resolved. These include RNA-Seq assembly and quantification, QTL mapping, and

haplotype effect estimation. In order to tackle these problems, which are highly con-

nected to each other, I propose a series of methods: GeneScissors is a novel method to

detect errors caused by multiple alignments in the RNA-Seq; RNA-Skim can rapidly

quantify RNA-Seq data while still provide reliable results; HTreeQA is designed as

a phylogeny based QTL mapping method for genotypes with heterozygou sites; and

Diploffect estimates founder effects with statistically valid interval estimates in multi-

parent crosses. These methods are extensively studied on both simulated and real data.

These studies demonstrate that the proposed methods can make data analysis of mul-

tiparent crosses more effective and efficient and produce results are more accurate and

trustworthy than a number of existing alternative methods.

iii

To

Liping Zhang and Aimin Zhang

Jingjing Sun

for your love and support

iv

ACKNOWLEDGEMENTS

I am indebted to my advisor, Professor Wei Wang, for her guidance and support over

the last six years. She led me into the research world of computational genetics, taught

me both research skills and computer science skills, encouraged me during tough times

in the Ph.D. pursuit, ensured that I worked on my research productively, collaboratively

and independently, and worked with me by contributing her time, ideas, and funding. I

am also thankful for the excellent example she has provided as a successful computer

scientist and professor.

I am also indebted to my second advisor, Professor William Valdar over the last

four and a half years. Will guided me how to be a humble researcher, how to develop

rigorous Bayesian models, and how to be critical and skeptical of my own research in

a constructive way. He also supported me by contributing his time, ideas, and funding.

I will miss the meetings we had in the past years, because I always learned something

new from the meetings.

I would like to thank Professor Leonard McMillan and Fernando Pardo Manuel de

Villena for not only serving on my thesis committee, but also, for introducing me and

educating me into the world of computational genetics and for collaborating with me

on several projects.

I would like to thank Professor Vladimir Jojic for serving on my thesis committee,

carefully examining my research and writing, and offering insightful feedbacks from

general research discussions to detailed writing advice.

My thanks to all computational genetics group members and Valdar Lab members,

in particular to Feng Pan, Xiang Zhang, Qi Zhang, Ning Jin, Eric Liu Yi, Shunping

Huang, Weibo Wang, Wei Cheng, Summer Goodson, Yuying Xie, Alan Lenarcic, Dan

v

Oreper, Robert Corty, Jeremy Sabourin, Greg Keele for all the valuable discussions.

I would like to thank my parents for their love and encouragement. It was a hard

time for them to let their only child be aboard for six years, but they showed me noth-

ing but their truly and unconditional support. I would like to thank Jingjing’s parents

Jinghua Song and Pingyu Sun, who educated me and helped me to be a better man.

Lastly, I want to thank my loving, supportive, and patient fiancée Jingjing Sun, who

always believe that I can reach the finishing line, and thank her for being an important

part of my life.

vi

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1 Introduction . 1

1.1 RNA-Seq Assembly and Quantification and Challenges 5

1.2 QTL mapping and Challenges . 8

1.3 Haplotype Effects Estimation and Challenges . 9

1.4 Thesis Statement . 11

1.5 Thesis Outline. 11

2 GeneScissors: a comprehensive approach to detecting and correct-
ing spurious transcriptome inference due to RNAseq reads misalignment. 12

2.1 Introduction . 13

2.1.1 Multiple-Alignment Problem . 14

2.1.2 Genomic Factors Causing Multiple Alignments 15

2.2 Methods . 18

2.2.1 Sharing Graph . 21

2.2.2 Classification Model . 22

2.2.3 Fragment Attractor Features . 23

2.2.4 Consistent Mismatches Discovery in GeneScissors 24

2.3 Results. 27

2.3.1 Software . 27

2.3.2 Materials . 29

vii

2.3.3 Results from Simulated Data . 30

2.3.4 Results from Real RNA-Seq Data . 32

2.4 Discussion and Conclusion . 34

3 RNA-Skim: a rapid method for RNA-Seq quantification at transcript-
level . 36

3.1 Introduction . 36

3.2 Method . 40

3.2.1 Sig-mer . 41

3.2.2 Workflow of RNA-Skim. 42

3.2.3 Preparation Stage . 43

3.2.4 Quantification Stage . 46

3.3 Software for comparison . 51

3.4 Materials. 52

3.5 Results. 52

3.5.1 Similarity-based Partition Algorithm . 52

3.5.2 Simulation Study . 55

3.5.3 Study using Real RNA-Seq data . 58

3.5.4 Running Time . 59

3.6 Discussion and Conclusion . 62

4 HTreeQA: Using Semi-perfect Phylogeny Trees in Quantitative Trait
Loci Study on Genotype Data . 63

4.1 Introduction . 63

4.2 Method . 67

4.2.1 Notations . 67

4.2.2 Perfect Phylogeny Tree. 67

4.2.3 Compatible Interval . 69

4.2.4 Tri-State Semi-Perfect Phylogeny Tree . 70

viii

4.2.5 Compatibility Test on Genotype Data . 70

4.2.6 Phylogeny Tree based Test . 72

4.2.7 Permutation Test for Family-Wise Error Rate Controlling 73

4.2.8 Comparison between TreeQA and HTreeQA 73

4.3 Materials. 75

4.3.1 Collaborative Cross . 75

4.3.2 Synthetic Data Sets . 76

4.4 Results and Discussion . 77

4.4.1 Population Structure in the Pre-CC Lines. 77

4.4.2 EMMA will degenerate to standard linear model
in Collaborotive Corss . 79

4.4.3 Local Population Structure . 81

4.4.4 Selected Methods for Comparison . 81

4.4.5 Performance Comparison on the White Head Spot Phenotype . . . 82

4.4.6 Performance Comparison on the Mouse Running
Distance Phenotype . 83

4.4.7 Simulation Study . 85

4.4.8 Running Time Comparison . 88

4.4.9 The Choice between HTreeQA, TreeQA, and EMMA. 89

4.5 Conclusions . 89

5 Diploffect: Bayesian modeling of haplotype effects in multiparent populations 91

5.1 Introduction . 91

5.2 Statistical Models and Methods . 95

5.2.1 Haplotypes and Diplotype States. 96

5.2.2 Haplotype Effects at a QTL . 96

5.2.3 Haplotype Inference and Diplotype Probabilities 97

5.2.4 Regression On Probabilities . 98

ix

5.2.5 Diploffect Model . 100

5.2.6 Diploffect Estimation by MCMC: DF.MCMC 103

5.2.7 Diploffect Estimation by Importance Sampling:
DF.IS and DF.IS.kinship . 107

5.2.8 Partially Bayesian Approximation:
DF.MCMC.pseudo and DF.IS.noweight 110

5.2.9 Non-Bayesian Regression Approximations:
partial.lm, ridge.add and ridge.dom 111

5.2.10 Implementation Details . 111

5.3 Data and Simulations . 113

5.3.1 Pre-CC Dataset . 113

5.3.2 Heterogeneous Stock (HS) Dataset . 113

5.3.3 Informativeness of Haplotype Reconstruction in Pre-
CC and HS . 114

5.3.4 Simulating QTL effects . 115

5.3.5 Evaluating Performance of Effect Estimation 117

5.4 Results. 118

5.4.1 Pre-CC Simulations: Estimation of Additive Effects 118

5.4.2 Pre-CC Simulations: Estimation of Additive Effects
in the Presence of Dominance . 119

5.4.3 Updating of Diplotype Probabilities in the Pre-CC 120

5.4.4 HS Simulations: Estimation of Additive Effects 122

5.4.5 HS simulations: Estimation of Additive and Dominance
Effects . 124

5.4.6 Efficiency of Importance Sampling in the Pre-CC and HS 125

5.4.7 Haplotype Effects on A Binary Outcome:
White Head-spotting in the Pre-CC . 126

5.4.8 Haplotype and Diplotype Effects at QTL in the HS:
Fear Potentiated Startle (FPS) and Total Cholesterol (CHOL) . . . 128

5.5 Conclusion . 130

x

6 Conclusion . 132

6.1 Summary of Contributions . 132

6.2 Future Directions . 138

References . 141

xi

LIST OF TABLES

2.1 The features used for detecting fragment attractors resulting
from misalignments. 24

2.2 Summary of the results from different classification methods 30

2.3 Comparison of MapSplice, TopHat, GeneScissors (MapSplice)
and GeneScissors (TopHat) pipelines. 32

3.1 This table compares three different partitions. If the partition
contains only one cluster of all transcripts, RNA-Skim degen-
erates to Sailfish. I thus listed it in the table for comparison.
. 53

3.2 This table shows that the four metrics do not change much for
different similarity threshold γ. 58

3.3 This table shows the running time of these five methods on a
real sample with 44 millions of paired-end reads. 61

4.1 An example data set . 68

4.2 Selected methods for comparison. 82

4.3 Running time comparison of the selected methods. The run-
ning time is measured on a machine with Intel i7 2.67GHz
CPU and 8G memory. 88

5.1 Illustrative example of true diplotype state vs inferred diplo-
type probabilities for two individuals at one genetic locus. 99

5.2 Summary of the haplotype estimation procedures evaluated in
this Chapter. 112

5.3 A table for running time (seconds) of different models. 122

xii

LIST OF FIGURES

1.1 A fragment with paired end reads that can be aligned to two
locations in the genome. 6

2.1 Two transcripts reported by Cufflinks. The top one maps to a
known gene named Caml3, and the bottom one does not map
to any known gene. Two transcripts are aligned by their shared
fragments in the plot. The top figure is truncated, and only
shows the region containing shared fragments. The dashed
line indicates the truncated boundary. The three vertical lines
in purple represent three splice junctions in the top transcript.
The points on the black line represent the numbers of frag-
ments that cover the corresponding base pairs. The points on
the read represents the number of fragments that cover the cor-
responding base pairs and are also aligned to the other tran-
script.The gray lines represent the number of mismatches across
the regions in the plot. 17

2.2 The workflow of GeneScissors Pipeline. The traditional RNA-
Seq analysis pipeline is the path on the left side. Its alignment
and assembly results are used by GeneScissors to infer frag-
ment attractors, build sharing graphs, and identify all fragment
alignments in the genome. GeneScissors then builds a classifi-
cation model to detect and remove unexpressed genes. 19

2.3 Figure 2.3(a) shows a sharing graph of three fragment attrac-
tors A, B, and C. Each solid box represents a pile-up of frag-
ments of a fragment attractor. Each pair of connected hollow
rectangles represents a fragment of paired-end reads. The red
fragments are the shared fragments that can be mapped by the
aligner to all three fragment attractors. The bottom row in each
box represents the transcript sequence. The red regions (except
the splice junctions in the transcript sequences) are the region
to which the shared fragments align. Figure 2.3(b) shows a
sharing map between fragment attractors A and C and the dis-
covered new alignments (shown in dashed rectangles). These
new alignments are rescued from the uniquely aligned frag-
ments in the shared region of one of the two fragment attrac-
tors. 20

xiii

2.4 Comparisons between multiple samples run through both the
GeneScissors pipeline and the TopHat pipeline. Results from
the same sample are connected by an arrow. The three strains
used were CAST/EiJ, PWK/PhJ, and WSB/EiJ, and they are
indicated by the initials C, P, and W respectively. The two letter
designations indicate the direction of the cross with the initial
of the maternal strain followed by the initial of the paternal
strain. The samples are clustered according to replicates from
the same sex and F1 cross, followed by the reciprocal cross.
The sex is indicated by F(female) and M(male). 34

3.1 This figure shows the correlations of the fragment depth of any
pair of locations as a function of the distance between the two
locations from 1 base-pair to 100 base-pairs. This figure is
generated based on the alignments reported by TopHat on a
real RNA-Seq data. 40

3.2 The pseudocode to find all sig-mers. 46

3.3 An illustration of how RNA-Skim works on a toy transcrip-
tome of five transcripts. 50

3.4 The cumulative distribution of all transcripts of their sig-mer
coverage. The lower the curve is, the better the corresponding
partition is. 54

3.5 These figures plot Pearson (Truth), Spearman (Truth), SFPR,
and SFNR of RNA-Skim as a function of sig-mer length. For
comparison, I also plotted that of the other four methods as the
horizontal lines. The reported values are the average across
100 simulated samples. The red crosses indicate the sig-mer
length (i.e., 60 base pairs) used in other experiments in this chapter. 55

3.6 These figures plot Pearson (Truth), Spearman (Truth), SFPR,
and SFNR as a function of the number of sig-mers used in
RNA-Skim. For comparison, I also showed that of the other
four methods as horizontal lines. The reported values are the
average across 100 simulated samples. The red crosses indi-
cate the number of sig-mers (i.e., 2.58 million sig-mers) used
in other experiments in this chapter. 57

3.7 The scatter plot of the estimated RPKM scores by RNA-Skim
vesus the true RPKM scores. Both axes are in a logarith-
mic scale, and all transcripts whose true RPKM or estimated
RPKM is less than 0.01 are omitted. 59

xiv

3.8 The distributions of the Pearson (methods) and Spearman (meth-
ods) correlations between the results from RNA-Skim and the
results from each of the remaining methods on both simulated
and real data. 60

4.1 Figure 4.1(a) is the perfect phylogeny tree generated on the
phased haplotypes in Table 4.1(b). Each node is labeled by its
haplotype ID followed by the corresponding phenotype value.
Figure 4.1(b) is a tri-state semi-perfect phylogeny tree gener-
ated on the unphased genotypes in Table 4.1(a). Each node is
labeled by its sample ID followed by the corresponding phe-
notype value. Figure 4.1(c) is the corresponding perfect phy-
logeny tree by deleting S ′1 and S ′2 in Table 4.1(a). Figure 4.1(d)
is the corresponding perfect phylogeny tree by deleting sam-
ples C and D in Table 4.1(a). 69

4.2 The workflow of HTreeQA. The input are the genotype and
phenotype data. The output is a list of phylogenies and their p-
values for measureing the association with the phenotype, and
a threshold of p-value representing the 5% family-wise error
rate (FWER).. 74

4.3 Four phylogenies of 43 randomly selected (from a total of 184)
Pre-CC mice. The sum of the edge depth between a leaf and
the origin represents the genetic distance of the correspond-
ing mouse from the common ancestry of the 43 mice. The
mice with white head spot are highlighted in red. Their nearest
common ancestor is indicated by a circled "A" in each figure.
In Figure 4.3(a), the global phylogeny is balanced and all mice
are almost equally distant from each other. The phylogenies in
Figure 4.3(b) and 4.3(c) are no longer balanced, with several
deep branches. The local population structure is a confound-
ing factor that complexes the QTL analysis. The tri-state semi-
perfect phylogeny in Figure 4.3(d) has the simplest structure
with an informative branch that contains all four white spot
mice. 78

4.4 Three kinship matrices represent the genetic relatedness over
the entire genome between any pair of the 184 CC mice based
on the whole genome (a), the Chromosome 10 (b), and the
20Mbps interval in Chromosome 10 (c) respectively. The mice
are arranged in the same order in both x and y axes. In Fig-
ure 4.4(a), all off-diagonal entries have almost identical values,
suggesting that there is no global population structure. In Fig-
ure 4.4(b)(c), the mice are arranged in the order of their genetic
relatedness, genetically similar mice are near each other. 79

xv

4.5 QTL mapping of the white head spot phenotype. Only the
SNPs that have top 0.5% -log(p-value) or BLOSSOC score
are plotted in the figure. One QTL is detected by HTreeQA,
which is near the location of gene kit ligand. The remaining
methods except HAM have similar results to that of HTreeQA.
The dashed line is the significance level FWER = 0.05. 84

4.6 QTLs for mice daily average running distance. Only the SNPs
that have top 0.5% -log(p-value) or BLOSSOC score are plot-
ted in the figure. The dashed line is the significance level
FWER = 0.05. 85

4.7 Comparison of HTreeQA, TreeQA, SSA, BLOSSOC, EMMA,
and HAM under different genetic models. 86

5.1 The plate notation for Diploffect model with dominance devi-
ation effects and kinship effects. The priors of the effects are
omitted in the plate notation. The nodes with grey background
represent the observed data, the nodes with white background
and a single circle represent the unknown variables, and the
nodes with double circles represent the remaining parameter
except the linear predictor in the generalized linear model. 103

5.2 Reordering of prior probabilities in the discrete slice sampler,
using as an example the diplotype probabilities from haplotype
reconstruction (using HAPPY) on the Pre-CC. Diplotypes are
represented by different letters, and 23 diplotypes with very
low probabilities are omitted. The true diplotype, selected
during simulation, is shaded black. The original ordering of
diplotypes (from the HAPPY) is shown in (a), and illustrates
the problem to be addressed: If the initially sampled diplo-
type is M, the slice sampler cannot easily cross the barrier re-
gion to sample other high probability diplotypes. Reordering
the diplotypes by their prior probabilities to create a smoother
distribution, as in (b), removes this barrier region, and allow-
ing the sampler to move easily between its initial value and all
other values of high to moderate probability. Panel (c) shows
the posterior of this distribution given phenotype data (from the
DF.MCMC procedure), in which the true diplotype’s posterior
probability is increased. 105

5.3 The speed up of using the discrete slice sampling with reorder-
ing instead of using draws from posterior multinomial distributions 106

5.4 Certainty of inferred diplotype assignments across all marker
loci in the Pre-CC and HS. 115

xvi

5.5 Estimation of additive effects for a simulated additive-acting
QTL in the Pre-CC population, judged by a) prediction error,
and b) rank accuracy. For a given combination of QTL ef-
fect size and estimation method, each point indicates the mean
of the evaluation metric based on 2500 simulation trials, and
each vertical line indicates the 95% confidence interval of that
mean. Points and lines are grouped by the corresponding QTL
effect sizes and also are shifted slightly to avoid overlap. At the
same QTL effect size, the left to right ordering of the methods
reflects relative performance of better to worse. 120

5.6 Estimation of additive effects for a QTL simulated to have both
additive and dominant effects in the Pre-CC population. Sym-
bols are defined as in Figure 5.5. 121

5.7 Estimation of diplotype effects for an additive-only QTL sim-
ulated in the HS. Symbols are defined as in Figure 5.5 123

5.8 Estimation of diplotype effects for QTL simulated to have both
additive and dominance effects in the HS. Symbols are defined
as in Figure 5.5 . 124

5.9 Density plot of the Effective Sample Size of posterior samples
for the DF.IS method (maximum possible is 1000) applied to
HS and Pre-CC. ESS measures how efficiently the true poste-
rior is sampled by DF.IS. Distribution is based on IS samples
from 5000 independent simulations. 126

5.10 Highest posterior density intervals for the haplotype effects of
the binary trait white-spotting in the Pre-CC . 126

5.11 Haplotype and diplotype effects estimated by DF.IS for phe-
notype FPS in the HS . 128

5.12 Posteriors of the fraction of effect variance due to additive
rather than dominance effects at QTL for phenotypes FPS and
CHOL in the HS dataset . 129

5.13 Haplotype and diplotype effects estimated by DF.IS for phe-
notype CHOL in the HS . 130

xvii

CHAPTER 1

INTRODUCTION

In modern genetics, the main doctrine is that DNA encodes the genetic information

that contributes to the variations of inherited characteristics. The ultimate goal of genet-

ics is to decipher how the information in the genome influences traits and/or diseases.

The pedigree of Humans is deeply rooted, extremely mixed, and composed by thou-

sands of generations, requiring arduous efforts to understand the relationship between

genetic information and observable traits. Hence, model organisms, such as mouse,

abrabidopsis, and maize, are playing more important roles as their pedigrees can be

well controlled and their generation period are shorter than human. Traditional genetic

crosses for identifying genetic effects typically involve crossing two inbred strains for

two generations. These crosses are powerful for detecting the presence of quantitative

trait loci (QTL), that is, genetic variants influencing a quantitative outcome. However,

they are limited in at least two important respects. First, the small number of genera-

tions allows few chromosome crossovers (meioses) to accumulate; this limits the ways

in w hich genetic variants are randomized among individuals such that QTL are local-

ized to only a broad chromosomal region. Second, the small number of inbred strains

used (ie, two âĂIJfoundersâĂİ), limits the number of QTL that could be detected: QTL

can only be detected when the underlying genes differ between the two founders; genes

invariant between the founders, but which in among other strain combinations would

demonstrate a large effect, are hidden from the researcher.

Therefore, multiparent crosses — populations of model organisms derived from

more than 2 founders and bred for more than 2 generations — are proposed to improve

the resolution and power of QTL mapping on model organisms. Several multiparent

1

crosses in mice, abrabidopsis, and maize are becoming well established. The Col-

laborative Cross (CC) ("Collaborative Cross Consortium", 2012) is an emerging panel

of recombinant inbred mouse strains derived from 8 genetically diverse laboratory in-

bred strains; the Multi-parent Advanced Generation Inter-cross (MAGIC) (Cavanagh

et al., 2008; Kover et al., 2009), descended from 19 founder lines of Arabidopsis, is

a similar resource and breeding paradigm for plants. Different from CC and MAGIC,

which focus on ease of replicability, Heterogeneous Stocks (HS) (Valdar et al., 2006;

"Rat Genome Sequencing and Mapping Consortium", 2013) and the Diversity Out-

bred (Svenson et al., 2012) population aim to deliver increased mapping resolution:

Through additional and continued outbreeding, their genomes are an ultra-fine-grain

mosaic of the ancestral strains, collectively resembling more a population in the wild,

with often complex genetic relationships between mice and a rich constellation of het-

erozygous and homozygous genotypic combinations. Many studies have demonstrated

that the multiparent lines are very useful resources for studying complex traits by us-

ing existing general purpose tools (Aylor et al., 2011a), and several tools are developed

to accommodate data analysis on multiparent lines (Liu et al., 2010; Lenarcic et al.,

2012). However, since multiparent lines are recently developed, current methodology

development has not been able to take full advantages of their unique characteristics,

preventing the study of multiparent lines from reaching the maximal power.

Conversely, how genetic factors play in inheritance is an unimaginably complicated

and intricate biological process. Since we are still in a relatively early age for study-

ing genetics, following the principle of Occam’s razor, researchers tend to directly find

connections between genetic factors and observable traits without considering the in-

termediate biological processes. Though this principle brings in much simplicity in

methodology developments, finding the potential genetic factors that influence a spe-

cific characteristic is still like looking for a needle in a haystack: a typical mammalian

genome contains billions of nucleotides, in a single mammalian cell, about 360,000

2

RNAs are made up from 12,000 different transcripts using the DNA as the templates,

and there may be trillions of cells in a single mammalian body, contributing to a myriad

of quantitative and qualitative traits.

Furthermore, when investigators want to analyze the biological data from multi-

parent crosses, the need of the computational methodology development becomes an

urgent issue: Not only should the developing methods exploit the power of multiparent

crosses, generating more accurate and meaningful results than current approaches do,

but also they should be able to process the massive data from the multiparent crosses,

without hampering the efficiency of the study.

In addition, lots of genetics problems are profoundly related with each other. For

example, RNA-Seq assembly and quantification is an innovative way to collect enor-

mous information at transcript level, providing unique insights about the behavior of

different genes in the cells. These novel traits from RNA-Seq are linked to Quantitative

Trait Locus (QTLs) — DNA variants (commonly SNPs) that underline a quantitative

trait (phenotype) — in QTL studies by finding all significant associations between DNA

variants and the traits. The success of the gene expression based QTL studies, associ-

ating the gene expressions with the genetic variants and analyzing regulatory effects

for every gene, heavily relies upon the quality of the results from RNA-Seq assembly

and quantification. After the QTL study, an important question in multiparent crosses

is to estimate the effects of each individual founder to the phenotype at every QTL. If

the QTLs reported from the QTL studies are flawed, it is meaningless to estimate the

founders’ effects at QTLs, and many efforts may go in vein.

In order to alleviate the demand of new methodologies and enhance the computa-

tional pipeline for analyzing multiparent crosses, this thesis develops a series of meth-

ods for multiparent crosses to address three important computational problems.

3

• RNA-Seq assembly and quantification Current sequencing technology such as

RNA-Seq enables researchers to measure transcriptome data with unprecedent-

edly high resolution and deep coverage (Ozsolak and Milos, 2010). However,

current methods are often inaccurate, leading researchers to false conclusions

(Kleinman and Majewski, 2012; van Bakel et al., 2010), and inefficient, requir-

ing weeks if not months to finish the analysis (Patro et al., 2013).

• Phylogeny-based QTL mapping Though phylogeny-based QTL mapping has

shown its obvious advantages over other alternative approaches in QTL mapping

for inbred populations Mailund et al. (2006); Besenbacher et al. (2009); Pan et al.

(2008, 2009), they cannot be easily used for analyzing multiparent crosses, since

most of the multiparent crosses are either outbred or not fully inbred, containing

heterozygous sites in the genome, causing multiple leaves in the final phyloge-

netic tree present the same sample, and weakening the power of the statistical test

on effects.

• Founder Effect Estimation One major difference between multiparent crosses

and human population is that the founders of multiparent lines are known, and

this unique feature enables the possibility to estimate the founder effects at the

QTL position. However, the distributions of the founders’ genetic factors in the

descendants are not observable, and a haplotype reconstruction step need to be

applied first, providing a probabilistic way to recover the distribution of founders

genomes in the descendants. But few of the existing methods properly use the

probabilistic information, failing to provide statistically valid estimation on the

genetic effects of founders.

Therefore, in this dissertation, a series of methods has been developed to address

these problems. They are motivated by analyzing multiparent crosses, are primarily

designed for multiparent crosses, and utilize the special structure and other useful in-

4

formation only existing in the multiparent crosses. By embedding these methods in the

analysis of multiparent crosses, the trustworthiness of the results is enhanced, the com-

putational resources used in the study are reduced, and thus, the overall competence of

multiparent crosses are also improved. The following sections elaborate the problems

and challenges and provide a brief overview of these methods. Here, I briefly overview

my contributions to address these challenges.

1.1 RNA-Seq Assembly and Quantification and Challenges

RNA-Seq is a novel technology that allows researchers to explore the process of the

transcription at resolution. In a cell, transcripts in the genome are translated to proteins.

Current RNA-Seq is not able to read the whole RNA molecule, but only up to several

hundredss base-pairs (nucleotides) from both ends. In order to sequence the whole

molecule, a shot gun process is employed to fragment RNA molecules into short frag-

ments, whose lengths vary from 100 base-pairs to 1000 base-pairs. And the sequences

of the two ends of such fragments are read by RNA-Seq and recorded into data stor-

age. Since different transcripts are transcribed into different number of molecules, aka,

abundance levels, and for the same transcript, its abundance level varies across tissues

of the same individual. Therefore, the abundance levels of the transcripts are of high

interest, and it is typically considered as the RNA-Seq alternative of gene expressions.

Three sequential steps are commonly used to analyze an RNA-seq data: alignment,

assembly quantification: An alignment step is required to align the reads back to the

genome sequences; RNA-Seq assembly is a computational process to recover the orig-

inal sequences of transcripts in the RNA-Seq data, clustering the reads based on the

genome location reported by the alignment step in order to recover their originating

transcripts; RNA-Seq quantification is a computational process to estimate the abun-

dance level of transcripts in the RNA-Seq data.

5

Read Read

Fragment

Genome

Alignment

Alignment

Figure 1.1: A fragment with paired end reads that can be aligned to two locations in
the genome.

In this thesis, I assume that the RNA-Seq data are paired-end reads, which are

widely used for transcriptome inference. Our approach can be used for single-end reads

as well. In paired-end RNA-Seq data, a fragment is a sub-sequence from an expressed

transcript. High-throughput sequencing provides two reads corresponding to the two

ends of the fragment. In this thesis, two primary computational challenges in RNA-Seq

are addressed.

First, if a fragment can be mapped to more than one locations in the genome, this

fragment has multiple alignments, as showed in Figure 1.1. Since each fragment orig-

inates from only one location in the genome, multiple alignments must be processed/-

corrected before subsequent analysis can proceed. However, some multiple alignments

from the repetitive regions on the genome are unidentifiable because their sequences

are exactly the same. Without extra information from other sources, there is no way to

correct this type of multiple alignments. Multiple alignments are a major source of false

positives in RNA assembly (Kleinman and Majewski, 2012; van Bakel et al., 2010).

6

In this dissertation, I examine the underlying genomic features that lead to multiple

alignments and investigate how they generate systematic errors in RNA-Seq analy-

sis. GeneScissors is developed, exploiting machine learning techniques guided by bi-

ological knowledge to detect and correct spurious transcriptome inference by existing

RNA-Seq analysis methods. In the simulated study, GeneScissors can predict spurious

transcriptome calls due to misalignment with accuracy close to 90%. It provides sub-

stantial improvement over the widely used TopHat/Cufflinks or MapSplice/Cufflinks

pipelines in both precision and F-measurement. On real data, GeneScissors reports

57.6% less pseudogenes and 0.95% more expressed and annotated transcripts, when

compared with the TopHat/Cufflinks pipeline. In addition, GeneScissors finds that

more than 18% of the unannotated genes reported by the TopHat/Cufflinks pipeline

are false positives.

Second, though the alignment step is a critical step to help RNA-Seq assembly to

detect novel transcripts, it has become a bottleneck for the RNA-Seq quantification due

to its long running time for exhaustively searching every possible splice junctions in the

reads. To address this problem, others have started to develop alternative algorithms to

conduct RNA-Seq quantification without alignments (Sailfish (Patro et al., 2013)).

In this thesis, I proposed a novel RNA-Seq quantification method, RNA-Skim,

which partitions the transcriptome into disjoint transcript clusters based on sequence

similarity and introduces the notion of sig-mers that are special k-mers uniquely as-

sociated with each cluster of transcripts. More importantly, unlike other approaches,

RNA-Skim does not depend on a time-consuming RNA-Seq aligner. I demonstrate that

the sig-mer counts within a cluster are sufficient for estimating transcript abundances

with accuracy comparable to any state of the art method. This enables RNA-Skim to

perform transcript quantification on each cluster independently, reducing a complex

optimization problem into smaller optimization tasks that can be run in parallel. As

7

a result, RNA-Skim uses less than 4% of the k-mers and less than 10% of the CPU

time required by Sailfish. It is able to finish transcriptome quantification in less than

10 minutes per sample by using just a single thread on a commodity computer, which

represents more than 100 times speedup over the state of the art alignment-dependent

methods, while delivering comparable or higher accuracy.

1.2 QTL mapping and Challenges

The goal of Quantitative Trait Locus (QTL) mapping is to find strong associations

representing (genomically proximal) causal genetic effects between observed quanti-

tative traits and genetic variations. The founders of multiparent crosses are typically

chosen to maximize some criterion of genetic diversity, and the breeding scheme is

typically designed to maintain that diversity while fractionating the genome into small

haplotype segments. The resulting multiparent crosses, comprising individuals whose

genomes are fine-grain mosaics of the original founders, is well suited to detection of

quantitative trait loci (QTL) through linkage mapping.

The most common genetic variations used in QTL mapping are single nucleotide

polymorphisms (SNPs). A SNP is a single nucleotide difference in the same location

of different DNA sequences, e.g., the DNA sequences in different haploid or diploid

individuals, or the pair of the DNA sequences in the same diploid individual. In theory,

a SNP can have up to four different variants, including all four nucleotides: A, T, C, G.

In reality, most of SNPs only show variation between two out of four possible ones. So,

SNPs are usually encoded in a binary presentation, and standard approaches for QTL

mapping is to find the SNPs whose binary representation have the strongest correlations

with quantitative traits.

Several approaches have been proposed, e.g., single markers based (Akey et al.,

8

2001; Pe’er et al., 2006; Thomas, 2004), haplotype-based (McClurg et al., 2006; Onkamo

et al., 2002; Li and Jiang, 2005) , phylogeny-based methods (Mailund et al., 2006; Be-

senbacher et al., 2009; Pan et al., 2008, 2009). Among these methods, local phylogeny

based QTL mapping is a popular method to discover the significant association between

each of the regions segmented by local phylogeny trees and the phenotypes. However,

they can be only directly applied for haplotypes from inbred populations or haploid

populations, otherwise, a phasing step, which is time-consuming and error prone, is

required. This obstructs the efficiency of local phylogeny based QTL mapping. In this

thesis, I explore the possibility to extend local phylogeny based QTL mapping to the

population with heterozygous sites.

A new method, HTreeQA, is proposed to use a tri-state semi-perfect phylogeny

tree to approximate the perfect phylogeny used by existing methods. The semi-perfect

phylogeny trees are used as high-level markers for association study. HTreeQA uses

the genotype data as direct input without any phasing step, and it can handle complex

local population structures. It is suitable for QTL mapping on any multiparent crosses.

Simulation studies under three different genetic models show that HTreeQA can detect

a wider range of genetic effects and is more efficient than existing phylogeny-based

approaches. QTLs are also found for two phenotypes of the incipient of Collaborative

Cross, which are consistent with known genes and QTL discovered in independent

studies.

1.3 Haplotype Effects Estimation and Challenges

QTL mapping in multiparent crosses is a powerful approach for investigating the

genetic basis of variation in complex traits, and in particular those methods focusing

on detection of single QTL, are relatively well established. But just finding QTLs is

not enough. Methods to characterize QTL effects those estimating how inheritance of

9

alternate founder haplotypes drives phenotypic outcome remain in their infancy.

Because the genome of each individual in multiparent population can be described

as a mosaic of founder haplotypes, any given point in that genome can likewise be de-

scribed in terms of the pair of haplotypes (ie, diplotype) present. Although the identity

of this diplotype in most cases cannot be observed directly, it can be probabilistically

inferred from genotype data. A number of algorithms have been developed to do this,

notably those based on a hidden Markov model (HMM) formulation (eg, HAPPY, (Mott

et al., 2000); GAIN (Liu et al., 2010)). In the HMM framework, diplotypes are modeled

as latent outcomes drawn from a discrete set of possibilities; genotype data provides

partial information about this underlying latent state, and so the HMM’s reconstruc-

tion of the haplotype mosaic leads to haplotype assignments that are probabilistic — a

list of probabilities for each possible diplotype state at each locus for each individual.

Despite the fact that haplotype composition is itself uncertain, the estimation of haplo-

type (founder) effects must proceed because it is vital for understanding the underlying

mechanism of how different genetics factors from founders contribute the QTL.

A general Bayesian framework, Diploffect, is described for estimating the effects

of founder haplotypes at quantitative trait loci detected in multiparental genetic popu-

lations. The aim is to provide a framework for coherent estimation of haplotype and

diplotype (haplotype pair) effects that takes into account: uncertainty in the haplo-

type assignments for each individual; uncertainty arising from small sample sizes and

infrequently observed haplotype combinations; possible effects of dominance (for non-

inbred subjects); kinship effects (for population structure); and that provides a means to

incorporate data that may be incomplete or that has a hierarchical structure. Different

from existing methods, Diploffect uses the results of a probabilistic haplotype recon-

struction as prior information to obtain posterior distributions at the QTL for both hap-

lotype effects and haplotype composition. Two alternative computational approaches

10

are studied: a Markov chain Monte Carlo sampler, and an Importance Sampling proce-

dure. Results are presented for quantitative phenotypes in simulated CC and HS popu-

lations, and both quantitative and binary phenotypes in incipient CC and HS. Compared

with existing approaches, Diploffect produces not only more robust point estimates of

diplotype effects but also — essential for prioritizing follow-up experiments — con-

fidence (credibility) intervals that are statistically valid and allow effects of different

haplotypes to be meaningfully compared.

1.4 Thesis Statement

• Current methods for quantifying relative transcript abundance from RNA-Seq are

computationally demanding. Efficiency could be improved by using algorithms

that better exploit redundancy in the data.

• Methods for analyzing mulitiparent crosses would be more powerful when they

incorporate existing biological knowledge and the unique structure of multiparent

crosses.

1.5 Thesis Outline

This thesis is organized as follows:

• The GeneScissors method is presented in Chapter 2.

• The RNA-Skim method is presented in Chapter 3.

• The HTreeQA method is presented in Chapter 4.

• The Diploffect method is presented in Chapter 5.

• Chapter 6 concludes my thesis work and outlines the future work.

11

CHAPTER 2

GENESCISSORS: A COMPREHENSIVE APPROACH TO DETECTING AND

CORRECTING SPURIOUS TRANSCRIPTOME INFERENCE DUE TO RNASEQ

READS MISALIGNMENT.

RNA-Seq techniques provide an efficient means for measuring transcriptome data

with high resolution and deep coverage (Ozsolak and Milos, 2010). Millions of short

reads sequenced from cDNA provide unique insights into a transcriptome at the nucleotide-

level, and mitigate many of the limitations of microarray data. Although there are still

many remaining unsolved problems, new discoveries based on RNA-Seq analysis rang-

ing from genomic imprinting (Gregg et al., 2010) to differential expression (Trapnell

et al., 2012a; Anders and Huber, 2010a) promise an exciting future.

Though RNA-Seq sequencing offers an alternative to Microarray techniques in gene

expression study (Wang et al., 2009), it also brings new challenges, including how to

detect and assembly novel transcripts in the data, how to rapidly and effectively process

the massive data produced by the proliferation of RNA-Seq high-throughput sequenc-

ing, how to build statistical model for accurate quantification of transcript abundances

for transcriptome, etc.

In the next two chapters, I present two different RNA-Seq methods, representing

another two different ways to use the genome databases associated with multiparent

lines in RNA-Seq analysis. Modern RNA-Seq quantification methods are categorized

into two major groups: alignment-dependent and alignment-free methods. This chapter

details GeneScissors that utilizes the machine learning based method to correct multi-

ple alignment errors and remove misclassified genes reported by the current RNA-Seq

12

tools such as Cufflinks. This chapter primarily focuses on arising from the alignment-

dependent methods. Chapter 3 a novel method for RNA-Seq, but shifts the focus to the

alignment-free tools instead. It is also worth mentioning that these two RNA-Seq meth-

ods can also be applied to populations other than multiparent lines, as long as the DNA

genome or list of variants of the samples are available (e.g. the results of DNA-Seq

assembly from the samples).

