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ABSTRACT 

Yuqiang Zhang: Application of Chemical Transport Models to Study Global        
and Regional Air Quality and Human Health 

(Under the direction of J. Jason West) 

Climate change and air quality are interrelated issues. Policies to mitigate greenhouse gas 

(GHG) emissions will not only slow climate change, but can also bring co-benefits of improved 

air quality and avoided mortality.  

Here I examine the co-benefits of global and regional GHG mitigation on US air quality 

and human health in 2050 at fine resolution by dynamically downscaling a previous global study 

on the co-benefits of global GHG mitigation. The US average total co-benefits of global GHG 

mitigation in RCP4.5 are 0.47 µg m-3 for annual average PM2.5 and 3.55 ppb for ozone-season 

maximum daily 8-hour average O3, avoiding 24500 (90% confidence interval, 17800-31100) all-

cause deaths related to PM2.5, and 12200 (5400-18900) respiratory deaths for O3. Reductions in 

co-emitted air pollutants dominate the total co-benefits, much higher than those via slowing 

climate change. GHG mitigation from foreign countries avoids 3700 (2700-4700) PM2.5-related 

deaths (15% of the total), and contributes more to the US O3 reduction than domestic GHG 

mitigation, avoiding 7600 O3-related deaths (3400-11900, 62%), highlighting the importance of 

global methane reductions and intercontinental air pollutant transport. GHG mitigation in the US 

residential sector brings the largest co-benefits for PM2.5-related deaths (21% of the total 

domestic co-benefits), and industry for O3 (17%). The US gains significantly greater co-benefits 
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by coordinating GHG reductions with foreign countries. Previous studies estimating co-benefits 

locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.  

I also investigated the causes of changes in the global tropospheric ozone burden (BO3) 

from 1980 to 2010 using a global atmospheric model, isolating the effect of the emissions 

shifting southwards from emission increases in developing countries and decreases in developed 

countries. The global emission spatial distribution change accounts for more than half of the total 

BO3 change (28.12 Tg), even larger than the combined effects of the global emission magnitude 

change and global methane change. This highlights the dominant role of emissions from the 

tropics, especially over South and Southeast Asia, for the tropospheric O3 burden, and suggests 

that BO3 might continue to increase as emissions shift south, even if global emissions remain 

unchanged or even decrease.  
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CHAPTER 1. INTRODUCTION 

The 20th century was a rapid changing period, featured with increasing of global 

population from 1.7 billion to 6.1 billion (United Nations, 2001), global gross domestic product 

(GDP) by 19 times (International Monetary Fund, 2000), and fossil fuel consumption by 15 

times (Smil, 2003). Air pollution is among one of the top issues raised by this unprecedented 

change. Clean air is a basic requirement for human health, crop yield and ecosystems (Royal 

Society, 2008). A recent study attributed the global deaths and disability-adjusted life years in 

2010 to 67 risk factors using global scale modeling (Lim et al., 2013), and found that three risk 

factors in the category of “Air Pollution” have important health impacts: ambient particulate 

matter pollution (attributing 3.2±0.4 million deaths in 2010), household air pollution from solid 

fuels (3.5 million deaths, ranging from 2.7 to 4.4 million) and ambient ozone pollution (0.2 

million deaths, ranging from 0.1 to 0.3 million). Fine particulate matter (PM2.5, particles with 

aerodynamic diameter of 2.5 µm or less) and ozone (O3) therefore directly link air quality and 

human health impacts.  

Pollutants that are directly emitted into the atmosphere are referred to as primary pollutants, 

such as nitrogen oxide (NOx) and carbon monoxide (CO). Those produced chemically in the 

atmosphere are called secondary pollutants. PM2.5 is a very complex air pollutant, composed of 

extremely small particles and liquid droplets and including both primary and secondary sources. 

For example, the major components for PM2.5 are nitrate (NO3
-), sulfate (SO4

2-), ammonium 

(NH4
+), which are mostly from direct emissions, and secondary organic aerosols (SOA), which 

are produced though gas-phase and liquid-phase reactions in the
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atmosphere. For O3 in the troposphere, it is secondary air pollutant, mainly produced by 

photochemical reactions of CO, non-methane volatile organic compounds (NMVOCs), and 

methane (CH4) in the presence of NOx and sunlight. Tropospheric O3 can also be transported 

from stratosphere through the stratosphere-troposphere-exchange (STE), but this is less 

important than chemical production (Young et al., 2013).   

1.1 Air pollution as a global issue 

Despite a relatively short lifetime in the atmosphere (days to weeks), PM2.5 and its 

precursors can be transported long-distance from source region to another reception region 

(Ewing et al., 2010; Hadley et al., 2007; Han et al., 2008; Heald et al., 2006; Kondo et al., 2011; 

Liu et al., 2009a, b; Nam et al., 2010; TF HTAP, 2010; Wuebbles et al., 2007; Yu et al., 2012; 

Yumimoto et al., 2010). For example, Liu et al. (2009a) found that the influence from 

intercontinental transport of air pollutants contributed to 36-97% of background surface aerosol 

concentrations, depending on the receptor locations. Compared with PM2.5, the intercontinental 

transport of O3 is more interesting to scientists and policy makers since it has a much longer 

lifetime in the troposphere (weeks to months) (Akimoto et al., 2003; Anenberg et al., 2009; 

Auvray and Bey, 2005; Cooper et al., 2010; Derwent et al., 2004; Doherty et al., 2013; Lin et al., 

2008; Lin et a., 2012; Liu et al., 2003; Liang et al., 2004, 2007; Trickl, 2003; Wild and Akimoto, 

2001; West et al., 2009a; Yoshitomi et al., 2011; Zhang et al., 2008, 2010). Recent studies have 

attributed the degradation of air quality in the western US, especially in spring, to the influence 

from rising anthropogenic emissions in East Asia (Cooper et al., 2010, 2015; Jacob et al., 1999; 

Lin et al., 2012; Verstraeten et al., 2015), making it more challenging to reach the US ozone 

standard, which decreased from 75 ppb to 70 ppb recently (US EPA, 2015). However, PM2.5 has 

a greater effect on human mortality (Bell et al., 2004; Jerrett et al., 2009; Krewski et al., 2009), 
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dominating the premature mortality from outdoor pollution, compared with O3 (Anenberg et al., 

2010; Lim et al., 2013; Silva et al., 2013). So both PM2.5 and O3 are increasingly recognized as a 

global issue instead of regional one, demanding more international collaborations (Holloway et 

al., 2003; Keating et al., 2004; TF HTAP, 2010).  

To control outdoor air pollution on national scale, strict standards should be made to 

reduce the air pollutants emissions from domestic emissions sectors, such as power plants, 

cement industry and ground transportation (e.g., the State Implementation Plans, a.k.a., SIP in 

US; Wang et al., 2012, 2014). On international scale, close collaborations should be established 

to keep the air pollutants global background levels from increasing, and to help reach individual 

goal of the air quality standards for concerned countries. The air pollutants in the North 

Hemisphere (NH) can be transported from East Asia to North America, from North America 

across the North Atlantic Ocean to Europe, and from Europe into the Arctic and East Asia. 

Studies have shown that the global O3 burdens are more sensitive to the air pollutants changes in 

the tropical regionals and the South Hemisphere (SH) (Berntsen et al., 2005; Derwent et al., 2008; 

Fuglestvedt et al., 1999, 2010; Fry et al., 2012, 2014; Naik et al., 2005; West et al., 2009a). So to 

control PM2.5 and O3 as both a global and regional issue, not only the magnitude of emissions of 

the air pollutants and its precursors should be considered, but also where these emissions should 

be reduced.   

The concentrations and the distributions of the air pollutants in the atmosphere are 

determined by their emissions (including anthropogenic, biogenic and other natural sources such 

as volcanos and soil), chemistry, transport and deposition. To study processes in the atmosphere, 

atmospheric scientists made reasonable assumptions and simplifications to convert the real, 

complex atmosphere into model systems leading to analytical or numerical solutions. 
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Atmospheric chemical transport models (CTMs) are great tools to study the large-scale or 

continental-scale air pollutants distributions and transport. The CTMs are designed to calculate 

and predict the chemical reactions, physical processes and the transport of the air pollutants 

within the atmosphere. Since monitor sites, including ground surface observations, balloons and 

satellites, cannot provide complete spatial and temporal coverage for the interest of domain, 

under these circumstances, CTMs are widely used in global and regional studies for regulatory or 

policy assessment, understanding chemical and physical processes, source attribution, and health 

impact assessments. More recently, the CTMs are used heavily to predict future air quality 

changes under future climate change of different projections.  

1.2 Air pollution and premature mortality  

A larger number of epidemiological studies have quantified the relationship between 

adverse health effects with PM2.5 (Dockery et al., 1993; Laden et al., 2006; Krewski et al., 2009; 

Roman et al., 2008) and O3 (Bell et al., 2004, 2005; Jerrett et al., 2009; Levy et al., 2005). An 

early study was the 1993 Harvard Six Cities study, which found associations between expose to 

PM2.5 and lung cancer and cardiopulmonary mortality (Dockery et al., 1993). An extended 

follow-up study was performed later with 8 more years’ data to study the reduced mortality from 

the reduced PM2.5 pollution (Laden et al., 2006). Reduced mortality risks were associated with 

reduced ambient PM2.5 concentrations, reaffirming the associations between the PM2.5 and the 

mortality. In this latest cohort study, the relative risks (RR) for total all-cause mortality, lung 

cancer and the cardiovascular deaths were 1.16 (with a 95% confidence interval, CI of 1.07-1.26), 

1.27 (95% CI, 0.96-1.69), and 1.28 (95% CI, 1.13-1.44), with each 10 µg/m3 increases in 

ambient PM2.5 concentration (Krewski et al., 2009).  
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An extended follow-up and spatial analysis of the American Cancer Society (ACS) study 

was also conducted to examine the association between the long-term exposure of ambient PM2.5 

pollution and mortality in major large US cities (Krewski et al., 2009). This is the largest cohort 

study so far, involving approximately 1.2 million participants across many US large cities, and 

also applying state-of-art statistical approaches. This study confirmed strong associations 

between the ambient PM2.5 and mortality as shown in previous studies, and also established new 

relationships for the RRs of the total all-cause, cardiopulmonary disease and lung cancer 

mortality, with 1.06 (95% CI, 1.04-1.08), 1.13 (95% CI, 1.10-1.16), and 1.14 (95% CI, 1.06-1.23) 

individually (Krewski et al., 2009). The RRs from the ACS study are lower than the estimates 

from the Harvard Six City studies.  

Studies have shown that different components of PM2.5 may have different associations 

with mortality, for example, the ambient black carbon (BC) may have stronger association with 

mortality than other components and PM as a whole (Adar et al., 2007; Bell et al., 2009; Janssen 

et al., 2011, 2012; Ostro et al., 2007; Peng et al., 2009; Power et al., 2011; Qiao et al., 2014; Suh 

et al., 2010; WHO, 2012; Wilker et al., 2013). However, a recent review by the US EPA (2010) 

revealed that the differences in the mortality risks associated with long-term exposure to PM2.5 

components were not discernable. Studies that assess premature mortality associated with PM2.5 

overwhelmingly use PM2.5 as an indicator, rather than different species.  

Surface O3 in the ambient environment has also been associated with mortality (e.g., Bell 

et al., 2005; Ito et al., 2005; Levy et al., 2005; Jerrett et al., 2009). A study which used mortality 

data in 95 US communities from 1987-2000 has found that with 10-ppb increase of ozone, the 

RRs in daily mortality would increase by 0.52% (95% posterior interval, PI, 0.27%-0.77%), and 

the RRs in cardiovascular and respiratory mortality would increase by 0.64% (95% PI, 0.31%-
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0.98%) (Bell et al., 2004). Moreover, surface ozone exposure is also associated with the chronic 

mortality. A recent long-term large-scale study cohort of the American Cancer Society Cancer 

Prevention Study is the first to establish the association between the long-term ozone exposure 

and mortality (Jerrett et al., 2009). Using the two-pollutant model, the authors found strong 

associations with the risk from respiratory causes, and the estimated RR was 1.40 (95% CI, 

1.010-1.040) with a 10-ppb increases for the ozone season of 1-hour daily maximum O3 

concentrations.  

1.3 Interactions between climate change and air quality 

Climate change and air quality are interrelated issues, suggesting that these two should be 

considered together under the mitigation strategies (Ramanathan and Feng, 2009). First, air 

pollutants can cause climate forcing. For example, O3 in the troposphere can warm the earth, 

while aerosols, such as NO3
- and SO4

2-, two very important components of PM2.5, can cool the 

atmosphere by reflecting the sunlight back into the space.  

Second, changing climate can also affect the formation, destruction and transport of both 

PM2.5 and O3 (Weaver et al., 2009; Jacob and Winner, 2009; Fiore et al., 2012, 2015).  This is a 

long-term effect, which could be made evident in several ways. Changing climate can affect the 

photochemical reaction and destruction rates in the atmosphere (Hogrefe et al., 2004; Jacob and 

Winner, 2009; Leung and Gustason, 2005), and also impact air quality through modification of 

global circulation dynamics (Fiore et al., 2012, 2015). Modeling work by Mickley et al. (2004) 

implied that future summertime pollution episodes over the Midwest and Northeast U.S. would 

increase as a result of a decline in the numbers of mid-latitude cyclones tracking across southern 

Canada. Horton et al. (2014) forecasted that more frequent and longer duration atmospheric 

stagnation events would occur by the late twenty-first century, which was predictive of poorer air 
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quality and greater human health risk exposure in the future. Variations of temperature, water 

vapor and concentration of CO2 from climate change could also affect the natural biogenic 

emissions, which are shown to be very important in the formation of PM2.5 and O3 in rural sites 

(Fiore et al., 2011; Koo et al., 2010; Lam et al., 2011; Pun et al., 2002; Wiedinmyer et al., 2006).  

Previous studies have used both global and regional CTMs to study the single or combined 

changes in future climate and emissions on global and regional air quality (Weaver et al., 2009; 

Jacob and Winner, 2009; Fiore et al., 2012). Climate change is likely to decrease background O3 

over remote places due to the elevated humidity, and increase O3 over urban and polluted areas, 

in part because of higher temperature (Jacob and Winner, 2009). However, the role of climate 

change on PM2.5 is less clear as different components of PM2.5 may respond differently to 

changes in climate variables (Jacob and Winner, 2009; Tai et al., 2010; Fiore et al., 2012, 2015). 

Third, the sources of emissions of greenhouse gases (GHGs) and air pollutants are usually 

shared (Haines et al., 2009; Nemet et al., 2010; Ramanathan and Feng, 2009; Reynolds and 

Kandlikar, 2008; West et al., 2004). In particular, the combustion of fossil fuels is the major 

source for both GHGs and air pollutants. Actions to control one can also influence the other. So 

the climate policies to reduce the GHGs will not only get the benefits of slowing climate change, 

but can also have the co-benefits of improved air quality and then human health (Bell et al., 2008; 

Cifuentes et al., 2001; Driscoll et al., 2015; Garcia-Menendez et al., 2015; Jacobson, 2001; 

Markandya et al., 2009; Schucht et a., 2015; Thompson et al., 2014; Trail et al., 2015). Policies 

targeted at improving future air quality could also influence future climate, but the influences 

have large uncertainties as different air pollutants have different effects on the radiative forcing 

(RF) (Andreae et al., 2005; Arneth et al., 2009; Kloster et al., 2010; Levy et al., 2008; Parrish 

and Zhu, 2009; Shindell et al., 2008).  
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1.4 Dynamical downscaling 

To study the future air quality changes under the changing climate at regional scale at fine 

resolution, dynamical downscaling is usually adopted to provide high quality input data for the 

regional CTMs. Dynamical meteorological downscaling refers to the process of taking global 

climate change responses from global General Circulation Models (GCMs) and translating them 

to a finer temporal and spatial scale which are more meaningful in the context of local and 

regional impacts by using the Regional Climate Models (RCMs) with the lateral boundary 

conditions provided from the GCMs. GCMs are used to study Earth’s climate system and 

simulate the future climate change. RCMs are used to simulate the climate change for a limited 

area at much higher spatial resolutions. The advantages of the dynamical meteorological 

downscaling are that a regional model can simulate local fine-scale feedback processes better 

than the GCMs. The disadvantages are that it requires more computational resources and the 

performances of the regional climate depend strictly on the input data and physical 

configurations of the RCMs. The meteorological downscaling has been broadly used in previous 

research to study the future regional climate change under different emission projections 

(Bowden et al., 2012, 2013; Liu et al., 2012; Nolte et al., 2014; Trail et al., 2013), and to project 

the effects of global and regional climate change on global and regional air quality (Dawson et 

al., 2008, 2009; Fann et al., 2015; Nolte et al., 2008; Wu et al., 2008a). When using coarse-scale 

data from GCMs as lateral boundary conditions for the RCMs without further constraint, the 

interior meteorological fields simulated by the RCMs may deviate significantly from the driving 

fields. “Nudging” techniques provide one way to constrain the RCMs and keep them from 

diverging too far from the coarse-scale fields. If the RCMs are constrained too strongly to the 

GCM fields, however, there is the possibility that the benefits of using the higher-resolution 
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RCMs will not be realized. A delicate balance is needed between the amount of constraint given 

to the RCM and the freedom of the RCM to simulate its own mesoscale features (Otte et al., 

2012). 

Chemical downscaling refers to the process that simulating global perturbations in global 

CTMs to provide initial and boundary conditions (BCs) for regional CTMs at greater resolution 

in a region of interest. The proper chemical BCs are also crucial for the regional CTMs as the 

effects of intercontinental transport of air pollutants (Lam et al., 2009; Lin et al., 2008) and 

enhancement of background pollutant concentrations emerged (Fiore et al., 2003). Numerous 

studies implied that providing dynamical chemical BCs for the regional CTMs instead of the 

profiles would best capturing the temporal and spatial variations distributions of air pollutants in 

the regions (Byun et al., 2004; Fu et al., 2008; Tang et al., 2007). Song et al. (2008) compared 

the performances of CMAQ simulating vertical ozone profile by using profile BCs and 

dynamical BCs, and found that dynamical BCs performed better than the scenarios with profile 

BCs. By providing dynamical BCs for the regional CTMs, we have the ability to consider global 

changes in air pollutants in the global CTMs, while simulating the effects on a finer scale at a 

region of interest. It will also allow us to consider the intercontinental transport of air pollutants 

as well as the global climate change on the influence of regional air quality. 

1.5 Motivations and objectives 

Many studies have also been carried out to estimate the co-benefits of regional or local 

GHG on air quality and human health through reductions in co-emitted air pollutants. Nemet et 

al. (2010) summarized previous literature and found that, when monetized, the co-benefits from 

the GHG mitigation ranges from $2-196 /tCO2, comparable to the costs of GHG reductions. 
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Recent studies also estimated the future regional GHG mitigation scenarios on the co-benefits of 

air quality and human health (Thompson et al., 2014; Trail et al., 2015).  

However, these studies may underestimate the true co-benefits as they do not consider 

GHG mitigation from the whole world: GHG mitigation as a whole may slow global climate 

change significantly, which then could decrease the air pollutants. GHG mitigation could bring 

air quality improvement for those countries who participate, and can also affect air quality in the 

adjacent countries due to long-range air pollutant transport, especially for O3, even though those 

countries will not or delay participating in the mitigation policies. Under this circumstance, a 

recent study led by Dr. J. Jason West from UNC, which I was also involved, used a global CTM 

to study the global GHG mitigation on future air quality and human health (West et al., 2013). 

This is the first study to consider the global air quality and human health benefits by assuming all 

countries participate in the mitigation strategies. By using the global CTM, this study is also the 

first to consider the influence of global air pollution transport and long-term influences via global 

CH4. This study concluded that global GHG mitigation could bring significant air quality 

improvement for both PM2.5 and O3, and avoid 2.2±0.8 million premature deaths globally by 

2100 due to the improved air quality; it also found that when monetized, the global average 

marginal co-benefits of avoided mortality were $50–380/tCO2, higher than the previous 

estimates (Nemet et al., 2010). 

This global co-benefits study also has limitation by using a coarse resolution in the CTM 

(2º×2.5º horizontally), making it hard to understand co-benefits in small domains. So the major 

goal for my dissertation aims at quantifying the co-benefits of global GHG mitigation at regional 

scale at much finer resolution. I will focus on the temporal and spatial distributions of the co-

benefits on air quality and human health at state or regional level in US, which are missing from 
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the global co-benefits study. By embedding this fine-resolution regional co-benefits study into a 

consistent global context, I can also quantify the co-benefits from domestic GHG mitigation 

versus the contributions from foreign countries reductions, which has never done before. In 

Chapter 2, I discuss the co-benefits of global and regional greenhouse gas mitigation on U.S. air 

quality in 2050 (Zhang et al., 2016a). In Chapter 3, I quantify the co-benefits of global, domestic, 

and sectoral greenhouse gas mitigation on US air pollution and human health in 2050 (Zhang et 

al., 2016b).  

A second motivation for my Ph.D. work is to study the global emission redistribution on 

the influence of global ozone burden. Since 1980, anthropogenic emissions of ozone precursors 

have decreased in developed regions such as North America and Europe, but increased in 

developing regions, particularly East and South Asia, redistributing the emissions southwards 

(Granier et al, 2011; Lamarque et al., 2010; Ohara et al., 2007; Richter et al., 2005; van der A et 

al., 2008). Modeling studies have shown that the tropospheric ozone burden and resulting 

radiative forcing are much more sensitive to emission changes in the tropics and Southern 

Hemisphere than other regions (Naik et al., 2005; West et al., 2009a; Fry et al., 2012, 2014). 

However, the effect of the spatial redistribution of emissions has not been isolated. In Chapter 4, 

I investigate the influence of the change in global emissions shifting southwards on the global 

tropospheric O3 burden and surface air quality from 1980 to 2010, and then compare this 

influence with those from the changes in global emissions magnitude and global CH4 

concentration. In Chapter 5, I summarize the key findings from my dissertation, uncertainties 

associated with each study, future research directions and policy implications.  
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CHAPTER 2. CO-BENEFITS OF GLOBAL AND REGIONAL GREENHOUSE              
GAS MITIGATION ON U.S. AIR QUALITY IN 2050 

(Yuqiang Zhang, Jared H. Bowden, Zachariah Adelman, Vaishali Naik, Larry W. 

