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ABSTRACT

SEAN L. SIMPSON.  Linear Models with a Generalized AR(1) Covariance Structure for

Longitudinal and Spatial Data.

(Under the direction of Dr. Lloyd J. Edwards)

Cross-sectional and longitudinal imaging studies are moving increasingly to the

forefront of medical research due to their ability to characterize spatial and spatiotemporal

features of biological structures across the lifespan.  With Gaussian data, such designs require

the general linear model for repeated measures data when standard multivariate techniques do

not apply.  A key advantage of this model lies in the flexibility of modeling the covariance of

the outcome as well as the mean.  Proper specification of the covariance model can be

essential for the accurate estimation of and inference about the means and covariates of

interest.

Many repeated measures settings have within-subject correlation decreasing

exponentially in time or space.  Even though observed correlations often decay at a much

slower or much faster rate than the AR(1) structure dictates, it sees the most use among the

variety of correlation patterns available.  A three-parameter generalization of the continuous-

time AR(1) structure, termed the  (GAR) covariance structure,generalized autoregressive

accommodates much slower and much faster correlation decay patterns.  Special cases of the

GAR model include the AR(1) and equal correlation (as in compound symmetry) models.

The flexibility achieved with three parameters makes the GAR structure especially attractive

for the High Dimension, Low Sample Size case so common in medical imaging and various

kinds of "-omics" data.  Excellent analytic and numerical properties help make the GAR

model a valuable addition to the suite of parsimonious covariance structures for repeated

measures data.
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The accuracy of inference about the parameters of the GAR model in a moderately large

sample context is assessed.  The GAR covariance model is shown to be far more robust to

misspecification in controlling fixed effect test size than the AR(1) model.  It is as robust to

misspecification as another comparable model, the  (DE), whiledamped exponential

possessing better statistical and convergence properties.

The GAR model is extended to the multivariate repeated measures context via the

development of a Kronecker product GAR covariance structure.  This structure allows

modeling data in which the correlation between measurements for a given subject is induced

by two factors (e.g., spatio-temporal data).  A key advantage of the model lies in the ease of

interpretation in terms of the independent contribution of every repeated factor to the overall

within-subject covariance matrix.  The proposed model allows for an imbalance in both

dimensions across subjects.

Analyses of cross-sectional and longitudinal imaging data as well as strictly longitudinal

data demonstrate the benefits of the proposed models.  Simulation studies further illustrate

the advantages of the methods.  The demonstrated appeal of the models make it important to

pursue a variety of unanswered questions, especially in the areas of small sample properties

and covariance model robustness.
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CHAPTER 1.  INTRODUCTION AND LITERATURE

REVIEW

1.1 Introduction

Repeated measures studies are commonly utilized in biomedical research.   Such

data allow examining how particular outcomes vary over time or in space.  Incorrelated 

longitudinal studies, measurements are taken on the same subjects at various points in

time.  For instance, Rijcken et al. (1987) was interested in identifying risk factors for

pulmonary function loss.  Therefore they recorded many baseline characteristics thought

to be possible risk factors, and attempted to measure FEV  (forced expiratory volume in " "

second) values every 3 years for 21 years to assess pulmonary function loss in terms of

the rate of decline.

 In spatial studies, and more particularly in medical imaging studies, measurements

are taken on the same subjects at various points in space.  The image of an organ in a

given subject is often characterized by the  values resulting from thecorrelated (repeated)

mathematical parameterization of its shape.  For example, Gerig et al. (2003) analyzed

changes of the hippocampal structure in schizophrenics as compared to matched controls

via MRI.

As technological advances continually reduce the financial and logistic obstacles

associated with the use of imaging equipment, imaging studies are becoming increasingly

important in medical research.  This increasing importance was made evident by the

creation of the National Institute of Biomedical Imaging and Bioengineering at the

National Institutes of Health in the United States in September 2000.  Medical imaging
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research units and centers have also been established by several universities in recent

years.

Current imaging research often utilizes a third hybrid type of repeated measures data,

namely spatio-temporal, that has both spatial and longitudinal components.   The goal of

these studies is to analyze images taken over time.  For instance, much of the current

Autism research involves examining the development of children's brains (via

neuroimaging) over time.  Due to the frequency of the three types of repeated measures

data, the development of accurate analytic techniques for these studies is of immense

importance.

In repeated measures data, both the mean and the covariance are modeled.  Though

modeling the mean is the primary focus of many studies, modeling the covariance

structure is one of the most fundamental and important concerns in the analysis of these

data.  As noted by Louis (1988), there is a tradeoff between including additional

covariates in the mean model and increasing the complexity of the covariance structure.

In other words, the covariance structure may be able to account for the effects of

unmeasured covariates.  Properly specifying the covariance model leads to more accurate

estimation of and inference about the covariates of interest.  Having an accurately

specified covariance structure also allows for a better understanding of the biological

process under investigation.

While much work has been done on estimation, inference, and diagnostics of the

mean model (fixed effects), relatively little has been done in these areas for the

covariance model.  can beProper specification of the covariance model  essential for the

accurate estimation of and inference about the means and covariates of interest.  Muller et

al. (2007) showed that there can be severe test size inflation in fixed effect inference if the

covariance structure is badly misspecified. This heavy dependence of fixed-effects  

inference accuracy on the proper specification of the covariance model indicates that the
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amount of work on covariance models has not been commensurate with their level of

importance.

Many repeated measures settings have within-subject correlation decreasing

exponentially in time or space. Even though observed correlations often decay at a much  

slower or much faster rate than the AR(1) structure dictates, it sees the most use among

the variety of correlation patterns available.  In this dissertation I will propose a three-

parameter covariance model that is a generalization of the continuous-time AR(1)

structure which accommodates much slower and much faster correlation decay patterns.

1.2 Repeated Measures Model

Consider the following general linear model for repeated measures data:

C \ /3 3 3œ �" (1.1)

where is a  vector of  observations on the  subject , is a C3 3 3
>2  : ‚ " : 3 3 œ "ß ÞÞÞß R ; ‚ ""

vector of fixed and unknown population parameters,  is a  fixed and known\3 3: ‚ ;

design matrix corresponding to the fixed effects, and  is a  vector of random error/3 3: ‚ "

terms.  We assume    for .  It follows/ ! /3 : /3 3
wµ R Ð ß Ñ 3 Á 3

3
wD Ð Ñ7/ and is independent of

that    for .  We also assume thatC \ C3 : 3 /3 3
wµ R Ð ß Ñ 3 Á 3

3
w" D Ð Ñ7/ and is independent of

D 7/3 / 3 3Ð Ñ : ‚ : is a  positive-definite symmetric covariance matrix whose elements are

twice differentiable functions of a finite number of fixed, unknown parameters

7 7 7 7 D 7/ / / / /3 /" 5œ Ö ß ÞÞÞß × Ð Ñ, , where  is the set of all parameters for which  is− X X

positive-definite.  Also, the parameters in are functionally independent of those in .7/ "

The model may be abbreviated as .C \3 3µ R Ð ß Ñ: /33
" D

The frequently used general linear mixed model, detailed by Laird and Ware (1982),

can be viewed as a special case of this model in which C \ ^ , /3 3 3 3 3œ � �"  and

D 7 D 7 D 7 D D D3 3 ,3 , /3 / 3 3 ,3 /33 3
w wÐ Ñ œ Ð Ñ � Ð Ñ œ �^ ^ ^ ^, which may be abbreviated as .

We have that  is a  fixed and known design matrix corresponding to the random^3 3: ‚7

effects, , is the positive-definite symmetric covariance matrix of the random,3 ,3D  7‚7
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effects, , which are mutually independent, and  is the  positive-definite,3 /3 3 3D : ‚ :

symmetric covariance matrix of the random errors, , which are mutually independent./3

It is assumed that is, /3 3  independent of .

1.3 Exponentially Decreasing Correlation

1.3.1 Introduction

The continuous-time first-order autoregressive covariance structure, often denoted as

AR(1), is the classic model applied to longitudinal and spatial data when the within

subject correlation is believed to decrease exponentially in time or space.  For

longitudinal data this means that the correlation between measurements on a given

subject is assumed to decrease exponentially as the time between measurement occasions

increases.  Analogously, this correlation is assumed to decrease exponentially as the

distance between measurement locations increases for spatial data.  For , D/3 /3à45œ e f5

the AR(1) covariance structure is

5 i 5 3
/3à45 34 35 /

# /
34 35

œ ÐC ß C Ñ œ
.Ð> ß > Ñ

4 Á 5
" 4 œ 5


 ,

(1.2)

where   is the distance between measurementiÐ † Ñ is the covariance operator, .Ð> ß > Ñ34 35

times or locations,  is the variability of the measurements at each time or location, and5/
#

3/ is the correlation between observations separated by one unit of  time or distance.

This two-parameter model was briefly discussed in Louis (1988) in an article surveying

methods for analyzing repeated measures data.  It is a special case of the model presented

in Diggle (1988).

The AR(1) covariance model is particularly appealing when there are only a small

number of subjects with many observations per subject.  It is also able to accommodate

incomplete unbalanced inconsistently-spaced irregularly-spaced,  (within subject), , and/or 

data which are all common issues in longitudinal studies.  These problems may arise from

having missing observations due to failure to meet scheduled appointments, unequal
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lengths of follow-up due to staggered entry or early withdrawal, and intentional unequal

spacing of measurements over time.  Irregular-spacing may also be inherent in the

biological process being studied.  For instance, a longitudinal study of pulmonary

function in children with cystic fibrosis necessarily have this issue.  Spatial data, andmay 

more specifically medical imaging data, tend to be complete and balanced due to the tight

control typical of this area of research.  However, irregular-spacing is again an issue with

these data that is easily handled with the AR(1) model.  For this dissertation, it is assumed

that missing data is missing completely at random (MCAR).

Despite the utility of the AR(1) covariance model, there are situations in which it

may not be flexible enough to accurately model the correlation pattern induced by

repeatedly taking measurements over time or in space.  For instance, as noted in Munoz et

al. (1992), longitudinal studies in epidemiologic settings tend to have within-subject

correlations that decay at a slower rate than that imposed by the AR(1) structure.

Conversely, there are also many situations in both longitudinal and imaging data in which

these correlations decay at  faster rate.  Therefore, developing a more flexible version ofa

the AR(1) model would be extremely beneficial to the scientific community.

1.3.2 AR(1) Generalizations

LaVange and Muller (1992) described a three-parameter generalization of the AR(1)

structure as a tool for power analysis in repeated measures studies, but did not discuss any

properties or consider estimation.  They defined the model in order to be able to generate

a realistic suite of possible repeated measures covariance models in terms of only three

parameters.  The appeal of the model led the author of NQuery  power software to®

embed the model in the software as a study planning tool.

Munoz et al. (1992) presented a three-parameter generalization of the AR(1)

structure, namely the  structure, which allows for an attenuationdamped exponential (DE)

or acceleration of the exponential decay rate imposed by the AR(1) structure.  Murray
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(1990) described the same model in an unpublished dissertation.  For , the D/3 /3à45œ e f5

damped exponential (DE) covariance structure is

5 i 5 3
/3à45 34 35 /

# /
34 35

œ ÐC ß C Ñ œ
.Ð> ß > Ñ

4 Á 5
" 4 œ 5

 c d//
 ,

(1.3)

where   is the distance between measurementiÐ † Ñ is the covariance operator, .Ð> ß > Ñ34 35

times or locations,  is the variability of the measurements at each time or location,  is5 3/
#

/

the correlation between observations separated by one unit of  time or distance and  isß //

the decay speed.  They assume  and .! Ÿ ' " ! Ÿ3/ //

Implicit in this model formulation is the presence of both a stationary variance and

correlation structure.  The AR(1) covariance model is a special case of this model for

which .  For values of , the correlation between measurements on a given/ // /œ " ( "

subject decreases in time or space at a faster rate than for .  As , this model/ // /œ " Ä ∞

approaches the moving average model of order 1, MA(1).  For values of  such that//

! ' ' "// , the correlation between measurements on a given subject decreases in time

or space at a slower rate than for .  When , this model reduces to the well/ // /œ " œ !

known compound symmetric covariance model for which the correlation between

measurements on a given subject is fixed at  no matter how far apart in time or space3/

the measurements were taken.  Though values of  yield valid autocorrelation// ' !

functions for which the correlation between measurements on a given subject would

increase with increasing time or distance between measurements, this is rare in

biostatistical applications.  Therefore the parameter space was restricted for reasons of

practicality.

Nunez-Anton and Woodworth (1994) also proposed a three-parameter covariance

model to deal with , , and  longitudinal data. Forincomplete unbalanced irregularly-spaced

D/3 /3à45œ e f5 , their covariance structure is
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5 i 5
3 -

3 -
/3à45 34 35 /

#
/
34 35

/

/
34 35

/

œ ÐC ß C Ñ œ

Ð> + > Ñ
4 Á 5ß Á !

691Ð> Î> Ñ
4 Á 5ß œ !

" 4 œ 5

ÚÝÝÛÝÝÜ

- -/ /  

 ,

(1.4)

where  iÐ † Ñ is the covariance operator, > 434
>2is the time or location of the  measurement

for subject 3,  is the variability of the measurements at each time or location,  is the5 3/
#

/

correlation between observations separated by one unit of  time or distance when

- -/ /œ "ß ! Ÿ ' "and They assume .is the power transformation of time parameter. 3/

This model differs from DE model in that it involves power transformations of time

rather than of time intervals.  The AR(1) covariance model is a special case of this model

for which .  The models appeal lies in the fact that the power transformation can-/ œ "

produce nonstationary correlation structures for the within-subject errors, with stationary

correlation structures as a special case.  In other words, the model can accommodate data

where the correlation between measurements for a given subject does not just depend on

the differences in time or location between two measurements, but also on the absolute

time or location of each individual measurement.  However, the model lacks the

flexibility of the DE model when a stationary structure is assumed.

1.4 Maximum Likelihood Estimation

1.4.1 Overview

The goal of estimation is to estimate the parameters that characterize a given model

based on the available data.  The basic approach of maximum likelihood (ML) estimation

is to find the parameter values that maximize the probability, or "likelihood", that the

observations would end up being equal to the observed data.  In other words, find the

parameter values that are best supported by the observed data.  An ML estimate, , of a)s

vector of parameters, , maximizes the likelihood function of the parameters given the)

data.  That is, if the likelihood function is denoted , then the maximum value ofPÐ à ÑC )

the function is attained at  over all possible values of .PÐ à ÑsC ) )
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Under model 1.1, the set of measurements on a given individual are assumed to

follow a multivariate normal distribution with , thus the likelihood function) " 7œ Ö ß ×/

of the parameters is given by

PÐ à ß Ñ œ Ð# Ñ l Ð Ñl Ö + Ð + Ñ Ð Ñ Ð + ÑÎ#×C C \ C \3 / 3 / 3 3 3 / 3 3
+8 Î# +"Î# w +"" 7 D 7 " D 7 "1 3 exp .