2.1 Introduction

Current RNA-Seq alignment-based pipelines typically contain two major compo-

nents: an aligner and an assembler. An RNA-Seq aligner (e.g. TopHat (Trapnell et al.,

2009), SpliceMap (Au et al., 2010), MapSplice (Wang et al., 2010)) attempts to deter-

mine where in the genome a given sequence comes from. An assembler (e.g. Cufflinks

(Trapnell et al., 2010), Scripture (Guttman et al., 2010)) addresses the problems of

which transcripts are present and estimating their abundances.

Existing alignment-based pipelines can be further divided into two major cate-

gories: align-first pipelines and assembly-first pipelines (Ozsolak and Milos, 2010).

Assembly-first pipelines attempt to assemble and quantify the complete transcriptome

without a reference. Several algorithms, such as Trinity (Grabherr et al., 2011a) and

TransABySS (Robertson et al., 2010), have been developed. However, aligning frag-

ments to a reference genome is still necessary in order to interpret the results from an

assembly-first pipeline and to relate them to existing knowledge. The assembly-first

pipeline is computationally intensive, requiring several days to complete. In align-first

pipelines a high-quality reference genome serves as a scaffold for inferring the source

of RNA-Seq fragments. Current alignment approaches are both computationally more

efficient and easier to parallelize than assembly-first pipelines. Thus, the align-first

RNA-Seq analysis can be finished within hours even on a normal desktop machine.

13

Therefore, align-first pipelines such as TopHat/Cufflinks (Trapnell et al., 2010, 2012a)

or MapSplice/Cufflinks (Wang et al., 2010) are generally preferred when a suitable

reference genome is available.

2.1.1 Multiple-Alignment Problem

If a fragment can be mapped to more than one location in the genome, this fragment

has multiple alignments, as showed in Figure 1.1. Since each fragment originates from

one location in the genome, multiple alignments must be processed/corrected before

subsequent analysis can proceed. Inappropriate handling of the multiple alignment

fragments impacts the subsequent analysis and may lead to questionable conclusions.

For example, the “widespread RNA and DNA sequence differences” (Li et al., 2011)

are suspected to be (at least partially) due to systematic technical errors, including

misalignments (Kleinman and Majewski, 2012).

Current RNA-Seq analysis pipelines handle the multiple-alignment problem in both

the alignment and assembly steps. Most existing aligners (e.g. TopHat (Trapnell et al.,

2009)) use a scoring system where only the alignments with the “best score” are kept.

However, a fragment may still have multiple alignments with equally good scores. In

the experiments on real mouse RNA-Seq data, I observe that at least 5% fragments

have multiple alignments. The assembler (e.g., Cufflinks (Trapnell et al., 2010)) either

assumes that they contribute equally to each location or uses a probabilistic model to

estimate their contributions based on the abundance of the corresponding transcripts

(Li et al., 2010).

14

2.1.2 Genomic Factors Causing Multiple Alignments

In general, multiple alignments are caused by the existence of paralogous sequences

within a genome. Duplicated and repetitive sequences need not be strictly identical. In

this subsection, we discuss genomic factors that may lead to multiple alignments and

their impact on RNA-Seq analysis. Retrotransposition and gene duplication are two

biological phenomena that generate sequences with high levels of nucleotide similarity.

Interspersed highly repetitive sequences, such LINEs and SINEs, can be expressed in

an autonomous or non-autonomous manner but are not our focus. That leaves us with

three major types of genomic factors: processed pseudogenes (Balakirev and Ayala,

2003; Vanin, 1985; Zhang et al., 2003), non-processed pseudogenes (Hurles, 2004),

and repetitive sequences shared by gene families (Häsler et al., 2007; Jurka and Smith,

1988).

The functions of pseudogenes (Harrison et al., 2003; Khelifi et al., 2005) are still

under investigation (for example, (Hirotsune et al., 2003)). Pseudogenes are generally

caused by DNA duplication or RNA retrotransposon. They can be further categorized

in two groups: processed pseudogenes and non-processed pseudogenes based on their

causes. Both lead to the repetitive genomic sequences. In general, lots of these pseu-

dogenes are nonfunctional, and under reduced selection pressure, thus, they typically

exhibit a higher mutation rate than the expressed genes from which they originated.

Processed pseudogene: A processed pseudogene (Vanin, 1985) is generated when

an mRNA is reverse transcribed and reintegrated back to the genome. The resulting

DNA sequence of the processed pseudogene is the concatenated exon sequences from

its original transcript. Because there are no splice junctions in the sequence of the

processed pseudogene, it is easier for the current RNA-Seq aligners to map the frag-

ments to processed pseudogene, than the actual gene from which they are expressed,

15

especially those fragments that cross a splice junction. Both the unexpressed pseudo-

gene and its corresponding expressed gene may be reported by the assembler if the

implementation of the assembler does not consider such cases. For example, Guttman

et al., 2010 observed that a few highly expressed transcripts may not be able to be fully

reconstructed due to alignment artifacts caused by the processed pseudogenes.

Nonprocessed pseudogene: Nonprocessed pseudogenes (Hurles, 2004) are typi-

cally caused by a historical gene duplication event, followed by an accumulation of

mutations, and an eventual loss of function. Nonprocessed pseudogenes often share

similar exon/intron structures with their originating gene. From the aligner’s perspec-

tive, fragments can be mapped to either the expressed original gene, or its nonprocessed

pseudogene, or both. Similar to processed pseudogenes, the assembler may report a

nonprocessed pseudogene when its corresponding functional genes is expressed.

Repetitive shared sequences: Besides pseudogenes, many functional gene families

share subsequences that are almost identical to each other. One repetitive sequence

shared by different genes in human genome is Alu (Jurka and Smith, 1988; Häsler

et al., 2007). Consider the case when, among all genes which share the Alu sequence,

but only a subset are expressed. Hence the aligner will map the fragments originating

from the expressed subset to all similar sequences on the genome. And the assembler

may report all genes sharing the repetitive sequence as being expressed.

Any of these three biological factors may lead to multiple alignments. Without

proper post-processing, an assembler may report many unexpressed pseudogenes or

even random regions as expressed genes, and it may also miss a few highly expressed

genes.

Existing RNA-Seq analysis pipelines provide heuristics for addressing the multiple

alignment problem, however, they do not explicitly consider their genomic causes. In

16

Caml3	
	 Chr7:	 17500866-‐17509900	 	

	

Unannotated	 Region	
Chr6:95982842-‐95983363	

	

0

0

1000	

2000	

1000	

2000	

3000	

0 500	

Co
ve
ra
ge
	

Loca0on	 	 (bp)	

Total	 coverage	 per	 base-‐pair	
Total	 coverage	 of	 shared	 fragments	 per	 base-‐pair	
Number	 of	 mismatches	

Figure 2.1: Two transcripts reported by Cufflinks. The top one maps to a known gene
named Caml3, and the bottom one does not map to any known gene. Two transcripts
are aligned by their shared fragments in the plot. The top figure is truncated, and only
shows the region containing shared fragments. The dashed line indicates the truncated
boundary. The three vertical lines in purple represent three splice junctions in the top
transcript. The points on the black line represent the numbers of fragments that cover
the corresponding base pairs. The points on the read represents the number of fragments
that cover the corresponding base pairs and are also aligned to the other transcript.The
gray lines represent the number of mismatches across the regions in the plot.

the study using mouse RNA-Seq data, the transcripts reported by Cufflinks include

about 3.5% from known pseudogenes and about 10% from unannotated regions. A

quarter of these 13.5% transcripts are likely to be false positives caused by multiple

alignments.

Figure 2.1 shows the pile-up plots of two regions from a mouse genome reported

by a current RNA-Seq pipeline. The top one is a gene named Caml3, while the bottom

one is unknown. The unknown gene’s sequence is very similar to the sequence of

concatenated exons from Caml3. Fragments that are uniquely aligned to the unknown

17

gene by the aligner can also be aligned to Caml3. However, the aligner fails to find the

proper alignment because it does not consider all possible alignments crossing splice

junctions due to the search complexity. This collection of evidence indicates that the

unknown gene is actually an unannotated processed pseudogene of Caml3.

Therefore, the identification of expressed genes and unexpressed pseudogenes is

a significant confounding factor in RNA-Seq analysis. No existing analysis methods

explicitly attempt to identify and reassign fragments that are mapped to pseudogenes.

A similar observation was made by ContextMap (Bonfert et al., 2012) that multiple

alignments from a RNA-Seq aligner could be handled by removing the incorrect align-

ments based on the “context” of the alignments. However, ContextMap simply defines

the “context” as a fixed window around the alignment on the genome. It also does not

try to rescue any missed alignments. In contrast, I introduce the concept of fragment

attractor, which leverages the results from both an aligner and an assembler to deter-

mine the appropriate “context” for each individual alignment. Sharing maps between

fragment attractors are built to help discover and restore missed alignments.

In this chapter, I introduce the GeneScissors pipeline (Zhang et al., 2013), a compre-

hensive approach to address the problem of detecting and correcting those fragments

errantly aligned to unexpressed genomic regions. When compared with the standard

TopHat/Cufflinks pipeline, GeneScissors is able to remove 57% pseudogenes without

using any annotation database. GeneScissors can reduce inference errors in existing

analysis pipelines and aid in distinguishing truly unannotated genes from errors.

2.2 Methods

In this section, GeneScissors is presented, a general component that can be applied

to any align-first RNA-Seq pipeline to detect and correct errors in transcriptome in-

18

Aligner	

Assembler	

Sharing	 Graph	
Generator	

Classifier	

Expressed	 	
Genes	

Spurious	 	
calls	

Genome	

RNA-‐seq	 Reads	

New	 alignments	 discovery	
and	 feature	 extrac?on	

Figure 2.2: The workflow of GeneScissors Pipeline. The traditional RNA-Seq analy-
sis pipeline is the path on the left side. Its alignment and assembly results are used by
GeneScissors to infer fragment attractors, build sharing graphs, and identify all frag-
ment alignments in the genome. GeneScissors then builds a classification model to
detect and remove unexpressed genes.

ference due to fragment misalignments. In a standard RNA-Seq pipeline, the “best”

alignment for a fragment with multiple alignments is determined without considering

the surrounding alignments of other fragments. Such decisions may be premature with-

out considering the other fragments aligned to these regions. GeneScissors pipeline

first collects all possible alignments for all fragments, and then examines those regions

of the genome where multiple alignments map and then consider the other fragments

aligned to these regions. In this way, GeneScissors is able to leverage statistics of frag-

ment distribution and other features of the alignments.

Figure 2.2 describes the proposed workflow for RNA-Seq analysis. It utilizes ex-

isting aligner and assembler (with minor modifications to keep all possible alignments

discovered, details in Section 2.3.1) to identify regions to which fragments align. In

19

Fragment	 A+ractor	 C	 Fragment	
A+ractor	 A	

Fragment	 A+ractor	 B	

(a)

Sharing	 Map	

Same	
Fragments	

New	
Alignments	

Shared	 Region	 on	 	
Fragment	 A1ractor	 A	

Fragment	
Genome	 Map	

Shared	 Region	 on	
Fragment	 A1ractor	 C	

Fragment	
Genome	 Map	

New	
Alignments	

(b)

Figure 2.3: Figure 2.3(a) shows a sharing graph of three fragment attractors A, B,
and C. Each solid box represents a pile-up of fragments of a fragment attractor. Each
pair of connected hollow rectangles represents a fragment of paired-end reads. The
red fragments are the shared fragments that can be mapped by the aligner to all three
fragment attractors. The bottom row in each box represents the transcript sequence.
The red regions (except the splice junctions in the transcript sequences) are the region to
which the shared fragments align. Figure 2.3(b) shows a sharing map between fragment
attractors A and C and the discovered new alignments (shown in dashed rectangles).
These new alignments are rescued from the uniquely aligned fragments in the shared
region of one of the two fragment attractors.

order to distinguish from expressed genes, each such region is referred as a fragment

attractor. Fragments with multiple alignments link corresponding fragment attractors.

these fragments and their alignments are referred as shared fragments and shared align-

ments respectively. The relationships among linked fragment attractors are defined by

their shared fragments. GeneScissors uses sharing graphs to represent the linked frag-

ment attractors and to discover new fragment alignments. Training instances are cre-

ated by using simulated RNAseq fragments from annotated genes in Ensembl to build a

classification model. Then, on real data, the classification model predicts and removes

the fragment attractors that are likely due to misalignments. Existing assembly meth-

ods can be applied on the remaining fragment alignments to re-estimate the abundance

level of expressed fragment attractors. The sharing graph is introduced in Section 2.2.1,

a classification model to identify the unexpressed fragment attractors in Section 2.2.2

and the features extraction method from the sharing graphs in Section 2.2.3.

20

2.2.1 Sharing Graph

Sharing graphs are constructed as follows. Each fragment attractor is represented

by a node and each pair of linked fragment attractors are connected by an edge. Each

connected component is called a sharing graph. For each edge in a sharing graph, a

position-by-position sharing map is built between the pair of linked fragment attrac-

tors through their shared fragments. For any fragment f aligned to a fragment attractor

g, function φf⇒g is defined, which returns the aligned position in fragment attractor g

given a position in fragment f , and its inverse function φ−1g⇒f , which returns the corre-

sponding position in f (if it exists) given a position in g. For a pair of linked fragment

attractors ga and gb and one of their shared fragments f1, position k in f1 may be

aligned to position i in fragment attractor ga and position j in gb. This provides a cor-

respondence between position i in ga and position j in gb by j = φf1⇒gb(φ
−1
ga⇒f1(i))

and i = φf1⇒ga(φ−1gb⇒f1(j)). A sharing map can be built between ga and gb through

this approach by using all their shared fragments. It is possible that two shared frag-

ments f1 and f2 map the same position in ga to two different positions in gb, i.e.,

φf1⇒gb(φ
−1
ga⇒f1(i)) 6= φf2⇒gb(φ

−1
ga⇒f2(i)). Empirically, such cases are rare, and when

it happens, the majority rule is used to resolve the conflict.

The region of a fragment attractor that is covered by the sharing map is called the

shared region. In addition to the shared fragments, some other fragments uniquely

aligned to the fragment attractor may align to the shared region. These fragments

should have been aligned to the linked fragment attractor too, but the aligner might

have failed to recognize the alignments due the reasons discussed previously. There-

fore, with the help of the sharing map, ’ these missed alignments can be restored from

existing aligner’s result. For example, in Figure 2.3(a), a sharing graph among three

fragment attractors are shown. The red regions in the bottom row of each fragment

attractor are the shared regions. The red dashed boxes contain the fragments uniquely

21

aligned to one fragment attractor by the aligner, but should have been aligned to the

linked fragment attractors too. In Figure 2.3(b), more details are shown on how the

new alignments of the fragments are established through the sharing map. Note that

this alignment discovery operation needs to be done in both directions for each pair of

linked fragment attractors. In the previous example in Figure 2.1, the uniquely aligned

fragments (between the black curve and the red curve) in the shared regions should

have been aligned to both fragment attractors. Restoring fragment alignments to multi-

ple positions does not cause inflation in abundance level estimation because transcrip-

tome inference methods such as Cufflinks already consider the shared alignments. This

approach enables us to safely rescue fragment alignments missed by an aligner.

2.2.2 Classification Model

GeneScissors processes RNA-Seq data at the granularity of linked fragment attrac-

tors. Because there is no easy way to determine whether a fragment attractor are ex-

pressed or not in real datasets, I build the training model from simulated data and apply

it to real data. I first generate our training set from a simulated population, and each

sample is a set of fragments simulated based on a set of selected transcripts from the

annotation database. (More details are in Section 2.3.1). Then, the aligner and the as-

sembler are applied on each sample of the simulated data, the sharing graphs are built

based on their results, and training instances are also generated based on the sharing

graphs. The fragment attractors which cannot be mapped back to the selected tran-

scripts are unexpressed ones. A classification model is used to infer whether a frag-

ment attractor (hereby referred to as the target fragment attractor gt) is expressed or not

using features of gt and another fragment attractor (hereby referred to as the assistant

fragment attractor ga) linked to gt by an edge in the sharing graph. For every pair of

linked fragment attractors, two instances are built. The instance is labeled according

22

to whether the target fragment attractor is expressed. Therefore, one fragment attractor

may be the target fragment attractor in multiple instances. The intuition is that, for an

unexpressed target fragment attractor, there should always be some instances in which

the assistant fragment attractors are expressed. In such instances, the assistant fragment

attractor should have less consistent mismatches, longer sequence and lower proportion

of shared fragments than the target fragment attractor (More details are in Section 2.2.3

which describes all features used in this Chapter). Thus a binary classification model

can be training, using these features to identify unexpressed target fragment attrac-

tors. When the model is applied to test data and real data, all target fragment attractors

which are predicted as unexpressed at least once will be removed from the result of the

assembler, and the reads that are uniquely aligned to these fragment attractors will be

redistributed to the corresponding expressed fragment attractors. I experimented with

SVM, DecisionTrees, and RandomForests as the learning method, and found that Ran-

domForests had the best overall performance. Once the classifier is built, I apply it on

test data to evaluate the prediction accuracy and then apply it to real data to predict

unexpressed fragment attractors and remove their fragment alignments. Recall that, for

all uniquely aligned fragments in the shared regions of these fragment attractors, new

alignments can also be discovered to their linked fragment attractors using the sharing

map.

2.2.3 Fragment Attractor Features

Features are extracted from both target fragment attractor gt and assistant fragment

attractor ga in each instance. Each instance contains 14 features, listed in Table 2.1. All

features except the number of consistent mismatch locations (details later) are straight-

forwardly calculated: features NE and NI are directly collected from the assembler’s

output, and NR, MF, MR and CM are calculated by our sharing graph generator. The

23

Features Description
NE(ga) == 1, NE(gt) == 1 NE(ga) and NE(gt) are the observed numbers of exons.

These two Boolean features tell whether the genes are sin-
gleton of exons or not.

NR(ga), NR(gt), NR(ga)/NR(gt) NR(ga), NR(gt) are the proportions of the fragments that
can be aligned to ga and gt to the total fragments, respec-
tively.

MF(ga), MF(gt), MF(ga)/MF(gt) MF(ga), MF(gt) are the proportions of the shared frag-
ments to the fragments aligned ga and gt, respectively.

MR(ga), MR(gt), MR(ga)/MR(gt) MR(ga), MR(gt) are the proportions of the entire regions
of ga and gt that are covered by shared fragments.

CM(ga), CM(gt), CM(ga)− CM(gt) CM(ga), CM(gt) are the numbers of base pairs that have
consistent mismatches in the shared regions of ga and gt
respectively.

Table 2.1: The features used for detecting fragment attractors resulting from misalign-
ments.

use of consistent mismatch count CM as a feature is motivated by the observation that

the pseudogenes usually have higher mutation rate. The number of exons are helpful

in distinguishing processed pseudogenes, which are singletons. All the other features

are motivated by our observation that the unexpressed fragment attractors tend to have

smaller number of alignment fragment and shorter region than their corresponding ex-

pressed ones.

2.2.4 Consistent Mismatches Discovery in GeneScissors

In this section, I describe the concept of consistent mismatch and the method to find

consistent mismatch locations across the genome.

For a given base pair location in the genome, if the number of aligned fragments

that carry an allele different from the reference genome is much higher than the ex-

pected number due to random sequencing errors, it is called as a consistent mismatch

location. There are three possible reasons that a consistent mismatch occurs: 1) A miss-

24

ing SNP or heterozygous site in a diploid sample’s genome (inconsistency between the

reference DNA sequence and the sample’s DNA sequences), 2) an RNA-editing site,

and 3) misaligned fragments (difference between the sequences of a gene and its pseu-

dogene). Consider the example shown in Figure 2.1, there are two visible consistent

mismatches on the expressed gene, Caml3, and they are due to either of the first two

reasons (an unreported SNP, a heterozygous SNP, or an RNA-editing event). Because

the fragments aligned to the unannotated region originated from Caml3, in the pile-up

plot of the unannotated region, there are more than six visible consistent mismatches

due to the third reason (misaligned fragments).

It is important to separate the consistent mismatches from the mismatches due

to sequencing errors. I assume that the sequencing error rate of a given base pair

c in a given fragment is reflected in its quality score qc, and can be derived as a

function e(qc). Given a base-pair location l in the genome, let R(l) be the set of

base-pairs aligned to the location. The number of mismatches NM(l) at this loca-

tion should follow a sum of Bernoulli distributions with different success probabilities,

which is M =
∑

c∈R(l) Bernoulli(e(qc)). The p-value of the location is defined as

P (M ≥ NM(l)). A significant p-value indicates that this location may be a consistent

mismatch location. In order to find all consistent mismatch locations, the first thing is

to estimate the sequencing error rate. The original function to calculate the error rate is

e(qc) =
Total number of mismatches occurring with quality qc

Total number of base pairs with the quality qc

.

In this calculation, the consistent mismatches should be excluded as they are not

caused by sequencing errors. This can be done iteratively, starting from an initial esti-

mation using all positions that have at least ten fragments aligned. In each iteration, if

the positions on the genome have much higher mismatch rate than the current estimated

error rate and re-estimate the error rate, they are masked as consistent mismatches. The

25

empirical distribution of e is the new estimation of e. For the positions that contain less

than three mismatches, the computation of following two probabilities are in O(|R(l)|)

time complexity :

P (M = 0) =
∏
c∈R(l)

(1− e(qc)) (2.1)

P (M = 1) =
∑
c∈R(l)

e(qc)
∏

c′∈R(l)/{c}
(1− e(qc′)) (2.2)

then the exact probability as the p-value is calculated in the following way:

P (M ≥ 0) = 1 (2.3)

P (M ≥ 1) = 1− P (M = 0) (2.4)

P (M ≥ 2) = 1− P (M = 0)− P (M = 1) (2.5)

The number of mismatches at a position should distribute as a sum of a series of random

variables from Bernoulli distributions with different parameters, and the distribution of

the sum can be approximated by a Poisson distribution based on Le Cam’s theorem

(Le Cam, 1960):

CM(l) =
∑
c∈R(l)

Bernoulli(e(qc)) ≈ Poisson(
∑
c∈R(l)

e(qc)),

where CM(l) is the number of consistent mismatches at the location l. Therefore, the

p-value can be approximated by

P (M ≥ CM(l)) ≈
∑

m>=CM(l)

fPoisson(m;
∑
c∈R(l)

e(qc)),

where fPoisson is the density function for a Poisson distribution. The positions with

p-values less than 10−20 are classified as consistent mismatch locations. This process

continues until no more consistent mismatch locations are found. This threshold is em-

pirically determined because current threshold gives us the best performance to identify

the unexpressed genes.

26

2.3 Results

I first describe a series of modifications made to open-source RNA-Seq analysis

tools to support GeneScissors. Then I describe the various datasets used for eval-

uation. I evaluated two standard pipelines that do not use GeneScissors: one using

TopHat and the second using MapSplice as an aligner. Then GeneScissors are added to

each pipeline, to improve the alignment results, and they are referred as GeneScissors

(TopHat) and GeneScissors (MapSplice) pipelines. All four pipelines use Cufflinks as

the transcriptome assembler.

2.3.1 Software

GeneScissors uses modified versions of TopHat and Cufflinks, and employs com-

ponents written in C++, Python, and the BamTools (Barnett et al., 2011) library. Cuff-

compare is used to map the reported genes back to Ensembl annotations, and categorize

them into three types: annotated normal genes/transcripts, annotated pseudogenes, and

unannotated regions.

Modifications to TopHat and Cufflinks I first present the algorithms used by

TopHat and Cufflinks in ranking and reporting alignments and genes, and then discuss

our modifications to retain all fragment and partial fragment (unpaired reads) align-

ments.

In TopHat, if the fragment f has multiple alignments x and y, TopHat retains only

alignment y and does not report alignment x, when one of the following conditions is

satisfied (tests are applied in order) :

• Mismatch rule: x has more mismatches than y.

27

• Splice junction rule: x crosses more splice junctions than y.

• Other rules: I omit the conditions that are not relevant to the method.

Only alignments with the best score are reported by TopHat. One observation is that

the splice-junction rule tends to favor processed pseudogenes; the correct alignment of

a fragment with a splice junction is frequently discarded by TopHat if the fragment can

be aligned to a processed pseudogene with the same number of mismatches.

In Cufflinks, a gene that meets the following criteria is suppressed:

• 75% rule: More than 75% of the fragment alignments supporting the gene are

mappable to multiple genomic loci.

Consider the example shown in Figure 2.1. Cufflinks fails to remove the unannotated

pseudogene, which is composed mostly of uniquely aligned fragments. This suggests

that the 75% rule is insufficient.

Therefore, in the GeneScissors pipeline, the splice junction rule is disabled in TopHat

and the 75% rule in Cufflinks.

Simulator In order to generate training data for our classification model and evalu-

ate the effectiveness of GeneScissors for detecting and removing unexpressed fragment

attractors, a RNA-Seq simulator is used to provide a “ground truth” model for fragment

attractors. The simulator randomly chooses a (user-specified) number of genes, and for

each gene, it samples a subset of its transcripts. Then, it uniformly samples paired-end

fragments up to a certain abundance level for each selected transcript. For each frag-

ment, it assigns a quality score to each base pair, drawing from an empirical distribution

derived from real data, and generates base-pair errors based on their quality scores.

28

2.3.2 Materials

The study used inbred and F1 crosses of three mouse strains: CAST/EiJ, PWK/PhJ,

and WSB/EiJ. In order to minimize the impact of unknown SNPs to the alignments,

strain-specific genomes are generated by incorporating high-confidence SNPs detected

in a recent DNA sequencing project of laboratory mouse strains conducted by the Wel-

come Trust (Keane et al., 2011) into the mm9 reference genome. The Ensembl database

(build 63) (Flicek et al., 2011) is used to annotate and evaluate the results from real and

simulated data.

Simulated Data A RNA-Seq simulator was used to generate synthetic data from 60

RNA-Seq samples also derived from three inbred mouse strains: CAST/EiJ, PWK/PhJ,

and WSB/EiJ. In each sample, 13, 000 annotated functional genes are selected in En-

sembl as the expressed genes, and randomly set them to different levels of abundance.

Note that many genes included multiple transcripts. generated 10 million fragments

with 100 base-pair, paired-end reads for each sample are also generated. TopHat and

MapSplice as aligners and Cufflinks as the assembler are used to analyze the simulated

data. More than 7.5% of the genes reported in the results were not from the selected

genes in our simulation setting. From the results, shared graphs are built and the model

is trained and tested by cross-validation. A feature selection study using the simulated

data can be found in the supplementary material.

Real data GeneScissors is applied to RNA-Seq data from 9 inbred samples and 53

F1 samples derived from three inbred mouse strains CAST/EiJ, PWK/PhJ, and WS-

B/EiJ. cDNA are sequenced from mRNA extracted from brain tissues of 3-6 replicates

of both sexes and the 6 possible crosses (including the reciprocal). To mitigate mis-

alignment errors due to heterozygosity, for each F1 sample, each fragment is aligned

to the genome of each parent separately (i.e. the mm9 reference sequence with anno-

29

tated SNPs) and then merged the two alignments while retaining all distinct multiple

alignments (a union of the set of all mapped fragments each identified by their map-

ping coordinate and read identifier). For comparison purposes, this alignment strategy

is also applied in the TopHat and MapSplice pipelines.

2.3.3 Results from Simulated Data

In Table 2.2, I first present the average precision, recall, F scores, and Area Under

the Curve (AUC) when LinearSVM, DecisionTree, and RandomForests were used to

build the classification models. All scores were measured by 10-fold cross-validation.

The results demonstrate that our feature set is adequate and can help detect unexpressed

genes efficiently. The RandomForests is the best and most consistent among all three

methods. The classification model trained by RandomForests can detect near 90% spu-

rious calls due to misalignments. Though SVM has a slightly higher precision score,

the recall is much lower than RandomForests. This is because RandomForests is more

suitable than SVM for data with discrete features and is more powerful in handling

correlations between features. Therefore, RandomForests are chosen as the default

classification method for our GeneScissors pipeline.

Statistics LinearSVM DecisionTree RandomForests
Precision 81.9% 83.7% 89.6%
Recall 83.0% 84.8% 87.8%
F-measurement 85.7% 84.2% 88.6%
AUC 0.843 0.837 0.910

Table 2.2: Summary of the results from different classification methods

Next, in order to understand how much improvement GeneScissors could bring to

the overall transcriptome calling by correcting fragment misalignment, the results of

improved GeneScissors pipelines are compared with those from the TopHat and Map-

30

Splice’s pipelines. Both GeneScissors pipelines used the modified version of Cufflinks.

The GeneScissors (TopHat) pipeline used the modified version of TopHat. The Map-

Splice and TopHat pipelines used the regular version of Cufflinks. The following three

measurements are used to compare the performance at the gene level:

GenePrecision = Number of Correct Genes
Number of Reported Genes

, (2.6)

GeneRecall = Number of Correct Genes
Number of Simulated Genes

, (2.7)

GeneF −measurement = 2× GenePrecision×GeneRecall
GenePrecision+GeneRecall

. (2.8)

The results of different pipelines are summarized in Table 2.3. All statistics are av-

eraged over a 10-fold cross validation. I observe that Cufflinks tends to report a much

higher number of genes in all four pipelines. There are only approximately 13000 ex-

pressed genes but Cufflinks reports more than 30000 genes in the TopHat or MapSplice

pipelines and over 26000 genes in the GeneScissors pipelines.

A significant percentage of these reported genes can be mapped back to the “ex-

pressed” genes from which synthetic reads are generated. In fact, several reported genes

are often mapped back to the same expressed gene by Cuffcompare. Cufflinks failed to

recognize them as (possibly different transcripts of) the same gene, perhaps due to both

the length and variable number of splice junctions and/or the low fragment coverage

seen for some transcripts. In this case, when computing GenePrecision and GeneRecall,

only one of them was counted as the “correct” gene, the remaining ones were counted

as “incorrect” genes. Since all four pipelines used Cufflinks to infer transcriptome, all

of them had relatively low GenePrecision. The GeneScissors (MapSplice) pipeline had

a 12.6% improvement in GenePrecision over the original MapSplice pipeline, at the

cost of a slight drop in GeneRecall. The GeneScissors (TopHat) pipeline had a 6.5%

improvement in GenePrecision over the TopHat pipeline, while retaining the same level

31

of GeneRecall. GeneScissors was able to detect and remove more than 4000 spurious

(gene) calls by correcting fragment misalignments.

MapSplice pipeline has the highest score on GeneRecall, but a much lower Gene-

Precision score comparing with TopHat pipeline and GeneScissors pipeline. This is

because MapSplice can find more possible alignments than TopHat, but is not able to

identify the correct alignment when a fragment has multiple alignments. Hence, the

MapSplice pipeline reported more false positives than the TopHat pipeline.

Statistics MapSplice
Pipeline

TopHat
Pipeline

GeneScissors
(MapSplice)

GeneScissors
(TopHat)

Number of Reported Genes 36516 30622 26556 26473
GenePrecision 35.6% 41.8% 48.2% 48.3%
GeneRecall 95.1% 93.2% 93.0% 93.2%
GeneF-measurement 51.5% 58.2% 63.5% 63.6%

Table 2.3: Comparison of MapSplice, TopHat, GeneScissors (MapSplice) and
GeneScissors (TopHat) pipelines.

Overall, the GeneScissors (TopHat) pipeline performed best among the four pipelines

on this challenging test case. It is obvious that (1) detecting and correcting fragment

misalignments can improve the accuracy in transcriptome inference under all circum-

stances; (2) given the correct fragment alignments, better transcriptome inference al-

gorithms are still needed. In addition, GeneScissors does not assume all pseudogenes

are unexpressed. In fact, GeneScissors is able to distinguish expressed pseudogenes

from the rest with a comparable accuracy, demonstrated by a simulation study in the

supplementary material.

2.3.4 Results from Real RNA-Seq Data

Both TopHat pipeline and our GeneScissors (TopHat) pipeline are also applied on

the real RNA-Seq data. The running time for TopHat pipeline was about 24 hours per

32

sample, and the extra running time for GeneScissors (TopHat) pipeline were approx-

imately 10 hours per sample. Overall, the GeneScissors (TopHat) pipeline reported

4.25% fewer transcripts in real data than the TopHat pipeline (Figure 2.4 (a)). Con-

sidering that GeneScissors removed most of false positives in our simulation study, it

suggests that the transcripts reported by the TopHat pipeline include a significant num-

ber of false positives.

Despite the fewer number of transcripts reported by GeneScissors, Figure 2.4(b)

shows that GeneScissors actually reported 0.97% more transcripts that exactly match or

partially match the splice junction annotations in the Ensembl database than the TopHat

pipeline (The improvement is statistically significant with a p-value lower than 10−14

under the paired student’s t-test). These transcripts are likely the false negatives missed

by the TopHat pipeline due to misalignments. Figure 2.4(c) shows that the TopHat

pipeline reported over 800 transcripts that are annotated as pseudogenes in Ensembl.

GeneScissors managed to remove over 53.6% of them, and the fraction of transcripts

that overlap any pseudogenes decreased from 3.2% to 1.57%. Figure 2.4(d) shows that

GeneScissors reported 16% fewer unannotated transcripts than the TopHat pipeline.

All these results indicate that GeneScissors is effective in detecting and correcting false

positive and false negative transcript reports caused by fragment misalignments.

Furthermore, the number of pseudogenes reported by the original TopHat/Cufflinks

pipeline in inbred samples is fewer than the number in F1 hybrids. Similarly, the frac-

tion of pseudogenes (∼ 57%) removed by GeneScissors in the inbred samples is smaller

than the fraction (∼ 36%) removed in the F1 hybrids. This indicates that the additional

complications of F1 samples pose additional challenges to RNA-Seq analysis pipelines,

and makes them more prone to errors than the inbred samples.

33

26
00

0
28

00
0

30
00

0
32

00
0

34
00

0
36

00
0

(a) Number of total transcripts reported
 mean(change) = −4.25%

samples

nu
m

be
r

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CC
F

PP
F

WW
F

CP
F

CP
M

PC
F

PC
M

CW
F

CW
M

WC
F

WC
M

PW
F

PW
M

WP
F

WP
M

●

Original Pipeline
Gene Scissors Pipeline

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0

(b) Number of reported transcripts that exactly or partially matched
 an annotated one

 mean(change) = 0.97%

samples

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

CC
F

PP
F

WW
F

CP
F

CP
M

PC
F

PC
M

CW
F

CW
M

WC
F

WC
M

PW
F

PW
M

WP
F

WP
M

●

Original Pipeline
Gene Scissors Pipeline

40
0

60
0

80
0

10
00

12
00

14
00

(c) Number of annotated pseudogenes reported
 mean(change) = −53.62%

samples

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

CC
F

PP
F

WW
F

CP
F

CP
M

PC
F

PC
M

CW
F

CW
M

WC
F

WC
M

PW
F

PW
M

WP
F

WP
M

●

Original Pipeline
Gene Scissors Pipeline

10
00

20
00

30
00

40
00

(d) Number of unannotated transcripts reported
 mean(change) = −16.39%

samples

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CC
F

PP
F

WW
F

CP
F

CP
M

PC
F

PC
M

CW
F

CW
M

WC
F

WC
M

PW
F

PW
M

WP
F

WP
M

●

Original Pipeline
Gene Scissors Pipeline

Figure 2.4: Comparisons between multiple samples run through both the GeneScissors
pipeline and the TopHat pipeline. Results from the same sample are connected by an
arrow. The three strains used were CAST/EiJ, PWK/PhJ, and WSB/EiJ, and they are
indicated by the initials C, P, and W respectively. The two letter designations indicate
the direction of the cross with the initial of the maternal strain followed by the initial
of the paternal strain. The samples are clustered according to replicates from the same
sex and F1 cross, followed by the reciprocal cross. The sex is indicated by F(female)
and M(male).

2.4 Discussion and Conclusion

In this chapter, I present GeneScissors, a general approach to detect and correct

transcriptome inference errors caused by misalignments, that can be applied to any

RNA-Seq analysis pipeline. GeneScissors considers three underlying biological fac-

tors that lead to fragment misalignments and spurious transcript reporting. I propose

a classification model to detect false discoveries due to misalignment, and the results

34

show that it can provide significant improvement in overall accuracy.

Other heuristic approaches have been used to avoid reporting unexpressed genes

in the RNA-Seq assembly result, such as discarding all known pseudogenes reported

by the TopHat pipeline, masking repeated elements in genome, or aligning fragments

to known transcriptome instead of genome. The key difference is that our RNA-Seq

analysis does not require any additional annotations beyond adding SNPs, and it still

supports a novel “transcript discovery”.

Transcript discovery is important because current annotations are incomplete with

regard to genes, isoforms, and allele specific variants. For example, in the real data,

about 4000 unannotated transcripts clustered around 2300 unannotated genes on av-

erage are discovered. These transcripts persist after applying GeneScissors, which

attempts to identify and correct misaligned fragments. This implies that current an-

notations are neither complete nor entirely accurate. For example, recent studies (Hi-

rotsune et al., 2003; Khelifi et al., 2005) found that some regions previously thought to

be pseudogenes can actually be transcribed to mRNA. Hence, removing all annotated

pseudogenes, or highly repeated regions may lead to the removal of actual expressed

transcripts. In contrast, GeneScissors might choose a pseudogene over the annotated

paralog based on which better matches known genetic variants.

Furthermore, current pipelines using Cufflinks tend to overreport genes, especially

when the genes share a high degree sequence similarity with other expressed genes

in the data. The problem is alleviated to some extent by GeneScissors by recover-

ing missed multiple fragment alignments and discarding fragment alignments to unex-

pressed genes/regions. However, there is still room for improvement.