Horowitz, Steven J. Smith, J. Jason West. Submitted to Atmospheric Chemistry and Physics) 

2.1 Introduction 

Climate change and air quality are interrelated problems. First, climate change can affect 

the formation, destruction and transport of major air pollutants, through changes in 

meteorological variables of temperature, precipitation, air stagnation events, etc. (Weaver et al., 

2009; Jacob and Winner, 2009; Fiore et al., 2012, 2015). It can also affect natural emissions 

(biogenic, dust, fire and lighting) that influence air quality. Second, air pollutants such as 

particulate matter (PM) and ozone (O3) can change the climate by altering the solar and 

terrestrial radiation balance through direct and indirect effects (Myhre et al., 2013). Third, the 

sources of emissions of greenhouse gases (GHGs) and air pollutants are usually shared, 

particularly through the combustion of fossil fuels, so actions to control one can also influence 

emissions of the other. Policies to control GHG emissions will therefore not only slow climate 

change in the future, but will also provide co-benefits of improvements to air quality and 

consequently to human health (Bell et al., 2008; Nemet et al., 2010).  

Recent studies that model future air quality have focused on single or combined changes in 

future climate and emissions on global and regional air quality, using both global and regional   

Chemical Transport Models (CTMs) (Weaver et al., 2009; Jacob and Winner, 2009; Fiore et al., 

2012). Climate change is likely to decrease background O3 over remote places due to the
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elevated humidity, and increase O3 over urban and polluted areas, in part because of higher 

temperature. Jacob and Winner (2009) concluded that future climate change could increase 

summertime O3 by 1-10 ppb over polluted regions in the U.S. in scenarios from the Special 

Report on Emission Scenarios (SRES; Nakicenovic and Swart, 2000). In one study, climate 

change in 2050 under the SRES A1B scenario is projected to increase summertime O3 by 2-5 

ppb over large areas in the U.S., comparable to the effect of reduced anthropogenic emissions 

which reduces O3 by 2-15 ppb, especially in the east (Wu et al., 2008). The overall effect of 

climate change on PM is less clear, as different components of PM may respond differently to 

changes in climate variables (Jacob and Winner, 2009; Tai et al., 2010; Fiore et al., 2012, 2015).  

Many studies have also estimated the co-benefits of regional or local GHG mitigation on 

air quality and human health through reductions in co-emitted air pollutants. Cifuentes et al. 

(2001) found that GHG mitigation through reduced fossil fuel combustion could bring significant 

local air pollution-related health benefits to some megacities. These health benefits have been 

estimated in many studies (Bell et al., 2008), and give co-benefits ranging from $2-196 /tCO2 

when monetized, comparable to the costs of GHG reductions (Nemet et al., 2010). A few studies 

also analyze the co-benefits on future air quality and human health from future regional GHG 

mitigation scenarios (Thompson et al., 2014; Trail et al., 2015). Thompson et al. (2014) studied 

the co-benefits of different U.S. climate policies on 2030 domestic air quality, and found that 

when monetized, the human health benefits due to the improved air quality can offset 26-1050% 

of the cost of the carbon polices, depending on the policy.  

These co-benefits studies may underestimate the total co-benefits as they only consider 

local or regional climate policies, neglecting benefits outside of the region considered, and 

benefits within those regions from global GHG mitigation. The total co-benefits of global 
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mitigation are relevant as meaningful GHG mitigation requires participation from at least several 

of the most highly-emitting nations. We examined the co-benefits of global GHG reductions on 

both global and regional air quality and human health, using a global atmospheric model (Model 

for OZone And Related chemical Tracers, version 4, MOZART-4, hereafter referred to as MZ4) 

and self-consistent future scenarios (West et al., 2013, referenced hereafter as WEST2013). In 

addition to evaluating co-benefits through reductions in co-emitted air pollutants, WEST2013 

was the first study to quantify co-benefits through a second mechanism: slowing climate change 

and its effects on air quality. There are several other innovations of WEST2013: we account for 

global air pollution transport and long-term influences of methane using the global CTM; we 

consider realistic scenarios in which air pollutant emissions, demographics, and economic 

valuation are modeled consistently; and we evaluate chronic mortality influences of fine PM 

(PM2.5, PM with diameter smaller than 2.5 µm) as well as O3. WEST2013 concluded that global 

GHG mitigation could bring significant air quality improvement for both PM2.5 and O3, and 

avoid 2.2±0.8 million premature deaths globally by 2100 due to the improved air quality. When 

monetized, the global average marginal co-benefits of avoided mortality were $50–380/tCO2, 

higher than the previous estimates (Nemet et al., 2010). The co-benefits from the first 

mechanism of reduced co-emitted air pollutants were shown to be much greater than the co-

benefits from the second mechanism via slowing climate change.  

The WEST2013 study is limited by the coarse resolution of the CTM used (2º×2.5º 

horizontally). Here we investigate the co-benefits of global GHG mitigation on U.S. air quality at 

much finer resolution (36km×36km), building on the scenarios in the global study. WEST2013 

simulated co-benefits in 2030, 2050, and 2100, and we choose here to downscale the results in 

2050, as climate change influences air quality by 2050 and it is within the timeframe of current 
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decision-making for both climate change and air quality. We use a comprehensive modeling 

framework in the downscaling process, including a regional climate model to dynamically 

downscale the global climate to the contiguous United States (CONUS), an emissions processing 

program to directly process the global anthropogenic emissions to the regional scale, and we 

create dynamical boundary conditions (BCs) from the global co-benefits outputs for the regional 

CTM. We quantify the total co-benefits of global GHG mitigation on U.S. air quality for both 

PM2.5 and O3, and then separate the co-benefits from the two mechanisms analyzed by 

WEST2013. We also quantify the co-benefits from domestic GHG mitigation versus the co-

benefits from those of foreign countries’ reductions. We then present the co-benefits from global 

and domestic GHG mitigation on nine U.S. regions.  

With regard to previous studies on the effect of climate change on future air quality (e.g. 

Jacob and Winner, 2009), our work differs in our reframing of this impact as a co-benefit of 

slowing climate change from GHG mitigation, and by analyzing that co-benefit through realistic 

future scenarios, following WEST2013. With regard to previous co-benefits studies that have 

been conducted on a regional scale (e.g., Thompson et al., 2014), this research differs by 

embedding the regional co-benefits study in consistent global context, accounting for the effects 

of changes in global air pollutant emissions and climate change on U.S. air quality. 

2.2 Methodology 

Future air quality changes under global and regional GHG mitigation scenarios are 

simulated using a regional CTM. The scenarios modeled here are built on those of WEST2013, 

who compared the Representative Concentration Pathway 4.5 (RCP4.5) scenario with its 

associated reference scenario (REF). Air pollutant emissions in REF are state of the art long-term 

emissions projections created by using the Global Change Assessment Model (GCAM) 
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(Thomson et al., 2011). RCP4.5 was developed based on REF by applying a global carbon price 

to all world regions and all sectors including carbon in terrestrial systems. As discussed by van 

Vuuren et al. (2011), the air pollutant emissions for the four RCP scenarios were prepared by 

different groups using different models and assumptions, so they are inconsistent with one 

another. But by comparing REF with RCP4.5, we use a self-consistent pair of scenarios, where 

the difference is uniquely attributed to a climate policy. WEST2013 used both emissions and 

meteorology from RCP4.5 to simulate future air quality under the RCP4.5 climate policy, and 

used emissions from REF and meteorology from RCP8.5 to simulate future air quality assuming 

no climate policy. Since no General Circulation Model (GCM) conducted future climate 

simulations for the REF scenario, RCP8.5 is used as a proxy for the future climate under REF. 

The differences between these two scenarios give the total co-benefits for future air quality under 

climate policy from RCP4.5. Through one extra simulation with emissions from RCP4.5 together 

with RCP8.5 meteorology (e45m85 in Table 2.1), and by comparing with REF and RCP4.5, 

WEST2013 separated the total co-benefits into the two mechanisms: the co-benefits from 

reductions in co-emitted air pollutants, and co-benefits from slowing climate change and its 

influence on air quality.  

Here we conduct downscaling processes to provide fine-resolution inputs for the regional 

CTM. We use the Weather Research and Forecasting model version 3.4.1 (WRF, Skamarock and 

Klemp, 2008) to downscale the future global climate from the GCM to the regional scale at a 

horizontal resolution of 36×36 km for the CONUS. We directly process global anthropogenic 

emissions to regional scale using the Sparse Matrix Operator Kernel Emissions (SMOKE, v3.5, 

https://www.cmascenter.org/smoke/) program. The outputs from the global MZ4 simulations of 

WEST2013 (Table 2.1) are downscaled to provide initial condition (IC) and dynamic hourly BCs 
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for the regional CTM. The latest version of the Community Multi-scale Air Quality model 

(CMAQ, v5.0.1, Byun and Schere, 2006) is used as the regional CTM to simulate air quality 

changes over the CONUS domain. WEST2013 simulated five consecutive years for each 

scenario, and used the last four years’ average for the data analysis with the first year as a spin-

up. Due to the limitations of computational resources, we run CMAQ for 40 months 

consecutively for each scenario, with the first 4 months as spin-up, and analyze the results as 

three-year averages. 

2.2.1 Regional meteorology 

WEST2013 used NOAA Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric 

model AM3 (Donner et al., 2011; Naik et al., 2013) simulations to provide global meteorology 

for MZ4. Here we dynamically downscale GFDL AM3, which has a horizontal resolution of 

2°×2.5°, to 36 km over the CONUS using the WRF model. GFDL AM3 meteorology for the two 

RCP scenarios (RCP8.5 and RCP4.5) in 2050 used by WEST2013 are downscaled using a one-

way nesting configuration for five consecutive years. WRF is initialized at 0000 Coordinated 

Universal Time (UTC) 1 January 2048 and run for a 12-month spin-up, then run continuously 

through 0000 UTC 1 January 2053. A historical period from GFDL AM3 is also downscaled 

with WRF initialized at 0000UTC 1 January 1999 and run for a 12-month spin-up, then run 

continuously through 0000 UTC 1 January 2004. The WRF physics options include the Rapid 

Radiative Transfer Model for global climate models (Iacono et al., 2008) for longwave and 

shortwave radiation, WRF single-moment 6-class microphysics scheme (Hong and Lim, 2006), 

the Grell ensemble convective parameterization scheme (Grell and Devenyi, 2002), the Yonsei 

University planetary boundary layer scheme (Hong et al., 2006), and the Noah land surface 

model (Chen and Dudhia, 2001). The WRF configuration also applies spectral nudging. Otte et 
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al. (2012) and Bowden et al. (2012, 2013) demonstrated that using nudging in WRF improves the 

overall accuracy of the simulated climate over the CONUS at 36-km and does not squelch 

extremes in temperature and precipitation. In particular, spectral nudging affects the model 

solution through a nonphysical term in the prognostic equations based on the difference between 

the spectral decomposition of the model solution and the reference analysis. Spectral nudging is 

used to constrain WRF toward synoptic-scale wavelengths resolved by GFDL AM3 exceeding 

1200 km. Nudging is applied equally to potential temperature, wind, and geopotential with a 

nudging coefficient of 1.0×10-4, which is equivalent to a time scale of 2.8 hours. The downscaled 

meteorology from WRF is used to provide meteorological inputs to CMAQ.  Hourly WRF 

outputs are processed using Meteorology-Chemistry Interface Processor (MCIP v4.1; Otte and 

Pleim, 2010) to provide meteorological inputs for CMAQ. 

Comparing the downscaling results between WRF with the GFDL AM3 simulation for 

three-year averages of the 2-m temperature (we present three-year averages instead of four to be 

consistent with CMAQ outputs below), we see that the large-scale spatial patterns for 

temperature are similar (Fig. A.1). However, the downscaling clearly improves the resolved 

features related to topography and provides a different realization of average regional climate 

throughout the CONUS. Comparing WRF future projected change centered on 2050 with 2000, 

we see that the three-year average of 2-m temperature generally increases over the entire U.S. for 

both RCP8.5 and RCP4.5 (Fig. A.2-A.3). Temperature increases are largest for extreme 

northeastern latitudes, the Southeast and Southwest U.S. in both scenarios, with U.S. average 

warming of 3.05°C and 2.59°C for RCP8.5 and RCP4.5, respectively. Additionally, precipitation 

is projected to increase over most of the U.S. in both scenarios with U.S. average increases of 

0.20 and 0.15 mm day-1 in RCP8.5 and RCP4.5. Comparing the changes between scenarios 
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(RCP8.5 minus RCP4.5), Fig. 2.1 illustrates that temperature increases are smaller in RCP4.5 

throughout the CONUS, except in the Northwest. The precipitation difference between scenarios 

has a larger spatial variability than the 2-m temperature. However, the only region where the 

regional climate is warmer and drier in RCP4.5 is in the Northwest U.S. Ignoring other 

influences of climate change, increases in precipitation would be expected to increase PM wet 

scavenging, and decrease PM concentration. 

2.2.2 Regional emissions 

Similar studies in the past have typically chosen to run SMOKE with the present-day U.S. 

National Emission Inventory (NEI), and then scale the SMOKE outputs into future years, using 

the mass ratio of projected future to present-day emissions from global inventories (e.g., Hogrefe 

et al., 2004; Nolte et al., 2008; Avise et al., 2009; Chen et al., 2009; Gao et al., 2013). Instead, 

we use SMOKE to directly process the global emissions in 2000 and in 2050 from REF and 

RCP4.5 to provide temporally- and spatially-resolved CMAQ emission input files. We first 

regrid the global emissions datasets at 0.5º×0.5º into finer resolution (36km×36km), and then 

take advantage of the temporal and speciation profiles inside SMOKE to assign temporal 

variations and re-speciate the PM and VOCs species. By doing this, we account better for the 

spatial distribution changes of future emissions projected in the RCPs (Fig. S4-S10), whereas the 

traditional method only considers changes in the magnitude of air pollutants in the future, 

assuming a constant spatial and sectoral distribution.  

In addition, the RCP datasets report only elemental carbon (EC) and organic carbon (OC), 

but ignore emissions of other primary PM species. Here we back-calculate the total PM2.5 and 

PM coarse (PMC) primary emissions for all sectors from the reported EC and OC. We first 
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derive the emission fractions of EC and OC in each sector by cross-comparing the definitions of 

the sectors in IPCC, the Source Clarification Codes (SCC) in the speciation cross-reference file 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSREF_example, 

accessed 5 September 2013), and the EPA PM speciation profile file built into SMOKE 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSPRO_Example, 

accessed 5 September 2013) (Table A.1). If multiple sources are included in one IPCC sector 

(e.g., energy and industries in Table A.1), we use the mass ratio from the source that contributes 

the largest fraction by referring to previous studies (Reff et al., 2009; Xing et al., 2013). Then we 

calculate the total PM2.5 and PMC in each grid cell by dividing the reported EC and OC by their 

emission fractions individually, and average these two. By doing this, we increase the total PM2.5 

emissions of the RCPs by incorporating the inorganic components of primary PM, such as 

sulfate and nitrate. We check these results by comparing the total 2000 PM2.5 emissions of 4.14 

Tg yr-1 in this study (Table 2.2) with other studies, finding that it is comparable to the total of 

4.69 Tg yr-1 in 2001 from the U.S. NEI (http://www.epa.gov/ttnchie1/trends/, accessed 5 October 

2013). Our calculated PM2.5 emission is also lower than the estimated 5.53 Tg yr-1 in 2000 by 

Xing et al. (2013), which used an activity data based approach to develop consistent temporally-

resolved emissions from 1999 to 2010. 

In Table 2.2, we list the U.S. anthropogenic emissions for major air pollutants in 2000 and 

2050 from REF and RCP4.5. Significant decreases are seen for most pollutants from 2000 to 

2050 for both REF and RCP4.5, except for NH3 which is projected to increase due to agricultural 

activity (van Vuuren et al., 2011). Comparing RCP4.5 and REF, emissions of PM2.5 and O3 

precursors also decrease, including EC (7.59%) and OC (6.17%), with NOx and NMVOC 

decreasing by more than 10%. SO2 has the largest relative decreases between RCP4.5 and REF 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSREF_example
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_GSPRO_Example
http://www.epa.gov/ttnchie1/trends/
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in 2050 (28.78%). Large spatial variations in emissions reductions are also seen over the U.S., 

with the largest reductions seen on the east and west urban areas of U.S. for most air pollutants 

and smaller reductions in the Great Plains (Fig. A.4-A.10). 

Biogenic emissions are estimated using the Biogenic Emission Inventory System (BEIS 

v3.14), which responds to the changing climate for different scenarios. It is configured to run on-

line in CMAQ, and calculates the emissions of 35 chemical species including 14 monoterpenes 

and 1 sesquiterpene. We assume that land use and land cover will stay constant in the future for 

the purpose of estimating biogenic emissions. The on-line option of lightning is also turned on to 

calculate the NOx emissions by estimating the number of lightning flashes based on the modeled 

convective precipitation, which also changes with climate. We prepare the ocean/land mask for 

the domain to calculate sea salt emissions which can be significant in coastal environments 

(Kelly et al., 2010). We also use the BEIS on-line calculation for natural soil NOx emissions. 

2.2.3 Regional air quality model and dynamical chemical BCs 

The latest CMAQ model (https://www.cmascenter.org/cmaq/index.cfm, accessed 15 June 

2012) is used to perform the regional air quality simulations with the CB05 chemical mechanism 

and updated toluene reactions. The model incorporates the newest aerosol module (AE6), 

including features of new PM speciation (Reff et al., 2009), oxidative aging of primary organic 

carbon (Simon and Bhave, 2012), and an updated treatment and tracking of crustal species (e.g., 

Ca2+, K+, Mg2+) and trace metals (e.g., Fe, Mn) (Fountoukis and Nenes, 2007). Several other 

enhancements in v5.0 of CMAQ were discussed by Appel et al. (2013) and Nolte et al. (2015), 

and there are no significant changes for the aerosol module between v5.0 and v5.0.1 

(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_

2012_release%29_Technical_Documentation, accessed 15 August 2012). The model is 

https://www.cmascenter.org/cmaq/index.cfm
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_2012_release%29_Technical_Documentation
http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.1_%28July_2012_release%29_Technical_Documentation
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configured with 34 vertical layers, with the lowest level being 34 m high, to the highest level at 

50 hPa. The horizontal resolution is 36 km by 36 km for the CONUS domain. PM2.5 is calculated 

from the CMAQ output as the sum of the species EC, OC, secondary organic aerosol (SOA), 

non-carbon organic matter (NCOM), nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), sodium 

(Na+), chloride (Cl-), eight crustal and trace metal species, and other unspeciated fine PM 

(OTHER).  

The dynamical BCs for this study are provided by the global MZ4 simulations of 

WEST2013. The hourly boundary values from MZ4 are horizontally interpolated from coarser 

resolution to the regional finer resolution, and also vertically interpolated as MZ4 and CMAQ 

have different vertical layers. Chemical species are mapped between MZ4 and CMAQ v5.0.1, 

due to the different chemical mechanisms used by these two models, following the descriptions 

of Emmons et al. (2010) and ENVIRON (http://www.camx.com/download/support-

software.aspx, accessed 19 September 2013). For the chemical species in CMAQ that do not 

exist in MZ4, values are set to defaults as suggested by the CMAQ website.  

2.2.4 Scenarios  

We simulate scenarios in CMAQ comparable to WEST2013, except that we carry out one 

extra scenario to quantify the co-benefits from domestic versus foreign GHG mitigation (Table 

2.1). S_2000 is conducted to evaluate CMAQ model performance and to compare with future 

scenarios. For this study, we run four scenarios in 2050. The differences between S_RCP45 and 

S_REF are the total co-benefits on U.S. air quality from global GHG mitigation. The emission 

benefit from the first mechanism is calculated as the difference between S_Emis and S_REF, and 

the meteorology benefit is calculated as S_RCP45 minus S_Emis. By comparing S_Dom 

(applying GHG mitigation from RCP4.5 scenario in the U.S. only) with S_REF, and S_RCP45 

http://www.camx.com/download/support-software.aspx
http://www.camx.com/download/support-software.aspx
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with S_Dom, we quantify the co-benefits from domestic and foreign GHG mitigation. In 

estimating the co-benefits of domestic reductions, we account for the influences of global climate 

change as a foreign influence (as most GHG emissions are global), assuming that U.S. air 

pollutant emissions have small effects on global or regional climate, such as through aerosol 

forcing. In each scenario, we fix global methane at concentrations given by the RCPs (Table 2.1), 

and account for methane changes as a foreign influence, neglecting the fraction of global 

methane emissions that are from the U.S. All scenarios are set up as continuous runs, with 

S_2000 running from September, 2000 to December, 2003, with the first four months in 2000 as 

spin-up. The future scenarios are run from September, 2049 to December, 2052 with the months 

in 2049 as spin-up. Results are presented as the average of three years.  

2.3 Results 

2.3.1 CMAQ model evaluation 

The CMAQ model has been broadly used to study regional future air quality (Hogrefe et 

al., 2004; Tagaris et al., 2007; Nolte et al., 2008; Lam et al., 2011; Gao et al., 2013) and has been 

evaluated in many applications (Appel et al., 2010, 2011, 2013; Nolte et al., 2015). Here we 

evaluate the CMAQ v5.0.1 performance by comparing the model outputs from S_2000 with 

observations in 2000 from the Interagency Monitoring of PROtected Visual Environments 

(IMPROVE; http://vista.cira.colostate.edu/improve/, accessed 9 May 2014), the Chemical 

Speciation Network (CSN; previously known as STN, 

http://www.epa.gov/ttn/amtic/speciepg.html, accessed 9 May 2014), and the Clean Air Status 

and Trends Network (CASTNET; http://epa.gov/castnet/javaweb/index.html, accessed 9 May 

2014) for total PM2.5 and its components, and the EPA Air Quality System (AQS; 

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm, accessed 9 May 2014) for 

http://vista.cira.colostate.edu/improve/
http://www.epa.gov/ttn/amtic/speciepg.html
http://epa.gov/castnet/javaweb/index.html
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
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O3. We pair the model outputs with observations in space and time, and calculate four groups of 

statistics to evaluate model performance: Median Bias (MdnB, µg m-3 for PM2.5 and ppb for O3), 

Normalized Median Bias (NMdnB, %), Median Error (MdnE, µg m-3 and ppb) and Normalized 

Median Error (NMdnE, %) (Appendix A). Median metrics are used here instead of the mean, as 

for data with non-normal distributions (i.e., PM species) the median gives a better representation 

of the central tendency of the data (USEPA 2007). For O3 evaluation, we use both the maximum 

daily 1-hour (1hr_O3) and Maximum Daily 8-hour Average (MDA8), and also calculate these 

metrics with a cutoff value of 40 ppb for the observed O3 to evaluate the model’s reliability in 

predicting ozone values relevant for the NAAQS (USEPA, 2007). Model performance is not 

expected to be perfect as meteorology does not correspond with actual year 2000 meteorology, 

and emissions are derived from global datasets rather than specific emissions for the U.S. 