Since the measurements from different subjects are assumed to be mutually independent,

the joint likelihood function of all the measurements is the product of the  individualR

likelihood functions.  That is,

PÐ à ß Ñ œ PÐ à ß Ñ

œ Ð# Ñ l Ð Ñl Ö + Ð + Ñ Ð Ñ Ð + ÑÎ#×Þ

C C

C \ C \

" 7 " 7

D 7 " D 7 "

/ 3 /

3œ"

R

3œ"

R
+8 Î# +"Î# w +"

3 / 3 3 3 / 3 3

$
$ 1 3 exp

The log-likelihood function, which is commonly used to derive the estimators, is thus

ln

ln ln

P œ 6Ð à ß Ñ

œ + Ð# Ñ + l Ð Ñl + Ð + Ñ Ð Ñ Ð + ÑÞ
8 " "

# # #

C

C \ C \

" 7

D 7 " D 7 "

/

3œ" 3œ" 3œ"

R R R
3

3 / 3 3 3 / 3 3
w +"� � �1

(1.5)

The MLE of  is then"

" D Ds œ s s � �
3œ" 3œ"

R R

3 3 3 3
w w+" +"

3 3

+"

\ \ \ C ,

where  is the covariance matrix for  with the MLE of , , inserted.  Since it isD 7 7s s3 3 / /C

generally not possible to express in a closed form, the solution for  given above is7 "s s
/ 

not a closed form expression either, and thus their values must be found via numerical

algorithms.

1.4.2 Iterative Algorithms

Since the likelihood equations cannot usually be solved analytically for the general

linear model for repeated measures data, iterative numerical procedures must be
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employed.  Many algorithms for this purpose have been proposed; however, the three

most commonly used are the Newton-Raphson, Fisher scoring, and EM algorithm.  These

iterative techniques will be discussed in this section.

1.4.2.1 Newton-Raphson and Fisher Scoring Algorithms

Both the Newton-Raphson and Fisher scoring (also referred to as the method of

scoring) algorithms are based on the first and second-order partial derivatives of the log-

likelihood function.  As detailed in Jennrich and Schluchter (1986) the Newton-Raphson

algorithm is an iterative procedure that computes new parameter values from current

values, with the (r 1)  iterate under model 1.1 with  being:� œ Ö ß ×st ) " 7/

) )Ð<�"Ñ Ð<Ñ +"œ +L =)) ) (1.6)

where

L)) œ
` 6Î` ` ` 6Î` `

` 6Î` ` ` 6Î` `” •# #
/

# #
/ / /

" " " 7

7 " 7 7

=) œ
`6Î`
`6Î`” •"

7/

which are referred to as the Hessian matrix (or observed information matrix) and score

vector respectively.  The Fisher scoring algorithm is identical to that of the Newton-

Raphson method except that the Hessian matrix is replaced by its expectation.  This

matrix of expectations is commonly referred to as the expected information matrix.

As noted in Murray (1990) the Fisher scoring method may outperform the Newton-

Raphson procedure when the expected information matrix has a block diagonal structure.

Jennrich and Schluchter (1986) mentioned that the Fisher scoring method is also

preferred when the second derivatives of  are nonzero since the Newton-RaphsonD3

algorithm may require substantially more computation.  However, the Newton-Raphson

method is more generally applicable since calculating the expected information matrix
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may not always be computationally feasible.  For both methods, constrained optimization

must normally be employed since the procedures may converge to maxima outside the

boundaries that ensure the positive-definiteness of .D3

1.4.2.2 EM Algorithm

The EM algorithm, described by Dempster et al. (1977) is a two-step procedure

consisting of an expectation step (the E step) and a maximization step (the M step).  The

conditional expectation of the log-likelihood given the observed data is taken in the E

step in order to estimate sufficient statistics for the complete data.  The M step then

maximizes this conditional expectation in order to produce maximum likelihood

estimates of the parameters based on the sufficient statistics derived in the E step.  The

method then iterates between the two steps until the estimates converge.

As noted by Wu (1983) the computation involved in the EM algorithm is often

relatively easy due to the nice form of the complete-data likelihood function.  As a result,

the algorithm often uses less computation time per iteration than either the Newton-

Raphson or Fisher scoring method.  The EM procedure also tends to use less computer

storage space than the other two methods.  However, as mentioned by Murray (1990), the

EM algorithm does not directly produce covariance estimates for the estimators.  It may

also require many more iterations to converge than the other two methods in many

practical situations.  Jennrich and Schluchter (1986) proposed a hybrid algorithm, termed

the EM scoring algorithm, combining elements of the EM and Fisher scoring algorithms.

However, this method is only advantageous when  is a function of a large number ofD3

parameters (e.g. large, unstructured ).  Lindstrom and Bates (1988) concluded that aD3

well-implemented Newton-Raphson algorithm is generally preferable to the EM

algorithm.
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1.4.3 Finite Difference Approximations

All three commonly used iterative algorithms require derivative calculations.  The

Newton-Raphson and Fisher scoring methods utilize first and second-order partial

derivatives of the log-likelihood function, while the EM method employs the first partial

derivatives of the conditional expectation of the log-likelihood given the observed data.

The finite difference approximations of these derivatives are useful when exact analytical

derivatives are unwieldy or difficult to obtain.  The forward and central difference

derivative approximations are the two main types of these approximations.

As noted by SAS documentation (SAS Institute, 1999), the forward difference

derivative approximations are often not as precise as the central difference derivative

approximations, though they do use less computer time.  For first-order derivatives the

forward difference derivative approximations require  additional objective function8

calls, where  is the number of parameters.  These approximations are computed as8

1 œ ¸
`0 0Ð � 2 Ñ + 0Ð Ñ

` 2
3

3 3

3 3

)

) )/
,

where  is the  unit vector and  is the  step size, .  Dennis and/ 3 2 3 3 œ "ß ÞÞÞß 83 3
>2 >2

Schnabel (1983) detailed the forward difference approximation formulas for the Hessian

matrix.  An additional  function calls are required for second-order derivative8 � 8 Î##

approximations based on only the objective function, which are calculated as

` 0

` ` 2 2
¸
0Ð � 2 � 2 Ñ + 0Ð � 2 Ñ + 0Ð � 2 Ñ � 0Ð Ñ#

3 4 3 4

3 3 4 4 3 3 4 4

) )

) ) ) )/ / / /
.

Second-order derivative approximations based on the gradient vector, which only require

8 additional gradient calls, are computed as

` 0

` ` #2 #2
¸ �
1 Ð � 2 Ñ + 1 Ð Ñ 1 Ð � 2 Ñ + 1 Ð Ñ#

3 4 4 3

3 4 4 3 4 3 3 4

) )

) ) ) )/ /
.
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The more precise, but more computationally intensive central difference derivative

approximation formulas are presented below.  For first-order derivatives the

approximations, which take an additional objective function calls, are computed as#8

1 œ ¸
`0 0Ð � 2 Ñ + 0Ð + 2 Ñ

` #2
3

3 3

3 3 3 3

)

) )/ /
.

Abramowitz and Stegun (1972) detailed the central difference approximation formulas

for the Hessian matrix.  An additional  function calls are required for second-#8 � #8#

order derivative approximations based on only the objective function, which are

calculated as

` 0 + 0Ð � #2 Ñ � "'0Ð � 2 Ñ + $!0Ð Ñ � "'0Ð + 2 Ñ + 0Ð + #2 Ñ

` "#2
¸

#

3 3
# #

3 3 3 3 3 3 3 3

)

) ) ) ) )/ / / /
,

` 0

` ` %2 2
¸
0Ð �2 �2 Ñ+0Ð �2 +2 Ñ+0Ð +2 �2 Ñ�0Ð +2 +2 Ñ#

3 4 3 4

3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4

) )

) ) ) )/ / / / / / / /
.

Second-order derivative approximations based on the gradient vector, requiring #8

additional gradient calls, are computed as

` 0

` ` %2 %2
¸ �
1 Ð � 2 Ñ + 1 Ð + 2 Ñ 1 Ð � 2 Ñ + 1 Ð + 2 Ñ#

3 4 4 3

3 4 4 3 4 4 4 3 3 4 3 3

) )

) ) ) )/ / / /
.

The step sizes, , for the forward difference approximations of the first-order23

derivatives based on objective function calls and the second-order derivatives based on

gradient calls are defined as

2 œ Ð" � l lÑ3 3È# ( ) .

For the forward difference approximations of second-order derivatives based only on

objective function calls and for all central difference formulas the step sizes are

2 œ Ð" � l lÑ3 3È$ ( ) .

The value of  can either be user or computer defined.(
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1.5 Kronecker Product Covariance Structures

1.5.1 Overview

Multivariate repeated measures studies are characterized by data that have more than

one set of correlated outcomes or repeated factors.  Spatio-temporal data fall into this

more general category since the outcome variables are repeated in both space and time.

When analyzing multivariate repeated measures data, it is often advantageous to model

the covariance separately for each repeated factor.  This method of modeling the

covariance utilizes the Kronecker product to combine the factor specific covariance

structures into an overall covariance model.

Kronecker product covariance structures, also known as separable covariance

models, were first introduced by Galecki (1994).  A covariance matrix is separable if and

only if it can be written as .  He noted that one of the model's mainD œ ŒZ W

advantages is the ease of interpretation in terms of the independent contribution of every

repeated factor to the overall within-subject covariance matrix.  The model also allows

for covariance matrices with nested parameter spaces and factor specific within-subject

variance heterogeneity.  Galecki (1994), along with Mitchell et al. (2006) and Naik and

Rao (2001), detailed the numerous computational advantages of the Kronecker product

covariance structure.  Since all calculations can be performed on the smaller dimensional

factor specific models, the computation of the partial derivatives, inverse, and the

Cholesky decomposition of the overall covariance matrix is relatively easier.

Despite the many benefits of separable covariance models, they have limitations.  As

mentioned by Cressie and Huang (1999), the interaction among the various factors cannot

be modeled when utilizing a Kronecker product structure.  Galecki (1994), Huizenga et

al. (2002), and Mitchell et al. (2006) all noted that a lack of  identifiability can result with

this model.  This indeterminacy stems from the fact that if  is the overallD > Hœ Œ

within-subject covariance matrix, and  are not unique since for ,> H + Á !
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+ Œ Ð"Î+Ñ Œ> H > Hœ .  However, this nonidentifiability can be fixed by rescaling one

of the factor specific covariance matrices so that one of its diagonal nonzero elements is

equal to .  With homogeneous variances, this rescaled matrix is a correlation matrix."

Several tests of separability have been developed to determine whether a separable

or nonseparable covariance model is most appropriate.  Shitan and Brockwell (1995)

constructed an asymptotic chi-square test for separability.  A likelihood ratio test for

separability was derived by Mitchell et al. (2006) and Lu and Zimmerman (2005).

Fuentes (2006) developed a test for separability of a spatio-temporal process utilizing

spectral methods.  All of these tests were developed for complete and balanced data.

Given that in many situations multivariate repeated measures data are unbalanced in at

least one of the factors, more general tests for separability need to be developed.

There is also a lack of literature on the estimation of separable covariance models

when there is an imbalance in at least one dimension.  Only Naik (2001) examined the

case in which data may be unbalanced in one of the factors, namely .  ThisD3 3œ ŒZ W

situation arises often in spatio-temporal studies since the data tend to be balanced in

space, but not in time.  However, there are multivariate repeated measures studies in

which the data are unbalanced in both dimensions, namely .  This case hasD3 3 3œ ŒZ W

yet to be examined in the literature.

With the assumptions of covariance model separability and homoscedasticity, an

equal variance Kronecker product structure has great appeal.  In this case the overall

within-subject covariance matrix is defined as .  This formulation hasD > H3 3
#œ Œ5 3

several advantages.  The reduction in the number of parameters leads to computational

benefits.  The model is also identifiable since  and  will necessarily be correlation> H3 3

matrices.
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1.5.2 Multivariate Repeated Measures Model with Kronecker Product Covariance

Consider the following general linear model for repeatedwith structured covariance 

measures data:

C \ /3 3 3œ �" (1.7)

where is a  vector of  observations on the  subject , is aC3
>2  > >3 3 3 3= ‚ " = 3 3 œ "ß ÞÞÞß R "

; ‚ " = ‚ ; vector of fixed and unknown population parameters,  is a  fixed and\3 >3 3

known design matrix corresponding to the fixed effects, , and  is a  vector of" /3 >3 3= ‚ "

random error terms.  We assume / !3 = /3 / / /3 // /
# #µ R Ð ß Ð ß Ñ œ Ò Ð Ñ Œ Ð ÑÓÑ> /33 3

D 7 > 7 H 75 5 # =

and is independent of  for .  It follows that/3
w

w 3 Á 3

C \ C3 > 3 /3 3
#µ R Ð ß Ð Ñ œ Ò Ð Ñ Œ Ð ÑÓÑ

3 3
w= /3 / / /3 // /

#" D 7 > 7 H 75 5ß # =    forand is independent of

3 Á 3 > >w
/3 3 3.  correlation  We assume that  is a positive-definite symmetric > 7Ð Ñ ‚/#

matrix whose elements are twice differentiable functions of a finite number of fixed,

unknown parameters , , where  is the set of all7 7 7 7/ / / /" 5# # # # # #œ Ö ß ÞÞÞß × %X X

parameters for which  is positive-definite.  We also assume that  is a> 7 H 7/3Ð Ñ Ð Ñ/ /3 /# =

= ‚ =3 3 correlation matrix positive-definite symmetric whose elements are twice

differentiable functions of a finite number of fixed, unknown parameters

7 7 7 7 H 7/ / / / /3 /" 5= = = = == =œ Ö ß ÞÞÞß × Ð Ñ, , where  is the set of all parameters for which %X X

is positive-definite.  This implies that  is an  positive-definiteD 7/3 //
#Ð ß Ñ = ‚ =5 > >3 3 3 3

symmetric covariance matrix whose elements are twice differentiable functions of a finite

number of fixed, unknown parameters  and , , where  is the set5/
#

/ / / /7 7 7 7œ X XÖ à ×# = %  

of all parameters for which  is positive-definite. he parameters in D 7 7/3 / // /
# #Ð ß Ñ ß5 5  T e f

are functionally independent of those in .  The model may be abbreviatedassumed to be "

as C \3 > 3 /3
#µ R Ð ß œ Ò Œ ÓÑ

3 3= /3 /3/" D > H5 .
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1.6 Inference

Likelihood-based statistics are generally used for inference concerning the

covariance parameters in the general linear model for repeated measures data.  The three

most common methods of this type being the Likelihood Ratio, Wald, and Score tests.

Chi and Reinsel (1989) utilized the Score test for making inferences about the correlation

parameter in the random errors of a model for longitudinal data with random effects and

an AR(1) random error structure.  However, this test was only used for reasons of

simplicity in the context of testing for the presence of autocorrelation versus

independence in the random errors of a mixed model.  Jones and Boadi-Boateng (1991)

employed both the Wald and Likelihood Ratio tests to make inferences about the

nonlinear covariance parameters of  longitudinal data with an AR(1)irregularly-spaced

random error structure.  They noted that the Likelihood Ratio method is the most

effective way of testing the significance of the nonlinear parameters.  The Wald test does

not always perform as well since the covariance matrix of these parameters is estimated

using a numerical approximation of the information matrix.  It was also noted in Verbeke

and Molenberghs (2000) that the Wald test is valid for large samples, but that it can be

unreliable for small samples and for parameters known to have skewed or bounded

distributions, as is the case for most covariance parameters.  They too recommend use of

the Likelihood Ratio Test for covariance parameter inference.  Yokoyama (1997)

proposed a modified Likelihood Ratio test for performing inference on the covariance

parameters.  However, this was only employed in lieu of the normal Likelihood Ratio

Test because its computation was too complex in their context of having a multivariate

random-effects covariance structure in a multivariate growth curve model with differing

numbers of random effects.