35

CHAPTER 3

RNA-SKIM: A RAPID METHOD FOR RNA-SEQ QUANTIFICATION AT

TRANSCRIPT-LEVEL

3.1 Introduction

In Chapter 2, I elaborate my approach to correct errors in the RNA-Seq alignment

and assembly steps in the alignment-dependent pipelines to improve the accuracy of

these methods. In this chapter, I introduce a novel alignment-free method, focusing on

improving the efficiency and computational performance of RNA-Seq quantification.

Various aligners (TopHat (Trapnell et al., 2009), SpliceMap (Au et al., 2010), Map-

Splice (Wang et al., 2010)) are devised to infer the origin of each RNA-Seq fragment

in the genome. The alignment step is usually time-consuming, requiring substantial

computational resources and demanding hours to align even one individual’s RNA-

Seq data. Since there are multiple variations of RNA-Seq sequencing techniques, e.g.

single-end sequencing and paired-end sequencing, to facilitate the discussion in this

chapter, I simply refer to the read from single-end sequencing or the pair of reads from

paired-end sequencing as a fragment. More importantly, a significant percentage of the

fragments cannot be aligned without ambiguity, which yields a complicated problem

in the quantification step: how to assign the ambiguous fragments to compatible tran-

scripts and to accurately estimate the transcript abundances. Chapter 2 introduces a

method to remove the errors of aligning a fragment to an unexpressed gene, but what if

the fragments are assigned to multiple expressed genes?

To tackle the fragment multiple-assignment problem, an expectation-maximization

36

(EM) algorithm (Pachter, 2011) is often employed to probabilistically resolve the am-

biguity of fragment assignments: at each iteration, it assigns fragments to their compat-

ible transcripts with a probability proportional to the transcript abundances, and then

updates the transcript abundances to be the total weights contributed from the assigned

fragments, until a convergence is reached. The EM algorithm’s simplicity in its formu-

lation and implementation makes it a very popular choice in several RNA-Seq quan-

tification methods (Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al., 2010),

RSEM (Li and Dewey, 2011), eXpress (Roberts and Pachter, 2013)). Since all frag-

ments and transcripts are quantified at the same time in the EM algorithm, it usually

requires considerable running time. Some studies (IsoEM (Nicolae et al., 2011), MM-

SEQ (Turro et al., 2011)) reduced the scale of the problem by collapsing reads if they

can be aligned to the same set of transcripts. It is also worth mentioning that RNA-

Seq quantification is an important first step for differential analysis on the transcript

abundances among different samples (Trapnell et al., 2012b).

The alignment step is a vital step in the RNA-Seq assembly study (Trapnell et al.,

2010) and has become the computational bottleneck for RNA-Seq quantification tasks.

If users are only interested in RNA-Seq quantification of an annotated transcriptome,

aligning RNA-Seq fragments to the genome seems cumbersome: not only do the RNA-

Seq aligners take a long time to align fragments to the genome by exhaustively search-

ing all possible splice junctions in the fragments, they may also generate misaligned

results due to repetitive regions in the genome or sequencing errors, introducing errors

in the quantification results (Zhang et al., 2013).

From another perspective, the annotation databases of transcriptome, e.g. RefSeq

(Pruitt et al., 2007) and Ensembl (Flicek et al., 2011), play an increasingly important

role in RNA-Seq quantification. For example, TopHat/Cufflinks supports a mode that

allows users to specify the transcriptome by supplying an annotation database (a GTF

37

file). RSEM (Li and Dewey, 2011) uses bowtie (Langmead et al., 2009) — a DNA

sequence aligner — to align fragments directly to the transcriptome. Aligning RNA-

Seq fragments to transcriptome avoids the computation to detect novel splice junctions

in fragments and eliminates the non-transcriptome regions in the genome from further

examination, and thus reduces the total running time of the quantification method and

the number of erroneous alignments in the results.

To further improve the performance, the use of k-mers was recently proposed. The

concept of k-mers — short and consecutive sequences containing k nucleic acids —

has been widely used in bioinformatics, including genome and transcriptome assembly

(Grabherr et al., 2011b; Fu et al., 2014), error correction in sequence reads (Le et al.,

2013), etc. Since the number of k-mers in the genome or transcriptome is enormous,

the need to store of all k-mers impedes the counting step of the k-mers. Most of existing

methods save memory usage during the computation by using sophisticated algorithms

and advanced data structures (bloom filter (Melsted and Pritchard, 2011), lock-free

memory-efficient hash table (Marcais and Kingsford, 2011), suffix array (Kurtz et al.,

2008)) or relying on disk space to compensate memory space (Rizk et al., 2013).

Thanks to the recent advances in both annotated transcriptome and algorithms to

rapidly count k-mers, the transcriptome-based alignment-free method, Sailfish (Patro

et al., 2013), requires 20 times less running time and generates comparable results to

alignment-dependent quantification methods. Sailfish is a very lightweight method: it

first builds a unique index of all k-mers that appear at least once in the transcriptome,

counts the occurrences of the k-mers in the RNA-Seq fragments, and quantifies the

transcripts by the number of occurrences of the k-mers through an EM algorithm. And

surprisingly, the optimization problem underlying the EM algorithm developed in Sail-

fish is almost identical to that in RSEM and other methods, except that Sailfish assigns

k-mers (instead of fragments) to transcripts.

38

Regardless of being alignment-dependent or alignment-free, all methods need to

recover the fragment depth — the number of fragments that cover a specific location

— across the whole transcriptome as one of the initial steps. However, none of the ex-

isting methods exploit the strong redundancy of the fragment depth in RNA-Seq data.

More specifically, Fig. 3.1 shows a strong correlation between the fragment depth of

any two locations that are a certain distance apart on the transcriptome, varying the dis-

tance from 1 base-pair to 100 base-pairs. Even when the two locations are 20 base-pair

away from each other, the Pearson correlation score is still as high as 0.985. In other

words, if an RNA-Seq quantification method that is able to recover the fragment depths

for every 20 base-pairs and quantify the abundance levels based on such information,

there should be no significant accuracy loss in the result. Recently, Uziela and Honkela

(2013) developed a method that simply counts the number of alignments that covers

the locations of hybridization probes used in the gene expression studies. Though these

probes only represent a sparse sampling on every transcript in the transcriptome, the

method still provides reasonably accurate results. These observations inspire us to ask

the question: what is the minimum information we need in order to achieve compara-

ble accuracy to state-of-the-art methods in RNA-Seq quantification? More specifically,

does there exist a subset of k-mers that can provide accurate transcriptome quantifica-

tion? And if so, how do we identify and use them to quantify transcriptome efficiently?

To answer these questions, I develop a similarity based clustering method to parti-

tion the transcriptome into separate clusters, and for each cluster of transcripts, I intro-

duce a special type of k-mers called sig-mers which only appear in the cluster. Based on

these sig-mers, RNA-Skim (Zhang and Wang, 2014) is developed, which is much faster

than Sailfish and also maintains the same level of accuracy in the results. RNA-Skim in-

cludes two stages, preparation and quantification. In the preparation stage, RNA-Skim

first partitions transcripts into clusters, and uses bloom filters to discover all sig-mers

for each transcript cluster, from which a small yet informative subset of sig-mers are

39

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 20 40 60 80 100

0.85

0.90

0.95

1.00

Number of base−pairs between two locations
P

ea
rs

on
 c

or
re

la
tio

n
co

ef
fic

ie
nt

Figure 3.1: This figure shows the correlations of the fragment depth of any pair of
locations as a function of the distance between the two locations from 1 base-pair to
100 base-pairs. This figure is generated based on the alignments reported by TopHat
on a real RNA-Seq data.

selected to be used in the quantification stage. In the quantification stage, a rolling hash

method (Karp and Rabin, 1987) is developed to rapidly count the occurrences of the

selected sig-mers, and an EM algorithm is employed to properly estimate the transcript

abundance levels using the sig-mer counts. Since no sig-mer is shared by two transcript

clusters, the task can be easily divided into many small quantification problems, which

significantly reduces the scale of each EM process and also makes it trivial to be par-

allelized. While RNA-Skim provides similar results to those of alternative methods, it

only consumes 10% of the computational resources required by Sailfish.

In this chapter, I first describe the RNA-Skim method, then compare RNA-Skim

with other methods, followed by the experimental results using both simulated and real

data.

3.2 Method

In this section, I introduce the notion of sig-mer, which is a special type of k-mer

that may serve as a signatures of a cluster of transcripts, distinguishing them from

transcripts in other clusters in the transcriptome that do not contain this k-mer.

40

3.2.1 Sig-mer

In this paper, an annotated transcriptome Θ consists of a set of T transcripts:

Θ = {t1, ..., tT}. A transcript t represents an RNA sequence, essentially composed

of a string of four nucleotide bases ‘A’, ‘U’, ‘C’, and ‘G’. We use the corresponding

four DNA nucleotides ’A’, ’T’, ’C’, and ’G’ to present the string of a transcript in the

following. A partition of a given transcriptome Θ groups all transcripts into P disjoint

non-empty subsets or clusters, denoted by Φ(Θ) = {φ1, ..., φP}. For example, one

commonly adopted partition of transcriptome is to group transcripts into genes based

on their locations on the genome. For any transcript t, I use φ(t) to denote the cluster

to which t belongs.

A substring of length k from a transcript sequence, its reverse sequence, its compli-

mentary sequence, or its reverse and complimentary sequence is called a k-mer of the

transcript. I define a function k-mer() to represent the set of all k-mers from a single

transcript or a cluster of transcripts, denoted as k-mer(t) or k-mer(φp) respectively.

For simplicity, if a string s is a k-mer of transcript t, I say s ∈ k-mer(t). In this case,

s ∈ k-mer(φ(t)) is also true.

Definition 1 Given a length k, a transcriptome Θ and its partition Φ(Θ), if a k-mer s

only exists in one cluster φp and never appears in other clusters Θ\φp, it is named a

sig-mer of cluster φp in this Chapter. And for any given cluster φp, all of its sig-mers is

denoted as Ω(φp). That is,

Ω(φp) = {s|s ∈ k-mer(φp),∀φq ∈ Θ\φp, s 6∈ k-mer(φq)}.

Sig-mers characterize the uniqueness of each cluster. It is obvious that the number

of sig-mers heavily depends on the transcriptome partition. If transcripts with simi-

41

lar sequences are assigned to different clusters, k-mers from these transcripts may not

qualify as sig-mers. Consequently, fewer sig-mers may be identified, and in the worst

case, some cluster may not have any sig-mers.

3.2.2 Workflow of RNA-Skim

Since sig-mers are unique to only one cluster of transcripts, if a sig-mer occurs

in some RNA-Seq reads, it indicates the sig-mer’s corresponding transcripts may be

expressed. Therefore, its occurrence in the RNA-Seq data may serve as an accurate

and reliable indicator of the abundance levels of these transcripts. I propose a method,

RNA-Skim, for quantifying the transcripts using the sig-mer counts in RNA-Seq data.

Since no sig-mer is shared between transcript clusters, the problem reduces to quan-

tifying transcript abundances using sig-mer counts within each cluster, which can be

solved much more efficiently and can be easily parallelized. This is different from Sail-

fish that uses all k-mers in the transcriptome. In fact, RNA-Skim can be considered as

a generalization of Sailfish: if the whole transcriptome is treated as a single cluster that

includes all transcripts, all k-mers become sig-mers, and RNA-Skim degenerates to the

exact formulation of Sailfish.

The workflow of RNA-Skim includes two stages: preparation and quantification.

In preparation, RNA-Skim clusters the transcripts based on their sequence similarities,

finds all sig-mers for each transcript cluster, and selects a subset of sig-mers to be used

in the quantification stage. In quantification, RNA-Skim quickly counts the occurrences

of sig-mers and quantifies transcripts within each cluster. The preparation stage of

RNA-Skim does not require RNA-Seq read data and thus can be computed once as an

offline process and be repeatedly used in the quantification stage.

42

3.2.3 Preparation Stage

In the preparation stage, RNA-Skim only requires users to supply a transcriptome

(including all transcript sequences and gene annotations) and specify a desired sig-mer

length to be used in RNA-Skim.

Transcript Partitioning A straightforward way to partition transcripts is to use the

definitions of genes, which are based on their genome locations from an annotation

database. However, the result of this partitioning approach may not be optimal be-

cause some transcripts of different genes may have similar sequences or share common

subsequences. In order to minimize the number of common k-mers shared between

clusters, RNA-Skim uses a sequence similarity based algorithm to generate a partition

of transcriptome, instead of using any existing partition. I first define the k-mer-based

similarity, which is used as the sequence similarity in the algorithm.

Definition 2 The k-mer-based similarity of two sets of sequences φi and φj is defined

as the higher of the two ratios: the number of common k-mers divided by the total

number of k-mers in φi, and the number of common k-mers divided by the total number

of k-mers in φj:

k-mer-Similarity(φi, φj) = (3.1)

max(
|k-mer(φi) ∩ k-mer(φj)|

|k-mer(φi)|
,
|k-mer(φi) ∩ k-mer(φj)|

|k-mer(φj)|
). (3.2)

Transcripts from the same gene are very likely to be similar to each other. Hence, it is

very likely that these transcripts will be assigned to the same cluster. To avoid unnec-

essary computation, RNA-Skim operates at the level of genes, rather than transcripts.

However, calculating the exact similarity between a pair of genes requires generating

all k-mers appearing in each gene and taking the intersection of the two sets. This is

computationally expensive. To expedite the computation, RNA-Skim employs the data

43

structure — bloom filter (Bloom, 1970) — coupled with a sampling based approach

to approximate the similarity between two genes. The bloom filter is a space-efficient

probabilistic data structure that is used to test whether an element is a member of a set,

without the need of storing the set explicitly1. It can be maintained efficiently when

new members are added to the set.

RNA-Skim first builds a bloom filter for the set of k-mers of each gene. Then, it ran-

domly samples two subsets of k-mers — noted as X(φi) and X(φj) — from the pair of

genes , and the k-mer-Similarity(φi, φj) is approximated2 by max(
|X(φi) ∩ k-mer(φj)|

|X(φi)|
,
|k-mer(φi) ∩X(φj)|

|X(φj)|
).

After I calculate the approximated similarities for every pair of genes, an undirected

graph is built with each node representing a gene. There is an edge between two nodes

if the similarity of the two corresponding genes exceeds a user-specified threshold γ.

Each connected component of this graph naturally forms a cluster of nodes; each cluster

of nodes forms a cluster of genes and transcripts of the genes.

Sig-mer discovery By definition, the sig-mers are essentially the k-mers occurring

in only one cluster of transcripts. A brute force way to find all sig-mers is, for every

k-mer in the transcriptome, to determine whether the k-mer that appears in one cluster

also appears in some other cluster. Because the number of possible k-mers is in the

order of billions, without any sophisticated data structure and data compression algo-

rithms, storing the k-mers alone will easily take at least tens of gigabytes of memory

space which is way beyond the capacity of any commodity computer.

RNA-Skim again utilizes bloom filters to reduce memory usage. Three types of

bloom filters are employed: a bloom filter BF.ALL for checking whether a given k-

mer has been examined or not, a bloom filter BF.DUP for checking whether a given

k-mer appears in more than one cluster or not, and a bloom filter BF.S(φp) for each
1A bloom filter may yield a small number of false positives, but no false negatives. The false positive

rate is bounded if the number of elements in the set is known.
2Our experiments show that we only need a small number (e.g., 10) of k-mers from each gene to

achieve approximation with high accuracy.

44

cluster φp for checking whether a given k-mer is in k-mer(φp).

First, for each cluster φp, all distinct k-mers in it are enumerated: RNA-Skim enu-

merates all k-mers for every transcript in the cluster, and adds them to BF.S(φp); if a

k-mer is already in BF.S(φp), it will be ignored. Second, every distinct k-mer in φp is

added into BF.ALL, and if it is already in BF.ALL (that is, it was added when RNA-

Skim examined other clusters), it is added into BF.DUP . Therefore, if a k-mer occurs

in multiple clusters, it is added in BF.DUP . Last, every k-mers of the transcriptome is

enumerated again, and if the k-mer is not in BF.DUP , it is reported as a sig-mer, since

it only occurs in one cluster.

Since bloom filters may have false positive reports, but never have false negatives,

through this approach, some genuine sig-mer strings may be missed, but a non-sig-mer

will never be labeled as a sig-mer. Figure 3.2 shows the pseudocode of the algorithm to

find sig-mers.

Sig-mers selection RNA-Skim does not use all sig-mers because they are still nu-

merous. Instead, RNA-Skim selects a subset of sig-mers for the quantification stage.

I used a simple approach to select sig-mers from all sig-mers found by the previous

step: for every transcript, sig-mers are evenly chosen based on the sig-mer locations

such that any two sig-mers are at least 50 base-pair away from each other in the given

transcript. Since some sig-mers may appear in multiple transcripts in the same cluster,

for every selected sig-mer, all transcripts are re-examined, and the ones that contain the

sig-mer are also recorded. This approach guarantees that every transcript is associated

with some sig-mers (as long as there exist some sig-mers). A good sig-mer coverage

is crucial for accurate quantification of transcript abundance. The final output of the

preparation step includes the partition of the transcriptome, selected sig-mers, and their

associating clusters and transcripts.

45

1. foreach partition of transcripts φp ∈ Θ

2. foreach location l ∈ φp
3. generate the k-mer s at the location l

4. if s 6∈ BF.S(φp) then
5. Add s into BF.S(φp)

6. if s 6∈ BF.ALL then
7. Add s into BF.ALL

8. else
9. Add s into BF.DUP

10. end foreach
11. end foreach
12. foreach partition of transcripts φp ∈ Θ

13. foreach location l ∈ φp
14. generate the k-mer s at the location l

15. if s 6∈ BF.DUP then
16. Report s as a sig-mer of φp.

17. end foreach
18. end foreach

Figure 3.2: The pseudocode to find all sig-mers.

3.2.4 Quantification Stage

The quantification stage requires users to provide RNA-Seq data (e.g. FASTA files)

and the selected sig-mers associated with transcripts containing them from the prepara-

tion stage.

Sig-mer counting Since the number of sig-mers used in RNA-Skim is much smaller

than the number of k-mers typically used by other k-mer-based approaches, all sig-mers

can be stored in a hash table in memory. The number of occurrences of all sig-mers can

be counted by enumerating all k-mers in the RNA-Seq reads and looking up the k-mers

in the hash table to update the corresponding counters. RNA-Skim basically follows

46

this scheme with a tweak on the hash function to further speed up the computation.

In a straightforward implementation of the previously described algorithm, every

k-mer incurs an O(k) operation to calculate its hash value, and this hash operation

can be further reduced to O(1) by the Robin-Karp pattern matching algorithm (Karp

and Rabin, 1987). The Robin-Karp pattern matching algorithm requires a special hash

function — rolling hash — that only uses multiplications, additions and subtractions.

In rolling hash, the hash value H(r) of the first k-mer in the RNA-Seq read r is

calculated by

H(r[0, ..., k − 1]) =χ(r[0])× hk−1 + χ(r[1])× hk−2 + ...+ χ(r[k − 1])× h0,

where h is the base of the hash function, r[i] is the ith character in s, and the

character hash function χ() maps a character to an integer value. One way to calculate

the hash value for the (sequentially ordered) second k-mer r[1, ..., k] is

H(r[1, ..., k]) =χ(r[1])× hk−1 + χ(r[2])× hk−2 + ...+ χ(r[k])× h0.

But thanks to the structure of the rolling hash function, H(r[1, ..., k]) can be calcu-

lated in a much faster way:

H(r[1, ..., k]) = (H(r[0, ..., k − 1])− χ(r[0])× hk−1)× h+ χ(r[k])× h0,

which only requires one subtraction, three multiplications and one addition. And I

can continue to calculate the hash values for the subsequent k-mers in the fragment in

this fashion. Thus, after the hash value of a given k-mer is calculated, the hash value

can be looked up in the hash table, and if it is in the hash table, its associated counter is

47

incremented accordingly. Since RNA-Skim uses this specially designed hash function,

I implemented the hashtable in RNA-Skim using open addressing with linear probing.

The base h is arbitrarily set to be a prime number 37, and the function χ() maps every

character to its actual ASCII value.

Quantification Since every cluster of transcripts has a unique set of sig-mers, which

are the k-mers that never appear in other transcript clusters, every cluster can be inde-

pendently quantified by RNA-Skim, resulting in a set of smaller independent quantifi-

cation problems, instead of one huge whole transcriptome quantification problem in

other approaches.

Formally, if φp is a cluster of transcripts, the set of sig-mers of φP is denoted by

S(φp), a sig-mer is denoted by s , and the number of sig-mers that are contained by

transcript t is denoted by bt. From the previous steps, the following information can

be obtained: cs (the number of occurrences of the sig-mer s in the RNA-Seq data) and

ys,t (binary variables indicating whether the sig-mer s is contained in the sequence of

transcript t or not). C is the number of occurrences of all sig-mers (C =
∑

s cs). An

occurrence of a sig-mer in the RNA-Seq dataset is denoted by o (o ∈ O(φp)) and its

sig-mer is denoted by zo, and the set of all occurrences of sig-mers is denoted by O(φp)

(e.g., s ∈ s(φp)).

Same as in the previous study (Pachter, 2011), we define Ψ = {αt}t∈φp where αt is

the proportion of all selected sig-mers that are included by the reads from transcript t,

and
∑
αt = 1. For an occurrence o, p(o ∈ t) represents the probability that o is chosen

from transcript t, in a generative model,

p(o ∈ t) = yzo,t
αt

bt
(3.3)

Therefore, the likelihood of observing all occurrences of the sig-mers as a function

48

of the parameter Ψ is

L(Ψ) =
∏

o∈O(φp)

∑
t∈φp

p(o ∈ t) (3.4)

=
∏

o∈O(φp)

∑
t∈φp

yzo,t
αt
bt

(3.5)

=
∏

s∈S(φp)
(
∑
t∈φp

ys,t
αt
bt

)cs . (3.6)

This is in spirit similar to the likelihood function used in other studies, except that

this is the likelihood of observing sig-mers rather than fragments (Li and Dewey, 2011)

or k-mers (Patro et al., 2013). Thus, an EM algorithm is used to find Ψ that maximizes

the likelihood: it alternates between allocating the fraction of counts of observed sig-

mers to transcripts according to the proportions Ψ and updating Ψ given the amount of

sig-mers assigned to transcripts.

Specifically, βs,t is the expected number of occurrences of sig-mer s assigned to

transcript t, and in the expectation step of the EM algorithm, its value is computed by

βs,t = cs

ys,t
αt
bt∑

q∈φp
ys,q

αq
bq

. (3.7)

In the maximization step, αt can be estimated by

∑
s∈S(φP) βs,t

C
, which is the ratio of

the number of occurrences of sig-mers assigned to transcript t to the total number of

occurrences of all sig-mers. The details of how these steps are derived can be found

in Xing et al. (2006) RNA-Skim also applies the same technique used in Patro et al.

(2013), Nicolae et al. (2011), and Turro et al. (2011) to collapse sig-mers if they are

contained by the same set of transcripts.

In RNA-Seq, if the read length is R, there are R distinct reads that may cover a

given position in a transcript, and R − k + 1 distinct reads to entirely cover a k-mer

49

Transcriptome	
Par//oning	

Transcripts	 (e.g.	 in	 FASTA	 file)	 	
	 t1: AAAGGGAAAACTCTC!
t2: AAAGGGAAAAGGGTT!
t3: ATTTCATCGA!
t4: ATTTCCTCTC!
t5: AAAGGGAAAACTATC!

t3: ATTTCATCGA!
t4: ATTTCCTCTC!

 0 1 0 GGTT !
 1 1 1 GGAA	
 0 0 1 TATC!

 1 1 ATTT	
 1 0 ATCG	

Filtering	 by	
rolling	 hash	 	

Sig-‐mers	
discovery	 and	
selec/on	

RNA-‐seq	 data	 	
(e.g.	 in	 FASTA	 file)	

5	 sig-‐mers	 are	 selected	 and	 reported	 with	 the	
transcripts	 containing	 them.	 This	 is	 in	 the	
format	 of	 the	 binary	 matrix	 Y,	 which	 will	 be	
used	 in	 the	 quan/fica/on	 step.	

AAAGGGAAA!
AAAACTCTC!
AAAACTCTC!
AAAAGGGTT!
ATTTCATCG!
TTTCCTCTC!
AAAACTCTC!
… … … … !

AAAGGGAAA!
AAAACTCTC!
AAAACTCTC!
AAAAGGGTT!
ATTTCATCG!
TTTCCTCTC!
AAAACTCTC!
… … … … …!

Coun/ng	

C=32!
cGGTT=12!
cGGAA=20!
cTATC=0	
	
!C=70!
cATCG=20!
cATTT=50	
	

Quan/fica/on	

Quan/fica/on	
Since	 no	 sig-‐mer	 is	
shared	 between	 clusters,	
we	 can	 run	 separate	 EM	
algorithms	 on	 the	 counts	
of	 different	 clusters	

t2	

Y=!

t1	 t5	
!

"

#
#
#

$

%

&
&
&

Y=!
!

"

#
#
#

$

%

&
&
&

t3	 t4	

EM	 algorithm	

Result	

Result	

Quan%fica%on	 Stage	

Uses	 sig-‐mers	 Uses	
matrices	

RNA-‐Skim	 clusters	 genes	 instead	 of	 transcripts	 to	
save	 computa/on	 /me.	 For	 the	 sake	 of	 simplicity,	
in	 this	 example,	 we	 assume	 each	 gene	 contains	 only	
one	 transcript.	

Zhang et al

Second, every distinct k-mer in �p is added into BF.ALL, and if it is
already in BF.ALL (that is, it was added when RNA-Skim examined other
clusters), it is added into BF.DUP . Therefore, if a k-mer occurs in multiple
clusters, it is added in BF.DUP . Last, every k-mers of the transcriptome is
enumerated again, and if the k-mer is not in BF.DUP , it is reported as a
sig-mer, since it only occurs in one cluster.

Since bloom filters may have false positive reports, but never have false
negatives, through this approach, some genuine sig-mer strings may be
missed, but a non-sig-mer will never be labeled as a sig-mer. Figure 2 shows
the pseudocode of our algorithm.

1. foreach partition of transcripts �p 2 ⇥

2. foreach location l 2 �p

3. generate the k-mer s at the location l

4. if s 62 BF.S(�p) then
5. Add s into BF.S(�p)

6. if s 62 BF.ALL then
7. Add s into BF.ALL

8. else
9. Add s into BF.DUP

10. end foreach
11. end foreach
12. foreach partition of transcripts �p 2 ⇥

13. foreach location l 2 �p

14. generate the k-mer s at the location l

15. if s 62 BF.DUP then
16. Report s as a sig-mer of �p.

17. end foreach
18. end foreach

Fig. 2: The pseudocode to find all sig-mers.

Sig-mers selection RNA-Skim does not use all sig-mers because they
are still numerous. Instead, RNA-Skim selects a subset of sig-mers for the
quantification stage. We used a simple approach to select sig-mers from all
sig-mers found by the previous step: for every transcript, sig-mers are evenly
chosen based on the sig-mer locations such that any two sig-mers are at
least 50 base-pair away from each other in the given transcript. Since some
sig-mers may appear in multiple transcripts in the same cluster, for every
selected sig-mer, all transcripts are re-examined, and the ones that contain
the sig-mer are also recorded. Through this approach, we can guarantee that
every transcript is associated with some sig-mers (as long as there exist some
sig-mers). A good sig-mer coverage is crucial for accurate quantification
of transcript abundance. The final output of the preparation step includes
the partition of the transcriptome, selected sig-mers, and their associating
clusters and transcripts.

2.4 Quantification Stage
The quantification stage requires users to provide RNA-Seq data (e.g.
FASTQ/FASTA files) and the selected sig-mers associated with transcripts
containing them from the preparation stage.

Sig-mer counting Since the number of sig-mers used in RNA-Skim is
much smaller than the number of k-mers typically used by other k-mer-
based approaches, all sig-mers can be stored in a hash table in memory. The
number of occurrences of all sig-mers can be counted by enumerating all
k-mers in the RNA-Seq reads and looking up the k-mers in the hash table to
update the corresponding counters. RNA-Skim basically follows this scheme
with a tweak on the hash function to further speed up the computation.

In a straightforward implementation of the previously described
algorithm, every k-mer incurs an O(k) operation to calculate its hash value,
and this hash operation can be further reduced to O(1) by the Robin-Karp

pattern matching algorithm (Karp & Rabin, 1987). The Robin-Karp pattern
matching algorithm requires a special hash function — rolling hash — that
only uses multiplications, additions and subtractions.

In rolling hash, the hash value H(r) of the first k-mer in the RNA-Seq
read r is calculated by

H(r[0, ..., k � 1]) =�(r[0]) ⇥ hk�1 + �(r[1]) ⇥ hk�2 + ... + �(r[k � 1]) ⇥ h0,

where h is the base of the hash function, r[i] is the ith character in s, and
the character hash function �() maps a character to an integer value. One
way to calculate the hash value for the (sequentially ordered) second k-mer
r[1, ..., k] is

H(r[1, ..., k]) =�(r[1]) ⇥ hk�1 + �(r[2]) ⇥ hk�2 + ... + �(r[k]) ⇥ h0.

But thanks to the structure of the rolling hash function, H(r[1, ..., k]) can
be calculated in a much faster way:

H(r[1, ..., k]) = (H(r[0, ..., k � 1]) � �(r[0]) ⇥ hk�1) ⇥ h + �(r[k]) ⇥ h0,

which only requires one subtraction, three multiplications and one
addition. We can look up the hash value in the hash table, and if it is in the
hash table, its associated counter is incremented accordingly. Since RNA-
Skim uses this specially designed hash function, we implemented our own
hashtable in RNA-Skim using open addressing with linear probing. The base
h is arbitrarily set to be a prime number 37, and the function �() maps every
character to its actual ASCII value.

Quantification Since every cluster of transcripts has a unique set of sig-
mers, which are the k-mers that never appear in other transcript clusters,
every cluster can be independently quantified by RNA-Skim, resulting in
a set of smaller independent quantification problems, instead of one huge
whole transcriptome quantification problem in other approaches.

Formally, if �p is a cluster of transcripts, the set of sig-mers of �P is
denoted by S(�p), a sig-mer is denoted by s (s 2 S(�p)), an occurrence
of a sig-mer in the RNA-Seq dataset is denoted by o (o 2 O(�p)) and
its sig-mer is denoted by zo, and the set of all occurrences of sig-mers is
denoted by O(�p). From the previous steps, we obtained cs (the number of
occurrences of the sig-mer s in the RNA-Seq data), ys,t (binary variables
indicating whether the sig-mer s is contained in the sequence of transcript t

or not), and bt (the number of sig-mers that are contained by transcript t). C

is the number of occurrences of all sig-mers (C =
P

s cs).
Same as in the previous study (Pachter, 2011), we define = {↵t}t2�p

where ↵t is the proportion of all selected sig-mers that are included by the
reads from transcript t, and

P
↵t = 1. For an occurrence o, p(o 2 t)

represents the probability that o is chosen from transcript t, in a generative
model,

p(o 2 t) / yzo,t
↵t

bt
(3)

Therefore, the likelihood of observing all occurrences of the sig-mers as
a function of the parameter is

L() =
Y

o2O(�p)

X

t2�p

p(o 2 t) /
Y

o2O(�p)

X

t2�p

yzo,t
↵t

bt
(4)

=
Y

s2S(�p)

(
X

t2�p

ys,t
↵t

bt
)cs . (5)

This is in spirit similar to the likelihood function used in other studies,
except that this is the likelihood of observing sig-mers rather than fragments
(Li & Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also used
an EM algorithm to find that maximizes the likelihood: it alternates
between allocating the fraction of counts of observed sig-mers to transcripts
according to the proportions and updating given the amount of sig-
mers assigned to transcripts. RNA-Skim also applies the same technique
used in Patro et al. (2013), Nicolae et al. (2011), and Turro et al. (2011) to
collapse sig-mers if they are contained by the same set of transcripts. (See
supplementary material)

4

Zhang et al

Second, every distinct k-mer in �p is added into BF.ALL, and if it is
already in BF.ALL (that is, it was added when RNA-Skim examined other
clusters), it is added into BF.DUP . Therefore, if a k-mer occurs in multiple
clusters, it is added in BF.DUP . Last, every k-mers of the transcriptome is
enumerated again, and if the k-mer is not in BF.DUP , it is reported as a
sig-mer, since it only occurs in one cluster.

Since bloom filters may have false positive reports, but never have false
negatives, through this approach, some genuine sig-mer strings may be
missed, but a non-sig-mer will never be labeled as a sig-mer. Figure 2 shows
the pseudocode of our algorithm.

1. foreach partition of transcripts �p 2 ⇥

2. foreach location l 2 �p

3. generate the k-mer s at the location l

4. if s 62 BF.S(�p) then
5. Add s into BF.S(�p)

6. if s 62 BF.ALL then
7. Add s into BF.ALL

8. else
9. Add s into BF.DUP

10. end foreach
11. end foreach
12. foreach partition of transcripts �p 2 ⇥

13. foreach location l 2 �p

14. generate the k-mer s at the location l

15. if s 62 BF.DUP then
16. Report s as a sig-mer of �p.

17. end foreach
18. end foreach

Fig. 2: The pseudocode to find all sig-mers.

Sig-mers selection RNA-Skim does not use all sig-mers because they
are still numerous. Instead, RNA-Skim selects a subset of sig-mers for the
quantification stage. We used a simple approach to select sig-mers from all
sig-mers found by the previous step: for every transcript, sig-mers are evenly
chosen based on the sig-mer locations such that any two sig-mers are at
least 50 base-pair away from each other in the given transcript. Since some
sig-mers may appear in multiple transcripts in the same cluster, for every
selected sig-mer, all transcripts are re-examined, and the ones that contain
the sig-mer are also recorded. Through this approach, we can guarantee that
every transcript is associated with some sig-mers (as long as there exist some
sig-mers). A good sig-mer coverage is crucial for accurate quantification
of transcript abundance. The final output of the preparation step includes
the partition of the transcriptome, selected sig-mers, and their associating
clusters and transcripts.

2.4 Quantification Stage
The quantification stage requires users to provide RNA-Seq data (e.g.
FASTQ/FASTA files) and the selected sig-mers associated with transcripts
containing them from the preparation stage.

Sig-mer counting Since the number of sig-mers used in RNA-Skim is
much smaller than the number of k-mers typically used by other k-mer-
based approaches, all sig-mers can be stored in a hash table in memory. The
number of occurrences of all sig-mers can be counted by enumerating all
k-mers in the RNA-Seq reads and looking up the k-mers in the hash table to
update the corresponding counters. RNA-Skim basically follows this scheme
with a tweak on the hash function to further speed up the computation.

In a straightforward implementation of the previously described
algorithm, every k-mer incurs an O(k) operation to calculate its hash value,
and this hash operation can be further reduced to O(1) by the Robin-Karp

pattern matching algorithm (Karp & Rabin, 1987). The Robin-Karp pattern
matching algorithm requires a special hash function — rolling hash — that
only uses multiplications, additions and subtractions.

In rolling hash, the hash value H(r) of the first k-mer in the RNA-Seq
read r is calculated by

H(r[0, ..., k � 1]) =�(r[0]) ⇥ hk�1 + �(r[1]) ⇥ hk�2 + ... + �(r[k � 1]) ⇥ h0,

where h is the base of the hash function, r[i] is the ith character in s, and
the character hash function �() maps a character to an integer value. One
way to calculate the hash value for the (sequentially ordered) second k-mer
r[1, ..., k] is

H(r[1, ..., k]) =�(r[1]) ⇥ hk�1 + �(r[2]) ⇥ hk�2 + ... + �(r[k]) ⇥ h0.

But thanks to the structure of the rolling hash function, H(r[1, ..., k]) can
be calculated in a much faster way:

H(r[1, ..., k]) = (H(r[0, ..., k � 1]) � �(r[0]) ⇥ hk�1) ⇥ h + �(r[k]) ⇥ h0,

which only requires one subtraction, three multiplications and one
addition. We can look up the hash value in the hash table, and if it is in the
hash table, its associated counter is incremented accordingly. Since RNA-
Skim uses this specially designed hash function, we implemented our own
hashtable in RNA-Skim using open addressing with linear probing. The base
h is arbitrarily set to be a prime number 37, and the function �() maps every
character to its actual ASCII value.

Quantification Since every cluster of transcripts has a unique set of sig-
mers, which are the k-mers that never appear in other transcript clusters,
every cluster can be independently quantified by RNA-Skim, resulting in
a set of smaller independent quantification problems, instead of one huge
whole transcriptome quantification problem in other approaches.

Formally, if �p is a cluster of transcripts, the set of sig-mers of �P is
denoted by S(�p), a sig-mer is denoted by s (s 2 S(�p)), an occurrence
of a sig-mer in the RNA-Seq dataset is denoted by o (o 2 O(�p)) and
its sig-mer is denoted by zo, and the set of all occurrences of sig-mers is
denoted by O(�p). From the previous steps, we obtained cs (the number of
occurrences of the sig-mer s in the RNA-Seq data), ys,t (binary variables
indicating whether the sig-mer s is contained in the sequence of transcript t

or not), and bt (the number of sig-mers that are contained by transcript t). C

is the number of occurrences of all sig-mers (C =
P

s cs).
Same as in the previous study (Pachter, 2011), we define = {↵t}t2�p

where ↵t is the proportion of all selected sig-mers that are included by the
reads from transcript t, and

P
↵t = 1. For an occurrence o, p(o 2 t)

represents the probability that o is chosen from transcript t, in a generative
model,

p(o 2 t) / yzo,t
↵t

bt
(3)

Therefore, the likelihood of observing all occurrences of the sig-mers as
a function of the parameter is

L() =
Y

o2O(�p)

X

t2�p

p(o 2 t) /
Y

o2O(�p)

X

t2�p

yzo,t
↵t

bt
(4)

=
Y

s2S(�p)

(
X

t2�p

ys,t
↵t

bt
)cs . (5)

This is in spirit similar to the likelihood function used in other studies,
except that this is the likelihood of observing sig-mers rather than fragments
(Li & Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also used
an EM algorithm to find that maximizes the likelihood: it alternates
between allocating the fraction of counts of observed sig-mers to transcripts
according to the proportions and updating given the amount of sig-
mers assigned to transcripts. RNA-Skim also applies the same technique
used in Patro et al. (2013), Nicolae et al. (2011), and Turro et al. (2011) to
collapse sig-mers if they are contained by the same set of transcripts. (See
supplementary material)

4

Zhang et al

Second, every distinct k-mer in �p is added into BF.ALL, and if it is
already in BF.ALL (that is, it was added when RNA-Skim examined other
clusters), it is added into BF.DUP . Therefore, if a k-mer occurs in multiple
clusters, it is added in BF.DUP . Last, every k-mers of the transcriptome is
enumerated again, and if the k-mer is not in BF.DUP , it is reported as a
sig-mer, since it only occurs in one cluster.