For total PM2.5, overall model performance is good and the NMdnE for IMPROVE and 

CSN are less than 50%, with slight differences in performance (Table 2.3). CMAQ 

underestimates PM2.5 in these two networks and also its components in all three networks (Table 

A.2), except that it overestimates SO4
2- compared with IMPROVE, and NH3

+ with CSN. 

Compared with other components, OC and EC are not well predicted, with higher NMdnB, -

63.55% and -37.00% in IMPROVE (OC and EC are not measured in the other two networks). In 

simulating PM2.5 and its species, model performance is better in winter than in summer (not 

shown here). The model overestimates surface O3 as indicated by the positive MdnB (ppb) and 

NMdnB (%). The NMdnE for the 1hr-O3 (MDA8-O3) declines from 27.60% (33.35%) to 17.36% 

(16.95%) after we apply the cutoff value of 40 ppb. The overprediction is slightly higher for 1hr-

O3 than for MDA8-O3, however this difference becomes smaller when we consider the cutoff 

values.  
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2.3.2 Air quality changes in 2050 

Here we show the seasonal and spatial patterns of future air quality changes centered in 

2050 relative to 2000 from REF and RCP4.5 (Figs. A.11 to A.14). The three-year seasonal 

averages of PM2.5 over the entire U.S. decrease in 2050 in both S_REF and S_RCP45 compared 

with S_2000, especially in the Eastern U.S. and California (CA). The seasonal decreases are 

largest in winter, with U.S. averages in S_REF (S_RCP45) of 4.42 (4.88) µg m-3, and lowest in 

the summer of 1.55 (2.00) µg m-3, with annual average of 2.76 (3.23) µg m-3. The three-year 

seasonal averages of O3 decrease significantly in summer in both the east and west coast, with 

U.S. average of 6.31 (9.50) ppb in S_REF (S_RCP45). O3 increases over the Northeast and West 

U.S. in winter in both S_REF and S_RCP45, caused by the weakened NOx titration as a result of 

the large NOx decrease in the two scenarios (Table 2.2), as also reported in other studies (Gao et 

al., 2013; Fiore et al., 2015). The magnitude of the decreases between S_REF and S_2000 is 

lower than that between S_RCP45 and S_2000, as the REF scenario did not apply a GHG 

mitigation policy, and thus has less emission reductions. 

We then compare these air quality changes in 2050 with the MZ4 simulations of 

WEST2013 for both S_REF (Fig. A.15) and S_RCP45 (Fig. 2.2), and for S_RCP45 with the 

ensemble model means from the Atmospheric Chemistry and Climate Model Intercomparison 

Project (ACCMIP, Lamarque et al., 2013) following Fiore et al. (2012), as no ACCMIP models 

simulated REF in 2050. For the U.S. annual average PM2.5, the decrease in 2050 for S_RCP45 

relative to 2000 in this study (3.23 µg m-3) is modestly higher than both the results from MZ4 

and the ACCMIP ensemble mean, but within the range of ACCMIP models when PM2.5 is 

calculated as a sum of species. The future O3 changes in our study (5.20 ppb) are clearly in the 

range of ACCMIP results, and nearly identical to MZ4 (5.13 ppb). Comparisons of the air quality 
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changes in 2050 for S_REF relative to 2000 between CMAQ and MZ4 are similar, except that 

the magnitudes of the changes are smaller than those for S_RCP45 (Fig. A.15).  

2.3.3 Total co-benefits for U.S. air quality from global GHG mitigation 

Projected three-year average PM2.5 concentrations in 2050 in both scenarios (S_REF and 

S_RCP45) are higher in the Eastern U.S. and the west coast of CA, and lower in the Western U.S. 

(Fig. 2.3). The total co-benefits for U.S. air quality (S_RCP45 minus S_REF) show notable 

decreases of major air pollutants in 2050. The total co-benefits for PM2.5 over the U.S. show a 

significant spatial gradient over the U.S. domain, greatest in the eastern U.S., especially urban 

areas, as well as CA, ranging from 0.4 to 1.0 µg m-3, and least in the Rocky Mountains and 

Northwest with values below 0.4 µg m-3. The total co-benefits for PM2.5 averaged over the U.S. 

is 0.47 µg m-3, with the largest contribution from organic matter (OM, including primary OC, 

SOA and NCOM), accounting for the 45% of the total (0.21 µg m-3), followed by sulfate (0.11 

µg m-3) and ammonia (0.05 µg m-3) (Fig. A.16). The total co-benefits are highest in fall, with 

U.S. domain average of 0.55 µg m-3, and lowest in spring (0.41 µg m-3) (Fig. 2.4). Notice that the 

region with greatest co-benefits shifts from Central areas in winter and spring to the East in 

summer and fall, with the largest component of OM also shifting from primary OC to SOA (Fig. 

A.17).  

Future O3 is presented here as the ozone-season average (from May to October) of MDA8. 

In general, 2050 O3 concentrations in S_REF and S_RCP45 are projected to be high in the 

Southern U.S., especially over the coastal areas, and higher in the West than the East (Fig. 2.5). 

The total co-benefits for O3 are fairly uniformly significant over the entire U.S. domain, slightly 

higher in the Northeast and Northwest, and range from 2-5 ppb with a domain average of 3.55 
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ppb, unlike PM2.5 which is higher over urban regions. The uniformity of the total O3 co-benefits 

suggests that they are strongly influenced by global O3 reductions. 

The total co-benefit for PM2.5 from this study (0.47 µg m-3 over U.S.) is lower than 

WEST2013 (area-weighted three-year averages of 0.72 µg m-3 over U.S.), especially over the 

Northwest and Central of U.S. (Fig. A.18). Analyzing the components of PM2.5, we find that this 

difference is mainly caused by OM, with a U.S. annual average of 0.40 µg m-3 in WEST2013 

and 0.21 µg m-3 in this study (Fig. A.19). For other components (EC, SO4
2-, NO3

- as reported in 

MZ4 of WEST2013), the CMAQ results are slightly lower than WEST2013 but share a similar 

spatial pattern (Fig. A.20-A.22). We expect that the total co-benefits of PM2.5 in this study might 

be higher than WEST2013, as we account for inorganic primary PM emissions in SMOKE. A 

possible explanation may be that different chemical mechanisms and deposition processes are 

adopted for organic aerosols in MZ4 and CMAQ, which may make a shorter atmospheric 

lifetime for PM in CMAQ than that in MZ4. The differences of the meteorology (e.g., the 

precipitation and temperature) between the downscaled WRF and the GFDL could also 

contribute to this difference. Total co-benefit of O3 from this study (3.55 ppb over U.S.) is 

comparable to WEST2013 (3.71 ppb) in both the magnitude and spatial distribution (Fig. A.23).  

2.3.4 Co-benefits from the two mechanisms 

We quantify the co-benefits of global GHG mitigation on PM2.5 and O3 through the two 

mechanisms: reduced co-emitted air pollutants (S_Emis—S_REF) and slowing climate change 

and its effect on air quality (S_RCP45—S_Emis). The reduction of co-emitted air pollutants has 

a much greater effect than slowing climate change for PM2.5, accounting for 96% of the U.S. 

average PM2.5 decrease. The emission benefit for PM2.5 over the U.S. domain is 0.45 µg m-3, 

greatest near urban areas where emissions are reduced (Fig. 2.6), with the largest contribution 
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from OM (0.172 µg m-3
 over the U.S.), followed by sulfate (0.107 µg m-3) and ammonia (0.048 

µg m-3). Slowing climate change only accounts for 4% of the U.S. average total PM2.5 decreases 

(0.02 µg m-3). It also has different signs of effect over the U.S., reducing PM2.5 in the Southern 

U.S. but increasing in the North.  

For O3, the emission benefit is also larger than the climate benefit, accounting for 89% of 

the total O3 decreases averaged over the U.S. The emission benefit for O3 over the U.S. domain 

is 3.16 ppb, and much more uniform over the U.S., slightly higher over Northeast and Northwest. 

Slowing climate change accounts for 0.39 ppb O3 decreases, 11% of the total and mainly in the 

Great Plains and the East, where temperatures are cooler under RCP4.5 compared with RCP8.5 

(Fig. 2.1). The dominance of the emission co-benefit over the climate co-benefit for both PM2.5 

and O3 is consistent with WEST2013.   

2.3.5 Co-benefits from domestic and foreign GHG mitigation  

We also investigate the co-benefits from domestic GHG mitigation by comparing S_Dom 

with S_REF, versus foreign GHG reductions by comparing S_RCP45 with S_Dom (Fig. 2.7). 

For PM2.5, domestic GHG mitigation accounts for 74% (0.35 µg m-3) of the total PM2.5 decrease 

over the whole U.S., with the greatest effect over the East and CA, where emissions of PM2.5 and 

its precursors are greatly reduced (Figs. A.3-A.9). The benefits from foreign GHG reductions on 

the U.S. PM2.5 change are only obvious in the Southern U.S., influenced by emission reductions 

in Mexico and global climate change. We conclude that domestic GHG mitigation has a greater 

influence on U.S. PM2.5 than reductions in foreign countries, but that foreign reductions also 

make a noticeable contribution, accounting for 26% of total PM2.5 decreases over the U.S., and a 

greater fraction in the Southern U.S.  
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For O3, foreign countries’ GHG mitigation has a much larger influence on the U.S., 

accounting for 76% (2.69 ppb) of the total O3 decrease, compared with 24% from domestic GHG 

mitigation (Fig. 2.7). The U.S. experiences greater O3 decreases in the North than the South, 

which is likely influenced in part by the air quality improvement in Western Canada as a result 

of slowing deforestation due to the climate policy in RCP4.5 (West et al., 2013). This large 

influence of foreign reductions for O3 highlights the importance of global methane reductions in 

RCP4.5 and global emission reductions, particularly in Asia and intercontinental transport.  

2.3.6 Regional co-benefits and variability 

We then quantify the co-benefits over nine U.S. climate regions defined by the National 

Oceanic and Atmospheric Administration (Fig. A.24), and their domestic and foreign 

components. The Central, Southeast, Northeast and South regions have the largest total co-

benefits for PM2.5 (regional annual means of 0.78, 0.75, 0.62 and 0.62 µg m-3), and the Northwest 

has the lowest total co-benefits (0.16 µg m-3) (Fig. 2.8). Domestic GHG mitigation has the largest 

effect over these same regions and lowest effects over Northwest and West North Central, with 

means of 0.13 µg m-3. Foreign co-benefits are greatest over the South, Southwest, Central and 

Southeast, and lowest over Northwest (Table A.3). As a fraction of the total co-benefits, the 

domestic co-benefit is highest in the Northeast, East North Central and Central accounting for 

more than 80% of the total, while foreign co-benefits are highest over Southwest, South and 

West North Central, accounting for about 40% of the total.  

For O3, the Northeast, East North Central, and Northwest have the highest total co-benefits, 

(regional means of 4.61, 4.25, 4.15 ppb; Fig. 2.9 and Table A.3), although the total co-benefits 

for O3 are fairly uniform over the U.S (Fig. 2.5). The Southeast has the lowest total co-benefits, 

with 2.67 ppb for the regional mean. Domestic co-benefits are higher over the Central, Northeast 
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and Southeast, with regional means of 1.25, 1.16 and 1.14 ppb, and lowest over Northwest (0.4 

ppb). In general, foreign mitigation contributes more in the west than the east, most likely 

influenced by intercontinental transport from Asia. It is highest in the Northwest, West North 

Central and Northeast, with regional means of 3.75, 3.45 and 3.45 ppb. The fraction of co-

benefits from foreign mitigation is larger than 60% in most regions, highest over the Northwest 

(90%), and lowest over the Southeast (57%). 

We also evaluate the variability in co-benefits for the three years simulated (Table A.3). 

Over the U.S., the coefficient of variation (CV) for the total co-benefits for PM2.5 (7%) is much 

lower than that of the total co-benefits for O3 (37%), which is controlled by the intercontinental 

transport and global CH4. The Southeast has the highest CV (29%) for the total co-benefits of 

PM2.5, while other regions are lower than 15%, lowest in the East North Central and Northeast 

(3%). Southwest and South have the highest CV (70%, 69%) for the total co-benefits of O3, and 

lowest in Northwest (21%). For regions with higher variability, longer simulations would be 

desirable to better quantify the annual average co-benefits. 

2.4 Discussion 

The co-benefits we present here are specific to the reference (REF) and mitigation (RCP4.5) 

scenarios we choose, and results would differ for other baseline and mitigation scenarios. The 

estimated co-benefits also depend on participation of many nations in the mitigation policies, and 

delaying participation will likely change the co-benefits.  

The total co-benefits for O3 when downscaled are comparable to the global study in both 

magnitude and spatial pattern, but the downscaled simulations capture some local features better 

than the global model, such the effects of topography and urban areas. For PM2.5, significant 

differences are seen from the downscaling due to the fine resolution and different chemical 
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mechanisms between the global and the regional model. The resolution we are using for this 

study (36km by 36 km) is fine enough for us to analyze the co-benefits at a state level, but 

insufficient to fully resolve urban areas. Finer resolution simulations (such as 12 km by 12 km) 

with CMAQ or other CTMs can be carried out to better quantify the co-benefits over urban areas.  

For this study, uncertainties and errors may exist under the assumptions and choices we 

make for each model. For example, the co-benefits of PM2.5 have large contributions from OC 

and SOA over the Central and East U.S. (Fig. 2.4, Fig. A.16). However, our model evaluations 

show that CMAQ greatly underestimates the OC concentration compared with surface 

observations. We have not included the model evaluation for the SOA due to the limitation of the 

observation datasets, even though recent studies found that the CMAQ also greatly 

underestimated the SOA species (Baek et al., 2015; Hayes et al., 2015; Woody et al., 2015). New 

gas-phase and aqueous-phase oxidation pathways for SOA formation are found to play 

significant roles in producing organic aerosols (Lin et al., 2014; Pye and Pouliot, 2012; Pye et al., 

2013), which are missing in the CMAQ version used in this study. The underestimation of the 

both OC and SOA in the current CMAQ model would greatly reduce the total co-benefits on 

both air quality and reduced premature mortality estimated from this study. We use BEIS model 

to estimate the biogenic VOC (BVOC) emissions, but studies have shown that the BVOCs from 

the Model of Emissions of Gases and Aerosols from Nature (MEGAN) are higher than those 

from BEIS by a factor 2 (Pouliot, 2008; Pouliot and Pierce, 2009), which highlights the 

uncertainty in representing these emissions and simulating both PM2.5 and O3 (Hogrefe et al., 

2011).  

We assume constant land use in the GCM, WRF and CMAQ when simulating the global 

and regional climate and estimating the biogenic emissions, which could introduce errors in our 
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results (Unger, 2014; Heald and Spracklen, 2015). When we process the global anthropogenic 

emissions with SMOKE, we back-calculate the total PM2.5 and PMC from OC and BC, which 

introduces inorganic PM emissions and may make our results for co-benefits of PM2.5 higher. By 

doing this, we account for missing emissions but also increase the total uncertainties in the 

emission inventory. Spectral nudging is adopted in this study to restrain WRF from drifting from 

the GCM, which has been shown to be better for some meteorological variables, but spectral 

nudging better for others (Bowden et al., 2012, 2013; Liu et al., 2012; Otte et al., 2012). 

Moreover, only one model is used at each step during downscaling, and ensemble model means 

can be used to reduce the single model’s variability. Simulations are based on three-year 

averages, due to computational limitations, but these three years may reflect meteorological 

variability and not only climate change. This uncertainty may be greater for the total co-benefits 

of O3, for which we see greater year-to-year variations than for PM2.5. CMAQ simulations could 

be performed over more years to reduce the influence of the climate variability. In separating 

domestic and foreign co-benefits, we assume that global and regional climate will be controlled 

by foreign GHGs emissions, and not influenced by GHG mitigation in the U.S., which may also 

introduce errors into our results. We similarly attribute the global methane change as a foreign 

influence, as U.S. methane emissions are a small fraction of the global.   

2.5 Conclusions 

Climate polices to control GHG emissions will not only have the benefit of slowing 

climate change, but can also have co-benefits of improved air quality. Previous co-benefits 

studies focus mostly on local or regional GHG reductions. As a result, these studies omit air 

quality benefits outside of the domain considered, and neglect benefits from global GHG 

mitigation. In this study we adopt a systematic approach to quantify the co-benefits from both the 
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global and regional GHG mitigation on regional air quality over U.S. at fine resolution in 2050, 

building on the global co-benefits study from West et al. (2013). The co-benefits of global GHG 

mitigation on U.S. air quality are discussed through two mechanisms: reduced co-emitted air 

pollutants and slowing climate change and its influence on air quality. We also quantify the co-

benefits from domestic GHG mitigation versus foreign countries’ reduction.  

We find that there are significant benefits for both PM2.5 and O3 over U.S. by 2050 from 

the global GHG mitigation in RCP4.5. The total co-benefits for PM2.5 are higher in the east than 

the west, with an average of 0.47 µg m-3 over U.S. For O3, the total co-benefits are fairly uniform 

across the U.S. at 2-5 ppb, with U.S. average of 3.55 ppb. The co-benefits from reductions of co-

emitted air pollutants have a greater influence on both PM2.5 (accounting for 96% of total 

decreases) and O3 (89% of the total decreases) than the second mechanism via slowing climate 

change, consistent with West et al. (2013).  

Foreign countries’ GHG reductions have a much greater influence on the U.S. O3 reduction 

(76% of the total), compared with that from domestic GHG mitigation only (24%), highlighting 

the importance of global methane reductions and the intercontinental transport of air pollutants. 

For PM2.5, the benefits of foreign GHG control are less than domestic, but still a considerable 

portion of the total (26%). We conclude that the U.S. can gain significantly greater domestic air 

quality co-benefits by engaging with other nations for GHG control to combat climate change, 

especially for O3. This also applies to other nations which can be expected to have ancillary air 

quality benefits from foreign countries’ GHG mitigation. We also conclude that previous studies 

that estimate co-benefits for one nation or region (e.g., Thomson et al., 2014), may significantly 

underestimate the full co-benefits when many countries reduce GHGs together, particularly for 

O3.  
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2.6 Figures and Tables 

Table 2. 1. List of CMAQv5.0.1 simulations in this study. Hourly BCs are from the MOZART-4 

(MZ4) simulations of WEST2013. We fix the methane (CH4) background concentrations in 

CMAQ consistent with the RCP scenarios and WEST2013. 

Years Scenario Emissions Meteorology BCs CH4 
2000 S_2000 2000 2000 MZ4

 
2000 1766 ppbv 

 

 

2050 

 

S_REF REF RCP8.5 MZ4 REF 2267 ppbv 

S_RCP45 RCP4.5 RCP4.5 MZ4 RCP4.5 1833 ppbv 

S_Emis RCP4.5 RCP8.5 MZ4 e45m85b 1833 ppbv 

S_Dom RCP4.5 for U.S.,  

REF for Can, Mexa 

RCP8.5 MZ4 REF 2267 ppbv 

athe part of Canada and Mexico in the domain.  

bglobal simulation using RCP4.5 emissions together with RCP8.5 meteorology in 2050. 
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Table 2. 2. Anthropogenic emissions in the U.S. for major air pollutants in 2000 and 2050 from 

REF and RCP4.5 (Tg yr-1), and the relative differences (Relative Diff)  

between RCP4.5 and REF in 2050 ((RCP4.5 - REF)/REF×100).   

 2000 2050 REF 2050 RCP4.5 Relative Diff (%) 
SO2 14.84 2.46 1.75 -28.78 
NH3 3.34 4.56 4.30 -5.56 
NOx 19.57 4.40 3.92 -10.93 
CO 92.74 11.42 11.25 -1.48 
NMVOC 15.23 8.07 7.16 -11.21 
EC 0.42 0.22 0.21 -7.59 
OC 0.71 0.35 0.33 -6.17 
PM2.5

1 4.14 1.87 1.57 -15.80 
PMC2 11.02 5.50 4.63 -15.80 
1,2PM2.5 & PMC are the total emissions back-calculated based on the EC & OC.   
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Table 2. 3. Evaluation of the S_2000 simulation (average of three years modeled) with surface 

observations in 2000 for PM2.5 (µg m-3) and O3 (ppb).   

 2000 2050 REF 2050 RCP4.5 Relative Diff (%) 
SO2 14.84 2.46 1.75 -28.78 
NH3 3.34 4.56 4.30 -5.56 
NOx 19.57 4.40 3.92 -10.93 
CO 92.74 11.42 11.25 -1.48 
NMVOC 15.23 8.07 7.16 -11.21 
EC 0.42 0.22 0.21 -7.59 
OC 0.71 0.35 0.33 -6.17 
PM2.5

1 4.14 1.87 1.57 -15.80 
PMC2 11.02 5.50 4.63 -15.80 
1,2PM2.5 & PMC are the total emissions back-calculated based on the EC & OC.   
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Fig. 2. 1. Changes in (a) 2-m temperature (°C) and (b) precipitation (mm day-1) centered on 2050 

between RCP8.5 and RCP4.5 (RCP8.5—RCP4.5). 
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Fig. 2. 2. Comparison of annual U.S. average concentration changes for RCP4.5 in 2050 relative 

to 2000, for this study (black triangle), MZ4 from WEST2013 (red circle), and the ensemble 

mean (blue diamond) and multi-model range from ACCMIP (blue lines), for (a) PM2.5, and (b) 

O3. In panel a, the total PM2.5 reported by the ACCMIP models is shown on the left, and the 

PM2.5 estimated as a sum of species BC+OA+SOA+SO4+NO3+NH4+0.25*SeaSalt+0.1*Dust 

following Fiore et al. (2012) and Silva et al. (2013) shown on the right. Values shown are the 

average of three years for CMAQ and MZ4, and 5 to 10 years for ACCMIP for three models 

(LMDzORINCA, GFDL-AM3 and GISS-E2-R) that report O3 and two models (GFDL-AM3 and 

GISS-E2-R) that report PM2.5.   
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Fig. 2. 3. The three-year average PM2.5 (µg m-3) distributions in 2050 from (a) S_REF, (b) 

S_RCP45, and (c) the total co-benefits (shown as the difference between S_RCP45 and S_REF). 