Neyman and Pearson (1928) first proposed the Likelihood Ratio Test.  We generally

wish to test hypotheses of the form:
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L À œ! > >ß!) )

(1.8)

L À Á" > >ß!) )

where  is a vector of constants and .  The  vector contains the test) ) ) ) )>ß! >> 8
w w wœ Ð ß Ñ

parameters, the parameters of interest on which inference is to be performed.  The )8

vector contains the nuisance parameters which must be estimated in order to utilize the

Likelihood Ratio Method.  Denoting the parameter spaces under  (the null hypothesis)L!

and  (the alternative hypothesis) as  and , respectively, the test statistic for theL" # >

Likelihood Ratio Method is

A
%#

%>

œ œ

PÐ à Ñ

PÐ à Ñ

PÐ à Ñs

PÐ à Ñs

max

max

)
)

)
)

)

)

C

C

C

C

#

>

 (1.9)

where  and  are the estimates of the parameters of the model under the null and) )s s
# >

alternative hypotheses respectively.  Often this statistic is written as

+ # œ #Ò6Ð à Ñ + 6Ð à ÑÓs slnA C C) )> # (1.10)

which, under most conditions, is asymptotically distributed as a  random variable The;#< Þ

degrees of freedom, , is equal to the number of linearly independent restrictions imposed<

on the parameter space by the null hypothesis.  As noted by Self and Liang (1987), if the

model resides on the boundary of the covariance parameter space under the null

hypothesis, the asymptotic distribution of the test statistic in equation 1.10 becomes a

mixture of  distributions.;#

1.7 Summary

Repeated measures designs with ,  (within subject),incomplete unbalanced

inconsistently-spaced irregularly-spaced, and  data are  prevalent in biomedicalquite

research.  These studies are often employed to examine longitudinal, spatial, or spatio-
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temporal data, with medical imaging data being at the forefront of spatial and spatio-

temporal research.  With Gaussian data, such designs require the general linear model for

repeated measures data when standard multivariate techniques do not apply. 

Many repeated measures settings have within-subject correlation decreasing

exponentially in time or space. Even though observed correlations often decay at a much  

slower or much faster rate than the AR(1) structure dictates, it sees the most use among

the variety of correlation patterns available.  Munoz et al. (1992) presented a

parsimonious three-parameter generalization of the AR(1) structure, namely the DE

structure, which allows for an attenuation or acceleration of the exponential decay rate

imposed by the AR(1) structure.  Nunez-Anton and Woodworth (1994) also proposed a

three-parameter covariance model for repeated measures data that allows for

nonstationary correlation structures for the within-subject errors; however, it lacks the

flexibility of the DE model when the data are assumed to have a stationary structure,

which is often the case.

In this dissertation I will propose a three-parameter covariance model that is a

generalization of the continuous-time AR(1) structure.  I will show that this new model,

termed the  covariance structure, is more appropriategeneralized autoregressive (GAR)

for many types of data than the AR(1) model.  I also will make evident that the GAR

model is more flexible than the DE covariance structure.  However, merely showing that

the two models are different is sufficient for the relevance of the GAR since the aim is

not to replace other models, but to add to the suite of parsimonious covariance structures

for repeated measures data.  The GAR model is proposed in Chapter 2 along with the

derivations of the estimates of its parameters and the variances of those estimates for

confidence interval construction.  Chapter 3 examines inference about the parameters of

the model.  Chapter 4 extends the GAR model to the multivariate repeated measures
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setting in which a Kronecker product covariance model is employed.  Chapter 5

summarizes the preceding chapters and discusses possible future research.



CHAPTER 2.  ESTIMATION IN LINEAR MODELS WITH A

GENERALIZED AR(1) COVARIANCE STRUCTURE

2.1 Introduction

2.1.1 Motivation

Repeated measures designs with ,  (within subject),incomplete unbalanced

inconsistently-spaced irregularly-spaced, and  data are  prevalent in biomedicalquite

research.  These studies are often employed to examine longitudinal, spatial, or spatio-

temporal data, with medical imaging data being at the forefront of spatial and spatio-

temporal research.  Accurately modeling the covariance structure of these types of data

can be of immense importance for proper analyses to be conducted.  Louis (1988) noted

that there is a tradeoff between including additional covariates and increasing the

complexity of the covariance structure.  The covariance structure may be able to account

for the effects of unmeasured fixed effect covariates.  Proper specification of the

covariance model  essential for the accurate estimation of and inference about thecan be

means and covariates of interest.  Muller et al. (2007) showed that there can be severe test

size inflation in fixed effect inference if the covariance structure is badly misspecified.

Many repeated measures settings have within-subject correlation decreasing

exponentially in time or space.  The continuous-time first-order autoregressive covariance

structure, denoted AR(1), sees the most utilization among the variety of correlation

patterns available in this context.  This two-parameter model was briefly examined by

Louis (1988) and is a special case of the model described by Diggle (1988).  The AR(1)

covariance model is very widely used; however, there are situations in which it may not

be flexible enough to accurately model the correlation pattern induced by repeatedly
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taking measurements over time or in space.  In both longitudinal and imaging studies the

within-subject correlations often decay at a slower or faster rate than that imposed by the

AR(1) structure.  Thus, a more flexible version of the AR(1) model is needed.  Due to the

desire to maintain parsimony, only three-parameter generalizations are considered.

The emphasis on covariance models with a modest number of parameters reflects the

desire to accommodate a variety of kinds of real data.  Missing and mis-timed data

typically occur in longitudinal research, while High Dimension, Low Sample Size

(HDLSS) data occur with imaging, metabolomics, genomics, etc.  The inevitable and ever

more common scientific use of longitudinal studies of imaging only increases the

pressure to expand the suite of  flexible and credible covariance models based on a small

number of parameters.

A three-parameter generalization of the continuous-time AR(1) structure, termed the

generalized autoregressive (GAR) covariance structure, which is more appropriate for

many types of data than comparable models is proposed in this chapter. Special cases of  

the GAR model include the AR(1) and equal correlation (as in compound symmetry)

models. The flexibility achieved with three parameters makes the GAR structure  

especially attractive for the High Dimension, Low Sample Size case so common in

medical imaging and various kinds of "-omics" data.  Excellent analytic and numerical

properties help make the GAR model a valuable addition to the suite of parsimonious

covariance structures for repeated measures data.

Section 2.2 provides a formal definition of the GAR model as well as parameter

estimators and their variances.  Graphical comparisons across parameter values illustrate

the flexibility of the GAR model.  Simulation studies in section 2.3 help compare the

AR(1), DE, and GAR models.  I discuss the analysis of an example dataset in section 2.4

and conclude with a summary discussion including planned future research in section 2.5.
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2.1.2 Literature Review

LaVange and Muller (1992) described a three-parameter generalization of the AR(1)

structure as a tool for power analysis in repeated measures studies, but did not discuss any

properties or consider estimation.  They defined the model in order to be able to generate

a realistic suite of possible repeated measures covariance models in terms of only three

parameters.  The appeal of the model led the author of NQuery  power software to®

embed the model in the software as a study planning tool.  Munoz et al. (1992) presented

a three-parameter generalization of the AR(1) structure, namely the damped exponential

(DE) structure, which allows for an attenuation or acceleration of the exponential decay

rate imposed by the AR(1) structure.  Murray (1990) described the same model in an

unpublished dissertation.  As noted by Grady and Helms (1995), the DE model has issues

with convergence due to its parameterization.  Nunez-Anton and Woodworth (1994)

proposed a three-parameter covariance model that allows for nonstationary correlation for

the within-subject errors.  The model lacks the flexibility of the DE model when a

stationary structure is assumed.

Proper estimation of fixed effect and covariance parameters in a repeated measures

model requires iterative numerical algorithms.  Jennrich and Schluchter (1986) detailed

the Newton-Raphson and Fisher scoring algorithms for maximum likelihood (ML)

estimation of model parameters.  Dempster et al. (1977) first proposed the EM algorithm

for parameter estimation.  The Newton-Raphson method is more widely applicable than

the Fisher scoring method due to the computational infeasibility of calculating the

expected information matrix in certain contexts.  As noted by Lindstrom and Bates

(1988), the method is also generally preferable to the EM procedure.

The benefits of profiling out and optimizing the resulting profile log-likelihood to5#

derive model parameter estimates via the Newton-Raphson algorithm was discussed by

Lindstrom and Bates (1988).  They noted that this optimization will generally require
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fewer iterations, will have simpler derivatives, and the convergence will be more

consistent.  There are also certain situations in which the Newton-Raphson algorithm may

fail to converge when optimizing the original log-likelihood but converge with ease

utilizing the profile log-likelihood.

2.2 GAR Covariance Model

2.2.1 Notation

Consider the following general linear model for repeated measures data with the

GAR covariance structure:

C \ /3 3 3œ �" (2.1)

where is a  vector of  observations on the  subject , is a C3 3 3
>2  : ‚ " : 3 3 œ "ß ÞÞÞß R ; ‚ ""

vector of fixed and unknown population parameters,  is a  fixed and known\3 3: ‚ ;

design matrix corresponding to the fixed effects, and  is a  vector of random error/3 3: ‚ "

terms. We assume    for .  It follows that/ ! /3 : /3 3
wµ R Ð ß Ñ 3 Á 3

3
wD and is independent of

C \ C3 : 3 /3 3
wµ R Ð ß Ñ 3 Á 3

3
w" D    for .and is independent of

For , the (GAR) covariance structure is  D/3 /3à45œ e f5 generalized autoregressive

5 i 5 3
$

/3à45 34 35 /
# /

34 35 /
œ ÐC ß C Ñ œ

" � Ð.Ð> ß > Ñ + "Ñ ÎÐH + Ñ
4 Á 5

" 4 œ 5
 c d1

 ,
(2.2)

where   is the distance between measurementiÐ † Ñ is the covariance operator, .Ð> ß > Ñ34 35

times or locations,  is a computational flexibility  that can be specified and byH constant

default it is set to the maximum number of distance units,  is the variability of the5/
#

measurements at each time or location,  is the correlation between observations3/

separated by one unit of  time or distance and  is the decay speed.  We assumeß $/

! Ÿ ' "ß ! Ÿ ß H ( "3 $/ / and .

Implicit in this model formulation is the presence of both a stationary variance and

correlation structure.  The AR(1) covariance model is a special case of this model for
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which .  For values of , the correlation between measurements on$ $/ /œ H+ " ( H + "

a given subject decreases in time or space at a faster rate than for .  As$/ œ H+ "

$/ Ä∞, this model approaches the moving average model of order 1, MA(1).  For

values of  such that , the correlation between measurements on a given$ $/ /! ' ' H + "

subject decreases in time or space at a slower rate than for .  When ,$ $/ /œ H+ " œ !

this model reduces to the well known compound symmetric covariance model for which

the correlation between measurements on a given subject is fixed at  no matter how far3/

apart in time or space the measurements were taken.  Though values of  yield valid$/ ' !

autocorrelation functions for which the correlation between measurements on a given

subject would increase with increasing time or distance between measurements, this is

rare in biostatistical applications.  Therefore the parameter space is restricted for reasons

of practicality.

2.2.2 Plots

Graphical depictions of the GAR structure help to provide insight into the types of

correlation patterns that can be modeled. Figures .2- .4  2 2  show a subset of the correlation

patterns that can be modeled with the GAR model.

2.2.3 Maximum Likelihood Estimation

In order to estimate the parameters of the model defined in equation 2.1,  is first5/
#

profiled out of the likelihood.  The first and second partial derivatives of the profile log-

likelihood are then derived to compute , via the Newton-ML estimates of parameters

Raphson algorithm, and the variance-covariance matrix of those estimates.  The resulting

estimates are then used to compute the value and variance of .  A SAS IML (SAS5s/
#

Institute, 2002) computer program has been written implementing this estimation

procedure for the general linear model (GLM) with GAR covariance structure and is

available upon request.
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Setting , where , the log-likelihood function of theD > 7 7/3 /3 / / / //
#œ Ð Ñ Ö ß ×5 $ 3œ

parameters given the data under the model is:

6Ð à ß Ñ œ + Ð# Ñ + l l + Ð Ñ Ð Ñ
8 " "
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œ + Ð# Ñ + : Ð Ñ � l l + Ð Ñ
8 " "

# # #

C ß < <
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> " >
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/ / /3
# # w +"

/ /3 3 3

3œ" 3œ"
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#

3œ" 3œ"

R R

3 /3 3/ /3
# w +"
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#

ln ln
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� �ˆ ‰ln ln 3Ð Ñß"

(2.3)

where .  Taking the first partial derivative with respect to  gives8 œ :�
3œ"

R

3 /
#5

`6 " "

` # #
œ + : � Ð Ñ Ð Ñ

5 5
5

/ /
# %

3œ" 3œ"

R R

3 3 3/ /3
+# w +"� �< <" > " .

Setting the derivative to zero and solving for an estimate of the variance yields

5s Ð Ñ œ Ð Ñ Ð Ñ
"

8/ /3
#
QP / 3 3

3œ"

R
w +"" 7 " > "ß < <� .

Substituting  into the log-likelihood function in equation 2.3 leads to the5s Ð Ñ/ /
#
QP " 7ß

following profile log-likelihood:

6 Ð à ß Ñ œ + l l + 8 Ð Ñ Ð Ñ + 8 +
" " " " 8

# # # 8 #
: / /3 3 3

3œ" 3œ"

R R
w +"
/3C < <" 7 > " > "� �– — Œ ln lnln  . (2.4)

The first partial derivative with respect to  in equation 2.4 is"

`6 Î` œ 8 Ð Ñ Ð Ñ Ð Ñ: 3 3 33œ" 3œ"

R R+" w +"
+"

3" " > " > "Š ‹� �< < \ <w
/3 /3 .

Setting the previous equation to zero and solving implies .  If�
3œ"
R

3
w +"

3\ < !>/3 œ

Š ‹�
3œ"
R

3 3
+"

+"

< <Ð Ñ Ð Ñ œ !" > "w
/3  the likelihood would be degenerate.  Therefore

" 7 > 7 > 7s Ð Ñ œ Ð Ñ Ð ÑQP / / 3 / 33œ" 3œ"

R R

3 3
w +" w +"

+"

s s s\ \ \ CŠ ‹ Š ‹� �/3 /3 .
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 The remaining first partial derivatives are as follows:
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The ML estimates of the model parameters are found by utilizing the Newton-Raphson

algorithm detailed in section 1.4.2.1 which requires the first and second partial

derivatives.  The second partial derivatives of the parameters are also employed to

determine the asymptotic variance-covariance matrix of the estimators.

The second partial derivatives with respect to the profile log-likelihood are:
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After obtaining the estimates of  and  utilizing the Newton-Raphson algorithm" 7/

with the above derivatives, an estimate of  is calculated by substituting in these5/
#

estimates into . The derivation of an estimate of variance for ,5 5s Ð Ñ Ð Ñs/ /
#
QP QP/ /

#" 7 " 7ß ß

assuming that  and  are known, is as follows.  We have that" 7/

5s œ 8 Ð Ñ Ð Ñ/
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  The asymptotic variance-covariance matrix of the estimators of  and  is given" 7/

by the following Hessian matrix (the observed information matrix):
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The estimated asymptotic variance-covariance matrix of the estimates of  and  is" 7/

simply calculated by substituting the ML estimates of these parameters into equation 2.5

and taking its inverse.