Since bloom filters may have false positive reports, but never have false
negatives, through this approach, some genuine sig-mer strings may be
missed, but a non-sig-mer will never be labeled as a sig-mer. Figure 2 shows
the pseudocode of our algorithm.

1. foreach partition of transcripts �p 2 ⇥

2. foreach location l 2 �p

3. generate the k-mer s at the location l

4. if s 62 BF.S(�p) then
5. Add s into BF.S(�p)

6. if s 62 BF.ALL then
7. Add s into BF.ALL

8. else
9. Add s into BF.DUP

10. end foreach
11. end foreach
12. foreach partition of transcripts �p 2 ⇥

13. foreach location l 2 �p

14. generate the k-mer s at the location l

15. if s 62 BF.DUP then
16. Report s as a sig-mer of �p.

17. end foreach
18. end foreach

Fig. 2: The pseudocode to find all sig-mers.

Sig-mers selection RNA-Skim does not use all sig-mers because they
are still numerous. Instead, RNA-Skim selects a subset of sig-mers for the
quantification stage. We used a simple approach to select sig-mers from all
sig-mers found by the previous step: for every transcript, sig-mers are evenly
chosen based on the sig-mer locations such that any two sig-mers are at
least 50 base-pair away from each other in the given transcript. Since some
sig-mers may appear in multiple transcripts in the same cluster, for every
selected sig-mer, all transcripts are re-examined, and the ones that contain
the sig-mer are also recorded. Through this approach, we can guarantee that
every transcript is associated with some sig-mers (as long as there exist some
sig-mers). A good sig-mer coverage is crucial for accurate quantification
of transcript abundance. The final output of the preparation step includes
the partition of the transcriptome, selected sig-mers, and their associating
clusters and transcripts.

2.4 Quantification Stage
The quantification stage requires users to provide RNA-Seq data (e.g.
FASTQ/FASTA files) and the selected sig-mers associated with transcripts
containing them from the preparation stage.

Sig-mer counting Since the number of sig-mers used in RNA-Skim is
much smaller than the number of k-mers typically used by other k-mer-
based approaches, all sig-mers can be stored in a hash table in memory. The
number of occurrences of all sig-mers can be counted by enumerating all
k-mers in the RNA-Seq reads and looking up the k-mers in the hash table to
update the corresponding counters. RNA-Skim basically follows this scheme
with a tweak on the hash function to further speed up the computation.

In a straightforward implementation of the previously described
algorithm, every k-mer incurs an O(k) operation to calculate its hash value,
and this hash operation can be further reduced to O(1) by the Robin-Karp

pattern matching algorithm (Karp & Rabin, 1987). The Robin-Karp pattern
matching algorithm requires a special hash function — rolling hash — that
only uses multiplications, additions and subtractions.

In rolling hash, the hash value H(r) of the first k-mer in the RNA-Seq
read r is calculated by

H(r[0, ..., k � 1]) =�(r[0]) ⇥ hk�1 + �(r[1]) ⇥ hk�2 + ... + �(r[k � 1]) ⇥ h0,

where h is the base of the hash function, r[i] is the ith character in s, and
the character hash function �() maps a character to an integer value. One
way to calculate the hash value for the (sequentially ordered) second k-mer
r[1, ..., k] is

H(r[1, ..., k]) =�(r[1]) ⇥ hk�1 + �(r[2]) ⇥ hk�2 + ... + �(r[k]) ⇥ h0.

But thanks to the structure of the rolling hash function, H(r[1, ..., k]) can
be calculated in a much faster way:

H(r[1, ..., k]) = (H(r[0, ..., k � 1]) � �(r[0]) ⇥ hk�1) ⇥ h + �(r[k]) ⇥ h0,

which only requires one subtraction, three multiplications and one
addition. We can look up the hash value in the hash table, and if it is in the
hash table, its associated counter is incremented accordingly. Since RNA-
Skim uses this specially designed hash function, we implemented our own
hashtable in RNA-Skim using open addressing with linear probing. The base
h is arbitrarily set to be a prime number 37, and the function �() maps every
character to its actual ASCII value.

Quantification Since every cluster of transcripts has a unique set of sig-
mers, which are the k-mers that never appear in other transcript clusters,
every cluster can be independently quantified by RNA-Skim, resulting in
a set of smaller independent quantification problems, instead of one huge
whole transcriptome quantification problem in other approaches.

Formally, if �p is a cluster of transcripts, the set of sig-mers of �P is
denoted by S(�p), a sig-mer is denoted by s (s 2 S(�p)), an occurrence
of a sig-mer in the RNA-Seq dataset is denoted by o (o 2 O(�p)) and
its sig-mer is denoted by zo, and the set of all occurrences of sig-mers is
denoted by O(�p). From the previous steps, we obtained cs (the number of
occurrences of the sig-mer s in the RNA-Seq data), ys,t (binary variables
indicating whether the sig-mer s is contained in the sequence of transcript t

or not), and bt (the number of sig-mers that are contained by transcript t). C

is the number of occurrences of all sig-mers (C =
P

s cs).
Same as in the previous study (Pachter, 2011), we define = {↵t}t2�p

where ↵t is the proportion of all selected sig-mers that are included by the
reads from transcript t, and

P
↵t = 1. For an occurrence o, p(o 2 t)

represents the probability that o is chosen from transcript t, in a generative
model,

p(o 2 t) / yzo,t
↵t

bt
(3)

Therefore, the likelihood of observing all occurrences of the sig-mers as
a function of the parameter is

L() =
Y

o2O(�p)

X

t2�p

p(o 2 t) /
Y

o2O(�p)

X

t2�p

yzo,t
↵t

bt
(4)

=
Y

s2S(�p)

(
X

t2�p

ys,t
↵t

bt
)cs . (5)

This is in spirit similar to the likelihood function used in other studies,
except that this is the likelihood of observing sig-mers rather than fragments
(Li & Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also used
an EM algorithm to find that maximizes the likelihood: it alternates
between allocating the fraction of counts of observed sig-mers to transcripts
according to the proportions and updating given the amount of sig-
mers assigned to transcripts. RNA-Skim also applies the same technique
used in Patro et al. (2013), Nicolae et al. (2011), and Turro et al. (2011) to
collapse sig-mers if they are contained by the same set of transcripts. (See
supplementary material)

4

Zhang et al

Second, every distinct k-mer in �p is added into BF.ALL, and if it is
already in BF.ALL (that is, it was added when RNA-Skim examined other
clusters), it is added into BF.DUP . Therefore, if a k-mer occurs in multiple
clusters, it is added in BF.DUP . Last, every k-mers of the transcriptome is
enumerated again, and if the k-mer is not in BF.DUP , it is reported as a
sig-mer, since it only occurs in one cluster.

Since bloom filters may have false positive reports, but never have false
negatives, through this approach, some genuine sig-mer strings may be
missed, but a non-sig-mer will never be labeled as a sig-mer. Figure 2 shows
the pseudocode of our algorithm.

1. foreach partition of transcripts �p 2 ⇥

2. foreach location l 2 �p

3. generate the k-mer s at the location l

4. if s 62 BF.S(�p) then
5. Add s into BF.S(�p)

6. if s 62 BF.ALL then
7. Add s into BF.ALL

8. else
9. Add s into BF.DUP

10. end foreach
11. end foreach
12. foreach partition of transcripts �p 2 ⇥

13. foreach location l 2 �p

14. generate the k-mer s at the location l

15. if s 62 BF.DUP then
16. Report s as a sig-mer of �p.

17. end foreach
18. end foreach

Fig. 2: The pseudocode to find all sig-mers.

Sig-mers selection RNA-Skim does not use all sig-mers because they
are still numerous. Instead, RNA-Skim selects a subset of sig-mers for the
quantification stage. We used a simple approach to select sig-mers from all
sig-mers found by the previous step: for every transcript, sig-mers are evenly
chosen based on the sig-mer locations such that any two sig-mers are at
least 50 base-pair away from each other in the given transcript. Since some
sig-mers may appear in multiple transcripts in the same cluster, for every
selected sig-mer, all transcripts are re-examined, and the ones that contain
the sig-mer are also recorded. Through this approach, we can guarantee that
every transcript is associated with some sig-mers (as long as there exist some
sig-mers). A good sig-mer coverage is crucial for accurate quantification
of transcript abundance. The final output of the preparation step includes
the partition of the transcriptome, selected sig-mers, and their associating
clusters and transcripts.

2.4 Quantification Stage
The quantification stage requires users to provide RNA-Seq data (e.g.
FASTQ/FASTA files) and the selected sig-mers associated with transcripts
containing them from the preparation stage.

Sig-mer counting Since the number of sig-mers used in RNA-Skim is
much smaller than the number of k-mers typically used by other k-mer-
based approaches, all sig-mers can be stored in a hash table in memory. The
number of occurrences of all sig-mers can be counted by enumerating all
k-mers in the RNA-Seq reads and looking up the k-mers in the hash table to
update the corresponding counters. RNA-Skim basically follows this scheme
with a tweak on the hash function to further speed up the computation.

In a straightforward implementation of the previously described
algorithm, every k-mer incurs an O(k) operation to calculate its hash value,
and this hash operation can be further reduced to O(1) by the Robin-Karp

pattern matching algorithm (Karp & Rabin, 1987). The Robin-Karp pattern
matching algorithm requires a special hash function — rolling hash — that
only uses multiplications, additions and subtractions.

In rolling hash, the hash value H(r) of the first k-mer in the RNA-Seq
read r is calculated by

H(r[0, ..., k � 1]) =�(r[0]) ⇥ hk�1 + �(r[1]) ⇥ hk�2 + ... + �(r[k � 1]) ⇥ h0,

where h is the base of the hash function, r[i] is the ith character in s, and
the character hash function �() maps a character to an integer value. One
way to calculate the hash value for the (sequentially ordered) second k-mer
r[1, ..., k] is

H(r[1, ..., k]) =�(r[1]) ⇥ hk�1 + �(r[2]) ⇥ hk�2 + ... + �(r[k]) ⇥ h0.

But thanks to the structure of the rolling hash function, H(r[1, ..., k]) can
be calculated in a much faster way:

H(r[1, ..., k]) = (H(r[0, ..., k � 1]) � �(r[0]) ⇥ hk�1) ⇥ h + �(r[k]) ⇥ h0,

which only requires one subtraction, three multiplications and one
addition. We can look up the hash value in the hash table, and if it is in the
hash table, its associated counter is incremented accordingly. Since RNA-
Skim uses this specially designed hash function, we implemented our own
hashtable in RNA-Skim using open addressing with linear probing. The base
h is arbitrarily set to be a prime number 37, and the function �() maps every
character to its actual ASCII value.

Quantification Since every cluster of transcripts has a unique set of sig-
mers, which are the k-mers that never appear in other transcript clusters,
every cluster can be independently quantified by RNA-Skim, resulting in
a set of smaller independent quantification problems, instead of one huge
whole transcriptome quantification problem in other approaches.

Formally, if �p is a cluster of transcripts, the set of sig-mers of �P is
denoted by S(�p), a sig-mer is denoted by s (s 2 S(�p)), an occurrence
of a sig-mer in the RNA-Seq dataset is denoted by o (o 2 O(�p)) and
its sig-mer is denoted by zo, and the set of all occurrences of sig-mers is
denoted by O(�p). From the previous steps, we obtained cs (the number of
occurrences of the sig-mer s in the RNA-Seq data), ys,t (binary variables
indicating whether the sig-mer s is contained in the sequence of transcript t

or not), and bt (the number of sig-mers that are contained by transcript t). C

is the number of occurrences of all sig-mers (C =
P

s cs).
Same as in the previous study (Pachter, 2011), we define = {↵t}t2�p

where ↵t is the proportion of all selected sig-mers that are included by the
reads from transcript t, and

P
↵t = 1. For an occurrence o, p(o 2 t)

represents the probability that o is chosen from transcript t, in a generative
model,

p(o 2 t) / yzo,t
↵t

bt
(3)

Therefore, the likelihood of observing all occurrences of the sig-mers as
a function of the parameter is

L() =
Y

o2O(�p)

X

t2�p

p(o 2 t) /
Y

o2O(�p)

X

t2�p

yzo,t
↵t

bt
(4)

=
Y

s2S(�p)

(
X

t2�p

ys,t
↵t

bt
)cs . (5)

This is in spirit similar to the likelihood function used in other studies,
except that this is the likelihood of observing sig-mers rather than fragments
(Li & Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also used
an EM algorithm to find that maximizes the likelihood: it alternates
between allocating the fraction of counts of observed sig-mers to transcripts
according to the proportions and updating given the amount of sig-
mers assigned to transcripts. RNA-Skim also applies the same technique
used in Patro et al. (2013), Nicolae et al. (2011), and Turro et al. (2011) to
collapse sig-mers if they are contained by the same set of transcripts. (See
supplementary material)

4

There	 are	 two	 clusters	 reported	 by	 the	 transcriptome	
par//oning.	 Colors	 are	 only	 for	 the	 demonstra/on	 purpose,	
and	 they	 are	 not	 results	 from	 RNA-‐Skim.	 Colors	 other	 than	 gray	
mean	 the	 corresponding	 sequences	 only	 appear	 in	 the	 given	
cluster.	 	 The	 k-‐mers	 with	 underlines	 are	 selected	 sig-‐mers.	
	

Prepara%on	 Stage	

t1: AAAGGGAAAACTCTC!
t2: AAAGGGAAAAGGGTT!
t5: AAAGGGAAAACTATC!

Figure 3.3: An illustration of how RNA-Skim works on a toy transcriptome of five
transcripts.

starting at the given location. So, assuming the reads are uniformly sampled, R×βs,t
R−k+1

is

the estimated abundance based on sig-mer s. When the EM algorithm converges, the

transcript abundance µt can be calculated by averaging the abundance levels estimated

by each sig-mer in the transcript,

µt =

∑
s∈φp R× βs, t

(R− k + 1)× bt
, (3.8)

RNA-Skim reports both Reads Per Kilobase per Million mapped reads (RPKM) and

Transcripts Per Million (TPM) as the relative abundance estimations of the transcripts,

and both metrics are calculated by the way used in Sailfish (Patro et al., 2013).

So far, I have described both preparation and quantification stages in RNA-Skim.

In the last, a toy example is provided to illustrate how each stage works in RNA-Skim

in Fig 3.3.

50

3.3 Software for comparison

RNA-Skim is implemented in C++ with heavy usage of the open-source libraries

bloomd (Dadgar, 2013), protobuf (Google, 2013) and an open-source class StringPiece

(Hsieh, 2013). The parameter settings will be discussed in the Results section.

I compared RNA-Skim with four different quantification methods: Sailfish (0.6.2),

Cufflinks (2.1.1), RSEM (1.2.8), and eXpress (1.5.1) in both simulated and real datasets.

TopHat (2.0.10) and Bowtie (1.0.0) are used as the aligners when needed.

For Sailfish, the k-mer size is set to be 31 because this value gives the highest

accuracy in the simulation study, among all k-mer sizes supported by Sailfish (k ≤

31). For other software, I followed the experiments in Patro et al. (2013) to set the

parameters. Input to Cufflinks was generated by TopHat which used Bowtie (–bowtie1)

allowing up to three mismatches per read (-N 3 and –read-edit-dist 3). Both TopHat and

Cufflinks were provided with a reference transcriptome. RSEM and eXpress directly

used Bowtie to align the reads to the transcriptome, with the argument (-N 3) to allow

up to three mismatches per read. The eXpress was executed in the streaming mode,

to save the total quantification running time. For simulation study, estimations without

bias correction for Sailfish, Cufflinks and eXpress are used for comparison. For real

datasets, the estimations with bias correction are used for these three methods. For

RSEM, since it does not provide an option to control the bias correction, we did not

differentiate its usage in the simulation and real data studies. Other parameters were set

to default values for these methods.

All methods were run on a shared cluster managed by the LSF (Load Sharing Fa-

cility) system. The running time and CPU time of these methods are measured by LSF.

Each cluster node is equipped with Intel(R) Xeon(R) 12-core 2.93 GHz CPU and at

least 48 GB memory. All files were served by the Lustre file system.

51

3.4 Materials

All materials including both simulated and real data are based on the mouse pop-

ulation and consist of paired-end reads with 100 base-pairs length per read. We used

C57BL/6J downloaded from Ensembl (Build 70) as the reference genome in all exper-

iments. All methods studied in this chapter were provided with 74215 protein-coding

annotated transcripts from the Ensembl database. The simulation datasets, including

100 mouse samples with the number of reads varying from 20 millions to 100 millions,

were generated by the flux-simulator (Griebel et al., 2012) with its default error model

enabled. For real datasets, we used the RNA-Seq data from 18 inbred samples and 58

F1 samples derived from three inbred mouse strains CAST/EiJ, PWK/PhJ, and WS-

B/EiJ. The RNA-Seq data was sequenced from mRNA extracted from brain tissues of

both sexes and from all 6 possible crosses (including the reciprocal).

3.5 Results

In this section, we first compared alternative partition algorithms and how they im-

pact sig-mer selections in RNA-Skim and then furnish a comparison with four alterna-

tive methods on both simulated and real data. At last, we demonstrated that RNA-Skim

is the fastest method among all considered methods.

3.5.1 Similarity-based Partition Algorithm

I compared the result of the similarity-based partition algorithm with those from

two alternative ways to partition transcripts: transcript-based partition (every cluster

contains a transcript) and gene-based partition (every cluster contains the transcripts

from an annotated gene). The similarity threshold γ in the partition algorithm was set

52

to be 0.2 (more details are provided later on the parameter choice). Table 3.1 compares

these partitions on the same transcriptome. The number of clusters generated by the

similarity-based partition is 20% fewer than the number of genes. The average number

of transcripts per cluster is about 20% more than the average number of transcripts per

gene. Most clusters only contain transcripts from a single gene, though the largest clus-

ter contains 6107 transcripts. These transcripts in the largest cluster share a substantial

number of k-mers (e.g., from paralogous genes) which need to be examined altogether

in order to accurately estimate their abundance levels. Failing to consider them together

(e.g., by using transcript-based or gene-based partitions) will compromise the number

of sig-mers that help distinguish transcripts and hence impair the accuracy of transcrip-

tome quantification. Even though this cluster contains many transcripts, it represents

less than 10% of the total number of transcripts, which means the number of transcripts

that RNA-Skim needs to quantify is 10% smaller than the Sailfish does.

type
number of

clusters

average number of
transcripts per

cluster

size of the
largest cluster

transcript 74215 1 1
gene 22584 3.29 39
RNA-Skim 18269 4.06 6107
Sailfish 1 74215 74215

Table 3.1: This table compares three different partitions. If the partition contains only
one cluster of all transcripts, RNA-Skim degenerates to Sailfish. I thus listed it in the
table for comparison.

these three types of partitions are used as the input to the sig-mer discovery method.

I define the proportion of k-mers in a transcript that are sig-mers as the sig-mer cov-

erage of the transcript. To evaluate the goodness of a partition, I measured t and plot

the cumulative distribution of all transcripts sorted in ascending order of their sig-mer

coverage in Fig. 6, with varying k-mer sizes. For any transcript, the higher the sig-mer

coverage is, the more accurate the abundance estimation will be. The similarity-based

partition is the best: almost all transcripts have at least 80% sig-mer coverage, which

53

pushes the cumulative distribution curves to the lower right corner of the plot regardless

of the k-mer size. The gene-based partition is slightly worse: about 95% of transcripts

have at least 80% sig-mer coverage. The gene-based partition tends to result in low

sig-mer coverage for genes sharing similar sequences. The transcript-based partition is

the worst for an obvious reason: transcripts from the same genes may share exons and

thus the number of sig-mers that can distinguish a transcript may be very small. I also

observed that using longer k-mer improves the sig-mer coverage.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Transcript sig−mer coverage

C
um

ul
at

iv
e

di
st

rib
ut

io
n

of
 tr

an
sc

rip
ts

similarity−based partition, k−mer size=20
similarity−based partition, k−mer size=40
similarity−based partition, k−mer size=60
similarity−based partition, k−mer size=80
gene−based partition, k−mer size=20
gene−based partition, k−mer size=40
gene−based partition, k−mer size=60
gene−based partition, k−mer size=80
transcript−based partition, k−mer size=20
transcript−based partition, k−mer size=40
transcript−based partition, k−mer size=60
transcript−based partition, k−mer size=80

Figure 3.4: The cumulative distribution of all transcripts of their sig-mer coverage.
The lower the curve is, the better the corresponding partition is.

In the end, RNA-Skim selects a total of 2586388 sig-mers to be used in the quan-

tification stage, and these sig-mers count for less than 3.5% of 74651849 distinguished

k-mers used by Sailfish. Since RNA-Skim uses a much smaller set of sig-mers, it is

able to use the rolling hash method — a very fast but memory-inefficient method — to

count sig-mers in RNA-Seq reads.

54

3.5.2 Simulation Study

●

●
●

●
●

●
● ● ● ●

●
●

●

●

●

●

0.89

0.90

0.91

0.92

0.93

0.94

The length of the sig−mers

P
ea

rs
on

 (
Tr

ut
h)

20 30 40 50 60 70 80 90

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(a)

●

●
●

●
●

● ● ● ● ● ●
●

●

●

●

●0.86

0.88

0.90

0.92

0.94

The length of the sig−mers

S
pe

ar
m

an
 (

Tr
ut

h)

20 30 40 50 60 70 80 90

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(b)

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.04

0.06

0.08

0.10

0.12

The length of the sig−mers

S
ig

nf
ic

ia
nt

 F
al

se
 P

os
iti

ve
 R

at
e

20 30 40 50 60 70 80 90

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(c)

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

The length of the sig−mers

S
ig

ni
fic

an
t F

al
se

 N
eg

at
iv

e
R

at
e

20 30 40 50 60 70 80 90

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(d)

Figure 3.5: These figures plot Pearson (Truth), Spearman (Truth), SFPR, and SFNR of
RNA-Skim as a function of sig-mer length. For comparison, I also plotted that of the
other four methods as the horizontal lines. The reported values are the average across
100 simulated samples. The red crosses indicate the sig-mer length (i.e., 60 base pairs)
used in other experiments in this chapter.

Fig. 3.5 compares the performance of the five methods on the simulated data using

four metrics: Pearson’s correlation coefficient, Spearman’s rank correlation coefficient,

significant false positive rate and significant false negative rate. For brevity, Pearson

(Truth), Spearman (Truth), SFPR and SFNR are employed to denote these metrics re-

spectively. The Pearson’s correlation coefficient is calculated in a logarithmic scale,

using all transcripts whose true and estimated abundance values are larger than 0.01

RPKM. This calculation is the same as that used by Sailfish (Patro et al., 2013). The

55

Spearman’s rank correlation is calculated on the set of transcripts whose true abun-

dance values are larger than 0.01 RPKM. If a transcript’s estimation is larger than 0.1

RPKM, but its true abundance value is less than 0.01 RPKM (a 10 fold suppression), it

is called as a significant false positive; similarity, if a transcript’s estimation is smaller

than 0.01 RPKM, but its true abundance value is larger than 0.1 RPKM (a 10 fold am-

plification), it is called as a significant false negative. The significant false positive rate

and significant false negative rate are calculated to assess the estimation distributions

on the set of transcripts excluded by the previous metrics. There are two reasons that I

chose SFPR and SFNR instead of the regular false positive rate and false negative rate:

first, we prefer the transcripts with relatively large abundance values (larger than 0.1

RPKM) because they are accountable for 99% the RNA-Seq data; second, due to the

noisy nature of RNA-Seq, for the transcripts with small abundance values (less than

0.01 RPKM), it is very difficult to calculate accurately, e.g., both RSEM and Sailfish

set the default minimal abundance value to be 0.01 RPKM.

For RNA-Skim, the sig-mer length are varied from 20 to 95 base-pairs. Other meth-

ods are presented as horizontal lines for comparisons. Despite the small differences by

individual metrics, Fig. 3.5 shows that these five methods exhibit comparable per-

formance: no method outperforms the remaining methods across all metrics and the

maximal difference by any metric is within 0.05.

Fig. 3.5(a) and Fig. 3.5(b) show two concave curves of Pearson (Truth) and Spear-

man (Truth) for RNA-Skim by varying its sig-mer length. There are two factors ex-

plaining the concave curves. First, when the sig-mer length increases, sig-mers become

more distinct, and the sig-mer coverage increases, which improves the correlations be-

tween the truth and estimation. Second, for any fixed read length, when increasing

the sig-mer length, the probability that a sig-mer is contained by a single read drops,

causing the decrease in the number of sig-mers observed in the RNA-Seq data, which

56

may exacerbate the correlations. In summary, there is a clear trade-off on the sig-mer

length. Empirically, the best sig-mer length is between 55 to 60, and I thus used 60 in

other experiments.

For the same reason, in Fig. 3.5(c) and Fig. 3.5(d), I found that the increase in the

sig-mer length affects positively on SFPR, but negatively on SFNR. Other methods also

follow the same inverse correlation: while Sailfish and eXpress are the worst in SFPR

among these five methods, they are the best two in SFNR.

●

●

●

●

●

●

●

●

●

0.91

0.92

0.93

0.94

The number of selected sig−mers (million)

P
ea

rs
on

 (
Tr

ut
h)

1.1 1.47 1.87 2.58 3.2

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(a)

●

●

●

●

●

●

●

●

●

0.89

0.90

0.91

0.92

0.93

0.94

The number of selected sig−mers (million)

S
pe

ar
m

an
 (

Tr
ut

h)

1.1 1.47 1.87 2.58 3.2

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(b)

● ● ● ● ● ● ● ● ●

0.04

0.06

0.08

0.10

0.12

The number of selected sig−mers (million)

S
ig

nf
ic

ia
nt

 F
al

se
 P

os
iti

ve
 R

at
e

1.1 1.47 1.87 2.58 3.2

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(c)

●

●

●

●

●

●

●

●

●

0.08

0.10

0.12

0.14

0.16

The number of selected sig−mers (million)

S
ig

ni
fic

an
t F

al
se

 N
eg

at
iv

e
R

at
e

1.1 1.47 1.87 2.58 3.2

● RNA−Skim
Sailfish
Cufflinks

RSEM
eXpress

(d)

Figure 3.6: These figures plot Pearson (Truth), Spearman (Truth), SFPR, and SFNR
as a function of the number of sig-mers used in RNA-Skim. For comparison, I also
showed that of the other four methods as horizontal lines. The reported values are the
average across 100 simulated samples. The red crosses indicate the number of sig-mers
(i.e., 2.58 million sig-mers) used in other experiments in this chapter.

Fig. 3.6 shows the Pearson (Truth), Spearman (Truth), SFPR, and SFNR as a func-

57

tion of the number of sig-mers used in RNA-Skim. In Fig. 3.6 (a)(b)(d), when the

number of sig-mers increases, the three metrics improve substantially, though at differ-

ent paces. Fig. 3.6 (c) shows no significant change in SFPR for different numbers of

sig-mers. This observation suggests that we should use as many sig-mers as possible

given available memory space. To ensure RNA-Skim to have similar memory usage to

that of other methods, RNA-Skim uses 2.58 million sig-mers. This is also the default

setting in other experiments in this chapter.

Table 3.2 shows that the metrics do not vary much when using different similarity

thresholds. In the simulation study, the similarity threshold γ is varied from 0.06 to

0.28 and observed at most 0.005 change across all metrics. Hence, the detailed results

for the thresholds between 0.06 (excluded) and 0.28 (excluded) are omitted.

γ Pearson Spearman SFP SFN
0.06 0.9438 0.9242 0.0692 0.0233
0.28 0.9440 0.9237 0.0698 0.0235

Table 3.2: This table shows that the four metrics do not change much for different
similarity threshold γ.

Fig. 3.7 shows a strong and clear linear correlation between the estimated RPKM

scores by RNA-Skim and the true RPKM scores on one simulated sample.

In simulation study, the accuracy of RNA-Skim depends on the sig-mer length and

the number of sig-mers, but is insensitive to the threshold γ. When these parameters

are chosen properly, RNA-Skim produces similar results to those by other methods.

3.5.3 Study using Real RNA-Seq data

Since the flux simulator cannot simulate RNA-Seq data with bias effects, and there

might also be other unknown factors in the real RNA-Seq data that the simulator fails

to capture, RNA-Skim is also compared with other methods on real data. Since the

58

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01 1.00 100.00

0.
01

1.
00

10
0.

00

Ground Truth

E
st

im
at

ed
 R

P
K

M
 b

y
R

N
A

−
S

ki
m

Figure 3.7: The scatter plot of the estimated RPKM scores by RNA-Skim vesus the
true RPKM scores. Both axes are in a logarithmic scale, and all transcripts whose true
RPKM or estimated RPKM is less than 0.01 are omitted.

ground truth on real data is not known, the Pearson correlation and Spearman correla-

tion is computed between the results produced by RNA-Skim and one other method,

referred to as Pearson (methods) and Spearman (methods) to distinguish from the pre-

vious computed correlations between RNA-Skim result and the ground truth.

Fig. 3.8 shows that the distributions of the Pearson (methods) and Spearman (meth-

ods) are not significantly different between real data and simulated data. For example,

the differences between the mean values of the correlations on both simulated and real

data are no more than 0.02 across all methods. This consistency suggests that the result

from RNA-Skim may have similar correlations with the unobserved truth. The slightly

wider distribution of the correlations in real data (than that in simulated data) suggests

the real data may exhibit more diversity than simulated data.

3.5.4 Running Time

For the preparation stage (including transcriptome partitioning and sig-mer selec-

tion), RNA-Skim takes about 3 hours to finish on the mouse transcriptome by using a

59

0.84 0.86 0.88 0.90

0.75

0.80

0.85

Pearson (Methods)

S
pe

ar
m

an
 (

M
et

ho
ds

)

●

●

●

● ●

●● ●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

Simulation Results
Real Results
Mean (Simulation)
Mean (Real)

(a)

0.86 0.87 0.88 0.89 0.90

0.60

0.65

0.70

0.75

Pearson (Methods)

S
pe

ar
m

an
 (

M
et

ho
ds

)

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

Simulation Results
Real Results
Mean (Simulation)
Mean (Real)

(b)

0.85 0.87 0.89 0.91

0.55

0.60

0.65

0.70

Pearson (Methods)

S
pe

ar
m

an
 (

M
et

ho
ds

)

●

●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

Simulation Results
Real Results
Mean (Simulation)
Mean (Real)

(c)

0.84 0.86 0.88 0.90

0.60

0.65

0.70

0.75

0.80

Pearson (Methods)

S
pe

ar
m

an
 (

M
et

ho
ds

)

●

●

●

● ●
●

● ●

●

● ●
●

●

●
●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

Simulation Results
Real Results
Mean (Simulation)
Mean (Real)

(d)

Figure 3.8: The distributions of the Pearson (methods) and Spearman (methods) corre-
lations between the results from RNA-Skim and the results from each of the remaining
methods on both simulated and real data.

single thread. Most time is spent on calculating the k-mer-based similarities between

different pairs of genes. It takes about 10 minutes to finish sig-mer discovery and se-

lection. It is worth noting that these steps only need to be run once for one population

beforehand, and after sig-mers are selected and their connections with transcripts are

established, the result can be repeatedly used on quantifying the transcriptome of many

samples. Therefore, the running time for the preparation stage is less critical than the

running time of the quantification stage, and the one-time investment of 3 hours is ac-

ceptable.

For the quantification stage, I compared both the running time and the CPU time of

60

Method
Number of

threads
Running time

(sec)
CPU time

(sec)
Speedup (CPU

time)
RNA-Skim 1 592 592 1x
Sailfish 8 972 7005 11.8x
TopHat + Cuf-
flinks

8 12480 68834 116x

Bowtie + RSEM 8 17160 79222 133x
Bowtie + eXpress 8 13800 111273 188x

Table 3.3: This table shows the running time of these five methods on a real sample
with 44 millions of paired-end reads.

these five methods on a real sample with 44 millions of paired-end reads. The running

time is the elapsed time between the start and end of a method, and the CPU time is

the total time a method uses on each core of the CPU. For a single thread method, the

running time is exactly the same as the CPU time. And for a multi-threading method

running on a multi-core CPU, the running time is typically shorter than the CPU time.

RNA-Skim is submitted as a single thread method. Sailfish, Cufflinks with TopHat as

the aligner, and RSEM with Bowtie as the aligner are submitted with multi-threading

enabled and requiring 8 threads. eXpress is an online algorithm, and it can quantify an

streaming input of alignments generated by Bowtie in real-time. Bowtie and eXpress

use 6 and 2 threads for alignment and quantification respectively.

Table 3.3 summarizes the running time of all five methods. RNA-Skim is the fastest,

about 11 times faster than the second best method, Sailfish, on the CPU time. Even

when Sailfish uses 8 threads, RNA-Skim is about 1.6 times faster on the running time

by just using one thread. Since the aligner usually consumes lots of computation time,

RNA-Skim has more than 100 times speedup on the CPU time compared with Cuf-

flinks, RSEM and eXpress.

Overall, these results demonstrate that RNA-Skim provides comparable accuracy

with other methods on both simulated and real data, using a much shorter running time.

61

3.6 Discussion and Conclusion

I introduced RNA-Skim, a lightweight method that can rapidly and efficiently esti-

mate the transcript abundance levels in RNA-Seq data. RNA-Skim exploits the property

of sig-mers, significantly reducing the number of k-mers used by the method and the

scale of the optimization problem solved by the EM algorithm. Based on the bench-

mark, it is at least 10 times faster than any alternative methods. To the best of my

knowledge, the design principle of almost all existing methods is to use as much data

as possible for RNA-Seq quantification. The results are encouraging, in the sense that

it demonstrates a different yet promising direction of building a much faster method by

discovering and using only informative and reliable features — the counts of sig-mers

in RNA-Seq data.

Currently, the annotation databases are incomplete and still in bootstrapping. Align-

ers and alignment-dependent RNA-Seq methods are commonly used to allow unknown

transcript discovery, which will further improve the completeness and accuracy of the

annotation databases. The performance of tools like Sailfish and RNA-Skim depends

on the quality of the annotation database. Their accuracy is likely to improve in both

accuracy and efficiency when better annotation databases become available.

62

CHAPTER 4

HTREEQA: USING SEMI-PERFECT PHYLOGENY TREES IN QUANTITATIVE

TRAIT

LOCI STUDY ON GENOTYPE DATA

In previous two chapters, I’ve discussed possible approaches to improve the ac-

curacy and the efficiency of the computational tools for RNA-Seq analysis. In this

chapter, I focus on a phylogeny-based method for QTL mapping for finding the as-

sociations between the genetic variants and the phenotypes. These phenotypes can be

either RNA-Seq based transcript abundances (e.g., generated by RNASkim) or common

quantitative traits such as height and susceptibility to common diseases.

4.1 Introduction

A common analytic application in multiparent populations is the detection of sta-

tistically significant association between genetic variants and phenotypes (Aylor et al.,

2011b; Kelada et al., 2012; Ferris et al., 2013; Phillippi et al., 2014). Many existing

QTL mapping methods consider each genetic marker independently (Akey et al., 2001;

Pe’er et al., 2006; Thomas, 2004). Standard statistical tests (such as the F-test) are

used to measure the significance of association between a phenotype and every SNP

in the genome. These single marker-based methods usually do not consider the effects

of (both genotyped and ungenotyped) neighboring markers and hence may fail to dis-

cover QTLs for complex traits. To address this limitation, cluster-based methods, such

as HAM (McClurg et al., 2006), QHPM (Onkamo et al., 2002) and HapMiner (Li and

Jiang, 2005), have been developed. Typically the genome is partitioned into a series of

63

intervals. For each interval these methods first cluster samples based on the genotypes

within it, and then assess the statistical correlation between the clusters and the pheno-

type of interest. The result is sensitive to the granularity of the partition, the definition

of genotype similarity, and the choice of clustering algorithms. More importantly, these

methods tend to assume mutations are the only events that cause the differences in the

DNA sequences of the samples, although this may not fully represent the genetic back-

ground underlying the differences.

Phylogeny trees have been widely used to model evolutionary history among dif-

ferent species, subspecies or strains (Yang et al., 2011). Their use in association study

requires inferring an accurate global phylogeny tree from the DNA sequences (Larribe

et al., 2002; Morris et al., 2002; Minichiello and Durbin, 2006). This may not be feasi-

ble for the high density markers in current QTL analysis. Some recent methods, such as

Genomic Control (Devlin and Roeder, 1999), EIGENSTRAT (Price et al., 2006), and

EMMA (Kang et al., 2008), attempt to build global models to account for genetic ef-

fects. EMMA computes a kinship matrix in order to correct the effect of the population

structure. Genomic Control estimates an inflation factor of the test statistics to account

for the inflation problem caused by unbalanced population structure. EIGENSTRAT

performs an orthogonal transformation on the genotypes using principal component

analysis (PCA) and then conducts the association study in the transformed space. How-

ever, the genetic background of the samples may not always be adequately captured by

a global model. This is particularly true for some multiparent crosses. For example,

the incipient Collaborative Cross population (Pre-CC). There is no significant global

population stratification among the Pre-CC lines since each of the eight founders con-

tributes roughly one-eighth of their entire genome (Aylor et al., 2011a). This unique

design removes the need for global population structure correction in QTL mapping.