Blue colors in panel (c) indicate an air quality improvement.  
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Fig. 2. 4. Seasonal distributions of total co-benefits for PM2.5 (µg m-3) for (a) winter, (b) spring, 

(c) summer and (d) fall.  
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Fig. 2. 5. The three-year ozone-season average (May to October) of MDA8 O3 (ppb) from (a) S_ 

REF, (b) S_ RCP45, and (c) the total co-benefits (shown as the difference between S_RCP45 and 

S_REF). Blue colors in panel (c) indicate an air quality improvement. 
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Fig. 2. 6. Benefits of reduced co-emitted air pollutants (a, b) versus slowing climate change (c, d) 

for PM2.5 (a, c) and ozone season MDA8 surface O3 (b, d). Blue colors indicate an air quality 

improvement. The numbers on the plots are three-year average of air quality changes over the 

U.S.   
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Fig. 2. 7. Benefits of domestic (a, b) versus foreign (c, d) GHG reductions for PM2.5 (a, c) and 

ozone season MDA8 surface O3 (b, d). Blue colors indicate an air quality improvement. The 

numbers on the plots are three-year average of air quality changes over the U.S.   
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Fig. 2. 8. Mean values of domestic (blue) and foreign co-benefits (red) for U.S. average (a) 

annual PM2.5, and (b) ozone season MDA8 O3. The numbers below each bar are the percentage 

(%) of the foreign co-benefit.   
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CHAPTER 3. CO-BENEFITS OF GLOBAL, DOMESTIC, AND SECTORAL 
GREENHOUSE GAS MITIGATION ON US AIR POLLUTION                                         

AND HUMAN HEALTH IN 2050 

(Yuqiang Zhang, Steven J. Smith, J. Jason West. In preparation for submission to 

Environmental Research Letter) 

3.1 Introduction 

Exposure to fine particulate matter (PM2.5) and ozone (O3) are associated with both 

morbidity (e.g. hospitalizations, emergency department visits, school loss days and asthma-

related health effects) and premature mortality (e.g. deaths from cardiovascular and respiratory 

diseases, lung cancer and so on), as revealed in epidemiological studies (US EPA, 2009, 2013). 

Several cohort studies have shown evidence of the PM2.5 chronic effects on mortality (Laden et 

al., 2006; Krewski et al., 2009; Lepeule et al., 2012). One report from Jerrett et al. (2009) 

demonstrated the chronic effect of O3 on human mortality.  

Previous research has quantified future air quality changes and their effects on human 

health under projected emission scenarios, at both global (West et al., 2007; Selin et al., 2009) 

and regional scales (Fann et al., 2013; Kim et al., 2014; Jiang et al., 2015; Sun et al., 2015). 

Climate change can also affect air quality through several mechanisms, including photochemical 

reactions, natural emissions, deposition rates, and air stagnation events (Weaver et al., 2009; 

Jacob and Winner, 2009; Fiore et al., 2012, 2015). Related studies have quantified the effect of 

global and regional climate change on air quality and human health (Bell et al., 2007; Tagaris et 

al., 2009; Post et al., 2012; Fang et al., 2013; Fann et al., 2015; Silva et al., 2016a). Post et al. 
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(2012) used an ensemble of atmospheric models to study the future climate change in 2050 on 

the influence of air quality and human health effect in the US and found significant variability 

from the different models.  

Many studies have also investigated the co-benefits of greenhouse gas (GHG) mitigation 

on air quality and avoided premature mortality, as actions to reduce GHG emissions also tend to 

reduce co-emitted air pollutants (Bell et al., 2008; Cifuentes et al., 2001; Nemet et al., 2010). 

When monetized, the health co-benefits of GHG mitigation were found to range across the 

literature from $2 to 196/tCO2 (Nemet et al., 2010), comparable to the costs of GHG reductions. 

A few studies also analyzed the regional (Driscoll et al., 2015; Thompson et al., 2014; Trail et al., 

2015) or local (Plachinski et al., 2014) GHG mitigation on projected co-benefits of future air 

quality and human health using systemic methods. Thompson et al. (2014) studied the co-

benefits from different climate policies in the U.S. on future domestic air quality by 2030. When 

monetized, the human health benefits due to improved air quality can offset 26-1050% of the 

cost of the carbon polices. 

Previous co-benefits studies have been limited by only considering co-benefits from 

regional or local climate policies on regional air quality and human health, neglecting (i.) the co-

benefits of those actions for other nations or regions, and (ii.) the co-benefits gained domestically 

from global actions where one country’s actions are coordinated with reductions internationally. 

Both PM2.5 and O3 have long enough lifetimes in the atmosphere to transport intercontinentally, 

suggesting that emissions from one source region can affect air quality and human health on 

multiple receptor regions (Anenberg et al., 2009, 2014; Liu et al., 2009; TF HTAP 2010). 

Previous studies found that the health benefits from O3 precursor reductions may even be greater 

outside of the source region than within, due the large population over several receptor regions 
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(Duncan et al., 2008; Anenberg et al., 2009; West et al., 2009). PM2.5 has a much shorter lifetime 

than O3, but the intercontinental transport of PM2.5 mortality impacts is very large or comparable 

than ozone due the strong health impacts related with PM2.5 (Anenberg et al., 2014). To address 

these limitations, West et al. (2013, referred to as WEST2013 hereafter) were the first to use a 

global chemical transport model (CTM) to address the co-benefits of global GHG mitigation on 

air quality and human health. WEST2013 were also the first to estimate co-benefits via two 

mechanisms: the reduced co-emitted air pollutants, and slowing climate change and its effects on 

air quality. They found that global GHG mitigation could avoid 2.2±0.8 million premature deaths 

in 2100 due to the improved air quality, accounting for both PM2.5 and O3. The co-benefits from 

the first mechanism of the reduced co-emitted air pollutants are much higher than those from the 

second mechanism of slowing climate change and its effect on air quality. The monetized co-

benefits from health were estimated at $50–380/tCO2, higher than previous estimates (Nemet et 

al., 2010).  

WEST2013 was limited by using a coarse resolution global model (horizontally 2˚×2.5˚). 

We then used several models to downscale the global co-benefits results in WEST2013 to the 

regional scale, analyzing co-benefits for US air quality in 2050 at much finer resolution (Zhang 

et al., 2016a). Here we use the same simulations performed in Zhang et al., (2016a) and focus on 

quantifying the co-benefits of global GHG reductions for avoided air pollution-related mortality 

in the continental US in 2050. We study the total co-benefits through the two mechanisms, 

following WEST2013 (WEST2013 and Zhang et al., 2016a), and separate the co-benefits of 

GHG mitigation in the US versus the contributions from foreign countries. By embedding this 

study within the previous global study of WEST2013, we are the first to investigate the co-

benefits of foreign GHG mitigation for US air quality and human health. Previous studies have 
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also investigated the sectoral-related premature deaths both globally (Lelieveld et al., 2015; 

Morita et al., 2014; Silva et al., 2016b) and regionally (Caiazzo et al., 2013; Fann et al., 2012, 

2013; Yim et al., 2015). Here, we conduct three new sensitivity simulations to quantify the air 

quality and health co-benefits of GHG reductions in three US domestic emission sectors: 

industry (IND), residential (RES) and energy (ENE).  

3.2 Methods 

3.2.1 Air quality changes in US in 2050 at fine scale 

Air quality changes in the US under different GHG mitigation polices in 2050 were 

downscaled from WEST2013 by Zhang et al., (2016A). First, the global climate in 2000 and 

2050 from the Representative Concentration Pathway 8.5 (RCP8.5) and RCP4.5 scenarios used 

by WEST2013 were dynamically downscaled to the regional scale for the Continental US 

(CONUS) domain at 36km×36km, using the Weather Research Forecast model (WRF, v3.4.1, 

Skamarock and Klemp, 2008). Physical configurations of WRF were adopted from Bowden et al. 

(2012, 2013), and to avoid large persistent bias inside WRF when downscaling, the spectral 

nudging technique was used (Bowden et al., 2013). Global anthropogenic emissions from 

RCP4.5 and its reference (REF) scenario were directly processed through Sparse Matrix 

Operator Kernel Emissions (SMOKE, v3.5). Dynamical chemical boundary conditions were 

acquired from the global CTM outputs of WEST2013. The Community Multiscale Air Quality 

model (CMAQ, v5.0.1, Byun and Schere, 2006), with the CB05 chemical mechanism with 

updated toluene reactions and the latest aerosol module (AE6), was used to simulate air pollutant 

concentrations (i.e., PM2.5 and O3) in 2000 and 2050. Most of the simulations used in this study 

(Table B.1) were completed by Zhang et al. (2016a), except for three new sensitivity simulations 

performed here to quantify the co-benefits of GHG mitigation from domestic emission sectors in 
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US. All simulations are run for 40 consecutive months, with four months as spin-up, and the 

results are presented as three-year averages.  

As discussed by WEST2013 and Zhang et al., (2016a), RCP4.5 was developed based upon 

REF, with the only difference between these two scenarios being the application of an aggressive 

global carbon policy spanning all world regions and emission sectors (Thomson et al., 2011). By 

comparing these two, we use self-consistent scenarios. The total co-benefits from global GHG 

mitigation are obtained by comparing scenarios S_RCP45 and S_REF (Table B.1). To separate 

the total co-benefits from the two mechanisms, we use S_Emis minus S_REF to give the co-

benefits from co-emitted air pollutants reduction only, and S_RCP45 minus S_Emis for the co-

benefits from slowing climate change only. Domestic co-benefits are estimated as S_Dom minus 

S_REF, and foreign co-benefits are S_RCP45 minus S_Dom. In addition we simulate three more 

scenarios to identify the co-benefits from actions to reduce GHG emissions in individual sectors 

domestically. We choose to simulate reductions in the industry, residential, and energy sectors 

(S_indUS, S_resUS and S_eneUS) because emission reductions in RCP4.5 are greatest from 

these sectors in the US. Although ground transportation is the largest contributor for most air 

pollutants in the US in 2000 and 2050, we did not select transportation as little GHG reductions 

are seen from this sector in 2050. The air pollutants emission reductions from these three sectors 

account for more than 98% of the total SO2 and NOx reductions between RCP4.5 and REF in US 

in 2050, 80% of the CO reductions, and more than 50% of the EC and OC reductions (Table B.3).  

3.2.2 Human health analysis 

We use the environmental Benefits Mapping and Analysis Program–Community Edition 

(BenMAP-CE, v1.08) (US EPA, 2014) to calculate the avoided human mortality associated with 

future surface air quality changes for both PM2.5 and O3. BenMAP-CE calculates the relationship 
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between air pollution and certain health effects, using a health impact function (HIF) from 

epidemiological studies. The HIF for both PM2.5 and O3 used in this study are based on a log-

linear relationship between relative risk (RR) and air pollutant concentrations defined by 

epidemiology studies (Jerrett et al., 2009, Krewski et al., 2009), which are also used by 

WEST2013. RR then is used to calculate attributable fraction (AF), the fraction of the disease 

burden attributable to the risk factor, which is defined as:  

1
1 exp xRR

AF
RR

β− ∆−
= = −  (1) 

Where β is the concentration–response factor (CRF; i.e., the estimated slope of the log-

linear relation between concentration and mortality) and ΔX is the change in concentration of an 

air pollutant. AF is multiplied by the baseline mortality rate (
0y ), and the exposed population 

( Pop ) to yield an estimate of excess deaths attributable to changes in air pollution ( Mort∆ ):  

0 (1 exp )xMort y Popβ− ∆∆ = × − ×  (2) 

We present results for all-cause mortality from the PM2.5 changes, rather than CPD and LC, 

as all-cause mortality is the most comprehensive estimate of PM-related mortality appropriate for 

the US. However, we also estimate the PM-related mortality from CPD and LC to compare with 

the results of WEST2013. We also quantify the premature mortality from respiratory disease 

associated with O3 changes. The 90% confidence intervals (CI) presented in this study are 

calculated using a full Monte-Carlo analysis inside BenMAP-CE considering only uncertainty in 

the concentration-response function. 

BenMAP-CE has incorporated county-level baseline mortality rates projected from 2010 to 

2050 at five-year intervals, including respiratory disease (RESP) for O3, and all-cause, 

cardiopulmonary disease (CPD), and lung cancer (LC) for PM2.5 (RTI International, 2015). 
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Overall, the projected baseline mortality rates inside BenMAP-CE decrease from 2005 to 2050. 

However, the baseline mortality rates used by WEST2013 are projected to increase in 2050 in 

US, which are derived from the International Futures (IFs, version 6.54) under the UNEPGEO 

Base Case scenario. For population, BenMAP-CE included the future population projection at a 

county level in the US until 2040 only (totalling 403 million, Woods and Poole, 2012), but our 

study is focused on 2050 (the RCP4.5 projected total population is 384 million in 2050, Clark et 

al., 2007). To be consistent with WEST2013, we run BenMAP-CE with baseline mortality rates 

in 2005 and the population projection in 2040 (aged 30 and above), and then post-process the 

BenMAP-CE outputs by multiplying by adjustment ratios to match the national population and 

baseline rates of WEST2013 (Table B.2). By doing this, we assume that future baseline mortality 

rates are increasing at uniformly national ratio without age, gender or ethnic variations, and also 

that the spatial distribution of population in 2050 of RCP4.5 is the same as that in 2040 projected 

by Woods and Poole (2012).  

3.3. Results and discussion 

The total co-benefits for annual PM2.5 (0.47 µg m-3 for three-year US averages) are greatest 

in the East and in the west coast of California (CA), and less in the West (Fig. 3.1). For O3, we 

calculate the three-year averages of 6-month ozone-season average of 1-hr daily maximum of O3, 

to be consistent with the epidemiology study of Jerrett et al. (2009), and the total co-benefits for 

O3 (2.96 ppbv for US average) are fairly uniform over the US domain (Fig. 3.1), slightly higher 

over Western U.S. and lower over the East. The population-weighted average (Pop-Weighted 

Avg, for the future exposed population age 30 and older) for PM2.5 (0.84 µg m-3 for US average) 

is almost twice the simple average (Simple Avg), as the shorter lifetime of PM2.5 has lead it to be 

a regional problem (Punger and West, 2013).  but these two indexes are nearly identical for O3 
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(Table 3.1), consistent with the fact that the total co-benefits for O3 are less significant in East 

populated areas and more significant in the West, controversy with PM2.5.  

When calculating human health benefits, our results show that 24500 (90% CI: 17800-

31100) premature deaths yr-1 will be avoided in the US due to PM2.5 decreases in 2050 from the 

global GHG mitigation. The highest states are CA (3800 deaths yr-1, CI:2800-4900), New York 

(NY, 2100 deaths yr-1, CI:1500-2600) and Texas (TX, 1800 deaths yr-1, CI:1300-2300), which all 

have large PM2.5 decreases (Fig. 3.1, Table B.4) and population. For O3, the total avoided deaths 

are 12200 deaths yr-1 in the US (CI:5400-18900), roughly half that from PM2.5, and also highest 

in CA (2200 deaths yr-1, CI:1000-3300), NY(800 deaths yr-1, CI:400-1200) and TX (700 deaths 

yr-1, CI:300-1100). We then quantify the human health co-benefits by calculating the avoided 

mortality per capita (MPC, the avoided deaths per million people age 30 and older) for both 

PM2.5 and O3 (Fig. B.1, Table B.4). The MPC for PM2.5 has larger spatial variations than for O3, 

consistent with the finding that the total concentration co-benefits for PM2.5 are more urban-

centred, and more spatially uniform for O3 (Fig. 3.1).  

We compare the avoided deaths from 2000 to 2050 under the REF (S_REF-S_2000) and 

RCP4.5 (S_RCP45-S_2000) scenarios in this study with WEST2013, and also the total co-

benefits (S_RCP45-S_REF). Zhang et al., (2016a) concluded that the total co-benefits for PM2.5 

at finer resolution (36km×36km) in CMAQ were lower than those of WEST2013 at coarse 

resolution (2˚×2.5˚) by a factor of 2, while the downscaled future O3 changes in 2050 were 

comparable with WEST2013. However, when quantifying human health impact, Fig. 3.3 shows 

that the avoided premature mortality for both the REF and RCP4.5 scenarios as well as the total 

co-benefits in this study are much higher than for WEST2013 for both PM2.5 and O3. The 

avoided premature mortality from WEST 2013 is within the 90% CI of the estimation in this 
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study, except for CPD in both REF and RCP4.5 scenarios, and RESP in REF. These 

discrepancies could be caused by the fact that the finer-resolution CMAQ model can better 

capture the hotspots of future air quality changes near areas of dense population (Fig. 3.1), 

whereas the coarse resolution of WEST2013 can dilute peak air quality concentrations that 

usually occur in populated regions (Punger and West, 2013; Li et al., 2015). Our study shares the 

same CRF as WEST2013, and the underestimation in WEST2013 is largely attributed to the 

county-level baseline mortality rates used in this study, less extent to the county-level population 

data embedded in BenMAP-CE as the total co-benefits of the Pop-Weighted Avg for both PM2.5 

(1.25 µg m-3) and O3 (4.61 ppbv) in WEST2013 are higher than those in this study.  

We then separate the total co-benefits into the two mechanisms. The emission benefit 

accounts for 98% of the total co-benefits (three-year Pop-Weighted Avg of 0.84 µg m-3, Table 

3.1) for PM2.5, and 96% of the total (three-year Pop-Weighted Avg of 3.02 ppb) for O3, 

consistent with WEST2013 and Zhang et al. (2016a). When calculating the co-benefits on human 

health, the co-benefits from reduction in co-emitted air pollutants also dominate the total co-

benefits, with 24100 deaths yr-1 (CI, 17500-30600) avoided deaths for PM2.5 (accounting for 98% 

of the total), and 11500 deaths yr-1 (CI, 5100-17800) for O3 (94% of the total) (Fig. 3.4). Notice 

that some locations have negative climate co-benefits (Fig. 3.4c,d), e.g. in the Northern states for 

PM2.5, and Southeast for O3, as PM2.5 and O3 increase due to slowing climate change causing 

more deaths over these regions. However, as pointed out in previous studies (Post et al., 2012; 

Silva et al., 2013), single model to predict past and future climate change is unreliable and can 

have significant uncertainties. 

GHG reductions from foreign countries account for 3700 avoided deaths yr-1 (CI, 2700-

4700) for PM2.5-related all-cause mortality, and 7600 deaths yr-1 (CI, 2700-4700) deaths for O3-



54 

related RESP, which are 15% and 62% of the total deaths for PM2.5 and O3. Foreign GHG 

mitigation contributes 15% (0.13 µg m-3 for three-year Pop-Weighted Avg) of the total co-

benefits for the PM2.5 national annual average, and accounts for 65% (1.95 ppbv) of the total co-

benefits for O3 (6-month ozone season of 1-hr daily maximum), emphasizing that the PM2.5 is 

more influenced by the regional emission reductions in US, while O3 is more influenced by the 

global methane reductions as well as the intercontinental transport of air pollutants (Zhang et al., 

2016a). The foreign co-benefits for both PM2.5- and O3-related mortality are centred in urban 

areas even though foreign countries’ GHG mitigation reduce surface O3 pretty uniformly in US 

(Fig. B.2). The contributions from domestic GHG mitigation on Pop-Weighted Avg of PM2.5 (85% 

of the total) and O3 (35%) are higher than those for Simple Avg (74% for PM2.5 and 27% for O3 

in Table 3.1), due to the fact that the air quality improvement from domestic GHG mitigation 

happen in the dense population areas. CA has the highest human health benefits from foreign 

countries GHG mitigation, with 700 deaths yr-1 (CI, 500-800) avoided from PM2.5-related all-

cause mortality, and 1300 deaths yr-1 (CI, 600-2000) avoided from O3 (for the domestic and 

foreign co-benefits in each state, see Tables B.5, B.6).  

For the co-benefits from domestic sectoral GHG reductions, the residential sector has the 

largest co-benefits on PM2.5-related human health, avoiding 4300 deaths yr-1 (3200-5500), 

accounting for 21% of the total domestic co-benefits for PM2.5, followed by industry (3300 

deaths yr-1, CI:2400-4100) and energy (2700 deaths yr-1, CI:900-3400). Residential also has the 

largest decrease of Pop-Weighted Avg of annual PM2.5, with 0.15 µg m-3 for the US average, 

even though the simple annual average is comparable to the effect from the industry sector, 

demonstrating that dense populations around the residential sector. GHG mitigation from 

industry has the largest effect on O3-related human health, which avoids 800 deaths yr-1 (300-
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1200), accounting for 17% of the total domestic co-benefits for O3, followed by energy (500 

deaths yr-1, CI:200-800), and residential (200 deaths yr-1, CI:100-400). The total co-benefits for 

air quality are also highest in industry, with 0.20 ppb for the Pop-Weighted Avg and 0.22 ppv for 

Simple Avg. The emission reductions from these three sectors account for 50% of the PM2.5-

related deaths from domestic co-benefits (20800 deaths yr-1), and 33% of the O3-related deaths in 

domestic co-benefits (4600 deaths yr-1). 

3.4 Conclusions 

We quantify the co-benefits of global GHG mitigation under the RCP4.5 scenario on US 

air quality and human health in 2050 at fine resolution by using dynamical downscaling 

techniques, and find that more than 24500 deaths yr-1 will be avoided for PM2.5-related all-cause 

mortality and 12200 deaths yr-1 will be avoided for O3-related respiratory mortality. When 

separating the total co-benefits into two mechanisms, the emission co-benefits are more 

significant than the climate co-benefits for both PM2.5 and O3, accounting for 98% and 94% of 

the total avoided deaths. Foreign GHG mitigation contributes to 15% of total PM2.5-related 

deaths and 62% of the total O3-related deaths. Among the three domestic emission sectors which 

have higher reductions for the co-emitted air pollutants under the RCP4.5 scenario, RES has the 

highest co-benefits for PM2.5-related mortality, leading to 4300 avoided deaths, and IND has the 

highest co-benefits for O3, avoiding 800 premature deaths in US.  

Previous studies have estimated co-benefits of GHG mitigation mainly on local, national, 

or continental scales (Cifuentes et al., 2001; Nemet et al., 2010).  These studies have presumed 

that most co-benefits are realized on those scales, and that the contributions of foreign GHG 

mitigations to total co-benefits would be small.  Here we show that the US can gain significantly 

greater co-benefits for air quality and human health, especially for ozone, by collaborating with 
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other countries to combat global climate change. Similar results would also be expected for 

foreign countries, which will likely also benefit from GHG mitigation in other countries. 

Previous studies which only estimate co-benefits from regional or local GHG mitigation may 

significantly underestimate the full co-benefits of coordinated global actions to mitigate climate.  

Significant uncertainties exist in our results. The uncertainty in CRFs can exert a large 

influence on the magnitudes of the human health co-benefits. When quantifying the avoided 

deaths from improved air quality, we only account for adults above 30s. Large uncertainty also 

arises from the global emission inventory, especially when we downscaled the inventory from 

coarse resolution to fine resolution, and add new inorganic species for the primary PM2.5. 