From the previous derivations we can see that  is consistent (i.e.,  ) since5 5 5s s Ä/ / /
# #

:
#

we have that and that  as .  To establish the consistencyI œ Ä ! 8 Ä ∞s sˆ ‰ ˆ ‰5 5 i 5/ / /
# ##

of the remaining estimators, an examination of the asymptotic properties of the inverse of

the observed information matrix is necessary .  As noted in Vonesh and Chinchilliˆ ‰L"7/
+"

(1997), it is well known that under normal theory likelihood estimation we have that the

asymptotic distributions of the ML estimates of  and  are" 7/

È Š ‹ � �R + Ä R ßs" " D. ; ! "
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exist.  For "reasonable"

values of  the limits should exist, though further investigation is needed.  If the limits:3

exist, the estimators will be consistent and fully asymptotically efficient.

2.2.4 Computational Issues and Parameter Constraints

A computational issue that may arise when implementing the GAR covariance

model is that the model may give an estimated correlation greater than  if"

’ “Ð.Ð> ß > Ñ + "Ñ ÎÐH + Ñ ' +"s
34 35 /$ 1 .  Due to the parameter restrictions, this is only

possible when 1  (faster than an AR(1) decay) and .  This$s ÎÐH + Ñ ( " .Ð> ß > Ñ ' "/ 34 35

complication can be avoided by simply choosing a scale so that min
3
.Ð> ß > Ñ � "Þc d34 35

Both the DE, which has , and GAR covariance matricesi 5 3ÐC ß C Ñ œ †34 35 /
#

/
.Ð> ß> Ñ34 35

//

can be , a complication  negative definite (or indefinite) which appears not to have been

addressed in any detail for the DE model in the literature.  This may occur when there is a

faster decay rate than that imposed by the AR(1) model coupled with a 'large' .  The3

acceptable  for this situation depends on the number of observations per subject, the3

spacing of the observations, and the decay speed.  The appendix contains a proof of the

positive definiteness of the GAR for decay speeds slower than or equal to that of the

AR(1) model ($ $/ /Ÿ H+ " ! ' ' H + ") based on Hadamard product theory.  For , the

GAR model has the nice statistical property that it can be reparameterized as the

Hadamard product of a compound symmetric and a continuous-time AR(1) model

(Appendix).  enumeration studies showThe DE model does not have this feature, though 

that it is also positive definite for decay speeds slower than or equal to that of the AR(1)

model (// Ÿ ").

To deal with the issue of negative definiteness (and indefiniteness) in both the GAR

and DE for decay speeds greater than that of the AR(1) model ($/ ( H+ "à ( "// ),
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restricting  provides a conservative approach to ensure positive definiteness.3/ Ÿ !Þ&

This follows from the restriction for the MA(1) model (the limiting structure for the GAR

and DE as discussed in Diggle (1990).$/ß // Ä∞)   A more practical and less restrictive

solution for the GAR is to rescale the distances since this complication seems to occur

only when .  In fact, enumeration studies show that with equally-min
3
.Ð> ß > Ñ œ "c d34 35

spaced intervals of two units or greater the GAR covariance matrix is positive definite for

every , and  (at least with ).  .  In this$ 3/ / 3 3, : : Ÿ "!!! This is not true for the DE model

case, for the GAR model, it can be empirically shown that the ,det� � � �>/3 / /œ " + 0 à3 $

where  and all eigenvalues of  are positive.  The function0 à − Ð!ß "Ñ 0 à� � � �3 $ 3 $/ / /3 / />

decreases in  and interval size, and increases in  and .  Thus, in extreme cases (e.g.,$ 3/ / 3:

: œ &!! œ !Þ** 0 à ¸ "3 / / / and ),  leading to the possibility of a computationally3 3 $� �
singular covariance matrix despite being theoretically nonsingular.

2.3 Simulations

To assess the empirical performance of the GAR covariance model, data were

generated under the general linear model for repeated measures data with the GAR

covariance structure and then fit with the GAR, DE, and AR(1) covariance models.  Only

the complete and balanced case was considered with  subjects andR œ "!!

: œ : − "!ß &!ß (&3 e f observations each at unit distance intervals.  The fixed effects

included an intercept, a dummy variable indicating membership in one of two groups (&!

subjects per group), and a continuous  covariate, with .  Preliminaryrepeated " œ Ò"ß "ß "Ów

simulation results showed that the GAR and DE model fits varied the most when the

simulated data were highly correlated with a decay rate slower than that of the AR(1)

model.  Thus, the data were generated with the GAR covariance parameters  or3/ œ !Þ&

!Þ* œ HÎ"!ßHÎ#ß *HÎ"! H œ � " and or  (with maximum number of distance units ).$/

The scale parameter was set to .  Each simulation for  and the5/
# œ "! : − "!ß &!e f

varying correlation parameters consisted of  realizations.  Due to computational"!ß !!!
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intensity the simulations for  and the varying correlation parameters consisted of: œ (&

"ß !!! realizations.  All model fits employed ML estimation with the profile likelihood as

discussed in 2.2.3.  Both the Akaike Information Criterion (AIC, Akaike 1974) and the

Bayesian Information Criterion (BIC, Schwarz 1978) were utilized to assess model fits.

However, because they gave almost identical results, only the BIC  are reported forresults

the sake of brevity.  The BIC is FMG œ +#6Ð à Ñ � ; � A 8 ;C ß3 3" D � � � �ln ,where  is the

number of fixed effect parameters,  is the number of unique covariance parameters, andA

8 is the total number of observations.

Table 1 shows the results of the simulations for 2   . with varying: − "!ß &!ß (&e f
covariance parameters the percent of realizations .  The table displays  the GAR model

better fits the data  and the median and maximum percent difference according to the BIC,

in BIC when this occurs. The percent differences allow gauging the relative disparity in

BIC values between the GAR and comparable models when the GAR is selected as the

best model.

As evidenced by the simulation results in . , the GAR covariance model isTable 12

more appropriate than either the DE or continuous-time AR(1) models when the data

truly have a GAR correlation pattern.  The GAR is selected as the better model more

often in all conditions.  According to the model selection percentages, and the median and

maximum percent differences, the usefulness of the GAR tends to be most pronounced in

situations in which the data exhibit a high within-subject correlation with a slow decay.

The relative fit of the GAR covariance model also improves as the number of

observations per subject increases.  This performance has implications in  medicalmany

imaging  in which the dimensionality of the data tends to be high.  For instance, instudies

shape analysis the image of an organ in a given subject is often characterized by the many

correlated (repeated) values giving the mathematical parameterization of its shape.
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As the true correlation pattern approaches that of the AR(1) model, the relative

performance of the GAR covariance model tends to decline since both the GAR and DE

models reduce to the AR(1) model as a special case   2 ,Þ In .  for Table 1 : œ "!

$/ œ H Î : œ (&(9 ) 10 exactly corresponds to this special case.  Whereas, for  and  50 : œ

in 2 , (9 ) 10 corresponds to a decay rate close to, but slightly slower thanTable 1. $/ œ H Î

that of the AR(1) model.  The simulations make  for the addition of the GARa strong case

covariance model to the suite of parsimonious covariance structures for repeated

measures data.

2.4 Example

Several pediatric neurological disorders affect the myelin sheath of the nervous

system.  For example, infantile Krabbe disease, an inherited neurodegenerative disorder,

causes demyelination of nerve cells leading to a rapid degeneration of mental and motor

skills and death within the first 2-4 years of life.  The understanding of myelination

patterns in people with and without neurological conditions is critical in the radiologic

assessment of disease progression and treatment response.  Diffusion-tensor magnetic

resonance imaging (DTI) allows gauging the degree of myelination via a proxy measure

called fractional anisotropy (FA).  McGraw et al. (2005) give a more detailed description

of DTI and Krabbe disease.

Our analysis includes DTI scans of fibers of the cortico-spinal tracts (shown in

Figure 1) associated with motor functioning for 46 control neonates.  FA values were

obtained at 20 locations, spaced 3 millimeters apart, along fiber tracts.  FA values can

theoretically range between 0 and 1, with higher values representing a more myelinated

and mature nerve cell, but are typically between 0 and 0.6 for neonates.  The gender, race,

birth weight, gestational age at birth, and the gestational age at the time of the scan were

also recorded.  The study hypothesized that the older neonates (those with a higher
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gestational age at the time of the scan)  would have higher FA values.  Gilmore et al.

(2007) provide a more detailed description of the data.

We model the control neonate data with the general linear model for repeated

measures data.  The initial full model is as follows:

C \ \ \ \3 ! " 3ß # $ 3ß % 3ß & 3ßœ � � � � � �" " " " " "loc gab gas gen\#
3ßloc (2.6)

               " "' 3ß ( 3ß 3\ \ /rac bwt� � .

The FA values for each of the 20 locations for each subject are contained in .  TheC3

vectors  and  indicate the gender and race of the  neonate respectively.  The\ \3ß 3ßgen rac
th3

gestational ages at birth and at the time of the scan are contained in  and ,\ \3ß 3ßgab gas

while  contains the birthweights.  Preliminary analyses showed that FA values are a\3ßbwt

quadratic function of the fiber location, thus  and  were included to represent\3ßloc \#
3ßloc

this trend.  The location variable was shifted to start at , and all continuous covariates!

were centered about their respective means.

 We model the covariance of the within-subject errors with the continuous-time

AR(1), DE, and GAR structures in order to assess the best model via the BIC.  All three

models are given initial parameter values such that they correspond at the beginning of

the optimization process.  The GAR covariance model best fits the data with a BIC value

of 4,793, while the AR(1) model yields a BIC value of 4,704 and the DE model+ +

fails to converge.  The nonconvergence of the DE structure may be result of thethe 

complexity in modeling a decay speed parameter that is nonlinear in the exponent of 3

(i.e. , where  is the decay speed parameter).  3 /.Ð> ß> Ñ34 35
/

In contrast, the GAR structure, as

defined in equation 2, has a decay speed parameter that is linear in the exponent.2.   The

computational flexibility of the GAR model due to the   is anotherspecified constant H

possible reason for the convergence disparity.

We continue the analysis employing the GAR covariance model.  In order to obtain a

parsimonious model, the full model defined in equation 2.6 is reduced via backward
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selection with α œ !Þ"!.  The final model after reduction is

C \ \ /3 ! " 3ß # % 3ß 3œ � � � �" " " "loc gas\#
3ßloc . (2.7)

The resulting parameter estimates and p-values (based on the standard  -approximate J

test) associated with each of the covariates are presented in Table 2 2..

As expected, neonates who are older at the time of the scan have significantly higher

FA values, and thus are likely to have more developed cortico-spinal fiber tracts.  Figure

2 5 shows the predicted FA values as a function of location at the minimum and.

maximum gestational ages at scan (39.6 and 48.1 weeks respectively).  The predicted FA

values as a function of the neonates gestational age at the time of the scan for the first and

middle locations are displayed in Figure 2 6..

The within-subject error variance estimate and correlation parameter estimates of the

GAR  and AR(1) covariance models (defined in equation 2.2) for the final data model are

also given in Table 2 2.  . The flexibility of the GAR covariance structure allows it to

model a correlation function in which the correlation is high for close measurements, but

then decays at a faster rate than that imposed by the AR(1) structure as the measurements

become farther apart. .7 Figure 2  shows the predicted correlation as a function of the

distance between measurement locations for both the best fitting GAR model and the

AR(1) model.

2.5 Discussion and Conclusions

As shown by the simulations in section 2 3, the GAR covariance model performs.

much better than either the AR(1) or DE models for populations with a GAR structure.

Its utility becomes even more pronounced in high dimensional settings which are

prevalent in many areas of imaging research.  As evidenced in section 2.2.4, the GAR has

better statistical properties than the DE model.  The appeal of the GAR covariance model

is also shown in the example of section 2  in which the AR(1) model fits the data more.4

poorly and the DE model fails to converge.  Accurate estimation of and inference about
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the fixed effect parameters of interest  heavily dependent on the propercan be

specification of the covariance matrix.  A better fit of the covariance model gives more

confidence in the results of the analysis of the neonate data.

There are many possible directions for future research with the proposed GAR

covariance model.  Any combination of allowing  the estimation of the  for as aH

parameter and including higher order polynomial functions in the exponent of the model

would further increase its flexibility.  An assessment of the model's small sample

performance and robustness to misspecification is a priority for future investigation.

Also, introducing a nonstationary GAR covariance model may prove extremely useful in

neuroimaging studies of the developing brain since the variability of brain characteristics

tends to change over time.  The model could have a nonstationary variance and/or

correlation structure.  For spatio-temporal data, or any data that have within-subject

correlations induced by more than one factor, the development of a Kronecker product

GAR covariance model would be beneficial.
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Table 2.1  Summary of Model Fits:

100 subjects; 10, 50, and 75 observations per subject

Simulated Model GAR vs. DE GAR vs. AR(1)

GAR Median Max GAR Median  Max

10 0.5 10 72 0.09 0.30 100 3.26 5.27

2 76 0.04 0.21 100 0.41 1.3

:
HÎ
HÎ

a b c d b c d3 $/ /

8

(9 ) 10 57 0.01 0.04 100 0.02 0.32

0.9 10 81 0.29 0.83 100 12.75 17.41

2 86 0.21 0.78 100 1.92 4.36

(9 ) 10 55 0.02 0.14 100 0.03 0.60

50 0.5 10 100 0.27 0

H Î
HÎ
HÎ
H Î

HÎ .48 100 4.56 5.72

2 94 0.05 0.19 100 0.65 1.14

(9 ) 10 63 0.00 0.01 100 0.01 0.08

0.9 10 100 1.41 2.41 100 19.60 22.74

2 100 0.47 0.77 100 3.30 4.17

(9 ) 1

HÎ
H Î
HÎ
HÎ
H Î 0 75 0.02 0.09 100 0.08 0.27

75 0.5 10 100 0.33 0.60 100 4.81 6.04

2 94 0.04 0.14 100 0.65 1.04

(9 ) 10 59 0.00 0.02 100 0.01 0.10

0.9 10 100 1.74 2.54 100 20

HÎ
HÎ
H Î
HÎ .10 22.57

2 100 0.46 0.98 100 3.42 4.75

(9 ) 10 74 0.02 0.09 100 0.10 0.3

HÎ
H Î

a10,000 realizations for  and  observations per subject; 1000 realizations: œ "! &!

for  observations per subject: œ (&

bPercent of realizations GAR model selected by BIC as the better model fit

(SE 1.6)'

cMedian percent difference in BIC when GAR model is selected

dMaximum percent difference in BIC when GAR model is selected
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Table 2 Neurological Data:.2  

Final Mean Model Estimates, Standard Errors, P-values,

and Covariance Parameter Estimates

GAR AR(1)

Parameter Estimate SE P-value Estimate SE P-value

    0.0303 0.0023 0.0001      0.0299 0.0022 0.0001

0.0015 0.0001 0.0001 0.001

"
"
"

#

' '
+ ' + 5 0.0001 0.0001

     0.0137 0.0030 0.0001      0.0140 0.0032 0.0001

     0.0047 0.0002      0.0046 0.0002

     0.9875 0.0040      

'
' '

+ +
+

"

5
3

%

/
#

/ 0.9109 0.0083

( 1)      9.4107 3.0536

+
Î H + + + + +$/
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Figure 2 1. The Lateral and Ventral Cortico-spinal Tracts In the Human Nervous System..
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Figure 2 2. Plot of the various correlation patterns that can be obtained by varying the.

parameter  while keeping  and  constant.   corresponds to an AR(1) decay$ 3 $/ / /H œ )
rate, while  corresponds to compound symmetry.$/ œ !
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Figure 2 5. Predicted FA values for the neonates by location at the minimum (dashed.

line) and maximum (solid line) gestational ages at the time of the scan.
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Figure 2 6. Predicted FA values for the neonates by the gestational age at the time of the.

scan at the first (dashed line) and middle (solid line) locations.
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Figure 2 7. Predicted correlation curve for the best fitting GAR model (solid line) and.