However, some local population structure may still exist. Because of the limited

64

number of recombinations occurred since the founder generation, the genome of each

CC line is a coarse mosaic of composed segments from the eight founders. In a genomic

region, a CC line may be determined by the contribution from a single founder and

none from the rest. Since the eight founders are from three subspecies, local population

structure may exist in these CC lines. Uneven genetic background are observed at the

chromosome level in the 184 genotyped Pre-CC lines, and such pattern only becomes

stronger when at finer resolutions. (Please see the section on Results and Discussion

for further discussion of the local population structure in the Pre-CC lines).

Local phylogeny becomes a natural choice for capturing this type of effect. Sev-

eral recent methods (e.g., TreeLD (Zöllner and Pritchard, 2005), TreeDT (Sevon et al.,

2006), Blossoc (Mailund et al., 2006; Besenbacher et al., 2009), and TreeQA (Pan et al.,

2008, 2009)) have adopted local perfect phylogeny trees to model the genetic distance

between samples. These methods examine possible groupings induced by each local

phylogeny and report the ones showing strong statistical associations with the pheno-

type. Since these methods require a large number of statistical tests and often large

permutation tests, they are prone to multiple testing errors and incur significant com-

putational burden. TreeLD and TreeDT can handle only a very small number of SNP

markers and thus they are not suitable for large scale QTL mapping. Blossoc is more

efficient and can process the entire genome but still needs days to perform a large

number of permutation tests. The recently proposed TreeQA algorithm utilizes several

effective pruning techniques to reduce computational burden and is able to finish large

permutation tests in a few hours.

A common limitation shared by all of these local phylogeny-based methods is that

the perfect phylogeny trees can be only constructed from haplotypes. These methods

either assume that samples are inbred (i.e., no heterozygosity) which is not true for

many large mammalian multiparent crosses including the Pre-CC lines, or that a pre-

65

processing step phases each genotype into a pair of haplotypes. However, haplotype

reconstruction itself is a non-trivial process that is both time consuming (Scheet and

Stephens, 2006) and error prone (Ding et al., 2008). Even if haplotypes are phased ac-

curately, the two haplotypes of the same sample may be located at different branches of

a phylogeny tree and will be treated as if they were independent samples in subsequent

statistical tests. This may create a bias favoring additive effects and lead to spurious

results. For example, consider a recessive phenotype, A/a are used to represent the ma-

jority and minority alleles at the causative locus. The local phylogeny tree built from

the surrounding region has an edge corresponding to the causative SNP that separates

the samples into two groups carrying A and a alleles respectively. Each heterozygous

A/a sample is phased into two haplotypes, each of which belonging to a different group.

The group having allele a would have mixed phenotypes. This may weaken the power

of any statistical tests and fail to detect the causative edge (Wang and Sheffield, 2005;

Lettre et al., 2007). The scenario may become even worse for phenotypes having over-

dominant effects on heterozygous samples.

Therefore, a natural question to ask is whether a phylogeny-based QTL mapping

can be used on unphased genotypes directly. In this chapter, I introduce the model of

tri-state semi-perfect phylogeny tree directly built from unphased genotype data, and

explore its utility in GWAS. This chapter introduces HTreeQA (Zhang et al., 2012),

which has all the advantages of phylogeny-based methods and does not require a sepa-

rate phasing step. I also demonstrate via simulation studies that HTreeQA can detect a

wider range of genetic effects than other alternative methods.

66

4.2 Method

4.2.1 Notations

I follow the convention of using primed notation for unphased genotype data. Sup-

pose that there are m individuals and n SNPs. {S ′1, S ′2, · · · , S ′n} are used to represent

the unphased SNPs and {S1, S2, · · · , Sn} to represent the phased SNPs. The unphased

genotypes can be represented as an m× n matrixM′, where the k-th row corresponds

to the genotype of the k-th individual and the l-th column corresponds to the l-th SNP

marker S ′l . Similarly, the 2m haplotypes can be represented as a 2m × n matrix M,

where the 2k-th and (2k + 1)-th rows correspond to the haplotypes of the k-th individ-

ual. In the haplotype matrixM, ’0’ and ’1’ are used to represent the major allele and

the minor allele of a SNP respectively. In the genotype matrixM′, ’0’, ’1’, and ’H’ are

used to represent the homozygous major allele, the homozygous minor allele, and the

heterozygous allele of a SNP respectively. Table 4.1(a) shows an unphased genotype

matrix, and Table 4.1(b) shows a phased haplotype matrix.

4.2.2 Perfect Phylogeny Tree

An interval along the genome consists of a set of consecutive SNPs. It corresponds

to a submatrix Cu,v(M) ofM that contains all columns between the u-th column and

the v-th column. A perfect phylogeny tree is the tree representation of the evolution

genealogy for an interval in the genome (Gusfield, 1991).

Definition 3 Given an interval Cu,v(M) of 2m haplotypes and n SNPs, a perfect phy-

logeny tree is a tree in which the haplotype sequences are the leaves and SNPs are the

edges. Given an allele of any SNP, the subgraph induced by all the nodes that carry the

same allele is still a connected subtree.

67

(a) The unphased genotype matrix

Sample ID X1 X2 X3 X4 X5 Phenotype
A 0 0 1 1 0 10
B 0 0 1 0 1 10
C H 1 0 0 0 2
D H H 0 0 0 10
E 1 1 0 0 0 2

(b) The phased haplotype matrix

Haplotype ID S1 S2 S3 S4 S5 Phenotype
A1 0 0 1 1 0 10
A2 0 0 1 1 0 10
B1 0 0 1 0 1 10
B2 0 0 1 0 1 10
C1 0 1 0 0 0 2
C2 1 1 0 0 0 2
D1 0 0 0 0 0 10
D2 1 1 0 0 0 10
E1 1 1 0 0 0 2
E2 1 1 0 0 0 2

(c) The transformed genotype matrix. Bold columns are selected for building the tri-state semi-
perfect phylogeny tree

IDS ′1(0)S ′1(1)S ′1(H)S ′2(0)S ′2(1)S ′2(H)S ′3(0)S ′3(1)S ′3(H)S ′4(0)S ′4(1)S ′4(H)S ′5(0)S ′5(1)S ′5(H)
A 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0
B 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
C 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
D 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
E 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Table 4.1: An example data set

The perfect phylogeny can be treated as an evolutionary history for the interval.

Each edge represents the mutation event that derives two alleles of the corresponding

SNP. All the haplotypes can be explained by the the evolutionary history without any

recombination event. For example, Figure 4.1(a) shows the perfect phylogeny tree built

from the haplotypes in Table 4.1(b).

68

C1(2)

D2(10),C2(2),E1(2),E2(2)

D1(10)

A1(10),A2(10) B1(10),B2(10)

S3

S2

S1

S4

S5

(a) A perfect phylogeny tree

E(2) C(2)

D(10)

A(10) B(10)

S′
2

S′
1, S

′
2, S

′
3

S′
1

S′
4

S′
5

(b) A tri-state semi-perfect
phylogeny tree

C,D,E

A B

(c) An induced
tree by collapsing
edges.

E

A B

(d) An induced
tree by deleting
nodes.

Figure 4.1: Figure 4.1(a) is the perfect phylogeny tree generated on the phased hap-
lotypes in Table 4.1(b). Each node is labeled by its haplotype ID followed by the
corresponding phenotype value. Figure 4.1(b) is a tri-state semi-perfect phylogeny
tree generated on the unphased genotypes in Table 4.1(a). Each node is labeled by its
sample ID followed by the corresponding phenotype value. Figure 4.1(c) is the corre-
sponding perfect phylogeny tree by deleting S ′1 and S ′2 in Table 4.1(a). Figure 4.1(d) is
the corresponding perfect phylogeny tree by deleting samples C and D in Table 4.1(a).

4.2.3 Compatible Interval

An interval Cu,v(M) is a compatible interval if every pair of SNP markers in the

interval pass the 4-gamete test (hudson and kaplan, 1985). That is, at most 3 out of

the 4 possible allele pairs {00, 01, 10, 11} appear in each pair of SNPs in the interval.

This implies the existence of an evolution genealogy that can explain the evolutionary

history of these two markers without recombination events, given the assumption of

an infinite site model (i.e., no homoplasy). For a given interval, a perfect phylogeny

exists if and only if the interval is a compatible interval. If a compatible interval is not a

sub-interval of another compatible interval, it is called a maximal compatible interval.

69

4.2.4 Tri-State Semi-Perfect Phylogeny Tree

The multi-state perfect phylogeny tree (Gusfield, 2009) is a natural extension of

the perfect phylogeny tree discussed above. It was originally proposed to model the

rare events having multiple mutations at a single locus. Because the perfect phylogeny

cannot handle heterozygous site properly, a novel utility of the multi-state phylogeny is

proposed in modeling heterozygosity in QTL mapping. By treating the heterozygous

allele as the third status, a tri-state phylogeny tree can be generated from a set of un-

phased genotypes. Since this third state is not a result of a single mutation, the tri-state

phylogeny tree is a relaxation of a perfect phylogeny tree.

Definition 4 Given an interval Cu,v(M′) of m genotypes and n SNPs, a tri-state semi-

perfect phylogeny tree is a tree in which the genotype sequences are the leaves and

SNPs are the edges. A SNP corresponds to an edge if only two of the three possible

alleles are observed, and corresponds to two edges if all three alleles are observed.

Given an allele of any SNP, the subgraph induced by all the nodes that carry the same

allele is still a connected subtree.

4.2.5 Compatibility Test on Genotype Data

Given an interval Cu,v(M) in the genotype matrix, a binary matrix Cu,v(M′) is

constructed. Each column S ′i in Cu,v(M) corresponds to three binary columns S ′i(0),

S ′i(1) and S ′i(H) in Cu,v(M′). S ′i(0) is generated from S ′i by replacing every ’H’ in

S ′i by ’1’. S ′i(1) is generated from S ′i by replacing every ’H’ in S ′i by ’0’. S ′i(H) is

generated from S ′i by replacing every ’H’ in S ′i by ’1’, and ’0’ and ’1’ in S ′i by ’0’. This

is equivalent to representing the ’0’,’1’,’H’ alleles in the heterozygous S ′i by triplets

(0,0,0), (1,1,0) and (1,0,1), respectively. For example, Table 4.1(c) shows the generated

binary matrix Cu,v(M) for the genotype matrix Cu,v(M) in Table 4.1(a). Note that all

70

states in Cu,v(M) are identical to that in Cu,v(M′) except the ’H’ alleles and S ′(H)

columns. Given an interval, the following theorem states the necessary and sufficient

condition for the existence of a tri-state semi-perfect phylogeny (dress and steel, 1992).

Theorem 5 Given an interval Cu,v(M′) in the genotype matrix, there exists a tri-state

semi-perfect phylogeny, if and only if there exists a submatrix S formed by selecting

two of the three columns in Cu,v(M′) for each SNP marker, and any pair of columns in

S pass the 4-gamete test.

An integer linear programming approach (Gusfield, 2009) can be used to determine

whether an interval is compatible and to compute the submatrix S. For example, in the

matrix Cu,v(M′) shown in Table 4.1(c), the columns selected for S are highlighted in

bold. Once S is computed, a tri-state semi-perfect phylogeny tree can be constructed

by applying any standard perfect phylogeny tree algorithm on S. For example, Fig-

ure 4.1(b) shows the tri-state semi-perfect phylogeny tree constructed from the matrix

S in Table 4.1(c).

If there is not an heterozygous allele, each genotype will be composed of two iden-

tical haplotypes; the tri-state semi-perfect phylogeny tree is identical to the perfect phy-

logeny tree constructed on the haplotypes. If there are some heterozygous genotypes,

removing the rows or columns in the matrix containing the heterozygous alleles does

not affect the remaining part of the phylogeny tree. The tree in Figure 4.1(c) shows the

perfect phylogeny tree constructed on S ′3, S
′
4, S

′
5 in Table 4.1(a), which can also be de-

rived by collapsing the three edges labeled by S ′1 or S ′2 in Figure 4.1(b). If nodes C and

D (that have heterozygous genotypes) are removed in Figure 4.1(b), the resulting tree

is also identical to the perfect phylogeny tree constructed on A, B, E (Figure 4.1(d)).

Any heterozygosity only introduces local variations in a phylogeny tree.

71

Another important observation can be made by comparing the perfect phylogeny

tree constructed on the haplotypes to the genotype matrix. When the genotype matrix

contains a small percentage of heterozygosity, the tri-state semi-perfect phylogeny tree

shares a substantial common structure with the perfect phylogeny tree on the haplo-

types. Figure 4.1(a) shows the perfect phylogeny tree constructed on the haplotypes in

Table 4.1(b). Note that the two haplotypes (e.g., D1, D2) of the same genotype (e.g., D)

may be associated with different nodes in the tree. This decoupling weakens the power

of detecting non-additive genetic effects (more details later). However, this tree shares

common induced subtrees with the tri-state semi-perfect phylogeny tree. Removing

the nodes associated with the decoupled haplotypes will result in Figure 4.1(d), while

collapsing edges connecting these nodes will result in Figure 4.1(c).

4.2.6 Phylogeny Tree based Test

An edge in a phylogeny tree connects two disjoint subtrees. Removing x edges

partitions the tree into x + 1 subtrees. For example, removing the two edges labeled

with S ′1 and S ′2 in Figure 4.1(b) partitions genotypes into three groups { A, B, D }, { C

}, and { E }.

The statistical correlation between a partition and the phenotype can be examined

by the F-statistics. Assuming that for a total of t individuals, there are p groups, and the

ith group contains ti individuals. Xij represents the ith element in the jth group, Xj to

represent the mean of the jth group, and X to represent the overall mean value. Given

such a grouping of phenotype values, G, the F-statistics is defined as

F (G) =

∑p
j=1 tj(Xj −X)2∑p

j=1

∑tj
i=1 (Xij −Xj)2

(4.1)

The corresponding p-value of F (G) can be calculated in the following way. If the

phenotype values from each group follow a normal distribution, an F-test is applied to

72

obtain the corresponding p-value. Otherwise, a permutation test is needed. The p-value

is defined as n
nPerm

where nPerm is the number of permutations and n is the number

of times when the F-statistics of the permuted phenotype is larger than F (G).

HTreeQA examines all possible partitions generated by removing edges in the tree.

The partition that generates the most significant p-value is reported. The corresponding

p-value is used as the nominal (uncorrected) p-value of the association between the

compatible interval and the phenotype.

4.2.7 Permutation Test for Family-Wise Error Rate Controlling

Appropriate multiple testing correction is crucial for QTL studies. In HTreeQA, the

widely used permutation test is applied to control family-wise error rate (Westfall and

Young, 1993; Churchill and Doerge, 1994). In each permutation, the phenotype values

are randomly shuffled and reassigned to individuals. For each permuted phenotype,

HTreeQA repeats the previously described procedure and find the smallest p-value.

The corrected p-value is the proportion of the permuted data whose p-values are more

significant than that of the original data. The corrected p-value is referred as the per-

mutation p-value.

The basic routine of HTreeQA is summarized in Figure 4.2.

4.2.8 Comparison between TreeQA and HTreeQA

Two alternative approaches for local phylogeny-based QTL mapping methods are

outlined here, and I also discuss their pros and cons.

• HTreeQA: compatible intervals are computed using integer linear programming

73

Test whether there is
a tri-state semi-perfect phylogeny

for region R’.

For each marker s in
the genome, set s as an

initial region R.

Expand Region R by
adding its neighboring

marker s.
Set R’=RU{s}.

Yes

No

Use Integer Programming method to
generate tri-state semi-perfect

phylogeny P for region R. Save P into T.

Have
examined all

markers?
No

Use the method described in Permutation Test for Family-
Wise Error Rate Controlling subsection to get the threshold

of 5% family-wise error rate for the nomial p- values.

For each phylogeny P in T

For each possible partition K in P

Yes

ANOVA Test on
K and Penotype.

Permutation Test on
K and Phenotype.

If current p-value is smaller than the
phylogeny P’s p-value, set the phylogeny

P’s p-value as the current p-value.

Require
Permutation

Test?

YesNo

Have examined all
partitions? No

Have examined all
phylogenies?

Yes

No

Yes

Figure 4.2: The workflow of HTreeQA. The input are the genotype and phenotype data.
The output is a list of phylogenies and their p-values for measureing the association
with the phenotype, and a threshold of p-value representing the 5% family-wise error
rate (FWER).

and construct a tri-state semi-perfect phylogeny trees for each compatible inter-

val. Then HTreeQA is applied to find significant associations.

• Running TreeQA on phased data: the genotypes are first phased using any stan-

dard phasing algorithm and then TreeQA is applied on the resulting haplotypes.

Each haplotype is assumed to have the same phenotype value as the original

genotype.

The second approach has an inherent drawback. It decouples the two haplotypes

of the same genotype. As a result, the two haplotypes may reside in remote branches

of the tree, which limits the ability to test certain genetic effects in QTL mapping. For

74

example, the phenotype in Table 4.1(a) follows a recessive model defined on S ′2: The

phenotype is 2 for samples (C,E) having minor allele (’1’) and is 10 for the remaining

samples A, B, D (with alleles ’0’ or ’H’). There does not exist a set of edges in Fig-

ure 4.1(a) that can perfectly separate these two groups. (The haplotype D2 will always

be in the same group as C1, E1, E2.) In contrast, the tri-state semi-perfect phylogeny

tree has an edge S ′2 that perfectly separates A, B, D from C, E. Therefore, the tri-state

semi-perfect phylogeny tree is more suitable for handling heterozygosity in association

studies.

4.3 Materials

4.3.1 Collaborative Cross

The Collaborative Cross ("Collaborative Cross Consortium", 2012) is a large panel

of recombinant inbred multiparent crosses bred from a set of 8 inbred founder mouse

strains (short names in parentheses): 129S1/SvlmJ (129S1), A/J (AJ), C57BL/6J (B6),

NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and

WSB/EiJ (WSB). Breeding of the CC is an ongoing effort, and at present a relatively

small number of finalized lines are available. Nonetheless, partially inbred lines taken

from an early stage of the CC breeding process, the so-called incipient strains of Col-

laborative Cross (Pre-CC) population, has been studied and used for QTL identification

(Aylor et al., 2011b; Kelada et al., 2012; Ferris et al., 2013; Phillippi et al., 2014). This

comprises 184 lines, each with one replicate, that have attained on average 6.7 genera-

tion of inbreeding following the initial 8-way cross, resulting in genomes with approx-

imately 16% residual heterozygosity. The genotypes at approximately 180K SNPs are

collected using the mouse diversity array (Yang et al., 2009), which can be accessed

through the CC status website (http://csbio.unc.edu/CCstatus/index.py). Two pheno-

75

types are studied. One is the white head spot, which was originally observed on one of

the CC founders, WSB/EiJ. Because there are no white head-spotted mice found in F1

crosses of the CC founders, the phenotype is believed to be a recessive trait. Among

the 184 mice, there are six with white head spot. Another phenotype I study is the

average daily running distance for mice of 5-6 days old. This is a typical measurement

for mouse activity. The phentotypes are supplied as supplementary materials.

4.3.2 Synthetic Data Sets

The phenotype was simulated using 3 different models of genetic effects: additive,

recessive, and overdominant (a special case of epistasis effect) models. The overdomi-

nant model is also included because I observe that heterozygous individuals sometimes

exhibit extreme phenotypes. This phenomenon cannot be captured by an additive or

recessive model.

To simulate phenotypes, I adopt the method used in (Long and Langley, 1999). To

simulate an additive phenotype for a given SNP, the following formula is used:

yi =
√

1− πN(0, 1) +Qi

√
π

2p(1− p)

where π is the percentage of the variation attributable to the quantitative trait nucleotide

(QTN), N(0, 1) is the standard normal distribution, and p is the minor allele frequency.

In the additive model, Qi takes values -1, 0 and 1 for homozygous wild type, heterozy-

gous type, or homozygous type, respectively. For recessive and overdominant models,

the following formula is used,

yi =
√

1− πN(0, 1) +Q′i

√
π

2p′(1− p′)

where p′ is the fraction of individuals that are homozygous mutants. In a recessive

model, Q′i is 1 for homozygous mutant and 0 otherwise. In an overdominant model,

76

Qi takes 1 for heterozygous mutant and 0 otherwise. All causative SNPs are removed

from the genotypes prior to analysis. I represent results of a wide range of realistic

contributions of genetic variations by testing five genetic variation settings of π: 0.05,

0.1, 0.15, 0.2 and 0.25.

Genotypes of 170 independent individuals are simulated. Under each genetic effect

model, 100 independent test cases under each setting are generated. In each case, there

are 10000 SNPs and one causative SNP is randomly picked among the SNPs with Minor

Allele Frequency (MAF) larger than 0.15.

4.4 Results and Discussion

4.4.1 Population Structure in the Pre-CC Lines

Population stratification is an important issue in QTL analysis. Spurious associa-

tions may be induced by the stratification if it is not addressed properly (Kang et al.,

2008). The combinatorial breeding design of the Collaborative Cross yields genetically

independent incipient CC lines, that ensures balanced contributions of all eight founder

strains without noticeable global population stratification (Aylor et al., 2011a). Fig-

ure 4.3(a) shows a global phylogeny tree of 43 randomly selected Pre-CC lines. The

balanced tree structure illustrates that these mice are genetically diverse and equally

distant from each other. This observation is further confirmed by the kinship matrix in

Figure 4.4(a) used by EMMA for modeling genetic background (Kang et al., 2008).

In Figure 4.4(a), each row (column) of the kinship matrix corresponds to a CC strain.

Each entry in the matrix is the kinship coefficient that represents the genetic relatedness

between the two mice. I observe that all off-diagonal entries in Figure 4.4(a) have al-

most identical values (around 0.8), which suggests that no significant global population

stratification exists in these Pre-CC mice.

77

OR380m68

OR5415m125

OR3252m48

OR2662m56
O

R
5087m

132

O
R
34

01
m

38O
R

1
9
0
m

5
8

O
R

1
4
2
7
m

5
4

O
R

1
5
6
6
m

1
7
8

O
R

5
1
1
8
m

1
4
8

O
R

5
1
5
6
m

1
2
6

O
R

5
2
9
1
m

1
2
4

O
R

5
3
4
4
m

1
3
7

O
R

5
2
5
2
m

1
3
0

O
R

4
7
7
m

1
3
7

O
R

3
5
9
4
m

4
6

O
R
4445m

140O
R

779m
145

OR5370m131

OR3007m56

OR5528m134

OR820m54

OR167m178

OR489m75

OR5154m139

O
R

3232m
40

O
R
35

64
m

40

O
R

3
5
7
1
m

4
2

O
R

5
5
1
5
m

1
2
5

O
R

3
0
9
1
m

4
2

O
R

1
2
4
6
m

7
1

O
R

5
0
6
1
m

1
2
5

O
R

5
3
8
m

1
4
8

O
R

8
6
7
m

1
7
1

O
R

8
9
6
m

6
2

O
R

2
5
5
8
m

5
4

O
R

6
5
2
m

1
7
4

O
R
2291m

63

O
R

559m
153

OR113m86

OR3011m46

OR5076m135

A

(a) Global phylogeny of CC

OR380m68
OR5344m137OR1427m54

OR896m62

O
R

3252m
48

O
R
47

7m
13

7

O
R

5
0
8
7
m

1
3
2

O
R

5
3
7
0
m

1
3
1

O
R

8
6
7
m

1
7
1

O
R

8
2
0
m

5
4O
R

1
2
4
6
m

7
1

O
R

2
2
9
1
m

6
3

O
R

5
0
6
1
m

1
2
5

O
R

5
2
9
1
m

1
2
4

O
R

1
6
7
m

1
7
8

O
R

4
8
9
m

7
5

O
R
2662m

56

O
R

5156m
126

OR5118m148
OR559m153

OR3007m56

OR3401m38

OR5415m125

OR5528m134

OR5252m130

O
R

5154m
139

O
R
25

58
m

54

O
R

3
2
3
2
m

4
0

O
R

3
0
1
1
m

4
6

O
R

3
0
9
1
m

4
2

O
R

5
3
8
m

1
4
8

O
R

7
7
9
m

1
4
5 O

R
4
4
4
5
m

1
4
0

O
R

3
5
6
4
m

4
0

O
R

1
9
0
m

5
8

O
R

6
5
2
m

1
7
4

O
R

3
5
9
4
m

4
6

O
R
1566m

178

O
R

5515m
125

OR113m86

OR3571m42

OR5076m135

A

(b) Phylogeny built on Chromosome 10

OR380m68OR190m58
OR820m54OR477m137

O
R

896m
62

O
R
32

52
m

48

O
R

5
0
7
6
m

1
3
5

O
R

1
5
6
6
m

1
7
8

O
R

3
5
7
1
m

4
2

O
R

3
5
6
4
m

4
0

O
R

3
0
0
7
m

5
6

O
R

5
1
5
6
m

1
2
6

O
R

5
1
1
8
m

1
4
8

O
R

5
5
9
m

1
5
3

O
R

1
6
7
m

1
7
8O

R
3
4
0
1
m

3
8

O
R
5415m

125
O

R
5528m

134
OR5252m130OR5154m139

OR2558m54

OR3232m40

OR5291m124

OR3091m42

OR538m148

O
R

779m
145

O
R
48

9m
75

O
R

4
4
4
5
m

1
4
0

O
R

1
1
3
m

8
6

O
R

2
6
6
2
m

5
6

O
R

8
6
7
m

1
7
1 O

R
6
5
2
m

1
7
4

O
R

5
3
7
0
m

1
3
1

O
R

1
2
4
6
m

7
1

O
R

2
2
9
1
m

6
3

O
R

5
0
6
1
m

1
2
5

O
R

5
5
1
5
m

1
2
5

O
R
1427m

54

O
R

5087m
132

OR5344m137

OR3594m46

OR3011m46

A

(c) Phylogeny built on an interval from 85Mbps
to 105Mbps on Chromosome 10

OR3564m40

OR5291m124

OR652m174

OR1246m71O
R

1427m
54

O
R
15

66
m

17
8

O
R

1
6
7
m

1
7
8

O
R

1
9
0
m

5
8

O
R

2
2
9
1
m

6
3

O
R

2
5
5
8
m

5
4

O
R

2
6
6
2
m

5
6

O
R

3
0
0
7
m

5
6

O
R

3
2
3
2
m

4
0

O
R

3
2
5
2
m

4
8

O
R

3
4
0
1
m

3
8

O
R

3
5
7
1
m

4
2

O
R
3594m

46O
R

380m
68OR477m137

OR5061m125

OR5076m135

OR5087m132

OR5118m148

OR5154m139

OR5156m126

O
R

5252m
130

O
R
53

44
m

13
7

O
R

5
3
7
0
m

1
3
1

O
R

5
4
1
5
m

1
2
5

O
R

5
5
1
5
m

1
2
5

O
R

5
5
2
8
m

1
3
4

O
R

5
5
9
m

1
5
3

O
R

8
2
0
m

5
4

O
R

8
6
7
m

1
7
1

O
R

8
9
6
m

6
2

O
R

1
1
3
m

8
6

O
R

3
0
1
1
m

4
6

O
R
3091m

42

O
R

4445m
140

OR489m75

OR538m148

OR779m145

A

(d) Tri-state semi-perfect phylogeny built on
the compatible interval (20Kbps) reported as a
QTL of white spot

Figure 4.3: Four phylogenies of 43 randomly selected (from a total of 184) Pre-CC
mice. The sum of the edge depth between a leaf and the origin represents the genetic
distance of the corresponding mouse from the common ancestry of the 43 mice. The
mice with white head spot are highlighted in red. Their nearest common ancestor is
indicated by a circled "A" in each figure. In Figure 4.3(a), the global phylogeny is
balanced and all mice are almost equally distant from each other. The phylogenies
in Figure 4.3(b) and 4.3(c) are no longer balanced, with several deep branches. The
local population structure is a confounding factor that complexes the QTL analysis.
The tri-state semi-perfect phylogeny in Figure 4.3(d) has the simplest structure with an
informative branch that contains all four white spot mice.

78

(1) (2) (3)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4.4: Three kinship matrices represent the genetic relatedness over the entire
genome between any pair of the 184 CC mice based on the whole genome (a), the Chro-
mosome 10 (b), and the 20Mbps interval in Chromosome 10 (c) respectively. The mice
are arranged in the same order in both x and y axes. In Figure 4.4(a), all off-diagonal
entries have almost identical values, suggesting that there is no global population struc-
ture. In Figure 4.4(b)(c), the mice are arranged in the order of their genetic relatedness,
genetically similar mice are near each other.

4.4.2 EMMA will degenerate to standard linear model

in Collaborotive Corss

EMMA can efficiently control population structure in QTL mapping, however, it

becomes unnecessary when using EMMA to analyze CC genome. In this section, I

provide a statistical analysis that EMMA degenerates to a standard linear model when

applied to the CC lines.

First, we define a new class of matrix named Kuniform(D,S),

Kuniform(D,S) =

D S · · · S

S D · · · S

...
...

S S · · · D

(4.2)

where D represents the diagonal entries and S represents the off-diagonal entries in the

matrix.

Assume that y is a vector of phenotypes, X is a vector of fixed effects from a SNP,

79

and e is a vector of residual effects for each individual. We omit the indicator matrix

Z used in original EMMA model, because in the CC data, Z is an identity matrix. The

EMMA model is presented in the following form:

y = µ1 + Xβ + u + e (4.3)

u ∼ MVN(0, σ2
KKemma) (4.4)

µ ∼ N(0, σ2
µ) (4.5)

e ∼ MVN(0, σ2
eKuniform(1, 0)) (4.6)

where MVN represents a multivariate normal distribution. Kemma is the kinship

matrix inferred by the EMMA package.

Similarly, a standard linear model is in the following form:

y = µ1 + Xβ + e (4.7)

µ ∼ N(0, σ2
µ) (4.8)

e ∼ MVN(0, σ2
eKuniform(1, 0)) (4.9)

Assuming the samples of a population have exactly the same relatedness S:

Kuniform(1, S) = Kuniform(S, S) +Kuniform(1− S, 0) (4.10)

µ1 ∼ MVN(0, σµKuniform(1, 1)) (4.11)

e ∼ MVN(0, σµKuniform(1, 0)) (4.12)

Thus, if Kemma = Kuniform(1, S), by re-factorization of the random effects in the

EMMA model, we have

y = µ1 + Xβ + e (4.13)

µ1 ∼ MVN(0, Kuniform(σ2
µ + σ2

KS, σ
2
µ + σ2

KS)) (4.14)

e ∼ MVN(0, σ2
eKuniform((1− σ2

K)S + 1, 0)) (4.15)

80

This has the same form of a standard linear regression model. In CC, the kinship

matrix can be represented by a Kuniform matrix with tolerable numerical error. This

suggests that there is no significant difference between EMMA and the standard linear

regression model when these two methods are applied to Collaborative Cross data

4.4.3 Local Population Structure

Although the genome of each CC line receives a balanced contribution from each

founder strain, the founder contribution is not uniformly distributed along the genome

because of the small number of recombination events undergone by each CC line. The

genome of a CC line is essentially a mosaic of a small number of founder haplotype

segments. On average, Pre-CC autosomal genomes had 142.3 segments on average (st

dev. = 21.8) with a median segment length of 10.46Mb (Aylor et al., 2011a). As a re-

sult, some local population structure may be observed because the eight founder strains

are not equally distant from each other (i.e. three of founders are wild strains). The

population structure is visible at the chromosome level. For example, there are several

deep branches in the phylogeny tree of the selected Pre-CC mice built on Chromosome

10 (Figure 4.3(b)). The corresponding kinship matrix in Figure 4.4(b) shows that there

are at least three subpopulations. The subpopulation structure is more evident if nar-

rowed down to a 20Mbps interval from 85Mbps to 105Mbps on Chromosome 10. The

phylogeny tree in Figure 4.3(c) becomes more skewed, and the corresponding kinship

matrix in Figure 4.4(c) also exhibits more pronounced structural patterns.

4.4.4 Selected Methods for Comparison

HTreeQA is also compared with existing methods: TreeQA (Pan et al., 2008, 2009),

BLOSSOC (Mailund et al., 2006; Besenbacher et al., 2009), EMMA (Kang et al.,

81

Methods
Non-Phylogeny-based Methods SMA, HAM, EMMA

Phylogeny-based Methods BLOSSOC, TreeQA, HTreeQA

Table 4.2: Selected methods for comparison

2008), and HAM (McClurg et al., 2006) using both real and simulated data sets. Some

other methods, such as HapMiner (Li and Jiang, 2005) and TreeLD (Zöllner and Pritchard,

2005), are too slow to process large data sets. For comparison purposes, the other two

methods are also implemented: SMA (Single Marker Association Mapping) and HAM

(Haplotype Association Mapping). In SMA, each SNP marker partitions samples into

groups based on the alleles. The ANOVA test is used to evaluate the significance of the

partition. In HAM, a sliding window of 3 consecutive SNP is used to group samples

based on their sequences, and the ANOVA test is conducted to test the association be-

tween the phenotypes and the grouping. FastPhase (Scheet and Stephens, 2006) is used

to reconstruct haplotypes from the genotypes for the methods that require haplotype

data (TreeQA and BLOSSOC).

Note that BLOSSOC, TreeQA, and HTreeQA are phylogeny-based methods. SMA,

HAM, and EMMA are non-phylogeny based methods. Although EMMA offers an op-

tion to use global phylogeny to estimate the kinship matrix, it does not test the associ-

ations between the phenotype and the phylogenetic trees. Table 4.2 shows the selected

methods for comparison.

4.4.5 Performance Comparison on the White Head Spot Phenotype

The white head spot is known as a recessive trait carried by WSB/EiJ (Aylor et al.,

2011a). I apply the selected methods to the white head spot phenotype. A permutation

test is applied to control the family-wise error rate (FWER) (Westfall and Young, 1993;

Churchill and Doerge, 1994). With FWER = 0.05, all the selected methods except

82

HAM identify a QTL, which is around 100Mbps in Chromosome 10 (Figure 4.5). This

QTL is close to a gene named kit ligand known to be controlling white spotting (Aylor

et al., 2011a). HAM fails to detect the QTL because it does not consider the compati-

bility between consecutive SNPs. The incompatibility between two consecutive SNPs

suggests a high possibility of having a historical recombination event between them.

Treating an interval containing incompatible SNPs as a single locus may lead to spuri-

ous results. The phylogeny-based methods including HTreeQA can avoid this problem

by only examining phylogeny trees constructed from compatible intervals.

In each figure of Figures 4.3(a)-4.3(d), the nearest common ancestor of the four

white head spot mice (highlighted in red) is marked by a circled "A". I observe from

Figures 4.3(a)-4.3(c) that the distance between the common ancestor and the four mice

becomes smaller when the interval on which the tree is built becomes shorter. It is

evident that the four white spot mice are clustered in the phylogeny tree built over the

20Mb region in Figure 4.3(c), despite the (local) population structure. This becomes

more clear in Figure 4.3(d) where the four white head spot mice having white head

spot located on the same branch of the tri-state semi-perfect phylogeny tree built on

the compatible interval at the QTL. This demonstrates the effectiveness of the proposed

model.

4.4.6 Performance Comparison on the Mouse Running

Distance Phenotype

I apply the selected methods on the phenotype "Mouse Running Distance at day

5/6". With FWER=0.05, all the methods except SMA, identified a QTL at 169Mbp-

169.2Mbp (89cM) on Chromosome 1 as shown in Figure 4.6. The QTL falls into the

previously reported cplaq3 region (Mayeda and Hofstetter, 1999). A later study also

confirmed this QTL (Hofstetter et al., 2003).

83

0
5

1
0

1
5

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e

1 2 3 5 6 8 10 12 14 17

(a) Result of HTreeQA

0
5

1
0

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(b) Result of TreeQA

0
5

1
0

1
5

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(c) Result of EMMA

0
4
0

8
0

Chromosome ID

B
L
O

S
S

O
C

 s
c
o
re

1 2 3 5 6 8 10 12 14 17

(d) Result of BLOSSOC

0
1
0

2
5

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(e) Result of HAM

0
5

1
0

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(f) Result of SMA

Figure 4.5: QTL mapping of the white head spot phenotype. Only the SNPs that
have top 0.5% -log(p-value) or BLOSSOC score are plotted in the figure. One QTL
is detected by HTreeQA, which is near the location of gene kit ligand. The remaining
methods except HAM have similar results to that of HTreeQA. The dashed line is the
significance level FWER = 0.05.

Among the selected methods, only HTreeQA identified another QTL with FWER=0.05,

in the region of 16M-25Mbps (8-12.5cM) on Chromosome 12. The QTL falls into an

unnamed QTL region at 11cM on Chromosome 12 reported in (Hofstetter et al., 2003).

The reason that many methods fail to report this QTL is that these methods have lim-

ited power in detecting non-additive effects. This result demonstrates that HTreeQA

can detect more types of effects than the other methods.