Different components of PM2.5 may have different risk on human health, like BC particles (Li et 

al., 2015; Zanobetti and Schwartz, 2009). However, we consider all of the components of PM2.5 

to have equal toxicity. Only a single model (e.g., WRF, CMAQ) is used for each downscaling 

step, and ensemble model means could reduce the errors raised from one single model (Post et al., 

2012). Our conclusions are specific to the REF and GHG mitigation (RCP4.5) scenarios we 

choose, and would differ for other scenarios. We only account for the co-benefits from air 

quality changes due to the GHG mitigation, neglecting other impacts of climate change on health, 

like heat-waves and infectious disease, for which we may also underestimate the health benefits 

of the global climate policy. 
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3.5 Figures and Tables 

Table 3. 1. Co-benefits for air quality changes in the US in 2050 from global, domestic and 

sectoral GHG mitigation. For PM2.5 (µg m-3) we use three-year averages, and for O3 (ppbv), we 

calculate the 6-month ozone season of 1-hr daily maximum, and then average over three years.  

  PM2.5 O3 

  Simple Avg Pop-Weighted Avg Simple Avg Pop-Weighted Avg 

 
 
 
Total 

Emission -0.45 -0.82 -2.75 -2.89 

Climate -0.02 -0.02 -0.21 -0.13 

 -0.47 -0.84 -2.96 -3.02 

Domestic -0.35 -0.71 -0.80 -1.07 

Foreign -0.12 -0.13 -2.16 -1.95 

 
Domestic 

Industry -0.057 -0.11 -0.22 -0.20 

Residential -0.058 -0.15 -0.11 -0.058 

Energy -0.046 -0.089 -0.13 -0.14 
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Table 3. 2. Estimated total co-benefits for avoided premature mortality in 2050 from PM2.5-

related all-cause mortality and O3-related respiratory mortality. The values in the brackets are 90% 

confidence intervals (CI).  

    PM2.5 
(90% CI) 

O3 
(90% CI) 

Total 

Emission 24100 
(17500-30600) 

11500 
(5100-17800) 

Climate 400 
(300-500) 

700 
(300-1100) 

  24500 
(17800-31100) 

12200 
(5400-18900) 

Domestic 20800 
(15100-26400) 

4600 
(2000-7100) 

Foreign 3700 
(2700-4700) 

7600 
(3400-11900) 

Domestic 

Industry 3300 
(2400-4100) 

800 
(300-1200) 

Residential 4300 
(3200-5500) 

200 
(100-400) 

Energy 2700 
(1900-3400) 

500 
(200-800) 
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Fig. 3. 1. Total air quality co-benefits in 2050 for (a) annual average PM2.5, and (b) 6-month 

ozone-season average of 1-hr daily maximum of O3. Results are presented as three-year averages.  
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Fig. 3. 2. Total co-benefits (S_RCP45-S_REF) for avoided premature mortality (deaths yr-1) for 

(a) PM2.5 (all-cause mortality), and (b) O3 (respiratory mortality) in US in 2050. Total avoided 

deaths and 90% confidence intervals are shown at the top of each panel.  
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Fig. 3. 3. Comparisons between this study (red) and WEST2013 (blue) of the avoided human 

mortality (1000 deaths yr-1) from air quality changes in 2050 compared with 2000, for (a) REF 

scenario, (b) RCP4.5 scenario, and (c) the total co-benefits in 2050. The red lines represent the 

90% confidence intervals (CI) for this study, and blue lines are 95% CI for WEST2013. RESP 

indicates for the mortality from O3-related respiratory deaths, CPD for PM2.5-related 

cardiopulmonary deaths, and LC for PM2.5-related lung cancer.   
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Fig. 3. 4. The emission co-benefits (a, b) and climate co-benefits (c, d) for avoided human 

mortality (deaths yr-1) from PM2.5 (a, c) and O3 (b, d). White in panels c and d indicates increased 

mortality attributed to slowing climate change, from increases in air pollutant concentrations. 

Total avoided deaths and 90% confidence intervals are shown at the top of each panel.  
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Fig. 3. 5. The domestic co-benefits (a, b) and foreign co-benefits (c, d) for avoided all-cause 

mortality from PM2.5 (a, c) and respiratory mortality from O3 (b, d) in US in 2050. Total avoided 

deaths and 90% confidence intervals are shown at the top of each panel.  
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CHAPTER 4. SOUTHWARD REDISTRIBUTION OF EMISSIONS DOMINATES        
THE 1980 TO 2010 TROPOSPHERIC OZONE CHANGE 

(Yuqiang Zhang, Owen R. Cooper, J. Jason West. In preparation for submission to Nature 

Geoscience) 

4.1 Introduction 

Ozone (O3) at the surface is an important air pollutant, detrimental to human health and 

crop yield (Royal society, 2008). O3 in the troposphere is also the third largest anthropogenic 

greenhouse gas, with an estimated radiative forcing (RF) of 0.40 (0.20–0.60) W m-2 since the 

preindustrial (Myhre et al., 2013). O3 is produced in the troposphere by the chemical oxidation of 

carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), and methane 

(CH4) in the presence of nitrogen oxides (NOx) and sunlight, and this production exceeds the 

stratosphere-to-troposphere exchange by a factor of 5–7 (Young et al., 2013). Tropospheric O3 is 

an important urban and regional air pollutant, but it is also sufficiently long lived (approximately 

22 days globally averaged, Young et al., 2013) that its baseline concentrations are elevated over 

the entire Northern Hemisphere (HTAP, 2010) (NH). Observations have shown that emission 

increases in Asia are associated with increasing O3 in the free troposphere above western North 

America (Cooper et al., 2012), and model simulations indicate that the rising Asian emissions are 

consistent with increasing O3 at some high elevation sites in the western US (Cooper et al., 2015; 

Lin et al., 2012; Verstraeten et al., 2015). The tropospheric O3 burden is important for RF as O3 

in the middle to upper troposphere is more effective as a greenhouse gas (Forster et al., 1997),
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but also important for surface air quality because it influences the baseline ozone that affects 

surface sites in urban and rural settings. 

In the decades prior to 1980, global anthropogenic emissions of O3 precursors (including 

biomass burning) increased, but the spatial distribution pattern remained fairly unchanged, with 

the greatest emissions from middle and high latitudes of the NH. Starting in 1980, emissions 

began to shift southward as China and other nations became more industrialized.  From 1980 to 

2010, global anthropogenic emissions of CO, NOx, and NMVOCs increased by 6.4% (62.1 Tg), 

21.2% (14.4 Tg NO) and 6.0% (10.3 Tg) (Lamarque et al., 2010; Moss et al., 2010; Riahi et al., 

2011) and the global CH4 mixing ratio increased by 14.7% (231 ppbv, Prather et al., 2013). 

During the same period, emissions of CO and NMVOCs increased south of 30°N but decreased 

north of this latitude, while for NOx, emissions increased south of 40°N but decreased to the 

north. Consequently, the latitude band with greatest emissions shifted from 30–40°N in 1980 to 

20–30°N in 2010 for CO and NMVOCs, and from 40–50°N to 30–40°N for NOx (Figs C.1 and 

C.2).  

Modeling studies have shown that the tropospheric ozone burden and resulting radiative 

forcing are much more sensitive to emission changes in the tropics and Southern Hemisphere 

than other regions (Naik et al., 2005; Derwent et al., 2008; West et al., 2009a; Fry et al., 2012, 

2014). However, the effect of the spatial redistribution of emissions has not been isolated. The 

emissions spatial redistribution may also be responsible for the shift in the seasonal ozone peak 

from summer to spring at rural Northern Hemisphere sites (Parrish et al., 2013; Cooper et al., 

2014). 

Here we investigate the influences of global emission changes from 1980 to 2010 on the 

tropospheric O3 burden (
3OB ) and surface O3, separating the influences of changes in: (i.) the 
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spatial distribution of ozone precursor emissions; (ii.) the global magnitude of emissions; and 

(iii.) the global CH4 mixing ratio. Simulations are conducted with the CAM-chem global 

chemical transport model (Lamarque et al., 2012) for 1980 and 2010, and sensitivity simulations 

alter these three parameters individually to 1980 conditions, relative to the 2010 simulation 

(Table 4. 1).  

4.2 Methods 

4.2.1 Global emissions spatial pattern change 

Here we use anthropogenic emissions including biomass burning in 1980 from the 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et al., 

2010), and in 2010 from the Representative Concentration Pathways 8.5 (RCP8.5) scenario 

(Moss et al., 2010; Riahi et al., 2011), which are downloaded from the RCP database 

(http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=download, accessed 

10/31/2014) to analyze emission trends and drive the global model (Figs. C.1 and C.2). RCP8.5 

2010 emissions are self-consistent with the ACCMIP 1980 emissions, and are considered to be 

the most reasonable scenario to extend the ACCMIP emission beyond 2000 (Granier et al., 2011). 

These emission trends are supported by observations from satellites that show that NO2 in 

developed regions, such as Europe and North America, have greatly diminished emissions since 

1980, but the emissions are increasing in developing countries, especially in China and India, 

shifting global emissions southward (Richter et al., 2005; van der A et al., 2008; Hilboll et al., 

2013; Parrish et al., 2013). The global total anthropogenic emissions of CO, NOx and NMVOCs 

are 1030 Tg, 82 Tg NO, and 180 Tg in 2010, respectively.  

http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=download
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4.2.2 CAM-chem model configuration 

We use the global chemistry-climate model CAM-chem, which is based on the global 

Community Atmosphere Model (CAM) version 4, the atmospheric component of the 

Community Earth System Model (CESM, v1.2.2) (Lamarque et al., 2012; Tilmes et al., 2015). 

The model has a horizontal resolution of 1.9° (latitude) × 2.5° (longitude), and 56 vertical levels 

between the surface and 4 hPa (≈40 km) with a time step of 1800 s. We use the NASA Global 

Modeling and Assimilation Office GEOS-5 meteorology to drive the model as a chemical 

transport model. Monthly-mean distributions of the chemically-active stratosphere species (such 

as O3, NO, NO2 and N2O5) are prescribed using the climatology from the WACCM simulations 

(Garcia et al., 2007), following Lamarque et al. (2012). 

The non-methane volatile organic compound (NMVOCs) species from the ACCMIP (1980) 

and RCP8.5 (2010) are both re-speciated to match the CAM-chem VOC categories following 

previous studies (Fry et al., 2013, 2014; West et al., 2013). Monthly temporal variations for all 

anthropogenic emissions sectors are also added by scaling to monthly emissions from the 

RETRO project (Schultz et al., 2007; Fry et al., 2013, 2014; West et al., 2013), except for aircraft, 

shipping and biomass burning which all have their own seasonal variations. The Model of 

Emissions of Gases and Aerosols from Nature (MEGAN-v2.1, Guenther et al., 2012) simulates 

biogenic emissions for 150 compounds online within CAM-chem, yielding global biogenic 

emissions of isoprene, monoterpene, methanol and acetone of 420.69 Tg yr-1, 133.23 Tg yr-1, 

91.99 Tg yr-1 and 42.67 Tg yr-1 for four years average. Lightning NOx emissions are calculated 

online at 3.21 TgN yr-1 for four-year averages. Other natural emissions (ocean, volcano and soil) 

are from the standard CAM-chem emissions files (in 2000), and remain the same for all the 

simulations, with soil NOx at 8.0 TgN yr-1 (Emmons et al., 2010; Lamarque et al., 2012).  The 
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CH4 volume mixing ratio (ppb) is fixed at uniform global values of 1567 and 1798 ppbv for 1980 

and 2010 (Prather Annex II). 

In addition to simulating 1980 and 2010, we conduct three sensitivity simulations in which 

the spatial pattern of global emissions (S_Distribution), the magnitude of the global emissions 

(S_Magnitude), and the global CH4 mixing ratio (S_CH4) are individually set to 1980 levels and 

all other parameters stay the same as the 2010 simulation (Table 4.1). The differences between 

S_2010 and S_1980 reflect the total emission changes from 1980 to 2010. Each of the other three 

simulations is subtracted from S_2010 to isolate individual influences. For all simulations, we 

run CAM-chem for five consecutive years, with the first-year as spin-up and results are shown as 

a four-year average. We use meteorology from 2009-2012 with 2008 as a spin-up for all 

simulations, isolating the effects of changes in emissions and neglecting possible effects of 

climate change from 1980 to 2010. 

Tropospheric O3 burden is defined as the total below the chemical tropopause of 150 ppbv 

ozone in the S_2010 simulation. The four-year averages 
3OB in S_2010 is 342.7 Tg, within the 

range of ACCMIP models (337±23 Tg for 1995-2005, Young et al., 2013). The three-month 

ozone season average MDA8 is the consecutive three-month period with the highest O3 in each 

grid cell. NOy (total reactive nitrogen), is calculated as NO + NO2 + NO3 + HNO3 + HO2NO2 + 

2×N2O5 + CH3CO3NO2 (PAN) + CH2CCH3CO3NO2 (MPAN, methacryloyl peroxynitrate) + 

CH2CHCCH3OOCH2ONO2 (ISOPNO3, peroxy radical from NO3+ isoprene) from CAM-chem 

outputs. 

4.2.3 CAM-chem evaluation 

A comprehensive evaluation of the CAM-chem 2010 simulation is performed, using 

present-day climatology of O3 data from multi-year ozonesonde, satellite data, aircraft 
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campaigns, and ground-based observations, compared with the four-year averages of CAM-chem 

output. Our model captures the vertical distribution of O3 in ozonesondes very well, slightly 

higher in the Sancristobal station (Fig. C.9). The seasonal trends of O3 at specific pressure levels 

from the ozonesonde data are also captured well in the model simulation (Fig. C.10), with a 

correlation coefficient between the observed and simulated seasonal regional O3 average that is 

usually greater than 0.8 (Fig. C.11). When evaluating the model performance with aircraft 

campaign observations, we focus on the regional average over the campaign areas, and analyze 

the data at different altitudes. Generally, the model performs better in the NH than the SH (Table 

C.1 and Fig. C.12). When evaluated with multi-year satellite data, the model usually 

overestimates O3 between 30°S and 0°S, as well as in North America and Asia, and the global 

mean of the tropospheric column O3 is 2.62 Dobson Unit (DU) higher for the model than for 

OMI (Fig. C.13). Compared with surface O3 observations, CAM-chem overestimates O3 by 5.75 

ppbv over the whole U.S. (Fig. C.14), and 0.65 ppbv over Europe (Fig. C.15). However, the 

seasonal trends from the O3 observation are well captured by CAM-chem. We also compare the 

simulated O3 changes from 1980 to 2010 with six long-term remote observation sites (Table 4.2), 

as few ozone observations are available for 1980. Generally, the model captures well the trend of 

O3 changes from 1980 to 2010 for the four observation sites in the NH and the South Pole, 

although it overestimates O3 in the NH and underestimates them in the SH (Fig. C.16).  

4.2.4 Data sources 

The hourly O3 observation data for the remote sites of Barrow, Mauna Loa, Samoa and 

South Pole are maintained by the NOAA Global Monitoring Division (GMD) and the data can 

be found here: 

ftp://aftp.cmdl.noaa.gov/data/ozwv/SurfaceOzone/ 

ftp://aftp.cmdl.noaa.gov/data/ozwv/SurfaceOzone/
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The Hohenpeissenberg site is run by the Global Atmosphere Watch World Data Centre for 

Greenhouse Gases and data can be downloaded from here: 

http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/download.cgi?index=HPB647N00-

DWD&param=200612120588&select=inventory#monthly 

The Whiteface Mountain summit site in upstate NY is used with the permission from its 

operator Dr. Jim Schwab from University at Albany-SUNY.  

4.2.5 Code availability 

The CAM-chem model code used to perform all the simulations is available here: 

https://www2.cesm.ucar.edu/models.  

The diagnostic package used to perform the model evaluation is developed and maintained 

by the NCAR AMWG, and code can be found here: 

https://www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package/find-code. 

4.3 Discussions and Results 

The global 
3OB is modeled to have increased by 28.12 Tg (8.9% of the total 

3OB in 1980 

for four-year average simulation) from 1980 to 2010, with greater increases in the NH 

(accounting for 57% of the total increase) than the Southern Hemisphere (SH) (Fig. 4.1). The 

largest increases of 
3OB are over 30°S–30°N (17.93 Tg, Figs. 4.1 and 4.2). The influence of the 

change in the spatial distribution of global anthropogenic emissions contributes 16.39 Tg of the 

total tropospheric O3 burden change (
3OB∆ ), also higher in the NH than in the SH, slightly 

greater than the combined influences of the change in emission magnitude (8.59 Tg) and the 

global CH4 change (7.48 Tg) (Fig. 4.2). The effect of changing CH4 on the tropospheric O3 

burden in this study (0.123 Tg 
3OB  per Tg CH4 a-1) is within the range of sensitivities found 

http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/download.cgi?index=HPB647N00-DWD&param=200612120588&select=inventory#monthly
http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/download.cgi?index=HPB647N00-DWD&param=200612120588&select=inventory#monthly
https://www2.cesm.ucar.edu/models
https://www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package/find-code
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previously (0.11–0.16 Tg 
3OB  per Tg CH4 a-1, Fiore et al., 2008). Notice that the total 

3OB∆ from 

the sum of the three sensitivity simulations (32.46 Tg) is larger than that from direct comparison 

between S_2010 and S_1980 (28.12 Tg), as only one variable is changed to 1980 condition in all 

sensitivity simulations. In particular latitude bands the 
3OB∆ from the emission spatial pattern 

change is much higher over 30°S–30°N than the other influences. In extratropical regions, the

3OB∆ from the emission spatial pattern change is only slightly greater or comparable to 
3OB∆

from the other two. North of 60°N, the 
3OB∆ due to the emission spatial pattern change is lowest, 

as less O3 and its precursors are transported to the high latitudes from North America and Europe.  

Between 1980 and 2010, the greatest increases in O3 (5–9 ppb) are over 0°–35°N in the 

middle and upper troposphere (750 to 150 hPa), greater than O3 increases near the surface (Fig. 

4.3). Notable O3 increases are also seen over 30°S–0° (4–7 ppb) in the higher altitudes. Between 

35°–60°N, O3 near the surface shows only small changes, but O3 increases above the middle 

troposphere, even though the anthropogenic emissions over these regions (North America and 

Europe) decreased between 1980 and 2010 (Figs. C.1 and C.2). The influences of the global 

emission magnitude change and the global CH4 change both increases the O3 concentration over 

the 30°S–35°N, but the largest increases are due to the influence of the global emission spatial 

pattern change. The spatial distribution change best explains the overall change, particularly the 

regions with greatest ozone increases. The O3 precursors increases South of 35ºN are transported 

efficiently to the middle and upper troposphere, due to strong tropical convection (Hadley cell), 

and emission decreases North of 35ºN stay at higher latitudes and lower elevation, due to Ferrell 

cell circulation (Fig. 4.4). When the global emissions shifts southwards, strong convective 

mixing over the tropical regions lifts O3 and NOy to higher altitudes (Fig. 4.3b, Fig. 4.4b), where 
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the O3 lifetime is longer, favorable for O3 accumulation. When the global emission increases sit 

on mid-latitudes in the NH, the weak convection mixing hardly loft the NOy to high altitudes, but 

instead to polar region (Fig. 4.4c). We conclude that the global increases are affected by the 

strong convective mixing over the tropical region. The O3 increases at high altitudes over the 

middle and high latitudes are affected by the intercontinental transport of air pollutants from 

tropical regions due to the strong convection (Lawrence et al., 2003), and this influence is larger 

and more widespread over the middle and high troposphere than that over the surface, consistent 

with previous finding (Verstraeten et al., 2015).  

We then discuss the other three factors which could contribute to the significant O3 

increases from the emissions shifting southward: chemical reaction rates, O3-NOx-VOC 

sensitivity, and O3 lifetime. The tropical regions have faster chemical reaction rates than other 

regions (Fig. C.3), due to the strong sunlight and positively temperature-dependent for the O3 

production (Pusede et al., 2015). Therefore 
3OB as well as O3 chemical production rate (

3OP ) and 

loss rate (
3OL ) are higher in the scenarios with greater emissions in the lower latitudes of the NH 

(e.g., S_2010 and S_Magnitude) (Fig. C.4). Shifting emission southwards (S_2010-

S_Distribution) increases the global ozone production efficiency (define as gross 
3OP  per NOx 

emitted, Liu et al., 1997) (Fig. C.4). Strong NOx-sensitivity is prevalent over tropical regions, 

especially in the middle and upper troposphere (Figs. C.5 and C.6), and emission trends show 

greater increases of NOx that of VOCs (Fig. C.1). Notice that we use the monthly-averaged 

values to calculate the ozone sensitivity here, instead of using the instantaneous sensitivity 

indicted by Sillman et al. (1997), as an approximation for large areas. Sillman et al. (1997) used 

surface observation data when calculating the ozone sensitivity calculations and it is unlikely for 

us to calculate the instantaneous values from the model outputs. So the actual values in Figs. C.5 
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and C.6 could be different in reality when using the instantaneous values. O3 lifetime is lower 

over the tropical areas, due to the destruction caused by greater water vapor concentration and 

dry deposition over the vegetated surface (Lawrence et al., 2003). However, this effect is clearly 

not dominant as we see larger O3 increases over the tropical regions.  

The global surface O3 changes from 1980 to 2010 using the three month O3-season 

Maximum Daily 8-hr Average O3 (MDA8, see Methods)  are also examined in this study (Fig. 

C.7). The surface O3 changes are dominated by their regional emissions trends from 1980 to 

2010: decreases within Europe and North America, and increases over East Asia and Southeast 

Asia, consistent with observations (Royal society, 2008; Cooper et al., 2012). Similar regional 

variations of the MDA8 O3 are also seen from the influence of the global emission spatial pattern 

change. We conclude that the MDA8 change between 1980 and 2010 is also controlled by the 

global emission spatial pattern change, rather than the global emission magnitude change and the 

global CH4 change. Seasonal ozone peak has found to shift from summer to spring at rural 

Northern Hemisphere sites since 1970s, but these seasonal differences are not obvious in our 

model results (Fig. C.8). The uncertainty in the historical emission inventory as well as missing 

of important chemical or physical processes inside the model could attribute to this discrepancy 

(Parrish et al., 2014) 

For this study, we only use one global chemical transport model, and ensemble model 

means could be adopted to reduce single model bias. In the model setup, we use the base case 

simulation in 2010 to subtract the other scenarios with conditions in 1980, and the O3 burden 

changes from the different aspects of the global emissions change will be smaller when we do 

the opposite. However, we expect the conclusions to stay the same as the emission spatial pattern 

change dominates the total O3 changes from 1980 to 2010, but with lower values. O3 is also a 
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very important greenhouse gas, especially in the upper troposphere (Forster et al., 1997). So the 

increases in tropospheric O3 burdens, especially over the middle to upper troposphere will have 

positive forcing to the future climate change, leading to climate warming. However, increasing 

NOx can cause negative RF (Naik et al., 2005; Fry et al., 2012, 2014), and the RF changes 

response different to the emission changes over different regions and sectors (Shindell et al., 

2009; Unger et al., 2008). For further study, radiative transfer model can be used to quantify the 

RF changes from 1980 to 2010 and from the three aspects of emission changes.  