AR(1) model (dashed line) as a function of the distance between measurements.
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CHAPTER 3.  INFERENCE IN LINEAR MODELS WITH A

GENERALIZED AR(1) COVARIANCE STRUCTURE

3.1 Introduction and Literature Review

It is widely known that the Likelihood Ratio Test (LRT) performs well in Gaussian

linear models for inference about fixed effects when utilizing maximum likelihood (ML)

estimation in a large sample context.  Likelihood-based statistics are also generally used

for inference concerning the covariance parameters in the general linear model for

repeated measures data.  The three most common methods of this type being the

Likelihood Ratio, Wald, and Score tests .(Verbeke and Molenberghs, 2000)

Chi and Reinsel (1989) utilized the Score test for making inferences about the

correlation parameter in the random errors of a model for longitudinal data with random

effects and an AR(1) random error structure.  However, this test was only used for

reasons of simplicity in the context of testing for the presence of autocorrelation versus

independence in the random errors of a mixed model.  Jones and Boadi-Boateng (1991)

employed both the Wald and Likelihood Ratio tests to make inferences about the

nonlinear covariance parameters of  longitudinal data with an AR(1)irregularly-spaced

random error structure.  They noted that the Likelihood Ratio method is the most

effective way of testing the significance of the nonlinear parameters.  As they pointed out,

the Wald test does not always perform as well since the covariance matrix of these

parameters is estimated using a numerical approximation of the information matrix.  It

was also noted in Verbeke and Molenberghs (2000) that the Wald test is valid for large

samples, but that it can be unreliable for small samples and for parameters known to have
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skewed or bounded distributions, as is the case for most covariance parameters.  They too

recommend use of the Likelihood Ratio Test for covariance parameter inference.

Yokoyama (1997) proposed a modified Likelihood Ratio test for performing

inference on the covariance parameters.  However, this was only employed in lieu of the

normal Likelihood Ratio Test because the latter's computation was too complex in their

context of a multivariate random-effects covariance structure in a multivariate growth

curve model.

In this chapter, I consider fixed effect and covariance parameter inference in linear

models with a  covariance structure. generalized autoregressive (GAR)  Section 3.2

provides a formal definition of the GAR model.  Section 3.3 discusses inference about the

parameters of the model.  Simulation studies in section 3.4 help compare inference

accuracy in the AR(1), DE, and GAR models.  I discuss the analyses of two example

datasets in section 3.5 and conclude with a summary discussion including planned future

research in section 3.6.

3.2 GAR Covariance Model

Again consider the following general linear model for repeated measures data with

the GAR covariance structure:

C \ /3 3 3œ �" (3.1)

where is a  vector of  observations on the  subject , is a C3 3 3
>2  : ‚ " : 3 3 œ "ß ÞÞÞß R ; ‚ ""

vector of fixed and unknown population parameters,  is a  fixed and known\3 3: ‚ ;

design matrix corresponding to the fixed effects, and  is a  vector of random error/3 3: ‚ "

terms. We assume    for .  It follows that/ ! /3 : /3 3
wµ R Ð ß Ñ 3 Á 3

3
wD and is independent of

C \ C3 : 3 /3 3
wµ R Ð ß Ñ 3 Á 3

3
w" D    for .and is independent of
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For , the (GAR) covariance structure is  D/3 /3à45œ e f5 generalized autoregressive

5 i 5 3
$

/3à45 34 35 /
# /

34 35 /
œ ÐC ß C Ñ œ

" � Ð.Ð> ß > Ñ + "Ñ ÎÐH + Ñ
4 Á 5

" 4 œ 5
 c d1

 ,
(3.2)

where   is the distance between measurementiÐ † Ñ is the covariance operator, .Ð> ß > Ñ34 35

times or locations,  is a computational flexibility  that can be specified and byH constant

default it is set to the maximum number of distance units,  is the variability of the5/
#

measurements at each time or location,  is the correlation between observations3/

separated by one unit of  time or distance and  is the decay speed.  We assumeß $/

! Ÿ ' "ß ! Ÿ ß H ( "3 $/ / and .

Implicit in this model formulation is the presence of both a stationary variance and

correlation structure.  The AR(1) covariance model is a special case of this model for

which .  For values of , the correlation between measurements on$ $/ /œ H+ " ( H + "

a given subject decreases in time or space at a faster rate than for .  As$/ œ H+ "

$/ Ä∞, this model approaches the moving average model of order 1, MA(1).  For

values of  such that , the correlation between measurements on a given$ $/ /! ' ' H + "

subject decreases in time or space at a slower rate than for .  When ,$ $/ /œ H+ " œ !

this model reduces to the well known compound symmetric covariance model for which

the correlation between measurements on a given subject is fixed at  no matter how far3/

apart in time or space the measurements were taken.  Though values of  yield valid$/ ' !

autocorrelation functions for which the correlation between measurements on a given

subject would increase with increasing time or distance between measurements, this is

rare in biostatistical applications.  Therefore the parameter space is restricted for reasons

of practicality.

3.3 Inference

Neyman and Pearson (1928) first proposed the Likelihood Ratio Test.  We generally

wish to test hypotheses of the form:



51

L À œ

L À Á
! > >ß!

" > >ß!

) )

) )

(3.3)

(3.4)

where  is a vector of constants.)>ß! known   The  vector  contains the test)> � �+ ‚ "

parameters, the parameters of interest on which inference is to be performed.   We define

) )) )œ c d> 8
w w

8  , where  is a  vector that contains the nuisance� � � �- ‚ " , ‚ "

parameters which must be estimated in order to utilize the Likelihood Ratio Method

(  is the total number of parameters). + � , œ -  Denoting the parameter spaces under L!

(the null hypothesis) and  (the alternative hypothesis) as and , respectively,L" # >% %V V- - 

the test statistic for the Likelihood Ratio Method is

A
%#

%>

œ œ

PÐ à Ñ

PÐ à Ñ

PÐ à Ñs

PÐ à Ñs

max

max

)
)

)
)

)

)

C

C

C

C

#

>

 (3.5)

where  and  are the estimates of the parameters of the model under) )s s
# >� � � �- ‚ " - ‚ "  

the null and alternative hypotheses respectively.  Often this statistic is written as

+# œ #Ò6Ð à Ñ + 6Ð à ÑÓs slnA C C) )> # (3.6)

which, under  conditions, is asymptotically distributed as a  random variableregularity ;#< Þ

The degrees of freedom, , is equal to the number of linearly independent restrictions<

imposed on the parameter space by the null hypothesis.  As noted by Self and Liang

(1987), if the model resides on the boundary of the covariance parameter space under the

null hypothesis, the asymptotic distribution of the test statistic in equation 3.6 becomes a

mixture of  distributions.;#

Setting , where , we have the following log-likelihoodD > 7 7/3 /3 / / / //
#œ Ð Ñ Ö ß ×5 $ 3œ

function for model 3.1:
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6Ð à ß Ñœ+ Ð# Ñ + l l + Ð Ñ Ð Ñ
8 " "

# # #

œ + Ð# Ñ + : Ð Ñ � l l + Ð Ñ
8 " "

# # #

C ß < <

< <

" 7 > " > "

> " >

5 1 5
5

1 5
5

/ / /3
# # w +"

/ /3 3 3

3œ" 3œ"

R R

/
#

3œ" 3œ"

R R

3 /3 3/ /3
# w +"

/
#

ln ln

ln

� �
� �ˆ ‰ln ln 3Ð Ñß"

(3.7)

where .  Thus, tests of hypotheses about the parameters utilize the test statistic8 œ :�
3œ"

R

3

+ # œ #Ò6Ð à ß ß Ñ + 6Ð à ß ß ß ÑÓs s ss s s slnA 5 5C C" 7 ) " 7> #> #> ##/ /
# #

/ / (3.8)

where the restricted and unrestricted estimates are computed via the ML methods

discussed in Chapter 2.

3.4 Simulations

3.4.1 Fixed Effect Inference

To assess the relative robustness of the GAR covariance model to misspecification,

data were generated under the general linear model for repeated measures data with

various exponentially decaying covariance structures and then fitted with the GAR, DE,

and AR(1) covariance models.  Simulated fixed effect test size was examined for the

three covariance model fits.  Only the complete and balanced case was considered with

R œ "!! − &ß #! subjects and  observations each at two-unit distance intervals.: œ :3 e f
The fixed effects included an intercept, and three dummy variables indicating

membership in one of four groups (  subjects per group), with  in order#& œ Ò"ß "ß "ß !Ó" w

to empirically evaluate test size for .  The simulated covariance model wasL À œ !! %"

constructed as a weighted sum of the GAR and DE models with a scale parameter set to

5 3 $ / 7 3 $ 7 3 //
#

/ / / / / / /œ " Ð ß ß Ñ Ð ß Ñ � Ð" Ñ Ð ß Ñ, namely  withD D Dœ �GAR DE

7 $ /− !ß !Þ#&ß !Þ&ß !Þ(&ß " Ð ß Ñ œ Ð!ß !Ñe f.  Four parameter sets were considered: 1) / /

corresponding to compound symmetry (CS), 2) Ð ß Ñ œ ÐÐH + "ÑÎ%ß !Þ&Ñ$ // /

corresponding to a slower than AR(1) decay rate, 3)  correspondingÐ ß Ñ œ ÐH + "ß "Ñ$ // /

to an AR(1) decay rate, and 4)  corresponding to a fasterÐ ß Ñ œ Ð"Þ& † ÐH + "Ñß "Þ#Ñ$ // /
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than AR(1) decay rate.  All four cases had .  For sets 1) and 3), all 's lead to the3 7/ œ !Þ)

same model.  Each simulation for  and the varying correlation parameters: − &ß #!e f
consisted of  realizations.  All model fits employed ML estimation with the profile&ß !!!

likelihood as discussed in Chapter 2.

Table 3.1 shows the results of the simulations for  respectively.  The: − &ß #!e f
table contains simulated test size (target ) for the Likelihood Ratio Test (LRT)α œ !Þ!&

of  for GAR, DE, and AR(1) covariance model fits.  The LRT was employedL À œ !! %"

due to the utilization of ML estimation in a moderately large sample context.

For situations in which the true within subject correlation is constant (a

misspecification for the AR(1) model, but not for the GAR or DE models) both the GAR

and DE models control test size far better than the AR(1) model.  This test size inflation

with the AR(1) fit increases drastically as the number of observations per subject

increases.  When all three models are misspecifications for correlation decay rates slower

than that of AR(1), both the GAR and DE models control test size better than the AR(1)

model.  Again, this disparity increases in .  Test size is fairly well controlled for all three:

models for misspecifications with a faster than AR(1) decay rate.  The relatively smaller

amount of overall variation in this context may mitigate the effects of misspecifying the

covariance with an AR(1) model.  It is important to note that for this scenario in which

the true decay rate is faster than that of the AR(1), a Quasi-Newton algorithm had to be

used to ensure consistent convergence with the DE model for .  Even when the: œ #!

data were generated from the DE structure, the model rarely converged when

implemented with the Newton-Raphson method.  The GAR covariance model is as robust

to misspecification in controlling fixed effect test size as the DE model, while possessing

better convergence properties.  The GAR covariance model is far more robust to

misspecification than the AR(1) model.  These results further strengthen the case for the
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addition of the GAR covariance model to the suite of parsimonious covariance structures

for repeated measures data.

3.4.2 Covariance Parameter Inference

Hypothesis tests concerning the decay speed parameter of the GAR covariance

model were examined to assess the ability of the commonly used LRT to discern the

model from its special cases.  More specifically, simulated test size was examined for

tests of  (corresponding to Compound Symmetry) and L À œ ! L À œ H + "! / ! /$ $

(corresponding to the AR(1) model).  Only the complete and balanced case was

considered with  subjects and  observations each at two-unitR œ "!! : œ : − &ß #!3 e f
distance intervals.  Three fixed effect scenarios were considered corresponding to signal

strengths of none, moderate and high respectively: 1)  (one group with mean )," œ ! !

2)  (one reference group with three additional groups;  subjects" œ Ò!Þ$ß !Þ$ß !Þ$ß !Þ$Ó #&w

per group), 3)  (one reference group with three additional groups;" œ Ò!Þ'ß !Þ'ß !Þ'ß !Þ'Ów

#& subjects per group).  Here I use the term 'signal strength' to denote the importance of

the fixed effects in the model.  All three cases had  and .  Power for3 5/ /
#− !Þ&ß !Þ* œ "e f

an overall multivariate test (all four commonly used tests coincide in this context; Muller

and Stewart, 2006, give details) of the mean model was used as a proxy for signal

strength.  It is important to note that this power is an underestimate of the true power

given the structured nature of the covariance matrices.  Scenarios 2 and 3 had an average

power of  and  across all parameter combinations respectively.  Each!Þ%)* !Þ*&#

simulation for  and the varying mean and correlation parameters consisted of: − &ß #!e f
&ß !!! realizations.  All model fits employed ML estimation with the profile likelihood as

discussed in Chapter 2.

Table 3.2 shows the results of the simulations for  respectively.  The: − &ß #!e f
table contains simulated test size (target ) for the Likelihood Ratio Test (LRT)α œ !Þ!&

of  and .L À œ ! L À œ H + "! / ! /$ $
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Test size is consistently controlled for  across all parameterL À œ !! /$

combinations.  Neither the signal strength (proxied by mean model MULTIREP test

power) nor the number of observations per subject has any bearing on this control.  With

a high initial correlation, , test size for  is fairly well controlled3 $œ !Þ* L À œ H + "! /

regardless of the signal strength or number of observations per subject.  However, with a

relatively low initial correlation, , test size is reasonably well controlled for lower3 œ !Þ&

signal strengths and fewer observations per subject, but becomes increasingly inflated

with stronger signals and more observations per subject.

It is important to note that a boundary issue can arise when conducting an LRT of

L À œ !! /$  employing the estimation procedure of Chapter 2.  On occasion infeasible

negative values of the test statistic are produced.  This complication can be avoided by

allowing  to be slightly negative (e.g., ).  $/ +"‚"! Ÿ+#
/$ This relaxation of the

constraint will be examined in future investigations.