84

0
2

4
6

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e

1 2 4 5 6 8 10 12 14 17

(a) Result of HTreeQA

0
4

8

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(b) Result of TreeQA

0
2

4
6

Chromosome ID

−
lo

g
1
0
(P

−
va

lu
e
)

1 2 3 4 5 6 8 10 12 14 17

(c) Result of EMMA

0
1
0

2
5

Chromosome ID

B
L
O

S
S

O
C

 s
c
o
re

1 2 3 5 6 8 10 12 14 17

(d) Result of BLOSSOC

0
4

8
1
2

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 4 5 6 8 10 12 14 16 18

(e) Result of HAM

0
4

8

Chromosome ID

−
lo

g
1
0
(p

−
va

lu
e
)

1 2 3 5 6 8 10 12 14 17

(f) Result of SMA

Figure 4.6: QTLs for mice daily average running distance. Only the SNPs that have
top 0.5% -log(p-value) or BLOSSOC score are plotted in the figure. The dashed line is
the significance level FWER = 0.05.

4.4.7 Simulation Study

To examine the performance of HTreeQA in a controlled environment, we simulate

three different types of effects: additive, recessive and overdominant. For each selected

method, only the SNPs with significance level FWER=0.05 are reported as QTLs. Since

the causative SNPs are removed in the simulated data before the QTL analysis, in order

to measure the accuracy of the result, a reported QTL is considered as a true positive

when it is located within 50 SNPs from the causative SNP. Three measurements are

measured to estimate the performance of each method: precision, recall and F1 score.

Precision is defined as the ratio between the number of true QTLs that are detected and

the total number of detected QTLs. Recall is defined as the ratio between the number

85

of true QTLs that are detected and the total number of true QTLs that are simulated.

The F1 score is the harmonic mean of precision rate and recall rate, and is defined as

follows:

F1 =
2× Precision× Recall

Precision + Recall
.

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

P
re

c
is

io
n

 (
%

)

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(a) Results on Additive Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

P
re

c
is

io
n

 (
%

)

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(b) Results on Recessive
Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

P
re

c
is

io
n

 (
%

) HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(c) Results on Overdominant
Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

R
e

c
a

ll
(%

)

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(d) Results on Additive Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

R
e

c
a

ll
(%

)

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(e) Results on Recessive
Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

R
e

c
a

ll
(%

)

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(f) Results on Overdominant
Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

F
1

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(g) Results on Additive Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

F
1

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(h) Results on Recessive
Model

0.05 0.10 0.15 0.20 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

The propotion of the variance caused

 by SNP effects (%)

F
1

HTreeQA

TreeQA

EMMA

BLOSSOC

HAM

SMA

(i) Results on Overdominant
Model

Figure 4.7: Comparison of HTreeQA, TreeQA, SSA, BLOSSOC, EMMA, and HAM
under different genetic models.

Figure 4.7 shows the comparison of the selected methods. HTreeQA shows com-

86

parable performance to that of other methods in the additive model. In the recessive

model and the overdominant model, HTreeQA demonstrates significant advantage over

other methods. Since HTreeQA does not have any assumption of the type of genetic

effect, it offers consistent power for detecting any effect. Other methods except HAM

implicitly assume the additive model.

The phasing step required by the phylogeny-based methods BLOSSOC and TreeQA

(for handling heterozygosity) will impair their ability in detecting associations between

the phylogeny and the phenotype. The extent of its effect varies for different genetic

models, especially with regard to heterozygous samples. It affects the additive model

the least and overdominant model the most. For a homozygous sample the nodes corre-

sponding to the two haplotypes carry the same allele, and thus their phenotypes always

belong to the same allele group. This may cause minor inflation of the QTL signals

since the two haplotypes are treated as independent samples by these methods. For a

heterozygous sample the two haplotypes carry different alleles and therefore their cor-

responding nodes and phenotype are in two allele groups. Under the additive model

assumption, one allele group contains all homozygous samples with high phenotype

values and the other contains all homozygous samples with low phenotype values. The

heterozygous samples have medium phenotype values which are added to both allele

groups. This may cause minor deflation of the QTL signals. This is why all selected

methods have comparable performance. TreeQA slightly outperforms others because

its local phylogeny trees can well model the local population structure and separate

QTL signals from genetic background.

However, under the assumption of overdominant model, heterozygous samples may

have extreme phenotype values (beyond the range of phenotype values of the homozy-

gous samples). These extreme phenotype values will always be in both allele groups;

therefore, the phylogeny representation for phased data cannot explain the overdomi-

87

Methods Running Time Require Haplotype Reconstruction?
SMA 10 minutes No

BLOSSOC 40 hours Yes
HAM 20 minutes No

TreeQA 40 hours Yes
EMMA 3 hours 20 minutes No

HTreeQA 12 minutes No

Table 4.3: Running time comparison of the selected methods. The running time is
measured on a machine with Intel i7 2.67GHz CPU and 8G memory.

nant effects at all. That is why the traditional phylogeny-based methods like BLOSSOC

and TreeQA fail under such a model. Note that HTreeQA does not require phasing.

The tri-state semi-perfect phylogeny tree has a partition that separates the heterozygous

samples from the homozygous samples and thus it is able to detect an overdominant

effect. Under the recessive model assumption, the heterozygous allele carries the same

effect as one of the two homozygous alleles. Thus the impact of assigning haplotypes

of the heterozygous samples to the two allele groups is greater than that under the ad-

ditive model and is not as great as that under the overdominant model. Again, this does

not affect HTreeQA. Overall, HTreeQA has the best performance in recessive models

and overdominant models.

4.4.8 Running Time Comparison

The running time for each selected method are measured on a machine with Intel

i7 2.67GHz CPU and 8G memory. All methods are tested using a dataset containing

180K SNPs and 184 individuals.

Table 4.3 shows the running time of these methods. If phasing is required, this step

usually takes over 40 hours, and dominates the running time. HTreeQA demonstrates a

huge advantage by completely avoiding haplotype reconstruction. It is over 600 times

faster than the other methods that require haplotype data. HTreeQA is 15 times faster

88

than EMMA, because HTreeQA does not need to explicitly incorporate the effect of

global population structure as EMMA does. The running time of HTreeQA is compa-

rable to that of SMA and HAM, the simplest models for QTL studies. They are not as

effective as HTreeQA as demonstrated in the real phenotype and simulation studies.

4.4.9 The Choice between HTreeQA, TreeQA, and EMMA

HTreeQA can handle heterozygous genotype properly. It is suitable for genome

wide association study on any multiparent crosses including the incipient CC lines,

Heterogeneous Stock, and Diversity Outbred, as well as Recombinant Inbred Crosses

(RIX) of CC lines. TreeQA is the best choice if one focuses on the additive effects.

EMMA can correct for global population structure but is not able to address any local

population structure. It degenerates to a simple linear model when applied to CC popu-

lation with an evenly distributed global population structure as shown in Section 4.4.2.

This represents a limitation of EMMA since local population structures exist in every

mammalian resource, even though I only show the result in the Collaborative Cross

population.

4.5 Conclusions

I propose a novel approach for local phylogeny-based QTL mapping on genotypes

without haplotype reconstruction. I analyze the incipient Collaborative Cross, and show

that there is no significant global population structure but visible local population struc-

ture. Such local population structure may bias the QTL mapping if it is not addressed

properly. The notion of a tri-state semi-perfect phylogeny tree is introduced to represent

accurate genetic relationships between samples in short genomic regions. As a gener-

alization of the perfect phylogeny tree (defined on haplotypes), a tri-state semi-perfect

89

phylogeny tree treats the heterozygous allele as the third state. It provides the power

of modeling a wide range of genetic effects and delivers unbiased and consistent per-

formance. This is a significant advantage over any previous methods that have strong

bias towards an additive model. It is also worth noting that HTreeQA is much more

computationally efficient than any alternative approach.

90

CHAPTER 5

DIPLOFFECT: BAYESIAN MODELING OF HAPLOTYPE EFFECTS IN

MULTIPARENT POPULATIONS

In the previous Chapter, I presented HTreeQA for effectively discovering QTLs in

multiparent line for both inbred and outbred populations. Discovering QTLs in mul-

tiparent crosses is just the initial step for understanding the underlying mechanism of

complex traits, and the next important question is that how to estimate the effect sizes

and the confident intervals for different genetic factors, aka, the founders genetic in-

formation, at the QTL. The statistically valid effect sizes and their confidence intervals

are the foundations for interpreting how the QTL affects the quantitative trait and help-

ing design and develop further biological experiments to validate the discovery. In this

chapter, Diploffect is presented for estimating the effect sizes of different founders at

the QTL.

5.1 Introduction

In this chapter, I also consider both types of populations, inbred or outbred, but

make the assumption that, as with the examples in the previous chapters, organisms

are diploid and founders are inbred. Because the genome of each individual in multi-

parent population can be described as a mosaic of founder haplotypes, any given locus

in that genome can likewise be described in terms of the pair of haplotypes (ie, diplo-

type) present. In a panel of recombinant inbred lines with J founders (such as CC or

MAGIC), a given locus can present with one of J homozygous diplotypes; the effect

of each founder can be described by J (additive) haplotype effects. In an outbred pop-

91

ulation with J founders (such as the HS or DO), J(J + 1)/2 distinct diplotypes are

possible (or J2 if distinguishing parent of origin); characterizing a QTL in these popu-

lations means accounting all J(J + 1)/2 (or J2) diplotype effects. The identity of the

presenting diplotype in each case cannot be observed directly but can be probabilisti-

cally inferred from genotype data. A number of algorithms have been developed to do

this, notably those based on a hidden Markov model (HMM) formulation (eg, HAPPY,

Mott et al. (2000); GAIN Liu et al. (2010); although see also Bauman et al. (2008)). In

the HMM framework, diplotypes are modeled as latent outcomes drawn from a discrete

set of possibilities; genotype data provides partial information about this underlying la-

tent state, and so the HMM’s reconstruction of the haplotype mosaic leads to haplotype

assignments that are probabilistic — for each individual at each locus, a list of inferred

probabilities for each possible diplotype.

When mapping QTL in multiparent populations, testing for genetic association us-

ing this inferred probabilities of diplotypes rather than using the observed alleles at

genotyped markers confers several advantages. First, all ungenotyped genetic variants

are modeled automatically; this includes not only ascertained SNPs but also all the

SNPs they fail to tag. Second, HMM-based haplotype inference helps guard against

genotyping or sequencing error while providing robust imputation for cases where

genotyping has failed. Third, the inferred probabilities provide much more informative

picture of underlying genetic factors than the genotype data, resulting higher mapping

resolution than using observed genotype data.

Strictly speaking, genetic association with inferred haplotypes is most properly han-

dled through some form of mixture model: At a given locus, the QTL effects are esti-

mated conditional on haplotype composition; haplotype composition is itself modeled

probabilistically as described previously; and the resulting likelihood, which includes

alternative haplotype configurations, is used for significance testing (Lander and Bot-

92

stein, 1989). Mixture models are, however, computationally demanding to a degree that

usually makes them impractical for large scale association. A fast and powerful alter-

native, advanced by Haley and Knott (1992) for 2-parent crosses and later Mott et al.

(2000) for 8-parent crosses, is to use regression: Treat the inferred haplotype probabil-

ities as if they were observed haplotype “dosages”, include these dosages as a feature

vector of primary factors affecting the phenotype in a linear model, then perform an

ANOVA-like test for a significant effect of that feature vector. This approach, which I

refer to as Regression on Probabilities (ROP), is not only highly scalable but also, due

to the ubiquity and flexibility of linear modeling software, is relatively simple to imple-

ment, at least once haplotype probabilities are provided. Indeed, for LD-based genetic

association in multiparent populations, ROP has become the dominant approach (Aylor

et al., 2011b; Valdar et al., 2006; Svenson et al., 2012; Kover et al., 2009).

Despite ROP’s power in detecting QTL, however, when it comes to subsequent

characterization of QTL effects has the ROP approach has severe shortcomings. Prob-

lems arise because ROP is a linear non-hierarchical approximation to a hierarchical

mixture model: The numerical output of the HMM is treated as if it were an arbitrar-

ily scaled feature matrix rather than a probabilistic description of a categorical state.

The extent to which this matters depends on both the degree and type of uncertainty

present. In the best case, when haplotype assignment is certain for all individuals, and

the probabilities therefore reduce to a design matrix of ones and zeros, ROP produces

valid inference. In the presence of uncertainty, however, several complications fol-

low. The inability of haplotype reconstruction to distinguish diplotypes at loci where

some founders are identical (by state or descent) can produce a design matrix that

is multicollinear, causing the model to become non-identifiable. Although this non-

identifiability can be circumvented for the purposes of fitting a predictive model, it is at

the cost of downstream interpretability. For example: applying a full rank factorization

to the matrix (as in, eg, Appendix A of Valdar et al. (2009)) produces a model that can

93

be fitted but with estimated parameters that are uninterpretable; applying a ridge-type

penalty (as in, eg, (Woods et al., 2012)) preserves identifiability but only artificially

— introducing an arbitrary parameter whose presence invalidates deeper inference (eg,

confidence intervals). Even when multicollinearity is mild enough for all effects to re-

main identifiable, uncertainty still produces an uneven narrowing of the the numerical

range of the dosages, which in turn lead to ROP estimates of effects becoming inflated

in complicated ways (Broman and Sen, 2009; Ronnegard and Valdar, 2011a).

Ideally then, estimation of QTL effects in a multiparent population should: 1) in-

corporate the probabilistic information from haplotype reconstruction; 2) accommodate

not only additive haplotype effects but also (at least) the effects of dominance, as would

occur in outbred or incompletely inbred populations; 3) use shrinkage to moderate im-

balanced and sparsely sampled representation of a potentially large number diplotypes;

4) be flexible enough to incorporate confounding sources of variation such as polygenic

effects, complex effects of batching, and so on. To the best of our knowledge, no ex-

isting method fulfills all of these criteria. A few, however, address at least the first —

appropriate handling of haplotype uncertainty. Sillanpaa and Arjas (1998, 1999) used

a Bayesian approach when parental information is missing in inbred and outbred pop-

ulation respectively, but are not able to incorporate prior haplotype probabilities from

haplotype reconstruction and handle only biallelic data. Kover et al. (2009) applied

a multiple imputation approach by sampling the unobserved haplotypes from the in-

ferred haplotype matrices and averaging standard regression the least square estimates

on imputed datasets. Durrant and Mott (2010) developed a partially Bayesian mixed

model of QTL mapping based on inferred haplotypes that mostly satisfies (1) and (3)

above. However, their prior for the haplotype effects in the model is very rigid to reach

a complete factorization of the likelihood, and this restricts application of their model

to phenotypes that are normally distributed and unaffected by polygenic effects.

94

Here I describe a flexible statistical model, Diploffect (Zhang et al., 2014), for es-

timating effects of haplotypes and diplotypes at QTL detected in multiparent popula-

tions. Using a Bayesian hierarchy that induces variable shrinkage, Diploffect obtains

full posterior distributions for additive and dominance effects that take account of both

uncertainty in the haplotype composition at the QTL and confounding factors such as

polygenic or family effects. In basing Diploffect model around existing, extendible

software, I describe a flexible framework that accommodates non-normal phenotypes.

In addition, by using a model that is fully Bayesian, Diploffect exploits an opportunity

untouched by earlier methods: The potential, when phenotypes and uncertain haplo-

types are modeled jointly, for phenotypic data to inform and improve inference about

haplotype configuration at the QTL as well as vice versa (see, for example, a related ap-

plication in Lin and Zeng (2006)). To provide practical solutions and perspectives about

relative trade-offs, I demonstrate two implementations of Diploffect, and compare their

performance in terms of accuracy and running time to simpler procedures.

5.2 Statistical Models and Methods

The approach is fully Bayesian: I advance a framework that models latent parame-

ters as outcomes of higher order processes and leads to coherent inference and predic-

tion given observed data and prior uncertainty. To provide flexibility in both the form

of inference and the likelihood assumptions of the phenotype, I developed two dif-

ferent approaches to estimate the posterior distributions: Markov Chain Monte Carlo

(MCMC) sampling and Importance Sampling (IS). First, I describe a decomposition

of QTL effects based on haplotypes, known or uncertain, in general, and one way in

which Bayesian inference of those effects can naturally proceed. Then I describe the

model and the computation methods used to fit it. Last, I describe for comparison sev-

eral non-Bayesian regression-based approaches to haplotype effect estimation, relating

95

them back to the original framework.

5.2.1 Haplotypes and Diplotype States

In a multiparent population comprising individuals i = 1, . . . , n descended from

a smaller set of diploid founders j = 1, . . . , J , the genetic state at each locus in each

individual can be described in terms the pair of founder haplotypes (ie, the diplotype)

present — that is, in terms of the diplotype state. I encode the diplotype state for

individual i at locus m using a J × J indicator matrix Di(m), where for maternally

inherited founder haplotype j ∈ {1, . . . , J} and paternally inherited haplotype k ∈

{1, . . . , J}, corresponding to diplotype jk, the entry in the jth row and kth column is

{Di(m)}jk = 1 and all other elements are zero. A diplotype is defined as homozygous

when j = k, and heterozygous when j 6= k; under the heterozygote diplotype, when

parent of origin is unknown or disregarded, jk ≡ kj and it is assumed that {Di(m)}jk+

{Di(m)}kj = 1.

5.2.2 Haplotype Effects at a QTL

Given a a trait of interest observed on the n individuals, y = y1, . . . , yn, the effect

of substituting one diplotype for another on that trait’s value can be expressed using a

generalized linear model of the form yi ∼ Target(Link−1(ηi), ξ), where Target is the

sampling distribution, Link is the link function, ηi is a predictor whose value depends on

diplotype state (and other modeled properties of the individual) and which acts through

the link function to adjust the expected value of yi, and ξ represents other parameters

in the sampling distribution; for example, with a normal target distribution and identity

link, yi ∼ N(ηi, σ
2), and E(yi) = ηi.

Under the assumption that haplotype effects combine additively to influence the

96

phenotype, the linear predictor can be written as

ηi = µ+ βTadd(Di(m)) (5.1)

where add(X) = 1T(X+XT) such that β is a J-vector of (additive) haplotype effects,

and µ is an intercept term that, in expectation, makes β sum to zero. The assumption

of additivity can be relaxed to admit effects of dominance by introducing a dominance

deviation:

ηi = µ+ βTadd(Di(m)) + γTdom(Di(m)) , (5.2)

where the appropriate definition of dom(X), and therefore γ, depends on whether

the effects of reciprocal heterozygous diplotypes jk and kj are modeled to be equiv-

alent. If they are, then dominance can be modeled as symmetric: dom(X) is defined

as dom.sym(X) = vec(upper.tri(X + XT)), where upper.tri() returns only elements

above the diagonal of a matrix, and effects vector γ is length (J2 − J)/2. Otherwise,

if diplotype effects are modeled to differ by parent-of-origin, then dominance is asym-

metric: dom(X) is defined as dom.asym(X) = vec(off-diag(X)), where off-diag

returns all off-diagonal elements, and γ is length J2 − J . Throughout the remain-

der of the paper, for simplicity, dominance will be modeled as symmetric. Lastly, for

notational convenience, I define the diplotype effects, δ, as

δjk = βj + βk + I(j 6= k)γ(jk) , (5.3)

for all distinguishable jk.

5.2.3 Haplotype Inference and Diplotype Probabilities

In practice, the diplotype state at a locus m cannot be observed directly, but it can

be inferred probabilistically from genotype data. Denoting available genotype data

on individuals as G = {G1, . . . ,Gn}, and genotype information on the founders as

97

H = {H1, . . . ,HJ}, haplotype reconstruction algorithms based on a hidden Markov

model typically seek to estimate for each individual i at each locus m = 1, . . . ,M a

J × J matrix of inferred diplotype probabilities,

Pi(m) = p(Di(m)|Gi,H) , (5.4)

where each element {Pi(m)}jk contains the probability that diplotype jk is present,

and where in more sophisticated algorithms additional terms may be present in the

conditioning statement (eg, G in place of Gi). Diplotype state is therefore modeled as if

drawn from a categorical distribution with probability parameter Pi(m), ie,

Di(m) ∼ Cat(Pi(m)) , i = 1, . . . , n . (5.5)

In the HAPPY formulation (Mott et al., 2000), which I adopt here, element {Pi(m)}jk

is the HMM-derived Baum-Welsh probability of diplotype jk, averaged over the inter-

val between two adjacent markers m and m+ 1. In other words, {Pi(m)}jk is approxi-

mately the probability that a randomly chosen point within the interval inherits from the

diplotype jk. When descent is unambiguous, Pi(m) = Di(m); otherwise Pi(m) rep-

resents a hedged bet on which diplotype occurs in the interval, and typically becomes

less informed as a function of marker sparsity, recombination density, and genotyping

error.

5.2.4 Regression On Probabilities

When diplotype state is available only probabilistically, rather than known as in

Eq 5.1 and 5.2, accurate modeling of haplotype effects at the QTL is more challeng-

ing: Inference, if it is to be accurate, must now take into account not only variability

of estimates due to sampling but also variability due to uncertainty in the predictor

values themselves (see later). For purposes other than haplotype estimation, how-

ever, it often suffices to use the simple approximation of Regression on Probabilities

98

True Diplotype Assignment Inferred Diplotype Probability
Individual A B A B Phenotype

1 1 0 0.51 0.49 1
2 0 1 0.49 0.51 0

Table 5.1: Illustrative example of true diplotype state vs inferred diplotype probabilities
for two individuals at one genetic locus.

(introduced in the biallelic context by Haley and Knott (1992)). In ROP, matrices de-

scribing diplotype state D1(m), . . . ,Dn are replaced by those of diplotype probabilities

P1(m), . . . ,Pn(m), and the additive model in Eq 5.1 is approximated as

ηi = µ+ βTadd(Pi(m)) , (5.6)

with the model including dominance effects defined similarly as

ηi = µ+ βTadd(Pi(m)) + γTdom(Pi(m)) , (5.7)

In these approximations, the predictors add(Pi(m)) and dom(Pi(m)) are treated as

arbitrary-valued feature vectors while β and γ are estimated as their best-fitting co-

efficients. This formulation is powerful for regression-based significance testing; for

obtaining meaningful substitution effects, however, it is problematic.

An artificial example is given in Table 5.1, in which at a given QTL each of two

individuals have one of two diplotypes, A or B. Regression on known diplotypes esti-

mates the substitution effect as 1; regression on diplotype probabilities, which in this

example are highly uncertain but nonetheless accurate in the sense of placing more

probability on the right answer, estimates the effect as 50.

The following R code provides the script for estimating the effect:

x = m a t r i x (c (0 . 5 1 , 0 . 4 9 , 0 . 4 9 , 0 . 5 1) , nrow = 2)

y = c (1 , 0)

lm (y ~ x)

99

Both estimates fit their input data equally well; applied to new inputs of the same

form (specifically, the same degree of uncertainty), they would give equally accurate

predictions. If, however, the ROP estimate of 50 was used to predict phenotype for

individuals where diplotype is known (or even where it is inferred with greater certainty

than in Table 5.1), poor accuracy would clearly result.

As the number of possible diplotype states grows, the problem of inflated estimates

increases and is compounded with additional problems of multicollinearity, whereby

higher order confounding in diplotype inference leads to linear dependence that in turn

reduces the effective number of estimable parameters in β (see, eg, Appendix A of

Valdar et al. (2009)). It is often intuitively appealing to regard add(Pi(m)) as a set

of “haplotype dosages”; however, even without multicollinearity, the fact that the de-

gree of uncertainty in Pi(m) will differ among individuals means that uncertainty and

dosage are confounded, and the corresponding β estimated by ROP does not truly esti-

mate a “haplotype dosage effect”.

5.2.5 Diploffect Model

Estimating haplotype effects in a way that incorporates uncertainty in the diplotype

state requires a full probabilistic model. Here I describe one such model, Diploffect,

which estimates haplotype effects (and related parameters) contingent on diplotype

state while simultaneously modeling diplotype state itself as an unknown parameter

whose distribution is informed a priori by probabilities from an HMM-based haplo-

type reconstruction algorithm.

Diploffect uses a Bayesian framework in which diplotypes ∆ =

{D1(m), · · · ,Dn(m)} and all effects θ = {β,γ, . . . } (ie, all non-diplotype

100

parameters) are latent variables modeled in joint posterior distribution

p(θ,∆|Ψ,y) ∝ p(y|θ,∆)p(∆|Ψ)p(θ) , (5.8)

which conditions on inferred probabilities from the haplotype reconstruction Ψ =

Pi(m), · · · ,Pn(m) and observed phenotype data y. In this specification, the phe-

notype is modeled in the likelihood p(y|θ,∆) as a function of the effects θ and the

diplotypes ∆, described in more detail below; the diplotypes ∆ are modeled as latent

categorical variables with prior p(∆|Ψ). This has two important consequences. First,

the posterior distribution of effects

p(θ|Ψ,y) =

∫
p(θ,∆|Ψ,y)d∆ , (5.9)

from which all estimates and intervals of haplotype effects can be obtained, averages

over plausible diplotype configurations; this leads to effect estimates of θ, including

interval estimates, that incorporate uncertainty in diplotype state. Second, a posterior

distribution is generated for the diplotype state ∆ conditional on the phenotype y:

p(∆|Ψ,y) =

∫
p(θ,∆|Ψ,y)dθ . (5.10)

This posterior is a Bayesian update of prior p(∆|G,H) = Ψ (see Eq 5.4) in light

of phenotypic information. Specifically, since the prior of diplotypes is a categorical

distribution, the marginal posterior of the diplotype is also categorical:

p(Di(m)|Θ,Ψ,y) ∼ Cat(Q(Di(m)11), Q(Di(m)12), ..., Q(Di(m)JJ). (5.11)

where

Q(Di(m)jk) = p(Di(m)jk = 1|yi,θ,Pi(m)) ∝ Pi(m)jk︸ ︷︷ ︸
prior

× p(yi|θ,Di(m)jk = 1)︸ ︷︷ ︸
likelihood

.

(5.12)

This reflects the following intuition: Suppose prior to observing y, diplotype probabil-

ities P1, . . . ,Pn−1 are well informed but Pn is not; if analysis with y reveals a clear

101

pattern of effects (eg, high phenotypes associated with particular diplotype states) then

yn provides information to update Pn. Moreover, it implies that different phenotypes

could in theory promote different underlying diplotype states ∆ — a particularly useful

feature when locus m is defined broadly enough to contain multiple recombinants and

therefore multiple configurations of ∆ of which only one is relevant to the QTL.

Because the likelihood p(y|θ,∆) conditions on diplotypes ∆, haplotype effects

can be modeled in the linear predictor relative to diplotype state (as in 5.2) rather than

to diplotype probabilities (as in 5.6). The linear predictor for individual i is modeled as

ηi = µ+ αTxi︸ ︷︷ ︸
covariates
(optional)

+ βTadd(Di(m))︸ ︷︷ ︸
additive haplotype effects

+γTdom(Di(m))︸ ︷︷ ︸
dominance deviation

+ ur[i]︸︷︷︸
family/polygenic

(optional)

. (5.13)

Additional parameters are included for covariates and genetic background: α mod-

els effects of covariates in xi; and ur[i] models, for example, the effect of sibship

(or CC line, Aribidopsis cousin line, etc) r[i] to which to individual i belongs, and

ur ∼ N(0, τ 2u) — alternatively, where computationally feasible, ur[i] is a polygenic

effect after, eg, Kennedy et al. (1992); Cheng et al. (2011). These additional effects

are loosely specified: I present the model within established, extensible software that

allows users to define more complex structured effects easily.

The haplotype effects β and dominance deviations γ are modeled hierarchically, as

if drawn from multivariate normal distributions β ∼ N(0, Iτ 2add) and γ ∼ N(0, Iτ 2dom).

Hierarchical modeling in this case not only reflects the fact that diplotype effects are

expected to lie on similar scales and should therefore inform each other but also that

inference of effects represents a decision problem involving the estimation of many pa-

rameters simultaneously and so naturally benefits from hierarchical shrinkage (Parmi-

giani and Inoue, 2009; Gelman and Hill, 2007). Shrinkage is particularly important

here because many of the diplotypes will be sparsely sampled, with some missing en-

102

tirely; in the face of this, hierarchical shrinkage leads to posteriors that are stable but

vague rather than unstable and erratic.

The remaining parameters are given vague, conjugate priors: (µ,α) ∼ N(0, Ic),

where c is large relative to the phenotype scale (eg, c = 1000 for Var(y) = 1); τ 2add,

τ 2dom, and τ 2u are given inverse-gamma priors as in, eg, Lenarcic et al. (2012). The

complete Diploffect model is summarized using plate notation in Figure 5.1.

€

yi
€

Di

€

Pi

€

n
€

J

€

J 2 − J
2

€

R
β j γ jk ur€

τadd
2

€

τdom
2

€

τu
2Dispersion	 of	 effects	

(provides	 shrinkage)	

Addi7ve	
haplotype	 	
effects	

Diplotype	 Diplotype	 probabili7es	 Phenotype	

polygenes	
Dominance	
effects	

hyper	 Linear	 predictor	

µ
Intercept	 €

xi

€

αb

€

B
Experimental	 and	 	
Environmental	 effects	

r[i]

Experimental	 and	 	
Environmental	 covariates	

Family	

€

ξ

Figure 5.1: The plate notation for Diploffect model with dominance deviation effects
and kinship effects. The priors of the effects are omitted in the plate notation. The nodes
with grey background represent the observed data, the nodes with white background
and a single circle represent the unknown variables, and the nodes with double circles
represent the remaining parameter except the linear predictor in the generalized linear
model.

5.2.6 Diploffect Estimation by MCMC: DF.MCMC

Posteriors for the parameters of the Diploffect model can be estimated by Markov

Chain Monte Carlo through iteration of two basic steps:

103

1. Sample all effect variables θ(k+1) given the previous iteration’s diplotypes ∆(k):

θ(k+1) ∼ p(θ|y,∆(k)) (5.14)

2. Sample diplotypes ∆(k+1) given effect variables θ(k+1):

∆(k+1) ∼ p(∆(k+1)|Ψ,θ(k+1),y) (5.15)

where k is the index of the iteration and K is the total number of iterations (for k =

1, ..., K). Initial values for k = 1 are randomly sampled from their priors. Step 1 is

relatively straightforward because given ∆, the remaining forms a generalized linear

model (GLM) whose efficient computation is well studied (Plummer, 2003). Step 2,

however, requires special consideration.

A straightforward approach for step 2 is to evaluate all diplotypes’ posterior prob-

abilities in Di(m) by Eq 5.12, and draw one individual’s diplotype at a time from the

posterior categorical distribution. This requires O(J2) computational time per individ-

ual because it requires evaluating the function Q for all diplotypes. For the sake of

efficiency, I develop a new method, Discrete Slice Sampling with Prior Reordering, de-

scribed in the following section, which significantly reduces this computational time;

throughout the paper, I will refer to this method in short form as DF.MCMC. The proof

of the convergence of this approach, which embeds slice samplers in a MCMC chain,

can be found at Neal (2003) (it proves that using univariate variables in a MCMC chain

does not change the invariant distribution of the chain).

Discrete Slice Sampling with Reordering of Prior Probabilities

To help efficiently traverse the space of possible diplotype states, we propose an

optimization of the discrete slice sampling algorithm described by Neal (2003). This

optimization begins by reordering all J × (J + 1)/2 entries in matrix Di. Let T (jk)

104

(a)	 Unordered	 Prior	 (b)	 Ordered	 Prior	 (c)	 Posterior	

A	 	 	 B	 	 C	 	 	 D	 	 	 E	 	 	 F	 	 	 G	 	 	 H	 	 	 I	 	 	 	 J	 	 	 	 K	 	 	 L	 	 	 M	 M	 	 E	 	 	 D	 	 	 B	 	 	 L	 	 	 C	 	 	 A	 	 	 F	 	 	 G	 	 	 H	 	 	 I	 	 	 	 J	 	 	 	 K	 M	 	 E	 	 	 D	 	 	 B	 	 	 L	 	 	 C	 	 	 A	 	 	 F	 	 	 G	 	 	 H	 	 	 I	 	 	 	 J	 	 	 	 K	

Diplotype	

Diplotype	

Diplotype	

Barrier	 0.3	

0.2	

0.5	

0.1	

0	

0.4	

Pr
ob

ab
ili
ty
	

Diplotype	 at	 QTL	 Diplotype	 at	 QTL	 Diplotype	 at	 QTL	

Figure 5.2: Reordering of prior probabilities in the discrete slice sampler, using as an
example the diplotype probabilities from haplotype reconstruction (using HAPPY) on
the Pre-CC. Diplotypes are represented by different letters, and 23 diplotypes with very
low probabilities are omitted. The true diplotype, selected during simulation, is shaded
black. The original ordering of diplotypes (from the HAPPY) is shown in (a), and il-
lustrates the problem to be addressed: If the initially sampled diplotype is M, the slice
sampler cannot easily cross the barrier region to sample other high probability diplo-
types. Reordering the diplotypes by their prior probabilities to create a smoother distri-
bution, as in (b), removes this barrier region, and allowing the sampler to move easily
between its initial value and all other values of high to moderate probability. Panel
(c) shows the posterior of this distribution given phenotype data (from the DF.MCMC
procedure), in which the true diplotype’s posterior probability is increased.

represent diplotype jk’s order in the range 1, . . . , J× (J+1)/2, and define two bound-

ary diplotypes for T (L) = 0 and T (R) = J × (J + 1)/2 + 1 and set their poste-

rior probabilities to zero. Therefore, for the previous diplotype x′, we first evaluate

S = Q(Di(m)T−1(x′)), then sample an auxiliary variable q ∼ U(0, S). We expand

a region [l, u] satisfying Q(l) ≥ q and Q(l − l) < q and Q(u) < q and Q(u) ≥ q.

From uniform distribution defined on [u, l], we keep sampling the new diplotype status

xnew until we reach one for which Q(Di(m)T−1(x)) ≥ q. The diplotype posterior in Eq

5.12 is only evaluated a few times during each iteration, thus it is much faster than full

sampling.

105

●
●

●
●

●
●

● ●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●

0 50 100 150

2

4

6

8

10

Number of states

S
pe

ed
up

Collaborative Cross
MAGIC

Figure 5.3: The speed up of using the discrete slice sampling with reordering instead
of using draws from posterior multinomial distributions

If we directly apply discrete slice sampling with an arbitrary chosen order (e.g. al-

phabetical), the posterior samples can remain stuck within islands of higher scoring

diplotypes flanked by lower-scoring ones, such that a long Markov Chain is required

for adequate mixing, eg, Figure 5.2 (a). In order to avoid poor-mixing problem for

sampling haplotypes and increase the efficiency of MCMC, we use a modified discrete

sampling approach by reordering the prior categorical probabilities by the prior haplo-

type probabilities. In Figure 5.2 (b), the barrier is removed, and the posteriors in 5.2 (c)

are mixing. The underlying true diplotype’s posterior probability is much higher than

the incorrect ones because of the joint estimation model on both haplotypes and their

effects.

I compared this approach with the usual approach — to sample the posteriors by

drawing from posterior multinomial distributions. Figure 5.3 shows how much speed

up using the discrete slice sampling with reordering under various number of states

106

(diplotypes): 3 times speed up for CC, and 10 times speed up for MAGIC. This indi-

cates that this method can efficiently improve the running time of the MCMC approach.

5.2.7 Diploffect Estimation by Importance Sampling:

DF.IS and DF.IS.kinship

Because calculation of posteriors from DF.MCMC requires some level of exper-

tise in Bayesian computation, namely that of monitoring convergence of an iterating

MCMC chain, I also provide a non-iterative strategy based on Importance Sampling

(IS) of Integrated Nested Laplace Approximations (INLA). INLA provides a determin-

istic estimate of the multivariate posterior distribution of a GLM (Rue et al., 2009). In

IS procedure, these GLM posteriors are estimated conditional on diplotype for many

possible diplotype configurations; they are combined through reweighting to give a fi-

nal mixture distribution that resembles more closely the integration of the full posterior

in Eq 5.9. Specifically, in five steps, the procedure is:

1. Sample diplotypes ∆(k) from their prior

∆(k) ∼ p(Ψ), (5.16)

2. Obtain an INLA estimate of posterior p(θ|y,∆(k)) for effect variables θ(k).

3. Obtain an INLA estimate of the marginal likelihood w(k) = p(y|∆(k)).

4. Repeat steps 1 to 3 K times.

5. Estimate the posterior of any statistic of interest T (θ) using the weighted mixture

T̂IS(θ) =
∑
k

T (θ(k))w(k)/
∑
k

w(k) , (5.17)

where for each k, statistic T (θ(k)) is calculated from the corresponding posterior

p(θ|y,∆(k)) calculated in step 2.

107

In the above, T (θ) could be anything from, for example, the posterior mean of β to

the full density of θ. The calculation of the weighting function w(1), . . . , w(K) uses the

marginal likelihood obtained from INLA as I explain below.

In order to explain why the weight is the marginal likelihood of the model, I

use a simplified model here for the proof. Assuming that we have two blocks of

random variables a and b, and the data is y. The joint likelihood of the com-

plete model is p(y|a,b)p(a,b). The prior of a and b are independent, which means

p(a,b) = p(a)p(b).

It might be hard to use MCMC sampling to jointly draw a,b from their posteriors,

for example, p(a|y,b) is hard or costful to sample. Instead, we could use the following

approach to sample from an importance density function g(a,b), and re-weight all

samples by w(a,b) = p(y|a,b)p(a,b)
g(a,b)

.

For a limited number of iteration K, we repeat the following steps,

• Step 1: a
(k)
IS ∼ p(a)

• Step 2: b
(k)
IS ∼ p(b|y, a(k)

IS)

where a
(k)
IS ,b

(k)
IS are the samples for the kth iteration. This approach is best if

p(b|y, a(k)
IS) is relatively easy to calculated. The target density of a

(k)
IS ,b

(k)
IS , which is

also the importance density function, is p(a)p(b|y, a).

Therefore,

108

w(a,b) =
p(y|a,b)p(a,b)

g(a,b)
(5.18)

∝ p(a,b|y)

p(a)p(b|y, a)
=

p(a,b|y)

p(a)p(a,b|y)
p(a|y)

=
p(a|y)

p(a)
(5.19)

∝ p(a,y)

p(a)
= p(y|a). (5.20)

Thus, the weight is the marginal likelihood of the model when the component a is

known.