Our research reveals that the change in the spatial pattern of the global anthropogenic 

emissions from 1980 to 2010 dominates the tropospheric O3 burden change, even larger than the 

combined effects of changes in the global emission magnitude and global CH4. Tropical regions 

are favorable for O3 production due to the strong photochemical reaction rates, convection, and 

NOx-sensitivity. Increases in O3 precursor emissions within the Tropics (e.g., China, India and 

Southeast Asia) exert a significant influence on the global tropospheric O3 burden. Further work 

could be conducted to identify the largest influential source regions. The global tropospheric O3 

burden might be expected to continue to increase due to a continued southward shift of emissions, 

even if the global anthropogenic emissions remains unchanged or even decreases. 

4.4 Conclusions 

Since 1980, anthropogenic emissions of ozone precursors have decreased in developed 

regions such as North America and Europe, but increased in developing regions, particularly 

East and South Asia, redistributing the emissions southwards (Lamarque et al., 2010; Granier et 

al., 2011; Ohara et al., 2007; Richter et al., 2005; van der A et al., 2008; ). Modeling studies have 

shown that the tropospheric ozone burden and resulting radiative forcing are much more 

sensitive to emission changes in the tropics and Southern Hemisphere than other regions (Fry et 
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al., 2012, 2014; Naik et al., 2005; West et al., 2009a). However, the effect of the spatial 

redistribution of emissions has not been isolated. The emissions spatial redistribution may also 

be responsible for the shift in the seasonal ozone peak from summer to spring at rural Northern 

Hemisphere sites (Parrish et al., 2013). Here we use a global chemical transport model to 

separate the influence of changes in the spatial pattern of emissions from that in the magnitude of 

emissions, from 1980 to 2010, on the tropospheric ozone burden and surface ozone. We estimate 

that the spatial pattern change increases the tropospheric ozone burden by 16.39 Tg from 1980 to 

2010, accounting for more than half of the total tropospheric ozone burden changes (28.12 Tg), 

slightly greater than the combined influences of changes in the global emission magnitude itself 

and in global methane. We attribute the southward emissions dominating the tropospheric O3 

burden to the strong convective mixing, fast chemical reactions rates and more NOx sensitive in 

the tropical regions. The spatial distribution of emissions has a dominant effect on global 

tropospheric ozone, suggesting that the future ozone burden will be determined mainly by 

emissions from the tropics.    
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4.5 Figures and Tables 

Table 4.1. Model simulations for this study. The last three are the sensitivity simulations 

described in the main paper.  

  Emission total in year Spatial pattern in year CH4 concentration 
S_2010 2010 2010 1798 ppb 

S_1980  1980 1980 1567 ppb 

S_Distribution 2010  1980 1798 ppb 

S_Magnitude 1980  2010 1798 ppb 

S_CH4 2010  2010 1567 ppb 
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Table 4. 2. long-term ozone observation sites used in this study.  

Monitor sites Latitude/Longitude Elevation (m) Data available 
Barrow, US 71.1ºN /156.6 ºW 11 1975-2015 

Hohenpeissenberg, Germany 47.8ºN/11.2ºE 975 1971-2008 

Whiteface Mountain, US 44.4ºN/73.9ºW 1484 1973-2014 

Manua Loa, US 19.5ºN/155.6ºW 3397 1973-2015 

Matatula Pt, Samoa 14.3ºS/170.6ºW 82 1976-2015 

South Pole, Antarctica 90.0ºS/24.8ºW 2840 1975-2015 
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Fig. 4. 1. Tropospheric O3 burden change (

3OB∆ ) from 1980 to 2010. a, For global, NH and SH. 

b, For different latitudinal bands. The estimated components for
3OB∆ due to the spatial pattern 

change (red rectangle), magnitude change (black triangle) and global CH4 change (purple circle) 

are also seen in each plot.  
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Fig. 4. 2. Spatial distributions for 
3OB∆ (unit 106 g/km2) from 1980 to 2010. a, Total changes 

from 1980 to 2010. b-d, Influences of changes in the global emissions spatial pattern, the global 

emissions magnitude, and global CH4 mixing ratio.  
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Fig. 4. 3. Zonal annual average O3 change. a, Total change from 1980 to 2010. b-d, Influences of 

changes in the global emissions spatial pattern, the global emissions magnitude, and global CH4 

mixing ratio. 
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Fig. 4. 4. Zonal annual average NOy change. a, Total changes from 1980 to 2010. b-d, Influences 

of changes in the global emissions spatial pattern, the global emissions magnitude, and global 

CH4 mixing ratio. See methods for the NOy definition and calculation from CAM-chem.  
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CHAPTER 5. CONCLUDINGS REMARKS 

Here the major work for my Ph.D. research is to quantify the co-benefits of global GHG 

mitigation on US air quality and human health in 2050 at fine resolution, embedding upon a 

global co-benefits study (West et al., 2013; referred as WEST2013 thereafter). We also separate 

the co-benefits into two mechanisms: the co-benefits through reduced co-emitted air pollutants, 

and the co-benefits through the slowing climate change and its effect on air quality. Based on the 

global co-benefits study, we can also separate the influence of domestic GHG mitigations from 

that of foreign countries’ reductions. Chapters 2 and 3 quantify the co-benefits from global and 

domestic GHG mitigation on US air quality and human health. We also look into the co-benefits 

from top three domestic emission sectors which have the largest air pollutants decrease in US 

under the RCP4.5 scenario. Chapter 4 investigates the influence of global emission spatial 

pattern redistribution on global O3 burden change from 1980 to 2010. This chapter focuses on the 

main scientific findings and policy implications from these three studies. Uncertainty analysis 

and future research directions are also discussed in the end of this chapter.  

5.1 Key scientific findings 

5.1.1 Co-benefits from GHG mitigation 

Actions to reduce GHG emissions often reduce co-emitted air pollutants, bringing co-

benefits for air quality and human health. Previous studies typically evaluated the short-term 

benefits from the reduced co-emitted air pollutants, neglecting the long-range transport of air 

pollutants, and the influence of climate change on air quality (Bell et al., 2004; Nemet et al., 
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2010; Thompson et al., 2014). Under this circumstance, WEST2013 was the first study to discuss 

the co-benefits from global GHG mitigations on air quality and human health by using a global 

CTM. They found that 2.2±0.8 million deaths will be avoided globally by 2100 due to the air 

quality improvement from global GHG mitigation, considering both PM2.5 and O3. When 

monetized, the global average marginal co-benefits of avoided mortality were $50–380/tCO2, 

higher than the previous estimates (Nemet et al., 2010). However, WEST2013 was limited by 

using a coarse resolution in the model (horizontally 2º×2.5º). This dissertation is to downscale 

the global co-benefits results into regional scale (US domain) at finer resolution, using 

dynamically downscaling methods.  

By using the WRF model, SMOKE program to downscale global results into regional scale, 

and running the air quality simulations with the CMAQ model, we find that the total co-benefits 

of global GHG mitigation from RCP4.5 scenario compared with its reference are estimated to be 

higher in the eastern U.S. (ranging from 0.6-1.0 µg m-3) than the west (0-0.4 µg m-3) for annual 

average PM2.5, with an average of 0.47 µg m-3 over U.S.; for ozone-season maximum daily 8-

hour average O3, the total co-benefits are more uniform at 2-5 ppb with U.S. average of 3.55 ppb 

(Chapter 2). The total co-benefits for O3 are comparable to WEST2013, but much lower for 

PM2.5, which could be explained by the different chemical mechanisms and deposition processes 

adopted for organic aerosols in MZ4 and CMAQ. Also the differences of the meteorology (e.g., 

the precipitation and temperature) between the downscaled WRF and the GFDL could also 

contribute to this difference. When quantifying the total co-benefits on human health in US using 

the BenMAP-CE tool, We find that more than 24500 deaths (90% confidence interval, 17800 to 

31100) will be avoided for the PM2.5-related all-cause mortality, and 12200 (5400 to 18900) 

deaths for the O3-related respiratory mortality in US in 2050 from global GHG mitigation 
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(Chapter 3). For both PM2.5 and O3, the mortality estimates in fine resolution in this study are 

biased higher than the results in coarse resolution in WEST2013 (ranging from 17%-161% for 

PM2.5, and 62%-99% for O3). These discrepancies could be caused by the fact that the finer-

resolution CMAQ model can better capture the hotspots of future air quality changes near areas 

of dense population, and the coarse-resolution in WEST2013 could dilute the peak air quality 

concentrations which usually occur in populated regions (Punger and West, 2013. Li et al., 2015). 

Our study shares the same CRF as WEST2013, and the positive bias are largely caused by the 

county-level baseline mortality rates used in this study, less extent to the county-level population 

data embedded in BenMAP-CE as the total co-benefits of the Pop-Weighted Avg for both PM2.5 

(1.25 µg m-3) and O3 (4.61 ppbv) in WEST2013 are higher than those in this study.  

We also separate the total co-benefits through the two mechanisms. The reductions of co-

emitted air pollutants have a much greater influence on both PM2.5 (96% of the total co-benefits) 

and O3 (89% of the total) than the second co-benefits mechanism via slowing climate change, 

consistent with West et al. (2013) (Chapter 2). The improved air quality leads to 24100 (CI, 

17500-30600) avoided deaths for PM2.5-related all-cause mortality (accounting for 98% of the 

total avoided deaths from PM2.5), and 11500 (CI, 5100-17800) deaths for O3-related respiratory 

(94% of the total) (Chapter 3). The co-benefits from the second mechanism is less significant 

than those from the first mechanism, but it still accounts for 2%-11% for the total co-benefits on 

US air quality and human health. The slowing climate change may also degrade the air quality 

and increase the premature mortality in US as seen in the dissertation, as the model runs are only 

for three years and we may see the influence of the climate variability.   

By building this dissertation onto WEST2013, we can also separate the total co-benefits 

from contributions of domestic GHG mitigation versus foreign countries climate policies. This is 
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the first study to quantify the influences of foreign countries climate policies on US air quality 

and human health. We conclude that foreign countries GHG mitigation accounts for 26% (0.12 

µg m-3) of the total annual PM2.5 decrease over the whole US, but 76% (2.69 ppb) of the total O3 

decrease as a result of intercontinental air pollutants transport and global CH4 influence. When 

accounting for the human health, the foreign co-benefits could avoid 3700 deaths (2700-4700) 

for PM2.5-related mortality (accounting for 15% of the total deaths), and 7600 deaths (3400-

11900) for O3-related mortality (62% of the total). The influence is huge, especially for O3. The 

contribution fractions are specific to the climate policies we choose (RCP4.5 versus its REF), but 

we believe the conclusion holds true that foreign countries reductions could have significant 

influence on US domestic air pollutants, especially for O3. So previous studies which only 

estimated the co-benefits from domestic or single state’s climate policy, may greatly 

underestimate the real co-benefits which could be achieved by the internationally collaboration.  

We also consider the co-benefits from three domestic emission sectors in US: Industry, 

Residential, and Energy, because they are among the top three cost-effective sectors to be 

considered to carry on the GHG mitigation in US under the RCP4.5 scenario. We find that GHG 

mitigation in the residential sector in US will bring the largest co-benefits for the PM2.5-related 

premature mortality, accounting for 21% of the total domestic co-benefits. For O3, industry has 

the largest effect by avoiding 800 deaths/yr (300-1200), and accounting for 17% of the total. 

Caiazzo et al. (2013) concluded that largest contributors for both PM2.5-and O3-related 

mortalities in 2005 in US are road transportation. However, we didn’t consider co-benefits from 

road transportation in our study, as we didn’t see large air pollutants reductions in this sector 

resulted from its GHG mitigation policy under the RCP4.5 scenario.  
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5.1.2 Emission pattern redistribution on global ozone burden 

The last project for my dissertation is not directly related with the first two, but they share 

a common notion that intercontinental transport of ozone and its precursors are very important to 

global and regional air quality. We study the influence of global emission change from 1980 to 

2010 on the global ozone burden change in Chapter 4, as the emissions have shifting southwards. 

Previous research have shown that global ozone burden are more sensitive to the ozone 

precursors changes in tropical regions and Southern Hemisphere (SH) (Naik et al., 2005; West et 

al., 2009a; Fry et al., 2012, 2014). However no studies have separated the different aspects of 

emissions changes on the burden change. Our study in Chapter 4 has demonstrated that the 

influence of global emission spatial change accounts for more than half of the global ozone 

burden changes, even larger than the combined effect of global emission magnitude change and 

global CH4 change. The fast chemical reactions rates, more NOx sensitive as well as the strong 

convective mixing in the tropical regions which can lift up ozone and its precursors high into the 

middle and high troposphere and then transport to other regions are the main cause of the 

southward emissions dominating the tropospheric O3 burden.  

From Chapter 4, we conclude that the spatial distribution of emissions has a dominant 

effect on global tropospheric ozone, suggesting that the future ozone burden will be determined 

mainly by emissions from the tropics. So the global tropospheric O3 burden might be expected to 

continue to increase due to a continued southward shift of emissions, even if global 

anthropogenic emissions remain unchanged or even decreases. This provides motivations for 

international collaborations on controlling global ozone issues. Ozone is not only a regional 

problem anymore, but also an international issue. The ozone burden changes happen mostly from 

the middle to upper troposphere, which exerts much larger influence on radiative forcing changes 



87 

than that from the surface. So the emission spatial pattern shifting may also have influences on 

future climate change (Wang et al., 2015).  

5.2 Policy implications 

In the first two co-benefits studies (Chapters 2 and 3), we conclude that previous studies 

that estimate co-benefits for one nation or region (e.g., Driscoll et al., 2015; Thomson et al., 

2014), may significantly underestimate the full co-benefits when many countries reduce GHGs 

together, particularly for O3. By being the first study to quantify the influence of foreign  

countries GHG mitigation on US future air quality and human health, we find that U.S. can gain 

significantly greater domestic air quality co-benefits by engaging with other nations for GHG 

control to combat climate change, especially for O3. This also applies to other nations which can 

be expected to have ancillary air quality benefits from foreign countries’ GHG mitigation. 

Co-benefits from GHG mitigation are appealing to countries as they will gain near-term 

and immediate benefits of air quality improvement and then the reduced premature mortality. 

This is a “Win-Win” strategy for both air quality regulations and climate change control. Now 

our studies find that foreign countries GHG reduction strategies can also bring significant co-

benefits on domestic air quality and human health, which means global actions to reduce GHG 

could bring greater co-benefits. This provides an incentive for worldwide collaborations on 

combating global climate change and regulating air quality together. Air quality regulations can 

also have effects on global climate change, but more model simulations should be carried out to 

identify the benefits or disbenefits as different air pollutants have either positive or negative 

effect on climate forcing.  

The emission spatial distribution study (Chapter 4) has shown that global ozone burden 

changes are more sensitive to the ozone precursors’ change in tropical regions, especially over 
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South and Southeast Asia. The O3 burden can still increase even we keep the global emissions 

constant or decreasing in the near future, as the O3 burden change is more sensitive to the 

emission spatial pattern change, other than the global emission magnitude change. O3 can also 

transport long-distance from one source region to another receptor region. So to reach their own 

air quality standard, developed countries, such as US and Europe, should establish long-term 

collaborations with countries in tropical regions to control their air pollutants emissions; 

otherwise, attaining a lower ozone concentration may be in particularly challenging or even 

failed (Cooper et al., 2015).  

5.3 Uncertainties and future research  

The co-benefits we present here (Chapters 2 and 3) are specific to the reference (REF) and 

mitigation (RCP4.5) scenarios we choose, and results would differ for other baseline and 

mitigation scenarios. Further research could carry out studying the co-benefits based on different 

climate policy scenarios to find the most cost-effective way to both control the climate change 

and air quality in a coordinated way. The real total co-benefits are also depending on 

participation of many nations in the mitigation policies, and delaying participation will likely 

change the co-benefits.  

By comparing the co-benefits study from this study with WEST2013, the work in my 

dissertation do capture some local features better than the global model, such as the effects of 

topography and urban areas, especially for PM2.5. The resolution in my dissertation (36km by 36 

km in Chapters 2 and 3) is fine enough to characterize the co-benefits at a state level, but not fine 

enough on city level. So finer resolutions simulations (e.g., 12km by 12 km) can be carried out to 

better quantify the co-benefits over urban areas. The results from the global co-benefits have 

demonstrated that China and India will have the largest co-benefits on human health from the 
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global GHG mitigation under the RCP4.5 scenario. So the similar downscaling methods could be 

adopted to study the real co-benefits in those countries at fine resolution, and then compare with 

the global study.  

For each step in our three studies (Chapters 2-4), only one model is used, and ensemble 

model means could reduce the bias from each single model. Post et al. (2012) has shown that the 

choice of the climate change and the air quality model reflected the greatest source of uncertainty 

for accounting for future climate change related mortality, with the other modeling choices 

having lesser but still substantial effects. Studies also showed that multi-model mean for the 

climate change predictions and boundary conditions were better than single model (Tebaldi and 

Knutti, 2007).  

Emissions inventories are another large source of uncertainty in current modeling 

applications. So future work should also work on to improve the accuracy of emission 

inventories by further comparing the bottom-top method with top-down (or inverse) methods, 

such as satellite retrieval, and remote sensing (Donkelaar et al., 2010, 2015; Ma et al., 2014). 

Also we develop a new method to process the global emission inventory at coarse resolution into 

regional scale in US at fine resolution, which also introduce errors due to resolution 

transformation, especially along the boundary regions.  

From the results (Fig. 2.4, Fig. A.16), we see that the co-benefits of PM2.5 have large 

contributions from OC and SOA over the Central and East U.S. region. However, our model 

evaluations show that CMAQ simulations greatly underestimate the OC concentration compared 

with surface observations in IMPROVE network. SOA evaluation for CMAQ is not included in 

my dissertation due to the limitation of the observation datasets, even though recent studies 

found that the CMAQ also greatly underestimated the SOA species (Baek et al., 2015; Hayes et 
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al., 2015; Woody et al., 2015). New gas-phase and aqueous-phase oxidation pathways for SOA 

formation are found to play significant roles in producing organic aerosols (Lin et al., 2014; Pye 

and Pouliot, 2012; Pye et al., 2013), which are also missing in the CMAQ version used in this 

study, making the CMAQ simulation less reliable. Recently, laboratory work has revealed new 

chemical pathways of isoprene-derived SOA under different conditions. They have shown that 

under the high NOx conditions, the isoprene peroxy radicals primarily react with NO, leading to 

formation of methacryloylperoxynitrate (MPAN), which then decomposes into methacrylic acid 

epoxide (MAE) and hydroxymethylmethyl-α-lactone (HMML) by reacting with hydroxyl radical, 

and then generate SOA (Surratt et al., 2010; Lin et al., 2013). These chemical pathways should 

be updated into both the global and regional CTMs to better simulate both PM2.5 and O3 (Fiore et 

al., 2012).  The underestimation of the both OC and SOA in the current CMAQ model would 

greatly reduce the total co-benefits on both air quality and avoided premature mortality estimated 

from this study. 

 In quantifying the co-benefits from slowing climate change in the first two Chapters (2 

and 3), the predictions for future climate change and air quality change are run less than five 

years which may reflect meteorological variabilities, due to the limitations of availability of 

super computer resources and disk storages. For each scenario in Table 2.1 in Chapter 2, it takes 

more than 1 month to run all the consecutive 40 months simulation, and the outputs of all the 

simulations take up more than 21 TB, occupying more than a quarter of the total computer 

storages hold by UNC ITS services. Complaints are received almost every week from ITS staffs 

to ask me to remove the data. Future simulations should run more years to reduce the influence 

of the climate variability.  
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When we quantify the health impacts from air quality changes, another larger uncertainty 

may arise from the concentration-response function (CRF), which is derived from epidemiology 

studies that relate PM2.5 and O3 concentrations with mortality. Silva et al. (2013) has 

demonstrated that the CRF contributes more to overall uncertainty than the spread of model 

results. When we project the future avoided premature mortality, we assume that the CRF 

derived from present epidemiology studies may hold true into the future. Also different resources 

in projecting the future baseline mortality rates in US may also bring larger uncertainties for the 

results. For example, the IFs projected the baseline mortality rates in 2050 in US will increase, 

but the projection from RTI international (RTI International 2015) is decreasing.  

Both PM2.5 and O3 are also found to have influences on forest damage, crop yields and 

economical values. Following up studies can also be established to quantify the co-benefits from 

global and regional climate polices on food security and economy (Shindell et al., 2012; Tai et 

al., 2014). The benefit-cost assessments on both global and regional scale can be extremely 

useful for policy makers to make decisions on domestic or international air pollution controls and 

climate mitigation.   

For the emission spatial redistribution on the influence of global ozone burden change, I 

only use one single global CTM. Ensemble models means could be used to reduce single 

model’s variability. I expect that the results will be different by using ensemble model outputs 

compared with single model which is used in my dissertation. However, I will not expect the 

major conclusion will be different, which is that the global emission shifting southwards has a 

much larger influence on global ozone burden change for the past three decades, larger than the 

global emission magnitude change and global CH4 change. Though the emissions inventory in 

1980 from RCP8.5 is considered as the best approximation of the historical emissions, there are 
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still large uncertainties in the inventory. Improving the accuracy of the emissions, especially in 

larger emitted countries, such as China and India, will shed light on the conclusions of study. O3 

in the troposphere is considered as very important GHG, so future research could be carried out 

to study the radiative forcing changes from the emission pattern redistribution. 
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APPENDIX A. CO-BENEFITS OF GLOBAL AND REGIONAL GREENHOUSE GAS 
MITIGATION ON U.S. AIR QUALITY IN 2050: SUPPORTING MATERIALS 
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Table A.1. Sectors grouped in RCPs, SCC in the GSREF file, and the speciation profile codes in 

GSPRO used in SMOKE v3.5. X in the table represents any number.  

Sectors IPCC Code SCC Speciation profile codes 
Energy 1A1_1B 10100XXXX 92036 
Industries 1A2_2A_B_C_D_E 10200XXXX 92084 
Transportation 1A3b_c_e 220100XXXX 92050 
Residential 1A4 21040080XX 92068 
Solvents 2F_3 24XXXXXXX 92052 
Agriculture 4A_B_C_D_G 27301000XX 92001 
Agriculture waste burning 4F 2610000XXX 92000 
Waste 6A_B_C_D 101012XX 92082 
Savanna burning 4E 28100010XX 92090 
Forest fires 5A 28100010XX 92090 
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Table A.2. Evaluation of the S_2000 simulation (average of three years modeled) with surface 

observations in 2000 for PM2.5 components (SO4
2-, NO3

-, NH4
+, OC and EC) with different 

networks (µg m-3). 