3.5 Examples

3.5.1 Neonate Neurological Development

The analysis of the neonate data in Chapter 2 found that the GAR covariance model

fit the data better than the AR(1) model according to the BIC.  A more formal evaluation

of whether the two model fits differ would be to conduct a Likelihood Ratio Test of

L À œ H + " ' !Þ!!!"! /$ .  This test results in a p-value , thus corroborating the

disparate fits.  Given the strength of this result along with the simulation results of section

3.4.2 0.91 when data fit with AR(1) model , we can be confident in concluding� �3s œ/

that the fits are truly different.

3.5.2 Diet and Hypertension

The Dietary Approaches to Stop Hypertension (DASH) trial was a multicenter,

randomized, parallel arm feeding study that tested the effects of dietary patterns on blood

pressure.  The three diets were a control diet (low in fruits, vegetables, and dairy
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products, with a fat content typical of the average diet in the United States), a diet rich in

fruits and vegetables (a diet similar to the control except it provided more fruits and

vegetables and fewer snacks and sweets), and a combination diet rich in fruits,

vegetables, and low-fat dairy foods and reduced in saturated fat, total fat, and cholesterol

(DASH diet).  Participants were healthy adults 22 years of age or older who were not

taking antihypertensive medication.  Ambulatory blood pressure monitoring (ABPM) was

used to take blood pressure measurements on the subjects over a 24 hour period.  The

devices were programmed to take readings automatically every 30 minutes and to repeat a

reading if it fell outside the acceptable range defined in the monitor's internal algorithm.

Appel et al. (1997) and Moore et al. (1999) provide more detail on the DASH study.

Our analysis includes blood pressure measurements for 194 subjects, a subset of the

those on the control and DASH diets.  The data model consisting of the actual times of

measurement would not converge with an AR(1) covariance model fit (though it did

converge with a GAR model fit), and thus only the hour-interval data is examined.  For

each subject 24 measurements were constructed at hourly intervals.  The main objective

of the study was to determine if there is an effect due to diet.  The race and age of

participants are also included as covariates.  The analysis of these data exemplifies the

difference in fixed effect inference that can occur when modeling the covariance with the

GAR instead of the AR(1) model.

We model the DASH data with the general linear model for repeated measures data.

The model of interest is as follows:

C \ \ \ \ \ \ /3 ! " 3ß # 3ß $ 3ß % 3ß & ' 33ß 3ß
$œ � � � � � � �" " " " " " "diet race age hour hour hour

# . (3.9)

The 24 blood pressure measurements for each subject are contained in .  The vectorsC3

\ \3ß 3ßdiet race
th and  indicate the diet and race of the  participant respectively.  Their age is3

contained in .  The vectors , , and  are included to represent the\ \ \ \3ß 3ß 3ß
$
3ßage hour hour hour

#

cubic trend in time present in the data.
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We model the covariance of the within-subject errors with the continuous-time

AR(1) and GAR structures to illustrate the difference in fixed effect inference that can

occur with the disparate fits.  The GAR covariance model best fits the data with a BIC

value of 24,323, while the AR(1) model yields a BIC value of 24,484.  A Likelihood

Ratio Test of  corroborates this difference in fit between the GAR andL À œ H + "! /$

AR(1) models with a p-value .  The resulting parameter estimates and p-values' !Þ!!!"

(based on the standard  -test) associated with each of the covariates areapproximate J

presented in Table 3.3 for both the GAR and AR(1) covariance model fits.

For both model fits, subjects who are on the DASH diet, white, and younger have

significantly lower blood pressure than others.  The difference in fixed effect inference

occurs for the quadratic trend in time where the AR(1) fit leads to significance at the

α œ !Þ!& level, while the GAR fit does not.  This disparity is corroborated by a

Likelihood Ratio Test of the parameter.  Given the better fit of the GAR model and the

simulation results of section 3.4.1, the AR(1) fit most likely leads to a type I error in this

context.

The within-subject error variance estimate and correlation parameter estimates of the

GAR  and AR(1) covariance models (defined in equation 3.2) for the data model are also

given in Table 3.3.  The flexibility of the GAR covariance structure allows it to model a

correlation function in which the correlation is high for close measurements, but then

decays at a slower rate than that imposed by the AR(1) structure as the measurements

become farther apart.  Figure 3.1 shows the predicted correlation as a function of the

distance between measurement locations for both the better fitting GAR model and the

AR(1) model.

3.6 Discussion and Conclusions

As shown by the simulations in section 3.4, the GAR covariance model is far more

robust to misspecification than the AR(1) model in terms of accurate fixed effect
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inference.  Relative to the DE, the GAR model is as robust to misspecification in

controlling fixed effect test size, while having much better convergence properties.  The

utility of the GAR model becomes even more pronounced in high dimensional settings

which are prevalent in many areas of imaging research.  The appeal of the GAR

covariance model is also shown in the examples of section 3.5.  For the neonate

neurological data, the AR(1) model fits the data significantly worse.   An AR(1)

covariance fit to the DASH data likely leads to a type I error, while the GAR fit does not.

A better fit of the covariance model gives more confidence in the results of the analyses.

There are many avenues for future inference research in the GAR covariance model.

Assessment of both fixed effect and covariance parameter inference in the model with

small samples would have implications for both imaging and genetics research.

Examining the robustness of the model to violations of the Gaussian assumption may

prove useful in many contexts.  The simulation results show the need for the development

of tests that are unbiased even with a misspecified covariance.
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Table 3.1  Simulated Fixed Effect Test Size for Target 0.05α œ
5,000 realizations, 100 subjects, 5 and 20 observations per subject

Simulated Model Fitted Model

( , ) GAR DE AR(1)

5 (CS, CS) - 0.058 0.058 0.097

(Slow Decay, Slow Decay) 0 0.051 0.0

c dD D D
D D

œ Ð Ñ
:

7 7
7

GAR DE
a

GAR DE

� "�

51 0.068

0.25 0.062 0.061 0.081

0.50 0.052 0.052 0.068

0.75 0.052 0.051 0.070

1 0.060 0.060 0.076

(AR(1) Decay, AR(1) Decay) - 0.062 0.061 0.062

(Fast Decay, Fast Decay) 0 0.058 0.059 0.052

0.25 0.057 0.057 0.051

0.50 0.057 0.056 0.049

0.75 0.056 0.056 0.050

1 0.054 0.054 0.047

20 (CS, CS) - 0.060 0.060 0.235

(Slow Decay, Slow Decay) 0 0.074 0.058 0.163

0.25 0.066 0.051 0.159

0.50 0.063 0.054 0.148

0.75 0.060 0.051 0.144

1 0.057 0.045 0.127

(AR(1) Decay, AR(1) Decay) - 0.054 0.053 0.054

(Fast Decay, Fast Decay) 0 0.048 0.053 0.038

0.25 0.049 0.053 0.041

0.50 0.048 0.049 0.040

0.75 0.048 0.051

b

b

b

b 0.041

1 0.049 0.051 0.040b

aFor , standard error 0.004;  for 20, standard error 0.006: œ & ' : œ '

bFitted with Quasi-Newton algorithm due to rare convergence with

Newton-Raphson
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Table 3.2  Simulated Covariance Parameter Test Size for Target 0.05α œ
5,000 realizations, 100 subjects, 5 and 20 observations per subject

Simulated Model Null Hypothesis

0 1

5 None 0.5 0.023 0.034

0.9 0.023 0.055

Moderate 0.5 0.022 0.042

0.9 0.021 0.052

H

: œ œ H +a Signal Strength 3 $ $/ / / � �

igh 0.5 0.022 0.109

0.9 0.026 0.052

20 None 0.5 0.028 0.051

0.9 0.022 0.049

Moderate 0.5 0.022 0.083

0.9 0.022 0.050

High 0.5 0.022 0.416

0.9 0.025 0.061

aFor , standard error 0.005;  for 20, standard error 0.007: œ & ' : œ '
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Table 3.3  DASH Data:

Final Mean Model Estimates, Standard Errors, P-values,

and Covariance Parameter Estimates

GAR AR(1)

Parameter Estimate SE P-value Estimate SE P-value

 3.5053 0.8588 0.0001  3.4971 0.7060 0.0001

2.4448 0.7368 0.0009 2.5004 0.6062 0.

"
"
"

#

' '
' 0001

0.1221 0.0412 0.0031 0.1107 0.0338 0.0011

1.8010 0.0947 0.0001 1.7992 0.0991 0.0001

0.0096 0.0058 0.0976 0.0144 0.0062 0.0198

0.

"
"
"
"

$

%

&

'

+ ' + '
+ +

0129 0.0008 0.0001  0.0130 0.0009 0.0001

128.15 2.6559 127.75 2.6477

0.6853 0.0131  0.6853 0.0106

( 1) 0.4786 0.0322

' '

+ +
+ +

Î H + + + + +

5
3

$

/
#

/

/
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Figure 3.1 Predicted correlation curve for the better fitting GAR model (solid line) and

AR(1) model (dashed line) as a function of the time between measurements.
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CHAPTER 4.  LINEAR MODELS WITH A KRONECKER

PRODUCT GENERALIZED AR(1) COVARIANCE

STRUCTURE

4.1 Introduction

4.1.1 Motivation

Longitudinal imaging studies are moving increasingly to the forefront of medical

research due to their ability to characterize spatio-temporal features of biological

structures across the lifespan.  For instance, much of current Autism research involves

examining the development of children's brains (via neuroimaging) over time (Cody et

al., 2002).  With Gaussian data, such designs require the general linear model for

multivariate repeated measures data when standard multivariate techniques do not apply.

A key advantage of this model lies in the flexibility of modeling the covariance of the

outcome as well as the mean.  While much work has been done on estimation, inference,

and diagnostics of the mean model (fixed effects), relatively little has been done in these

areas for the covariance model.  The heavy dependence of fixed-effects inference

accuracy on the proper specification of the covariance model indicates that the amount of

work on covariance models has not been commensurate with their level of importance.

The  (GAR) covariance model, introduced in chapter 1, isgeneralized autoregressive

a flexible three-parameter covariance model that can be applied in situations in which the

within subject correlation is believed to decrease exponentially in time or space.  It allows

for an attenuation or acceleration of the exponential decay rate imposed by the commonly

used continuous-time AR(1) structure.  In this chapter I propose the Kronecker product

GAR covariance structure for multivariate repeated measures data in which the

correlation between measurements for a given subject is induced by two factors.  The
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model allows for an imbalance in both dimensions across subjects.  However, it is

important to note that within a given subject both factors must have consistently-spaced

measurements.  In the context of spatio-temporal data this means that at each time point a

subject must have the same number of measurements taken at the same spatial locations.

This five-parameter structure is especially attractive for the High Dimension, Low

Sample Size cases so common in medical imaging and various kinds of "-omics" data.

Excellent analytic and numerical properties make the Kronecker product GAR model a

valuable addition to the suite of parsimonious covariance structures for multivariate

repeated measures data.

Section 4.2 provides a formal definition of the Kronecker Product GAR model as

well as parameter estimators and their variances.  Simulation studies in section 4.3 assess

the performance of the estimation procedure (detailed in 4.2.3) for the Kronecker product

GAR covariance model in a moderately large-sample context.  I discuss the analysis of an

example set of data in section 4.4 and conclude with a summary discussion including

planned future research in section 4.5.

4.1.2 Literature Review

Kronecker product covariance structures, also known as separable covariance

models, were first introduced by Galecki (1994).  A covariance matrix is separable if and

only if it can be written as , where  and D > H > Hœ Œ  are factor specific covariance

matrices (e.g. the covariance matrices for the temporal and spatial dimensions of spatio-

temporal data respectively).  A key advantage of this model lies in the ease of

interpretation in terms of the independent contribution of every repeated factor to the

overall within-subject error covariance matrix.  The model also accommodates covariance

matrices with nested parameter spaces and factor specific within-subject variance

heterogeneity.  Galecki (1994), along with Mitchell et al. (2006) and Naik and Rao

(2001), detailed the numerous computational advantages of the Kronecker product
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covariance structure.  Much easier computations of the partial derivatives, inverse, and

Cholesky decomposition of the overall covariance matrix can be performed on the

smaller dimensional factor specific models.

Despite the many benefits of separable covariance models, they have limitations.  As

mentioned by Cressie and Huang (1999), patterns of interaction among the various factors

cannot be modeled when utilizing a Kronecker product structure.  Galecki (1994),

Huizenga et al. (2002), and Mitchell et al. (2006) all noted that a lack of  identifiability

can result with such a model.  The indeterminacy stems from the fact that if D > Hœ Œ

is the overall within-subject error covariance matrix, and  are not unique since for> H 

+ Á ! + Œ Ð"Î+Ñ Œ, .  However, this nonidentifiability can be fixed by> H > Hœ

rescaling one of the factor specific covariance matrices so that one of its diagonal nonzero

elements is equal to .  With homogeneous variances, this rescaled matrix is a correlation"

matrix.

Several tests have been developed to determine the appropriateness of a separable

covariance model.  Shitan and Brockwell (1995) constructed an asymptotic chi-square

test for separability.  A likelihood ratio test for separability was derived by Lu and

Zimmerman (2005) and Mitchell et al. (2006).  Fuentes (2006) developed a test for

separability of a spatio-temporal process utilizing spectral methods.  All of these tests

were developed for complete and balanced data.  Given that in many situations

multivariate repeated measures data are unbalanced in at least one of the factors, more

general tests for separability need to be developed.

There is also a lack of literature on the estimation of separable covariance models

when there is an imbalance in at least one dimension.  Only Naik and Rao (2001)

examined the case in which data may be unbalanced in one of the factors, namely

D > H3 3œ Œ .  This situation arises often in spatio-temporal studies since the data tend to

be balanced in space, but not in time.  Even though multivariate repeated measures
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studies often  have data with an imbalance in both dimensions, namely ,D > H3 3œ Œ3

this case has yet to be examined in the literature.

With the assumptions of covariance model separability and homoscedasticity, an

equal variance Kronecker product structure has great appeal.  In this case the overall

within-subject  covariance matrix is defined as .  This formulationerror D > H3 3
#œ Œ5 3

has several advantages.  The reduction in the number of parameters leads to

computational benefits.  The model is also identifiable since  and  will necessarily> H3 3

be correlation matrices.