In the general mixture model setting, sampling mixture components from the prior

(as in Step 1, above) can potentially lead to estimates that are numerically unstable:

When the prior on the mixture components is uninformative (eg, uniform), most of

the samples are not highly “important”, and this leads to an inefficient sampling of

the posterior (Carlin and Louis, 2009). In Diploffect, however, the prior is the set of

diplotype probabilities from HMM, which tends to be relatively well informed for most

individuals such that most of the resulting samples are important.

I present two implementations of the IS method: DF.IS models the optional fam-

ily structure term in Eq 5.13 simply as a random intercept representing sibship, ie, as

ur ∼ N(0, τ 2u); DF.IS.Kinship, an elaboration of DF.IS, uses instead a random

intercept whose expected covariance is based on the additive relationship (kinship), that

is, a polygenic effect after Kennedy et al. (1992): here u ∼ N(0, τ 2kinshipK) where K

is the kinship matrix estimated from the pedigree information (Vazquez et al., 2010).

Although the kinship matrix provides much richer information about how individuals

are related (eg, Cheng et al. (2011)), it also incurs a significantly greater computa-

tional cost; increased computational time is also why I do not implement kinship in

DF.MCMC, whose already significant computation in MCMC sampling becomes im-

practically slow for repetitive simulation-based assessment when a polygenic term is

added.

109

5.2.8 Partially Bayesian Approximation:

DF.MCMC.pseudo and DF.IS.noweight

In their random effects haplotype model, Durrant and Mott (2010) avoid a fully

Bayesian treatment in favor of a partially Bayesian approximation, which estimates the

posterior of haplotype effects in Eq 5.9 as

p(θ|Ψ,y) ≈
∫
p(θ|∆,Ψ,y) p(∆|Ψ)d∆. (5.21)

where, for their model, the effects in θ include only additive effects β, additional

covariates or structure terms must be absent, and the sampling distribution of the

phenotype is restricted to being Gaussian. In the above approximation, the poste-

rior of diplotypes given the phenotype, p(∆|Ψ,y), is not defined, and the integra-

tion is therefore akin to an unweighted multiple imputation. Nonetheless, by lim-

iting the scope and flexibility of the model is this way, Durrant and Mott (2010)

are able to derive a fast, direct sampling solution. Moreover, although approximate,

their solution would be expected to provide results close to a full Bayesian treatment

when p(∆|Ψ) ≈ p(∆|Ψ,y), eg, when the QTL’s effect is weak or the posteriors of

the diplotypes are vague. To explore the utility of this approximation, I implement

this approximation applied to both DF.MCMC and DF.IS methods, respectively as

DF.MCMC.pseudo and DF.IS.noweight. In DF.MCMC.pseudo, the sampling

of the posterior of ∆ conditional on the current value of θ in Eq. 5.14 is replaced by a

draw from the prior (as in Eq. 5.16); this method was recently used by us in the analysis

of immune phenotypes in the Pre-CC (Phillippi et al., 2014). In DF.IS.noweight,

the IS procedure described for DF.IS is modified so that weights are uniform, ie,

w(k) = 1 for all k; this latter approach is similar to that used in the Arabidopsis study of

Kover et al. (2009), who instead estimate β in an OLS fixed effects regression model.

110

5.2.9 Non-Bayesian Regression Approximations:

partial.lm, ridge.add and ridge.dom

To allow comparison of the mixture model approaches above with approximation

that of regress on probabilities, two alternative ROP approaches are considered: a

marginal estimator, partial.lm; and a ridge regression estimator, implemented in

ridge.add and ridge.dom. The marginal estimator partial.lm uses a single

predictor linear model to estimate, for each founder haplotype, the effect that haplo-

type’s dosage on the phenotype, ie,

ηi = µj + βj {add(Pi(m))}ij ,

where βj . This method, which avoids stability any problems related to collinearity in

the design matrix by fitting only one effect at time, was used to estimate effects in the

Pre-CC study of Aylor et al. (2011b).

A tradition solution for stable simultaneous estimation of all regression parameters

under collinearity is ridge regression (Hoerl and Kennard, 1970). In ridge.add,

ridge regression is applied to the additive ROP model in Eq 5.6, estimating haplotype

effects as the value of β that minimizes
∑

i(yi − ηi)2 + λβTβ, where ηi is the linear

predictor, and λ is the tuning parameter, which I set by 10-fold cross-validation. In

ridge.dom, an analogous model is fitted based on the additive plus dominance ROP

model of Eq 5.7.

5.2.10 Implementation Details

MCMC-based approaches (DF.MCMC and DF.MCMC.pseudo) were imple-

mented in R (R Development Core Team, 2011), JAGS (Plummer, 2003), and

rjags (Plummer, 2011). JAGS is an open-source general MCMC sampling pack-

111

Model Description ROP
partial.lm Single Haplotype effects Linear Regres-

sion.
Yes

ridge.add Ridge Regression with modeling additive
effects.

Yes

ridge.dom Ridge Regression with modeling both ad-
ditive and deviated effects.

Yes

DF.IS.noweight Multiple imputation No
DF.IS Importance Sampling No
DF.IS.kinship Importance Sampling including kinship

effects
No

DF.MCMC.pseudo Diploffect model with modeling additive
and deviated effects, inverse gamma prior
and multiple imputation on haplotypes.

No

DF.MCMC Diploffect model with modeling additive
and deviated effects.

No

Table 5.2: Summary of the haplotype estimation procedures evaluated in this Chapter.

age; I implemented add-on code to support the partially Bayesian prior sampling of

DF.MCMC.pseudo. When applying MCMC sampling the Diploffect model, I used

a burn-in of 1000 iterations, and 4000 iterations for MCMC sampling, using one

sample of every 10 iterations (thinning). Importance Sampling approaches (DF.IS,

DF.IS.noweight, DF.IS.kinship) were implemented using the R package

INLA (Rue et al., 2009). In each application of the IS methods I used 1000 independent

samples directly draw from the haplotype probabilities inferred through HMM model.

Ridge regression was performed using the R package GLMNet (Friedman et al., 2010),

with tuning parameters selected by 10-fold cross validation. All other analysis was

performed in R. For both DF.IS and DF.IS.noweight, I used 1000 independent samples

directly draw from the haplotype probabilities inferred through HMM model.

A summary of the procedures evaluated in this study is given in Table 5.2.

112

5.3 Data and Simulations

I evaluate the ability of Diploffect model to estimate haplotype and diplotype effects

by simulation: Using simulated QTL and genotype data, I apply the methods listed

in Table 5.2 and compare their ability to both correctly estimate and correctly rank

effects. Practical use of the Diploffect model is then illustrated through application

to real, previously mapped QTL. Both simulation and application use data from two

real populations: the incipient strains of the Collaborative Cross (Pre-CC) (Aylor et al.,

2011b), the and the Northport Heterogeneous Stock mice (HS) (Valdar et al., 2006).

These data sets are described below.

5.3.1 Pre-CC Dataset

From Pre-CC lines (the description is at Section 4.3.1), diplotype probability ma-

trices are generated by HAPPY (Mott et al., 2000) based on genotype information for

16159 markers across the genome. Also, for real data analysis, I use phenotype data

and a mapped QTL location for a binary trait, white spot: This denotes whether or not

a white spot is present on the forehead, is observed in both the founder WSB and in 6

out of the 184 Pre-CC mice, and was mapped by Aylor et al. (2011b) to a QTL at 92.0

MB on Chromosome 10.

5.3.2 Heterogeneous Stock (HS) Dataset

The Heterogeneous Stocks is an outbred population of mice also derived from 8

inbred strains: A/J (AJ), AKR/J (AKR), BALBc/J (BALB), CBA/J (CBA), C3H/HeJ

(C3H), C57BL/6J (B6), DBA/2J (DBA) and LP/J (LP). I used data from the study of

Valdar et al. (2006), which uses mice from approximately generation 50 of the cross,

113

and comprises genotypes and phenotypes for 1762 mice from 180 families, with family

sizes varying from 8 to 48. From this population I use diplotype probability matrices

generated by also HAPPY based on genotype information for 10148 markers across

the genome. For application to real data, I use two phenotypes: total total choles-

terol (CHOL: 1656 observations), mapped by Valdar et al. (2006) to a QTL at 171.5-

172.0Mb on chromosome 1; and the total startle time to a loud noise (Fear Potentiated

Startle; FPS; 1508 observations), which in the same study was mapped to a QTL at

91.37-92.62Mb on chromosome 15.

5.3.3 Informativeness of Haplotype Reconstruction in Pre-CC and HS

Diplotype probabilities in the Pre-CC dataset are more informative than those in the

HS. This is because the Pre-CC was not only genotyped with more markers than the HS

but also contains fewer recombinants per chromosome, thus benefitting from a greater

genotyping density relative to expected recombination fraction. This difference in in-

formativeness is depicted in Figure 5.4, which shows for each dataset the distribution

of per-locus scaled Selective Information Content (SIC; as used in, eg, Ronnegard and

Valdar (2011b)). SIC, equivalent to a rescaling of Shannon’s entropy, ranges from 0,

denoting all individuals are uninformative at a locus, to 1, denoting all individuals have

diplotype assigned with certainty. Locus information varies in both populations, and

the Pre-CC contains a degree of uncertainty even in among those loci that are most in-

formed; nonetheless, the HS is seen to be by far the more challenging target for accurate

inference of QTL effects.

114

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Selective Information Content

D
en

si
ty

Inferred certainty of haplotypes in CC and HS

Heterogeneous Stock
Collaborative Cross

Uninformed
 haplotypes

Fully informed
 haplotypes

Figure 5.4: Certainty of inferred diplotype assignments across all marker loci in the
Pre-CC and HS.

5.3.4 Simulating QTL effects

The ability of the Diploffect-base methods to estimate and rank haplotype and diplo-

type effects is assessed by simulation: applying those methods, and their competitors

listed in Table 5.2, to simulate single QTL for which the true effects are known. This

is performed first using Pre-CC data, in which estimation of haplotype (ie, additive)

effects is emphasized, potentially in the presence of dominance from residual heterozy-

gotes; then, separately, using the HS data, which emphasizes estimation of diplotype

effects that arise from both additive and dominance. In either population, simulation of

QTL involves four basic steps: selecting a locus; assigning true diplotypes; assigning

effects to each diplotype and thereby generating “pure” (ie, expected) phenotypes for

each individual; and, adding individual phenotypic noise, which may include genetic

background. These steps are detailed below.

In a given simulation trial, for both Pre-CC and HS simulations, a single locus is

115

selected to be the QTL at random from 50 markers evenly distributed across the entire

genome. At that QTL, a “true” diplotype at the QTL is then assigned to each individual

based on a random draw from their diplotype probability matrix (Eq 5.5; as in, eg, Dur-

rant and Mott (2010)). The diplotype state for each individual is then used to calculate

for each individual i a QTL effect qi, by combining additive effects β and dominance

effects γ using the linear predictor in Eq 5.2. Those additive and dominance effects

are generated as follows. Additive effects β in one simulation trial are generated in

one of two ways: as a binary vector, in which a SNP-like effect distinguish two groups

of founder haplotypes, and β is drawn at random from a representative set of 25 such

vectors (eg, (0,0,0,0,1,1,1,1), (0,1,1,1,1,1,1,1)); or, as a random draw from a multivari-

ate normal distribution, β ∼ N(0, I). In total, 50 types of additive effects are used

in the simulation study (see Supplemental Methods). If dominance deviation effects

are required, they are drawn as γ ∼ N(0, I), such that variance contributed additive

and dominance effects are equal. Each individual’s QTL effect qi is then combined

with an individual random noise term εi ∼ N(0, 1) and genetic background term ui

(defined below) to give a simulated phenotype yi = aqi + bui + cεi, where a, b and c

are constants used to adjust relative contributions of QTL, background and noise to the

phenotype. QTL effect sizes are set relatively large, accounting for 10%, 20%, 30%

and 40% of the phenotype variance. In the Pre-CC simulations, the remaining variance

is entirely due to individual noise — in this population, with one individual per line and

all lines drawn independently, individuals are evenly related (in expectation), making

genetic background effects negligible. In the HS population, where individuals are re-

lated by differing degrees, 50% of the phenotypic variance was contributed by genetic

background and the remainder by individual noise; in this case, genetic background

was simulated by drawing ui for i = 1, . . . , n jointly as u ∼ N(0,K), where K is the

kinship matrix calculated using EMMA (Kang et al., 2008).

In summary, a simulation trial chooses one marker as the QTL from 50 different

116

candidate markers, one type of additive effects vector as the “true” effects from 50

different types of additive effects, and one QTL size from 4 different sizes. Therefore,

for each population, I conduct 10000 (= 50×50×4) simulation trials with only additive

effects, and another 10000 simulation trials with both additive and dominant effects.

5.3.5 Evaluating Performance of Effect Estimation

Methods are evaluated by two criteria: how far estimates are to the truth (prediction

error), and how accurately they capture rank ordering (rank accuracy). Prediction error

was judged by an adjusted version of the mean-squared error (MSE). Specifically, let θ

denote the K-vector of simulated effects (the target) after mean-centering, and let θ̂ be

the K-vector of point estimates for the target, also after mean centering. The definition

of θ̂ depends on the estimation method used: for Bayesian or partially Bayesian meth-

ods in Table 5.2 (DF.IS, DF.IS.kinship, DF.IS.noweight, DF.MCMC, and

DF.MCMC.pseudo) it is defined as the posterior mean; for the remaining methods

(partial.lm, ridge.add, and ridge.dom) it is the standard point estimate (ie,

that maximizing the likelihood or penalized likelihood). Prediction error is then defined

as the difference between target and estimate, normalized by the variance of the target:

prediction error =
(θ̂ − θ)T(θ̂ − θ)

K × Var(θ) .
(5.22)

The set of effects included in the target θ differs according to the simulation setup. For

the Pre-CC, which is almost inbred, the target includes only the haplotype (additive) ef-

fects, ie, θ = β; dominance effects may be present, but their occurrence in the data —

while enough to derail inference of β — is too sporadic for meaningful estimation and

are therefore considered as a type of noise in the Pre-CC. For the HS, many heterozy-

gous diplotype states will be present at a given QTL, although overall some diplotype

states may be absent; for this population, the target therefore includes the J×(J+1)/2

117

vector of diplotype effects, ie, θ = δ.

In addition to prediction error, which is primarily motivated by how well effects

estimated for the QTL would predict phenotype in new individuals, I also examine the

rank, which is most relevant to how effects are interpreted (eg, when identifying high

and low strain effects); rank accuracy is calculated using Spearman’s rank correlation

of the target θ with the estimate θ̂.

5.4 Results

Methods to estimate QTL effects, including those based on Diploffect model, were

evaluated by simulation. Simulations were performed on two datasets (Pre-CC and HS)

under two settings (additive effects only, and additive plus dominance effects), giving

rise to four distinct simulation studies. In each study, to assess how methods improved

with greater signal to noise, the magnitude of the QTL effect was varied from 10% to

40% of the phenotypic variance. Estimation of those effects was judged by two crite-

ria: prediction accuracy, which is most relevant to estimating correctly the magnitude

of effects, and therefore especially relevant to out of sample predictions; and rank accu-

racy, which is most relevant to interpretation that focuses on how the effects of different

founder haplotypes (or founder-pair diplotypes) are ordered. Interval estimates of QTL

effects were not considered in the simulations because for the non-Bayesian methods

examined they are undefined; however, examples of interval estimates are provided

later in three example applications estimating effects for previously identified QTL.

5.4.1 Pre-CC Simulations: Estimation of Additive Effects

All seven methods listed in Table 5.2 were evaluated for their ability to estimate si-

multaneously 8 haplotype effects at simulated QTL in the Pre-CC. Their accuracy in es-

118

timating the relative numerical distance between effects (prediction accuracy) is given

in Figure 5.5(a). This shows strongest performance by: fully Bayesian implementa-

tions of Diploffect (DF.MCMC best of all; then DF.IS) its partially Bayesian MCMC

implementation (DF.MCMC.pseudo); and then additive-effect only ridge regression

(ridge.add), which 10% worse than the fully Bayesian methods but at larger QTL

effect sizes is better than the partially Bayesian methods. Worst performance by far is

seen for the single predictor linear model partial.lm and the 36-parameter ridge

method ridge.dom; both of these seem to produce erratically dispersed estimates,

with this exacerbated by smaller effect QTL. Although the different methods vary con-

siderably in their ability to estimate magnitude of effects, they are hardly distinguished

in their ability to determine relative rank: In Figure 5.5(b), the all methods are insignif-

icantly different, with the exception of the partially Bayesian DF.MCMC.pseudo,

which significantly (although not substantially) underperforms the others. In general:

fully Bayesian methods either equal or outperform both partially Bayesian methods and

the non-Bayesian methods; highly parameterized ridge and the single predictor regres-

sion inflate estimates but preserve order; and 8-parameter ridge performs well in both

prediction and rank accuracy.

5.4.2 Pre-CC Simulations: Estimation of Additive Effects

in the Presence of Dominance

The simulations above were repeated, but this time with QTL simulated to include

not only additive effects but also effects of dominance. Dominance effects have few op-

portunities to manifest at typical locus in the Pre-CC because that population is mostly

inbred. Nonetheless, residual heterozygosity is present at many loci, and so dominance

can, if unmodeled, potentially disrupt estimation of additive effects. To examine this

phenomenon, methods were evaluated based on their estimated additive (haplotype)

119

P
re

di
ct

io
n

er
ro

r

0.066

0.224

0.383

0.541

0.700 partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

QTL Effect Size

(a) Prediction error

R
an

k
ac

cu
ra

cy

0.69

0.73

0.77

0.80

0.84

QTL Effect Size

(b) Rank accuracy

Figure 5.5: Estimation of additive effects for a simulated additive-acting QTL in the
Pre-CC population, judged by a) prediction error, and b) rank accuracy. For a given
combination of QTL effect size and estimation method, each point indicates the mean
of the evaluation metric based on 2500 simulation trials, and each vertical line indicates
the 95% confidence interval of that mean. Points and lines are grouped by the corre-
sponding QTL effect sizes and also are shifted slightly to avoid overlap. At the same
QTL effect size, the left to right ordering of the methods reflects relative performance
of better to worse.

effects, albeit in the presence of disruptive dominance. As shown in Figure 5.6, the

addition of dominance, although increasing prediction error and decreasing rank accu-

racy, did not visibly change the relative performance of the methods. Interestingly, the

prediction error of ridge.dom remains on the order of 80% worse than ridge.add

despite its inclusion of (potentially useful, in this case) dominance parameters.

5.4.3 Updating of Diplotype Probabilities in the Pre-CC

In DF.MCMC, diplotype state for each individual is a modeled latent parameter, and,

like other modeled latent parameters, has both a prior and a posterior distribution: The

prior in this case is the diplotype probability from haplotype reconstruction, which is

120

P
re

di
ct

io
n

er
ro

r

0.066

0.224

0.383

0.541

0.700 partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

partial.lm
ridge.add
ridge.dom
DF.MCMC
DF.MCMC.pseudo
DF.IS.noweight
DF.IS

QTL Effect Size

(a) Prediction error

R
an

k
ac

cu
ra

cy

0.69

0.73

0.77

0.80

0.84

QTL Effect Size

(b) Rank accuracy

Figure 5.6: Estimation of additive effects for a QTL simulated to have both additive
and dominant effects in the Pre-CC population. Symbols are defined as in Figure 5.5.

ignorant of phenotype; the posterior is estimated from the MCMC samples, is cognizant

of phenotype, and update the original probability in light of that phenotypic informa-

tion. Provided adequate MCMC mixing occurs and enough MCMC samples are taken,

this updating process should result in an increased posterior probability placed on the

true underlying diplotype state of that QTL in that individual. Since in the simulations

I generate these true diplotype states, the extent to which diplotype probabilities are

improved can be observed. This is illustrated for one individual’s prior and posterior

diplotype probabilities in Figure 5.2 of Section 5.2.6. The improvement across all in-

dividuals was quantified using a summary statistic, the True Diplotype Improvement

(TDI), which measured the average difference between posterior and prior probability

for each underlying diplotype jk[i] for each individual i, defined as

TDI =
1

n

n∑
i=1

[
p(Di(m)jk[i]|y)− Pi(m)jk[i]

]
. (5.23)

In the Pre-CC simulations, averaged across trials involving additive only effects the

average TDI was 0.008 (95% CI: 0.007-0.009); averaged across all trials involving

121

Population Pre-CC Heterogeneous Stock
partial.lm 0.056 2.72
ridge.add 0.124 2.80
ridge.dom 0.151 2.92

DF.MCMC.pseudo 27.96 NA
DF.MCMC 92.77 NA

DF.IS.noweight 580.7 3727
DF.IS 580.9 3724

DF.IS.kinship NA 16231

Table 5.3: A table for running time (seconds) of different models.

additive plus dominance effects, the average TDI was 0.015 (95% CI: 0.014-0.015).

5.4.4 HS Simulations: Estimation of Additive Effects

Six of the seven methods in Table 5.2, all except DF.MCMC and

DF.MCMC.pseudo, were evaluated on their ability to estimate simultaneously

36 diplotype effects for additive-effect QTL simulated in the HS population. The

MCMC methods were excluded from this comparison because they were too slow: The

time required for acceptable MCMC convergence on this relatively large dataset (1762

individuals) made performing 2500 independent analyses under each of four conditions

unfeasible (see 5.3). Diploffect models were therefore represented by the importance

samplers: DF.IS, DF.IS.noweight, and DF.IS.kinship. Of these, genetic

background effects arising from unequal relatedness are represented in two ways:

DF.IS.kinship uses a full polygenic model based on the genotype-inferred kinship

matrix; DF.IS and DF.IS.noweight approximate this polygenic model with a

random intercept for sibship — an approximation that reduces their running time by

more than four-fold (Table 5.3).

As shown in Figure 5.7, under this setting where sample size is greater but diplo-

type state is less certain, methods based on the Diploffect model strongly outperform

122

the regression-on-probability based competitors. This somewhat expected: In the face

of uncertainty, ROP will lead to wildly inflated estimates and poor prediction accu-

racy (see discussion of Table 5.1 in Methods). Ridge regression in this context should

improve considerably over standard least squares multivariable regression. Nonethe-

less, ridge.add produced effect estimates that were considerably dispersed relative

to their true values, and ridge.dom performed so poorly (prediction error > 500)

that it had to be excluded from Figure 5.8(a) for the purposes of legibility. Among the

Diploffect models, the fully Bayesian methods DF.IS and DF.IS.kinship signif-

icantly outperform the partially Bayesian DF.IS.noweight on prediction accuracy,

but this advantage is reversed for rank accuracy, where DF.IS is slightly worse, and

DF.IS.kinship is significantly worse (discussed more below).

 2.2

 4.8

 7.4

10.0

12.6

0.68

0.71

0.75

0.78

0.81

QTL Effect Size

(a) Prediction error

R
an

k
ac

cu
ra

cy

0.15

0.26

0.37

0.47

0.58

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

QTL Effect Size

(b) Rank accuracy

Figure 5.7: Estimation of diplotype effects for an additive-only QTL simulated in the
HS. Symbols are defined as in Figure 5.5

123

P
re

di
ct

io
n

er
ro

r

2.1

3.3

4.6

5.9

7.2
P

re
di

ct
io

n
er

ro
r

0.81

0.83

0.85

0.88

0.90

QTL Effect Size

(a) Prediction error

R
an

k
ac

cu
ra

cy

0.13

0.20

0.27

0.33

0.40

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

partial.lm
ridge.add
ridge.dom

DF.IS.noweight
DF.IS
DF.IS.kinship

QTL Effect Size

(b) Rank accuracy

Figure 5.8: Estimation of diplotype effects for QTL simulated to have both additive
and dominance effects in the HS. Symbols are defined as in Figure 5.5

5.4.5 HS simulations: Estimation of Additive and Dominance Effects

The simulations described for the HS above were repeated, but this time with QTL

simulated to include effects of both additive and dominance. Relative performance of

the five methods remained about the same; absolute performance on prediction accu-

racy worsened a little for the Diploffect-based methods, and absolute performance on

rank accuracy dropped sharply by 0.1 (correlation scale 0 to 1) for all methods. As in

the simulations with additive-only QTL, modeling genetic background using a kinship-

specified polygenic effect, as in DF.IS.kinship, is not clearly superior to using a

sibship-based approximation; indeed, at least in this context, it performs significantly

worse on rank accuracy while requiring substantially more computation. I speculate

that this relative robustness of the sibship approximation could reflect either the breed-

ing structure of the HS, which, perhaps because of its circular mating structure, leads

kinship to be well-approximated by sibship, or/and computational efficiencies associ-

ated with estimating polygenic effects (see also below) rather any advantage of sibship

124

approximations in general.

5.4.6 Efficiency of Importance Sampling in the Pre-CC and HS

Unlike the MCMC-based methods, the methods based on importance sampling are

non-iterative: Although in both cases inference benefits from more posterior samples,

for the IS methods it does not also require the potentially slow and unpredictable con-

vergence of an MCMC chain. Nonetheless, when sampling such a large parameter

space (simultaneously θ and ∆ in Eq 5.8), an IS procedure that reweights samples

from the prior (as IS scheme does, albeit partially) can be highly inefficient when that

prior is uninformed; in particular, a large number of samples drawn from the prior may,

after reweighting, translate into a comparatively tiny number of samples from the pos-

terior. I investigated the extent of this sampling inefficiency using the effective sample

size (ESS) metric of Liu et al. (2001):

ESS =
(
∑

k w
(k))2∑

k(w
(k))2

where w(k) is the weight for the kth sample (see Models and Methods). As shown in

Figure 5.9, DF.IS applied to HS leads to a much smaller ESS than the DF.IS applied

to the Pre-CC, reflecting both the greater size of the posterior space for the HS and the

greater uncertainty present in the HS diplotype probabilities. Although the ESS metric

can be misleadingly high when, eg, all draws are far from the posterior, when it is

low it implies that estimation will be inefficient (and potentially high variance) because

the estimated posterior well-informed by only a few samples. This could explain why

even though DF.IS is better than DF.IS.noweight in prediction error, DF.IS

is outperformed by DF.IS.noweight in rank correlation, suggesting that DF.IS

may be inefficient under a weakly informed diplotype prior. Conversely, under such

weakly informed diplotype priors, DF.IS.noweight can potentially lead to more

stable (albeit less informed) inference because all draws are weighted equally.

125

0 200 400 600 800 1000

1

2

5

10

20

50

100

200

Effective Sample Size

N
um

be
r

of
 O

cc
ur

re
nc

es
Comparison of Effective Sample Sizes

Heterogeneous Stock
Pre−CC

Figure 5.9: Density plot of the Effective Sample Size of posterior samples for the
DF.IS method (maximum possible is 1000) applied to HS and Pre-CC. ESS measures
how efficiently the true posterior is sampled by DF.IS. Distribution is based on IS
samples from 5000 independent simulations.

5.4.7 Haplotype Effects on A Binary Outcome:

White Head-spotting in the Pre-CC

Haplotype Effects

−20 −10 0 10 20

−20 −10 0 10 20

WSB/EiJ

PWK/PhJ

CAST/EiJ

NZO/HILtJ

NOD/ShiLtJ

129S1/SvlmJ

C57BL/6J

A/J |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|DF.MCMC
DF.IS

Figure 5.10: Highest posterior density intervals for the haplotype effects of the binary
trait white-spotting in the Pre-CC

The Pre-CC study of Aylor et al. (2011b) identified a Mendelian trait locus on chro-

126

mosome 10 (at 92.0 Mb) for white head-spotting. White head-spotting is a character-

istic of the inbred CC founder strain WSB, and this phenotype was visibly present in

6 out of the 184 Pre-CC mice. Because the identified locus was dominant Mendelian,

associated with the presence of either one or two WSB haplotypes, it was straightfor-

ward to identify by LD mapping using a haplotype dosage ROP model as in Eq 5.6.

Estimating meaningful strain effects was not, in this case, necessary, because the ef-

fect was obvious. It would, however, have been awkward statistically, because proper

treatment of the binary outcome is most naturally modeled as a binary logistic regres-

sion, which in a standard maximum likelihood estimation would have quickly become

problematic due to separation (see, eg, Gelman and Hill (2007)). Because Diploffect is

both defined for as generalized linear and includes automatic variable shrinkage, strain

effects for white spot can be modeled without further development. In Figure 5.10,

I plot 95% highest posterior density (HPD) intervals for all haplotype effects at the

QTL estimated by both DF.MCMC and DF.IS. Here, HPDs for DF.IS are calculated

by Rao-Blackwellization: Marginal densities for each haplotype effect are estimated

at each importance sample, and these are subsequently reweighted to give a mixture

density from which the HPD interval is derived. Both models report a similar result for

this QTL: The non-WSB posteriors are similar to each other and broad, reflecting high

uncertainty about the relative effects of these strains; the WSB posterior distributions

is shifted above the others, reflecting its positive effect. The HPD of the contrast WSB

vs the other strains, calculated by applying this contrast to each MCMC sample from

DF.MCMC, is 1.35-36.18, further reflecting the positive effect of the WSB haplotype

but also the fact that uncertainty about this effect remains because the sample size is

not infinite.

127

Haplotype Effects

−0.6 −0.4 −0.2 0.0 0.2 0.4

−0.6 −0.4 −0.2 0.0 0.2 0.4

LP/J

DBA/2J

CBA/J

C57BL/6J

C3H/HeJ

BALB/cJ

AKR/J

A/J |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

(a) The HPD intervals of the effects at the QTL of FPS.

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

A/J AKR/J BALB/cJ C3H/HeJ C57BL/6J CBA/J DBA/2J LP/J

(b) The predicted diplotype effects of FPS at QTL.

Figure 5.11: Haplotype and diplotype effects estimated by DF.IS for phenotype FPS
in the HS

5.4.8 Haplotype and Diplotype Effects at QTL in the HS:

Fear Potentiated Startle (FPS) and Total Cholesterol (CHOL)

To demonstrate Diploffect-based estimation of additive and dominance effects, I

examined two previously mapped QTL from the HS mapping study of Valdar et al.

(2006). The first QTL is for Fear Potentiated Startle, a conditioned test of anxiety (see

Solberg et al. (2006) and refs therein), located between 91.37-92.62 Mb on chromo-

some 15. The DF.IS procedure was applied to the central marker interval of this QTL

(rs3722990 - rs3716673). Marginal posteriors for all effects were calculated as above.

For legibility, I show HPD intervals for haplotype effects only, in Figure 5.11(a). Dom-

inance effects, which comprise 28 deviations from the additive haplotype model, are

harder to graph intuitively; instead I plot the posterior predictive means of the 36 pos-

sible diplotype effects, ie, E(δ|y), as a symmetric grayscale matrix in Figure 5.11(b).

128

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Proportion of additive effects
 of the total effects at QTL

Proportion

D
en

si
ty

FPS
CHOL

Figure 5.12: Posteriors of the fraction of effect variance due to additive rather than
dominance effects at QTL for phenotypes FPS and CHOL in the HS dataset

Both plots suggest that effects are driven by C57BL/6J, and the consistent banding pat-

tern of the diplotype effect plot suggests these effects are mainly additive. The degree of

additive vs dominance effects is quantified further in Figure 5.12, which gives the pos-

terior distribution of the fraction of effect variance due to additivity, that is, ie, p(πadd|y)

where πadd = τ 2add/(τ
2
add + τ 2dom). As expected for a ratio defined using hyperparameters,

this posterior is relatively broad; but it nonetheless has a clear maximum near 1, with

posterior mean of 90.3%, suggesting that additive effects predominate.

The second QTL examined in the HS was for total cholesterol concentration

(CHOL), located between 171.15-171.51 Mb on chromosome 1. As above, the DF.IS

procedure was applied to the central marker interval of the CHOL QTL (rs13476229-

rs3657320) to give HPD intervals for haplotype effects (Figure 5.13(a)) and point esti-

mates of diplotype effects (Figure 5.13(b)). Unlike the FPS QTL, the HPD intervals for

CHOL cluster into three different groups: the highest effect from LP, a second group

comprising C3H and CBA with positive mean effects, and the remaining five strains

having negative effects. This pattern is consistent with a multiallelic QTL, potentially

129

Haplotype Effects

−0.15 −0.05 0.05 0.15

−0.15 −0.05 0.05 0.15

LP/J

DBA/2J

CBA/J

C57BL/6J

C3H/HeJ

BALB/cJ

AKR/J

A/J |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

(a) The HPD intervals of the effects at the QTL of
CHOL.

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

A/J AKR/J BALB/cJ C3H/HeJ C57BL/6J CBA/J DBA/2J LP/J

(b) The predicted diplotype effects of CHOL at QTL.

Figure 5.13: Haplotype and diplotype effects estimated by DF.IS for phenotype
CHOL in the HS

arising through multiple, locally epistatic biallelic variants. In the diplotype effect plot

(Figure 5.13(b)), although most of the effects are additive, off-diagonal patches provide

some evidence of dominance effects: In particular, the haplotype combinations AKR

× DBA and C3H × CBA deviate from the banding otherwise expecting under addi-

tive genetics. The fraction of additive effect variance for CHOL has a posterior mean

of 82.0% and, as shown in Figure 5.12, a posterior distribution far less concentrated

around high additive effects.

5.5 Conclusion

I present here a statistical model and associated computational techniques for esti-

mating the effects of alternating haplotype composition at QTL detected in multiparent

populations. The statistical model of Diploffect is intuitive in its construction, connect-

130

ing phenotype to underlying diplotype state through a standard hierarchical regression

model. Its chief novelty, and the source of greatest statistical challenge, is that diplotype

state, although efficiently encapsulating multiple facets of local multilocus variation,

cannot be observed directly, and is typically available only probabilistically — mean-

ing that statistically coherent and predictively useful description of QTL action requires

estimating effects of alternating haplotype composition from data where composition

is itself uncertain.

Nonetheless, use of the Bayesian procedures proposed here has several poten-

tial drawbacks. Foremost is computation time: Although the modified slice sampler

(DF.MCMC; Section 5.2.6) makes MCMC sampling of both diplotypes and effects fea-

sible, it is nonetheless highly computationally intensive. For large outbred populations,

especially those with a high degree of diplotype uncertainty (which can be examined

using SIC as in Figure 5.4, I recommend DF.IS over DF.MCMC. For either method,

a high degree of diplotype uncertainty and weak QTL effects results in computational

inefficiencies because the posterior distribution that must be traversed (in MCMC) or

sampled (in IS) is much more diffuse: for DF.MCMC this means convergence must

be carefully monitored; for DF.IS, this means many more samples must be taken to

achieve a reasonable picture of the posterior.

131

CHAPTER 6

CONCLUSION

This chapter concludes the dissertation by summarizing my contributions and

proposing some future work.

6.1 Summary of Contributions

Multiparent crosses have demonstrated their uniqueness in genetics: They are as

diverse as human populations in terms of encoding genetic factors in their genomes,

while they are still maintained in a well controlled manner, ensuring replicability of

biological experiments. Existing general purpose computational genetic tools may

not be able to gauge sufficient information from multiparent crosses because they are

not specifically designed for such populations, neglecting several important features

in multiparent crosses (e.g. finite number of founders, precisely assembled genomes

of the founders, special pedigree design); some key studies such as haplotype effect

estimation also lack corresponding computational methods, limiting the scope of how

multiparent crosses may be applied.

I have developed a series of methods for solving several computational and statisti-

cal problems in analyzing data from multiparent crosses, including RNA-Seq assembly

and quantification, QTL mapping and haplotype effects estimation. These methods are

motivated by the collaborating projects when I conducted for analyzing genomic data

for Collaborative Cross. Therefore, the special characters of multiparent crosses are

utilized by these methods, and this dissertation proves they can be used to empower

132

and enrich the analysis. While some method such as Diploffect is specifically designed

and only applicable for multiparent crosses, the others including GeneScissors, RNA-

Skim and HTreeQA can also be applied to other types of populations including human

population. My particular contributions are listed as follows.

• Connecting existing genome information to computational tools.

Many approaches, including Cufflinks (Trapnell et al., 2010), RSEM (Li and

Dewey, 2011), etc., start to use existing information such as annotated transcrip-

tome to help improve the efficiency of the methods. However, only the sequences

of transcripts are used by these methods, meta information such as the types of

genes is not considered. In addition, few methods refine the existing informa-

tion first for developing rapid computational methods. It is sensible that these

methods can be further improved by incorporating more existing knowledge into

themselves, especially when data analysts apply these methods on well-studied

populations that are complemented with enriched information, including multi-

parent crosses; it is nonetheless unclear how to achieve this goal.

In this thesis, I’ve demonstrated two new ways to integrate the existing knowl-

edge: GeneScissors (Chapter 2) utilizes the annotated meta information from

transcriptome to validate the result, while RNA-Skim (Chapter 3) analyzes the

whole transcriptome to find sig-mers to speed up the RNA-Seq quantification.

Compared with existing methods, GeneScissors is able to generate more trust-

worthy results, and RNA-Skim is much faster by using a smaller set of sig-mers

instead of using the whole transcriptome.

• Using novel concepts for genomic analysis

In this dissertation, I’ve proposed several unique concepts for designing and im-

plementing computational genetics methods on RNA-Seq data or QTL mapping,

including the sharing graph and fragment attractors (Chapter 2), which are from

133

an idea that leverages results from both aligner and assembler to determine the

context of a cluster of alignments at the same genome location, the sig-mers

(Chapter 3), which is a type of k-mers that uniquely exist in a subset of tran-

scripts, and the tri-state semi-perfect phylogeny trees (Chapter 4) which are phy-

logeny trees built from heterozygous genotypes. GeneScissors, RNA-Skim and

HTreeQA are designed by the essences of these original and unconventional con-

cepts, and they have successful applications on multiparent crosses and exhibit

promising results.