  Pollutant MdnB NMdnB (%) MdnE NMdnE(%) 
IMPROVE SO4

2- 0.16 20.75 0.45 56.96 

IMPROVE NO3
- -0.040 -18.14 0.23 83.91 

IMPROVE OC -0.55 -63.55 0.60 69.13 

IMPROVE EC -0.069 -37.00 0.11 57.04 

CSN SO4
2- -0.10 -4.88 0.91 44.32 

CSN NO3
- -0.31 -50.06 0.44 71.39 

CSN NH3
+ 0.029 4.27 0.43 64.67 

CASTNET SO4
2- -0.40 -15.2 0.73 27.87 

CASTNET NO3
- -0.051 -10.50 0.37 74.97 

CASTNET NH4
+ -0.076 -7.63 0.31 31.30 
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Table A.3. The regional annual means of total, domestic, and foreign co-benefits for PM2.5 and 

O3 in the nine U.S. regions. The values (mean ± coefficient of variation (CV, %)) is calculated 

over three years.  

 
Annual PM2.5 (µg m-3) 

Ozone season (May-Oct) average of 

MDA8 O3 (ppbv) 

Total Domestic Foreign Total Domestic Foreign 

U.S. -0.47±7 -0.35±1 -0.12±26 -3.55±37 -0.86±1 -2.69±49 

Northwest -0.16 ±15 -0.13±2 -0.04±66 -4.15±21 -0.40±5 -3.75±28 

West -0.40 ±9 -0.30±3 -0.10±45 -3.99±46 -1.05±3 -2.94±61 

West N. Central -0.21±14 -0.13±3 -0.08±38 -4.02±41 -0.57±3 -3.45±48 

Southwest -0.30±12 -0.16±1 -0.13±24 -3.11±70 -0.79±3 -2.32±93 

South -0.62±11 -0.37±4 -0.25±22 -2.84±69 -0.79±3 -2.04±95 

East N. Central -0.45±3 -0.38±3 -0.06±29 -4.25±30 -0.81±4 -3.44±37 

Central -0.78±9 -0.65±2 -0.12±63 -3.38±55 -1.24±1 -2.14±87 

Southeast -0.75±29 -0.62±3 -0.13±84 -2.67±40 -1.14±3 -1.53±71 

Northeast -0.62±3 -0.53±1 -0.09±22 -4.61±17 -1.16±5 -3.45±21 
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Figure A.1. Comparisons of the 2-m temperature in 2000 (a, b), 2050 from RCP8.5 (c, d) and 

from RCP4.5 (e, f) for three-year averages of GFDL AM3 simulations on the left (a, c, e) and the 

WRF downscaling results on the right (b, d, f).  
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Figure A.2. Changes in (a) 2-m temperature (°C) and (b) precipitation (mm day-`) centered on 

2050 from RCP8.5 and 2000 (2050—2000). 
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Figure A.3. Changes in (a) 2-m temperature (°C) and (b) precipitation (mm day-1) centered on 

2050 from RCP4.5 and 2000 (2050—2000). 

  



99 

 

Figure A.4. The spatial distribution of anthropogenic emissions of SO2 (10-12 kg m-2 s-1) from (a) 

REF scenario, (b) RCP45 scenario in 2050, and (c) relative differences between these two 

scenarios (RCP45-REF)/REF×100%). 
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Figure A.5. Same as Fig. A.4 but for NH3.  
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Figure A.6. Same as Fig. A.4 but for NO.  
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Figure A.7. Same as Fig. A.4 but for CO. 
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Figure A.8. Same as Fig. A.4 but for NMVOCs. 
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Figure A.9. Same as Fig. A.4 but for EC. 
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Figure A.10. Same as Fig. A.4 but for OC. 
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Figure A.11. Seasonal distributions of PM2.5 changes (µg m-3) between S_REF in 2050 and 

S_2000 for (a) winter, (b) spring, (c) summer and (d) fall. The three-year annual averages over 

the U.S. is -2.76 µg m-3.  
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Figure A.12. As Fig. A.11 but for the changes between S_RCP45 in 2050 and S_2000. The U.S. 

average is -3.23 µg m-3.  
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Figure A.13. Seasonal distributions of O3 changes (ppb) between S_REF in 2050 and S_2000 for 

(a) winter, (b) spring, (c) summer and (d) fall. The three-year annual averages over U.S. is -2.84 

ppb.  
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Figure A.14. As for Fig. A.13, but for the changes between S_RCP45 in 2050 and S_2000. The 

U.S. average is -5.20 ppb.  

  



110 

  

Figure A.15.  Comparison of air quality changes over U.S. for REF in 2050 relative to 2000, for 

this study (black triangle), and MZ4 from WEST2013 (red circle), for (a) the annual average 

PM2.5, and (b) annual average O3 surface concentration. Values shown are the average of three 

years for both CMAQ and MZ4.  
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Figure A.16. Seasonal distributions of total co-benefits for major PM2.5 components (µg m-3).  
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Figure A.17. Seasonal distributions of total co-benefits for organic matter (OM, µg m-3), 

including SOA from anthropogenic source (ORGA), SOA from biogenic source (ORGB), SOA 

from aqueous-phase oxidation (ORGC), Primary organic carbon (POC) and non-carbon organic 

matter (NCOM). 
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Figure A.18. The total co-benefits for PM2.5 (µg m-3) in (a) WEST2013 and (b) this study. Both 

the results from WEST2013 and this study are using three-year averages.  
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Figure A.19. As for Fig. A.18 but for OM (µg m-3, including primary OC, SOA and NCOM).  
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Figure A.20. As for Fig. A.18 but for EC (µg m-3).  
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Figure A.21. As for Figure A.18 but for SO4
2- ( µg m-3).  
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Figure A.22. As for Fig. A.18 but for NO3
- ( µg m-3).  
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Figure A.23. The total co-benefits for annual area-weighted O3 (ppb) in (a) WEST2013 and (b) 

this study. Both WEST2013 and this study are using three-year averages. 
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Figure A.24. The nine U.S. climate regions defined by the National Oceanic and Atmospheric 

Administration (http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php, 

accessed 5 December 2014). 

 

  

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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APPENDIX B. CO-BENEFITS OF GLOBAL, DOMESTIC, AND SECTORAL 
GREENHOUSE GAS MITIGATION ON US AIR QUALITY AND                                 

HUMAN HEALTH IN 2050: SUPPORTING MATERIALS 

Table B.1. Simulations used for health impact assessment in this study, conducted by Zhang et al (2016) 

and the last three sector simulations for this study. Boundary conditions are from the MOZART-4 (MZ4) 

simulations of WEST2013. Global methane (CH4) background concentrations are fixed in CMAQ, 

consistent with the RCPs and WEST2013. All the simulations are run for three consecutive years, with 

four months spin-up.  

Years Scenario Emissions Meteorology BCs CH4 

2000 S_2000 2000 2000 MZ4
 
2000 1766 ppbv 

 

 

 

 

2050 

 

 

S_REF REF RCP8.5 MZ4 REF 2267 ppbv 

S_RCP45 RCP4.5 RCP4.5 MZ4 RCP4.5 1833 ppbv 

S_Emis RCP4.5 RCP8.5 MZ4 e45m85 1833 ppbv 

S_Dom aRCP4.5 for US RCP8.5   MZ4 REF 2267 ppbv 

S_indUS bRCP4.5 for  
US Industry 

RCP8.5 MZ4 REF 2267 ppbv 

S_resUS bRCP4.5 for  
US Residential 

RCP8.5 MZ4 REF 2267 ppbv 

S_eneUS bRCP4.5 for  
US Energy 

RCP8.5 MZ4 REF 2267 ppbv 

aapply emissions from RCP4.5 in US and from REF in the parts of Canada and Mexico within the domain 

bonly one sector of emissions from RCP4.5 (e.g., Industry, Residential and Energy) are used, and 

emissions in other sectors over the U.S., and emissions over Canada and Mexico in the domain are from 

REF.  
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Table B.2. The US average baseline mortality rates ( 0y , deaths per 1000 adult population) used by 

WEST2013 (in 2050 projected in IFs, version 6.54 under the UNEPGEO Base Case scenario) and 

BenMAP-CE (in 2005), and the adjustment ratio used in this study.  

 WEST2013 BenMAP-CE v1.0.8 aAdjustment ratio 

Respiratory 1.56 0.82 1.90 

Cardiopulmonary 5.90 3.75 1.57 

Lung Cancer 0.93 0.57 1.63 

All-Cause 8.91 8.34 1.07 
aAdjustment ratios are calculated by dividing the number in WEST2013 by BenMAP-CE. 
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Table B.3. Total anthropogenic emission reductions (Tg yr-1) in the US in 2050 in RCP4.5 and REF, and 

the reductions (Abs Diff, Tg yr-1) in different sectors in RCP4.5 compared with REF in the US. Relative 

diff (Ref Diff, %) is calculated as 

sec 4.5( ) / ( ) *100tor REF RCP REFEmissions Emissions Emissions Emissions− − .  

  
RCP4.5-REF Industry Residential Energy 

 
Abs Diff  Rel Diff  Abs Diff  Rel Diff  Abs Diff  Rel Diff  

SO
2
 -0.71 -0.38 53.52 -0.057 8.03 -0.26 36.62 

NH
3
 -0.26 -0.0013 0.50 0.00005 -0.02 -0.0004 0.15 

NOx -0.48 -0.20 41.67 -0.022 4.58 -0.25 52.08 

CO -0.17 -0.071 41.76 0.014 -8.24 -0.078 45.88 

EC -0.01 -0.0012 12.00 -0.0016 16.00 -0.0036 36.00 

OC -0.02 -0.0067 33.50 -0.0040 20.00 -0.0009 4.50 
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Table B.4. The total co-benefits for avoided premature mortality in the US in 2050 and the mortality per capita (the avoided deaths per million 

people, for the future exposed population aged 30 and over) for both PM2.5- and O3-related mortality.  

 PM2.5-related all-cause mortality O3-related Resp mortality 
 Mortality 90% CI Mortality per million Mortality 90% CI Mortality per million 
AL 415 (302, 527) 116 160 (71, 247) 45 
AR 227 (166, 289) 99 84 (37, 129) 36 
AZ 368 (268, 467) 61 314 (139, 485) 52 
CA 3827 (2787, 4857) 133 2155 (959, 3321) 75 
CO 173 (126,   220) 41 199 (88, 307) 48 
CT 358 (261,   455) 134 179 (80, 276) 67 
DC 17 (12,   21) 106 7 (3, 10) 42 
DE 64 (47,   82) 119 35 (15, 53) 64 
FL 1529 (1113,   1941) 88 603 (268, 931) 35 
GA 831 (605,   1056) 104 339 (151, 524) 42 
IA 138 (100,   175) 69 109 (49, 169) 55 
ID 26 (19,   33) 22 60 (27, 92) 51 
IL 1164 (848,   1478) 134 453 (201, 699) 52 
IN 458 (333,   581) 102 204 (91, 315) 45 
KS 152 (110,   193) 79 85 (38, 132) 44 
KY 342 (249,  435) 109 139 (62, 214) 44 
LA 395 (287,   501) 124 124 (55, 191) 39 
MA 473 (344,   601) 104 286 (127, 442) 63 
MD 630 (459,   800) 123 282 (125, 435) 55 
ME 62 (45,   79) 58 75 (33, 116) 70 
MI 714 (520,   907) 108 384 (171, 592) 58 
MN 258 (187,   327) 65 168 (75, 260) 42 
MO 362 (264,   460) 91 166 (74, 257) 42 
MS 256 (186,   325) 118 89 (40, 138) 41 
MT 16 (12,   20) 20 48 (21, 74) 62 
NC 824 (600,   1047) 103 387 (172, 597) 48 
ND 12 (9,   15) 28 22 (10, 34) 51 
NE 59 (43,   75) 55 54 (24, 83) 50 
NH 104 (76,   133) 84 74 (33, 114) 59 
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NJ 1158 (844,   1470) 163 451 (201, 696) 64 
NM 80 (58,   102) 43 93 (41, 143) 50 
NV 126 (92,   160) 53 159 (71, 246) 67 
NY 2057 (1498,   2610) 165 783 (349, 1208) 63 
OH 994 (724,   1263) 130 431 (192, 666) 56 
OK 231 (168,   293) 87 101 (45, 156) 38 
OR 102 (75,   130) 33 139 (62, 214) 45 
PA 1111 (809,   1411) 136 561 (249, 865) 68 
RI 69 (50,   87) 108 41 (18, 64) 65 
SC 452 (329,   575) 117 186 (83, 288) 48 
SD 17 (13,   22) 33 28 (12, 43) 53 
TN 520 (378,   660) 105 232 (103, 358) 47 
TX 1776 (1292,   2255) 82 717 (318, 1107) 33 
UT 73 (53,   93) 36 83 (37, 127) 40 
VA 710 (517,   901) 108 319 (142, 493) 49 
VT 34 (25,   43) 65 29 (13, 45) 57 
WA 182 (133,   231) 32 267 (119, 412) 47 
WI 369 (268,   468) 87 206 (92, 318) 49 
WV 135 (98,   172) 107 73 (33, 113) 58 
WY 11 (8, 14) 24 29 (13 45) 62 
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Table B.5. The domestic co-benefits on avoided premature mortality in the US in 2050 and the mortality per capita (the avoided deaths per million 

people, for the future exposed population aged 30 and over) both PM2.5- and O3-related mortality.  

 PM2.5-related all-cause mortality O3-related Resp mortality 
 Mortality 90% CI Mortality per million Mortality 90% CI Mortality per million 
AL 293 (213, 372) 82 60 (27, 93) 17 
AR 149 (108, 189) 65 37 (17, 58) 16 
AZ 228 (166, 290) 38 89 (39, 138) 15 
CA 3179 (2315, 4035) 111 882 (392, 1367) 31 
CO 110 (80, 140)  26 56 (25, 86) 13 
CT 322 (235, 409) 121 79 (35, 122) 29 
DC 17 (12, 22) 109 3 (1, 4) 18 
DE 65 (47, 82) 120 15 (7, 23) 27 
FL 1291 (939, 1639) 74 257 (114, 398) 15 
GA 697 (508, 885) 87 148 (66, 230) 19 
IA 115 (84, 146) 57 32 (14, 50) 16 
ID 19 (14, 25) 16 9 (4, 13) 7 
IL 1029 (749, 1307) 118 180 (80, 280) 21 
IN 443 (323, 563) 99 96 (42, 148) 21 
KS 99 (72, 126) 52 30 (13, 46) 16 
KY 282 (205, 358) 90 70 (31, 108) 22 
LA 292 (212, 370) 92 44 (20, 68) 14 
MA 424 (308, 538) 93 109 (48, 169) 24 
MD 640 (466, 812) 125 122 (54, 190) 24 
ME 45 (33, 58) 42 19 (8, 30) 18 
MI 711 (517, 902) 108 133 (59, 207) 20 
MN 222 (162, 282) 56 40 (18, 62) 10 
MO 264 (192, 335) 66 68 (30, 106) 17 
MS 176 (128, 224) 82 33 (15, 51) 15 
MT 9 (7, 11) 12 5 (2, 8) 7 
NC 776 (565, 985) 97 164 (73, 254) 20 
ND 9 (7, 12) 21 3 (1, 4) 6 
NE 42 (31, 54) 39 14 (6, 22) 13 
NH 90 (65, 114) 72 24 (11, 37) 19 
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NJ 1080 (787, 1372) 152 184 (82, 285) 26 
NM 47 (35, 60) 25 23 (10, 35) 12 
NV 81 (59, 103) 34 41 (18, 64) 17 
NY 1868 (1361, 2371) 150 310 (138, 481) 25 
OH 953 (694, 1211) 125 183 (81, 284) 24 
OK 138 (101, 176) 52 43 (19, 67) 16 
OR 86 (63, 110) 28 18 (8, 28) 6 
PA 1057 (769, 1342) 129 221 (98, 343) 27 
RI 61 (44, 77) 96 17 (8, 27) 27 
SC 406 (295, 515) 105 78 (35, 121) 20 
SD 14 (10, 18) 27 6 (2, 9) 11 
TN 403 (294, 512) 81 99 (44, 154) 20 
TX 1204 (876, 1530) 56 253 (112, 392) 12 
UT 54 (39, 68) 26 20 (9, 31) 10 
VA 664 (483, 843) 101 140 (62, 217) 21 
VT 25 (18, 31) 48 8 (4, 12) 15 
WA 169 (123, 215) 30 32 (14, 50) 6 
WI 320 (233, 406) 76 66 (29, 103) 16 
WV 123 (90, 156) 97 32 (14, 49) 25 
WY 6 (4, 8) 13 6 (2, 9) 12 
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Table B.6. The foreign co-benefits on avoided premature mortality in the US in 2050 and the mortality per capita (the avoided deaths per million 

people, for the future exposed population aged 30 and over) both PM2.5- and O3-related mortality. 

 PM2.5-related all-cause mortality O3-related Resp mortality 
 Mortality 90% CI Mortality per million Mortality 90% CI Mortality per million 
AL 123 (89, 156) 34 100 (45, 156) 28 
AR 79 (58, 100) 34 46 (21, 72) 20 
AZ 140 (102, 178) 23 226 (100, 350) 38 
CA 653 (475, 829) 23 1282 (570, 1986) 45 
CO 63 (46, 80) 15 144 (64, 223) 34 
CT 36 (26, 46) 14 101 (45, 156) 38 
DC -1 (0, -1) -3 4 (2, 6) 24 
DE -1 (0, -1) -1 20 (9, 31) 37 
FL 239 (174, 303) 14 347 (154, 539) 20 
GA 135 (98, 171) 17 192 (85, 298) 24 
IA 23 (17, 29) 12 78 (34, 120) 39 
ID 6 (5, 8) 5 51 (23, 79) 44 
IL 136 (99, 173) 16 274 (121, 424) 31 
IN 15 (11, 19) 3 109 (48, 169) 24 
KS 52 (38, 67) 27 56 (25, 86) 29 
KY 60 (44, 77) 19 69 (31, 107) 22 
LA 104 (75, 132) 33 80 (36, 124) 25 
MA 50 (36, 63) 11 178 (79, 276) 39 
MD -10 (-7, -13) -2 161 (71, 249) 31 
ME 17 (12, 21) 16 56 (25, 87) 52 
MI 4 (3, 5) 1 252 (112, 390) 38 
MN 35 (26, 45) 9 128 (57, 199) 32 
MO 99 (72, 125) 25 99 (44, 153) 25 
MS 79 (58, 101) 37 56 (25, 88) 26 
MT 7 (5, 9) 9 43 (19, 67) 55 
NC 49 (36, 62) 6 224 (99, 348) 28 
ND 3 (2, 4) 7 19 (8, 30) 44 
NE 17 (12, 22) 16 40 (18, 62) 37 
NH 15 (11, 19) 12 50 (22, 78) 40 
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NJ 78 (57, 100) 11 270 (120, 418) 38 
NM 33 (24, 41) 17 70 (31, 109) 38 
NV 45 (33, 57) 19 119 (53, 184) 50 
NY 190 (139, 242) 15 477 (212, 738) 38 
OH 41 (30, 52) 5 249 (111, 387) 33 
OK 93 (68, 118) 35 58 (26, 91) 22 
OR 16 (12, 20) 5 121 (54, 187) 39 
PA 55 (40, 70) 7 341 (152, 529) 42 
RI 8 (6, 10) 12 24 (11, 37) 38 
SC 47 (34, 60) 12 109 (48, 168) 28 
SD 3 (2, 4) 6 22 (10, 34) 42 
TN 117 (85, 149) 24 133 (59, 206) 27 
TX 573 (417, 728) 26 466 (207, 722) 22 
UT 20 (14, 25) 10 63 (28, 97) 31 
VA 46 (33, 58) 7 180 (80, 279) 27 
VT 9 (7, 12) 18 22 (10, 33) 42 
WA 13 (10, 17) 2 235 (104, 364) 41 
WI 49 (36, 63) 12 140 (62, 217 33 
WV 12 (9, 15) 10 42 (19, 65) 33 
WY 5 (4, 7) 11 24 (10, 36) 51 
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Figure B.1. Spatial distributions of the avoided mortality (deaths -1) from the total co-benefits in US in 

2050 for (a) PM2.5 and (b) O3. Note that the scales in the two panels differ.  
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Figure B.2. Spatial distributions of the mortality per capita (MPC, total avoided deaths per million people) 

from the total co-benefits in US in 2050 for (a) PM2.5 and (b) O3. Note that the scales in the two panels 

differ.  
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Figure B.3. (a) Domestic (0.80 ppbv for three-year Simple Average in US in 2050) and (b) foreign co-

benefits (2.16 ppbv for three-year Simple Average in US in 2050) for 6-month ozone-season average of 

1-hr daily maximum of O3.  
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APPENDIX C. SOUTHWARD REDISTRIBUTION OF EMISSIONS DOMINATES THE 
1980 TO 2010 TROPOSPHERIC OZONE CHANGE: SUPPORTING MATERIALS 

Table C.1. Aircraft campaigns used in this study for the model evaluation purpose.  
Campaign Year Month Platform 
TOTE 1995 December DC-8 

VOTE 1996 January DC-8 

STRAT 1995/96 Jan-Dec ER-2 

PEM-Trop-A 1996 Aug-Oct P3/DC-8 

SONEX 1997 Oct-Nov DC-8 

POLARIS 1997 Apr-Jun, Sep ER-2 

POLINAT-2 1997 Sep-Oct Falkon 

PEM-Trop-B 1999 Mar-Apr P3/DC-8 

ACCENT 1999 Apr, Sep-Oct WB57 

SOS 1999 Jun, Jul NOAA WP-3D 

SOLVE 99/00 Dec-Mar DC-8 

SOLVE 99/00 Dec-Mar ER-2 

TOPSE 2000 Feb-May C130 

TRACE-P 2000 Feb-Apr P3/DC8 

TexAQS 2000 Aug, Sep NOAA WP-3D 

ITCT 2002 Apr, May NOAA WP-3D 

Crystal Face 2002 Jun-Jul WB57 

INTEX-A 2004 Mar-Aug DC8 

NEAQS-ITCT 2004 Jul, Aug NOAA WP-3D 

Ave Fall 2004 Oct, Nov WB57 

Ave Houston 2005 June WB57 

Polar Ave 2005 Jan, Feb WB57 

Cr-Ave 2006 Jan, Feb WB57 

INTEX-B 2006 Mar-Aug DC8 

TexAQS 2006 Sep, Oct NOAA WP-3D 

TC4 2007 July WB57 

APCPAC 2008 Mar, Apr NOAA WP-3D 

APCTAS 2008 Apr-Jun DC-8 

START08 2008 Apr-Jun G5 

CalNex 2010 May, Jun NOAA WP-3D 
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Figure C.1. Latitudinal distributions of global anthropogenic emissions in 1980 and 2010, 

including fire emissions defined as anthropogenic, shown in 10° increments.  
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Figure C.2. As for Figure C.1, but for the emission fractions of global total emissions for each 

latitudinal band.  
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Figure C.3. Global O3 chemical production and loss in 2010 (a, c) and 1980 (b,d), including the 