4.2 Kronecker Product GAR Covariance Model

4.2.1 Notation

Consider the following general linear model for multivariate repeated measures data

with the Kronecker product GAR covariance structure:

C \ /3 3 3œ �" (4.1)

where is an  C3 3 3 3 3 3 3 > > >= ‚ " = = vector of  observations (e.g., temporal measurements and 

spatial measurements) on the  subject 3 3 œ "ß ÞÞÞß R>2 , is a  vector of fixed and" ; ‚ "

unknown population parameters,  is a  fixed and known design matrix\3 3 3> ‚ ;=

corresponding to the fixed effects, and  is a  vector of random error terms. We/3 3 3> ‚ "=

assume    for/ !3 = /3 / / /3 // /
# #µ R Ð ß Ð ß Ñ œ Ñ> /3 33 3

wD 7 > 7 H 75 5 Ò Ð Ñ Œ Ð ÑÓ
# =

and is independent of /

3 Á 3 µ R Ð ß Ò Ð Ñ Œ Ð ÑÓÑw #
3 > 3 /3 3. It follows that   C \ C

3 3
w= / /3 //" 5 > 7 H 7

# =
and is independent of

for .3 Á 3w

For  and , the factor specific > H/3 œ œe f e f3 3/3 à45 /3 /3 à67# = generalized

autoregressive (GAR) correlation structures are

3 V 3
$

/3 à45 346 356 /
346 356 /

#

#
œ ÐC ß C Ñ œ

" � Ð.Ð> ß > Ñ + "Ñ ÎÐH + Ñ
4 Á 5

" 4 œ 5
  ‘

#

#
1

, (4.2)
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3 V 3
$

/3 à67 346 347 /
346 347 /

=

=
œ ÐC ß C Ñ œ

" � Ð.Ð= ß = Ñ + "Ñ ÎÐH + Ñ
6 Á 7

" 6 œ 7
 c d

=

=
1

, (4.3)

where   and  are the distancesVÐ † Ñ is the correlation operator, .Ð> ß > Ñ .Ð= ß = Ñ346 356 346 356

between measurement times and locations respectively,  and are  that canH H# = constants

be specified and by default they are set to the maximum number of time and spatial

distance units respectively,  is the variability of the measurements at each time-location5/
#

pair,  and are the correlations between observations separated by one unit of  time3 3/ /# =
 

and distance respectively and  and are the decay speeds.  We assumeß $ $/ /# =
 

! Ÿ ' "à ! Ÿ à ( "3 3 $ $/ / / /# = # =
ß ß H ßH  and .  Ensuring that the factor specific# =

matrices  and > H/3 /3 are positive definite (as discussed in Chapter 2) is sufficient for

ensuring the positive definiteness of .  This follows from Corollary 4.1.1 in theD/3

Appendix.

Implicit in this model formulation is the presence of both a stationary variance and

correlation structure.  The AR(1) correlation model is a special case of the factor specific

GAR models for which .  For values of , the correlation between$ $/ /œ H+ " ( H + "

measurements on a given subject decreases in time or space at a faster rate than for

$ $/ /œ H+ " Ä ∞.  As , these factor specific models approach the moving average

model of order 1, MA(1).  For values of  such that , the correlation$ $/ /! ' ' H + "

between measurements on a given subject decreases in time or space at a slower rate than

for .  When , these models reduce to the well known compound$ $/ /œ H+ " œ !

symmetric correlation model for which the correlation between measurements on a given

subject is fixed at  no matter how far apart in time or space the measurements are taken.3/

Though values of  yield valid autocorrelation functions for which the correlation$/ ' !

between measurements on a given subject would increase with increasing time or

distance between measurements, this is rare in biostatistical applications.  Therefore the

parameter space is restricted for reasons of practicality.
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4.2.2 Plots

Graphical depictions of the Kronecker product GAR structure help to provide insight

into the types of correlation patterns that can be modeled.  A correlation pattern in which

both of the factor specific matrices (e.g. spatial and temporal matrices) have a decay rate

that is slower than that of the AR(1) model is illustrated in Figure 4 4.1.  Figures .2 and

4.3 exhibit patterns with dual AR(1) and faster than AR(1) decay rates respectively.

4.2.3 Maximum Likelihood Estimation

Proper estimation of fixed effect and covariance parameters in a multivariate

repeated measures model requires iterative numerical algorithms.  Jennrich and

Schluchter (1986) detailed the Newton-Raphson and Fisher scoring algorithms for

maximum likelihood (ML) estimation of model parameters.  Dempster et al. (1977) first

proposed the EM algorithm for parameter estimation.  The Newton-Raphson method is

more widely applicable than the Fisher scoring method due to the computational

infeasibility of calculating the expected information matrix in certain contexts.  As noted

by Lindstrom and Bates (1988), the method is also generally preferable to the EM

procedure.

The benefits of profiling out and optimizing the resulting profile log-likelihood to5#

derive model parameter estimates via the Newton-Raphson algorithm was discussed by

Lindstrom and Bates (1988).  They noted that this optimization will generally require

fewer iterations, will have simpler derivatives, and the convergence will be more

consistent.  There are also certain situations in which the Newton-Raphson algorithm may

fail to converge when optimizing the original log-likelihood but converge with ease when

utilizing the profile log-likelihood.

In order to estimate the parameters of the model defined in equation 4.1,  is first5/
#

profiled out of the likelihood.  The first and second partial derivatives of the profile log-

likelihood are then employed to compute , via the Newton-ML estimates of parameters
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Raphson algorithm, and the variance-covariance matrix of those estimates.  The resulting

estimates are then used to compute the value and variance of .  A SAS IML (SAS5s/
#

Institute, 2002) computer program has been written implementing this estimation

procedure for the general linear model with a Kronecker product GAR covariance

structure and is available upon request.

Setting , where ,D > 7 H 7 7 7 7/3 / /3 / / / / / / / //
#œ Ö à × œ Ö ß à ß ×5 $ 3 $ 3Ò Ð Ñ Œ Ð ÑÓ/3 # = # = # # = =

œ

the log-likelihood function of the parameters given the data under the model is:

6Ð à ß ß Ñ œ + Ð# Ñ+ l Œ l+ Ð Ñ Ð Œ Ñ Ð Ñ
8 " "

# # #

œ + Ð# Ñ + = Ð Ñ � l Œ l +
8 "

# #

"

#

C < <" 7 > H " > H "

> H

5 1 5
5

1 5

5

/ /
# # w +"

/ /3 3 /3 3

3œ" 3œ"

R R

/
#

3œ"

R

/
#

/3

/
#

ln ln

ln

� �
�ˆ ‰

�

/3 /3

3 3 /3> ln ln

3œ"

R

3 /3 3
w +"< <Ð Ñ Ð Œ Ñ Ð Ñß" > H "/3 (4.4)

where .  Taking the f with respect to  gives8 œ =�
3œ"
R

/
#>3 3 irst partial derivative 5

`6 " "

` # #
œ + = � Ð Ñ Ð Œ Ñ Ð Ñ

5 5
5

/ /
# %

3œ" 3œ"

R R

/ /3
+# +" +"

3 3� �>3 3 /3< <" > H "w .

Setting the derivative to zero and solving for an estimate of the variance yields

5s Ð Ñ œ Ð Ñ Ð Œ Ñ Ð Ñ
"

8/ /3
#
QP / 3 3

3œ"

R
+" +"" 7 " > H "ß < <� w
/3 .

Substituting  into the log-likelihood function in equation 4.4 leads to the5s Ð Ñ/ /
#
QP " 7ß

following profile log-likelihood:

6 Ð à ß Ñ œ+ l Œ l +
"

#

" " " 8

# # 8 #
8 Ð Ñ Ð Œ Ñ Ð Ñ + 8 +

: / /3

3œ"

R

3œ"

R

3 3
+" +"

/3

C

< <

" 7 > H

" > H "

�
– —� Œ 
ln /3

/3ln ln  .

(4.5)

w

To avoid computational issues it is best to use the equality
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ln ln lnl Œ l œ = l l � > l l> H > H/3 /3/3 3 3 /3

in case  is close to zero.l Œ l> H/3 /3

The first partial derivative with respect to  in equation 4.5 is"

`6 Î` œ 8 Ð Ñ Ð Œ Ñ Ð Ñ Ð Œ Ñ Ð Ñ: 3 3 33œ" 3œ"

R R+" +" w +" +"
/3 3 /3

+"

" " > H " > H "Š ‹� �< < \ <w
/3 /3 .

Setting the previous equation to zero and solving implies .�
3œ"
R

3
w +" +"

/3 3\ < !Ð Œ Ñ œ> H/3

If  the likelihood would be degenerate.Š ‹�
3œ"
R

3 3
+" +"

/3

+"

< <Ð Ñ Ð Œ Ñ Ð Ñ œ !" > H "w
/3

Therefore

" 7 > H > Hs Ð Ñ œ Ð Œ Ñ Ð Œ ÑQP / 3 33œ" 3œ"

R R

3 /3 3 /3
w +" +" w +" +"
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The ML estimates of the model parameters are computed by utilizing the Newton-

Raphson algorithm with the above first partial derivatives and the second partial

derivatives of the profile log-likelihood.  The second partial derivatives of the parameters,

which are also employed to determine the asymptotic variance-covariance matrix of the

estimators, are approximated by finite difference formulas.  These derivative

approximations are detailed in Abramowitz and Stegun (1972) and Dennis and Schnabel

(1983).  The  analytic second derivatives can be derived explicitly as inˆ ‰&
# � & œ "&

Chapter 1.  However, the approximations have proven very accurate.

After obtaining the estimates of  and  utilizing the Newton-Raphson algorithm," 7/

an estimate of  is calculated by substituting the estimates into .  An5 5/ /
# #

QP /s Ð Ñ" 7ß
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estimat  of  variance for , assuming that  and  are known, is asor the 5s Ð Ñ/
#
QP / /" 7 " 7ß

follows.  We have that
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  The asymptotic variance-covariance matrix of the estimators of  and  is given" 7/

by the Hessian matrix (the observed information matrix) below:
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The estimated asymptotic variance-covariance matrix of the estimates of  and  is" 7/

simply calculated by substituting the ML estimates of these parameters into equation 4.6

and taking its inverse.

From the previous derivations we can see that  is consistent (i.e.,  ) since5 5 5s s Ä/ / /
# #

:
#

we have that and that  as .  To establish the consistencyI œ Ä ! 8 Ä ∞s sˆ ‰ ˆ ‰5 5 i 5/ / /
# ##

of the remaining estimators, an examination of the asymptotic properties of the inverse of
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the observed information matrix is necessary .  As noted in Vonesh and Chinchilliˆ ‰L"7/
+"

(1997), it is well known that under normal theory likelihood estimation we have that the

asymptotic distributions of the ML estimates of  and  are" 7/

È Š ‹ � �R + Ä R ßs" " D. ; ! "

and

È � � � �R + Ä R ßs7 7 D/ / . # ! 7/
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RÄ∞ RÄ∞

+" +" ` 6
` `

+"ˆ ‰ ” •Š ‹L" " "

#
:

w

D
$ 3 $

3 $ 3

7 7/ /
œ R œ R

` 6 ` 6

` ` `

` 6 ` 6

` ` `

lim lim
RÄ∞ RÄ∞

+" +"

# #
: :

/
#

/ /
# #
: :

/ / /
#

+"

ˆ ‰
Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

Î ÑÐ ÓÐ ÓÐ Ó
Ï Ò

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

L exist.  For

"reasonable" values of  and  the limits should exist, though further investigation is> =3 3

needed.  If the limits exist, the estimators will be consistent and fully asymptotically

efficient.

4.2.4 Computational Issues

A complication that may arise when implementing the Kronecker product GAR

covariance model is that the proposed estimation method can produce negative variance

estimates for the correlation parameters.  This may occur for the parameters of either one

or both of the factor specific matrices when there is a faster decay rate than that imposed

by the AR(1) model coupled with a 'small' .  The instability of the second order3/

derivatives of the objective function resulting from the small, quickly decaying

correlation leads to this problem.

One approach would be to implement an estimation method which utilizes only first

order derivatives such as a quasi-Newton procedure.  An often used algorithm for this

first order iterative procedure is an efficient modification of Powell's (1978, 1982)

Variable Metric Constrained WatchDog (VMCWD) algorithm that uses a quadratic
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programming subroutine which updates and downdates the Cholesky factor as detailed by

Gill et al. (1984).  However, quasi-Newton approaches generally have worse stability and

convergence properties than the Newton-Raphson method.  The estimates produced also

tend not to be as accurate as those from the Newton-Raphson method.  Another approach

is to recognize this complication as a diagnostic tool.  Since a covariance matrix of this

nature is approximately equal to the identity matrix, an independence model should be fit

for the factor specific structure in this situation.

4.3 Simulations

To assess the empirical performance of the estimation procedure (detailed in 4.2.3)

for the Kronecker product GAR covariance model, data were generated under the general

linear model for multivariate repeated measures data with the Kronecker product GAR

covariance structure with four different parameter sets.  Only the complete and balanced

case was considered with  subjects, and  observationsR œ "!! > œ > œ "! ‚ = œ = œ "!3 3

each at two-unit distance intervals (thus ).  The fixed effects included anH œ H œ ")# =

intercept, a dummy variable indicating membership in one of two groups (  subjects per&!

group), and a continuous  covariate, with .  Simulation resultsrepeated " œ "ß "ß "c dw
showed that the estimation approach performs best when both correlation matrices exhibit

a pattern of high initial correlation with a slow decay rate .(the 'optimal' case)

Conversely, the procedure performs worst when both correlation matrices exhibit a

pattern of low initial correlation with a fast decay rate .  I focus on(the 'suboptimal' case)

these extreme cases, but include two intermediate parameter sets for completeness.

For parameter set 1, we let 3/ / /
w wœ œc d c d3 3

# =1 1 !Þ* !Þ*  and

$/ / /
w w wœ œc d c d c d$ $

# =1 1 ÐH + "ÑÎ% ÐH + "ÑÎ% %Þ#& %Þ#&œ  corresponding to the

optimal case.  The two intermediate cases, parameter sets 2 and 3, have

3/ / /
w wœ œc d c d3 3

# =2 2 !Þ* !Þ*  with

$/ / /
w w wœ œ % %c d c d c d$ $

# =2 2 ÐH + "Ñ ÐH + "Ñ ') ')œ , and
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3/ / /
w wœ œc d c d3 3

# =3 3 !Þ& !Þ&  with

$/ / /
w w wœ œc d c d c d$ $

# =$ $ ÐH + "ÑÎ% ÐH + "ÑÎ% %Þ#& %Þ#&œ .  For parameter set 4,

corresponding to the worst case, we let 3/ / /
w wœ œc d c d3 3

# =4 4 !Þ& !Þ&  and

$/ / /
w w wœ œc d c d c d$ $

# =4 4 H H ") ")œ .  The decay speed parameter values in set 4

are not set larger due to the complications discussed in 4.2.4.  It is important to note that

the combination of an 'optimal' and 'subo timal' correlation matrix will also lead top

intermediate results as in sets 2 and 3.  Each simulation for the four parameter sets

consisted of  realizations with the scale param ter set to .  All model fits"!ß !!! œ "!e 5/
#

employed ML estimation with the profile likelihood as discussed in 4.2.3.

The estimation procedure was assessed by evaluating the estimators, their standard

deviations, and the average standard error of the estimators for the four parameter sets.

Table 4.1 reports these simulation results.  It is evident that the estimation approach

performs well because the bias is relatively small, and the estimated standard error is

close to the sample standard deviation for the estimators.  Confirming preliminary results,

its performance declines as the decay rate increases and the initial correlation decreases.

This is evidenced by the increase in bias, standard deviation, and difference between the

standard deviation and average standard error for the estimators for sets 1 and 2, 3 and 4,

and 1 and 3.  As a side note, it should be pointed out that there is virtually no bias in fixed

effect estimation for any of the four scenarios (Demidenko, 2004, reviews proofs of fixed

effect unbiasedness).

4.4 Example

Schizophrenia is a mental illness characterized by disabling manifestations of

impairments in the perception or expression of reality.  Longitudinal studies have shown

that the pathomorphologic brain changes occurring in schizophrenics may be progressive

and associated with clinical outcome.  Thus, much recent work has focused on the effect

of antipsychotic drugs on brain morphology.  The caudate (shown in Figure 4.4), an
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important part of the brain's learning and memory system, has been one target of these

drugs.