• Correcting errors in RNA-Seq assembly based on the context

Most of existing RNA-Seq analysis pipelines separate aligning and assembling

as two independent steps, and the common approach in the aligner attempts to re-

move suspicious alignments before the assembly. However, evidence has shown

that this choice causes failures of assembling genes and reports of unexpressed

genes in the transcriptome because the corresponding alignments have been re-

moved by the premature error correction in aligners (Chapter 2).

GeneScissors recognizes this situation and detect errors produced by it. In the

opposite of removing alignments by just basing on alignments of individual

fragments, which is a strategy commonly used in RNA-Seq aligners, however,

GeneScissors never removes a single alignment in the alignment step, and use

fragment attractor to collect “context” information about the alignments. If the

alignments of a set of fragments are from a region with full of mismatches, and

these fragments can also be aligned to another region without mismatches —

which is a sufficient evidence that the former alignments are erroneous, the for-

mer ones are removed by GeneScissors. And GeneScissors also uses other infor-

mation such as number of exons and fractions of shared fragments of a specific

transcripts to assist identify errors in RNA-Seq pipelines. As there are a cou-

ple of features considered by GeneScissors, it constructs the sharing graph of

134

transcripts reported by existing RNA-Seq pipelines, and builds a Support Vector

Machine based graph classification method to identify false nodes in the graph.

In this way, the error correction step is postponed until the assembly step finishes,

using information of clusters of alignments instead of each individual alignment

to identify false alignments and yielding more accurate results than the error cor-

rection method used in the existing pipelines.

• Improving the RNA-Seq quantification performance by 10-fold

RNA-Seq quantification typically required hours if not days to analyze a single

individual, until the recent development in alignment-free methods that uses k-

mers instead of alignments of fragments to quantify the transcripts, delivering

the result at the same accuracy yet in a much shorter time. Meanwhile, some fact

indicates that the RNA-Seq data is highly redundant, and lots of computations in

RNA-Seq tools are wasted to process the redundant information. RNA-Skim is

a method that can avoid unnecessary computation by using a much smaller yet

still informative set of k-mers — sig-mers — yielding another 10-fold speed-up

comparing with Sailfish. In order to achieve this goal, RNA-Skim provides a

complete solution that can determine the best clusters of transcripts ensuring that

most of transcripts are covered by sig-mers, efficiently finding and selecting sig-

mers using bloom filters, rapidly counting all sig-mers in the RNA-Seq data using

the rolling hash method, and fast and accurately quantify all transcripts using a

statistical model fitted by an Expectation-Maximization algorithm. RNA-Skim

significantly saves computational resources used for RNA-Seq quantification, al-

lowing biologists to get the transcript abundances in a much shorter time and

saving them times to focus on the follow up analysis such as RNA-Seq differen-

tial analysis.

• Discovering QTLs using tri-state semi-phylogeny trees for heterozygous

populations.

135

A perfect phylogeny tree reflects the ancestor information, is an ideal represen-

tation for the relatedness of individuals at the haplotype level, and it has been

widely used in the QTL mapping methods. Since the perfect phylogeny tree can

only be constructed on the haplotypes, for diploid populations, the individual

with heterozygous sites becomes two different leaves on the perfect phylogeny

trees, violating the independent assumption of the statistical tests such as ANOVA

which are commonly used in the phylogeny based QTL mapping. I proposed a

tri-state semi-perfect phylogeny trees (Chapter 4) to allow that each individual

is presented as one leaf node in the constructed phylogeny tree, permitting the

validity of the assumption used in the underlying statistical test. From this, I de-

veloped a novel QTL mapping method named HTreeQA, extending the previous

work of TreeQA, to provide the capability to detect a wide set of effects including

additive, dominant and over-dominant QTLs.

• Estimating Haplotype effects with statistically valid interval estimates

As emphasized in this dissertation, one advantage of multiparent crosses is that

the number of founders is limited and we already have relatively complete infor-

mation about the founders, therefore, the QTL also has a limited possible genetic

states, enabling investigators to enumerate each of them to understand how they

contribute the phenotypes. However, few of existing methods take advantage

of this unique feature, restraining users from understanding how founders con-

tributes effects to the phenotypes at the QTLs.

Diploffect (Chapter 5) is one of the initial attempts to combine the structure of

multiparent crosses, the inferred haplotypes and the discovered QTLs to reveal

the underlying complicated effects of the founders to the phenotypes by joint

modeling the haplotype distributions and the effects of haplotypes at the QTL. I

frame this problem as a Bayesian integration, in which both diplotype state and

QTL effects are latent variables to be estimated, and provide two computational

136

approaches to solving it: one highly flexible but also heavily computationally

demanding, based on MCMC; the other less flexible but where the computation

required, although still somewhat expensive, is more predictable. Importantly, in

theory and simulation, I describe how simpler, approximate methods for estimat-

ing haplotype effects relate to Diploffect, and how the trade-offs they make can

affect inference.

The prime comparison, representing the most accessible competitor of Diplof-

fect, is with approaches that directly regression on the diplotype probabilities

themselves (or functions of them, such as the haplotype dosage) rather than

modeling the latent states those probabilities represent. In the context of QTL

detection, where the need to scan potentially large numbers of loci makes fast

computation essential, such ROP-based approaches are, in my view, typically

well-justified and often the only practical solution. For estimating effects at de-

tected QTL, however, where the number of loci interrogated will be fewer by

several orders of magnitude and the amount of time and energy devoted to in-

terpretation will be far greater, there is room for a different trade-off — one that

emphasizes comprehensive and flexible incorporation of information and uncer-

tainty rather than computational efficiency. Nevertheless, the comprehensive ex-

periments demonstrated that Diploffect generates much reliable point estimations

and also provides statistically valid interval estimates that are not provided by the

alternative methods.

A primary motivation for developing Diploffect, and in particular to use a

Bayesian approach to its estimation, is prediction: In particular, the ability to ob-

tain for any future combination of haplotypes, covariates, and concisely-specified

genetic background effects, a posterior predictive distribution for some function

of the phenotype — this could be, for example, a cost or utility function whose

posterior predictive distribution can inform decisions about how to prioritize sub-

137

sequent experiments. Such predictive distributions are easily obtained from the

MCMC procedure, and can also be extracted with only slightly more effort (via

specification of T (θ) in Eq 5.17) from the Importance Sampling methods. I antic-

ipate that, applied to (potentially multiple) independent QTL, Diploffect models

will provide more robust out-of-sample predictions of phenotype in, for exam-

ple, proposed crosses of multiparental recombinant inbred lines, than would be

possible using ROP-based models.

6.2 Future Directions

I think that the following directions or problems need further investigations.

• Incorporating more information in RNA-Seq quantification

Currently, RNA-Skim uses a relatively simple strategy to select sig-mers, which

may choose sig-mers covering genomic variants such as SNP or structural vari-

ants, but this rarely happen in multiparent crosses as the samples DNA genomes

in multiparent crosses are either known or relatively cheap to get as they are de-

rived from a finite number of founders, and all founders’ genome are commonly

known. But the inconsistency of the DNA sequences of samples and the reference

DNA genome commonly exists in other populations than multiparent crosses. If

a sample carries variants differing with the reference genome, and some sig-mer

covering such region is selected, RNA-Skim is not able to detect such sig-mers,

thus, the quantification of the sig-mers’ corresponding transcripts becomes inac-

curate. Therefore, In order to generalize RNA-Skim to other populations, one

possible extension for RNA-Skim is to incorporate the variant database to guide

itself to select sig-mers from regions without known variants.

• Using sig-mers for RNA-Seq differential analysis

138

Determining which set of transcripts is expressed at different abundance levels

in different samples is one critical step in understanding the effects of transcrip-

tome in genetics. Some differential analysis methods (Anders and Huber, 2010b)

directly use the number of reads aligned to transcripts, suffering the slow perfor-

mance of the aligner and disregarding the fact that the alignments are not reliable.

The notion of sig-mers seems a better alternative to the alignment in those tools,

as it is much faster to count all sig-mers in RNA-Seq data than to align them

to the transcriptome, providing the same level of accuracy with the alignment-

dependent methods.

• Extending HTreeQA to handle the multiple QTLs

The phylogeny tree must be built from the compatible region, which has no ev-

idence for recombination. The advantage of multiparent crosses is their highly

recombinant genomes, and the potential ability to model the interactions of mul-

tiple different QTLs for complex traits. Data analysts typically apply Lasso on all

genome markers in order to joint estimate the effects from multiple QTLs, or find

epistatic effects (interactions between two markers (Zhang et al., 2010)). On the

other hand, the existing phylogeny-based approaches do not exploit such charac-

teristic to find interesting correlations. The compatible regions of a phylogenetic

tree also give us a view on ungenotyped markers, and such information is not

used in the existing approaches to model multiple QTLs. It is worth exploring

to build a phylogeny tree approach to detecting epistatic effects between any two

phylogeny trees in the genome. Through the compatibility within the tree, we not

only test any pair of markers, but also use the combination of the markers as the

proxy to approximate the markers missing in the data.

• Extending Diploffect for detecting the underlying alleles and accommodat-

ing multiple alleles

Diploffect assumes that the number of underlying alleles is the same with the

139

number of founders in multiparent crosses, modeling each founder with a differ-

ent effect to the phenotype. Though all haplotype effects share the same diffused

prior, it still may employ a larger degree of freedom in the model when analyzing

the QTL with fewer alleles. One possible way to reduce the degree of freedom in

Diploffect is to put Dirichlet Process Prior on top of the haplotype effects, allow-

ing Diploffect to do model selection and parameter estimation at the same time.

The other possible solution is to use the relatedness of the local phylogeny tree

built based on the haplotypes to reduce the possible number of combinations of

different underlying alleles.

A primary motivation for developing Diploffect, and in particular to use a

Bayesian approach to its estimation, is prediction: In particular, the ability to ob-

tain for any future combination of haplotypes, covariates, and concisely-specified

genetic background effects, a posterior predictive distribution for some function

of the phenotype — this could be, for example, a cost or utility function whose

posterior predictive distribution can inform decisions about how to prioritize sub-

sequent experiments. Such predictive distributions are easily obtained from our

MCMC procedure, and can also be extracted with only slightly more effort (via

specification of T (θ) in Eq 5.17) from our Importance Sampling methods. I an-

ticipate that, applied to (potentially multiple) independent QTL, Diploffect mod-

els will provide more robust out-of-sample predictions of phenotype in, for ex-

ample, proposed crosses of multiparental recombinant inbred lines, than would

be possible using ROP-based models.

In conclusion, I developed a series of methods for improving the efficiency and

accuracy of important computational tasks in genetics, especially for conducting these

tasks on multiparent crosses. The extensive experiments demonstrate that these meth-

ods can significantly improve the accuracy or save CPU running times. These methods

help expedite on the computational intensive tasks and enable deep interpretation of

140

results.

141

REFERENCES

Akey, J., L. Jin, and M. Xiong (2001). Haplotypes vs. single-marker linkage disequi-
librium tests: what do we gain. EUR. J. HUM. GENET. 9, 291–300.

Anders, S. and W. Huber (2010a, October). Differential expression analysis for se-
quence count data. Genome Biology 11(10), R106.

Anders, S. and W. Huber (2010b, October). Differential expression analysis for se-
quence count data. Genome Biology 11(10), R106.

Au, K. F., H. Jiang, L. Lin, Y. Xing, and W. Wong (2010, August). Detection of
splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Re-
search 38(14), 4570–4578.

Aylor, D. L., W. Valdar, W. Foulds-Mathes, R. J. Buus, R. A. Verdugo, et al. (2011a).
Genetic analysis of complex traits in the emerging Collaborative Cross. Genome
Research 21(8), 1213–1222.

Aylor, D. L., W. Valdar, W. Foulds-Mathes, R. J. Buus, R. A. Verdugo, et al. (2011b,
August). Genetic analysis of complex traits in the emerging Collaborative Cross.
Genome Research 21(8), 1213–1222.

Balakirev, E. S. and F. J. Ayala (2003). Pseudogenes: are they "junk" or functional
DNA? Annual review of genetics 37, 123–151.

Barnett, D. W., E. K. Garrison, A. R. Quinlan, M. P. Strömberg, and G. T. Marth (2011,
June). BamTools: a C++ API and toolkit for analyzing and managing BAM files.
Bioinformatics 27(12), 1691–1692.

Bauman, L. E., J. S. Sinsheimer, E. M. Sobel, and K. Lange (2008, October). Mixed
Effects Models for Quantitative Trait Loci Mapping With Inbred Strains. Genet-
ics 180(3), 1743–1761.

Besenbacher, S., T. Mailund, and M. h. Schierup (2009). Local phylogeny mapping of
quantitative traits: higher accuracy and better ranking than single-marker association
in genomewide scans. Genetics 181(2), 747–753.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13(7), 422–426.

Bonfert, T., G. Csaba, R. Zimmer, and C. Friedel (2012). A context-based approach
to identify the most likely mapping for RNA-seq experiments. BMC Bioinformat-
ics 13(Suppl 6), S9.

Broman, K. and S. Sen (2009). A Guide to QTL Mapping with R/qtl. New York:
Springer.

Carlin, B. P. and T. A. Louis (2009). Bayesian Methods for Data Analysis (3 ed.).

142

Cavanagh, C., M. Morell, I. Mackay, and W. Powell (2008, Apr). From mutations to
magic: resources for gene discovery, validation and delivery in crop plants. Current
opinion in plant biology 11(2), 215–21.

Cheng, R., M. Abney, A. A. Palmer, and A. D. Skol (2011, July). QTLRel: an R
Package for Genome-wideAssociation Studies in which Relatednessis a Concern.
BMC Genetics 12(1), 66.

Churchill, G. a. and R. W. Doerge (1994). Empirical threshold values for quantitative
trait mapping. Genetics 138(3), 963–971.

"Collaborative Cross Consortium" (2012). The genome architecture of the collaborative
cross mouse genetic reference population. Genetics, 389–401.

Dadgar, A. (2013, December). Bloomd library. https://github.com/armon/bloomd.

Devlin, B. and K. Roeder (1999). Genomic control for association studies. Biomet-
rics 55(4), 997–1004.

Ding, Z., T. Mailund, and Y. s. Song (2008). Efficient whole-genome association map-
ping using local phylogenies for unphased genotype data. Bioinformatics 24(19),
2215–2221.

dress, a. and m. steel (1992). Convex tree realizations of partitions. Appl. Math.
Lett. 5(3), 3–6.

Durrant, C. and R. Mott (2010). Bayesian qtl mapping using inferred haplotypes. Ge-
netics.

Ferris, M. T., D. L. Aylor, D. Bottomly, A. C. Whitmore, L. D. Aicher, T. a. Bell,
B. Bradel-Tretheway, J. T. Bryan, R. J. Buus, L. E. Gralinski, B. L. Haagmans,
L. McMillan, D. R. Miller, E. Rosenzweig, W. Valdar, J. Wang, G. a. Churchill,
D. W. Threadgill, S. K. McWeeney, M. G. Katze, F. Pardo-Manuel de Villena, R. S.
Baric, and M. T. Heise (2013, February). Modeling host genetic regulation of in-
fluenza pathogenesis in the collaborative cross. PLoS Pathogens 9(2), e1003196.

Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent, D. Carvalho-Silva, et al. (2011,
December). Ensembl 2012. Nucleic Acids Research 40(D1), D84–D90.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software 33(1), 1.

Fu, C.-P., V. Jojic, and L. McMillan (2014). An alignment-free regression approach
for estimating allele-specific expression using rna-seq data. In Research in Compu-
tational Molecular Biology, pp. 69–84. Springer.

Gelman, A. and J. Hill (2007). Data analysis using regression and multilevel/hierarchi-
cal models, Volume Analytical methods for social research. New York: Cambridge
University Press.

143

Google (2013, December). Protocal buffers. https://code.google.com/p/protobuf/.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, et al. (2011a,
May). Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nature Biotechnology 29(7), 644–652.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, et al. (2011b,
May). Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nature Biotechnology 29(7), 644–652.

Gregg, C., J. Zhang, B. Weissbourd, S. Luo, et al. (2010, August). High-resolution
analysis of parent-of-origin allelic expression in the mouse brain. Science 329(5992),
643–648.

Griebel, T., B. Zacher, P. Ribeca, E. Raineri, V. Lacroix, et al. (2012). Modelling
and simulating generic rna-seq experiments with the flux simulator. Nucleic Acids
Research 40(20), 10073–10083.

Gusfield, D. (1991). An efficient algorithms for inferring evolutionary trees. Net-
works 21(1), 19–28.

Gusfield, D. (2009). The multi-state perfect phylogeny problem with missing and re-
movable data: solutions via integer-programming and chordal graph theory. In RE-
COMB, pp. 236–252.

Guttman, M., M. Garber, J. Z. Levin, J. Donaghey, J. Robinson, et al. (2010, May).
Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nature Biotechnology 28(5), 503–
510.

Haley, C. and S. Knott (1992). A simple regression method for mapping quantitative
trait loci in line crosses using flanking markers. Heredity 69(4), 315.

Harrison, P. M., D. Milburn, Z. Zhang, P. Bertone, and M. Gerstein (2003). Iden-
tification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids
Research 31(3), 1033–1037.

Häsler, J., T. Samuelsson, and K. Strub (2007, May). Useful ‘junk’: Alu RNAs in the
human transcriptome. Cellular and Molecular Life Sciences 64(14), 1793–1800.

Hirotsune, S., N. Yoshida, A. Chen, L. Garrett, F. Sugiyama, et al. (2003, May). An ex-
pressed pseudogene regulates the messenger-RNA stability of its homologous coding
gene. Nature 423(6935), 91–96.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12(1), 55–67.

144

Hofstetter, J. R., J. a. Trofatter, K. L. Kernek, J. I. Nurnberger, and a. R. Mayeda (2003).
New quantitative trait loci for the genetic variance in circadian period of locomotor
activity between inbred strains of mice. Journal of Biological Rhythms 18(6), 450–
462.

Hsieh, W. (2013, December). Stringpiece. https://chromium.googlesource.com/chromium/.

hudson, r. r. and n. l. kaplan (1985). Statistical properties of the number of recombina-
tion events in the history of a sample of dna sequences. Genetics 111(1), 147–164.

Hurles, M. (2004). Gene Duplication: The Genomic Trade in Spare Parts. PLoS Biol-
ogy 2(7), e206.

Jurka, J. and T. Smith (1988, July). A fundamental division in the Alu family of re-
peated sequences. Proceedings of the National Academy of Sciences of the United
States of America 85(13), 4775–4778.

Kang, H. M., N. a. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly, and E. Es-
kin (2008). Efficient control of population structure in model organism association
mapping. Genetics 178(3), 1709–23.

Karp, R. M. and M. O. Rabin (1987). Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development 31(2), 249–260.

Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong, et al. (2011, Septem-
ber). Mouse genomic variation and its effect on phenotypes and gene regulation.
Nature 477(7364), 289–294.

Kelada, S. N. P., D. L. Aylor, B. C. E. Peck, J. F. Ryan, U. Tavarez, R. J. Buus, D. R.
Miller, E. J. Chesler, D. W. Threadgill, A. G. Churchill, F. Pardo-Manuel de Villena,
and F. S. Collins (2012). Genetical analysis of hematological parameters in incipient
lines of the Collaborative Cross. G3: Genes, Genomes, Genetics 2(2), 157–165.

Kennedy, B. W., M. Quinton, and J. A. Van Arendonk (1992). Estimation of effects of
single genes on quantitative traits. Journal of Animal Science 70(7), 2000–2012.

Khelifi, A., K. Adel, L. Duret, D. Laurent, D. Mouchiroud, and M. Dominique (2005,
January). HOPPSIGEN: a database of human and mouse processed pseudogenes.
Nucleic Acids Research 33(Database issue), D59–66.

Kleinman, C. L. and J. Majewski (2012, March). Comment on "Widespread RNA
and DNA Sequence Differences in the Human Transcriptome". Science 335(6074),
1302–1302.

Kover, P. X., W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich, M. D. Purugganan,
C. Durrant, and R. Mott (2009, July). A Multiparent Advanced Generation Inter-
Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics 5(7),
e1000551.

145

Kurtz, S., A. Narechania, J. C. Stein, and D. Ware (2008). A new method to compute K-
mer frequencies and its application to annotate large repetitive plant genomes. BMC
Genomics 9(1), 517.

Lander, E. S. and D. Botstein (1989). Mapping mendelian factors underlying quantita-
tive traits using RFLP linkage maps. Genetics 121(1), 185–199.

Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg (2009). Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol-
ogy 10(3), R25.

Larribe, F., S. Lessard, and N. J. Schork (2002). Gene mapping via the ancestral re-
combination graph. Theoretical Population Biology 62(2), 215 – 229.

Le, H. S., M. H. Schulz, B. M. McCauley, V. F. Hinman, and Z. Bar-Joseph (2013,
May). Probabilistic error correction for RNA sequencing. Nucleic Acids Re-
search 41(10), e109–e109.

Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution.
Pacific Journal of Mathematics 10(4), 1181–1197.

Lenarcic, A., K. Svenson, G. A. Churchill, and W. Valdar (2012). A general Bayesian
approach to analyzing diallel crosses of inbred strains. Genetics 190(2), 413–435.

Lettre, G., C. Lange, and J. N. Hirschhorn (2007). Genetic model testing and statistical
power in population-based association studies of quantitative traits. The Am. J. Hum.
Genet. 362, 358–362.

Li, B. and C. N. Dewey (2011). RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics 12, 323.

Li, B., V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey (2010, February).
RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformat-
ics 26(4), 493–500.

Li, J. and T. Jiang (2005). Haplotype-based linkage disequilibrium mapping via direct
data mining. Bioinformatics 21(2424), 4384–4393.

Li, M., I. X. Wang, Y. Li, A. Bruzel, A. L. Richards, J. M. Toung, and V. G. Che-
ung (2011, June). Widespread RNA and DNA Sequence Differences in the Human
Transcriptome. Science 333(6038), 53–58.

Lin, D. Y. and D. Zeng (2006, March). Likelihood-Based Inference on Haplotype
Effects in Genetic Association Studies. Journal of the American Statistical Associa-
tion 101(473), 89–104.

Liu, E. Y., Q. Zhang, L. McMillan, F. P. M. de Villena, and W. Wang (2010, June).
Efficient genome ancestry inference in complex pedigrees with inbreeding. Bioin-
formatics 26(12), i199–i207.

146

Liu, J. S., R. Chen, and T. Logvinenko (2001). A theoretical framework for sequential
importance sampling with resampling. pp. 225–246.

Long, A. D. and C. H. Langley (1999). The power of association studies to detect
the contribution of candidate genetic loci to variation in complex traits. Genome
Research 9(8), 720–1031.

Mailund, T., S. Besenbacher, and M. H. Schierup (2006). Whole genome association
mapping by incompatibilities and local perfect phylogenies. BMC Bioinformatics 7,
454.

Marcais, G. and C. Kingsford (2011, March). A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 27(6), 764–770.

Mayeda, a. R. and J. R. Hofstetter (1999). A qtl for the genetic variance in free-running
period and level of locomotor activity between inbred strains of mice. Behavior
Genetics 29(3), 171–176.

McClurg, P., M. T. Pletcher, T. Wiltshire, and A. I. Su (2006). Comparative analysis of
haplotype association mapping algorithms. BMC Bioinformatics 7, 61.

Melsted, P. and J. K. Pritchard (2011, August). Efficient counting of k-mers in DNA
sequences using a bloom filter. BMC Bioinformatics 12(1), 333.

Minichiello, M. q. and R. Durbin (2006). Mapping trait loci by use of inferred ancestral
recombination graphs. The Am. J. Hum. Genet. 79(5), 910–922.

Morris, A., J. Whittaker, and D. Balding (2002). Fine-scale mapping of disease loci
via shattered coalescent modeling of genealogies. The Am. J. Hum. Genet. 70(3),
686–707.

Mott, R., C. Talbot, M. Turri, A. Collins, and J. Flint (2000). A method for fine mapping
quantitative trait loci in outbred animal stocks. Proceedings of the National Academy
of Sciences of the United States of America 97(23), 12649.

Neal, R. (2003). Slice sampling. The Annals of Statistics, 705–741.

Nicolae, M., S. Mangul, I. I. Măndoiu, and A. Zelikovsky (2011, April). Estimation of
alternative splicing isoform frequencies from RNA-Seq data. Algorithms for Molec-
ular Biology 6(1), 9.

Onkamo, P., V. Ollikainen, P. Sevon, H. Toivonen, H. Mannila, and J. Kere (2002).
Association analysis for quantitative traits by data mining: Qhpm. Ann. Hum.
Genet. 66(5-65-6), 419–429.

Ozsolak, F. and P. M. Milos (2010, December). RNA sequencing: advances, challenges
and opportunities. Nature Publishing Group 12(2), 87–98.

Pachter, L. (2011, April). Models for transcript quantification from RNA-Seq.
arXiv.org NA.

147

Pan, F., L. McMillan, F. Pardo-Manuel De Villena, D. Threadgill, and W. Wang (2009).
Treeqa: quantitative genome wide association mapping using local perfect phylogeny
trees. Pacific Symposium On Biocomputing 426, 415–426.

Pan, F., L. Yang, L. McMillan, F. P. M. d. Villena, D. Threadgill, and W. Wang (2008).
Quantitative association analysis using tree hierarchies. In Proceedings of the 2008
Eighth IEEE International Conference on Data Mining, Washington, DC, USA, pp.
971–976. IEEE Computer Society.

Parmigiani, G. and L. Inoue (2009). Decision theory: principles and approaches.
Chichester: Wiley.

Patro, R., S. M. Mount, and C. Kingsford (2013, August). Sailfish: Alignment-free
Isoform Quantification from RNA-seq Reads using Lightweight Algorithms. ArXiv
e-prints NA.

Pe’er, I., P. I. W. De Bakker, J. Maller, R. Yelensky, D. Altshuler, and M. J. Daly
(2006). Evaluating and improving power in whole-genome association studies using
fixed marker sets. Nat. Genet. 38(6), 663–670.

Phillippi, J., Y. Xie, D. R. Miller, T. A. Bell, Z. Zhang, A. Lenarcic, D. L. Aylor,
S. H. Krovi, D. W. Threadgill, F. P.-M. de Villena, W. Wang, W. Valdar, and J. A.
Frelinger (2014, November). Using the emerging Collaborative Cross to probe the
immune system. 15(1), 38–46.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003). March, 20–22.

Plummer, M. (2011). rjags: Bayesian graphical models using MCMC. R package
version 3-5.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. a. Shadick, et al. (2006).
Principal components analysis corrects for stratification in genome-wide association
studies. Nat. Genet. 38(8), 904–909.

Pruitt, K. D., T. Tatusova, and D. R. Maglott (2007, January). NCBI reference se-
quences (RefSeq): a curated non-redundant sequence database of genomes, tran-
scripts and proteins. Nucleic Acids Research 35(Database), D61–D65.

R Development Core Team (2011). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-
900051-07-0.

"Rat Genome Sequencing and Mapping Consortium" (2013, July). Combined
sequence-based and genetic mapping analysis of complex traits in outbred rats. Na-
ture Publishing Group 45(7), 767–775.

Rizk, G., D. Lavenier, and R. Chikhi (2013, February). DSK: k-mer counting with very
low memory usage. Bioinformatics 29(5), 652–653.

148

Roberts, A. and L. Pachter (2013, January). Streaming fragment assignment for real-
time analysis of sequencing experiments. Nature Methods 10(1), 71–73.

Robertson, G., J. Schein, R. Chiu, R. Corbett, M. Field, et al. (2010, October). De novo
assembly and analysis of RNA-seq data. Nature Methods 7(11), 909–912.

Ronnegard, L. and W. Valdar (2011a, June). Detecting Major Genetic Loci Controlling
Phenotypic Variability in Experimental Crosses. Genetics 188(2), 435–447.

Ronnegard, L. and W. Valdar (2011b, June). Detecting Major Genetic Loci Controlling
Phenotypic Variability in Experimental Crosses. Genetics 188(2), 435–447.

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. Journal of the
royal statistical society: Series b (statistical methodology) 71(2), 319–392.

Scheet, P. and M. Stephens (2006). A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes and haplotypic
phase. Am. J. Hum. Genet. 78(4), 629–644.

Sevon, P., H. Toivonen, and V. Ollikainen (2006). Treedt: tree pattern mining for gene
mapping. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(2), 174–1085.

Sillanpaa, M. J. and E. Arjas (1998, March). Bayesian mapping of multiple quantitative
trait loci from incomplete inbred line cross data. Genetics 148(3), 1373–1388.

Sillanpaa, M. J. and E. Arjas (1999, March). Bayesian mapping of multiple quantitative
trait loci from incomplete outbred offspring data. Genetics 151(4), 1605–1619.

Solberg, L. C., A. E. Baum, N. Ahmadiyeh, K. Shimomura, R. Li, F. W. Turek, J. S.
Takahashi, G. A. Churchill, and E. E. Redei (2006, July). Genetic analysis of the
stress-responsive adrenocortical axis. Physiological Genomics 27(3), 362–369.

Svenson, K., D. Gatti, W. Valdar, C. Welsh, R. Cheng, E. J. Chesler, A. Palmer,
L. McMillan, and G. A. Churchill (2012). High-resolution genetic mapping using
the mouse diversity outbred population. Genetics 190(2), 437–447.

Thomas, D. C. (2004). Statistical methods in genetic epidemiology. Oxford University
Press, USA.

Trapnell, C., L. Pachter, and S. L. Salzberg (2009, May). TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics 25(9), 1105–1111.

Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, et al. (2012a, March). Differential
gene and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nature protocols 7(3), 562–578.

Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, et al. (2012b, March). Differential
gene and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nature protocols 7(3), 562–578.

149

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, et al. (2010, May).
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts
and isoform switching during cell differentiation. Nature Biotechnology 28(5), 516–
520.

Turro, E., S.-Y. Su, Â. Gonçalves, L. J. Coin, S. Richardson, and A. Lewin (2011,
February). Haplotype and isoform specific expression estimation using multi-
mapping RNA-seq reads. Genome Biology 12(2), R13.

Uziela, K. and A. Honkela (2013, April). Probe region expression estimation for RNA-
seq data for improved microarray comparability. ArXiv e-prints NA.

Valdar, W., J. Flint, and R. Mott (2006). Simulating the collaborative cross: power of
quantitative trait loci detection and mapping resolution in large sets of recombinant
inbred strains of mice. Genetics 172(3), 1783–1797.

Valdar, W., C. C. Holmes, R. Mott, and J. Flint (2009, August). Mapping in Structured
Populations by Resample Model Averaging. Genetics 182(4), 1263–1277.

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman, W. O. Cookson, M. S.
Taylor, J. N. P. Rawlins, R. Mott, and J. Flint (2006, July). Genome-wide genetic
association of complex traits in heterogeneous stock mice. Nature Genetics 38(8),
879–887.

van Bakel, H., C. Nislow, B. J. Blencowe, and T. R. Hughes (2010, May). Most
“Dark Matter” Transcripts Are Associated With Known Genes. PLoS Biology 8(5),
e1000371.

Vanin, E. F. (1985). Processed pseudogenes: characteristics and evolution. Annual
review of genetics 19, 253–272.

Vazquez, A. I., D. M. Bates, G. J. M. Rosa, D. Gianola, and K. A. Weigel (2010,
January). Technical note: An R package for fitting generalized linear mixed models
in animal breeding. Journal of Animal Science 88(2), 497–504.

Wang, K. and V. Sheffield (2005). A constrained-likelihood approach to marker-trait
association studies. The Am. J. Hum. Genet. 77(5), 768–780.

Wang, K., D. Singh, Z. Zeng, S. J. Coleman, Y. Huang, et al. (2010, October). Map-
Splice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic
Acids Research 38(18), e178–e178.

Wang, Z., M. Gerstein, and M. Snyder (2009, January). RNA-Seq: a revolutionary tool
for transcriptomics. Nature reviews. Genetics 10(1), 57–63.

Westfall, P. H. and S. S. Young (1993). Resampling-based multiple testing : examples
and methods for P-value adjustment. Wiley.

150

Woods, L. C. S., K. L. Holl, D. Oreper, Y. Xie, S. W. Tsaih, and W. Valdar (2012,
November). Fine-mapping diabetes-related traits, including insulin resistance, in
heterogeneous stock rats. Physiological Genomics 44(21), 1013–1026.

Xing, Y., T. Yu, Y. N. N. Wu, M. Roy, J. Kim, and C. Lee (2006). An expectation-
maximization algorithm for probabilistic reconstructions of full-length isoforms
from splice graphs. Nucleic acids research 34(10), 3150–3160.

Yang, H., Y. Ding, L. Hutchins, J. Szatkiewicz, T. Bell, et al. (2009). A customized and
versatile high-density genotyping array for the mouse. Nat. Meth. 6(9), 663–666.

Yang, H., J. R. Wang, J. P. Didion, R. J. Buus, T. a. Bell, et al. (2011). Subspecific
origin and haplotype diversity in the laboratory mouse. Nat. Genet. 43(7), 648–655.

Zhang, X., S. Huang, F. Zou, and W. Wang (2010, June). TEAM: efficient two-locus
epistasis tests in human genome-wide association study. Bioinformatics 26(12),
i217–i227.

Zhang, Z., P. M. Harrison, Y. Liu, and M. Gerstein (2003, December). Millions of years
of evolution preserved: a comprehensive catalog of the processed pseudogenes in the
human genome. Genome Research 13(12), 2541–2558.

Zhang, Z., S. Huang, J. Wang, X. Zhang, F. P.-M. de Villena, et al. (2013). GeneScis-
sors: a comprehensive approach to detecting and correcting spurious transcriptome
inference owing to RNA-seq reads misalignment. Bioinformatics 29(13), 291–299.

Zhang, Z. and W. Wang (2014). Rna-skim: a rapid method for rna-seq quantification at
transcript-level. Bioinformatics, to appear.

Zhang, Z., W. Wang, and W. Valdar (2014). Bayesian modeling of haplotype effects in
multiparent populations. Genetics, in submission.

Zhang, Z., X. Zhang, and W. Wang (2012). HTreeQA: Using semi-perfect phylogeny
trees in quantitative trait loci study on genotype data. G3: Genes| Genomes| Genet-
ics 2(2), 175–189.

Zöllner, S. and J. K. Pritchard (2005). Coalescent-based association mapping and fine
mapping of complex trait loci. Genetics 169(2), 1071–1092.

151

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	RNA-Seq Assembly and Quantification and Challenges
	QTL mapping and Challenges
	Haplotype Effects Estimation and Challenges
	Thesis Statement
	Thesis Outline

	GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference due to RNAseq reads misalignment.
	Introduction
	Multiple-Alignment Problem
	Genomic Factors Causing Multiple Alignments

	Methods
	Sharing Graph
	Classification Model
	Fragment Attractor Features
	Consistent Mismatches Discovery in GeneScissors

	Results
	Software
	Materials
	Results from Simulated Data
	Results from Real RNA-Seq Data

	Discussion and Conclusion

	RNA-Skim: a rapid method for RNA-Seq quantification at transcript-level
	Introduction
	Method
	Sig-mer
	Workflow of RNA-Skim
	Preparation Stage
	Quantification Stage

	Software for comparison
	Materials
	Results
	Similarity-based Partition Algorithm
	Simulation Study
	Study using Real RNA-Seq data
	Running Time

	Discussion and Conclusion

	HTreeQA: Using Semi-perfect Phylogeny Trees in Quantitative Trait Loci Study on Genotype Data
	Introduction
	Method
	Notations
	Perfect Phylogeny Tree
	Compatible Interval
	Tri-State Semi-Perfect Phylogeny Tree
	Compatibility Test on Genotype Data
	Phylogeny Tree based Test
	Permutation Test for Family-Wise Error Rate Controlling
	Comparison between TreeQA and HTreeQA

	Materials
	Collaborative Cross
	Synthetic Data Sets

	Results and Discussion
	Population Structure in the Pre-CC Lines
	EMMA will degenerate to standard linear model in Collaborotive Corss
	Local Population Structure
	Selected Methods for Comparison
	Performance Comparison on the White Head Spot Phenotype
	Performance Comparison on the Mouse Running Distance Phenotype
	Simulation Study
	Running Time Comparison
	The Choice between HTreeQA, TreeQA, and EMMA

	Conclusions

	Diploffect: Bayesian modeling of haplotype effects in multiparent populations
	Introduction
	Statistical Models and Methods
	Haplotypes and Diplotype States
	Haplotype Effects at a QTL
	Haplotype Inference and Diplotype Probabilities
	Regression On Probabilities
	Diploffect Model
	Diploffect Estimation by MCMC: DF.MCMC
	Diploffect Estimation by Importance Sampling: DF.IS and DF.IS.kinship
	Partially Bayesian Approximation: DF.MCMC.pseudo and DF.IS.noweight
	Non-Bayesian Regression Approximations: partial.lm, ridge.add and ridge.dom
	Implementation Details

	Data and Simulations
	Pre-CC Dataset
	Heterogeneous Stock (HS) Dataset
	Informativeness of Haplotype Reconstruction in Pre-CC and HS
	Simulating QTL effects
	Evaluating Performance of Effect Estimation

	Results
	Pre-CC Simulations: Estimation of Additive Effects
	Pre-CC Simulations: Estimation of Additive Effects in the Presence of Dominance
	Updating of Diplotype Probabilities in the Pre-CC
	HS Simulations: Estimation of Additive Effects
	HS simulations: Estimation of Additive and Dominance Effects
	Efficiency of Importance Sampling in the Pre-CC and HS
	Haplotype Effects on A Binary Outcome: White Head-spotting in the Pre-CC
	Haplotype and Diplotype Effects at QTL in the HS: Fear Potentiated Startle (FPS) and Total Cholesterol (CHOL)

	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions

	References