O3 chemical production rate ( 3OP , a, b) and O3 chemical loss rate ( 3OL , c, d).  
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Figure C.4. Tropospheric O3 budget from the different simulations, for global annual mean 

tropospheric O3 burden ( 3 /10OB ), global annual O3 chemical production ( 3 /100OP ), global 

annual O3 chemical loss ( 3 /100OL ), and the global O3 production efficiency (OPE, mol/mol, 

defined as the gross O3 chemical production (PO3) per NOx emitted, Liu et al., 1997).  
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Figure C.5. Global distributions of the monthly average surface (top), mid-troposphere (750hpa, 

middle) and upper-troposphere (500hpa, bottom) H2O2/HNO3, with the transition between 

VOCs-sensitive and NOx-sensitive conditions at roughly 0.3-0.6 (Sillman et al., 1997).  
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Figure C.6. Global distributions of the monthly average surface (top), mid-troposphere (750hpa, 

middle) and upper-troposphere (500hpa, bottom) H2O2/NO2, with the transitions between VOCs-

sensitive and NOx-sensitive conditions at roughly 0.2-0.35 (Sillman et al., 1997). 
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Figure C.7. (a) Global surface three-month O3 season MDA8 change from 1980 to 2010, and 

influences of changes in (b) the global emissions spatial pattern, (c) the global emissions 

magnitude, and (d) global CH4 mixing ratio.  
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Figure C.8. Seasonal peak O3 in 1980 and 2010 for rural observation sites which are shown to 

experience changes in the seasonal cycle (Parrish, 2013; Cooper, 2014).  
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Figure C.9. Vertical profile (hPa in the y axis) comparisons of tropospheric O3 concentrations 

(ppbv in the x axis) from the model outputs (red dot) for four-year averages from the S_2010 

simulation with the monthly mean (black dot) and median (blue dot) ozonesonde climatology 

(average of 1995 through 2011, Tilmes et al., 2012) for nine selected ozonesonde stations that 

are latitudinally representative across the NH and SH in four months (Larmarque et al., 2012).  
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Figure C.10. Time series (months in the x axis) comparisons of the base simulated monthly mean 

tropospheric O3 concentrations from the S_2010 simulation (ppbv in the y axis) for the years 

2009-2012 (red dot) with the monthly mean (black dot) and median (blue dot) ozonesonde 

climatology (averaged over 1995 through 2011, Tilmes et al., 2012) for nine selected ozonesonde 

stations that are latitudinally representative across the northern and southern hemispheres at 

altitudes of 800, 500, and 200 millibars (mb). 
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Figure C.11. Taylor diagram of comparisons between modeled ozone from the S_2010 

simulation and the ozonedes data in high Tropics (left), mid-latitudes (middle), and the high-

latitudes (right) for three different altitude levels (900hpa, 500hpa and 250hpa) in the 

troposphere. The x-axis shows the relative ozone normalized bias of the simulations compared to 

the observations, whereas the radiant describes the correlation coefficient of seasonal averaged 

ozone values between simulated and observed values. Numbers symbolize different regions.  
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Figure C.12. Comparisons O3 from modelled output (red) at specific time period and location 

with aircraft profiles (black, Tilmes et al., 2015; Table S3) for four-year average from S_2010 

simulation with averaged over 0-3 km (top) and 2-7 km (bottom). 
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Figure C.13. Comparisons of tropospheric column O3 climatology data (Dobson Unit, DU) 

profile from modelled outputs for four-year averages from S_2010 with OMI satellite data from 

2004 to 2010, for (a) OMI, (b) CAM-chem simulation, and (c) the differences between CAM-

chem and OMI.  
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Figure C.14. Comparison of four-year averages surface O3 concentrations from the S_2010 

simulation (red) with observations from the CASTNET monitoring network in the U.S. from 

2009 to 2012, showing CASTNET regional mean (black) and individual monitoring locations 

(grey). The overall mean bias is 5.75 ppbv.  
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Figure C.15. Comparison of four-year averages surface O3 concentrations from the S_2010 

simulation (red) with observations from the EMEP monitoring network in Europe from 2009-
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2011, showing EMEP regional mean (black) and individual monitoring locations (grey). The 

overall mean bias is 0.65 ppbv.  
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Figure C.16. Comparison for the trends of daily maximum O3 changes from 1980 to 2010 

between model and six long-term remotes sites. The bars are the full range across four annual 

averages. All the values for both model and obsservation are for four-year average. The 

observation site means are from 1979 to 1982 for the value in 1980, and from 2009 to 2012 for 
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the value in 2010, except for the Hohenpeissenberg site which is four-year average from 2005 to 

2008, as no observation data past 2008 is reported yet.  
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APPENDIX D. GUIDE TO RUNNING CAM-CHEM MODEL                                                      
ON UNC’S KILLDEVIL CLUSTER 

This document is created to run CAM-Chem (active model for ATMOSPHERE and 

LAND in CESM 1.2.2) on UNC Killdevil. For instructions to import a new version of CESM on 

UNC Killdevil, please contact me by yuqiangzhang.thu@gmail.com, or refer to the official 

website: http://www2.cesm.ucar.edu/models/current. CESM is coupled climate models for 

simulating Earth’s climate system, including different components, such as atmosphere, land 

model, rive run-off, ocean model, land-ice, and sea-ice. For the majority of scientific or research 

purposes at CHAQ lab, we only need to run the CESM with coupled ATMOSPHERE and 

LAND model, with the other models turned off and using prescribed data.  

To begin with, you first need to create an account on UNC Killdevil cluster. Please refer to 

the UNC ITS help website on how to do it: 

http://help.unc.edu/help/getting-started-on-killdevil/#P41_2630 

Also on this website, you will be acquainted with how to use the supercomputer clusters on 

the UNC Killdevil. Read careful as it will help you to get the setting right for running CAM-

chem.  

Steps to run the CAM-chem are as following: 

1) First load the required modules on your account: 

module add perl 

module add cmake/2.8.12.2 

module add netcdf/4.2 

module rm mvapich_intel/11.1 (when you load netcdf/4.2, it will automatically load 

mvapich_intel/11.1) 

module add mvapich2_intel/13.1-2 

mailto:yuqiangzhang.thu@gmail.com
http://www2.cesm.ucar.edu/models/current
http://help.unc.edu/help/getting-started-on-killdevil/#P41_2630
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2) Copy the CESM 1.2.2 source code 

You will be able to copy the precompiled source code of CESM 1.2.2 to your own 

directory: 

“cp –r /nas02/depts/ese/chaq/yuqiangz/cesm1_2_2_compiled 

/nas02/home/O/N/ONYEN/cesm1_2_2” 

PS: the O, N means the first and second letter of your ONYEN.  

3) Define the path of the root directory of CESM: 

For this step, it depends on which shell you are using. Type “echo $SHELL”, and you 

will find out: 

A) If you are using tcsh/csh”, type: 

“setenv $CCSMROOT  /nas02/home/O/N/ONYEN/cesm1_2_2” 

You can also include this setting in your home directory. Add this line in the file: 

“/nas02/home/O/N/ONYEN/.cshrc” 

B) If using “bach”, please type: 

“export  CCSMROOT=/nas02/home/O/N/ONYEN/cesm1_2_2” 

To include this setting in your home directory, add this line in this file: 

“/nas02/home/O/N/ONYEN/.bashrc” 

4) Create a case: 

Go to $CCSMROOT/scripts, and use “create_newcase” command to create a new case: 

“./create_newcase -case $CCSMROOT/test_ FGEOS_C4MOZ_L40CN  -res 

f19_f19 -compset FGEOS_C4MOZ_L40CN -mach killdevil” 

A) The CESM use the “component set”, AKA “compset” to define a particular mix of 

components, along with component-specific configuration and/or namelist setting, 
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also including the choices of chemical mechanisms and prescribe dynamics. For 

our group, we will use the “F” component for most of the cases. For more 

information, please refer to the guide, “CESM Components” and “CESM 

Component Sets”, and also here: 

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/compsets.html 

B) For the meanings of variable “-case”, “-res”, “-compset”, and “-mach”, please read 

the UG1.2.2.  

C) Here, “test_ FGEOS_C4MOZ_L40CN” is the variable of $CASE.  

D) There variables are important to define the domain, resolution, configuration of the 

simulation. 

5) Go to the run directory (for this case, $CCSMROOT/test_ FGEOS_C4MOZ_L40CN), 

and call “cesm_setup” to create Macros files (see pg. 21-22—UG 1.2.2).  

It’s always a good idea to save the log file on a local disk in case there are something 

when you compile the model: 

“./cesm_setup >& log_cesm_setup &” 

A) This step is to create the Macros files 

B) You will also see the namelists for different models, “user_nl_xxxx” (xxxx here 

means the atmospheric model—CAM, land model—clm).  

C) Also create the “$CASEROOT/$CASE.run” file which is used to run the CESM 

model.  

D) Customize the PE layout in “env_mach_pes.xml” file before running 

“cesm_setup”. If “cesm_setup” has been run before “env_mach_pes.xml” has 

been made changes, a cleanup step should be done first: “./cesm_setup -clean” 

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/compsets.html
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6) Build the model in the same directory: 

Call ./$CASE.build to build the model. In my test run, it’s  

“./test_FGEOS_C4MOZ_L40CN.build” 

To save the build time, submit the command to Killdevil queues: 

“bsub -q debug -n 8 -o log_test_MOZMAM.build ./test_ 

FGEOS_C4MOZ_L40CN.buil” 

A) Be default, the compile require 8 CPUs in parallel, because I already changed the 

setting in “config_compilers.xml” 

B) When you see “CESM BUILDEXE SCRIPT HAS FINISHED SUCCESSFULLY”, 

it means you successfully build the model. Also The build log files have names of 

the form “$model.bldlog.$datestamp” and are located in $RUNDIR. If they are 

compressed (indicated by a .gz file extension), then the build ran successfully. 

7) Run the CESM model 

A) Modify the “env_run.xml” file to control the start date, duration, end date, etc. 

Also talk a look at “Customizing runtime settings” in the user guide on how to 

carry out an initial runs, and how to resubmit the job.  

B) Change the options of how we submit the job: 

./xmlchnge BATCHQUERYa="bjobs -w" 

./xmlchange BATCHSUBMIT="bsub <" 

C) Most of times, we need to read our own datasets, such as anthropogenic emissions, 

and save some variables at specific intervals for the data analysis, instead of the 

default set by the “compset”, we need to make changes to the “user_nl_cam”. 

You can refer to the one I created for my study: 
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“/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/zyq_FGEOS_C4MOZ

_L40CN2_2010/user_nl_cam” 

The references for CAM namelist is listed here: 

http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-cam5_1 

D) Run CESM by submitting the script of “./$CASE.submit” 

8) To add the online option for MEGANv2.1, please refer to the manual: 

“MEGAN_Running_CESM1_MEGAN-v0408.pdf” by Simone Tilmes. 

http://www.cesm.ucar.edu/working_groups/Chemistry/roadmap_cesm120.pdf 

A) In “env_build.xml”: 

<entry id="CLM_CONFIG_OPTS" value="-bgc none" /> 

B) In “env_run.xml”,  

<entry id="CLM_BLDNML_OPTS" value="-megan" /> 

C) To see the namelist defined in the “user_nl_cam”, please refer to the files in my 

directory: 

“/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/zyq_FGEOS_C4MOZ

_L40CN2_2010/ user_nl_cam” 

9) The global meteorology for the GEOS-5 from 2005 to 2013 are put here: 

“/ms/depts/ese/yuqiangz/inputdata/atm/cam/met/GEOS5” 

The global emission inventories from the ACCMIP for 1980 and RCP8.5 for 2010 are 

put here: 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/1980 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85 

 

http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-cam5_1
http://www.cesm.ucar.edu/working_groups/Chemistry/roadmap_cesm120.pdf
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Sample “user_nl_cam” in my runs: 

! Users should add all user specific namelist changes below in the form of 

! namelist_var = new_namelist_value 

! http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-cesm1_2_2-cam    ;1/14/15, zyq 

 

&cam_inparm 

 avgflag_pertape                = 'A', 'A', 'A' 

 mfilt          =             1,   5,  24 

 nhtfrq         =            0, -24, -1 

 empty_htapes = .true. 

 

 fincl1         = 'Q', 'U', 'V', 'OMEGA', 'T', 'PS', 'TROP_P', 'PBLH', 'PRECC', 'PRECL', 'PHIS', 'Z3', 

'ORO', 'QFLX', 'SHFLX', 'TAUX', 'TAUY', 'O3', 'O', 'O1D', 'N2O', 'NO', 'NO2', 'NO_Lightning', 

'LNO_COL_PROD', 'NO3', 'HNO3', 'HO2NO2', 'N2O5', 'H2', 'OH', 'HO2', 'H2O2', 'LCH4', 'CO', 

'CH3O2', 'CH3OOH', 'CH2O', 'CH3OH', 'C2H5OH', 'C2H4', 'EO', 'EO2', 'CH3COOH', 

'GLYALD', 'C2H6', 'C2H5O2', 'C2H5OOH', 'CH3CHO', 'CH3CO3', 'CH3COOOH', 'C3H6', 

'C3H8', 'C3H7O2', 'C3H7OOH', 'PO2', 'POOH', 'CH3COCH3', 'RO2', 'ROOH', 'BIGENE', 

'ENEO2', 'MEK', 'MEKO2', 'MEKOOH', 'BIGALK', 'ALKO2', 'ALKOOH', 'ISOP', 'ISOPO2', 

'ISOPOOH', 'MVK', 'MACR', 'MACRO2', 'MACROOH', 'MCO3', 'HYDRALD', 'HYAC', 

'CH3COCHO', 'XO2', 'XOOH', 'C10H16', 'TERPO2', 'TERPOOH', 'TOLUENE', 'CRESOL', 

'TOLO2', 'TOLOOH', 'XOH', 'BIGALD', 'GLYOXAL', 'PAN', 'ONIT', 'MPAN', 'ISOPNO3', 

'ONITR', 'CB1', 'CB2', 'OC1', 'OC2', 'SOA', 'SO2', 'SO4', 'DMS', 'NH3', 'NH4', 'NH4NO3', 

'SSLT01', 'SSLT02', 'SSLT03', 'SSLT04', 'DST01', 'DST02', 'DST03', 'DST04', 'Rn', 'Pb', 'HCN', 
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'CH3CN', 'SFNO', 'SFNO2', 'SFCO', 'SFBIGALK', 'SFBIGENE', 'SFC10H16', 'SFC2H4', 

'SFC2H5OH', 'SFC2H6', 'SFC3H6', 'SFC3H8', 'SFCH2O', 'SFCH3CHO', 'SFCH3COCH3', 

'SFCH3OH', 'SFDMS', 'SFISOP', 'SFMEK', 'SFNH3', 'SFCB1', 'SFCB2', 'SFOC1', 'SFOC2', 

'SFSO2', 'SFTOLUENE', 'SFHCN', 'SFCH3CN', 'MEG_CH3COCH3', 'MEG_CH3CHO', 

'MEG_CH2O', 'MEG_CO','MEG_C2H6', 'MEG_C3H8', 'MEG_C2H4', 'MEG_C3H6', 

'MEG_C2H5OH', 'MEG_C10H16', 'MEG_ISOP', 'MEG_CH3OH', 'DV_HCN', 'DV_CH3CN', 

'WDR_HCN', 'WDR_CH3CN', 'WD_HCN', 'WD_CH3CN', 'WDR_SO2',  'WDR_HNO3', 

'WDR_H2O2', 'WDR_CH2O', 'WD_SO2', 'O3_CHMP', 'O3_CHML', 'CO_CHMP', 'CO_CHML', 

'SO4_CHMP', 'SO4_CHML', 'NO_CHML', 'NO2_CHML', 'NO3_CHML', 'HNO3_CHML' 

 

 fincl2         = 'PS', 'Z3', 'T', 'U', 'V', 'Q', 'CLOUD', 'LCH4', 'O1D', 'O3', 'OH', 'HO2', 'NO', 'NO2', 

'NO3', 'N2O5', 'HO2NO2', 'HNO3', 'NOX', 'NOY', 'CO', 'CH2O', 'CH3OOH', 'C2H2', 'HCOOH', 

'C2H4', 'C2H6', 'CH3COOH', 'CH3CHO', 'CH3OH', 'C2H5OH', 'GLYOXAL', 'PAN', 'C3H6', 

'C3H8', 'CH3COCH3', 'BIGENE', 'BIGALK', 'MEK', 'MVK', 'MACR', 'ONIT', 'ONITR', 'ISOP', 

  'CH3CN', 'TOLUENE', 'C10H16', 'HCN', 'SO2', 'SO4', 'NH3', 'NH4', 'NH4NO3', 'DMS', 'CB1', 

'CB2',  'OC1', 'OC2', 'SSLT01', 'SSLT02', 'SSLT03', 'SSLT04', 'DST01', 'DST02', 'DST03', 

'DST04' 

 

 fincl3         = 'O3' 

/ 

&solar_inparm 

solar_data_file         = '/netscr/yuqiangz/inputdata/atm/cam/solar/spectral_irradiance_Lean_1610-

2140_ann_c100408.nc' 
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/ 

&metdata_nl 

 met_data_file          = '2008/GEOS5.1_19x2_2008-JAN_c110728.nc' 

 met_data_path          = '/netscr/yuqiangz/inputdata/atm/cam/met/GEOS5' 

 met_filenames_list             = 

'/netscr/yuqiangz/inputdata/atm/cam/met/GEOS5_filenames_list_c120516.txt' 

/ 

&satellite_options_nl 

 sathist_fincl          = '' 

/ 

srf_emis_cycle_yr      = 2010 

 srf_emis_specifier             = 'BIGALK   -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.B

IGALK.surface.1.9x2.5_c110426.nc', 

         'BIGENE   -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.B

IGENE.surface.1.9x2.5_c110426.nc', 

         'C2H2     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

2H2.surface.1.9x2.5_c110426.nc', 

         'C2H4     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

2H4.surface.1.9x2.5_c110426.nc', 
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         'C2H5OH   -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

2H5OH.surface.1.9x2.5_c110426.nc', 

         'C2H6     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

2H6.surface.1.9x2.5_c110426.nc', 

         'C3H6     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

3H6.surface.1.9x2.5_c110426.nc', 

         'C3H8     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

3H8.surface.1.9x2.5_c110426.nc', 

         'CB1      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

B1.surface.1.9x2.5_c110426.nc', 

         'CB2      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

B2.surface.1.9x2.5_c110426.nc', 

         'CH2O     -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H2O.surface.1.9x2.5_c110426.nc', 
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         'CH3CHO   -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H3CHO.surface.1.9x2.5_c110426.nc', 

         'CH3CN    -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H3CN.surface.1.9x2.5_c110426.nc', 

         'CH3COCH3 -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H3COCH3.surface.1.9x2.5_c110426.nc', 

         'CH3COOH  -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H3COOH.surface.1.9x2.5_c110426.nc', 

         'CH3OH    -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

H3OH.surface.1.9x2.5_c110426.nc', 

         'CO       -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.C

O.surface.1.9x2.5_c110426.nc', 

         'DMS      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.D

MS.surface.1.9x2.5_c110426.nc', 
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         'HCN      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.H

CN.surface.1.9x2.5_c110426.nc', 

         'HCOOH    -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.H

COOH.surface.1.9x2.5_c110426.nc', 

         'MEK      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.M

EK.surface.1.9x2.5_c110426.nc', 

         'NH3      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.N

H3.surface.1.9x2.5_c110426.nc', 

         'NO       -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.N

O.surface.1.9x2.5_c110426.nc', 

         'OC1      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.O

C1.surface.1.9x2.5_c110426.nc', 

         'OC2      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.O

C1.surface.1.9x2.5_c110426.nc', 
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         'SO2      -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.S

O2.surface.1.9x2.5_c110426.nc', 

         'TOLUENE  -> 

/nas02/depts/ese/chaq/yuqiangz/CAM_v5.3/cesm1_2_2/RCP_process/2010_RCP85/emissions.T

OLUENE.surface.1.9x2.5_c110426.nc' 

 srf_emis_type          = 'CYCLICAL' 

/ 

&megan_emis_nl 

 megan_factors_file = 

'/netscr/yuqiangz/inputdata/atm/cam/chem/trop_mozart/emis/megan21_emis_factors_c20130304

.nc' 

 megan_specifier = 'ISOP = isoprene', 

        'C10H16 = myrcene + sabinene + limonene + carene_3 + ocimene_t_b + pinene_b + 

pinene_a + 2met_styrene + cymene_p + cymene_o + phellandrene_a + thujene_a + terpinene_a 

+ terpinene_g + terpinolene + phellandrene_b + camphene + bornene + fenchene_a + 

ocimene_al + ocimene_c_b', 

        'CH3OH = methanol', 

        'C2H5OH = ethanol', 

        'CH2O = formaldehyde', 

        'CH3CHO = acetaldehyde', 

        'CH3COOH = acetic_acid', 

        'CH3COCH3 = acetone', 
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        'HCOOH = formic_acid', 

        'HCN = hydrogen_cyanide', 

        'CO = carbon_monoxide', 

        'C2H6 = ethane', 

        'C2H4 = ethene', 

        'C3H8 = propane', 

        'C3H6 = propene', 

        'BIGALK = pentane + hexane + heptane + tricyclene', 

        'BIGENE = butene', 

        'MEK = butanone_2', 

        'TOLUENE = toluene' 

 megan_mapped_emisfctrs = .false. 

/ 

&chem_surfvals_nl 

 co2vmr         = 0.000001e-6 

 ch4vmr         = 1798.e-9 

 flbc_file              = '/netscr/yuqiangz/inputdata/atm/waccm/lb/LBC_1765-

2500_1.9x2.5_CMIP5_RCP85_za_c091214.nc' 

 flbc_list              = 'H2','N2O' 

 flbc_type              = 'SERIAL'/  
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