 Our analysis includes longitudinal MRI scans of the left caudate for 240

schizophrenia patients and 56 controls.  The surface of each object was parameterized via

the m-rep method as described in Styner and Gerig (2001).  The caudate shape was

determined as a 3 x 7 grid of mesh points (see Figure 4.5).  Data were reduced to one

outcome measure:   in cm as a measure of local object width (21 locations perRadius

caudate).  The distance between two radii for a given subject was calculated as the mean

Euclidian distance over all images.  Scans were taken up to 47 months post-baseline with

the median and maximum number of scans per subject being 3 and 7 respectively.  The

schizophrenia patients were randomized to either haloperidol (a conventional

antipsychotic) or olanzapine (an atypical antipsychotic).  These two groups were

combined into one treatment group for the purposes of our analysis.  The other covariates

of interest were age, gender, and race.  The shape of the caudate, and thus the radii, have

been shown to be significantly different at baseline between schizophrenics and controls.

The study hypothesized that the neuroprotective effect of the drugs would lead to no

overall differences in shape between the patients and controls.

We model the data with the general linear model for multivariate repeated measures

data.  The initial full model is as follows:

C \ \ \ /3 ! " 3ß # $ 3ß % 3ß 3œ � � � � �" " " " "trt gen race\3ßage . (4.7)

The log (radius) values for each of the 21 locations  and # 3= œ = œ3 (spatial factor) >

images  for each subject are contained in  .  The vectors(temporal factor) C3 3� �> †#" ‚ "

\ \ \3ß 3ß 3ßtrt gen rac, , and  indicate the treatment group , gender, and(patients and controls)

race of the  subject respectively.  The ages at baseline are contained in .3th \3ßage

We model the temporal and spatial factor specific covariances of the within-subject

errors with the continuous-time AR(1), DE, and GAR structures (the three main models
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for exponentially decaying correlation patterns discussed in Chapters 1-3) in order to

assess the best model via the BIC.  Table 4.2 contains the BIC values for all nine possible

covariance model fits.  Modeling both the temporal and spatial covariances with the GAR

provides the best model fit.

We continue the analysis employing the Kronecker product GAR covariance model.

In order to obtain a , the full model defined in equation 4.7 is reducedparsimonious model

via backward selection with α œ !Þ#!.  The final model after reduction is

C /3 ! 3œ �" . (4.8)

Thus, as expected, there is no difference in caudate shape between the treated

schizophrenics and the controls when taking into account all images taken over time.

The residual variance estimate and correlation parameter estimates of the Kronecker

product GAR structure (defined in equation 4.1) for the final data model are given in

Table 4.3.  Graphical depictions of these estimates are exhibited in Figures 4.6 and 4.7,

which show the predicted correlation as a function of the monthsobserved vs. patterns 

between images and millimeters between radii respectively, starting with the minimum

temporal and spatial distances for the data.  As evidenced by Figure 4.6, the temporal

factor specific GAR covariance structure is able to model a correlation function in which

the correlation remains high regardless of how far apart in time the images are taken.  The

spatial correlations, shown in Figure 4.7, are modest for radii that are close, and then

decay slowly toward zero as they become farther apart.  The predicted correlation as a

function of both factors is exhibited in Figure 4.8.  This illustration of the predicted

overall within-subject correlation function again displays the slow spatial decay pattern

and the near constant temporal pattern. The utility of the Kronecker product covariance  

model lies in both the flexibility of the factor specific models as well as the

interpretability stemming from the Kronecker product structure.
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4.5 Discussion and Conclusions

As shown by the simulations in section 4.3, we can be confident in the estimation of

the Kronecker product GAR covariance model parameters.  The method allows for the

modeling and understanding of two factor specific correlation patterns even when there is

an imbalance in both dimensions across subjects.  This five-parameter structure has

excellent analytic and numerical properties that make it especially attractive for the High

Dimension, Low Sample Size case so common in longitudinal medical imaging and

various kinds of longitudinal  "-omics" data.  Analysis of the caudate data nicely

illustrates the interpretability of the model in a complex context.

There are many possible directions for future research with the proposed Kronecker

product GAR covariance model.  Any combination of allowing  the estimation of for H#

and  parameters and including higher order polynomial functions in the exponent ofH= as 

the factor specific models would further increase its flexibility.  An assessment of the

model's small sample performance and robustness to misspecification is a priority for

future investigation.  Also, introducing a nonstationary Kronecker product GAR

covariance model may prove extremely useful in neuroimaging studies of the developing

brain since the variability of brain characteristics tends to change across time and space.

The model could have a nonstationary variance and/or correlation structure.  For data that

have within-subject correlations induced by three or more factors, as in longitudinal

imaging data represented via the m-rep method (Pizer et al., 2002 has details), the

generalization of the Kronecker product GAR covariance model to  repeated factors8

would be beneficial.
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Table 4.1  Summary of Simulation Results

Simulated Model

Set (value) (value) Mean Mean SD Mean SE SD Mean SE

1 (.9) (4.25) 0.900 4.256 0.004 0.004 0.2

3 $ 3 $ 3 $/ / / // /

/ /

� � � �Š ‹ Š ‹ Š ‹ Š ‹s ss ss s

3 $
# #1 1

27 0.226

(.9) (4.25) 0.900 4.255 0.004 0.004 0.227 0.226

2 (.9) (68) 0.901 70.027 0.011 0.011 11.650 11.180

(.9) (68) 0.900 69

3 $

3 $

3 $

/ /

/ /

/ /

= =

# #

= =

1 1

2 2

2 2
.602 0.011 0.011 11.143 11.045

3 (.5) (4.25) 0.500 4.282 0.013 0.013 0.384 0.382

(.5) (4.25) 0.500 4.274 0.013 0.013 0.376 0.382

4

3 $

3 $

3

/ /

/ /

/

# #

= =

#

3 3

3 3

4
(.5) (18) 0.509 19.744 0.054 0.053 9.490 6.578

(.5) (18) 0.509 19.698 0.054 0.053 7.364 6.414

$

3 $
/

/ /

#

= =

4

4 4
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Table 4.2 BIC Values for all Combinations of Factor Specific Covariance Model Fits for

the Initial Caudate Data Model

Spatial Model

Temporal Model GAR DE AR(1)

GAR 14,213.3 13,818.5 12,639.6

DE 14,210.2 13,815.5 12,636.8

AR(1) 10,300.2  9,906.1  8,698.7

+ + +
+ + +
+ + +
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Table 4.3  Final Covariance Model Estimates forKronecker Product GAR Structure 

Caudate Data

 

Factor Parameter Estimate SE

0.4047 0.0045

Time 0.9915 0.0002

( 1) 0.0026 0.0012

Space 0.3806 0.0108

( 1) 0.0402 0.0039

+

Î H +

Î H +

5
3

$

3

$

/
#

/

/

/

/

#

#

=

=

#

=
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Figure 4.1.  Plot of correlation as a function of spatial and temporal distance when both

factor specific matrices have a decay rate that is slower than that of the AR(1) model.

The correlation parameters are  and˜ ™3 3/ /# =1 1
œ !Þ*ß œ !Þ*˜ ™$ $/ /# =

ÎÐH + Ñ œ !Þ&ß ÎÐH + Ñ œ !Þ&# =1 1 .
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Figure 4.2. Plot of correlation as a function of spatial and temporal distance when both

factor specific matrices have an AR(1) decay rate.  The correlation parameters are˜ ™ ˜ ™3 3 $ $/ / / /# = # =1 1
œ !Þ*ß œ !Þ* ÎÐH + Ñ œ "ß ÎÐH + Ñ œ " and 1 1 .# =
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Figure 4.3. Plot of correlation as a function of spatial and temporal distance when both

factor specific matrices have a decay rate that is faster than that of the AR(1) model.  The

correlation parameters are  and˜ ™3 3/ /# =1 1
œ !Þ*ß œ !Þ*˜ ™$ $/ /# =

ÎÐH + Ñ œ #ß ÎÐH + Ñ œ ## =1 1 .
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Figure 4.4 The Caudate Nuclei in the Human Brain.
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Figure 4.5 M-rep Shape Representation Model of the Caudate.
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Figure 4.6 Observed vs. Predicted correlation as a function of the time between images.
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Figure 4.7 Observed vs. Predicted correlation as a function of the distance between radius

locations.
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Figure 4.8 Predicted correlation as a function of the distance between radius locations and

time between images.
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CHAPTER 5.  CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary

This dissertation has focused on developing a generalization of the continuous-time

AR(1) covariance model for correlated data.  Even though observed correlations often

decay at a much slower or much faster rate than the AR(1) structure dictates, it sees the

most use among the variety of correlation patterns available.  The new model, termed the

generalized autoregressive (GAR) covariance structure, was shown to accommodate

much slower and much faster correlation decay patterns.  It was also shown to have

excellent analytic and numerical properties making it a valuable addition to the suite of

parsimonious covariance structures for repeated measures data.  Given the heavy

dependence of fixed-effects inference accuracy on the proper specification of the

covariance model, the amount of work on covariance models has not been commensurate

with their level of importance.

The first objective of this dissertation research was to develop the GAR model.

Estimators were derived for the model parameters utilizing the Newton-Raphson method

with the profile log-likelihood.  An examination of the correlation patterns which can be

modeled revealed that special cases of the GAR structure include the AR(1), equal

correlation (as in compound symmetry), and MA(1) (moving average model of order 1)

models.  Careful study of model properties illuminated both potential complications and

solutions when implementing the GAR covariance model.

An assessment of the performance of the GAR model relative to comparable models

exhibited its utility.  As evidenced by the simulation results in Chapter 2, the GAR

covariance model is more appropriate than either the DE or continuous-time AR(1)
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models when the data truly have a GAR correlation pattern.  Its utility becomes even

more pronounced in high dimensional settings which are prevalent in many areas of

imaging research.  The better statistical and convergence properties of the GAR relative

to the DE model increase its appeal.  Analysis of the neonate neurological DTI data

illustrated these advantages.

The second focus of this research involved examining inference accuracy for both

fixed effect and covariance parameters in the general linear model with a GAR

covariance structure.  Simulation results in Chapter 3 showed that the GAR covariance

model is as robust to misspecification in controlling fixed effect test size as the DE

model, while possessing better statistical and convergence properties.  The GAR

covariance model is far more robust to misspecification than the AR(1) model.  Analysis

of the DASH data exemplified the disparate, more defensible fixed effect inference

results that can occur when fitting the GAR as opposed to the AR(1) covariance model.

These results served to further strengthen the case for the inclusion of the GAR

covariance model in the suite of parsimonious covariance structures for repeated

measures data.

Hypothesis tests concerning the decay speed parameter of the GAR covariance

model were examined to assess the ability of the commonly used Likelihood Ratio Test to

discern the model from its special cases.  More specifically, simulated test size was

examined for tests of  (corresponding to Compound Symmetry) andL À œ !! /$

L À œ H + "! /$  (corresponding to the AR(1) model).  Inference about the covariance

parameters provides a more formal assessment of model fit for nested models than

information criteria.  As evidenced by these simulation results in Chapter 3, the LRT

gives an unbiased assessment of model fit for moderately large samples under most

conditions.  Application of the LRT to the both the DTI and DASH data corroborated the

better fit of the GAR model.
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Finally, the GAR model was extended to the multivariate repeated measures context

by developing the Kronecker product GAR covariance structure which allows modeling

correlations patterns induced by two factors (as is the case with spatio-temporal data).

Simulation results in Chapter 4 made it evident that the proposed estimation approach

performs well in this more complex context.  Analysis of the caudate data nicely

illustrated the benefits of the model in terms of its flexibility and interpretability.

5.2 Future Research

Providing a thorough investigation of the proposed GAR covariance model was the

goal of this dissertation.  Though not everything can be covered, this work provides a

solid foundation on which to base future research.  There are several possible model

extensions that would lead to an even more flexible GAR structure.  A better

understanding of unexamined GAR model properties may have implications in numerous

biomedical contexts.  This research has also pointed to the need for better hypothesis tests

in repeated measures settings.

Any combination of allowing  the estimation of the   parameter andfor as aH

including higher order polynomial functions in the exponent of the model would further

increase the flexibility of the GAR covariance model.  These modifications may lead to

more computational flexibility, thus facilitating convergence and more accurate

estimation.  They would also allow for the modeling of an even wider range of

exponentially decaying correlation patterns.

The development of a nonstationary GAR covariance model would prove extremely

useful in neuroimaging studies of the developing brain since the variability of brain

characteristics tends to change over time.  The model could have a nonstationary variance

and/or correlation structure.  Though, the relative loss of parsimony may prove limiting in

the High Dimension, Low Sample Size (HDLSS) context.
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There are many possible avenues for future inference investigation with the

proposed GAR covariance model.  Assessment of both fixed effect and covariance

parameter inference in the model with small samples would have implications for both

imaging and genetics research.  Evaluating the performance of the model under violations

of the Gaussian assumption may prove useful in many contexts.  Also, as evidenced by

the simulation results in Chapter 3, there is a strong need for the development of tests for

fixed effects that are unbiased even with a misspecified covariance.

For data that have within-subject correlations induced by three or more factors, as in

longitudinal imaging data represented via the mrep method (noted in Chapter 4), the

generalization of the Kronecker product GAR covariance model to  repeated factors8

would be beneficial.  In order to determine the appropriateness of these models, more

flexible tests of separability are needed.  With the ultimate goal being the development of

a separability test for  covariance structures of any type, the extension of current tests to8

allow for two unbalanced covariance models would be a natural first step.

Though often seen as a nuissance structure, properly modeling the covariance is of

extreme importance for accurate fixed effect inference.  Accurate covariance structure

specification also aids in giving insight into the biological process under investigation.

The relative dearth of current literature on covariance modeling further necessitates

continued research in this area.
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APPENDIX:  THEOREMS AND PROOFS

Chapter 2

The following theorem is presented in Schott (1997):

Theorem 2.1.  Let  and  be each be an  symmetric matrix.  If  isE F F7‚7

positive definite and  is nonnegative definite with positive diagonal elements, thenE

E ‰ F   (Hadamard Product) is positive definite

I present the following theorem:

Theorem 2.2.   is a sufficient condition for the positive definiteness of$/ Ÿ H+ "

the GAR model

Proof.  The (GAR) covariance structure can begeneralized autoregressive 

reparameterized as follows:  Let
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Thus, by Theorem 2.2,  is a sufficient (but not necessary) condition for the$/ Ÿ H+ "

positive definiteness of the GAR model.

Chapter 4

The following theorem is presented in Schott (1997):

Theorem 4.1.  Let  be the eigenvalues of the  matrix , and let- -" 7ß ÞÞÞß 7 ‚7 E

) )" 7ß ÞÞÞß : ‚ : 7: be the eigenvalues of the  matrix .  Then the set of  eigenvalues ofF

E FŒ À 3 œ "ß ÞÞÞß7à 4 œ "ß ÞÞÞß : is given by { }.- )3 4

I present the following corollary:

Corollary 4.1.1.  Let  and  be  and  matrices respectively.  If  andE F E7‚7 : ‚ :

F E F are positive definite then  is positive definite.Œ

Proof.  This follows directly from the theorem.

Thus with D 7 > 7 H 7 >/3 / / /3 // /
# #Ð ß Ñ œ5 5 Ò Ð Ñ Œ Ð ÑÓ/3 /3# =

, the positive definiteness of 

and H D/3 /3 is sufficient for the positive definiteness of .
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